
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Parallel Programming with
Microsoft® Visual Studio®
2010 Step by Step

Donis Marshall

www.allitebooks.com

http://www.allitebooks.org

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2011 by Donis Marshall

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

ISBN: 978-0-7356-4060-3

1 2 3 4 5 6 7 8 9 QG 6 5 4 3 2 1

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support
related to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us
what you think of this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/
IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies.
All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people,
places, and events depicted herein are fictitious. No association with any real company, organization,
product, domain name, email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, O’Reilly Media, Inc., Microsoft
Corporation, nor its resellers, or distributors will be held liable for any damages caused or alleged to
be caused either directly or indirectly by this book.

Acquisitions and Developmental Editors: Russell Jones and Devon Musgrave
Production Editor: Holly Bauer
Editorial Production: Online Training Solutions, Inc.
Technical Reviewer: Ashish Ghoda
Copyeditor: Kathy Krause, Online Training Solutions, Inc.
Proofreader: Jaime Odell, Online Training Solutions, Inc.
Indexer: Fred Brown
Cover Design: Twist Creative • Seattle
Cover Composition: Karen Montgomery
Illustrator: Jeanne Craver, Online Training Solutions, Inc.

www.allitebooks.com

http://www.allitebooks.org

This book is dedicated to my mother, who is extremely proud that I am a published author.

She even gives my books to friends at her church—even though none of them are programmers.

But that does not matter. Thanks, Mom!

www.allitebooks.com

http://www.allitebooks.org

		 v

Contents at a Glance
1	 Introduction to Parallel Programming . 1
2	 Task Parallelism . 19
3	 Data Parallelism . 59
4	 PLINQ . . 89
5	 Concurrent Collections . 117
6	 Customization . 147
7	 Reports and Debugging . 181

		 vii

Table of Contents
Foreword . xi

Introduction . xiii

1	 Introduction to Parallel Programming . 1
Multicore Computing . 2

Multiple Instruction Streams/Multiple Data Streams 3
Multithreading . 4
Synchronization . 5

Speedup . . 6
Amdahl’s Law . 7
Gustafson’s Law . 8

Software Patterns . 9
The Finding Concurrency Pattern . 11
The Algorithm Structure Pattern . . 14
The Supporting Structures Pattern . 15

Summary . 16
Quick Reference . 17

2	 Task Parallelism . 19
Introduction to Parallel Tasks . 19

Threads . 21
The Task Class . 22
Using Function Delegates . . 28

Unhandled Exceptions in Tasks . 30
Sort Examples . 36

Bubble Sort . 36
Insertion Sort . 37
Pivot Sort . . 38
Using the Barrier Class . 38
Refactoring the Pivot Sort . 42

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

viii	 Table of Contents

Cancellation . 43
Task Relationships . 46

Continuation Tasks . . 46
Parent and Child Tasks . 52
The Work-Stealing Queue . 54

Summary . 56
Quick Reference . 57

3	 Data Parallelism . 59
Unrolling Sequential Loops into Parallel Tasks . 60

Evaluating Performance Considerations . 63
The Parallel For Loop . . 64
Interrupting a Loop . 67
Handling Exceptions . 72
Dealing with Dependencies . 74

Reduction . 74
Using the MapReduce Pattern . . 80

A Word Count Example . . 84
Summary . 86
Quick Reference . 87

4	 PLINQ . . 89
Introduction to LINQ . . 90

PLINQ . 94
PLINQ Operators and Methods . 99

The ForAll Operator . 99
ParallelExecutionMode . 100
WithMergeOptions . 101
AsSequential . 102
AsOrdered . 103
WithDegreeOfParallelism . 104

Handling Exceptions . 105
Cancellation . 107
Reduction . 108

Using MapReduce with PLINQ . . 112
Summary . 115
Quick Reference . 116

	 Table of Contents	 ix

5	 Concurrent Collections . 117
Concepts of Concurrent Collections . 119

Producer-Consumers . . 119
Lower-Level Synchronization . 120

SpinLock . 120
SpinWait . . 122
ConcurrentStack . . 124
ConcurrentQueue . 129
ConcurrentBag . 130
ConcurrentDictionary . 135
BlockingCollection . . 137

Summary . 144
Quick Reference . 145

6	 Customization . 147
Identifying Opportunities for Customization . 147
Custom Producer-Consumer Collections . . 148
Task Partitioners . . 156
Advanced Custom Partitioners . 162

Using Partitioner<TSource> . 162
Using OrderablePartitioner<TSource> . 168

Custom Schedulers . 171
The Context Scheduler . 171
The Task Scheduler . 172

Summary . 178
Quick Reference . 179

7	 Reports and Debugging . 181
Debugging with Visual Studio 2010 . 182

Live Debugging . 182
Performing Post-Mortem Analysis . 184
Debugging Threads . 185

Using the Parallel Tasks Window . . 188
Using the Parallel Stacks Window . . 192

The Threads View . . 193
The Tasks View . 196

x	 Table of Contents

Using the Concurrency Visualizer . 197
CPU Utilization View . 200
The Threads View . . 202
The Cores View . 205

The Sample Application . 212
Summary . 214
Quick Reference . 215

Index . 217

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Foreword
It started with the hardware, tubes, and wires that didn’t do anything overtly exciting. Then
software gave hardware the capability to do things—exciting, wonderful, confounding
things. My first software program was written to wait in queue for a moment of attention
from the one computer in school, after it finished the payroll, scheduling, and grading for the
entire school system. That same year, personal computing was born, putting affordable com-
putational capabilities—previously the purview of academia, banks, and governments—in
businesses and homes. A whole new world, and later a career, was revealed to me one deli-
cious line of code at a time, no waiting required. As soon as a program was written, I could
celebrate the outcome. So another program was written, then another, and another.

We learn linear solutions to math problems early in life, so the sequencing concept of
“do this, then that” is the zeitgeist of programmers worldwide. Because computers no
longer share the same computational bias of the human brain, bridging the gap between
linear, sequential programming to a design that leverages parallel processing requires new
approaches. In order to produce fast, secure, reliable, world-ready software, programmers
need new tools to supplement their current approach. To that end, Parallel Programming
with Microsoft Visual Studio 2010 Step by Step was written.

Donis Marshall has put together his expertise with a narrative format that provides a mix of
foundational knowledge and practical decision-making criteria for unleashing the capabilities
of parallel programming. Building on the backdrop of six previous programming titles, real-
world experience in a wide range of industries, and the authorship of dozens of programming
courses, Donis provides foundational knowledge to developers new to parallel programming
concepts. The Step by Step format, combined with Donis’s information-dissemination style,
provides continual value to readers as they grow in experience and capability.

The world of parallel programming is being brought to the desktop of every developer who
has the desire to more fully utilize the architectures of modern computers (in all forms).
Standing on the shoulders of giants, the Microsoft .NET Framework 4 continues its tradition
of systematically providing new capabilities to developers and system engineers. These new
tools provide great capabilities and a great challenge for how and where to best use them.
Parallel Programming with Microsoft Visual Studio 2010 Step by Step ensures that program-
mers worldwide can effectively add parallel programming to their design portfolios.

Tracy Monteith

		 xiii

Introduction
Parallel programming truly redefines the programming model for multicore architecture,
which has become commonplace. For this reason, parallel programming has been elevated to
a core technology in the Microsoft .NET Framework 4. In this version of the .NET Framework,
the Task Parallel Library (TPL) and the System.Threading.Tasks namespace contain the parallel
programming implementation. Microsoft Visual Studio 2010 has also been enhanced and now
includes several features to aid in creating and maintaining parallel applications. If you are a
Microsoft developer looking to decompose your application into parallel tasks that execute
over separate processor cores, then Visual Studio 2010 and the TPL are the tools you need.

Parallel Programming with Microsoft Visual Studio 2010 Step by Step provides an orga-
nized walkthrough of using Visual Studio 2010 to create parallel applications. It discusses
the TPL and parallel programming concepts in considerable detail; however, this book is still
introductory—it covers the basics of each realm of parallel programming, such as task and
data parallelism. Although the book does not provide exhaustive coverage of every paral-
lel programming topic, it does offer essential guidance in using the concepts of parallel
programming.

In addition to its coverage of core parallel programming concepts, the book discusses con-
current collections and thread synchronization, and it guides you in maintaining and debug-
ging parallel applications by using Visual Studio. Beyond the explanatory content, most
chapters include step-by-step examples and downloadable sample projects that you can
explore for yourself.

Who Should Read This Book
This book exists to help Microsoft Visual Basic and Microsoft Visual C# developers under-
stand the core concepts of parallel programming and related technologies. It is especially
useful for programmers looking to take advantage of multicore architecture, which is
the current trend in the industry. Readers should have a basic familiarity with the .NET
Framework but do not have to have any prior experience with parallel programming. The
book is also useful for those already familiar with the basics of parallel programming who
are interested in the newest features of the TPL.

xiv	 Introduction

Who Should Not Read This Book
Not every book is aimed at every possible audience. Authors must make assumptions about
the knowledge level of the audience to avoid either boring more advanced readers or losing
less advanced readers.

Assumptions
This book expects that you have at least a minimal understanding of .NET development and
object-oriented programming concepts. Although the TPL is available to most, if not all,
.NET Framework 4 language platforms, this book includes examples only in C#. However, the
examples should be portable to Visual Basic .NET with minimal changes. If you have not yet
picked up either of these languages, consider reading John Sharp’s Microsoft Visual C# 2010
Step by Step (Microsoft Press, 2010) or Michael Halvorson’s Microsoft Visual Basic 2010 Step
by Step (Microsoft Press, 2010).

With a heavy focus on concurrent programming concepts, this book also assumes that you
have a basic understanding of threads and thread synchronization concepts. To go beyond
this book and expand your knowledge of threading, consider reading Jeffrey Richter’s CLR
via C# (Microsoft Press, 2010).

Organization of This Book
This book is divided into seven chapters, each of which focuses on a different aspect or tech-
nology related to parallel programming.

■	 Chapter 1, “Introduction to Parallel Programming,” introduces the fundamental con-
cepts of parallel programming.

■	 Chapter 2, “Task Parallelism,” focuses on creating parallel iterations and refactoring
sequential loops into parallel tasks.

■	 Chapter 3, “Data Parallelism,” focuses on creating parallel tasks from separate
operations.

■	 Chapter 4, “PLINQ,” is an overview of parallel programming using Language-Integrated
Query (LINQ).

■	 Chapter 5, “Concurrent Collections,” explains how to use concurrent collections, such as
ConcurrentBag and ConcurrentQueue.

■	 Chapter 6, “Customization,” demonstrates techniques for customizing the TPL.

■	 Chapter 7, “Reports and Debugging,” shows how to debug and maintain parallel appli-
cations and rounds out the full discussion of parallel programming.

	 Introduction	 xv

Finding Your Best Starting Point in This Book
The different sections of Parallel Programming with Microsoft Visual Studio 2010 Step by
Step cover a wide range of technologies and concepts associated with parallel programming
in the .NET Framework. Depending on your needs and your current level of familiarity with
parallel programming in the .NET Framework 4, you might want to focus on specific areas of
the book. Use the following table to determine how best to proceed through the book.

If you are Follow these steps
Knowledgeable about the concepts
of parallel programming

Start with Chapter 2 and read the remainder
of the book.

Familiar with parallel extensions in
the .NET Framework 3.5

Read Chapter 1 if you need a refresher on
the core concepts.
Skim Chapters 2 and 3 for the basics of
Task and Data Parallelism.
Read Chapters 3 through 7 to explore the
details of the TPL.

Interested in LINQ data providers Read Chapter 4 on PLINQ and Chapter 7.

Interested in customizing the TPL Read Chapter 6 on customization.

Most of the book’s chapters include hands-on samples that let you try out the concepts just
learned. No matter which sections you choose to focus on, be sure to download and install
the sample applications on your system.

Conventions and Features in This Book
This book presents information using conventions designed to make the information read-
able and easy to follow.

■	 Each exercise consists of a series of tasks, presented as numbered steps listing each
action you must take to complete the exercise.

■	 Most exercise results are shown in a console window so you can compare your results
to the expected results.

■	 Complete code for each exercise appears at the end of each exercise. Most of the code
is also available in downloadable form. (See “Code Samples” later in this Introduction
for instructions on finding and downloading the code.)

■	 Keywords, such as System.Threading.Tasks, are italicized throughout the book.

■	 Each chapter also concludes with a Quick Reference section reviewing the important
details of the chapter and a Summary overview of the chapter contents.

xvi	 Introduction

System Requirements
You will need the following hardware and software to complete the practice exercises in
this book:

■	 One of the following: Windows XP with Service Pack 3, Windows Server 2003 with
Service Pack 2, Windows Vista with Service Pack 1 or later, Windows Server 2008,
Windows Server 2008 R2, Windows 7, or Windows 7 SP1.

■	 Visual Studio 2010, any edition. (Multiple downloads might be required if you are using
Express Edition products.)

■	 A computer with a 1.6-GHz or faster processor (2 GHz recommended).

■	 1 GB (32-bit) or 2 GB (64-bit) RAM (Add 1 GB if running in a virtual machine).

■	 3.5 GB of available hard disk space.

■	 A 5400-RPM hard disk drive.

■	 A DVD-ROM drive (if installing Visual Studio from DVD).

■	 An Internet connection to download the code for the exercises.

Depending on your Windows configuration, you might require Local Administrator rights to
install or configure Visual Studio 2010.

Code Samples
Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. All the example projects, in both their pre-exercise and
post-exercise formats, are available for download from the web:

http://go.microsoft.com/FWLink/?Linkid=222678

Click the Examples link on that page. When a list of files appears, locate and download the
Parallel_Programming_Sample_Code.zip file.

Note  In addition to the code samples, your system should have Visual Studio 2010 installed.

	 Introduction	 xvii

Installing the Code Samples
Follow these steps to install the code samples on your computer so that you can use them
with the exercises in this book.

	 1.	 Unzip the Parallel_Programming_Sample_Code.zip file that you downloaded from the
book’s website.

	 2.	 If prompted, review the displayed end user license agreement. If you accept the terms,
select the Accept option, and then click Next.

Note  If the license agreement doesn’t appear, you can access it from the same webpage
from which you downloaded the Parallel_Programming_Sample_Code.zip file.

How to Access Your Online Edition Hosted by Safari
The voucher bound in to the back of this book gives you access to an online edition of the
book. (You can also download the online edition of the book to your own computer; see
the next section.)

To access your online edition, do the following:

	 1.	 Locate your voucher inside the back cover, and scratch off the metallic foil to reveal
your access code.

	 2.	 Go to http://microsoftpress.oreilly.com/safarienabled.

	 3.	 Enter your 24-character access code in the Coupon Code field under Step 1.

(Please note that the access code in this image is for illustration purposes only.)

	 4.	 Click the CONFIRM COUPON button.

A message will appear to let you know that the code was entered correctly. If the code
was not entered correctly, you will be prompted to re-enter the code.

xviii	 Introduction

	 5.	 In this step, you’ll be asked whether you’re a new or existing user of Safari Books
Online. Proceed either with Step 5A or Step 5B.

	 5A.	 If you already have a Safari account, click the EXISTING USER – SIGN IN button
under Step 2.

	 5B.	 If you are a new user, click the NEW USER – FREE ACCOUNT button under Step 2.

■	 You’ll be taken to the “Register a New Account” page.

■	 This will require filling out a registration form and accepting an End User
Agreement.

■	 When complete, click the CONTINUE button.

	 6.	 On the Coupon Confirmation page, click the My Safari button.

	 7.	 On the My Safari page, look at the Bookshelf area and click the title of the book you
want to access.

How to Download the Online Edition to Your Computer
In addition to reading the online edition of this book, you can also download it to your com-
puter. First, follow the steps in the preceding section. After Step 7, do the following:

	 1.	 On the page that appears after Step 7 in the previous section, click the Extras tab.

	 Introduction	 xix

	 2.	 Find “Download the complete PDF of this book,” and click the book title.

A new browser window or tab will open, followed by the File Download dialog box.

	 3.	 Click Save.

	 4.	 Choose Desktop and click Save.

	 5.	 Locate the .zip file on your desktop. Right-click the file, click Extract All, and then follow
the instructions.

Note  If you have a problem with your voucher or access code, please contact mspbooksupport@
oreilly.com, or call 800-889-8969, where you’ll reach O’Reilly Media, the distributor of Microsoft
Press books.

xx	 Introduction

Acknowledgments
I’d like to thank the following people: Russell Jones, for his infinite patience. Ben Ryan, for yet
another wonderful opportunity to write for Microsoft Press. Devon Musgrave, for his initial
guidance. The support of my friends: Paul, Lynn, Cynthia, Cindy, and others. Adam, Kristen,
and Jason, who are the bright stars in the universe.

Errata and Book Support
We’ve made every effort to ensure the accuracy of this book and its companion content.
Any errors that have been reported since this book was published are listed on our Microsoft
Press site at oreilly.com:

http://go.microsoft.com/FWLink/?Linkid=223769

If you find an error that is not already listed, you can report it to us through the same page.

If you need additional support, email Microsoft Press Book Support at mspinput@microsoft
.com.

Please note that product support for Microsoft software is not offered through the addresses
above.

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance
for your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

		 1

Chapter 1

Introduction to Parallel
Programming

After completing this chapter, you will be able to

■	 Explain parallel programming goals, various hardware architectures, and basic concepts
of concurrent and parallel programming.

■	 Define the relationship between parallelism and performance.

■	 Calculate speedup with Amdahl’s Law.

■	 Calculate speedup with Gustafson’s Law.

■	 Recognize and apply parallel development design patterns.

Parallel programming will change the computing universe for personal computers. That is a
grandiose statement! However, it reflects the potential impact as parallel computing moves
from the halls of academia, science labs, and larger systems to your desktop. The goal of
parallel programming is to improve performance by optimizing the use of the available pro-
cessor cores with parallel execution of cores. This goal becomes increasingly important as the
trend of constantly increasing processor speed slows.

Moore’s Law predicted the doubling of transistor capacity per square inch of integrated cir-
cuit every two years. Gordon Moore made this proclamation in the mid-1960s and predicted
that the trend would continue at least 10 years, but Moore’s Law has actually held true for
nearly 50 years. Moore’s prediction is often interpreted to mean that processor speed would
double every couple of years. However, cracks were beginning to appear in the foundation
of Moore’s Law. Developers now have to find other means of satisfying customer demands
for quicker applications, additional features, and greater scope. Parallel programming is one
solution. In this way, Moore’s Law will continue into the indefinite future.

Microsoft recognizes the vital role of parallel programming for the future. That is the reason
parallel programming was promoted from an extension to a core component of the common
language runtime (CLR). New features have been added to the Microsoft .NET Framework 4
and Microsoft Visual Studio 2010 in support of parallel programming. This is in recognition
of the fact that parallel programming is quickly becoming mainstream technology with the
increased availability of multicore processors in personal computers.

Parallel code is undoubtedly more complicated than the sequential version of the same
application or new application development. New debugging windows were added to
Visual Studio 2010 specifically to help maintain and debug parallel applications. Both the

2	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Parallel Tasks and Parallel Stacks windows help you interpret an application from the con-
text of a parallel execution and tasks. For performance tuning, the Visual Studio Profiler and
Concurrency Visualizer work together to analyze a parallel application and present graphs
and reports to help developers isolate potential problems.

Parallel programming is a broad technology domain. Some software engineers have spent
their careers researching and implementing parallel code. Fortunately, the .NET Framework
4 abstracts much of this detail, allowing you to focus on writing a parallel application for a
business or personal requirement while abstracting much of the internal details. However,
it can be quite helpful to understand the goals, constraints, and underlying motivations of
parallel programming.

Multicore Computing
In the past, software developers benefitted from the continual performance gains of new
hardware in single-core computers. If your application was slow, just wait—it would soon
run faster because of advances in hardware performance. Your application simply rode the
wave of better performance. However, you can no longer depend on consistent hardware
advancements to assure better-performing applications!

As performance improvement in new generations of processor cores has slowed, you now
benefit from the availability of multicore architecture. This allows developers to continue to
realize increases in performance and to harness that speed in their applications. However, it
does require somewhat of a paradigm shift in programming, which is the purpose of this book.

At the moment, dual-core and quad-core machines are the de facto standard. In North
America and other regions, you probably cannot (and would not want to) purchase a single-
core desktop computer at a local computer store today.

Single-core computers have constraints that prevent the continuation of the performance
gains that were possible in the past. The primary constraint is the correlation of processor
speed and heat. As processor speed increases, heat increases disproportionally. This places
a practical threshold on processor speed. Solutions have not been found to significantly
increase computing power without the heat penalty. Multicore architecture is an alternative,
where multiple processor cores share a chip die. The additional cores provide more comput-
ing power without the heat problem. In a parallel application, you can leverage the multicore
architecture for potential performance gains without a corresponding heat penalty.

Multicore personal computers have changed the computing landscape. Until recently, single-
core computers have been the most prevalent architecture for personal computers. But that
is changing rapidly and represents nothing short of the next evolutionary step in computer
architecture for personal computers. The combination of multicore architecture and parallel
programming will propagate Moore’s Law into the foreseeable future.

	 Chapter 1  Introduction to Parallel Programming	 3

With the advent of techniques such as Hyper-Threading Technology from Intel, each physi-
cal core becomes two or potentially more virtual cores. For example, a machine with four
physical cores appears to have eight logical cores. The distinction between physical and logical
cores is transparent to developers and users. In the next 10 years, you can expect the num-
ber of both physical and virtual processor cores in a standard personal computer to increase
significantly.

Multiple Instruction Streams/Multiple Data Streams
In 1966, Michael Flynn proposed a taxonomy to describe the relationship between concur-
rent instruction and data streams for various hardware architectures. This taxonomy, which
became known as Flynn’s taxonomy, has these categories:

■	 SISD (Single Instruction Stream/Single Data Stream)  This model has a single instruc-
tion stream and data stream and describes the architecture of a computer with a single-
core processor.

■	 SIMD (Single Instruction Stream/Multiple Data Streams)  This model has a single
instruction stream and multiple data streams. The model applies the instruction stream
to each of the data streams. Instances of the same instruction stream can run in paral-
lel on multiple processor cores, servicing different data streams. For example, SIMD is
helpful when applying the same algorithm to multiple input values.

■	 MISD (Multiple Instruction Streams/Single Data Stream)  This model has multiple
instruction streams and a single data stream and can apply multiple parallel operations
to a single data source. For example, this model could be used for running various
decryption routines on a single data source.

■	 MIMD (Multiple Instruction Streams/Multiple Data Streams)  This model has both
multiple instruction streams and multiple data streams. On a multicore computer, each
instruction stream runs on a separate processor with independent data. This is the cur-
rent model for multicore personal computers.

The MIMD model can be refined further as either Multiple Program/Multiple Data (MPMD)
or Single Program/Multiple Data (SPMD). Within the MPMD subcategory, a different process
executes independently on each processor. For SPMD, the process is decomposed into sepa-
rate tasks, each of which represents a different location in the program. The tasks execute on
separate processor cores. This is the prevailing architecture for multicore personal computers
today.

The following table plots Flynn’s taxonomy.

Flynn’s Taxonomy Single Data Stream Multiple Data Streams
Single Instruction Stream SISD SIMD

Multiple Instruction Streams MISD MIMD

4	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Additional information about Flynn’s taxonomy is available at Wikipedia:
http://en.wikipedia.org/wiki/Flynn%27s_taxonomy.

Multithreading
Threads represent actions in your program. A process itself does nothing; instead, it hosts the
resources consumed by the running application, such as the heap and the stack. A thread is
one possible path of execution in the application. Threads can perform independent tasks or
cooperate on an operation with related tasks.

Parallel applications are also concurrent. However, not all concurrent applications are parallel.
Concurrent applications can run on a single core, whereas parallel execution requires multiple
cores. The reason behind this distinction is called interleaving. When multiple threads run
concurrently on a single-processor computer, the Windows operating system interleaves the
threads in a round-robin fashion, based on thread priority and other factors. In this manner,
the processor is shared between several threads. You can consider this as logical parallelism.
With physical parallelism, there are multiple cores where work is decomposed into tasks and
executed in parallel on separate processor cores.

Threads are preempted when interrupted for another thread. At that time, the running thread
yields execution to the next thread. In this manner, threads are interleaved on a single pro-
cessor. When a thread is preempted, the operating system preserves the state of the running
thread and loads the state of the next thread, which is then able to execute. Exchanging run-
ning threads on a processor triggers a context switch and a transition between kernel and
user mode. Context switches are expensive, so reducing the number of context switches is
important to improving performance.

Threads are preempted for several reasons:

■	 A higher priority thread needs to run.

■	 Execution time exceeds a quantum.

■	 An input-output request is received.

■	 The thread voluntarily yields the processor.

■	 The thread is blocked on a synchronization object.

Even on a single-processor machine, there are advantages to concurrent execution:

■	 Multitasking

■	 A responsive user interface

■	 Asynchronous input-output

■	 Improved graphics rendering

	 Chapter 1  Introduction to Parallel Programming	 5

Parallel execution requires multiple cores so that threads can execute in parallel without
interleaving. Ideally, you want to have one thread for each available processor. However,
that is not always possible. Oversubscription occurs when the number of threads exceeds
the number of available processors. When this happens, interleaving occurs for the threads
sharing a processor. Conversely, undersubscription occurs when there are fewer threads than
available processors. When this happens, you have idle processors and less-than-optimum
CPU utilization. Of course, the goal is maximum CPU utilization while balancing the poten-
tial performance degradation of oversubscription or undersubscription.

As mentioned earlier, context switches adversely affect performance. However, some context
switches are more expensive than others; one of the more expensive ones is a cross-core
context switch. A thread can run on a dedicated processor or across processors. Threads ser-
viced by a single processor have processor affinity, which is more efficient. Preempting and
scheduling a thread on another processor core causes cache misses, access to local memory
as the result of cache misses, and excess context switches. In aggregate, this is called a cross-
core context switch.

Synchronization
Multithreading involves more than creating multiple threads. The steps required to start a
thread are relatively simple. Managing those threads for a thread-safe application is more of a
challenge. Synchronization is the most common tool used to create a thread-safe environment.
Even single-threaded applications use synchronization on occasion. For example, a single-
threaded application might synchronize on kernel-mode resources, which are shareable across
processes. However, synchronization is more common in multithreaded applications where
both kernel-mode and user-mode resources might experience contention. Shared data is a sec-
ond reason for contention between multiple threads and the requirement for synchronization.

Most synchronization is accomplished with synchronization objects. There are dedicated
synchronization objects, such as mutexes, semaphores, and events. General-purpose objects
that are also available for synchronization include processes, threads, and registry keys. For
example, you can synchronize on whether a thread has finished executing. Most synchroniza-
tion objects are kernel objects, and their use requires a context switch. Lightweight synchro-
nization objects, such as critical sections, are user-mode objects that avoid expensive context
switches. In the .NET Framework, the lock statement and the Monitor type are wrappers for
native critical sections.

Contention occurs when a thread cannot obtain a synchronization object or access shared
data for some period of time. The thread typically blocks until the entity is available. When
contention is short, the associated overhead for synchronization is relatively costly. If short
contention is the pattern, such overhead can become nontrivial. In this scenario, an alterna-
tive to blocking is spinning. Applications have the option to spin in user mode, consuming

6	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

CPU cycles but avoiding a kernel-mode switch. After a short while, the thread can reattempt
to acquire the shared resource. If the contention is short, you can successfully acquire the
resource on the second attempt to avoid blocking and a related context switch. Spinning for
synchronization is considered lightweight synchronization, and Microsoft has added types
such as the SpinWait structure to the .NET Framework for this purpose. For example, spinning
constructs are used in many of the concurrent collections in the System.Collections.Concurrent
namespace to create thread-safe and lock-free collections.

Most parallel applications rely on some degree of synchronization. Developers often consider
synchronization a necessary evil. Overuse of synchronization is unfortunate, because most
parallel programs perform best when running in parallel with no impediments. Serializing a
parallel application through synchronization is contrary to the overall goal. In fact, the speed
improvement potential of a parallel application is limited by the proportion of the application
that runs sequentially. For example, when 40 percent of an application executes sequentially,
the maximum possible speed improvement in theory is 60 percent. Most parallel applications
start with minimal synchronization. However, synchronization is often the preferred resolu-
tion to any problem. In this way, synchronization spreads—like moss on a tree—quickly. In
extreme circumstances, the result is a complex sequential application that for some reason
has multiple threads. In your own programs, make an effort to keep parallel applications
parallel.

Speedup
Speedup is the expected performance benefit from running an application on a multicore
versus a single-core machine. When speedup is measured, single-core machine performance
is the baseline. For example, assume that the duration of an application on a single-core
machine is six hours. The duration is reduced to three hours when the application runs on a
quad machine. The speedup is 2—(6/3)—in other words, the application is twice as fast.

You might expect that an application running on a single-core machine would run twice
as quickly on a dual-core machine, and that a quad-core machine would run the application
four times as fast. But that’s not exactly correct. With some notable exceptions, such as super
linear speedup, linear speedup is not possible even if the entire application ran in parallel. That’s
because there is always some overhead from parallelizing an application, such as scheduling
threads onto separate processors. Therefore, linear speedup is not obtainable.

Here are some of the limitations to linear speedup of parallel code:

■	 Serial code

■	 Overhead from parallelization

■	 Synchronization

■	 Sequential input/output

	 Chapter 1  Introduction to Parallel Programming	 7

Predicting speedup is important in designing, benchmarking, and testing your parallel appli-
cation. Fortunately, there are formulas for calculating speedup. One such formula is Amdahl’s
Law. Gene Amdahl created Amdahl’s Law in 1967 to calculate maximum speedup for parallel
applications.

Amdahl’s Law
Amdahl’s Law calculates the speedup of parallel code based on three variables:

■	 Duration of running the application on a single-core machine

■	 The percentage of the application that is parallel

■	 The number of processor cores

Here is the formula, which returns the ratio of single-core versus multicore performance.

Speedup =
1

1 - P + (P/N)

This formula uses the duration of the application on a single-core machine as the benchmark.
The numerator of the equation represents that base duration, which is always one. The dynamic
portion of the calculation is in the denominator. The variable P is the percent of the application
that runs in parallel, and N is the number of processor cores.

As an example scenario, suppose you have an application that is 75 percent parallel and
runs on a machine with three processor cores. The first iteration to calculate Amdahl’s Law is
shown below. In the formula, P is .75 (the parallel portion) and N is 3 (the number of cores).

Speedup =
1

(1 - .75) + (.75 / 3)

You can reduce that as follows:

Speedup =
1

25 + 25

The final result is a speedup of two. Your application will run twice as fast on a three-
processor-core machine.

Speedup = 2

Visualizing speedup can help you interpret the meaning of Amdahl’s Law. In the following
diagram, the evaluation of speedup is presented as a graph. Duration is represented as units
of equal length. On a single-core machine, application duration is four units. One of those

8	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

units contains code that must execute sequentially. This means that 75 percent of the appli-
cation can run in parallel. Again, in this scenario, there are three available processor cores.
Therefore, the three parallel units can be run in parallel and coalesced into a single unit of
duration. As a result, both the sequential and parallel portions of the application require one
unit of duration. So you have a total of two units of duration—down from the original four—
which is a speedup of two. Therefore, your application runs twice as fast. This confirms the
previous calculation that used Amdahl’s Law.

Speedup = 2 = 2/4

Four units of
duration

75% parallel

25% sequential

Coalesce three
units of duration

3 cores

Two units of
duration

1 unit of
duration

1 unit of
duration

You can find additional information on Amdahl’s Law at Wikipedia: http://en.wikipedia.org
/wiki/Amdahl%27s_Law.

Gustafson’s Law
John Gustafson and Edward Barsis introduced Gustafson’s Law in 1988 as a competing prin-
ciple to Amdahl’s Law. As demonstrated, Amdahl’s Law predicts performance as processors
are added to the computing environment. This is called the speedup, and it represents the
performance dividend. In the real world, that performance dividend is sometimes repur-
posed. The need for money and computing power share a common attribute. Both tend to
expand to consume the available resources. For example, an application completes a par-
ticular operation in a fixed duration. The performance dividend could be used to complete
the work more quickly, but it is just as likely that the performance dividend is simply used
to complete more work within the same fixed duration. When this occurs, the performance
dividend is not passed along to the user. However, the application accomplishes more work
or offers additional features. In this way, you still receive a significant benefit from a parallel
application running in a multicore environment.

http://en.wikipedia.org/wiki/Amdahl%27s_Law
http://en.wikipedia.org/wiki/Amdahl%27s_Law

	 Chapter 1  Introduction to Parallel Programming	 9

Amdahl’s Law does not take these real-world considerations into account. Instead, it assumes
a fixed relationship between the parallel and serial portions of the application. You may have
an application that’s split consistently into a sequential and parallel portion. Amdahl’s Law
maintains these proportions as additional processors are added. The serial and parallel por-
tions each remain half of the program. But in the real world, as computing power increases,
more work gets completed, so the relative duration of the sequential portion is reduced. In
addition, Amdahl’s Law does not account for the overhead required to schedule, manage, and
execute parallel tasks. Gustafson’s Law takes both of these additional factors into account.

Here is the formula to calculate speedup by using Gustafson’s Law.

Speedup =
S + N (1 - S)

S + (1 - S)
- 0n

In the above formula, S is the percentage of the serial code in the application, N is the num-
ber of processor cores, and On is the overhead from parallelization.

Software Patterns
Parallel programming is not a new concept; it has been around for some time, although
mostly on large or distributed systems. Parallel computing has more recently been available
on personal computers with Threading Building Blocks (TBB), OpenMP, and other parallel
solutions. So although parallel computing might seem new, the concepts are actually mature.
For example, design patterns have been developed to help programmers design, architect,
and implement a robust, correct, and scalable parallel application. The book Patterns for
Parallel Programming by Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill
(Addison-Wesley Professional, 2004) provides a comprehensive study on parallel patterns,
along with a detailed explanation of the available design patterns and best practices for paral-
lel programming. Another book, Parallel Programming with Microsoft .NET: Design Patterns for
Decomposition and Coordination on Multicore Architectures by Colin Campbell et al. (Microsoft
Press, 2010) is an important resource for patterns and best practices that target the .NET
Framework and TPL.

Developers on average do not write much unique code. Most code concepts have been
written somewhere before. Software pattern engineers research this universal code base to
isolate standard patterns and solutions for common problems in a domain space. You can
use these patterns as the building blocks that form the foundation of a stable application.
Around these core components, you add the unique code for your application, as illustrated
in the following diagram. This approach not only results in a stable application but is also a
highly efficient way to develop an application.

10	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Parallel application

Unique Code

Task
decomposition

pattern

Data
decomposition

patternOrder
tasks

pattern

Divide and
conquer
pattern

U
nique codeU

ni
qu

e
co

de

Unique code

Unique Code

Design patterns should be an integral part of the software development life cycle of every
application. These patterns require thorough knowledge of your problem domain. All object-
oriented programs model a problem domain, and parallel applications are no exception. As
applications become more complex, knowing the problem domain increases in importance.

Patterns for Parallel Programming defines four phases of parallel development:

■	 Finding Concurrency

■	 Algorithm Structures

■	 Support Structures

■	 Implementation Mechanisms

The first two phases are design and analysis, which include tasks such as finding exploitable
concurrency. These phases are the precursors to actually writing code. Later, you map the
analysis onto code by using the Support Structures and Implementation Mechanisms phases.
The Implementation Mechanisms design phase is not reviewed in this chapter. You can

	 Chapter 1  Introduction to Parallel Programming	 11

consider the TPL as a generic implementation of this pattern; it maps parallel programming
onto the .NET Framework.

I urge you to explore parallel design patterns so you can benefit from the hard work of other
parallel applications developers.

The Finding Concurrency Pattern
The first phase is the most important. In this phase, you identify exploitable concurrency.
The challenge involves more than identifying opportunities for concurrency, because not
every potential concurrency is worth pursuing. The goal is to isolate opportunities of concur-
rency that are worth exploiting.

The Finding Concurrency pattern begins with a review of the problem domain. Your goal is
to isolate tasks that are good candidates for parallel programming—or conversely, exclude
those that are not good candidates. You must weigh the benefit of exposing specific opera-
tions as parallel tasks versus the cost. For example, the performance gain for parallelizing
a for loop with a short operation might not offset the scheduling overhead and the cost of
running the task.

When searching for potential parallel tasks, review extended blocks of compute-bound code
first. This is where you will typically find the most intense processing, and therefore also the
greatest potential benefit from parallel execution.

Next, you decompose exploitable concurrency into parallel tasks. You can decompose opera-
tions on either the code or data axis (Task Decomposition and Data Decomposition, respec-
tively). The typical approach is to decompose operations into several units. It’s easier to load
balance a large number of discrete tasks than a handful of longer tasks. In addition, tasks of
relatively equal length are easier to load balance than tasks of widely disparate length.

The Task Decomposition Pattern
In the Task Decomposition pattern, you decompose code into separate parallel tasks that
run independently, with minimal or no dependencies. For example, functions are often excel-
lent candidates for refactoring as parallel tasks. In object-oriented programming, functions
should do one thing. However, this is not always the case. For longer functions, evaluate
whether the function performs more than one task. If so, you might be able to decompose
the function into multiple discrete tasks, improving the opportunities for parallelism.

The Data Decomposition Pattern
In the Data Decomposition pattern, you decompose data collections, such as lists, stacks, and
queues, into partitions for parallel processing. Loops that iterate over data collections are the
best locations for decomposing tasks by using the Data Decomposition pattern. Each task is

12	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

identical but is assigned to a different portion of the data collection. If the tasks have short
durations, you should consider grouping multiple tasks together so that they execute as a
chunk on a thread, to improve overall efficiency.

The Group Tasks Pattern
After completing the Task and Data Decomposition patterns, you will have a basket of tasks.
The next two patterns identify relationships between these tasks. The Group Task pattern
groups related tasks, whereas the Order Tasks pattern imposes an order to the execution of
tasks.

You should consider grouping tasks in the following circumstances:

■	 Group tasks together that must start at the same time. The Order Task pattern can then
refer to this group to set that constraint.

■	 Group tasks that contribute to the same calculation (reduction).

■	 Group tasks that share the same operation, such as loop operation.

■	 Group tasks that share a common resource, where simultaneous access is not thread
safe.

The most important reason to create task groups is to place constraints on the entire group
rather than on individual tasks.

The Order Tasks Pattern
The Order Tasks pattern is the second pattern that sets dependencies based on task relation-
ships. This pattern identifies dependencies that place constraints on the order (the sequence)
of task execution. In this pattern, you often reference groups of tasks defined in the Group
Task pattern. For example, you might reference a group of tasks that must start together.

Do not overuse this pattern. Ordering implies synchronization at best, and sequential execu-
tion at worst.

Some example of order dependencies are:

■	 Start dependency  This is when tasks must start at the same time. Here the constraint
is the start time.

■	 Predecessor dependency  This occurs when one task must start prior to another task.

■	 Successor dependency  This happens when a task is a continuation of another task.

■	 Data dependency  This is when a task cannot start until certain information is
available.

	 Chapter 1  Introduction to Parallel Programming	 13

The Data Sharing Pattern
Parallel tasks may access shared data, which can be a dependency between tasks. Proper
management is essential for correctness and to avoid problems such as race conditions and
data corruptions. The Data Sharing pattern describes various methods for managing shared
data. The goals are to ensure that tasks adhering to this pattern are thread safe and that the
application remains scalable.

When possible, tasks should consume thread-local data. Thread-local data is private to the
task and not accessible from other tasks. Because of this isolation, thread-local data is exempt
from most data-sharing constraints. However, tasks that use thread-local data might require
shared data for consolidation, accumulation, or other types of reduction. Reduction is the
consolidation of partial results from separate parallel operations into a single value. When the
reduction is performed, access to the shared data must be coordinated through some mecha-
nism, such as thread synchronization. This is explained in more detail later in this book.

Sharing data is expensive. Proposed solutions to safely access shared data typically involve
some sort of synchronization. The best solution for sharing data is not to share data. This
includes copying the shared data to a thread-local variable. You can then access the data pri-
vately during a parallel operation. After the operation is complete, you can perform a replace-
ment or some type of merge with the original shared data to minimize synchronization.

The type of data access can affect the level of synchronization. Common data access types
are summarized here:

■	 Read-only  This is preferred and frequently requires no synchronization.

■	 Write-only  You must have a policy to handle contention on the write. Alternatively,
you can protect the data with exclusive locks. However, this can be expensive. An exam-
ple of write-only is initializing a data collection from independent values.

■	 Read-write  The key word here is the write. Copy the data to a thread-local variable.
Perform the update operation. Write results to the shared data, which might require
some level of synchronization. If more reads are expected than writes, you might want
to implement a more optimistic data sharing model—for example, spinning instead of
locking.

■	 Reduction  The shared data is an accumulator. Copy the shared data to a thread-
local variable. You can then perform an operation to generate a partial result. A
reduction task is responsible for applying partial results to some sort of accumula-
tor. Synchronization is limited to the reduction method, which is more efficient. This
approach can be used to calculate summations, averages, counts, maximum value,
minimal value, and more.

14	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

The Algorithm Structure Pattern
The result of the Finding Concurrency phase is a list of tasks, dependencies, and constraints
for a parallel application. The phase also involves grouping related tasks and setting criteria
for ordering tasks. In the Algorithm Structure phase, you select the algorithms you will use
to execute the tasks. These are the algorithms that you will eventually implement for the
program domain.

The algorithms included in the Algorithm Structure pattern adhere to four principles. These
algorithms must:

■	 Make effective use of processors.

■	 Be transparent and maintainable by others.

■	 Be agnostic to hardware, operating system, and environment.

■	 Be efficient and scalable.

As mentioned, algorithms are implementation-agnostic. You might have constructs and
features in your environment that help with parallel development and performance. The
Implementation Mechanisms phase describes how to implement parallel patterns in your
specific environment.

The Algorithm Structure pattern introduces several patterns based on algorithms:

■	 Task Parallelism Pattern  Arrange tasks to run efficiently as independent parallel
operations. Actually, having slightly more tasks than processor cores is preferable—
especially for input/output bound tasks. Input/output bound tasks might become
blocked during input/output operations. When this occurs, extra tasks might be
needed to keep additional processor cores busy.

■	 Divide and Conquer Pattern  Decompose a serial operation into parallel subtasks,
each of which returns a partial solution. These partial solutions are then reintegrated to
calculate a complete solution. Synchronization is required during the reintegration but
not during the entire operation.

■	 Geometric Decomposition Pattern  Reduce a data collection into chunks that are
assigned the same parallel operation. Larger chunks can be harder to load balance,
whereas smaller chunks are better for load balancing but are less efficient relative to
parallelization overhead.

■	 Recursive Data Pattern  Perform parallel operations on recursive data structures, such
as trees and link lists.

	 Chapter 1  Introduction to Parallel Programming	 15

■	 Pipeline Pattern  Apply a sequence of parallel operations to a shared collection or
independent data. The operations are ordered to form a pipeline of tasks that are
applied to a data source. Each task in the pipeline represents a phase. You should
have enough phases to keep each processor busy. At the start and end of pipeline
operations, the pipeline might not be full. Otherwise, the pipeline is full with tasks
and maximizes processor utilization.

The Supporting Structures Pattern
The Supporting Structures pattern describes several ways to organize the implementation of
parallel code. Fortunately, several of these patterns are already implemented in the TPL as
part of the .NET Framework. For example, the .NET Framework 4 thread pool is one imple-
mentation of the Master/Worker pattern.

There are four Supporting Structures patterns:

■	 SPMD (Single Program/Multiple Data)  A single parallel operation is applied to mul-
tiple data sequences. In a parallel program, the processor cores often execute the same
task on a collection of data.

■	 Master/Worker  The process (master) sets up a pool of executable units (workers),
such as threads, that execute concurrently. There is also a collection of tasks whose
execution is pending. Tasks are scheduled to run in parallel on available workers. In this
manner, the workload can be balanced across multiple processors. The .NET Framework
4 thread pool provides an implementation of this pattern.

■	 Loop Parallelism  Iterations of a sequential loop are converted into separate parallel
operations. Resolving dependencies between loop iterations is one of the challenges.
Such dependencies were perhaps inconsequential in sequential applications but are
problematic in a parallel version. The .Net Framework 4 provides various solutions for
loop parallelism, including Parallel.For, Parallel.ForEach, and PLINQ (Parallel Language
Integration Query).

■	 Fork/Join  Work is decomposed into separate tasks that complete some portion of the
work. A unit of execution, such as a thread, spawns the separate tasks and then waits
for them to complete. This is the pattern for the Parallel.Invoke method in the TPL.

The Supporting Structure phase also involves patterns for sharing data between mul-
tiple parallel tasks: the Shared Data, Shared Queue, and Distributed Array patterns.
These are also already implemented in the .NET Framework, available as collections
in the System.Collections.Concurrent namespace.

16	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Summary
Parallel programming techniques allow software applications to benefit from the rapid shift
from single-core to multicore computers. Multicore computers will continue the growth in
computing power as promised in Moore’s Law; however, the price for that continued growth
is that developers have to be prepared to benefit from the shift in hardware architecture by
learning parallel programming patterns and techniques.

In the .NET Framework 4, Microsoft has elevated parallel programming to a core technology
with the introduction of the Task Parallel Library (TPL). Previously, parallel programming was
an extension of the .NET Framework. Parallel programming has also been added to LINQ as
Parallel LINQ (PLINQ).

The goal of parallel programming is to load balance the workload across all the available
processor cores for maximum CPU utilization. Applications should scale as the number of
processors increases in a multicore environment. Scaling will be less than linear relative to
the number of cores, however, because other factors can affect performance.

Multiple threads can run concurrently on the same processor core. When this occurs, the
threads alternately use the processor by interleaving. There are benefits to concurrent execu-
tion, such as more responsive user interfaces, but interleaving is not parallel execution. On
a multicore machine, the threads can truly execute in parallel—with each thread running on
a separate processor. This is both concurrent and parallel execution. When oversubscription
occurs, interleaving can occur even in a multicore environment.

You can coordinate the actions of multiple threads with thread synchronization—for example,
to access shared data safely. Some synchronization objects are lighter than others, so when
possible, use critical sections for lightweight synchronization instead of semaphores or
mutexes. Critical sections are especially helpful when the duration of contention is expected
to be short. Another alternative is spinning, in the hope of avoiding a synchronization lock.

Speedup predicts the performance increase from running an application in a multicore envi-
ronment. Amdahl’s Law calculates speedup based on the number of processors and percent-
age of the application that runs parallel. Gustafson’s Law calculates real-world speedup. This
includes using the performance dividend for more work and parallel overhead.

Parallel computing is a mature concept with best practices and design patterns. The most
important phase is Finding Concurrency. In this phase, you identify exploitable concurrency—
the code most likely to benefit from parallelization. You can decompose your application into
parallel tasks by using Task Decomposition and Data Decomposition patterns. Associations
and dependencies between tasks are isolated in the Group Tasks and Order Tasks pat-
terns. You can map tasks onto generic algorithms for concurrent execution in the Algorithm
Structure pattern. The last phase, Implementation Mechanisms, is implemented in the TPL. In
the next chapter, you will begin your exploration of the TPL with task parallelism.

	 Chapter 1  Introduction to Parallel Programming	 17

Quick Reference
To Do this
Implement parallel programming in
.NET Framework 4

Leverage the TPL found in the System.Threading.Tasks
namespace.

Use LINQ with parallel programing Use PLINQ.

Calculate basic speedup Apply Amdahl’s Law.

Find potential concurrency in a problem
domain

Apply the Finding Concurrency pattern.

Resolve dependencies between parallel
tasks

Use the Data Sharing pattern.

Unroll sequential loops into parallel tasks Use the Loop Parallelism pattern.

		 19

Chapter 2

Task Parallelism
After completing this chapter, you will be able to

■	 Create parallel tasks.

■	 Handle unhandled exceptions from a task.

■	 Cooperatively cancel a task.

■	 Define relationships between tasks.

■	 Describe a work-stealing queue.

Chapter 1, "Introduction to Parallel Programming," introduced the concept of parallelism. This
chapter is about task parallelism, and the next chapter pertains to data parallelism. Tasks are
the fundamental elements of parallel programming. Task parallelism is the parallel execution
of tasks across several processors. The goal of parallelism is to maximize processor utilization,
and of course, improve performance. As available processors increase, your application will
scale, as additional tasks run across more processors. The degree of improvement as the num-
ber of processors increases is calculated by using Amdahl’s Law or, alternatively, Gustafson’s
Law—both of which were defined in the previous chapter.

Parallel tasks usually have inputs. In task parallelism, parallel tasks typically work on a collec-
tion of related data.

Introduction to Parallel Tasks
There are several ways to invoke parallel tasks. This section reviews the various available
techniques, starting with the Parallel.Invoke method.

Let us assume that you have three methods (MethodA, MethodB, and MethodC) that have
separate data input. If the methods execute sequentially, the execution time would be the sum
of the duration of each method, as shown in the following image. In this example, the total
time to execute the methods sequentially is 20 milliseconds (ms).

20	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

MethodA

MethodC

MethodB 20 ms

5 ms

5 ms

10 ms

Duration

MethodA, MethodB, and MethodC have no dependencies. When the methods are converted
to tasks, the tasks are completely independent, and they are said to be embarrassingly paral-
lel. This is important because it means that the tasks can run in parallel without any synchro-
nization, such as a semaphore or monitor. Performance is therefore better, and this portion
of the application is more scalable. Furthermore, synchronization can add complexity, which
is harder to maintain and debug. When a group of tasks execute in parallel, their duration
is the elapsed time of the longest task. In the following image, TaskB takes the longest time
(10 ms) to complete. Therefore, the duration of the group of tasks is 10 ms, which is half the
duration of the related methods when they are executed sequentially (see the previous illus-
tration). This assumes that there are enough processors (three, in this example) to execute the
tasks in parallel and not sequentially.

5 ms 5 ms

TaskA TaskCTaskB

10 ms

10 ms

Tasks are scheduled and then assigned to a thread. The thread is then executed by a proc
essor. In the past, threads—not tasks—were the basic unit of scheduling. A thread is an
asynchronous path of execution through your process. A process is itself not active; activity
is found in the threads. In fact, the Windows operating system automatically closes a process
with no threads, because there is no reason to maintain a process that has no potential activ-
ity. Despite this, a process is nonetheless important. It provides the resources needed for a
running program, such as the virtual memory, the working set, and the handle table. Threads
require these resources to execute. Threads privately own resources as well, most notably the
stack and thread local storage.

	 Chapter 2  Task Parallelism	 21

Threads
Tasks run on threads. Threads are the engine of your application and represent running code.
Understanding threads helps you understand tasks. This is important because some of the
overhead associated with a task pertains to threads. Therefore, threads are especially relevant
when discussing parallel programming.

The Windows operating system schedules threads preemptively. Threads are assigned an
adjustable priority, and in general, they are scheduled in a round-robin fashion based on
thread priority. Here are some of the reasons that a thread might be preempted:

■	 The thread has exceeded its time slice or quantum.

■	 A higher-priority thread starts.

■	 The thread places itself into a wait condition.

■	 An input-output operation occurs.

Nothing is free—including threads. Threads have overhead. Most of the overhead associated
with a thread involves the stack, thread local storage, and context switches. The default stack
size for each thread is one megabyte (MB). For example, 200 threads would reserve 200 MB
of memory for stack space, which is not trivial. Thread local storage is private memory set
aside for each thread and can also be significant. In addition to the storage overhead, threads
have a performance cost: context switches. Much of this cost is associated with switching
between user and kernel mode when swapping the running thread for another user mode
thread. The cost of context switches can reduce the benefit of additional threads.

In addition to context switches, there are other costs, such as ramping up and destroying
threads. The Microsoft .NET Framework thread pool helps to manage these costs and to
abstract much of the complexity of creating, starting, and destroying threads. There is one
.NET Framework thread pool per managed application. Thread pools commonly reuse
threads to avoid the costs of thread startup and destruction. When the thread is no longer
required, the operating system reassigns additional work to the thread or suspends the
thread. There is an algorithm for adjusting thread pool size dynamically based on thread
utilization and other factors. The .NET Framework 4 thread pool is the default scheduler for
parallel tasks in the .NET Framework. When you start a task, it is scheduled to run and placed
in a queue as part of the thread pool. Later, the task is dequeued and assigned to run on an
available thread. Fortunately, most of this activity is transparent to you.

To recap: A task is a group of related statements. When started, tasks are added to a queue
in the thread pool. Eventually (maybe immediately), a task is executed on a thread, which is a
unit of execution. This is, of course, a thread from the thread pool. Each thread is assigned to
and executed initially on a particular processor, which is considered the processor unit. The
following diagram shows the relationship between a task, a thread, and a processor.

22	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

1 2 3

Task A
a = a+1;
b = a/2;
Method1 (a);
Method2 (b);
. . .

Task created

4

Thread/task
running

Processor 1

Processor 2

Schedule
on thread

T1

T2
T3

Task A on T1

Queue

. . .

. . .

. . .

Task A

Added to
thread pool

Thread pool

Available threads

The Task Class
In the .NET Framework, the Task class is a logical abstraction of a task. You can use this class
to schedule and ultimately execute a parallel task. Remember, tasks are unlike threads in
that you do not start a task directly. By default, the thread pool schedules a task, places it on
a queue in the thread pool, and eventually executes the task on an available thread. In this
book, starting a task implies queuing the task first and later executing the task on an avail-
able thread from the thread pool.

Using the Parallel.Invoke Method
You can schedule a task in several ways, the simplest of which is by using the Parallel.Invoke
method. The following example executes two parallel tasks—one for MethodA and another
for MethodB. This version of Parallel.Invoke accepts an array of Action delegates as the sole
parameter. Action delegates have no arguments and return void.

Parallel.Invoke(new Action[] { MethodA, MethodB });

The Parallel.Invoke method is convenient for executing multiple tasks in parallel. However,
this method has limitations:

■	 Parallel.Invoke creates but does not return task objects.

■	 The Action delegate is limited—it has no parameters and no return value.

■	 Parallel.Invoke is not as flexible as other solutions and always uses an implied
Task.WaitAll method, described in more detail later in this section.

Parallel.Invoke does not guarantee the ordering of task execution. In the previous example,
the task for MethodB might execute first. When ordering is required, dependency is implied.
You should avoid task dependencies whenever possible.

	 Chapter 2  Task Parallelism	 23

The Parallel.Invoke method does not return until the provided tasks have completed. For
example, consider the use of Parallel.Invoke to execute two tasks. The first task’s duration is
500 ms, and the duration of the second task is 250 ms. Parallel.Invoke will return in 500 ms.
In other words, the duration of Parallel.Invoke is the execution time of the longest-running
task. As with other comments in this chapter, this is a general comment. The actual duration
depends on several factors, such as overhead and processor utilization.

Using the TaskFactory.StartNew method
Another way to execute a task is to use the TaskFactory.StartNew method. The TaskFactory
class is an abstraction of a task scheduler. In the Task class, the Factory property returns the
default implementation of the task factory, which employs the .NET Framework 4 thread
pool. TaskFactory has a StartNew method for executing tasks using the default task factory.
Here is sample code that executes two tasks by using TaskFactory.StartNew.

var TaskA = Task.Factory.StartNew(MethodA);
var TaskB = Task.Factory.StartNew(MethodB);

Like the Parallel.Invoke method, TaskFactory.StartNew uses an Action delegate. Unlike the
Parallel.Invoke method, TaskFactory.StartNew returns immediately. There is no implied wait.
Therefore, how do you know when the task or tasks have completed? Fortunately, the
StartNew returns a Task object. You can explicitly wait for a single task by using the Task.Wait
method, which is an instance method. A thread waiting on a task is considered to be the join-
ing thread. If the task has already completed, Task.Wait returns immediately. Otherwise, the
joining thread will wait (block) until the task has completed. Here’s sample code that executes
and waits on a single task.

var TaskA = Task.Factory.StartNew(MethodA);
TaskA.Wait();

The previous example waited on a single task. You can also wait for multiple tasks. After all, an
application is not very parallel with a single task. There are two options for waiting for multiple
tasks: wait for all the tasks to complete, or wait for any task to complete. Task.WaitAll waits for
all tasks to complete. Task.WaitAny returns when any of the referenced tasks have completed.
Both methods accept an array of tasks as a parameter. Both Task.WaitAll and Task.WaitAny
methods are static methods of the Task class.

Important  What follows is the first step-by-step tutorial procedure in this book. You’ll start
each tutorial by creating a console project from the New Project dialog box in Microsoft Visual
Studio 2010. Add a using statement for the System.Threading and System.Threading.Tasks name
spaces at the beginning of the application. The template for a console application includes a
Main function, which is the entry point. You will add most of your code in the Main function.

24	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Create two tasks from separate methods and wait for both tasks to complete

	 1.	 Create a console application. Before the Main function, add a MethodA and
MethodB method. Each method should display the name of the method by using
Console.WriteLine.

static void MethodA() { Console.WriteLine("MethodA"); }
static void MethodB() { Console.WriteLine("MethodB"); }

	 2.	 In the Main function, create and start two tasks with the TaskFactory.StartNew method.
Initialize the tasks with the MethodA and MethodB methods.

var TaskA = Task.Factory.StartNew(MethodA);
var TaskB = Task.Factory.StartNew(MethodB);

	 3.	 You can now wait for both methods to complete with the Task.WaitAll method.

Task.WaitAll(new Task[] { TaskA, TaskB });

	 4.	 Add Console.ReadLine() call to the end of the Main method to prevent the console
from closing before you can see the output. Your completed code should look like the
following.

 class Program
 {
 static void MethodA() { Console.WriteLine("MethodA"); }
 static void MethodB() { Console.WriteLine("MethodB"); }

 static void Main(string[] args)
 {
 var TaskA = Task.Factory.StartNew(MethodA);
 var TaskB = Task.Factory.StartNew(MethodB);
 Task.WaitAll(new Task[] { TaskA, TaskB });
 Console.ReadLine();
 }
 }

	 5.	 Run the program. You should see the output from both tasks in the console window.

	 Chapter 2  Task Parallelism	 25

The example you just completed uses the Task.WaitAll method to wait for both tasks to
complete. In contrast, the Task.WaitAny method returns as soon as any task completes. You
can discover which task completed because Task.WaitAny returns a zero-based index into
the Task array that was provided as a parameter. The array index identifies the task that
completed.

You used the Console.ReadLine method to prevent the console window from closing. Of
course, this makes it easier to view the results. Alternatively, you can execute the application
in Release mode, which you can do by using the shortcut Ctrl+F5. This prevents the addition
of an extraneous line of code. Either technique is okay.

In the previous example, you waited for all tasks to complete. In this tutorial, you just wait for
the first task to complete. You will then display the task ID of that task.

Create two tasks and wait for just the first one to complete

	 1.	 Create a new console application. At the top of the source file, reference the
System.Threading and System.Threading.Tasks namespaces. Before the Main func-
tion, add a MethodA and MethodB method. To emulate a compute bound task,
you will ask each task to simply spin and burn processor cycles by using the static
Thread.SpinWait method.

static void MethodA() { Thread.SpinWait(int.MaxValue); }
static void MethodB() { Thread.SpinWait(int.MaxValue/2); }

	 2.	 In the Main function, create two tasks with the TaskFactory.StartNew method. Initialize
the tasks with the MethodA and MethodB methods.

var TaskA = Task.Factory.StartNew(MethodA);
var TaskB = Task.Factory.StartNew(MethodB);

	 3.	 Display the ID for each task.

Console.WriteLine("TaskA id = {0}", TaskA.Id);
Console.WriteLine("TaskB id = {0}", TaskB.Id);

	 4.	 Now create an array of tasks. Call Task.WaitAny to wait until either task has run to com-
pletion. Initialize an integer variable with the return value.

Task [] tasks=new Task[] {TaskA, TaskB};
int whichTask = Task.WaitAny(tasks);

	 5.	 WaitAny returns a zero-based index into the task array, which identifies the task that
has finished. In this example, you can use the index to display the task ID of that task.

Console.WriteLine("Task {0} is the gold medal task.",
 tasks[whichTask].Id);

	 6.	 Keep the console open and prevent the application from exiting by using a
Console.ReadLine= statement at the end of the application.

26	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Here is the completed code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;

namespace TwoTask_WaitAny
{
 class Program
 {

 static void MethodA() { Thread.SpinWait(int.MaxValue); }
 static void MethodB() { Thread.SpinWait(int.MaxValue/2); }

 static void Main(string[] args)
 {
 var TaskA = Task.Factory.StartNew(MethodA);
 var TaskB = Task.Factory.StartNew(MethodB);

 Console.WriteLine("TaskA id = {0}", TaskA.Id);
 Console.WriteLine("TaskB id = {0}", TaskB.Id);

 var tasks=new Task[] {TaskA, TaskB};
 int whichTask = Task.WaitAny(tasks);
 Console.WriteLine("Task {0} is the gold medal task.",
 tasks[whichTask].Id);

 Console.WriteLine("Press enter to exit");
 Console.ReadLine();

 }
 }
}

	 7.	 Run the application. This time, when either of the methods completes, the Console​
.WriteLine code will show a message containing the ID of the task that finished first.
Based on your code, TaskB will finish first.

	 Chapter 2  Task Parallelism	 27

Be careful with the Wait methods: Wait, WaitAll, and WaitAny. There is always a possibility of
waiting longer than you expect; you might even deadlock. For that reason, you should always
consider using the versions of these methods that have a time-out parameter. You can then
set a reasonable duration for the task to complete. When the task exceeds the duration, the
Wait method will time out and return false. It is important to note that the task itself is not
aborted and might run until completion. However, you are no longer waiting. In this circum-
stance, you might decide to cancel the task. You’ll see more about cooperative task cancella-
tion later in this chapter.

Because the Wait method has a time-out, using the following code is safer than using the
code in the previous examples. The task must complete in the allotted time, or the wait will
be released. The joining thread is then allowed to continue. For simplicity, the duration is not
used in general in this book unless required.

var TaskA = Task.Factory.StartNew(MethodA);
if (!TaskA.Wait(5000)) {
 Console.WriteLine("Task timed out");
}

Using the Task.Start Method
There is yet one more way to directly start a task. You can create an instance of the Task class
and call the Task.Start method, which is an instance method. One advantage is that you can
configure the task in the Task constructor before starting the task. Several of the options, as
defined in the TaskCreationOption enumeration, are particularly helpful. The following table
lists the options.

Option Explanation
PreferFairness This is a suggestion to the TaskScheduler that tasks should execute

in an order similar to when they were scheduled.

LongRunning In the .NET Framework 4, long-running tasks are scheduled on
threads not in the thread pool.

AttachToParent This initiates a task inside another task to create a subtask.

This example code demonstrates a couple of these options.

var TaskA = new Task(MethodA, TaskCreationOptions.LongRunning);
var TaskB = new Task(MethodB, TaskCreationOptions.PreferFairness);

TaskA.Start();
TaskB.Start();

28	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

The .NET Framework 4 thread pool is optimized for short tasks. For this reason, long-running
tasks can adversely affect the performance of the .NET Framework 4 thread pool. Use the
TaskCreationOption.LongRunning option to schedule a long-running task on a dedicated
thread that is not part of the thread pool.

The .NET Framework thread pool does not promise to execute tasks in order; more often than
not, tasks will run out of sequence. Therefore, you cannot predict the order of execution and
should not write code predicated on this requirement. TaskCreationOptions.PreferFairness
is a task option that indicates a preference to execute a task in its natural order. However,
TaskCreationOptions.PreferFairness is merely a suggestion to execute a task in order, not an
absolute directive to the Task Parallel Library (TPL).

Using Function Delegates
So far, this chapter has used Action delegates as tasks. Action delegates have no parameters
and do not return a value. In some circumstances, this might be inflexible and limiting. For
tasks, you can also use the Func<TResult> delegate, where TResult is the return type. When
the task completes, the return or result of the task is accessible with the Task<TResult>.Result
property. You can check for the result at any time. However, if the task has not completed,
accessing the Task<TResult>.Result property will block the joining thread until the task is
done. Execution will resume after the task has finished, when the result is returned.

In the next example, a task returns the value 42, which is the answer to life, the universe,
and everything (a not-so-veiled reference to the fabulous book The Hitchhiker's Guide to the
Galaxy by Douglas Adams). Task<int> indicates that the task returns an integer value.

Lambda expressions are convenient for relatively short tasks. This book alternates between
using lambda expressions and formal methods/functions, to familiarize you with both
approaches.

Create a task that uses a lambda expression

	 1.	 Create a new console application. In the Main function, create and start a new task
by using the TaskFactory.StartNew method. The task will return an integer value. In
the TaskFactory.StartNew method, initialize the task with a lambda expression. In the
lambda expression, return the value of 42.

var TaskA = Task<int>.Factory.StartNew(() => {
 return 42; });

	 2.	 You can now wait for the task with the TaskA.Wait method.

 TaskA.Wait();

	 3.	 Display the result of the task with the Task.Result property.

	 Chapter 2  Task Parallelism	 29

	 4.	 Build and run the application.

Here is the complete application.

 class Program
 {
 static void Main(string[] args)
 {
 var TaskA = Task<int>.Factory.StartNew(() =>
 {
 return 42;
 });
 TaskA.Wait();
 Console.WriteLine(TaskA.Result);
 }
 }

Here is another example of starting a task that returns a value. Different from the previous
example, this code initializes the Task object in its constructor with a function delegate.
Task.Start then executes the task.

Task <int> TaskA=new Task<int>(() => {
 return 42;
});
TaskA.Start();

You now know how to execute a task that has a return value. You might also want to pass
information into the task. You pass state information for a task as an additional param-
eter—the object type (the state information can be any type). The next example employs
TaskFactory.StartNew to execute a task. The first parameter is the task, and the second
parameter is the state.

Create a task that uses a state object, which in this example is a string

	 1.	 Create a console application. In the Main function, create and start a new task by using
the TaskFactory.StartNew method. Initialize the task with a lambda expression. Pass
the state object into the lambda expression as a parameter. In the lambda expression,
return the length of the lambda expression.

var TaskA = Task<int>.Factory.StartNew(val => {
return ((string)val).Length;},

	 2.	 The next parameter of this version of the TaskFactory.StartNew method is the state
object. You will provide a string value.

"On Thursday, the cow jumped over the moon.");

	 3.	 You are ready to wait for the task, which is done with the Task.Wait method. You can
then display the result of the task by using the Task.Result property. Of course, the
answer remains 42, since that is truly the answer to life, the universe, and everything.

30	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

	 4.	 Build and run the application.

Here is the complete application.

 class Program
 {
 static void Main(string[] args)
 {
 var TaskA = Task<int>.Factory.StartNew(val => {
 return ((string)val).Length;},
 "On Thursday, the cow jumped over the moon.");
 TaskA.Wait();
 Console.WriteLine(TaskA.Result);
 }
 }

Here’s an altered version of the previous example. Instead of using TaskFactory.StartNew, the
task constructor initializes the state object.

var TaskA=new Task<int>(val =>{
 return ((string)val).Length;
}, "On Thursday, the cow jumped over the moon.");

TaskA.Start();

Unhandled Exceptions in Tasks
Tasks are not immune to exceptions. An unhandled exception raised in a task is handled dif-
ferently by the common language runtime (CLR) than a typical exception. Unhandled excep-
tions in tasks are not handled in the context of the task, but in the context of the joining
thread. Essentially, unhandled exceptions in a task are deferred and propagated to the join-
ing thread. The joining thread can then observe the exception as the observer.

The unhandled exception propagated to the observer is wrapped in an AggregateException
object. If you’re waiting on multiple tasks, the AggregateException might aggregate more
than one unhandled exception from different parallel tasks. If a single exception is raised, the
InnerException property of the AggregateException contains the original exception. For mul-
tiple exceptions, the InnerExceptions property returns a collection of Exception objects—one
for each unhandled exception.

There are many ways to observe an unhandled exception raised in a task. Waiting for the
task will observe the exception: Wait, WaitAll, or WaitAny methods. The joining thread then
becomes the observer and is responsible for handling the exception. If the Wait method is
within the scope of a try block (protected code), the otherwise unhandled exception of a task
can be caught. You can then unbundle the AggregateException object and examine the origi-
nal exception(s) in the InnerException or InnerExceptions property.

	 Chapter 2  Task Parallelism	 31

Remember that Parallel.Invoke ends with an implicit Task.WaitAll. This blocks the joining thread
until all the tasks have completed. When Parallel.Invoke returns, any unhandled exceptions are
observed, and if the code is running within a try block, you can handle the exception(s) in a
catch block.

After scheduling a task, the TPL tracks the status of that task. The status is exposed as the
Task.Status property, which is a TaskStatus type. TaskStatus is an enumeration. Some of the
possible values are TaskStatus.WaitingToRun, TaskStatus.Running, TaskStatus.RanToCompletion,
and TaskStatus.Canceled, which are self-explanatory. When a task raises an unhandled excep-
tion, the task status is TaskStatus.Faulted.

The following image shows a sequence diagram of a task that throws an exception. The
exception is observed in a try block and caught in the subsequent catch block. Thicker vertical
lines represent tasks executing on a thread.

Observer
Threadn

Aggregate
Exception

Invoke tasks

try

Task B: Task
Threadn+2

catch

Task A: Task
Threadn+1

Divide-by-zero
exception

Unhandled
exception

Aggregate
Exception

WaitAll

Handle exception

Aggregate.InnerException

Divide-by-zero exception

Here are the steps in the sequence diagram.

■	 Within a try block, invoke TaskA and TaskB. TaskB has the longer duration.

■	 TaskA throws a divide-by-zero exception, which is wrapped in an AggregateException.

■	 When TaskB completes, the WaitAll observes the unhandled exception raised by TaskA.

■	 The catch block retrieves the original exception as the InnerException.

32	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Note that unhandled exceptions must be observed before the related task is garbage-
collected; otherwise, the unhandled exception might crash the application. Here’s an
example of successfully handling an unhandled exception in a parallel task.

Create a task that throws an unhandled exception that is observed with a
Task.Wait method

	 1.	 Create a console application. In the Main function, create a task reference, which is set
to null.

Task TaskA = null;

	 2.	 Start a try/catch block. You will enter code guarded for an exception in the try block.

try {

	 3.	 In the try block, you will create and start a new task. Initialize the task with a lambda
expression. In the lambda expression, define two integer variables. Set one of the inte-
gers to zero. Divide by the integer variable that has the zero value to raise the divide-
by-zero exception.

TaskA = Task.Factory.StartNew(() => {
int a = 5, b = 0;
a /= b;});

	 4.	 Wait for the task to complete.

TaskA.Wait(); }

	 5.	 In the catch statement, catch the AggregateException exception. This will catch and
observe the unhandled exception from the task.

catch(AggregateException ae) {

	 6.	 In the catch block, display the task status and inner exception, which contains the origi-
nal exception.

	 7.	 Build and run the application.

Here is the complete application.

 class Program
 {
 static void Main(string[] args)
 {
 Task TaskA = null;
 try {
 TaskA = Task.Factory.StartNew(() => {
 int a = 5, b = 0;
 a /= b;
 });
 TaskA.Wait();
 }

	 Chapter 2  Task Parallelism	 33

 catch(AggregateException ae) {
 Console.WriteLine("Task has "+TaskA.Status.ToString());
 Console.WriteLine(ae.InnerException);
 }
 }
 }

Observe and iterate unhandled exceptions from three separate tasks

Different from the previous example, this walkthrough lists the separate exceptions thrown
from different tasks.

	 1.	 Create a console application. Before the Main function, define MethodA, MethodB,
and MethodC methods. Each method throws an explicit exception. In the exception
constructor, provide the name of the task.

static void MethodA() { throw new Exception("TaskA Exception"); }
static void MethodB() { throw new Exception("TaskB Exception"); }
static void MethodC() { throw new Exception("TaskC Exception"); }

	 2.	 Start a try/catch block. You will enter code guarded for an exception in the try block.

try {

	 3.	 In the try block, create and start three tasks. Each task is initialized with a different
method.

var TaskA=Task.Factory.StartNew(MethodA);
var TaskB=Task.Factory.StartNew(MethodB);
var TaskC=Task.Factory.StartNew(MethodC);

	 4.	 Use the Task.WaitAll method so that you can wait for the tasks and observe any
exception.

Task.WaitAll(new Task[] {TaskA, TaskB, TaskC}); }

	 5.	 In the catch statement, catch the AggregateException exception. This will catch all
unhandled exceptions of the tasks.

catch (AggregateException ae) {

	 6.	 In the catch block, iterate the AggregateException.InnerExceptions property and display
each individual exception.

	 7.	 Build and run the application.

Here is the complete application.

 class Program
 {
 static void MethodA() { throw new Exception("TaskA Exception"); }
 static void MethodB() { throw new Exception("TaskB Exception"); }
 static void MethodC() { throw new Exception("TaskC Exception"); }
 static void Main(string[] args)

34	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

 {
 try {
 var TaskA=Task.Factory.StartNew(MethodA);
 var TaskB=Task.Factory.StartNew(MethodB);
 var TaskC=Task.Factory.StartNew(MethodC);
 Task.WaitAll(new Task[] {TaskA, TaskB, TaskC});
 }
 catch (AggregateException ae) {
 foreach (var ex in ae.InnerExceptions) {
 Console.WriteLine(ex.Message);
 }
 }
 }
 }

The following code is similar to the previous example, except that it calls Parallel.Invoke
instead of TaskFactory.StartNew.

try {
 Parallel.Invoke(new Action[] { MethodA, MethodB, MethodC });
}
catch (AggregateException ae){
 foreach (var ex in ae.InnerExceptions) {
 Console.WriteLine(ex.Message);
 }
}

The previous examples use a foreach loop to inspect and handle unhandled exceptions from
different tasks. Alternatively, you can call the AggregateException.Handle method, which
takes a callback function (delegate) as its only parameter. The delegate accepts the original
exception as the single parameter and returns a Boolean: Task<TResult>. The return value
indicates whether the unhandled exception was handled. Return true when you successfully
handle the exception, otherwise return false. If you return false, the exception will continue to
propagate up the call stack as a new aggregate exception. This new AggregateException will
contain all the exceptions where the handler delegate returned false.

AggregateException calls the provided callback method for the exception from a task. For
example, if there are four unhandled exceptions, it calls the callback four times. You’ll practice
handling exceptions with a callback in the next exercise.

Handle task exceptions with a callback function

	 1.	 Create a console application. Before the Main function, define MethodA, MethodB,
and MethodC methods. Each method throws an explicit exception. In the exception
constructor, provide the name of the task.

static void MethodA() { throw new Exception("TaskA Exception"); }
static void MethodB() { throw new Exception("TaskB Exception"); }
static void MethodC() { throw new Exception("TaskC Exception"); }

	 Chapter 2  Task Parallelism	 35

	 2.	 Start a try/catch block for handling exceptions.

try {

	 3.	 In the try block, execute the three methods as tasks by using the Parallel.Invoke method.

Parallel.Invoke(new Action[] { MethodA, MethodB, MethodC }); }

	 4.	 In the catch statement, catch the AggregateException exception. This will catch all
unhandled exceptions of the tasks.

catch (AggregateException ae) {

	 5.	 Call the Handle method on the AggregateException object. Enter the callback as a
lambda expression.

ae.Handle(ex => {

	 6.	 In the lambda expression, display the current exception message. Return true to indi-
cate that the exception was handled.

	 7.	 Build and run the application.

Here is the complete application.

 class Program
 {
 static void MethodA() { throw new Exception("TaskA Exception"); }
 static void MethodB() { throw new Exception("TaskB Exception"); }
 static void MethodC() { throw new Exception("TaskC Exception"); }
 static void Main(string[] args)
 {
 try
 {
 Parallel.Invoke(new Action[] { MethodA, MethodB, MethodC });
 }
 catch (AggregateException ae)
 {
 ae.Handle(ex =>
 {
 Console.WriteLine(ex.Message);
 return true;
 });
 }
 }
 }

As mentioned previously, a task can return a value, which you can inspect by using the
Task<TResult>.Result property. If the Task has not completed, the current thread is suspended
until the task finishes and returns a value. In addition, the Task<TResult>.Result property will
observe an unhandled exception of the task, if any. Here is an example.

36	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

try{
var TaskA=Task<int>.Factory.StartNew(() =>{
 throw new DivideByZeroException();
 return 42;
});

 // Unhandled exception observed.
 Console.WriteLine(TaskA.Result);
 }
catch (AggregateException ae) {
 // handle exception
 Console.WriteLine(ae.InnerException.Message);
}

Sort Examples
Sorting a collection is the one way to demonstrate task parallelism. The examples in this
chapter sort an integer collection. As you are probably aware, there are various sorting algo-
rithms; this section uses three different ones, to compare them and identify the quickest of
the three—a race of sort algorithms!

The sort algorithms to compare are bubble sort, insertion sort, and pivot sort. In this exam-
ple, the potential dependency is the integer collection, which is sorted simultaneously by
different sort algorithms. This is a problem because the integer collection is being sorted
in place. There are various techniques for resolving a dependency. One solution is to make
copies of the shared data and provide each task with a private copy, which is the approach
chosen here; each task (sort algorithm) gets a copy of the original integer collection as a
parameter.

Note  The example code in this chapter and the remainder of the book does not have com-
ments. Instead, it’s self-documenting code that uses longer symbolic names, which makes the
code more readable.

Bubble Sort
Bubble sort is a commonly used sort algorithm. However, this does not mean it is the quick-
est sort algorithm; in fact, it’s probably one of the slowest sort algorithms. You’ll see just how
slow a bubble sort is when compared to other sort algorithms. Popularity does not always
equate to quality.

A bubble sort performs binary comparisons. It typically begins at the start of the collection
and compares the value of the first two elements. If the second element is less than the first,
it swaps the element’s position in the collection (assuming an ascending sort). It then per-
forms the same comparison and swap operation on the second and third elements, and so

	 Chapter 2  Task Parallelism	 37

on until the end of the collection. The sort is then repeated from the beginning until the
collection is fully sorted. Here is the sample code.

public static void BubbleSort(List<int> sortedList) {
 int count = sortedList.Count;
 int temporary;

 for (int iteration = 0; iteration < count; ++iteration) {
 for (int index = 0; index + 1 < count; ++index) {
 if (sortedList[index] > sortedList[index + 1]) {
 temporary = sortedList[index];
 sortedList[index] = sortedList[index + 1];
 sortedList[index + 1] = temporary;
 }
 }
 }
}

Insertion Sort
An insertion sort iterates over the collection several times. Each iteration places a selected
item in the correct location in the sort sequence. For example, the initial iteration would scan
the collection and place the first element in the correct position for the sorted sequence. The
second iteration would scan the list again and place the second element in the correct posi-
tion. This continues until each element of the list is positioned correctly. Insertion sorts can
use two lists: an unsorted list (input) and a sorted list (output); however, this example uses
only one list, performing the sort in place. The sort repositions each element by using an
insert, reposition, and delete operation. Here’s the code.

public static void InsertionSort(List<int> sortedList, CancellationToken token) {
 int count = sortedList.Count;
 int currentLocation, currentValue, insertionLocation;
 sortedList.Insert(0, 0);

 for (int location = 1; location < count + 1; ++location) {
 currentLocation = location;
 insertionLocation = location - 1;
 currentValue = sortedList[currentLocation];
 while (sortedList[insertionLocation] > currentValue) {
 sortedList[currentLocation] = sortedList[insertionLocation];
 --currentLocation;
 --insertionLocation;
 }
 sortedList[currentLocation] = currentValue;
 }
 sortedList.Remove(0);
}

38	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Pivot Sort
Pivot sorts are fun! A pivot sort is commonly known as a quick sort. The algorithm first chooses
a pivot value, dividing the collection into two collections. The first collection contains the ele-
ments that are less than the pivot value, while the second collection contains values greater
than the pivot. You then perform a pivot sort on the two sub-collections by using new pivot
values. You continue to divide and sort collections recursively until the sub-collections each
contain one element. Finally, you assemble the sorted sub-collections to create the sorted list.
Because this example sorts in ascending order, it always places lesser values in the left sub-
collection and greater values in the right sub-collection. Here’s the sample code.

 public static void PivotSort(List<int> integerList, int start, int end, int pivot)
 {
 if (start < end)
 {
 pivot = integerList[end];
 int location = start;
 int bound = end;

 while (location < bound)
 {
 if (integerList[location] < pivot)
 {
 ++location;
 }
 else
 {
 integerList[bound] = integerList[location];
 integerList[location] = integerList[bound - 1];
 --bound;
 }
 }

 integerList[bound] = pivot;
 PivotSort(integerList, start, bound - 1, pivot);
 PivotSort(integerList, bound + 1, end, pivot);
 }

Using the Barrier Class
For a horse race to be fair, the horses need to start at the same time. Horse racing uses a starter
gate; the .NET Framework offers the Barrier class. The Barrier class is in the System.Threading
namespace. It is introduced in the .NET Framework 4. You use the Barrier classes to create logi-
cal gates or phases in your application. When you initialize a Barrier, you can set a maximum
number of elements. Until the maximum number is reached, adding an element to the Barrier

	 Chapter 2  Task Parallelism	 39

will block the current task. When the Barrier reaches capacity, it “spills.” At that point, the
waiting tasks execute. So when the Barrier is full (all the horses are at the gate), it releases all
tasks and the race begins.

This diagram demonstrates a barrier with a capacity of three.

1
T1

Barrier

3
T3

Barrier

T1
T2

2
T2

Barrier

T1

Barrier

Empty

4

T1

T2

T3

Barrier
spills

You could also think of a Barrier as a bucket. When the bucket is full, it will tip over. Of
course, at that point, everything in the bucket is released.

Here are the helpful instance methods of the Barrier class:

■	 Barrier constructor(int participantCount)  This creates an instance and sets Barrier
capacity.

■	 void SignalAndWait()  This signals that a task has reached a Barrier.

■	 long AddParticipants(int participantCount)  This increases the capacity of the Barrier.

■	 void RemoveParticipants(int participantCount)  This reduces the capacity of the
Barrier.

The sorting example uses a Barrier to mark the start of the sorting phase. The maximum for
the Barrier is set to three (bubble, insertion, and pivot sort). Using the Barrier guarantees that
the three sort routines start at the same time, which makes for a fair race.

Each sort algorithm is started in a separate code region. Each region follows the same gen-
eral pattern:

	 1.	 Duplicate list

	 2.	 Create task for sort algorithm

	 3.	 Task: signal barrier

	 4.	 Task: perform sort

	 5.	 Start task

40	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Here is the Insertion Sort Region, which is one of the three sort regions.

// Insertion SortRegion

List<int> insertionList = integerList.ToList();
Task taskInsertionSort = new Task(() => {
 sortBarrier.SignalAndWait();
 using (new SortResults("Insertion Sort")){
 SortAlgorithms.InsertionSort(insertionList);
 }
});
taskInsertionSort.Start();

You also need some code to display the duration of each sort algorithm to find out which
sort algorithm is the quickest. This code waits for the sorting tasks to complete, then iterates
and displays the results.

Task.WaitAll(new Task[] { taskBubbleSort, taskInsertionSort, taskPivotSort });
foreach (string result in SortResults.results){
 Console.WriteLine(result);
}

When you run this, you’ll get results similar to the ones below, which show the result of sort-
ing 10,000 integers with durations in milliseconds. And the winner is…pivot sort! The race was
not even close.

Where does the code calculate the duration? First, a Stopwatch class, which is defined in the
System.Diagnostics namespace, is used to track the duration of each algorithm. In this pro-
gram, the SortResults class is a wrapper for the Stopwatch class and calculates the duration of
a sort algorithm.

	 Chapter 2  Task Parallelism	 41

Here is a general description of the SortResults class.

	 1.	 In the SortResults class, I create an instance of the Stopwatch class as a member field.

	 2.	 The constructor calls the Start method of the Stopwatch instance and sets the name of
the sort algorithm.

	 3.	 The Dispose method calls the Stop method of the Stopwatch. The result is then format-
ted and added to a results collection. The results collection is later iterated to display
the results.

Here is the code for the class.

class SortResults : IDisposable{
 // Instance Members
 public SortResults(string name){
 sortName = name;
 _stopwatch.Start();
 }

 private Stopwatch _stopwatch = new Stopwatch();
 private string sortName;

 public void Dispose(){
 _stopwatch.Stop();
 results.Add(string.Format("{0} : {1:N0}ms", sortName,
 _stopwatch.ElapsedMilliseconds));
 }
 // Classwise members (static) // The rest of the class…

}

Each sort region uses the SortClass via a using statement (see the sort regions discussion, ear-
lier in this section). Here is a snippet of code from the bubble sort region.

using (new SortResults("Bubble Sort")){
 // Perform sort
}

What is being done in the using statement and subsequent block? SortResults objects are
disposable and can be instantiated in a using statement. In our example, an anonymous
SortResult object is created. As shown previously, the SortResults object creates a Stopwatch
and starts it in the constructor. The closing brace of the using statement is important. When
execution reaches the closing brace, it calls the SortResults.Dispose method, which stops the
Stopwatch and records the results.

42	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Refactoring the Pivot Sort
The pivot sort algorithm performed better than the bubble and insertion sort algorithms. It
is the champion. Magnifique! However, even the pivot sort could be improved. As mentioned
in Chapter 1, one challenge of parallel programming is identifying potential opportunities for
parallelism. Of course, not every opportunity for parallelism should be exploited. Sometimes
the cost of parallelism offsets the benefits.

The pivot sort works by pivoting around a value. It creates less than and greater than collec-
tions in which the pivot value is the delineating factor between the two. It then sorts each
sub-collection along a new pivot value, and so on. In the pivot sort example used previously,
the sort is performed sequentially. Sorting the sub-collections in parallel could improve per-
formance, but possibly not in every circumstance. For example, if one of the sub-collections
were significantly larger than the other, sorting the collections in parallel would provide only
a limited advantage. Sorting the sub-collections in parallel only makes sense when the left
and right collections are relatively close to the same size.

In the following example, the code for the pivot sort has been refactored to sort sub-
collections in parallel. In this example, the sub-collections must be of similar size and
must contain more than 50 items to sort in parallel; otherwise, the algorithm chooses a
sequential sort. These changes improve the pivot sort by about 20 percent for a collec-
tion of 10,000 integers.

These are the steps to pivot sort the sub-collections.

	 1.	 If a collection contains fewer than 50 items, don’t perform a parallel sort.

	 2.	 Check whether the collections have similar sizes.

	 3.	 If the sizes are similar, sort the sub-collections in parallel.

	 4.	 When the sizes differ significantly, sort the sub-collections sequentially.

Here is the refactored sample code.

if (sortedList.Count >50) {
double delta = ((double)left.Count) / right.Count;
if ((delta > .75) && (delta < 1.333)) {
var taskLeft = Task.Factory.StartNew(() => PivotSort(left));
 var taskRight = Task.Factory.StartNew(() => PivotSort(right));
 rleft = taskLeft.Result;
 rright = taskRight.Result;
}
else
{
 rleft = PivotSort(left);
 rright = PivotSort(right);
}
}

	 Chapter 2  Task Parallelism	 43

Cancellation
The sort algorithm sample code in the preceding section allows the three sort algorithms
to run to completion. But logically, because all the sort algorithms wind up with the same
results, you need to sort the integer collection only once—the fastest way possible. When
the fastest sort completes, you can cancel the other sorts. The .NET Framework 4 introduced
the concept of cooperative cancellation, which is a consistent model for cancelling tasks.
As the name implies, the model requires cooperation from running tasks. Tasks are respon-
sible for regularly checking for a cancellation request. After a cancellation request has been
received, a task should perform a timely and orderly shutdown. Checking for cancellation
might require polling, and that can easily become a performance sink. For this reason, if it is
required, be careful when implementing a polling strategy.

Here are the steps required for the cooperative cancellation model:

	 1.	 Create an instance of the CancellationTokenSource class, which is a wrapper for a can-
cellation token.

	 2.	 Pass the actual cancellation token (the CancellationTokenSource.Token property) as a
parameter to the cooperating tasks.

	 3.	 From the original thread, call the CancellationTokenSource.Cancel method to make a
cancellation request.

	 4.	 In the task, check the CancellationToken.IsCancellationRequested property for a cancel-
lation request.

	 5.	 After preparing for cancellation, for example by preserving state information, the task
should call the CancellationToken.ThrowIfCancellationRequest method. This throws the
OperationCanceledException exception and cancels the task.

	 6.	 You can inspect whether a task was canceled. Check Task.Status for TaskStatus.Canceled.

The use of CancellationTokenSource and CancellationToken types is not restricted to tasks.
Many of the types referenced in this book, including the cancellation types, can be used
more generally with threads.

The next tutorial demonstrates the cooperative model for cancellation. In this example, you
will create a CancellationToken that is passed into a task. In the task, you will periodically
check for a cancellation request.

44	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Create a task that throws a cancellation exception

In this procedure, the joining thread catches and handles the unhandled exception.

	 1.	 Create a console application. Before the Main function, add a DoSomething method.
To emulate a compute-bound task, the task will simply spin and burn processor cycles.
This is done with the Thread.SpinWait method.

static void DoSomething() { Thread.SpinWait(4000); }

	 2.	 In the Main function, create a CancellationTokenSource object. Afterward, initialize a
cancellation token with the CancellationTokenSource.Token property.

CancellationTokenSource cancellationSource =
 new CancellationTokenSource();
CancellationToken token = cancellationSource.Token;

	 3.	 Start a try/catch block for handling exceptions.

try {

	 4.	 You can now create and start a new task by using the TaskFactory.StartNew method.
Initialize the task with a lambda expression.

Task TaskA=Task.Factory.StartNew(() => {

	 5.	 In the lambda expression, you need a while loop. In the loop, call the compute-bound
method. Check whether an exception is requested by using the CancellationToken​
.IsCancellationRequested property. If cancellation is requested, throw a cancellation
exception. Notice that you also pass the cancellation token to the task as the last
parameter of the StartNew method.

while (true) {
 DoSomething();
 if (token.IsCancellationRequested) {

 token.ThrowIfCancellationRequested();
 }
}}, token);

	 6.	 In the joining thread, cancel the task. Then wait for the task to complete and observe
the cancellation exception.

cancellationSource.Cancel();

TaskA.Wait(); }

	 7.	 In the catch block, catch the cancellation exception and display the message.

	 8.	 Build and run the application.

	 Chapter 2  Task Parallelism	 45

Here is the complete application.

 static void Main(string[] args)
 {
 CancellationTokenSource cancellationSource =
 new CancellationTokenSource();
 CancellationToken token = cancellationSource.Token;
 try
 {
 Task TaskA=Task.Factory.StartNew(() =>
 {
 while (true)
 {
 DoSomething();
 if (token.IsCancellationRequested)
 {
 token.ThrowIfCancellationRequested();
 }
 }
 }, token);
 cancellationSource.Cancel();
 TaskA.Wait();
 }
 catch (AggregateException ex)
 {
 Console.WriteLine(ex.InnerException.Message);
 }
 }
 }

A Cancellation Example
Here is the sample code to implement cancellation in the bubble sort region of the sorting
application. Similar changes can be made in the regions for the insertion and pivot sorts.
The three sorting tasks are given the same cancellation token. Because they share the same
token, all of the sorting algorithms can be cancelled as a group. For this reason, you create
the cancellation token only once before entering the sort regions.

CancellationTokenSource cancellationSource =
 new CancellationTokenSource();
CancellationToken token = cancellationSource.Token;

// Bubble Sort Region

List<int> bubbleList = integerList.ToList();
Task taskBubbleSort = new Task(() => {
 sortBarrier.SignalAndWait();
 using (new SortResults("Bubble Sort")){
 SortAlgorithms.BubbleSort(bubbleList, token);
 }
}, token);
taskBubbleSort.Start();

46	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Because each sort is different, cancellation polling occurs in different locations in each sort
algorithm. When a cancellation request is detected, the code throws an OperationCanceled​
Exception exception and cancels the task.

Here is the sample code for actually canceling the sort algorithms. The joining thread calls
WaitAny. Unlike WaitAll, WaitAny will return when the fastest task finishes, at which time you
can cancel the other sort algorithms that are still running, by calling CancellationTokenSource​
.Cancel.

Task.WaitAny(new Task[] { taskBubbleSort, taskInsertionSort, taskPivotSort });
cancellationSource.Cancel();

Task Relationships
This chapter has already demonstrated several techniques for creating tasks. For example,
you can start multiple tasks with the Parallel.Invoke method, create tasks with TaskFactory​
.StartNew, or use the Task constructor. Each approach varies slightly in functionality but ulti-
mately creates a task that is scheduled and eventually started. So far, the example tasks have
been independent, with no relationship to another task. However, tasks can have relationships.
You can create continuation tasks, subtasks, and tasks that have a parent-child relationship.
Task relationships help you create more sophisticated solutions.

A continuation task automatically starts after another task completes. For example, the first
task might be responsible for calculating a result, and then the second task might display the
result. An error might occur if the result is shown before the calculation is complete. For this
reason, it is important to order the execution of these two tasks.

Continuation Tasks
Ordering parallel tasks is sometimes helpful. Naturally, executing tasks in parallel is prefer-
able; however, for correctness, ordering of tasks is sometimes required. The next image
depicts four tasks. Two of the tasks are compute bound and return a result. The other two
tasks are responsible for displaying the results. As shown, the four tasks are running in parallel,
which could cause problems.

TaskA

Compute
result

TaskC

Compute
result

TaskB

Display
result

TaskD

Display
result

Start tasks at once:

The tasks should be ordered so that the display tasks start after their corresponding com-
pute tasks. In this scenario, the compute task is termed the antecedent, and the display task

	 Chapter 2  Task Parallelism	 47

is called the successor. An antecedent is the first task in an ordered sequence. The succes-
sor task is the second and is a continuation of the antecedent task. The terms successor and
continuation task are used interchangeably in this book. As illustrated, TaskB should continue
TaskA, and TaskD should continue TaskC.

TaskA

Compute
result

TaskB

Display
result

TaskC

Compute
result

TaskD

Display
result

Ordered tasks

The Task class has several methods that order tasks. These methods schedule one task to
continue after another. The ContinueWith method, which is an instance method, is the sim-
plest of them. Call Task.ContinueWith on the antecedent task. As a parameter, pass in the
successor method as a delegate. The parameter is used to create the successor task that will
continue after the antecedent task. Inside the successor task, you can reference the antece
dent task, which is provided as a parameter.

Create an antecedent and successor task and then wait for both to complete

	 1.	 Create a console application. In the Main function, create a new task by using the Task
constructor. Initialize the task with a lambda expression. In the lambda expression, dis-
play the name of the task.

var antecedent = new Task(() =>{
 Console.WriteLine("antecedent.");
});

	 2.	 Use the Task.ContinueWith method to create a continuation task. In the lambda expres-
sion for this task, display the name of the task. This task automatically runs when the
antecedent task completes.

var successor=antecedent.ContinueWith((firstTask) =>
{ Console.WriteLine("successor."); });

	 3.	 You can now start the antecedent task. Afterward, wait for both the antecedent and
successor tasks to complete.

 class Program
 {
 static void Main(string[] args)
 {
 var antecedent = new Task(() =>
 {

48	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

 Console.WriteLine("antecedent.");
 });
 var successor=antecedent.ContinueWith((firstTask) =>
 { Console.WriteLine("successor."); });
 antecedent.Start();
 Task.WaitAll(antecedent, successor);
 }
 }

In the previous example code, the antecedent task did not return a result. When the ante-
cedent returns a value, the successor task can find the results of the antecedent task in the
Task<TResult>.Result property. Remember, the successor gets a reference to the antecedent
as a parameter.

Create an antecedent task and a successor task in which the antecedent task result
is checked later

	 1.	 Create a console application. In the Main function, define a new task by using the Task
constructor. The task should return an integer value. Initialize the task with a lambda
expression. In the lambda expression, display the current task and return a value. This is
the antecedent task.

Task<int> calculate = new Task<int>(() =>{
 Console.WriteLine("Calculate result.");
 return 42;});

	 2.	 With the Task.ContinueWith method, create a continuation task that displays the result
of the antecedent task. Pass a reference to the antecedent as a parameter. You can use
the reference to access the result of the antecedent.

var answer=calculate.ContinueWith((antecedent) =>{
 Console.WriteLine("The answer is {0}.", antecedent.Result); });

	 3.	 You can now start the antecedent task. Then wait for both the antecedent and succes-
sor methods to complete.

 class Program
 {
 static void Main(string[] args)
 {
 Task<int> calculate = new Task<int>(() =>
 {
 Console.WriteLine("Calculate result."); return 42;
 });
 Task answer=calculate.ContinueWith((antecedent) =>{
 Console.WriteLine("The answer is {0}.", antecedent.Result); });
 calculate.Start();
 Task.WaitAll(calculate, answer);
 }
 }

	 Chapter 2  Task Parallelism	 49

In the preceding example, the successor task started when the current task completed.
What if you want to continue only after several tasks finish? That is possible with the static
TaskFactory.ContinueWhenAll method. This method accepts an array of tasks as a parameter.
The continuation task will begin after the last of these tasks has completed. In this case, the
successor task receives an array of antecedent tasks as a parameter. You can use this array in
the successor to access state information from each antecedent.

Create two antecedent tasks and check the result of both in the successor task

	 1.	 Before the Main function, add a PerformCalculation method that returns an integer
value of 42.

static int PerformCalculation() { return 42; }

	 2.	 Next, create a new task that returns an integer value. Initialize the task with a lambda
expression. In the lambda expression, display the current task and return the result of
the PerformCalculation method.

Task<int> TaskA = new Task<int>(() =>{
 Console.WriteLine("TaskA started.");
 return PerformCalculation(); });

	 3.	 Now create a TaskB, similar to TaskA. TaskA and TaskB are the antecedent methods.

Task<int> TaskB = new Task<int>(() => {
 Console.WriteLine("TaskB started.");
 return PerformCalculation(); });

	 4.	 Create a continuation task to run after TaskA and TaskB have completed. You can
accomplish this with the TaskFactory.ContinueWhenAll method. The first parameter
is an array of tasks.

Task total=Task.Factory.ContinueWhenAll(new Task<int>[] { TaskA, TaskB },

	 5.	 As part of TaskFactory.ContinueWhenAll, you next define the continuation task as a
lambda expression. Pass a reference to the antecedent tasks as the parameter. In the
successor task, add and display the results of the antecedent tasks.

(tasks)=>Console.WriteLine("Total = {0}", tasks[0].Result+tasks[1].Result));

	 6.	 Start both antecedent tasks and then wait for both to complete. Afterward, wait for the
continuation task to complete.

class Program
{
 static int PerformCalculation() { return 42; }
 static void Main(string[] args)
 {
 Task<int> TaskA = new Task<int>(() =>
 {
 Console.WriteLine("TaskA started.");
 return PerformCalculation();

50	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

 });
 Task<int> TaskB = new Task<int>(() =>
 {
 Console.WriteLine("TaskB started.");
 return PerformCalculation();
 });
 Task total=Task.Factory.ContinueWhenAll(new Task<int>[] { TaskA, TaskB },
 (tasks) => Console.WriteLine(
 "Total = {0}", tasks[0].Result + tasks[1].Result));
 TaskA.Start();
 TaskB.Start();
 Task.WaitAll(TaskA, TaskB);
 total.Wait();
 }
}

As shown, TaskFactory.ContinueWhenAll starts the continuation task (successor) after all the
antecedent tasks have completed. Alternatively, there’s a TaskFactory.ContinueWhenAny,
which is an instance method that starts the continuation task after any listed antecedent task
completes.

An interesting option when continuing a task is the TaskContinuationOptions parameter. With
this option, you can set an event as an additional criterion for starting the continuation task.
For example, suppose you want to continue a task only when the antecedent raises an excep-
tion. As another example, you might want to continue a task only when the antecedent was
not canceled. TaskContinuationOptions is an enumeration that covers both of these scenarios
and more. Here are the possible values.

■	 None

■	 AttachedToParent

■	 ExecuteSynchronously

■	 LongRunning

■	 NotOnCanceled

■	 NotOnFaulted

■	 NotOnRanToCompletion

■	 OnlyOnCanceled

■	 OnlyOnFaulted

■	 OnlyOnRanToCompletion

■	 PreferFairness

Some of the values, such as OnlyOnFaulted, are not available for continuation or successor
tasks with multiple antecedents.

	 Chapter 2  Task Parallelism	 51

Here is a scenario. Assume that you want to perform a rollback if a task throws an unhandled
exception. Exceptions can sometimes leave objects in an unknown state, so you might want
to return objects to a known state; being in an unknown state is rarely good for a program. If
an unhandled exception occurs in a task, you can perform the rollback in a continuation task,
by using the TaskContinuationOptions.OnlyOnFaulted enumeration value.

Implement the preceding scenario in an application

	 1.	 Create a console application. You need to implement a custom task that can perform a
rollback of an operation. First, define a new CustomTask class. Inherit the class from the
Task class.

 class CustomTask : Task {
 }

	 2.	 Implement a public one-argument constructor for the CustomTask class with an Action
delegate as the parameter. Pass the Action delegate to the base class (Task) constructor.

public CustomTask(Action action)
 : base(action)
{ }

	 3.	 Add a PerformRollback method to the CustomTask class as a member method. In the
real world, this method would perform a rollback. In our example, it simply displays a
message.

public void PerformRollback() { Console.WriteLine("Rollback..."); }

	 4.	 In the Main function, create a new CustomTask. This is the antecedent task. In the
lambda expression for the task, throw an unhandled exception.

CustomTask antecedent = new CustomTask(() => {
 throw new Exception("Unhandled"); });

	 5.	 Next, create a continuation task for the antecedent task by using the Task.ContinueWith
method. Implement the continuation task as a lambda expression. Pass a reference
of the antecedent task as a parameter of the lambda expression. In our example, you
want to perform a rollback. Finally, you want to execute the continuation task only
when the antecedent task has a fault. For that reason, add the TaskContinuationOptions​
.OnlyOnFaulted as the final parameter.

antecedent.ContinueWith((predTask) =>
{
 ((CustomTask)predTask).PerformRollback();
}, TaskContinuationOptions.OnlyOnFaulted);

	 6.	 Now you can start the antecedent task. Wait for the task in a try/catch block.

class CustomTask : Task {
 public CustomTask(Action action)
 : base(action)

52	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

 { }
 public void PerformRollback() { Console.WriteLine("Rollback..."); }
}
class Program
{
 static void Main(string[] args)
 {
 CustomTask antecedent = new CustomTask(() =>
 {
 throw new Exception("Unhandled");
 });
 antecedent.ContinueWith((predTask) =>
 {
 ((CustomTask)predTask).PerformRollback();
 },
 TaskContinuationOptions.OnlyOnFaulted);
 antecedent.Start();
 try
 {
 antecedent.Wait();
 }
 catch (AggregateException ex)
 {
 }
 }
 }

Parent and Child Tasks
So far, you haven’t seen examples that create subtasks. A subtask is a task created in the
context of another task. The outer task is not necessarily a parent task. There is no implied
relationship. The default task scheduler (the .NET Framework 4 thread pool) handles subtasks
differently than other tasks. Work stealing, as explained in the next section, can occur when-
ever subtasks are created.

In the following exercise, you will create a task and subtask.

Create an outer task and a subtask

	 1.	 Create a console application. In the Main function, create a new task by using the Task
constructor. Initialize the task with a lambda expression. This will be the outer task in a
task relationship.

var outer = new Task(() => {

	 2.	 In the lambda expression, display the name of the current task.

Console.WriteLine("Outer task.");

	 Chapter 2  Task Parallelism	 53

	 3.	 Still within the lambda expression, create and start a task. Because you are within an
existing task, this is a subtask. In the lambda expression for the new task, display the
name of the task.

var inner=Task.Factory.StartNew(() => Console.WriteLine("Inner task."));

	 4.	 Wait for the subtask and close the lambda expression for the outer task.

inner.Wait(); });

	 5.	 To complete the example, start and then wait for the outer task. As part of the outer
task, the inner task will also be started.

class Program
{
 static void Main(string[] args)
 {
 Task outer = new Task(() =>
 {
 Console.WriteLine("Outer task.");
 var inner=Task.Factory.StartNew(() => Console.WriteLine(
 "Inner task."));
 inner.Wait();
 });
 outer.Start();
 outer.Wait();
 }
}

You can convert a subtask relationship into a parent/child relationship. You might want to do
this for a variety of reasons, including creating a hierarchy of tasks. Instantiating a subtask
does not immediately confer a parent and child relationship between the two tasks. In addi-
tion to a subtask, you must also choose the TaskCreationOptions.AttachedToParent option to
indicate a parent/child relationship.

The TaskCreationOptions.AttachedToParent method binds the lifetime of the parent and child
tasks. In other words, when waiting for the parent task, you are essentially waiting for both
the parent and the child task to complete. The parent might complete before the child. If
that occurs, the status of the parent task becomes TaskStatus.WaitingForChildrenToComplete.
When the child task eventually finishes, the status of the parent task is updated appropriately,
for example, to TaskStatus.Completed or TaskStatus.Faulted.

Create a parent task and a child task where the duration of the child task is longer
than the parent. Report the status when the parent task completes execution.

	 1.	 Create a console application. Implement a computer-bound method.

 static void DoSomething() { Thread.SpinWait(4000); }

54	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

	 2.	 In the Main function, create a new task by using the Task constructor. Initialize the task
with a lambda expression. This will be the parent task.

var parent = new Task(() => {

	 3.	 In the lambda expression for the parent task, display the name of the current task.

Console.WriteLine("Parent task.");

	 4.	 Still in the lambda expression, create and start a child task by using the TaskFactory​
.StartNew method. In the lambda expression for the child task, sleep for 5,000 millisec-
onds by using the Thread.Sleep method. Be sure to define a parent/child relationship
with the TaskCreationOptions.AttachedToParent option.

Task.Factory.StartNew(() => { Thread.Sleep(5000); },
 TaskCreationOptions.AttachedToParent);});

	 5.	 Start the parent running with the Task.Start method. The child task is executed as part
of the parent task.

 parent.Start();

	 6.	 Wait for the parent to complete. If the wait operation times out, query whether the
parent is waiting for child tasks to complete. If the parent task is waiting for the child,
display the status of the parent task.

class Program
{
 static void Main(string[] args)
 {
 Task parent = new Task(() =>
 {
 Console.WriteLine("Parent task.");
 Task.Factory.StartNew(() => { Thread.Sleep(5000); },
 TaskCreationOptions.AttachedToParent);
 });
 parent.Start();
 if ((!(parent.Wait(2000)) &&
 (parent.Status == TaskStatus.WaitingForChildrenToComplete)))
 {
 Console.WriteLine("Parent completed but child not finished.");
 parent.Wait();
 }
 }
}

The Work-Stealing Queue
Historically, thread pools have a single global queue in which to place work items. The thread
pool dequeues work items from the global queue to provide work to available threads. The
thread pool exists in a multi-threaded environment, so the global queue must be thread safe.

	 Chapter 2  Task Parallelism	 55

The resulting synchronization can adversely affect the performance of the thread pool and
indeed the overall application.

Because a single global queue is a potential bottleneck, the .NET Framework 4 thread pool
offers a global queue and any number of local queues. This scheme allows work items to be
distributed across several queues and removes a single point of synchronization. Parent tasks
can be scheduled on the global queue, while subtasks are placed on local queues.

Work items in the global queue are accessed in a first-in, first-out (FIFO) manner, whereas
local queues are last-in, first-out (LIFO). In addition, local queues are double-ended; they
have a private side and a public side. The private side is virtually lock free and is accessible
only from the current thread. Other threads access the queue from the public side, which
is controlled using synchronization. This explanation is somewhat of a generalization, but
hopefully it is sufficient to convey the essence of work stealing.

Ultimately, work stealing is a performance optimization. A subtask is placed on a local queue
and then scheduled (FIFO) to run on an available thread in the thread pool. After the task
completes, the now-available thread returns to the same local queue for additional work.
When this queue is empty, the thread can freelance and help other local queues with pend-
ing work. If work is found in another local queue, a task is dequeued (LIFO) and run on the
available thread. This process is called work stealing. Here is a typical scenario:

	 1.	 A primary task is started and placed on the global queue.

	 2.	 When the primary task runs, it creates a subtask. The new task is then placed on a local
queue.

	 3.	 The subtask completes. The thread pool searches for additional work to give to the
newly available thread, which it does as follows:

	 a.	 Search the same local queue for another task to dequeue (LIFO) and execute.

	 b.	 If the local queue is empty, find work for the thread on another local queue (LIFO).

	 c.	 If a task is found on another local queue, it is dequeued (FIFO) and executed. In
essence, the thread just “stole” work from another local queue. However, in this
context, stealing is helpful.

Instead of stalling a thread, work stealing keeps a thread busy even when its local queue is
empty. The stolen task is taken from the back of another local queue. This must be synchro-
nized for thread safety, because there might be other work-stealing threads that need work
at the same time. However, that synchronization is an infrequent penalty, because most tasks
are taken from the private front end of the local queue.

Subtasks of long-running threads are not placed on a local queue. Long-running tasks are
scheduled on a dedicated thread and not on a thread in the thread pool. Similarly, subtasks
of long-running tasks are scheduled on a dedicated thread as well. Therefore, long-running
tasks exist outside of the thread pool and do not benefit from work stealing.

56	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Here is a diagram of the work-stealing process.

Global queue

Task A

Task B

Task C

Thread 1

Local queue n

Task D

Task E

Task F

Task G

Thread 2

Local queue n+1

{Empty}

Thread 3
[Work stealing]

Summary
This chapter described several ways to start a parallel task:

■	 Parallel.Invoke

■	 TaskFactory.StartNew

■	 Task.Start

After a task has started, you can wait for it to complete by using one of the following
methods:

■	 Task.Wait

■	 Task.WaitAll

■	 Task.WaitAny

Unhandled exceptions in a task are propagated to the joining thread. You must observe
the unhandled exception in the joining thread to prevent an exception that can abort the

	 Chapter 2  Task Parallelism	 57

application. For example, you can observe an exception with Task.Wait. Exceptions raised in
a task are wrapped in an AggregateException exception. You can access the original excep-
tion in the AggregateException.InnerException property or, for multiple exceptions, the
AggregateException.InnerExceptions property.

Tasks can be continued by using one of the Continue methods. The first task is the antece
dent method, and the continuation task is the successor method. The successor method will
start when the antecedent finishes. The Continue methods are as follows:

■	 Task.ContinueWith

■	 TaskFactory.ContinueWhenAll

■	 TaskFactory.ContinueWhenAny

Subtasks are tasks created within another task. Primary tasks are placed on the global queue
of the thread pool, and subtasks are normally placed on a local queue. Work queue stealing
occurs when a thread with no work steals work from another local queue.

Finally, TaskCreationOptions.AttachedToParent creates a parent/child relationship between
two tasks. This binds the lifetimes of the parent and child tasks. Waiting for the parent will
also wait for the child to complete.

Quick Reference
To Do this
Invoke parallel tasks Use the Parallel.Invoke method.

Use the TaskFactory.StartNew method.
Use the Task.Start method.

Observe an unhandled exception raised
in a task

Implement exception handling in the observer, which
is the joining thread. Catch AggregateException. Use
AggregateException.InnerException to identify the
underlying exception.

Cancel a task Adhere to the cancellation model. Create a
CancellationTokenSource. Pass the resulting
CancellationTokenSource.Token to the coopera
ting tasks. Call the CancellationToken.Cancel
method to cancel the parallel operation.

Continue one task with another task Use the Task.ContinueWith method.

Define a parent/child relationship
between two tasks

Create a subtask, and use the TaskCreationOptions​
.AttachedToParent option. This will link the lifetime of
the parent and child tasks.

Add a task to a local queue Create a subtask. Subtasks automatically use local
queues versus the global queue. A local queue can
also be a work-stealing queue.

		 59

Chapter 3

Data Parallelism
After completing this chapter, you will be able to

■	 Contrast data and task parallelism.

■	 Parallelize a sequential loop.

■	 Properly cancel a parallel loop.

■	 Handle unhandled exceptions arising in a parallel loop.

■	 Perform reductions while minimizing dependencies.

■	 Explain the MapReduce pattern.

The previous chapter introduced task parallelism, which involves invoking separate and
distinct parallel tasks. In contrast, data parallelism applies a common operation to each ele-
ment of a collection of data. An example of data parallelism could consist of applying a 10
percent price adjustment to items that have been in inventory for more than 90 days. The
price increase is the common operation, and the inventory is the data collection. Naturally,
data parallelism is more useful in data-centric and computing-intensive situations, such as
database management, accounting, weather reporting, sales analysis, scientific applications,
and even a fantasy sports league. Some portion of most applications is data centric, which
provides an opportunity to implement data parallelism.

Finding concurrency in data parallelism is generally simpler than isolating opportunities for
task parallelism. You look for loops. Loops are easy to locate syntactically—search for a for,
foreach, while, or do while statement. A for or foreach statement typically implies a straight-
forward loop. In contrast, while loops are often used in more complex scenarios, such as
circumstances that require loop dependencies. There are separate patterns for handling loop
dependencies in parallel programming. Of course, there are other opportunities for data par-
allelism, such as calling an iterative function on a tree structure. However, searching for loops
will probably find the majority of them. If iterations of the loop are independent or minimally
dependent, the loop iterations can probably be “unrolled” as parallel operations. If they are
entirely independent, the loop iterations can run embarrassingly parallel for optimum perfor-
mance gain.

Loops often iterate collections in which an identical operation is applied to each element.
Because data parallelism frequently involves parallelizing a loop, it is often called loop-level
parallelism. Revisiting the previous example, suppose that you want to apply a 10 percent
discount to certain items in inventory. The 10 percent price discount is an independent oper-
ation; discounting the price of one item should not affect another, so it can be embarrass-
ingly parallel. For that reason, you can easily parallelize the operation, making each discount

60	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

a parallel task. For the Task Parallel Library (TPL), the actual granularity is defined by the
default partitioner, which defines the appropriate chunking. These tasks are then assigned
to threads in the Microsoft .NET Framework 4 thread pool. You can customize partitioners
and schedulers to fine-tune parallel operations. You’ll see more about this topic in Chapter 6,
“Customization.”

Unrolling Sequential Loops into Parallel Tasks
Data parallelism typically begins by unrolling a sequential loop. For example, the code below
defines a loop that runs sequentially. In this example, the code iterates over the loop body
100 times. The duration of the for loop is the aggregate duration of those 100 operations.
Assuming an average of 100 milliseconds per operation, the for loop will take 10 seconds to
complete (100 × 100 milliseconds).

for (int count = 0; count < 100; ++count)
{
 Operation();
}

Most importantly, the preceding code does not fully utilize the available processor cores.
Look at a view of the processor cores for a computer with eight cores.

	 Chapter 3  Data Parallelism	 61

Note  To display the Windows Task Manager, use the Ctrl+Shift+Esc key combination. You can
then double-click anywhere in one of the CPU usage graphs to switch to the dedicated CPU
usage view.

Notice that the average utilization of the cores is relatively low. Except for the first processor
core, the other cores are not very busy. A lot of processor power is being wasted!

Here’s the complete code for you to try.

using System;+
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

namespace ParallelLoop
{
 class Program
 {
 static void Operation()
 {
 Thread.SpinWait(int.MaxValue);
 }

 static void Main(string[] args)
 {
 for (int count = 0; count < 100; ++count)
 {
 Operation();
 }
 }
 }
}

Fortunately, changing from a sequential loop to a parallel loop requires minimal changes in
most circumstances. Here’s the parallel version of the serial loop in the previous example.

Parallel.For(1, 100, (count) =>
{
 Operation();
});

That was an easy change! Look at the processor usage graph for the parallel version. Nirvana!
The graph shows 100 percent processor utilization with the parallel loop. However, there is a
barely visible straight line across the top of the graph that represents 100 percent utilization.

62	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

You’ll delve into the syntactical nuances of Parallel.For shortly. The important point now is
that this code successfully parallelizes the operation as a basket of tasks scheduled across the
available cores. There are enough tasks to keep the processor cores busy, which is an impor-
tant goal of parallel programming.

The key to high-performing data parallelism is independent iterations, which prevent depen-
dencies when converted to parallel tasks. Only with independent iterations can you unroll the
loops successfully. You can accomplish some dependencies, such as reduction, with minimal
effect on performance. Reduction reduces a series of operations to a scalar value and is dis-
cussed later in this chapter. Not all dependencies are obvious. Here is a partial list of possible
dependencies:

■	 Indexes

■	 Shared memory

■	 Shared files

■	 Order restrictions

Can you identify the dependency in the next loop? The following code is a parallel loop
that squares the current index, which is then written into a file. The program generates unex-
pected results. This is because of a not-so-subtle dependency.

StreamWriter sw = new StreamWriter(filename);
Parallel.For (0, 100, (i)=>sw.WriteLine(i * i));
sw.Close();

	 Chapter 3  Data Parallelism	 63

The problem is the shared file reference. The code could attempt to write to the same file
simultaneously from two or more parallel tasks—and files are not implicitly thread safe. In
addition, the order of the writes is not assured, because the Parallel.For method does not
guarantee the order in which tasks are executed. The largest reported value should be 10,000
(100×100). This is a partial listing from the file.

6084
4900
705662415041
7225
6400
9216
73966561

None of the preceding values is less than 1,000! The problem occurs because of data cor-
ruption from simultaneous writes to the file, which demonstrates the potential problem that
dependencies pose for data parallelism. The shared file was an obvious dependency, but
unfortunately, most dependencies are more subtle and often go undetected. This under-
scores the importance of performing rigorous unit testing, stress testing, and concurrency
testing when converting routines from sequential to parallel. Converting syntax is simple, but
maintaining correctness is a greater challenge.

There are techniques and tricks to identifying dependencies. One technique is to reverse the
iteration of a sequential loop. In other words, you change the iteration from ascending to
descending. If the reversal causes the application to generate different results or crash, that
change in results indicates the likelihood of a dependency.

Evaluating Performance Considerations
Not every sequential loop should be unrolled into parallel tasks. One consideration is
performance.

If the proposed tasks are relatively small, the overhead for parallel execution—thread pool
scheduling, context switching, and other overhead—might exceed the gain that paralleliza-
tion would provide. You should always conduct performance benchmarks to confirm poten-
tial performance improvements. When there is minimal or no performance gain, one solution
is to change the chunk size. The default chunk size is set by the default partitioner of the TPL.
When a larger chunk size is requested, the larger chunk size increases the amount of work
assigned to an individual task. This will lower the relative percentage of parallelization over-
head and hopefully improve overall performance.

Data parallelization typically iterates the same operation. However, identical operations are
not guaranteed to run for the same duration. Look at the following code, which prints out a
series of prime numbers. Each loop performs exactly the same operation; however, the dura-
tion of each task could vary widely. Depending on the implementation, calculating whether

64	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

1,000 is a prime number takes considerably longer than performing the same test on the
number 81. This inequity of workload can cause inefficient parallelization. In this circumstance,
you might create a custom partitioner that uses a weighted algorithm to dynamically deter-
mine the chunk size to keep the workload balanced across processors. This would improve
task scheduling and processor core utilization.

Here is the abstracted code for rendering prime numbers.

Parallel.For(1, 1000, (index) =>
{
 if(IsPrime(index))
 {
 Console.WriteLine(index);
 }
});

Remember, the Parallel.For method might not perform the prime number calculation in
sequential order. In addition, Console.WriteLine is synchronized internally, which assures
that the output is thread safe.

The Parallel For Loop
In most programming languages, the for loop is the most commonly used statement for iter-
ations. The following example is a serial for loop, which performs each iteration in sequence.
The loop iterates from 0 to 1000 while performing some operation. When the count is equal
to or greater than 1000, the loop stops.

for (int count = 0; count < 1000; ++count)
{
 DoSomething();
}

In the Task Parallel Library (TPL), the equivalent statement uses a Parallel.For method. Instead
of performing the iterations sequentially, the code runs them in parallel. You can find the
Parallel class in the System.Threading.Tasks namespace. For the basic overload, the first two
parameters are the starting and maximum value exclusively. The increment is 1. The last
parameter is an Action delegate. For this parameter, you can provide a delegate, a lambda
expression, or even an anonymous method that takes the current index as its only parameter.
Parallel.For returns a ParallelLoopResult structure that contains the status of the Parallel.For
loop. Here is the prototype for the Parallel.For method.

public static ParallelLoopResult For(
 int fromInclusive,
 int toExclusive,
 Action<int> body
)

	 Chapter 3  Data Parallelism	 65

Next is an example of an equivalent Parallel.For loop that executes an operation 100 times.
Unlike the for loop's iterations, the parallel iterations might not execute in linear sequence, so
the seven-hundredth iteration might precede the tenth. However, unless the loop is canceled
or interrupted with a ParallelLoopState.Break or ParallelLoopState.Stop statement, all itera-
tions will run—just not necessarily in order.

Parallel.For(0, 100, (count) =>
{
 DoSomething();
});

The Parallel.ForEach method in the TPL is the parallel equivalent to the standard Microsoft
Visual C# foreach statement. Use the Parallel.ForEach method to enumerate a collection in
parallel using the same operation. For the basic overload of the method, the first parameter
is the source collection. The next parameter is an Action delegate and is the operation to be
performed on each element of the collection. The Action delegate takes a single parameter,
the current element.

public static ParallelLoopResult ForEach<TSource>(

 IEnumerable<TSource> source,

 Action<TSource> body
)

Here is a standard foreach loop. Of course, this loop is performed sequentially.

foreach (int item in aList)
{
 Operation(item);
}

And here’s the same loop rewritten using the Parallel.ForEach method. Each iteration is a
parallel task, executed not sequentially but in parallel.

Parallel.ForEach(aList, (item)=> {
 Operation(item);
});

To put this into practice, in this next exercise, assume that you have a retail store with inven-
tory. Once a month, you adjust pricing for items that have been in stock for more than 90
days, discounting inventory items priced under $500.00 by 10 percent and higher-priced
items by 20 percent. Higher-priced items have an additional profit margin.

66	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Create a Parallel.For loop to adjust inventory pricing

	 1.	 Create a console application for C# in Microsoft Visual Studio 2010. With the using
statement, add the namespace System.Threading.Tasks to the list of namespaces. At
class scope (before the Main method), define a static integer array that contains pricing
of items in stock more than 90 days.

static int[] inventoryList = new int []
 {100, 750, 400, 75, 900, 975, 275, 750, 600, 125, 300};

	 2.	 In the Main method, define a Parallel.For loop to enumerate the inventory.

 Parallel.For(0, inventoryList.Length, (index) => {

	 3.	 You can now write the parallel operation. Define a temporary variable to hold the price
of the current inventory item. If the price is greater than $500.00, apply a 20 percent
discount. Otherwise, use a 10 percent discount.

var price= inventoryList[index];
if (price> 500)
{
 inventoryList[index] = (int)(price* .8);
}
else
{
 inventoryList[index] = (int)(price* .9);
}

	 4.	 Use Console.WriteLine to display the adjusted price.

	 5.	 At the end of the program, add a Console.ReadLine method to prevent the program
from ending before you can view the results. You might also want to display an infor-
mative message to the user.

Console.WriteLine("Press enter to exit");
Console.ReadLine();

Note  I’ll omit the previous step in future examples, but feel free to add it at your
discretion.

	 6.	 Build and run the application.

Your completed code should look like the following.

namespace PriceIncrease
{
 class Program
 {
 static int[] inventoryList = new int [] {100, 750, 400, 75, 900, 975, 275,
 750, 600, 125, 300};

	 Chapter 3  Data Parallelism	 67

 static void Main(string[] args)
 {
 Parallel.For(0, inventoryList.Length, (index) =>
 {
 var price = inventoryList[index];
 if (price> 500)
 {
 inventoryList[index] = (int)(price* .8);
 }
 else
 {
 inventoryList[index] = (int)(price* .9);
 }

 Console.WriteLine("Item {0,4} Price: {1, 7:f}",
 index, inventoryList[index]);
 });

 Console.WriteLine("Press enter to exit");
 Console.ReadLine();
 }
 }
}

Here’s the output for the application. Notice that the inventory items were not handled in
sequential order. Your results might vary from these results. In addition, the results of a par-
allel application might change between instances. For example, the order of execution of a
Parallel.For loop is not guaranteed and could change between instances.

Interrupting a Loop
In a normal C# for or foreach loop, you can break or continue loop iteration by using the
break and continue statements, respectively. The break statement interrupts the current itera-
tion and cancels any remaining loop iterations. The continue statement skips the balance

68	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

of the current iteration but continues with the remaining iterations. Because Parallel.For
and Parallel.ForEach don’t execute sequentially, cancellation is a more complex operation.
Specifically, you cannot use the break or continue statement in a parallel for loop. This is
because Parallel.For and Parallel.ForEach are methods and not language-intrinsic loops.
Instead, there are special constructs for canceling a parallel loop.

To interrupt a loop, you need to pass a ParallelLoopState object as the second parameter
of the Action delegate used for the parallel operation. You can then interrupt a parallel
loop with the ParallelLoopState.Break method. At that time, other tasks might have
completed, be running, or not have started. For a long-running task, you should period
ically check for a pending interruption. To confirm a pending interruption, check the
ParallelLoopState.ShouldExitCurrentIteration property. If it’s true, there is a pending cancelation.
You can find the index of the cancellation task in the ParallelLoopState.LowestBreakIteration
property. Tasks with a higher index value should voluntarily cancel at a convenient time. Tasks
with lower indexes can run to completion. Tasks not started but with a lower indexed value
should be allowed to start and run to completion, but tasks with higher indexes that have not
started should never run.

The following image illustrates the ParallelLoopState.Break method. This example is a sample
scenario. The results might vary based on several factors. In Phase 1, the Parallel.For method
queues six tasks to the .NET Framework 4 thread pool, and Tasks 1, 2, 4, and 5 start running.
Available processor cores are not available for Tasks 3 and 6. At the end of Phase 2, Task 4
calls the ParallelLoopState.Break method to cancel the loop. In Phase 3, Tasks 1, 2, and 3 are
allowed to complete despite the cancellation, because those tasks have a lower index value
than the canceling task. For that reason, Task 3 is allowed to start and stop. Task 5 detects the
cancellation and voluntarily stops. Because Task 6 has an index value greater than the can-
cellation index, it is not even allowed to start.

1 2 3 4 5 6Phase 1

Break

1 2 4 5Phase 2

1 2 3Phase 3

{ Parallel.For(0,6,(index, loopState)=>DoSomething()); }

The ParallelLoopState.Stop method is an alternative cancellation model. Using this method,
all running tasks are expected to cancel as soon as conveniently possible. Running tasks can
confirm cancellation with the ParallelLoopState.IsStopped method. When the ParallelLoopState​
.Stop property is true, tasks are expected to voluntarily stop as soon as possible. Unlike the
ParallelLoopState.Break method, unstarted tasks are not allowed to run, regardless of their

	 Chapter 3  Data Parallelism	 69

index value. For these reasons, with the ParallelLoopState.Stop model, fewer tasks are
allowed to start or continue when compared to ParallelLoopState.Break. This is a cleaner
cancellation model.

The next image illustrates the ParallelLoopState.Stop method. In Phase 1, six tasks are sched-
uled but not started. Tasks 1, 2, 4, and 5 are running in Phase 2. At that point, Task 4 calls the
ParallelLoopState.Stop method. Tasks 1, 2, and 5 eventually notice the cancellation and stop.
There are no tasks running at the end of Phase 3.

1 2 3 4 5 6Phase 1

Stop

1 2 4 5Phase 2

1 2Phase 3

{ Parallel.For(0,6,(index, loopState)=>DoSomething()); }

5

In this example, you will start and cancel a Parallel.For loop, reading the cancellation index
from the command line.

Create and cancel a Parallel.For loop

	 1.	 Create a console application for C# in Visual Studio 2010. With using statements, add
the System.Threading.Tasks and System.Threading.Tasks namespaces to the source file.

	 2.	 Before the Main method, create a static function named HalfOperation. This function
will represent half of the operation for each iteration. The function has no parameters
and returns void. In the function, call Thread.SpinWait for half of the maximum int value.

static void HalfOperation()
{
 Thread.SpinWait(int.MaxValue / 2);
}

	 3.	 In the Main method, you need to convert the first command-line parameter to an
index value for cancellation. The int.TryParse method is convenient and avoids raising
an exception for invalid values or miscasts. If the parameter contains an invalid value,
just return.

int cancelValue;
if(!int.TryParse(args[0], out cancelValue))
{
 return;
}

70	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

	 4.	 Start a parallel loop with a minimum value of 0 and maximum of 12. Create a lambda
expression for the loop operation. Pass the loop index and ParallelLoopState parameter
into the lambda expression.

Parallel.For(0, 12, (index, loopState) =>

	 5.	 In the lambda expression, display the index of the current task and call the
HalfOperation method. Next, check whether this is the cancellation task. If so,
call the ParallelLoopState.Break method. Afterward, display a message about
the cancellation and stop the current task.

Console.WriteLine("Task {0} started...", index);
HalfOperation();
if (cancelValue == index)
{
 loopState.Break();
 Console.WriteLine("Loop Operation cancelling. Task {0} cancelled...", index);
 return;
}

	 6.	 Tasks should periodically check for a cancellation. First check whether a cancellation is
pending in the ParallelLoopState.LowestBreakIteration.HasValue property. If a cancella-
tion is pending, check the cancellation index. If it’s greater than the index of the current
task, end the task. Of course, display appropriate messages.

if (loopState.LowestBreakIteration.HasValue)
{
 if (index > loopState.LowestBreakIteration)
 {
 Console.WriteLine("Task {0} cancelled", index);
 return;
 }
}
HalfOperation();
Console.WriteLine("Task {0} ended.", index);

Here is the complete code.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

namespace ParallelLoopBreak
{
 class Program

	 Chapter 3  Data Parallelism	 71

 {
 static void HalfOperation()
 {
 Thread.SpinWait(int.MaxValue / 2);
 }
 static void Main(string[] args)
 {
 int cancelValue;

 if(!int.TryParse(args[0], out cancelValue))
 {
 return;
 }

 Parallel.For(0, 20, (index, loopState) =>
 {
 Console.WriteLine("Task {0} started...", index);
 HalfOperation();
 if (cancelValue == index)
 {
 loopState.Break();
 Console.WriteLine(
 "Loop Operation cancelling. " +
 "Task {0} cancelled...", index);
 return;
 }
 if (loopState.LowestBreakIteration.HasValue)
 {
 if (index > loopState.LowestBreakIteration)
 {
 Console.WriteLine("Task {0} cancelled", index);
 return;
 }
 }
 HalfOperation();
 Console.WriteLine("Task {0} ended.", index);
 });
 Console.WriteLine("Press enter to end");
 Console.ReadLine();his
 }

 }
}

The following image shows some partial output from the application. Your output should
look similar. In this example, cancellation occurred at Task 12. At that time, several other tasks
had already started.

72	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

And the next image shows some output from the end of that same application. Notice that
tasks with an index value less than 12 were allowed to start or run to completion.

Handling Exceptions
You can raise an exception in a parallel loop, but you should consider several factors when
the need to do this occurs:

■	 Parallel tasks already running are allowed to run until completion. This means that tasks
might continue to run after the unhandled exception occurs.

■	 In most circumstances, iterations not started are not allowed to run after the exception.

	 Chapter 3  Data Parallelism	 73

■	 Long-running tasks should check the ParallelLoopState.IsExceptional property for
pending exceptions. The property returns true when an exception is pending. If a pend-
ing exception is discovered, the task should end at the earliest convenient moment.

■	 Because tasks are running in parallel, the possibility exists that more than one excep-
tion might be raised. For that reason, the method throws an AggregateException. You
can use the AggregateException.InnerExceptions property to enumerate the underlying
exceptions.

■	 Unhandled exceptions within a parallel loop are caught on the joining thread. If the
parallel call was not made within the scope of a try/catch block, the exception might
cause the application to fail.

■	 An unhandled exception takes precedence over a ParallelLoopState.Break or
ParallelLoopState.Stop.

The following code demonstrates the proper technique to handle an unhanded exception
that occurs within a parallel loop. The code purposely raises an unhandled exception in the
fourth task. Remember, the Parallel.For statement must be within the scope of a try block so
that if an unhandled exception is raised, execution gets transferred to the joining thread—
and ultimately to the catch filter, where you actually catch an AggregateException exception.
Internally, the catch block enumerates the AggregateException.InnerExceptions collection and
displays the unhandled exceptions.

try
{
 Parallel.For(0, 6, (index) =>
 {
 Console.WriteLine("Task {0} started.", index);
 if (index == 4)
 {
 throw new Exception();
 }
 DoSomething();
 Console.WriteLine("Task {0} ended.", index);
 });
}
catch (AggregateException ax)
{
 Console.WriteLine("\nError List: \n");
 foreach(var error in ax.InnerExceptions)
 {
 Console.WriteLine(error.Message);
 }
}

Here’s the output from the preceding code.

74	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Dealing with Dependencies
You should strive for independent loop iterations, because that provides the maximum paral-
lel performance, allowing you to use embarrassingly parallel loops. However, not every loop
has perfectly independent iterations. This is particularly true when you are porting sequen-
tial code to parallel code, where the original developer was working under entirely different
assumptions and constraints. Dependencies, if handled incorrectly, can cause unreliable
results and, in some circumstances, application crashes. Dependencies are typically resolved
through some degree or synchronization, which can adversely affect performance. However,
correctness is sometimes more important than performance. There are various techniques
for handling dependencies in the parallel code, many of which are beyond the scope of this
book, but the most common dependency is reduction, which is covered in the next section.

Reduction
Reduction reduces a collection to a value. For example, you could calculate the sum of a col-
lection of values. Look at the following loop. The dependency is the scalar variable, which is
shared between tasks. In particular, the scalar variable is shared across threads, where each
thread hosts one or more parallel tasks. The problem is not necessarily between tasks but
between threads.

int [] values=new int [] {1,2,3,4,5,6,7,8,9,10,

 11,12,13,14,15,16,17,18,19,20};
int total = 0;
Parallel.ForEach(values, (item) =>
{
 total += item;
});

	 Chapter 3  Data Parallelism	 75

The challenge is to make the preceding code thread-safe without sacrificing significant
performance.

In the TPL, you perform reduction by using a private thread-local variable that is shared by
parallel tasks on the same thread. The thread-local variable can be accessed serially by tasks
running on the same thread; therefore, it’s thread safe in that context. For this reason, no
overt synchronization is required within tasks on the same thread. When the parallel loop
completes, there are partial results on each thread. A special function is then called to com-
bine the partial results into a final result. This is the only operation that would access the
global variable and require synchronization. For this to work, the parallel operation must be
both commutative and associative. The following image shows how reduction is performed
for a parallel loop.

Thread 1 Thread 2 Thread 3

Reduction operation

Task 1
value=3

Subtotal 3

Task 4
value=4

Subtotal 7

7

Task 5
value=1

Subtotal 1

Task 3
value=5

Subtotal 6

Task 2
value=2

Subtotal 8

Task 7
value=1

Subtotal 9

9

Task 6
value=3

Subtotal 3

3

19

Parallel summation of
{3, 2, 5, 4, 1, 3, 1}

As mentioned, you should not parallelize operations that are neither commutative nor asso-
ciative. The commutative property means that the order of operations is not important: you
might remember the commutative property from Algebra 1, from the common example

76	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

a+b=b+a. The commutative property is most commonly associated with addition and multi-
plication—but not subtraction. The associative property means that two or more operations
will return the same result—regardless of the sequence in which those operations are per-
formed. Basically, the textual order of operations is important but not the sequencing. For
example, (a+b)+c=a+(b+c).

Both Parallel.For and Parallel.ForEach have overloads with a couple of additional parameters
for reduction: the localInit and localFinally parameters. You initialize the private thread-local
variable by using the localInit function and perform the reduction in the localFinally function,
which is an Action delegate. This localFinally function gets called after the parallel operation
is complete. The parameters for localFinally are the current array element, the loop state,
and the thread-local variable. In this function alone, you need to synchronize access to the
shared variable, which you can do by using a variety of techniques, such as a Monitor class,
an Interlocked class, or the lock statement.

Here’s the basic Parallel.For syntax for reduction.

public static ParallelLoopResult For<TLocal>(
 int fromInclusive,
 int toExclusive,
 Func<TLocal> localInit,
 Func<int, ParallelLoopState, TLocal, TLocal> body,
 Action<TLocal> localFinally
)

This is the Parallel.ForEach syntax.

public static ParallelLoopResult ForEach<TSource, TLocal>(
 IEnumerable<TSource> source,
 Func<TLocal> localInit,
 Func<TSource, ParallelLoopState, TLocal, TLocal> body,
 Action<TLocal> localFinally
)

In this tutorial, you will count the number of values in an array that are greater than 5. The
reduction reduces the collection to a single count.

Reduce a collection to a count

	 1.	 Create a new C# console project in Visual Studio 2010. Add a using statement for the
System.Threading.Tasks namespace to the source code. At class scope, define a static
integer array containing these values: 1, 10, 4, 3, 10, 20, 30, 5, and an integer count
variable.

static int[] intArray = new int [] { 1, 10, 4, 3, 10, 20, 30, 5 };
static int count=0;

	 Chapter 3  Data Parallelism	 77

	 2.	 In the Main method, iterate over the integer array by using a Parallel.For method. In
the localInit method, initialize the thread local variable to 0. You also need to define the
parameters for the localFinally delegate, the last parameter of the Parallel.For method.

Parallel.For(0, intArray.Length, ()=>0, (value, loopState, subtotal)

	 3.	 In the lambda expression for the loop operation, check the current integer value. If it’s
greater than 5, increment the counter. At the end, display the thread identifier, index,
current value, and partial result. Return this partial result to be used by the next itera-
tion on the same thread.

if (intArray[value] > 5)
{
 ++subtotal;
 Console.WriteLine("Thread {0}: Task {1}: Value {2}, Partial {3}",
 Thread.CurrentThread.ManagedThreadId, index,
 intArray[index], subtotal);
}
return subtotal;

	 4.	 After the parallel loop completes, the localFinally method is called. You can use the
Interlocked.Add method to combine the partial results and calculate the total in a
thread-safe manner.

Interlocked.Add(ref count, subtotal);

	 5.	 After the Parallel.For method, display the results.

Console.WriteLine("Count is {0}", count);

Your completed code should look similar to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Threading;

namespace Count
{
 class Program
 {
 static int[] intArray = new int [] { 1, 10, 4, 3, 10, 20, 30, 5 };
 static int count=0;

 static void Main(string[] args)
 {
 Parallel.For(0, intArray.Length, ()=>0, (index, loopState, subtotal) =>
 {
 if (intArray[index] > 5)

78	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

 {
 ++subtotal;
 Console.WriteLine("Thread {0}: Task {1}: Value {2}, Partial {3}",
 Thread.CurrentThread.ManagedThreadId, index,
 intArray[index], subtotal); }
 return subtotal;
 },
 (subtotal)=>
 {
 Interlocked.Add(ref count, subtotal);
 });

 Console.WriteLine("Count is {0}\n", count);

 Console.WriteLine("Press Enter to Continue");
 Console.ReadLine();
 }
 }
}

The following figure shows my results in the console window.

The preceding example calculated each partial result on a different thread. Therefore, you
have four partial results reduced to a final total. As with most examples in this book, the
actual result varies with the number of cores in your machine.

In the next tutorial, you will use the Parallel.ForEach method to calculate factorials. A factorial
is the summation of contiguous values. For example, 5 factorial (5!) is 5×4×3×2×1, or 120. As
in the previous example, the shared variable is the final result.

Reduce a collection of integers to a series of factorials

	 1.	 Create a console project in Visual Studio 2010 for C#. Add a using statement for the
System.Threading.Tasks namespace to the source code. Prior to the Main method,
declare a static integer named total, initialized to 1. Also define a constant called
EXCLUSIVE and assign the value 1. You use this variable to adjust the loop boundary to
include the maximum value. Finally, define a generic object that you will use as a lock
later in the program.

static int total=1;
const int EXCLUSIVE = 1;
static object mylock = new object();

	 Chapter 3  Data Parallelism	 79

	 2.	 You will calculate 5 factorial (5!). Define a Parallel.ForEach statement that starts at 1 and
finishes at (5+EXCLUSIVE). This is the range of the factorial. Initialize the subtotal to 1.

Parallel.For(1, 5+EXCLUSIVE, () => 1, (value, loopState, accumulator) =>

	 3.	 In the parallel operation, multiply the accumulator (partial result) with the input value,
and return the result.

accumulator*=value;
return accumulator;

	 4.	 Define a lambda expression for the lastFinally delegate with the accumulator as the only
parameter. In the lambda expression, define a lock that protects access to the shared
variable. In the block, calculate the product of the partial result and the current total.

lock (mylock)
{
 total *= accumulator;
}

	 5.	 Display the results.

Console.WriteLine("The result is {0}", total);

Here is the entire program.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Factorial
{
 class Program
 {
 static int total=1;
 const int EXCLUSIVE = 1;
 static object mylock = new object();
 static void Main(string[] args)
 {
 Parallel.For(1, 5+EXCLUSIVE, () => 1, (value, loopState, accumulator) =>
 {
 accumulator*=value;
 return accumulator;
 },
 (accumulator) =>
 {

 lock (mylock)
 {
 total *= accumulator;
 }
 });

80	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

 Console.WriteLine("The result is {0}", total);

 Console.WriteLine("Press enter to <end>");
 Console.ReadLine();
 }
 }
}

All examples, including the previous examples, are just that—examples. They are provided to
illustrate some portion or topic in this book. For this reason, the context of this book some-
times makes it impossible to provide real-world or detailed examples.

Using the MapReduce Pattern
MapReduce is a well-known pattern introduced in 2004 in a paper titled “MapReduce:
Simplified Data Processing on Large Clusters” by Jeffrey Dean and Sanjay Ghemawat.
The link for the document is http://labs.google.com/papers/mapreduce-osdi04.pdf. The
MapReduce pattern is designed to handle the reduction of vast amounts of data separated
across multiple computers. However, the pattern is applicable even on a much smaller scale,
such as a modern multicore computer. The MapReduce pattern is a complex application of
data parallelism, dependencies, and reduction.

There are three collections in the MapReduce pattern. The first collection is the input for
the MapReduce pattern. It is a collection of key and value pairs. You perform some transfor-
mation on the input collection to create a second, intermediate collection, which is a non-
unique collection of key and value pairs. The third collection is a reduction of the non-unique
keys from the intermediate collection.

An example might provide some clarification. There is an excellent application of the Map
Reduce pattern in “Patterns for Parallel Programming: Understanding and Applying Parallel
Patterns with the .NET Framework 4,” written by Colin Campbell, Ralph Johnson, Ade Miller,
and Stephen Toub; it’s available at http://msdn.microsoft.com/en-us/library/ff963553.aspx.
This book uses the MapReduce pattern to perform a word count across multiple documents.
The files act as the input collection, where the filenames are the keys and their locations are
the values. In this example, you derive the intermediate collection—a list of words and word
counts—from the input collection. For example, if the word apple appeared in three of the
files, there would be identical entries for apple in the intermediate list. The word “apple”
would be the key, and the value for each key would be the number of times that word (the
key) appears in each file. For the reduction, you want to reduce non-unique keys to totals.
The following diagram illustrates this example.

http://labs.google.com/papers/mapreduce-osdi04.pdf

	 Chapter 3  Data Parallelism	 81

Apple
Apple
Banana
Orange

File1.txt
Orange
Orange

File2.txt
Banana
Banana
Orange
Apple

File3.txt

File1.Txt c:\location
File2.Txt c:\location
File3.Txt c:\location

Input

Apple 2
Banana 1
Orange 1
Orange 2
Banana 2
Orange 1
Apple 1

Intermediate

Apple 3
Banana 3
Orange 4

Reduction

Reduce

Implementing a MapReduce pattern requires multiple iterations and levels of data paral-
lelism. Parallel Language Integrated Query (PLINQ) provides an implementation of the
MapReduce pattern that you’ll review in the next chapter, but otherwise, TPL offers no imple-
mentation of the MapReduce pattern. However, this chapter includes an implementation of
this pattern in a MapReduce class.

Note  The MapReduce library is available in the companion content for this book. See the
Introduction for download instructions.

The MapReduce class resides in the ParallelBook namespace. When you create a MapReduce
object, you initialize it with a source collection. The MapReduce class has only two methods.
The first, MapReduce.Map, is responsible for transforming the source collection to an inter-
mediate collection. The first parameter is the mapping function, which performs the trans-
formation. The last parameter is an out parameter, which is the intermediate collection. The
second method is the MapReduce.Reduce method, which accepts and reduces the intermedi-
ate collection—its first parameter. The next parameter is the reduction operation. The Map
and Reduce methods are exposed separately in the interface to allow multiple reductions

82	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

of an intermediate collection. The last parameter is the group operation, which groups the
keys of the intermediate collection. This is important because the intermediate collection is
reduced along group boundaries. The default is to reduce by matching keys.

Here is the MapReduce.Map prototype.

public void Map<KEY2, VALUE2>(Func<Tuple<KEY, VALUE>,
 IEnumerable<Tuple<KEY2, VALUE2>>> mapFunc,
 out IEnumerable<Tuple<KEY2, VALUE2>> TupleCollection
)

And here’s the MapReduce.Reduce prototype.

public IEnumerable<Tuple<KEY2, VALUE2>> Reduce<KEY2, VALUE2>(
 IEnumerable<Tuple<KEY2, VALUE2>> intermediate,
 Func<KEY2, VALUE2[], VALUE2> reduceFunc,
 Func<IEnumerable<Tuple<KEY2, VALUE2>>, Dictionary<KEY2, VALUE2[]>>
 groupFunc= null
)

This next exercise involves using the MapReduce class. You will create a collection of key and
value pairs. The keys are string values, and the values are integers. The intermediate collec-
tion simply squares the values of the input collection. The reduction will then reduce keys by
summation.

Create a MapReduce class to square the values of a source collection, and then
reduce the collection by summing the keys

	 1.	 Create a console project in Visual Studio 2010 for C#. Add a using statement for the
System.Threading.Tasks namespace to the source code. Add a reference to the project
for MapReduce.dll.

	 2.	 In the Main method, define and initialize an array of binary tuples for string and integer
pairs.

Tuple<string, int>[] tuples = new Tuple<string, int>[] {
 new Tuple<string, int>("a", 3),
 new Tuple<string, int>("b", 2),
 new Tuple<string, int>("b", 5)
};

	 3.	 Create an instance of the MapReduce class. In the constructor, initialize the object with
the tuples array.

MapReduce<string, int> letters = new MapReduce<string, int>(tuples);

	 4.	 Now you will transform the source collection. First, define a collection of tuples to hold
the intermediate results. Your mapping operation simply squares the value of each
tuple and places the results in an out variable.

	 Chapter 3  Data Parallelism	 83

IEnumerable<Tuple<string, int>> newmap;
letters.Map<string, int>((input) =>
{
 return new Tuple<string, int>[] { new Tuple<string, int>(input.Item1,
 input.Item2 * input.Item2) };
}, out newmap);

	 5.	 Reduce the collection with the MapReduce.Reduce method. Provide the intermediate
collection as the input. In the reduction method, sum the totals of each group.

IEnumerable<Tuple<string, int>> reduction =
letters.Reduce<string, int>(newmap, (key, values) =>
{
 int total = 0;
 foreach (var item in values)
 {
 total += item;
 }
 return total;
});

	 6.	 Display the results, which are returned from the MapReduce.Reduce method. The
answer should be a=9 and b=29.

foreach (var item in reduction)
{
 Console.WriteLine("{0} = {1}", item.Item1, item.Item2);
}

Here is the entire program.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Letters
{
 class Program
 {
 static void Main(string[] args)
 {
 Tuple<string, int>[] tuples = new Tuple<string, int>[] {
 new Tuple<string, int>("a", 3),
 new Tuple<string, int>("b", 2),
 new Tuple<string, int>("b", 5) };

 MapReduce<string, int> letters = new MapReduce<string, int>(tuples);
 IEnumerable<Tuple<string, int>> newmap;

 letters.Map<string, int>((input) =>
 {
 return new Tuple<string, int>[] { new Tuple<string,
 int>(input.Item1, input.Item2 * input.Item2) };
 }, out newmap);

84	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

 IEnumerable<Tuple<string, int>> reduction = letters.Reduce<string,
 int>(newmap, (key, values) =>
 {
 int total = 0;
 foreach (var item in values)
 {
 total += item;
 }
 return total;
 });

 foreach (var item in reduction)
 {
 Console.WriteLine("{0} = {1}", item.Item1, item.Item2);
 }

 Console.WriteLine("Press enter to <end>.");
 Console.ReadLine();
 }
 }
}

A Word Count Example
There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy.

 – William Shakespeare

Shakespeare is timeless. He also tends to use many of the same words in his various works.
This makes Shakespeare ideal for a word count example. In addition, this section will provide
a more complete demonstration of using the MapReduce class.

This example uses four common Shakespearean sonnets. Fortunately, you can find these son-
nets in many places online. The goal is to count the instances of every word across the four
sonnets. Small words, such as a, be, we, and so on, would clutter the results. For that reason,
exclude small words from the list. Fortunately, there is a function for this purpose. An over-
load of the MapReduce.Map method has a Filter parameter, which is a function delegate. The
Filter method accepts a key-value pair. If the method returns true, the entry is added to the
intermediate collection. If it returns false, the item is omitted.

The source collection is comprised of the name and location of four sonnets, used to initialize
an instance of a MapReduce class.

Tuple<string, string>[] sonnets = new Tuple<string, string>[] {
new Tuple<string, string>("Sonnet 1.txt",@"C:\shakespeare"),
new Tuple<string, string>("Sonnet 2.txt",@"C:\shakespeare"),
new Tuple<string, string>("Sonnet 3.txt",@"C:\shakespeare"),
new Tuple<string, string>("Sonnet 4.txt",@"C:\shakespeare") };
MapReduce<string, string> wordCount = new MapReduce<string, string>(sonnets);

	 Chapter 3  Data Parallelism	 85

The MapReduce.Map method will map the file names to a word count.

	 1.	 Read the text from the sonnets.

	 2.	 Define word delimiters.

	 3.	 Create a Dictionary object. For each word, check whether the word is in the dictionary.
If not, add the word to the dictionary and set the count to 1. Otherwise, when the word
already exists in the dictionary, increment the count of the existing word in the diction-
ary. When the process completes, return the values portion of the dictionary object as
the intermediate collection. The intermediate collection will have the individual count
per word for each file.

Here is the code for the word count example.

IEnumerable<Tuple<string, int>> wordCollection;
wordCount.Map<string, int>((input) =>
{
 StreamReader sw = new StreamReader(input.Item2 + @"\" + input.Item1);
 string data = sw.ReadToEnd();
 string[] words = data.Split(new[] {' ','.',',',';',':','=','+', '-', '*', ')',
 '(',
 '!', '#', '$', '\n', '\r'});
 Dictionary<string, Tuple<string, int>> rawCount =
 new Dictionary<string Tuple<string, int>>();
 foreach (var word in words)
 {
 Tuple<string, int> value;
 if (rawCount.TryGetValue(word, out value))
 {
 int increment = rawCount[word].Item2 + 1;
 rawCount[word] = new Tuple<string, int>(word, increment);
 }
 else
 {
 rawCount.Add(word, new Tuple<string, int>(word, 1));
 }
 }
 return rawCount.Values;
},

After the mapping function, you have the Filter function. For brevity, words less than three
characters in length are excluded from the final intermediate collection.

(key, value) =>
{
 if (key.Length < 3)
 {
 return false;
 }
 else
 {
 return true;

86	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

 }
},
out wordCollection);

The MapReduce.Reduce method is simple. The reduction method reduces the key groupings
to totals that represent the aggregate total count of each word in the four files.

IEnumerable<Tuple<string, int>> reduction = wordCount.Reduce(
 wordCollection,
(key, values) =>
 {
 return values.Sum();
 }
);

Lastly, you can the show the results.

foreach (var item in reduction)
{
 Console.WriteLine("{0} {1}", item.Item1, item.Item2);
}

Here is the partial output from the Word Count example.

Summary
Data parallelism applies a parallel operation to a collection of data. In TPL, you use the
Parallel.For and Parallel.ForEach methods for data parallelism. As long as there are no
dependencies, converting a sequential for loop to parallel is simple. The default parti-
tioner will decide the chunk size of the parallel operation.

	 Chapter 3  Data Parallelism	 87

You can interrupt a parallel loop by using the ParallelLoopState.Break or ParallelLoopState.Stop
methods. The ParallelLoopState.Stop method cancels the parallel operation faster; however,
for both methods, loop iterations might continue to run after the cancellation. Long-running
tasks should periodically check whether a cancellation is pending.

You catch and handle unhandled exceptions from a parallel loop in the joining thread.
Because multiple unhandled exceptions can be raised in parallel tasks, any unhandled
exception gets propagated to the joining thread as an AggregateException. Enumerate the
individual unhandled exceptions in the AggregateException.InnerExceptions property. When
an unhandled exception is raised, already-running tasks should check for a pending excep-
tion and stop as soon as possible. ParallelLoopState.IsExceptional returns true if an exception
is pending.

Reduction reduces a collection to a value. Both Parallel.For and Parallel.ForEach methods
have overloads that support reduction. Iterations sharing a task use a private thread-local
variable to create a partial result and avoid synchronization. When the partial result opera-
tions are completed, the lastFinally operation is called to consolidate the partial results into
a single value.

The MapReduce pattern is useful for reducing vast amounts of data distributed across mul-
tiple servers but is also applicable to a multicore single computer environment. PLINQ has an
implementation of the MapReduce pattern. You can also download an implementation of a
MapReduce class with the companion content for this book.

Quick Reference
To Do this
Iterate a collection with parallel tasks Use the Parallel.For method.

Directly iterate the elements of a
collection with parallel tasks

Use the Parallel.ForEach method.

Cancel a Parallel.For loop Use ParallelLoopState.Break or ParallelLoopState.Stop
to support cooperative cancellation. The
ParallelLoopState.Stop method is cleaner and
cancels current and future tasks.

Handle an exception in a parallel task Catch the AggregateException in the joining
thread. The underlying exception is found in
AggregateException.InnerException. If more than
one AggregateException is raised, iterate
AggregateException.InnerExceptions.

Perform a reduction, such as a
summation

Use the localInit and localFinally parameters of the
Parallel.For and Parallel.ForEach methods.

		 89

Chapter 4

PLINQ
After completing this chapter, you will be able to

■	 Explain the benefits of LINQ.

■	 Create basic LINQ expressions.

■	 Define PLINQ.

■	 Set a degree of parallelism.

■	 Catch unhandled exceptions in PLINQ.

■	 Understand the cancellation model for PLINQ.

■	 Use reduction in PLINQ.

■	 Implement the MapReduce pattern for PLINQ.

The previous chapter introduced data parallelism. PLINQ (Parallel Language Integrated
Query), which is the topic of this chapter, is one implementation of data parallelism in the
Microsoft .NET Framework 4.

LINQ (Language Integrated Query) was introduced in the .NET Framework 3.5 and is a general-
purpose query language. By using LINQ, you can create data queries that are domain agnos-
tic. In other words, LINQ is a portable query language, meaning that a single LINQ query
can be applied to different realms of data. For example, you can create a LINQ query for
Microsoft SQL Server, and later use that same query with arrays of objects, a collection, or
even an XML file. Prior to LINQ, developers had to learn different query syntax for each data
domain. For example, a SQL query would not work when applied to an XML file, a query for
an XML file could not be applied to a collection, and so on. LINQ is convenient because you
can use the same query across data domains.

LINQ is the core technology of a circle of technologies. LINQ to Objects queries in-memory
objects derived from the IEnumerable interfaces. There is also LINQ to SQL, LINQ to XML,
and other related technologies within the LINQ sphere, as shown in the following diagram.

90	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

LINQ to
Entities

LINQ to SQL

LINQ to
XML

LINQ to Dataset

LINQ to
Object

PLINQ

PLINQ is the most recent addition to the LINQ sphere and is included in the .NET Framework 4.
It is implemented in the System.Linq.ParallelEnumerable class, which is part of the System.Linq
namespace.

Introduction to LINQ
The process of understanding PLINQ starts with an understanding of LINQ. For this reason,
an introduction to LINQ might be helpful. If you are already familiar with LINQ, you can skip
to the next section in this chapter.

Note  This chapter does not review all the LINQ clauses, such as select and order by, in any detail;
it covers them only very briefly. For a detailed explanation of LINQ, Programming Microsoft LINQ
in Microsoft .NET Framework 4 by Paolo Pialorsi and Marco Russo (Microsoft Press, 2010) is an
excellent source.

You are probably accustomed to building query commands for conventional database
sources. Here is a SQL query example in which the SELECT and FROM clauses select the
ISBN, FirstName, LastName, Title, and Publisher fields from the Books table in a SQL data-
base. The Where clause filters the results and returns only the records where Lucerne
Publishing is the publisher. The OrderBy clause sorts the records by the title of the book.

SELECT ISBN, FirstName, LastName, Title, Publisher FROM Books
WHERE Publisher="Lucerne Publishing" ORDER BY Title

As mentioned, one of the advantages of LINQ is the ability to apply similar queries to a vari-
ety of domains. In the following code, the Book class is an encapsulation of the operations
and attributes of a book. Using LINQ, you search through a collection of books as easily as
searching a SQL Server database. Here is the LINQ to Objects query of a book collection.

from book in books where book.Publisher=="Lucerne Publishing"
 orderby book.Title select book;

	 Chapter 4  PLINQ	 91

The LINQ query starts with the from clause and ends with the select clause—the reverse of
the SQL query. The in clause is used differently than it is in SQL. In LINQ, the in clause identi-
fies the data source. The double equal sign (==), not a single equal sign (=), signifies equality.
There are other differences as well; however, there is sufficient similarity that most people
familiar with a modern SQL language should become somewhat comfortable with LINQ very
quickly.

Here is an expanded example of a LINQ query.

 var books = new[] {new Book{Publisher="Lucerne Publishing",
 First="David",
 Last="Hamilton",
 Title="David Hamilton Book",
 ISBN="ISBN Number" },
 new Book{Publisher="Lucerne Publishing",
 First="Stefan",
 Last="Hesse",
 Title="Stefan Hesse Book",
 ISBN="ISBN Number"},
 new Book{Publisher="Lucerne Publishing",
 First="Mike",
 Last="Ray",
 Title="Mike Ray Book",
 ISBN="ISBN Number"},
 new Book{Publisher="Lucerne Publishing",
 First="Nuno",
 Last="Bento",
 Title="Nuno Bento Book",
 ISBN="ISBN Number"}};

 var titles=from book in books.AsParallel() where book.Publisher==”Lucerne Publishing”
 orderby book.Title select book;

The preceding example returns an array of books. You can read the LINQ query as follows:
From the books collection, return each book where the book.Publisher attribute is Lucerne
Publishing. Sort the results by the book.Title attribute.

LINQ queries do not execute immediately. In fact, they don't execute until you iterate the
result, a process called deferred execution. Every time you iterate the query results, LINQ
reapplies the query operation. For this reason, successive queries might generate different
results, because the underlying data might have changed. There are exceptions, such as in a
reduction, where a LINQ query returns a scalar value. LINQ queries that return a scalar value
are executed immediately.

This tutorial demonstrates deferred execution. You will create a LINQ query and then iter
ate the results. In the Where clause, you will display a message. The message is displayed
when the results are iterated and not when the LINQ query is defined. This demonstrates
that the query is not executed until the results are iterated.

92	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Execute a LINQ query and then iterate and display the results

	 1.	 Create a console application for Microsoft Visual C# in Microsoft Visual Studio 2010.
By default, C# projects include a using statement for the LINQ namespace, which is
System.Linq. In the Main method, define an integer array that contains 10 values.

var intArray =new [] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

	 2.	 Next, use a LINQ query to return the array values greater than five. Write the LINQ
query by using the imperative syntax. You can then write the Where clause as a lambda
expression to perform the appropriate selection. The lambda expression accepts a
single variable, the array index. The Where method (as well as other LINQ methods) is
implemented as an extension method of the IEnumerable type. Lambda expressions for
the Where method must return true or false. Returning true selects the current element,
and returning false excludes the element.

var numbers = intArray.Where((index) =>

	 3.	 In the lambda expression, if the current array element is greater than five, return true.
Otherwise, return false. If it is true, also display the value of the current element.

if (intArray[index] > 5)
{
Console.WriteLine("intArray[{0}]={1}",
index, intArray[index]);
return true;
}
else
{
return false;
}

	 4.	 Iterate the results in a foreach loop. Just prior to the foreach method, display a mes-
sage that shows the location where the program is executing. In the foreach loop, do
nothing! Because of deferred execution, the LINQ query will be performed at this point,
displaying the values of the selected items in the Where clause.

	 5.	 At the end of the program, the Console.ReadLine method prevents the program from
ending prematurely. You might also want to display a helpful message to the user.

Note  This step will be omitted in future examples in this chapter. Feel free to add these
statements at your discretion.

	 6.	 Build and run the program.

	 Chapter 4  PLINQ	 93

Here is the complete application.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Deferred
{
 class Program
 {
 static void Main(string[] args)
 {
 var intArray =new [] {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 var numbers = intArray.Where((index) =>
 {
 if (intArray[index] > 5)
 {
 Console.WriteLine("intArray[{0}]={1}",
 index, intArray[index]);
 return true;
 }
 else
 {
 return false;
 }
 });

 Console.WriteLine("Before foreach method.");
 foreach (var number in numbers)
 {
 // no code
 }

 Console.WriteLine("Press Enter to Continue");
 Console.ReadLine();
 }

 }
}

The following image shows the output for the application. Notice that nothing is displayed
before the foreach loop. The results are displayed after the Where method actually executes,
which occurs inside the foreach loop.

94	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

You now have a basic understanding of LINQ and are ready to explore PLINQ.

PLINQ
PLINQ is the parallel version of LINQ. The objective of parallel programming is to maximize
processor utilization with increased throughput in a multicore architecture. For a multicore
computer, your application should recognize and scale performance to the number of avail-
able processor cores. As shown earlier, the LINQ query executes when you iterate over the
results, and it executes sequentially. With PLINQ, the iterations are performed in parallel, as
tasks are scheduled on threads running in the .NET Framework 4 thread pool.

One of the best features of PLINQ is that it's easy to convert LINQ queries to PLINQ. You can
simply add the AsParallel clause. Here is the LINQ query shown earlier in this chapter that
returned a selection of books. The results are generated sequentially.

from book in books where book.Publisher=="Lucerne Publishing"
orderby book.Title select book;

Now, here's the same query updated for PLINQ. Note that the only addition to the code is
the call to the AsParallel method of the books collection. This minor change, however, com-
pletely alters how the query is performed. When you iterate over the results, the query is
performed with parallel tasks.

from book in books.AsParallel() where book.Publisher=="Lucerne Publishing"
orderby book.Title select book;

This next tutorial contrasts the productivity of standard LINQ and PLINQ. You can perform the
example query either sequentially or in parallel. You'll display information to compare the per-
formance of both approaches. The task and thread identifiers are also displayed to highlight

	 Chapter 4  PLINQ	 95

the underlying differences between parallel and sequential execution. Because the sequential
version of the query does not use the Task Parallel Library (TPL), the task IDs are blank. In
addition, the sequential version will execute on a single thread.

Perform a sequential query and a parallel query on an integer array, and
imperatively invoke the Where clause

	 1.	 Create a console application for C# in Visual Studio 2010. Add using statements for
both the System.Threading and System.Diagnostics namespaces.

	 2.	 Above the Main method, create a static method called Normalize that returns a bool.
You'll call this method in the Where clause. In the Normalize method, display the cur-
rent task and thread identifiers. Use the Thread.SpinWait method to simulate a real-
world normalization operation. Return true to select and add the current element to
the result collection.

static bool Normalize()
{
Console.WriteLine("Normalizing [Task {0} : Thread {1}]",
Task.CurrentId, Thread.CurrentThread.ManagedThreadId);
Thread.SpinWait(int.MaxValue);
return true;
}

	 3.	 In Main, create an instance of the Stopwatch class. The Stopwatch is used to calculate
the duration of both the sequential and the parallel versions of the PLINQ query. Also,
define an integer array that has four elements. This is the array you will query.

Stopwatch sw = new Stopwatch();
var intArray = new [] { 1, 2, 3, 4 };

	 4.	 Perform a sequential query on the array by using LINQ to Objects. Call the Where
method. Evaluate a lambda expression and call the Normalize method as a param-
eter. The Where method—and consequently Normalize—will be called for each ele-
ment of the array. Because the lambda expression returns true for each element, all
elements of the array are included in the results. On the next line, repeat the query
but use PLINQ. Add the AsParallel method. For now, comment out the parallel ver-
sion of the query. You will initially run only the sequential query.

var result = intArray.Where((index)=>Normalize());
//var result = intArray.AsParallel().Where((index) => Normalize());

	 5.	 Start the Stopwatch, and then iterate the results of the query. Display the results of the
operation. Because of deferred execution, this is when the query actually executes.

foreach (int item in result)
{
Console.WriteLine("Item={0}", item);
}

96	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

	 6.	 Call the Stop method on the Stopwatch class and display the duration.

sw.Stop();
Console.WriteLine("Elapse time: {0}: seconds",
sw.ElapsedMilliseconds / 1000);

Here is the entire program.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Diagnostics;
using System.Threading.Tasks;

namespace Performance
{
 class Program
 {
 static bool Normalize()
 {
 Console.WriteLine("Normalizing [Task {0} : Thread {1}]",
 Task.CurrentId, Thread.CurrentThread.ManagedThreadId);
 Thread.SpinWait(int.MaxValue);
 return true;
 }

 static void Main(string[] args)
 {
 Stopwatch sw = new Stopwatch();
 var intArray = new [] { 1, 2, 3, 4 };
 var result = intArray.Where((index)=>Normalize());
 //var result = intArray.AsParallel().Where((index) => Normalize());

 sw.Start();
 foreach (int item in result)
 {
 Console.WriteLine("Item={0}", item);
 }
 sw.Stop();
 Console.WriteLine("Elapsed time: {0}: seconds",
 sw.ElapsedMilliseconds / 1000);

 Console.WriteLine("Press Enter to Continue");
 Console.ReadLine();
 }
 }
}

	 Chapter 4  PLINQ	 97

Build and run the application. Because the statement containing the PLINQ query is com-
mented, the code executes only the standard LINQ query. Each operation is therefore
performed sequentially and on the same thread, which you can see from the output in the
console window as shown in the following image. Because parallel tasks are not used, task
IDs are not displayed. The duration is essentially the sum of running each of the operations
in order.

Now uncomment the statement containing the PLINQ command and comment out the LINQ
query instead. Rerun the application. This time, the results are entirely different. The Where
method runs in parallel and on different threads, as shown in the output window in the fol-
lowing image. The PLINQ query leverages the multicore processor architecture; the results
are specific to this example and the current hardware architecture. In this example, each
iteration of a query operation is a different task. For this reason, the query runs faster.

98	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

The difference in performance of the two versions is depicted in Processor Utilization of the
Task Manager. The next image shows a screen shot of processor utilization from the LINQ
version of the application. In this example, average processor utilization is about 12 percent.
Most of the processor computing capability is unused!

However, the PLINQ version of the application is much more efficient. In the following image,
you can see a considerably higher utilization—more than 50 percent.

	 Chapter 4  PLINQ	 99

PLINQ Operators and Methods
You can modify the behavior of a PLINQ query with a variety of clauses and methods that
are actually extension methods of ParallelQuery<TSource>. Most of these are the same
clauses and methods available to LINQ. You can use these operators either independently or
together to affect the behavior of a PLINQ query. However, PLINQ also introduces some new
constructs, which are introduced in this section.

The ForAll Operator
You create a PLINQ query to parallelize your code. In most circumstances, the next step is
to iterate the results by using a foreach or for method. At that time, the query is most likely
performed by using deferred execution. The results are processed in iterations of the foreach
loop. There is only one problem: the foreach loop is sequential. This is a classic "hurry-up-
and-wait" scenario. After executing a PLINQ query, you might want to extend parallelism to
handle the results in parallel as well.

In the previous chapter, you learned that the Parallel.ForEach method is useful for parallel-
izing the same operation over a collection of values. It would appear natural to adhere to the
same model to process the results of a PLINQ query. PLINQ returns a ParallelQuery<TSource>
type, which represents multiple streams of data. However, Parallel.ForEach expects a single
stream of data, which is then parsed into multiple streams. For this reason, the Parallel.ForEach
method must recognize and convert multistream input to a single stream. There is a perfor-
mance cost for this conversion.

The solution is the ParallelQuery<TSource>.ForAll method. The ForAll method directly accepts
multiple streams, so it avoids the overhead of the Parallel.ForEach method. Here is a proto-
type of the ForAll method. The first parameter is the target of the extension method, which is
a ParallelQuery type. The last parameter is an Action delegate. For the Action delegate, you
can use a delegate, a lambda expression, or even an anonymous method. The next element
of the collection is passed as a parameter to the delegate.

public static void ForAll<TSource>(
 this ParallelQuery<TSource> source,
 Action<TSource> action
)

Here is a short tutorial that demonstrates the ForAll operator. In this example, you will per-
form a parallel query on a string array and then select and display strings longer than two
characters in length.

100	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Perform a parallel query of a string array

	 1.	 Create a console application for C# in Visual Studio 2010. In the Main method, define a
string array.

string [] stringArray = { "A", "AB", "ABC", "ABCD" };

	 2.	 Perform a PLINQ query on the string array. Select strings with a length greater than two.

var results=from value in stringArray.AsParallel() where value.Length>2 select value;

	 3.	 Call the ForAll operator on the results. In the lambda expression, display the current item.

results.ForAll((item) => Console.WriteLine(item));

Here is the source code for the entire application.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ForAll
{
 class Program
 {
 static void Main(string[] args)
 {
 string[] stringArray = { "A", "AB", "ABC", "ABCD" };
 var results = from value in stringArray.AsParallel()
where value.Length > 2 select value;
 results.ForAll((item) => Console.WriteLine(item));

 Console.WriteLine("Press Enter to Continue");
 Console.ReadLine();
 }
 }
}

The application will display ABC and ABCD as the result.

ParallelExecutionMode
So far in this chapter, you have used the AsParallel method to convert LINQ to PLINQ. It is a
simple change to a LINQ query that alters the semantics completely.

A PLINQ query is not guaranteed to actually execute in parallel. Overhead from executing
the parallel query in parallel, such as thread-related costs, synchronization, and the parallel-
ization code, can exceed the performance gain. Determining the relative performance ben-
efit of the PLINQ query is an inexact science based on several factors. Here are some of the
considerations that might affect the performance of a PLINQ query:

	 Chapter 4  PLINQ	 101

■	 Length of operations

■	 Number of processor cores

■	 Result type

■	 Merge options

One of the biggest factors is the duration of the parallel operations, such as the Select clause.
Dependencies and the synchronization that results from them adversely affect the perfor-
mance of any parallel solution. Furthermore, shorter operations might not be worth parallel-
izing, because the associated overhead might exceed the duration of the operation. For small
operations, you could change the chunking to improve the balance of execution to overhead.
Custom partitioners, including those that change the chunk size, are reviewed in Chapter 6,
“Customization.”

The number of processor cores might affect the performance of your parallel application,
including PLINQ. However, you should typically ignore the number of processor cores,
because that's mostly beyond your control. Maintaining hardware independence in your
application is important for both scalability and portability.

PLINQ does not consider all of the above factors when deciding to execute a query in
parallel. Based on the shape of the query and the clauses used, PLINQ decides to exe-
cute a query either in parallel or sequentially. You can override this default by using the
WithExecutionMode clause with the ParallelExecutionMode enumeration as a parameter. The
two options are ParallelExecutionMode.ForceParallelism and ParallelExecutionMode.Default.
Use the ParallelExecutionMode.ForceParallelism enumeration to require parallel execution.
The ParallelExecutionMode.Default value defers to the PLINQ for the appropriate decision on
the execution mode. Here is an example that forces a parallel PLINQ query.

from item in data.AsParallel().WithExecutionMode(ParallelExecutionMode.ForceParallelism)
select item;

WithMergeOptions
How the result of your query expression is handled can also affect performance. For example,
the following PLINQ query returns a List<T> type. Converting the PLINQ to a list requires that
the results be buffered to return an entire list.

intArray.AsParallel().Where((value)=>value>5).ToList();

As mentioned, for the above code, the results are buffered. In some circumstances, PLINQ
might buffer the results, but that is mostly transparent to your code.

Using the .NET Framework 4 thread pool, PLINQ uses multiple threads to execute the query
in parallel. The results of these parallel operations are then merged back onto the joining
thread. The merge option describes the buffering used when merging results from the vari-
ous threads.

102	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Here are the merge options as defined in the ParallelMergeOptions enumeration:

■	 NotBuffered  The results are not buffered. For operations such as the ForAll operation,
NotBuffered is the default.

■	 FullyBuffered  The results are fully buffered, which can delay receipt of the first result.

■	 AutoBuffered  This option is similar to NotBuffered, except that the results are
returned in chunks.

■	 Default  The default is AutoBuffered.

You can override the default buffer preference with the WithMergeOptions operator.

AsSequential
The difference between PLINQ and LINQ starts with the AsParallel clause. As shown in this
chapter, converting from LINQ to PLINQ is often as simple as adding the AsParallel method
to a LINQ query. Here is a basic LINQ query.

numbers.Select(/* selection */).OrderBy(/* sort */);

Here is a parallel version of the same query, with the required AsParallel method added.

numbers.AsParallel().Select(/* selection */).OrderBy(/* sort */);

So far, you've seen the AsParallel method prefixed to only the Select clause. However, Select is
only one of the LINQ clauses that can take the AsParallel method as a prefix. Starting at that
clause, the remainder of the query is conducted in parallel. Methods preceding the AsParallel
clause in the query statement execute sequentially. In this example, the Select clause executes
sequentially, but the GroupBy and OrderBy clauses execute in parallel.

numbers.Select(/* selection */).AsParallel().GroupBy(/* categorize */)
.OrderBy(/* sort*/);

AsSequential is the opposite of the AsParallel clause. AsSequential serializes portions of your
LINQ query. You might choose this to resolve dependencies in a PLINQ query. You can then
use AsSequential to isolate the dependency and make a part of a PLINQ query sequential.
You might also decide that a portion of a PLINQ query is more efficiently run in parallel as
opposed to sequentially.

Use AsParallel and AsSequential as gates for parallel and sequential execution, as shown in
the following diagram. Although it is not common, a single PLINQ query can have multiple
AsParallel and AsSequential clauses. Similar to the AsParallel clause, AsSequential can be used
to prefix a LINQ method. From that position of the query forward, the remainder of the LINQ
query executes sequentially—at least until it encounters an AsParallel clause. The following

	 Chapter 4  PLINQ	 103

diagram illustrates a PLINQ query with both AsParallel and AsSequential clauses. The Select
and Groupby clauses execute in parallel, while the OrderBy clause is sequential.

.AsSequential().Where(/* filter */).OrderBy(/* sort */)

.AsParallel().GroupBy(/* categorize */);

numbers.AsParallel.Select(/* selection */)

Select AsParallel

Where AsSequential

OrderBy

GroupBy AsParallel

AsOrdered
For some, an orderly universe is important. Unfortunately, this is contrary to the default
behavior of PLINQ. The following code squares and renders the values of an integer list.

int[] numbers = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
var result = from number in numbers.AsParallel() select number * number;

You might be surprised by the results, which are indeed squared but do not appear in the
same order as the underlying list.

0 4 16 25 36 49 64 81 1 9

PLINQ creates tasks for the query. Each task is then scheduled and placed on a queue in the
.NET Framework 4 thread pool. The tasks are then scheduled on processor cores and exe-
cuted. But PLINQ does not guarantee the order in which tasks will execute, so it is likely, if not
probable, that the list iteration is unordered.

If you prefer ordered results, use the AsOrdered clause. The PLINQ query still executes in an
unordered fashion to improve performance and fully utilize the available processor cores.
However, the results are buffered and then reordered at the completion of the query. This
localizes the performance degradation to the AsOrdered clause.

104	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Here is the modified query.

int[] numbers = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
var result = from number in numbers.AsParallel().AsOrdered()
select number * number;

The results are now ordered.

 0 1 4 9 16 25 36 49 64 81

WithDegreeOfParallelism
By default, PLINQ uses the available processor cores, up to a maximum of 64. The goal, of
course, is to keep the available processor cores busy with active work, as shown in the follow-
ing graph. The graph depicts 100% utilization, which is ideal. This graph was taken during a
PLINQ query where the parallel clauses were compute bound.

You can explicitly set the maximum number of processor cores with the WithDegreeOf​
Parallelism clause. There are two primary reasons for using this clause. First, this is useful
when operations are I/O bound. I/O-bound threads are sometimes suspended, which causes
processor cores to be underutilized. In this circumstance, you want to increase the degree of
parallelism to exceed the number of processor cores. Conversely, you can decrease the num-
ber of tasks used in a PLINQ query with the WithDegreeOfParallelism clause. For example,

	 Chapter 4  PLINQ	 105

you could create a more cooperative environment for other running applications by pur-
posely reducing the degree of parallelism to less than the number of available cores.

Assuming eight available processor cores, the following code reduces the degree of parallel-
ism. The amount of reduction depends on the number of available cores.

int[] numbers = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
var result = numbers.AsParallel().WithDegreeOfParallelism(2).
Select(number=>PerformSelect(number)).ToList();

Handling Exceptions
Unhandled exceptions raised in a PLINQ query are propagated to the joining thread. Because
there can be one or more parallel tasks, multiple unhandled exceptions could occur concur-
rently. For that reason, unhandled exceptions are raised as an AggregateException. You can
enumerate the AggregateException.InnerExceptions property to retrieve the original excep-
tions raised. This is the same model for unhandled exceptions described in Chapter 2, “Task
Parallelism” and Chapter 3, “Data Parallelism,” and those chapters cover the subject in more
detail.

You will use this exception model in the following tutorial to catch unhandled exceptions in
PLINQ. In this example, you iterate an array of integers. Each element is then used as a divisor
in a calculation. Unfortunately, a couple of the values in the array are zero. This throws the
expected divide-by-zero exceptions. You will successfully catch and display the divide-by-
zero exceptions.

Catch an exception in a PLINQ query as an AggregateException and display ​
the results

	 1.	 Create a console application for C# in Visual Studio 2010. In the Main method, define
an integer array. Notice that there are two zeros in the array list.

int [] intArray = { 5, 1, 2, 7, 4, 0, 6, 2, 9, 0 };

	 2.	 Perform a PLINQ query that iterates the integer array. In the Select clause, return a
1000/nth calculation.

var results = intArray.AsParallel().Select(item => (int)1000 / (int) item);

	 3.	 Define a try and catch block. In the try block, iterate over the results by using a ForAll
method.

try
{
 results.ForAll((item) => Console.WriteLine(item));
}

106	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

	 4.	 In the catch statement, catch an AggregateException. Then iterate over its
InnerExceptions property and display the original underlying exceptions.

catch(AggregateException ex)
{
 foreach (var inner in ex.InnerExceptions)
 {
 Console.WriteLine(inner.Message);
 }
}

Here is the entire code.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Exception
{
 class Program
 {
 static void Main(string[] args)
 {
 int [] intArray = { 5, 1, 2, 7, 4, 0, 6, 2, 9, 0 };

 var results = intArray.AsParallel().Select(item => (int)1000 / (int) item);

 try
 {
 results.ForAll((item) => Console.WriteLine(item));
 }
 catch(AggregateException ex)
 {
 foreach (var inner in ex.InnerExceptions)
 {
 Console.WriteLine(inner.Message);
 }
 }
 Console.WriteLine("Press enter to exit");
 Console.ReadLine();
 }
 }
}

Here’s the output from the application, which shows two unhandled exceptions. Why? There
is one exception for each zero in the integer list. Each will cause an unhandled exception in a
separate task.

	 Chapter 4  PLINQ	 107

Cancellation
The cancellation model for parallel programming and the .NET Framework was introduced
in the previous two chapters. This chapter applies the cancellation model to PLINQ. For a
complete discussion of the cancellation model, review Chapters 2 and 3.

You cancel a PLINQ query with a CancellationTokenSource and CancellationToken
object. CancellationToken is a property of the CancellationTokenSource class. Using the
WithCancellation clause, you provide a cancellation token to a PLINQ query. You can then
call CancellationToken.Cancel to cancel the query operation. When you cancel the opera-
tion, it throws an OperationCanceledException exception. Here are the basic steps of the
cancellation model with PLINQ.

	 1.	 Define a CancellationTokenSource.

	 2.	 Execute the PLINQ query within a try block.

	 3.	 Add the WithCancellation clause to the PLINQ query. The only parameter is the
CancellationToken.

	 4.	 Call the CancellationTokenSource.Cancel method to assert a cancellation. This will throw
an OperationCanceledException in the PLINQ query.

	 5.	 In a catch block, catch and handle the OperationCanceledException.

108	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Review the following example code. Note that it catches both the OperationCanceledException
and AggregateException. A PLINQ query consists of parallel tasks, so it is quite possible for
both an unhandled exception and cancellation exception to occur on separate tasks of the
same query. Therefore, you should be prepared to catch both exceptions. This example uses
a separate thread to invoke the cancellation request.

Here is the relevant code.

static CancellationTokenSource cs=new CancellationTokenSource();
static void Main(string[] args)
{
 int[] numbers = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
 (new Thread(new ThreadStart(Cancellation))).Start();
 try
 {
 var result = numbers.AsParallel().WithCancellation(cs.Token)
 .Select(number => PerformSelect(number)).ToList();
 }
 catch (OperationCanceledException ex)
 {
 Console.WriteLine(ex.Message);
 }
 catch (AggregateException ex)
 {
 foreach (var inner in ex.InnerExceptions)
 {
 Console.WriteLine(inner.Message);
 }
 }
}

static void Cancellation()
{
 Thread.Sleep(4000);
 cs.Cancel();
}

Reduction
Reduction reduces a collection of elements to a singular value. For example, reduction could
return an average value for a series of numbers. Other examples of reduction are calculating
a summation, maximum value, or minimum value. In the .NET Framework, reduction is imple-
mented as aggregation. LINQ provides a sequential implementation of aggregation, which
runs on a single thread. This limits dependencies and is inherently thread safe. LINQ provides
explicit methods for the most common reductions, such as:

■	 Sum

■	 Average

■	 Min

	 Chapter 4  PLINQ	 109

■	 Max

■	 Count

For other types of aggregation, you can implement a custom solution by using the Aggregate
method.

The following is an example of reduction that uses LINQ. The reduction here is Count. It
returns the count of positive values in a series of numbers.

var val=numbers.Where((number)=>number>-1).Count();

The next example is a custom aggregation and combines a collection of words as a sentence.

string [] words={"this", "is", "a", "string", "concatenation", "."};
string punctuation = ".,@#$%";
string delimiter="";
var sentence= words.Aggregate((element1, element2) =>
{
 delimiter = punctuation.Contains(element2) ? "" : " ";
 return element1+delimiter+element2;
});

The Aggregate method accepts a delegate as a parameter. The preceding example imple-
ments this delegate as a lambda expression. The delegate has two parameters: the partial
result, and the next element of the collection. The return value is a partial result. But the
parameters to the first Aggregate invocation are different. For that first call, the parameters
are the first and second elements of the collection, which in this case would be the strings
this and is from the string array. For subsequent iterations, the first parameter would contain
the intermediate result.

Reduction in a PLINQ query merges the results from multiple threads. This creates a potential
dependency on both the source collection and the result. For this reason, each thread uses
thread-local storage, which is non-shared memory, to cache partial results. When operations
have completed, the separate partial results are combined into a final result.

Like LINQ, PLINQ also has the standard reductions, such as the Sum, Average, and Count
methods. You simply need to add the AsParallel clause.

var val = numbers.AsParallel().Where((number) => number > -1).Count();

You can also perform custom aggregation by using the Aggregate method. The signature is
different from the same method in LINQ. The following code is the simplest overload of the
ParallelEnumerable.Aggregate method. The second parameter is the seed and is the first rel-
evant parameter. Thread-local storage for threads used for caching partial results is initialized
with the seed. The updateAccumulatorFunc function calculates the partial result for a thread.
The combineAccumulatorsFunc function merges the partial results into a final result. The last
parameter is resultSelector, which is used to perform a user-defined operation on the final
results.

110	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

public static TResult Aggregate<TSource, TAccumulate, TResult>(
 this ParallelQuery<TSource> source,
 TAccumulate seed,
 Func<TAccumulate, TSource, TAccumulate> updateAccumulatorFunc,
 Func<TAccumulate, TAccumulate, TAccumulate> combineAccumulatorsFunc,
 Func<TAccumulate, TResult> resultSelector
)

Next is the first example of a PLINQ query that uses the Aggregate method. Reduction is being
used to calculate a factorial, which is an individual value. This example calculates the factorial
of 5 (5!). The answer is 120 (1×2×3×4×5). An example in Chapter 3 also calculated a factorial
but used a different approach. This example uses the Enumerable.Range method to return a
collection of integral values ranging from 1 to 5. In the Aggregate method, the partial result of
each thread is initialized to 1. If initialized to zero, the results would immediately be nullified,
because the product of zero and anything else is zero.

int value=5;
var factorial=Enumerable.Range(1, value).AsParallel().Aggregate(
 1, (result, number)=>result*number, result=>result);

In this tutorial, you will use the Aggregate method to calculate the dot product of two matri-
ces. You will then list all three matrices: the two input matrices and one result matrix.

Multiply corresponding points in two matrices by using the Enumerable.Aggregate
method and save the product in a third matrix

	 1.	 Create a console application for C# in Visual Studio 2010. In the Main method, define
a constant value of four. This is used to set the size of the one-dimensional matrices. In
addition, declare and initialize two input matrices.

const int len = 4;
int[] first = new int [len] { 1, 2, 3, 4};
int[] second = new int[len] { 5, 6, 7, 8};

	 2.	 Starting at zero, create a range of integral values for indexes used with the matrices.
Use the AsParallel clause to parallelize the Aggregate method.

 var third=Enumerable.Range(0, first.Length).AsParallel()

	 3.	 You define an integer array as the first parameter, which is a reference. As such, each
thread receives a reference to the same array. This is the result matrix and the initial
value of each thread. Depending on how the array is used, this might not be thread
safe. In this circumstance, the different threads in the calculation will never access the
same location in the result array. Therefore, it is thread safe. The next parameter is a
delegate. Insert a lambda expression that multiplies the two matrices, two elements at
a time. The next parameter should merge the results of the various threads. Because
the threads are sharing the same result matrix, a merge is not necessary. The final
parameter is an action to be performed on the final result. In this example, there is no
action.

	 Chapter 4  PLINQ	 111

 .Aggregate(new int[len], (result, index) =>
 {
 result.SetValue(first[index] * second[index], index);
 return result;
 },
 (total, subtotal) => total,
 (result) => result);

	 4.	 Display the input and output matrices by using Console.WriteLine.

foreach (var element in first)
{
 Console.Write(element+" ");
}

Console.WriteLine();

foreach (var element in second)
{
 Console.Write(element+" ");
}

Console.WriteLine();

foreach (var element in third)
{
 Console.Write(element + " ");
}

Compile and run the program. Here is the entire application.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Matrix
{
 class Program
 {
 static void Main(string[] args)
 {
 const int len = 4;
 int[] first = new int [len] { 1, 2, 3, 4};
 int[] second = new int[len] { 5, 6, 7, 8};
 var third=Enumerable.Range(0, first.Length).AsParallel().
 Aggregate(new int[len], (result, index)=>
 {
 result.SetValue(first[index]*second[index], index);
 return result;
 }, (result)=>result);

 foreach (var element in first)
 {
 Console.Write(element+" ");
 }

112	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

 Console.WriteLine();

 foreach (var element in second)
 {
 Console.Write(element+" ");
 }

 Console.WriteLine();

 foreach (var element in third)
 {
 Console.Write(element + " ");
 }

 Console.WriteLine("Press enter to exit");
 Console.ReadLine();
 }
 }
}

The following screen shows the output for the application. It lists the three relevant matrices.

Using MapReduce with PLINQ
MapReduce is a special pattern of reduction used on large computer systems in which data
collections can be distributed across a grid of computers. MapReduce allows you to perform
an action on this highly dispersed collection of data. You probably do not own a large com-
puter system with hundreds of computer nodes. Fortunately, the MapReduce pattern is also
applicable and useful in smaller systems and multicore personal computers. MapReduce
transforms a collection first to an ordered key-value pair, which is then reduced (typically
based on the key) to a derivative collection.

	 Chapter 4  PLINQ	 113

Here are the basic steps of the MapReduce pattern in PLINQ:

	 1.	 Create or define the source, which must be a ParallelQuery type.

	 2.	 In the map operation, map the input source to an ordered and intermediate collection.

	 3.	 Finally, reduce the intermediate collection to the output collection.

PLINQ does not offer a direct implementation of the MapReduce pattern. Fortunately,
“Parallel Programming with Microsoft .NET: Design Patterns for Decomposition and
Coordination on Multicore Architectures,” written by Stephen Toub and available at
http://msdn.microsoft.com/en-us/library/ff963553.aspx, recommends a possible imple-
mentation of the MapReduce pattern in PLINQ. Here is the suggested implementation:

public static ParallelQuery<TResult> MapReduce<TSource, TMapped, TKey, TResult>(
this ParallelQuery<TSource> source,
Func<TSource, IEnumerable<TMapped>> map,
Func<TMapped, TKey> keySelector,
Func<IGrouping<TKey, TMapped>, IEnumerable<TResult
{
return source.SelectMany(map)
.GroupBy(keySelector)
.SelectMany(reduce);
}

There are several parameters:

■	 The source parameter is the source collection.

■	 The map parameter is a delegate for the operation that maps the input collection to an
intermediate collection.

■	 The keySelector parameter is a delegate for the operation that identifies the key. The
intermediate collection is grouped on this key.

■	 The reduce parameter is also a delegate. It indicates where the reduction is performed—
typically on the range of values associated with each key.

The MapReduce pattern was implemented in the previous chapter by using data parallelism.
An example was presented that read Shakespearean sonnets and displayed the word distri-
bution. You can now implement that example by using PLINQ.

The source collection consists of four sonnets.

string [] files={ @"C:\shakespeare\Sonnet 1.txt",
 @"C:\shakespeare\Sonnet 2.txt",
 @"C:\shakespeare\Sonnet 3.txt",
 @"C:\shakespeare\Sonnet 4.txt"};

Define a PLINQ query with the collection of sonnets as the source. Call the PLINQ imple-
mentation of MapReduce to create a word count and distribution from these files. The first
parameter is a delegate implemented as a lambda expression. In the lambda expression, read

114	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

the lines of text in each file, which is then split along delimiters into words. The next param-
eter identifies each word as a key. The result is an array of KeyValuePairs containing the word
(key) and word count.

var counts = files.AsParallel().MapReduce(
path => File.ReadLines(path).SelectMany(line => line.Split(delimiters)),
word => word,
group => new[] { new KeyValuePair<string, int>(group.Key, group.Count()) });

You can now display the results.

foreach (var word in counts)
{
 Console.WriteLine(word.Key + " " + word.Value);
}

Compile and run the program. Here is the entire application.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.IO;

namespace MapReduce
{
 static class PLINQ
 {
 public static ParallelQuery<TResult> MapReduce<TSource, TMapped, TKey, TResult>(
 this ParallelQuery<TSource> source,
 Func<TSource, IEnumerable<TMapped>> map,
 Func<TMapped, TKey> keySelector,
 Func<IGrouping<TKey, TMapped>, IEnumerable<TResult>> reduce)
 {
 return source.SelectMany(map)
 .GroupBy(keySelector)
 .SelectMany(reduce);
 }
 }

 class Program
 {
 static void Main(string[] args)
 {
 char [] delimiters={' ', ',', ';', '.'};

 string [] files={ @"C:\shakespeare\Sonnet 1.txt",
 @"C:\shakespeare\Sonnet 2.txt",
 @"C:\shakespeare\Sonnet 3.txt",
 @"C:\shakespeare\Sonnet 4.txt"};

 var counts = files.AsParallel().MapReduce(
 path => File.ReadLines(path).SelectMany(

	 Chapter 4  PLINQ	 115

line => line.Split(delimiters)),
 word => word,
 group => new[] {
new KeyValuePair<string, int>(group.Key, group.Count()) });

 foreach (var word in counts)
 {
 Console.WriteLine(word.Key + " " + word.Value);
 }

 //Console.WriteLine("Press enter to exit");
 Console.ReadLine();
 }
 }
}

The following screen shot shows the partial results from the application.

Summary
As an extension of LINQ, PLINQ implements data parallelism while supporting parallel que-
ries across disparate data domains. PLINQ shares many of the same clauses and methods as
LINQ. For this reason, if you are familiar with LINQ, you have the underlying knowledge of
PLINQ. In most circumstances, just add the AsParallel clause to the LINQ query to transform
it to PLINQ.

When iterating PLINQ results, use the ParallelQuery.ForAll method instead of the for and
foreach methods. Serializing access to the results can negate some of the benefit to parallel
processing.

116	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

There are several important clauses in PLINQ:

■	 ParallelExecutionMode explicitly sets the PLINQ query to execute in parallel.

■	 WithMergeOptions sets the buffer mode for rendering the results of a PLINQ query.

■	 AsSequential mandates that subsequent LINQ clauses execute sequentially.

■	 AsOrdered orders the results (but the query itself is still executed in parallel).

■	 WithDegreeOfParallelism sets the number of concurrent tasks used in the PLINQ query.

Handle the AggregateException exception to catch exceptions raised in a PLINQ query. You
can enumerate the AggregateExceptions.InnerExceptions attributes to inspect the underlying
exceptions raised in one or more parallel tasks assigned to the PLINQ query.

You can cancel a PLINQ query by using the Cancellation model. Create an instance of the
CancellationTokenSource and pass a cancellation token to the PLINQ query by using the
WithCancellation method. The PLINQ query can then be canceled with the CancellationToken​
.Cancel method.

Reduction reduces a collection to a value. PLINQ directly supports the most common reduc-
tions, such as Sum, Average, Max, Min, and Count. For a custom reduction operation, use the
ParallelEnumerate.Aggregate method.

If you want, you can implement the MapReduce pattern for PLINQ. An example implementa-
tion is provided at the end of the previous section. You can use that to reduce a source col-
lection to an output collection based on key-value pairs.

Quick Reference
To Do this
Convert a LINQ query to PLINQ Add the AsParallel clause.

Run a segment of a PLINQ query sequentially Use the AsSequential clause.

Parallelize multiple streams of the PLINQ query Use ParallelQuery<TSource>.ForAll to execute
the various streams in parallel.

Set the buffered state for handling the results
of a PLINQ query

Use WithMergeOption.Buffered,
WithMergeOption.FullyBuffered, or
WithMergeOption.AutoBuffered.

Create ordered results Use the AsOrdered clause.

Cancel the iteration of PLINQ results Use the cancellation model of task par-
allelism. Signal the cancellation with a
CancellationTokenSource and handle the
OperationCanceledException exception.

Perform reduction, such as a count or summation Use the ParallelEnumerable.Aggregate method.

		 117

Chapter 5

Concurrent Collections
After completing this chapter, you will be able to

■	 Understand the benefits of concurrent collections.

■	 Explain the IProducerConsumerCollection interface.

■	 Use lower-level synchronization, including the SpinLock and SpinWait structures.

■	 Use two-phase synchronization.

■	 Explain and use the ConcurrentStack class.

■	 Explain and use the ConcurrentQueue class.

■	 Explain and use the ConcurrentBag class.

■	 Explain and use the ConcurrentDictionary class.

■	 Explain and use the BlockingCollection class.

Microsoft introduced concurrent collections and supporting synchronization primitives in
the Microsoft .NET Framework 4. The concurrent collections are thread safe and optimized
for concurrent access in a parallel environment. Most importantly, these collections are
designed to be scalable in a multicore environment. Concurrent collections are largely lock
free, which improves performance when elements are added and removed. If synchroniza-
tion is required, discrete and lightweight user-mode synchronization is used when possible.

For parallel programming, use the collections in the System.Collections.Concurrent name
space in lieu of generic collections in the System.Collections.Generic namespace. For example,
ConcurrentQueue<T> is preferred to Queue<T>. Whereas generic collections require user-
defined external locks for synchronization, concurrent collections are implicitly thread safe.
In some circumstances, external locking is not needed to synchronize access within a concur-
rent collection in a parallel computing scenario. You can simply use the concurrent collection
and rely on the internal mechanisms of the type to assure safe simultaneous access from
separate threads.

Performance and scalability are important considerations when using the concurrent collec-
tions. The internal implementation of thread safeness in concurrent collections is in general
more efficient than generic collections that use external locks, which frequently require lock-
ing the entire collection. However, this statement is not universal, and it is dependent on
various use scenarios. For example, the ConcurrentDictionary performs better than a locked
Dictionary collection when reading is the most likely operation, and when few updates occur.
The reason is that the update operation within a ConcurrentDictionary collection requires

118	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

locking the entire collection, whereas the read operation is lock free. The Dictionary collec-
tion would need external locks for both reads and updates. However, a Dictionary collection
is more efficient in read-only scenarios, where no synchronization is required.

This chapter provides an overview—but not a detailed performance analysis—of concur-
rent collections. For detailed performance information, see “Thread-safe Collections in .NET
Framework 4 and Their Performance Characteristics” by Chunyan Song, Emad Omara, and
Mike Liddell, available at MSDN at http://msdn2.microsoft.com.

It is time to travel back in history. Collections have always had an important role in the .NET
Framework. The Microsoft .NET Framework 1.0 included non-generic collections, such as
ArrayList, SortedList, and Stack, that were collections of object types. To synchronize access
to non-generic collections, you use the SyncRoot property as an external lock. Because non-
generic collections aggregated object types, they were not type safe. This also caused boxing
when value types were added, which affected performance. For these reasons, in the .NET
Framework 2.0, Microsoft introduced generic collections that are type safe and provide bet-
ter performance, such as the List<T> and Queue<T> collections. Generic collections are tem-
plated types. In addition, generic collections do not expose properties to assist with thread
synchronization. You must use external locks, and the most common strategy is to lock the
entire collection. Of course, locking an entire collection is not especially efficient. The newly
introduced concurrent collections address the shortcomings of both non-generic and generic
collections and are both type safe and thread safe.

In addition to being type safe and thread safe, concurrent collections have another side
benefit. Because external locks are not required, the source code for adding and removing
elements in a parallel scenario is simpler for concurrent collections. That is an excellent com-
bination—additional functionality with less code! Here is some sample code to compare cod-
ing a generic collection to coding a concurrent collection that requires synchronization. First
is the code for a generic collection.

lock (genericList)
{
 genericList.Enqueue(number);
}

The following code block is functionally the same code, but when using a concurrent collec-
tion, you need only one line of code. Using the concurrent collection does not require addi-
tional code.

concurrentList.Enqueue(number);

Concurrent collections are indeed thread safe! However, that does not prevent you from
using a concurrent collection in a manner that is not thread safe. For example, it’s possible to
enumerate a concurrent collection in one thread while another thread is updating the collec-
tion at the same time. The enumeration takes a snapshot of the collection, while updates are

	 Chapter 5  Concurrent Collections	 119

applied to the original collection. For this reason, the recent updates might not be visible via
the enumeration, which can lead to race conditions and other problems. This is not thread
safe. You need to be mindful of writing thread safe code even for concurrent collections.

Concurrent collections are available for you to use anywhere but are particularly optimized
for parallel programming.

Concepts of Concurrent Collections
In the Framework Class Library (FCL), you can find the concurrent collections in the
System.Collections.Concurrent namespace. Here are the concurrent collection types:

■	 BlockingCollection

■	 ConcurrentBag

■	 ConcurrentDictionary

■	 ConcurrentQueue

■	 ConcurrentStack

 Note  You’ll learn more about each collection type later in this chapter.

Most of the concurrent collections in the .NET Framework 4 implement the producer-consumer
paradigm. (The exception is the ConcurrentDictionary class.) In the producer-consumer
model, producers add elements to the collection, and consumers remove elements. In a pure
producer-consumer scenario, separate threads are dedicated to either adding or removing
elements. A single thread would not be responsible for both adding and removing elements.
In a mixed producer-consumer scenario, a single thread might be both a producer and a
consumer.

BlockingCollection is a wrapper for a producer-consumer collection. The BlockingCollection
type adds blocking and bounding logistics to the underlying collection.

Producer-Consumers
In the .NET Framework 4, producer-consumer collections implement the IProducer​
ConsumerCollection interface. ConcurrentQueue and ConcurrentStack implement the
IProducerConsumerCollection interface for a pure producer-consumer scenario. As such,
elements should be added or removed from different threads. For example, with the
ConcurrentQueue collection, you should have separate threads for queuing and dequeuing
elements in the collection.

120	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Mixed producer-consumer collections also implement the IProducerConsumerCollection
interface, which is optimized for adding and removing elements using the same thread.
The ConcurrentBag type is an example of a mixed producer-consumer collection. This class
maintains a local queue for each thread that accesses the collection. Each thread adds and
removes elements by using the private local queue. Add and remove operations on the same
local queue are lock free.

Microsoft uses a variety of techniques to make concurrent collections lock free and, when
it is available, employs lightweight synchronization. For lightweight synchronization, the
concurrent collections use lower-level synchronization constructs, such as the SpinLock and
SpinWait structures. These structures were introduced in the .NET Framework 4. The next
section reviews the SpinLock and SpinWait structures.

Lower-Level Synchronization
When synchronization is required, concurrent collections use lightweight synchronization if
possible. This is often less expensive than external locks, such as the lock statement.

SpinLock
The SpinLock structure is used to synchronize access to a resource.

When there is contention, the SpinLock does not block but spins in user mode. Spinning
avoids blocking, which requires a kernel-mode lock. Accessing a kernel resource always causes
an expensive context switch. After spinning, ideally the contention is removed and execution
can continue unimpeded with no transition to kernel mode. In this manner, SpinLock is an
opportunity for lightweight synchronization without blocking. SpinLock is ideal for scenarios
involving frequent contention but short waits, where excessive spinning is avoided.

SpinLock is a structure found in the System.Threading namespace. Because it is a structure, be
careful to avoid unintentional duplicates. When it is used as a parameter in a function, you
should pass a SpinLock structure by reference (that is, use the ref keyword) to avoid creating
a copy.

Here is the pattern for using a SpinLock structure for synchronization:

	 1.	 Declare an instance of a SpinLock structure.

	 2.	 Define a try block.

	 Chapter 5  Concurrent Collections	 121

	 3.	 In the try block, call SpinLock.Enter to enter a section of synchronized code. If another
thread has entered but not exited, the current thread will spin. Several threads could be
spinning, waiting to enter a section of code.

	 4.	 In a finally block, call SpinLock.Exit to relinquish a section of synchronized code. At this
time, one or more threads might be waiting to enter. One of those threads can now
enter the serialized section code. Using a finally block for SpinLock.Exit assures that this
method is called, which helps to prevent inadvertent deadlocks.

SpinLock.Enter accepts a single parameter, which is a reference to a Boolean variable. The
Boolean variable must be initialized to false. The variable is an indicator as to whether the Enter
method was successful. If successful, the variable is changed to true.

Look at the following two-line snippet of code. The SpinLock is entered twice in a single
thread. Nested locks are a common programming technique. However innocuous this might
appear, a LockRecursionException is raised. Nested locks can be dangerous and frequently
cause program bugs. For this reason, the SpinLock.Enter method is non-reentrant.

 slock.Enter(ref taken1);
 slock.Enter(ref taken2);

Because it is not reentrant, SpinLock.Enter is also more efficient. The method does not have
the relevant information required to manage reentrancy.

By default, SpinLock tracks thread ownership. Tracking of thread ownership, if present, is set as
the first parameter of the SpinLock constructor. The SpinLock.IsThreadOwnerTrackingEnabled
property returns true if the tracking is enabled. You can set this parameter of the constructor to
false and disable tracking. Be careful. With tracking disabled, a reentrant call to SpinLock.Enter
is allowed. Here is sample code showing a potential deadlock.

SpinLock slock = new SpinLock(false);
bool taken1 = false;
bool taken2 = false;
try
{
 slock.Enter(ref taken1);
 slock.Enter(ref taken2); // Deadlock
 Console.WriteLine("Never reached!");
}

You can test a SpinLock for availability with the SpinLock.TryEnter method. If it is not available,
where you would normally block, TryEnter would simply return and set the out parameter
to false. There are two overloads of the method. The first variation will return immediately
if the resource is not available. The second version of the TryEnter method spins for a speci-
fied duration first and then attempts to acquire the resource again. If the resource remains
unavailable after spinning, TryEnter will then return.

122	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Here is an explanation of some of the members of the SpinLock structure:

■	 IsHeld  This is a Boolean property and returns true if SpinLock is held by any thread.

■	 IsHeldByCurrentThread  This is a Boolean property and returns true if SpinLock is held
by the current thread.

■	 Enter(ref lock lockTaken)  If the SpinLock is available, this method gives the current
thread ownership of the SpinLock. Otherwise, the thread blocks.

■	 TryEnter(ref lock lockTaken)  If the SpinLock is available, this method gives the current
thread ownership of the SpinLock. Otherwise, the method returns immediately with
lockTaken set to false.

■	 Exit()  This method relinquishes thread ownership of a SpinLock structure.

In the following sample code, slock is a SpinLock structure.

bool taken = false;
try
{
 slock.Enter(ref taken);
 DoSomething();
}
finally
{
 if (taken) slock.Exit();
}

SpinWait
The SpinWait structure is another alternative to heavy synchronization that uses a kernel-
level lock. When using a kernel-level lock, such as a monitor or semaphore, an application
incurs a costly context switch and other costs related to the kernel-mode transition. With the
SpinWait structure, you can spin for a short period when there is contention. After spinning,
you can attempt to reacquire the resource. If the acquisition is successful then, the overall
cost is less than that of the same steps using a kernel-level lock.

SpinWait is a structure in the System.Threading namespace. Be careful not to create copies of
the SpinWait structure. If that occurs, you will have separate entities that are unrelated for the
purposes of synchronization.

	 Chapter 5  Concurrent Collections	 123

The SpinWait structure is particularly helpful when contention is short. In this scenario, the
resource is apt to be available after minimal spinning. Excessive spinning can be expensive
and increases CPU utilization. It's important to recognize that this might take away processing
cycles from non-spinning threads. Remember, you are spinning because of contention. The
quickest way to resolve the contention is to allow the other threads to run. Too much spin-
ning can prevent this. As with most things in life, spinning is about balance. Nominal spinning
to avoid a context switch to kernel mode is good, but you should avoid spinning more than
necessary. For these reasons, the SpinWait structure has been designed to “play friendly” with
other threads.

■	 If there is a single processor core, the SpinWait structure automatically yields execution
at each spin.

■	 In a multicore core environment, SpinWait will occasionally yield the CPU to avoid
monopolizing available processor cores. The details of this yield process are outside the
scope of this book. Fortunately, the SpinWait.NextSpinWillYield property informs you
that the next spin will cause execution to yield to another thread.

Here are some of the important members of the SpinWait structure:

■	 NextSpinWillYield  This is a Boolean property that returns true if the next spin will
yield execution.

■	 SpinOnce()  This method performs a spin.

■	 SpinUntil(Func<bool> condition)  This method spins until the specified function predi-
cate returns true. The function is called an underdetermined number of times.

Two-Phase Synchronization
SpinWait structures are ideal for implementing the two-phase synchronization model. In the
first phase, you try to acquire a shared resource. If the resource is not available, you wait for a
short period of time in user mode with lightweight synchronization techniques. After a short
wait, attempt to acquire the resource a second time. If the second attempt fails also, then
enter the second phase. In this phase, you synchronize with a kernel-level lock and block. At
some point in the future, your kernel lock will signal and execution will be continued. You can
then acquire the target resource.

The following flowchart diagrams the two-phase synchronization model.

124	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Kernel lock
(blocked)

Tn signals
kernel lock

Resource
acquired

Resource acquired Acquire?Yes

No

Spinning stopped

Resource acquired Acquire?Yes

No

Spin

Phase 1
Phase 2

ConcurrentStack
ConcurrentStack is a thread-safe collection optimized for shared access in a parallel or con-
current scenario. No external locks are required for synchronization of the ConcurrentStack.
Elements are added to the ConcurrentStack collection on a last-in-first-out (LIFO) basis. You
push to add an element and pop to remove an element.

The collection implements the IProducerConsumerCollection interface and is optimized for
pure producer-consumer scenarios. As a pure producer-consumer, ideally the collection
should have one dedicated thread for pushing and another for popping elements. Do not
push and pop elements on the ConcurrentStack collection by using a single thread.

The implementation is lock free. Instead of employing kernel-level locks during contention,
spinning and compare-and-swap operations are used to resolve contention.

	 Chapter 5  Concurrent Collections	 125

Here are some of the important members of the ConcurrentStack class:

■	 Clear  This removes all elements from the collection.

■	 Count  This is an integer property that returns the count of elements in the collection.

■	 IsEmpty  This is a Boolean property that returns true if the collection is empty.

■	 Push(T item)  This method adds an element to the collection.

■	 TryPop(out T result)  This method removes an element from the collection. If it is suc-
cessful, true is returned; otherwise false is returned. For example, false is returned if the
collection is empty.

■	 PushRange(T [] items)  This method adds a range of items to the collection. This
is more efficient than adding elements individually. The operation is performed
atomically.

■	 TryPopRange(T [] items)  This method removes a range of items to the collection.
This is more efficient than removing elements individually. The operation is performed
atomically.

Some members of the ConcurrentStack class, such as Count, ToArray, and GetEnumerator, use
a static snapshot of the concurrent collection, which removes a potential dependency. You
can safely use the snapshot and avoid synchronization issues. This can lead to unexpected
results as other members work with the current representation of the collection. For example,
you could enumerate a ConcurrentStack collection while adding members. In this case, the
static and dynamic image would be different, and the results might be inconsistent.

In this tutorial, you will use the ConcurrentStack collection to track the duration of a method.
Implement a log with the ConcurrentStack collection where you record the entry and exit
times of methods. When dumped, the log is printed in reverse order or basically LIFO. Newer
methods are displayed first.

Use the ConcurrentStack collection to implement a class to track and log function
entry and exit

	 1.	 Create a console application for C# in Visual Studio 2010. At the beginning of the pro-
gram, add using statements for the following namespaces:

❑	 System.Collections.Concurrent

❑	 System.Threading

❑	 System.Diagnostics

❑	 System.Threading.Tasks

126	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

	 2.	 Define FunctionTracker as a disposable class. At the top of the class, define several private
attributes:

❑	 Define a static instance of ConcurrentStack as the global log.

❑	 Define a StackTrace object to obtain the name of the tracked method.

❑	 Define a string to hold the function name.

❑	 Define a DateTime object and initialize it to the current time.

private static ConcurrentStack<string> log=new ConcurrentStack<string>();
private StackTrace stackTrace = new StackTrace();
private string functionName;
private DateTime startTime=DateTime.Now;

	 3.	 In the constructor, retrieve and save the name of the calling method with the
StackFrame object. Add a start entry in the log for the method.

public FunctionTracker()
{
 functionName=stackTrace.GetFrame(1).GetMethod().Name;
 log.Push(string.Format("{0} started: {1}", functionName,
 startTime.ToLongTimeString()));
}

	 4.	 In the IDisposable.Dispose method, get the end time of the methods and calculate the
duration. Add an exit entry in the log for this information.

public void Dispose()
{
 DateTime endTime=DateTime.Now;
 TimeSpan tsDuration = endTime.Subtract(startTime);
 log.Push(string.Format("{0} stopped: {1} [{2}]",
 functionName, endTime.ToLongTimeString(),
 tsDuration.TotalMilliseconds));
}

	 5.	 Add the Stop method, which simply calls the Dispose method. The Stop method is use-
ful when an object is not being used as a disposable object.

public void Stop()
{
 Dispose();
}

	 6.	 Add two methods to display the log. The Dump method removes and displays elements
from the log in a while loop by using the TryPop method. The Display method uses an
enumerator and a foreach loop to display the log without removing any elements.

 public static void Dump()
 {
 string item;
 while (log.TryPop(out item))
 {

	 Chapter 5  Concurrent Collections	 127

 Console.WriteLine(item);
 }
 }

 public static void Display()
 {
 foreach (string item in log)
 {
 Console.WriteLine(item);
 }
 }

	 7.	 Time to test the application! Create a couple of test functions as shown in the following
code. Both use the FunctionTracker as a disposable object defined at the beginning of a
method. Add both methods to the Program class.

 public static void FuncA()
 {
 using (new FunctionTracker())
 {
 Thread.Sleep(1000);
 }
 }

 public static void FuncB()
 {
 using (new FunctionTracker())
 {
 Thread.Sleep(2000);
 }
}

	 8.	 In the Main method, invoke both test functions in parallel. Dump the log to view the
results.

 using (new FunctionTracker())
 {
 Parallel.Invoke(() => FuncA(), () => FuncB());
 }
 FunctionTracker.Display();

	 9.	 Build and run the program.

Here is the complete application.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Collections.Concurrent;
using System.Threading;
using System.Diagnostics;
using System.Threading.Tasks;

namespace Example

128	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

{
 class FunctionTracker: IDisposable
 {
 private static ConcurrentStack<string> log=new ConcurrentStack<string>();
 private StackTrace stackTrace = new StackTrace();
 private string functionName;
 private DateTime startTime=DateTime.Now;

 public FunctionTracker()
 {
 functionName=stackTrace.GetFrame(1).GetMethod().Name;
 log.Push(string.Format("{0} started: {1}", functionName,
 startTime.ToLongTimeString()));
 }

 public void Dispose()
 {
 DateTime endTime=DateTime.Now;
 TimeSpan tsDuration = endTime.Subtract(startTime);
 log.Push(string.Format("{0} stopped: {1} [{2}]",
 functionName, endTime.ToLongTimeString(),
 tsDuration.TotalMilliseconds));
 }

 public void Stop()
 {
 Dispose();
 }

 public static void Dump()
 {
 string item;
 while (log.TryPop(out item))
 {
 Console.WriteLine(item);
 }
 }

 public static void Display()
 {
 foreach (string item in log)
 {
 Console.WriteLine(item);
 }
 }
 }

 class Program
 {
 public static void FuncA()
 {
 using (new FunctionTracker())
 {
 Thread.Sleep(1000);

	 Chapter 5  Concurrent Collections	 129

 }
 }

 public static void FuncB()
 {
 using (new FunctionTracker())
 {
 Thread.Sleep(2000);
 }
 }

 static void Main(string[] args)
 {
 using (new FunctionTracker())
 {
 Parallel.Invoke(() => FuncA(), () => FuncB());
 }
 FunctionTracker.Display();
 }
 }
}

This is the output for the application. It dumps the log and lists the start time, exit time, and
duration of each tracked method.

ConcurrentQueue
ConcurrentQueue is a thread-safe collection optimized for shared access in a parallel or con-
current environment. Similar to ConcurrentStack, ConcurrentQueue is lock free and does not
require external locks for synchronization. Elements are added to the ConcurrentQueue col-
lection on a first-in-first-out (FIFO) basis. You can queue to add an element and dequeue to
remove an element.

Except for using FIFO instead of LIFO access patterns, ConcurrentQueue and ConcurrentStack
are similar. This class also implements the IProducerConsumerCollection interface and is opti-
mized for pure producer-consumer scenarios.

130	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Here are some of the important members of the ConcurrentQueue:

■	 Count  This property returns the number of elements in the collection, which is an
integer.

■	 IsEmpty  This property is a Boolean that returns true if the collection is empty.

■	 Enqueue (T item)  This method adds an element to the collection.

■	 TryDequeue(out T result)  This method removes an element from the collection. If it is
successful, true is returned; otherwise, false is returned.

ConcurrentBag
ConcurrentBag is an unordered collection and the final of the three collections in the System​
.Collections.Concurrent namespace that implement the IProducerConsumerCollection inter-
face. Unlike the other collections, ConcurrentBag is optimized for mixed producer-consumer
scenarios, where an element is added and removed using the same thread.

In most circumstances, ConcurrentBag is highly efficient, requires minimal synchronization,
and is lock free. This is possible because separate local queues are created for each client
thread. Each thread adds and removes elements from the local queue, which removes the
need for synchronization. However, sometimes the local queue for a thread is empty. In
that circumstance, the element must be stolen from the local queue of another thread. This
requires synchronization of the shared resource (the local queue) between the two threads.

The following diagram illustrates the behavior of a ConcurrentBag collection. In this exam-
ple, there are two threads, both of which are adding items to the ConcurrentBag collection.
Each thread has a local queue for this purpose. In the first box, Thread 1 and Thread 2 add
items to the ConcurrentBag collection. Thread 1 adds two items to its local queue (A and B).
Thread 2 adds three items to its local queue (C, D, and E). In the next box, Thread 1 adds an
additional item to its local queue. Thread 2 removes an item. Because items are available
on the local queue, the item is removed from the local queue of Thread 2. In the next box,
Thread 2 removes three additional items. First, Thread 2 removes two items from its local
queue. The Thread 2 local queue is now empty. For that reason, it removes the remaining
item from the Thread 1 local queue. Finally, in the last box, Thread 1 removes the remaining
two items on its local queue.

	 Chapter 5  Concurrent Collections	 131

Thread 1 Thread 2 Thread 1

A

F

Thread 2

Thread 1

A

B

Thread 2

D

E

Thread 1

A

B

F

Thread 2

C

D

E

Add item A
Add item B

Add item C
Add item D
Add item E

Add item F Get item
(C)

Get 2 items
(A,F)

Get item Get 3 items
(D,F, and B)

Here are some members of ConcurrentBag:

■	 Count  This property returns the number of elements in the collection, which is an
integer.

■	 IsEmpty  This is a Boolean that returns true if the collection is empty.

■	 Add(T item)  This method adds an element to the collection.

■	 TryTake(out T result)  This method removes an unordered element from the collec-
tion. If it is successful, true is returned.

■	 TryPeek(out T result)  This method returns but does not remove the next element
from the unordered collection. If it is successful, true is returned.

132	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

ConcurrentBag is useful when sequencing of the collection is not important. You just need a
shared collection that is thread safe for adding and removing elements. The best practice is
to add and remove elements from the collection by using the same thread. The next tuto-
rial will highlight this. In this tutorial, you simulate a store with customers. The customer
list is maintained in a ConcurrentBag collection. This example will demonstrate the mixed
producer-consumer pattern, where individual elements are added and removed by using the
same thread.

Create a customer class to manage a customer list for a store by using a
ConcurrentBag collection

	 1.	 Create a console application for C# in Visual Studio 2010. At the beginning of the pro-
gram, add using statements for the following namespaces:

❑	 System.Collections.Concurrent

❑	 System.Threading

❑	 System.Diagnostics

❑	 System.Threading.Tasks

	 2.	 Create a new class called Person. At the top of the class, define two fields. Define an
instance of the ConcurrentBag to hold the customer list. Also, add a string property to
hold the customer name.

static ConcurrentBag<Person> customerList = new ConcurrentBag<Person>();
public string Name { get; set; }

	 3.	 In the constructor for the Person class, add the current object to the ConcurrentBag
collection.

public Person() {customerList.Add(this);}

	 4.	 Define a method to simulate a customer shopping and then exiting the store. In the
method, create an instance of the Random class. For shopping, spin the current thread
by using the random object. The spin value is {random<maximum integer}. After shop-
ping, otherwise known as spinning (spending), the customer leaves the store. For that
reason, remove the customer from the customer list by using the TryTake method.
Remember, ConcurrentBag is an unordered list. You are not guaranteed which element
is returned. However, TryTake should remove elements from the local queue of the cur-
rent thread first. In our example, the local queue should have a single element, which
is the current customer. Test this by comparing the hash code of the current object and
the element retrieved from the TryTake method. If the two are equal, display a message
confirming that the two objects are identical.

	 Chapter 5  Concurrent Collections	 133

public void ShopAndExit(){
 Random rand=new Random();
 Thread.SpinWait(rand.Next(int.MaxValue));
 Person cust;
 if (customerList.TryTake(out cust))
 {
 if (cust.GetHashCode() == this. GetHashCode())
 {
 Console.WriteLine("**** {0}=={1} objects are identical ****",
 cust.Name, this.Name);
 }
 }

	 5.	 In the Main method, start a Parallel.For loop. Iterate the loop four times. Define a
lambda expression for the function predicate.

Parallel.For(0, 4, (index) =>

	 6.	 In the lambda expression, create an instance of the Person type with a generic name.
Next, call the ShopAndExit method. Display a message for entering and leaving the
store. Also, display the thread identifier. You can then match operations on elements
with specific threads.

var customer=new Person(){Name="Customer "+
 index.ToString()};
Console.WriteLine("[Thread {0}] {1} entering store.",
 Thread.CurrentThread.ManagedThreadId, customer.Name);
customer.ShopAndExit();
Console.WriteLine("[Thread {0}] {1} leaving store.",
 Thread.CurrentThread.ManagedThreadId, customer.Name);

	 7.	 Build and run the program.

Here is the complete application.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Collections.Concurrent;
using System.Threading.Tasks;
using System.Threading;

namespace Example
{
 class Person
 {
 static ConcurrentBag<Person> customerList = new ConcurrentBag<Person>();
 public string Name { get; set; }
 public Person() {customerList.Add(this);}
 public void ShopAndExit(){

134	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

 Random rand=new Random();
 Thread.SpinWait(rand.Next(int.MaxValue));
 Person cust;
 if (customerList.TryTake(out cust))
 {
 if (cust.GetHashCode() == this. GetHashCode())
 {
Console.WriteLine("**** {0}=={1} objects are identical ****",
 cust.Name, this.Name);
 }
 }
 }
 }

 class Program
 {
 static void Main(string[] args)
 {
 Parallel.For(0, 4, (index) =>
 {
 var customer=new Person(){Name="Customer "+
 index.ToString()};
 Console.WriteLine("[Thread {0}] {1} entering store.",
 Thread.CurrentThread.ManagedThreadId, customer.Name);
 customer.ShopAndExit();
 Console.WriteLine("[Thread {0}] {1} leaving store.",
 Thread.CurrentThread.ManagedThreadId, customer.Name);
 });
 }
 }
}

This is the output for the application. Notice that each item is added and removed from the
same thread, which is the mixed producer-consumer scenario.

	 Chapter 5  Concurrent Collections	 135

ConcurrentDictionary
ConcurrentDictionary is a thread-safe collection of key-value pairs optimized for paral-
lel programming. Like other concurrent collections, this collection is found in the System​
.Collections.Concurrent namespace. ConcurrentDictionary does not implement the
IProducerConsumerCollection interface and is not a producer-consumer collection.

ConcurrentDictionary has efficient synchronization. The collection is optimized for regular
reads and infrequent add and updates. Discrete locking is used internally for updating and
adding elements. This is more efficient than using an external lock and locking the entire
collection. Reads are the most efficient operation and are lock free.

The capacity of the ConcurrentDictionary is settable in the constructor. This is a hint at the
capacity and not an absolute. Set the capacity to a value marginally larger than expected.

Here are some of the important members of the ConcurrentDictionary type:

■	 Count  This property returns the number of elements in the collection, which is an
integer.

■	 IsEmpty  This is a Boolean that returns true if the collection is empty.

■	 TryAdd(T item)  This method adds a key-value pair to a collection. If the key exists, the
element is not added and false is returned.

■	 TryUpdate(TKey key, TValue newValue, TValue comparisonValue)  This method
compares the current value to the comparison value. If they are the same, the value is
updated to the new value. Otherwise, the method returns false.

■	 AddOrUpdate(TKey key, TValue, addValue, Func<TKey, TValue, TValue> update​
Factory>)  If the key is not present, this method adds the key-value pair to the
collection. If the key already exists, the function predicate is called to generate a
new value from the existing value.

In the next exercise, you will create an integer array that has duplicate values and add the
integer values to a ConcurrentDictionary. The integer value is the key. The value is an instance
count. You will call ConcurrentDictionary.AddOrUpdate to add a new entry or calculate the
current instance count.

Create a ConcurrentDictionary collection from an integer array, with the integer as
the key and the instance count as the value

	 1.	 Create a console application for C# in Visual Studio 2010. At the beginning of the
program, add using statements for the System.Threading.Tasks and System.Collections​
.Concurrent namespaces.

136	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

	 2.	 In the Main method, declare an integer array with duplicate values. Also define a
ConcurrentDictionary with both the key and value as integers.

var numbers = new int[] { 1, 2, 4, 2, 3, 1, 2 };
var collection = new ConcurrentDictionary<int, int>();

	 3.	 Iterate the integer array in parallel by using the Parallel.ForEach method.

Parallel.ForEach(numbers, (number) =>

	 4.	 Implement a lambda expression for the Parallel.ForEach loop. Each iteration should add
the current integer element as a key to the collection. If the key already exists, call a
predicate function to increment the value of that key.

collection.AddOrUpdate(number, 1, (key, value) =>
 {
 return ++value;
 });

	 5.	 Iterate and display the key-value pair of the collection.

foreach (var entry in collection)
{
 Console.WriteLine("Key: {0} Count: {1}", entry.Key, entry.Value);
}

	 6.	 Build and run the program.

Here is the complete application.

namespace Example
{
 class Program
 {
 static void Main(string[] args)
 {
 var numbers = new int[] { 1, 2, 4, 2, 3, 1, 2 };

 var collection = new ConcurrentDictionary<int, int>();
 Parallel.ForEach(numbers, (number) =>
 {
 collection.AddOrUpdate(number, 1, (key, value) =>
 {
 return ++value;
 });
 });

 foreach (var entry in collection)
 {
 Console.WriteLine("Key: {0} Count: {1}", entry.Key, entry.Value);
 }
 }
 }
}

	 Chapter 5  Concurrent Collections	 137

This is the output for the application.

BlockingCollection
The last collection for this chapter is the BlockingCollection. It is a wrapper of a concur-
rent collection or any class that implements the IProducerConsumerCollection interface.
BlockingCollection adds blocking and bounding semantics to the underlying collection. If a
collection is not provided in the BlockingCollection constructor, the default underlying collec-
tion is ConcurrentQueue.

The TryTake method is called to remove an element from a producer-consumer collection.
The type of collection determines the form that the TryTake function is exposed as. For
example, TryTake is replaced by the TryDequeue method in the ConcurrentQueue class. The
TryTake method returns false if the collection is empty. If a timeout is specified, the TryTake
method blocks when the underlying producer-consumer collection is empty and waits for
an element to be added to the collection. You can create a dedicated thread for consuming
elements to a collection. When no elements are available, the thread would sleep. The next
tutorial demonstrates this.

In this tutorial, you will create a BlockingCollection and add a dedicated thread to consume
elements as they are added to the BlockingCollection. You will use a timeout to prevent an
infinite wait for a new element. If a timeout occurs, use the cancellation model to cancel
further additions to the BlockingCollection.

Create a dedicated thread for consuming elements of a BlockingCollection

	 1.	 Create a console application for C# in Visual Studio 2010. At the beginning of the pro-
gram, add using statements for the following namespaces:

❑	 System.Collections.Concurrent

❑	 System.Threading.Tasks

❑	 System.Threading

138	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

	 2.	 Define two static variables. First, define a BlockingCollection for integer values. Also cre-
ate a CancellationTokenSource variable, which is the implementation of the cancellation
model in the Task Parallel Library (TPL).

public static BlockingCollection<int> collection = new BlockingCollection<int>();
public static CancellationTokenSource cs = new CancellationTokenSource();

	 3.	 Add a static method as a handler for when elements are added to the BlockingCollection.
For our example, just display a message.

public static void Handler()
{
 Console.WriteLine("[{0}] Handled and removed",
 DateTime.Now.ToLongTimeString());
}

	 4.	 In the Main method, call Parallel.Invoke for two tasks. Each task is implemented as a
lambda expression. In a while loop, the first task adds elements to the BlockingCollection
until the operation is canceled. There is an increasingly longer wait between each itera-
tion. Display an appropriate message at each iteration.

Parallel.Invoke(new Action[] {()=>
 {
 int value=1000;
 while(!cs.IsCancellationRequested)
 {
 Thread.Sleep(value);
 collection.Add(++value);
 Console.WriteLine("[{0}] Element Added",
 DateTime.Now.ToLongTimeString());
 value += 2000;
 }
 }

	 5.	 The next task also contains a while loop. Each iteration consumers the next element if
one is present. Call TryTake(out T item, int millisecondsTimeout), which offers the time-
out as a parameter. A reasonable timeout is used to prevent a deadlock. If a timeout
occurs, exit the loop and cancel the entire operation.

 ()=>
 {
 int item;
 while(true)
 {
 if(collection.TryTake(out item, 10000))
 {
 Handler();
 }
 else
 {
 // Handle timeout
 Console.WriteLine("Timeout. Program exiting");
 cs.Cancel();

	 Chapter 5  Concurrent Collections	 139

 break;
 }
 }
 }

	 6.	 Build and run the program.

Here is the complete application.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Collections.Concurrent;
using System.Threading.Tasks;
using System.Threading;

namespace EfficientHandler
{
 class Program
 {

 public static BlockingCollection<int> collection = new
 BlockingCollection<int>();
 public static CancellationTokenSource cs = new CancellationTokenSource();

 public static void Handler()
 {
 Console.WriteLine("[{0}] Handled and removed",
 DateTime.Now.ToLongTimeString());
 }

 static void Main(string[] args)
 {
 Parallel.Invoke(new Action[] {()=>
 {
 int value=1000;
 while(!cs.IsCancellationRequested)
 {
 Thread.Sleep(value);
 collection.Add(++value);
 Console.WriteLine("[{0}] Element Added",
 DateTime.Now.ToLongTimeString());
 value += 2000;
 }
 },
 ()=>
 {
 int item;
 while(true)
 {
 if(collection.TryTake(out item, 10000))
 {
 Handler();
 }
 else

140	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

 {
 // Handle timeout
 Console.WriteLine("Timeout. Program exiting");
 cs.Cancel();
 break;
 }
 }
 }
 });
 }
 }
}

The following graphic shows the output for the application. The task for adding elements
might not detect the cancellation immediately. For that reason, there might be an additional
add message after the cancellation.

In the previous example, elements were consumed with the TryTake method. If the collection
is empty, the TryTake method blocks. For that reason, a timeout is used to prevent a poten-
tially infinite deadlock of that thread. The following code snippet shows a concise version of
the while loop for consuming elements in a blocking collection.

while(true)
{
 if(!TryTake(out item, 10000)))
{
break;
}

The BlockingCollection implements a similar algorithm in the GetConsumingEnumerable
method, which returns an enumerator. This method returns an enumerator that iterates ele-
ments as they are added and blocks if the collection is empty. Like the above code, the enu-
meration presents a possibility of an infinite deadlock if the collection is permanently empty.
For that reason, CompleteAdding exists. Invoke this method to notify the BlockingCollection

	 Chapter 5  Concurrent Collections	 141

that further elements will not be added. You cannot add elements to a BlockingCollection
after calling the CompleteAdding method. If you do, an exception is raised.

Next is a short tutorial on using the GetConsumingEnumerable method. You will create an
application with three tasks:

■	 Add elements to a BlockingCollection.

■	 Consume elements by using a GetConsumingEnumerable enumerator.

■	 Mark a BlockingCollection as completed.

Implement the GetConsumingEnumerable model to add elements to and consume
elements from a BlockingCollection

	 1.	 Create a console application for C# in Visual Studio 2010. At the beginning of the pro-
gram, add using statements for the following namespaces:

❑	 System.Collection.Concurrent

❑	 System.Threading.Tasks

❑	 System.Threading

	 2.	 Define a BlockingCollection that contains integer values.

static BlockingCollection<int> collection=new BlockingCollection<int>();

	 3.	 In the Main method, define a try/catch block to catch an unhandled exception from
parallel tasks.

try
{
}
catch(AggregateException ex)
{
}

	 4.	 Within the try block, define an integer count. This is the value to be added to the
BlockingCollection. Call the Parallel.Invoke method to execute tasks to add elements to
the collection, prevent further additions, and display the elements of the collection.

int count = 0;
Parallel.Invoke(new Action[] {

	 5.	 The first task contains an infinite while loop. In the while loop, add the count to the
BlockingCollection and increment the count. You should then yield execution for a
couple of seconds.

 ()=> { while(true) {collection.Add(++count); Thread.Sleep(2000);}},

142	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

	 6.	 In the next task, read a line from the console. When the user responds, call
CompleteAdding to finish adding elements to the BlockingCollection.

 ()=> { Console.ReadLine(); collection.CompleteAdding(); }

	 7.	 The final task is a foreach loop that uses a GetConsumingEnumerable enumerator. In the
foreach loop, display the values of the collection.

()=> {foreach(int value in collection.GetConsumingEnumerable()) Console.
WriteLine(value);}

	 8.	 In the catch block, check for an InvalidOperationException. This indicates that an ele-
ment was added to the collection after CompleteAdding was called. Display the appro-
priate messages.

if (ex.InnerException is System.InvalidOperationException)
{
 Console.WriteLine("Adding complete!");
}
else
{
 Console.WriteLine("Unexpected exception");
}

	 9.	 Build and run the program.

Here is the complete application.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Collections.Concurrent;
using System.Threading.Tasks;
using System.Threading;

namespace GetConsumingEnumerable
{
 class Program
 {
 private static BlockingCollection<int> collection=new
 BlockingCollection<int>();

 static void Main(string[] args)
 {
 try
 {

 int count = 0;
 Parallel.Invoke(new Action[] {
 ()=> { while(true) {collection.Add(++count);
 Thread.Sleep(2000);}},

	 Chapter 5  Concurrent Collections	 143

 ()=> { Console.ReadLine(); collection.CompleteAdding(); },
 ()=> {foreach(int value in
 collection.GetConsumingEnumerable())
 Console.WriteLine(value);}});
 }
 catch(AggregateException ex)
 {
 if (ex.InnerException is System.InvalidOperationException)
 {
 Console.WriteLine("Adding complete!");
 }
 else
 {
 Console.WriteLine("Another exception");
 }
 }
 }
 }
}

The following graphic shows the output for the application.

These examples have demonstrated the blocking capacity of a BlockingCollection, but a
BlockingCollection can also be bounded. There is no limit to the number of elements that
can be added to an unbounded collection. You can add elements to a concurrent collection
indefinitely if you want. In the BlockingCollection constructor, one of the options is to set
the bounds of the underlying collection. The bound is the maximum number of elements
for the BlockingCollection. If the bound is reached, the collection will block on additional
adds until elements are removed from the collection. The following source code creates a
BlockingCollection where the underlying type is ConcurrentBag and the bound is 10 ele-
ments. For this reason, you are unable to add more than 10 elements to the collection
without blocking.

var bounded = new BlockingCollection<int>(new ConcurrentBag<int>(), 10);

144	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Following is a list of some of the elements of the BlockingCollection type:

■	 Add(T item)  This adds an item to the blocking collection. If the collection is bound,
Add will block if the maximum bound is exceeded.

■	 CompleteAdding  This notifies the collection that additional items will not be added.

■	 Count property  This property returns the number of items in the blocking collection.

■	 BoundedCapacity property  This returns the capacity of the current blocking
collection.

■	 TryTake(out T item)  This method removes an item from the collection. If the collec-
tion is empty, it returns false and immediately returns.

■	 TryTake(out T item, Int32 millisecondsTimeout)  This removes an item from a collec-
tion within the designated timeout. If it is successful, it returns true.

Summary
The .NET Framework 4 introduces concurrent collections. Concurrent collections are implic-
itly thread safe and mostly lock free. Unlike generic collections, concurrent collections do
not have to use external locks and lock the entire collection, which is inefficient. When
there is contention, concurrent collections use spinning and compare-and-swap operations
for thread safeness. The goal is to avoid kernel-mode locking, which is more expensive.
Concurrent collections are designed to be scalable in a multicore environment.

Except for the ConcurrentDictionary type, concurrent collections implement the producer-
consumer pattern. A pure producer-consumer collection has dedicated threads for both
adding and removing elements. ConcurrentStack and ConcurrentQueue are optimized for
the producer-consumer scenario and are lock free. A mixed producer-consumer is optimized
for adding and removing elements using the same thread. ConcurrentBag is an example of a
mixed producer-consumer and uses limited synchronization. ConcurrentDictionary is the only
concurrent collection that is not a producer-consumer. It synchronizes adds and updates.
However, read operations are lock free.

Low-level synchronization, such as the SpinLock and SpinWait structures, is used by concur-
rent collections to minimize synchronization. The SpinLock structure is used to spin instead
of blocking on contention. You can use the SpinWait structure to implement a two-phase
synchronization. If there is contention, the first phase spins for synchronization. The second
phase, if needed, will block until the resource is available.

	 Chapter 5  Concurrent Collections	 145

BlockingCollection is a wrapper of a collection that implements the IProducerConsumer​
Collection interface. If the underlying type is not specified, it is a ConcurrentQueue. Blocking​
Collection adds blocking and bounding semantics to the underlying collection. If the collec-
tion is empty, it will block when you try to remove an element. Bounding sets a maximum
number of elements for the collection. The collection will block when an attempt is made to
add elements beyond the bounded threshold.

Quick Reference
To Do this
Implement a pure producer-consumer
collection

Use a producer-consumer collection, which is op-
timized for adding and removing elements using
different threads. A mixed producer-consumer is
optimized for adding and removing elements using
the same thread.

Perform lightweight locking Use the SpinLock or SpinWait structures. SpinLock
will spin to avoid an expensive deadlock. You can use
SpinWait to spin instead of using a hard lock.

Use a thread-safe queue or stack
optimized for concurrent access

Use the ConcurrentQueue and ConcurrentStack col-
lections, respectively.

Use an unordered collection optimized
for concurrent access

Use a ConcurrentBag collection, which is a mixed
producer-consumer. For this type, you should add
and remove items from the same thread.

Use a dictionary type optimized for
concurrent access

Use ConcurrentDictionary.

Use a collection type that can be
bounded or blocked

Use the BlockingCollection type. You can block when
removing items from an empty BlockingCollection.
If it is bounded, you can block when adding an item
beyond the bounded capacity.

		 147

Chapter 6

Customization
After completing this chapter, you will be able to

■	 Implement a custom producer-consumer class.

■	 Describe the benefits of partitioning a data domain.

■	 Explain chunking and its role in parallel programming.

■	 Describe the Partitioner<TSource> and OrderablePartitioner<TSource> classes.

■	 Implement a custom partitioner.

■	 Explain the role of a task scheduler.

■	 Implement a custom task scheduler.

The previous chapters introduced several classes in the Task Parallel Library (TPL) that are piv-
otal to parallel programming. These classes are ideal for most—but not every—circumstance.
Therefore, the TPL is extensible, so you can extend various classes to meet the specific require-
ments of your application. This chapter explains how to customize some of the major classes in
the TPL.

The generalized implementation of parallel computing in the Microsoft .NET Framework 4
is adequate for most scenarios involving concurrent programming. However, it is nearly
impossible to craft a perfect solution for every scenario. Fortunately, so you can use it in
unanticipated situations, the TPL is extensible, as mentioned previously. Of course, custom-
ization should not be your first choice; instead, you should review the capabilities of the TPL
thoroughly before undertaking the challenge of extending one of the classes. In the rare
circumstance where customization is required, you’ll probably find this chapter invaluable.

Identifying Opportunities for Customization
As you might recall from Chapter 5, “Concurrent Collections,” you implement IProducer​
ConsumerCollection to support a producer-consumer collection. In the producer-consumer
model, a producer object adds to the collection and a consumer object removes elements. A
pure producer-consumer is optimized for add and remove operations occurring on different
threads. Mixed producer-consumers should have the producer and consumer objects run on
the same thread. Producer-consumer collections include ConcurrentQueue, ConcurrentStack,
and ConcurrentBag collections, which you’ll find in the .NET Framework class library in the
System.Collections.Concurrent namespace. You can find a more detailed explanation of
producer-consumer classes in Chapter 5.

148	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

The following list provides some examples of where customization can provide benefits:

■	 Custom Producer-Consumer Collections  Although the TPL provides some consumer-
producer collections, you can also create a custom consumer-producer. An “auditable
collection” is an example of a situation for which a custom producer-consumer collec-
tion might be useful. In this scenario, you would create and maintain an audit trail for
each element added to the collection. When a consumer removes an element, the ele-
ment is logically (but not physically) removed from the collection. By leaving the object
physically in place, you can create an audit trail of all activity.

■	 Load Balancing with Custom Partitioners  The TPL partitions a data domain to bal-
ance workload across available processor cores. Load balancing is how parallel comput-
ing achieves much of its performance improvement. Short tasks incur more relative
overhead from context switches, synchronization, and parallelization; in fact, that over-
head might outweigh the benefits of parallelization. In such circumstances, you might
want to group multiple parallel operations into a single task, a concept called chunking.
The chunk size is the extent of the grouping within a partition. Range partitioning is a
concept that is helpful when you can determine the number of tasks in advance. With
range partitioning, you set the chunk size of each partition as a parameter. Based on
your knowledge of the application and the problem domain, you might want to imple-
ment a custom partitioner to achieve better load balancing.

■	 Custom Task Schedulers  The TPL schedules tasks via a task scheduler. The default
scheduler uses the .NET Framework 4 thread pool to queue and eventually schedule
tasks. When there is unique behavior to implement, you can create a custom task
scheduler and set your own scheduling polices. A prime example would be a logging
scheduler—a scheduler instrumented to trace various phases of task scheduling. For
ultimate flexibility, you could enable or disable the tracing through a configuration file.

When you are extending the TPL, performance benchmarking is critical! It is the confirmation
that your extensions are having a positive impact on the performance of your application.
There are several “moving parts” in a parallel application, which makes it sometimes difficult
to anticipate every action and reaction. The only true affirmation of expected performance
improvement is benchmarking. There are several new debugging windows in Microsoft
Visual Studio 2010, such as the Parallel Tasks and Parallel Stacks windows. Many of the new
debugging windows help with the benchmarking of a concurrent application. You’ll learn
about these in much more detail in Chapter 7, ”Reports and Debugging.”

Custom Producer-Consumer Collections
A class that implements the producer-consumer pattern is a façade for adding and remov-
ing elements from a collection where there is a separate producer and consumer thread.
Of course, this must be done in a thread-safe manner with minimal synchronization.

	 Chapter 6  Customizations	 149

To create a custom producer-consumer type, you implement the IProducerConsumer​
Collection<T>interface. Producer-consumer collections are enumerable; therefore, the
IProducerConsumerCollection<T> interface inherits from the IEnumerable<T>, IEnumerable,
and ICollection interfaces. In addition, producer-consumer classes should be optimized for
concurrent access.

In the producer-consumer pattern, a producer object adds elements to the collection, and
a consumer object removes elements. If you want, you can implement the producer and
consumer collection in a single object that handles both addition and removal. There are
plenty of opportunities for custom producer-consumer collections. For example, you could
create a custom producer-consumer collection when implementing a stock analysis applica-
tion. The producer would be the stock feed, which would create objects for individual stocks.
The consumers would be broker objects, which analyze (consume) the individual stock data.
As another example, in an accounting application, producers generate accounting transac-
tions, and could include various system modules, such as the Accounts Receivable, Accounts
Payable, and Payroll modules. The consumers are the various report generators, including
the general ledger journal, payroll report, or accounts receivable aging analysis.

If you plan to implement a custom producer-consumer, you should know what some of the
important members of the IProducerConsumerCollection interface are:

■	 GetEnumerator  This method returns an enumerator that can be used to iterate the
collection.

IEnumerator GetEnumerator()

■	 TryAdd  This method tries to add an item to the collection.

bool TryAdd(T item)

■	 TryTake  This method tries to return the next value as an out parameter. You should
also remove that item from the collection.

bool TryTake(out T item)

■	 IsSynchronized  This is a Boolean property that returns true if the collection is thread
safe.

bool IsSynchronized { get; }

■	 Count  This property returns the number of elements in the collection.

int Count { get; }

In the following procedure, you will create a custom producer-consumer that aggregates
identical values. When adding a duplicate value, the class does not preserve duplicated
values in the collection. Instead, it keeps a single value with an accompanying instance
count. For example, this collection {0, 1, 2, 3, 1, 1, 3} would become {{0,1}, {1,3}, {2,1}, {3,2}}.
Implementing a custom consumer-producer collection is not overly complicated, but it does

150	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

require several members. To reduce complexity, this sample code uses macro locking, but
you can always implement more discrete locking in real-world situations.

Create a custom consumer-producer collection that aggregates identical values

	 1.	 Create a console application for Microsoft Visual C# in Visual Studio 2010. Add using
statements for the System.Threading, System.Threading.Tasks, System.Collections, and
System.Collections.Concurrent namespaces.

	 2.	 Define a custom producer-consumer class that inherits and implements the IProducer​
ConsumerCollection interface. Define a Dictionary<TKey, TValue> collection at the
beginning of the class that will hold values and instance counts.

class ConcurrentAggregate<T>: IProducerConsumerCollection<T>
{
 Dictionary<T, int> collection =new Dictionary<T,int>();
}

	 3.	 Implement an Add method to add new elements to the collection. In the method,
attempt to get the value of the provided item. If you are successful, add 1 to the item
value by using the Dictionary<TKey, TValue>.Add method. Otherwise, set the key value
to 1.

 public void Add(T item)
 {
 int count;
 if (collection.TryGetValue(item, out count))
 {
 collection[item] = count + 1;
 }
 else
 {
 collection.Add(item, 1);
 }
 }

	 4.	 Add the Remove method to remove an element from the collection. Retrieve and dec-
rement the value of the item. If the value is zero, remove the item from the collection.
You can use the Dictionary<TKey, TValue>.Remove method.

 public bool Remove(T item)
 {

 int count;
 if (collection.TryGetValue(item, out count))
 {
 --count;
 if (count > 0)
 {
 collection[item] = count;
 return true;
 }
 else

	 Chapter 6  Customizations	 151

 {
 return collection.Remove(item);
 }
 }
 return false;
 }

	 5.	 Return the instance count of the specified key with the GetInstanceCount method.

public int GetInstanceCount(T key)
{
 lock (this)
 {
 return collection[key];
 }
}

	 6.	 You must implement the GetEnumerator method twice. Both times the method returns
an enumerator to the collection. First, convert the collection to an enumerable type
and then return the enumerator.

public IEnumerator<T> GetEnumerator()
{
 return ToArray().AsEnumerable().GetEnumerator();
}

IEnumerator IEnumerable.GetEnumerator()
{
 return ToArray().AsEnumerable().GetEnumerator();
}

	 7.	 You need to implement a couple of methods from the IProducerConsumerCollection
interface. The TryAdd method simply defers to the already implemented Add method.
The TryTake method returns the first element as an out parameter. The first element is
then removed from the collection.

 public bool TryAdd(T item)
 {
 lock (this)
 {
 Add(item);
 }

 return true;
 }

 public bool TryTake(out T item)
 {
 lock (this)
 {
 item = collection.First().Key;
 collection.Remove(item);
 return true;
 }
 }

152	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

	 8.	 The next three methods you will implement return either the entire collection or a sub-
set as an array. The ToArray method iterates the collection and builds an array of key
values, which it subsequently returns. The CopyTo method uses the ToArray method to
copy the underlying collection to an array provided as a parameter.

public T[] ToArray()
{
 List<T> temp=new List<T>();
 foreach (var item in collection)
 {
 temp.Add(item.Key);
 }
 return temp.ToArray();
}

public void CopyTo(T[] array, int index)
{
 lock (this)
 {
 ToArray().CopyTo(array, index);
 }
}

public void CopyTo(Array array, int index)
{
 lock (this)
 {
 ToArray().CopyTo(array, index);
 }
}

	 9.	 Implement the IsSynchronized, Count, and SyncRoot properties as expected. The
IsSynchronized property returns true if the object is synchronized and implicitly
thread safe. Count returns the number of elements in the underlying collection. The
SyncRoot property returns a synchronization object that is usable for synchronizing
the underlying collection in a concurrent environment. You have now completed a
custom producer-consumer. Time for the champagne!

 public bool IsSynchronized { get { return false; } }
 public int Count { get { return collection.Count(); } }
 public Object SyncRoot { get { throw new NotSupportedException(); } }

	 10.	 In the Main method, create an instance of your custom producer-consumer. Also,
declare an array of integer values. Iterate the collection of numbers, adding the values
to the producer-consumer collection.

var list = new ConcurrentAggregate<int>();
var numbers = new int[] { 4, 2, 1, 3, 3, 3, 2, 4, 1, 5 };
Parallel.ForEach(numbers, (number) =>
{
 list.Add(number);
});

	 Chapter 6  Customizations	 153

	 11.	 In a separate loop, iterate the consumer-producer collection, displaying the values and
instance count.

foreach (var item in list)
{
 Console.WriteLine("Item {0} Instances {1}",
 item, list.GetInstanceCount(item));
}

	 12.	 Build and run the application.

Here’s the complete code for the application.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Collections;
using System.Collections.Concurrent;
using System.Threading;
using System.Threading.Tasks;

namespace CustomProducerConsumer
{
 class ConcurrentAggregate<T>: IProducerConsumerCollection<T>
 {
 Dictionary<T, int> collection =new Dictionary<T,int>();

 public void Add(T item)
 {
 int count;
 if (collection.TryGetValue(item, out count))
 {
 collection[item] = count + 1;
 }
 else
 {
 collection.Add(item, 1);
 }
 }

 public bool Remove(T item)
 {

 int count;
 if (collection.TryGetValue(item, out count))
 {
 --count;
 if (count > 0)
 {
 collection[item] = count;
 return true;
 }
 else
 {

154	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

 return collection.Remove(item);
 }
 }
 return false;
 }

 public int GetInstanceCount(T key)
 {
 lock (this)
 {
 return collection[key];
 }
 }

 public IEnumerator<T> GetEnumerator()
 {
 return ToArray().AsEnumerable().GetEnumerator();
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 return ToArray().AsEnumerable().GetEnumerator();
 }

 public bool TryAdd(T item)
 {
 lock (this)
 {
 Add(item);
 }

 return true;
 }

 public bool TryTake(out T item)
 {
 lock (this)
 {
 item = collection.First().Key;
 collection.Remove(item);
 return true;
 }
 }

 public T[] ToArray()
 {
 List<T> temp=new List<T>();
 foreach (var item in collection)
 {
 temp.Add(item.Key);

	 Chapter 6  Customizations	 155

 }
 return temp.ToArray();
 }

 public void CopyTo(T[] array, int index)
 {
 lock (this)
 {
 ToArray().CopyTo(array, index);
 }
 }

 public void CopyTo(Array array, int index)
 {
 lock (this)
 {
 ToArray().CopyTo(array, index);
 }
 }

 public bool IsSynchronized { get { return false; } }
 public int Count { get { return collection.Count(); } }
 public Object SyncRoot { get { throw new NotSupportedException(); } }
 }

 class Program
 {
 static void Main(string[] args)
 {
 var list = new ConcurrentAggregate<int>();
 var numbers = new int[] { 4, 2, 1, 3, 3, 3, 2, 4, 1, 5 };
 Parallel.ForEach(numbers, (number) =>
 {
 list.TryAdd(number);
 });

 foreach (var item in list)
 {
 Console.WriteLine("Item {0} Instances {1}",
 item, list.GetInstanceCount(item));
 }
 Console.WriteLine("Press enter to exit");
 Console.ReadLine();
 }
 }

When you run this application, you’ll see the output shown in the following graphic, which
lists each value along with the corresponding instance count.

156	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Task Partitioners
You can improve load balancing (and thereby performance) in some applications by imple-
menting a custom partitioner. The default partitioner might not be ideal in all circumstances.
For example, when operations are of disparate length, a chunk size of one creates dispropor-
tionate work and uneven load balancing. In these and other similar scenarios, your knowl-
edge of the problem domain and the software application can hint at a better scheduling
scheme.

Speedup does not exist in isolation from contrary factors. One contrary factor is overhead
for parallelization and synchronization. The relative importance of the overhead is inversely
related to the duration of the parallel operation. As the length of the parallel operation
increases, the impact of overhead diminishes. Longer tasks mean less synchronization, sched-
uling, and thread-context-switching costs. However, there might not be enough long tasks to
keep the processors busy. You must find the ideal balance between parallelization and over-
head. Continual load balancing is the objective, in which you keep the processor cores busy
and achieve maximum speedup.

The following code displays an array in a parallel loop.

 Parallel.ForEach(numbers, (value) => Normalize(value));

When the Normalize operation in the above code has a short duration, single chunking
might not be effective. The overhead from parallelizing the loop might translate into mini-
mal speedup. Changing the partitioning to assign more work to each task could improve the
parallelization-to-overhead ratio and increase the relative performance. You accomplish this
by increasing the chunk size. You can create a custom partitioner to increase the chunk size.

For custom partitioning, Parallel.For and Parallel.ForEach accept Partitioner<TSource> and
OrderablePartitioner<TSource> as parameters. Both classes are enumerable and are found
in the System.Collections.Concurrent namespace. In addition, OrderablePartitioner supports
ordered partitioning—more about that later.

	 Chapter 6  Customizations	 157

The Partitioner.Create method creates a custom partitioner that supports chunking. Here’s an
example of using a custom partitioner with a Parallel.ForEach method.

Parallel.ForEach(Partitioner.Create(0, numbers.Count()), (keypair) => Normalize(keypair));

Partitioner.Create generates a Tuple<int, int>. The tuple represents the range of items that the
task should handle. You can interpret the tuple as Tuple<start, end>. In the parallel operation,
you use the tuple to iterate the proper range of elements in the collection, as shown in the
following example.

public static void Normalize(Tuple<int, int> range)
{
 for (int start = range.Item1; start < range.Item2; ++start)
 {
 // Normalization
 }
}

You can set the chunk size directly by using range partitioning and a custom partitioner. The
following example uses range partitioning. This code iterates the collection from zero until
the last element is reached. In this case, the chunk size for each task or partition is two.

Parallel.ForEach(Partitioner.Create(0, numbers.Count(), 2), (range) => Normalize(range));

In the next step-by-step procedure, you will create a collection of methods that are then
enumerated and invoked as tasks. Because the number of methods is known in advance,
you can use range partitioning. The code invokes two methods per task. Each method dis-
plays the current task identifier and method number to confirm that range partitioning is
indeed being performed.

Enumerate and execute an array of methods, displaying the results to correlate the
methods to specific tasks

	 1.	 Create a console application for C# in Visual Studio 2010. Add using statements for
the System.Threading, System.Threading.Tasks, and System.Collections.Concurrent
namespaces.

	 2.	 In the Program class, define a static integer variable, which is initialized to zero. This
variable is used to identify the current method.

static int count = 0;

	 3.	 Define a static method called DoSomething. In DoSomething, increment the method
count in a thread-safe manner. Display the current method index and task identifier.
Use the Thread.SpinWait method to simulate a compute-bound task.

static void DoSomething()
{
 int localCount = Interlocked.Increment(ref count);

158	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

 Console.WriteLine("Task {0} : Task {1}",
 Task.CurrentId, localCount);
 Thread.SpinWait(int.MaxValue / 10);
}

	 4.	 In the Main method, define an array of Action delegates initialized to DoSomething
methods.

var methods = new Action[] { DoSomething, DoSomething,
 DoSomething, DoSomething,
 DoSomething, DoSomething,
 DoSomething, DoSomething};

	 5.	 In a Parallel.ForEach loop, invoke the methods in the collection. Create a custom parti-
tion with the Partitioner.Create method. Set range partitioning and a chunk size of two.
The parallel operation is a lambda expression. In the lambda expression, iterate the col-
lection based on the range provided and invoke the corresponding method.

Parallel.ForEach(Partitioner.Create(0, methods.Length, 2), range=>
{
 for (int index = range.Item1; index < range.Item2; ++index)
 {
 methods[index]();
 }
});

	 6.	 Build and run the application.

Here’s the complete code for the application.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;
using System.Collections.Concurrent;

namespace RangePartitioning
{
 class Program
 {
 static int count = 0;

 static void DoSomething()
 {
 int localCount = Interlocked.Increment(ref count);
 Console.WriteLine("Task {0} : Method {1} Started.",
 Task.CurrentId, localCount);
 Thread.SpinWait(int.MaxValue / 10);
 }

 static void Main(string[] args)
 {

	 Chapter 6  Customizations	 159

 var methods = new Action[] { DoSomething, DoSomething,
 DoSomething, DoSomething,
 DoSomething, DoSomething,
 DoSomething, DoSomething };

 Parallel.ForEach(Partitioner.Create(0, methods.Length, 2), range=>
 {
 for (int index = range.Item1; index < range.Item2; ++index)
 {
 methods[index]();
 }
 });
 }
 }
}

The following image shows the application’s output. Each task executes two methods, as
defined by the range partitioning value. For example, Task 1 executes Method 1 and Method 6.

One of the problems with setting a specific chunk size with range partitioning is that you
lose a degree of flexibility. One alternative is to query the number of processors at run time
and set the partitioning accordingly. However, to save time and effort, you can just use the
default implementation provided in the TPL.

Instead of using range partitioning, the TPL Partitioner.Create method can set the chunk size
at run time automatically. In the next exercise, you will rely on Partitioner.Create to set the
best chunk size. You’ll create an array of integers, enumerate them in a Parallel.ForEach loop,
and display the number of items handled in each partition to confirm the chunk size selected
by Partitioner.Create.

Use a custom partitioner created by the TPL to enumerate an array of integers in a
Parallel.ForEach loop

	 1.	 Create a new C# console application in Visual Studio 2010. Add using statements
for the System.Threading, System.Threading.Tasks, and System.Collections.Concurrent
namespaces.

160	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

	 2.	 In the Program class, define a static integer counter named partition, and initialize it to
zero. This variable will count partitions.

static int partition= 0;

	 3.	 In the Main method, create an array of values numbered from 0 to 50.

var numbers = Enumerable.Range(0,50).ToArray();

	 4.	 Iterate the numbers by using a Parallel.ForEach method. Create a custom partition to
help. The custom partitioner will set the correct chunk size at run time. Define the task
as a lambda expression. The current range is the first parameter of the lambda expres-
sion. The next two parameters are the loop state, which is not used, and the current
index value.

 Parallel.ForEach(Partitioner.Create(0, numbers.Length),
 (range, notused, partition) =>

	 5.	 In the lambda expression, increment the partition count in a thread-safe manner.
Record the current partition in a string buffer.

int _partition=Interlocked.Increment(ref partition);
string buffer = string.Format("Partition {0,3}: ", _partition);

	 6.	 In a standard for loop, iterate the range of elements for this partition. Add the current
value from the collection to the string buffer. To simulate compute-bound work, call
the Thread.SpinWait method.

for (int index = range.Item1; index < range.Item2; ++index){ Thread.SpinWait(4000);
buffer+=string.Format(" {0,3}", numbers[index]);}

	 7.	 After the for loop, display the buffer.

Console.WriteLine(buffer);

	 8.	 Build and run the application.

Here is the complete application.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;
using System.Collections.Concurrent;

namespace BasicExample
{
 class Program
 {
 static int partition= 0;

	 Chapter 6  Customizations	 161

 static void Main(string[] args)
 {
 var numbers = Enumerable.Range(0,50).ToArray();

 Parallel.ForEach(Partitioner.Create(0, numbers.Length),
 (range, notused, partition) =>
 {
 string buffer = string.Format("Partition {0,3}: ", partition);
 for (int index = range.Item1; index < range.Item2; ++index)
 {
 Thread.SpinWait(4000);
 buffer+=string.Format(" {0,3}", numbers[index]);
 }
 Console.WriteLine(buffer);
 });

 Console.WriteLine("Press enter to exit");
 Console.ReadLine();
 }
 }
}

The following images show the output from the application. The chunk size is two, which is
the number of elements displayed with each partition.

The Parallel.Create method sets the appropriate chunk size dynamically at run time. Revisit
your application, change the number of elements in the array to 200, and then rerun the
application. Parallel.Create will automatically change the chunk size to eight at run time as
the application begins to scale. Of course, the actual result depends on your hardware archi-
tecture and number of available processor cores.

162	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Advanced Custom Partitioners
At times, you might want to implement an entirely new partitioner, because no two prob-
lems are alike. You’ll find plenty of opportunities for creativity. For example, you might want
to implement a different chunk size for each partition. In the previous section, you set the
chunk size either to a fixed value at compile time or dynamically at run time, but in both
cases, the chunk size was consistent for all partitions. You could, however, set the chunk size
on a per-partition basis, based on the available workload. To do that, you would have to
create a custom partitioner.

Custom partitioners start by inheriting the Partitioner<TSource> or Orderable
Partitioner<TSource> class and implementing the required methods and proper-
ties. Both are abstract classes in the System.Collection.Concurrent namespace. Because
OrderablePartitioner<TSource> inherits from Partitioner<TSource>, the implementations
are similar. In addition to partitioning, OrderablePartitioner enforces indexing.

Using Partitioner<TSource>
To create a custom partitioner, you would first create a new class derived from Partitioner
<TSource>. Because that’s an abstract class, you must GetPartitions. If the SupportDynamic
Partitions property returns true, you should also implement GetDynamicPartitions:

■	 GetPartitions  You call this method to return an array of partitions. Each partition is
individually enumerable and has a range of items that the partition will handle.

IList<IEnumerator<TSource>> GetPartitions(int partitionCount)

	 Chapter 6  Customizations	 163

■	 GetDynamicPartitions  Unlike GetPartitions, which returns a collection of partitions,
GetDynamicPartitions returns individual partitions on demand. The method returns
an enumerable. You can use the enumerator to iterate partitions with the MoveNext
method or another technique, such as a foreach method.

IEnumerable<TSource> GetDynamicPartitions()

■	 SupportsDynamicPartitions  Some methods, such as Parallel.ForEach, require imple-
mentation of GetDynamicPartitions. This property confirms that GetDynamicPartitions
is implemented. If it is, true is returned.

bool SupportsDynamicPartitions { get; }

Follow these rules when creating a custom partitioner:

■	 Enumerate the entire input collection.

■	 Do not skip elements.

■	 Do not duplicate elements.

■	 If the collection is orderable, ensure that indexes should be unique and non-negative.

In this next example, you will create a custom partitioner in which the chunk size is incre-
mented in each partition. For example, if there are four partitions and the chunk size for the
first partition is one, the second would increase to a chunk size of two, partition three would
have a chunk size of three, and so on.

Create a custom partitioner that assigns an increasingly large chunk size to ​
each partition

	 1.	 Create a new C# console application in Visual Studio 2010. Add using state-
ments for the System.Threading, System.Threading.Tasks, System.Collections,
and System.Collections.Concurrent namespaces.

	 2.	 Define a class that inherits the Partitioner<TSource> type. This is your custom parti-
tioner. At the beginning of the class, declare a collection to store the input data.

IList<TSource> list;

	 3.	 Create a constructor to assign the input data to the list collection.

public CustomPartitioner(IList<TSource> input)
{
 list = input;
}

	 4.	 Create an enumerable object as a nested class, and have it inherit the IEnumerable​
<TSource> interface. This class will manage the enumerator for the outer class.

class EnumerableWrapper : IEnumerable<TSource>

164	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

	 5.	 Add three fields to the enumerable class:

❑	 A collection to cache the data collection from the outer class

❑	 An index variable to track the current element

❑	 Another variable to track the number of partitions

IList<TSource> list = null;
int index = -1;
int partitionSize = 0;

	 6.	 You can now implement the IEnumerable.GetEnumerator method. Use the popular
iterator pattern to reduce the amount of code required. (You can review the iterator
pattern at msdn.microsoft.com; the “Design Pattern in .NET: Iterator” article is a good
resource.) As partitions are requested, increment the partition size. Set the range of the
partition as a factor of the partition size. Use the yield statement to add each element
to the partition. If the collection has been fully enumerated, break the enumeration.
Keep track of the current index.

 public IEnumerator<KeyValuePair<long, TSource>> GetEnumerator()
 {
 int localPartition = Interlocked.Increment(ref partitionSize);
 int localIndex = Interlocked.Increment(ref index);
 int begin = localIndex;
 int end = begin + localPartition;
 int i = 0;
 for (i = begin; i < end; ++i)
 {
 if (i >= list.Count)
 {
 localIndex = i;
 yield break;
 }
 yield return list[i];
 }
 Interlocked.Decrement(ref index);
 }

	 7.	 Implement IEnumerable.GetEnumerator, which defers to the GetEnumerator method.
The nested enumerable class is now complete.

IEnumerator IEnumerable.GetEnumerator()
{
 return ((IEnumerable<TSource>)this).GetEnumerator();
}

	 8.	 Your custom partitioner supports dynamic partitions. For that reason, implement
the GetDynamicPartitions method. In the method, return an instance of the nested
enumerable class, which is used to enumerate partitions. Also, implement the
SupportsDynamicPartitions property to confirm that dynamic partitions are supported.

msdn.microsoft.com

	 Chapter 6  Customizations	 165

public override IEnumerable<TSource> GetDynamicPartitions()
{
 return new EnumerableWrapper();
}
public override bool SupportsDynamicPartitions { get { return true; } }

	 9.	 Complete the custom partitioner with the GetPartitions method. Throw an exception
if the partition count is invalid. Create an unordered collection to hold the requested
partitions. In a loop, add partitions to the collections. At the end, return the collection
of partitions.

public override IList<IEnumerator<TSource>> GetPartitions(int partitionCount)
{
 if (partitionCount < 1)
 throw new ArgumentOutOfRangeException("partitionCount");
 var obj = new List<IEnumerator<TSource>>();
 var enumerable = GetDynamicPartitions();
 for (int i = 0; i < partitionCount; ++i)
 {
 obj.Add(enumerable.GetEnumerator());
 };
 return obj;
}

	 10.	 In the Main method, test your custom partitioner. Create a collection of numbers.
Initialize the custom partitioner with the numbers collection. In a Parallel.ForEach loop,
use the custom partitioner. In the task, do some work and display the current task ID
and item from the numbers collection.

static void Main(string[] args)
{
 int [] numbers = new int[] { 1, 2, 3, 5, 7, 8, 4, 5, 6, 7, 8, 9, 10 };
 var samplePartitioner = new CustomPartitioner<int>(numbers);
 Parallel.ForEach(samplePartitioner, (item) =>
 {
 Thread.SpinWait(20000);
 Console.WriteLine("Task {0} Item {1}", Task.CurrentId, item);
 });
}

	 11.	 Build and run the program.

Here is the complete code for the application.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Collections.Concurrent;
using System.Threading;
using System.Collections;
using System.Threading.Tasks;

166	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

namespace PartitionerNamespace
{

 class CustomPartitioner<TSource>: Partitioner<TSource>
 {
 IList<TSource> list;

 public CustomPartitioner(IList<TSource> input)
 {
 list = input;
 }

 class EnumerableWrapper : IEnumerable<TSource>
 {
 IList<TSource> list = null;
 int index = -1;
 int partitionSize = 0;

 public EnumerableWrapper(IList<TSource> _list)
 {
 list = _list;
 }

 public IEnumerator<TSource> GetEnumerator()
 {
 int localPartition = Interlocked.Increment(ref partitionSize);
 int localIndex = Interlocked.Increment(ref index);
 int begin = localIndex;
 int end = begin + localPartition;
 int i = 0;
 for (i = begin; i < end; ++i)
 {
 if (i >= list.Count)
 {
 localIndex = i;
 yield break;
 }
 yield return list[i];
 }
 Interlocked.Decrement(ref index);
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 return ((IEnumerable<TSource>)this).GetEnumerator();
 }
 }

 public override IEnumerable<TSource> GetDynamicPartitions()
 {
 return new EnumerableWrapper(list);
 }

 public override bool SupportsDynamicPartitions { get { return true; } }

	 Chapter 6  Customizations	 167

 public override IList<IEnumerator<TSource>> GetPartitions(int partitionCount)
 {
 if (partitionCount < 1)
 throw new ArgumentOutOfRangeException("partitionCount");
 var obj = new List<IEnumerator<TSource>>();
 var enumerable = GetDynamicPartitions();
 for (int i = 0; i < partitionCount; ++i)
 {
 obj.Add(enumerable.GetEnumerator());
 };
 return obj;
 }
 }

 class Program
 {

 static void Main(string[] args)
 {
 int [] numbers = new int[] { 1, 2, 3, 5, 7, 8, 4, 5, 6, 7, 8, 9, 10 };
 var samplePartitioner = new CustomPartitioner<int>(numbers);
 Parallel.ForEach(samplePartitioner, (item) =>
 {
 Thread.SpinWait(10000);
 Console.WriteLine("Task {0} Item {1}", Task.CurrentId, item);
 });

 Console.WriteLine("Press enter to exit");
 Console.ReadLine();
 }
 }
}

The following image shows the output for the application. Note that each task handles an
increasing number of items; this behavior is defined in the partition.

168	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Using OrderablePartitioner<TSource>
You would implement the OrderablePartitioner<TSource> class instead of Partition<TSource>
when you need to support indexing. As mentioned previously, OrderablePartitioner<TSource>
is derived from Partition<TSource> and has similar methods. The primary difference is that
the methods have an extra parameter to accommodate an index.

The following list describes the important members of the OrderablePartitioner<TSource>
type. GetOrderablePartitions is abstract and is the only method that must be implemented.

■	 GetOrderablePartitions  This method returns a static list of partitions. Each partitioner
is an enumerator and represents a collection of elements to be handled in the partition.
As mentioned, this method is abstract and must be implemented in the derived class.

IList<IEnumerator<KeyValuePair<long, TSource>>> GetOrderablePartitions(int
partitionCount)

■	 GetOrderableDynamicPartitions  This method returns each partition on demand. Call
it repeatedly to get more than one partition.

IEnumerable<KeyValuePair<long, TSource>> GetOrderableDynamicPartitions()

■	 SupportsDynamicPartitions  Some methods, such as Parallel.ForEach, require dynamic
partitions. This property confirms the implementation of that method. Return true if the
GetOrderableDynamicPartitions method is implemented.

bool SupportsDynamicPartitions { get; }

OrderablePartitioner has special properties, which are normally set in the constructor. Here
are the properties:

■	 KeysNormalized  Keys must be distinct. If this property is true, indexes must be dis-
tinct and contiguous.

■	 KeysOrderedAcrossPartitions  If this property is true, elements are in order across
partitions. The first partition has the initial elements, and the last partition has the final
elements.

■	 KeysOrderedInEachPartition  If this property is true, elements are ordered within a
partition.

In the previous tutorial, you implemented a custom partitioner by using Partitioner<TSource>
and assigned chunks of increasing sizes to partitions. That example can be updated to use an
OrderablePartitioner. Here is the IEnumerable.GetEnumerator method of the new example. As
you can see in the comments, there are two minor changes. The biggest change is convert-
ing <TSource> to KeyPair<long, TSource>. The additional generic type parameter is the index
of the current element.

	 Chapter 6  Customizations	 169

// In the following line, <TSource> changed to KeyValuePair<long, TSource>
 public IEnumerator<KeyValuePair<long, TSource>> GetEnumerator()
 {
 int localPartition=Interlocked.Increment(ref partitionSize);
 int localIndex = Interlocked.Increment(ref index);
 int begin = localIndex;
 int end = begin + localPartition;
 int i = 0;
 for (i = begin; i < end; ++i)
 {
 if (i >= list.Count)
 {
 localIndex = i;
 yield break;
 }
 yield return new KeyValuePair<long, TSource>(i, list[i]);
 }
 Interlocked.Decrement(ref index);
 }

Here is the full implementation of the class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Collections.Concurrent;
using System.Threading;
using System.Collections;
using System.Threading.Tasks;

namespace PartitionerNamespace
{

 class CustomPartitionerer<TSource> : OrderablePartitioner<TSource>
 {
 IList<TSource> list;

 public CustomPartitionerer(IList<TSource> input): base(true, false, true)
 {
 list = input;
 }

 class EnumerableWrapper : IEnumerable<KeyValuePair<long, TSource>>
 {
 IList<TSource> list = null;
 int index = -1;
 int partitionSize = 0;

 public EnumerableWrapper(IList<TSource> _list)
 {
 list = _list;
 }

170	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

 public IEnumerator<KeyValuePair<long, TSource>> GetEnumerator()
 {
 int localPartition=Interlocked.Increment(ref partitionSize);
 int localIndex = Interlocked.Increment(ref index);
 int begin = localIndex;
 int end = begin + localPartition;
 int i = 0;
 for (i = begin; i < end; ++i)
 {
 if (i >= list.Count)
 {
 localIndex = i;
 yield break;
 }
 yield return new KeyValuePair<long, TSource>(i, list[i]);
 }
 Interlocked.Decrement(ref index);
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 return ((IEnumerable<TSource>)this).GetEnumerator();
 }

 }

 public override IEnumerable<KeyValuePair<long, TSource>>
GetOrderableDynamicPartitions()
 {
 return new EnumerableWrapper(list);
 }

 public override bool SupportsDynamicPartitions { get { return true; } }

 public override IList<IEnumerator<KeyValuePair<long, TSource>>>
GetOrderablePartitions(int partitionCount)
 {
 if (partitionCount < 1)
 throw new ArgumentOutOfRangeException("partitionCount");
 var obj = new ConcurrentBag<IEnumerator<KeyValuePair<long, TSource>>>();
 var enumerable = GetOrderableDynamicPartitions();
 for (int i = 0; i < partitionCount; ++i)
 {
 obj.Add(enumerable.GetEnumerator());
 }
 return obj.ToList();
 }

 }

 class Program
 {

 static void Main(string[] args)

	 Chapter 6  Customizations	 171

 {
 int[] numbers = new int[] { 1, 2, 3, 5, 7, 8, 4, 5, 6, 7, 8, 9, 10 };
 CustomPartitionerer<int> samplePartitioner =
 new CustomPartitionerer<int>(numbers);
 Parallel.ForEach(samplePartitioner, (item, state, index) =>
 {
 Thread.SpinWait(10000);
 Console.WriteLine("Task {0} Item {1}", Task.CurrentId,
 item);
 });

 Console.WriteLine("Press enter to exit");
 Console.ReadLine();
 }
 }
}

Custom Schedulers
Task schedulers are responsible for scheduling and executing tasks on open threads. The
.NET Framework 4 thread pool is the default scheduler. Although this section is about custom
task schedulers, you should reserve custom schedulers for those rare occasions when the
default scheduler is not sufficient. Until then, this section will at least be entertaining. All task
schedulers implement the TaskScheduler class, which you’ll find in the System.Threading.Tasks
namespace.

As mentioned, the default scheduler is ideal for most parallel operations. The .NET
Framework 4 thread pool employs several techniques to improve performance and reduce
possible contention. The default scheduler maintains both a global queue and local queues
as part of the strategy to reduce contention—and thereby the need for synchronization.
Maintaining multiple queues removes the global queue as a single source of contention.
Top tasks are placed on the global queue, and subtasks are placed on local queues. Multiple
threads can access the global queue, which requires coordination. Local queues are typically
accessed from one thread, which removes the need for synchronization in most circum-
stances. However, local queues are work-stealing queues. If a thread’s local queue is empty,
that thread can steal work from another local queue. Stealing a task from a non-affinity local
queue does require minimum synchronization. Long-running tasks can adversely affect the
performance of the .NET Framework 4 thread pool.

The Context Scheduler
The TPL actually includes two schedulers. The default scheduler uses the .NET Framework 4
thread pool. The other scheduler included in the TPL is the Synchronization Context sched-
uler. This scheduler runs tasks on the originating thread, not on a separate thread. This is
particularly useful for tasks that access user interface controls. As you probably know, user

172	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

interface controls are accessible only from the user interface thread that created the control—
and that restriction also applies to tasks running on a different thread. Look at the following
code, which attempts to update a text box control from a task.

Parallel.ForEach(numbers, (item) =>
{
 Thread.Sleep(1000);
 txtNumber.Text = item.ToString();
});

If only it were that easy. Unfortunately, the preceding code is unsuccessful, and the error
shown in the following image occurs. This is the expected exception that occurs when you
attempt to access a control from an unrelated thread.

In contrast, the following code works perfectly! The only difference is that it adds a call to the
TaskScheduler.FromCurrentSynchronizationContext method, which returns a synchronization
context scheduler, updating a ParallelOptions object so that it references the new scheduler.
The code then passes that ParallelOptions object to one of the Parallel.ForEach method over-
loads. Because the context for the scheduler is the user interface thread, the code executes
successfully and updates the text box without errors.

options.TaskScheduler = TaskScheduler.FromCurrentSynchronizationContext();
 foreach(item in numbers)
 {
 Thread.Sleep(1000);
 txtNumber.Text = item.ToString();
 };

The Task Scheduler
As mentioned, the default task scheduler—the .NET Framework 4 thread pool—functions
best with short, discrete tasks. To execute a series of long-running operations in parallel, you
might want to implement a custom scheduler. Here are some other situations in which a cus-
tom scheduler might be helpful:

	 Chapter 6  Customizations	 173

■	 You could use a custom scheduler when you want to execute tasks on threads with
specific thread priority—for example, to lower the thread priority to keep the user
interface more responsive when performing concurrent tasks.

■	 You could implement a task scheduler that supports ordered tasks. You might want to
strictly enforce FIFO or LIFO execution.

The first step when implementing a custom scheduler is to inherit the TaskScheduler class.
TaskScheduler is a partially implemented class. As such, you can defer to the base class imple-
mentation by using the base keyword. In addition, you inherit the cancellation model, excep-
tion management, and other standard behavior from the base class implementation, which
is great, because it saves a lot of work; you don’t have to implement all the plumbing a task
scheduler requires to build a custom task scheduler.

You must override these methods in your custom scheduler:

■	 GetScheduledTasks  This method returns an enumerable list of tasks that are pending
execution on the scheduler.

IEnumerable<Task> GetScheduledTasks()

■	 QueueTask  This method is called to give the scheduler the next task to be queued.
Add the task to the collection of tasks waiting to execute.

void QueueTask(Task task)

■	 TryExecuteTaskInline  This method executes the task inline on the current thread.
This avoids having to use another thread. You must decide whether to execute already
queued tasks. Return false if the task is not executed in this specific call.

bool TryExecuteTaskInline(Task task, bool taskWasPreviouslyQueued)

These members are optional:

■	 TryDequeue  This method removes the provided task from the task queue. If it is suc-
cessful, return true.

bool TryDequeue(Task task)

■	 TryExecuteTask  This tries to execute the provided task. If it is successful, return true.
Return false if you do not execute the task. You should not execute the same task twice.

bool TryExecuteTask(Task task)

Using a Custom Task Scheduler
There are several ways to plug in a custom scheduler. One option is to create an instance
of the ParallelOptions class and set the scheduler with the TaskScheduler property. You saw
this technique demonstrated earlier. Overloads of both the Parallel.ForEach and Parallel.For

174	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

methods accept ParallelOptions as a parameter. The following example code sets a custom
scheduler by using ParallelOptions.

var numbers = Enumerable.Range(0, 100);
ParallelOptions options = new ParallelOptions();
options.TaskScheduler = new CustomScheduler();
Parallel.ForEach(numbers, options, item => DoSomething());

You can also assign a task scheduler directly to a task by using the Task.Start method. An
overload of the Task.Start method accepts TaskScheduler as a parameter, as shown here.

Task t = new Task(() => DoSomething());
t.Start(new CustomScheduler());

You can also designate a custom scheduler in the TaskFactory.StartNew method. Several
overloads of TaskFactory.StartNew accept a TaskScheduler as a parameter. Unfortunately,
there is no simple overload with parameters for just the task and the custom scheduler.
Here’s an example that assigns a custom scheduler by using the TaskFactory.StartNew
method.

TaskFactory.StartNew(()=>DoSomething(),cts.Token , TaskCreationOptions.None,
new CustomScheduler());

Finally, you can create the custom scheduler in the constructor of a TaskFactory.

var tf=new TaskFactory(new CustomScheduler());d
tf.StartNew(()=>DoSomething());

Creating a Custom Scheduler
In the following exercise, you will create a custom scheduler. Your scheduler will wrap each
task with a setup and cleanup method. By using this feature, you can assign global setup and
cleanup methods to tasks executed on the scheduler. Task schedulers are difficult to keep
simple, so to keep this example task scheduler relatively simple, you will not make the task
scheduler disposable, implement error handling, or check for exceptions, all of which you
should do in real-world code.

Create a custom task scheduler that supports setup and cleanup methods

	 1.	 Create a new C# console application in Visual Studio 2010. Add using statements
for the System.Threading, System.Threading.Tasks, and System.Collections.Concurrent
namespaces.

	 2.	 Start by defining a custom task scheduler that inherits from the TaskScheduler class. At
the beginning of the class, define a list collection to track queued tasks. Also define two
Action<Task> delegates that will handle the setup and cleanup code.

	 Chapter 6  Customizations	 175

List<Task> tasks = new List<Task>();
Action<Task> Setup;
Action<Task> Cleanup;

	 3.	 In the custom scheduler constructor, initialize the setup and cleanup methods. Both
should default to null.

public CustomScheduler(Action<Task> _Setup=null,
 Action<Task> _Cleanup=null)
{
 Setup = _Setup;
 Cleanup = _Cleanup;
}

	 4.	 It’s time to override specific TaskScheduler methods. First, implement the QueueTask
method. Add the given task to the task collection in a thread-safe manner. Create a
new thread. Within the thread, call the Setup, TryExecuteTask, and Cleanup methods.
Make the new thread a background thread and then start the thread.

protected override void QueueTask(Task currentTask)
{
 lock (this)
 {
 tasks.Add(currentTask);
 }
 Thread t = new Thread(new ThreadStart(() =>
 {
if(Setup!=null) Setup(currentTask);
TryExecuteTask(currentTask);
if(Cleanup!=null) Cleanup(currentTask);
 }));
 t.IsBackground = true;
 t.Start();
}

	 5.	 Override the TryDequeue method. Remove the provided task from the task collection in
a thread-safe manner.

protected override bool TryDequeue(Task task)
{
 lock (this)
 {
 tasks.Remove(task);
 }
 return true;
}

	 6.	 Add the GetScheduledTasks method to return the collection of queued tasks waiting to
execute.

protected override IEnumerable<Task> GetScheduledTasks()
{
 return tasks.ToArray();
}

176	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

	 7.	 For simplicity, the TryExecuteTaskInline method is not implemented. Override this
method and return false. You have completed your first custom scheduler!

protected override bool TryExecuteTaskInline(Task task,
bool taskWasPreviouslyQueued)
{
 return false;
}

	 8.	 In the Main method, test the custom scheduler. Create a range of integer values
from 0 to 10. Create an instance of the ParallelOptions type. Assign ParallelOptions​
.TaskScheduler an instance of the custom scheduler. In the constructor, provide a setup
and cleanup method as parameters. In each method, display the task identifier.

 var numbers = Enumerable.Range(0, 10);
 ParallelOptions options = new ParallelOptions();
 options.TaskScheduler = new CustomScheduler((task) =>
 {
 Console.WriteLine("Before Task {0,2}", task.Id);
 }, (task) =>
 {
 Console.WriteLine("After Task {0,2}", task.Id);
 });

	 9.	 Next, iterate the collection of numbers with a Parallel.ForEach method with the
ParallelOptions object as a parameter. This will provide a reference for the custom
scheduler to the Parallel.ForEach method. The actual parallel operation is a lambda
expression. In the lambda, display the current value. Add a couple of tabs to more
easily distinguish this from other output.

 Parallel.ForEach(numbers, options, (number) =>
 {
 Console.WriteLine("\t\tValue = {0}", number);
 });

	 10.	 Build and run the program.

Here’s the complete code for the example application.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;
using System.Collections.Concurrent;

namespace Scheduler
{
 public class CustomScheduler : TaskScheduler
 {
 List<Task> tasks = new List<Task>();
 Action<Task> setup;

	 Chapter 6  Customizations	 177

 Action<Task> cleanup;

 public CustomScheduler(Action<Task> _setup=null,
 Action<Task> _cleanup=null)
 {
 setup = _setup;
 cleanup = _cleanup;
 }

 protected override void QueueTask(Task currentTask)
 {
 lock (this)
 {
 tasks.Add(currentTask);
 }
 Thread t = new Thread(new ThreadStart(() =>
 {
 setup(currentTask);
 TryExecuteTask(currentTask);
 cleanup(currentTask);
 }));
 t.Start();
 }

 protected override bool TryDequeue(Task task)
 {
 lock (this)
 {
 tasks.Remove(task);
 }
 return true;
 }

 protected override IEnumerable<Task> GetScheduledTasks()
 {
 return tasks.ToArray();
 }

 protected override bool TryExecuteTaskInline(Task task,
 bool taskWasPreviouslyQueued)
 {
 return false;
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 var numbers = Enumerable.Range(0, 10);
 ParallelOptions options = new ParallelOptions();
 options.TaskScheduler = new CustomScheduler((task) =>
 {
 Console.WriteLine("Before Task {0,2}", task.Id);
 }, (task) =>
 {
 Console.WriteLine("After Task {0,2}", task.Id);

178	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

 });

 Parallel.ForEach(numbers, options, (number) =>
 {
 Console.WriteLine("\t\tValue = {0}", number);
 });
 }
 }
}

The following image shows the output for the application. You can see the messages from
both the setup and cleanup methods.

Summary
If you have unique requirements, you can customize the three major components of parallel
programming in the .NET environment.

■	 Producer-consumer collections

■	 Task partitioners

■	 Task schedulers

Customizing the TPL is fun and often useful. This chapter provides several practical examples
where customization might be beneficial, such as creating a task scheduler that executes
lower-priority tasks. However, customization should be reserved for unique situations where
the default features of the TPL are not best utilized. In most scenarios, the TPL is ideal and is
preferred to a custom solution.

	 Chapter 6  Customizations	 179

Producer-consumer collections support the producer-consumer pattern, where pro-
ducer objects add objects and consumer objects remove objects from the underlying
collection. To create a custom producer-consumer, you implement key members of the
IProducerConsumerCollection interface. The GetEnumerator method, the TryAdd method,
the TryTake method, the IsSynchronize property, and the Count property are the essential
methods and properties to implement.

Partitioners partition or group parallel operations into tasks for efficient load balanc-
ing. You can create custom partitioners by simply calling the Partitioner.Create method.
You can also create entirely new partitioners by inheriting the Partitioner<TSource> or
OrderablePartitioner<TSource> classes. The important members to implement include the
GetPartitions method, the GetDynamicPartitions method, and the SupportsDynamicPartitions
property.

The task scheduler queues and later executes tasks. The default task scheduler is the .NET
Framework 4 thread pool, which employs a mixture of a global queue and local queues. The
global queue is for top tasks, and the local queues hold nested tasks. This model improves
performance by reducing the need for synchronization. You can create custom task sched-
ulers by inheriting the TaskScheduler class. The important methods to implement are the
GetScheduledTasks, QueueTask, TryExecuteTaskInline, TryDequeue, and TryExecuteTask
methods.

Quick Reference
To Do this
Create a custom producer-
consumer type

Implement the IProducerConsumerCollection interface.

Create a partitioner Invoke the Partitioner.Create method, which returns a
partitioner.

Use a second strategy to
create a custom partitioner

Implement the Partitioner<TSource> or
OrderablePartitioner<TSource> abstract class.
OrderablePartitioner<TSource> supports custom
partitioning and indexed or ordered access within
each partition.

Create a custom scheduler to
replace the default scheduler
(.NET Framework 4 thread
pool)

Implement the TaskScheduler class.

Schedule tasks on a specific
thread context

Use the TaskScheduler.FromCurrentSynchronizationContext
method. For example, you can execute tasks specifically on
the user interface thread to access user interface controls.

		 181

Chapter 7

Reports and Debugging
After completing this chapter, you will be able to

■	 Perform live debugging of a managed application.

■	 Create and open managed dumps.

■	 Perform post-mortem analysis by using dumps.

■	 Use the Parallel Tasks window.

■	 Understand both views of the Parallel Stacks window.

■	 Configure projects for the Concurrency Visualizer.

■	 Understand the various views of the Concurrency Visualizer.

■	 Analyze real-world problems with the Concurrency Visualizer.

Parallel applications are in general more complex than sequential versions of the same appli-
cation. Threads, tasks, synchronization, and other aspects of parallel programming add extra
levels of complexity. For this and other reasons, parallel applications are uniquely challenging
to implement and maintain. The Task Parallel Library (TPL) abstracts some of this complexity.
When something goes wrong, however, it is sometimes necessary to understand the seman-
tics of parallel programming. Visual Studio 2010 offers several new features that can help
you debug parallel code. You can discover the source of deadlocks, isolate load imbalances,
explore synchronization bottlenecks, and investigate other problems that occur in a parallel
application.

Maximum processor utilization, scalability, and effective load balancing in a multicore envi-
ronment are some of the goals of a parallel application. You’ll see how to take advantage
of the various windows and reports discussed in this chapter to verify these important mile-
stones. You should set and then evaluate these benchmarks on a regular basis to assure
success.

A discussion of debugging and maintaining parallel applications can be long and ardu-
ous. An entire book could be written just on managed debugging alone. For example,
John Robbins is the author of two complete books on the subject; the latest is Debugging
Microsoft .NET 2.0 Applications (Microsoft Press, 2006). This chapter can provide only an
overview of general debugging techniques. Walkthroughs are also provided to help you
understand the important topics introduced in this chapter.

182	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Debugging with Visual Studio 2010
Visual Studio provides an intuitive interface for debugging both managed and native appli-
cations. The Visual Studio debugger is a separate component within the Visual Studio inte-
grated development environment (IDE). Visual Studio 2010 introduces many new debugging
features, such as the ability to create and save managed dumps. In addition, you can now use
Visual Studio to perform managed post-mortem analysis on a dump.

Live Debugging
You can perform real-time debugging of a running application. This is considered live debug-
ging, which you can start in several different ways:

■	 You can start debugging from an active project. Open the Visual Studio project for
your managed application. This should be a runnable application, such as a Console
or Windows Forms application. Select Debug from the menu, and then select Start
Debugging. (The shortcut key is F5.) Assuming that your program compiles successfully,
the application will start with the debugger attached.

■	 You can attach the debugger to a running application by using Visual Studio. From the
menu, select Debugging, and then select Attach To Process. The dialog box shown in
the following image appears. Select the application you want to debug from the list,
and then click the Attach button. If you have a corresponding project available, you
might want to open it first. This would help with source-level debugging.

	 Chapter 7  Reports and Debugging	 183

■	 The last option is known as Just-In-Time debugging. When an application crashes, a
dialog box appears that presents you with several choices (see the following image).
One of the options is to attach the debugger and begin debugging the application in
a Visual Studio session. From the crash dialog box, select the Continue button to begin
Just-In-Time debugging. Visual Studio installs itself as the default Just-In-Time debug-
ger at installation.

Most of the user interface for debugging, such as the various debugging windows, is not
available for use unless the application is running but interrupted. It is hard to debug a
moving target. However, there are a variety of techniques to interrupt an application, most
normally breakpoints. You can insert a breakpoint into a running application from the Debug
menu in Visual Studio.

There are several types of breakpoints:

■	 Location  This sets a breakpoint on a specific source statement.

■	 Condition  This honors the breakpoint when a Boolean condition is true. For example,
you can honor the breakpoint if a variable contains a specific value.

■	 Hit Count  This sets a breakpoint on a specific instance, such as every third instance or
when a variable exceeds a certain value.

■	 Filter  This type filters a breakpoint on a thread, process, or machine. This is useful
when there are several threads executing through the same source code. In this circum-
stance, it might be useful to break on a specific thread.

■	 When Hit  This executes a macro or displays a trace message when the breakpoint is
hit. A When Hit breakpoint is also known as a Tracepoint and looks different than other
breakpoints: It appears as a diamond, not as a red circle. By default, when they are hit,
When Hit breakpoints do not break! When one of these breakpoints is hit, the trace
is displayed or the macro is executed. You can choose to break at the breakpoint by
selecting that option in the Tracepoint dialog box. If this option is chosen, the break-
point changes to the common red circle for breakpoints and execution is interrupted
when the breakpoint is hit.

Most developers set a location breakpoint by using the F9 function key. Simply place the
insertion point at the target location in your source code and click F9. The F9 shortcut key
acts as a toggle to turn a breakpoint on or off. You can also convert an existing breakpoint to

184	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

another type by using the context menu. Right-click the breakpoint in the source window or
in the Breakpoints window to change the type, as shown in the following image.

Performing Post-Mortem Analysis
Post-mortem analysis involves debugging an application after execution has completed—
a task that is most often accomplished with dumps. Managed debugging of dumps is an
important new feature of Visual Studio 2010 and includes creating and opening managed
dumps, which is extremely important in a production environment in which live debugging
is not an option. Instead of debugging, you can create a dump of the application. Dumps
require updated symbols; symbol management is beyond the scope of this chapter, but you
can find several online resources for guidance.

To create a dump, you first interrupt the running application. One method is to choose
Debug from the menu and then select Break All. After interrupting the application, choose
Save Dump As from the Debug menu. The Save Dump As dialog box appears. Enter the
name, and select the type of dump you want to create. You can create dumps both with or
without heap information. The default is mini dumps with heap information. To create dumps
of applications already running, start with Tools | Attach To Process in Visual Studio, which
might include identifying a remote machine. You can then create the dump.

You can also open managed dumps in Visual Studio. If possible, open the related project
first. The dump file does not have to be created in Visual Studio—it might have been created
from another application, such as Windows Task Manager, WinDbg, or ADPlus. After open-
ing a dump, Visual Studio displays the Minidump File Summary, as shown in the next image.
This window presents summary information pertaining to the dump, including when the
dump was created, the list of loaded modules, and the originating operating system. To start
debugging with the dump, select the Debug With Mixed or Debug With Native Only button
(the green triangles in the Actions section). You can then begin your analysis by using the
various debug windows.

	 Chapter 7  Reports and Debugging	 185

Debugging Threads
Threads play a major role in parallel applications. For debugging purposes, you’ll find
thread information in the Threads window. As with most debugging windows, select
Debug | Windows to open the Threads window. You’ll often want to use the Call Stack and
the Threads windows together; if you open one of these windows, you should probably
open the other. Selections in the Threads window, such as the current thread, can affect the
results shown in the Call Stack window.

The following image shows the Threads window.

186	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

The threads in the preceding windows are from the sample application for this chapter. The
application itself is trivial. It was created solely to demonstrate various aspects of the debug
windows. You’ll find the code for the sample application listed at the end of this chapter. As
shown in the Threads window, this sample application hosts a variety of threads.

There are several columns in the Threads window; the first two columns are untitled.

■	 First column (no heading)  This is for flags. Flagging a thread allows you to group,
highlight, or filter threads.

■	 Second column (no heading)  This is the active threads column. A yellow arrow indi-
cates the current thread. If a white arrow appears in this column, it indicates a thread
that has been interrupted by the debugger.

■	 ID  The ID is the operation system identifier for the thread.

■	 Managed ID  This is the common language runtime (CLR) identifier for the thread.

■	 Category  The Category is the type of thread, such as the Main or Worker thread.

■	 Name  This contains the name assigned to the thread, if any. You should always name
threads, because it makes debugging easier.

■	 Location  This is the entry point method for the thread. When you point to a row in
this column, the call stack for that thread is displayed (see the following figure).

■	 Priority  The last column is the thread priority.

The columns are easy to change and organize. Click a column heading to sort on that col-
umn. You can also drag column headers to reorder the location of columns and add columns
by using the Columns arrow at the right end of the Columns label.

	 Chapter 7  Reports and Debugging	 187

A right-click context menu is available for the threads in the Threads window. Two of the com-
mands on the context menu are Switch To Thread and Freeze. Switching to a thread makes
the chosen thread the current thread. You can also double-click a thread in the Threads win-
dow to perform the switch. In either case, the yellow arrow will move to that thread row. The
Freeze command suspends a thread. You can use this command to isolate threads that are
running the same source code.

What are all of these threads doing? You can discover that by pointing to the Location col-
umn for a particular thread to present the Call Stack window. You’ll find a persistent view
of this information in the Call Stack window. When you change the current thread in the
Threads window, the content of the Call Stack window updates to reflect the new selection.
The following image shows both the Threads window and Call Stack window.

188	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

By default, external code might not be shown in the Call Stack window because it tends to
clutter the window. To view external code, right-click to open the context menu in the Call
Stack window. Select Show External Code to immediately view the external code, as shown in
the next image.

Examine the bottom half of the preceding Call Stack window. You’ll see clear evidence of a
task being created, queued, and finally invoked on a thread in the .NET Framework 4 thread
pool. This is evidence of a parallel application. In the Call Stack window, you can expand
the Name column to view parameters and other information pertaining to the method. For
example, this is the detailed information for the ExecuteWithThreadLocal method. You can
see that the Task ID and an entry point method are the parameters.

mscorlib.dll!System.Threading.Tasks.Task.ExecuteWithThreadLocal(ref
System.Threading.Tasks.Task currentTaskSlot = Id = 4,
Status = Running, Method = "Void MA(System.Object)") + 0x160 bytes

You might think that there must be a more direct way to obtain this information. Of course
there is! Visual Studio 2010 offers two new debugging windows, Parallel Tasks and Parallel
Stacks, for viewing tasks more directly.

Using the Parallel Tasks Window
Tasks, tasks, and more tasks! Parallel programs are built upon tasks. In the TPL, tasks are
wrappers for parallel operations that are later queued and scheduled on threads in the .NET
Framework 4 thread pool, which is the default scheduler. As such, tasks are the central ingre-
dient of a parallel program; tasks replace threads as the basic unit of execution. Tasks are part
of the additional complexity found in parallel code. For these reasons, debugging a parallel
application often begins with debugging tasks.

	 Chapter 7  Reports and Debugging	 189

Visual Studio 2010 introduces the Parallel Tasks window for monitoring and debugging tasks.
The Parallel Tasks window is similar to the Threads window in its look and feel and function-
ality. For those familiar with the Threads window, transitioning to the Parallel Tasks window
should be simple. The next image shows the Parallel Tasks window.

The Parallel Tasks window displays several columns. Some of these columns are identical to
those in the Threads window:

■	 First column (no heading)  You can flag a task in the first column. Flagging is used to
group, highlight, or filter tasks.

■	 Second column (no heading)  This is the active task column. A yellow arrow indicates
the current task. If a white arrow appears in this column, it indicates the task that has
been interrupted by the debugger.

■	 ID  The ID is the task identifier.

■	 Status  Status is the execution state of the task, such as running, waiting, or dead-
locked. The appropriate icon is displayed at the left end of the column.

■	 Location  This column shows the location of the task in the call stack. If you point to
an entry in this column, the entire call stack for the task is displayed. The entry point
method for the task is displayed at the bottom of the call stack (see the next image).

■	 Task  This is the entry point method and argument for the task.

■	 Thread Assignment  Tasks run on threads. This column displays the name and thread
identifier of that thread.

■	 AppDomain  This identifies the application domain for the task.

190	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Click a column heading to sort on that column, or drag a column heading to change the
column order. You can use the context menu to select additional columns, such as the Task
and AppDomain columns. You can also group tasks on a particular column. Choose Group
By ColumnName from the context menu. In the following image, the tasks are grouped by
status.

Developers often struggle to resolve deadlock conditions. Here, the Parallel Tasks window
comes to the rescue! In this example, both Task 2 and Task 3 are deadlocked on something.
What is the reason for the deadlock? In the next exercise, you will discover the answer to
that question. The exercise assumes that you have created an application from the sample
code at the end of the chapter. Results vary from machine to machine. This is to be expected,
because not all machines are identical.

Use the Parallel Tasks window to find the source of a deadlock

	 1.	 If you have not done so already, create a console application for Microsoft Visual C# in
Visual Studio 2010. Replace the code in the application with the source code at the end
of this chapter.

	 2.	 Build the application and start debugging. A breakpoint instruction is programmatically
embedded in the application. The program will automatically break at the hardcoded
breakpoint.

	 3.	 From the Debug menu, choose Windows. Open the Parallel Tasks window. Use the con-
text menu, as shown earlier, to group tasks on the Status column.

	 4.	 Now that the columns are grouped by status, you can easily observe that Task 2 and
Task 3 are deadlocked. Point to the status column for Task 2. As shown in the follow-
ing image, a tooltip is displayed that indicates that Task 2 is waiting for a System.Object
owned by thread 7992. Upon examining the call stack, you see that Task 3 is running on
that thread.

	 Chapter 7  Reports and Debugging	 191

Note  The task and thread numbers might vary on your machine.

	 5.	 Point to the status for Task 3. Once again, you’ll see a tooltip. Task 3 is also blocked and
waiting for a System.Object. This object is owned by thread 4780.

	 6.	 Evidence points to a deadlock because Task 2 and Task 3 are both blocked and waiting
for each other. You can examine the source code to confirm this. In the Parallel Tasks
window, open the context menu for Task 3. Select Switch To Task. This will jump to the
actual source code for that task (see the next image). The final statement executed for
the current stack frame is highlighted, which is the Monitor.Enter method on the s2
object as a parameter. This is where the task deadlocked. You should note that the task
has already acquired a lock for the s1 object.

192	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

	 7.	 Repeat the steps for Task 2 to view the source code (see the following image). You
should see that this task has stopped on a Monitor.Enter method for the s1 object,
which is the same object that Task 3 already owns. Aha! This confirms that Task 2 and
Task 3 are hopelessly deadlocked on each other. Admittedly this example is somewhat
contrived. However, it demonstrates many of the features of the new Parallel Tasks
window.

Using the Parallel Stacks Window
The Parallel Stacks window displays a call stack from the perspective of parallel execution.
Similar to the Threads and Call Stack windows, the Parallel Tasks and Parallel Stacks windows
are frequently used together.

There are two views of the Parallel Stacks window: Threads view and Tasks view. In the TPL,
a task is the encapsulation of a parallel operation. This is the reason developers focus on
tasks when developing a parallel application—threads are largely abstracted. However,
when things go wrong, information on threads is often helpful. For example, knowing which
threads share the same call stack can be useful. For this reason, the Parallel Stacks window
has both a Threads view and a Tasks view. You can select the desired view in the drop-down
list at the top of the Parallel Stacks window.

	 Chapter 7  Reports and Debugging	 193

The Threads View
The Threads view of the Parallel Stacks window shows the call path of threads through
concurrent code. Each thread represents a separate path of execution. Call stacks are repre-
sented as nodes or boxes in the window. Each node lists methods of the call stack. The cur-
rent stack frame is highlighted with a yellow arrow, and a white arrow (if any) indicates the
stack frame in which execution was interrupted by the debugger. The current path through
the application is shown with a bold blue arrow line. The status of a thread is shown above
the call stack in the terminating node. On the left side of the window, you can use the Zoom
slider control to scale the window.

There are a few method icons:

■	 Yellow arrow  The active stack frame for the current thread

■	 Green arrow  The active stack frame for a noncurrent thread

■	 Cloths thread icon (two squiggly lines)  The active stack frame for a noncurrent
call stack

194	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

You can switch the current stack frame by double-clicking one of the noncurrent frames. This
changes the context for many things, such as the local variables.

Some threads can follow the same path and share a common call stack. When that occurs,
that node is shared by multiple threads, as annotated in the node header. In the diagram at
the beginning of this section, two threads share the {MG, MH, MI} class stack. If you want to
identify the specific threads, you can point to the header. A tooltip appears that displays the
thread identifier and type for each thread, as shown in the next image.

The preceding diagram depicts two threads sharing a call stack. Afterward, the threads devi-
ate. One thread calls the XClass.MJ method, while the other calls XClass.MK. You can point to
the header for the nodes to identify the specific threads.

Obviously, pointing can be helpful in a variety of ways. For example, when you point to
a method in the call stack, the tooltip displays the stack frame for each of the concurrent
threads. In addition to the thread identifier, the display includes parameters and source line
information. The stack frame for the current thread appears in bold (when multiple threads
are running through this particular call stack, as shown here).

The Threads view has a toolbar that offers various commands.

	 Chapter 7  Reports and Debugging	 195

From left to right, here’s an explanation of the toolbar buttons:

■	 View drop-down list  Toggles between the Threads view and the Tasks view

■	 Stack frames  Shows stack frames for threads flagged in the Threads window

■	 Method view  Shows the callers and callees of the current method

■	 Auto Scroll To Current Stack Frame  Scrolls to bring the current stack frame into the
visible window

■	 Toggle Zoom Control  Toggles the Zoom slider control between visible and non-visible

You can right-click any method in the call stack to open a context menu, as shown in the
following image.

The context menu commands are as follows:

■	 Switch to Frame  Selects the current method as the active stack frame

■	 Go To Task  In the Tasks view, shows the task for this method

■	 Go To Source Code  Jumps to the source code for a particular method

■	 Go To Disassembly  Opens the disassembly for a particular method

■	 Show External Code  Displays external code that is not in your code

■	 Hexadecimal Display  Switches between hexadecimal and decimal numbers

■	 Symbol Load Information  Displays the status of symbols for this method

■	 Symbol Settings  Allows you to configure symbol information

The Bird’s Eye View is a super cool feature. You can pan a reduced version of the graph within
a miniature window. This is useful if you have a large diagram and want to quickly view a
non-visible area. The Bird’s Eye View button is at the intersection of the right and bottom
toolbars. When you click the button, an insert appears that contains the diagram. The shaded
area is your view. Click and drag within the Bird’s Eye view to reposition the diagram. If the
diagram is entirely visible, neither the scrollbars nor the Bird’s Eye View button appear.

196	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

The Tasks View
The Tasks view shows the call stack of tasks and is the other view available in the Parallel
Stacks window. In general, this view presents the application from the perspective of tasks
and removes other extraneous information. It shows the call path of tasks, where each node is
an individual call stack. The current path is highlighted with a bold blue arrow. All this should
sound familiar at this point, because for ease of use, the Threads and Tasks views are similar.

Here is the Tasks view.

The preceding diagram shows five tasks. Two threads execute on the same call stack, which
is {MI, MH, MG}. One of the tasks then calls MJ. The other task calls MK. Three threads share
the {MC, MB, MA} call stack before separating paths. If you point to a node header, you will
display a tooltip with information on each task in the call stack. If you point to the header
with three tasks, here’s what is displayed:

Within a node, you can point to a specific method. A tooltip appears that provides the frame
number, the full symbol name, the parameters, and source line information, as shown next.

	 Chapter 7  Reports and Debugging	 197

The active stack frame of the current task is highlighted with a yellow arrow. In general, the
same arrows and other icons are available as in the Threads view—but they apply to tasks
rather than threads.

The end node of each call path includes the task status in the header, shown as an icon. In
the following end node, the red circle with a dash indicates a deadlock. As in other examples,
you can point to the task header for more detail, as shown here.

Using the Concurrency Visualizer
Performance analysis of a parallel application is more challenging than performance analy-
sis of a sequential application. A parallel application has more moving parts, such as tasks,
threads, the thread pool, and synchronization. Therefore, Microsoft created the Concurrency
Visualizer as an advanced profiler and included this powerful tool in Visual Studio 2010. The
Concurrency Visualizer provides a wide assortment of charts and reports to help you visual-
ize and analyze the performance of your parallel application.

The Concurrency Visualizer is feature rich. This section contains only an overview of this com-
prehensive tool, but you can find detailed articles and videos on this subject on MSDN. For
example, see “Concurrent Visualization Techniques in the VS2010 Profiler,” by Phil Pennington.

The Concurrency Visualizer is an Event Tracing for Windows (ETW) consumer and receives
kernel-level data from low-level tracing in the operating system. ETW provides several ben-
efits. It’s implemented as part of the operating system kernel and not the user-mode appli-
cation. Because it is non-invasive, ETW has minimal impact on your application. ETW is a
systemwide resource and provides a single tracing model that all developers can depend on.
As an ETW subscriber, the Concurrency Visualizer has certain restrictions:

■	 Visual Studio must have administrative privileges to launch the Concurrency Visualizer.

■	 By default, 64-bit applications cannot view a complete stack trace in the Concurrency
Visualizer. You must set the Disable Paging Executive flag in the registry. Run the fol-
lowing command from the command line to update the registry appropriately.

REG ADD "HKLM\System\CurrentControlSet\Control\Session Manager\Memory
 Management" -v DisablePagingExecutive -d 0x1 -t REG_DWORD -f

198	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

After updating the registry key, you must reboot the system before attempting to use
the Concurrency Visualizer.

■	 ETW can consume considerable storage, which might cause data loss and an error
when you are using the Concurrency Visualizer. Increase the ETW buffer size to resolve
this problem.

To start the Concurrency Visualizer, select Launch Performance Wizard from the Analyze
menu to begin profiling. In the Performance Wizard dialog box, shown here, you select the
Concurrency option and the Visualize The Behavior Of A Multithreaded Application check box.

Then proceed to the next screen. In this screen, you select the project you intend to pro-
file. If you want to start an executable, you can choose the An Executable (.EXE File) option.
When you choose this, you’ll see a different dialog box in which you can browse to the target
executable.

	 Chapter 7  Reports and Debugging	 199

The next window is essentially a confirmation screen. Here you click the Finish button to
accept the current settings and begin profiling. Clicking the Previous button allows you
to revisit settings and make changes.

200	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

Your application starts, and trace data is collected as the application runs. Select the Stop
Profiling link to stop performance profiling. The data analysis begins when the profiling stops.
Be patient, because the analysis might take some time. When the analysis completes, the
Concurrency Visualizer presents three views: CPU Utilization, Threads, and Cores.

The Performance Explorer opens automatically and provides an overview of the profiling ses-
sions. You can run multiple profiling sessions and save them to individual files with a .psess
extension. Each session appears in the Performance Explorer window, shown here.

From the command line, you can collect data for the Concurrency Visualizer by using the
Visual Studio Profiler. This allows you to automate the process, which is especially helpful on
production machines where Visual Studio is not installed.

CPU Utilization View
CPU Utilization view displays utilization of the logical cores in the system. Logical cores
include virtual cores from solutions such as hyperthreading.

	 Chapter 7  Reports and Debugging	 201

In the preceding graphic, the y-axis represents the logical cores, and the x-axis is the timeline,
shown in milliseconds. There is a Zoom slider control above the graph. Drag right to enlarge
the graph. You can also drag the mouse horizontally across the graph to zoom in to a portion
of the graph.

Each color on the graph indicates a type of process and its relative CPU utilization. The leg-
end explains the purpose of each color.

■	 Green indicates the CPU utilization of the current application.

■	 Yellow shows CPU utilization for other applications.

■	 Red is the percentage of CPU utilization accorded to the system.

■	 Gray shows idle processor cores.

If in doubt, you can point to an area of the graph to see a tooltip that provides information
on that portion of the graph. For example, if you point to the green portion of the graph, the
name and process identifier for the current process displays.

CPU Utilization view is good for exposing a variety of problems, including low CPU utiliza-
tion, which could be an indicator of deadlocks or over-synchronization. You can even spot
excessive CPU utilization from other applications competing for processor resources.

202	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

The Threads View
The Threads view provides the most information of the three views. There are several regions
to the Threads view, as depicted in the following graphic.

The central region is a graph, where the x-axis is a timeline in milliseconds. The y-axis pre
sents mixed information. The top two rows are disk-read and disk-write activity. The remain-
ing rows are threads. These rows are labeled with a brief description and the thread identifier.
The various color segments in the bar graph indicate execution status. For example, green
indicates a running thread. The Visible Timeline Profile has an explanation of each category.
It also shows the percentage of time spent in each of these categories.

The execution categories are:

■	 Execution  The thread is running unimpeded.

■	 Synchronization  The thread is blocked for synchronization. The Concurrency
Visualizer will attempt to identify the source of the synchronization.

■	 I/O  The thread is blocking on an input/output event.

■	 Sleep  The thread voluntarily yields the CPU. Thread.Sleep is the most common
method for yielding the CPU.

■	 Memory Management  The thread is incurring blocking events related to memory-
related activities, such as page faults.

■	 Preemption  The thread is preempted by another thread. For example, this would
occur when a higher-priority thread starts running.

	 Chapter 7  Reports and Debugging	 203

■	 UI Processing  The user interface has a message pump, which handles messages for
the main window. For a responsive user interface, the message pump is typically idle
while waiting to respond to the next user interface message. This category indicates the
amount of work the user interface thread is performing in response to user interface
requests.

You can sort the threads in the graph on these categories. The sort button appears above
and to the left of the graph.

A segment is a contiguous region in one category of execution. You can point to a segment
for additional information. You’ll see different information depending on the category. As
shown in the following graphic for preemption, the replacing thread, the delay, and other
information is displayed in the tooltip.

You can also select segments in the graph. When you click a segment to select it, the selec-
tion enlarges for emphasis. In addition, some regions of the graph are in the context of the
selected segment, such as the Current stack and Unblocking stack results.

As with CPU Utilization view, you can enlarge the entire graph by using the Zoom slider con-
trol or by dragging horizontally to zoom in to a particular span.

You can also hide threads to focus on specific threads. Using the row labels, select the
threads you want to hide. Open the context menu for the selection, and choose Hide.
The graph for these is hidden threads and does not contribute to the analysis performed
for graph or reports. The calculations in the Threads view are adjusted to reflect only the
visible threads.

204	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

The Report Section
The report section, shown here, appears at the bottom of the graph in the Threads view.

The first tab is the Profile Report. The Profile Report can present different reports based on
the category selected in the Visible Timeline Profile. The default report is the Per-Thread
Summary report. Select Execution in the Visible Timeline Profile to see the Execution Profile
report. Select the Synchronization category for the Synchronization Blocking Profile report,
and so on. The Sleep Blocking Profile is shown in the next image. This report displays a sam-
pling showing when methods are in a sleep state. The Inclusive Blocking column includes
sampling for both the selected method and its calling methods. The Exclusive Blocking col-
umn shows the sampling for that method alone. In the following report, the last method
contributes the entire sampling, because the Inclusive Blocking and Exclusive Blocking col-
umns are identical.

The Current Stack tab shows the call stack of the selected segment in the Threads View
graph. If you select a different segment, the call stack is updated to reflect that. The Current
Stack report might display addition information; the category of the selected segment sets
the context for this information. For example, the report for a preemption segment, as shown
here, explains the type of synchronization and length of delay.

	 Chapter 7  Reports and Debugging	 205

The Unblocking Stack tab is helpful in finding a deadlock. When the category of the segment
is Synchronization, switch to the Unblocking Stack tab to view the call stack of the competing
thread that controls the synchronization.

The Cores View
The last view of the Concurrency Visualizer—and probably the simplest—is the Cores view,
which maps thread activity onto processor cores, as shown here.

The graph shows a timeline of the application applied to each processor. The y-axis shows
the processors, and the x-axis shows the timeline, in microseconds. In this graph, each thread
displays in a unique color. Gaps represent idle time on that processor core. If you point to a
particular segment, the thread identifier will appear.

Below the graph is a report on the number of context switches per thread. Excessive context
switches can adversely affect performance. Several factors can contribute to this problem,
including short tasks, improper chunking, and so on. The focus of the report is cross-core
context switching. From a performance perspective, cross-core context switching is especially
expensive relative to a normal context switch. Cross-core switching happens when a thread
resumes on a different processor after a context switch. You lose performance optimization
because the original processor cache related to the thread is unavailable.

Unlike the other views, the Cores view does not have any context menus.

206	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

In this tutorial, you will use each of the three views and the major features of the
Concurrency Visualizer. Three scenarios are presented to cover different aspects of
the Concurrency Visualizer. Expect similar but not identical results, because different
hardware and other variations in the environment can alter the outcome.

Enumerate a collection of numbers both sequentially and in parallel, and compare
the results with the Cores view

	 1.	 Create a console application for C# in Visual Studio 2010. Add using statements for the
System.Threading and System.Threading.Tasks namespaces. In the Main method, ask for
user acknowledgement before exiting the application. If user acknowledgment is not
provided, the application will conclude prematurely.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

namespace VisualizerTutorial
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Press enter to exit");
 Console.ReadLine();
 }
 }
}
In the Program class, create a method that represents compute bound work.
static void DoSomething()
{
 Thread.SpinWait(int.MaxValue / 10);
}
Define a method that iterates a collection of numbers from 0 to 1000. Iterate the
collection sequentially using a foreach method. Perform compute bound work in the loop
operation. In the Main method, start a thread with the previous function as the entry
point.
static void ParallelLoop()
{

	 Chapter 7  Reports and Debugging	 207

 var numbers = Enumerable.Range(0, 1000);
 foreach (var number in numbers)
 {
 DoSomething();
 }
}
static void Main(string[] args)
{
 new Thread(new ThreadStart(ParallelLoop)).Start();
 Console.WriteLine("Press enter to exit");
 Console.ReadLine();
}

	 2.	 Start the Currency Visualizer from the Analyze menu, and then select Launch Perfor
mance Wizard. Stop profiling the application after 5 to 10 seconds. Open the Cores
view in the Concurrency Visualizer. The graph will show load imbalance. Notice the light
utilization of most processor cores. The diagram also shows that one thread is running
across all the cores, which is not terribly efficient, either. This will cause cross-core con-
text switching.

	 3.	 Now change your application to iterate the numbers collection by using a
Parallel.ForEach method for parallel programming.

static void ParallelLoop()
{
 var numbers = Enumerable.Range(0, 1000);
 Parallel.ForEach(numbers, (number) =>
 {
 Thread.SpinWait(int.MaxValue / 10);
 });
}

208	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

	 4.	 Rerun the Concurrency Visualizer and open the Cores view. This looks much better!
Every processor core shows continuous activity. In addition, each core is running a dif-
ferent thread, which is more efficient than what was shown in the previous results.

	 5.	 Switch to CPU Utilization view. You’ll see that the application has high CPU utilization
and periodically peaks at 100% utilization. Your application is likely not executing alone
on your local machine; it probably shares the system with other running applications.
Those applications can also impact CPU utilization. You can test this. Remember, the
yellow portion of the graph is other processes, and utilization of the current process is
green.

	 6.	 Start another instance of Visual Studio 2010. Keep the other session of Visual Studio
open. You are going to build a console application just to burn CPU cycles. Create
a console application for C# in Visual Studio 2010. Add a using statement for the
System.Threading namespace.

	 Chapter 7  Reports and Debugging	 209

	 7.	 In the Main method, create a background thread that spins in an infinite loop. Set
thread priority to above normal.

 Thread t1 = new Thread(new ThreadStart(() => {
 while (true) Thread.SpinWait(int.MaxValue); }));
 t1.IsBackground = true;
 t1.Priority=ThreadPriority.AboveNormal;

	 8.	 Similarly, create a second thread. Start both threads.

Thread t2 = new Thread(new ThreadStart(() => {
 while (true) Thread.SpinWait(int.MaxValue); }));
t2.IsBackground = true;
t2.Priority = ThreadPriority.AboveNormal;

t1.Start();
t2.Start();

	 9.	 Read from the console to prevent the application from exiting. Display an appropriate
message. Build and run the application. The application will spin endlessly, consuming
CPU cycles.

	 10.	 Start profiling the original application for the Concurrency Visualizer. With both appli-
cations running, the system will be noticeably less responsive. After five seconds, stop
profiling. The Concurrency Visualizer will open. Revisit the CPU Utilization view. There is
a noticeable variance in the graph. As expected, the amount of CPU utilization for other
applications is much greater than before. This is because those applications are com-
peting for processor resources.

210	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

	 11.	 The Concurrency Visualizer will attempt to analyze synchronization events to provide
instructive information. In this part of the tutorial, you will create two threads that com-
pete for a lock. This can be shown in the Threads view. In the Main method, define a
new object. The object is used for synchronization.

object sync = new object();

	 12.	 Create and start two identical threads. In each thread, lock on the synchronization
object, and then sleep for a couple of seconds. This creates a race condition, and the
second thread to reach the lock will block. That thread will remain blocked for around
two seconds.

new Thread(new ThreadStart(() =>
{
 lock (sync)
 {
 Thread.Sleep(2000);
 }

})).Start();

new Thread(new ThreadStart(() =>
{
 lock (sync)
 {
 Thread.Sleep(2000);
 }

})).Start();

	 13.	 Rebuild the application and start profiling for the Concurrency Visualizer. Stop the pro-
filing after 5 to 10 seconds. Open the Threads view. Find the two dependent threads in
the graph. One of the threads starts with a synchronization segment. Select and point
to that segment. The tooltip should confirm that the thread was blocked for nearly 2
seconds. A connector line appears. This vertical bar joins both threads participating in
the synchronization.

	 Chapter 7  Reports and Debugging	 211

	 14.	 At the bottom of the Threads view, select the Current Stack tab to view the call stack
of the selected thread. Double-click the last (bottom) method of the call stack. You will
jump in the source code to the location of the synchronization, which is the lock state-
ment. Next, select the Unblocking Stack tab to view the call stack of the other thread.
Again, scroll to the bottom of the call stack. Double-click the last method. You will
jump to the location in source code where the lock was released.

Congratulations! You now know where the lock originated and was released. Here is the
complete application.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

namespace VisualizerTutorial
{
 class Program
 {
 static void DoSomething()
 {
 Thread.SpinWait(int.MaxValue / 10);
 }

 static void ParallelLoop()
 {
 var numbers = Enumerable.Range(0, 1000);
 Parallel.ForEach(numbers, (number) =>
 {
 DoSomething();
 });
 }
 static void Main(string[] args)
 {
 new Thread(new ThreadStart(ParallelLoop)).Start();

 object sync = new object();
 new Thread(new ThreadStart(() =>
 {
 lock (sync)
 {
 Thread.Sleep(2000);
 }

 })).Start();

 new Thread(new ThreadStart(() =>

212	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

 {
 lock (sync)
 {
 Thread.Sleep(2000);
 }

 })).Start();
 Console.WriteLine("Press enter to exit");
 Console.ReadLine();
 }
 }
}

The Sample Application
This is the source code for the application used earlier in this chapter.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;
using System.Diagnostics;

namespace Reporting_Example
{
 class XClass
 {
 public void MA(object param) { MB(param); }
 public void MB(object param) { MC(param); }

 object s1 = new object();
 object s2 = new object();

 public void MC(object param)
 {
 if (param == "1")
 {
 MD();
 }
 if (param == "2")
 {
 ME();
 }
 if (param == "3")
 {
 MF();
 }
 }

 public void MD()
 {

	 Chapter 7  Reports and Debugging	 213

 ME();
 }

 public void ME()
 {
 while (true) Thread.SpinWait(int.MaxValue / 20);
 }

 public void MF()
 {
 ML();
 }

 public void MG(object param)
 {
 MH(param);
 }

 public void MH(object param)
 {
 MI(param);
 }

 public void MI(object param)
 {
 if (param == "4")
 {
 MJ();
 }
 else
 {
 MK();
 }
 }

 public void MJ()
 {
 Monitor.Enter(s1);
 Thread.SpinWait(int.MaxValue / 20);
 Monitor.Enter(s2);
 }

 public void MK()
 {
 Monitor.Enter(s2);
 Thread.SpinWait(int.MaxValue / 10);
 Monitor.Enter(s1);
 }

 public void ML()
 {
 MM();
 }

 public void MM()

214	 Parallel Programming with Microsoft Visual Studio 2010 Step by Step

 {
 while (true) { Thread.SpinWait(int.MaxValue / 3); Debugger.Break(); };
 }

 }

 class Program
 {
 static XClass obj = null;

 static void Main(string[] args)
 {
 obj = new XClass();

 Task.Factory.StartNew(obj.MA, "1");
 Task.Factory.StartNew(obj.MA, "2");
 Task.Factory.StartNew(obj.MA, "3");

 Task.Factory.StartNew(obj.MG, "4");
 Task.Factory.StartNew(obj.MG, "5");

 Console.WriteLine("Press enter to exit");
 Console.ReadLine();
 }
 }
}

Summary
Visual Studio 2010 has been enhanced to assist in maintaining and debugging parallel appli-
cations. The enhancements include the introduction of new debugging windows and reports.
Parallel programs are generally more sophisticated and complex than sequential programs.
The Task Parallel Library (TPL) has done an excellent job of abstracting developers from the
hardcore details and nuances of developing a parallel application. However, when something
goes wrong, you need a new assortment of tools for debugging multicore applications. A
suite of these tools is now available in Visual Studio 2010.

You can now create and open managed dumps for post-mortem analysis. This is especially
beneficial for production debugging in which a full debugger might not be installed on the
target machine. Dumps are also convenient for remote debugging. For these reasons, the
integration of managed dumps into Visual Studio 2010 is helpful to all developers of man-
aged applications, including programmers of parallel applications.

The Threads and Call Stack windows are not new to Visual Studio but are nonetheless useful
when you are debugging a parallel application. The Threads window lists the active threads
with details such as thread identifier, status of the thread, category of thread, and thread
name. In the Threads window, you can flag a thread, freeze a thread, and switch context to a
particular thread. The Call Stack window shows the call stack of the current thread.

	 Chapter 7  Reports and Debugging	 215

The Parallel Tasks and Parallel Stacks windows are new in Visual Studio 2010. The Parallel
Tasks window provides detailed information on each task. Task identifier, status of the task,
location of the task, entry point method, and additional information are some of the details
available. As in the Threads window, in the Parallel Tasks window you can flag a task or freeze
the underlying thread. You can also jump to the source code for that task. There are two
views of the Parallel Stacks window. The Threads view shows the call stacks for active threads.
The Tasks view shows the call stacks from the perspective of active tasks. You can point to
nodes in the Parallel Stacks window to get valuable information on either tasks or threads.

The Concurrency Visualizer works with the Visual Studio Profiler to provide detailed graphs
and reports on the performance of a parallel application. The CPU Utilization view shows
utilization of logical cores for the current process, system processes, all other processes, and
idle time. The Threads view plots each thread along a timeline. Each thread is separated into
segments based on different categories, such as execution, synchronization, I/O, sleep, and
so on. The top rows of the Threads view are reserved for Disk Reads and Disk Writes. Finally,
the Cores view maps thread execution to processor cores.

Quick Reference
To Do this
View the current tasks of an application Open the Parallel Tasks window by clicking the Debug

menu and selecting Parallel Tasks Window.

Show additional detail about a particular
item in a parallel debugging window

Point to the item.

Display the call stack from the perspective
of parallel execution

Open the Parallel Stacks window by clicking the
Debug menu and selecting the Parallel Stacks
Window.

Scroll to a specific quadrant of a large
Parallel Stacks window view

Use the Bird’s Eye View button (in the lower-right
corner) and pan the view (the shaded area).

Profile a parallel application Start the Concurrency Visualizer by opening the
Analyze menu and then select Launch Performance
Wizard. In the Performance Wizard dialog box,
choose the Concurrency option.

Create a report to display CPU utilization
over a specific timeframe

In the Concurrency Visualizer, open the CPU
Utilization view.

In a deadlock, identify the controlling
thread

Open the Threads view of the Concurrency Visualizer.
Select a deadlocked segment. In the report section
(at the bottom), view the Unblocking Stack report.

	 classes	 217

Index

Symbols and Numbers
64-bit applications  197
== (double equal sign)  91
.NET Framework 4

concurrent collections  118, 144
customization  147
loop parallelism  15
parallel programming support  1
performance tuning  2
PLINQ  90
SpinLock and SpinWait structures  120
SpinWait  6
thread pool  15, 28, 94, 101, 103, 148, 171, 179
TPL  11, 16
wrappers for native critical sections  5

A
accounting applications  59, 149
Accounts Payable  149
Accounts Receivable  149
Action delegates

for loop  64
Parallel.Invoke method  22
PLINQ  99
TaskFactory.StartNew method  23

Add method  150
AddOrUpdate(TKey key, TValue, addValue, Func<TKey,

TValue, TValue>
updateFactory>) method  135

Add(T item) method  131
AggregateException  30, 33, 57, 73, 87, 105, 116
AggregateException.InnerExceptions property  87, 105
Aggregate method  109
Algorithm Structure pattern  14
Amdahl’s Law

about  7
Gustafson’s Law  9
Speedup  16

antecedent task  46
arrays

integer arrays  95
parallel queries on string arrays  99

askCreationOptions.PreferFairness option  28
askFactory.ContinueWhenAll method  49
AsOrdered clause  103, 116
AsParallel clause  94, 102, 109, 115
AsParallel method  94, 95, 102
AsSequential clause  102, 116
associative property  76
asynchronous input-output, concurrent execution  4
AttachToParent option  27

B
Barrier class  38–41
Barsis, Edward, Gustafson’s Law  8
base keywords  173
benchmarking

affirmation of expected performance
improvement  148

Speedup  7
binary comparisons  36
Bird’s Eye View  195
Blocking and Exclusive Blocking  204
BlockingCollection  119, 137–144, 145
blocks, try/catch block  51
BoundedCapacity property  144
breakpoints  183
break statement  67
Bubble sort  36
buffering, PLINQ  102

C
cache misses  5
calculations, Group Tasks Pattern  12
call stacks  193
Call Stack window  185, 187, 214
cancellation

about  43–46
parallel loops  68
PLINQ  107

CancellationToken.Cancel method  116
CancellationToken property  107
CancellationTokenSource class  107, 116
CancellationTokenSource type  43
CancellationToken type  43
catch blocks

defining  105
handling exceptions  31
unhandled exceptions  73

C#, foreach loop  67
child and parent tasks  52
chunk size

about  148
custom paritioners  162
default  63, 86
Parallel.Create method  161
Partitioner<TSource>  163
task partitioners  156

classes
Barrier class  38–41
CancellationTokenSource class  107, 116
ConcurrentStack class  125
Interlocked class  76

218	 classes (continued)

classes (continued)
MapReduce class  81, 84
Monitor class  76
OrderablePartitioner<TSource>  156
OrderablePartitioner<TSource> class  168–171, 179
Parallel class  64
ParallelOptions class  173
Partitioner<TSource> class  156, 162–167, 179
Program class  157, 160
Stopwatch class  95
System.Linq.ParallelEnumerable class  90
Task class  22–28
TaskScheduler class  171, 173, 174, 179

Cleanup method  175
CLR (common language runtime)

parallel programming and performance  1
unhandled exceptions in tasks  30

collections. See also concurrent collections
ConcurrentBag collection  130
ConcurrentDictionary collection  117
ConcurrentQueue collection  119
consumer-producer collections  148
integer collections  36
MapReduce pattern  80, 112
numbers collection  165
parallelism  19
Pivot sorts  38
producer-consumer collections  148–156
thread-safe and lock-free collections  6

combineAccumulatorsFunc function  109
comments in code  36
common language runtime. See CLR
commutative property  75
CompleteAdding method  141
compute-bound tasks  157
concurrency

parallel applications  4
testing: data parallelism  63

Concurrency Visualizer  197–212
about  215
Cores view  205–212
CPU Utilization view  200
performance tuning  2
Threads view  202–205

ConcurrentBag  130, 144
concurrent collections  117–146

BlockingCollection  137–144
concepts  119
ConcurrentBag  130
ConcurrentDictionary  135–137
ConcurrentQueue  129
ConcurrentStack  124–129
producer-consumer collections  119
SpinLock  120
SpinWait  122
synchronization  120–144

ConcurrentDictionary  117, 135–137, 144
concurrent execution, advantages  4

concurrent instruction and data streams  3
ConcurrentQueue  119, 129, 144
ConcurrentStack  119, 124–129, 144
ConcurrentStack class  125
Condition breakpoint  183
console applications  157
Console.ReadLine method  25, 66, 92
Console.WriteLine method  64, 66
consumer-producer collections  148
contention

custom schedulers  171
defined  5
kernel-mode and user-mode resources  5
SpinWait  123

context scheduler  171
context switches

about  4
performance  5, 21
per thread  205

continuation tasks  46–52
Continue methods  57
continue statement  67
cooperative cancellation  43
CopyTo method  152
Cores view  205, 205–212, 215
Count property  130, 131, 135, 144, 149, 179
Count reduction  109
CPU Utilization view  200, 208, 215
cross-core context switch

defined  5
performance  205

Ctrl+F5 shortcut  25
Ctrl+Shift+Esc key combination  61
Current Stack report  204
customization  147–180

context scheduler  171
identifying opportunities for  147
OrderablePartitioner<TSource> class  168–171
partitioners  162–171
Partitioner<TSource> class  162–167
producer-consumer collections  148–156
schedulers  171–178
task partitioners  156–162
task scheduler  172–178

custom partitioners, load balancing  148

D
database management  59
data collections, Geometric Decomposition pattern  14
Data Decomposition pattern  11
data dependency  12
data parallelism  59–88

compared to task parallelism  59
MapReduce pattern  80–86
reduction  74–80
unrolling sequential loops into parallel tasks  60–74

	 graphics rendering, concurrent execution	 219

F
F9 function key, breakpoint  183
factorials  78
Factory property  23
fantasy sports leagues  59
FIFO (first-in, first-out)

ConcurrentQueue  129
global queue  55

Filter breakpoint  183
Filter function  85
Filter parameter  84
Finding Concurrency pattern  11–13

Data Decomposition pattern  11
Data Sharing pattern  13
Group Task pattern  12
importance of  16
Order Tasks pattern  12
Task Decomposition pattern  11

Flynn’s taxonomy  3
ForAll method  99
ForAll operator  99
foreach loop  34, 65, 92
foreach method  92, 99
Fork/Join pattern  15
for loop

Finding Concurrency pattern  11
unrolling sequential loops into parallel tasks  64–67

for method  99
Freeze command  187
FROM clause  90
Function delegates  28
functions

combineAccumulatorsFunc function  109
Filter function  85
localFinally function  76
object-oriented programming  11
updateAccumulatorFunc function  109

FunctionTracker  127
Func<TResult> delegate  28

G
garbage collection, unhandled exceptions  32
Geometric Decomposition pattern  14
GetConsumingEnumerable method  140
GetDynamicPartitions method  163, 164, 179
GetEnumerator method  149, 151, 164, 179
GetInstanceCount method  151
GetOrderableDynamicPartitions method  168
GetOrderablePartitions method  168
GetPartitions method  162, 165, 179
GetScheduledTasks method  173, 175, 179
Ghemawat, Sanjay  80
global queue

custom schedulers  171
using  54

graphics rendering, concurrent execution  4

Data Sharing pattern  13
data streams

concurrent instruction  3
multiple  3–4

deadlocks, finding source  190
Dean, Jeffrey  80
debugging and reports  181–216

Concurrency Visualizer  197–212
debugging with Visual Studio 2010  1, 182–188
Parallel Stacks window  192–197
Parallel Tasks window  188–192
sample application  212–214

decryption routine, MISD  3
deferred execution  91
delegates, localFinally delegate  77
dependencies

data parallelism  62
LINQ reduction  108
Loop Parallelism pattern  15
Order Tasks pattern  12
unrolling sequential loops into parallel tasks  74

dequeuing, elements in a collection  119
derivative collections, MapReduce pattern  112
development life cycle  10
Dictionary collection  118
Divide and Conquer pattern  14
domains, queries and LINQ  90
double equal sign (==)  91
dual-core architecture

about  2
Speedup  6

dumps  184
duration, defined  97

E
efficiency. See performance
embarrassingly parallel  20
Enqueue (T item) method  130
Enumerable.Range method  110
equality, double equal sign (==)  91
ETW (Event Tracing for Windows)  197
events, synchronization  5
exceptions

about  57
cancellation exceptions  44
OperationCancelledException exception  46
PLINQ  105
unhandled exceptions in tasks  30–36
unrolling sequential loops into parallel tasks  72

Exclusive Blocking  204
ExecuteWithThreadLocal method  188
execution

categories  202
Group Tasks Pattern  12
time: preempting threads  4

expressions. See lambda expressions

220	 GroupBy clause

GroupBy clause  102
group operation parameter  82
group tasks

Group Tasks Pattern  12
Order Tasks pattern  12

Gustafson’s Law  8

H
handling exceptions: unrolling sequential loops into

parallel tasks  72
hardware, performance improvement trends  2
heap, multithreading  4
Hit Count breakpoint  183
hyperthreading  200
Hyper-Threading Technology  3

I
IDisposable.Dispose method  126
idle time, processor cores  205
IEnumerable.GetEnumerator method  164
IEnumerable interfaces  89
IEnumerable<TSource> interface  163
implementation-agnostic, Algorithm Structure

pattern  14
Implementation Mechanisms pattern  16
in clause  91
indexes, data parallelism  62
InnerExceptions property  30
input-output requests, preempting threads  4
insertion sort  37
instruction streams, multiple  3–4
integer arrays  95
integer collections, sorting  36
interleaving

about  4
benefits of  16

Interlocked.Add method  77
Interlocked class  76
interrupting a loop  67–72
I/O-bound threads  104
I/O execution category  202
IProducerConsumerCollection interface  119, 120, 124,

129, 137, 145, 150, 179
IProducerConsumerCollection<T>interface  149
IsEmpty property  125, 130–131, 135
IsHeldByCurrentThread property  122
IsHeld property  122
IsSynchronized property  149, 152
IsSynchronize property  179
iterations

handling exceptions  72
independent loop iterations  74

J
Just-In-Time debugging  183

K
kernel-level locks, SpinWait  122
kernel-mode

contention  5
context switch  4
locking: concurrent collections  144

KeysNormalized property  168
KeysOrderedAcrossPartitions property  168
KeysOrderedInEachPartition property  168
KeyValuePairs  114

L
lambda expressions  28, 35, 52, 70, 79, 92, 110, 133, 160
Language Integrated Query. See LINQ
lastFinally operation  87
libraries

MapReduce library  81
TPL  11, 16, 60, 64, 147, 178, 214

LIFO (last-in, first-out)  55
lightweight synchronization

concurrent collections  120
objects  5
spinning  6
synchronization  16

link lists, Recursive Data pattern  14
LINQ (Language Integrated Query). See also PLINQ

about  89
LINQ to Objects  89
LINQ to SQL  89
LINQ to XML  89
reduction and dependencies  108

lists
Data Decomposition pattern  11
insertion sort  37

live debugging with Visual Studio 2010  182
load balancing

Geometric Decomposition pattern  14
parallel programming  16
task partitioners  156

localFinally delegate  77
localFinally function  76
localFinally method  77
localInit method  77
local queues, custom schedulers  171
Location breakpoint  183
LockRecursionException  121
lock statement  5, 76
logging scheduler  148
logical cores  200
logical gates, Barrier class  38
logical parallelism versus physical parallelism  4
logical versus physical cores  3
LongRunning option  27
loop-level parallelism  59
Loop Parallelism pattern  15

	 Microsoft .NET Framework thread pool, performance	 221

loops
Data Decomposition pattern  11
data parallelism  59
foreach loop  34, 65, 92
iterations: dependencies  15
Parallel.ForEach loop  158
Parallel.For loop  67
parallel loops  75
unrolling sequential loops into parallel tasks  60–74

M
MapReduce class  84
MapReduce library  81
MapReduce.Map method  81, 84
MapReduce pattern  80–86, 116
MapReduce, PLINQ  112–115
MapReduce.Reduce method  81
Master/Worker pattern  15
matching keys, MapReduce  82
matrices, multiplying  110
Memory Management execution category  202
merge options, PLINQ  102
methods

Add method  150
AddOrUpdate(TKey key, TValue, addValue, Func<TKey,

TValue, TValue>
updateFactory>) method  135

Add(T item) method  131
Aggregate method  109
askFactory.ContinueWhenAll method  49
AsParallel method  94, 95, 102
Barrier class instance methods  39
CancellationToken.Cancel method  116
Cleanup method  175
CompleteAdding method  141
Console.ReadLine method  25, 66, 92
Console.WriteLine method  64, 66
Continue methods  57
CopyTo method  152
Enqueue (T item) method  130
Enumerable.Range method  110
ExecuteWithThreadLocal method  188
ForAll method  99
foreach method  92, 99
GetConsumingEnumerable method  140
GetDynamicPartitions method  163, 164, 179
GetEnumerator method  149, 151, 164, 179
GetInstanceCount method  151
GetOrderableDynamicPartitions method  168
GetOrderablePartitions method  168
GetPartitions method  162, 165, 179
GetScheduledTasks method  173, 175, 179
IDisposable.Dispose method  126
IEnumerable.GetEnumerator method  164
Interlocked.Add method  77
localFinally method  77
MapReduce.Map method  81, 84

MapReduce.Reduce method  81
Parallel.Create method  161
Parallel.ForEach method  65, 68, 76, 78, 86, 156, 157,

172, 176
Parallel.For method  63, 64, 68, 86, 156
Parallel.Invoke method  15, 19, 22, 31
ParallelLoopState.Break method  68
ParallelLoopState.IsStopped method  68
ParallelLoopState.Stop method  68, 87
ParallelQuery.ForAll method  115
ParallelQuery<TSource>.ForAll method  99
Partitioner.Create method  157, 158–159, 179
PerformRollback method  51
PushRange(T [] items) method  125
Push(T item) method  125
QueueTask method  173, 175, 179
Remove method  150
Setup method  175
SpinLock.Enter method  121
SpinLock.TryEnter method  121
SpinOnce() method  123
SpinUntil(Func<bool> condition) method  123
StartNew method  23
SupportsDynamicPartitions method  163, 168
Task.ContinueWith method  47–48, 51
TaskFactory.ContinueWhenAny method  50
TaskFactory.StartNew method  23–27, 29, 54
TaskScheduler.FromCurrentSynchronizationContext

method  172
Task.Start method  27
Task.WaitAll method  23
Task.WaitAny method  23
Task.Wait method  29, 32
Thread.Sleep method  54
Thread.SpinWait method  25, 95, 157, 160
ToArray method  152
TryAdd method  149, 179
TryAdd(T item) method  135
TryDequeue method  137, 173, 175, 179
TryDequeue(out T result) method  130
TryEnter method  121
TryExecuteTaskInline method  173, 179
TryExecuteTask method  173, 175, 179
TryPeek(out T result) method  131
TryPop(out T result) method  125
TryPopRange(T [] items) method  125
TryTake method  132, 137, 149, 179
TryTake(out T item, Int32 millisecondsTimeout)

method  144
TryTake(out T item) method  144
TryTake(out T result) method  131
TryUpdate(TKey key, TValue newValue, TValue

comparisonValue) method  135
Wait method  30
Where method  93
WithCancellation method  116

Microsoft .NET Framework thread pool, performance  21

222	 MIMD (Multiple Instruction Streams/Multiple Data Streams)

MIMD (Multiple Instruction Streams/Multiple Data
Streams)  3

MISD (Multiple Instruction Streams/Single Data
Stream)  3

Monitor class  76
monitors, SpinWait  122
Monitor type  5
Moore’s Law

about  1
multi-core architecture and processing speed  2
shift to multicore processors  16

multicore processors  2–6
MIMD  3
multiple instruction streams/multiple data

streams  3–4
multithreading  4–5
parallel programming support  1
performance  2
PLINQ  97
ratio of single-core versus multicore performance  7
synchronization  5–6

multiple data streams  3–4
multiple instruction streams  3–4
Multiple Instruction Streams/Multiple Data Streams

(MIMD)  3
Multiple Instruction Streams/Single Data Stream

(MISD)  3
Multiple Program/Multiple Data (MPMD)  3
multitasking, concurrent execution  4
multithreading  4–5
mutexes  5

N
namespaces

ParallelBook namespace  81
System.Collection.Concurrent namespace  162
System.Collections.Concurrent namespace  6, 15, 117,

130, 174
System.Diagnostics namespace  95
System.Linq namespace  90
System.Threading namespace  95, 120, 122, 206
System.Threading, System.Threading.Tasks

namespace  174
System.Threading.Tasks namespace  64, 66, 76, 78, 82,

171, 206
native critical sections, .NET Framework  5
NextSpinWillYield property  123
Normalize operation  156
numbers collection  165

O
objects

AggregateException object  30
lightweight synchronization objects  5
ParallelOptions object  172, 176
synchronization objects  5

OpenMP  9
OperationCanceledException exception  46, 107
operations, Group Tasks Pattern  12
operators

ForAll operator  99
OrderablePartitioner<TSource> class  156, 168–171, 179
OrderBy clause  90, 102
order restrictions, data parallelism  62
Order Tasks pattern  12
originating threads  171
outer tasks  52
overhead. See performance
oversubscription

defined  5
interleaving  16

P
ParallelBook namespace  81
Parallel class  64
Parallel.Create method  161
ParallelExecutionMode clause  100, 116
ParallelExecutionMode enumeration  101
Parallel.ForEach loop  158
Parallel.ForEach method  65, 68, 76, 78, 86, 156, 157,

172, 176
Parallel.For loop  67
Parallel.For method  63, 64, 68, 86, 156
Parallel.Invoke method  15, 19, 22, 31
parallelism. See data parallelism; task parallelism

goal of  19
parallelization-to-overhead ratio  156
Parallel Language Integrated Query. See PLINQ
parallel loops

cancelling  68
reduction  75

ParallelLoopState.Break method  68
ParallelLoopState.IsExceptional property  73
ParallelLoopState.IsStopped method  68
ParallelLoopState.Stop method  68, 87
ParallelMergeOptions enumeration  102
ParallelOptions class  173
ParallelOptions object  172, 176
parallel programming

about  1–18
concurrent collections  117–146
customization  147–180
data parallelism  59–88
PLINQ  89–116
reports and debugging  181–216
task parallelism  19–58

ParallelQuery.ForAll method  115
ParallelQuery<TSource>  99
ParallelQuery<TSource>.ForAll method  99
Parallel Stacks window  192–197

about  215
performance execution  2
Tasks view  196–197
Threads view  193–196

	 properties	 223

Parallel Tasks window  188–192
about  215
performance execution  2

parameters
Filter parameter  84
group operation parameter  82
MapReduce pattern  113
ParallelExecutionMode enumeration  101
TaskContinuationOptions parameter  50

parent and child tasks  52
parent-child relationship.  46
Partitioner.Create method  157, 158–159, 179
partitioners

custom partitioners  162–171
load balancing  148
OrderablePartitioner<TSource> class  168–171
Partitioner<TSource> class  162–167
task partitioners  156–162

Partitioner<TSource> class  156, 162–167, 179
patterns  9–15

Algorithm Structure pattern  14
Data Decomposition pattern  11
Data Sharing pattern  13
engineering solutions with  9
Finding Concurrency pattern  11–13
Group Task pattern  12
Order Tasks pattern  12
producer-consumer pattern  148
Supporting Structures pattern  15
Task Decomposition pattern  11

Payroll  149
performance

benchmarking  148
Bubble sort  36
CLR  1
ConcurrentBag  130
concurrent collections  117
context switches  4, 5
custom schedulers  171
data parallelism example  61
dependencies  20
Gustafson’s Law  8
hardware trends  2
optimizing the use of the available processor cores

with parallel execution of cores  1
PLINQ queries  97, 100
scaling  20
sequential processing  6
Speedup  6, 16
task partitioners  156
threads  21
unrolling sequential loops into parallel tasks  63
Visual Studio Profiler and Concurrency Visualizer  2

Performance Explorer  200
PerformRollback method  51
physical parallelism versus logical parallelism  4
physical versus logical cores  3
pivot sort  38, 42

PLINQ (Parallel Language Integrated Query)  89–116
about  90–98
AsOrdered  103
AsSequential  102
cancellation  107
ForAll operator  99
handling exceptions  105
MapReduce  112–115
MapReduce pattern  81, 87
operators and methods  99–105
ParallelExecutionMode  100
reduction  108–115
WithDegreeOfParallelism  104
WithMergeOptions  101

polling, cooperative cancellation  43
post-mortem analysis  184
precedence, unhandled exceptions  73
predecessor dependency  12
preempting threads  4
Preemption execution category  202
preemption segments  204
PreferFairness option  27
priority, preempting threads  4
problem domain, software development life cycle  10
processes, synchronization  5
processor affinity  5
processor cores, performance  1
processor speed and heat  2
Processor Utilization  98
producer-consumer collections  119, 148, 148–156
producer-consumer pattern, concurrent collections  144
Profile Report  204
Program class  157, 160
properties

AggregateException.InnerExceptions property  87,
105

associative property  76
BoundedCapacity property  144
CancellationToken property  107
commutative property  75
Count property  130, 131, 135, 144, 149, 179
Factory property  23
InnerExceptions property  30
IsEmpty property  125, 130–131, 135
IsHeldByCurrentThread property  122
IsHeld property  122
IsSynchronized property  149, 152
IsSynchronize property  179
KeysNormalized property  168
KeysOrderedAcrossPartitions property  168
KeysOrderedInEachPartition property  168
NextSpinWillYield property  123
ParallelLoopState.IsExceptional property  73
SupportsDynamicPartitions property  164, 179
SyncRoot property  118
Task.Result property  29
TaskScheduler property  173
Task.Status property  31

224	 PushRange(T [] items) method

PushRange(T [] items) method  125
Push(T item) method  125

Q
quad-core architecture

about  2
Speedup  6

queries. See LINQ; PLINQ
queues

Data Decomposition pattern  11
elements in a collection  119
global queue  54
work-stealing queue  54

QueueTask method  173, 175, 179
quick sort  38

R
range partitioning, chunk size  148, 159
read-only data access type  13
read-write data access type  13
Recursive Data pattern  14
reduction

data access type  13
data parallelism  62, 74–80
defined  13
Group Tasks Pattern  12
PLINQ  108–115

refactoring, pivot sort  42
registry keys, synchronization  5
relationships  46–56

continuation tasks  46–52
Order Tasks pattern  12
parent and child tasks  52
work-stealing queue  54

Release mode  25
Remove method  150
reports and debugging  181–216

Concurrency Visualizer  197–212
debugging with Visual Studio 2010  182–188
Parallel Stacks window  192–197
Parallel Tasks window  188–192
sample application  212–214

resources and threads  20

S
sales analysis  59
sample application  212–214
Save Dump As dialog box  184
scalability

about  19
concurrent collections  117
Data Sharing pattern  13
PLINQ  94

schedulers  171–178
context scheduler  171
task scheduler  172–178

scheduling, tasks and threads  20
scientific applications  59
segments, execution categories  203
SELECT and FROM clauses  90
Select clause  101–102
semaphores

about  5
SpinWait  122

sequential loops, unrolling into parallel tasks  60–74
serializing

access: PLINQ  115
parallel applications  6
portions of your LINQ query  102

serial operations, decomposing into parallel tasks  14
Setup method  175
Shakespeare, William  84
shared files, data parallelism  62
shared memory, data parallelism  62
sharing data  13
shortcuts

Ctrl+F5 shortcut  25
Ctrl+Shift+Esc key combination  61
F9 function key, breakpoint  183

SIMD (Single Instruction Stream/Multiple Data
Streams)  3

single-core processors  2
interleaving  4
performance  6
ratio of single-core versus multicore performance  7
shift to multicore processors  16
SISD  3

Single Program/Multiple Data. See SPMD
SISD (Single Instruction Stream/Single Data Stream)  3
Sleep Blocking Profile  204
Sleep execution category  202
software development life cycle  10
software patterns. See patterns
sort examples  36–42

Barrier class  38–41
Bubble sort  36
insertion sort  37
pivot sort  38, 42

source-level debugging  182
Speedup  6–9

Amdahl’s Law  7
Gustafson’s Law  8
task partitioners  156

SpinLock  120, 144
SpinLock.Enter method  121
SpinLock.TryEnter method  121
spinning  5
SpinOnce() method  123
SpinUntil(Func<bool> condition) method  123
SpinWait  6, 122, 144
SPMD (Single Program/Multiple Data)

MIMD model  3
pattern  15

SQL queries, LINQ  90

	 threads	 225

stacks
Data Decomposition pattern  11
multithreading  4
size of and threads  21

start dependency  12
StartNew method  23
Stopwatch class  95
streams, multiple instruction streams/multiple data

streams  3–4
stress testing, data parallelism  63
string arrays, parallel queries  99
subtasks  46, 52
successor dependency  12
successor task  47
Supporting Structures pattern  15
SupportsDynamicPartitions method  163, 168
SupportsDynamicPartitions property  164, 179
synchronization  120–144

BlockingCollection  137–144
collections  118
ConcurrentBag  130
concurrent collections  144
ConcurrentDictionary  135–137
ConcurrentQueue  129
ConcurrentStack  124–129
data access  13
dependencies  74
multicore computing  5–6
SpinLock  120
SpinWait  122

Synchronization Blocking Profile report  204
Synchronization execution category  202
synchronization objects  5
SyncRoot property  118
System.Collection.Concurrent namespace  162
System.Collections.Concurrent namespace  6, 15, 117,

130, 174
System.Diagnostics namespace  95
System.Linq namespace  90
System.Linq.ParallelEnumerable class  90
System.Threading namespace  95, 120, 122, 206
System.Threading, System.Threading.Tasks

namespace  174
System.Threading.Tasks namespace  64–65, 76, 78, 82,

171, 206

T
Task class  22–28

Parallel.Invoke method  22
TaskFactory.StartNew method  23–27
Task.Start method  27

TaskContinuationOptions parameter  50
Task.ContinueWith method  47–48, 51
TaskCreationOption  27
TaskCreationOption.LongRunning option  28
TaskCreationOptions.AttachedToParent option  53, 57
Task Decomposition pattern  11

TaskFactory.ContinueWhenAny method  50
TaskFactory.StartNew method  23–27, 29, 54
task parallelism  19–58

about  19–30
Barrier class  38–41
Bubble sort  36
cancellation  43–46
compared to data parallelism  59
continuation tasks  46–52
Function delegates  28
insertion sort  37
parent and child tasks  52
pivot sort  38, 42
relationships  46–56
sort examples  36–42
Task class  22–28
threads  21
unhandled exceptions in tasks  30–36
unrolling sequential loops into parallel tasks  60–74
work-stealing queue  54

Task Parallelism pattern  14
Task Parallel Library. See TPL
Task.Result property  29
tasks

about  21
compute-bound tasks  157
cooperative cancellation  43
.NET Framework 4 thread pool  28
partitioners  156–162
relationships: Order Tasks pattern  12
schedulers  148, 172–178
subtasks  52

TaskScheduler class  171, 173, 174, 179
TaskScheduler.FromCurrentSynchronizationContext

method  172
TaskScheduler property  173
Task.Start method  27
Task.Status property  31
Tasks view of the Parallel Stacks window  196–197
Task.WaitAll method  23
Task.WaitAny method  23
Task.Wait method  29, 32
TBB (Threading Building Blocks)  9
testing

and data parallelism  63
Speedup  7

threads
concurrent collections  118
context switches  205
debugging  185–188
I/O-bound threads  104
local storage  21
originating threads and the context scheduler  171
queuing and dequeuing elements in collections  119
SpinWait  123
synchronization  5
task parallelism  21
tasks and scheduling  20

226	 threads (continued)

threads (continued)
thread-local data: Data Sharing pattern  13
tracking thread ownership  121

thread-safe applications  5
Thread.Sleep method  54
Thread.SpinWait method  25, 95, 157, 160
Threads view

about  202–205
Disk Reads and Disk Writes  215
of the Parallel Stacks window  193–196

Threads window  185, 214
ToArray method  152
Toub, Stephen  80
TPL (Task Parallel Library)

customization  147
customizing  178
granularity  60
Implementation Mechanisms design phase  11
.NET Framework 4  16
parallel for loop  64
using  214

tracking thread ownership  121
trees, Recursive Data pattern  14
TryAdd method  149, 179
TryAdd(T item) method  135
try blocks  105
try/catch block  51, 141
TryDequeue method  137, 173, 175, 179
TryDequeue(out T result) method  130
TryEnter method  121
TryExecuteTaskInline method  173, 179
TryExecuteTask method  173, 175, 179
TryPeek(out T result) method  131
TryPop(out T result) method  125
TryPopRange(T [] items) method  125
TryTake method  132, 137, 149, 179
TryTake(out T item, Int32 millisecondsTimeout)

method  144
TryTake(out T item) method  144
TryTake(out T result) method  131
TryUpdate(TKey key, TValue newValue, TValue

comparisonValue) method  135
tuples, task partitioners  157
two-phase synchronization  123

U
UI Processing execution category  203
Unblocking Stack  205
undersubscription  5
unhandled exceptions

about  56
in tasks  30–36

unit testing, data parallelism  63
unrolling sequential loops into parallel tasks  60–74

dependencies  74
for loop  64–67
handling exceptions  72

interrupting a loop  67–72
performance  63

updateAccumulatorFunc function  109
user interface, concurrent execution  4
user-mode

contention  5
context switch  4

using statement  23, 41, 92
utilization, PLINQ queries  104

V
virtual cores

about  200
Hyper-Threading Technology  3

Visible Timeline Profile  202, 204
Visual Studio 2010  182–188

debugging threads  185–188
debugging windows  1
live debugging  182
parallel programming support  1
post-mortem analysis  184

Visual Studio Profiler, performance tuning  2

W
Wait method  30
weather reporting  59
When Hit breakpoint  183
Where clause  92
Where method  93
Windows operating system

closing threads  20
thread scheduling  21

Windows Task Manager  61
WithCancellation method  116
WithDegreeOfParallelism clause  104, 116
WithExecutionMode clause  101
WithMergeOptions clause  101, 116
word count example  84–86
work stealing

performance optimization  55
queue  54

wrappers, .NET Framework  5
write-only data access type  13

Y
yield statement  164

Donis Marshall
Donis Marshall has more than 20 years of experience using Microsoft technologies to design
and build enterprise software for leading companies in several industries. As a Microsoft
MVP, he is recognized as an exceptional technical community leader who actively shares
his real-world expertise with others. Experienced in training developers and engineers with
Microsoft products, Donis is the author of Programming Microsoft Visual C# 2008, Solid
Code, and Programming Microsoft Visual C# 2005.

	Contents at a Glance
	Table of Contents
	Foreword
	Introduction
	Chapter 1. Introduction to Parallel Programming
	Multicore Computing
	Multiple Instruction Streams/Multiple Data Streams
	Multithreading
	Synchronization

	Speedup
	Amdahl’s Law
	Gustafson’s Law

	Software Patterns
	The Finding Concurrency Pattern
	The Algorithm Structure Pattern
	The Supporting Structures Pattern

	Summary
	Quick Reference

	Chapter 2. Task Parallelism
	Introduction to Parallel Tasks
	Threads
	The Task Class
	Using Function Delegates

	Unhandled Exceptions in Tasks
	Sort Examples
	Bubble Sort
	Insertion Sort
	Pivot Sort
	Using the Barrier Class
	Refactoring the Pivot Sort

	Cancellation
	Task Relationships
	Continuation Tasks
	Parent and Child Tasks
	The Work-Stealing Queue

	Summary
	Quick Reference

	Chapter 3. Data Parallelism
	Unrolling Sequential Loops into Parallel Tasks
	Evaluating Performance Considerations
	The Parallel For Loop
	Interrupting a Loop
	Handling Exceptions
	Dealing with Dependencies

	Reduction
	Using the MapReduce Pattern
	A Word Count Example

	Summary
	Quick Reference

	Chapter 4. PLINQ
	Introduction to LINQ
	PLINQ

	PLINQ Operators and Methods
	The ForAll Operator
	ParallelExecutionMode
	WithMergeOptions
	AsSequential
	AsOrdered
	WithDegreeOfParallelism

	Handling Exceptions
	Cancellation
	Reduction
	Using MapReduce with PLINQ

	Summary
	Quick Reference

	Chapter 5. Concurrent Collections
	Concepts of Concurrent Collections
	Producer-Consumers

	Lower-Level Synchronization
	SpinLock
	SpinWait
	ConcurrentStack
	ConcurrentQueue
	ConcurrentBag
	ConcurrentDictionary
	BlockingCollection

	Summary
	Quick Reference

	Chapter 6. Customization
	Identifying Opportunities for Customization
	Custom Producer-Consumer Collections
	Task Partitioners
	Advanced Custom Partitioners
	Using Partitioner<TSource>
	Using OrderablePartitioner<TSource>

	Custom Schedulers
	The Context Scheduler
	The Task Scheduler

	Summary
	Quick Reference

	Chapter 7. Reports and Debugging
	Debugging with Visual Studio 2010
	Live Debugging
	Performing Post-Mortem Analysis
	Debugging Threads

	Using the Parallel Tasks Window
	Using the Parallel Stacks Window
	The Threads View
	The Tasks View

	Using the Concurrency Visualizer
	CPU Utilization View
	The Threads View
	The Cores View

	The Sample Application
	Summary
	Quick Reference

	Index

