
www.allitebooks.com

http://www.allitebooks.org

PostgreSQL Replication

Understand basic replication concepts and efficiently
replicate PostgreSQL using high-end techniques
to protect your data and run your server without
interruptions

Zoltan Böszörmenyi

Hans-Jürgen Schönig

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

PostgreSQL Replication

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Production Reference: 1190813

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-672-3

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Zoltan Böszörmenyi

Hans-Jürgen Schönig

Reviewers
Jeff Lawson

Tomas Vondra

Acquisition Editor
Joanne Fitzpatrick

Commissioning Editor
 Llewellyn F. Rozario

Lead Technical Editor
Dayan Hyames

Technical Editors
Vrinda Nitesh Bhosale

Aniruddha Vanage

Project Coordinator
Leena Purkait

Proofreader
Chris Smith

Indexer
Monica Ajmera Mehta

Priya Subramani

Graphics
Disha Haria

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Zoltan Böszörmenyi has over 15 years experience in the software development
and IT industry. He started working with PostgreSQL in 1995 and has since been
working exclusively developing and implementing solutions using it. Among many
other things, he has extended ECPG, the embedded SQL-in-C flavor in PostgreSQL.
He has also developed unique solutions for POS hardware. He also occasionally does
training on PostgreSQL. He has held senior-level positions but now serves as the
CTO of Cybertec Schönig & Schönig GmbH.

I would like to thank my family who have been positive and
unconditional supporters. I would also like to thank my wife who is
my greatest teacher and encourages me in ways she does not even
know to make the impossible possible.

I would also like to thank my clients and past and present colleagues
who have provided invaluable opportunities for me to expand my
knowledge and shape my career.

www.allitebooks.com

http://www.allitebooks.org

Hans-Jürgen Schönig has 15 years of experience with PostgreSQL. He is the
CEO of a PostgreSQL consulting and support company called "Cybertec Schönig
& Schönig GmbH" (www.postgresql-support.de), which has successfully served
countless customers around the globe.

Before founding Cybertec Schönig & Schönig GmbH in the year 2000, he worked as
database developer at a private research company focusing on the Austrian labor
market where he was primarily focusing on data mining and forecast models.

He has written several books dealing with PostgreSQL already.

This books is dedicated to all members of the Cybertec family, who
have supported me over the years and who have proven to be true
professionals. Without my fellow technicians here at Cybertec this
book would not exist. I especially want to thank Ants Aasma for his
technical input, Florian Ziegler for helping out with proof reading
and graphical stuff. Last but not least I want to say thank you to one
of my best private friends, Zoltan Böszörmenyi, who has been an
excellent co-author and who has contributed countless ideas to this
book and who has sorted out countless mistakes.

Special thanks also goes to my girl Sonja Städtner, who has given
me all the private support. Somehow she managed to make me go to
sleep when I was up late at night working on the initial drafts.

About the Reviewers

Jeff Lawson has been a fan and user of PostgreSQL since discovering it in 2001.
Over the years, he has also developed and deployed applications for IBM DB2,
Oracle, MySQL, Microsoft SQL Server, Sybase, and others but has always preferred
PostgreSQL for its balance of features and openness. Much of his experience has
involved developing for Internet-facing websites/projects that required highly
scalable databases with high availability or provisions for disaster recovery.

Jeff currently works as Director of Software Development for FlightAware, which is
an airplane tracking website that uses PostgreSQL and other open source software to
store and analyze the positions of the thousands of flights that are made worldwide
every day. He has extensive experience in software architecture, data security, and
networking protocol design from software engineering positions at Univa/United
Devices, Microsoft, NASA's Jet Propulsion Laboratory, and WolfeTech. He was a
founder of distributed.net, which pioneered distributed computing in the 1990s, and
continues to serve as the Chief of Operations and Member of the Board. He earned a
BSc. Computer Science from Harvey Mudd College.

Jeff is fond of cattle, holds an FAA private pilot certificate, and owns an airplane
based in Houston, Texas.

Tomas Vondra has been working with PostgreSQL since 2003, and although
he's been working with various other databases since then—both open source
and commercial—he instantly fell in love with PostgreSQL and the wonderful
community built around it.

Tomas is currently working at GoodData, a company operating a BI cloud platform
built on PostgreSQL, as a "performance specialist" and is responsible mainly
for tracking and improving performance. In his free time he's usually writing
PostgreSQL extensions, patches or hacking something else related to PostgreSQL.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Understanding Replication Concepts 7

The CAP theory and physical limitations 7
Understanding the CAP theory 8
Why the speed of light matters 9
Long distance transmission 10
Why latency matters 10

Different types of replication 10
Synchronous versus asynchronous replication 10

Understanding replication and data loss 12
Considering the performance issues 12

Single-master versus multi-master replication 13
Logical versus physical replication 14

When to use physical replication 15
When to use logical replication 15

Using sharding and data distribution 16
Understanding the purpose of sharding 16

An example of designing a sharded system 16
An example of querying different fields 17

Pros and cons of sharding 19
Choosing between sharding and redundancy 20
Increasing and decreasing the size of a cluster 20
Combining sharding and replication 22
Various sharding solutions 24

PostgreSQL-based sharding 24
External frameworks/middleware 24

Summary 25

Table of Contents

[ii]

Chapter 2: Understanding the PostgreSQL Transaction Log 27
How PostgreSQL writes data 27

The PostgreSQL disk layout 28
Looking into the data directory 28
PG_VERSION – PostgreSQL version number 29
base – the actual data directory 29
global – the global data 31
pg_clog – the commit log 31
pg_hba.conf – host-based network configuration 31
pg_ident.conf – ident authentication 32
pg_multixact – multi-transaction status data 32
pg_notify – LISTEN/NOTIFY data 32
pg_serial – information about committed serializable transactions 32
pg_snapshot – exported snapshots 32
pg_stat_tmp – temporary statistics data 32
pg_subtrans – subtransaction data 32
pg_tblspc – symbolic links to tablespaces 33
pg_twophase – information about prepared statements 33
pg_XLOG – the PostgreSQL transaction log (WAL) 33
postgresql.conf – the central PostgreSQL configuration file 34

Writing one row of data 35
A simple INSERT statement 35

Read consistency 38
The purpose of the shared buffer 39
Mixed reads and writes 40

The XLOG and replication 41
Understanding consistency and data loss 41

All the way to the disk 42
From memory to memory 43
From memory to the disk 44
One word about batteries 45
Beyond fsync() 46

PostgreSQL consistency levels 46
Tuning checkpoints and the XLOG 48

Understanding the checkpoints 48
Configuring checkpoints 48

About segments and timeouts 49
To write or not to write? 50

Tweaking WAL buffers 52
The internal structure of the XLOG 53

Understanding the XLOG records 53
Making the XLOG deterministic 53
Making the XLOG reliable 54

LSNs and shared buffer interaction 55
Debugging the XLOG and putting it all together 55

Summary 57

Table of Contents

[iii]

Chapter 3: Understanding Point-In-Time-Recovery 59
Understanding the purpose of PITR 60

Moving to the bigger picture 60
Archiving the transaction log 62
Taking base backups 64

Using pg_basebackup 65
Modifying pg_hba.conf 65
Signaling the master server 66
pg_basebackup – basic features 66

Making use of traditional methods to create base backups 69
Tablespace issues 69
Keeping an eye on network bandwidth 70

Replaying the transaction log 70
Performing a basic recovery 71
More sophisticated positioning in the XLOG 74
Cleaning up the XLOG on the way 75
Switching the XLOG files 77

Summary 77
Chapter 4: Setting up Asynchronous Replication 79

Setting up streaming replication 79
Tweaking the config files on the master 80
Handling pg_basebackup and recovery.conf 81
Making the slave readable 82
The underlying protocol 83

Configuring a cascaded replication 84
Turning slaves to masters 86
Mixing streaming and file-based recovery 87

The master configuration 87
The slave configuration 88
Error scenarios 89

Network connection between the master and slave is dead 89
Rebooting the slave 89
Rebooting the master 90
Corrupted XLOG in the archive 90

Making the streaming-only replication more robust 90
Efficient cleanup and the end of recovery 91

Gaining control over the restart points 91
Tweaking the end of your recovery 92

Conflict management 92
Dealing with the timelines 95
Summary 96

Table of Contents

[iv]

Chapter 5: Setting up Synchronous Replication 97
Setting up synchronous replication 97

Understanding the downside of synchronous replication 98
Understanding the application_name parameter 98
Making synchronous replication work 99
Checking replication 100
Understanding performance issues 101
Setting synchronous_commit to on 102

Setting synchronous_commit to remote_write 102
Setting synchronous_commit to off 102
Setting synchronous_commit to local 103

Changing durability settings on the fly 103
Understanding practical implications and performance 104
Redundancy and stopping replication 106
Summary 106

Chapter 6: Monitoring Your Setup 107
Checking your archive 107

Checking the archive_command 107
Monitoring the transaction log archive 108

Checking pg_stat_replication 109
Relevant fields in pg_stat_replication 109

Checking for operating system processes 111
Dealing with monitoring tools 111

Installing check_postgres 112
Deciding on a monitoring strategy 112

Summary 113
Chapter 7: Understanding Linux High Availability 115

Understanding the purpose of high availability 115
Measuring availability 116
History of high-availability software 118

OpenAIS and Corosync 119
Linux-HA (Heartbeat) and Pacemaker 119

Terminology and concepts 120
High availability is all about redundancy 121
PostgreSQL and high availability 123

High availability with quorum 124
High availability with STONITH 126

Summary 127
Chapter 8: Working with pgbouncer 129

Understanding fundamental pgbouncer concepts 130

Table of Contents

[v]

Installing pgbouncer 130
Configuring your first pgbouncer setup 131

Writing a simple config file and starting pgbouncer up 131
Dispatching requests 132
More basic settings 133
Authentication 134

Connecting to pgbouncer 134
Java issues 135

Pool modes 135
Cleanup issues 136

Improving performance 136
A simple benchmark 137

Maintaining pgbouncer 139
Configuring the admin interface 139
Using the management database 140
Extracting runtime information 140
Suspending and resuming operations 142

Summary 143
Chapter 9: Working with pgpool 145

Installing pgpool 145
Installing pgpool-regclass and insert_lock 146

Understanding pgpool features 146
Understanding the pgpool architecture 148
Setting up replication and load balancing 149

Password authentication 152
Firing up pgpool and testing the setup 152
Attaching hosts 153

Checking replication 155
Running pgpool with streaming replication 156

Optimizing pgpool configuration for master/slave mode 157
Dealing with failovers and high availability 158

Using PostgreSQL streaming and Linux HA 158
pgpool mechanisms for high availability and failover 159

Summary 160
Chapter 10: Configuring Slony 161

Installing Slony 161
Understanding how Slony works 162

Dealing with logical replication 162
The slon daemon 164

Replicating your first database 165
Deploying DDLs 170

Table of Contents

[vi]

Adding tables to replication and managing problems 171
Performing failovers 174

Planned failovers 175
Unplanned failovers 176

Summary 176
Chapter 11: Using Skytools 177

Installing skytools 177
Dissecting skytools 178
Managing pgq-queues 178

Running pgq 179
Creating queues and adding data 179
Adding consumers 181
Configuring the ticker 181
Consuming messages 184
Dropping queues 185
Using pgq for large projects 186

Using londiste to replicate data 186
Replicating our first table 187

One word about walmgr 191
Summary 191

Chapter 12: Working with Postgres-XC 193
Understanding the Postgres-XC architecture 194

Data nodes 194
GTM – Global Transaction Manager 195
Coordinators 195
GTM Proxy 195

Installing Postgres-XC 195
Configuring a simple cluster 196

Creating the GTM 196
Optimizing for performance 200

Dispatching the tables 200
Optimizing the joins 201
Optimizing for warehousing 202
Creating a GTM Proxy 202

Creating the tables and issuing the queries 203
Adding nodes 204
Handling failovers and dropping nodes 205

Handling node failovers 205
Replacing the nodes 205
Running a GTM standby 207

Summary 207

Table of Contents

[vii]

Chapter 13: Scaling with PL/Proxy 209
Understanding the basic concepts 209

Dealing with the bigger picture 210
Partitioning the data 211

Setting up PL/Proxy 212
A basic example 213
Partitioned reads and writes 215

Extending and handling clusters in a clever way 218
Adding and moving partitions 218
Increasing the availability 220
Managing the foreign keys 220
Upgrading the PL/Proxy nodes 221

Summary 222
Index 223

Preface
Do you know this very special feeling when there is something on your mind that
just has to be done? I guess when you are in this very special state you should simply
sit down, work on your concept and turn it into reality. I guess this is the kind of
mood I am in at the moment. After I had stopped working on publications around
10 years ago I did not have the desire to go back to writing for a long time until one
day somebody approached me with the idea of writing one more book—this time on
PostgreSQL replication. Somehow my first reaction regarding this idea was a plain
and straight "Let's do it!". PostgreSQL replication has always fascinated me and it
is an essential thing in my everyday life as a professional PostgreSQL consultant,
trainer, and business owner.

During the past couple of years I have literally met hundreds of people who are
interested in replication and I really hope that this publication can be beneficial
to all those people out there who want to use PostgreSQL for work, for education
or simply for fun. I, Hans-Jürgen Schönig, and my long-term project partner,
true friend, and co-author Zoltan Böszörmenyi have tried to make this book as
comprehensive as possible so that as many people as possible can gain knowledge
from our work and turn their projects into a full blown success.

Maybe your expectations as a reader are as high as our expectations as authors.
So, what better place is there to start working on a book then at 35.000 feet above
sea level? Just like 13 years ago when I started to work on my first book—for some
reason the first lines of my book are written on an aircraft. This time high above the
oil fields of Mosul, northern Iraq, on my way to Dubai.

Preface

[2]

What this book covers
This book will guide you through a variety of topics related to PostgreSQL replication.
We will present all important facts in 13 practical and easy-to-read chapters:

Chapter 1, Understanding Replication Concepts, guides you through fundamental
replication concepts such as synchronous as well as asynchronous replication.
You will learn about physical limitations of replication and about which options
you have and what kind of distinctions there are.

Chapter 2, Understanding the PostgreSQL Transaction Log, introduces you to the
PostgreSQL internal transaction log machinery and present concepts essential
to many replication techniques.

Chapter 3, Understanding Point-In-Time-Recovery, is the next logical step and outlines
how the PostgreSQL transaction log will help you to utilize Point-In-Time-Recovery
to move your database instance back to a desired point in time.

Chapter 4, Setting up Asynchronous Replication, describes how to configure
asynchronous master-slave replication.

Chapter 5, Setting up Synchronous Replication, is one step beyond asynchronous
replication and offers a way to guarantee zero data loss if a node fails. You will
learn about all aspects of synchronous replication.

Chapter 6, Monitoring Your Setup, covers PostgreSQL monitoring.

Chapter 7, Understanding Linux High Availability, presents a basic introduction to
Linux high availability and presents a set of ideas for making your systems more
available and more secure.

Chapter 8, Working with pgbouncer, deals with pgbouncer, very often used along
with PostgreSQL replication. You will learn how to configure pgbouncer and boost
performance for your PostgreSQL infrastructure.

Chapter 9, Working with pgpool, covers one more tool capable of handling replication
and PostgreSQL connection pooling.

Chapter 10, Configuring Slony, contains a practical guide to using Slony and shows,
how you can use this tool fast and efficiently to replicate sets of tables.

Chapter 11, Using Skytools, offers you an alternative to Slony and outlines how you
can introduce generic queues to PostgreSQL and utilize londiste replication to
dispatch data in a large infrastructure.

Preface

[3]

Chapter 12, Working with Postgres-XC, offers an introduction to a synchronous
multimaster replication solution capable of partitioning a query across many nodes
inside your cluster while still providing you with a consistent view of the data.

Chapter 13, Scaling with PL/Proxy, describes how you can break the chains and scale
out infinitely across a large server farm.

What you need for this book
PostgreSQL Replication is a must for everybody interested in PostgreSQL replication.
It is the first, comprehensive book explaining replication in a comprehensive and
detailed way. We offer a theoretical background as well as a practical introduction to
replication designed to make your daily life a lot easier and definitely more productive.

Who this book is for
This book has been written primary for system administrators and system architects.
However, we have also included aspects that can be highly interesting for software
developers as well—especially when it comes to highly critical system designs.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "A table called t_user is used to store the
users in our system."

A block of code is set as follows:

test=# CREATE TABLE t_test (t date);
CREATE TABLE
test=# INSERT INTO t_test VALUES (now())
RETURNING *;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

pgbouncer=# SUSPEND;
SUSPEND

Preface

[4]

Any command-line input or output is written as follows:

psql -p 6432 -U zb pgbouncer

psql (9.2.4, server 1.5.4/bouncer)

WARNING: psql version 9.2, server version 1.5.

 Some psql features might not work.

Type "help" for help.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Understanding
Replication Concepts

In this chapter, you will be introduced to various replication concepts and you will
learn which kind of replication is most suitable for which kind of practical scenario.
At the end of the chapter, you will be able to judge whether a certain concept is
feasible under various circumstances or not.

We will cover the following topics in this chapter:

• CAP theory
• Physical limitations of replication
• Why latency matters
• Synchronous and asynchronous replication
• Sharding and replication

Before we jump into practical work using PostgreSQL, we will guide you through
some very fundamental ideas and facts related to replication.

The CAP theory and physical limitations
You might wonder why a theory can be found at such a prominent place in a book
that is supposed to be highly practical. Well, there is a very simple reason for that:
Some nice-looking marketing papers of some commercial database vendors might
leave you with the impression that everything is possible and easy to do without any
serious limitation. This is not the case; there are physical limitations every vendor
of software has to cope with. There is simply no way around the laws of nature, and
shiny marketing cannot help to overcome nature.

Understanding Replication Concepts

[8]

In this chapter, you will be introduced to the so called CAP theory. Understanding
the basic ideas of this theory is essential to fight off some requirements that cannot be
turned into reality.

Understanding the CAP theory
Before we dig into the details we have to discuss what CAP actually means. CAP is
an abbreviation for the following three features:

• Consistency: This feature indicates whether all the nodes in a cluster see the
same data at the same time or not.

• Availability: This feature indicates if it is certain that you will receive an
answer to every request. Can a user consider all the nodes in a cluster to be
available? Think of data or state information split between two machines.
A request is made, and machine 1 has some of the data and machine 2 has
the rest of the data. If either machine goes down, not all the requests can be
fulfilled, because not all of the data or state information is available entirely
on either machine.

• Partition tolerance: This feature indicates if the system will continue to work
if arbitrary messages are lost on the way. A Network Partition event occurs
when a system is no longer accessible (think of a network connection failing).
A different way of considering partition tolerance is to think of it as message
passing. If an individual system can no longer send/receive messages to/
from other systems, it has been effectively partitioned out of the network.

Why are those previous three bullet points relevant to normal users? Well, the bad
news is that a replicated (or distributed) system can only provide two out of those
three features at the same time.

It is theoretically impossible to offer consistency, availability, and partition tolerance
at the very same time. As you will see later in this book, this can have a significant
impact on the system layouts that are safe and feasible to use. There is simply no
such thing as the solution to all replication-related problems. When you are planning
a large scale system, you might have to come up with different concepts depending
on the needs that are specific to your requirements.

PostgreSQL, Oracle, DB2, and so on, will provide you with CAp while
NoSQL systems such as MongoDB or Cassandra will provide you with
cAP. This is why NoSQL is often referred to as eventually consistent.

Chapter 1

[9]

Why the speed of light matters
The speed of light is not just a theoretical issue, it really does have an impact on
your daily life. And more importantly, it has a serious implication when it comes to
finding the right solution for your cluster.

We all know that there is some sort of cosmic speed limit called the speed of light.
So why care? Well, let us do a simple mental experiment. Let us assume for a second
that our database server is running at 3 GHz clock speed.

How far can light travel within one clock cycle of your CPU? If you do the math, you
will figure out that light will travel around 10 cm per clock cycle (in pure vacuum).
We can safely assume that an electric signal inside a CPU will be magnitudes slower
than pure light in vacuum. The core idea is: 10 cm in one clock cycle? Well, this is not
much at all.

For the sake of our mental experiment, let us now consider various distances:

• Distance from one end of the CPU to the other
• Distance from your server to some other server next door
• Distance from your server in central Europe to a server somewhere in China

Considering the size of a CPU core on a die, you can assume that you can send a
signal (even it if is not traveling at the speed of light by far) from one part of the CPU
to some other part quite fast. It simply won't take 1 million clock cycles to add up
two numbers that are already in your first level cache on your CPU.

But, what happens if you have to send a signal from one server to some other server
and back? You can safely assume that sending a signal from server A to server B next
door takes a lot longer because the cable is simply a lot longer. Often, it's more than
10 cm. In addition to that, network switches and other network components will add
some latency as well.

I am talking about the length of the cable here and not
about it's bandwidth.

Sending a message (or a transaction) from Europe to China is of course many
times more time consuming than sending some data to a server next door.
Again, the important thing here is that the amount of data is not as relevant
as the so called latency.

Understanding Replication Concepts

[10]

Long distance transmission
Let me try to explain the concept of latency by giving a very simple example. Let
us assume you are European and you are sending a letter to China. You will easily
accept the fact that the size of your letter is not the limiting factor here. It makes
absolutely no difference if your letter is two or twenty pages long; the time it takes
to reach the destination is basically the same. Also, it makes no difference if you
send one, two or ten letters at the same time. Given reasonable numbers of letters,
the size of the aircraft (that is bandwidth) to ship the stuff to China is usually not
the problem. But, the so called roundtrip might very well be an issue. If you rely on
the response to your letter from China to continue your work, you will soon find
yourself waiting for a long time.

Why latency matters
The same concept applies to replication: If you send a chunk of data from Europe to
China, you should avoid waiting on the response. If you send a chunk of data from
your server to a server in the same rack, you might be able to wait on the response
because your electronic signal will simply be fast enough to make it back in time.

The basic problems of latency described in this section are not
PostgreSQL-specific. The very same concepts and physical limitations
apply to all types of databases and systems. As mentioned before, this
fact is sometimes silently hidden and neglected in shiny commercial
marketing papers. Nevertheless, the laws of physics will stand firm.
This applies to commercial and open source software.

The most important point you have to keep in mind here is that bandwidth is not
always the magical fix to a performance problem in a replicated environment. In
many setups, latency is at least as important as bandwidth.

Different types of replication
Now that you are fully armed with the basic understanding of physical and
theoretical limitations, it is time to learn about different types of replication.

Synchronous versus asynchronous
replication
The first distinction we can make is whether to replicate synchronously
or asynchronously.

Chapter 1

[11]

What does this mean? Let us assume we have two servers and we want to replicate
data from one server (the master) to the second server (the slave). The following
diagram illustrates the concept of synchronous and asynchronous replication:

We could use a simple transaction like the one shown in the listing:

BEGIN:
INSERT INTO foo VALUES ('bar');
COMMIT;

In the case of asynchronous replication, the data can be replicated after the
transaction has been committed on the master. In other words, the slave is never
ahead of the master, and in the case of writing, usually a little behind the master.
This delay is called lag.

Synchronous replication enforces higher rules of consistency. If you decide to
replicate synchronously (how this is done practically will be discussed in Chapter 5,
Setting up Synchronous Replication), the system has to ensure that the data written by
the transaction will be at least on two servers at the time the transaction commits.
This implies that the slave does not lag behind the master and that the data seen by
the end users will be identical on both the servers.

Understanding Replication Concepts

[12]

Some systems will also use a quorum server to decide. So, it is not
always about just two or more servers. If a quorum is used, more than
half of the servers must agree on action inside the cluster.

Understanding replication and data loss
When a transaction is replicated from a master to a slave, many things have to be
taken into consideration, especially when it comes to things such as data loss.

Let us assume we are replicating data asynchronously in the following manner:

1. A transaction is sent to the master.
2. It commits on the master.
3. The master dies before the commit is sent to the slave.
4. The slave will never get this transaction.

In the case of asynchronous replication, there is a window (lag) during which data
can essentially be lost. The size of this window might vary depending on the type of
setup. Its size can be very short (maybe as short as a couple of milliseconds) or long
(minutes, hours, or days). The important fact is that data can be lost. A small lag will
only make data loss less likely, but, any lag larger than zero is susceptible to data loss.

If you want to make sure that data can never be lost, you have to switch to
synchronous replication. As you have seen in this chapter already, a synchronous
transaction is synchronous because it will only be valid if it commits to at least
two servers.

Considering the performance issues
As you have learned in our section about the speed of light and latency, sending
unnecessary messages over the network can be expensive and time consuming. If
a transaction is replicated in a synchronous way, PostgreSQL has to make sure that
data has reached the second node, and this will lead to latency issues.

Synchronous replication can be more expensive than asynchronous replication in
many ways, and therefore people should think twice if this overhead is really needed
and justified.

Chapter 1

[13]

Only use synchronous replication when it is really
needed.

Single-master versus multi-master replication
A second way to classify various replication setups is to distinguish between
single- and multi-master replication.

Single master means that writes can go to exactly one server, which distributes the
data to the slaves inside the setup. Slaves may only receive reads but no writes.

In contrast to single-master replication, multi-master replication allows writes to all
the servers inside the cluster. The following diagram shows how things work on a
conceptual level:

Having the ability to write to any node inside the cluster sounds like an advantage but
it is not necessarily one. The reason for that is multi-master replication adds a lot of
complexity to the system. In the case of just one master, it is totally clear which data is
correct, which direction data will flow, and there are rarely conflicts during replication.
Multi-master replication is quite different, as writes can go to many nodes at the same
time and the cluster has to be perfectly aware of conflicts and handle them gracefully.
An alterative would be to use locks to solve the problem but this approach will have its
own problems.

Keep in mind that the need to resolve conflicts will cause network
traffic, and this can instantly turn into scalability issues caused by
latency.

Understanding Replication Concepts

[14]

Logical versus physical replication
One more way to classify replication is to distinguish between logical and
physical replication.

The difference is subtle but highly important: Physical replication means that the
system will move data as is to the remote box. So, if something is inserted, the remote
box will get data in binary format, not via SQL.

Logical replication means that a change, which is equivalent to the data coming
in, is replicated.

Let us look at an example to fully understand the difference:

test=# CREATE TABLE t_test (t date);
CREATE TABLE
test=# INSERT INTO t_test VALUES (now())
RETURNING *;
t

 2013-02-08
(1 row)

INSERT 0 1

We see two transactions going on here: The first transaction creates a table. Once this
is done, the second transaction adds a simple date to the table and commits.

In the case of logical replication, the change will be sent to some sort of queue in
logical form, so the system does not send plain SQL but maybe something such
as follows:

test=# INSERT INTO t_test VALUES ('2013-02-08');
INSERT 0 1

Note that the function call has been replaced with the real value. It would be a total
disaster if the slave were to calculate now() once again because the date on the
remote box might be a totally different one.

Some systems do use statement-based replication as the core
technology. MySQL, for instance, uses a so called bin-log to
replicate, which is actually not too binary but more some form of
logical replication.

Chapter 1

[15]

Physical replication will work in a totally different way: Instead of sending some
SQL (or whatever) over, which is logically equivalent, the system will send binary
changes made by PostgreSQL internally.

Here are some of the binary changes our two transactions might have triggered
(but by far, not a complete list):

1. Add an 8k block to pg_class and put a new record there (to indicate the
table is present).

2. Add rows to pg_attribute to store the column names.
3. Perform various changes inside the indexes on those tables.
4. Record the commit status, and so on.

The goal of physical replication is to create a copy of your system that is (largely)
identical on the physical level. This means that the same data will be in the same
place inside your tables on all boxes. In the case of logical replication, the content
should be identical but it makes no difference if it is in the same place or not.

When to use physical replication
Physical replication is very convenient to use and especially easy to set up. It is
widely used when the goal is to have identical replicas of your system (to have a
backup or to simply scale up).

In many setups, physical replication is the standard method, which exposes the end
user to the lowest complexity possible. It is ideal to scale out the data.

When to use logical replication
Logical replication is usually a little harder to set up but it offers greater flexibility.
It is also especially important when it comes to upgrading an existing database.
Physical replication is totally unsuitable for version jumps because you cannot
simply rely on the fact that every version of PostgreSQL has the same on-disk layout.
The storage format might change over time and therefore a binary copy is clearly not
feasible to jump from one version to the next.

Logical replication allows de-coupling the way data is stored from the way it is
transported and replicated. By using a neutral protocol, which is not bound to a
certain version of PostgreSQL, it is easy to jump from one version to the next.

Understanding Replication Concepts

[16]

Using sharding and data distribution
In this section, you will learn about basic scalability techniques such as database
sharding. Sharding is widely used in high-end systems and offers a simple and
reliable way to scale out a setup. In recent years, sharding has become a standard
way to scale up professional systems.

Understanding the purpose of sharding
What happens if your setup grows beyond the capacity of a single machine? What if
you want to run so many transactions that one server is simply not able to keep up?
Let us assume you have millions of users and tens of thousands want to perform a
certain task at the very same time.

Clearly, at some point, you cannot buy servers that are big enough to handle infinite
load, anymore. It is simply impossible to run a Facebook- or Google-like application
on a single box. At some point, you have to come up with a scalability strategy that
serves your needs. This is when sharding comes into play.

The idea of sharding is simple: What if you could split data in a way that it can reside
on different nodes?

An example of designing a sharded system
To demonstrate the basic concept of sharding, let us assume the following scenario:
We want to store information about millions of users. Each user has a unique user
ID. Let us further assume that we have just two servers. In this case we could store
even user IDs on server 1 and odd user IDs on server 2.

The following diagram shows how this can be done:

Chapter 1

[17]

As you can see, in our diagram, we have nicely distributed the data. Once this has
been done, we can send a query to the system as follows:

SELECT * FROM t_user WHERE id = 4;

The client can easily figure out where to find the data by inspecting the filter in our
query. In our example, the query will be sent to the first node because we are dealing
with an even number.

As we have distributed the data based on a key, (in this case, the user ID), we can
basically search for any person easily if we know the key. In large systems, referring
to users through a key is a common practice, and therefore this approach is suitable.
By using this simple approach, we have also easily doubled the number of machines
in our setup.

When designing a system, we can easily come up with an arbitrary number of
servers; all we have to do is to invent a nice and clever partitioning function to
distribute the data inside our server farm. If we want to split the data between ten
servers (not a problem), how about using user ID % 10 as a partitioning function?

When you are trying to break up data and store it on different hosts, always make
sure that you are using a sane partitioning function; it can be very beneficial to split
data in a way that each host has more or less the same amount of data.

Splitting up users alphabetically might not be a good idea. The reason for that is that
not all the letters are equally likely. We cannot simply assume that the letters from A
to M occur as often as the letters from N to Z. This can be a major issue if you want
to distribute a dataset to a thousand servers and not just to a handful of machines.
As stated before, it is essential to have a sane partitioning function, which produces
evenly distributed results.

In many cases, a hash function will provide you with nicely and
evenly distributed data. This can especially be useful when working
with character fields (such as names, e-mail addresses, and so on).

An example of querying different fields
In the previous section, you have seen how we can query a person easily using
their key. Let us take this a little further and see what happens if the following
query is used:

SELECT * FROM t_test WHERE name = 'Max';

Understanding Replication Concepts

[18]

Remember, we have distributed data using the ID. In our query, however, we are
searching for the name. The application will have no idea which partition to use
because there is no rule telling us what is where.

As a logical consequence, the application has to ask every partition for the name.
This might be acceptable if looking for the name was a real corner case; however, we
cannot rely on this fact. Having to ask many servers instead of one is clearly a serious
de-optimization and therefore not acceptable.

We have two options to approach the problem:

• Come up with a cleverer partitioning function
• Store the data redundantly

Coming up with a cleverer partitioning function would surely be the best option, but
it is rarely possible if you want to query different fields.

This leaves us with the second option, which is storing data redundantly. Storing
a set of data twice or even more often is not too uncommon and actually a good way
to approach the problem. The following image shows how this can be done:

As you can see, we have two clusters in this scenario. When a query comes in,
the system has to decide which data can be found on which node. In case the
name is queried, we have (for the sake of simplicity) simply split the data in half
alphabetically. In the first cluster, our data is still split by user ID.

Chapter 1

[19]

Pros and cons of sharding
One important thing to understand is that sharding is not a simple one-way street.
If someone decides on using sharding, it is essential to be aware of the upsides
as well as of the downsides of the technology. As always, there is no Holy Grail
that magically solves all the problems of mankind out of the box without having
to think about it.

Each practical use case is different and there is no replacement for common sense
and deep thinking.

First, let us take a look at the pros of sharding listed as follows:

• It has the ability to scale a system beyond one server
• It is a straightforward approach
• It is widely supported by various frameworks
• It can be combined with various other replication approaches
• It works nicely with PostgreSQL (for example using PL/Proxy)

Light and shadow tend to go together and therefore sharding also has its downsides
listed as follows:

• Adding servers on the fly can be far from trivial (depending on the type of
partitioning function)

• Your flexibility might be seriously reduced
• Not all types of queries will be as efficient as on a single server
• There is an increase in overall complexity of the setup (such as failover,

and so on)
• Backups need more planning
• You might face redundancy and additional storage requirements
• Application developers should be aware of sharding to make sure that

efficient queries are written

In Chapter 13, Scaling with PL/Proxy, we will discuss how you can efficiently use
sharding along with PostgreSQL and how to set up PL/Proxy for maximum
performance and scalability.

Understanding Replication Concepts

[20]

Choosing between sharding and redundancy
Learning how to shard a table is only the first step to designing a scalable system
architecture. In the example we have shown in the previous section, we had just one
table, which could be distributed easily using a key. But, what if we have more than
just one table? Let us assume we have two tables:

• A table called t_user to store the users in our system
• A table called t_language to store the languages supported by our system

We might be able to partition the t_user table nicely and split it in a way that it can
reside on a reasonable number of servers. But what about the t_language table? Our
system might support as many as ten languages.

It can make perfect sense to shard and distribute hundreds of millions of users but
splitting up ten languages? This is clearly useless. In addition to that, we might need
our language table on all nodes so that we can perform joins.

The solution to the problem is simple: You need a full copy of the language table on
all nodes. This will not cause a storage consumption related problem because the
table is just so small.

Make sure that only large tables are sharded. In the case of
small tables, full replicas of the tables might make just so
much more sense.

Again, every case has to be thought over thoroughly.

Increasing and decreasing the size
of a cluster
So far, we have always considered the size of a sharded setup to be constant. We have
designed sharding in a way that allowed us to utilize a fixed number of partitions
inside our cluster. This limitation might not reflect everyday requirements. How
can you really tell for certain how many nodes will be needed at the time a setup is
designed? People might have a rough idea of the hardware requirements, but actually
knowing how much load to expect is more art than science.

To reflect this, you have to design a system in a way
that it can be resized easily.

Chapter 1

[21]

A commonly made mistake is that people tend to increase the size of their setup in
unnecessarily small steps. Somebody might want to move from five to maybe six or
seven machines. This can be tricky. Let us assume for a second we have split out data
using the user id % 5 as the partitioning function. What if we wanted to move to
user id % 6? This is not too easy; the problem is that we have to rebalance the data
inside our cluster to reflect the new rules.

Remember, we have introduced sharding (that is, partitioning) because we have so
much data and so much load that one server cannot handle those requests anymore.
If we came up with a strategy now that requires rebalancing of data, we are already
on the wrong track. You definitely don't want to rebalance 20 TBs of data just to add
two or three servers to your existing system.

Practically, it is a lot easier to simply double the number of partitions. Doubling
your partitions does not require rebalancing data because you can simply follow the
strategy outlined later:

• Create a replica of each partition
• Delete half of the data on each partition

If your partitioning function was user id % 5 before, it should be user id % 10
afterwards. The advantage of doubling is that data cannot move between partitions.
When it comes to doubling, users might argue that the size of your cluster might
increase too rapidly. This is true, but if you are running out of capacity, adding 10
percent to your resources won't fix the problem of scalability anyway.

Instead of just doubling your cluster (which is fine for most cases), you can also put
more thought into writing a more sophisticated partitioning function that leaves
the old data in place but handles the more recent data more intelligently. Having
time-dependent partitioning functions might cause issues of its own but it might
be worth investigating this path.

Some NoSQL systems use range partitioning to spread out data. Range
partitioning would mean that each server has a fixed slice of data for
a given time frame. This can be beneficial if you want to do time series
analysis or similar. However, it can be counterproductive if you want to
make sure that data is split up evenly.

Understanding Replication Concepts

[22]

If you expect your cluster to grow, we recommend starting with more partitions than
those initially necessary and packing more than just one partition on a single server.
Later on, it will be easy to move single partitions to additional hardware joining
the cluster setup. Some cloud services are able to do that but those aspects are not
covered in this book.

To shrink your cluster again you can simply apply the reverse strategy and move
more than just one partition to a single server. This leaves the door for a future
increase of servers wide open and can be done fairly easily.

Combining sharding and replication
Once data has been broken up into useful chunks, which can be handled by one
server or partition, we have to think about how to make the entire setup more
reliable and failsafe.

The more servers you have in your setup, the more likely it will be that one of those
servers will be down or not available for some other reason.

Always avoid single points of failures when designing
a highly scalable system.

In order to ensure maximum throughput and maximum availability, we can again
turn to redundancy. The design approach can be summed up in a simple formula,
which should always be in the back of a system architect's mind:

"One is none and two is one".

One server is never enough to provide us with high availability. Every system needs
a backup system, which can take over in case of a serious emergency. By just splitting
up a set of data, we have definitely not improved availability because we have more
servers, which can fail at this point. To fix the problem, we can add replicas to each
of our partitions (shards) just as is shown in the following diagram:

Chapter 1

[23]

Each partition is a separate PostgreSQL database instance and each of those instances
can have its own replica(s).

Keep in mind that you can choose from the full arsenal of features and options
discussed in this book (for example, synchronous and asynchronous replication).
All strategies outlined in this book can be combined flexibly; a single technique is
usually not enough, so feel free to combine various technologies in different ways to
achieve your goals.

Understanding Replication Concepts

[24]

Various sharding solutions
In recent years, sharding has emerged as an industry standard solution to many
scalability-related problems. Thus, many programming languages, frameworks,
and products already provide out-of-the-box support for sharding.

When implementing sharding, you can basically choose between two strategies:

• Rely on some framework/middleware
• Rely on PostgreSQL-means to solve the problem

In the next two sections, we will discuss both options briefly. This little overview is
not meant to be a comprehensive guide but rather an overview to get you started
with sharding.

PostgreSQL-based sharding
PostgreSQL cannot shard data out of the box, but it has all of the interfaces and
means to allow sharding through add-ons. One of those add-ons, which is widely
used, is called PL/Proxy. It has been around for many years and offers superior
transparency as well as good scalability.

The idea behind PL/Proxy is basically to use a local virtual table to hide an array
of servers making up the table.

PL/Proxy will be discussed in depth in Chapter 13, Scaling with PL/Proxy.

External frameworks/middleware
Instead of relying on PostgreSQL, you can also make use of external tools. Some of
the most widely used and well known tools are:

• Hibernate shards (Java)
• Rails (Ruby)
• SQLAlchemy (Python)

Chapter 1

[25]

Summary
In this chapter, you have learned about basic replication-related concepts as well as
about physical limitations. We have dealt with theoretical concepts, which are the
groundwork for what is still to come later in this book.

In the next chapter, you will be guided through the PostgreSQL transaction log and
we will outline all important aspects of this vital component. You will learn what the
transaction log is good for and how it can be applied.

Understanding the
PostgreSQL Transaction Log

In the previous chapter, we have dealt with various replication concepts. It was
meant to be more of a theoretical overview to sharpen your senses for what is to
come and it was supposed to introduce you to the topic in general.

In this chapter, we will move closer to practical solutions and learn about how
PostgreSQL works internally and what it means for replication. We will see what
the so called transaction log (XLOG) does and how it operates. The XLOG is the
very backbone of the PostgreSQL-onboard replication machinery. It is essential to
understand how this part works.

How PostgreSQL writes data
PostgreSQL replication is all about writing data. Therefore, the way PostgreSQL writes
a chunk of data internally is highly relevant and directly connected to replication
and replication concepts. In this section, we will dig into writes. You will learn the
following things in this chapter:

• How PostgreSQL writes data
• Which memory and storage parameters are involved
• How writes can be optimized
• How writes are replicated
• How data consistency can be ensured

Once you have completed reading this chapter, you will be ready to understand
the next chapter, which will teach you how to safely replicate your first database.

Understanding the PostgreSQL Transaction Log

[28]

The PostgreSQL disk layout
One of the first things we want to take a look at in this chapter is the PostgreSQL
disk layout. Knowing about the disk layout can be very helpful when inspecting an
existing setup and it can be helpful when designing an efficient, high-performance
installation.

In contrast to other database systems such as Oracle, PostgreSQL will always rely
on a filesystem to store data. PostgreSQL does not use raw devices. The philosophy
behind that is that if a filesystem developer has done his or her job well, there is no
need to re-implement filesystem functionality over and over again.

Looking into the data directory
To understand the filesystem layout used by PostgreSQL, we can have a look at what
we can find inside the data directory (created by initdb at the time of installation):

[hs@paulapgdata]$ ls -l
total 92
-rw------- 1 hs staff 4 Feb 11 18:14 PG_VERSION
drwx------ 6 hs staff 4096 Feb 11 18:14 base
drwx------ 2 hs staff 4096 Feb 11 18:14 global
drwx------ 2 hs staff 4096 Feb 11 18:14 pg_clog
-rw------- 1 hs staff 4458 Feb 11 18:14 pg_hba.conf
-rw------- 1 hs staff 1636 Feb 11 18:14 pg_ident.conf
drwx------ 4 hs staff 4096 Feb 11 18:14 pg_multixact
drwx------ 2 hs staff 4096 Feb 11 18:14 pg_notify
drwx------ 2 hs staff 4096 Feb 11 18:14 pg_serial
drwx------ 2 hs staff 4096 Feb 11 18:14 pg_snapshots
drwx------ 2 hs staff 4096 Feb 11 18:19 pg_stat_tmp
drwx------ 2 hs staff 4096 Feb 11 18:14 pg_subtrans
drwx------ 2 hs staff 4096 Feb 11 18:14 pg_tblspc
drwx------ 2 hs staff 4096 Feb 11 18:14 pg_twophase
drwx------ 3 hs staff 4096 Feb 11 18:14 pg_XLOG
-rw------- 1 hs staff 19630 Feb 11 18:14 postgresql.conf
-rw------- 1 hs staff 47 Feb 11 18:14 postmaster.opts
-rw------- 1 hs staff 69 Feb 11 18:14 postmaster.pid

You will see a range of files and directories, which are needed to run a database
instance. Let us take a look at those in detail.

Chapter 2

[29]

PG_VERSION – PostgreSQL version number
This file will tell the system at startup if the data directory contains the right version
number. Please note that only the major release version is in this file. It is easily
possible to replicate between different minor versions of the same major version.

[hs@paulapgdata]$ cat PG_VERSION
9.2

The file is plain text readable.

base – the actual data directory
The base directory is one of the most important things in our data directory. It
actually contains the real data (meaning tables, indexes, and so on). Inside the base
directory, each database will have its own subdirectory:

[hs@paula base]$ ls -l
total 24
drwx------ 2 hs staff 12288 Feb 11 18:14 1
drwx------ 2 hs staff 4096 Feb 11 18:14 12865
drwx------ 2 hs staff 4096 Feb 11 18:14 12870
drwx------ 2 hs staff 4096 Feb 11 18:14 16384

We can easily link these directories to the databases in our system. It is worth
noticing that PostgreSQL uses the object ID of the database here. This has many
advantages over using the name because the object ID never changes and offers a
good way to abstract all sorts of problems, such as issues with different character sets
on the server and so on:

test=# SELECT oid, datname FROM pg_database;
oid |datname
-------+-----------
 1 | template1
 12865 | template0
 12870 | postgres
 16384 | test
(4 rows)

Now we can see how data is stored inside those database-specific directories. In
PostgreSQL, each table is related to (at least) one data file. Let us create a table and
see what happens:

test=# CREATE TABLE t_test (id int4);
CREATE TABLE

Understanding the PostgreSQL Transaction Log

[30]

We can check the system table now to retrieve the so called relfilenode, which
represents the name of the storage file on disk:

test=# SELECT relfilenode, relname
 FROM pg_class
WHERE relname = 't_test';
relfilenode | relname
-------------+---------
 16385 | t_test
(1 row)

As soon as the table is created, PostgreSQL will create an empty file on disk:

[hs@paula base]$ ls -l 16384/16385*
-rw------- 1 hs staff 0 Feb 12 12:06 16384/16385

Growing data files
Tables can sometimes be quite large and therefore it is more or less impossible to put
all the data related to a table into a single data file. To solve the problem, PostgreSQL
will add additional files every time 1 GB of data has been added.

So, if the file called 16385 grows beyond 1 GB, there will be a file called 16385.1.
Once this has been filled up, you will see a file named 16385.2, and so on. This
way, a table in PostgreSQL can be scaled up reliably and safely without having to
worry about underlying filesystem limitations on some rare operating systems or
embedded devices.

Performing I/O in chunks
To improve I/O performance, PostgreSQL will always perform I/O in 8k chunks.
Thus, you will see that your data files will always grow in 8k steps. When talking
about physical replication, you have to make sure that both sides (master and slave)
were compiled with the same block size.

Unless you have explicitly compiled PostgreSQL on your own using
different block sizes, you can always rely on the fact that block sizes
will be identical and exactly 8k.

Relation forks
In addition to those data files discussed in the previous paragraph, PostgreSQL
will create additional files using the same number. As of now, those files are used
to store information about free space inside a table (Free Space Map), the so called
Visibility Map, and so on. In the future, more types of relation forks might
be added.

Chapter 2

[31]

global – the global data
global will contain the global system tables. This directory is small, so you should
not expect excessive storage consumption.

Dealing with standalone data files
There is one thing that is often forgotten by users: A single PostgreSQL data file is
basically more or less worthless. It is hardly possible to restore data reliably if you
just have a data file; trying to extract data from single data files can easily end up as
hopeless guesswork. So, in order to read data, you need an instance that is more or
less complete.

pg_clog – the commit log
The commit log is an essential component of a working database instance.
It stores the status of the transactions on this system. A transaction can be in four
states (TRANSACTION_STATUS_IN_PROGRESS, TRANSACTION_STATUS_COMMITTED,
TRANSACTION_STATUS_ABORTED, and TRANSACTION_STATUS_SUB_COMMITTED), and
if the commit log status for a transaction is not available, PostgreSQL will have no
idea whether a row should be seen or not.

If the commit log of a database instance is broken for some reason (maybe because
of filesystem corruption), you can expect some funny hours ahead.

If the commit log is broken, we recommend to snapshot the
database instance (filesystem) and fake the commit log; it can
sometimes help to retrieve a reasonable amount of data from the
database instance in question.

pg_hba.conf – host-based network configuration
The pg_hba.conf file configures the PostgreSQL-internal firewall and represents one
of the two most important configuration files in a PostgreSQL cluster. It allows the
users to define various types of authentication based on the source of a request. To
a database administrator, understanding the pg_hba.conf file is of vital importance
because this file decides whether a slave is allowed to connect to the master or not. If
you happen to miss something here, you might see error messages in the slave's logs
(for instance: no pg_hba.conf entry for ...).

Understanding the PostgreSQL Transaction Log

[32]

pg_ident.conf – ident authentication
The pg_ident.conf file can be used in conjunction with the pg_hba.conf file to
configure ident authentication.

pg_multixact – multi-transaction status data
The multi-transaction-log manager is here to handle shared row locks efficiently.
There are no replication-related practical implications of this directory.

pg_notify – LISTEN/NOTIFY data
In this directory, the system stores information about LISTEN/NOTIFY (the async
backend interface). There are no practical implications related to replication.

pg_serial – information about committed
serializable transactions
Information about serializable transactions is stored here. We have to store
information about commits of serializable transactions on disk to ensure that
long-running transactions will not bloat memory. A simple SLRU structure is
used internally to keep track of those transactions.

pg_snapshot – exported snapshots
This is a file consisting of information needed by the PostgreSQL snapshot manager.
In some cases, snapshots have to be exported to disk to avoid going to memory.
After a crash, those exported snapshots will be cleaned out automatically.

pg_stat_tmp – temporary statistics data
Temporary statistical data is stored in this file. This information is needed for most
pg_stat_* system views (and therefore also for the underlying function providing
the raw data).

pg_subtrans – subtransaction data
In this directory, we store information about subtransactions. pg_subtrans
(and pg_clog) directories are permanent (on-disk) storage of transaction-related
information. There is a limited number of pages of each kept in the memory, so
in many cases there is no need to actually read from disk. However, if there's a
long-running transaction or a backend sitting idle with an open transaction, it may
be necessary to be able to read and write this information from disk. They also allow
the information to be permanent across server restarts.

Chapter 2

[33]

pg_tblspc – symbolic links to tablespaces
The pg_tblspc directory is a highly important one. In PostgreSQL, a tablespace is
simply an alternative storage location, which is represented by a directory holding
the data.

The important thing here is: If a database instance is fully replicated, we simply
cannot rely on the fact that all servers in the cluster use the very same disk layout
and the very same storage hardware. There can easily be scenarios in which a master
needs a lot more I/O power than a slave, which might just be around to function as
backup or standby. To allow users to handle different disk layouts, PostgreSQL will
place symlinks into the pg_tblspc directory. The database will blindly follow those
symlinks to find those tablespaces, regardless of where they are.

This gives end users enormous power and flexibility. Controlling storage is both
essential to replication as well as to performance in general. Keep in mind that those
symlinks can only be changed ex post. It should be carefully thought over.

We recommend using the trickery outlined in this section only when
it is really needed. For most setups, it is absolutely recommended to
use the same filesystem layout on the master as well as on the slave.
This can greatly reduce complexity.

pg_twophase – information about prepared
statements
PostgreSQL has to store information about two-phase commit. While two-phase
commit can be an important feature, the directory itself will be of little importance
to the average system administrator.

pg_XLOG – the PostgreSQL transaction log (WAL)
The PostgreSQL transaction log is the essential directory we have to discuss in
this chapter. pg_XLOG contains all files related to the so called XLOG. If you have
used PostgreSQL already in the past, you might be familiar with the term WAL
(Write Ahead Log). XLOG and WAL are two names for the very same thing. The
same applies to the term transaction log. All these three terms are widely in use
and it is important to know that they actually mean the same thing.

The pg_XLOG directory will typically look like this:

[hs@paulapg_XLOG]$ ls -l
total 81924
-rw------- 1 hs staff 16777216 Feb 12 16:29

Understanding the PostgreSQL Transaction Log

[34]

000000010000000000000001
-rw------- 1 hs staff 16777216 Feb 12 16:29
000000010000000000000002
-rw------- 1 hs staff 16777216 Feb 12 16:29
000000010000000000000003
-rw------- 1 hs staff 16777216 Feb 12 16:29
000000010000000000000004
-rw------- 1 hs staff 16777216 Feb 12 16:29
000000010000000000000005
drwx------ 2 hs staff 4096 Feb 11 18:14 archive_status

What you see is a bunch of files, which are always exactly 16 MB in size (default
setting). The filename of an XLOG file is generally 24 bytes long. The numbering is
always hexadecimal. So, the system will count "… 9, A, B, C, D, E, F, 10" and so on.

One important thing to mention is that the size of the pg_XLOG directory will not
vary wildly over time and it is totally independent of the type of transactions you are
running on your system. The size of the XLOG is determined by postgresql.conf
parameters, which will be discussed later in this chapter. In short: No matter if you are
running small or large transactions, the size of the XLOG will be the same. You can
easily run a transaction as big as 1 TB with just a handful of XLOG files. This might not
be too efficient, performance wise, but it is technically and perfectly feasible.

postgresql.conf – the central PostgreSQL
configuration file
Finally, there is the main PostgreSQL configuration file. All configuration parameters
can be changed in postgresql.conf and we will use this file extensively to set
up replication and to tune our database instances to make sure that our replicated
setups provide us with superior performance.

If you happen to use prebuilt binaries, you might not find postgresql.
conf directly inside your data directory. It is more likely to be located in
some subdirectory of /etc/ (on Linux/Unix) or in your place of choice
in Windows. The precise location is highly dependent on the type of
operating system you are using. The typical location for data directories
is /var/lib/pgsql/data. But postgresql.conf is often located
under /etc/postgresql/9.X/main/postgresql.conf
(as in Ubuntu and similar systems) or under /etc directly.

Chapter 2

[35]

Writing one row of data
Now that we have gone through the disk layout, we will dive further into
PostgreSQL and see what happens when PostgreSQL is supposed to write one line
of data. Once you have mastered this chapter, you will have fully understood the
concept behind the XLOG.

Note that, in this section about writing a row of data, we have simplified the process
a little to make sure that we can stress the main point and the ideas behind the
PostgreSQL XLOG.

A simple INSERT statement
Let us assume that we are doing a simple INSERT statement like the following one:

INSERT INTO foo VALUES ('abcd'):

As one might imagine, the goal of an INSERT operation is to somehow add a row
to an existing table. We have seen in the previous section about the disk layout of
PostgreSQL that each table will be associated with a file on disk.

Let us perform a mental experiment and assume that the table we are dealing with
here is 10 TB large. PostgreSQL will see the INSERT operation and look for some spare
place inside this table (either using an existing block or adding a new one). For the
purpose of this example, we simply just put the data into the second block of the table.

Everything will be fine as long as the server actually survives the transaction. What
happens if somebody pulls the plug after just writing abc instead of the entire data?
When the server comes back up after the reboot, we will find ourselves in a situation
where we have a block with an incomplete record, and to make it even funnier, we
might not even have the slightest idea where this block containing the broken record
might be.

In general, tables containing incomplete rows in unknown places can be considered
to be corrupted tables. Of course, systematic table corruption is nothing the
PostgreSQL community would ever tolerate, especially not if problems like that are
caused by clear design failures.

We have to ensure that PostgreSQL will survive interruptions at any
given point in time without losing or corrupting data. Protecting
your data is not a nice to have but an absolute must.

Understanding the PostgreSQL Transaction Log

[36]

To fix the problem that we have just discussed, PostgreSQL uses the so called WAL
(Write Ahead Log) or simply XLOG. Using WAL means that a log is written ahead of
data. So, before we actually write data to the table, we make log entries in sequential
order indicating what we are planning to do to our underlying table. The following
image shows how things work:

As we can see from the figure, once we have written data to the log (1), we can go
ahead and mark the transaction as done (2). After that, data can be written to the
table (3).

We have left out the memory part of the equation – this will
be discussed later in this section.

Let us demonstrate the advantages of this approach with two examples:

Chapter 2

[37]

Crashing during WAL-writing
To make sure that the concept described in this chapter is rock solid and working, we
have to make sure that we can crash at any point in time without risking our data.
Let us assume that we crash while writing the XLOG. What will happen in this case?
Well, in this case, the end user will know that the transaction was not successful, so
he or she will not rely on the success of the transaction anyway.

As soon as PostgreSQL starts up, it can go through the XLOG and replay everything
necessary to make sure that PostgreSQL is in consistent state. So, if we don't make it
through WAL-writing, something nasty has happened and we cannot expect a write
to be successful.

A WAL entry will always know if it is complete or not. Every WAL entry has a
checksum inside, and therefore PostgreSQL can instantly detect problems in case
somebody tries to replay broken WAL. This is especially important during a crash
when we might not be able to rely on the very latest data written to disk anymore.
The WAL will automatically sort out those problems during crash recovery.

If PostgreSQL is configured properly, crashing is perfectly
safe during any point in time.

Crashing after WAL-writing
Let us now assume we have made it through WAL-writing and we crashed shortly
after that, maybe while writing to the underlying table. What if we only manage to
write ab instead of the entire data?

Well, in this case, we will know during replay what is missing. Again, we go to WAL
and replay what is needed to make sure that all data is safely in our data table.

While it might be hard to find data in a table after a crash, we can always rely on the
fact that we can find data in the WAL. The WAL is sequential and if we simply keep
track of how far data has been written, we can always continue from there; the XLOG
will lead us directly to the data in the table and it always knows where a change has
been or should have been made. PostgreSQL does not have to search for data in the
WAL; it just replays it from the proper point on.

Once a transaction has made it to the WAL, it cannot
be easily lost anymore.

Understanding the PostgreSQL Transaction Log

[38]

Read consistency
Now that we have seen how a simple write is performed, we have to take a look at
what impact writes have on reads. The next image shows the basic architecture of the
PostgreSQL database system:

For the sake of simplicity, we can see a database instance as a thing consisting of
three major components:

1. PostgreSQL data files
2. The transaction log
3. Shared buffer

In the previous sections, we have already discussed data files. You have also seen
some basic information about the transaction log itself. Now we have to extend our
model and bring another component on to the scenery: The memory component of
the game, the so called shared buffer.

Chapter 2

[39]

The purpose of the shared buffer
The shared buffer is the I/O cache of PostgreSQL. It helps to cache 8k blocks, which
are read from the operating system and it helps to hold back writes to the disk to
optimize efficiency (how this works will be discussed later in this chapter).

The shared buffer is important as it affects performance.

But, performance is not the only issue we should be focused on when it comes to
the shared buffer. Let us assume that we want to issue a query. For the sake of
simplicity, we also assume that we need just one block to process this read request.

What happens if we do a simple read? Maybe we are looking up something simple
like a phone number or a username given a certain key. The following list shows, in a
heavily simplified way, what PostgreSQL will do under the assumption the instance
has been restarted freshly:

1. PostgreSQL will look up the desired block in the cache (as stated before, this
is the shared buffer). It will not find the block in the cache of a freshly started
instance.

2. PostgreSQL will ask the operating system for the block.
3. Once the block has been loaded from the OS, PostgreSQL will put it into the

first queue of the cache.
4. The query has been served successfully.

Let us assume the same block will be used again by a second query. In this case,
things will work as follows:

• PostgreSQL will look up the desired block and land a cache hit.
• PostgreSQL will figure out that a cached block has been reused and move

it from a lower level of cache (Q1) to a higher level of the cache (Q2). Blocks
that are in the second queue will stay in cache longer because they have
proven to be more important than those that are just on the Q1 level.

How large should the shared buffer be? Under Linux, a value of up to
8 GB is usually recommended. On Windows, values below 1 GB have
proven to be useful (as of PostgreSQL9.2). From PostgreSQL 9.3 onwards,
higher values might be useful and feasible under Windows. Insanely
large shared buffers on Linux can actually be a deoptimization. Of course,
this is only a rule of thumb; special setups might need different settings.

Understanding the PostgreSQL Transaction Log

[40]

Mixed reads and writes
Remember, in this section, it is all about understanding writes to make sure that our
ultimate goal, full and deep understanding of replication, can be achieved. Therefore
we have to see how reads and writes go together. Let's see how a write and a read
go together:

1. A write comes in.
2. PostgreSQL will write to the transaction log to make sure that consistency

can be reached.
3. PostgreSQL will grab a block inside the PostgreSQL shared buffer and make

the change in the memory.
4. A read comes in.
5. PostgreSQL will consult the cache and look for the desired data.
6. A cache hit will be landed and the query will be served.

What is the point of this example? Well, as you might have noticed, we have never
talked about actually writing to the underlying table. We talked about writing to the
cache, to the XLOG and so on, but never about the real data file.

In this example it is totally irrelevant if the row we have written is in the
table or not. The reason is simple: If we need a block that has just been
modified, we will never make it to the underlying table anyway.

It is important to understand that data is usually not sent to a data file directly after
or during a write operation. It makes perfect sense to write data a lot later to increase
efficiency. The reason why this is important is that it has subtle implications for
replication. A data file itself is worthless because it is neither necessarily complete
nor correct. To run a PostgreSQL instance, you will always need data files along with
the transaction log. Otherwise, there is no way to survive a crash.

From a consistency point of view, the shared buffer is here to complete the view a
user has of the data. If something is not in the table, it logically has to be in memory.

In case of a crash, memory will be lost, and so the XLOG is consulted and replayed to
turn data files into a consistent data store again. Under any circumstances, data files
are only half of the story.

Chapter 2

[41]

In PostgreSQL 9.2 and before, the shared buffer was exclusively in SysV/
POSIX shared memory or simulated SysV on Windows. PostgreSQL9.3
(unreleased at the time of writing) started using memory-mapped
files, which is a lot faster under Windows, and makes no difference in
performance under Linux, but is slower under BSDs. BSD developers
have already started fixing this. Moving to mmap was done to make
configuration easier because mmap is not limited by the operating
system, it is unlimited as long as enough RAM is around. SysVshmem is
limited and a high amount of SysVshmen can usually only be allocated if
the operating system is tweaked accordingly. The default configuration
of shared memory varies from Linux distribution to Linux distribution.
Suse tends to be a bit more relaced while RedHat, Ubuntu and some
others tend to be more conservative.

The XLOG and replication
In this chapter, you have already learned that the transaction log of PostgreSQL has
all changes made to the database. The transaction log itself is packed into nice and
easy-to-use 16 MB segments.

The idea of using this set of changes to replicate data is not farfetched. In fact, it is a
logical step in the development of every relational (or maybe even a non-relational)
database system. For the rest of this book, you will see in many ways how the
PostgreSQL transaction log can be used, fetched, stored, replicated, and analyzed in
many different ways.

In most replicated systems, the PostgreSQL transaction log is the backbone of the
entire architecture (for synchronous as well as for asynchronous replication).

Understanding consistency and data loss
Digging into the PostgreSQL transaction log without thinking about consistency is
impossible. In the first part of this chapter, we have tried hard to explain the basic idea
of the transaction log in general. You have learned that it is hard or even impossible to
keep data files in good shape without the ability to log changes beforehand.

Up to now we have mostly talked about corruption. It is definitely not nice to lose
data files because of corrupted entries in a data file, but corruption is not the only
issue you have to be concerned about. Two other important topics are:

• Performance
• Data loss

Understanding the PostgreSQL Transaction Log

[42]

While this might be an obvious choice for important topics, we have the feeling
that those two topics are not evenly well understood, honored, and therefore taken
into consideration.

In our daily business as PostgreSQL consultants and trainers, we usually tend to see
people who are only focused on performance.

Performance is everything, we want to be fast; tell us how to be fast…

The awareness of potential data loss, or even a concept to handle it, seems to be new
to many people. We try to put it this way: What good is higher speed if data is lost
even faster? The point of this is not that performance is not important; performance
is highly important. However, we simply want to point out that performance is not
the only component in the big picture.

All the way to the disk
To understand issues related to data loss and consistency, we have to see how a
chunk of data is sent to the disk. The following image illustrates how this works:

When PostgreSQL wants to read or write a block, it usually has to go through a
couple of layers. When a block is written, it will be sent to the operating system.
The operating system will cache the data and perform some operation on the data.
At some point, the operating system will decide to pass the data on to some lower

Chapter 2

[43]

level. This might be the disk controller. The disk controller will cache, reorder, and
massage the write again and finally pass it on to the disk. Inside the disk, there might
be one more caching level before the data will finally end up on the real physical
storage device.

In our example, we have used four layers. In many enterprise systems, there can even
be more layers. Just imagine a virtual machine, storage mounted over the network
such as SAN, NAS, NFS, ATA-over_Ethernet, iSCSI, and so on. Many abstraction
layers will pass data around, and each of them will try to do its share of optimization.

From memory to memory
What happens when PostgreSQL passes an 8k block to the operating system? The only
correct answer to this question might be: "Something". When a normal write to a file
is performed, there is absolutely no guarantee that the data is actually sent to disk.
In reality, writing to a file is nothing more than a copy operation from PostgreSQL
memory to some system memory. Both memory areas are in RAM, so in the case of
a crash, things can be lost. Practically speaking, it makes no difference who loses the
data, if the entire RAM is gone due to a failure.

The following code snippet illustrates the basic problem we are facing:

test=# \d t_test
 Table "public.t_test"
 Column | Type | Modifiers
--------+---------+-----------
id | integer |

test=# BEGIN;
BEGIN
test=# INSERT INTO t_test VALUES (1);
INSERT 0 1
test=# COMMIT;
COMMIT

Just like in the previous chapter, we are using a table with just one column. The goal
is to run a transaction inserting a single row.

If a crash happens shortly after commit, no data will be in danger because nothing has
happened. If a crash happens shortly after the INSERT statement but before COMMIT,
nothing can happen. The user has not issued a COMMIT yet, so the transaction is known
to be running and thus unfinished. If a crash happens, the application will notice that
things were unsuccessful and (hopefully) react accordingly.

Understanding the PostgreSQL Transaction Log

[44]

The situation is quite different, however, if the user has issued a COMMIT statement,
which has returned successfully. Whatever happens, the user will expect committed
data to be available.

Users expect that successful writes will be available after an
unexpected reboot. This persistence is also required by the so called
ACID criteria. In computer science, ACID (Atomicity, Consistency,
Isolation, Durability) is a set of properties that guarantee that database
transactions are processed reliably.

From memory to the disk
To make sure that the kernel will pass data from memory on to the disk, PostgreSQL
has to take some precautions. On COMMIT, a system call will be issued, which forces
data to the transaction log.

PostgreSQL does not have to force data to the data files at this point
because we can always repair broken data files from the XLOG. If data is
stored in the XLOG safely, the transaction can be considered to be safe.

The system call necessary to force data to disk is called fsync(). The following
listing has been copied from the BSD manpage. In our opinion, it is one of the best
manpages ever written dealing with the topic:

FSYNC(2) BSD System Calls Manual FSYNC(2)

NAME
fsync -- synchronize a file's in-core state with
that on disk

SYNOPSIS
 #include <unistd.h>

int
fsync(intfildes);

DESCRIPTION
Fsync() causes all modified data and attributes of
fildes to be moved to a permanent storage device.
 This normally results in all in-core modified
copies of buffers for the associated file to be
written to a disk.

Chapter 2

[45]

 Note that while fsync() will flush all data from
the host to the drive (i.e. the "permanent storage
device"), the drive itself may not physically
write the data to the platters for quite some time
and it may be written in an out-of-order sequence.

 Specifically, if the drive loses power or the OS
crashes, the application may find that only some
or none of their data was written. The disk drive
may also re-order the data so that later writes
may be present, while earlier writes are not.

 This is not a theoretical edge case. This sce-
nario is easily reproduced with real world work-
loads and drive power failures.

It essentially says that the kernel tries to make its image of the file in memory
consistent with the image of the file on disk. It does so by forcing all changes out to
the storage device. It is also clearly stated that we are not talking about a theoretical
scenario here, flushing to disk is a highly important issue.

Without a disk flush on COMMIT, you simply cannot be sure that your data is safe,
and this means that you can actually lose data in case of serious trouble.

And, what is essentially important is speed and consistency; they can actually work
against each other. Flushing changes to disk is especially expensive because real
hardware is involved. The overhead we have is not some 5 percent but a lot more.
With the introduction of SSDs, the overhead has gone down dramatically, but it is
still substantial.

One word about batteries
Most production servers will make use of a RAID controller to manage disks. The
important point here is that disk flushes and performance are usually strongly related
to RAID controllers. If the RAID controller has no battery, which is usually the case,
then it takes insanely long to flush. The RAID controller has to wait for the slowest
disk to return. However, if a battery is available, the RAID controller can assume that a
power loss will not prevent an acknowledged disk write from completing once power
is restored. So, the controller can cache a write and simply pretend to flush. Therefore,
a simple battery can increase flush performance tenfold easily.

Understanding the PostgreSQL Transaction Log

[46]

Keep in mind that what we have outlined in this section is general
knowledge. But, every piece of hardware is different. We highly
recommend that you check out and understand your hardware
and RAID configuration to see how flushes are handled.

Beyond fsync()
fsync() is not the only system call flushing data to disk. Depending on the
operating system you are using, different flush calls are available. In PostgreSQL,
you can decide on your preferred flush call by changing wal_sync_method. Again,
this change can be made by tweaking postgresql.conf.

The methods available are open_datasync, fdatasync, fsync, fsync_
writethrough, and open_sync.

If you want to change those values, we highly recommend to check
out the manpages of the operating system you are using to make sure
that you have made the right choice.

PostgreSQL consistency levels
Ensuring consistency and preventing data loss is costly; every disk flush is expensive
and we should think twice before flushing to disk. To give the user the choice,
PostgreSQL offers various levels of data protection. Those various choices are
represented by two essential parameters, which can be found in postgresql.conf:

1. fsync

2. synchronous_commit

The fsync parameter will control data loss, if fsync is used at all. In the default
configuration, PostgreSQL will always flush a commit out to disk. If fsync is off,
however, there is no guarantee that a COMMIT will survive a crash at all. Data can
be lost and there might even be data corruption. To protect all of your data, it is
necessary to keep fsync on. If you can afford to lose some or all of your data, you
can relax flushing standards a little.

Chapter 2

[47]

synchronous_commit is related to XLOG-writes. Normally, PostgreSQL will wait
until data has been written to the XLOG completely. Especially short transactions can
suffer considerably and therefore various different options are offered:

• on: PostgreSQL will wait until XLOG has been fully and successfully written.
If you are storing credit card data, you want to make sure that a financial
transaction is not lost. In this case, flushing to disk is essential.

• off: There will be a time difference between reporting success to the client
and safely writing to the disk. In a setting like that, there can be corruption.
Let us assume a database storing information about who is currently online
on a website. Suppose your system crashes and comes back up 20 minutes
later. Do you really care about your data? After 20 minutes, everybody has to
log in back again anyway. It is not worth sacrificing performance to protect
data that will be outdated in a couple of minutes anyway.

• local: In the case of a replicated database instance, we will only wait for the
local instance to flush to disk. The advantage here is that you have a high
level of protection because you flush to one disk; however, we can safely
assume that not both servers crash at the same time, so we can relax the
standards on the slave a little.

• remote_write: PostgreSQL will wait until a synchronous standby server
reports success for a given transaction.

In contract to setting fsync to off, changing synchronous_commit to off will not
result in corruption. However, in the case of a crash we might lose a handful of
transactions, which have already been committed successfully. The amount of
potential data loss is governed by an additional postgresql.conf setting called
wal_writer_delay. In the case of setting synchronous_commit to off, we can never
lose more data than defined in the wal_writer_delayconfig variable.

Changing synchronous_commit might look like a small
performance tweak; in reality, however, changing the sync behavior is
one of the dominant factors when running small writing transactions.
The gain might not just be a handful of percentage points, but, if you
are lucky, it could be tenfold or even more (depending on hardware,
work load, I/O subsystem, and so on).

Keep in mind configuring a database is not just about speed. Consistency is at least
as important as speed and therefore you should think carefully whether you want to
trade speed for potential data loss.

Understanding the PostgreSQL Transaction Log

[48]

It is important to fully understand those consistency-related topics outlined in this
chapter. When it comes to deciding on your cluster architecture, data security will be
an essential part and it is highly desirable to be able to judge if certain architecture
makes sense for your data. After all, database work is all about protecting data. Full
awareness of your durability requirements is definitely a big plus.

Tuning checkpoints and the XLOG
Up to now, this chapter has hopefully provided some insight into how PostgreSQL
writes data and what the XLOG is used for in general. Given this knowledge, we
can now move on and learn what we can do to make our databases work even more
efficiently, both, in case of replication and in case of running just a single server.

Understanding the checkpoints
In this chapter, we have seen that data has to be written to the XLOG before it may
go anywhere. The thing is, if the XLOG was never deleted, clearly, we would not
write to it forever without filling up the disk at some point in time.

To solve the problem, the XLOG has to be deleted at some point. This process is
called checkpointing.

The main question arising from this issue is: When can the XLOG be truncated up to
a certain point? The answer is: When PostgreSQL has put everything that is already
in the XLOG, into the storage files. If all the changes made to the XLOG are also
made to the data files, the XLOG can be truncated.

Keep in mind that simply writing the data is worthless, we also
have to flush the data to the data tables.

In a way, the XLOG can be seen as the repairman for the data files in case something
happens. If everything is fully repaired, the repair instructions can be removed
safely; this is exactly what happens during a checkpoint.

Configuring checkpoints
Checkpoints are highly important for consistency but they are also highly relevant
to performance. If checkpoints are configured poorly, you might face serious
performance degradations.

Chapter 2

[49]

When it comes to configuring checkpoints, the following parameters are relevant.
Note, all those parameters can be changed in postgresql.conf:

checkpoint_segments = 3
checkpoint_timeout = 5min
checkpoint_completion_target = 0.5
checkpoint_warning = 30s

In the following sections, we will take a look at each of these variables:

About segments and timeouts
checkpoint_segments and checkpoint_timeout will define the distance between
two checkpoints. A checkpoint happens either when we run out of segments or when
the time is over.

Remember, a segment is usually 16 MB, so three segments means that we will do
a checkpoint every 48 MB. On modern hardware, 16 MB is not enough by far.
On a typical production system, a checkpoint interval of 256 or even higher is
perfectly feasible.

However, when setting checkpoint_segments, one thing has to be kept in the back
of your mind: In case of a crash, PostgreSQL has to replay all the changes since the
last checkpoint. If the distance between two checkpoints is unusually large, you
might notice that your failed database instance takes too long to start up again.
This should be avoided for the sake of availability.

There will always be a trade-off between performance
and recovery times after a crash; you have to balance
your configuration accordingly.

checkpoint_timeout is also highly relevant. It is the upper limit of the time allowed
between two checkpoints. There is no point in increasing checkpoint_segments
infinitely while leaving the time as it is. On large systems, increasing checkpoint_
timeout has proven to make sense for many people.

In PostgreSQL, you will figure out that there is a constant number
of transaction log files around. Unlike in other database systems the
number of XLOG files has nothing to do with the maximum size of a
transaction; a transaction can easily be much larger than the distance
between two checkpoints.

Understanding the PostgreSQL Transaction Log

[50]

To write or not to write?
We have learned in this chapter that at COMMIT time, we cannot be sure whether the
data is already in the data files or not.

So, if the data files don't have to be consistent anyway, why not vary the
point in time the data is written? This is exactly what we can do with
checkpoint_completion target. The idea is to have a setting that specifies the
target of checkpoint completion, as a fraction of total time between two checkpoints.

Let us now discuss three scenarios to illustrate the purpose of the
checkpoint_completion_target:

Scenario 1 – Storing stock-market data
In this scenario, we want to store the most recent stock quotes of all stocks in the
Dow Jones Industrial Average (DJIA). We don't want to store the history of all stock
prices but just the most recent, current price.

Given the type of data we are dealing with, we can assume we will have a workload
that is dictated by UPDATE statements.

What will happen? PostgreSQL has to update the very same data over and over
again. Given the fact that the DJIA consists of only 30 different stocks, the amount of
data is very limited and our table will be really small. In addition to that, the price
might be updated every second or even more often.

Internally, the situation is like this: When the first UPDATE comes along, PostgreSQL
will grab a block, put it into memory and modify it. Every subsequent UPDATE
will most likely change the very same block. Logically, all writes have to go to the
transaction log but what happens with the cached blocks in shared buffer?

The general rule is: If there are many UPDATEs (respectively changes made to the
same block), it is wise to keep blocks in memory as long as possible; this will greatly
increase the odds of avoiding I/O by writing multiple changes in one go.

If you want to increase the odds of having many changes in one
disk I/O, consider decreasing checkpoint_complection_
target. Blocks will stay in memory longer and therefore many
changes might go into the same blocks before a write happens.

In the scenario just outlined, a checkpoint_completion_target of 0.05 (or 5
percent) might be reasonable.

Chapter 2

[51]

Scenario 2 – Bulk loading
In our second scenario, we will load 1 TB of data into an empty table. If you are
loading so much data at a time, what are the odds of hitting a block you have hit 10
minutes ago again? The odds are basically zero. There is no point in buffering writes
in this case because we would simply miss the disk capacity lost by idling
and waiting for I/O to happen.

During a bulk load, we want to use all the I/O capacity we have all the time.
To make sure PostgreSQL writes data out instantly, we have to increase the
checkpoint_completion_target to a value close to 1.

Scenario 3 – I/O spikes and throughput considerations
Sharp spikes can kill you; at least they can do serious harm which should be avoided.
What is true in the real world around you is always true in the database world.

In this scenario, we want to assume an application storing so called Call Detail
Records (CDRs) for a phone company. You can imagine that a lot of writing will
happen and that people are placing phone calls all day long. Of course, there will be
people placing a phone call that is instantly followed by the next call but we will also
witness a great number of people placing just one call a week or so.

Technically this means that there is a good chance that a block in shared memory,
which has recently been changed, will face a second or a third change soon, but,
we will also have a great deal of changes made to blocks that will not be visited
ever again.

How shall we handle this? Well, it is a good idea to write out data late so that as
many changes as possible will go to pages that have been modified before. But, what
will happen during a checkpoint? If changes (in this case, dirty pages) have been
held back for too long, the checkpoint itself will be intense and many blocks must
be written within a fairly short period of time. This can lead to a so called I/O spike.
During an I/O spike, you will see that your I/O system is busy. It might show poor
response times and those poor response times can be felt by your end user.

This adds a new dimension to the problem: predictable response times.

Let us put it this way: Let us assume you have used internet banking successfully
for quite a while. You are happy. Now, some guy at your bank has found a tweak
which makes the database behind the internet banking 50 percent faster, but, this
gain comes with a downside: For two hours a day, the system will not be reachable.
Clearly, from a performance point of view the throughput will be better:

24 hours * 1 X < 22 hours * 1.5 X

Understanding the PostgreSQL Transaction Log

[52]

But, are you the customer going to be happy? Clearly, you would not. This is a
typical use case where optimizing for maximum throughput does no good. If
you can meet your performance requirements, it might be wiser to have evenly
distributed response times at the cost of a small performance penalty. In our banking
example, this would mean that your system is up 24x7 instead of just 22 hours a day.

Would you pay your mortgage more frequently if your internet
banking was 10 times faster? Clearly, you would not. Sometimes,
it is not about optimizing for many transactions per second but to
optimize in a way that you can handle a pre-defined amount of load in
the most reasonable way.

The same concept applies to the phone application we have outlined. We are not able
to write all changes during the checkpoint anymore because this might cause latency
issues during a checkpoint. It is also no good to make a change to the data files more
or less instantly (meaning: a high checkpoint_completion_target) because we
would write too much, too often.

This is a classical example where you have got to compromise. A
checkpoint_completion_target of 0.5 might be the best idea in this case.

Conclusion
The conclusion, which should be drawn from these three examples, is that no
configuration fits all purposes. You really have to think about the type of data you are
dealing with in order to come up with a good and feasible configuration. For many
applications, a value of 0.5 has proven to be just fine.

Tweaking WAL buffers
In this chapter, we have already adjusted some major parameters such as
shared_buffers, fsync, and so on. There is one more parameter, however, which
can have a dramatic impact on performance. The wal_buffers parameter has been
designed to tell PostgreSQL how much memory to keep around to remember XLOG,
which has not been written to the disk so far. So, if somebody pumps in a large
transaction, PostgreSQL will not write any mini change to the table to the XLOG
before COMMIT. Remember, if a non-committed transaction is lost during a crash, we
won't care about it anyway because COMMIT is the only thing which really counts
in every day life. It makes perfect sense to write XLOG in larger chunks before a
COMMIT happens. This is exactly what wal_buffers does: Unless changed manually
in postgresql.conf, it is an auto-tuned parameter (represented by -1) which makes
PostgreSQL take 3 percent of shared_buffers but no more than 16 MB to keep
XLOG around before writing it to the disk.

Chapter 2

[53]

In older versions of PostgreSQL, this parameter was at 64 KB. This
was unreasonably low for modern machines. If you are running an
old version, consider increasing wal_buffers to 16 MB. This is
usually a good value for reasonably sized database instances.

The internal structure of the XLOG
We will use the transaction log throughout this book, and to give you a deeper
insight into how things work on a technical level, we have added this section dealing
exclusively with the internal workings of the XLOG machinery. We will avoid going
down to the C level as this would be ways beyond the scope of this book, but we will
provide you with insights that are hopefully deep enough.

Understanding the XLOG records
Changes made to the XLOG are record-based. What does that mean? Let us assume
you are adding a row to a table:

test=# INSERT INTO t_test VALUES (1, 'hans');
INSERT 0 1

In this example, we are inserting into a table containing two columns. For the sake of
this example, we want to assume that both columns are indexed.

Remember what we learned before: the purpose of the XLOG is to keep those data
iles safe. So, this operation will trigger a series of XLOG entries. First, the data file(s)
related to the table will be written. Then the indexes' related entries will be created.
Finally a COMMIT record is sent to the log.

Not all the XLOG records are equal: Various types of XLOG records exist (for
example, heap, btree, clog, storage, gin, and standby records to name just a few).

XLOG records are chained backwards. So, each entry points to the previous entry in
the file. This way, we can be perfectly sure that we have found the end of a record as
soon as we have found the pointer to the previous entry.

Making the XLOG deterministic
As you can see, a single change can trigger a larger number of XLOG entries. This is
true for all kinds of statements; a large DELETE statement for instance can easily cause
a million changes. The reason is that PostgreSQL cannot simply put the SQL itself
into the log; it really has to log physical changes made to the table.

Understanding the PostgreSQL Transaction Log

[54]

Why is that? Just consider the following example:

test=# DELETE FROM t_test WHERE id > random();
DELETE 5335

The random() function has to produce different outputs every time it is called, and
therefore we cannot just put the SQL into the log because it is not guaranteed to
provide us with the same outcome if it is executed during replay.

Making the XLOG reliable
The XLOG itself is one of the most critical and sensitive parts in the entire database
instance. Therefore we have to take special care to make sure that everything
possible is done to protect it. In the case of a crash, a database instance is usually
doomed if there is no XLOG around.

Internally, PostgreSQL takes some special precautions to handle the XLOG:

• Using CRC32 checksums
• Disabling signals
• Space allocation

First of all each XLOG record contains a CRC32 checksum. This allows us to check
the integrity of the log at startup. It is perfectly feasible that the last write operations
before a crash were not totally sound anymore, and therefore a checksum can
definitely help to sort out problems straight away. The checksum is automatically
computed by PostgreSQL and users don't have to take care of this feature explicitly.

In addition to checksums, PostgreSQL will disable signals temporarily while writing
to the XLOG. This gives some extra level of security and reduces the odds of a stupid
corner-case problem somewhere.

Finally, PostgreSQL uses a fixed size XLOG. The size of the XLOG is determined by
checkpoint segments as well as by the checkpoint_completion_target.

The size of the PostgreSQL transaction log is calculated as follows:

(2 + checkpoint_completion_target) * checkpoint_segments + 1

An alternative way to calculate the size is:

checkpoint_segments + wal_keep_segments + 1 files

The important thing is that if something is of fixed size, it can rarely run out of space.

Chapter 2

[55]

In the case of transaction-log-based replication, we can run out of
space on the XLOG directory if the transaction log cannot be archived.

You can learn more about this topic in the next chapter.

LSNs and shared buffer interaction
If you want to repair a table, you have to make sure that you do so in the correct
order; it would be a disaster if a row was deleted before it actually came into existence.
Therefore the XLOG provides you with the order of all the changes. Internally, this
order is reflected through the Logical Sequence Number (LSN). The LSN is essential
to the XLOG. Each XLOG entry will be assigned to an LSN straight away.

In one of the previous sections, we have discussed consistency level. With
synchronous_commit set to off, a client will get an okay even if the XLOG record
has not been flushed to disk yet. Still, since a change must be reflected in cache and
since the XLOG must be written before the data table, the system has to make sure
that not all the blocks in the shared buffer can be written out instantly. The LSN will
guarantee that we can only write blocks from the shared buffer to the data file if the
corresponding change has already made it to the XLOG. Writing to the XLOG is
fundamental and a violation of this rule would certainly lead to problems after a crash.

Debugging the XLOG and putting it all together
Now that we have seen how the XLOG basically works, we can put it all together
and actually look into the XLOG. As of PostgreSQL 9.2, this works as follows: We
have to compile PostgreSQL from source. Before we do that, we should modify the
following file located at src/include/pg_config_manual.h. At around line 250,
we can uncomment WAL_DEBUG and compile as usual. This will allow us then to set a
client variable called wal_debug:

test=# SET client_min_messages TO log;
SET
test=# SET wal_debug TO on;
SET

In addition to that, we have to set client_min_messages to make sure that LOG
messages will reach our client.

Understanding the PostgreSQL Transaction Log

[56]

We are using the following table structure for our test:

test=# \d t_test
 Table "public.t_test"
 Column | Type | Modifiers
--------+---------+-----------
id | integer |
name | text |
Indexes:
"idx_id"btree (id)
"idx_name"btree (name)

If PostgreSQL has been compiled properly (and only then), we will see some
information about the XLOG on the screen:

test=# INSERT INTO t_test VALUES (1, 'hans');
LOG: INSERT @ 0/17C4680: prev 0/17C4620; xid 1009; len 36: Heap -
insert(init): rel 1663/16384/16394; tid 0/1
LOG: INSERT @ 0/17C46C8: prev 0/17C4680; xid 1009; len 20: Btree
- newroot: rel 1663/16384/16397; root 1 lev 0
LOG: INSERT @ 0/17C4700: prev 0/17C46C8; xid 1009; len 34: Btree
- insert: rel 1663/16384/16397; tid 1/1
LOG: INSERT @ 0/17C4748: prev 0/17C4700; xid 1009; len 20: Btree
- newroot: rel 1663/16384/16398; root 1 lev 0
LOG: INSERT @ 0/17C4780: prev 0/17C4748; xid 1009; len 34: Btree
- insert: rel 1663/16384/16398; tid 1/1
LOG: INSERT @ 0/17C47C8: prev 0/17C4780; xid 1009; len 12:
Transaction - commit: 2013-02-25 18:20:46.633599+01
LOG: XLOG flush request 0/17C47F8; write 0/0; flush 0/0

Just as stated in this chapter, PostgreSQL will first add a row to the table itself (heap).
Then the XLOG contains all entries that are index related. Finally, a commit record
is added.

All together, 156 bytes have made it to the XLOG; this is far more than the data we
have actually added. Consistency, performance (indexes), and reliability come with
a price tag.

Chapter 2

[57]

Summary
In this chapter, you have learned about the purpose of the PostgreSQL transaction log.
We have talked extensively about the on-disk data format and we have talked about
some highly important topics such as consistency and performance. All of those topics
will be needed when we replicate our first database in the next chapter.

The next chapter will build on top of what you have just learned and focus on Point-
In-Time-Recovery. The goal therefore is to make PostgreSQL return to a certain point
in time and provide data as if some later transactions had never happened.

Understanding
Point-In-Time-Recovery

Up to now, you have endured a fair amount of theory. As life does not only consist of
theory (as important as it may be), it is definitely the time to dig into practical stuff.

The goal of this chapter is to make you understand how you can recover your
database to a given point in time. When your system crashes or when somebody just
happens to drop a table accidentally, it is highly important to be able to not replay
the entire transaction log but just a fraction of it. Point-In-Time-Recovery will be the
tool to do this kind of partial replay of transaction log.

In this chapter, you will learn all you need to know about Point-In-Time-Recovery
(PITR) and you will be guided through practical examples. Therefore, we will
apply all the concepts you have learned in Chapter 2, Understanding the PostgreSQL
Transaction Log, to create some sort of incremental backup or to set up a simple,
rudimentary standby system.

Here is an overview of the topics we will deal with in this chapter:

• Understanding the concepts behind PITR
• Configuring PostreSQL for PITR
• Running pg_basebackup
• Recovering PostgreSQL to a certain point in time

Understanding Point-In-Time-Recovery

[60]

Understanding the purpose of PITR
PostgreSQL offers a tool called pg_dump to backup a database. Basically, pg_dump will
connect to the database, read all the data in transaction isolation level "serializable" and
return the data as text. As we are using "serializable", the dump is always consistent.
So, if your pg_dump starts at midnight and finishes at 6 A.M, you will have created
a backup, which contains all the data as of midnight but no further data. This kind
of snapshot creation is highly convenient and perfectly feasible for small to medium
amounts of data.

A dump is always consistent. This means that all foreign keys are intact;
new data added after starting the dump will be missing. It is most likely
the most common way to perform standard backups.

But, what if your data is so valuable and maybe so large in size that you want to
backup it incrementally? Taking a snapshot from time to time might be enough
for some applications; for highly critical data, it is clearly not. In addition to that,
replaying 20 TB of data in textual form is not efficient either. Point-In-Time-Recovery
has been designed to address this problem. How does it work? Based on a snapshot
of the database, the XLOG will be replayed later on. This can happen indefinitely or
up to a point chosen by you. This way, you can reach any point in time.

This method opens the door to many different approaches and features:

• Restoring a database instance up to a given point in time
• Creating a standby database, which holds a copy of the original data
• Creating a history of all changes

In this chapter, we will specifically feature on the incremental backup functionality
and describe how you can make your data more secure by incrementally archiving
changes to a medium of choice.

Moving to the bigger picture
The following picture provides an overview of the general architecture in use for
Point-In-Time-Recovery:

Chapter 3

[61]

We have seen in the previous chapter that PostgreSQL produces 16 MB segments of
transaction log. Every time one of those segments is filled up and ready, PostgreSQL
will call the so called archive_command. The goal of archive_command is to transport
the XLOG file from the database instance to an archive. In our image, the archive is
represented as the pot on the bottom-right side of the image.

The beauty of the design is that you can basically use an arbitrary shell script to
archive the transaction log. Here are some ideas:

• Use some simple copy to transport data to an NFS share
• Run rsync to move a file
• Use a custom made script to checksum the XLOG file and move it to

an FTP server
• Copy the XLOG file to a tape

The possible options to manage XLOG are only limited by imagination.

The restore_command is the exact counterpart of the archive_command. Its purpose
is to fetch data from the archive and provide it to the instance, which is supposed to
replay it (in our image, this is labeled as Restored Backup). As you have seen, replay
might be used for replication or simply to restore a database to a given point in time
as outlined in this chapter. Again, the restore_command is simply a shell script
doing whatever you wish, file by file.

Understanding Point-In-Time-Recovery

[62]

It is important to mention that you, the almighty administrator, are in
charge of the archive. You have to decide how much XLOG to keep and
when to delete it. The importance of this task cannot be underestimated.

Keep in mind, when then archive_command fails for some reason, PostgreSQL will
keep the XLOG file and retry after a couple of seconds. If archiving fails constantly
from a certain point on, it might happen that the master fills up. The sequence of
XLOG files must not be interrupted; if a single file is missing, you cannot continue
to replay XLOG. All XLOG files must be present because PostgreSQL needs an
uninterrupted sequence of XLOG files; if a single file is missing, the recovery process
will stop there at the very latest.

Archiving the transaction log
After taking a look at the big picture, we can take a look and see how things can be
put to work.

The first thing you have to do when it comes to Point-In-Time-Recovery is to archive
the XLOG. PostgreSQL offers all the configuration options related to archiving
through postgresql.conf.

Let us see step by step what has to be done in postgresql.conf to start archiving:

1. First of all, you should turn archive_mode on.
2. In the second step, you should configure your archive command. The

archive command is a simple shell command taking two parameters:

1. %p: This is a placeholder representing the XLOG file that should be
archived, including its full path (source).

2. %f: This variable holds the name of the XLOG without the path
pointing to it.

Let us set up archiving now. To do so, we should create a place to put the XLOG.
Ideally, the XLOG is not stored on the same hardware as the database instance you
want to archive. For the sake of this example, we assume that we want to apply an
archive to /archive. The following changes have to be made to postgresql.conf:

wal_level = archive
 # minimal, archive, or hot_standby
 # (change requires restart)
archive_mode = on
 # allows archiving to be done
 # (change requires restart)

Chapter 3

[63]

archive_command = 'cp %p /archive/%f'
 # command to use to archive a logfile segment
 # placeholders: %p = path of file to archive
 # %f = file name only

Once those changes have been made, archiving is ready for action and you can
simply restart the database to activate things.

Before we restart the database instance, we want to focus your attention on wal_
level. Currently three different wal_level settings are available:

• minimal

• archive

• hot_standby

The amount of transaction log produced in the case of just a single node is by far
not enough to synchronize an entire second instance. There are some optimizations
in PostgreSQL, which allow XLOG-writing to be skipped in the case of single-node
mode. The following instructions can benefit from wal_level being set to minimal:
CREATE TABLE AS, CREATE INDEX, CLUSTER, and COPY (if the table was created or
truncated within the same transaction).

To replay the transaction log, at least archive is needed. The difference between
archive and hot_standby is that archive does not have to know about currently
running transactions. For streaming replication, however, this information is vital.

Restarting can either be done through pg_ctl –D /data_
directory –m fast restart directly or through a standard init
script.

The easiest way to check if our archiving works is to create some useless data inside
the database. The following code snippets shows a million rows can be made easily:

test=# CREATE TABLE t_test AS SELECT * FROM generate_series(1,
1000000);
SELECT 1000000

test=# SELECT * FROM t_test LIMIT 3;
generate_series

 1
 2
 3
(3 rows)

Understanding Point-In-Time-Recovery

[64]

We have simply created a list of numbers. The important thing is that 1 million rows
will trigger a fair amount of XLOG traffic. You will see that a handful of files have
made it to the archive:

iMac:archivehs$ ls -l
total 131072
-rw------- 1 hs wheel 16777216 Mar 5 22:31
000000010000000000000001
-rw------- 1 hs wheel 16777216 Mar 5 22:31
000000010000000000000002
-rw------- 1 hs wheel 16777216 Mar 5 22:31
000000010000000000000003
-rw------- 1 hs wheel 16777216 Mar 5 22:31
000000010000000000000004

Those files can be easily used for future replay operations.

If you want to save storage, you can also compress those XLOG
files. Just add gzip to your archive_command.

Taking base backups
In the previous section, you have seen that enabling archiving takes just a handful of
lines and offers a great deal of flexibility. In this section, we will see how to create a
so called base backup, which can be used to apply XLOG later on. A base backup is
an initial copy of the data.

Keep in mind that the XLOG itself is more or less worthless.
It is only useful in combination with the initial base backup.

In PostgreSQL, there are two main options to create an initial base backup:

• Using pg_basebackup
• Traditional copy/rsync based methods

The following two sections will explain in detail how a base backup can be created:

Chapter 3

[65]

Using pg_basebackup
The first and most common method to create a backup of an existing server is to
run a command called pg_basebackup, which was introduced in PostgreSQL 9.1.0.
Basically pg_basebackup is able to fetch a database base backup directly over a
database connection. When executed on the slave, pg_basebackup will connect to
the database server of your choice and copy all the data files in the data directory
over to your machine. There is no need to log into the box anymore, and all it takes is
one line of code to run it; pg_basebackup will do all the rest for you.

In this example, we will assume that we want to take a base backup of a host called
sample.postgresql-support.de. The following steps must be performed:

• Modify pg_hba.conf to allow replication
• Signal the master to take pg_hba.conf changes into account
• Call pg_basebackup

Modifying pg_hba.conf
To allow remote boxes to log into a PostgreSQL server and to stream XLOG, you
have to explicitly allow replication.

In PostgreSQL, there is a file called pg_hba.conf, which tells the server which boxes
are allowed to connect using which type of credentials. Entire IP ranges can be
allowed or simply discarded through pg_hba.conf.

To enable replication, we have to add one line for each IP range we want to allow.
The following listing contains an example of a valid configuration:

TYPE DATABASE USER ADDRESS METHOD
host replication all 192.168.0.34/32 md5

In this case we allow replication connections from 192.168.0.34. The IP range
is identified by 32 (which simply represents a single server in our case). We have
decided to use MD5 as our authentication method. It means that the pg_basebackup
has to supply a password to the server. If you are doing this in a non-security critical
environment, using trust as authentication method might also be an option.

Understanding Point-In-Time-Recovery

[66]

What happens if you actually have a database called replication
in your system? Basically, setting the database to replication
will just configure your streaming behavior, if you want to put in
rules dealing with the database called replication, you have to
quote the database name as follows: "replication". However, we
strongly advise not to do this kind of trickery to avoid confusion.

Signaling the master server
Once pg_hba.conf has been changed, we can tell PostgreSQL to reload the
configuration. There is no need to restart the database completely. We have three
options to make PostgreSQL reload pg_hba.conf:

• By running an SQL command: SELECT pg_reload_conf();
• By sending a signal to the master: kill –HUP 4711 (with 4711 being the

process ID of the master)
• By calling pg_ctl: pg_ctl –D $PGDATA reload (with $PGDATA being the

home directory of your database instance)

Once we have told the server acting as data source to accept streaming connections,
we can move forward and run pg_basebackup.

pg_basebackup – basic features
pg_basebackup is a very simple-to-use command-line tool for PostgreSQL. It has to
be called on the target system and will provide you with a ready-to-use base backup,
which is ready to consume the transaction log for Point-In-Time-Recovery.

The syntax of pg_basebackup is as follows:

iMac:dbhs$ pg_basebackup --help
pg_basebackup takes a base backup of a running PostgreSQL server.

Usage:
pg_basebackup [OPTION]...

Options controlling the output:
 -D, --pgdata=DIRECTORY receive base backup into
directory
 -F, --format=p|t output format (plain (default),
tar)
 -x, --xlog include required WAL files in
backup (fetch mode)

Chapter 3

[67]

 -X, --xlog-method=fetch|stream
include required WAL files with
specified method
 -z, --gzip compress tar output
 -Z, --compress=0-9 compress tar output with given
compression level

General options:
 -c, --checkpoint=fast|spread
set fast or spread checkpointing
 -l, --label=LABEL set backup label
 -P, --progress show progress information
 -v, --verbose output verbose messages
 -V, --version output version information, then exit
 -?, --help show this help, then exit

Connection options:
 -h, --host=HOSTNAME database server host or
socket directory
 -p, --port=PORT database server port number
 -s, --status-interval=INTERVAL
time between status packets sent to server (in seconds)
 -U, --username=NAME connect as specified database
user
 -w, --no-password never prompt for password
 -W, --password force password prompt (should
happen automatically)

A basic call to pg_basebackup would look like this:

iMac:dbhs$ pg_basebackup -D /target_directory \
-h sample.postgresql-support.de

In this example, we will fetch the base backup from sample.postgresql-support.
de and put it into our local directory called /target_directory. It just takes this
simple line to copy an entire database instance to the target system.

When we create a base backup as shown in this section, pg_basebackup will connect
to the server and wait for a checkpoint to happen before the actual copy process is
started. In this mode, this is necessary because the replay process will start exactly at
this point in the XLOG. The problem is that it might take a while until a checkpoint
kicks in; pg_basebackup does not enforce a checkpoint on the source server straight
away to make sure that normal operations are not disturbed.

Understanding Point-In-Time-Recovery

[68]

If you don't want to wait on a checkpoint, consider using
--checkpoint=fast. It will enforce an instant checkpoint
and pg_basebackup will start copying instantly.

By default, a plain base backup will be created. It will consist of all the files in
directories found on the source server. If the base backup should be stored on tape,
we suggest to give –-format=t a try. It will automatically create a TAR archive
(maybe on a tape). If you want to move data to a tape, you can save an intermediate
step easily this way. When using TAR, it is usually quite beneficial to use it in
combination with --gzip to reduce the size of the base backup on disk.

There is also a way to see a progress bar while doing the base
backup but we don't recommend to use this option (--progress)
because it requires pg_basebackup to determine the size of the
source instance first, which can be costly.

pg_basebackup – self-sufficient backups
Usually a base backup without XLOG is pretty worthless. This is because the base
backup is taken while the master is fully operational. While the backup is taken,
those storage files in the database instance might have been modified heavily. The
purpose of the XLOG is to fix those potential issues in the data files reliably.

But, what if we want to create a base backup, which can live without (explicitly
archived) XLOG? In this case, we can use the --xlog-method=stream option. If
this option has been chosen, pg_basebackup will not just copy the data as it is but it
will also stream the XLOG being created during the base backup to our destination
server. This will provide us with just enough XLOG to allow us to start a base
backup made that way directly. It is self-sufficient and does not need additional
XLOG files. This is not Point-In-Time-Recovery but it can come in handy in case of
trouble. Having a base backup, which can be started right away, is usually a good
thing and it comes at fairly low cost.

Please note that --xlog-method=stream will require two
database connections to the source server, not just one. You have to
keep that in mind when adjusting max_wal_senders on the source
server.

If you are planning to use Point-In-Time-Recovery and if there is absolutely no need
to start the backup as it is, you can safely skip the XLOG and save some space this
way (default mode).

Chapter 3

[69]

Making use of traditional methods to create
base backups
These days pg_basebackup is the most common way to get an initial copy of a
database server. This has not always been the case. Traditionally, a different method
has been used which works as follows:

• Call SELECT pg_start_backup('some label');
• Copy all data files to the remote box through rsync or any other means.
• Run SELECT pg_stop_backup();

The main advantage of this old method is that there is no need to open a database
connection and no need to configure XLOG-streaming infrastructure on the
source server.

A main advantage is also that you can make use of features such as ZFS-snapshots or
similar means, which can help to dramatically reduce the amount of I/O needed to
create an initial backup.

Once you have started pg_start_backup, there is no need to hurry.
It is not necessary and not even especially desirable to leave the backup
mode soon. Nothing will happen if you are in backup mode for days.
PostgreSQL will archive the transaction log as usual and the user
won't face any kind of downside. Of course, it is bad habit not to close
backups soon and properly. However, the way PostgreSQL works
internally does not change when a base backup is running. There is
nothing filling up, no disk I/O delayed, or anything of this sort.

Tablespace issues
If you happen to use more than one tablespace, pg_basebackup will handle this just
fine if the filesystem layout on the target box is identical to the filesystem layout on
the master. However, if your target system does not use the same filesystem layout
there is a bit more work to do. Using the traditional way of doing the base backup
might be beneficial in this case.

If you are using --format=t (for TAR), you will be provided with one
TAR file per tablespace.

Understanding Point-In-Time-Recovery

[70]

Keeping an eye on network bandwidth
Let us imagine a simple scenario involving two servers. Each server might have
just one disk (no SSDs). Our two boxes might be interconnected through a 1 Gbit
link. What will happen to your applications if the second server starts to run a
pg_basebackup? The second box will connect, start to stream data at full speed
and easily kill your hard drive by using the full bandwidth of your network. An
application running on the master might instantly face disk wait and offer bad
response times. Therefore it is highly recommended to control the bandwidth
used up by rsync to make sure that your business applications have enough spare
capacity (mainly disk, CPU is usually not an issue).

If you want to limit rsync to, say, 20 MB/sec, you can simply use
rsync --bwlimit=20000. This will definitely make the creation of
the base backup take longer but it will make sure that your client apps
will not face problems.
In general we recommend a dedicated network interconnect between
master and slave to make sure that a base backup does not affect
normal operations.

Limiting bandwidth cannot be done with pg_basebackup onboard functionality.
 Of course, you can use any other tool to copy data and achieve similar results.

If you are using gzip compression with –-gzip, it can work as an
implicit speed brake. However, this is mainly a workaround.

Replaying the transaction log
Once we have created ourselves a shiny initial base backup, we can collect the
XLOG files created by the database. When the time has come, we can take all those
XLOG files and perform our desired recovery process. This works as described in
this section.

Chapter 3

[71]

Performing a basic recovery
In PostgreSQL, the entire recovery process is governed by a file named recovery.
conf, which has to reside in the main directory of the base backup. It is read during
startup and tells the database server where to find the XLOG archive, when to end
replay, and so forth.

To get you started, we have decided to include a simple recovery.conf sample file
for performing a basic recovery process:

restore_command = 'cp /archive/%f %p'
recovery_target_time = '2013-10-10 13:43:12'

The restore_command is essentially the exact counterpart of the archive_command
you have seen before. While the archive_command is supposed to put data into
the archive, the restore_command is supposed to provide the recovering instance
with the data file by file. Again, it is a simple shell command or a simple shell script
providing one chunk of XLOG after the other. The options you have here are only
limited by imagination; all PostgreSQL does is to check for the return code of the
code you have written, and replay the data provided by your script.

Just like in postgresql.conf, we have used %p and %f as placeholders; the meaning
of those two placeholders is exactly the same.

To tell the system when to stop recovery, we can set the recovery_target_time.
The variable is actually optional. If it has not been specified, PostgreSQL will recover
until it runs out of XLOG. In many cases, simply consuming the entire XLOG is a
highly desirable process; if something crashes, you want to restore as much data as
possible. But, it is not always so. If you want to make PostgreSQL stop recovery at
a specific point in time, you simply have to put the proper date in. The crucial part
here is actually to know how far you want to replay XLOG; in a real work scenario
this has proven to be the trickiest question to answer.

If you happen to a recovery_target_time, which is in the future,
don't worry, PostgreSQL will start at the very last transaction available
in your XLOG and simply stop recovery. The database instance will
still be consistent and ready for action. You cannot break PostgreSQL,
but, you might break your applications in case data is lost because of
missing XLOG.

Understanding Point-In-Time-Recovery

[72]

Before starting PostgreSQL, you have to run chmod 700 on the directory containing
the base backup, otherwise, PostgreSQL will error out:

iMac:target_directoryhs$ pg_ctl -D /target_directory\
 start
server starting
FATAL: data directory "/target_directory" has group or world access
DETAIL: Permissions should be u=rwx (0700).

This additional security check is supposed to make sure that your data directory
cannot be read by some user accidentally. Therefore an explicit permission change is
definitely an advantage from a security point of view (better safe than sorry).

Now that we have all the pieces in place, we can start the replay process by starting
PostgreSQL:

iMac:target_directoryhs$ pg_ctl –D /target_directory \
start
server starting
LOG: database system was interrupted; last known up at 2013-03-10
18:04:29 CET
LOG: creating missing WAL directory "pg_xlog/archive_status"
LOG: starting point-in-time recovery to 2013-10-10 13:43:12+02
LOG: restored log file "000000010000000000000006" from archive
LOG: redo starts at 0/6000020
LOG: consistent recovery state reached at 0/60000B8
LOG: restored log file "000000010000000000000007" from archive
LOG: restored log file "000000010000000000000008" from archive
LOG: restored log file "000000010000000000000009" from archive
LOG: restored log file "00000001000000000000000A" from archive
cp: /tmp/archive/00000001000000000000000B: No such file or
directory
LOG: could not open file "pg_xlog/00000001000000000000000B" (log
file 0, segment 11): No such file or directory
LOG: redo done at 0/AD5CE40
LOG: last completed transaction was at log time 2013-03-10
18:05:33.852992+01
LOG: restored log file "00000001000000000000000A" from archive
cp: /tmp/archive/00000002.history: No such file or directory
LOG: selected new timeline ID: 2
cp: /tmp/archive/00000001.history: No such file or directory
LOG: archive recovery complete
LOG: database system is ready to accept connections
LOG: autovacuum launcher started

Chapter 3

[73]

The amount of log produced by the database tells us everything we need to know
about the restore process and it is definitely worth investigating this information
in detail.

The first line indicates that PostgreSQL has found out that it has been interrupted
and that it has to start recovery. From the database instance point of view, a base
backup looks more or less like a crash needing some instant care by replaying XLOG;
this is precisely what we want.

The next couple of lines (restored log file ...) indicate that we are replaying
one XLOG file after the other that have been created since the base backup. It is
worth mentioning that the replay process starts at the sixth file. The base backup
knows where to start, so PostgreSQL will automatically look for the right XLOG file.

The message displayed after PostgreSQL reaches the sixth file (consistent
recovery state reached at 0/60000B8) is of importance. PostgreSQL states that
it has reached a consistent state. This is important. The reason is that the data files
inside a base backup are actually broken by definition (please refer to our previous
chapter about the XLOG here), but, the data files are not broken beyond repair. As
long as we have enough XLOG to recover, we are very well off. If you cannot reach a
consistent state, your database instance will not be usable and your recovery cannot
work without providing additional XLOG.

Practically speaking, not being able to reach a consistent state
usually indicates a problem somewhere in your archiving process
and your system setup. If everything up to now has been working
properly, there is no reason not to reach a consistent state.

Once we have reached a consistent state, one file after the other will be replayed
successfully until the system finally looks for the 00000001000000000000000B file.
The problem is that this file has not been created by the source database instance.
Logically, an error pops up.

Not finding the last file is absolutely normal; this type of error is
expected if the recovery_target_time does not ask PostgreSQL
to stop recovery before it reaches the end of the XLOG stream. Don't
worry, your system is actually fine. You have successfully replayed
everything to the file showing up exactly before the error message.

Understanding Point-In-Time-Recovery

[74]

As soon as all the XLOG has been consumed and the error message discussed earlier
has been issued, PostgreSQL reports the last transaction it was able or supposed to
replay, and starts up. You have a fully recovered database instance now and you can
connect to the database instantly. As soon as the recovery has ended, recovery.conf
will be renamed by PostgreSQL to recovery.done to make sure that it does not do
any harm when the new instance is restarted later on at some point.

More sophisticated positioning in the XLOG
Up to now, we have recovered a database up to the very latest moment available
in our 16 MB chunks of transaction log. We have also seen that you can define the
desired recovery timestamp. But the question now is: How do you know which
point in time to perform the recovery to? Just imagine somebody has deleted a table
during the day. What if you cannot easily determine the recovery timestamp right
away? What if you want to recover to a certain transaction?

recovery.conf has all you need. If you want to replay until a certain transaction,
you can refer to recovery_target_xid. Just specify the transaction you need and
configure recovery_target_inclusive to include this very specific transaction or
not. Using this setting is technically easy but as mentioned before, it is not easy by far
to find the right position to replay to.

In a typical setup, the best way to find a reasonable point to stop recovery is to use
pause_at_recovery_target. If this is set to true, PostgreSQL will not automatically
turn into a productive instance if the recovery point has been reached. Instead, it will
wait for further instructions from the database administrator. This is especially useful
if you don't know exactly how far to replay. You can replay, log in, see how far the
database is, change to the next target time, and continue replaying in small steps.

You have to set hot_standby = on in postgresql.conf to allow
reading during recovery.

Resuming recovery after PostgreSQL has paused can be done by calling a simple
SQL statement: SELECT pg_xlog_replay_resume(). It will make the instance move
to the next position you have set in recovery.conf. Once you have found the right
place, you can set the pause_at_recovery_target back to false and call pg_xlog_
replay_resume. Alternatively, you can simply utilize pg_ctl –D ... promote to
stop recovery and make the instance operational.

Chapter 3

[75]

Was this explanation too complicated? Let us boil it down to a simple list:

• Add a restore_command to the recovery.conf file.
• Add recovery_target_time to the recovery.conf file.
• Set pause_at_recovery_target to true in the recovery.conf file.
• Set hot_standby to on in postgresql.conf file.
• Start the instance to be recovered.
• Connect to the instance once it has reached a consistent state and as soon as it

stops recovering.
• Check if you are already where you want to be.
• If you are not:

 ° Change recovery_target_time.
 ° Run SELECT pg_xlog_replay_resume().
 ° Check again and repeat this section if it is necessary.

Keep in mind that once recovery has finished and once PostgreSQL has
started up as a normal database instance, there is (as of 9.2) no way to
replay XLOG later on.
Instead of going through this process, you can of course always use
filesystem snapshots. A filesystem snapshot will always work with
PostgreSQL because when you restart a snapshotted database instance,
it will simply believe that it had crashed before and recover normally.

Cleaning up the XLOG on the way
Once you have configured archiving, you have to store the XLOG being created by
the source server. Logically, this cannot happen forever. At some point, you really
have to get rid of this XLOG; it is essential to have a sane and sustainable cleanup
policy for your files.

Keep in mind, however, that you must keep enough XLOG so that you can always
perform recovery from the latest base backup. But if you are certain that a specific
base backup is not needed anymore, you can safely clean out all the XLOG that is
older than the base backup you want to keep.

Understanding Point-In-Time-Recovery

[76]

How can an administrator figure out what to delete? The best method is to simply
take a look at your archive directory:

000000010000000000000005
000000010000000000000006
000000010000000000000006.00000020.backup
000000010000000000000007
000000010000000000000008

Check out the filename in the middle of the listing. The .backup file has been created
by the base backup. It contains some information about the way the base backup has
been made and tells the system where to continue replaying the XLOG. If the backup
file belongs to the oldest base backup you need to keep around, you can safely erase all
the XLOG lower than file number 6; in this case, file number 5 could be safely deleted.

In our case, 000000010000000000000006.00000020.backup contains the
following information:

START WAL LOCATION: 0/6000020 (file 000000010000000000000006)
STOP WAL LOCATION: 0/60000E0 (file 000000010000000000000006)
CHECKPOINT LOCATION: 0/6000058
BACKUP METHOD: streamed
BACKUP FROM: master
START TIME: 2013-03-10 18:04:29 CET
LABEL: pg_basebackup base backup
STOP TIME: 2013-03-10 18:04:30 CET

The .backup file will also provide you with relevant information such as the time
the base backup has been made. It is plain there and so it should be easy for ordinary
users to read this information.

As an alternative to deleting all the XLOG files at one point, it is also possible to clean
them up during replay. One way is to hide an rm command inside your restore_
command. While this is technically possible, it is not necessarily wise to do so (what if
you want to recover again?).

Also, you can add the recovery_end_command command to your recovery.conf
file. The goal of recovery_end_command is to allow you to automatically trigger
some action as soon as the recovery ends. Again, PostgreSQL will call a script doing
precisely what you want. You can easily abuse this setting to clean up the old XLOG
when the database declares itself active.

Chapter 3

[77]

Switching the XLOG files
If you are going for an XLOG file-based recovery, you have seen that one XLOG will
be archived every 16 MB. What would happen if you never manage to create 16 MB
of changes? What if you are a small supermarket, which just makes 50 sales a day?
Your system will never manage to fill up 16 MB in time.

However, if your system crashes, the potential data loss can be seen as the amount of
data in your last unfinished XLOG file. Maybe this is not good enough for you.

A postgresql.conf setting on the source database might help. The archive_
timeout tells PostgreSQL to create a new XLOG file at least every x seconds. So, if
you are this little supermarket, you can ask the database to create a new XLOG file
every day shortly before you are heading for home. In this case, you can be sure that
the data of the day will safely be on your backup device already.

It is also possible to make PostgreSQL switch to the next XLOG file by hand.
A procedure named pg_switch_xlog() is provided by the server to do the job:

test=# SELECT pg_switch_xlog();
pg_switch_xlog

 0/17C0EF8
(1 row)

You might want to call this procedure when some important patch job has finished or
if you want to make sure that a certain chunk of data is safely in your XLOG archive.

Summary
In this chapter, you have learned about Point-In-Time-Recovery, which is a safe and
easy way to restore your PostgreSQL database to any desired point in time. PITR will
help you to implement better backup policies and make your setups more robust.

In the next chapter we will extend this topic and turn to asynchronous replication.
You will learn how to replicate an entire database instance using the PostgreSQL
transaction log.

Setting up Asynchronous
Replication

After performing your first Point-In-Time-Recovery, we are ready to work on a
real replication setup. In this chapter, you will learn how to set up asynchronous
replication and streaming. The goal is to make sure that you can achieve higher
availability and higher data security.

In this chapter we will cover the following topics:

• Configuring asynchronous replication
• Understanding streaming
• Combining streaming and archives
• Managing timelines

At the end of this chapter, you will be able to easily set up streaming replication
within a couple of minutes.

Setting up streaming replication
In the previous chapter, we have recovered from simple 16 MB XLOG files. Logically,
the replay process can only replay 16 MB at a time. This can lead to latency in your
replication setup because you have to wait until 16 MB have been created by the
master database instance. In many cases, this kind of delay might not be acceptable.

Setting up Asynchronous Replication

[80]

Missing the last XLOG file, which has not been finalized (and thus not
sent to the archive and lost because of the crash), is often the core reason
why people report data loss in case of Point-In-Time-Recovery.

In this scenario, streaming replication will be the solution to your problem.
With streaming replication, the replication delay will be minimal and you can
enjoy some extra level of protection for your data.

Let us talk about the general architecture of the PostgreSQL streaming infrastructure.
The following image illustrates the basic system design:

You have already seen this type of architecture. What we have added here is the
streaming connection. It is basically a normal database connection as you would
use in any other application. The only difference is that, in the case of a streaming
connection, the connection will be in a special mode to be able to carry the XLOG.

Tweaking the config files on the master
The question now is: How can you make a streaming connection come into
existence? Most of the infrastructure has already been made in the previous
example. On the master, the following settings must be set:

• wal_level must be set to hot_standby
• max_wal_senders must be at a reasonably high value to support enough

slaves

Chapter 4

[81]

How about archive_mode and archive_command? Many people
use streaming replication to make their systems replicate more data to
a slave as soon as possible. In addition to that, file-based replication
is often utilized to make sure that there is an extra layer of security.
Basically, both mechanisms use the same techniques; just the source of
XLOG differs in the cases of streaming- and archive-based recovery.

Now that the master knows that it is supposed to produce enough XLOG, handle
XLOG sender, and so on we can move on to the next step.

For security reasons, you must configure the master to enable streaming replication
connections. This requires changing pg_hba.conf as shown in the previous
section. Again, this is needed to run pg_basebackup and the subsequent streaming
connection. If you are using a traditional method to take the base backup, you still
have to allow replication connections to stream the XLOG, so, this step is mandatory.

Once your master has been successfully configured, you can restart the database (to
make wal_level and max_wal_senders work) and continue working on the slave.

Handling pg_basebackup and recovery.conf
Up to now, you have seen that the process is absolutely identical to performing
normal Point-In-Time-Recovery. So far, the only different thing is the wal_level,
which has to be configured differently for normal Point-In-Time-Recovery.
Otherwise, it is the same technique, there's no difference.

To fetch the base backup, we can use pg_basebackup just as shown in the previous
chapter. Here is an example:

iMac:dbhs$ pg_basebackup -D /target_directory \
-h sample.postgresql-support.de\
--xlog-method=stream

Now that we have taken a base backup, we can move ahead and configure
streaming. To do so, we have to write a file called recovery.conf (just like before).
Here is a simple example:

standby_mode = on
primary_conninfo= ' host=sample.postgresql-support.de port=5432 '

Setting up Asynchronous Replication

[82]

We have two new settings:

• standby_mode: This setting will make sure that PostgreSQL does not stop
once it runs out of XLOG. Instead, it will wait for new XLOG to arrive.
This setting is essential to make the second server a standby, which replays
XLOG constantly.

• primary_conninfo: This setting will tell our slave where to find the master.
You have to put a standard PostgreSQL connect string (just like in libpq) in
here. primary_conninfo is central and tells PostgreSQL to stream the XLOG.

For a basic setup, those two settings are totally sufficient. All we have to do now is to
fire up the slave just like you would start a normal database instance:

iMac:slavehs$ pg_ctl -D . start
server starting
LOG: database system was interrupted; last known up
at 2013-03-17 21:08:39 CET
LOG: creating missing WAL directory
 "pg_XLOG/archive_status"
LOG: entering standby mode
LOG: streaming replication successfully connected
to primary
LOG: redo starts at 0/2000020
LOG: consistent recovery state reached at 0/3000000

The database instance has successfully started. It detects that normal operations
have been interrupted. Then it enters standby mode and starts to stream XLOG
from the primary. PostgreSQL then reaches a consistent state and the system is
ready for action.

Making the slave readable
So far we have only set up streaming. The slave is already consuming the transaction
log from the master but it is not readable yet. If you try to connect to the instance,
you will face the following scenario:

iMac:slavehs$ psql -l
FATAL: the database system is starting up
psql: FATAL: the database system is starting up

This is the default configuration. The slave instance is constantly in backup mode
and keeps replaying the XLOG.

Chapter 4

[83]

If you want to make the slave readable, you have to adapt postgresql.conf on the
slave system; hot_standby must be set to on. You can set this straight away but you
can also make this change later on and simply restart the slave instance when you
want this feature to be enabled:

iMac:slavehs$ pg_ctl -D . restart
waiting for server to shut down....
LOG: received smart shutdown request
FATAL: terminating walreceiver process due to administrator command
LOG: shutting down
LOG: database system is shut down
done
server stopped
server starting
LOG: database system was shut down in recovery at 2013-03-17 21:56:12
CET
LOG: entering standby mode
LOG: consistent recovery state reached at 0/3000578
LOG: redo starts at 0/30004E0
LOG: record with zero length at 0/3000578
LOG: database system is ready to accept read only connections
LOG: streaming replication successfully connected to primary

The restart will shut down the server and fire it back up again. This is not too much
of a surprise; however, it is worth taking a look at the log. You can see that a process
called walreceiver is terminated.

Once we are back up and running, we can connect to the server. Logically, we are
only allowed to perform read-only operations:

test=# CREATE TABLE x (id int4);
ERROR: cannot execute CREATE TABLE in a read-only transaction

The server will not accept writes as expected. Remember, slaves are read-only.

The underlying protocol
When using streaming replication, you should keep an eye on two processes:

• wal_sender

• wal_receiver

Setting up Asynchronous Replication

[84]

wal_sender instances are processes on the master instance, which serve XLOG
to their counterpart on the slave called wal_receiver. Each slave has exactly
one wal_receiver and this process is connected to exactly one wal_sender on
the data source.

How does this entire thing work internally? As we have stated before, the connection
from the slave to the master is basically a normal database connection. The transaction
log is using more or less the same method as a COPY command would do. Inside
COPY-mode, PostgreSQL uses a little micro language to ship information back and
forth. The main advantage is that this little language has its own parser and so it
is possible to add functionality fast and in a fairly easy, non-intrusive way. As of
PostgreSQL 9.2, the following commands are supported:

• IDENTIFY_SYSTEM

• START_REPLICATION <position>

• BASE_BACKUP

 ° [LABEL 'label']

 ° [PROGRESS]

 ° [FAST]

 ° [WAL]

 ° [NOWAIT]

What you see is that the protocol level is pretty close to what pg_basebackup offers
as command-line flags.

Configuring a cascaded replication
As you have already seen in this chapter, setting up streaming replication is really
easy. All it takes is to set a handful of parameters, take a base backup, and enjoy your
replication setup.

In many cases, however, the situation is a little bit more delicate. Let us assume
for this example that we want to use a master to spread data to dozens of servers.
The overhead of replication is actually very small (common wisdom says that
the overhead of a slave is around 3 percent), but if you do something small often
enough, it can still be an issue. It is definitely not too beneficial to the master to have,
say, 100 slaves.

An additional use case is having a master in one location and a couple of slaves in
some other location. It does not make sense to send a lot of data over a long distance,
over and over again. It is a lot better to send it once and dispatch it on the other side.

Chapter 4

[85]

To make sure that not all servers have to consume the transaction log from a single
master, you can make use of a cascaded replication. Cascading means that a master
can stream its transaction log to a slave, which will then serve as dispatcher and
stream the transaction log to further slaves.

To use cascaded replication, you need at least PostgreSQL 9.2.

The following image illustrates the basic architecture:

The slaves at the far edge of the image could serve as dispatchers again. With this
very simple method, you can basically create a system of infinite size.

The procedure to set things up is basically the same as setting up a single slave.
You can easily take base backups from an operational slave (postgresql.conf
and pg_hba.conf have to be configured just like in the case of a single master).

Be aware of timeline switches; this can easily cause issues in the case
of failovers. Check out the section about timelines to find out more.

Setting up Asynchronous Replication

[86]

Turning slaves to masters
A slave can be a wonderful thing if you want to scale up reads or if you want to have
a backup of your data. But, a slave might not always have to stay a slave. At some
point, you might need to turn a slave into a master.

PostgreSQL offers some simple ways to do that. The first and most likely the most
convenient way to turn a slave into a master is by using pg_ctl:

iMac:slavehs$ pg_ctl -D . promote
server promoting
iMac:slavehs$ psql test
psql (9.2.4)
Type "help" for help.
test=# CREATE TABLE sample (id int4);
CREATE TABLE

The promote command will signal the postmaster and turn your slave into a master.
Once this is complete, you can connect and create objects.

In addition to the promote command, there is a second option to turn a slave
into a master. Especially when you are trying to integrate PostgreSQL with a
high-availability software of your choice, it can be easier to create a simple file
than to call an init script.

To use the file based method, you can add the trigger_file command to your
recovery.conf file:

trigger_file = '/tmp/start_me_up.txt'

In our case, PostgreSQL will wait for a file called /tmp/start_me_up.txt to come
into existence. The content of this file is totally irrelevant; PostgreSQL simply checks
if the file is present, and if it is, it will stop recovery and turn itself into a master.

Creating an empty file is a rather simple task:

iMac:slavehs$ touch /tmp/start_me_up.txt

The database system will react to the new file start_me_up.txt

FATAL: terminating walreceiver proced fire up:
LOG: trigger file found: /tmp/start_ss due to
administrator command
LOG: redo done at 0/50000E0
LOG: selected new timeline ID: 2
LOG: archive recovery complete
LOG: database system is ready to accept connections
LOG: autovacuum launcher started

Chapter 4

[87]

PostgreSQL will check for the file you have defined in recovery.conf every five
seconds. For most cases, this is perfectly fine, and by far, fast enough.

Mixing streaming and file-based recovery
Life is not always just black or white; sometimes there are also some shades of gray.
For some cases, streaming replication might be just perfect. In some other cases,
file-based replication and PITR are all you need. But, there are also many cases in
which you need a little bit of both. One example would be that when you interrupt
replication for a longer period of time, you might want to resync the slave using the
archive again instead of performing a full base backup again. It might also be useful
to keep an archive around for some later investigation or replay operation.

The good news is that PostgreSQL allows you to actually mix file-based and
streaming-based replication. You don't have to decide whether streaming- or
file-based is better; you can have the best of both worlds at the very same time.

How can you do that? In fact, you have seen all the ingredients already; we just have
to put them together in the right way.

To make this easier for you, we have compiled a complete example for you.

The master configuration
On the master, we can use the following configuration in postgresql.conf:

wal_level = hot_standby
 # minimal, archive, or hot_standby
 # (change requires restart)
archive_mode = on
 # allows archiving to be done
 # (change requires restart)
archive_command = 'cp %p /archive/%f'
 # command to use to archive a logfile segment
 # placeholders: %p = path of file to archive
 # %f = file name only
max_wal_senders = 5
 # we used five here to have some spare capacity

In addition to that, we have to add some config lines to pg_hba.conf to allow
streaming. Here is an example:

Allow replication connections from localhost, by a user with the
replication privilege.

Setting up Asynchronous Replication

[88]

local replication hs trust
host replication hs 127.0.0.1/32 trust
host replication hs ::1/128 trust

host replication all 192.168.0.0/16 md5

In our case, we have simply opened an entire network to allow replication
(to keep the example simple).

Once we have made those changes, we can restart the master and take a base backup
as shown earlier in this chapter.

The slave configuration
Once we have configured our master and taken a base backup, we can start to
configure our slave system. Let us assume for the sake of simplicity that we are
only using a single slave; we will not cascade replication to other systems.

We only have to change a single line in postgresql.conf on the slave:

hot_standby = on # to make the slave readable

In the next step, we can write a simple recovery.conf file and put it into the main
data directory:

restore_command = 'cp /archive/%f %p'
standby_mode = on
primary_conninfo = ' host=sample.postgresql-support.de port=5432 '
trigger_file = '/tmp/start_me_up.txt'

When we fire up the slave, the following things will happen:

1. PostgreSQL will call the restore_command to fetch the transaction log from
the archive.

2. It will do so until no more files can be found in the archive.
3. PostgreSQL will try to establish a streaming connection.
4. It will stream if data exists.

 ° If no data is present, it will call the restore_command to fetch the
transaction log from the archive.

 ° It will do so until no more files can be found in the archive.
 ° It will try the streaming connection again.

Chapter 4

[89]

You can keep streaming as long as necessary. If you want to turn the slave into
a master, you can again use pg_ctl promote or the trigger_file defined in
recovery.conf.

Error scenarios
The most important advantage of a dual-strategy is that you can create a cluster,
which offers a higher level of security than just plain streaming-based or plain file-
based replay. If streaming does not work for some reason, you can always fall back
to files.

In this section we can discuss some typical error scenarios in a dual-strategy cluster:

Network connection between the master and slave
is dead
If the network is dead, the master might not be able to perform the
archive_command operation successfully anymore. The history of the
XLOG files must remain continuous, so the master has to queue up those
XLOG files for later archiving. This can be a dangerous (yet necessary)
scenario because you might run out of space for XLOG on the master if the
stream of files is interrupted permanently.

If the streaming connection fails, PostgreSQL will try to keep syncing itself through
the file-based channel. Should the file-based channel also fail, the slave will sit there
and wait for the network connection to come back. It will then try to fetch the XLOG
and simply continue once this is possible again.

Keep in mind that the slave needs an uninterrupted stream of XLOG; it
can only continue to replay the XLOG if no single XLOG file is missing
or if the streaming connection can still provide the slave with the
XLOG that it needs to operate.

Rebooting the slave
Rebooting the slave will not do any harm as long as the archive has the XLOG to bring
the slave back up. The slave will simply start up again and try to get the XLOG from
any source available. There won't be corruption or any other problem of this sort.

Setting up Asynchronous Replication

[90]

Rebooting the master
If the master reboots, the situation is pretty uncritical as well. The slave will notice
though the streaming connection that the master is gone. It will try to fetch the XLOG
through both channels, but it won't be successful until the master is back. Again,
nothing bad such as corruption can happen. Operations can simply resume after the
reboot on both boxes.

Corrupted XLOG in the archive
If the XLOG in the archive corrupts, we have to distinguish between two scenarios:

1. The slave is streaming: If the stream is okay and intact, the slave will
not notice that some XLOG file somehow got corrupted in the archive.
The slaves never need to read from the XLOG files as long as the streaming
connection is operational.

2. If we are not streaming but replaying from a file, PostgreSQL will inspect
every XLOG record and see if its checksum is correct. If anything goes
wrong, the slave will not continue to replay the corrupted XLOG. This
will ensure that no problems can propagate and no broken XLOG can be
replayed. Your database might not be complete, but it will be sane and
consistent up to the point of the error.

Surely, there is a lot more that can go wrong, but given those likely cases, you can see
clearly that the design has been made as reliable as possible.

Making the streaming-only replication
more robust
The first thing a slave has to do when connecting to a master is to play catch up.
But, can this always work? We have already seen that we can use a mixed setup
consisting of a streaming-based and a file-based component. This gives us some extra
security in case streaming does not work.

In many real-world scenarios, two ways of transporting the XLOG might be too
complicated. In many cases, it is enough to have just streaming. The point is: In a
normal setup as described already, the master can throw the XLOG away as soon
as it is not needed to repair the master anymore. Depending on your checkpoint
configuration, the XLOG might be around for quite a while or only a short time.
The trouble is that if your slave connects to the master, it might happen that the
desired XLOG is not around anymore; the slave cannot resync itself in this scenario.
You might find this a little annoying because it implicitly limits the maximum
downtime of your slave to your master's checkpoint behavior.

Chapter 4

[91]

Clearly, this can cause issues on a production system. To make your setup much
more robust, we suggest making heavy use of wal_keep_segments. The idea of this
postgresql.conf setting (on the master) is to teach the master to keep more XLOG
files around than theoretically necessary. If you set this variable to 1000, it essentially
means that the master will keep 16 GB more XLOG than needed. In other words,
your slave can be gone for 16 GB (in terms of changes to the master) longer than
usual. This greatly increases the odds that a slave can join the cluster without having
to completely resync itself from scratch. For a 500 MB database, this is not worth
mentioning, but if your setup has to hold hundreds of gigabytes or terabytes, this is
an enormous advantage. Producing a base backup of a 20 TB instance is a lengthy
process and you might not want to do this too often, and you definitely don't want to
do this over and over again.

If you want to update a large base backup, it might be beneficial to
incrementally update it using rsync and the traditional method of
taking base backups.

What are the reasonable values for wal_keep_segments? As always, this highly
depends on your workloads. From experience, we can tell that a multi-GB implicit
archive on the master is definitely an investment worth considering. Very low values
for wal_keep_segments might be risky and not worth the effort.

Efficient cleanup and the end of recovery
In recent years, recovery.conf has become more and more powerful. Back in the
early days (which is before PostgreSQL 9.0), there was barely more than a restore_
command and some recovery_target_time related setting. More modern versions of
PostgreSQL offer a lot more already and give you the chance to control your replay
process in a nice and professional way.

In this section, you will learn what kind of settings there are and how you can make
use of those features easily.

Gaining control over the restart points
Up to now, we have archived the XLOG indefinitely. Just like in real life, infinity is
a concept causing trouble. As John Maynard Keynes has already stated in his famous
book, The General Theory of Employment, Interest, and Money:

"In the long run, we are all dead."

Setting up Asynchronous Replication

[92]

What applies to Keynesian stimulus is equally true in case of XLOG archiving; you
simply cannot keep doing forever. At some point, the XLOG has to be thrown away.

To make cleanup easy, you can put an archive_cleanup_command into recovery.
conf. Just like most other commands, (for example, the restore_command), this is a
generic shell script. The script you will put in here will be executed at every restart
point. So, what is a restart point? Every time PostgreSQL switches from file-based
replay to streaming-based replay, you are facing a restart point. In fact, starting
streaming again is considered to be a restart point.

You can make PostgreSQL execute some cleanup routine (or anything else) as soon
as the restart point is reached. It is easily possible to clean out the older XLOG or
trigger some notifications.

The following script shows how you can clean out any XLOG that is older than
a day:

#!/bin/sh
find /archive -mtime +1 -exec rm -f {} \;

Keep in mind that your script can be of any kind of complexity. You have to decide
on a proper policy to handle the XLOG. Every business case is different and you
have all the flexibility to control your archives and replication behavior.

Tweaking the end of your recovery
The recovery_end_command serves similar purposes to the archive_cleanup_
command. It triggers some script execution when your recovery (or XLOG streaming)
has finished.

Again, you can use this to clean out the old XLOG, to send out notifications,
or to perform any other kind of desired action.

Conflict management
In PostgreSQL, the streaming replication data flows in one direction only. The XLOG
is provided by the master to a handful of slaves, which consume the transaction log
and provide you with a nice copy of the data. You might wonder how this could ever
lead to conflicts. Well, there can be conflicts.

Consider the following scenario: As you know, data is replicated with a very small
delay. So, the XLOG ends up at the slave after it has been made on the master. This
tiny delay can cause the scenario shown in the following picture:

Chapter 4

[93]

Let us assume that a slave starts to read a table. It is a long read operation. In the
meantime, the master receives a request to actually drop the table. This is a bit of a
problem because the slave will still need this data to perform its SELECT statement.
On the other hand, all the requests coming from the master have to be obeyed under
any circumstances. This is a classical conflict.

In case of a conflict, PostgreSQL will issue the following error message:
Terminating connection due to conflict with recovery

There are two choices to solve the problem:

1. Don't replay the conflicting transaction log before the slave has terminated
the operation in question.

2. Kill the query on the slave to resolve the problem.

The first option might lead to ugly delays during the replay process, especially if
the slave performs fairly long operations. The second option might frequently kill
queries on the slave. The database instance cannot know by itself what is best for
your application, so you have to find a proper balance between delaying replay and
killing queries.

Setting up Asynchronous Replication

[94]

To find this delicate balance, PostgreSQL offers two parameters in postgresql.conf:

max_standby_archive_delay = 30s
 # max delay before canceling queries
 # when reading WAL from archive;
 # -1 allows indefinite delay
max_standby_streaming_delay = 30s
 # max delay before canceling queries
 # when reading streaming WAL;
 # -1 allows indefinite delay

The max_standby_archive_delay parameter will tell the system how long to
suspend the XLOG replay when there is a conflicting operation. In the default
setting, the slave will delay the XLOG replay for up to 30 seconds if a conflict is
found. This setting is valid if the slave is replaying the transaction log from files.

The max_standby_streaming_delay tells the slave for how long to suspend the
XLOG replay if the XLOG is coming in through streaming. If the time has expired,
and if the conflict is still there, PostgreSQL will cancel the statement due to a
problem with recovery causing the problem in the slave system and resume the
XLOG recovery to catch up.

In the previous example, we have shown that a conflict may show up if a table is
dropped. This is an obvious scenario; however, it is by far not the most common one.
It is much more likely that a row is removed by VACUUM or HOT-UPDATE somewhere,
causing conflicts on the slave.

Conflicts popping up once in a while can be really annoying and trigger bad
behavior of your applications. In other words, if possible, conflicts should be
avoided. We have already seen how replaying the XLOG can be delayed. These are
not the only mechanisms provided by PostgreSQL. There are two more settings we
can use.

The first and older one of the two is the setting called vacuum_defer_cleanup_age.
It is measured in transactions and tells PostgreSQL when to remove a line of data.
Normally a line of data can be removed by VACUUM if no more transactions can
see the data anymore. The vacuum_defer_cleanup_age tells VACUUM to not clean
up a row immediately but wait for some more transactions before it can go away.
Deferring cleanups will keep a row around a little longer than needed. This helps the
slave to complete queries that are relying on old rows. Especially if your slave is the
one handling some analytical work, this will help a lot to make sure that no queries
have to die in vain.

Chapter 4

[95]

One more method to control conflicts is to make use of hot_standby_feedback.
The idea is that a slave reports transaction IDs to the master, which can, in turn, use
this information to defer VACUUM. This is one of the easiest methods to avoid cleanup
conflicts on the slave.

Keep in mind, however, that deferring cleanups can lead to
increased space consumption and some other side effects, which
have to be kept in mind under any circumstances. The effect is
basically the same as running a long transaction on the master.

Dealing with the timelines
Timelines are an important concept you have to be aware of, especially when you are
planning a large scale setup.

So, what is a timeline? In fact, it is a certain branch of the XLOG. Normally a
database instance that has been freshly set up is utilizing timeline number 1. Let us
assume that we are starting to replicate our master database to a slave system. The
slave will also operate in timeline 1. At some point, your master might die and your
slave will be promoted to be a new master. This is the time when a timeline switch
happens. The new master will create transaction log of its own now. Logically, we
want to make sure that its XLOG is not mixed up with some other XLOG made in
good old times.

How can we figure out that the timeline has advanced? Let us take a look at the
XLOG directory of a system that was just turned into a master:

00000002.history
000000020000000000000006
000000020000000000000007
000000020000000000000008

The first part of the XLOG files is the interesting thing. You can observe that up to
now, there was always a 1 in our filename. This is not so anymore. By checking the
first part of the XLOG filename, you can see that the number has changed over time
(after turning the slave into a master, we have reached timeline number 2).

It is important to mention that (as of PostgreSQL 9.2) you cannot simply pump the
XLOG of timeline 5 into a database instance that is already at timeline 9. It is simply
not possible, it does not go together.

Setting up Asynchronous Replication

[96]

In PostgreSQL 9.3, we are able to handle those timelines a little more flexibly.
This means that timeline changes will be put to the transaction log and a slave
can follow a timeline shift easily.

Timelines are especially something to be aware of when cascading
replication and working with many slaves. After all, you have to
connect your slaves to some server if your master fails.

Summary
In this chapter, you learned about streaming replication. We saw how a streaming
connection can be created and what you can do to configure streaming to your needs.
We also briefly discussed how things work behind the scenes.

It is also important to keep in mind that replication can indeed cause conflicts, which
need proper treatment.

In the next chapter, it is time to focus our attention on synchronous replication, which
is the logical next step. You will learn to replicate data without potential data loss.

Setting up
Synchronous Replication

Up to now we have dealt with file-based replication (or log shipping) and a simple
streaming-based setup. In both cases, data is submitted and received by the slave(s)
after the transaction has been committed on the master. During the time between
the master's commit and the the point when the slave actually has fully received the
data, it can still be lost.

In this chapter we will learn about the following topics:

• Making sure that no single transaction can be lost
• Configuring PostgreSQL for synchronous replication
• Understanding and using application_name
• The performance impact of synchronous replication
• Optimizing replication for speed

Setting up synchronous replication
As mentioned before, synchronous replication has been made to protect your data at
all costs. The core idea of synchronous replication is that a transaction must be on at
least two servers before the master returns success to the client.

Setting up synchronous replication works just like setting up asynchronous
replication. Just a handful of parameters discussed in this chapter have to be changed
to enjoy the blessings of synchronous replication. However, in case you are about
to create yourself a setup based on synchronous replication, we recommend getting
started with an asynchronous setup and gradually extend your configuration and
turning it into synchronous replication. This will allow you to debug things more
easily and avoid problems down the road.

Setting up Synchronous Replication

[98]

Understanding the downside of synchronous
replication
The most important thing you have to know about synchronous replication is that it
is simply expensive. Do you remember our first chapter about the CAP theory, about
the speed of light, and so on? Synchronous replication and its downsides are one of
the core reasons why we have decided to include all this background information
in this book. It is essential to understand the physical limitations of synchronous
replication, otherwise you might end up in deep trouble.

When setting up synchronous replication, try to keep the following things in mind:

• Minimize the latency
• Make sure you have redundant connections
• Synchronous replication is more expensive than asynchronous replication

Understanding the application_name
parameter
The application_name plays an important role in a synchronous setup. In a typical
application, people use the application_name parameter for debugging purposes.
It can help to track bugs, identify what an application is doing, and so on:

test=# SHOW application_name;
application_name

psql
(1 row)

test=# SET application_name TO 'whatever';
SET
test=# SHOW application_name;
application_name

 whatever
(1 row)

As you can see, it is possible to set the application_name parameter freely.
The setting is valid for the session we are in, and will be gone as soon as we
disconnect. The question now is: What does application_name have to do
with synchronous replication?

Chapter 5

[99]

Well, the story goes like this: If a slave connects to the master through streaming, it can
optionally send an application_name as part of the primary_conninfo setting. If this
application_name happens to be part of the first entry in synchronous_standby_
names, the slave will be a synchronous one.

In the case of cascaded replication (which means that a slave
is again connected to a slave), the cascaded slave is not treated
synchronously anymore.

With all this information in mind, we can move forward and configure our first
synchronous replication.

Making synchronous replication work
To show you how synchronous replication works, this chapter will include
a full, working example, outlining all the relevant configuration parameters.

A couple of changes have to be made to the master. The following settings will be
needed in postgresql.conf on the master:

wal_level = hot_standby
max_wal_senders = 5 # or any number
synchronous_standby_names = 'book_sample'
hot_standby = on
on the slave to make it readable

Then we have to adapt pg_hba.conf just as we have already seen it in the previous
chapters. After that, the server can be restarted and the master is ready for action.

We recommend to set wal_keep_segments as well to keep more
transaction log on the master database. This makes the entire setup
way more robust.

In the next step, we can perform a base backup just as we have done it before. We
have to call pg_basebackup on the slave. Ideally, we include the transaction log
already when doing the base backup (--xlog-method=stream). This allows us to
fire things up quickly and without any greater risks.

--xlog-method=stream and wal_keep_segments are a good
combo, and should in our opinion be used in most cases to ensure
that a setup works flawlessly and safely.

Setting up Synchronous Replication

[100]

We have recommended setting hot_standby on the master already; the config file
will be replicated anyway, so you save yourself one trip to postgresql.conf to
change this setting. Of course, this is not fine art, but an easy and pragmatic approach.

Once the base backup has been performed, we can move ahead and write a simple
recovery.conf file suitable for synchronous replication:

iMac:slavehs$ cat recovery.conf
primary_conninfo = 'host=localhost
 application_name=book_sample
port=5432'
standby_mode = on

The config file looks just like before. The only difference is that we have added the
application_name to the scenery. Note, the application_name parameter must be
identical to the synchronous_standby_names setting on the master.

Once we have finished writing recovery.conf, we can fire up the slave.

In our example, the slave is on the same server as the master. In this case, you
have to ensure that those two instances will use different TCP ports, otherwise
the instance started second will not be able to fire up. The port can be changed in
postgresql.conf easily.

After those steps, the database instance can be started. The slave will check out
its connection info and connect to the master. Once it has replayed all relevant
transaction logs, it will be in the synchronous state; the master and the slave will
hold exactly the same data from then on.

Checking replication
Now that we have started the database instance, we can connect to the system
and see if things are working properly.

To check for replication, we can connect to the master and take a look at
pg_stat_replication. For this check, we can connect to any database inside
our (master) instance:

postgres=# \x
Expanded display is on.
postgres=# SELECT * FROM pg_stat_replication;
-[RECORD 1]----+------------------------------
pid | 62871
usesysid | 10
usename | hs
application_name | book_sample

Chapter 5

[101]

client_addr | ::1
client_hostname |
client_port | 59235
backend_start | 2013-03-29 14:53:52.352741+01
state | streaming
sent_location | 0/30001E8
write_location | 0/30001E8
flush_location | 0/30001E8
replay_location | 0/30001E8
sync_priority | 1
sync_state | sync

This system view will show exactly one line per slave attached to your master system.

\x will make the output more readable for you. If you don't use \x to
transpose the output, those lines will be so long that it is pretty hard
for you to comprehend the content of this table. In expanded display
mode, each column will be one line instead.

You can see that the application_name parameter has been taken from the connect
string passed to the master by the slave (which is in our example book_sample).
As the application_name parameter matches the master's synchronous_standby_
names setting, we have convinced the system to replicate synchronously; no
transaction can be lost anymore because every transaction will end up on two servers
instantly. The sync_state setting will tell you precisely how data is moving from
the master to the slave.

You can also use a list of application names or simply a * in
synchronous_standby_names to indicate that the first slave
has to be synchronous.

Understanding performance issues
At various points in this book we have already pointed out that synchronous
replication is an expensive thing to do. Remember, we have to wait for a remote server
and not just on the local system; the network between those two nodes is definitely
not something that is going to speed things up. Writing to more than just one node is
always more expensive than writing to just one node. Therefore, we definitely have to
keep an eye on speed, otherwise you might face some pretty nasty surprises.

Setting up Synchronous Replication

[102]

Consider what we have learned about the CAP theory earlier in this
book; synchronous replication is exactly where it is most obvious, with
serious impact the physical limitations will have on performance.

The main question you really have to ask yourself is: Do you really want to replicate
all transactions synchronously? In many cases, you don't. To prove our point, let us
imagine a typical scenario: A bank wants to store accounting related data as well as
some logging data. We definitely don't want to lose a couple of millions just because
a database node goes down. This kind of data might be worth the effort and we can
replicate it synchronously. The logging data is quite different, however. It might be
far too expensive to cope with the overhead of synchronous replication. So, we want
to replicate this data in an asynchronous way to ensure maximum throughput.

How can we configure a system to handle important as well as not so important
transactions nicely? The answer lies in a variable you have already seen earlier on
in the book: The synchronous_commit variable.

Setting synchronous_commit to on
In the default PostgreSQL configuration, synchronous_commit has been set to on.
In this case, commits will wait until a reply from the current synchronous standby
indicates it has received the commit record of the transaction and flushed it to the
disk. In other words, both servers must report that the data has been written safely.
Unless both servers crash at the same time, your data will survive potential problems
(crashing both servers should be pretty unlikely).

Setting synchronous_commit to remote_write
Flushing to both disks can be highly expensive. In many cases, it is enough to know
that the remote server has accepted the XLOG and passed it on to the operating
system without flushing things to disk on the slave. As we can be pretty certain that
we don't lose two servers at the very same time, this is a reasonable compromise
between performance and consistency respectively to data protection.

Setting synchronous_commit to off
We have already dealt with this setting in a previous chapter. The idea is to delay
WAL writing to reduce disk flushes. It can be used if performance is more important
than durability. In the case of replication, it means that we are not replicating in a
fully synchronous way.

Chapter 5

[103]

Keep in mind that this can have a serious impact on your application. Imagine
a transaction committing on the master and you want to query that data instantly
on one of the slaves. There is still a tiny window during which you can actually get
outdated data.

Setting synchronous_commit to local
local will flush locally but will not wait for the replica to respond. In others words,
it will turn your transaction into an asynchronous one.

Setting synchronous_commit to local can also cause a small time window during
which the slave can actually return slightly outdated data. This phenomenon has to
be kept in mind when you decide to offload reads to the slave.

In short, If you want to replicate synchronously you have to ensure that
synchronous_commit is either set to on or set to remote_write.

Changing durability settings on the fly
Changing the way data is replicated on the fly is easy. In this chapter, we
have already set up a full synchronous replication infrastructure by adjusting
synchronous_standby_names (master) along with the application_name (slave)
parameter. The good thing about PostgreSQL is that you can change your durability
requirements on the fly:

test=# BEGIN;
BEGIN
test=# CREATE TABLE t_test (id int4);
CREATE TABLE
test=# SET synchronous_commit TO local;
SET
test=# \x
Expanded display is on.
test=# SELECT * FROM pg_stat_replication;
-[RECORD 1]----+------------------------------
pid | 62871
usesysid | 10
usename | hs
application_name | book_sample
client_addr | ::1
client_hostname |
client_port | 59235
backend_start | 2013-03-29 14:53:52.352741+01
state | streaming

Setting up Synchronous Replication

[104]

sent_location | 0/3026258
write_location | 0/3026258
flush_location | 0/3026258
replay_location | 0/3026258
sync_priority | 1
sync_state | sync

test=# COMMIT;
COMMIT

In this example, we have changed the durability requirements on the fly. It will
make sure that this very specific transaction will not wait for the slave to flush to
disk. Note, as you can see, the sync_state has not changed. Don't be fooled by
what you see here; you can completely rely on the behavior outlined in this section.
PostgreSQL is perfectly able to handle each transaction separately. This is a unique
feature of this wonderful open source database; it puts you in control and lets you
decide which kind of durability requirements are there.

Understanding practical implications and
performance
In this chapter, we have talked about practical implications as well as performance
implications already. But, what good is a theoretical example? Let us do a simple
benchmark and see how replication behaves. We do this kind of testing to show
you that various levels of durability are not just a minor topic, they are the key
to performance.

Let us assume a simple test: In the following scenario, we have connected two
equally powerful machines (3 GHz, 8 GB RAM) over a 1 Gbit network. The two
machines are next to each other. To demonstrate the impact of synchronous
replication, we left shared_buffers and all other memory parameters as default
and only changed fsync to off to make sure that the effect of disk wait is reduced
to practically zero.

The test is simple: We used a one-column table with just one integer field and 10,000
single transactions consisting of just one INSERT statement:

INSERT INTO t_test VALUES (1);

We can try this with full, synchronous replication (synchronous_ commit = on):

real 0m6.043s
user 0m0.131s
sys 0m0.169s

Chapter 5

[105]

As you can see, the test took around six seconds to complete. The test can be
repeated with synchronous_commit = local now (which effectively means
asynchronous replication):

real 0m0.909s
user 0m0.101s
sys 0m0.142s

In this simple test, you can see that the speed has gone up by us much as six
times. Of course, this is a brute-force example, which does not fully reflect reality
(this was not the goal anyway). What is important to understand, however, is
that synchronous versus asynchronous replication is not a matter of a couple
of percentage points or so. This should stress our point even more: Replicate
synchronously only if it is really needed, and if you really have to use synchronous
replication, make sure that you limit the number of synchronous transactions to an
absolute minimum.

Also, please make sure that your network is up to the job; replicating data
synchronously over network connections with high latency will definitely kill your
system performance like nothing else. Keep in mind, there is no way to solve this
issue by throwing expensive hardware at the problem. Doubling the clock speed
of your servers will do practically nothing for you because the real limitation will
always come from network latency and from network latency only.

The performance penalty with just one connection is definitely a lot
larger than in the case of many connections. Remember, things can
be done in parallel and network latency does not make us more I/O
or CPU bound, so, we can reduce the impact of slow transactions by
firing up more concurrent work.

When synchronous replication is used, how can you still make sure that performance
does not suffer too much? Basically, there are a couple of important suggestions that
have proven to be helpful:

• Use longer transactions: Remember, the system must ensure on commit that
data is available on two servers; we don't care in the middle of a transaction
because anybody outside your transaction would not see the data anyway.
A longer transaction will dramatically reduce network communication.

• Run stuff concurrently: If you have more than one transaction going on at
the same time, it will definitely be beneficial to the performance. The reason
is that the remote server will return the position inside the XLOG considered
to be processed safely (flushed or accepted). This method ensures that many
transactions might be confirmed at the same time.

Setting up Synchronous Replication

[106]

Redundancy and stopping replication
When talking about synchronous replication, there is one phenomenon that must
not be left out. Imagine we have a two-node cluster replicating synchronously. What
happens if the slave dies? The answer is that the master cannot distinguish between a
slow and a dead slave easily, so it will start to wait for the slave to come back.

At first glance, this looks like nonsense, but if you think about it more deeply, you
will figure out that it is actually the only correct thing to do. If somebody decides to
go for synchronous replication, the data in the system must be worth something so it
must not be at risk. It is better to refuse data and cry out to the end user than to risk
data and silently ignore high durability requirements.

If you decide to use synchronous replication, you must consider using at least three
nodes in your cluster. Otherwise, it will be very risky and you cannot afford losing a
single node without facing significant downtime or risk of data loss.

Summary
In this chapter, we have outlined the basic concept of synchronous replication, and
we have shown how data can be replicated synchronously. We have also shown
how durability requirements can be changed on the fly by modifying PostgreSQL
runtime parameters. PostgreSQL gives users the choice of how a transaction should
be replicated, and which level of durability is necessary for a certain transaction.

In the next chapter, we will dive into monitoring and see how you can figure out if
your replicated setup is working as expected. We will present some tricks making it
easy to see if your cluster is performing as expected.

Monitoring Your Setup
In previous chapters of this book you have learned about various kinds of replication
and how to configure various types of scenarios. Now it is time to make your setup
more reliable by adding monitoring.

In this chapter you will learn what to monitor and how to implement reasonable
monitoring policies. You will learn about:

• Checking your XLOG archive
• Checking the pg_stat_replication system view
• Checking for replication-related processes on the OS level

At the end of this chapter you should be able to monitor any kind of replication
setup properly.

Checking your archive
If you are planning to use Point-In-Time-Recovery or if you want to use an XLOG
archive to assist your streaming setup, various things can go wrong, for example:

• Pushing the XLOG might fail
• Cleaning up the archive might fail

Checking the archive_command
A failing archive_command might be one of the greatest showstoppers in your setup.
The idea of the archive_command is to push XLOG to some archive and store the
data there. But, what happens if those XLOG files cannot be pushed for some reason?

Monitoring Your Setup

[108]

The answer is quite simple: The master has to keep these XLOG files to ensure that
no XLOG files can be lost. There must always be an uninterrupted sequence of
XLOG files—if a single file in the sequence of files is missing, your slave won't be
able to recover anymore. For example, if your network has failed, the master will
accumulate those files and keep them. Logically, this cannot be done forever and
so, at some point you will face disk space shortages on your master server.

This can be dangerous because if you are running out of disk space, there is no way
to keep writing to the database. While reads might still be possible, most of the
writes will definitely fail and cause serious disruptions on your system. PostgreSQL
won't fail and your instance will be intact after a disk has filled up but, as stated
before, your service will be interrupted.

To prevent this from happening, it is suggested to monitor your pg_xlog directory
and check for:

• Unusually high number of XLOG files
• Free disk space on the partition hosting pg_xlog

The core question here is: What would be a reasonable number to check for?
In a standard configuration PostgreSQL should not use more XLOG files than
checkpoint_segments * 2 + wal_keep_segments. If the number of XLOG files
starts to skyrocket massively higher, you can expect some weird problem.

Make sure that the archive_command works properly.

If you perform these checks properly, nothing bad can happen on this front—if you
fail to check these parameters, however, you are risking doomsday.

Monitoring the transaction log archive
The master is not the only place that can run out of space. The very same thing can
happen in your archive. So, it is suggested to monitor disk space there as well.

Apart from disk space, which has to be monitored anyway, there is one more thing
you should keep on your radar. You have to come up with a decent policy to handle
base backups. Remember, you are only allowed to delete XLOG if it is older than the
oldest base backup you want to keep around. This tiny thing can undermine your
disk space monitoring. Why that? Well, because if you have to keep a certain amount
of data around, it is good to know that you are running out of disk space—but, there
is nothing to do about it? It is highly recommended to make sure that your archive
has enough spare capacity. This is important in case your database system has to
write a lot of transaction log.

Chapter 6

[109]

Checking pg_stat_replication
Checking the archive and the archive_command is primarily for Point-In-Time-
Recovery. If you want to monitor a streaming-based setup, it is suggested to keep
an eye on a system view called pg_stat_replication. This view contains the
following information:

test=# \d pg_stat_replication
 View "pg_catalog.pg_stat_replication"
 Column | Type | Modifiers
------------------+--------------------------+----------
pid | integer |
usesysid | oid |
usename | name |
application_name | text |
client_addr | inet |
client_hostname | text |
client_port | integer |
backend_start | timestamp with time zone |
state | text |
sent_location | text |
write_location | text |
flush_location | text |
replay_location | text |
sync_priority | integer |
sync_state | text |

For each slave connected to our system via streaming, PostgreSQL will return exactly
one line of data. You will see precisely what your slaves are doing.

Relevant fields in pg_stat_replication
The following fields are available to monitor the system. Let us discuss these fields
in detail:

• pid: This represents the process ID of the wal_receiver process in charge of
this streaming connection. If you check your process table on your operating
system, you should find a PostgreSQL process with exactly that number.

• usesysid: Internally every user has a unique number. The system works
pretty much like on UNIX. The usesysid is a unique identifier for the
(PostgreSQL) user connecting to the system.

• usename: This (not username, mind the missing r) stores the name of
the user related to the usesysid. This is what the client has put into the
connection string.

Monitoring Your Setup

[110]

• application_name: This is usually set when people decide to go for
synchronous replication. It can be passed to the master through the
connection string.

• client_addr: This will tell you where the streaming connection comes from.
It holds the IP address of the client.

• client_hostname: In addition to the client's IP you can also identify a client
via its hostname if you chose to do so. You can enable reverse DNS lookups
by turning log_hostname on in postgresql.conf on the master.

• client_port: This is the TCP port number the client is using for
communication with this WAL sender. -1 will be shown if local UNIX
sockets are used.

• backend_start: This tells us when this streaming connection has been
created by the slave.

• state: This column informs us about the state of the database connection.
If things are going as planned the column should contain streaming.

• sent_location: This represents the last transaction log position sent to
the connection.

• write_location: This is the last transaction log position written to disk
on the standby system.

• flush_location: This is the last location that has been flushed to the standby
system. Mind the difference between writing and flushing here. Writing does
not imply flushing (see the section about durability requirements).

• replay_location: This is the last transaction log position that has been
replayed on the slave.

• sync_priority: This field is only relevant if you are replicating
synchronously. Each sync replica will chose a priority—sync_priority—
that will tell you which priority has been chosen.

• sync_state: Finally you can see in which state the slave is. The state can be
async, sync, or potential. PostgreSQL will mark a slave as potential
when there is a sync slave with higher priority.

Remember that each record in this system view represents exactly one slave. So, you
can see at first glance who is connected and doing what task. pg_stat_replication
is also a good way to check if a slave is connected at all.

Chapter 6

[111]

Checking for operating system
processes
Once we have checked out archives and our system views, we are ready to check for
system processes. Checking for system processes might look a little crude but it has
proven to be highly effective.

On the master, we can simply check for a process called wal_sender. On the slave,
we have to check for a process called wal_receiver.

Let us check what we are supposed to see on the master first:

9314 ?? Ss 0:00.00 postgres: wal sender process

hs ::1(61498) idle

On Linux we can see that the process does not only carry its purpose (in this
case, wal_sender) but also the name of the end user as well as network-related
information. In our case we can see that somebody has connected from localhost
through port 61498.

The situation on the slave is pretty simple as well:

9313 ?? Ss 0:00.00 postgres: wal receiver process

All we see is a process, informing us that we are consuming XLOG.

If both processes are here, you have got a pretty good indicator already that your
replication setup is working nicely.

Dealing with monitoring tools
There are a couple of monitoring tools around these days making your daily life
easier.

One of the most popular monitoring tools around is Nagios. It is widely used and
supports a variety of software components.

To use Nagios to monitor your PostgreSQL cluster, it is necessary to install a plugin
capable of running tests relevant to replication. Such plugins are also available for
PostgreSQL and can be freely downloaded from http://bucardo.org/wiki/Check_
postgres. The Burcardo plugins for Nagios are not just able to test replication but
are also a standard software component to monitor PostgreSQL as a whole.

Monitoring Your Setup

[112]

Installing check_postgres
Once you have downloaded the plugin from the Bucardo website, it is easy to install
the plugin. The first step is to extract the .tar archive:

tar xvfz check_postgres.tar.gz

Now you can enter the newly created directory and run the Perl Makefile:

perl Makefile.PL

Finally you can compile and install the code:

make

make install

The last step must be performed as root user because otherwise you will most likely
not have enough permissions to deploy the code on your system.

In our case the binaries have been installed at /usr/local/bin. We can easily check
if the installation has been successful by running:

/usr/local/bin/check_postgres.pl --help

Starting check_postgres.pl directly is also the way to call those plugins from
the command-line prompt and check if the results make sense.

We want to focus your attention on the custom_query functionality. If there are
checks missing, which are needed but not available, custom_query will always
be there to help you.

Deciding on a monitoring strategy
People often ask which of these countless Nagios checks that are available they
should use to configure their database systems. For us, the answer to this question can
only be: It depends. If you happen to run a large analysis database, which will only be
used by a handful of people, checking for the number of open database connections
might be of no use. If you happen to run a high-performance OLTP system serving
thousands of users, checking for open connections might be a very good idea.

It really depends on the type of application you are running, so you have to
think yourself and come up with a reasonable set of checks and thresholds.
Logically the same applies to any other monitoring software you can potentially
think of. The rules are always the same: Think about what your application
does and consider things that can go wrong. Based on this information you
can then select proper checks. A list of all available checks can be found at
http://bucardo.org/check_postgres/check_postgres.pl.html.

Chapter 6

[113]

Summary
In this chapter you learned a lot about monitoring. We saw what to check for in
the archive and we have seen how to interpret PostgreSQL-internal system views.
Finally we saw which processes to check for at the operating-system level.

In general, it is recommended to use professional monitoring software such as
Zabbix, Nagios, and others, which is capable of running automated tests and
issuing notifications.

All those checks together will provide you with a pretty nice safety net for your
database setup.

The next chapter is dedicated exclusively to high availability. You will be introduced
to important concepts related to high availability and we will guide you through
the fundamentals.

Understanding Linux
High Availability

High availability (HA) is the industrial term for continuous, uninterrupted services.
In this chapter, you will learn about the history, concepts, and implementations of
high availability software and the relation between PostgreSQL replication and
high availability.

We will cover these topics in detail in this chapter:

• Understanding the purpose of high-availability
• Measuring availability
• History of high-availability software
• OpenAIS and Corosync
• Linux-HA (Heartbeat) and Pacemaker
• Terminology and concepts
• High-availability is all about redundancy
• PostgreSQL and high-availability
• High-availability with quorum
• High-availability with STONITH

Understanding the purpose of high
availability
To quote Murphy's law:

"Anything that can go wrong will go wrong."

Understanding Linux High Availability

[116]

"Anything" really includes everything in life. This is well understood by all service
providers that intend to keep their customers. Customers usually aren't satisfied if
the service they want is not continuous, or not available. Availability is also called
uptime and its opposite is called downtime.
Depending on the service, downtime can be more or less tolerated. For example, if
a house is heated using wood or coal, the homeowner can stack up a lot of it before
winter to avoid depending upon the availability of shipping during the winter.
However, if the house is heated using natural gas, availability is a lot more important.
Uninterrupted service (there should be enough pressure in the gas pipe coming into
the house) and a certain heating quality of the gas are expected from the provider.

The provider must minimize downtime as much as possible. If possible,
downtime should be completely eliminated. The complete lack of downtime
is called high availability.
Also, we can talk about perception of high availability when the downtime is hidden.

Measuring availability
The point of availability is that the service provider tries to guarantee a certain
level of it and clients can expect that or more. In some cases (depending on service
contracts) a penalty fee or decreased subscription fee is the consequence of an
unexpected downtime.

The quality of availability is measured in fraction of percents; for example, 99.99
percent or 99.999 percent which are spelled out as "four nines" and "five nines",
respectively. These values are considered pretty good availability values, but there is
a small trick in computing this value. If the provider has a planned downtime that is
announced in advance; for example, the annual or bi-annual maintenance for water
pipes in a town doesn't make the availability number worse. The availability is only
measured outside the planned maintenance window.

Let's see three examples. All examples list the real uptime and downtime during
a full year. In the first example, a theoretical service provider has no planned
maintenance window. In the second example, the service provider has one-week
planned downtime during the whole year. In the third example, there is one hour
planned downtime per day.

Chapter 7

[117]

Percent No planned downtime One week downtime per
year

One hour downtime
per day

Uptime Downtime Uptime Downtime Uptime Downtime

80.000
percent

292d 73d 285d
14h
24min

79d
9h
36min

279d
20h

85d

90.000
percent

328d
12h

36d
12h

321d
7h
12min

43d
16h
48min

314d
19h
30min

50d
4h
30min

99.000
percent

361d
8h
24min

3d
15h
36min

353d
10h
19min
12seconds

11d
13h
40min
48seconds

346d
5h
3min

18d
18h
57min

99.990
percent

364d
23h
7min
26sec

52min
34sec

356d
23h
8min
36sec

7d
51min
24sec

349d
18h
9min
38sec

15d
5h
50min
22sec

99.999
percent

364d
23h
54min
45sec

5min
15sec

356d
23h
54min
52sec

7d
5min
8sec

349d
18h
54min
58sec

15d
5h
5min
2sec

100.000
percent

365d 0sec 357d 7d 349d
19h

15d
5h

The uptime and downtime listed for the first example in the preceding table can be
interpreted easily. The provider is serving (or thinks it's serving) an uninterrupted
service and the users expect that and rely on that. In real life, this kind of service
can be the previously mentioned natural gas (for heating and cooking), tap water,
and sewage systems. However, nothing has unlimited capacity. The sewage pipes
have limited throughput and a big storm can bring so much rain that the pipes can
get suddenly full and overflow. This is an unexpected downtime in service and is
obviously a lot of trouble for everyone. Fixing it may take hours or if the pipes have
broken in the meantime, days.

Understanding Linux High Availability

[118]

However, let's consider the 0.001 percent downtime for the "five nines" case. The
users experience denied or delayed service only 5 minutes and 15 seconds in total
(for example, 864 milliseconds every day) during the whole year, which may not be
noticed at all. Because of this, the service is perceived to be uninterrupted.

The second and third examples in the table show that no matter what the provider
does, there is a minimum downtime and the uptime is converging to the maximum
that can be provided.

Let's see what the planned downtime means and what can be done to hide it. Let's
take a theoretical factory and its workers. The workers operate on certain machinery
and they expect it to work during their work hours. The factory can have different
shifts, so the machinery may not be turned off at all, except for that one week of
maintenance. The workers are told to have their vacation during this time window.
If there is really no other downtime, everyone is happy. On the other hand, if there is
downtime, it means lost income for the factory and wasted time and lower salary for
the workers.

Let's look at the sum of the "one hour every day" downtime. This means more than
two weeks in total, which is kind of surprising. It's actually quite a lot if added
together. But in some cases, the service is really not needed for that single hour
during the whole day. For example, a back-office database can have automatic
maintenance scheduled for the night, when there are no users in the office. This way,
there is no perceived downtime; the system is always up when the users need it.

Another example of this "one hour downtime every day" is a non-stop hypermarket.
Cash registers usually have to be switched to daily report mode before the first
payment on the next day; otherwise they refuse to accept further payments. These
reports must be printed for the accounting and the tax office. Being a non-stop
hypermarket, it doesn't actually close its doors but the customers cannot pay and
leave until the cash registers are switched back to service mode.

History of high-availability software
There are both proprietary and open source high-availability software stacks.
Examples of proprietary ones are Solaris Cluster (sometimes called Sun Cluster or
SunCluster), SteelEye LifeKeeper, Evidian SafeKit, and others. We don't elaborate
on them in detail in this book.

Cluster software usually contains two distinct layers: the transport layer and
the cluster management layer. The management layer is responsible for starting
and stopping services on cluster nodes. The service and health information is
communicated via the transport layer.

Chapter 7

[119]

Initially, there were two widely known open source high-availability software stacks,
called OpenAIS and Linux-HA. These were mutually incompatible and both had
their strengths and weaknesses. Later, the two developer communities joined forces,
starting with an internal announcement on the Linux-HA users mailing list
on December 7, 2007. The management layer of Linux-HA (called CRM at the time)
was to be split out to support both the original Linux-HA and OpenAIS' transport
layers. There was another public announcement in 2008 at the Ottawa Linux
Symposium, where the OpenAIS transport layer was to split up to support the new,
common management layer better. The previous, somewhat monolithic structure
of both stacks became lighter, compatible, and interchangeable.

The first stable versions implementing the joint effort are:

• Heartbeat Version 3.0.2: February 1, 2010
• Corosync Version 1.0.0: July 8, 2009
• Pacemaker Version 0.6: January 16, 2008

OpenAIS and Corosync
OpenAIS was the first to implement the Service Availability Forum (www.saforum.
org) specification. It was a comprehensive cluster software stack but also a complex
one. At the time, Corosync was the synonym of OpenAIS. In 2008, the project
developers announced the joint development at the Ottawa Linux Symposium and
the result was that the software was refactored, its transport layer became Corosync
and the OpenAIS part now only contains the SAForum API. However, at the time
of writing this, the SAForum site only lists OpenSAF (opensaf.org) and OpenHPI
(www.openhpi.org) as the implementers of their specification.

Linux-HA (Heartbeat) and Pacemaker
The Linux-HA stack (www.linux-ha.org) started out as a simple cluster
implementation, to provide an easy way to set up a two-computer cluster. The transport
layer was called Heartbeat, but it also became a synonym of Linux-HA since the upper
layer, the cluster manager didn't have a specific name. The simplicity of Heartbeat
Version 1.x was considered a weakness after some time and the cluster management
layer was rewritten and became what was called the Cluster Resource Manager (CRM).
After the joint OpenAIS and Linux-HA development, the transport layer became a
separate piece of software, keeping the Heartbeat name and the CRM was factored out
and was renamed to Pacemaker. Currently, Pacemaker supports both projects' transport
layers (Heartbeat and Corosync) and provides a common cluster manager layer. For
a few applications, it even needs components from the OpenAIS manager layer. The
current homepage for Heartbeat and Pacemaker is www.clusterlabs.org.

Understanding Linux High Availability

[120]

Terminology and concepts
A group of computers is called a cluster. A computer inside the cluster is called a node.

When the number of nodes inside the cluster is N (2, 3, etc.) then we talk about an
N-node cluster.

The high-availability software, both the transport and the cluster manager layer is
running on each of the nodes.

The cluster provides services, or resources. Since each node is running one instance
of the cluster manager layer, any service can be started on any node. The rules given
to the cluster manager layer control the placement of the services.

Services can be standalone, cloned, or master-slave resources. Only one instance
of a standalone resource can be running at any time across the cluster. Cloned
resources work a lot like standalone ones but more than one instance can be running
across the cluster and they work independently. Master-slave resources are usually
related or connected to each other, and they depend on each other. In the particular
implementation of Pacemaker, master-slave resources all start up as slaves and
promotion or demotion can happen to any of them. The resource scripts can provide
hints to the high-availability management layer about their states, like which one is
ready to be promoted and which one cannot be.

Resources are provided in the form of resource agents. These are usually scripts that
conform to a set of rules: how to accept parameters, which mode they can be running
in and what status codes can be returned in case of specific errors.

In a high-availability cluster, one computer (or one subset of computers) from the
cluster can take over services from a previous one at any time. This can be controlled
by the administrator or it can be automatic.

A special case of this service takeover is called fail-over, which happens when a
service or a computer shows faulty behavior. Monitoring is an essential part of a
high-availability cluster, and this is what makes automatic fail-over possible.

The nodes inside the cluster all represent a vote. When the network connections
inside the cluster are broken and some nodes see each other but not all nodes in the
cluster (so "islands" of nodes are formed), this is called a split-brain situation. This
is an error condition. The votes are maintained for nodes that can communicate with
each other. In this regard, we can talk about smaller and larger parts of the cluster,
with and without the majority of the votes. The majority is also called the quorum.

Chapter 7

[121]

Erroneous computers or services must be excluded automatically from the cluster
to ensure proper operation. This operation is called fencing. Fencing is also used
to prevent the split-brain situation. Fencing can be voluntary or forced externally.
Linux-HA developers jokingly introduced the terminology for forced fencing as an
acronym for Shoot The Other Node In The Head (STONITH) and the name stuck.
The applicable mode of fencing depends on the number of nodes in the cluster.

Voluntary fencing or self-fencing happens when the services are given up by the
node that provided them. It can be used in clusters with an odd number (3, 5, 7...)
of nodes. The split-brain situation can only happen in a way that one part of the
cluster is smaller than the other. In this case, the nodes in the smaller part voluntarily
give up their services and the larger part relies on this fact automatically and starts
providing those services.

It's not unusual that the nodes providing the services are symmetric. This implies an
even number of nodes and there can be a tie in the votes in the case of a split cluster.
This can be solved by adding another node that doesn't provide services, only a vote.
Because of this, it's a tie-breaker. This is node is called a quorum-server.

Forced fencing (STONITH) can be used as an addition to or as a replacement for
the quorum-server. Forced fencing can only be used with dedicated hardware,
with remote administration facilities. It can be built into the computer chassis or
the motherboard but it can be an add-on card as well. Such hardware is Intelligent
Platform Management Interface (IPMI), HP's Integral Lights-Out (iLO), Dell's Dell
Remote Access Card (DRAC). These provide direct management of a particular
node. Sometimes a dedicated management computer is used for administrating
the other computers; for example, Intel Blade servers, and it provides a proxy to
the nodes; this is called indirect management. The remote management facility can
control the power state of the nodes; you can physically turn off nodes remotely.
The high-availability software uses this feature, since a node that is turned off
obviously cannot participate in the cluster. For clusters with even number of nodes,
there may be no "smaller part" of the cluster, so only forced fencing is applicable.

A single point of failure (SPOF) is a design deficiency that can lead to the failure
of the whole cluster in the form of an unexpected downtime.

High availability is all about redundancy
Let's look at the previous hypermarket example from a different angle. To handle
a lot of customers without long queues and without having to close the shop, the
hypermarket employs more than one cashier and installs as many (or even more)
cash registers.

Understanding Linux High Availability

[122]

This way, if a cash register goes wrong, the cashier can simply close it and sit at
another one and the waiting customers can be redirected to the new cash register.
The customers don't have to wait too much and the faulty cash register can be
repaired while the hypermarket is operational. This is not at all different from
software and computer technology, only the events (client programs waiting for
data) are done in a much, much shorter time.

This example shows that the most important aspect of designing a cluster is
maintaining redundancy at every possible level of the system to avoid single
points of failure. One example of this is network connections. Consider two data
centers away from each other and a cluster containing computers from both sites.
The maintainers of the cluster have subscribed to two Internet Service Providers to
provide redundant network connection between them. However, if the cables used
by the two providers are buried in the same trench, a caterpillar doing earthworks
can damage both at once. This is actually a single point of failure.

Let's see what redundancy means for a small cluster with two machines.

At a minimum, the system has to have two of everything:

• Two servers
• Two connections, one for the public network and one for direct

communication between the two servers
• Two Ethernet cables for every connection
• Two switches for every connection

Network
with clients 192.168.0.x:public network

192.168.1.x:local network

Bonded
interface

192.168.0.3

Bonded
interface

192.168.0.2

Bonded
interface

192.168.1.3

Bonded
interface

192.168.1.2

eth3 eth4

eth1

computer 2

eth2

switch 3 switch 4

switch 1 switch 2

eth3 eth4

eth1

computer 1

eth2

Chapter 7

[123]

In our example, the nodes have four Ethernet interfaces, each of which is connected
to a switch. Two Ethernet interfaces are bonded into one interface at the operating
system level, so they have a common IP address. The nodes are connected to the
public network using the 192.168.0.x IP address range and also have a private,
direct connection between the servers using the 192.168.1.x range. Hardware can
go wrong, so one way to avoid the single point of failure is to tie two simple
Ethernet interfaces into a higher-level network interface using bonding. This
feature can provide higher throughput when everything is working but the point
really is to provide higher reliability. The communication still works when one
of the switches between the machines or one of the low-level Ethernet interfaces
inside one of the servers goes wrong.

PostgreSQL and high availability
Databases are part of our daily digital life and they are expected to work fast.

Are you browsing an online forum? The posts are in a database. Are you visiting
a doctor? Your medical records are in a database. Are you shopping online? The
items, your data and previous purchases are all in a database.

All these data are expected to appear in a few seconds. And it's not only you who
expect it. A small web shop may have hundreds of visitors at the same time and
every one of them expects the website to be displayed very quickly. The larger sites
can handle tens or hundreds of thousands simultaneously.

This means that the database behind the service must be available at all times.
The scope of the problem becomes apparent when we consider that such sites serve
users from all around the globe. There is always daylight somewhere so there is no
night time which could hide the downtime. And downtime is definitely needed for
individual machines, since there is regular maintenance, like software upgrades and
cleaning, not to mention when some hardware actually goes wrong.

Client programs of the database, such as a web server or accounting software,
expect the database not on a specific computer (with a given serial number) but
at a certain address on the network. Computers can grab and release network
addresses on demand. (Within limits, of course, TCP networking is another
huge topic.) This makes it possible that a particular machine can be down and
another machine can grab the same address. The client programs will notice that
the original database doesn't respond and attempt to reconnect, now to another
machine. This address that "floats" between nodes in the cluster is called a floating
IP address or virtual IP address.

Understanding Linux High Availability

[124]

The administrators of the cluster can issue commands that make one of the machines
go offline, in other words, stop servicing the database clients, and another one
automatically take over the service.

Now that the concepts of a high-availability cluster have been discussed, it's time to
see two different, detailed examples of a small database cluster.

High availability with quorum
In this section, we look at a small cluster where fencing is done voluntarily by nodes
inside the cluster. Quorum means majority and it can be ensured by an odd number
of nodes in the cluster.

If the network communication is cut between nodes, separate "islands" of nodes are
formed. There will be at least two such islands and neither one can be the same size
as the other because of the odd total number of the nodes. All such islands "know"
whether they have the majority or the minority by counting the live nodes inside the
island and comparing it with the total number of nodes in the whole cluster.

With the proper constraints, services provided by an island in minority will be given
up voluntarily and will be picked up by another island in majority.

If the network breaks down so badly that no island is larger than the half of the
total number of nodes then every island will give up services. This is actually a good
thing, because it prevents the split-brain situation and providing the same service
for different clients from different islands. It means trouble when a replicated database
gets into this situation: two (or more) master databases start serving different clients.
Primary key clashes can occur by assigning the same numeric identifier to different
data in the different databases. This can also lead to foreign key conflicts when trying
to merge the databases. Cleaning it up may require a lot of manual labor.

replication

HA communication

database2
192.168.0.3

database2
192.168.0.3

quorum
server

192.168.0.4

virtual IP
192.168.0.100 clients

HA commHA comm

Chapter 7

[125]

In this high-level view, we have a three-node cluster. Remember that all connections
are redundant, as previously described.

Only two of the nodes carry the database, the third is the so called quorum server.

The nodes are connected to two networks: the public network on the 192.168.0.x
range (clients also connect to the database from this one) and a private network
on the 192.168.1.x range.

This is because the two servers are connected as a replication cluster and for a
high-traffic database, the replication stream can also cause a high traffic itself. In
order to allow the highest traffic to the database from the clients, the replication
goes through the private network.

The high-availability software (the previously mentioned Pacemaker with either
Heartbeat or Corosync transport) also needs communication. Usually it's enough
to go through only on the private network. But since it only needs very little
bandwidth, to provide even more redundancy, the transport level can be set up
to use both the private and the public networks.

The quorum-server provides the tie-breaker vote, in case the communication
between the two database servers goes down. This can be caused by networking
problems. In this case, both database servers are alive and each tries to do what it
needs to do: the master node serves the clients and the slave replicates the master.
There can be three cases of the split-brain situation:

• The master server goes wrong or becomes standalone
• The slave server goes wrong or becomes standalone
• The quorum-server goes wrong or becomes standalone

Remember, all nodes are running the cluster manager layer of the high-availability
cluster software.

In the first case, the other two nodes cannot communicate with the master node. As
a consequence, two things may happen. The slave node and the quorum-server are
representing the majority, so the slave node takes over the service, it promotes the
replica database to be the master instance and pulls up the virtual IP. The previous
master node may have crashed so it doesn't work at all, or only the network may
have gone wrong between it and the other two nodes. If the node itself doesn't work,
it will need to be repaired or at least restarted. If it still works, it knows about itself
that it's in the minority, so it relinquishes the services voluntarily. It stops the
database and drops the virtual IP.

Understanding Linux High Availability

[126]

When the previous master node or the network connection is fixed, it starts up its
instance of the high-availability software and since the master copy of the database
is already running elsewhere, it will not start it up. However, the resource may be
started up as a slave since this is how the master-slave resources work in Pacemaker.
But a properly implemented resource agent prevents this from happening, since the
current master node (our previous slave database) diverged from the original master
and replication cannot be established automatically at this point. It requires taking
a new base backup from the current master and after restoring it on the failed node,
the replication and the slave instance of the database can be started under the
high-availability manager layer.

In the second case, when the slave server goes wrong or becomes standalone, the
situation is better. The master instance of the database is still working and serving
clients but the replication is stopped. Depending on the length of the downtime of
the slave node and the configuration of the master database, either the slave can
catch up with replication automatically, or a new base backup is needed before
replication can be established again.

In the third case, nothing needs to be taken care of. Only the quorum-server goes
wrong or becomes standalone. But the master and the slave nodes still work and
can communicate with each other and they represent the majority of the cluster.
This means that the services are not affected and the replication is continuous.

High availability with STONITH
We look at a cluster where fencing is forced by remote administration facilities. As
opposed to voluntary fencing in a cluster where the number of nodes must be an
odd number, it's not required with forced fencing.

clientsvirtual IP
192.168.0.100

HA comm

remote
control

IPML 1
192.168.1.2

IPML 2
192.168.1.3

database2
192.168.0.3

database1
192.162.0.2

Chapter 7

[127]

In this setup, there is no third node to provide the tie-breaker vote. If any of the
nodes fails or cut off the network, it can be forcibly and externally fenced. This is
what the so called STONITH devices are for: IPMI, iLO, DRAC, and so on. The
STONITH action performed by the cluster can be turning off a node or restarting it.

When one of the nodes goes wrong or offline, the other one can ensure that it stays
offline by actually turning it off and requiring it to be manually turned on. The other
solution is to restart it so it comes online with no services and it's in a known good
state of a node. It can then adapt to the new state of the other nodes in the cluster
from this state.

The redundancy of the network and the high-availability communication are
especially important in this case. Consider the case when there is a single cable and
a single switch on the private network between the nodes and the high-availability
communication only goes through the private network. When, for example, the switch
between them goes wrong, each node rightfully acts on the knowledge that it's the
only good node in the cluster and performs the STONITH action on the other node.
This results in both nodes being either turned off or restarted, which (depending on the
hardware) can take a while and can ruin the intended availability figures.

Summary
In this chapter, we have covered general architecture and terminology of
high-availability cluster software, a short history of two open-source cluster
stacks and two methods of setting up high-availability clusters in detail from
the architectural point of view.

In the next chapter, pgbouncer, a connection pooling software package will
be described.

Working with pgbouncer
When you are working with a large-scale installation, it is sometimes quite likely
that you have to deal with many concurrent open connections. Nobody will put up
10 servers to serve just two concurrent users—in many cases this makes simply no
sense. A large installation will usually have to deal with hundreds or even thousands
of concurrent connections. Introducing a connection pooler such as pgbouncer will
help to squeeze more performance out of your systems.

Usually creating thousands and thousands of connections can be quite an overhead
because every time a connection to PostgreSQL is created a fork() call is required.
If a connection is only used for a short period of time, this can be expensive to do.
This is exactly when pgbouncer should be used. Basically pgbouncer is not a
replication-related tool—however, we have decided to include it in this book because
it is often used in combination with replication to make it work more efficiently.

In this chapter we will take a deep look at pgbouncer and see how it can be installed
and used to speed up your installation. It is not meant to be a comprehensive guide
to pgbouncer and it can in no way replace the official documentation.

The following topics will be covered in this chapter:

• The purpose of pgbouncer
• Fundamental concepts of connection pooling
• Installing pgbouncer
• Configuring and administering pgbouncer
• Performance tuning
• Making pgbouncer work with Java

Working with pgbouncer

[130]

Understanding fundamental pgbouncer
concepts
As stated before, the basic idea of pgbouncer is to save on connection-related costs.
When a user creates a new database connection, it usually means burning a couple
hundred kilobytes of memory. This consists of around 20 kb of shared memory and
the amount of memory used by the process serving the connection itself. While the
memory consumption itself might not be a problem, the actual creation process of
the connection can be comparatively time consuming. What does time consuming
mean? Well, if you create a connection and use it, you might not even notice the time
PostgreSQL needs to fork a connection. But, let us take into account, what
a typical website does. It opens a connection, fires a handful of simple statements,
and disconnects—even if creating a connection can be barely noticed it is still a fair
amount of work compared to all the rest. How long can looking up a handful of
phone numbers or some other trivial information take after all? So, the less work
a single connection has to do in its lifecycle, the more important the time to actually
create the connection becomes.

pgbouncer solves this problem by placing itself between the actual database
server and the heavily used application. To the application, pgbouncer looks just
like a PostgreSQL server. Internally pgbouncer will simply keep an array of open
connections and pool them. Whenever a connection is requested by the application
pgbouncer will take the request and assign a pooled connection. In a way it will act
like a proxy.

The main advantage here is that pgbouncer can quickly provide a connection to the
application because the real database connection already exists behind the scenes.
In addition to that a very low memory footprint can be observed. Users reported
a footprint which is a little as 2 KB per connection. This makes pgbouncer ideal for
very large connection pools.

Installing pgbouncer
Before we dig into details we will take a look and see how pgbouncer can be
installed. Just as for PostgreSQL, you can take two routes. You can either install
binary packages or simply compile from source. In our case we will show you
how a source installation can be performed.

The first thing you have to do is to download pgbouncer from the official website:
http://pgfoundry.org/projects/pgbouncer.

Chapter 8

[131]

Once you have downloaded the .tar archive, you can safely unpack it by using the
following command:

tar xvfz pgbouncer-1.5.4.tar.gz

Once you are done extracting the package you can enter the newly created directory
and run configure. Expect this to fail due to missing packages. In many cases you
have to install libevent (development package) first before you can successfully run
configure.

On Debian (or Debian-based distributions) the easiest way to install
the libevent development packages is to run apt-get install
libevent-dev.

Once you have successfully executed configure you can move forward and run
make. This will compile the source and turn it into binaries. Once this is done you
can finally switch to root and run make install to deploy those binaries.

You have now successfully installed pgbouncer.

Configuring your first pgbouncer setup
Once we have compiled and installed pgbouncer, we can easily fire it up. To do so
we have set up two databases on a local instance (p0 and p1). The idea of the setup
performed in this example is to use pgbouncer as a proxy.

Writing a simple config file and starting
pgbouncer up
In order to make pgbouncer work we can write a simple config file, which can be
fed to pgbouncer:

[databases]
p0 = host=localhost dbname=p0
p1 = host=localhost dbname=p1

[pgbouncer]
logfile = /var/log/pgbouncer.log
pidfile = /var/log/pgbouncer.pid
listen_addr = 127.0.0.1
listen_port = 6432
auth_type = trust

Working with pgbouncer

[132]

auth_file = /etc/pgbouncer/userlist.txt
pool_mode = session
server_reset_query = DISCARD ALL
max_client_conn = 100
default_pool_size = 20

Using the same database name is not required here. You can map any database name
to any connect strings. We have just found it useful to use identical names.

Once we have written this config file, we can safely start pgbouncer and see
what happens:

hs@iMac:/etc$ pgbouncer bouncer.ini

2013-04-25 17:57:15.992 22550 LOG File descriptor limit: 1024 (H:4096),
max_client_conn: 100, max fds possible: 150

2013-04-25 17:57:15.994 22550 LOG listening on 127.0.0.1:6432

2013-04-25 17:57:15.994 22550 LOG listening on unix:/tmp/.s.PGSQL.6432

2013-04-25 17:57:15.995 22550 LOG process up: pgbouncer 1.5.4, libevent
2.0.16-stable (epoll), adns: evdns2

In production, you would configure authentication first but let us do it step-by-step.

Dispatching requests
The first thing we have to configure when dealing with pgbouncer is the
configuration of the database servers we want to connect to. In our example,
we simply create links to p0 and p1. We put the connect strings in, which tell
pgbouncer where to connect to. As pgbouncer is essentially some sort of proxy,
we can also map connections to make things more flexible. In this case mapping
means that the database holding the data does not necessarily have the same
name as the virtual database exposed by pgbouncer.

The following connect parameters are allowed: dbname, host, port, user, password,
client_encoding, datestyle, timezone, pool_size, and connect_query.
Everything up to the password is what you would use in any PostgreSQL connect
string. The rest is used to adjust pgbouncer to your needs. The most important setting
here is the pool size, which defines the maximum number of connections allowed to
this very specific pgbouncer virtual database.

Note that the size of the pool is not necessarily related to the number of connections
to PostgreSQL. There can be more than just one pending connection to pgbouncer
waiting for a connection to PostgreSQL.

Chapter 8

[133]

The important thing here is that you can use pgbouncer to relay to various different
databases on many different hosts—it is not necessary that all databases reside on
the same host, so pgbouncer can also help to centralize your network configuration.

Note that we connect to pgbouncer using separate passwords—as all connections
are in the pool we don't authenticate against PostgreSQL itself.

Finally we can configure an optional connect_query. Using this setting we can define
a query, which has to be executed as soon as the connection has been passed on to the
application. What is this good for? Well, you might want to set some variables in your
database, clean it or simply change some runtime parameters straight away.

Sometimes you simply don't want to list all database connections. Especially if there
are many databases, this can come in handy. The idea is to direct all requests that
have not been listed before to the fallback server:

* = host=fallbackserver

Connections to p0 and p1 will be handled as before–everything else will go to the
fallback connect string.

More basic settings
In our example, pgbouncer will listen on port 6432. We have set listen_addr to
127.0.0.1 so for now, only local connections are allowed. Basically listen_addr
works just like listen_addresses in postgresql.conf. We can define where to
listen for IP addresses.

In most cases you might want to use * for listen_addr because
you might want to take all network cards into consideration.

In our setup pgbouncer will produce a fair amount of log entries. To channel this
log in to a logfile we have used the logfile directive in our config. It is highly
recommended to write logfiles to make sure that you can track all relevant things
going on in your bouncer.

Working with pgbouncer

[134]

Authentication
Once we have configured our databases and other basic settings, we can turn our
attention to authentication. As you have already seen, this local config points to
those databases in your setup. All applications will point to pgbouncer so all
authentication-related stuff will actually be handled by the bouncer. How does it
work? Well, pgbouncer accepts the same authentication methods supported by
PostgreSQL, such as md5 (the auth_file may contain md5-encrypted passwords),
crypt (plain text passwords in auth_file), plain (clear text passwords), trust
(no authentication) and any (like trust but ignores user names).

The auth_file itself has a very simple format:

"hs" "15359fe57eb03432bf5ab838e5a7c24f"
"zb" "15359fe57eb03432bf5ab838e5a7c24f"

The first column holds the username, then comes a tab, and finally there is either
a plain text string or an md5-encrypted password.

Connecting to pgbouncer
Once we have written this basic config and started up the system, we can safely
connect to one of the databases listed:

hs@iMac:~$ psql -p 6432 p1 -U hs

psql (9.2.4)

Type "help" for help.

p1=#

In our example we are connecting ourselves to the database called p1. We can see
that the shell has been opened normally and we can move on and issue the SQL
we want just as if we were connected to a normal database.

The logfile will also reflect our efforts to connect to the database and state:

2013-04-25 18:10:34.830 22598 LOG C-0xbca010: p1/hs@unix:6432 login
attempt: db=p1 user=hs

2013-04-25 18:10:34.830 22598 LOG S-0xbe79c0: p1/hs@127.0.0.1:5432 new
connection to server

For each connection we get various log entries so that an administrator can easily
check what is going on.

Chapter 8

[135]

Java issues
If you happen to use Java as frontend there are some points that have to be taken
into consideration. Java tends to pass some parameters to the server as part of
the connection string. One of those parameters is extra_float_digits. This
postgresql.conf parameter governs the floating point behavior of PostgreSQL
and is set by Java to make things more deterministic.

The problem is that pgbouncer will only accept the tokens listed in the previous
section—otherwise it will error out.

To get around this issue you can add a directive to your bouncer config
(pgbouncer section of the file):

ignore_startup_parameters = extra_float_digits

This will ignore the JDBC setting and allow pgbouncer to handle the connection
normally. If you want to use Java we suggest putting those parameters into
postgresql.conf directly to make sure that no nasty issues will pop up
during production.

Pool modes
In the configuration you must have also seen a config variable called pool_mode,
which has not been described yet. The reason for that is that the pool mode is so
important that we have dedicated an entire section to it.

In general three different pool modes are available:

• session

• transaction

• statement

session is the default mode of pgbouncer. A connection will go back to the pool as
soon as the application disconnects from the bouncer. In many cases this is the desired
mode because we simply want to save on connection overhead—nothing more.

However, in some cases it might even be useful to return sessions to the pool
faster. This is especially important if there are lags between various transactions.
In transaction mode, pgbouncer will immediately return a connection to the
pool at the end of a transaction (and not when the connection ends). The advantage
of this is that we can still enjoy the benefits of transactions but connections are
returned much sooner and therefore we can use those open connections more
efficiently. For most web applications this can be a big advantage because the
lifetime of a session has to be very short.

Working with pgbouncer

[136]

The third pooling option, statement allows us to return a connection immediately
at the end of a statement. This is a highly aggressive setting and has basically been
designed to serve high-concurrency setups in which transactions are not relevant at
all. To make sure that nothing can go wrong in this setup, long transactions spanning
more than one just statement are not allowed.

Most people will stick to the default mode here but you have to keep in mind that
other options exist.

Cleanup issues
One advantage of a clean and fresh connection after PostgreSQL calls fork() is the
fact that the connection does not contain any faulty settings, any open cursors, or any
other leftovers whatsoever. This makes a fresh connection safe to use and avoids side
effects of other connections.

As you have learned in this chapter, pgbouncer will reuse connections to avoid those
fork() calls. The question now is, "How can we ensure that some application does
not suffer from side effects caused by some other connection?"

The answer to this problem is the server_reset_query: Whenever a connection is
returned to the pool, pgbouncer is able to run a query or a set of queries designed to
clean up your database connection. This could be basically any query. In practical
setups it has proven to be wise to call DISCARD ALL. DISCARD ALL is a PostgreSQL
instruction, which has been designed to clean out an existing connection by closing
all cursors, resetting parameters, and so on. After DISCARD ALL a connection is as
fresh as after a fork() call and can safely be reused by a future request.

Keep in mind that there is no need to run an explicit ROLLBACK before a connection
goes back to the pool or after it is fetched from the pool. Rolling back transactions
is already done by pgbouncer automatically so you can be perfectly sure that a
connection is never inside a transaction.

Improving performance
Performance is one of the key factors when considering pgbouncer in the first place.
To make sure that performance stays high, some issues have to be taken seriously.

First of all it is recommended to make sure that all nodes participating in your
setup are fairly close to each other. This greatly helps to reduce network roundtrip
times and thus boosts performance. There is no point in reducing the overhead of
calling fork() and paying for this gain with network time. Just as in most scenarios
reducing network time and latency is definitely a huge asset.

Chapter 8

[137]

Basically pgbouncer can be placed on a dedicated pgbouncer server, on the database
node directly, or on the webserver. In general, it is recommended to avoid putting
database infrastructure on the web server. If you have a larger setup, a dedicated
server might be a good option.

One additional issue, which is often forgotten, is related to pooling itself: As we have
stated already, the idea of pgbouncer is to speed up the process of getting a database
connection. However, what if the pool is short on connections? If there are no spare
database connections idling around, what will happen? Well, you will consume a lot
of time to make those connections by forking them in the backend. To fix this problem
it is recommended to set min_pool_size to a reasonable value. This is especially
important if many connections are created at the same time (if a web server is
restarted, for example). Always make sure that your pool is reasonably sized to sustain
high performance (in terms of creating new connections).

The perfect value for min_pool_size will depend on the type of
application you are running. However, we have good experiences
with substantially higher values than the default.

A simple benchmark
In this chapter we have already outlined that it is very beneficial to use pgbouncer
if many shorted lived connections have to be created by an application. To prove
our point we have compiled an extreme example. The goal is to run a test doing as
little as possible—we want to measure merely how much time we burn to open a
connection. To do so we have set up a virtual machine with just one CPU.

The test itself will be performed using pgbench (a contrib module widely used to
benchmark PostgreSQL).

We can easily create ourself a nice and shiny test database:

pgbench -i p1

Then we can write ourselves a nice sample SQL command, which should be
executed repeatedly:

SELECT 1;

Now we can run an extreme test against our standard PostgreSQL installation:

hs@VM:test$ pgbench -t 1000 -c 20 -S p1 -C -f select.sql

starting vacuum...end.

transaction type: Custom query

Working with pgbouncer

[138]

scaling factor: 1

query mode: simple

number of clients: 20

number of threads: 1

number of transactions per client: 1000

number of transactions actually processed: 20000/20000

tps = 67.540663 (including connections establishing)

tps = 15423.090062 (excluding connections establishing)

We want to run 20 concurrent connections. They all execute 1000 single transactions.
–C indicates that after every single transaction the benchmark will close the open
connection and create a new one. This is a typical case on a web server without
pooling—each page might be a separate connection.

Now, keep in mind—this test has been designed to look ugly. We can observe that
keeping the connection alive will make sure that we can execute roughly 15,000
transactions per second on our single VM CPU. If we have to fork a connection each
time, we will drop to just 67 transactions per second – as we have stated before: This
kind of overhead is worth thinking about.

Let us now repeat the test and connect to PostgreSQL through pgbouncer:

hs@VM:test$ pgbench -t 1000 -c 20 -S p1 -C -f select.sql -p 6432

starting vacuum...end.

transaction type: Custom query

scaling factor: 1

query mode: simple

number of clients: 20

number of threads: 1

number of transactions per client: 1000

number of transactions actually processed: 20000/20000

tps = 1013.264853 (including connections establishing)

tps = 2765.711593 (excluding connections establishing)

As you can see our throughput has risen to 1013 transactions per second.
This is 15 times more than before—indeed a nice gain.

However, we also have to see that our performance level has dropped if we did not
close the connection to pgbouncer. Remember, the bouncer, the benchmark tool, and
PostgreSQL are all running on the same single CPU. This does have an impact here
(context switches are not too cheap in a virtualized environment).

Chapter 8

[139]

Keep in mind that this is an extreme example—if you repeat the same test with
longer transactions you will see that the gap will logically become much smaller.
Our example has been designed to demonstrate our point.

Maintaining pgbouncer
In addition to what we have already described in this chapter, pgbouncer has a nice
interactive administration interface capable of performing basic administration and
monitoring tasks.

How does it work? pgbouncer provides you with a fake database called pgbouncer.
It cannot be used for queries as it only provides a simple syntax to handle basic
administrative tasks.

If you are using pgbouncer, please don't use a normal database
called pgbouncer—it will just contribute to confusion and it will
yield zero benefit.

Configuring the admin interface
To configure this interface we have to adapt our config file. In our example we will
simply add one line to the config (in the pgbouncer section of the file):

admin_users = zb

We want Zoltan, whose username is zb, to be in charge of the admin database so we
simply add him here. If we want many users to have access to the system, we can list
them one after another (comma separated).

After restarting pgbouncer, we can try connecting to the system:

psql -p 6432 -U zb pgbouncer

psql (9.2.4, server 1.5.4/bouncer)

WARNING: psql version 9.2, server version 1.5.

 Some psql features might not work.

Type "help" for help.

Don't worry about the warning message—it is just telling us that we have connected
to a thing that does not look like a native PostgreSQL 9.2 database instance.

Working with pgbouncer

[140]

Using the management database
Once we have connected to this virtual management database, we can check which
commands are available there. To do so we can run SHOW HELP:

pgbouncer=# SHOW HELP;
NOTICE: Console usage
DETAIL:
 SHOW HELP|CONFIG|DATABASES|POOLS|CLIENTS|SERVERS|VERSION
 SHOW STATS|FDS|SOCKETS|ACTIVE_SOCKETS|LISTS|MEM
 SHOW DNS_HOSTS|DNS_ZONES
 SET key = arg
 RELOAD
 PAUSE [<db>]
 RESUME [<db>]
 KILL <db>
 SUSPEND
 SHUTDOWN
SHOW

As we have mentioned, the system will only accept administrative commands;
normal SELECT statements are not possible in this virtual database:

pgbouncer=# SELECT 1+1;
ERROR: invalid command 'SELECT 1+1;', use SHOW HELP;

Extracting runtime information
One important thing you can do with the management interface is to figure out
which databases have been configured for the system. To do that you can call the
SHOW DATABASES command:

pgbouncer=# \x
Expanded display is on.
pgbouncer=# SHOW DATABASES;
-[RECORD 1]+----------
name | p0
host | localhost
port | 5432
database | p0
force_user |
pool_size | 20
reserve_pool | 0
-[RECORD 2]+----------
name | p1
host | localhost

Chapter 8

[141]

port | 5432
database | p1
force_user |
pool_size | 20
reserve_pool | 0
-[RECORD 3]+----------
name | pgbouncer
host |
port | 6432
database | pgbouncer
force_user | pgbouncer
pool_size | 2
reserve_pool | 0

As you can see we have two productive databases and the virtual pgbouncer
database. What is important here to see is that the listing contains the pool size as
well as the size of the reserved pool. It is a good check to see what is going on in
your bouncer setup.

Once you have checked the list of databases on your system you can turn your
attention to the clients active in your system. To extract the list of active clients
pgbouncer offers the SHOW CLIENTS instruction:

pgbouncer=# \x
Expanded display is on.
pgbouncer=# SHOW CLIENTS;
-[RECORD 1]+--------------------
type | C
user | zb
database | pgbouncer
state | active
addr | unix
port | 6432
local_addr | unix
local_port | 6432
connect_time | 2013-04-29 11:08:54
request_time | 2013-04-29 11:10:39
ptr | 0x19e3000
link |

At the moment we have exactly one user connection to the pgbouncer database. We
can see nicely where the connection comes from and when it has been created. SHOW
CLIENTS is especially important if there are hundreds or even thousands of servers
on the system.

Working with pgbouncer

[142]

Sometimes it can be useful to extract aggregated information from the system. SHOW
STATS will provide you with statistics about what is going on in your system. It
shows how many requests have been performed and how many queries have been
performed on average:

pgbouncer=# SHOW STATS;
-[RECORD 1]----+----------
database | pgbouncer
total_requests | 3
total_received | 0
total_sent | 0
total_query_time | 0
avg_req | 0
avg_recv | 0
avg_sent | 0
avg_query | 0

Finally we can take a look at the memory consumption we are facing. pgbouncer will
return this information if SHOW MEM is executed:

pgbouncer=# SHOW MEM;
name | size | used | free | memtotal
--------------+------+------+------+----------
user_cache | 184 | 4 | 85 | 16376
db_cache | 160 | 3 | 99 | 16320
pool_cache | 408 | 1 | 49 | 20400
server_cache | 360 | 0 | 0 | 0
client_cache | 360 | 1 | 49 | 18000
iobuf_cache | 2064 | 1 | 49 | 103200
(6 rows)

As you can see pgbouncer is really lightweight and does not consume very much
memory as other connection pools do.

It is important to see that all information is returned by pgbouncer
as a table. This makes it really easy to process this data and use it in
some kind of application.

Suspending and resuming operations
One of the core reasons to use the interactive virtual database is to be able to suspend
and resume normal operations. It is also possible to reload the config on the fly just
as shown in the following example:

pgbouncer=# RELOAD;
RELOAD

Chapter 8

[143]

RELOAD will re-read the config so that there is no need to restart the entire bouncer
for most small changes. This is especially useful if there is just a new user or
something like that.

An additional feature of pgbouncer is the ability to stop operations for a while. Why
would anybody want to stop queries for some time? Well, let us assume you want to
perform a small change somewhere in your infrastructure. Just interrupt operations
briefly without actually throwing errors. Of course, you have to be a little careful to
make sure that your frontend infrastructure can handle such an interruption nicely.
From database side, however, it can come in handy.

To temporarily stop queries we can call SUSPEND:

pgbouncer=# SUSPEND;
SUSPEND

Once you are done with your changes, you can resume normal operations easily:

pgbouncer=# RESUME;
RESUME

Once this has been called, you can continue to send queries to the server.

Finally you can even stop pgbouncer entirely from the interactive shell. It is highly
recommended that you be careful when doing that:

pgbouncer=# SHUTDOWN;
The connection to the server was lost. Attempting reset: Failed.
!>

The system will be shut down instantly.

Summary
In this chapter we learned how to use pgbouncer for highly scalable web applications
to reduce the overhead of permanent connection creation. We saw how to configure
the system and how we can utilize the virtual management database.

In the next chapter you will be introduced to pgpool, a tool to perform replication
and connection pooling. Just like pgbouncer, pgpool is open source and can be used
along with PostgreSQL to improve your cluster setups.

Working with pgpool
In the previous chapter we have taken a deep look at pgbouncer and learned
how to use it to optimize replicated setups as much as possible. In this chapter
we will take a look at a tool that is often referred to as counterpart of pgbouncer.
The idea of pgpool is pretty similar to that of pgbouncer—however, it has been
designed to do a lot more than pgbouncer. While pgbouncer is more lightweight
and optimized to do exactly one thing, pgpool offers a lot more features and
promises additional functionality.

Depending on your needs you can decide freely which tool is better for your
specific setup.

Installing pgpool
Just as we have seen for PostgreSQL, pgbouncer and most other tools covered in this
book, we can either install pgpool from source or just use a binary. Again, we will
describe how the code can be compiled from source.
To install pgpool we have to download it first:
http://www.pgpool.net/mediawiki/images/pgpool-II-3.2.4.tar.gz

Once this has been done, we can extract the tarball:
$ tar xvfz pgpool-II-3.2.4.tar.gz

The installation procedure is just like we have seen already. The first thing we have
to call is configure along with some parameters. In our case the main parameter is
--with-pgsql, which tells the build process where to find our PostgreSQL installation.
$./configure --with-pgsql=/usr/local/pgsql/

Now we can compile and install the software easily:
make

make install

Working with pgpool

[146]

Installing pgpool-regclass and insert_lock
What you have just seen is a basic pgpool installation. But to make things work really
nicely it can be beneficial to install additional modules such as pgpool-regclass and
insert_lock. Installing pgpool-regclass is important to handle DDL replication.
insert_lock is important to handle distributed writes. It is highly recommended to
install this module because otherwise handling DDLs won't work. Up to now we have
not seen a practical setup where using this module did not make sense.

Let us install pgpool-regclass first:

cd sql/pgpool-regclass/

make

make install

To enable the module we have to deploy the pgpool-regclass.sql file. The module
must be present in all databases we are going to use. The easiest way to achieve that
is to simply load the SQL file into template1. Whenever a new database is created
template1 will be cloned so all new databases will automatically have this module.

The same applies to insert_lock.sql, which can be found in the sql directory of
the pgpool source code. The easiest solution is to load this into template1 directly:

psql -f insert_lock.sql template1

Once the code has been installed we can move forward and see how we can use pgpool.

Understanding pgpool features
The following features are provided by pgpool:

• Connection pooling
• Statement-level replication
• Load balancing
• Limiting connections
• In-memory caching
• Parallel query

Chapter 9

[147]

When deciding which features to use, it is important to keep in mind
that not all functionality is available at the same time. The following
website contains an overview of what can go together and what cannot:
http://www.pgpool.net/docs/latest/pgpool-en.
html#config

One core feature of pgpool is the ability to do connection pooling. The idea is pretty
much the same as the one we have outlined in the previous chapter. We want to
reduce the impact of forking connections each and every time a webpage is opened.
Instead, we want to keep connections open and reuse them whenever a new request
comes along. Those concepts have already been discussed for pgbouncer.

In addition to pooling, pgpool provides basic replication infrastructure made explicitly
to increase a system's reliability. The thing here is that pgpool uses a statement-level
approach to replicate data, which has some natural restrictions users have to keep in
mind (more of that later in this chapter).

One feature often requested along with replication is load balancing. pgpool offers
exactly that. You can define a set of servers and use the pooler to dispatch requests to
the desired database nodes. It is also capable of sending a query to the node with the
lowest load.

To boost performance pgpool offers a query cache. The goal of this mechanism is
to reduce the number of queries that actually make it to the real database servers—as
many queries as possible should be served by the cache. We will take a closer look
at this topic in this chapter.

Finally there is a feature that allows you to run parallel queries to make sure that a
request can be scaled out to many different instances. We have skipped this feature
in this chapter for an important reason. If you want to dispatch a query to many
different nodes, it is better to go for Postgres-XC, which offers an in-core solution
to the problem of query dispatching. Parsing SQL to dispatch a query is definitely
not the best approach here so Postgres-XC is definitely superior in this context.

Working with pgpool

[148]

Understanding the pgpool architecture
Once we have installed pgpool, it is time to discuss the software architecture. From
a user's point of view pgpool looks just like a normal database server and you can
connect to it like to any other server:

pgpool will dispatch requests according to your needs.

Once you have understood the overall architecture as it is from a user's point of
view, we can dig into a more detailed description:

Chapter 9

[149]

When pgpool is started we fire up the pgpool parent process. This process will fork
and create the so called child processes. These processes will be in charge of serving
requests to end users and handle all the interaction with our database nodes. Each
child process will handle a couple of pool connections. This strategy will reduce the
number of authentication requests to PostgreSQL dramatically.

In addition to that we have the PCP infrastructure needed to handle configuration
and management. We will discuss this infrastructure a little later in this chapter.

Finally we need a bunch of PostgreSQL database nodes as backend storage. End
users will never connect to those nodes directly but always go through pgpool.

Setting up replication and load balancing
To set up pgpool, we can simply take an existing sample file containing a typical
configuration, copy it to our configuration directory and modify it:

$ cp /usr/local/etc/pgpool.conf.sample /usr/local/etc/pgpool.conf

It is a lot easier to just adapt this config file than to write things from scratch. In the
following listing you will see a sample config you can use for a simple two-node setup:

listen_addresses = 'localhost'
port = 9999
socket_dir = '/tmp'
pcp_port = 9898
pcp_socket_dir = '/tmp'

backend_hostname0 = 'localhost'
backend_port0 = 5432
backend_weight0 = 1
backend_data_directory0 = '/home/hs/db'
backend_flag0 = 'ALLOW_TO_FAILOVER'

backend_hostname1 = 'localhost'
backend_port1 = 5433
backend_weight1 = 1
backend_data_directory1 = '/home/hs/db2'
backend_flag1 = 'ALLOW_TO_FAILOVER'

enable_pool_hba = off
pool_passwd = 'pool_passwd'
authentication_timeout = 60
ssl = off
num_init_children = 32

Working with pgpool

[150]

max_pool = 4
child_life_time = 300
child_max_connections = 0
connection_life_time = 0
client_idle_limit = 0

connection_cache = on
reset_query_list = 'ABORT; DISCARD ALL'

replication_mode = on
replicate_select = off
insert_lock = on
load_balance_mode = on
ignore_leading_white_space = on
white_function_list = ''
black_function_list = 'nextval,setval'

Let us now discuss these settings in detail and see what each setting means:

• pid_file_name: Just like most software components, pgpool will write a PID
file. We can explicitly define the position of this file. Usually PID files will
reside somewhere under /var/.

• listen_addresses: This setting is the exact counterpart of PostgreSQL's
own listen_addresses setting. The idea here is to have a setting defining
which IPs to listen on.

• port: This will define the TCP port on which the system will listen.
• socket_dir: There is no hard requirement to use TCP. UNIX sockets will be

perfectly fine as well. socket_dir will define the location where these UNIX
sockets will reside.

• pcp_port: The TCP port on which the administration interface will listen.
• pcp_socket_dir: The UNIX sockets directory the administration interface

will use.
• backend_hostname0: The hostname of the first database in our setup.
• backend_port0: The TCP port of this system.
• backend_weight0: In pgpool we can assign weights to individual nodes.

A higher weight will automatically make sure that more requests will be
sent there.

• backend_data_directory0: The PGDATA directory belonging to this instance.

Chapter 9

[151]

• backend_flag: This setting tells pgpool if a node is allowed to failover or not.
Two settings are allowed: ALLOW_TO_FAILOVER and DISALLOW_TO_FAILOVER.

• enable_pool_hba: If this is set to true, pgpool will use pool_hba.conf for
authentication. pgpool follows the same concept as PostgreSQL here.

• pool_passwd: Password file for pgpool.
• authentication_timeout: Defines the timeout for pool authentication.
• ssl: If this has been set to true, SSL will be enabled for client and backend

connections. ssl_key and ssl_cert must be set as well to make this work.
• num_init_children: When pgpool is started a number of connections will

be pre-forked to make sure that response times stay low. This setting will
define the number of initial children. The default value is 32.

• max_pool: This setting defines the maximum size of the pool per child.
Please be aware that the number of connections from pgpool processes to the
backends may reach num_init_children * max_pool. This parameter can only be
set at server start.

• child_life_time: This defines the number of seconds a child is allowed to
be idle before it is terminated.

• child_max_connections: After this number of connections to the very same
child, it will be terminated. In other words, a process will handle so many
connections before it is recycled.

• connection_life_time: This tells you how long a connection may live
before it is recycled.

• client_idle_limit: Disconnect a client if it has been idle for this amount
of time.

• connection_cache: If this is set to true, connections to the (storage)
backend will be cached.

• reset_query_list: This defines a list of commands, which has to be
executed when a client exits a session. It is used to clean up a connection.

• replication_mode: This turns replication explicitly on. The default value
is false.

• replicate_select: Shall we replicate SELECT statements or not?
• insert_lock: When replicating tables with sequences (data type serial),

pgpool has to make sure that those numbers will stay in sync.
• load_balance_mode: Shall pgpool split the load to all hosts in the system?

The default setting is false.

Working with pgpool

[152]

• ignore_leading_white_space: Shall leading whitespaces of a query be
ignored or not?

• white_function_list: When pgpool runs a stored procedure, pgpool
will have no idea what it actually does. SELECT func() can be a read or
a write —there is no way to see from outside what will actually happen.
white_function_list will allow you to teach pgpool which functions
can be safely load balanced. If a function writes data, it must not be load
balanced—otherwise data will be out of sync on those servers. Being out
of sync must be avoided at any cost.

• black_function_list: This is the opposite of white_function_list. It will
tell pgpool which functions must be replicated to make sure that things stay
in sync.

Keep in mind that there is an important relation between max_pool and a child
process of pgpool. A single child process can handle up to max_pool connections.

Password authentication
Once you have come up with a working config for pgpool we can move ahead
and configure authentication. In our case we want to add one user called hs. The
password of hs should simply be hs. The pool_passwd will be in charge of storing
passwords. The format of the file is simple: It will hold the name of the user, a colon,
and the MD5-encrypted password.

To encrypt a password, we can use the pg_md5 script:

$ pg_md5 hs

789406d01073ca1782d86293dcfc0764

Then we can add all of this to the config file storing users and passwords. In the case
of pgpool this file is called pcp.conf:

USERID:MD5PASSWD

hs:789406d01073ca1782d86293dcfc0764

Firing up pgpool and testing the setup
Now that we have all components in place, we can start pgpool:

$ pgpool –f /usr/local/pgpool/pgpool.conf

Chapter 9

[153]

If there is no error we should see a handful of processes waiting for some work from
those clients out there:

$ ps ax | grep pool

30927 pts/4 S+ 0:00 pgpool -n

30928 pts/4 S+ 0:00 pgpool: wait for connection request

30929 pts/4 S+ 0:00 pgpool: wait for connection request

30930 pts/4 S+ 0:00 pgpool: wait for connection request

30931 pts/4 S+ 0:00 pgpool: wait for connection request

30932 pts/4 S+ 0:00 pgpool: wait for connection request

As you can clearly see, pgpool will show up as a handful of processes in the
process table.

Attaching hosts
Basically we could already connect to pgpool and fire queries—but, this would
instantly lead to disaster and inconsistency. Before we can move on to some real
action, we should check the status of those nodes participating in the cluster. To
do so we can utilize a tool called pcp_node_info:

$ pcp_node_info 5 localhost 9898 hs hs 0

localhost 5432 3 0.500000

$ pcp_node_info 5 localhost 9898 hs hs 1

localhost 5433 2 0.500000

The format of this call to pcp_node_info is a little complicated and not too easy to
read if you happen to see it for the first time.

Note that the weights are 0.5 here. In the configuration, we have given both backends
a weight of 1. pgpool has automatically adjusted the weight so that they add up to 1.

Here is the syntax of pcp_node_info:

pcp_node_info - display a pgpool-II node's information

Usage: pcp_node_info [-d] timeout hostname port# username password nodeID

 -d, --debug : enable debug message (optional)

timeout : connection timeout value in seconds.

command exits on timeout

Working with pgpool

[154]

hostname : pgpool-II hostname

port# : PCP port number

username : username for PCP authentication

password : password for PCP authentication

nodeID : ID of a node to get information for

Usage: pcp_node_info [options]

 Options available are:

 -h, --help : print this help

 -v, --verbose : display one line per information

with a header

The first parameter is the timeout. It will define the maximum time for the request.
Then we specify the host and the port of the PCP infrastructure. Finally we pass
a username and a password as well as the number of the host we want to have
information about. The system will respond with a hostname, a port, a status and
the weight of the node. In our example we have to focus our attention on the status
column. It can return four different values:

• 0: This state is only used during the initialization. PCP will never display it.
• 1: Node is up. No connections yet.
• 2: Node is up. Connections are pooled.
• 3: Node is down.

In our example we can see that node number 1 is basically returning status 3—it is
down. This is clearly a problem because if we were to execute a write now, it would
not end up in both nodes but just in one of them.

To fix the problem, we can call pcp_attach_node and enable the node:

$ pcp_attach_node 5 localhost 9898 hs hs 0

$ pcp_node_info 5 localhost 9898 hs hs 0

localhost 5432 1 0.500000

Once we have added the node we can check its status again. It will be up and running.

Chapter 9

[155]

To test our setup we can check out psql and display a list of all databases in
the system:

$ psql -l -p 9999

 List of databases

 Name | Owner | Encoding | Collate | Ctype ...

----------+-------+-----------+-------------+-- ...

postgres | hs | SQL_ASCII | en_US.UTF-8 | C ...

template0 | hs | SQL_ASCII | en_US.UTF-8 | C ...

template1 | hs | SQL_ASCII | en_US.UTF-8 | C ...

(3 rows)

The answer is as expected. We can see an empty database instance.

Checking replication
If all nodes are up and running we can already run our first operations on the
cluster. In our example we will simply connect to pgpool and create a new database.
createdb is a command-line tool serving as abstraction for the CREATE DATABASE
command, which can be replicated by pgpool nicely. In our example we simply
create a database called xy to see if replication works:

$ createdb xy -p 9999

To see if the command has been replicated as expected, we suggest connecting to
both databases and seeing if the new DB is present or not. In our example everything
has been working as expected:

$ psql xy -p 5433 -c "SELECT 1 AS x"

x

 1

(1 row)

Doing this basic check is highly recommended to make sure that nothing has been
forgotten and everything has been configured properly.

One more thing, which can be highly beneficial when it comes to checking a running
setup, is pcp_pool_status. It will extract information about the current setup and
show information about configuration parameters currently in use.

Working with pgpool

[156]

The syntax of this command is basically the same as for all pcp_* commands we
have seen so far:

$ pcp_pool_status 5 localhost 9898 hs hs
name : listen_addresses
value: localhost
desc : host name(s) or IP address(es) to listen to

name : port
value: 9999
desc : pgpool accepting port number

...

In addition to that we suggest performing the usual checks such as checking for open
ports and properly running processes. These checks should reveal if anything of
importance has been forgotten during the configuration.

Running pgpool with streaming
replication
pgpool can also be used with streaming instead of statement-level replication. It is
perfectly fine to use PostgreSQL onboard-replication and utilize pgpool just for load
balancing and connection pooling.

In fact, it can even be beneficial to do so because you don't have to worry about
side-effects of functions or potential other issues. The PostgreSQL transaction log
is always right and it can be considered to be the ultimate law.

pgpool statement-level replication was a good feature to replicate data before
streaming replication was introduced into the core of PostgreSQL.

In addition to that it can be beneficial to have just one master. The reason for that
is simple. If you have just one master, it is hard to face inconsistencies. Also, pgpool
will create full replicas so data has to be replicated anyway. There is absolutely no
win if data must end up on both servers anyway—writing to two nodes will not
make things scale any better in this case.

How can you run pgpool without replication? The process is basically quite simple:

• Set up PostgreSQL streaming replication (synchronous or asynchronous).
• Change replication_mode in the pool config to off.
• Set master_slave to on.

Chapter 9

[157]

• Set master_slave_sub_mode to stream.
• Start pgpool as described earlier in this chapter.

In a basic setup, pgpool will assume that node number 0 will be the master. So, you
have to make sure that your two nodes are listed in the config in the right order.

For a basic setup these small changes to the config are perfectly fine.

Optimizing pgpool configuration for master/
slave mode
pgpool offers a handful of parameters to tweak the configuration to your needs. One
of the most important things we have to take into consideration is that PostgreSQL
supports both synchronous and asynchronous replication. Why is this relevant? Well,
let us assume a simple scenario. Somebody wants to register on a website:

• A write request comes in. pgpool will dispatch you to node 0 because we are
facing a write.

• The user clicks on the Save button.
• The user will reach the next page; a read request will be issued

 ° If we end up on node 0 we will be fine—the data is expected to be
there.

 ° If we end up on node 1 we might not see the data at this point if we
are replicating asynchronously. Theoretically there can also be a
small window if you are using synchronous replication in this case.

This can lead to strange behavior on the client side. A typical case of strange
behavior would be: A user creates a profile. In this case a row is written. At the very
next moment the user wants to visit his or her profile and check the data. If he or
she happens to read from a replica, the data might not be there already. If you are
writing a web application you must keep this in the back if your mind.

To get around this issue, you have two choices:

• Replicate synchronously, which is a lot more expensive
• Set delay_threshold in the pooler config

delay_threshold defines the maximum lag a slave is allowed to have to still receive
reads. The setting is defined in bytes of changes inside the XLOG. So, if you set this
to 1024 a slave is only allowed to be 1 KB of XLOG behind the master. Otherwise it
will not receive read requests.

Working with pgpool

[158]

Of course, unless this has been set to zero it is pretty hard to make it totally
impossible that a slave can ever return data that is too old, however, a reasonable
setting can make it very unlikely. In many practical applications this might very well
be enough.

How does pgpool know how far a slave is behind? The answer is that this can be
configured easily:

• sr_check_period: This variable defines, how often the system should check
those XLOG positions to figure out if the delay is too high or not. The unit
used here is seconds.

• sr_check_user: The name of the user to connect to the primary via
streaming to check for the current position in the XLOG.

• sr_check_password: The password for this user.

If you really want to make sure that load balancing will always
provide you with up-to-date data, it is necessary to replicate
synchronously, which can be expensive.

Dealing with failovers and high
availability
Some obvious issues, which can be addressed with pgpool, are high availability and
failover. In general there are various approaches available to handle those topics
with or without pgpool.

Using PostgreSQL streaming and Linux HA
The easiest approach to high availability with pgpool is to use PostgreSQL onboard
tools along with Linux HA. In this case, in our world, the best approach is to
run pgpool without statement-level replication and use PostgreSQL streaming
replication to sync the data.

pgpool can be configured to do load balancing and automatically send write requests
to the first and read requests to the second node.

What happens in case of failover? Let us assume the master will crash. In this case
Linux HA would trigger the failover and move the service IP of the master to the
slave. The slave can then be promoted to be the new master by Linux HA (if this is
desired). pgpool would then simply face a broken database connection and start over
and reconnect.

Chapter 9

[159]

Of course, we can also use londiste or some other technology such as Slony to
replicate data. However, for the typical case, streaming replication is just fine.

Slony and skytools are perfect tools if you want to upgrade all
nodes inside your pgpool setup with a more recent version of
PostgreSQL. You can build Slony or londiste replicas and then
just suspend operations briefly (to stay in sync) and switch your
IP to the host running the new version.

Practical experience has shown that using PostgreSQL onboard and operating system
level tools is a good way to handle failovers easily and, more important, reliably.

pgpool mechanisms for high availability
and failover
In addition to streaming replication and Linux HA you can also use mechanisms
provided by pgpool to handle failovers. This section will use those means provided
by pgpool.

The first thing you have to do is to add the failover command to your pool
configuration. Here is an example:
failover_command = '/usr/local/bin/pgpool_failover_streaming.sh %d %H

Whenever pgpool detects a node failure, it will execute the script we have defined in
the pool configuration and react according to our specifications. Ideally this failover
script will write a trigger file—this trigger file can then be seen by the slave system
and turn it into a master.

The recovery.conf file on the slave might look like this:
standby_mode = 'on'
primary_conninfo = 'host=master_host user=postgres'
trigger_file = '/tmp/trigger_file0'

The trigger_file is checked for every 5 seconds. Once the failover occurs, pgpool
can treat the second server as the new master.

The logical next step after a failover is to bring a new server back into the system.
The easiest and most robust way of doing that is to:

• Set up streaming replication
• Wait until the server is back in sync
• Briefly interrupt writes
• Use pcp_attach_node to add the new node
• Resume writes

Working with pgpool

[160]

Overall this will only need a handful of seconds of service interruption.

Theoretically service interruptions are not necessary in the pgpool
world, however, to make sure that there is not the slightest way of
causing inconsistency, it might be worth turning off writes for some
seconds. In the vast majority of cases out there, this will be tolerable.

Summary
pgpool is a tool that has been widely adopted for replication and failover. It offers a
vast variety of features including load balancing, connection pooling and replication.
pgpool will replicate data on the statement level and integrate itself with PostgreSQL
onboard tools such as streaming replication.

In the next chapter, we will dive into Slony and learn about logical replication.
We will discuss the software architecture and see how Slony can be used to replicate
data within a large server farm.

Configuring Slony
Slony is one of the most widespread replication solutions in the field of PostgreSQL.
It is not just one of the oldest replication implementations, but also one that has the
most support by external tools such as PgAdmin3 and others.

In this chapter we will take a deep look at Slony and learn how to integrate Slony
into your replication setups. You will also find out which problems you can solve
with Slony.

The following topics will be covered:

• Installing Slony
• The Slony system architecture
• Replicating tables
• Deploying DDLs
• Handling failovers

Installing Slony
To install Slony we can download the most recent tarball from slony.info. As
always we will perform a source installation so that you will be able to replicate
a similar process for most operating systems.

For the purpose of this chapter we have used the following version of Slony:

http://slony.info/downloads/2.2/source/slony1-2.2.0.b3.tar.bz2

Once we have downloaded the package we can extract it running the
following command:

tar xvfj slony1-2.2.0.b3.tar.bz2

Configuring Slony

[162]

The tarball will inflate and we can move forward to compile the code. To build the
code we must tell Slony where to look for pg_config. The purpose of pg_config
is to provide the add-on module with all the information about the build process of
PostgreSQL itself. This way we can ensure that PostgreSQL and Slony are compiled
the same way. On our demo setup PostgreSQL resides in /usr/local/pgsql so we
can safely assume that PostgreSQL will reside in the bin directory
of the installation:

./configure --with-pgconfigdir=/usr/local/pgsql/bin

make

su root

make install

Once we have executed configure, we can compile the code by calling make. Then
we can switch to root (in case PostgreSQL has been installed as root) and install
the binaries to their final destination.

Understanding how Slony works
Before we start to replicate our first database we want to dive into Slony's
architecture. It is important to understand how this works because otherwise it
will be close to impossible to utilize the software in a useful and reasonable way.

In contrast to transaction log streaming, Slony uses logical replication. This
means that it does not use internal binary data (such as the XLOG) but a logical
representation of the data (in the case of Slony this is text). Using textual data
instead of the built-in transaction log has some advantages but also some
downsides, which will be discussed in this chapter in detail.

Dealing with logical replication
First of all we have to discuss what logical replication really means: The backbone
of every Slony setup is the so called changelog triggers. This means that whenever
Slony has to replicate the content of a table it will create a trigger. This trigger will
then store all changes made to the table in a log. A process called slon will then
inspect this changelog and replicate those changes to the consumers. Let us take
a look at the basic algorithm:

INSERT INTO table (name, tstamp) VALUES ('hans', now());
trigger fires
('hans', '2013-05-08 13:26:02') as well as some bookkeeping
information will be stored in the log table
COMMIT

Chapter 10

[163]

After some time:

• The slon daemon will come along and read all changes since the last commit.
• All changes will be replayed on the slaves.
• Once this is done the log can be deleted.

The following diagram shows the overall architecture of Slony:

Keep in mind that the transport protocol is pure text. The main advantage here is
that there is no need to run the same version of PostgreSQL on every node in the
cluster because Slony will abstract the version number. We cannot achieve this with
transaction log shipping because in the case of XLOG-based replication all nodes in
the cluster must use the very same major version of PostgreSQL.

The changelog is written for certain tables—this also means that we
don't have to replicate all those tables at the same time; it is very well
possible to replicate just a subset of those tables on a node.

Because Slony is fairly independent of the PostgreSQL version, it can be used nicely
for upgrade purposes.

Configuring Slony

[164]

The slon daemon
As we have already stated, the slon daemon will be in charge of picking up the
changes made to a specific table or a set of tables and transporting those changes to
the desired destinations.

To make this work we have to run exactly one slon daemon per database in our cluster.

Note that we are talking about one slon daemon per
database—not per instance. This is important to take into
account when doing the actual setup.

As each database will have its own slon daemon, these processes will communicate
with each other to exchange and dispatch data. Individual slon daemons can also
function as relays and simply pass data on. This is important if you want to replicate
data from database A to database C through database B. The idea here is similar to
what you can achieve with streaming replication and cascading replicas.

An important thing about Slony is that there is no need to replicate an entire instance
or an entire database—replication is always related to a table or to a group of tables.
For each table (or for each group of tables) one database will serve as master while as
many databases as desired will serve as slaves for this particular set of tables.

It might very well happen that one database is the master of tables A and B and
another database will be the master of tables C and D. In other words, Slony allows
the replication of data back and forth. Which data has to flow from where to where
will be managed by the slon daemon.

Chapter 10

[165]

The slon daemon itself consists of various threads serving different purposes such
as cleanup, listening for events, or applying changes on a server. In addition to that
it will perform synchronization-related tasks.

To interface with the slon daemon, you can use a command-line tool called slonik.
It will be able to interpret scripts and talk to Slony directly.

Replicating your first database
After this little introduction we can move forward and replicate our first database.
To do so we can create two databases in a database instance. We want to simply
replicate between these two databases.

It makes no difference if you replicate within an instance
or between two instances—it works exactly the same way.

Creating those two databases should be an easy task once your instance is up
and running:

hs@hs-VirtualBox:~$ createdb db1

hs@hs-VirtualBox:~$ createdb db2

Now we can create a table, which should be replicated from database db1 to
database db2:

db1=# CREATE TABLE t_test (id serial, name text,

PRIMARY KEY (id));

NOTICE: CREATE TABLE will create implicit sequence "t_test_id_seq" for
serial column "t_test.id"

NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "t_test_
pkey" for table "t_test"

CREATE TABLE

Create this table in both databases in an identical way because the table structure
won't be replicated automatically.

Once this has been done we can write a slonik script to tell the cluster about our
two nodes. slonik is a command-line interface that we can use to talk to Slony
directly. You could also work with it interactively but this is far from comfortable.

Configuring Slony

[166]

A script to register these nodes would look as follows:

#!/bin/sh

MASTERDB=db1
SLAVEDB=db2
HOST1=localhost
HOST2=localhost
DBUSER=hs

slonik<<_EOF_
cluster name = first_cluster;

 # define nodes
node 1 admin conninfo = 'dbname=$MASTERDB host=$HOST1 user=$DBUSER';
node 2 admin conninfo = 'dbname=$SLAVEDB host=$HOST2 user=$DBUSER';

 # init cluster
init cluster (id=1, comment = 'Master Node');

 # group tables into sets
create set (id=1, origin=1, comment='Our tables');
set add table (set id=1, origin=1, id=1,
 fully qualified name = 'public.t_test',
comment='sample table');

store node (id=2, comment = 'Slave node',
event node=1);
store path (server = 1, client = 2, conninfo='dbname=$MASTERDB
host=$HOST1 user=$DBUSER');
store path (server = 2, client = 1, conninfo='dbname=$SLAVEDB
host=$HOST2 user=$DBUSER');
EOF

First of all we define a handful of environment variables. This is not necessary but
can be quite handy to make sure that in case of a change, nothing is forgotten. Then
our slonik script starts.

The first thing we have to do is to define a cluster name. This is important: With
Slony a cluster is more of a virtual thing—it is not necessarily related to physical
hardware. We will find out later on when talking about failovers what this means.

In the next step we have to define our nodes of this cluster. The idea here is that
each node will have a number associated to a connection string. Once this has
been done, we can call init cluster. During this step Slony will deploy all of
the infrastructure to do replication. We don't have to install anything manually here.

Chapter 10

[167]

Now that the cluster has been initialized we can organize our tables into replication
sets, which are really just a set of tables. In Slony we will always work with replication
sets. Tables are grouped into sets and replicated together. This layer of abstraction
allows us to quickly move groups of tables around. In many cases it is a lot easier than
to just move individual tables one by one.

Finally we have to define paths. What is a path? A path is basically the connection
string to move from A to B. The main question here is why paths are needed at all.
We have already defined nodes earlier so why define paths? The point is: The route
from A to B is not necessarily the same as the route from B to A. This is especially
important if one of these servers is in some DMZ while the other one is not. In other
words, by defining paths you can easily replicate between different private networks
and cross firewalls doing some NAT if necessary.

As the script is a simple shell script we can easily execute it:

hs@hs-VirtualBox:~/slony$ sh slony_first.sh

Slony has done some work in the background. When looking at our test table we can
see what has happened:

db1=# \d t_test

 Table "public.t_test"

 Column | Type | Modifiers

--------+---------+---

id | integer | not null default nextval('t_test_id_seq'::regclass)

name | text |

Indexes:

 "t_test_pkey" PRIMARY KEY, btree (id)

Triggers:

 _first_cluster_logtrigger AFTER INSERT OR DELETE

OR UPDATE ON t_test

FOR EACH ROW EXECUTE PROCEDURE _first_cluster.logtrigger('_first_
cluster', '1', 'k')

 _first_cluster_truncatetrigger BEFORE TRUNCATE ON t_test FOR EACH
STATEMENT EXECUTE PROCEDURE _first_cluster.log_truncate('1')

Disabled triggers:

 _first_cluster_denyaccess BEFORE INSERT OR DELETE OR UPDATE ON t_
test FOR EACH ROW EXECUTE PROCEDURE _first_cluster.denyaccess('_first_
cluster')

 _first_cluster_truncatedeny BEFORE TRUNCATE ON t_test FOR EACH
STATEMENT EXECUTE PROCEDURE _first_cluster.deny_truncate()

Configuring Slony

[168]

A handful of triggers have been deployed automatically to keep track of these
changes. Each event is covered by a trigger.

Now that this table is under Slony's control we can start to replicate it. To do so we
have to come up with a slonik script again:

#!/bin/sh

MASTERDB=db1
SLAVEDB=db2
HOST1=localhost
HOST2=localhost
DBUSER=hs

slonik<<_EOF_
cluster name = first_cluster;

node 1 admin conninfo = 'dbname=$MASTERDB host=$HOST1 user=$DBUSER';
node 2 admin conninfo = 'dbname=$SLAVEDB host=$HOST2 user=$DBUSER';

subscribe set (id = 1, provider = 1, receiver = 2, forward = no);
EOF

After stating the cluster name and after listing the nodes, we can call subscribe
set. The point here is that in our example set number 1 is replicated from node 1 to
node 2 (receiver). The forward keyword is important to mention here. This keyword
indicates whether or not the new subscriber should store the log information during
replication to make it possible to be a candidate for the provider role for future
nodes. Any node that is intended to be a candidate for FAILOVER must have forward
= yes. In addition to that, this keyword is essential to do cascaded replication
(meaning, A replicates to B and B replicates to C).

If you execute this script, Slony will truncate the table on the slave and reload all the
data to make sure that things are in sync. In many cases you know already that you
are in sync and you want to avoid copying gigabytes of data over and over again. To
achieve that we can add OMIT COPY = yes. This will tell Slony that we are sufficiently
confident that data is already in sync.

After defining what we want to replicate, we can fire up those two slon daemons
in our favorite UNIX shell:

$ slon first_cluster 'host=localhostdbname=db1'
$ slon first_cluster 'host=localhostdbname=db2'

This can also be done before we define this replication route—so order is not the
primary concern here.

Chapter 10

[169]

Now we can move forward and check if replication is working nicely:

db1=# INSERT INTO t_test (name) VALUES ('anna');

INSERT 0 1

db1=# SELECT * FROM t_test;

id | name

----+------

 1 | anna

(1 row)

db1=# \q

hs@hs-VirtualBox:~/slony$ psql db2

psql (9.2.4)

Type "help" for help.

db2=# SELECT * FROM t_test;

id | name

---+------

(0 rows)

db2=# SELECT * FROM t_test;

id | name

--- +------

 1 | anna

(1 row)

We add a row to the master, quickly disconnect, and query if the data is already
there. If you happen to be quick enough you will see that the data comes with
a small delay. In our example, we managed to get an empty table just to
demonstrate what asynchronous replication really means.

Let us assume you are running a book shop. Your application connects to
server A to create a new user. Then the user is redirected to a new page,
which queries some information about the new user—be prepared for
the possibility that the data is not there yet on server B. This is a common
mistake in many web applications dealing with load balancing. The
same kind of delay happens with asynchronous streaming replication.

Configuring Slony

[170]

Deploying DDLs
Replicating just one table is clearly not enough for a productive application. Also, there
is usually no way to ensure that the data structure never changes. At some point it is
simply necessary to deploy changes of the data structures (so called DDLs).

The problem now is that Slony relies heavily on triggers. A trigger can fire when
a row in a table changes. This works for all tables—but, it does not work for system
tables. So, if you deploy a new table or if you happen to change a column, there
is no way for Slony to detect that. So, you have to run a script to deploy changes
inside the cluster to make it work.

PostgreSQL 9.3 has some basic functionality to trigger DDLs
already but it is not enough for Slony. However, future versions of
PostgreSQL might very well be capable of handling triggers inside
DDLs.

We need a slonik script for that:

#!/bin/sh

MASTERDB=db1
SLAVEDB=db2
HOST1=localhost
HOST2=localhost
DBUSER=hs

slonik<<_EOF_
cluster name = first_cluster;

node 1 admin conninfo = 'dbname=$MASTERDB host=$HOST1 user=$DBUSER';
node 2 admin conninfo = 'dbname=$SLAVEDB host=$HOST2 user=$DBUSER';

execute script (
 filename = '/tmp/deploy_ddl.sql',
 event node = 1
);
EOF

The key to success is execute script. We simply pass an SQL file to the call and
tell it to consult node 1. The content of the SQL file can be quite simple—it should
simply list the DDLs we want to execute:

CREATE TABLE t_second (id int4, name text);

Chapter 10

[171]

Running the file can be done just as before:

hs@hs-VirtualBox:~/slony$./slony_ddl.sh

The table will be deployed on both nodes. The following listing shows that the table
has also made it to the second node, which proves that things have been working
as expected:

db2=# \d t_second

 Table "public.t_second"

 Column | Type | Modifiers

--------+---------+-----------

id | integer |

name | text |

Of course, you can also create new tables without using Slony but this is not
recommended. Adding columns to a table will definitely end up as disaster.

Adding tables to replication and
managing problems
Once we have added this table to the system, we can add it to the replication setup.
Doing so is a little complex. First of all we have to create ourselves a new table set
and merge this one with the one we already have. So, for a brief moment we will
have two table sets involved. The script goes like this:

#!/bin/sh

MASTERDB=db1
SLAVEDB=db2
HOST1=localhost
HOST2=localhost
DBUSER=hs

slonik<<_EOF_
cluster name = first_cluster;

node 1 admin conninfo = 'dbname=$MASTERDB host=$HOST1 user=$DBUSER';
node 2 admin conninfo = 'dbname=$SLAVEDB host=$HOST2 user=$DBUSER';

create set (id=2, origin=1,
comment='a second replication set');
set add table (set id=2, origin=1, id=5,

Configuring Slony

[172]

fully qualified name = 'public.t_second',
 comment='second table');
subscribe set(id=1, provider=1,receiver=2);
merge set(id=1, add id=2,origin=1);
EOF

The key to success is the merge call at the end of the script. It will make sure that
those new tables will be integrated into the existing table set.

When the script is executed we will face an expected problem, as follows:

hs@hs-VirtualBox:~/slony$ sh slony_add_to_set.sh

<stdin>:7: PGRES_FATAL_ERROR select "_first_cluster".determineIdxnameU
nique('public.t_second', NULL); - ERROR: Slony-I: table "public"."t_
second" has no primary key

We have created the table without a primary key. This is highly important—there
is no way for Slony to replicate a table without a primary key. So, we have to add
this primary key. Basically we have two choices to do that. The desired way here is
definitely to use execute script just as we have shown before. If your system is
idling, you can also do it the quick and dirty way:

db1=# ALTER TABLE t_second ADD PRIMARY KEY (id);

NOTICE: ALTER TABLE / ADD PRIMARY KEY will create implicit index "t_
second_pkey" for table "t_second"

ALTER TABLE

db1=# \q

hs@hs-VirtualBox:~/slony$ psql db2

psql (9.2.4)

Type "help" for help.

db2=# ALTER TABLE t_second ADD PRIMARY KEY (id);

NOTICE: ALTER TABLE / ADD PRIMARY KEY will create implicit index "t_
second_pkey" for table "t_second"

ALTER TABLE

However, this is not recommended—it is definitely more desirable to use the Slony
interface to make changes like that.

Once we have fixed the data structure we can execute the slonik script again and
see what happens:

hs@hs-VirtualBox:~/slony$ sh slony_add_to_set.sh

<stdin>:6: PGRES_FATAL_ERROR lock table "_first_cluster".sl_event_lock,

Chapter 10

[173]

"_first_cluster".sl_config_lock;select "_first_cluster".storeSet(2, 'a
second replication set'); - ERROR: duplicate key value violates unique
constraint "sl_set-pkey"

DETAIL: Key (set_id)=(2) already exists.

CONTEXT: SQL statement "insert into "_first_cluster".sl_set

 (set_id, set_origin, set_comment) values

 (p_set_id, v_local_node_id, p_set_comment)"

PL/pgSQL function _first_cluster.storeset(integer,text) line 7 at SQL
statement

What you see is a typical problem that you will face with Slony. If something goes
wrong, it can be really, really hard to get things back in order. This is a scenario you
should definitely be prepared for.

If you are working with Slony on a production system always
create yourself a perfectly working library with scripts to perform
different tasks. It will greatly reduce your risk if you don't have
to come up with fixes on the fly and during normal operations.
Always make sure that you have got enough scripts around to
handle most common issues such as the one we have just outlined.

So, to fix the problem we can simply drop the table set again and start from scratch:

slonik<<_EOF_
cluster name = first_cluster;

node 1 admin conninfo = 'dbname=$MASTERDB host=$HOST1 user=$DBUSER';
node 2 admin conninfo = 'dbname=$SLAVEDB host=$HOST2 user=$DBUSER';

drop set (id=2, origin=1);
EOF

To kill a table set we can run drop set. It will help you to get back to where you
started. The script will execute cleanly:

hs@hs-VirtualBox:~/slony$ sh slony_drop_set.sh

Now we can restart again and add the table. Note that we are subscribing both
sets to the slave to make sure this executes cleanly:

slonik<<_EOF_
cluster name = first_cluster;

node 1 admin conninfo = 'dbname=$MASTERDB host=$HOST1 user=$DBUSER';
node 2 admin conninfo = 'dbname=$SLAVEDB host=$HOST2 user=$DBUSER';

Configuring Slony

[174]

create set (id=2, origin=1, comment='a second replication set');
set add table (set id=2, origin=1, id=5, fully qualified name =
'public.t_second', comment='second table');
subscribe set(id=1, provider=1,receiver=2);
subscribe set(id=2, provider=1,receiver=2);
merge set(id=1, add id=2,origin=1);
EOF

We can now cleanly execute the script and everything will be replicated as expected:

hs@hs-VirtualBox:~/slony$ sh slony_add_to_set_v2.sh

<stdin>:11 subscription in progress before mergeSet. waiting

<stdin>:11 subscription in progress before mergeSet. waiting

As we have stated already, in this chapter we have intentionally made a small
mistake and you have seen, how tricky and work intense it can be to get things
straight even if it is just a small mistake. One of the reasons for that is that a script
is basically not a transaction on the server side. So, if a script fails somewhere in the
middle, it will just stop working—it will not undo changes made so far. This can
cause some issues; these are outlined in this section.

So, once you have made a change you should always take a look and see if
everything works nicely. One simple way to do that is as follows:

db2=# BEGIN;

BEGIN

db2=# DELETE FROM t_second;

ERROR: Slony-I: Table t_second is replicated and cannot be modified on a
subscriber node - role=0

db2=# ROLLBACK;

ROLLBACK

You can start a transaction and try to delete a row. It is supposed to fail. If it
does not, you can safely rollback and try to fix your problem. As you are using a
transaction that never commits, nothing can go wrong.

Performing failovers
Once you have learned how to replicate tables and add them to sets, it is time to
learn about failover. Basically we can distinguish between two types of failovers:

• Planned failovers
• Unplanned failovers and crashes

In this section we will learn about both scenarios.

Chapter 10

[175]

Planned failovers
Having planned failovers is more of a luxury scenario. In many cases you will not
be so lucky and you have to rely on automatic failover or face unplanned outages.

Basically a planned failover can be seen as moving a set of tables to some other node.
Once that other node is in charge of those tables, you can handle things accordingly.

In our example we want to move all tables from node 1 to node 2. In addition to that
we want to drop the first node. Here is the code:

slonik<<_EOF_
cluster name = first_cluster;

node 1 admin conninfo = 'dbname=$MASTERDB host=$HOST1 user=$DBUSER';
node 2 admin conninfo = 'dbname=$SLAVEDB host=$HOST2 user=$DBUSER';

lock set (id = 1, origin = 1);
move set (id = 1, old origin = 1, new origin = 2);
wait for event (origin = 1, confirmed = 2, wait on=1);

drop node (id = 1, event node = 2);
EOF

After our standard introduction we can call move set. The clue here is: We have
to create a lock to make this work. The reason is that we have to protect ourselves
against changes made to the system while failover is performed. You must not forget
this lock, otherwise you might find yourself in a truly bad situation. Just as in all of
our previous examples, nodes, and sets are represented using their numbers.

Once we have moved the set to the new location, we have to wait for the event to be
completed and finally we can drop the node (if this is desired).

If the script is 100 percent correct, it can be executed cleanly:

hs@hs-VirtualBox:~/slony$./slony_move_set.sh

debug: waiting for 1,5000016417 on 2

Once we have failed over to the second node, we can at once delete data. Slony has
removed the triggers preventing this operation:

db2=# DELETE FROM t_second;

DELETE 1

Configuring Slony

[176]

The same has happened to the table on the first node. There are no more triggers but
the table itself is still in place:

db1=# \d t_second
 Table "public.t_second"
 Column | Type | Modifiers
--------+---------+-----------
id | integer | not null
name | text |
Indexes:
 "t_second_pkey" PRIMARY KEY, btree (id)

You can now take the node offline and use it for other purposes.

Using a planned failover is also the desired strategy you should
apply when upgrading a database to a new version of PostgreSQL
with little downtime. Just replicate an entire database to an instance
running the new version and do a controlled failover. The actual
downtime of this kind of upgrading will be minimal and it is
therefore possible to do it with a large amount of data.

Unplanned failovers
In case of an unplanned failover, you have not been so lucky. An unplanned
failover could be some power outage, a hardware failure or some site failure.
Whatever it might be, there is no need to be afraid – you can still bring the cluster
back to a reasonable state easily.

To do so Slony provides the failover command:

• failover (id = 1, backup node = 2);
• drop node (id = 1, event node = 2);

This is all you need to execute on one of the remaining nodes to do a failover from
one node to the other and to remove the node from the cluster. It is a safe and
reliable procedure.

Summary
Slony is a wide-spread tool to replicate PostgreSQL databases on a logical level.
In contrast to transaction log shipping it can be used to replicate between various
different versions of PostgreSQL and there is no need to replicate an entire instance.

In the next chapter we will focus our attention on Skytools, a viable alternative
to Slony. We will cover installation, generic queues as well as replication.

Using Skytools
After introducing you to Slony, we will take a look at another popular replication
tool. Skytools is a software package originally developed by Skype, which serves
a variety of purposes. Skytools is not just a single program but a collection of tools
and services, which you can use to enhance your replication setup.

In this chapter we will discuss the following topics related to Skytools:

• Building generic queues
• Using londiste for replication
• Handling XLOG and walmgr.py

Installing skytools
Skytools is an open source package and can be downloaded freely from pgfoundry.
org. For the purpose of this chapter we have used Version 3.1.4:

http://skytools.projects.pgfoundry.org/testing/skytools-3.1.4.tar.gz

To install the software, we first have to extract the TAR file and run configure.
The important thing here is that we have to tell configure where to find pg_config.
This is important to make Skytools know how to compile the code and where to look
for libraries.

configure will successfully execute if all dependencies are met.
If you build from git you will need git, autoconf, automake,
asciidoc, xmlto, and libtool. In addition to that you will
always need rsync, psycopg2, and Python.

Using Skytools

[178]

Once this has been executed successfully, we can run make and make install
(which might have to run as root if PostgreSQL has been installed as root user).

./configure \

--with-pgconfig=/usr/local/pgsql/bin/pg_config

make

make install

Once the code has been compiled, we can move forward and use
Skytools immediately.

Dissecting skytools
Skytools is not just a single script but a collection of various tool serving different
purposes. Once we have installed Skytools it makes sense to inspect those
components in a bit more detail:

• pgq: A generic queuing interface to flexibly dispatch and distribute data
• londiste: An easy-to-use tool to replicate individual tables and entire

databases on a logical level
• walmgr: A toolkit to manage transaction logging

In this chapter we will discuss pgq and londiste in detail.

Managing pgq-queues
One of the core components of Skytools is pgq. It provides a generic queuing
interface, which allows you to deliver messages from a provider to an arbitrary
number of consumers.

The question is: What is the point of a queue in general? A queue has some very nice
features. First of all it will guarantee the delivery of a message. In addition to that it
will make sure that the order in which messages are put into the queue is preserved.
This is highly important in the case of replication because we must definitely make
sure that messages will not overtake each other.

The idea of a queue is to be able to send anything from an entity producing the data
to any other host participating in the system. This is not only suitable for replication
but for a lot more—you can use pgq as an infrastructure to flexibly dispatch
information. Practical examples for this could be shopping cart purchases, bank
transfers, or user messages. Replicating a full table is in this sense more or less a
special case.

Chapter 11

[179]

In general a queue knows two operations:

• Enqueue: To put a message into the queue
• Dequeue: To fetch a message from the queue (this is also called "consuming"

a message).

Those two operations are the backbone of every "queue"-based application.

What we define as a queue in Skytools is something
you would call "topic" in JMS terminology.

Running pgq
To use pgq inside a database you have to install it as a normal PostgreSQL
extension. If the installation process has worked properly, you can simply run
the following instruction:

test=# CREATE EXTENSION pgq;
CREATE EXTENSION

Now that all modules have been loaded into the database we create a simple queue.

Creating queues and adding data
For the purpose of this example we create a queue named DemoQueue:

test=# SELECT pgq.create_queue('DemoQueue');
create_queue

 1
(1 row)

If the queue has been created successfully, a number will be returned.
Internally the queue is just an entry inside some pgq bookkeeping table:

test=# \x
Expanded display is on.
test=# SELECT * FROM pgq.queue;
-[RECORD 1]------------+------------------------------
queue_id | 1
queue_name | DemoQueue
queue_ntables | 3
queue_cur_table | 0
queue_rotation_period | 02:00:00

Using Skytools

[180]

queue_switch_step1 | 489693
queue_switch_step2 | 489693
queue_switch_time | 2013-05-14 16:35:38.132693+02
queue_external_ticker | f
queue_disable_insert | f
queue_ticker_paused | f
queue_ticker_max_count | 500
queue_ticker_max_lag | 00:00:03
queue_ticker_idle_period | 00:01:00
queue_per_tx_limit |
queue_data_pfx | pgq.event_1
queue_event_seq | pgq.event_1_id_seq
queue_tick_seq | pgq.event_1_tick_seq

The bookkeeping table outlines some essential information about our queue
internals. In this specific example it will tell us how many internal tables pgq will use
to handle our queue, which table is active at the moment, how often it is switched
and so on. Practically this information is not relevant to ordinary users—it is merely
an internal thing.

Once the queue has been created, we can add data to the queue. The function to do
that has three parameters: The first parameter is the name of the queue. The second
and third parameters are data values to enqueue. In many cases it makes a lot of sense
to use two values here. The first value can nicely represent a key while the second
value can be seen as the payload of this message. Here is an example:

test=# BEGIN;
BEGIN
test=# SELECT pgq.insert_event('DemoQueue',
 'some_key_1', 'some_data_1');
insert_event

 1
(1 row)

test=# SELECT pgq.insert_event('DemoQueue',
 'some_key_2', 'some_data_2');
insert_event

 2
(1 row)

test=# COMMIT;
COMMIT

Chapter 11

[181]

Adding consumers
In our case we have added two rows featuring some sample data. Now we can register
two consumers, which are supposed to get those messages in the proper order:

test=# BEGIN;
BEGIN
test=# SELECT pgq.register_consumer('DemoQueue',
 'Consume_1');
register_consumer

 1
(1 row)

test=# SELECT pgq.register_consumer('DemoQueue',
 'Consume_2');
register_consumer

 1
(1 row)

test=# COMMIT;
COMMIT

Two consumers have been created. A message will be marked as processed as soon
as both consumers have fetched the message and marked it as done.

Configuring the ticker
Before we can actually see how the messages can be consumed, we have to discuss
the way pgq works briefly. How does the consumer know which rows are there to
consume? Managing a queue is not simple. Just imagine two concurrent transactions
adding rows. A transaction can only be replicated if all depending transactions
are replicated.

Here is an example:

Connection 1: Connection 2:

INSERT ... VALUES (1)

BEGIN;

BEGIN;

INSERT ... VALUES (2)

INSERT ... VALUES (3)

COMMIT;

Using Skytools

[182]

Connection 1: Connection 2:
INSERT ... VALUES (4)

COMMIT;

Remember, if we manage queues we have to make sure that total order is maintained
so we can only provide row number 3 to the consumer if the transaction writing
row number 4 has committed. If we were to provide row number 3 to the consumer
before the second transaction in connection 1 has finished, row number 3 would
effectively overtake row number 2. This must not be the case.

In the case of pgq a so called ticker process will take care of those little details.

The ticker (pgqd) process will handle the queue for us and decide who is ready to
already consume what. To make the ticker process work, we create two directories.
One will hold logfiles and the other one is going to store the pid files created by the
ticker process:

hs@hs-VirtualBox:~$ mkdir log

hs@hs-VirtualBox:~$ mkdir pid

Once we have created those directories we have to come up with a config file
for the ticker:

[pgqd]

logfile = ~/log/pgqd.log

pidfile = ~/pid/pgqd.pid

optional parameters

libpq connect string without dbname=

base_connstr = host=localhost

startup db to query other databases

initial_database = postgres

limit ticker to specific databases

database_list = test

log into syslog

syslog = 0

syslog_ident = pgqd

Chapter 11

[183]

optional timeouts

how often to check for new databases

check_period = 60

how often to flush retry queue

retry_period = 30

how often to do maintentance

maint_period = 120

how often to run ticker

ticker_period = 1

As we have mentioned already, the ticker is in charge of those queues. To make sure
that this works nicely, we have to point the ticker to the PostgreSQL instance. Keep
in mind that the connect string will be autocompleted (some information is already
known by the infrastructure and it is used for autocompletion). Ideally you will use
the database_list directive here to make sure that only those databases that are
really needed will be taken.

As far as logging is concerned you got two options here. You can directly log to
syslog or send the log to a logfile. In our example we have decided not to use syslog
(syslog has been set to 0 in our config file). Finally there are some parameters to
configure how often queue maintenance should be performed and so on.

The ticker can be started easily:

hs@hs-VirtualBox:~/skytools$ pgqd ticker.ini

2013-05-14 17:01:38.006 23053 LOG Starting pgqd 3.1.4

2013-05-14 17:01:38.059 23053 LOG test: pgq version ok: 3.1.3

2013-05-14 17:02:08.010 23053 LOG {ticks: 30, maint: 1, retry: 0}

2013-05-14 17:02:38.012 23053 LOG {ticks: 30, maint: 0, retry: 0}

The important thing here is that the ticker can also be started as daemon directly. The
–d command line option will automatically send the process to the background and
decouple it from the active terminal.

Using Skytools

[184]

Consuming messages
Just adding messages to the queue might not be what we want. At some point we will
also want to consume this data. To do so we can call pgq.next_batch. The system will
return a number identifying the batch:

test=# BEGIN;
BEGIN
test=# SELECT pgq.next_batch('DemoQueue', 'Consume_1');
next_batch

 1
(1 row)

Once we have got the ID of the batch we can fetch the data itself:

test=# \x
Expanded display is on.
test=# SELECT * FROM pgq.get_batch_events(1);
-[RECORD 1]----------------------------
ev_id | 1
ev_time | 2013-05-14 16:43:39.854199+02
ev_txid | 489695
ev_retry |
ev_type | some_key_1
ev_data | some_data_1
ev_extra1 |
ev_extra2 |
ev_extra3 |
ev_extra4 |
-[RECORD 2]----------------------------
ev_id | 2
ev_time | 2013-05-14 16:43:39.854199+02
ev_txid | 489695
ev_retry |
ev_type | some_key_2
ev_data | some_data_2
ev_extra1 |
ev_extra2 |
ev_extra3 |
ev_extra4 |

test=# COMMIT;
COMMIT

Chapter 11

[185]

In our case the batch consists of two messages. It is important to know: Messages
that have been enqueued in separate transactions or by many different connections,
might still end up in the same pack of work for the consumer. This is totally intended
behavior. The correct order will be preserved.

Once a batch has been processed by the consumer, it can be marked as done:

test=# SELECT pgq.finish_batch(1);
finish_batch

 1
(1 row)

This means that the data is gone from the queue—logically pgq.get_batch_events
will return an error for this batch ID:

test=# SELECT * FROM pgq.get_batch_events(1);
ERROR: batch not found
CONTEXT: PL/pgSQL function pgq.get_batch_events(bigint) line 16 at
assignment

The message is only gone for this consumer. Other
consumers will still be able to consume it once.

Dropping queues
If a queue is no longer needed, it can be dropped. But, you cannot simply call pgq.
drop_queue. Dropping the queue is only possible if all consumers have unregistered:

test=# SELECT pgq.drop_queue('DemoQueue');
ERROR: cannot drop queue, consumers still attached
CONTEXT: PL/pgSQL function pgq.drop_queue(text) line 10 at RETURN

To unregister the consumer we can do the following:

test=# SELECT pgq.unregister_consumer('DemoQueue',
 'Consume_1');
unregister_consumer

 1
(1 row)

test=# SELECT pgq.unregister_consumer('DemoQueue',
 'Consume_2');
unregister_consumer

Using Skytools

[186]

 1
(1 row)

Now we can safely drop the queue.

test=# SELECT pgq.drop_queue('DemoQueue');
drop_queue

 1
(1 row)

Using pgq for large projects
pgq has proven to be especially useful if you have to model a flow of messages that
has to be transactional. The beauty of pgq is that you can put basically everything
into a queue—you can decide freely on the type of messages and their format (as
long as you are using text).

It is important to see that pgq is not just something that is purely related to
replication—it has a much wider range and offers a solid technology base for
countless applications.

Using londiste to replicate data
pgq is the backbone of a replication tool called londiste. The idea of londiste is
to have a mechanism that is more simplistic and easier to use than, say, Slony. If
you use Slony in a large installation, it is very easy for a problem on one side of the
cluster to cause some issues at some other point—this was especially true many
years ago when Slony was still fairly new.

The main advantage of londiste over Slony is that in the case of londiste
replication there will be one process per "route". So, if you replicate from A to B this
channel will be managed by one londiste process. If you replicate from B to A or
from A to C those will be separate processes, which are totally independent from
each other. All channels from A to somewhere might share a queue on the consumer
but the transport processes themselves will not interact. There is some beauty in
this approach because if one component fails, it is unlikely to cause additional
problems—this is not the case if all the processes interact as they do in the case of
Slony. To me this is one of the key advantages of londiste over Slony.

Chapter 11

[187]

Replicating our first table
After this theoretical introduction we can move ahead and replicate our first table.
To do so we create two databases inside the same instance (it makes no difference
whether those databases are in the same instance or far apart):

hs@hs-VirtualBox:~$ createdb node1
hs@hs-VirtualBox:~$ createdb node2

Just as before we will create a table in both databases:

node1=# CREATE TABLE t_test (id int4, name text,
t timestamp DEFAULT now(),
PRIMARY KEY (id));
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "t_
test_pkey" for table "t_test"
CREATE TABLE

In the chapter about Slony we have already seen that DDLs are not replicated. The
same rules apply to londiste because both systems are facing the same limitations
on the PostgreSQL side.

Before we dig into details—let us briefly sum up the next steps to replicate our tables:

• Write an init file and initialize the master.
• Start londiste on the master.
• Write a slave configuration and initialize the slave.
• Start londiste on the slave.
• Write a ticker config and start the ticker process.
• Add desired tables to replication.

Let us get started with the first part of the process. We have to create an init file
which is supposed to control the master:

[londiste3]
job_name = first_table
db = dbname=node1
queue_name = replication_queue
logfile = /home/hs/log/londiste.log
pidfile = /home/hs/pid/londiste.pid

Using Skytools

[188]

The important part here is that every job must have a name. This makes sense so that
we can distinguish those processes easily. Then we have to define a connect string to
the master database as well as the name of the replication queue involved. Finally we
can configure a PID and a logfile.

Every job must have a name. This is required as Slony has a single
process above a cluster (and thus the cluster name is enough) but
londiste has one process per route.

To install important things and to initialize the master node, we can call londiste:

hs@hs-VirtualBox:~/skytools$ londiste3 londiste3.ini create-root node1
dbname=node1
2013-05-15 13:37:24,902 3999 WARNING No host= in public connect
string, bad idea
2013-05-15 13:37:25,118 3999 INFO plpgsql is installed
2013-05-15 13:37:25,119 3999 INFO Installing pgq
2013-05-15 13:37:25,119 3999 INFO Reading from /usr/local/share/
skytools3/pgq.sql
2013-05-15 13:37:25,327 3999 INFO pgq.get_batch_cursor is installed
2013-05-15 13:37:25,328 3999 INFO Installing pgq_ext
2013-05-15 13:37:25,328 3999 INFO Reading from /usr/local/share/
skytools3/pgq_ext.sql
2013-05-15 13:37:25,400 3999 INFO Installing pgq_node
2013-05-15 13:37:25,400 3999 INFO Reading from /usr/local/share/
skytools3/pgq_node.sql
2013-05-15 13:37:25,471 3999 INFO Installing londiste
2013-05-15 13:37:25,471 3999 INFO Reading from /usr/local/share/
skytools3/londiste.sql
2013-05-15 13:37:25,579 3999 INFO londiste.global_add_table is
installed
2013-05-15 13:37:25,670 3999 INFO Initializing node
2013-05-15 13:37:25,674 3999 INFO Location registered
2013-05-15 13:37:25,755 3999 INFO Node "node1" initialized for queue
"replication_queue" with type "root"
2013-05-15 13:37:25,761 3999 INFO Done

In Skytools there is a very simple rule: The first parameter passed to the script is
always the INI file containing the desired configuration. Then comes an instruction
as well as some parameters. The call will install all necessary infrastructure and
return Done.

Chapter 11

[189]

Once this has been completed, we can fire up a worker process:

hs@hs-VirtualBox:~/skytools$ londiste3 londiste3.ini worker
2013-05-15 13:41:31,761 4069 INFO {standby: 1}
2013-05-15 13:41:42,801 4069 INFO {standby: 1}

After firing up the worker on the master we can take a look at the slave configuration:

[londiste3]
job_name = first_table_slave
db = dbname=node2
queue_name = replication_queue
logfile = /home/hs/log/londiste_slave.log
pidfile = /home/hs/pid/londiste_slave.pid

The main difference here is that we use a different connect string and some different
name for the job. If master and slave are two separate machines, the rest can stay
the same.

Once we have compiled the configuration we can create the leaf node:

hs@hs-VirtualBox:~/skytools$ londiste3 slave.ini create-leaf node2
dbname=node2 --provider=dbname=node1
2013-05-15 13:51:27,090 4246 WARNING No host= in public connect
string, bad idea
2013-05-15 13:51:27,117 4246 INFO plpgsql is installed
2013-05-15 13:51:27,118 4246 INFO pgq is installed
2013-05-15 13:51:27,122 4246 INFO pgq.get_batch_cursor is installed
2013-05-15 13:51:27,122 4246 INFO pgq_ext is installed
2013-05-15 13:51:27,123 4246 INFO pgq_node is installed
2013-05-15 13:51:27,124 4246 INFO londiste is installed
2013-05-15 13:51:27,126 4246 INFO londiste.global_add_table is
installed
2013-05-15 13:51:27,205 4246 INFO Initializing node
2013-05-15 13:51:27,291 4246 INFO Location registered
2013-05-15 13:51:27,308 4246 INFO Location registered
2013-05-15 13:51:27,317 4246 INFO Subscriber registered: node2
2013-05-15 13:51:27,321 4246 INFO Location registered
2013-05-15 13:51:27,324 4246 INFO Location registered
2013-05-15 13:51:27,334 4246 INFO Node "node2" initialized for queue
"replication_queue" with type "leaf"
2013-05-15 13:51:27,345 4246 INFO Done

Using Skytools

[190]

The key here is to tell the slave where to find the master (provider). Once the system
knows where to find all the data we can fire up the worker here as well.

hs@hs-VirtualBox:~/skytools$ londiste3 slave.ini worker
2013-05-15 13:55:10,764 4301 INFO Consumer uptodate = 1

This should not cause any issues and should work nicely if the previous command
has succeeded as well. Now that we have everything in place we can attack the final
component of the setup—the ticker process:

[pgqd]

logfile = /home/hs/log/pgqd.log
pidfile = /home/hs/pid/pgqd.pid

The ticker config is pretty trivial—all it takes is three simple lines. Those lines
are enough to fire up the ticker process:

hs@hs-VirtualBox:~/skytools$ pgqd pgqd.ini
2013-05-15 14:01:12.181 4683 LOG Starting pgqd 3.1.4
2013-05-15 14:01:12.188 4683 LOG auto-detecting dbs ...
2013-05-15 14:01:12.310 4683 LOG test: pgq version ok: 3.1.3
2013-05-15 14:01:12.531 4683 LOG node1: pgq version ok: 3.1.3
2013-05-15 14:01:12.596 4683 LOG node2: pgq version ok: 3.1.3
2013-05-15 14:01:42.189 4683 LOG {ticks: 90, maint: 3, retry: 0}
2013-05-15 14:02:12.190 4683 LOG {ticks: 90, maint: 0, retry: 0}

If the ticker has started successfully, we have all of the infrastructure in place. So far
we have configured all processes needed for replication—but, we have not yet told
the system what to replicate.

The londiste command will offer us a set of commands to define exactly that. In our
example we simply want to add all tables and replicate them:

hs@hs-VirtualBox:~/skytools$ londiste3 londiste3.ini add-table --all
2013-05-15 14:02:39,367 4760 INFO Table added: public.t_test

Just like Slony, londiste will install a trigger, which keeps track of all changes.
Those changes will be written into a pgq queue and dispatched by the processes we
have just set up:

node1=# \d t_test
 Table "public.t_test"
 Column | Type | Modifiers
--------+-----------------------------+---------------
id | integer | not null
name | text |
t | timestamp without time zone | default now()
Indexes:

Chapter 11

[191]

 "t_test_pkey" PRIMARY KEY, btree (id)
Triggers:
 _londiste_replication_queue AFTER INSERT OR DELETE OR UPDATE ON t_
test FOR EACH ROW EXECUTE PROCEDURE pgq.logutriga('replication_queue')
 _londiste_replication_queue_truncate AFTER TRUNCATE ON t_test FOR
EACH STATEMENT EXECUTE PROCEDURE pgq.sqltriga('replication_queue')

Skytools and londiste in particular offer a rich set of additional features to make
your life easy. However, documenting all those features would unfortunately exceed
the scope possible in this book. If you want to learn more we suggest taking a deep
look at the doc directory inside the Skytools source code. You will find a couple of
interesting documents explaining step by step what can be done.

One word about walmgr
walmgr is a tool that is supposed to simplify file-based transaction log shipping. Back
in the old days (before Version 9.0) it was pretty common to use walmgr to simplify
base backups. With the introduction of streaming replication the situation seemed to
have changed a little.

Setting up streaming has become so easy that add-ons are not as important anymore
as they used to be. Of course, this is our subjective observation, which might not be
what you have observed in the recent past.

To make sure that the scope of this book does not explode we have decided not to
include details about walmgr in this chapter. For further information we invite you to
review the documentation directory inside the walmgr source code. It contains some
easy-to-use examples as well as some background information about the technique.

Summary
In this chapter we have discussed Skytools, a tool package provided and developed
by Skype. Skytools provides you with generic queues as well as a replicator called
londiste. In addition to that Skytools provides a set of additional tools such as
walmgr, which can be used to handle WAL files.

The next chapter will focus on Postgres-XC, a solution capable of scaling reads as
well as writes. It provides users with a consistent view of the data and automatically
dispatches queries inside the cluster.

Working with Postgres-XC
In this chapter, we want to focus our attention on a write-scalable, multimaster,
synchronous, symmetric, and transparent replication solution for PostgreSQL called
Postgres-XC (PostgreSQL eXtensible Cluster). The goal of the project is to provide
the end user with a transparent replication solution, which allows higher levels of
loads by horizontally scaling to multiple servers.

In an array of servers running Postgres-XC, you can connect to any node inside the
cluster. The system will perfectly make sure that you will exactly get the same view
of the data on every single node. This is highly important as it solves a handful
of problems on the client side. There is no need to add logic to those applications
that write to just one node. You can simply balance your load easily; data is always
instantly visible on all nodes after a transaction commits.

The most important thing to keep in mind when considering Postgres-XC is that it is
not an add-on to PostgreSQL, it is a code fork. So, it does not use Vanilla PostgreSQL
version numbers, and the code base will usually lag behind the official PostgreSQL
source tree.

This chapter will provide you with information about Postgres-XC. We will cover
the following topics in this chapter:

• The Postgres-XC architecture
• Installing Postgres-XC
• Configuring a cluster
• Optimizing the storage
• Performance management
• Adding and dropping nodes

Working with Postgres-XC

[194]

Understanding the Postgres-XC
architecture
Before we dive head-on into Postgres-XC installation and ultimately into configuration,
we have to take a deep look at the basic system architecture of this marvelous piece
of software:

In general, a Postgres-XC system consists of the following essential components:

• Data nodes
• GTM (Global Transaction Manager)
• Coordinator
• GTM Proxy

Let's take a look at the purpose of each of those components.

Data nodes
A data node is the actual storage backbone of the system. It will hold all or a fraction
of the data inside the cluster. It is connected to the Postgres-XC infrastructure and
will handle the local SQL execution.

Chapter 12

[195]

GTM – Global Transaction Manager
The GTM will provide the cluster with a consistent view of the data. A consistent
view of the data is necessary because otherwise it would be impossible to
load-balance in an environment that is totally transparent to the application.

A consistent view is provided through a cluster-wide snapshot. In addition to that,
the GTM will create Global Transaction IDs (GXID). Those GXIDs are essential
because transactions must be coordinated cluster-wide.

Beside this core functionality, the GTM will also handle global values for stuff such
as sequences, and so on.

Coordinators
The Coordinators are a piece of software serving as an entry point for our
applications. An application will connect to one of the Coordinators. It will be in
charge of the SQL analysis, global execution plan creation, and global SQL execution.

GTM Proxy
The GTM Proxy can be used to improve the performance. Given the Postgres-XC
architecture, each transaction has to issue a request to the GTM. In many cases,
this can lead to latency, and subsequently to performance issues. The GTM Proxy
will step in and collect requests to the GTM into blocks of requests and send
them together.

One advantage here is that connections can be cached to avoid a great deal of
overhead caused by opening and closing of connections all the time.

Do you remember our introduction about the speed of light? This is
where it all comes together; sending requests back and forth might
cause latency issues, and therefore the overhead must be reduced as
much as possible to make sure that performance stays high.

Installing Postgres-XC
Postgres-XC can be downloaded from http://postgres-xc.sourceforge.net/.
For this book, we have used Version 1.0.3 of Postgres-XC.

Working with Postgres-XC

[196]

To compile the code, we have to extract the code using the following command:

tar xvfz pgxc-v1.0.3.tar.gz

Then we can compile the code just like standard PostgreSQL:

cd postgres-xc

./configure --prefix=/usr/local/postgres-xc

make

make install

Once this has been executed, we can move ahead and configure the cluster.

Configuring a simple cluster
In this chapter, we want to set up a cluster consisting of three (Datanodes). A
Coordinator and a Global Transaction Manager will be in charge of the cluster. For
each component, we have to create a directory:

hs@vm:~/data$ ls -l

total 24

drwx------ 2 hshs 4096 Jun 13 15:56 gtm

drwx------ 13 hshs 4096 Jun 13 15:54 node1

drwx------ 13 hshs 4096 Jun 13 15:55 node2

drwx------ 13 hshs 4096 Jun 13 15:55 node3

drwx------ 13 hshs 4096 Jun 13 15:55 node4

Keep in mind that, to make life simple, we will set up the entire cluster on a single
server. In production, you would logically use different nodes for those components,
otherwise there is no point in using Postgres-XC.

Creating the GTM
In the first step, we have to initialize the directory handling the GTM. To do so, we
can simply call initgtm:

hs@vm:~/data/gtm$ initgtm -Z gtm -D /home/hs/data/gtm/

The files belonging to this GTM system will be owned by user "hs".

This user must also own the server process.

fixing permissions on existing directory /home/hs/data/gtm ... ok

creating configuration files ... ok

Chapter 12

[197]

Success. You can now start the GTM server using:

gtm -D /home/hs/data/gtm

or

gtm_ctl -Z gtm -D /home/hs/data/gtm -l logfile start

Don't expect anything large and magic from initgtm. It merely creates some basic
configuration needed for handling the GTM. It does not create a large database
infrastructure there.

However, it already gives us a clue how to start GTM, which will be done later on in
the process.

Then we have to initialize those four database nodes we want to run. To do so,
we have to run initdb, just like for any Vanilla PostgreSQL database instance.
However, in the case of Postgres-XC, we have to tell initdb what name the node
will have. In our case, we will create the first node called node1 in the node1
directory. Each node will need a dedicated name. This is shown as follows:

initdb -D /home/hs/data/node1/ --nodename=node1

We can call initdb for all the four instances we will run. To make sure that those
instances can coexist on the very same test box, we have to change the port for each
of those boxes. In our example, we will simply use the following ports: 5432, 5433,
5434, and 5435.

To change the port, just edit the port setting in the postgresql.
conf file of each instance. Also, please make sure that each instance
has a different socket_directory directory, otherwise you cannot
start more than once instance.

Now that all the instances have been initialized, we can start the Global Transaction
Manager. This works as follows:

hs@vm:~/data$ gtm_ctl -D ./gtm/ -Z gtm start

server starting

To see if it works, we can check for the process as follows:

hs@vm:~/data$ ps ax | grep gtm

16976 pts/5 S 0:00 /usr/local/postgres-xc/bin/gtm -D ./gtm

Working with Postgres-XC

[198]

Then we can start all those nodes one after the other.

In our case, we will use one of those four nodes as the Coordinator. The Coordinator
will be using port 5432. To start it, we can call pg_ctl and tell the system to use this
node as a Coordinator:

pg_ctl -D ./node1/ -Z coordinator start

The remaining nodes will simply act as Datanodes. We can easily define the role of a
node on startup:

pg_ctl -D ./node2/ -Z datanode start

pg_ctl -D ./node3/ -Z datanode start

pg_ctl -D ./node4/ -Z datanode start

Once this has been done, we can already check and see if those nodes are up and
running.

We simply connect to a Datanode to list those databases in the system:

hs@vm:~/data$ psql -h localhost -l -p 5434

 List of databases

 Name | Owner | Encoding | Collate

----------+-------+-----------+------------

postgres | hs | SQL_ASCII | C | C

template0 | hs | SQL_ASCII | C | C

template1 | hs | SQL_ASCII | C | C

(3 rows)

We are almost done now. Before we can get started, we have to familiarize those
nodes with each other. Otherwise we cannot run queries or commands inside the
cluster. If those nodes don't know each other, an error will show up:

hs@vm:~/data$ createdb test -h localhost -p 5432

ERROR: No Datanode defined in cluster

HINT: You need to define at least 1 Datanode with CREATE NODE.

STATEMENT: CREATE DATABASE test;

To tell those systems about the location of nodes, we connect to the Coordinator and
run the following instructions:

postgres=# CREATE NODE node2 WITH (TYPE = datanode, HOST = localhost,
PORT = 5433);

CREATE NODE

Chapter 12

[199]

postgres=# CREATE NODE node3 WITH (TYPE = datanode, HOST = localhost,
PORT = 5434);

CREATE NODE

postgres=# CREATE NODE node4 WITH (TYPE = datanode, HOST = localhost,
PORT = 5435);

CREATE NODE

Once those nodes are familiar with each other, we can connect to the Coordinator
and execute whatever we want. In our example, we will simply create a database:

hs@vm:~/data$ psql postgres -p 5432 -h localhost

psql (PGXC 1.0.3, based on PG 9.1.9)

Type "help" for help.

postgres=# CREATE DATABASE test;

CREATE DATABASE

To see if things have been replicated successfully, we can connect to a Datanode and
check if the database is actually present. In our case we are lucky. The code is shown
as follows:

hs@vm:~/data$ psql -l -p 5433 -h localhost

 List of databases

 Name | Owner | Encoding | Collate

-----------+-------+-----------+---------------

postgres | hs | SQL_ASCII | C | C

template0 | hs | SQL_ASCII | C | C

template1 | hs | SQL_ASCII | C | C

test | hs | SQL_ASCII | C | C

(4 rows)

Keep in mind that you always have to connect to a Coordinator to make sure that
things are replicated nicely. Connecting to a Datanode should only be done to see if
everything is up and running as it should. Never execute SQL on a Datanode, always
use the Coordinator to do that.

You can run SQL on a data node directly but it will
not be replicated.

Working with Postgres-XC

[200]

Optimizing for performance
Postgres-XC is not just a fancy version of PostgreSQL but a truly distributed system.
This means that you cannot just store data and expect things to be fast and efficient
out of the box. If you want to optimize for speed, it can be highly beneficial to think
about how data is stored behind the scenes and how queries are executed.

Sure, you can just load data and things will work, but, if performance is really an
issue, you should really try to think about how you use your data. Keep in mind
there is no point in using a distributed database system if your load is low. So, if you
are a user of Postgres-XC, we expect your load and your requirements to be high.

Dispatching the tables
One of the most important questions is where to store data. Postgres-XC cannot
know what you are planning to do with your data and what kind of access pattern
you are planning to run. To make sure that users get some control on where to store
data, CREATE TABLE offers some syntax extensions:

[DISTRIBUTE BY { REPLICATION | ROUND ROBIN
| { [HASH | MODULO] (column_name) } }]
[TO { GROUP groupname | NODE nodename [, ...] }]

The DISTRIBUTE BY clause allows you to specify where to store a table. If you want
to tell Postgres-XC that a table has to be on every node in the cluster, we recommend
using REPLICATION. This is especially useful if you are creating a small lookup table
or some table that is frequently used in many queries.

If the goal is to scale out, it is recommended to spread a table to a list of nodes. Why
would anybody want to split the table? The reason is actually quite simple. If you
gave full replicas of a table on all the Datanodes, it actually means that you will have
one write per node. Clearly, this is not more scalable than a single node because each
node has to take all the load. For large tables facing heavy writes, it can therefore be
beneficial to split the table to various nodes. Postgres-XC offers various ways to
do that.

ROUND ROBIN will just spread the data more or less randomly, HASH will dispatch
data based on a hash key, and MODULO will simply evenly distribute data given a
certain key.

To make management a little easier, Postgres-XC allows you to group nodes into so
called node groups. This can come in pretty handy if a table is not supposed to reside
on all the nodes inside the cluster but just on, say, half of them.

Chapter 12

[201]

To group nodes, you can call CREATE NODE GROUP:

test=# \h CREATE NODE GROUP

Command: CREATE NODE GROUP

Description: create a group of cluster nodes

Syntax:

CREATE NODE GROUP groupname

WITH nodename [, ...]

Keep in mind that a node group is static; you cannot add nodes to it later on. So if
you start to organize your cluster, you have to think beforehand which areas your
cluster will have.

In addition to that, it is pretty hard to reorganize the data once it has been
dispatched. If a table is spread to, say, four nodes, you cannot just easily add a fifth
node to handle the table. First of all, adding a fifth node would require a rebalance,
and secondly, most of those features are still under construction and not yet fully
available to end users.

Optimizing the joins
Dispatching your data cleverly is essential if you want to join the data. Let us assume
a simple scenario consisting of three tables:

• t_person: This table consists a list of people in our system.
• t_person_payment: This table consists of all the payments a person

has made.
• t_postal_code: This table consists a list of the postal codes in your area.

Let us assume that we have to join this data frequently. In this scenario, it is highly
recommended to partition t_person and t_person_payment by the very same join
Key. Doing that will enable Postgres-XC to join and merge a lot of stuff locally on the
Datanodes instead of having to ship data around inside the cluster. Of course, we
can also create full replicas of the t_person table if this table is read so often that this
makes sense.

t_postal_code is a typical example of a table that might be replicated to all the
nodes. We can expect postal codes to be pretty static. In real life, postal codes
basically never change (at least, not 1000 postal codes per second or so), the table will
also be really small, and it will be needed by many other joins as well. A full replica
makes perfect sense here.

Working with Postgres-XC

[202]

When coming up with a proper partitioning logic, we just want to remind you of a
simple rule: Try to do calculations locally, that is, try to avoid moving data around at
any cost.

Optimizing for warehousing
If your goal is to use Postgres-XC to do business intelligence and data warehousing,
you have to make sure that your scan speed will stay high. This can be achieved by
using as much hardware as possible at the same time. Scaling out your fact tables to
many hosts will make perfect sense here.

We also suggest fully replicating fairly small lookup tables so that as much work
as possible can be performed on those data nodes. What does small mean in this
context? Let us imagine that you are storing information about millions of people
around the world. You might want to split data across many nodes, however, it
would clearly not make sense if you split the list of potential countries. The number
of countries on this planet is limited, so it is simply more viable to have a copy of this
data on all nodes.

Creating a GTM Proxy
Requesting transaction IDs from the GTM is a fairly expensive process. If you are
running a large Postgres-XC setup supposed to handle Online transaction processing
(OLTP) workload, the GTM can actually turn out to be a bottleneck. The more Global
Transaction IDs we need, the more important the performance of the GTM will be.

To get around this issue, we can introduce a GTM Proxy. The idea is that transaction
IDs will be requested in larger blocks. The core idea is that we want to avoid network
traffic and especially latency. The concept is pretty similar to how grouping the
commits in PostgreSQL works.

How can a simple GTM Proxy be set up? First of all, we have to create a directory
where the config is supposed to exist. Then we can make the following call:

initgtm -D /path_to_gtm_proxy/ -Z gtm_proxy

This will create a config sample, which we can simply adapt easily. After defining a
nodename, we should set gtm_host and gtm_port to point to the active GTM. Then
we can tweak the number of worker threads to a reasonable number to make sure
that we can handle more load. Usually we configure the GTM Proxy in a way that
the number of worker_threads matches the number of nodes in the system. This has
proven to be a robust configuration.

Chapter 12

[203]

Finally we can start the proxy infrastructure:

gtm_ctl -D /path_to_gtm_proxy/ -Z gtm_proxy start

The GTM proxy is now available to our system.

Creating the tables and issuing the
queries
After this introduction to Postgres-XC and its underlying ideas, it is time to create
our first table and see how the cluster will behave. The next example shows a simple
table. It will be distributed using the a hash key of the id column:

test=# CREATE TABLE t_test (id int4)
DISTRIBUTE BY HASH (id);
CREATE TABLE
test=# INSERT INTO t_test
SELECT * FROM generate_series(1, 1000);
INSERT 0 1000

Once the table has been created, we can add data to it. After completion, we can
check if the data has been written correctly to the cluster:

test=# SELECT count(*) FROM t_test;
count

 1000
(1 row)

Not surprisingly, we got 1000 rows in our table.

The interesting thing here is to see how the data is returned by the database engine.
Let us take a look at the execution plan of our query:

test=# explain (VERBOSE TRUE, ANALYZE TRUE,
NODES true, NUM_NODES true)
SELECT count(*) FROM t_test;
QUERY PLAN

 Aggregate (cost=2.50..2.51 rows=1 width=0)
(actual time=5.967..5.970 rows=1 loops=1)
 Output: pg_catalog.count(*)
 -> Materialize (cost=0.00..0.00 rows=0 width=0)
 (actual time=5.840..5.940 rows=3 loops=1)
 Output: (count(*))

Working with Postgres-XC

[204]

 ->Data Node Scan (primary node count=0,
node count=3) on
 "__REMOTE_GROUP_QUERY__"
(cost=0.00..0.00 rows=1000 width=0)
 (actual time=5.833..5.915 rows=3 loops=1)
 Output: count(*)
 Node/s: node2, node3, node4
 Remote query: SELECT count(*) FROM
(SELECT id FROM ONLY t_test
WHERE true) group_1
 Total runtime: 6.033 ms
(9 rows)

PostgreSQL will perform a so called Data Node Scan. This means that PostgreSQL
will collect data from all the relevant nodes in the cluster. If you look closely, you can
see which query will be pushed down to those nodes inside the cluster. The important
thing is that the count is already shipped to the remote node. All those counts coming
back from our nodes will be folded into a single count then. This kind of plan is a lot
more complex than a simple local query, but it can be very beneficial as the amount of
data grows because each node will only perform a subset of the operation. The fact that
each node performs just a subset of operations is especially useful when many things
are running in parallel.

Postgres-XC optimizer can push down operations to the Datanodes in many cases,
which is good for performance. However, you should still keep an eye on your
execution plans to make sure that you have reasonable plans.

Adding nodes
Postgres-XC allows you to add new servers to the setup at any point in the process.
All you have to do is to set up a node as we have shown before and call CREATE
NODE on the controller. The system will then be able to use this node.

However, there is one important thing about this. If you have partitioned a table
before adding a new node, this partitioned table will stay at its place. Some people
would expect that Postgres-XC magically rebalances this data to new nodes. This is
not going to happen. It is your task to move new data there and make good use of
the server.

It is necessary for Postgres-XC to behave that way because otherwise adding a new
node would need locking up existing infrastructure to rebalance data. Doing that is
clearly not acceptable.

Chapter 12

[205]

If you have to extend your cluster by many machines, it can be beneficial to recreate
a table using new rules. Doing this without downtime is not trivial, and you have to
come up with a strategy serving your needs. At the time this book was written, there
was no out-of-the-box solution.

Handling failovers and dropping nodes
In this section, we will take a look and see how failovers can be handled. We will also
see how nodes can be added to and removed from a Postgres-XC setup in a safe and
reliable way.

Handling node failovers
If you execute a query in Postgres-XC, it might be dispatched to many different
nodes inside the cluster. For example, performing a sequential scan on a highly
partitioned table will involve many different nodes. The question now is: What
happens if one or some of those data nodes are down?

The answer is pretty simple: Postgres-XC will not be able to perform requests
making use of failed nodes. This can result in a problem for both reads and writes.
A query trying to fetch from a failed node will return an error indicating that no
connection is available.

For you as a user, this means that if you are running Postgres-XC, you have to come
up with a proper failover and High Availability (HA) strategy for your system. We
recommend creating replicas of all the nodes to make sure that the controller can
always reach an alternative node in case the primary data node fails. Linux HA is a
good option to make nodes failsafe and to achieve fast failovers.

At the moment, it is not possible to solely rely on Postgres-XC to create an
HA strategy.

Replacing the nodes
Once in a while, it might happen that you want to drop a node. To do so, you can
simply call DROP NODE from your psql shell:

test=# \h DROP NODE

Command: DROP NODE

Description: drop a cluster node

Syntax:

DROP NODE nodename

Working with Postgres-XC

[206]

If you want to perform this kind of operation, you have to make sure that you are a
superuser. Normal users are not allowed to remove a node from the cluster.

Whenever you drop a node, make sure that there is no more data on it that might be
usable to you. Removing a node is simply a change inside Postgres-XC's metadata, so
the operation will be quick and the data will be removed from your view of the data.

One issue is: How can you actually figure out the location of the data? Postgres-XC
has a set of system tables, which allow you to retrieve information about nodes, data
distribution, and so on. The following example shows how a table can be created and
how we can figure out where it is:

test=# CREATE TABLE t_location (id int4)
 DISTRIBUTE BY REPLICATION;
CREATE TABLE
test=# SELECT node_name, pcrelid, relname
 FROM pgxc_class AS a, pgxc_node AS b,
pg_class AS c
WHERE a.pcrelid = c.oid
 AND b.oid = ANY (a.nodeoids);
node_name | pcrelid | relname
-----------+---------+------------
node2 | 16406 | t_location
node3 | 16406 | t_location
node4 | 16406 | t_location
(3 rows)

In our case, the table has been replicated to all nodes.

There is one tricky thing you have to keep in mind when dropping nodes: If you
drop a name and recreate it with the same name and connection parameters, it will
not be the same thing. When a new node is created, it will get a new object ID. In
PostgreSQL, a name is not as relevant as the ID of an object. This means that if you
drop a node accidentally and recreate it using the same name, you will still face
problems. Of course, you can always magically work around it by tweaking system
tables by hand, but this is not what you should do.

Therefore, we highly recommend being very cautious when dropping nodes from
a production system.

Chapter 12

[207]

Running a GTM standby
A Datanode is not the only thing that can cause downtime in case of failure. The
Global Transaction Manager should also be made failsafe to make sure that nothing
can go wrong in case of a disaster. If the transaction manager is missing, there is no
useful way to use your Postgres-XC cluster.

To make sure that the GTM cannot be a single point of failure, you can use a GTM
standby. Configuring a GTM standby is not hard to do. All you have to do is to
create a GTM config on a spare node and set a handful of parameters in gtm.conf:

startup = STANDBY
active_host = 'somehost.somedomain.com'
active_port = '6666'
synchronous_backup = off

First of all, we have to set the startup parameter to STANDBY. This will tell the GTM
to behave as a slave. Then we have to tell the standby where to find the main
productive GTM. We do so by adding a hostname and a port.

Finally, we can decide whether the GTM should be replicated synchronously
or asynchronously.

To start the standby, we can use gtm_ctl again. This time, we use the –Z gtm_
standby to mark the node as standby.

Summary
In this chapter, we have dealt with Postgres-XC, a distributed version of PostgreSQL
capable of horizontal partitioning and query distribution. The goal of the Postgres-
XC project is to have a database solution capable of scaling out writes transparently.
It offers a consistent view of the data and offers various options to distribute data
inside the cluster.

It is important to know that Postgres-XC is not just a simple add-on to PostgreSQL
but a fully compliant code fork.

The next chapter will cover PL/Proxy, a tool to shard PostgreSQL database
systems. We will learn how to distribute data to various nodes and shard data
to handle large setups.

Scaling with PL/Proxy
Adding a slave here and there is really a nice scalability strategy, which is basically
enough for most modern applications. Many applications will run perfectly fine with
just one server; you might want to add a replica to add some security to the setup,
but in many cases, this is pretty much what people need.

If your application grows larger, you can in many cases just add slaves and scale out
reading; this too is not a big deal and can be done quite easily. If you want to add
even more slaves, you might have to cascade your replication infrastructure, but for
98 percent of all applications, this is going to be, by far, enough.

The remaining two percent of applications are when PL/Proxy steps in. The idea
of PL/Proxy is to be able to scale out writes. Remember, transaction-log-based
replication can only scale out reads, there is no way to scale writes.

If you want to scale out writes, turn to PL/Proxy.

Understanding the basic concepts
As we have mentioned before, the idea behind PL/Proxy is to scale out writes as
well as reads. Once the writes are scaled out, reading can be scaled easily with the
techniques we have already outlined in this book before.

The question now is: How can you ever scale out writes? To do so, we have to follow
an old Roman principle, which has been widely applied in warfare: Divide et impera
(in English: Divide and conquer). Once you manage to split a problem into many
small problems, you are always on the winning side.

Scaling with PL/Proxy

[210]

Applying this principle to the database work means that we have to split up writes
and spread them to many different servers. The main art here is how to split up
data wisely.

As an example, we simply assume that we want to split up user data. Let us assume
further that each user has a username to identify himself/herself.

How can we split up data now? At this point, many people would suggest splitting
up data alphabetically somehow. Say, everything from A to M goes to server 1 and
all the rest to server 2. This is actually a pretty bad idea because we can never assume
that data is evenly distributed. Some names are simply more likely than others, so
if you split up by letters, you will never end up with roughly the same amount of
data in each partition (which is highly desirable). However, we definitely want to
make sure that each server has roughly the same amount of data, and we want to
find a way to extend the cluster to more boxes easily. But, let us talk about useful
partitioning functions later on.

Dealing with the bigger picture
Before we take a look at a real setup and at how to partition data, we have to discuss
the bigger picture: Technically, PL/Proxy is a stored procedure language, which
consists of just five commands. The only purpose of this language is to dispatch
requests to servers inside the cluster.

Let us take a look at the following image:

Chapter 13

[211]

We take PL/Proxy and install it on a server that will act as the proxy for our system.
Whenever we do a query, we ask the proxy to provide us with the data. The proxy
will consult its rules and figure out to which server the query has to be redirected.
Basically, PL/Proxy is a way to shard a database instance.

The way for asking the proxy for data is by calling a stored
procedure. As of the time this book was written, there is no way
to actually create a virtual table spread to X servers. You have to
go through a procedure call.

So, if you issue a query, PL/Proxy will try to hide a lot of complexity from you and
just provide you with the data no matter where it comes from.

Partitioning the data
As we have just seen, PL/Proxy is basically a way to distribute data across various
database nodes. The core question now is: How can we split and partition data in a
clever and sensible way? In this book, we have already explained that an alphabetic
split might not be the very best of all ideas because data won't be distributed evenly.

Of course, there are many ways to split the data. In this section, we will take a look
at a simple and yet useful way, which can be applied to many different scenarios. Let
us assume for this example that we want to split data and store it on an array of 16
servers. 16 is a good number because 16 is a power of 2. In computer science, powers
of 2 are usually good numbers, and the same applies to PL/Proxy.

The key to evenly dividing your data depends on first turning your text value
into an integer:

test=# SELECT 'www.postgresql-support.de';

?column?

 www.postgresql-support.de

(1 row)

test=# SELECT hashtext('www.postgresql-support.de');

hashtext

 -1865729388

(1 row)

Scaling with PL/Proxy

[212]

We can use a PostgreSQL built-in function (not related to PL/Proxy) to hash texts.
It will give us an evenly distributed integer number. So, if we hash 1 million rows,
we will see evenly distributed hash keys. This is important because we can split data
into similar chunks.

Now we can take this integer value and keep just the lower 4 bits:

test=# SELECT hashtext('www.postgresql-support.de')::bit(4);

hashtext

 0100

(1 row)

test=# SELECT hashtext('www.postgresql-support.de')::bit(4)::int4;

hashtext

 4

(1 row)

The final 4 bits are 0100, which are converted back to an integer. This means that this
row is supposed to reside on the fifth node (if we start counting at 0).

Using hash keys is by far the simplest way to split up data. It has some nice
advantages: If you want to increase the size of your cluster, you can easily just add
one more bit without having to rebalance data inside the cluster.

Of course you can always come up with more complicated and sophisticated rules to
distribute the data.

Setting up PL/Proxy
After this brief theoretical introduction, we can move forward and run some simple
PL/Proxy setups. To do so, we simply install PL/Proxy and see how it can be utilized.

Installing PL/Proxy is an easy task. First of all, we have to download the source
code from http://pgfoundry.org/projects/plproxy/. Of course, you can also
install binary packages if prebuilt packages are available for your operating system.
However, in this section, we will simply perform an installation from the source and
see how things work on a very basic level.

Chapter 13

[213]

The first step in the installation process is to unpack the TAR archive. This can be
easily done using the following command:

tar xvfz plproxy-2.5.tar.gz

Once the TAR archive has been unpacked, we can enter the newly created directory
and start the compilation process by simple calling make && make install.

Please make sure that your PATH variable points to the PostgreSQL
binary directory. Depending on your current setup, it might also be
necessary to run your installation procedure as root.

If you want to make sure that your installation is really fine, you can also run
make installcheck. It runs some simple tests to make sure your system is
operating correctly.

A basic example
To get you started, we want to set up PL/Proxy in such a way that we can fetch
random numbers from all the four partitions. This is the most basic example. It will
show all the basic concepts of PL/Proxy.

To enable PL/Proxy, we have to load the extension into the database first:

test=# CREATE EXTENSION plproxy;

CREATE EXTENSION

This will install all the relevant code and infrastructure you need to make this work.
Then we want to create four databases, which will carry the data we want to partition:

test=# CREATE DATABASE p0;
CREATE DATABASE
test=# CREATE DATABASE p1;
CREATE DATABASE
test=# CREATE DATABASE p2;
CREATE DATABASE
test=# CREATE DATABASE p3;
CREATE DATABASE

Scaling with PL/Proxy

[214]

Once we have created those databases, we can run CREATE SERVER. The question is:
What is a SERVER? Well, in this context you can see a SERVER as some kind of remote
data source providing you with the data you need. A SERVER is always based on a
module (in our case, PL/Proxy) and may carry a handful of options. In the case of
PL/Proxy, those options are just a list of partitions; there can be some additional
parameters as well, but the list of nodes is by far the most important thing here:

CREATE SERVER samplecluster FOREIGN DATA WRAPPER plproxy
 OPTIONS (partition_0 'dbname=p0 host=localhost',
partition_1 'dbname=p1 host=localhost',
partition_2 'dbname=p2 host=localhost',
partition_3 'dbname=p3 host=localhost');

Once we have created the server, we can move ahead and create ourselves a nice
user mapping. The purpose of a user mapping is to tell the system what user we are
going to be on the remote data source. It might very well happen that we are user
A on the proxy, but user B on the underlying database servers. If you are using a
foreign data wrapper to connect to, say, Oracle, this will be essential. In the case of
PL/Proxy, it is quite often the case that the users on those partitions and the proxy
are simply the same.

So, we can create a mapping as follows:

CREATE USER MAPPING FOR hs SERVER samplecluster;

If we are working as a superuser on the system, this will be enough. If we are not
a superuser, we have to grant permissions to the user who is supposed to use our
virtual server. We have to grant USAGE permissions to get this done:

GRANT USAGE ON FOREIGN SERVER samplecluster TO hs;

To see if our server has been created successfully, we can check out the pg_foreign_
server system table. It holds all the relevant information about our virtual server.
Whenever you want to figure out which partitions are present, you can simply
consult the system table and inspect srvoptions:

test=# \x
Expanded display is on.
test=# SELECT * FROM pg_foreign_server;
-[RECORD 1]
srvname | samplecluster
srvowner | 10
srvfdw | 16744
srvtype |
srvversion |
srvacl | {hs=U/hs}

Chapter 13

[215]

srvoptions | {"partition_0=dbname=p0 host=localhost","partition_1=dbna
me=p1 host=localhost","partition_2=dbname=p2 host=localhost","partitio
n_3=dbname=p3 host=localhost"}

As we have mentioned before, PL/Proxy is primarily a stored procedure language.
We have to run a stored procedure to fetch data from our cluster. In our example, we
want to run a simple SELECT statement on all the nodes of samplecluster:

CREATE OR REPLACE FUNCTION get_random() RETURNS setof text AS $$
 CLUSTER 'samplecluster';
 RUN ON ALL;
 SELECT random();
$$ LANGUAGE plproxy;

The procedure is just like an ordinary stored procedure. The only special thing here
is that it has been written in PL/Proxy. The CLUSTER keyword will tell the system
which cluster to take. In many cases, it can be useful to have more than just one
cluster (maybe if different data sets are present on different sets of servers).

Then we have to define where to run the code. We can run on ANY (any server),
ALL (on all servers) or on a specific server. In our example we have decided to run
on all servers.

The most important thing here is that when the procedure is called we will get one
row per node because we used RUN ON ALL. In the case of RUN ON ANY, we would
have just got one row because the query would have been executed on any node
inside the cluster:

test=# SELECT * FROM get_random();
get_random

 0.879995643626899
 0.442110917530954
 0.215869579929858
 0.642985367681831
(4 rows)

Partitioned reads and writes
After this example, we want to focus on using PL/Proxy to partition the reads.
Remember, the purpose of PL/Proxy is to spread the load that we want to scale out
to more than just one database system.

Scaling with PL/Proxy

[216]

To demonstrate how this works, we want to distribute user data to our four
databases. In the first step, we have to create a simple table on all the four databases
inside the cluster:

p0=# CREATE TABLE t_user (
 username text,
 password text,
 PRIMARY KEY (username)
);
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index
"t_user_pkey" for table "t_user"
CREATE TABLE

Once we have created the data structure, we can come up with a procedure to
actually dispatch data into this cluster. A simple PL/Proxy procedure will do the job:

CREATE OR REPLACE FUNCTION create_user(name text,
pass text) RETURNS void AS $$
 CLUSTER 'samplecluster';
 RUN ON hashtext($1);
$$ LANGUAGE plproxy;

The point here is that PL/Proxy will inspect the first input parameter and run a
procedure called create_user on the desired node. RUN ON hashtext($1) will
be our partitioning function. So the goal here is to find the right node and execute
the very same procedure there. The important part is that on the desired node, the
create_user procedure won't be written in PL/Proxy but simply in SQL, PL/
pgSQL, or any other language. The only purpose of the PL/Proxy function is to find
the right node to execute the underlying procedure.

The procedure on each of the nodes that actually puts the data into the table
is pretty simple:

CREATE OR REPLACE FUNCTION create_user(name text,
pass text)
 RETURNS void AS $$
 INSERT INTO t_user VALUES ($1, $2);
$$ LANGUAGE sql;

It is simply an INSERT statement wrapped into a stored procedure that can do the
actual work on those nodes.

Once we have deployed this procedure on all the four nodes, we can give it a try:

SELECT create_user('hans', 'paul');

Chapter 13

[217]

The PL/Proxy procedure in the test database will hash the input value and figure
out that the data has to be on p3, which is the fourth node:

p3=# SELECT * FROM t_user;
username | password
----------+----------
hans | paul
(1 row)

The following SQL statement will reveal why the fourth node is correct:

test=# SELECT hashtext('hans')::int4::bit(2)::int4;
hashtext

 3
(1 row)

Please keep in mind that we will start counting at 0, so the fourth node is actually
number 3.

Keep in mind that the partitioning function can be any deterministic
routine. However, we strongly advise keeping it as simple as possible.

In our example, we have executed a procedure on the proxy and relied on the fact
that a procedure with the same name will be executed on the slave. But what if
you want to call a procedure on the proxy that is supposed to execute some other
procedure in the desired node? To map a proxy procedure to some other procedure,
there is a command called TARGET.

To map create_user to create_new_user, just add the following line to your
PL/Proxy function:

CREATE OR REPLACE FUNCTION create_user(name text,
pass text) RETURNS void AS $$
 CLUSTER 'samplecluster';
 TARGET create_new_user;
 RUN ON hashtext($1);
$$ LANGUAGE plproxy;

Scaling with PL/Proxy

[218]

Extending and handling clusters in a
clever way
Setting up your cluster is not the only task you will face. If things are up and
running, you might have to tweak things here and there.

Adding and moving partitions
Once a cluster has been up and running, you might figure out that your cluster is too
small and that it is not able to handle the load generated by your client applications.
In this case, it might be necessary to add hardware to the setup. The question is: How
can this be done in the most intelligent way?

The best thing you can do is to create more partitions than needed straight away.
So, if you consider getting started with four nodes or so, we create sixteen partitions
straight away and run four partitions per server. Extending your cluster will be
pretty easy in this case:

• Replicating all the productive nodes
• Reconfiguring PL/Proxy to move the partitions
• Dropping unnecessary partitions from the old nodes

To replicate those existing nodes, you can simply use technologies outlined in this
book such as streaming replication, londiste, or Slony.

Streaming replication is usually the simplest way to
extend a cluster.

The main point here is how can you tell PL/Proxy that a partition has moved from
one server to some other server?

ALTER SERVER samplecluster
 OPTIONS (SET partition_0
'dbname=p4 host=localhost');

Chapter 13

[219]

In this case, we have moved the first partition from p0 to p4. Of course, the partition
can also reside on some other host; PL/Proxy will not care which server it has to go
to fetch the data. You just have to make sure that the target database has all the tables
in place and you have to ensure that PL/Proxy can reach this database.

Adding partitions is not hard on the PL/Proxy side either. Just as before, you can
simply use ALTER SERVER to modify your partition list:

ALTER SERVER samplecluster
 OPTIONS (
 ADD partition_4 'dbname=p5 host=localhost',
 ADD partition_5 'dbname=p6 host=localhost',
 ADD partition_6 'dbname=p7 host=localhost',
 ADD partition_7 'dbname=p8 host=localhost');

As we have already mentioned, adding those partitions is trivial; however, doing it
in practice is really hard. The reason is: How should you handle your old data, which
is already in the database? Moving data around inside your cluster is not funny
at all, and it can result in a high system usage during system rebalancing, and in
addition to that, it can be pretty error prone to move data around during production.

Basically there are just two ways out. You can make your partitioning function
cleverer and make it treat the new data differently than the old data; however, this
can be error prone and will add a lot of complexity and legacy to your system. A
cleverer way is to think ahead and create enough partitions straight away.

If you increase the size of your cluster, we strongly suggest
doubling the size of the cluster straight away. The beauty of this is
that you need just one more bit in your hash key; if you move from
four to, say, five nodes, there is usually no way to grow the cluster
without having to move a large amount of data around. You want
to avoid rebalancing data at any cost.

Scaling with PL/Proxy

[220]

Increasing the availability
PL/Proxy is a highly scalable infrastructure to handle arrays of servers. But what
happens if a server fails? The more boxes you have in your system, the more likely
it will be that one of those boxes fails.

To protect yourself against these kinds of issues, you can always turn to streaming
replication and Linux HA to make each partition more failsafe. An architecture
might look as follows:

Each node can have its own replica and therefore we can failover each node separately.
The good thing about this infrastructure is that you can scale out your reads while you
can improve availability at the same time.

The machines in the read-only area of the cluster will provide your system with
some extra performance.

Managing the foreign keys
If you are dealing with a lot of data (terabytes or more), using integrity constraints
might not be the best idea of all. The reason for that is that checking the foreign
keys on every write on the database is fairly expensive and might not be worth
the overhead. So, it might be better to take precautions within your application to
prevent wrong data from reaching the database at all. Keep in mind this is not just
about inserting, it is also about updates and deletes.

Chapter 13

[221]

One important thing about PL/Proxy is that you cannot simply use foreign keys out
of the box. Let us assume you have got two tables, which are in a 1:n relationship. If
you want to partition the right side of the equation, you will also have to partition the
other side. Otherwise, the data you want to reference will simply be in some other
database. An alternative would be simply to fully replicate the referenced tables.

In general, it has proven to be fairly beneficial to just avoid foreign key
implementations because it needs a fair amount of trickery to get foreign keys right.

Upgrading the PL/Proxy nodes
From time to time, it might be necessary to update or upgrade PostgreSQL and
PL/Proxy. Upgrading PL/Proxy is the simpler part of the problem. The reason
for that is that PL/Proxy is usually installed as a PostgreSQL extension. CREATE
EXTENSION offers all the functionality to upgrade the infrastructure on the servers
running PL/Proxy:

test=# \h CREATE EXTENSION
Command: CREATE EXTENSION
Description: install an extension
Syntax:
CREATE EXTENSION [IF NOT EXISTS] extension_name
[WITH] [SCHEMAschema_name]
[VERSIONversion]
[FROMold_version]

What you have to do is to run CREATE EXTENSION with a target version and
define the version you want to upgrade from. All the rest will happen behind
the scenes automatically.

If you want to upgrade a database partition from one PostgreSQL version to the next
major release (minor releases will only need a simple restart of the node), it is a little
bit more complicated. When running PL/Proxy, it is safe to assume that the amount
of data in your system is so large that doing a simple dump/reload is out of the
question because you would simply face far too much downtime.

To get around this problem, it is usually necessary to come up with an upgrade
policy based on replication. You can use Slony or londiste to create yourself a logical
replica of the old server on some new server and then just tell PL/Proxy to connect
to the new version when the replica has fully caught up. The advantage of using
Slony or londiste here is that both solutions can replicate between different versions
of PostgreSQL nicely.

Scaling with PL/Proxy

[222]

Just as we have seen before, you can move a partition to a new server by calling
ALTER SERVER. This way you can replicate and upgrade one server after the other
and gradually move to a more recent PostgreSQL version in a risk and downtime
free manner.

Summary
In this chapter, we have discussed the final topic of this book: PL/Proxy. The idea
behind PL/Proxy is to have a scalable solution to shard PostgreSQL databases. It has
been widely adopted by many companies around the globe and it allows you to scale
writes as well as reads.

Index
Symbols
.backup file 76
-d command 183
--xlog-method=stream option 68, 99

A
admin interface

configuring 139
management database, using 140
operations, resuming 142
operations, suspending 143
runtime information, extracting 140-142

ALTER SERVER 219, 222
application_name field 110
application_name parameter 98-100
archive

checking 107
archive_cleanup_command 92
archive_command

about 61, 62
checking 107, 108

asynchronous replication
versus synchronous replication 10, 11

authentication_timeout setting 151
Availability. See also CAP
availability

about 8
measuring 116-118

B
backend_data_directory0 setting 150
backend_flag setting 151
backend_hostname0 setting 150

backend_port0 setting 150
backend_start field 110
backend_weight0 setting 150
base directory 29
black_function_list setting 152

C
CAP

about 7, 8
latency 10
long distance transmission 10
speed of light 9

cascaded replication
configuring 84, 85

changelog triggers 162
checkpoint_completion target 50, 51
checkpoints

about 48
and XLOG 48
checkpoint_segments 49
checkpoint_timeout 49
configuring 48

checkpoint_segments 49
checkpoint_timeout 49
check_postgres

installing 112
child_life_time setting 151
child_max_connections setting 151
client_addr field 110
client_hostname field 110
client_idle_limit setting 151
client_port field 110
cloned services 120
CLUSTER keyword 215
Cluster Resource Manager (CRM) 119

[224]

clusters
about 120
configuring 196
extending 218
foreign keys, managing 221
handling 218
partitions, adding 218, 219
partitions, moving 218, 219
PL/Proxy nodes, upgrading 221
replication 220

cluster size
decreasing 20, 21
increasing 20, 21

commit log 31
COMMIT record 53
connection_cache setting 151
Consistency. See also CAP
Consistency 8
consumers

adding 181
Coordinators 195
Corosync 119
CRC32 checksum 54
createdb command-line tool 155
CREATE EXTENSION 221
create_user procedure 216

D
data

adding 179, 180
partitioning 211, 212
replicating 12

database
replicating 165-169

database_list directive 183
data distribution

using 16
data loss 12
data nodes 194
Data Node Scan 204
data replication

londiste, using 186
DDLs

about 170
replicating 170, 171
slonik script 170

Dell Remote Access Card (DRAC) 121
Dequeue operation 179
Detail Records (CDRs) 51
DISCARD ALL 136
DISTRIBUTE BY clause 200
Dow Jones Industrial Average (DJIA) 50
downtime 116
DROP NODE 205
dual-strategy cluster, error scenarios

master, rebooting 90
network connection 89
slave, rebooting 89
XLOG, in archive 90

E
enable_pool_hba setting 151
Enqueue operation 179
external frameworks 24
external middleware 24

F
failovers

about 120
performing 174
planned 175, 176
unplanned 176

fencing 121
fields

querying, example 17, 18
floating IP address 123
flush_location field 110
foreign keys

managing 220
fork() calls 136
forward keyword 168
fsync() 44, 46
fsync parameter 46

G
global 31
Global Transaction Manager. See GTM
GTM

about 195
creating 196-199

gtm.conf 207

[225]

GTM Proxy
about 195
creating 202

GTM standby
running 207

H
HA. See high availability
HASH 200
high availability

about 115, 205
and PostgreSQL 123
redundancy 121, 123
software, history 118
with quorum 124-126
with STONITH 126, 127

hosts
attaching 153, 154

hot_standby_feedback 95

I
ident authentication 32
ignore_leading_white_space setting 152
init cluster 166
initdb 197
init file 187
initgtm 196
insert_lock

installing 146
setting 151

INSERT statement
about 35, 36, 216
WAL-writing, crashing after 37
WAL-writing, crashing during 37

Integral Lights-Out (iLO) 121
Intelligent Platform Management Interface

(IPMI) 121

J
joins

optimizing 201

L
latency 10

Linux-HA stack
URL 119

listen_addresses setting 150
load_balance_mode setting 151
load balancing

setting up 149
logfile directive 133
logical replication

about 15
versus physical replication 14, 15

Logical Sequence Number. See LSN
londiste

about 178, 186
advantages 186
command 190
table, replicating 187-191
used, for replicating data 186

long distance transmission 10
LSN 55

M
make installcheck 213
management database

using 140
master

config files, tweaking 80, 81
configuration 87, 88
max_wal_senders 80
slaves, turning to 86, 87
wal_level 80

master mode
pgpool configuration, optimizing 157

master-slave resources 120
max_pool setting 151
max_standby_archive_delay parameter 94
max_standby_streaming_delay

parameter 94
max_wal_senders 68, 80
messages

consuming 184, 185
min_pool_size 137
monitoring strategy

deciding on 112
monitoring tools

dealing with 111

[226]

multi-master replication
versus single-master replication 13

N
network bandwidth

watching 70
N-node cluster 120
node failovers

handling 205
nodes

about 120
adding 204
replacing 205, 206

num_init_children setting 151

O
OLTP 202
Online transaction processing. See OLTP
OpenAIS 119
OpenHPI

URL 119
OpenSAF

URL 119
operating system processes

checking for 111

P
partitions

adding 218, 219
moving 218, 219

Partition tolerance. See also CAP
Partition tolerance 8
password

authenticating 152
encrypting 152

pcp_port setting 150
pcp_socket_dir setting 150
performance

issues 12
optimizing, for speed 200

pg_basebackup
about 68
features 66, 67
traditional methods, using 69
using 65

pgbench 137-139
pgbouncer

about 130
advantages 130
cleanup, issues 136
connecting to 134
downloading 130
installing 130, 131
Java, issues 135
pool modes 135, 136
setup, configuring 131

pgbouncer, configuration
authentication 134
basic settings 133
performance, improving 136, 137
pgbouncer up, starting 131, 132
requests, dispatching 132, 133
simple config file, writing 131, 132

pg_clog 31
pg_dump 60
pg_foreign_server 214
pg_hba.conf

modifying 65
pg_hba.conf file 31
pg_ident.conf file 32
pg_multixact 32
pg_notify 32
pgpool

architecture 148, 149
configuration, optimizing for master

mode 157
configuration, optimizing for slave

mode 157
downloading 145
features 146, 147
firing up 152
for failover 158, 159
for high availability 158, 159
installing 145
Linux HA, using 158
maintaining 139
PostgreSQL streaming, using 158, 159
running, with streaming replication 156
setting up 149

pgpool-regclass
installing 146

[227]

pgq
about 178
consumers, adding 181
data, adding 179, 180
messages, consuming 184, 185
queues, creating 179, 180
queues, dropping 185, 186
queues, managing 178, 179
running 179
ticker, configuring 181-183
used, for large projects 186

pg_serial 32
pg_snapshot 32
pg_stat_replication

application_name field 110
backend_start field 110
checking 109
client_addr field 110
client_hostname field 110
client_port field 110
fields 109, 110
flush_location field 110
pid field 109
replay_location field 110
sent_location field 110
state field 110
sync_priority field 110
sync_state field 110
usename field 109
usesysid field 109
write_location field 110

pg_stat_tmp 32
pg_subtrans 32
pg_switch_xlog() 77
pg_tblspc directory 33
pg_twophas 33
pg_XLOG 33, 34
physical replication

about 15
versus logical replication 14, 15

pid field 109
pid_file_name setting 150
PITR

architecture 61
purpose 60
transaction log, archiving 62-64

planned failovers 175, 176

PL/Proxy
about 210
enabling 213
example 213-215
installing 211-213
nodes, upgrading 221
scaling with 209
setting up 212, 213
URL 212
used, for partitioning reads 215-217
used, for partitioning writes 215-217

Point-In-Time-Recovery. See PITR
pool_modes

session 135
statement 135
transaction 135

pool_passwd setting 151
port setting 150
PostgreSQL

and high availability 123
consistency levels 46, 47
data, writing 27
disk layout 28

PostgreSQL-based sharding 24
postgresql.conf parameter 34, 62, 135
postgresql.conf setting 77
PostgreSQL database system

architecture 38
reads and writes 40, 41
shared buffer 39

PostgreSQL disk layout
about 28
base directory 29, 30
data directory, looking into 28
data files, growing 30
I/O, performing in chunks 30
PostgreSQL version number 29

PostgreSQL eXtensible Cluster. See
Postgres-XC

PostgreSQL replication 27
PostgreSQL transaction, data loss

from memory to disk 44, 45
from memory to memory 43

PostgreSQL transaction log (WAL) 33
PostgreSQL version number 29
Postgres-XC

about 193

[228]

installing 195
URL 195

Postgres-XC architecture
components 194
Coordinators 195
data nodes 194
GTM 195
GTM Proxy 195

postmaster server
signaling 66

primary_conninfo setting 82
projects

pgq, using for 186

Q
queries

issuing 203, 204
queues

creating 179, 180
Dequeue operation 179
dropping 185, 186
Enqueue operation 179

quorum
about 120
high availability with 124-126
server 121, 125

R
random() function 54
reads

partitioning, PL/Proxy used 215-217
recovery.conf file 74, 91, 100
recovery_end_command 76, 92
recovery_target_inclusive 74
redundancy

and sharding, choosing between 20
replay_location field 110
replicate_select setting 151
replication

and sharding, combining 22, 23
checking 155
increasing 220
logical versus physical replication 14, 15
setting up 149
single-master versus multi-master

replication 13

synchronous versus asynchronous
replication 10, 11

tables, adding 171-174
replication_mode setting 151
reset_query_list setting 151
resource agents 120
resources 120
restore_command 61, 71
ROUND ROBIN 200
runtime information

extracting 140-142

S
SELECT pg_xlog_replay_resume() 74
SELECT statement 215
sent_location field 110
serializable 60
services 120
session, pool mode 135
sharded system

designing 16, 17
sharding

advantages 19
and redundancy, choosing between 20
and replication, combining 22, 23
disadvantages 19
implementing 24
need for 16
using 16

sharding, implementing
external frameworks/middleware 24
PostgreSQL-based sharding 24

Shoot The Other Node In The Head. See
STONITH

SHOW DATABASES command 140
single-master replication

versus multi-master replication 13
single point of failure (SPOF) 121
Skytools

about 177
disecting 178
installing 177, 178
londiste 178
pgq 178
URL 177
walmgr 178

[229]

slave
configuration 88, 89
turning, to masters 86, 87

slave mode
pgpool configuration, optimizing 157, 158

slon daemon 164
slonik 165
Slony

about 161
installing 161, 162
logical replication 162, 163
slon daemon 164
working 162

socket_dir setting 150
speed of light 9
split-brain situation 120
sr_check_password variable 158
sr_check_period variable 158
sr_check_user variable 158
srvoptions 214
ssl setting 151
standalone services 120
standby_mode setting 82
STANDBY parameter 207
state field 110
statement, pool mode 136
STONITH

about 121
high availability with 126, 127

streaming replication
config files, tweaking on master 80, 81
pg_basebackup, handling 81
pgpool, running with 156
protocols 83
recovery.conf, handling 81, 82
setting up 79, 80
slave, making readable 82, 83

Sun Cluster 118
synchronous_commit

about 47, 102
setting, to local 103
setting, to off 102
setting, to on 102
setting, to remote_write 102

synchronous replication
application_name parameter 98, 99

checking 100, 101
downsides 98
durability settings, changing 103, 104
performance 104, 105
performance, issues 101
practical implications 104, 105
redundancy 106
setting up 97
stopping 106
synchronous_commit, setting to on 102
versus asynchronous replication 10, 11
working 99, 100

synchronous_standby_names setting 101
sync_priority field 110
sync_state field 110
sync_state setting 101
SysVshmem 41

T
tables

creating 203, 204
dispatching 200
replicating 187-191

Tablespace
issues 69

TARGET command 217
ticker

configuring 181-183
ticker config 190
timelines

dealing with 95, 96
t_person_payment table 201
t_person table 201
t_postal_code table 201
transaction log. See also XLOG
transaction log

archiving 62-64
basic recovery, performing 71-73
replaying 70
XLOG 74, 75
XLOG, cleaning up 75, 76
XLOG files, switching 77

transaction log archive
monitoring 108

trigger_file 159

[230]

U
unplanned failovers 176
uptime 116
USAGE permissions 214
usename field 109
usesysid field 109

V
vacuum_defer_cleanup_age 94
virtual IP address 123

W
WAL-buffers

tweaking 52
wal_debug 55
wal_keep_segments 91, 99
wal_level

about 80
settings 63

walmgr 178, 191
walreceiver 83
WAL (Write Ahead Log) 33, 36
warehousing

optimizing for 202
white_function_list setting 152
write_location field 110
writes

partitioning, PL/Proxy used 215-217

X
XLOG

about 27, 53, 75, 76
and checkpoints 48
and replication 41
debugging 55, 56
deterministic, creating 53
files, switching 77
making reliable 54
records 53

Thank you for buying
PostgreSQL Replication

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

PostgreSQL Server Programming
ISBN: 978-1-84951-698-3 Paperback: 264 pages

Extend PostgreSQL and integrate the database layer
into your development framework

1. Understand the extension framework of
PostgreSQL, and leverage it in ways that you
haven't even invented yet

2. Write functions, create your own data types, all
in your favourite programming language

3. Step-by-step tutorial with plenty of tips and
tricks to kick-start server programming

Instant PostgreSQL Backup and
Restore How-to [Instant]
ISBN: 978-1-78216-910-9 Paperback: 54 pages

A step-by-step guide to backing up and restoring your
database using safe, efficient, and proven recipes

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Back up and restore PostgreSQL databases

3. Use built-in tools to create simple backups

4. Restore the easy way with internal commands

Please check www.PacktPub.com for information on our titles

Mastering phpMyAdmin 3.4 for
Effective MySQL Management
ISBN: 978-1-84951-778-2 Paperback: 394 pages

A complete guide to getting started with
phpMyAdmin 3.4 and mastering its features

1. A step-by-step tutorial for manipulating data
with the latest version of phpmyadmin

2. Administer your MySQL databases with
phpMyAdmin

3. Manage users and privileges with MySQL
Server Administration tools

4. Learn to do things with your MySQL database
and phpMyAdmin that you didn't know
were possible!

MySQL Management and
Administration with Navicat
ISBN: 978-1-84968-746-1 Paperback: 134 pages

Master the tools you thought you knew and discover
the features you never knew existed

1. Tips, tricks and fast-paced tutorials for getting
the most out of Navicat

2. Master the visual design tools and editors with
thorough examples

3. Discover how easy Navicat makes outsmarting
the trickiest cases

4. Both Mac and PC versions covered, with
screenshots detailing differences in
performing tasks

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding
Replication Concepts
	The CAP theory and physical limitations
	Understanding the CAP theory
	Why the speed of light matters
	Long distance transmission
	Why latency matters

	Different types of replication
	Synchronous versus asynchronous replication
	Understanding replication and data loss
	Considering the performance issues

	Single-master versus multi-master replication
	Logical versus physical replication
	When to use physical replication
	When to use logical replication

	Using sharding and data distribution
	Understanding the purpose of sharding
	An example of designing a sharded system
	An example of querying different fields

	Pros and cons of sharding
	Choosing between sharding and redundancy
	Increasing and decreasing the size
of a cluster
	Combining sharding and replication
	Various sharding solutions
	PostgreSQL-based sharding
	External frameworks/middleware

	Summary

	Chapter 2: Understanding the PostgreSQL Transaction Log
	How PostgreSQL writes data
	The PostgreSQL disk layout
	Looking into the data directory
	PG_VERSION – PostgreSQL version number
	base – the actual data directory
	global – the global data
	pg_clog – the commit log
	pg_hba.conf – host-based network configuration
	pg_ident.conf – ident authentication
	pg_multixact – multi-transaction status data
	pg_notify – LISTEN/NOTIFY data
	pg_serial – information about committed serializable transactions
	pg_snapshot – exported snapshots
	pg_stat_tmp – temporary statistics data
	pg_subtrans – subtransaction data
	pg_tblspc – symbolic links to tablespaces
	pg_twophase – information about prepared statements
	pg_XLOG – the PostgreSQL transaction log (WAL)
	postgresql.conf – the central PostgreSQL configuration file

	Writing one row of data
	A simple INSERT statement

	Read consistency
	The purpose of the shared buffer
	Mixed reads and writes

	The XLOG and replication
	Understanding consistency and data loss
	All the way to the disk
	From memory to memory
	From memory to the disk
	One word about batteries
	Beyond fsync()

	PostgreSQL consistency levels

	Tuning checkpoints and the XLOG
	Understanding the checkpoints
	Configuring checkpoints
	About segments and timeouts
	To write or not to write?

	Tweaking WAL buffers

	The internal structure of the XLOG
	Understanding the XLOG records
	Making the XLOG deterministic
	Making the XLOG reliable

	LSNs and shared buffer interaction
	Debugging the XLOG and putting it all together

	Summary

	Chapter 3: Understanding
Point-In-Time-Recovery
	Understanding the purpose of PITR
	Moving to the bigger picture

	Archiving the transaction log
	Taking base backups
	Using pg_basebackup
	Modifying pg_hba.conf
	Signaling the master server
	pg_basebackup – basic features

	Making use of the traditional methods to create base backups
	Tablespace issues
	Keeping an eye on the network bandwidth

	Replaying the transaction log
	Performing a basic recovery
	More sophisticated positioning in the XLOG
	Cleaning up the XLOG on the way
	Switching the XLOG files

	Summary

	Chapter 4: Setting up Asynchronous Replication
	Setting up streaming replication
	Tweaking the config files on the master
	Handling pg_basebackup and recovery.conf
	Making the slave readable
	The underlying protocol

	Configuring a cascaded replication
	Turning slaves to masters
	Mixing streaming and file-based recovery
	The master configuration
	The slave configuration
	Error scenarios
	Network connection between the master and slave is dead
	Rebooting the slave
	Rebooting the master
	Corrupted XLOG in the archive

	Making the streaming-only replication more robust
	Efficient cleanup and the end of recovery
	Gaining control over the restart points
	Tweaking the end of your recovery

	Conflict management
	Dealing with the timelines
	Summary

	Chapter 5: Setting up
Synchronous Replication
	Setting up synchronous replication
	Understanding the downside of synchronous replication
	Understanding the application_name parameter
	Making synchronous replication work
	Checking replication
	Understanding performance issues
	Setting synchronous_commit to on
	Setting synchronous_commit to remote_write
	Setting synchronous_commit to off
	Setting synchronous_commit to local

	Changing durability settings on the fly

	Understanding practical implications and performance
	Redundancy and stopping replication
	Summary

	Chapter 6: Monitoring Your Setup
	Checking your archive
	Checking the archive_command
	Monitoring the transaction log archive

	Checking pg_stat_replication
	Relevant fields in pg_stat_replication

	Checking for operating system processes
	Dealing with monitoring tools
	Installing check_postgres
	Deciding on a monitoring strategy

	Summary

	Chapter 7: Understanding Linux High Availability
	Understanding the purpose of high availability
	Measuring availability
	History of high-availability software
	OpenAIS and Corosync
	Linux-HA (Heartbeat) and Pacemaker

	Terminology and concepts
	High availability is all about redundancy
	PostgreSQL and high availability
	High availability with quorum
	High-availability with STONITH

	Summary

	Chapter 8: Working with pgbouncer
	Understanding fundamental pgbouncer concepts
	Installing pgbouncer
	Configuring your first pgbouncer setup
	Writing a simple config file and starting pgbouncer up
	Dispatching requests
	More basic settings
	Authentication

	Connecting to pgbouncer
	Java issues

	Pool modes
	Cleanup issues

	Improving performance
	A simple benchmark

	Maintaining pgbouncer
	Configuring the admin interface
	Using the management database
	Extracting runtime information
	Suspending and resuming operations

	Summary

	Chapter 9: Working with pgpool
	Installing pgpool
	Installing pgpool-regclass and insert_lock

	Understanding pgpool features
	Understanding the pgpool architecture
	Setting up replication and load balancing
	Password authentication
	Firing up pgpool and testing the setup
	Attaching hosts

	Checking replication
	Running pgpool with streaming replication
	Optimizing pgpool configuration for master/slave mode

	Dealing with failovers and high availability
	Using PostgreSQL streaming and Linux HA
	pgpool mechanisms for high availability
and failover

	Summary

	Chapter 10: Configuring Slony
	Installing Slony
	Understanding how Slony works
	Dealing with logical replication
	The slon daemon

	Replicating your first database
	Deploying DDLs
	Adding tables to replication and managing problems
	Performing failovers
	Planned failovers
	Unplanned failovers

	Summary

	Chapter 11: Using Skytools
	Installing Skytools
	Dissecting skytools
	Managing pgq-queues
	Running pgq
	Creating queues and adding data
	Adding consumers
	Configuring the ticker
	Consuming messages
	Dropping queues
	Using pgq for large projects

	Using londiste to replicate data
	Replicating our first table

	One word about walmgr
	Summary

	Chapter 12: Working with Postgres-XC
	Understanding the Postgres-XC architecture
	Data nodes
	GTM – Global Transaction Manager
	Coordinators
	GTM Proxy

	Installing Postgres-XC
	Configuring a simple cluster
	Creating the GTM

	Optimizing for performance
	Dispatching the tables
	Optimizing the joins
	Optimizing for warehousing
	Creating a GTM Proxy

	Creating the tables and issuing the queries
	Adding nodes
	Handling failovers and dropping nodes
	Handling node failovers
	Replacing the nodes
	Running a GTM standby

	Summary

	Chapter 13: Scaling with PL/Proxy
	Understanding the basic concepts
	Dealing with the bigger picture
	Partitioning the data

	Setting up PL/Proxy
	A basic example
	Partitioned reads and writes

	Extending and handling clusters in a clever way
	Adding and moving partitions
	Increasing the availability
	Managing the foreign keys
	Upgrading the PL/Proxy nodes

	Summary

	Index

