AppRun

Building Reliable, High-Performance
Web Apps Using ElIm-Inspired Architecture,
Event Pub-Sub, and Components

Yiyi Sun

Apress’

ww.allitebooks.cor

http://www.allitebooks.org

Practical Application
Development with AppRun

Building Reliable, High-Performance
Web Apps Using EIm-Inspired
Architecture, Event Pub-Sub, and
Components

Yiyi Sun

Apress’

vww .allitebooks.cond

http://www.allitebooks.org

Practical Application Development with AppRun

Yiyi Sun
Thornhill, ON, Canada

ISBN-13 (pbk): 978-1-4842-4068-7 ISBN-13 (electronic): 978-1-4842-4069-4
https://doi.org/10.1007/978-1-4842-4069-4

Library of Congress Control Number: 2018968420

Copyright © 2019 by Yiyi Sun

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jade Scard

Development Editor: Chris Nelson

Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484240687. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-4069-4
http://www.allitebooks.org

Table of Contents

About the AUtROFKccvcmmimmmsmnssns s ———————— Xi
About the Technical REVIEWETcuscesssssmnssssanssssansssssnsssssnsssssnsssssnsssssnsssssnsssssanssss xiii
Acknowledgments..........cccuuimmmmsnsmmmsnsmmmsnsmmmsssmmssssnsss s s s ssnnnnnnns XV
L1 L0 T0 L T T | Xvii
Chapter 1: Getting Started........c.cccusmmmmnnsemmmmmnssssnmmmsssnmmssss s ————————— 1
5 T (0| (011 o SO 1
INtrodUCING APPRUN.......ti e e s e e e r e p e e e ne s 5
APPRUN ArCRITECTIUNE.......ceereree et s a e s s a e s a e s e e n e s ae s e s 5
EVENT PUD-SUD ...t 7

0] 111010 1< | 9

LN 1T (=T s oo OSSPSR 11
YT 0L I (=0 T 13
WatCh the State ... 13
VIRURI DOM.......occiiccsisise e st 14
ST 20 1151 (0] T 15
TYPEU ArCRILECTIUIEcvieeereccer e e e nr s 17
AR ..t —————————————————— 18

VW e e E e R e nan 19
L1010 L TSSOSO SRR 19

£ 13114 7R 22
Chapter 2: AppRun Development Environment..........cccumsemmsanmssanssssssssnsssassssasssansas 23
The APPRUN CLL.....iiereee ettt s et e st e e e b st ne s s b e e e nne 23

o (0] [=To B ST T] O 24
iii

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

0] 01 25
U K R R R AR R e 26
2T P 26
ASYNC AN QWAL ...vveccerere e 27

LT U] L= 2T | 28

DEVEIOPMENT SEIVEFeverereecererser et re s s e s e s s s e s e e saesaesae s s e saesae s e e s e snesaenae e s esaenannnnan 28

ViSu@l STUIO COUERcoererereeceriris e 29
INEEIISENSE ... 30
Gradually Adding TYPES.....cccccrererrrmmmmseseresssssssse s s sas s e ssas 31
B 0L 1T (T S 32
COdE SNIPPELS ... s 34
Integrated TErminal ... —————— 37
D12 11T o] R 38

11T 111 TSRS 42

Chapter 3: Model the State........cccummmmmmsmmnmmmnsnmmmmmsssnmssss——————————— 45

STALE CONCEPL....covieerrererrere s b e e e R r e e re e 45
INIETAL STALEeeeveccreecere e e 47
R3] (el 5 Y (0] RS RRSN 47

IMMutable STate...........ccccor e ——————————— 50
IMMUEADIE AITAY ... e s a e e 50
10T T 10 (= 0] o 1= O 53

PersiStent STALe........cco e s 59
(T2 S 1 59
0 0T =T 61

Source Code 0f EXAMPIEScovvcerereniiricne s sas s s s e s st s s 66

11104 RS 67

Chapter 4: View Patterns........ccccumsemmmmmssssnnmmssssssnssnsnsnsss 69

VIBW COMCEPL...cveiiiiircr sttt s e s s e s e s b e b e b e p e e e e nne s 69
THE VIEW FUNCHON ...t 69
HTIMIL VS. JSX . etitiirtririreseseseeseees s s st sns s en 71

iv

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

LTS3 (0] 110 S, G To O 72
VIFUAI DOM.......oiiieeisisisisisire e 73
B3 2 UL T ST 74
CUSTOM JSX TAUS ...veererierii st s st e e e bbb e e ae bt e e nne s 75
JSX Fragments ..o s e p e e s 77

[0 T T T 77
Create @ LiSt EM ..o e 78
02T e T 78
APPIY @ CIASS ...ttt e e e e 79
Set the EIeMent PrOPEITY.......ccccieirre st se s sae e se s e ses e s 79
SEEACHIVE ClASSESecueueererrrreeeseresesse e se s nnans 80
Show and Hide EIBMENTS..........cccorrniieicrrrsce s sesnans 80
{01100 T OSSPSR 81
COMPONENT ClASS......ciieririiiiriire st b st e s b e e s ae s be e s e nne s 81
Create Components iN COUE ... s sr e nne 83
Create Components iN JSX ...t 84
TWO TO-DO LISTS .. s nnnne s 86
WED COMPONENTScicerirecre e s s b b e s s b b e e s e ae e e e e e nannne 88
SoUrce Gode Of EXAMPIESovvvevererererrererseresssssersessessssessessessssssssssessesssssssessessssssssssesaesssssnsesseses 92
SUIMIMAIY....eeecrieerere s e s e s e e s ae e e e e e e e e Re e s e e e se s e e nRe e e se e nen e e nrnnnns 92
Chapter 5: Event Patterns..........ccouemmmnnssmnmnnssssnmmmssssnmmssssssmmssssssssssssssssssssssnnns 93
V110 T o) O 93
DOM EVENLScceriirieccsesisis s se s s 94
APPRUN EVENTS ...t st s s s s e s 94
CoNNECE The EVENIS.........ceccccrirrccsine s s 95
Global @nd LOCAI EVENLScccvrieirenererisssese e ss s e sessssssas 97
LU= g T o] T OO OPRSSRPRS SN 100
0 T o= o T 100
INPUE EVENT ... e e e e e e s 103
Keyhoard EVENTS.........ccveiiirie st s 105
MOUSE EVENLS ... s e 109

TABLE OF CONTENTS

Brower HiStory EVENL ... s s 112
WED WOTKEIS ... ese e se s se e e s e s e e sne e s e e nen e e nnnnnns 115
Source Code and EXAMPIESccevvvierreeririiriennresesesssessesesssssessessessssssesaessssssessessessssssesasssssnnes 117
£ 11134 7R 118
Chapter 6: Asynchronous EVents..........ccousmmsmmmsanmssssmsssssssnsssssssssssssnsssassssnssssnsnsans 119
ASYNCHroN0oUS OPEIALIONScoeocrererereerrese e e e e nne e nrens 119
072072 TG T 120
(0] 3 T 120
ASYNC/AWAILeveercreries e s e e e s b e e e e R e ae e e e e aenne s 121
AppRun async Event HANAIES..........cocvvinincnnrsine s se s enes 122
SEIVEE REOUESTS....ccviieiireriesie ittt e s s b e e b et nnn 123
XMLHHPREQUEST.... et s r e e s n e s s r e e s 124
THE FEECH APLL.......eeeeeeer et nnne s 125
01T 0 = OSSN 126
Weather APPlICALION........ccvcvereierrere s s a e e a e e e aennen 126
L D L o PP 129
Data ACCESS ArCHItECIUNE........ccccrererrrccs e 130
PUSHING DALA........cceiiecirre e e s e 132
HaCKer NEWS RBAGETccoveeeercerecreeere e 132
The HACKEr NEWS AP ..o s s sne s 134
THE STOFY LISE ..ot st e e 135
L1 (0T =1 -V 136
The APPIICALION........oiceeece e s s a e e e 137
Source Code and EXAMPIES ... s s 139
L1134 RS 139
Chapter 7: Single-Page Applicationscccuuseemnmnsssnsnmsssssssnssssssssssssssssssssssssnnns 141
B3] o A (0111 (1 S 142
HTIVIL <.ttt bbb e e e 144
T I o (00 11 OSSOSO 144
COMPONENLS ... s e e b e e e e e R b e e e R e 146

TABLE OF CONTENTS

ROULING EVENIS ..ottt sa e e a e s a e s e 147
Location Hash Change EVENT..........cccvrevnirrenere s ssssese e sssses e ssesaesessessessessssessesnees 147
Generic ROULING EVENTSccccveviieriere s s s e s e sse s sas e s e ssesaesessessessesssssssesnees 148
g Y (0 o 149

SPA MOUUIES ...t s e e ne e e pe e e e e 152
SEAtiC IMPOI......c e ———————— 152
Dynamic IMPOI ... s 152
NALIVE MOUUIES ... 156

Source Code and EXAMPIEScccerirnirininnnine s s s 161

£ 1§14 7R 162

Chapter 8: Third-Party Library Integrationccccusmmnnnssssnnnmnssssssnmnssssssssssssssnns 163

Example: An Admin DashDO@rd ..o e s ssessssessesnens 164
RESPONSIVE Ul.....eieiiirccesr st 165
Dashboard WIdgets.......cccuirinnsnn e s e 165
Third-Party LIDFaries. ... s ss s sss s snes 167

Extended ArChitECIUNE........ccc v e 168

LAYOUL @NA STYIES....couevrecererertesirrere e ses s s e sre e s e s saese s e s s sae s s e e s e saesaese s e saesnesaeennesnees 169
SIABDAIr MENUcvecci e 172
ROWS @Nd COIUMNScciiiiriccise e se e 173
Notifications and AIEIS ... 175
07 0L N 176

Components and WIdgets ..o s 177
511 o TP 177
D3 VAP ..ttt R E e e 182
D2 0] 1 185
(07 11 T4 R 187

Source Code and EXAMPIES ... s s s 189

£ 11134 R 190

vii

TABLE OF CONTENTS

Chapter 9: Server-Side Renderingcccuuesremsssssnnssssssnnsessssssnssssssssnssssssssnsssssssnnnss 191
APPRUN SSR ... e s e b b e e b e nne s 191
SPA ArCHITECIUNE ... s 192
APPRUN SSR ArChItBCIUIEc..eveercerere et 193

AN SSR/SPA EXAMPIE.....c.eecireeseereerererseeseresessaessessesesssessessesssssesaessesssessesaessesssessessssnssnes 194
ThE SSRFOF SPA.......ceceeecr et bbb et 195
Server APPlICALIONcccvvcirire e e 196
VIBW ENQINEcevieriecsisesere e sn s s e se s sne e sensssnsennns 198

B3 G I 1 | OSSPSR 198
ROULING .vveeriee s np e ne e 200
COMPONENTS ...t e s e e s bR b e e R b e e e ae e 203
Client-Side SCHPL ..o e s 206
THE SPA TOF SSR......oiiciciri s 207
ASPINET MVCuieieireinisisisesese e e e ss s s e s s s s s sssssssssssnsnas 208
VIrtU@l DOM FIIEE ...t 210
THE CONTIONIET ... 213
TRE LAYOUL ... e e e s 214
Source Gode and EXAMPIESccvevererierrereneenerseressessssesessesssssssessessssssssssessesssssssessesssssssessesaes 217
£ T o TS 217
Chapter 10: A Real-World SPAccccccmmmminmmmmmmssssssssnnnssssssssssssssssess s 219
Single-Page ApPPlICAtION.........ccccvvvererirrere e s r e e s s sa e sre s a e se e s aesa e e e nnennes 220
T T 5 (T Vo T ST 222

1 T TS] 0] o P SO 223

0] 111010 T OO 223
The Main Programccccveererreiensersesessesessessessesssssssessessessssessessesssssssessessessssessessesssssssessesaes 230
BACK-ENG APL......ceeeeeceeceess s s st ss e e b b npnp e nr s 231
Core Data MOTEIScovecereereer e e 231
AP DAt MOTEIS ... e se e e e e nneneas 232

L o I SOOI 234

viil

TABLE OF CONTENTS

AUthentiCatioN.........cccverii G ———————————————— 236
6T T 237
3= 0 T 237
AUNOTIZAtION ...t ———————— 238
LS 10 | RS 239
LS 10 L0 | R 241

EVENt DECOTALONcovvcccri s ——— 242

L0 0 LI D oo SRS 242

Live Demo and SOUrCE COUE ... sssss s 246

SUMIMANY ..ttt R e e e e e R e e e e s e e R e R e e e e e Re e Re R e e e e e Re R e e e e nRenrn 246

Chapter 11: Unit TeStingcccccvvrminssssmmmmmmmmmmmssssssssssmsmmsssssssssssssssssessssssssssssnnssness 247

JESt FramMeWOIK ... e 247
Test SUItES aNd TESTSccccrrrri 249
TESE COVEIAGE ...cveuerreuerersesrssese e s s e e e r s sr s e e s p e se s e se e nre e e nannnne e 250
ASYNCRIONOUS TESES.....eecererrerresersere e sse s s s sn s e s e s e s e s e e s e nnas 251
0T QA ST 252

LS (10 I ST 41O 253

TESHNG VIBWS ..ttt e e bbb 259

Debugging the UNIt TESEScovccerererese s 262

Live APP and SOUICE COUEcveeervererrererererressesersessesssssssessessessssessessesssssssessesssssssessessesssssssessens 264

SUMIMANY ..ttt e e s R e e e e e R e b e e e e R e R e e e e e Re e Re R e e e e e Re R e e e e e Renns 264

Chapter 12: AppRUN DeVTO0O0IS.....ccuuurmmmmmmmmmmmmssssssssssssnnssssssssssssssssnsssssssssssnsnnnnnnsness 265

APPRUN DEVTOOIS ...ceeeeveieisese e sessese s s e s e se s se e s re s s s s e s e snessessnennennens 265

Command Line in the CONSOIEcoonnm s 266
0] 111010 T 267
EVENTS....citi i ——— 270
DEDUQG EVENTS.....cee ettt a e s d e b s n e s 272

ix

TABLE OF CONTENTS

Extend the Command LiNe ... sssssees 274
Register the COMMAN..........ccccverierininiererir e s s se e saesae s s e saesnes 274
Generate UNit TESES.......ccu s 275
Generate SNapShot TESTS ... ———— 278

Browser DevToolS EXIENSION ..o 282

B30T 111 T o SRS 284

INA@X...ciiiisnmnnmsssnnnnsssssnnnsnssssnnsssssssnnnsnssssnnnssssssnnnsnsssnnnnsnsssnnnnsnsssnnnnsnsssnnnnnnsssnnnnnnnss 287

About the Author

Yiyi Sun has an academic background in computer
cartography and geographical information systems. He has
more than 20 years of software development experience and
more than 10 years of experience as a software architect.
Currently, he works as the director of technology in a real
estate company based in Toronto, Canada. Coding and
fishing are his hobbies.

About the Technical Reviewer

' fﬁ' Raed Alahmad has a bachelor’s degree in computer
%" | engineering (Jordan) and a master’s of business

administration (United Kingdom). He has more than 19
years of professional experience working in application
development. He has successfully led several development
teams in Jordan, Dubai, and Toronto.

While experienced in enterprise web applications
development, his boundaries expand far beyond; for more
than ten years, Raed has led and successfully delivered
several implementations of enterprise content management
solutions such as Livelink and SharePoint, in addition
to working on cloud solution architecture and developing for Office 365 and Azure.
Furthermore, within the last few years, Raed has focused on web front-end JavaScript
libraries and frameworks.

Currently, Raed works as a development manager and architect in a big firm in
Toronto. He is also studying artificial intelligence and machine learning at the University
of Toronto’s School of Continuing Studies.

xiii

Acknowledgments

Thanks to everyone who participated and helped make this book possible. I will start
with thanks to my wife, Juan Du, and my daughter, Yanting Sun. Your support and love
are the greatest happiness in my life.

I also want to express my gratitude to the team at Apress for reaching out to me to
propose a book for AppRun and working to create and publish quality content. It has
been a great experience and a pleasure to work with the entire Apress team.

Many thanks also go out to my team and managers at work for using and testing
AppRun and for providing feedback and support, including Mark Houghton, Jeff
Colangelo, Amy Pickering, Carolyn Barratt, Edward Franolic, Miranda Amey, Saumiya
Balasubramaniam, Raed Alahmad, Fred Curry, Andrew Cheung, Muhammed Ahmed,
Blagoj Petrovski, Jeremy Li, Mohit Agastya, Rick Macfarlane, Allen Chen, Raymond
Zhang, Peter Todorov, Nayyer Sultana, Monica Mera, Naren Ramanathan, Terri Dillon,
Alla Fedotova, Louis Valongueiro, Nilo Laraya, Joby Chacko, Jamil Saeed, Mojtaba
Shafiee, and Guesly St-Fleur.

Last but not least, a big thank-you to all the current and future sponsors, supporters,
and followers of AppRun. I have learned a lot from you and hope AppRun brings value to
your application development projects.

Introduction

Many web-based business applications built in the past several years are facing some
challenges today: they are reaching the end of their lifecycles from the front-end
technology point of view. For example, in one extreme case, I started developing an
application with Angular 2. When the project was ready to be released into production,
the Angular framework was being upgraded to Angular 5. Building a business
application is a costly investment that takes a lot of time and resources. There was

no business value in investing more time and resources to refresh the underlining
technology, so I released the application to production to meet the project scope and
budget. You are probably familiar with similar situations.

The result is that you can have an application in production that uses many different
frameworks and versions, such as Backbone, jQuery, Angular]S, Angular, React, and Vue.
As you can imagine, when the business requires further development to the existing
application, it is a difficult decision whether to continue to work on the old technologies
or refresh the old technology first and then build new features on top of it, which pretty
much means rebuilding from scratch. Either way, it will be costly and difficult.

What we need in real-world business application development is a stable technology
that developers can use not only to develop new applications but also to continue
developing new features progressively for existing applications even when they are using
different technologies.

After a couple of years of researching and developing, I developed such a new front-
end framework, called AppRun. It has all the characteristics of being simple, flexible,
and architecturally robust to meet real-world development requirements. I have used it
to build new applications and to add new features to existing applications. I decided to
release AppRun on GitHub as an open source project under the MIT license to share it
with the development community.

Thankfully, Apress accepted the proposal of publishing a book for AppRun. This
book aims to let more people know about AppRun, help people use it, and help
developers contribute to the project.

xvii

INTRODUCTION

In Chapter 1, “Getting Started,” I will explain AppRun’s overarching design goals and
the many great ideas taken from other frameworks and libraries in order to help you
learn the architectural concepts of AppRun.

Chapter 2, “AppRun Development Environment,” introduces the tools recommended
for complex applications and the AppRun CLI.

Chapters 3-6 contain in-depth discussions of the architectural concepts of AppRun
as well as contain many easy-to-understand application examples.

Chapter 7, “Single-Page Applications,” introduces the methods of building SPAs,
including developing the components and the routing events.

Chapter 8, “Third-Party Library Integration,” introduces the AppRun event lifecycle
extension points for integrating third-party libraries, such as Bootstrap, jQuery plug-
ins, chart.js, DataTable.js, D3, and FullCalendar, by implementing an administrative
dashboard that has many data visualization widgets.

Chapter 9, “Server-Side Rendering,” introduces the methods of turning an AppRun
SPA into SSR. It also introduces the AppRun capability of turning existing traditional SSR
(e.g., ASP.NET MVC applications or Express.js applications) into an SPA.

Chapter 10, “A Real-World SPA,” demonstrates a full stack application, with
features such as authentication, authorization, data CRUD, and user interaction and
confirmations.

Chapter 11, “Unit Testing,” introduces strategies for unit testing AppRun applications,
such as mocking the back-end APIs, testing the events, and testing the views.

Chapter 12, “AppRun DevTools,” introduces the developer tools for monitoring and
verifying AppRun applications at runtime.

With many runnable example applications, this book will get you started developing
AppRun applications. I strongly recommend you fork the source code of the examples
of this book to run and tweak them. After all, the most effective way to learn coding is by
coding.

I hope you find the value AppRun can provide to your development projects. You
are welcome to provide feedback and comments about AppRun through its GitHub site.
Please also contribute and send pull requests.

xviii

CHAPTER 1

Getting Started

AppRun (https://apprunjs.org) is a JavaScript library for developing applications
using the Elm architecture, events, and components. It is an open source project released
and published on GitHub (https://github.com/yysun/apprun) under the MIT license.
The goal of introducing this library into the world, which already has many frameworks
and libraries, is to make it simple for developers to build high-performance and reliable
applications. The simplicity of AppRun brings many benefits. Developers can learn it
easily and quickly develop product-ready applications. Developers also can maintain
and improve the applications easily because they are architecturally simple. jQuery has
ruled the development world for a long time because it is simple. However, jQuery lacks
architectural rules for complex applications. Other frameworks and libraries have been
invented for developing complex applications. However, then the development becomes
more difficult, with more concepts to learn and more rules to follow.

In this chapter, you will learn about the technologies that other frameworks and
libraries have introduced for developing complex applications that inspired AppRun.
You will learn about the architecture concepts of AppRun using a counter application
as an example; this is commonly used as an example with many other frameworks and
libraries. Finally, you will take a look at how to make a static typed application using
TypeScript if you prefer static typing to dynamic typing.

Background

Application development using JavaScript can be traced back to the 1990s when
developers started to add dynamic content and interactions to static HTML web pages.
Nowadays, JavaScript has evolved and become the ubiquitous language that powers
not only web applications but also server applications, desktop applications, and
mobile applications. Because of its widespread usage and its broad goal of serving

the development needs of all platforms, we are now experiencing the phenomenon

© Yiyi Sun 2019
Y. Sun, Practical Application Development with AppRun, https://doi.org/10.1007/978-1-4842-4069-4_1

https://apprunjs.org
https://github.com/yysun/apprun

CHAPTER 1 GETTING STARTED

of JavaScript fatigue, which is the overwhelming situation of too many frameworks
and libraries, too many tools, and too many APIs. Popular technologies are coming
out so frequently that developers are finding it increasingly difficult to keep up with
all the trends, and they worry that they will not able to leverage the latest and greatest
technology. This book reveals the secret weapon to conquer the confusion and fear of
JavaScript fatigue.

Keep it simple; always seek opportunities to simplify. Find out the real value of any
new tools. These methods resulted in the birth of the new library AppRun.

Before getting into the technology, let me tell you about my personal experiences
with the Disney theme park Epcot. Twenty years ago, when I visited Epcot for the first
time, there was a hall that had a wall of machines to send e-mails. It was an amazing
experience to send a couple of e-mails to China. It took two weeks to send a letter at that
time. The funny sound that came from the modem was music to my ears. Ten years later,
I revisited Epcot; the e-mail machines were replaced with digital photo-taking machines
that could take and e-mail photos immediately. It was again an amazing experience.
Fast-forward ten more years to today, and we now have high-resolution cameras on
our mobile phones that can even remove wrinkles. And at Epcot, no new high-tech
machines exist to excite us. In fact, the most interesting place to visit in Epcot is now
the World Showcase, which contains scaled-down historical buildings, city streets, and
restaurants of 11 countries. The traditional Africa streets, the Middle East market, and
the French sweets are fantastic. All the ancient and old-fashioned stuff has beaten out
the high-technology.

This story tells us that technology changes, but culture lasts. The real value of culture
is buried in time. So, sticking to core concepts and finding out the true value of tools is
the way to navigate through JavaScript fatigue.

Let’s review the JavaScript development history. JavaScript started as a scripting
language running inside web pages. It is lightweight and doesn’t have a compiler.
Everyone can code in JavaScript with or without a computer science degree or formal
training. Developers would write functions in the web pages and refresh to see the
result right away, and this ease of use significantly contributed the current success of
JavaScript.

Despite that some senior developers, myself included, thought JavaScript was
a toy or even a joke when compared with their estimated knowledge of enterprise
architecture, layered approaches, and design patterns, the fact was that JavaScript spread
widely quickly. jQuery and the jQuery plug-in ecosystem once ruled the JavaScript

CHAPTER 1 GETTING STARTED

development world because jQuery made developing with JavaScript even easier by
abstracting the details and differences of browser implementations. For example,
handling button clicks just requires $().click(), and Ajax calls are handled with
$.ajax(). Its ease of use and convenience are real values.

Of course, the concerns of senior developers were not nonsense. As soon as jQuery
became successful, jQuery also became synonymous with spaghetti code. This is
the direct result of it missing one of the core concepts of application development:
application architecture. Application architecture is the discipline that guides
application design, as defined in the Gartner IT Glossary. In the book Patterns of
Enterprise Application Architecture, Martin Fowler explains application architecture
as “The highest-level breakdown of a system into its parts.” Application architecture is
not only the structure of the application but also the discipline for breaking down the
application logic.

jQuery has provided a great deal of convenience but not architecture. It does not
tell you how to break down and organize the application logic. Since jQuery’s release,
the JavaScript community continues to improve not only the convenience but also the
architecture. Continuous innovations have led to many new frameworks and libraries,
such as Angular, React Vue, and Elm.

These successful frameworks and libraries have brought the following benefits in
regard to architecture:

e jQuery: Abstraction, ease of use

o Angular: Components, modules, services, dependency injection,
two-way data binding, strong typing, and template syntax

e React: Components, one-way data binding, virtual DOM, JSX

o Vue: Single-file components, two-way data binding, a particular
compiler for temple syntax

e Elm: Elm architecture and functional programming

I'like the architecture of Elm and the one-way data binding concept from Elm and
React because they are simple yet brilliant solutions. Bruce Lee believes that “simplicity

”1

is the key to brilliance”! and so do I.

"Myrko Thum references this Bruce Lee maxim while describing his own simplicity ethos in
“Simplicity Is Your Key to Brilliance.” Accessed September 2018. www.myrkothum.com/simple/

http://www.myrkothum.com/simple/

CHAPTER 1 GETTING STARTED

However, I did not find a good answer to the architectural question of how to
decouple code modules. Coupling is the degree of interdependence between software
modules. When modules are dependent on each other, they are harder to change
because changes in one module might break other modules. Coupled modules are also
difficult to reuse because dependencies require more effort to manage and might even
have conflicts that prevent us from assembling the modules. The decoupling of modules
makes applications easy to modify, extend, and test. Well-structured applications have
decoupled modules or loosely coupled modules.

Getting back to the jQuery era, to achieve better application architecture when
building production business applications, I used a common design pattern called event
publication and subscription (event pub-sub), also known as the event emitter pattern.
Event pub-sub is the recognized and effective way of decoupling modules.? You will see
how it is used in AppRun to archive the decoupling goal in the next section.

Continuing with the journey, these were the core concepts that I wanted to achieve
with AppRun: an Elm-inspired architecture, the event pub-sub, and the concept
of components. Also, it should be practical and flexible. It should give options for
developers to choose.

o Developers can choose to include it as a <script> tag or use it with a
build process.

e Developers can choose to use JavaScript or TypeScript.

o Developers can choose to apply the architecture globally or use
components.

o Developers can choose to use HTML or use the virtual DOM/JSX to
create the views.

o Developers can choose to use dynamic types or static types.

Following these design concepts and goals, I built AppRun. The overall result of the
AppRun library is encouraging. AppRun applications have simpler project structure;
more straightforward build script and process, which leads to better performance; and

?In his article “Mocking is a Code Smell,” as part of the “Composing Software” series on learning
functional programming and compositional software techniques, Eric Elliott identified event
pub-sub as the solution for decoupling. Accessed September 2018. https://medium.com/
javascript-scene/mocking-is-a-code-smell-944a70c90aba

4

https://medium.com/javascript-scene/mocking-is-a-code-smell-944a70c90a6a
https://medium.com/javascript-scene/mocking-is-a-code-smell-944a70c90a6a

CHAPTER 1 GETTING STARTED

fewer lines of code when compared to many other popular frameworks and libraries
(according to third-party research®). AppRun performance benchmarks are publicly
published for comparison as well.*

Let’s get started.

Introducing AppRun

AppRun is 3KB to 4KB when it is minified and zipped. The underlining AppRun
architecture has adopted modern architectural concepts and functional programming
techniques. It lets you focus on creating the application logic via an established
architecture pattern without the distraction of the functional programming language
syntax, types, and other nonbusiness logic concepts.

AppRun Architecture

Elm has inspired AppRun. Elm is a functional language that compiles into JavaScript
and is said to have superior performance and no runtime exceptions as its advantages
over other languages. Elm has introduced several concepts into web application
development, such as static typing, functional programming, and a simple yet brilliant
architecture. In the Elm architecture, the application logic breaks down into three parts.

e Model: The state of your application
o View: A way to view your state as HTML
e Update: A way to update your state

At first glance, it may look like the Model-View-Controller (MVC) architecture, which
dates back to the 1970s. In the MVC architecture, the model, view, and controller are
the three logical building blocks of the application front end. Although this model is an
excellent logical and conceptual breakdown of the application logic, it has the problem

SJacek Schae’s “A Real-World Comparison of Front-End Frameworks with Benchmarks (2018
update)” gives AppRun high marks after comparing it with many other frameworks and libraries.
Accessed March 2018. https://medium.freecodecamp.org/a-real-world-comparison-of-
front-end-frameworks-with-benchmarks-2018-update-e5760fb4a962

“Stefan Krause created a project to compare the performance of JavaScript frameworks, including
AppRun. https://rawgit.com/krausest/js-framework-benchmark/master/webdriver-ts-
results/table.html

https://medium.freecodecamp.org/a-real-world-comparison-of-front-end-frameworks-with-benchmarks-2018-update-e5760fb4a962
https://medium.freecodecamp.org/a-real-world-comparison-of-front-end-frameworks-with-benchmarks-2018-update-e5760fb4a962
https://rawgit.com/krausest/js-framework-benchmark/master/webdriver-ts-results/table.html
https://rawgit.com/krausest/js-framework-benchmark/master/webdriver-ts-results/table.html

CHAPTER 1 GETTING STARTED

that the three blocks usually are coupled modules. They reference and manipulate each
other. Because the code is coupled, it is difficult to test and maintain. There are many
patterns derived from the MVC pattern aiming to solve the coupling problem, such as
Model-View-Presenter, Presentation Model, and Model-View-ViewModel. Ultimately,
they all attempt to either reduce the manipulations between the model, view, and
controller or at least simplify the manipulations.

The Elm architecture solved the coupling problem brilliantly using the functional
programming concept. For example, the view function is a pure function, which means
it always returns the same result as long as the state is the same and it does not produce
side effects, which means it does not change values outside the function or the passed
parameters. The view function never changes the DOM. The view function returns the
data that represents the HTML. The Elm runtime does the rendering to the Document
Object Model (DOM). The update function is a pure function and returns the data that
represents the operations. The Elm runtime performs the operations. If the operations
have side effects, the Elm runtime handles them. This way, Elm claims that ElIm
applications have zero runtime exceptions. The Elm architecture has made Elm great for
web application development.

However, Elm is a Haskell-style language. Compared to JavaScript’s ease of use, the
Elm language has a higher barrier for entry before developers can start developing. The
Elm syntax is a burden for many developers.

Combining the Elm architecture and JavaScript leads to the AppRun library. AppRun
allows the application developer to use the Elm architecture but with JavaScript. We can
leverage the power of the Elm architecture but without going through the learning curve
of the Elm language syntax.

Inspired by the Elm architecture, the AppRun architecture has the following three
parts:

o State: The state of your application
e View: A function to display the state as HTML
e Update: A collection of event handlers to update the state

When developing an AppRun application, we break down the application logic into
the state, view, and update parts, and we use the app.start function to tie them together
and mount them to a web page element.

CHAPTER 1 GETTING STARTED

At a high level, Listing 1-1 shows the AppRun architecture.

Listing 1-1. The AppRun Architecture

1
2
3.
4.
5
6

const state = {}
const view = state => “<div>${state}</div>";
const update = {

"#': state => state

}
app.start('my-app', state, view, update)

In the AppRun architecture, state is an object represents the application state. view

is a function that creates HTML from the state. It does not change the DOM. AppRun

renders the HTML to the web page. The view function is a function meant to be a pure

function just like the correspondent view function in the Elm architecture. update is an

object that contains a number of named event handlers. The event handlers process

AppRun events and create and return new states. AppRun applications are event-driven.

Event Pub-Sub

As mentioned, AppRun uses the event publication and subscription pattern (event

pub-sub). The event pub-sub pattern is fundamental to the web application programming

model. The DOM-based web page development API is solely based on event pub-sub.

Let’s break down event pub-sub.

o Publishing an event means to raise an event for some other code
to handle. Publishing an event is also referred as firing an event or
Iriggering an event.

o Subscribing an event means to register an event handler function
to the event. The event handler function executes when the
corresponding event is published.

AppRun has two functions to facilitate the event pub-sub pattern.
o app.on for registering event handlers (event subscription)

o app.run for firing events (event publication)

CHAPTER 1 GETTING STARTED

If module A provides a function to print some content, it subscribes.
app.on('print', e => console.log(e));

When module B wants to print something, it publishes the event.
app.run('print', 'Hello, print me');

The benefit of using events is that they can decouple modules. Module A and
Module B do not know each other. They only need to know the global app object.
Module B does not have reference to and is not dependent on Module A. Module A
and Module B depend only on the global app. Therefore, Module A and Module B are
decoupled. Event pub-sub is an effective method to decouple modules. By using event
pub-sub, the building blocks or modules in the AppRun architecture are decoupled from
each other. They communicate and invoke the functionalities through the events.

Leveraging event pub-sub, AppRun applications have an event lifecycle [1].

Web events => AppRun Events => (current state) => Update =>
(new state) => View => (HTML/Virtual DOM) => render DOM =>
(new state) => rendered [1]

While developing AppRun applications, we convert web page events such as timer,
user input, and button click events using the web event handlers for AppRun events.
Therefore, the following steps take place:

1. AppRun dispatches the events to the event handlers in the update
along with the current application state.

2. The event handlers create a new state based on the current state.
3. AppRun passes the new state to the view function.
4. The view function creates HTML or a virtual DOM.

5. AppRun renders the HTML to the screen and calls the optional
rendered function to complete the AppRun event lifecycle (see
Figure 1-1).

CHAPTER 1 GETTING STARTED

AppRun Application

N
4 N
(Initial State)

Web Event Update View Rendered

Handlers (Event Handlers) (Optional)

| (AppRun Events) | | (Current State)| | (New State)| | (New State)| | (HTML/VDOM) | | (New State)|

* Checkpoint 1 @ Checkpoint 2 i
State History || Event Engine AppRun Render DOM

Figure 1-1. AppRun event lifecycle

There are two checkpoints in the AppRun event lifecycle where AppRun lets us stop
the event lifecycle. They are also the points that AppRun publishes the built-in debug
event to let us examine the state in the event lifecycle. There is also an optional callback
function called rendered. If we create the rendered function, AppRun calls into the
rendered function when it finishes rendering the DOM.

You will learn about all the types of the events, the checkpoints, and the
asynchronous event handlers in Chapter 5 and Chapter 6. You will learn about
integrating third-party libraries using the rendered function in Chapter 8.

Note The app.run function publishes the events to drive the AppRun application
logic ultimately. It is so important that the AppRun library is named after it.

Component

A component is a technique to decompose the large system into smaller, manageable,
and reusable pieces. Usually, a component is an autonomous and reusable module

that encapsulates a set of data and functions. A component is the basic building block
in other popular frameworks and libraries such as Angular, React, and Vue. Elm does
not have components. Elm has the concern that the relationship and communication
between components might prevent or cause difficulties to ensure everything is done in
the functional programming style.

CHAPTER 1 GETTING STARTED

AppRun solves the component relationship and communication problem by
using event pub-sub. AppRun components are decoupled and isolated modules. Elm’s
concern is not an issue in AppRun. In AppRun applications, the component is a mini-
application and has a component-scoped AppRun architecture, which includes the
three architecture parts discussed previously: state, view, and update. Components
communicate with each other through the events.

Listing 1-2 shows the AppRun component at a high level.

Listing 1-2. The AppRun Component

import app, {Component} from 'apprun';
export default class MyComponent extends Component {

state = {};
view = (state) => “<div>{state}</div>";
update = {
"#Home': state => state,
}

}
new MyComponent().start('my-app');

The component is suitable for developing single-page web applications (SPAs). An
SPA is a modern and trendy style of web application. It loads the main web page once
and switches the functionalities dynamically without a page refresh. Each functionality
in an SPA is a mini-application. A famous SPA example is Gmail. You can search, read,
compose, reply, and forward e-mails. You can also manage the calendar and even chat
with your friends on a single page.

Using components to organize, modularize, and encapsulate the states makes
your application code testable and maintainable. The SPAs developed in this book are
business application development examples. In Chapter 7 of this book, you will learn
how to build an SPA using AppRun components. You will also learn how to optimize the
component modules such as code splitting, dynamic loading, and server-side rendering.

However, unlike other frameworks and libraries, which force us to make everything
a component, AppRun is more flexible. AppRun does not force us always to use
components. We can choose to develop applications using the AppRun architecture
globally just like Elm.

10

CHAPTER 1 GETTING STARTED

A Counter App

To demonstrate the AppRun architecture, we will develop a counter application as

an example. The counter application is also used in Elm, Vue and React/Redux. The
counter application has two buttons. One of them increases the counter. The other one
decreases the counter (see Figure 1-2).

(2] - [m] x
[AppRun Counter x
= C @ filey//CUsers/yiyis/Projects/apprun-apress-book/chapter%201/1-3.html g
[

Figure 1-2. The AppRun counter application
Following the AppRun architecture, the counter application has state, view, and
update parts.
o The state is a number that represents the counter.
e The view function displays the counter and two buttons.

o The update has two event handlers for increasing and decreasing the
counter.

11

CHAPTER 1 GETTING STARTED

Just like in the good old days of JavaScript development, we can include AppRun in a
<script> tag and write the application inside the web page. Listing 1-3 shows the source
code of the counter application.

Listing 1-3. Source Code of the Counter Application

1. <!doctype html>

2. <html>

3. <head>

4. <meta charset="utf-8">

5. <title>Counter</title>

6. </head>

7. <body>

8. <div id="my-app"></div>

9. <script src="https://unpkg.com/apprun@latest/dist/apprun-html.js">
</script>

10. <script>

11. const state = 0;

12. const view = state => {

13. return “<div>

14. <h1>${state}</h1>

15. <button onclick="app.run("-1")"'>-1</button>

16. <button onclick="app.run("+1")"'>+1</button>

17. </div>’;

18. };

19. const update = {

20. '+1': state => state + 1,

21. '-1': state => state - 1

22. };

23. app.on('debug', p=>console.log(p));

24. app.start('my-app', state, view, update);

25. </script>
26. </body>
27. </html>

Let’s review the code.

12

CHAPTER 1 GETTING STARTED

Event Lifecycle

The counter application starts with an initial state, the number 0 (line 11). You probably
have noticed that the state uses the keyword const instead of let. This is because the
initial state will not change after the application starts. AppRun takes the initial state
value and manages the state internally. If you try to change the content of the state, it
will not have any effect. The initial state is no longer useful after the first event handler
creates a new state. The initial state is used only once to start the application. Using
const can remind us not to change the state value. Once the application starts, AppRun
saves the initial state and holds it as the current state.

e The buttons publish the -1 and +1 events (lines 15-16). The event
names are strings. You can name them creatively.

o AppRun invokes the two event handlers (lines 20-21) with the
current state as an event parameter.

o The two event handlers create a new state out of the current state.

e AppRun then invokes the view function with the new state.

e The view function creates HTML using the new state (line 12).

e AppRun renders the HTML to the element that has an ID of my-app.

In AppRun applications, the state access is only through the function parameter.
There is no need to use this.state. Let AppRun manage the states for you.

Watch the State

AppRun has a built-in debug event to help us visualize the state at the two checkpoints in
the AppRun event lifecycle (see Figure 1-3). When AppRun finishes invoking the event
handlers, it publishes the debug event with the event name, event parameters, current
state, and new state as event parameters. When AppRun finishes invoking the view
function, AppRun publishes the debug event with the state and generates HTML as the
event parameters.

We can subscribe to the debug event (line 23) to watch the events, states, and HTML
in the browser’s DevTool console (see Figure 1-3).

13

CHAPTER 1 GETTING STARTED

o - [u] ®
[AppRun Counter x
= C @ filey//C/Users/yiyis/Projects/apprun-apress-book/chapter%201/1-3.html i+ d
= [ﬁ Elements Conscle Scurces Metwork Performance Memory Application Security Audits AdBlock ioX
1 [@ | top ¥ | | Filter Defoult levels ¥ & Group similar -3
1-3.html:23
{component: e, stote: 8, vdom: "caivae <h1@</nls+ <button onclick=". onclick="opp.runi™+L") »+I</buttons«
[l | " c/giva}
» {component: e, event: “+1", e: Array(8), state: 8, neaState: 1, _} 1-3.html:23
1-3.html:23
{component: e, stote: 1, vdom: “¢divae chi>1</nls= <button onclicks=". onclicks="gpp.run(=+1") »+I</buttons«
</aivs”,
> render: £ ()
» sta; £ (e,t)
1
cbutton enclick="app.run(™-1")">-1</buttond+ <button onclicks='app.run™+1") "
<hl1>1<¢/nl>
onclick="app.run{"-17)">-1</button>
onclick="app.run("+1")" >+1</button>
5|
14 »

Figure 1-3. AppRun debug event log

Figure 1-3 shows the logged event parameters of the debug event. The initial state 0 is
rendered into HTML as the h1 tag. It also renders the two buttons to publish the events.
The event +1 changed the current state from 0 to the new state 1.

The debug event is the way for you to debug the applications by examining how
AppRun manages the state internally. This is good for development. It makes the
state transparent during the event lifecycle. There is no hidden or implicit magic. In
production, we should not subscribe to the debug event.

Virtual DOM

AppRun uses the virtual DOM technology. The virtual DOM (VDOM) is the data
representing a DOM structure. In the counter app, AppRun parses the HTML string into
the VDOM and compares the VDOM with the real DOM. It updates only the changed
elements and element properties. For example, you can click the two buttons of the
counter application and see on the Elements tab of the DevTool only the h1 tag changes
(see Figure 1-4).

14

CHAPTER 1 GETTING STARTED

tate => { by

<h1>S{state}</hl>

<button onclicke'app.run(™-1")'>-1¢/button> madgin_ 21420

<button onclicks'app.run{®+1")}'»+1¢/button> TR
<fdivd’; e

pasding -

35 i
const update = { E-“- ==
+1': state => state + 1, i

"-1%: state => state - 1 | T

I
app.on(debug’, perconsole.log(p));
spp.start('my-app’, state, view, update); Z1A

o seripty
<fpody>
</htal>

htmnl body div®my-app di\cm

e = u} X
[AppRun Counter =\
2 C | © filey//C:/Usersfyiyis/Projects/zpprun-apress-book/chapter®201/1-3 html o
& al Elements Conscle Sources Network Performance Memory Application Security Audits AdBlock *
2 Styles | Computed Event Listeners
<htal>
F chead>.< fhead> Filter thov .cls 4,
Toihody> lement.sty
BN N v<siv sa-"wy-apo’> clenent. style ¢
¥ odivy ¥
<l /hLy == 28 m { user Bgent stylesheset
cbutton onclick="app.run("-1%)">-1¢ button> display: block;
tbutton onclick="app.run("+1")">+1¢ /button> font-size: 2em;
<fdivs -webkit-margin-before: @.67em;
</ div -webkit-margin-after: 0.67em;
cscript sre=httnsi//unpke.consagorunlatestsgistianoryn-html §5" <fscript> -webkit-margin-start: @px;
v iseripty -webkit-nargin-end: 9px;
const state = @ font-weight: bold;

Figure 1-4. AppRun virtual DOM

Besides parsing the HTML string, AppRun supports using JSX in the view function.
JSX is the syntactic sugar of function calls. We can compose the functions and apply
dynamic and conditional rendering without the runtime cost of parsing the HTML
string. You will learn about many view patterns of using JSX in Chapter 4.

State History

AppRun state management has built-in state history. To demonstrate the out-of-

box AppRun state history, we will add two buttons to the counter application. The
back button (<<) steps back in the state history and undoes the counter change. The
forward button (>>) steps forward in the state history and redoes the counter change
(see Listing 1-4).

15

CHAPTER 1 GETTING STARTED

Listing 1-4. Source Code of the Counter Application with History

1. <!doctype html>

2. <html>

3. <head>

4. <meta charset="utf-8">

5. <title>AppRun Counter with History</title>

6. </head>

7. <body>

8. <div id="my-app"></div>

9. <script src="https://unpkg.com/apprun@latest/dist/apprun-html.js">
</script>

10. <script>

11. const state = 0;

12. const view = state => {

13. return “<div>

14. <button onclick="app.run("history-prev")'> << </button>

15. <button onclick="app.run("history-next")'> >> </button>

16. <h1>${state}</h1>

17. <button onclick="app.run("-1")"'>-1</button>

18. <button onclick="app.run("+1")"'>+1</button>

19. </div>7;

20. };

21. const update = {

22. "+1': state => state + 1,

23. '-1': state => state - 1

24. };

25. app.start('my-app', state, view, update, {history: true});

26. </script>

27. </body>

28. </html>

To enable the state history, we set the history option to true in the app.start
function call (line 25); then we can use the back button and the forward button to step
back and forth, like undo and redo.

In the view function, the statement console.log (state) (line 13) prints the state to
the browser’s DevTool console (see Figure 1-5).

16

CHAPTER 1 GETTING STARTED

e -] =
[AppRun Counter with Hi- X
&« C | @ filey/C:/Users/yiyis/Projects/apprun-apress-book/chapter3:201/1-4. htmi T
cc || 2] ® ﬂ Elements Conscle Scurces MNetwork Performance Memory Application T o
M & | top ¥ | Fitter Default levels ¥ # Group similar

0]

1

BN

@ o m W ke

Figure 1-5. Counter application with state history

AppRun maintains internally a state history stack and a state history pointer. AppRun
has two internal events for moving the history pointer: history-prev and history-next.
The back button publishes the history-prev event to let AppRun set the current state to
the state before the state history pointer. The forward button publishes the history-next
event to let AppRun set the current state to the state after the state history pointer.

You will learn details about AppRun state management in Chapter 3.

Typed Architecture

The counter application uses JavaScript. JavaScript is dynamic typed/weak typed.
Dynamic typing allows developers to focus on solving the application logic. It makes
JavaScript easy to use. However, when modern web applications become complicated,
a static typed/strong typed language compiler can identify code issues by checking the
types at compile time instead of runtime.

17

CHAPTER 1 GETTING STARTED

We can use TypeScript for static typing. TypeScript is an open source programming
language developed and maintained by Microsoft for developing large applications.
Microsoft defines that TypeScript is a typed superset of JavaScript that compiles to
plain JavaScript. Before exploring how to use the TypeScript type system, we need to
understand the meaning of TypeScript as a superset of JavaScript. In other words, it
means any valid JavaScript code is TypeScript code. For example, you can rename a
JavaScript code file from *. js to a TypeScript code file (*. ts), which the TypeScript
compiler compiles into the script file for running in the browser. The benefit of
compiling is that it allows us to use the JavaScript language features that are not
supported by the browsers such as JSX, async/await, class properties, and decorators.
You will learn about using these features throughout the book.

We will take a first look at how to add types to the three parts of the AppRun
architecture: state, view, and update. TypeScript has a type system that includes
interfaces, classes, generics, and type aliases for static typing.® It is straightforward to
define the AppRun architecture using TypeScript.

State

The state is the application state at any given time. It has a certain type, such as a
number, an array, and an object, whatever best represents the application state. If you
already have experience with other static typing programming languages like C# or

Java, you might think to define the type first and then create an object out of the type.
Whenever we change the data fields in the state, we had to modify the type first and then
change the state object. However, TypeScript has the operator typeof to define the type
alias based on an existing variable.

const state = {};
type State = typeof state;

This is an extremely helpful feature. We are able to add, remove, and change data
fields in the state object freely and let TypeScript figure out the type. This allows us to
focus on modeling the application state without manually synchronizing the object
fields between the type definitions and the instant objects. It saves time and increases
the developer productivity.

*For more information about TypeScript types, please visit the TypeScript Handbook.
https://www.typescriptlang.org/docs/handbook/generics.html

18

https://www.typescriptlang.org/docs/handbook/generics.html
https://www.typescriptlang.org/docs/handbook/generics.html

CHAPTER 1 GETTING STARTED
View
Viewis a function to display the application state of a certain type as HTML or the virtual
DOM. Given an abstract state type of T, we define the View type as follows:

type View<T> = (state: T) => string | VNODE | void;

The View type definition tells us that the view function is a function that takes in
a certain type of state and outputs the HTML string, virtual DOM, or nothing. We can
create the view function using the View type as follows:

const view = (state: State) => <div>{state}</div>;

Using the static type state parameter, we can check whether we are using the state
parameter correctly. For example, if we try to access an object property that does not
exist in the state type, the compiler can report the error (see Figure 1-6 in the following
section).

You will notice the <div> tag in the view function. It looks like the HTML tags, but it
is the JSX language extension to JavaScript supported by TypeScript.

Update

Update is a collection of named event handlers, or a dictionary of event handlers. Each

event handler creates a new state from the current state.
type EventHandler<T> = (state: T) => T;

In JavaScript/TypeScript, we use the Object type for a collection or dictionary. The
Update type is defined as follows:

type Update<T> = {[name: string]: EventHandler <T>};

The Update type definition tells us that the Update object is an object that names
event handlers. We can create the update object using the Update type as follows:

const update: Update<State> = {
'+1': state => state + 1

19

CHAPTER 1 GETTING STARTED

You will notice we use +1 as the event name. The event name is a string, not a
variable name. We can be creative when naming the events. For example, we can
group similar events by using namespaces in the event names such as auth:login,
auth:login:success, and auth:login:failed, where we have multiple namespaces
separated by colons.

Finally, the AppRun app object and its app.start and app.run functions have the
type definition as well.

interface IApp {
start<T>(element: string | HTMLElement,
model: T,
view: View<T>,
update: Update<T>): void { }
run(name: string, ...args: any[]): void { }

}
const app: IApp;

The View type definition (View<T>), the Update type definition (Update<T>), and
the AppRun App type definition (IApp) are exposed from the AppRun library. We can
import them from AppRun and change the counter application into the typed AppRun
application shown in Listing 1-5.

Listing 1-5. Static Typed Counter Application

1. import app, { View, Update } from ‘apprun’;

2. const state: number = 0;

3. type State = typeof state;

4. const view = (state: State) => <div>

5. <h1>{state}</h1>

6. <button onclick={() => app.run('-1")}>-1</button>
7. <button onclick={() => app.run('+1")}>+1</button>
8. </divy;

9. const update: Update<State> = {

10. '-1': (state) => state + 1,

11. "+1': (state) => state - 1

12. };

13. app.start<State>('my-app', state, view, update);

[\
=]

CHAPTER 1 GETTING STARTED

Notice that, in Listing 1-5, line 3 uses the TypeScript operator typeot to define the
type alias from an existing variable. Because the state object is the number, the state
type (State) is the type of number. Therefore, the view function must have the input
parameter of the number type. The event handlers in the update object must also input
parameters of the number type. If not, the TypeScript compiler reports compile-time
errors, and this is known as type checking. The static typing helps type checking. Also,
the TypeScript-aware code editor will gain knowledge of the application code based on
the static types. The code editor can provide information such as the object member
list, function signatures, and parameters. Microsoft offers code information through
IntelliSense. We do not have to memorize the hundreds and thousands of standard
JavaScript functions. IntelliSense helps us code against the functions correctly. The code
editor can assist us in navigating through code, refactoring, and even formatting the code
(see Figure 1-6).

import app, View, Update from 'apprun';

(TSR R

const update: Update<State> =
'-1": (state="') = state - 1,
'+1": (state) = state + 1

3

const state: number = 0;
3 reference
4 type State = typeof state;
2
6 const view = (state: State = <div>
7 <hl>{state.counter </hl>
8 <button onclick='() = app.run("-1") >-1</button>
9 <button onclick='() = app.run("+1") >+1</button>
0 </div>;
1
2
3

fary
=~

=
w

(method) IApp.start<number>(element: Element, model: numbe

r, view: View<number>, update: Update<number>, options?: {
history: any;

19 }): void

20 app.start<State> 'my-app’', state, view, update ;

[
-~ o

[y
=]

Figure 1-6. A TypeScript compile error in Visual Studio code

In Figure 1-6, it shows that the Visual Studio code editor caught two type errors. One
is at line 7 where the state should not have a counter property because the state is a
number. The other error is at line 13 where the state cannot be a string.

TypeScript is not mandatory for developing applications with AppRun. You can start
with JavaScript and add types gradually when you need them. When you choose to use
TypeScript, however, the AppRun development environment enables the debugging of
the TypeScript source code as well as the AppRun source code.

21

CHAPTER 1 GETTING STARTED

Summary

The key to winning the battle against JavaScript fatigue is simplicity. Always remember
that less is more. We should keep challenging ourselves to simplify things as much as
possible. The architectural elements irrelevant to the business logic are the architectural
ceremony elements. The code irrelevant to the business logic is the code ceremony.®
The ceremony has no business values. Can we simply remove the ceremony elements,
such as dependency injection, custom templating language, artificial concepts such as
actions, reducers and dispatchers, subscriptions and commands, and so forth?

AppRun’s answer to the challenge is yes. These ceremonies are not needed and do
not exist in AppRun applications. Pursuing simplicity has made AppRun a lightweight
library. Not only it is just 3KB to 4KB when minimized and compressed, but it also has a
tiny API with only three functions.

The AppRun architecture organizes the logic into the state, view, and update.
AppRun does the heavy lifting to drive the application logic. Using AppRun, you capture
the essence of the business logic and write less irrelevant code. Your application
logic has the ultimate business value. AppRun adds no overhead or ceremony to your
applications. AppRun also gives you options to choose what makes the most sense to
your applications, such as choosing between vanilla JavaScript and TypeScript. AppRun
plays well with other Ul libraries, animation libraries, and visualization libraries, such
as jQuery, D3, Electron, and Framework?7. It can be used for web applications, desktop
applications, and mobile applications.

In the next chapter, we will introduce a production-ready configuration that has
development productivity in mind to prepare you for complex app development.

) u

Stuart Halloway’s “Ending Legacy Code In Our Lifetime” from Code Freeze 2008 described
essence versus ceremony and provided a number of examples of code ceremony. Accessed April
2008. http://thinkrelevance.com/blog/2008/04/01/ending-legacy-code-in-our-lifetime

22

http://thinkrelevance.com/blog/2008/04/01/ending-legacy-code-in-our-lifetime

CHAPTER 2

AppRun Development
Environment

Using AppRun in a <script> tag and coding in plain JavaScript is perfect when
developing small applications, prototyping, and trying ideas. However, in a complex
AppRun application development scenario, we need a well-equipped development
environment to achieve better code quality and better coding productivity.

In this chapter, we will introduce the AppRun development environment, which
includes development tools such as a compiler, bundler, and testing framework. The
compiler allows us to use advanced JavaScript/TypeScript language features. The
bundler lets us transform, combine, optimize, and produce the code for production use.
The testing framework enables a test-driven approach. The development environment
also has automated scripts to invoke the development tools and to form a build process.

You will learn to use the AppRun command-line interface (CLI) to create the AppRun
development environment that has all the tools configured to support the advanced
technologies required in AppRun application development.

The AppRun CLI

The AppRun CLI is essentially a script tool to initialize projects, scaffold project
folders and files, and configure the development tools. It runs in the terminal or in the
command shell.

To use the AppRun CLI, we will need to have node.js, npm, and npx installed first.
We can download node.js from its download page. Installing node.js also installs npm
and npx. npm is the package manager of the world’s largest JavaScript reusable package
registry. npx is the tool to execute code in the npm package.

23
© Yiyi Sun 2019

Y. Sun, Practical Application Development with AppRun, https://doi.org/10.1007/978-1-4842-4069-4_2

CHAPTER 2 APPRUN DEVELOPMENT ENVIRONMENT

AppRun is published and distributed as an npm package in the npm registry. We can
use npx to execute the AppRun CLI to create an AppRun project. First, create the project
folder; then run the AppRun CLI with the -i command (see Figure 2-1).

B C:\Windows\System32\cmd.exe - a X

T
C:\Users\Erici\My Pro.iects\awwn projectiinpx apprun —i
npx: installed 1 in 152

Path must be a strin Received undefined

npx: installed 2 in 3.191s

C: \Users\Erlc\ﬁp}:Dnta\!oan:ns\npm caches_npx~164B84 node _modulessapprunsapprun-cli. js

Initializing package.json

Installing packages. Thiz might take a couple minute

npm notice created a lockfile as package—lock.json. 'lnu should commit this file.

npm WARN apprun-projecti@l.@.@ Mo description

npm WARN apnmn-{miecti@l -B.8 No reBo tnl- Field.

npm WARN optiona IPPING OPTIONQL EPEN : FseventsBl.2.4 {node_modules:fsevents)

npm UARH nutsuv SH OPTIONA ENO? Unsupported platform for fseventsfl.2.4: uantsd. {“os":"darwin". "arch™: "any"?
nt: {Yos":"win32" ar:h Mxb 4))

npm WARH apprun-projectiP1.@.@ Ho ﬂgscrnptmn

npm WARN ap Nn—{roaectl@l .8.8 No repositor

npm WARN unti.ona SKIPPING OPTIONAL EPEHDE‘?OC? fseueatsl'.'.l 2.4 <{node_nmodules\fsevents):

npn EI‘I_RN”netsusZSHIPPIﬁ 22250_;&;]; DEPENDENCY : Unsupported platform for fseventsP1.2.4: wanted {“os":"darwin","arch":"any"}
oz farc

Creating: C:\Users:Eric’My Projects“apprun—projectistsconfig.json . Done
Creating: C:“Users:EricMy Projectssapprun-projectl~webpack. ennfig j¢ ... Done

"reatulg C:\Userss\Eric\Hy Projectshapprun-projectisindex.html ... Done
Creating: C:\Users:Eric’\My Projects‘apprun—preojectismain.tsx ... Done
Creating: C:vUsers:Eric’My Projectsapprun—-projecti~README.nd ... Done

Adding npm scripts

nitializing git

Creating: CivlserssEric\My Projects:apprun—projectis.gitignore ... Done

Installing jest

npm WARN apnmn-{rniecti@i -8.8 No reBoaitm-y field.

npm WARN optiona IPPING OP&I‘gEﬁL NDENCY: fseventsP1.2.4 (node_modules“fsevents)

npm UARH nutsup SR ENDENCY : Unsupported platform for fseventsfl.2.4: wam;ed. {Yos":"darwin". "arch": "any">
nt: {Yos":"win32" avcll "xﬁ‘l >

All done. You can vrun ‘npm start’ and then navigate to http:-//localhost:8888 in a brouser.
C:slserssEriesMy Projectssapprun—projecti>_

Figure 2-1. AppRun CLI -i command

After running the AppRun CLI -i command, the current folder has a local
git repository, a Hello World application (index.html and main.tsx), and three
configuration files (package. json, tsconfig.json, and webpack.config. js).

Project Boilerplate

The CLI-generated Hello World application is the boilerplate of an AppRun application.
It has only two source files, index.html and main.tsx. The index.html file is the default
HTML page of the application (Listing 2-1).

24

CHAPTER 2 APPRUN DEVELOPMENT ENVIRONMENT

Listing 2-1. index.html

<div id="my-app"></div>

1. <!doctype html>

2. <html>

3. <head>

4. <meta charset="utf-8">
5. <title>My App</title>
6. </head>

7. <body>

8.

9.

<script src="app.js"></script>
10. </body>
11. </html>

The <div> element (line 8) is the placeholder to render the application content. The
app. js file (line 9) is the compiled code from the main.tsx file (Listing 2-2).

Listing 2-2. main.tsx

1. import app from 'apprun';

2. const model = 'Hello world!';
3. const view = (state) => <div>
4. <h1>{state}</h1>

5. </divy;

6. const update = {

7.}

8.

app.start('my-app', model, view, update);

Listing 2-1 and Listing 2-2 are the starting points of AppRun application
development. We are not just taking the JavaScript code from the HTML to compile and
build. We can use many advanced development technologies available via the compiler
and bundler that aren’t available when embedding JavaScript in an HTML page.

Compiler

AppRun application development requires all the ECMAScript 2015 (ES 6) features plus
a few other advanced syntax and language features provided by the TypeScript compiler

discussed in this section.
25

CHAPTER 2 APPRUN DEVELOPMENT ENVIRONMENT

JSX

JSXis a syntax extension to JavaScript. JSX is famous because of React. When React

decided to use JSX, developers doubted whether JSX violated the separation of concerns
(SoC) by putting HTML and JavaScript code together. The fact is that although JSX looks
like HTML, it is actually a presentation of functions. For example, here’s a view function

written in JSX:
view = state => <div>{state}</div>
After compilation, the JSX tag becomes a function.

view = function (state) {
return apprun_1i.default.createElement("div", null, state);

};

In AppRun applications, the HTML-like view function is not a mix of HTML markup
and JavaScript code. The TypeScript compiler compiles the JSX into JavaScript functions.
You will learn how to compose the functions to make complex views in Chapter 4.

Class

The class syntax is defined in ECMAScript 2015 (ES 6), but it is missing an important
concept, class fields. For example, if you have experience in C# or Java, you will naturally
think of using fields in a class (Listing 2-3). However, ECMAScript 2015 does not support
the class field. No browser can run Listing 2-3 yet.

Listing 2-3. A Class with Fields

1 class Component {

2 state = {};

3. view = state => {};
4 update = {};

5.)

The TypeScript compiler can compile the classes that have fields to ES 5 to make the
browsers happy; it also makes the developers happy because it is easier to understand
and more familiar based on their knowledge of other languages.

26

CHAPTER 2 APPRUN DEVELOPMENT ENVIRONMENT

async and await

async and await are standardized in ECMAScript 2017 (ES 8). They solved the
asynchronous execution problem that many developers seem to struggle with. JavaScript
is single-threaded, but the user interface in the browser is nonblocking, which means
executions like network requests should not block and freeze the user interface. Those
executions should be asynchronous. The JavaScript engine in browsers uses the event
loop and the callback queue to manage asynchronous execution. It is difficult to write
the callback functions in application development, especially when combining them
with error handlings.

async and await make the asynchronous execution code look like synchronous
execution to the degree that we almost do not have to understand any internal
mechanism of the asynchronous execution.

In AppRun applications, we can use asynchronous event handlers with error
handling that is easier to understand (Listing 2-4). The TypeScript compiler can compile
code that uses async and await to ES 5.

Listing 2-4. Asynchronous Event Handler

1. const fetch = async () => { ... }

2. state = { data: " }

3. view = state => <div>${state.error || state.data}</div>
4. update = {

5. "#': async (state) => {

6. try{

7. const data = await fetch();
8. return {...state, data};

9. } catch(error) {

10. return {...state, error};
11. }

12. }

13. }

27

CHAPTER 2 APPRUN DEVELOPMENT ENVIRONMENT

Module Bundler

Large application code could grow into hundreds and thousands of lines. The best
practice to manage the vast codebase is to divide it into modules. Although ECMAScript
2015 has defined a module format standard, modules are not supported in any browser.
The AppRun development environment includes webpack (https://webpack.
js.org), aleading module bundler, to process the modules, resolve the module
dependencies, and bundle the modules into the optimized code for browsers to run.
webpack is the most feature-complete bundler. It has an ecosystem of many plug-
ins. Through its plug-in ecosystem, webpack can minify and optimize the code for
production. It can also integrate the TypeScript compiler into the build process.
When developing AppRun applications, we can use the ECMAScript 2015 module
format freely to organize the codebase and let webpack bundle the modules, including
bundling other third-party modules, which you will learn about in later chapters.

Development Server

The AppRun development environment includes the webpack development server to
help the development workflow. The webpack development server compiles, bundles,
and serves the application code from memory. During the development, there are no
files saved to disk. The compiled code is in the memory. The webpack development
server monitors the source code file changes and recompiles the source code
automatically. It also injects a web-socket connection into the browser to let the browser
refresh automatically when the source code is changed and recompiled.

A traditional web application workflow is that when the developers change the
source code, they have to refresh the browser to verify the effects of the change. Although
it sounds a really simple step to refresh the browser, the time adds up by the end of the
day. The fact that the webpack development server makes the browser automatically
refresh when the code changes is a significant time-savings for developers. It makes the
development workflow more efficient.

A typical development setting is to have a split screen. In one part of the screen,
developers edit the source code. In the other part of the screen, they verify the browser
refreshes and run the application. If the developers have two monitors, they can use one
monitor for editing code and the other monitor for running the application. This can
save both time and effort.

28

https://webpack.js.org
https://webpack.js.org

CHAPTER 2 APPRUN DEVELOPMENT ENVIRONMENT

Visual Studio Code

Visual Studio Code (https://code.visualstudio.com) is one of the best code editors
for developing AppRun applications. It has detailed documentation that describes its
features for development; it also has an ecosystem of many extensions. The extensions
add many other features to Visual Studio Code.

An AppRun CLI-created project has everything configured to work with Visual
Studio Code. Once the project is opened in the project folder in Visual Studio Code, it is
ready for development right away (see Figure 2-2).

) main.tsx - apprun-apress-book - Visual Studio Code - [m] X

File Edit Selection View Go Debug Terminal Help

@ {} packagejson o maintsx X i Mmoo
4 APPRUN-APRESS-BOOK Chapter_02 ¢ 4 maintsx b ..
b wscode 1 t from ' =1
b Chapter_01

4 Chapter_02
b .wscode

€ .gitignore

<> indexhtml

{} package-lockjson app.start('my-app', state, view, update);
i} packagejson

(i README.md

{} tsconfigjson

@& webpack.configjs
b Chapter 03
b Chapter_04
b Chapter_05

Chapter_06
b Chapter 07
b Chapter_08
b Chapter_09
b Chapter_10
b OUTLINE

oo Fimastar- (- ©0- 000 M1

Figure 2-2. Visual Studio Code

When editing AppRun application code in Visual Studio Code, you will notice the
TypeScript code is syntax highlighted. The code elements have different colors that
are visually distinct according to their roles. You can quickly identify and distinguish
keywords, variables, parameters, and string literals. You can install and switch to use
different Visual Studio Code themes to make the background and color scheme best
suitable to your preferences.

29

https://code.visualstudio.com

CHAPTER 2 APPRUN DEVELOPMENT ENVIRONMENT

In addition, Visual Studio Code provides many other features to improve developer
productivity. We will discuss the most relevant features related to AppRun application
development next.

IntelliSense

AppRun publishes its type definition file apprun.d.ts within the AppRun packages
located inside the node_modules/apprun folder. Visual Studio Code automatically
detects the type definitions and then provides information via IntelliSense about the
type, objects, and function information from AppRun (see Figure 2-3).

4] main.tsx - apprun-apress-bock - Visual Studio Code - a X
File Edit Selection View Go Debug Terminal Help
@ XPLORER [} packagejson % maintsx ® @ M

4 APPRUN-APRESS-BOOK ¥ & maintsx b ..

b wscode "t app from 'apprun’;
b Chapter_01
El

1] b wscode

€ .gitignore
B 2-34sx

S 2-4tsx

2-5.5x x
2-6sx x
const update =
% 2-7Asx ries MpTa

: (state) = state

<> indexchtml

1} package-lockjson

{} packagejson

(@ README.md

{1 tsconfigjson

@& webpack.configjs
b Chapter_ 03
b Chapter_04
» Chapter_05
b Chapter_06
b Chapter 07
b Chapter_08
3
b

b O

Chapter_09
Chapter_10
UTLINE

Frmaster O @0A004 B typescriptreact |B maintsx Indentss 0 Ln 19, Col 10 (5 selected) Spaces:2 UTF-8 CRLF TypeScript React 3.0.3 ATt @ A

Figure 2-3. IntelliSense

Figure 2-3 shows that Visual Studio Code has detected and displays the signature of
the app.start function. You can see the app.start function has a generic type of any.

30

CHAPTER 2 APPRUN DEVELOPMENT ENVIRONMENT

Gradually Adding Types

We can add types to state, the view function, and the update object by importing View

and Update from AppRun (see Figure 2-4).

ﬂ 2-4.tsx - apprun-apress-book - Visual Studio Code X
File Edit Selecion View Go Debug Terminal Help
@ EXPLORER {} packagejson 2 maintsx i 2-atsx x
4 APPRUN-APRESS-BOOK Chapter 02 v & 2-4tsx b ..
0 » wvscode Import app, | View, Update | from 'apprun'; I
¥ Chapter_01
Py i s const state: string = 'Hello World - AppRun’
9 / ‘VS_':INE const view: View<typeof > = state =
o © gitignore return <div>
@9 2 2-34sx {state}
& 2-4.4sx </div>
Ial 2-5.45%_x
2-6.15% %
& 2715 const update: ate<typeof state> =
i '#': (state) = state T
<> index.html
& main.tsx (method) IApp.start<string>(element?: Element, model?: str
{) package-lockjson ing, view?: View<string>, update?: Update<string>,
. i Fod
{} packagejson 09“":”_‘51“ {7
115Torysrs any;
@ READMEmd .
rendered?: (state: string) = void;
{} tsconfigjson - }): Component<string> el
® webpackconfigjs 20 app.BEAEE 'my-app', state, view, update);
* Chapter_03
» Chapter 04
Chapter_05
» Chapter_06
» Chapter_07
» Chapter_08
¥ Chapter_09
Chapter_10
b OUTLINE
Fmaster & ©0A004 B typescriptreact | B 2-4.tsx Indents: 0 Ln 20, Col 10 (5 selected) Spaces:2 UTF-8 CRLF TypeScriptReact 303 MATslnt @ A

Figure 2-4. Importing AppRun types

We define the state to be a string (line 3). Then we apply View<typeof state> to the

view function (line 5) and apply <typeof state> to the update object (line 11). Visual

Studio Code uses the type inference feature of TypeScript to find out that app.start

should have the state parameter be a string, the view parameter be View<string>, and

the update parameter be Update<string>.

31

CHAPTER 2 APPRUN DEVELOPMENT ENVIRONMENT

Type Checking

While we are writing the code, Visual Studio Code checks and verifies the types
automatically behind the scenes. If we make a mistake, Visual Studio Code reports the
type checking error.

The example in Figure 2-5 shows that when the update object is defined as
Update<typeof state> and the actual event handler returns void (line 25), Visual
Studio Code raises a TypeScript error (line 11).

_"u 2-5.tsx - apprun-apress-book - Visual Studio Code - [m] »
File Edit Selection View Go Debug Terminal Help
@ EXPLORER {} packagejson & main.tsx o 2548 ® £ 2-64sx ® M

4 APPRUN-APRESS-BOOK Chapter 02 ¢ ¢ 2-5.tsx » ypdate

app, View, Update

b wscode

» Chapter_01

4 Chapter_02 L
@ b .wscode

€ .gitignore

const state: string = 'Hello World - AppRun’'
const view: View<typeof > = state =

B 2-34sx

& 2-atsx

ar 2-5.4sx 2U
o 2-G.tsx LU
W 2-TAsx

<> index.ntml

& ma ' is not assignable to type
1} package-lockjson
{} packagejson

@ README.md

{1 tsconfigjson

& webpack.configjs
b Chapter_03

b Chapter_04

» Chapter_05 23
b Chapter_06

b Chapter 07

b Chapter_08
3

b

o

‘ is not assignable to type

is not assignable to type 'string Promis

: The expected type comes from this index signature.

(state: string) = void

Chapter_09

Chapter_10

UTLINE

Pmaste* O O340 Indents:1 Ln23,Col5 Spaces:2 UTF-8 CRLF TypeScript React 3.0.3 A5t @ A

Figure 2-5. Type checking of the update object

32

CHAPTER 2 APPRUN DEVELOPMENT ENVIRONMENT

Figure 2-6 shows another example; if we mistakenly define the update object to be
Update<number>, Visual Studio Code shows the type checking error when the update
object is in the app.start function (line 26).

] 2-6itsx - apprun-apress-book - Visual Studio Code . o X
File Edit Selection View Go Debug Terminal Help
@ EXPLORER {} packagejson & main.tsx ¥ 2-54sx o 2-6tsx ® M
4 NPPRUN-APRESS-BOOK Chapter_02 » & 2-6itsx b ...
'®) b wscode Import app, View, Update from 'apprun’; N
b Chapter_01 .
= 'Hello World - AppRun®
4+ Chapter_02 ° const state: string Hello World ppRur
® i “"s_c_ade const view: View<typeof state> = state =
o 9 amgnore return <div> A
=S/ & 2-3sx {state}
& 2-atsx </div>
[=} % 2-51sx 2u
& 2-61sx LU
2% 2-74 ate<number> =
Mk '#': (state) = state
<2 indesxthtml rel
’ . [ts] L
& main.tsx Argument of type ‘'Update<number>' is not assignable to par
{1 package-lockjson ameter of type 'Update<string>'.
{} packagejson Index signatures are incompatible.
(® README.md Type 'void | {}[] | Action<number>' is not assignable
t e "wvoid | 1 soncstrings’
{) tsconfigjson o '”I“ void | {}(] : ACTIONSSLEINER e s it
: ype ‘Action<number>' is not assignable to type 'voi
ck.confi . : : #
® webpackconfigjs d | {}[] | Action<string>*.
Chapter 03 Type 'Action<number>' is not assignable to type ‘A
b Chapter_04 ction<string>'.
b Chapter_05 Types of parameters 'state' and ‘state’ are inco
» Chapter_06 mpatible.
b Chapter_ 07 <5 i ! ; T\;p-;___‘_sa.;;:-ng is not assignable to type 'numbe
2 app. my-app state, view, E‘r_] H
» Chapter_08 FE (i L e - 5 ’
b Chapter_09
b Chapter_10
b OUTLINE
Vrmaster O @3 A0 Indentss 0 Ln 26, Col 40 (6 selected) Spaces:2 UTF-8 CRLF TypeScriptReact 303 ATSlint @ &

Figure 2-6. Type checking of the app.start function

Visual Studio Code uses TypeScript checks and reports the type checking error
behind the scenes. Automated type checking is a great way to catch code mistakes.

33

CHAPTER 2 APPRUN DEVELOPMENT ENVIRONMENT

Code Snippets

Code snippets are commonly used code blocks displayed in the IntelliSense suggestions.

It can insert code blocks by using the Tab key, so it is also called tab completion or auto

code completion.

AppRun has a code snippet extension for Visual Studio Code that you can download

and install from the Visual Studio Marketplace. Once you've installed the AppRun code

snippet extension, when typing apprun in Visual Studio Code, it suggests the AppRun

application (see Figure 2-7). When you press Tab, the AppRun application template will

be inserted into the editor (see Figure 2-8).

ﬂ 2-T.tsx - apprun-apress-book - Visual Studio Code
File Edit Selection View Go Debug Terminal Help

4 APPRUN-APRESS-BOOK
b wscode 1
b Chapter_01
4 Chapter_02 L
-] b .wscode
€ .gitignore
B 2-34sx

o 2-4tsx

2-Gsa x

W 2-Tsx LM
<> indexhtml

&

1} package-lockjson

{} packagejson

@ README.md

{1 tsconfigjson

@ webpack.configjs
b Chapter 03
b Chapter_04
» Chapter_05

Chapter_06
b Chapter 07
b Chapter_08
b Chapter_09
b Chapter_10
OUTLINE

3

Pmaste O @140

@ APLORER {} packagejson

Chapter_02 ¢ &% 2-7.ts

Tk main.tsx

2-5.1sx x

- a x
2-6.tsu x T 2-Ttsx E @ M e
x
Import app from 'apprun';
const state = {}
const view) =
</div>
RLF TypeScript Rea ATs S a

Figure 2-7. Code snippet of AppRun

34

CHAPTER 2 APPRUN DEVELOPMENT ENVIRONMENT

@ EXPLORER
4 APPRUN-APRESS-BOOK

p b wscode

b Chapter_01

q 4 Chapter_02
% b .wscode
.gitignore
b 2-345x
& 2-atsx
[-] £ 2-Shsx x

& 2-7
<> index.html
& main.tsy
1} package-lockjson
i} packagejson

@ README.md

1} tsconfigjson

@ webpack.configjs
Chapter_03
Chapter_04
Chapter_05
Chapter_06
Chapter_07
Chapter_08
Chapter_09
Chapter_10

s

O % v v v v w ow w

<
2
H

=

Pmaste* O QO0A0D

-

] 2-Titsx - apprun-apress-book - Visual Studio Code
File Edit Selection View Go Debug Terminal Help

{} packagejson

&% main.tsx

Chapter 02 ¢ < 2-Titsx b ...
import app from ‘apprun';

15

const state =

const view =

state) =

return <div>

{state}
</div>

const update

‘#': (state) = state

(-]

2-5.1sx x

2-6.tsu x T 2-Ttsx

app.start('my-app', state, view, update);

Indents: 0

Ln 15, Col 18 (6 selected)

Spaces: 2

UTF-2 CRLF TypeScript React

x R

303 A Tslint

S a

Figure 2-8. Code snippet result

The AppRun code snippet extension lists the commonly used code templates in

Table 2-1.

35

CHAPTER 2 APPRUN DEVELOPMENT ENVIRONMENT

Table 2-1. AppRun Code Snippets

Keyword Code

Description

apprun import app from ‘apprun’;
const state = {}
const view = state => {
return <div>
{state}
</div>
}
const update = {
"#': (state) => state
}
app.start('my-app', state, view, update);

component import app, { Component } from 'apprun’;
export default class MyComponent extends
Component {
state = {}
view = state => {
return <div>
{state}
</div>
}
update = {
"#': (state) => state
}
}

on app.on(", () => {
19

run {e => this.run(", e)}

Inserts global application

Inserts component

Inserts event subscription

Inserts event publication

36

(continued)

CHAPTER 2 APPRUN DEVELOPMENT ENVIRONMENT

Table 2-1. (continued)

Keyword Code Description

pfc const Tag = ({ prop }) => { Inserts pure function
return <div> component
</div>
}

@on @on(") fn = (state, e) => { Inserts update function in
return { ...state, e } component using the
} @on decorator

@event @event('') Inserts update function in
function (state, e) { component using the
return { ...state, e } @event decorator
}

log console.log(state) Logs the state

These code snippets provide a quick way to enter the code. IntelliSense also supports
the undo feature (Ctrl+Z or Command+Z).

Integrated Terminal

The other helpful feature of Visual Studio Code is that it has an integrated terminal. We

can run AppRun CLI commands and other development commands right inside Visual

Studio Code without switching between Visual Studio Code and the terminal windows.
There are three commands ready to use in the AppRun project folder.

e npm test: Starts unit testing
e npm start: Starts the development server
e npm run build: Builds the production-ready code

We use npm start in the Visual Studio Code integrated terminal to start the
development server; we don’t even have to leave Visual Studio Code to open the
terminal or command shell (see Figure 2-9).

37

CHAPTER 2 APPRUN DEVELOPMENT ENVIRONMENT

4] main.tsx - apprun-apress-bock - Visual Studio Code = o X
File Edit Selection View Go Debug Terminal Help
@ [} packagejson & maintsx ® @ M
4 APPRUN-APRESS-BOOK Chapter 02 ¢ £ main.tsx b ...
b wscode 1 Import app from 'apprun';
b Chapter_01 .)
SpEbe o G world - AnoHin®
3¢ 4 Chapter 02 const state = "Hello World AppRur
® ; ""s_c_ade const view = state =
€ .gitignore return <div>
& 2-3.sx {state}
& 2-4tsx </div>
2-545% x
2-GAsx x s
: const update =
% 2-7 il .
k2T #': (state) = state
<> index.html
£ main.tsx
{} package-lockjson app.start('my-app', state, view, update);
{} packagejson
(i README.md PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL 1: nede v 4+ D @ ~ O x
{} tsconfigjson
: 3 ic\M j - - b t
@ webpack config s C:\Users‘\Eric\My Projects‘apprun-apress-book>npm start
b Chapter 03 > apprun-apress-bookal.0.0 start C:'\Users'Eric'My Projects‘apprun-apress-book
b Chapter_04 > webpack-dev-server --mode development -- app="./Chapter_02/main.tsx"
b Chapter_05 5 = z A =
3 P i wds|: Project is running at http://localhost:8080/
» Chapter 06 i s|: webpack output is served from /
b Chapter 07 i m|: wait until bundle finished: / m
¢ Chapter_08 i [wdm|: Hash: 93c2c80bBaS4c5cacase |
F Version: webpack 4.15.1
b Chapter 09 Time: 5029ms
* Chapter_10 Built at: 2018-09-30 12:26:36
b OUTLINE Asset Size Chunks Chunk Names
Wmaster O @O0A0 Indents:0 Ln1,Col1 Spaces:2 UTF-8 CRLF TypeScriptReact 303 ATSlint @ A

Figure 2-9. Visual Studio integrated terminal

Debugging

We can debug the AppRun applications right inside Visual Studio Code. To do so, we
need to install the Debugger for Chrome extension from the marketplace. The steps are

as follows:

1. Click the extension icon, shown here: E

2. Search for Debugger for Chrome (see Figure 2-10)

3. Click Install and reload Visual Studio Code.

38

CHAPTER 2 APPRUN DEVELOPMENT ENVIRONMENT

=

¥ master

) Extension: Debugger for Chrome - apprun-apress-book - Visual Studio Code
File Edit Selection View Go Debug Terminal Help

chrome

Debugger for Chrome 2102

Mi it £
Dark Chrome DevToels 000
Dark Theme like Chrome DevTo...
Ivan Zusko

Chrome Dev Tools 101

A theme based on the syntax hi...
Ryan Olson

Watch in Chrome .02

Sneezry

lirongfei-open-chrome 002
lirongfeil23

chrome tools ooz
mshzj

Scanner.js: JavaScript Sca... 20z

Scanner.js enables HTML JavaSc...
Asprise Scan OCR
Chrome_DevTools Theme o2
Chrome_DevTools Theme porte...
gerane

openChrome 003

open file with chrome

huazaierhi
S0t

SOA0

- o b e
Extension: Debugger for Chrome X m
Debugger for chrome msjsdiag.debugger-for-chrome
Microsoft | & 13419390 | dok Ak | Repository | License

Debug your JavaScript code in the Chrome browser, or any other target that supports t...

This extension is recommended based on the files you recently opened.

Details Contributions Changelog

VS Code - Debugger for Chrome

Debug your JavaScript code running in Google Chrome from VS Code.

Figure 2-10. Debugger for Chrome

Once the Debugger for Chrome extension is active in Visual Studio Code, we can

configure it for debugging AppRun applications. The steps are as follows:

1. Click the debugicon, shown here: .

2. Click the debug configuration icon, shown here: .

3. Set the environment to Chrome (see Figure 2-11).

39

CHAPTER 2 APPRUN DEVELOPMENT ENVIRONMENT

A Edension: Debugger for Chrome - apprun-apress-book - Visual Studio Code

1‘!] apprun-apress-book - Visual Studio Code
file Edit Selection View Go Debug Terminal Help

EUG B NoCor ™ |
b VARIABLES .MET Core
b WATCH
4 CALL STACK Modejs

More...

All Commands Ctrl+Shift+P

4 BREAKPOINTS

| All Exceptions

Vimmmiambt Evmmmtinemrs

Figure 2-11. Choosing the debugger environment

Visual Studio creates the debugger configuration (launch. json file), as shown in

Figure 2-12.

40

CHAPTER 2 APPRUN DEVELOPMENT ENVIRONMENT

4] Extensicn: Debugger for Chrome - apprun-apress-book - Visual Studio Code

4] launchjsen - apprun-apress-book - Visual Studio Code
File Edit Selection View Go Debug Terminal Help

JESUG B Launch ¥ 8% B {} launchjson X ® m
b VARIABLES wscode » {} launchjson » .. |
» WATCH 1 T

4 CALLSTACK

> "version": "0.2.0", Wl Z = : » CON rddd :
"configurations”: [

"type": "chrome”®,
"request”: "launch",

4 BREAKPOINTS

| All Exceptions

s smbk Cwmmmtimes

Figure 2-12. Debugger configuration (launch.json)

Once the Visual Studio Code debug configuration is complete, we can click the Debug
button or press F5 to start the debugging session. We can set breakpoints, watch variables,
and the call stack the same as it is in the browser DevTool (see Figure 2-13).

41

CHAPTER 2 APPRUN DEVELOPMENT ENVIRONMENT

ﬂ Extensicn: Debugger for Chrome - apprun-apress-book - Visual Studio Code =
4] main.tsx - apprun-apress-bock - Visual Studio Code -
file Edit Selection View Go Debug Terminal Help
(UG P Launch Y 3 B {} launchjson % maintsy % i O R ol - @ m

b VARIABLES Chapter_
b WATCH

W maintsx ¢ W view

oo From

4 CALLSTACK PAUSED ON BREAKPOINT

63

renderState appjs 3247607
setState appjs 3248130 o

mount ap;>._-'s 324:9041

s.default.start app.js </ div>

./Chapter_82/main.tsx ma..
_webpack_require__ appjs

const update =
appjs 934718 -2

(state) = state

]

__webpack_require__ appjs
(anonymous function) appjs

(anonymous function) appjs app.start{ 'my-app', state, view, update);

DEBUG CONSOLE TERMINAL 1: node * + OB ~ O %

; * is running at http://localhost:8e80/
: webpack output is served from /
: wait until bundle finished: /
wilm | : Hash: 93c2c80b8a54c5caca50
Version: webpack 4.15.1
Time: 4335ms
Built at: 2018-09-30 12:36:42

} LOADED SCRIPTS Asset Size Chunks Chunk Names
4 BREAKPOINTS app.js 336 KiB app mitted] app
All Exceptions app. js.map 403 KlB : : 2pp
. L Entrypo:.nt app =
Uncaught Exceptions [./Chapter_ ozfmam tsx] 238 by‘tes fapp} [built]
- i b i = I inada madulae faned_heml findav d4e] L 168 vio I 1 MThedled

Figure 2-13. Visual Studio Code breakpoint

So far, we have completed creating and exploring the AppRun development
environment by using the AppRun CLI and Visual Studio Code. Now we have an AppRun
development environment that has the development server and debugging enabled.

Summary

The AppRun development environment uses TypeScript as the compiler to compile
advanced language features to the code that browsers can run. We can add types
gradually. It is the recommended approach because we want to focus on the application
logic instead of getting lost in defining data types. The AppRun development
environment uses webpack as the bundler. We can develop AppRun applications utilizing

42

CHAPTER 2 APPRUN DEVELOPMENT ENVIRONMENT

the ECMAScript 2015 module format. Visual Studio Code is the recommended tool for
developing AppRun applications. It provides features such as IntelliSense, type checking,
code snippets, an integrated terminal, and the Debugger for Chrome extension.

With the AppRun CLI and Visual Studio Code, we are ready for some serious
application development.

43

CHAPTER 3

Model the State

This chapter is a deep dive into the state concept of AppRun. The state is one of three
main parts of the AppRun architecture. It plays an important role in the AppRun event
lifecycle. It is equivalent to the mode of the Elm architecture. ElIm defines the model as
the application state. If fact, model and state are two names for the same thing. They
are interchangeable in the AppRun architecture. Most of the time, we use the term
state in AppRun.

In this chapter, you will learn about the concept of state, how to time-travel through
the application state history to develop the undo and redo feature, how to save states
locally and to the cloud, and how to sync states across multiple devices.

State Concept

The state is the application state at any given time of your application. As highlighted in
Figure 3-1, the state is the data flow between the update and the view. It acts as the data
transfer object (DTO) in a traditional multilayered application architecture, where the
DTO is an object that carries data between the logical and physical layers.

45
© Yiyi Sun 2019

Y. Sun, Practical Application Development with AppRun, https://doi.org/10.1007/978-1-4842-4069-4_3

CHAPTER 3 MODEL THE STATE

AppRun Application

N
e N
Web Event Update View Rendered
Handlers (Event Handlers) (Optional)

Checkpoint 1 @ Checkpoint 2
SeiChselaA | Event Engine AppRun Render DOM

Figure 3-1. State flow in the AppRun applications

When AppRun applications are starting, the initial state is used to render the web
page.

Initial state => View => (HTML/Virtual DOM) => render DOM (1]

When AppRun applications are running, AppRun manages the state flow through the
event handlers and then through the view function and renders the web page during the
event lifecycle.

Web events => AppRun events => (current state) => Update => (new state) =>
View => (HTML/Virtual DOM) => render DOM => (new state) => rendered (2]

To demonstrate the state concept, we will develop the counter application
introduced in Chapter 1 using the AppRun CLI and the AppRun development
environment introduced in Chapter 2, which allows us to use the ECMAScript 2015
module format and JSX (Listing 3-1).

Listing 3-1. Source Code of the Counter Application (3-1.tsx)

1. import app from 'apprun';
2. const state = 0;
3. const view = (state) => <div>

46

CHAPTER 3 MODEL THE STATE

4 <h1>{state}</h1>

5 <button onclick={()=>app.run('-1")}>-1</button>
6. <button onclick={()=>app.run('+1")}>+1</button>
7 </divy;

8 const update = {

9 "+1': (state) => state + 1,

10. '-1': (state) => state - 1

11. };

12. app.on('debug', p => console.log(p));
13. app.start('my-app', state, view, update);

Initial State

The counter application starts with an initial state, the number 0 (line 2). It is used to
start the application in the app . start function (line 13). The state uses the keyword
const instead of let. It won’t change after the application starts. The initial state is
immutable. Sometimes we can pass the initial state into the app.start function without
defining a state variable.

app.start('my-app', 0, view, update);

State History

AppRun has built-in state history and the state history pointer. In Chapter 1’s example,
we demonstrated the state history in the counter application. The back button (<<) steps
back in the state history, or undoes the counter change. The forward button (>>) steps
forward in the state history, or redoes the counter change. In Listing 3-2, we make a JSX
version (Listing 3-2) and analyze the state history pointer movement.

Listing 3-2. Source Code of the Counter Application with History

import app from 'apprun';
const state = 0;
const view = (state) => {
console.log(state)
return <div>
<button onclick={() => app.run("history-prev")}> << </button>

SO UV~ W N

47

CHAPTER 3 MODEL THE STATE

7. <button onclick={() => app.run("history-next")}> >> </button>
<hi>{state}</h1>

9. <button onclick={() => app.run('-1")}>-1</button>

10. <button onclick={() => app.run('+1")}>+1</button>

11. </divy;
12. }
13. const update = {

14. "+1': (state) => state + 1,
15. '-1': (state) => state - 1
16. };

17. app.start('my-app', state, view, update, {history: true});

We set the history option to true in the app.start function call (line 17) to enable

the state history. The back (<<) button publishes the history-prev event to let AppRun
set the current state to the state before the state history pointer (line 6). The forward (>>)

button publishes the history-next event to let AppRun set the current state to the state

after the state history pointer.

Let’s visualize the state history and the state history pointer. First, we increase the

number to 3; next, we click the back (<<) button three times; finally, we click the forward

(>>) button three times. Table 3-1 shows the state history changes.

Table 3-1. State History

State to View State History and Pointer

The initial state. 0 0<=
Increase the counter. 1 0

1<=
Increase the counter. 2 0

1

2 <=
Increase the counter. 3 0

1

2

3 <=

48

(continued)

Table 3-1. (continued)

CHAPTER 3 MODEL THE STATE

State to View State History and Pointer

Click the back (<<) button 2 0
(take the state before the point).

2<=

3
Click the back (<<) button 1 0
(take the state before the point). 1<=

2

3
Click the back (<<) button 0 0<=
(take the state before the point). 1

2

3
Click the forward (>>) button 1 0
(take the state after the point). 1<=

2

3
Click the forward (>>) button 2 0
(take the state after the point). 1

2 <=

3
Click the forward (>>) button 3 0
(take the state after the point). 1

2

3<=

Although it is easy to enable the AppRun state history, the caveat is that it requires

the state to be immutable. Because in the AppRun state history it stores the references

to the states, if we have modified the state directly, each state stored in the state history

refers the same state, which is always the value of last change. The time-travel back and

forward will not work. The fundamental concept of using the state history is to make the

state immutable.

49

CHAPTER 3 MODEL THE STATE

Immutable State

Primitive data types in JavaScript, such as number, string, boolean, null, and
undefined, are immutable already. The counter application has the state of type
number, which is immutable out of the box. We can quickly enable the state history
and the time-travel feature.

Nonprimitive data types such as array and object are mutable. When the state of an
application is an array or an object, we need to leave the current state alone and always
create a new state based on the current state.

Immutable Array

To demonstrate how to make the immutable state of the array, we will make a multiple-
counter application. The multicounter application is a list of counters. It adds two
buttons to the original back and forward buttons: one adds a new counter, and the other
removes the last counter (see Figure 3-2). Each counter has three buttons: a button to
increase the counter, a button to decrease the counter, and a new button to remove the
counter from the counter list.

=] - m] x
0 spprun x
C | @ localhost:3080 a
| <<] >> l add counter | remove counter | [® (] | Elements Console Sources » 0o
E ® | top ¥ | Filter| Defaultlevels ¥ & Groy
1 *{] 3-3.%5x:19
> [e] 3-3.8sx:19
»(2) (e, 8] -3 tex:19
1]+ x] Sbuta
I »(3) [0, 0, 0] -3 texi10
»(3) (1, 8, 8] 3-3.tex:19
2 »(3) 1, 1, 8} 32,8500
»(3) [1, 2, 8] 33050019
[]+1]x] »(3) [1, 2, 1] 135019
o »(3) (1, 2, 2} 33050010
»(3) (1, 2, 3] 33000019
3 >
ENETEY

Figure 3-2. Multicounter application

50

CHAPTER 3 MODEL THE STATE

The three application building blocks of the multicounter application are as follows:
o The state of the multicounter application is an array of numbers.
o The view function displays the buttons and the counter list.

o The update object has three event handlers for adding a counter,
removing the counter, and updating the counters.

Let’s dive deep into the state of the multicounter application. The state is an array
of numbers. Each counter is a number within the array. The state is empty initially. We
can add new counters, and we can remove counters. When a counter is added, a new
number is added to the array. When a counter is removed, the correspondent number is
removed from the array.

There are three events: add-counter, remove-counter, and update-counter. The
add-counter and remove-counter events add and remove elements to and from the
array, respectively. The update-counter event increases and decreases the element
based on its index inside the array by the delta value.

Usually, we use the array.push function to add an element to the array and use the
array.splice function to remove an element from the array. To update the counter
in the array, we also usually just retrieve the element by index and update it directly.
However, these functions mutate the array. In other words, they change the content in
the array. We need different approaches.

Instead of using the array.push function to add an element to the array, we can use
the spread operator defined in ECMAScript 2015. We create a new array, spread in old
array elements, and add 0 to the end.

(state) => [...state, 0],

Instead of using the array.splice function to remove an element from the array
by its index, we can use the spread operator twice. We create a new array and spread in
elements before and after the index.

(state, idx) => [
...state.slice(0, idx),
...state.slice(idx + 1)

1,

51

CHAPTER 3 MODEL THE STATE

Instead of updating the element in the array directly, we can follow the same idea of

composing the new array.

(state, idx, delta) => [
...state.slice(0, idx),
state[idx] + delta,
...state.slice(idx + 1)

]

Based on previous immutable array operations, the technique to make immutable

the state of an array is to break down the existing array and recompose it. The

multicounter application implements the technique (Listing 3-3).

Listing 3-3. Source Code of the Multicounter Application

1 import app from 'apprun';

2 const state = [];

3 const view = (state) => <div>

4. <div>

5 <button onclick={() =>

6 <button onclick={() =>

7 <button onclick={() =>
</button>

8. <button onclick={() =>
disabled={state.length

9. </div>

10. { state.counters.map((num,

11. <h1>{num}</h1>

12. <button onclick={() =>
-1</button>

13. <button onclick={() =>
+1</button>

14. <button onclick={() =>
</button>

15. </div>

16.)}

52

app.run("history-prev")}> << </button>
app.run("history-next")}> »>> </button>
app.run("add-counter")}>add counter

app.run("remove-counter")}
<= 0}>remove counter</button>

idx) => <div»>
app.run("update-counter”, idx, -1)}>
app.run("update-counter”, idx, 1)}>

app.run("remove-counter”, idx)}>x

CHAPTER 3 MODEL THE STATE

17. </div>);

18. };

19. const update = {

20. 'add-counter': (state) => [...state, 0],
21. "remove-counter': (state, idx = state.length - 1) => [
22. ...state.slice(0, idx),

23. ...state.slice(idx + 1)

24. 1,

25. "update-counter': (state, idx, delta) => [
26. ...state.slice(0, idx),

27. state[idx] + delta,

28. ...state.slice(idx + 1)

29.]

30. };

31. app.start('my-app', state, view, update, {history: true});

When running Listing 3-3, you can see that the back (<<) and forward (>>) buttons
travel through the state change history just like the single-counter application (see the
states printed in the console pane in Figure 3-2).

Immutable Object

The same technique of making immutable the array state applies to immutable

object state. To demonstrate the immutable state of the object, we will build a to-do
application (see Figure 3-3), similar to the ToDoMVC applications. The ToDoMVC
website (http://todomvc.com) has a list of 60+ implementations of to-do applications
for studying, comparing, and evaluating features, project structure, and application
architecture using different frameworks and libraries. Modeled after the ToDoMVC
projects, the functional specifications of our to-do application are as follows:

¢ Allow the user to add a new to-do item to the to-do list
o Allow the user to toggle the to-do item from active to complete
o Allow the user to delete the to-do items

o Allow the user to view the to-do items by category: all, active, and
complete

53

http://todomvc.com

CHAPTER 3 MODEL THE STATE

o Allow the user to see the total number of active to-do items
e Allow undo and redo
e Save the to-do list locally on the computer

e Save the to-do list across multiple devices

2] - o x
D 2pprun kS
& C | @ localhost:8080/# g
<< I >>

« #install node (o2

e Lnpx apprun -i (gz)
o Llcode. (pa)

o Uetrl + ~ (2e0)

. npm start (z5.)

All (5) | Active (4) | Complete (1)

Figure 3-3. To-do application

We will develop the to-do application’s undo and redo features in this section. The
last two requirements will be developed in the next two sections.

The state of the to-do application should cover all the requirements of the
specification. We can build it piece by piece starting with the to-do item: TodoItem. A
to-do item has a title and done flag. The done can be true or false to indicate whether the
to-do item has been completed. A state is an object that has an array of to-do items and a
filter that has three options: All, Active, and Complete (Listing 3-4).

54

CHAPTER 3 MODEL THE STATE

Listing 3-4. The State of the To-Do Application

1 type TodoItem = {
2 title: string;
3 done: boolean;
4. '}

5. type State = {
6 filter: 'All' | 'Active' | 'Complete’,
7 list: Array<TodoItem>

8

9

15
. const state: State = {
10. filter: 'All',
11. list: []
12. };

There are four event handlers (add-item, delete-item, toggle-item, and filter-
item) for manipulating to-do items as well as an event handler for detecting the Return
key press for adding new to-do items (Listing 3-5).

Listing 3-5. The Event Handlers of the To-Do Application

1 const update = {

2 'add-item': (state) => { },

3. "delete-item': (state, idx) => { },
4. "toggle-item': (state, idx) => { },
5 "filter-item': (state, e) => { },

6 "keyup': (state, e) => { }

7.}

AppRun passes the current state into the event handlers. When the function
parameter is an array or object, it is passed to the function as a reference. The state
object can be changed inside the event handler. To create a new state based on the
current state, we use the spread operator to break down the current state object
properties, insert them into a new object, and then overwrite the properties with the new
value according to the events. For example, the event handler of toggle-item overwrites
the filter property of the new state object.

‘filter-item': (state, e) => ({ ...state, filter: e.target.textContent })

55

CHAPTER 3 MODEL THE STATE

The method applies to all simple property types. But the to-do item list in the state
is an array. Adding, deleting, and changing the items inside the list should follow the
technique of an immutable array (Listing 3-6).

Listing 3-6. Immutable State Update in the To-Do Application

1. ‘'add-item': (state, title) => ({

2. ...state,

3. list: [...state.list, { title, done: false }]
o),

5. ‘'delete-item': (state, idx) => ({

6. ...state,

7. list: [

8. ...state.list.slice(0, idx),

9. ...state.list.slice(idx + 1)

10.]

11. 1)

12. "toggle-item': (state, idx) => ({

13. ...state,

14. list: [

15. ...state.list.slice(0, idx),

16. { ...state.list[idx], done: !state.list[idx].done },
17. ...state.list.slice(idx + 1)

18.]

19. ¥

The code snippets to add, delete, and change the list items within a state object
(Listing 3-6) provide a reusable pattern that you can use in your applications. The
complete source code of the preliminary to-do application without visual styling has 78
lines of code including static types (Listing 3-7).

Listing 3-7. Complete Source Code of the To-Do Application

1 import app from 'apprun';
2 type TodoItem = {

3. title: string;

4 done: boolean;

5.}

56

O 0 N O

11.
12.
13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

30.

31.
32.

CHAPTER 3 MODEL THE STATE

type State = {
filter: 'All' | 'Active' | 'Complete’;
list: Array<TodoItem>;

};

const state: State = {
filter: 'All’,
list: []

}s

const view = (state: State) => {

const countAll = state.list.length;

const countActive = state.list.filter(todo => !todo.done).length || 0;

const countComplete = state.list.filter(todo => todo.done).length || o;

return <div>
<button onclick={() => app.run("history-prev")}> << </button>
<button onclick={() => app.run("history-next")}> >> </button>
<p><input onkeyup={e => app.run('keyup', e)} /></p>

 {
state.list
.map((todo, idx) => ({ ...todo, idx }))
.filter(todo => state.filter === 'All" ||
(state.filter === 'Active' &8 !todo.done) ||
(state.filter === 'Complete' && todo.done))
.map((todo) => <1i>
<input type='checkbox' onclick={() =>
app.run('toggle-item', todo.idx)}
checked={todo.done} />
{todo.title} {' '} (<a href="#' onclick=
{() => app.run('delete-item', todo.idx)}>8#9249;
</ay)
</1i>)
}

57

CHAPTER 3 MODEL THE STATE

33. <div>

34. app.run('filter-item', e)}>All
{" (${countAll}) | "}

35. app.run('filter-item', e)}>Active
{" (${countActive}) | °}

36. app.run('filter-item', e)}>
Complete {" (${countComplete})”}

37. </div>

38. </div>

39. };

40. const update = {

41. 'add-item': (state, title) => ({

42. ...State,

43. list: [...state.list, { title, done: false }]

44. 1

45. "delete-item': (state, idx) => ({

46. ...state,

47. list: [

48. ...state.list.slice(0, idx),

49. ...state.list.slice(idx + 1)

50.]

51. ¥

52. "toggle-item': (state, idx) => ({

53. ...state,

54. list: [

55. ...state.list.slice(0, idx),

56. { ...state.list[idx], done: !state.list[idx].done },

57. ...state.list.slice(idx + 1)

58.]

59. 1F

60. "filter-item': (state, e) => ({ ...state, filter: e.target.

textContent }),
61. "keyup': (state, e) => {
62. if (e.keyCode === 13 8& e.target.value.trim()) {

58

CHAPTER 3 MODEL THE STATE

63. app.run('add-item', e.target.value);
64. e.target.value = ";

65. }

66. }

67. };

68. app.start('my-app', state, view, update, { history: true });

We can conclude that the method to make the state immutable is to create a new
state that replaces the current state. The AppRun architecture is designed to support the
immutable state. If we implement the immutable state, AppRun provides the time-travel
through the state history, which is useful for developing the undo and redo features. On
the other hand, although making the state immutable is always a good practice, it does
require extra attention and coding effort in JavaScript.

Note The immutable state is not a mandatory requirement of AppRun. If you do
not need the undo and redo feature in your application, you can mutate the current
state. AppRun is flexible.

Persistent State

The state is like the soul of an AppRun application. We can save the state after the state
change and load the state to resume the application. We can also share the state across
browsers, platforms, and devices to run the applications simultaneously in different
browsers and apps on various devices. We will demonstrate the local state and cloud

state in the next two sections.

Local State

We will continue developing the to-do application by adding a new feature to store the
to-do list on the local computer. The application saves the to-do list to the browser’s local
storage to preserve the state. When the application starts, it loads and renders the state

automatically (see Figure 3-4).

59

CHAPTER 3 MODEL THE STATE

(=] - m] X
[apprun x \§
< C | @ localhost:8080/# 7
< | 55 | I ﬂ Elements Console Sources Network Performance Memory Application » P X
Application C ©® X Fiter
I Menifest :Kﬁ‘ . I_\-’alue . — N——
s @ install node (1) £t Service Workers { to-do-list |{'ﬁ|teﬁ’hl'_'ist":il'liﬂt'.’i1$ﬁli node”,"done”:true} {"title""npx apprun -...
. Clear st |
» Bopxa 0 W Clear storage |
¢+ Ucode. (s5) Storage
o Ueorrl+~ () v 58 Local Storage
o inpm start (za) B8 httpx//localhostB080
» 8 Session Storage
All (5) | Active (4) | Complete (1) » = IndexedDB
S WebsaL
» @ Cookies — - - - .
| w {filter: "A11", list: [{title: "install node™, done: true}, {title: "npx A
filter: "All®
Cache wlist: [{title: "install node™, done: trus}, {title: "npx apprun -i®, don
» = Cache Storage Pk @: {title: "install node”, done: true}
- s »1: (title: "npx apprun -i", done: false)}
= A r
= gpplcavonCachs »2: {title: “code .", done: false}
»3: {title: “ctrl « ==, done: false}
Frames »&: {title: “npm start™, done: false)
»Otep
4 »

Figure 3-4. Local storage of the to-do application

Local storage is a browser feature to allow web applications to store data locally
within the user’s browser. It is secure, it is high performant, and it allows a large amount
of data to be stored (at least 5MB). All pages, from the same origin (per domain and
protocol), can save and load the data to and from the local storage. The Chrome browser
DevTool displays the local storage content on the Application tab (see Figure 3-4).

Loading data and saving data are synchronous operations that can easily apply to
AppRun applications (Listing 3-8).

Listing 3-8. Enable Local Storage in AppRun Applications

import app from 'apprun';

. const state: State = {};

const view = (state: State) => {};
. const update = {};

. const STORAGE KEY = 'to-do-list';

vi B W N R

60

CHAPTER 3 MODEL THE STATE

6. const rendered = state => localStorage.setItem(STORAGE_KEY, JSON.
stringify(state));

7. const stored = localStorage.getItem(STORAGE_KEY)
app.start('my-app', stored ? JSON.parse(stored) : state, view, update,
{ rendered });

Loading the state from the local storage, we need to pay attention to a couple of
details. The data stored in the local storage is always the string type. Therefore, it requires
us to serialize and deserialize the state when saving to and loading from the local storage
(line 7). When the first-time application runs, the state does not exist in the local storage.
We fall back to using the default initial state (line 8).

To save the state to the local storage, we use the rendered callback function in the
AppRun event lifecycle (see Figure 3-1). It is the last step before the event cycle ends.
AppRun invokes the rendered callback function with the state parameter after it renders
the HTML to the web page.

We create the rendered function for saving the state to local storage (line 6) and set
the rendered callback function in the options parameter when we start the application
(line 8).

By simply adding the logic of loading and saving the state (Listing 3-8, lines 6-8)
to the to-do application, we have enabled local persistent storage to the application.
Listing 3-8 is a reusable pattern that you can follow when developing other AppRun
applications.

Cloud State

Although the local storage allows the data access across many browsers of the same
type, by default the data is not accessible between different browser types. For example,
Firefox browsers cannot access the local storage of the Chrome browsers. However,
AppRun applications can run on multiple browsers and even various platforms and
devices. We will finish this chapter by making the to-do application share the state across
browsers, platforms, and devices.

We will save the state to Google Cloud Firestore and leverage Cloud Firestore to
sync the data across multiple devices. Cloud Firestore is a cloud NoSQL database for
developing mobile, web, and server applications from Firebase and Google Cloud

61

CHAPTER 3 MODEL THE STATE

Platform. It keeps your data in sync across devices in real time and offers offline
support for mobile and web applications. To add Google Cloud Firestore to the AppRun
application, follow the steps:

1. Open the Firebase Console (https://console.firebase.google.
com/), add a new project, and then enter your project name. If you
have an existing Firebase project that you'd like to use, select that
project from the console.

2. Inthe Database section, click the Get Started button for Cloud
Firestore. Select the Test mode as the starting mode (remember
to switch to Locked mode for production use later) and then click
the Enable button.

3. From the project overview page, add Firebase to your web project.

4. Copy the configuration (Listing 3-9) and paste it into the store
module (Listing 3-10).

5. Install Firebase in your AppRun project: npm i firebase.

Listing 3-9. Firebase Web Project Configuration

1 var config = {

2 apikey: "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"

3 authDomain: "apprun-demo.firebaseapp.com",

4 databaseURL: "https://apprun-demo.firebaseio.com”,
5. projectId: "apprun-demo"”,

6 storageBucket: "apprun-demo.appspot.com”,

7

8

messagingSenderId: "--------------

};

We will use the configuration to create a store module that handles the events for
saving and loading data to and from Firestore (Listing 3-10).

Listing 3-10. Module for Saving and Load Data to and from Firestore

1. import app from 'apprun';
2. import * as firebase from 'firebase’;
3. import 'firebase/firestore’;

62

https://console.firebase.google.com
https://console.firebase.google.com

CHAPTER 3 MODEL THE STATE

4 const STORAGE KEY = 'to-do-list';

5 const config = {

6. apikey: "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'",

7 authDomain: "apprun-demo.firebaseapp.com”,

8 databaseURL: "https://apprun-demo.firebaseio.com",
9 projectId: "apprun-demo",

10. storageBucket: "apprun-demo.appspot.com”,

11. messagingSenderId: "------------- "

12. };

13. firebase.initializeApp(config);
14. const db = firebase.firestore();
15. const ref = db.collection(STORAGE KEY).doc("state")

16. app.on('save-state', state => ref.set(state));
17. ref.onSnapshot(doc => {
18. if (doc.exists) app.run('new-state', doc.data())

19. 1);

Firestore access uses the event publication and subscription pattern just like AppRun.
It is a natural fit for the AppRun applications. The store module (Listing 3-10) uses an
AppRun event subscription for saving data to Firestore. Other AppRun application
modules have no dependencies to the Firebase and Firestore library.

The store module subscribes to the save-state event (line 16). When the application
needs to save the state, we can publish the save-state event with the state as event
parameters to let the store module save that state to Firestore.

The store module also publishes the new-state event. When Firestore data is
available in the Firestore onSnapshot event, it converts the Firestore onSnapshot event to
the AppRun new-state event (lines 17-19).

The new-state and save-state events connect the to-do application with Firestore
(Listing 3-11). The state and the view function are omitted to let you focus on the most
relevant code that saves and loads the state in Listing 3-11.

Listing 3-11. Saving the State to the Cloud

1. import app from 'apprun’;

2. import './store';
3. const state = {...};

63

CHAPTER 3 MODEL THE STATE

4 const view = (state) => {... };

5 const update = {

6. 'new-state': (_, state) => state,

7 'add-item': (state, title) => app.run('save-state', {
8 ...state,

9 1)

10. "delete-item': (state, idx) => app.run('save-state', {
11. ...state,

12. 1)

13. "toggle-item': (state, idx) => app.run('save-state', {
14. ...state,

15. 1)

16. };
17. app.start('my-app', state, view, update, { history: true });

When the application connects to Firestore the first time, Firestore publishes the
onSnapshot event. The store module publishes the AppRun new-state event. The new-
state event handler returns the state to AppRun to render the web page (line 7).

When the users add, delete, and toggle to-do items, the corresponding event
handlers of add-item, delete-item, and toggle-item publish the save-state event to
let the store module save the state to Firestore.

When Firestore saves the state successfully, it publishes the onSnapshot event again.
The onSnapshot event is converted to the new-state event again. AppRun renders the
new state on the web page (see Figure 3-5).

64

CHAPTER 3 MODEL THE STATE

Cloud Firestore

onSnapshot
render
‘ ref.set ‘ ‘ new-state K

y I

OOo

add-item
store delete-item
toggle-item

Figure 3-5. Firestore events and AppRun events

The event handlers of the add-item, delete-item, and toggle-item events call
the app.run function only. They do not return any state (Lines 7-16). When the event
handler returns a new state of the null or undefined object, the AppRun stops the
AppRun event lifecycle at checkpoint 1 (see Figure 3-1). AppRun does not invoke the
view function anymore. The event lifecycle stops. Nothing changes on the screen until
the new-state event comes later.

We can open the to-do application in different browsers. Figure 3-6 shows the
application, from left, in Chrome, Firefox, and Edge. The to-do list is automatically
shared between them. When adding, toggling, and deleting the to-do items in one
browser, the new to-do list is automatically displayed in the other browsers without a
need to refresh the other browsers.

65

CHAPTER 3 MODEL THE STATE

L [.
[spprun x apprun X &
&« C | @ localhost2080/# ¥ | @ € (0 localhost:8080/#
[s<[>] <>

[]

* Minstall node ()
+ [Anpx apprun -i (%)
o Beode. ()

o Heul+~(y)

+ Eopm stant ()

+ ¥ install node (55)

* ¥inpx apprun -1 (gi)
o Pcode. (pn)

o Feotrl+ ~ (o)

+ #inpm start (za)

All (3)] Active (0) | Complete (5)

All (5)| Active (0) | Complete (5)

8 X |[Bww x [+ =
» = e O (O localhost:2080/s
]

+ [Finstall node ()
+ [Hnpx apprun -i ()
+ [Hcode. ()

o Metil+~ ()

+ npm start (2)

All (5) | Acuve (0) | Complete (5)

Figure 3-6. Running the to-do application in multiple browsers

Source Code of Examples

You can get the source code in this chapter by cloning the GitHub project from https://

github.com/yysun/apprun-apress-book. You can run the six examples in this chapter

using the npm scripts in Table 3-2.

Table 3-2. npm Scripts of This Chapter

Example Script

The counter application (Listing 3-1) npm run jsx-counter

The counter with history (Listing 3-2) npm run jsx-counter-history
The multiple counter application (Listing 3-3) npm run counters

The to-do application (Listing 3-8) npm run to-do

The local to-do application (Listing 3-9) npm run to-do-local

The cloud to-do application (Listing 3-11)

npm

run to-do-cloud

66

https://github.com/yysun/apprun-apress-book
https://github.com/yysun/apprun-apress-book

CHAPTER 3 MODEL THE STATE

Summary

In AppRun applications, the state is the DTO between the event handlers and the view
function. AppRun manages the state flow. It takes an initial state and keeps tracks of the
state and manages the state history. You can travel through the state history if you keep
the state immutable by always creating a new state to replace the current state.

The state is the soul of the AppRun application. Persisting the state in the local
storage allows the user to exit the applications without losing data. Sharing the state into
the cloud makes the applications run across browsers, platforms, and devices.

When the applications become complicated, the states of the applications become
complicated. They can have the data fields and visual flag fields. The data fields are the
dynamic content to render the web pages. The visual flag fields are to control the visual
presentation of web page elements such as the visibility, color, open and collapse status,
class, and styles of the web page elements. In the next chapter, we will introduce the
various strategies, patterns, and techniques of rendering the state to the web pages in the
view function.

67

CHAPTER 4

View Patterns

This chapter is a deep dive into the view concept of AppRun, an important part of
the AppRun architecture. In the AppRun event lifecycle, the view is responsible for
displaying the web pages according to the application states.

The Document Object Model (DOM) is the programming API for web development.
It allows us to manipulate the elements, styles, and content of the elements on the web
pages. However, the view does not update the DOM directly. The view creates the data
structure representation of the DOM, called the virtual DOM. AppRun renders the
virtual DOM to the actual DOM. It can also create the HTML string. AppRun converts
the HTML string into the virtual DOM. Before rendering the virtual DOM to the actual
DOM, AppRun compares them to each other. It only updates the changed elements and
element properties.

This chapter will introduce the role that the view plays in the AppRun event lifecycle,
JSX, and the virtual DOM. You will learn about many JSX patterns commonly used when
developing the view function. This chapter also introduces AppRun components and
web components as they are important to learning the view patterns. You will also be
able to develop web components for modern browsers after reading this chapter.

View Concept

We will start with reviewing the role of the view in the AppRun event lifecycle.

The View Function

In AppRun applications, the view is a function often named view. During the AppRun
event lifecycle, AppRun invokes the view function after the event handlers have created
the new states (see Figure 4-1).

69
© Yiyi Sun 2019

Y. Sun, Practical Application Development with AppRun, https://doi.org/10.1007/978-1-4842-4069-4_4

CHAPTER 4 VIEW PATTERNS

AppRun Application

N
r N

(Initial State)

Web Event Update
Handlers (Event Handlers)

| (AppRun Events) | | (Current State) | | (New State) | (New State) @ (HTML/VDOM) (New State)
I — — -
Checkpoint 1

State History || Event Engine AppRun Render DOM

Figure 4-1. View function in AppRun event lifecycle

Rendered
(Optional)

Checkpoint 2

The position of the view in the AppRun event lifecycle is highlighted in [1].

Web events => AppRun Events => (current state) => Update =>
(new state) => View => (HTML/Virtual DOM) => render DOM (1]

The AppRun event lifecycle in [1] is a full and happy path. There are other scenarios
where the event lifecycle ends differently.

Notice in Figure 4-1 that there are two checkpoints. At the first checkpoint, AppRun
checks whether the event handlers return null or undefined. If they do return null or
undefined, AppRun skips calling the view function. The flow looks like [2].

Web events => AppRun Events => (current state) => Update =>
(null or undefined) => [No View] (2]

At the second checkpoint, AppRun checks whether the view function returns null or
undefined, and if so, AppRun skips rendering the DOM. The flow looks like [3].

Web events => AppRun Events => (current state) => Update =>
(new state) => View => (null or undefined) => [No render DOM] [3]

Also, there is an optional rendered function in the AppRun event lifecycle. AppRun
calls the rendered function after it renders the DOM if it is present. The flow is shown in [4].

Web events => AppRun Events => (current state) => Update => (new state) =>
View => (HTML/Virtual DOM) => render DOM => (new state) => rendered (4]

70

CHAPTER 4 VIEW PATTERNS

The extended flow with the rendered function is the way to integrate with other
libraries. For example, we can use libraries such as jQuery to change the DOM after
AppRun renders the DOM. You will learn how to use it in Chapter 8.

HTML vs. JSX

After learning when the view function is invoked in the event lifecycle, we will focus on
how to create HTML elements.

First, we can use the view function to create an HTML string. For example, to create a
<div> element, we can use JavaScript string template literals to create an HTML string.

const view = state => “<div id='main' class="page'>${state}</div>";

AppRun parses the HTML string into the virtual DOM. You will learn about the data
structure of the virtual DOM in the “Virtual DOM” section later in this chapter.

Although sometimes the HTML string is easy to understand and useful for trying
ideas, it takes time to parse it into the virtual DOM at runtime, which may cause
performance issues. It also has some problems that have been documented by the
Facebook React team.! We recommend using JSX.

const view = state => <div id="main' class='page'>{state}</div>;

The JSX looks like the HTML, but it is indeed the syntactic sugar of function calls.
The TypeScript compiler compiles the previous JSX into the following function call:

view = state => app.createElement("div", {id:'main', className:'page'}, state);

Using JSX, it is easier to understand the intention of the view function, which is to
create HTML elements. Using JSX can also prevent missing tags or mismatches of the
closing tags because the syntax is enforced and checked at compile time. For example,
we can write the view function using an HTML string that has an error without notice.

const view = state => “<div id="main' class='page'>${state}<div>";

The view function has no compile error and can run in the browser. The browser
might be able to close the <div> tag by itself. There are two <div> elements in DOM,
which might change the screen layout and design.

!See “Why not Template Literals?” at http://facebook.github.io/jsx/#why-not-template-
literals.

71

http://facebook.github.io/jsx/#why-not-template-literals
http://facebook.github.io/jsx/#why-not-template-literals

CHAPTER 4 VIEW PATTERNS

However, the view function won’t pass the JSX complication when using JSX. The
compiler will catch the error of the unclosed tag and remind us to fix it.

const view = state => <div id="main' class="page'>{state}<div>;

ANNN

Because of the compile-time validation, we can say using JSX is better, especially for
applications that are not demos or prototypes.

The AppRun CLI-initialized development environment has everything configured to
use JSX. If you want to code the scripts directly without a build process, you can use the
app.createElement function. You can also alias the app.createElement function as the
h function and use it the way you would use HyperScript.?

const h = app.createElement;
const view = state => h("div", {id:'main', className:'page'}, state);

Custom JSX Tag

A useful convention in JSX is that when the JSX tag name is capitalized, it calls a custom
function instead of calling app.createElement. For example, we can define a function
named as MyDiv, as shown here:

const MyDiv = ({content})=><div>{ content }</div>;
Then, we can use the MyDiv function as the custom JSX tag in JSX.
const view = state => <MyDiv content='Hello' />;

A custom JSX tag can have properties. When calling custom functions, the JSX tags
properties are passed into the functions as function parameters. The content property in
the previous example is passed to the MyDiv function.

Because the custom JSX tags are function calls, we can break down and organize the
application codebase by function. You will learn more about this in the “JSX Patterns”
section later in this chapter.

Also, the custom JSX tag is used to create components. You will learn about this in
the “Components” section later in this chapter.

2For more information about HyperScript, please visit its GitHub page at https://github.com/
hyperhype/hyperscript.

72

https://github.com/hyperhype/hyperscript
https://github.com/hyperhype/hyperscript

CHAPTER 4 VIEW PATTERNS

Virtual DOM

The Virtual DOM is the in-memory data structure representation of the DOM. AppRun
defines the virtual DOM as follows:

type VNode = {
tag: string,

props: {},
children: Array<VNode | string>

}

Say we have the following example view function:
const view = state => “<div id="main' class='page'>${state}<div>";
Run the view function called view() to get the following virtual DOM:
{ lltag": Ildivll’
"props": { "id": "main", "className": "page" },
"children": [""]
}

We can use the app.render function to render the virtual DOM to a web page
element, such as to the body element, as shown here:

app.render(document.body, { "tag": "div",
"props": { "id": "main", "className": "page" },
"children": ["Hello"]

1)

AppRun renders the virtual DOM to a web page element as the first child. The body
element will have a <div> element.

<body><div id="main" class="page">Hello</div><body>

The app.render function is the function used by AppRun internally for rendering the
virtual DOM. In AppRun application development, we usually don’t use the app.render
function directly. We will be focusing on creating the view function and let AppRun
connect the state, view, and update for us through the event lifecycle.

73

CHAPTER 4 VIEW PATTERNS

Now that we understand the role of the view function and the virtual DOM, we will
move on to discuss some common patterns of using JSX for creating web page elements
dynamically based on the application states.

JSX Patterns

We will use the to-do application from Chapter 3 to explore the patterns and techniques
for developing view functions. We'll apply the styles from the ToDoMVC project
(http://todomvc.com/) to our to-do application.

The ToDoMVC web site is the place for studying, comparing, and evaluating the
features, project structure, and application architecture of different frameworks and
libraries. It has a standard style guide that includes the HTML and CSS.

The ToDoMVC to-do list style guide defines the following Ul features:

e The to-do items should be rendered as an unordered list, where each
to-do item is a <1i> element.

o The to-do items should be able to be filtered into three categories: all,
active, and complete.

o The three filter buttons should be highlighted when they are clicked
by using the selected CSS class.

e The completed to-do item should be grayed out and crossed out by
using the complete CSS class.

e The complete to-do item should be rendered by using the view CSS
class.

o The check box in front of each to-do item should be selected for the
completed to-do items.

o The “Clear completed” button should be visible only if there are
completed to-do items.

The good news is we can leverage the CSS published by the ToDoMVC project. Once
we create the right HTML elements and apply the right CSS classes to the elements, the
to-do application looks like Figure 4-2.

74

http://todomvc.com/

CHAPTER 4 VIEW PATTERNS

[AppRun « TodaMVC ®

C (@ localhost:2080 w|

npx apprun -i
code .
ctrl + ~

npm start

4 items lefl Al Active Compilete Clear completed

Figure 4-2. The ToDoMVC-styled to-do application

We will create the elements dynamically and apply the CSS classes dynamically for
the to-do application. Let’s start with the HTML structure.

Custom JSX Tags

The ToDoMVC HTML template has the structure shown in Listing 4-1.

Listing 4-1. ToDoMVC HTML Structure

<html lang="en">
<head></head>
<body>

<section class="todoapp">
<header class="header"></header>
<section class="main">
<ul class="todo-list">

0O ~N O U1 B~ W N

</section>

75

CHAPTER 4 VIEW PATTERNS

9.

10.
11.
12.
13.
14.

<footer class="footer"></footer»
</section>
<footer class="info"></footer>
<script src="app.js"></script>
</body>
</html>

There will be many elements created and filled in to the HTML structure dynamically

when the application runs.

We create custom functions for each section of the HTML structure and use the

custom JSX tags to integrate them into the main HTML structure (Listing 4-2).

Listing 4-2. The View Function Structure

OW 60N O LT & W N B

N NN P P PR R R R R R R R
N P O W W~N O UV W N P O

76

import app from 'apprun’;

const state = { list: [] };

const Header = () => <header className="header"></header>;
const Footer = () => <footer className="info"></footer>;

const Todo = ({ todo, idx }) => <1li className="completed"></1i>;
const Main = ({ state }) => <
<section className="main">
<ul className="todo-1ist"> {
state.list.map((todo, idx) => <Todo todo={todo} idx={idx} />)
}
</section>
<footer className="footer"></footer>
</>;
const view = (state) => <>
<section className="todoapp">
<Header />
<Main state={state} /»
</section>
<Footer />
</>;
const update = {};
app.start(document.body, state, view, update, { history: true });

CHAPTER 4 VIEW PATTERNS

Using the custom JSX tags is an effective way to break down a complicated HTML
structure into smaller and more manageable functions. The custom JSX tags are also
known as stateless functional components or pure function components. Therefore, in
Listing 4-2, <Headex/>, <Footer/>, and <Todo/> are all stateless functional components.

The custom JSX tags can also be used to create another type of component, called
stateful components, that you will learn about in the “Components” section later in the
chapter.

JSX Fragments

Usually JSX returns a root element that includes some child elements. But the designer
of the ToDoMVC template has created the HTML template with two parallel elements:
<section class="todoapp" />and <footer class="info" /> (Listing4-1, lines 4 and
11). To create the parallel elements, we can use a JSX fragment. A fragment lets us group
multiple elements and components into an array without a root element. A JSX fragment
wraps child elements using <> and </> (Listing 4-3).

Listing 4-3. JSX Fragments

1 const view = (state) => <>

2 <section className="todoapp">
3 <Header />

4. <Main state={state} />

5 </section>

6 <Footer />

7 </>;

Create a List

To render the dynamic to-do item list stored in the state object as an array called state.
list, we first create a Todo function for one to-do item. The Todo function turns the
individual to-do item into a <1i> element. Then, we call the ToDo function by using the
custom JSX tag in the array.map function to build a list of <1i> elements (Listing 4-4).

77

CHAPTER 4 VIEW PATTERNS

Listing 4-4. Rendering the List

1. <ul className="todo-list"> {
2. state.list.map((todo, idx) => <Todo todo={todo} idx={idx} />)
3.} </uly

Create a List Item

The ToDo function creates the to-do item. It has two input parameters: todo and idx. The
custom JSX tag also has two properties, todo and idx. These are passed into the ToDo
function as parameters.

To retrieve the two parameters from the JSX properties in the Todo function, we
use the parameter destructuring feature of ECMAScript 2015 (ES6). The ToDo function
creates the <1i> element using these parameters:

const Todo = ({ todo, idx }) => <label>{todo.title}</label></1li>;

Filter a List

There are three filters to display the to-do items in three categories: all, active, and
complete. The current filter is stored in the state object as state.filter. The state.
list has to be filtered using state.filter before building the list of <1i> elements.
We use the array.filter function before using the array.map function to achieve the
filtering (Listing 4-5).

Listing 4-5. Filtering a List

1. <ul className="todo-list"> {
2 state.list
.filter(todo => state.filter === 'All" ||

(state.filter === 'Active' && !todo.done) ||
(state.filter === 'Complete' && todo.done))

4. .map((todo, idx) => <Todo todo={todo} idx={idx} />)

5.)

78

CHAPTER 4 VIEW PATTERNS

So far, we have filtered and created the elements for the to-do item list based on the
state object. We will continue to apply the CSS classes to the elements based on the
properties of the to-do items.

Apply a Class

Each <1i> element should have the CSS class view for active items and the CSS class
completed for completed items. We use the ternary operator to apply different classes to
the element.

const Todo = ({ todo, idx }) => <1i className={todo.done ? "completed" :
"view"}>

<label>{todo.title}</label>
</1i>

Notice that we use className to represent the class property in JSX instead of
class. This is because class is a JavaScript reserved keyword.

The CSS class of the <1i> element can be changed back and forth based on the done
property of the todo object. We also refer to it as toggling the class.

Set the Element Property

In front of each to-do item, there is a check box indicating whether the to-do item is
completed. The checked property of the check box is also set according to the done
property of the todo object (todo.done). Since todo.done is the boolean type, it can be
set to the checked property of the check box directly.

const Todo = ({ todo, idx }) => <1i className={todo.done ? "completed" :
"view"}>
<div>
<input className="toggle" type="checkbox" checked={todo.done}/>
<label>{todo.title}</label>
</div>
</1i>

79

CHAPTER 4 VIEW PATTERNS

Set Active Classes

There are three filters for users to choose. They are displayed as <a> elements. The filter
elements need to be highlighted to indicate which one is the currently chosen filter. The
highlight is done by attaching the selected CSS class to the chosen filter. We use the
ternary operator to toggle between the selected class and an empty string that cleans
the class properties (Listing 4-6).

Listing 4-6. Set Active Classes

1. <ul className="filters">

2
All</1i>

3. <a className={state.filter === 'Active' ? 'selected' : "}»
Active</1i>

4.
Complete</1i>

5.

When state.filter is All, the <a> elements to A11 have the CSS class selected
applied. The other two <a> elements have the CSS class selected applied when state.
filteris A1l or Complete, respectively.

Show and Hide Elements

Dynamically showing and hiding elements are the commonly used scenarios of web
applications. For example, in the to-do application, the “Clear completed” button is
displayed or hidden dynamically based on the count of the completed to-do items. We
need to calculate the content first and then use the ternary operator to show or hide the
<button> element (Listing 4-7).

Listing 4-7. Showing and Hiding Elements Using the Ternary Operator

1. const countComplete = state.list.filter(todo => todo.done).length || 0;
2. { countComplete > 0 ? <button>Clear completed</button> : "}

Or we can to show or hide the <button> element use the &8 operator (Listing 4-8).

80

CHAPTER 4 VIEW PATTERNS

Listing 4-8. Showing and Hiding Elements Using the && Operator

1. const countComplete = state.list.filter(todo => todo.done).length || 0;
2. { countComplete > 0 && <button>Clear completed</button> }

To conclude, using custom tags, using JSX fragments, creating lists, creating list
items, filtering lists, applying CSS classes, toggling CSS classes, and showing/hiding
elements using JSX are the commonly used tasks in AppRun applications. You can use all
these tasks when developing your applications.

Components

So far, we have been developing AppRun applications by using the AppRun architecture
globally. The state, view, and update are all global variables. This is a straightforward and
effective way of developing AppRun applications. However, there is only one state, one
view, and one update globally. Even by using the custom JSX tags and custom functions
to help break down an application’s codebase, this technique is still not scalable for
complex applications. For complex applications, AppRun supports building applications
using components just like in many other frameworks.

Component Class

AppRun components are like mini-AppRun applications. Each component has the
AppRun architecture, which means each component has the state, view, and update.

It is quite easy to create AppRun components. They are derived classes from the AppRun
Component class. We can take a global AppRun application and add the Component class
syntax around it to make it a component (see Table 4-1).

81

CHAPTER 4 VIEW PATTERNS

Table 4-1. Global Application and Component Application

Global Application Component Application
import app from ‘apprun’; import app, {Component} from 'apprun’;
const state = {} class MyComponent extends Component {
const view = state => <div>{state}</div> state = {};
const update = { view = (state) => <div>{state}</div>

'#': state => state update = {
} "#': state => state
app.start('my-app', state, view, update); }

}

new MyComponent().start('my-app');

We can develop the components as TypeScript classes. As mentioned in Chapter 2,
the TypeScript compiler supports classes and class fields. We can define state, view,
and update as the class fields in the TypeScript Component class (Listing 4-9).

Listing 4-9. TypeScript Component Class

1 class MyComponent extends Component {

2 state = {};

3. view = (state) => <div>{state}</div>
4. update = {

5 }

6. '}

If you want to use an ECMAScript 2015 (ES6) class without TypeScript, you will need
to define the state, view, and update properties in the class constructor (Listing 4-10).

Listing 4-10. ES6 Component Class

1 class MyComponent extends Component {

2 constructor() {

3. super();

4 this.state = {}

5 this.view = state => “<div></div>";

82

CHAPTER 4 VIEW PATTERNS

this.update = {
};

O 00 N O

}

You will see an example of using the ES6 class in the “Web Components” section
later in the chapter.

Once we have created AppRun components, there are two ways of using them: use
them in code or use them in JSX.

Create Components in Code

Because components are classes, it is straightforward to use them in code. We first
create an object of the component. Optionally, we can initialize state when calling the
constructor (Listing 4-11).

Listing 4-11. Initializing Component State in Constructors

import app, {Component} from 'apprun';

class MyComponent extends Component {
view = (state) => «div>{state}</div>
update = { };

}

const state = { };

new MyComponent(state).start('my-app');

~N O 1 B WN

The AppRun Component class has a start function similar to the app.start function,
which we can use to run the component inside a web page element (Listing 4-12).

Listing 4-12. Starting a Component

1 import app, {Component} from 'apprun’;
2 class MyComponent extends Component {
3. }

4 new MyComponent().start('my-app');

The start function is inherited from the AppRun Component class. It displays the
component inside the element and activates the event handlers of the component.

83

CHAPTER 4 VIEW PATTERNS

Sometimes we want to associate the component with an element without displaying
it. In this case, we can use the mount function inherited from the Component class. It
only activates the event handlers without displaying the component. These types of
components are lazy components (Listing 4-13).

Listing 4-13. Lazy Components

1 import app, {Component} from 'apprun';

2 class MyLazyComponent extends Component {
3.}

4. new MyLazyComponent().mount('my-app');

The component is mounted to the web page element or element ID. When the
component is mounted to an element ID, it retrieves the element by using the document.
getElementID function at the time it needs to render the element. It will not render the
element if it cannot find it. The lazy components are useful for single-page applications
(SPAs), where we can mount multiple components to a single element. The components
are hidden until the events that wake them up and display them. You will learn about
developing SPAs using components in Chapter 7.

Create Components in JSX

In addition to using components in code, we can use custom JSX tags to create AppRun
components (Listing 4-14).

Listing 4-14. Components in JSX

1 class App extends Component {

2 state = {};

3 view = <div></div>;

4. update = {

5 }s

6. }

7 app.render(document.body, <App />);

In Listing 4-14, we use a custom JSX tag called <App /> to create the App component.
Then we use the app . render function to display the App component in the body element.

84

CHAPTER 4 VIEW PATTERNS

We have used custom JSX tags to call custom functions, which are called stateless
functional components. The AppRun components created using the custom JSX tags are
called the stateful components.

When using custom JSX tags to create components, the JSX tag properties are set into
the state field of the components (Listing 4-15).

Listing 4-15. JSX Properties as Component States

=

class Child extends Component {
view = (state) => <div>{state.n}</div>; // state.n is expected to
be '8'

N

}

3

4 class Parent extends Component {
5 view = (state) => <div>
6. <Child n="8"'/>
7 </div>;

8

9

}
new Main().start();

In Listing 4-15, we use the custom JSX tag <Child n="'8"/> to create the Child
component (line 9). Notice that the Child component class has no state field. The
component object created by the custom JSX tag has values of the JSX tag properties. If
you define a state field in the component, your state field overwrites the JSX properties.

Custom JSX tags can have child tags. AppRun passes the child tags as the children
property to the state field of the component so that the component can render the child
tags (Listing 4-16).

Listing 4-16. Component Children

1. class Child extends Component {

2. view = (state) => {state.children}</div>;
3.}

4. class Main extends Component {

5. view = (state) => <div>

6. <Child>

7. <p>child</p>

8. </Child>

85

CHAPTER 4 VIEW PATTERNS

9. </div>;

10. }

11. const element = document.createElement('div');
12. new Main().start(element);

The end result from Listing 4-16 is as follows:

<div>
<div>
<p>child</p>
<divy
<div>

Let’s put AppRun components into action.

Two To-Do Lists

To demonstrate the AppRun component, we will make the to-do application have two
to-do lists, called my todos and team todos. The two lists have the same functions and
two different states (Figure 4-3).

[Appun » TodaMVC

C | O locathost: *

npm start

Figure 4-3. The two todo lists
86

CHAPTER 4 VIEW PATTERNS

We convert the to-do application into the Todo component. Then, we modify main.
tsx to use the Todo component twice (Listing 4-17).

Listing 4-17. Two To-Do Components

1 import app from 'apprun';

2 import TodoComponent from './to-do-component’;

3 const view = state => <div className="main">

4. <TodoComponent type="my" title="my todos" />

5 <TodoComponent type="team" title="team todos" />
6 </divy;

7 app.start(document.body, null, view);

This is different from the global to-do application, which had only a global state and
events. The Todo component has its own scope of state and events (Listing 4-18).

Listing 4-18. To-Do Components

1 import app, { Component } from 'apprun';

2 const STORAGE KEY = 'to-do-list-';

3 export default class TodoComponent extends Component {

4 state: State = {

5. filter: 'All‘,

6 list: [],

7 type: "my”,

8 title: "my todos"

9 };

10. Header = ({ title }) => <header className="header">

11, ieee..

12. </header>;

13. Footer = () => <footer className="info">

4. ceeee.

15. </footer>

16. Todo = ({ todo, idx }) => <1i className={todo.done ? "completed" :
"view"}>

7. L.,

18. </1i>;

87

CHAPTER 4 VIEW PATTERNS

19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

33.
34.

35.

Main

({ state }) => {...};
(state: State) => <
<section className="todoapp">
<this.Header title={state.title}/>
<this.Main state={state} />
</section>
<this.Footer />
</>;
update = {....};
constructor(props) {
super ();
const storageKey = STORAGE_KEY + props['type'];
const stored = localStorage.getItem(storageKey);
this.state = stored ? JSON.parse(stored) : { ...this.state,
...props, storageKey };

view

}

rendered = state => localStorage.setItem(this.state['storageKey'],
JSON.stringify(state));

}

The Todo component has a local scoped state, which identifies the type and title

of the to-do list (Listing 4-18, lines 4-9). It initializes the local state based on the JSX
properties in the constructor (Listing 4-18, lines 28-34).

The Todo component is a mini-application. We have reused it twice to create two to-
do lists.

Web Components

The component concept is so important that the web community wanted it to be

standardized and supported by browsers out of the box. Component support is currently
being added to the HTML and DOM specs through the Web Components specifications.
The Web Components specifications are a set of API standards that the W3C has been

88

CHAPTER 4 VIEW PATTERNS

working on to bring components to browsers.> Web components allow us to extend
HTML with custom elements. Custom elements are reusable. Their styling, behavior, and
functionality are encapsulated,* in other words, scoped.

Web components and AppRun components follow the same concepts. Both are
reusable and scoped. In addition, they share a similar structure. In fact, AppRun
components can be converted to web components.

Web components require ECMAScript 2015 (ES6). AppRun has two versions. One is
for ES5, and the other one is for ES6. The ES5 version is published on npm as the default
package. To use the ES6 version, you need to install the AppRun package tagged as
apprun@es6 in your project.

npm i apprun@es6

Also, you need to set the TypeScript compilation option in your project’s tsconfig.
jsonfile so that it is target=es2015 or target=es6

After configuring the project for ES6, we can start to create AppRun components
as web components. First, we define a component class. Then, we use the app.
webComponent function to convert the component to be a web component. Finally, we
can use the custom element <my-app /> directly in HTML.

We will demonstrate the process by making a counter component and converting it
into a web component (Listing 4-19).

Listing 4-19. Converting an AppRun Component to a Web Component

1 import app, { Component } from 'apprun’;

2 class CounterComponent extends Component {

3 state = 0;

4 view = (state) => <div>

5. <h1>{state}</h1>

6 <button onclick={() => this.run("-1")}>-1</button>
7 <button onclick={() => this.run("+1")}>+1</button>
8 </div>;

*https://github.com/w3c/webcomponents/
*https://developer.mozilla.org/en-US/docs/Web/Web Components

89

https://github.com/w3c/webcomponents/
https://developer.mozilla.org/en-US/docs/Web/Web_Components

CHAPTER 4 VIEW PATTERNS

9. update = {

10. "+1': (state) => state + 1,
11. '-1': (state) => state - 1
12. };

13. }

14. app.webComponent('my-app', CounterComponent)

We can then use the counter component just like the standard elements in HTML
(Listing 4-20).

Listing 4-20. Counter as Web Component

1. <!doctype html>

2. <html>

3. <head>

4. <meta charset="utf-8">

5. <title>Counter web component</title>
6. </head>

7. <body>

8. <my-app id="counter"></my-app>
9. <script src="app.js"></script>
10. </body>

11. </html>

The counter web component example (Listing 4-19 and Listing 4-20) is the pattern
for developing web components using AppRun. You can use the pattern to develop your
web components.

Listing 4-19 is written in TypeScript. We can develop web components without
TypeScript because ES6 and the Web Components standard is now supported in almost
all modern browsers. We can include the ES6 version of AppRun in a <script> tag and
create web components in plain HTML and JavaScript (Listing 4-21).

Listing 4-21. Using AppRun in a Script Tag for a Web Component

1. <!doctype html>
2. <html>
3. <head>

90

O 60 N O U1 B~

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

CHAPTER 4 VIEW PATTERNS

<meta charset="utf-8">
<title>Counter web component</title>
</head>
<body>
<my-app id="counter"></my-app>
<script src="https://unpkg.com/apprun@es6/dist/apprun-html.js">
</script>
<script>
class Counter extends Component {
constructor() {
super();
this.state = 0;
this.view = state => “<div>
<h1>${state}</h1>
<button onclick="counter.run("-1")"'>-1</button>
<button onclick="counter.run("+1")"'>+1</button>
</div>”;
this.update = {
'+1': state => state + 1,
'-1': state => state - 1

};
}
}
app.webComponent("'my-app', Counter, { shadow: true });
</script>
</body>
</html>

Because AppRun components are mini-AppRun applications that have the AppRun

architecture, the web components converted from the AppRun components are powered

by the AppRun architecture and the event publication and subscription. AppRun is

useful for building web components.

91

CHAPTER 4 VIEW PATTERNS

Source Code of Examples

You can get the source code of this chapter by cloning the GitHub project from
https://github.com/yysun/apprun-apress-book. You can run the three examples
from this chapter using the npm scripts in Table 4-2.

Table 4-2. npm Scripts of This Chapter

Example Script

The styled to-do application (Listings 4-1 and 4-2) npm run to-do-mvc

The two to-do lists application (Listings 4-17 and 4-18) npm run to-do-mvc-2

The web component counter (Listings 4-19 and 4-20) npm counter-web-component
Summary

The view is one of the three parts of the AppRun architecture, and it plays a key role in
the AppRun event lifecycle. The view, or the view function, outputs the virtual DOM and
is solely dependent on the state parameter. The view function does not change the state
and does not have any other side effects because it does not change the DOM. AppRun
takes care of the side effects to render the virtual DOM to the real DOM.

There are benefits to using JSX compared to an HTML string. You have seen
many view patterns for creating HTML elements and applying CSS classes using
JSX. The patterns described in this chapter are useful references for your application
development.

We can develop AppRun applications with or without using components.

A component has two benefits: scope and reuse. AppRun components are mini-
AppRun applications. AppRun components can be easily converted to standard web
components.

Web components developed from AppRun components are self-contained, scoped/
encapsulated, full-featured, and reusable DOM custom elements. They can be used
directly or along with other frameworks and libraries.

In this chapter, we have focused on the view and have not discussed event handling
in the example applications. AppRun applications are event-driven. In the next chapter,
we will deep dive into AppRun events.

92

https://github.com/yysun/apprun-apress-book

CHAPTER 5

Event Patterns

When the JavaScript runtime in a browser executes application code written in
JavaScript, it uses the techniques of events and event handling. When the browser
accesses web pages from back-end servers and when the users interact with the browser,
the JavaScript runtime publishes the DOM events. The application code handles the
DOM events in the event handlers. The DOM event handlers are the entry points to
developing web applications.! Events and event handling are part of the programming
model of JavaScript web application development.

AppRun application development uses the event publication and subscription (event
pub-sub) pattern as the primary programming model. The AppRun programming model
matches perfectly with the event-driven programming model of JavaScript. To develop
AppRun applications, we need to connect the DOM events to the AppRun events. The
AppRun events have two categories: global and local events. The global events are the
events that are broadcast to all modules and components. The local events are the events
that are broadcast and scoped only within the components.

This chapter demonstrates some of the commonly used DOM events, including a
button click event, an input event, keyboard events, mouse events, a browser history
event, and web workers. You will learn all the event-handling techniques necessary for
your application development projects.

We will start with reviewing the concept of events.

Event Concept

There are two types of events: DOM events and AppRun events.

'For more information about web event handling, visit https://developer.mozilla.org/en-US/
docs/Web/Guide/Events/Overview_of Events_and Handlers.

93
© Yiyi Sun 2019

Y. Sun, Practical Application Development with AppRun, https://doi.org/10.1007/978-1-4842-4069-4_5

https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Overview_of_Events_and_Handlers
https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Overview_of_Events_and_Handlers

CHAPTER 5 EVENT PATTERNS

DOM Events

The JavaScript runtime in browsers uses DOM events. Browsers are multithreaded
themselves. The browser code is running on multiple threads to interact with the
operating system and the hardware to capture events. An event is a signal that something
has happened.? Examples include the user clicking a button, pressing a key, and
moving the mouse; a system time ticker; network I/0O; and so forth. The browser adds a
message into the message queue of the JavaScript runtime. The message queue is like
a to-do list. Therefore, it allows the JavaScript runtime to run on a single thread. The
JavaScript runtime continually monitors the message queue. It picks up the messages
one by one from the message queue and invokes the functions that are associated with
the messages. It repeats the loop until the message queue is empty. The functions that
the JavaScript runtime invokes upon events are the event listeners or event handlers.
JavaScript programming mostly is creating DOM event handlers and registering them
with DOM events.

AppRun Events

AppRun has a built-in event engine. It follows the event pub-sub pattern. It also has
unique features. First, it connects to the AppRun state history. When invoking AppRun
event handlers, it passes the current application state along with other event parameters.
Second, the event lifecycle includes a few unique steps. It checks whether there is any
data returned from the event handlers. If there are, it invokes the view function. It then
checks whether the view returns the virtual DOM. If it does, AppRun renders the virtual
DOM to the actual DOM. It also checks whether there is an optional rendered callback
function defined. If there is, it invokes the rendered function before it ends the event
lifecycle (see Figure 5-1).

“See this online tutorial that defines events as signals that something has happened:
https://javascript.info/introduction-browser-events.

94

https://javascript.info/introduction-browser-events
https://javascript.info/introduction-browser-events

CHAPTER 5 EVENT PATTERNS

AppRun Application

N
4 N
(Initial State)
Web Event Update View Rendered
Handlers (Event Handlers) (Optional)
(AppRun Events) (Current State) W (New State) | (New State) | | (HTML/VDOM) | | (New State) |
+ Checkpoint 2 l

Checkpoint 1

State History AppRun Render DOM

Figure 5-1. AppRun event engine

Figure 5-1 shows the AppRun architecture and breaks down the application logic. It
also shows the interaction between the application code and AppRun. The application
code is developed as event handlers and the view function piece by piece. There is
no direct relationship between the event handlers and the view function. We rely on
AppRun events to trigger the AppRun event lifecycle, which means we can publish an
AppRun event and expect the DOM to be updated.

Connect the Events

After learning about DOM event handling and AppRun event handling, you can easily
understand that developing AppRun applications is mostly making connections from the
DOM events to the AppRun events, as summarized in Figure 5-2.

95

CHAPTER 5 EVENT PATTERNS

Browser AppRun Applications
JavaScript Runtime
Users /v Event Handler State
(Keyboard Event Loop I
and MOUSG) Message > Event Handler View
v Queue I
Event Handler Update
V‘ v v ‘ 1
AppRun Events
AppRun

Figure 5-2. Connecting DOM events to AppRun events

To connect DOM events to AppRun events, first we create a DOM event handler
and subscribe to the DOM event. Then we publish the AppRun events in the DOM
event handlers. For example, to subscribe to the onclick event of an existing button
and publish an AppRun foo event, we can use the addEventListener function, as
shown here:

document.getElementById('foo"').addEventListener('click', () => app.
run('foo'));

We can also subscribe to the DOM event while creating the button using JSX in the

view function, as shown here:
<button onclick={ ()=>app.run('foo') }>foo</button>

Notice that using JSX, we assign an anonymous function as the event handler to the
onclick attribute of the button. We can also publish the DOM event parameter as the
AppRun event parameter.

<button onclick={ (e)=>app.run('foo', e) }>foo</button>

Publishing the AppRun events in the DOM event handlers is a commonly used
pattern in AppRun application development.

96

CHAPTER 5 EVENT PATTERNS

Global and Local Events

In Chapter 4, you learned that we can develop AppRun applications using a global
architecture, which has a global state and uses global events. For example, Listing 5-1
shows a global architecture and a global event named foo.

Listing 5-1. The AppRun Global Architecture and Global Event

1. const state = {};
2. const view = state => <button onclick={ ()=>app.rxun('foo') }>foo

</button>;
3 const update = {
4. 'foo': state => state
5. 5
6 app.start('my-app', state, view, update);

The foo event in Listing 5-1 is a global event. We publish the foo event from the
button’s onclick event handler by calling the app.run function (line 2 of Listing 5-1).
The event is broadcast globally to all code modules.

You also learned that we can develop AppRun applications using the component
architecture. Each component has its event engine. Events inside components are limited
inside the components as local events. The local events are broadcast only within the
components. Listing 5-2 shows the component architecture and a local event named bar.

Listing 5-2. The AppRun Component Architecture and Local Event

1. import app, { Component } from 'apprun'’;

2. export default class MyComponent extends Component {

3. state = {};

4. view = state => <button onclick={ ()=>this.run('bar') }>foo
</buttony;

5. update = {

6. 'bar': state => state

7. };

8. }

97

CHAPTER 5 EVENT PATTERNS

The bar event is a local event that is only scoped in the component in Listing 5-2. We
publish the bar event from the button’s onclick event handler by calling the this.run
function (line 4 of Listing 5-2).

The general rule is that we use the app.run function to publish the global events
and use the this.run function to publish the local events. However, AppRun has a
convention that if the event has a special name that starts with # or /, the event is a global
event. Global events with special names can be published using the this.run function
inside components. The components can also subscribe to and handle the global events
with the special names (Listing 5-3).

Listing 5-3. Global Events in a Component

1 import app, {Component} from 'apprun’;

2 class MyComponent extends Component {

3. state = {};

4 view = (state) => «div>

5 <button onclick={()=>this.run('event"')}>{state}</button>
// publish local event

6. <button onclick={()=>this.run("#event"')}>{state}</button>
// publish global event

7. <button onclick={()=>app.run('event')}>{state}</button>
// publish global event

. </div>

9. update = {

10. ‘event': state => state // local event handler

11. '#event': state => state // global event handler

12. }

13. }

To demonstrate how to handle the global events with special names, we will develop
a clock application (see Figure 5-3).

98

CHAPTER 5 EVENT PATTERNS

& - O X

}/ [apprun X Wy
C | @ localhost:28080 %4

6:25:02 PM

Figure 5-3. The clock application

The clock application uses the window. setInterval function to publish the #tick
event using the app.run function every second. The clock component of the clock
application subscribes to and handles the #tick event (Listing 5-4).

Listing 5-4. Clock Application

1. import app, { Component } from 'apprun';

2. class ClockComponent extends Component {

3. state = new Date();

4. view = state => <h1>{state.tolLocaleTimeString()}</h1>;
5. update = {

6. "#tick': state => new Date()

7. b

8. }

9. window.setInterval(() => { app.run('#tick') }, 1000);

10. new ClockComponent().start('my-app');

99

CHAPTER 5 EVENT PATTERNS

In the clock application (Listing 5-4), we use the system timer to publish an AppRun
global event named #tick (line 9). The #tick event triggers the AppRun event lifecycle
of ClockComponent to display the current time every second.

So far, you learned about AppRun events and the event lifecycle. Next, you will learn
more about the various DOM events and learn how to use them in AppRun applications.
All the example applications in the next sections are developed using the component
architecture.

User Input

User input starts with the keyboard and mouse. Modern web browsers also support
advanced technologies such as drag and drop and touch. They all follow the same event-
driven programming model: when user input happens, the browsers publish DOM
events. Our general approach to handle user input is to publish the AppRun events in the
DOM event handlers to trigger the AppRun event lifecycle.

Click Events

We will first develop a Hello World application that takes user input and displays it on
the screen. The Hello World application has a text input box for the user to type into and
a button to display the user input (see Figure 5-4 and Listing 5-5).

100

CHAPTER 5 EVENT PATTERNS

w - 0O X |

[apprun »
C | @ localhost:2080 g
Hello World
| Go |

Figure 5-4. Hello World application

We will handle the onclick event of the Go button by assigning an anonymous
function as the DOM event handler, as mentioned earlier in the section “Connect the
Events.” Listing 5-5 shows the source code of the Hello World application.

Listing 5-5. The Click Event

import app, { Component } from 'apprun’;
class HelloComponent extends Component {
state = 'World';
view = (state) => <«div>
<h3>Hello {state}</h3>
<input id="text"/>
<button onclick={() => this.run("input")}>Go</button>
</div>;

0O N O V1T B~ W N

101

CHAPTER 5 EVENT PATTERNS

9. update = {

10. "input': (state) => (document.getElementById('text') as
HTMLInputElement).value

11. }

12. }

13. new HelloComponent().start('my-app');

The Hello World application shown in Listing 5-5 publishes the AppRun event input
in the button’s onclick event handler (line 7). The AppRun event handler of the input
event creates a new state using the value of the input box (line 10). The view function
creates the virtual DOM using the new state (lines 4-8).

There is one more detail that is worth mentioning. When AppRun renders the DOV,
it encodes the user input to prevent cross-site scripting attacks. For example, if the user
types a script, the application displays it as text, not as a runnable script (see Figure 5-5).

[apprun ®

C | @ localhost:2080 g

Hello <script>alert(0)</script>
?sc:ript:-aiert(d)dscript:-

Figure 5-5. User input encoding

102

CHAPTER 5 EVENT PATTERNS

Input Event

In the previous Hello World application, the application displays the user’s input after a
button click. Sometimes we want to process user input while users are typing such as for
a live update to the web page content and input validation. The next application, an echo
application, will update the <h3> element to include the user’s input (see Figure 5-6).

w - 0O X
[apprun ®
C | @ localhost:2080 g
Hello World !
|World !

Figure 5-6. Live update application

To get users’ input while they are typing, we can subscribe to the DOM input event
of the text input and then publish the AppRun input event and use the DOM event as the
AppRun event parameter (Listing 5-6).

Listing 5-6. The Input Event

1 import app, { Component } from 'apprun';
2 class EchoComponent extends Component {
3. state = 'World';

4 view = (state) => «div>

103

CHAPTER 5 EVENT PATTERNS

5 <h3>Hello {state}</h3>

6 <input oninput={ e => this.run("input", e)}/>
7. </div>;

8 update = {

9. "input': (state, e) => e.target.value

10. }

11. }

12. new EchoComponent().start("'my-app');

The AppRun event handler in Listing 5-6 receives the DOM event as the function
parameter. We can get the value of the input box from event.target (line 9). The value
of the input box is synchronized with the state.

In some cases, we want to postpone publishing the AppRun events until after a
certain period has elapsed. Delaying the event handling is a useful feature. It is also
called debouncing. Often this is used in a type-ahead scenario. AppRun supports
delaying the event handling. To use the feature, we use a tuple in the update object. The
tuple includes the event handler function and an options object where we can define a
delay value in milliseconds. For example, the following tuple delays the event handling
for 1,000 milliseconds, or one second:

"input': [(state, e) => e.target.value, {delay: 1000}]

We can modify the echo application to delay the display of the user’s input for a
second, in which the user can continue to type. The <h3> element updates only every
second. It is like throttling the user input. Listing 5-7 shows the delayed echo application.

Listing 5-7. The Delayed Input Event

import app, { Component } from 'apprun’;
class DelayedEchoComponent extends Component {
state = 'World';
view = (state) => <div>
<h3>Hello {state}</h3>
<input oninput={ e => this.run("input", e)}/>
</div>;

~N o B W N R

104

CHAPTER 5 EVENT PATTERNS

update = {
9. "input': [(state, e) => e.target.value, {delay: 1000}]
10. }
11. }
12. new DelayedEchoComponent().start('my-app');

Next, we will develop a type-ahead application to demonstrate the delayed event
handling along with the keyboard events.

Keyboard Events

Type-ahead is also known as auto-complete suggestions. It can help the user to find out
what they want. Like the live update example, the type-ahead example needs to get a
user’s input while typing to search and retrieve a list of options. The main difference is
that type-ahead also needs to handle a few special keys, such as the Enter key to select
an item from a list of options, the up and down arrows for moving the selection within
the options, and the Esc key to cancel the search. We can develop a simple type-ahead
experience that allows users to type and search the U.S. states (see Figure 5-7).

[} AppRun «Type Ahead X

C | @ localhost:2080 T

Hello California

al
Alabama
Alaska
California

Figure 5-7. Type-ahead
105

CHAPTER 5 EVENT PATTERNS

First, we will develop a generic type-ahead component, the TypeAhead component.
We want it to be generic, which means that it mainly handles user interaction with the
keyboard and shows or hides the data options in a drop-down list. It does not search for
data or handle the selected data. It requires two callback functions for searching the data
and for processing the selected data passed in from the main program as JSX properties.

<TypeAhead onSearch={search} onSelect={text => this.run('input', text)}/>

The onSearch property is a function that searches a data source. The onSelect
property is a function that processes the selected data. By using the two JSX properties, it
makes the TypeAhead component focus on handling the keyboard events (Listing 5-8).

Listing 5-8. TypeAhead Component

1 import app, { Component } from 'apprun’;
2 export default class TypeAheadComponent extends Component {
3 view = state => {
4 return (
5. <div className="typeahead">
6 <input
7 type="text"
8 placeholder=" Search:"
9 autocomplete="off"
10. value={state.selected || "}
11. oninput={e => this.run('search', e)}
12. onkeydown={e => this.run(keydown™, e)}
13. />
14. {state.show & state.options.length ?
15. state.options.map(option => (
16. <1i className={option === state.selected ?
'selected' : "}
onclick={() => this.run('select', option)}>{option} </1i>
17.)) @ "}
18. </div>
19.);
20. };

106

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.

45.
46.
47.
48.
49.
50.

CHAPTER 5 EVENT PATTERNS

update = {
search: [(state, e) => {
const options = this.state.onSearch(e.target.value);
return {
...state,
show: true,
selected: e.target.value,
options
15
}, { delay:200}],
popup: (state, show) => (state.show === show ? null : {
...state, show }),
keydown: (state, e) => {
if (!state.options) return;
let selectedIdx = state.options.indexOf(state.selected);
switch (e.keyCode) {
case 27: // ESC key to hide the popup
return { ...state, show: false };
case 38: // Up key to move the selection up
selectedIdx--;
if (selectedIdx < 0) selectedIdx = 0;
return { ...state, selected: state.options[selectedIdx] };
case 40: // Down key to move the selection up
selectedIdx++;
if (selectedIdx>=state.options.length) selectedIdx =
state.options.length - 1;
return { ...state, selected: state.options[selectedIdx] };
case 13: // Enter key to select the data
e.preventDefault();
this.run('select', state.selected);

1

107

CHAPTER 5 EVENT PATTERNS

51. select: (state, selected) => {

52. this.state.onSelect(selected);

53. return { ...state, selected, show: false };
54. }

55. };

56. }

The TypeAhead component shown in Listing 5-8 has the majority of code to handle
the DOM keyboard events of the text input control.

The search event is for taking the user’s input when the user is typing (lines 22-30).
It has a delay of 200 milliseconds. The keydown event is for handling the Esc key, the up
and down arrow keys, and the Enter key (lines 32-49).

While the user is typing, the TypeAhead component calls the onSearch function to
let the main program decide how to search and retrieve the options. When the user has
selected one item, the TypeAhead component calls the onSelect function to let the main
program decide what to do with the selected item. We will use it in the main program
(Listing 5-9).

Listing 5-9. Type-Ahead Application

1 import app, { Component } from 'apprun';

2 import TypeAhead from './typeahead';

3. const states = ['Alabama', 'Alaska', 'Arizona', 'Arkansas', 'California’,

4 'Colorado’, 'Connecticut', 'Delaware', 'Florida’, 'Georgia', 'Hawaii',

5 'Idaho', 'Illinois', 'Indiana', 'Iowa', 'Kansas', 'Kentucky',
"Louisiana’,

6. 'Maine', 'Maryland', 'Massachusetts', 'Michigan', 'Minnesota’,
'Mississippi', 'Missouri', 'Montana', 'Nebraska', 'Nevada',
'New Hampshire',

8. 'New Jersey', 'New Mexico', 'New York', 'North Carolina', 'North
Dakota',

9. 'Ohio', 'Oklahoma', 'Oregon', 'Pennsylvania’, 'Rhode Island',

10. 'South Carolina', 'South Dakota', 'Tennessee', 'Texas', 'Utah',
'"Vermont',

11. 'Virginia', 'Washington', 'West Virginia', 'Wisconsin', 'Wyoming'

12. |;

108

CHAPTER 5 EVENT PATTERNS

13. const search = text => states.filter(s => s.tolLowerCase().
indexOf(text.toLowerCase()) >= 0);

14.

15. class HelloComponent extends Component {

16. state = ";

17. view = (state) => «div>

18. <h3>Hello {state}</h3>

19. <TypeAhead

20. onSearch={search}

21. onSelect={text => this.run('input', text)}/>
22. </div>;

23. update = {

24. "input': (state, text) => text

25. }

26. }

27. new TypeAheadApp().start('my-app');

The type-ahead application in Listing 5-9 has the U.S. states in an array (lines 3-12)
and the search function for searching the states (lines 13-14). It also has an AppRun
event input for updating the state (line 24). The main program uses the TypeAhead
component (Listing 5-9) by setting the two callback functions for searching the options
and for handling the selected item (lines 19-21).

So far, we have developed the TypeAhead component as a generic component and
used it in an application for selecting U.S. states. You can use the application as an
example to reuse the TypeAhead component in other applications

Mouse Events

The mouse is one of the most used interaction tools. We will develop an application

that connects the DOM mouse events to AppRun events to implement a draggable
button, also known as float action button (see Figure 5-8). The float action button can be
dragged around on the web page.

109

CHAPTER 5 EVENT PATTERNS

w - 0O X
[AppRun « Float Action B. X
C | @ localhost:2080 g
Clicked: 3

Figure 5-8. Float action button

The float action button is also a reusable component. We use it in the main program
(Listing 5-10).

Listing 5-10. Float Action Button Application

import app, { Component } from 'apprun’;
import Fab from './fab’';
class FabApp extends Component {
state = 0;
view = (state) => <div>
<h3>Clicked: {state}</h3>
<Fab id="fab' position={{x: 500, y:300}}
onClick={text => this.run('action')} />

O 60N O LT B W N B

</div>;

110

10.
11.
12.
13.
14.

CHAPTER 5 EVENT PATTERNS

update = {
'action': state => state + 1

}
new FabApp().start('my-app');

The main program sets the initial location of the float action button (line 7). It also

sets the callback function to publish the AppRun event, called action (line 8), which will

record the number of times the button is clicked.

The float action button is also developed as a reusable component (Listing 5-11).

Listing 5-11. Float Action Button Component

1
2
3
4
5.
6
7
8
9

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

import app, { Component } from 'apprun’;
export default class FabComponent extends Component {
view = (state) => {
const style = {
'left': “${state.position.x}px’,
"top': “${state.position.y}px’,
};
return <div className='fab-btn' style={style}
onpointerdown={e => this.run('drag', e)}

onpointermove={e => this.run('move', e)}
onpointerup={e => this.run('drop', e)}> + </div>
}s
update = {
drag: (state, e) => ({
...state,

dragging: true,
start: { x: e.pageX, y: e.pageY },
last: { x: e.pageX, y: e.pageY }

1,

move: (state, e) => {
if (!state.dragging) return;
e.target.setPointerCapture(e.pointerld);
const last = { x: e.pageX, y: e.pageY }

111

CHAPTER 5

24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37. }

EVENT PATTERNS

const position = {
x: state.position.x + e.pageX - state.last.x,
y: state.position.y + e.pageY - state.last.y
}

return ({ ...state, position, last });
})
drop: (state, e) => {
if (state.last.x - state.start.x 0 &&
state.last.y - state.start.y === 0) state.onClick();
e.target.releasePointerCapture(e.pointerIld);

return { ...state, dragging: false };

The float action button component shown in Listing 5-11 tracks the button position

in its state (lines 4-7). The position is applied to the button in the view function (line 8).

It creates a <div> element and subscribes to its three DOM pointer events: pointerdown,

pointermove, and pointerup. It is the same as using the DOM events: mousedown,

mousemove, and mouseup. The DOM Pointer API is the unified API that incorporates more

forms of input, including mouse, touchscreens, and pen input.

Brower History Event

Web browsers record and keep a history of the URLs that users visit. When the user

enters a URL in the browser’s address bar, clicks a hyperlink in a web page, or clicks the

back/forward button, the browser saves the corresponding URL in the browser history
and publishes a DOM event: the popstate event.

A URL is the web address of web resources, such as web pages. Also, the URL can

identify a specific location within the web pages. The location within the web pages
is identified by a fragment identifier, which is anything in the URL after the # sign. We
can navigate to different locations of web pages by changing this fragment identifier.

Changing the fragment identifier does not make the browser navigate to other web

pages, but it does create browser history entries and publish the popstate events. We

can subscribe to the popstate event and use window.location.hash to retrieve the

fragment identifier.

112

CHAPTER 5 EVENT PATTERNS

AppRun has built-in code that subscribes to the popstate event. AppRun parses the
URL into the event parameters and publishes the # event. For example, if the browser
address URLis http://.../#/a/b/c, AppRun publishes the # event as app.run('#",
['a', 'b", 'c']).

To demonstrate the AppRun # event, we will modify the echo application to
subscribe to the # event and manipulate the browser history. Every time a user enters
a new word in the input box, the application pushes the user input into the history;
therefore, the # event is also published (see Figure 5-9).

[apprun X

S5 C @Ioca!host:&OS ¥
Hello World

[World i

Figure 5-9. Saving user input as the fragment identifier

Running the application, the user can type into the input box. When a user presses
the Enter key or moves the input focus away from the input box, what the user typed
is shown in the browser address with the # sign. The <h1> element is also updated
accordingly. Listing 5-12 shows the source code of the application.

113

CHAPTER 5 EVENT PATTERNS

Listing 5-12. Handling Browser History

1. import app, { Component } from 'apprun'’;

2. class HelloComponent extends Component {

3. state = 'World';

4. view = state => <div>

5. <h1>Hello {state}</h1>

6. <input onchange={e => this.run('change', e)} value={state} />
7. </div>;

8. update = {

9. '#': (state, hash) => hash || state,

10. "change': (_, e) => {

11. const text = e.target.value;

12. history.pushState(null, text, '#/' + text);
13. }

14. };

15. }

16. new HelloComponent().start('my-app');

There are a few interesting points to explain in Listing 5-12. The view function
displays the state to the <h1> element (line 5). The <input> element’s DOM event, the
change event, is converted to the AppRun change event (line 6). The event handler
for the # event sets the location hash as the current state (line 9). In the event handler
of the change event, we take the user’s input and push it into the browser history as a
new fragment identifier (lines 11-12). Notice the change event handler does not return
anything. Therefore, the event lifecycle ends. However, because we pushed data into the
browser history, the browser publishes the DOM popstate event. AppRun then converts
it to the # event. We have another event lifecycle. The event handler for the # event
returns the new state, which is displayed in the <h1> element.

The AppRun # event often is used as the main entry point of AppRun applications. It
is also commonly used in single-page applications, which you will learn more about in
Chapter 7.

114

CHAPTER 5 EVENT PATTERNS

Web Workers

Because the main JavaScript runtime inside web browsers executes application code

in a single thread, it could slow down the user interface or even make it become
unresponsive when the application code is computationally heavy and time-consuming.
A web worker is a new JavaScript runtime with which we can spawn web workers to
execute application code in the background. Web workers provide a way to create a
multithreaded architecture in which the browser can execute multiple tasks at once.
Web workers are often able to utilize multicore CPUs more effectively.

To allow multithreaded execution, the web workers do not have direct access to the
DOM. The web page and the web workers communicate with each other by passing
messages. The process of sending and processing messages again falls into the AppRun
sweet spot. AppRun is an event engine that abstracts away the complexity of dispatching
events and messages.

Using AppRun, we can publish events from the web page to a web worker.

worker.run('+1', state); // in web page
The web worker subscribes to and handles the event.
app.on('+1', state => value = state + 1); // in web worker
We can also publish events from a web worker to a web page.
page.run('#', value); // in web worker

AppRun dispatches the # event from the web worker into the AppRun application’s
event handler (see Figure 5-10).

115

CHAPTER 5 EVENT PATTERNS

Page Worker
Import app from ‘apprun’; importScript(‘apprun.js’);
const worker = new Worker(‘worker.js’); const page = {run:... };
worker.run = ...;
worker.run(‘-1, state); =~ sssssssssssssssfEsssssssnnny =« app.on(‘-1’, state =>value = state - 1);
worker.run(‘+1’, state); = cesesssssssssssfsssnannnnnnny «sp app.on(‘+1’, state =>value = state + 1);
update = {
‘#’: (state, value) =>value essssssssssasfoannansannnnn ke page.run(‘#,value);
}

Figure 5-10. AppRun events between web page and web worker

We will change the counter application from Chapter 3 (see Listing 3-1) to use a web
worker to do the calculation in a separate thread. Listing 5-13 shows the web page code,
and Listing 5-14 shows the web worker code.

Listing 5-13. Web Page Using Web Worker

1 import app, { Component } from 'apprun’;

2. const worker = new Worker("worker.js") as any;

3. worker.onmessage = e => {

4 const { name, parameters } = JSON.parse(e.data);

5. app.run(name, ...parameters);

6. }

7 worker.run = (name, ...parameters) =>

8 worker.postMessage(JSON.stringify({ name, parameters }));

9. class CounterComponent extends Component {

10. state = 0;

11. view = (state) => <div>

12. <h1>{state}</h1>

13. <button onclick={() => worker.run("-1", state)}>-1</button>
14. <button onclick={() => worker.run("+1", state)}>+1</button>
15. </div>;

116

16.
17.
18.
19.
20.

CHAPTER 5 EVENT PATTERNS

update = {
"#': (state, val) => val
};
}

new CounterComponent().start('my-app');

Listing 5-14. Web Worker

OW 60N O U1 B W N B

(I
R O

importScripts('//unpkg.com/apprun@latest/dist/apprun.js’);
onmessage = function (e) {
const { name, parameters } = JSON.parse(e.data);
app.run(name, ...parameters);
};
const page = {
run: (name, ...parameters) => postMessage (
JSON.stringify({ name, parameters }))
};
app.on('+1', n => page.run('#', n + 1));
app.on('-1', n => page.run('#', n - 1));

Although the counter calculation is not heavy-computational code, it demonstrates

the architecture of using a web worker with AppRun.

Source Code and Examples

You can get the source code of this chapter by cloning the GitHub project at https://

github.com/yysun/apprun-apress-book. You can run the seven examples in this

chapter using the npm scripts in Table 5-1.

117

https://github.com/yysun/apprun-apress-book
https://github.com/yysun/apprun-apress-book

CHAPTER 5 EVENT PATTERNS

Table 5-1. npm Scripts of This Chapter

Example Script

The button click event (Listing 5-9) npm run hello

The input event (Listing 5-6) npm run echo

The delayed input event (Listing 5-7) npm run echo-delayed
The keyboard event (Listings 5-8 and 5-9) npm run typeahead
The mouse events (Listings 5-10 and 5-11) npm run fab

The browser history events (Listing 5-12) npm run echo-hash

The web worker event (Listings 5-13 and 5-14) npm run worker

Summary

JavaScript programming on the web platform is event-driven. From the system timer
and user input to the browser history and web workers, we respond to various events,
attach callbacks, and send messages. When developing AppRun applications, we mainly
connect the DOM events to the AppRun events.

AppRun has an event engine that supports event publication and subscription.
Associated with the event engine, it has state management and a DOM rendering engine.
When AppRun events are published, AppRun not only invokes the event handlers but
also manages the states and renders the DOM. We can publish an AppRun event and
expect the web page to be updated.

By using AppRun events, code is well organized, modularized, and decoupled. It
solves the problem that code is like spaghetti in the event-driven world.

The events discussed in this chapter are all synchronous events. We will introduce
the asynchronous events in the next chapter.

118

CHAPTER 6

Asynchronous Events

The JavaScript runtime executes event handlers one at a time in the event loop. If an
event handler takes a long time to execute, the user interface appears to be unresponsive
or frozen. This is because the JavaScript runtime must wait for the event handler

to finish. The code execution is blocked while waiting. To avoid blocking the code
execution, JavaScript uses a technique called asynchronous operations.

For example, getting data from a back-end server over the Internet requires a
comparatively long-running code execution. It requires us to define a function as
the callback function when it begins sending requests to the back-end server. The
underlining browser code interacts with the operating system to send and receive data
from the back-end server while the other JavaScript code continues to execute. When the
server has returned the data, the JavaScript runtime invokes the callback function.

The asynchronous operations are implemented not only by using callback functions
but also by using the Promise object and the async/await syntax. The AppRun
architecture supports async/await with the AppRun async event handlers. It makes the
asynchronous operations feel logical and natural.

This chapter explains the three methods of asynchronous operation and the AppRun
asynchronous event handlers. It has example applications of pulling and pushing
data from the back-end servers. You can learn all the techniques you'll need for your
application development projects.

Asynchronous Operations

As mentioned, asynchronous operations in JavaScript have evolved from the callback
functions to the Promise object and to the async/await syntax. We will first review the
evolution and then learn how to use them in AppRun application development.

119
© Yiyi Sun 2019

Y. Sun, Practical Application Development with AppRun, https://doi.org/10.1007/978-1-4842-4069-4_6

CHAPTER6 ASYNCHRONOUS EVENTS

Callbacks

Callback functions are the first method of asynchronous operations that we’ll discuss.
Assume we want to schedule a function execution, console.log, in ten seconds but
don’t want to freeze the user interface. We use the window.setTimout function to
schedule a callback function.

window.setTimout(()=>{console.log(0)}, 10000);

This adds a message into the message queue. Ten seconds later, the message will be
picked up by the event loop. The callback function will be invoked then.

The callback function is the foundation of asynchronous operations. All other
asynchronous operations use the callback function. It is easy to understand, but it is
not scalable. For example, if we want to schedule three functions one after another, the
callback functions are nested, as in the following example, and they become difficult to

manage:

window.setTimeout (()=>{
console.log(1);
window.setTimeout (()=>{
console.log(2);
window.setTimeout (()=>{
console.log(3);
}, 10000);
}, 10000);
}, 10000);

Again, the code becomes difficult to manage. Also, it is difficult to handle errors in
the nested callback functions. The Promise object comes to rescue.

Promise

The Promise object was standardized in ECMAScript 2015 (ES6) to improve callbacks.
The Promise object represents the operation completion (or failure) of an asynchronous
operation and its resulting value.!

'For more information about the Promise object, please visit https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Reference/Global Objects/Promise.

120

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

CHAPTER 6 ASYNCHRONOUS EVENTS
We can create a Promise object for the window.setTimout function, as shown here:

const delay = (f, t) => new Promise((resolve) =>
setTimeout(()=>resolve(f()), t));

In the then function of Promise, we provide a callback function for handling the
success of the operations.

delay(()=>console.log(1), 10000).then(()=>{});

We can return another Promise in the then function. Then we can chain all the
Promise executions.

delay(()=>console.log(1), 10000)
.then(() => delay(()=>console.log(2), 10000))
.then(() => delay(()=>console.log(3), 10000));

In case of a failed operation, the catch function of the Promise object is where
we can handle the errors. Any error from all Promise objects will fall into one catch
function.

delay(()=>console.log(1), 10000)
.then(() => delay(()=>console.log(2), 10000))
.then(() => delay(()=>console.log(3), 10000))
.catch(error=>{});

The Promise object is an improvement to the callback functions. Using the Promise
object, we flatten the nested callback structure and can handle the errors using the catch
function. But using Promise still feels verbose. The new async/await syntax is designed
to further improve the asynchronous operation code.

async/await

async/await is a special syntax to work with Promise objects.? It was originally
intended to be in ECMAScript 2015 but kept getting pushed back and finally landed
in ECMAScript 2017. The async/await syntax makes the use of Promise objects
straightforward.

For more information about async/await, please visit https://javascript.info/async-await.

121

https://javascript.info/async-await

CHAPTER6 ASYNCHRONOUS EVENTS

await delay(()=>console.log(1), 10000);
await delay(()=>console.log(2), 10000);
await delay(()=>console.log(3), 10000);

The error handling with the async/await syntax is also simpler.

try {
await delay(()=>console.log(1), 10000);
await delay(()=>console.log(2), 10000);
await delay(()=>console.log(3), 10000);
} catch (err) {

}

To summarize asynchronous operations, the callback function is the foundation.
The Promise object can wrap the callback functions. The async/await syntax is built
on top of the Promise objects. Any function that returns Promise objects can be used
with async/await. Using the async/await syntax, the asynchronous code looks like
synchronous code and feels natural.

AppRun async Event Handlers

The AppRun architecture supports asynchronous operations in the AppRun event
handlers. We only need to add the async keyword in front of the event handler and call
the functions to return a Promise object with the await keyword (Listing 6-1).

Listing 6-1. Asynchronous Event Handler

1. import app from 'apprun’;

2. const get = async (url) => { };

3. const state = {};

4. const view = (state) => <div>{state}</div>;

5. const update = {

6. "#': async (state) => {

7. try {

8. const data = await get('https://...");
9. return { ...state, data }

10. } catch (err) {

122

CHAPTER6 ASYNCHRONOUS EVENTS

11. return { ...state, err }

12. }

13. }

14. };

15. app.start('my-app', state, view, update);

In Listing 6-1, adding the keyword async to the event handler (line 6) makes it an
asynchronous event handler. We then can call the other async functions (line 8). It also
can have the error-handling structure using the try and catch statements (lines 10-12).

When the AppRun event handlers are defined as async functions, they return
promises of new application states to AppRun, which resolves them to get the new states
and then passes them to the view function (see Figure 6-1).

AppRun Application

N
e N
(Initial State)
Web Event Update View Rendered
Handlers (Event Handlers) (Optional)
| (AppRun Events) | | (Current State) | Promise | (New State) | | (HTML/VDOM) | | (New State) |
(New State) |

Checkpoint 1 Checkpoint 2
eckpoint 1 @ Promise => (New State) P

State History || Event Engine AppRun Render DOM

Figure 6-1. Async event handlers return promises

Server Requests

Sending data to and receiving data from the back-end servers are typical asynchronous
operations for which we can use callbacks, Promise objects, and the async/await syntax.
Usually, we have two scenarios: getting JSON data from the servers or posting JSON data
to the servers.

export const get = (url) => {}
export const post = (url, data) => {}

123

CHAPTER6 ASYNCHRONOUS EVENTS

JavaScript has two ways to make the server requests, using XMLHttpRequest or
using the Fetch API. We will implement the get function and the post function using
XMLHttpRequest and the Fetch APIL

XMLHttpRequest

XMLHttpRequest (XHR) is the underlying technology designed to support the concept of
Ajax, which originally stood for Asynchronous JavaScript and XML. Originally Ajax was for
getting XML data from servers asynchronously. Nowadays, the back-end servers favor the
JavaScript Object Notation (JSON) format and REST-style web services to serve the data.

XHR is callback-based. It has two callback functions, onload and onerror. We can
wrap the XHR callback functions with a Promise object and then implement the get
function and the post function (Listing 6-2).

Listing 6-2. XHR Promise Wrapper

export interface IRequest {
method?: 'GET' | 'POST',
headers?: {}

body?

export default function getJSON(url: string, request: IRequest = {}) {
return new Promise(function (resolve, reject) {
const req = new XMLHttpRequest();

1
2
3
4.
5. }
6
7
8
9 req.open(request.method || 'GET', url);

10. if (request.headers) {

11. for (let name in request.headers) {
12. req.setRequestHeader(name, request.headers[name]);
13. }

14. }

15. req.onload = () => {

16. if (req.status == 200) {

17. resolve(JSON.parse(req.response));
18. } else {

19. reject(JSON.parse(req.response));
20. }

21. };

124

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

CHAPTER6 ASYNCHRONOUS EVENTS

req.onerror = (err) => {
reject(Error("Network Error"));
};
req.send(JSON.stringify(request.body));
D;

}
export const get = (url, headers?) => getJSON(url, { headers });

export const post = (url, data, headers?) => getJSON(url, {
method: 'POST',
headers,
body: JSON.stringify(data)

1

The getJSON function wraps XHR and returns a Promise object (Listing 6-2, line 6). The

get function (line 28) and the post function (lines 29-33) call into the getJSON function.

The Fetch API

JavaScript also has a relatively new API, called the Fetch API, which is a better alternative

to the XHR.? It is Promise-based. We can create the get function and the post function

directly using the fetch function without a wrapper (Listing 6-3).

Listing 6-3. Using the Fetch API

1
2
3
4.
5.
6
7
8
9

export const fetchJSON = async (url: string, request?: RequestInit) => {
const response = await fetch(url,

);
if (!response.ok) {
const data = await response.text();
throw data;
}
return response.json();
}

SFor more information about the Fetch API, please visit https://developer.mozilla.org/
en-US/docs/Web/API/Fetch_API/Using Fetch

125

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

CHAPTER6 ASYNCHRONOUS EVENTS

10. export const get = (url, headers?) => fetchJSON(url, { headers });
11. export const post = (url, data, headers?) => fetchJSON(url, {
12. method: 'POST',

13. headers,
14. body: JSON.stringify(data)
15. }1);

Notice that there are two promises when using the fetch function. One is for
creating the response (line 2). The other one is for getting data from the response
(line 7). We can check the ok property of the fetch response object to see whether there
is an error (lines 3-6).

Comparing the Fetch API with XHR, the Fetch API provides functionalities that we
have to write ourselves when using XHR. For example, the Fetch API can add HTTP
request headers, whereas when using XHR, we need to write the code for it (Listing 6-3,
lines 10-14).

On the other hand, XHR sends the cookies to the servers, but the Fetch API does not
send cookies to the server. You can choose based on the authentication requirements of
the back-end servers.

So far we have created the get function and the post function to support GET or
POST data to the server, respectively. They have identical function signatures with
either XHR or the Fetch API underneath. You have the option to choose from the two
underlying technologies to develop your AppRun applications.

Pulling Data

To demonstrate the data access, we will develop an application that retrieves and
displays the current weather and forecast.

Weather Application

The weather application displays the current weather and forecast of Toronto, Canada,
by default (see Figure 6-2).

126

[apprun * weather x

< C | ® localhost:8080

e Friday
* Friday
s Friday
e Saturday
* Saturday
* Saturday
e Saturday
e Saturday
e Saturday
* Saturday
e Saturday
* Sunday

Figure 6-2. The weather application

17:00
20:00
23:00
2:00
5:00
8:00
11:00
14:00
17:00
20:00
23:00
2:00

Friday

Toronto, CA

22.19°¢

CHAPTER6 ASYNCHRONOUS EVENTS

Clear - clear sky

%
0
-0
-0
et
et
et
et
.:@:
<0
D

19.73°
18.87°
148°

12.43°
11.93°
16.02°
19.04°
20.66°
21.06°
19.27°
14.72°
12.73°

- 2215°
- 20.68°
- 1601°
13.03°
- 11.93°
- 1602°
19.04°
20.66°
21.06°
19.27°
14.72°
12.73°

The weather application accepts the city from the URL fragment. For example, the

URL http://localhost:8080/#/new york, us displays the weather and forecast for

New York in the United States (see Figure 6-3).

127

CHAPTER6 ASYNCHRONOUS EVENTS

[apprun * weather x
€ 2 C | ® localhost:8080/#/new%%20york %20us i

Friday

New York, US

—_) 265c

Clouds - broken clouds
e Friday 17:00 2503° - 26.18°
e Friday 20:00 2347° - 2432°
e Friday 23:00 2155 - 22.12°

2088° - 2116°
1878° - 1878°
1957° - 1957°

-] -]

¢ Saturday 2:00
e Saturday 5:00
¢ Saturday 8:00

e Saturday 11:00 2229 - 2229
e Saturday 14:00 23.66° - 23.66°
2356° - 2356°

DEDHLRRY

e Saturday 17:00 0:

e Saturday 20:00 O 2037° - 2037°
e Saturday 23.00 O 1627° - 1627°
« Sunday 2:00 o 1393 - 1393°

Figure 6-3. The weather application displaying the weather for New York

The weather application displays an error message when the city is not found (see
Figure 6-4).

128

CHAPTER6 ASYNCHRONOUS EVENTS

D apprun " weather x

&« C | ® localhost:8080/#/1x "

city not found : 1x

Figure 6-4. Error handling in the weather application

The Data API

We will use the Open Weather Map APL.* It is easy to use the JSON Data API that returns
the current weather, forecast, historical weather information, and weather station data.
We can sign up to get an API key (app ID) to get started using the API for free. Each API
call requires the API key to be sent along with other parameters.

We will use two APIs, one for getting the current weather data and the other for
getting the forecast data for a city. We wrap the two APIs as the async functions within an
object (Listing 6-4). The object serves as the API layer.

*https://www.openweathermap.org/api

129

https://www.openweathermap.org/api

CHAPTER6 ASYNCHRONOUS EVENTS

Listing 6-4. API Layer

~N O v B WN

}

import { get } from './xhr;
const url = 'http://api.openweathermap.org/data/2.5/";
const appid = "Xxxxxxxxxx';
export default {
current: q => get("${url}weather?q=${q}8appid=${appid}8units=metric™),
forecast: q => get("${url}forecast?q=${q}&appid=${appid}&units=metric")

The weather object has two functions for retrieving the current weather data and the

forecast data (lines 5-6). It uses the get function built on top of XHR (line 1). You can
switch it to test the Fetch API.

import { get } from './xhr;

The application runs identically using either XHR or the Fetch API.

Data Access Architecture

The data access architecture of the weather application has several layers: the AppRun

async event handlers, an API layer, the get function and the post function, and the XHR
or Fetch API (see Figure 6-5).

Data Access Architecture

State

View

Update

—|

API —> Get | Post

|

XHR | Fetch

AppRun

Figure 6-5. Data access architecture

130

CHAPTER6 ASYNCHRONOUS EVENTS

The API layer is an object that provides async functions to call the back-end server.
It serves as a namespace for the server access functions. Using an API layer is the pattern
for larger applications because namespaces can help organize the APIs. Also, by using an
API layer, the data access code is separate from the event handler, which makes it is easy
to unit test.

The weather application is a global AppRun application (Listing 6-5).

Listing 6-5. The Weather Application

1. import app from 'apprun’;

2. import weather from './weather’;

3. const state = { /* omitted state code */ };

4. const view = (state) => <>/* omitted view code */</>;

5. const update = {

6. "#': async (_, city) => {

7. try {

8. city = city || 'Toronto,CA';

9. const current = await weather.current(city);
10. const forecast = await weather.forecast(city) as any;
11. return { ...current, list: forecast.list };
12. } catch (err) {

13. return { err: err.message, city };

14. }

15. }

16. };

17. app.start('my-app', state, view, update);

We have omitted the state and the view function of the weather application to let us
focus on the async event handler (Listing 6-5). The async event handler (line 6) calls the
weather object twice with the await keyword to retrieve data from the back-end server
(lines 9-10). By using the await syntax, the first API call, await weather.current(), fires
first. Only when the first call’s results are returned by the server does the second API call,
await weather.forecast(), fire. The API calls are sequential.

When the async event handler returns the Promise object to AppRun, AppRun
waits until the Promise object resolves before it calls the view function and renders the
screen. It is safe and convenient to mark the event handlers with the async keyword for
asynchronous operations.

131

CHAPTER6 ASYNCHRONOUS EVENTS

To conclude, the weather application implements the AppRun async event handler
pattern (Listing 6-1) and has the data access architecture (see Figure 6-4).

Pushing Data

The weather application demonstrates pulling data from the back-end server.
Sometimes it would be nice to have the back-end server push data into our applications.
We will develop a Hacker News reader application to demonstrate getting the data
pushed from the back-end server.

Hacker News Reader

Hacker News (https://news.ycombinator.com) is a social news web site focusing on
computer science and entrepreneurship. Hacker News is a fascinating and fun website to
visit and share information.®

Hacker News partners with Firebase and publishes a public API that provides
Hacker News data in near real time.® The Firebase Realtime Database is a cloud-hosted
database. It can push data to every connected client. Applications built with Firebase
automatically receive updates with the newest data.

By developing a Hacker News reader application, we’ll explore how to handle the
data pushed from Firebase using AppRun. The Hacker News reader application has two
screens. One screen is a list screen that displays the Hacker New stories in categories:
Top, New, Best, Show, Ask, and Jobs (see Figure 6-6). The other screen displays the story
and its comments (see Figure 6-7).

5The Hacker News submission guidelines define the content type for the site. In general, content
that can be “anything that gratifies one’s intellectual curiosity.” https://news.ycombinator.com/
newsguidelines.html

For more information about the Hacker News AP]I, please visit its GitHub project at https://
github.com/HackerNews/API.

132

https://news.ycombinator.com
https://news.ycombinator.com/newsguidelines.html
https://news.ycombinator.com/newsguidelines.html
https://github.com/HackerNews/API
https://github.com/HackerNews/API

CHAPTER6 ASYNCHRONOUS EVENTS

[apprun * hacker news X

< = C | ® ocalhosts030

92

37

192

A7

747

AppRun W HN Top | New | Best | Show | Ask | Jobs

GilLab Web IDE
by Shinkirou | 1 hour ago | 32 comments

Blooming P: -A p check using a bloom filter

by vuin | 1 hour ago | 18 comments

Codemasters History: The NES' Best Unlicensed Developer
by shortformblog | 2 hours ago | 3 comments

RetroBSD: Unix for microcontroliers
by fanf2 | 7 hours ago | 45 commenis

Strapdown.js - Instant and elegant Markdown documents
by exolymph | 1 hour ago | 6 comments

Ultibo — Environment for embedded development on Raspberry Pi
by open-source-ux | 9 hours ago | 32 comments

MNew form of matter may lie just beyond the periodic table
by valiant-comma | 2 hours ago | 29 comments

Earliest images of the moon were much better than we realised
by theindieg | 1 day ago | 149 comments

Frida Kahlo and the birth of Fridolatry
by Thevet | 14 hours ago | 26 comments

Powered by AppRun, Source code: Github

a

Figure 6-6. Hacker News reader, story list

133

CHAPTER6 ASYNCHRONOUS EVENTS

/ [apprun * hacker news X \D

< c | @ localhost:8080/#/item /17321921 T

AppRun ® HN Top | New | Best | Show | Ask | Jobs

GitLab Web IDE
95 points | by Shinkirou | 1 hour ago | 32 comments (in total) | back
[-] 15 comments

by cabaalis | 24 minutes ago

I'll admit I'm a very poor "look and feel” person. But am | the only one who thinks that the zooming images on this
webpage are hostile to the user?

(1) The zoom animation takes too long, | want to see the screenshot

(2) After Zooming, it's still difficult to read to my 33-year-0ld eyes. | want a fullscreen image.

(3) After finishing squinting at the screenshot, | scroll down to read more text only to have that text MOVE while I'm
reading it as the screenshots animate back to their original positions,

[13 comments
by rootlocus | 19 minutes ago

| managed to bug an animation by scrolling too fast over it. One screenshot kept snapping back and forward 10
pixels really fast. | always feel like I'm not part of the demographic for these presentation pages.

by magic_beans | 2 minutes ago
My god it gave me a headache. I'm sure a designer thought it was too cool to resist.
by Operyl | 21 minutes ago

It's really bad on mobile, it literally just barely moves the screen shots around. | just have to view the image
directly to get what | wanted out of it

by zachlatia | 22 minute

Powered by AppRun, Source code: Github

Figure 6-7. Hacker News reader, story and comments

The Hacker News API

There are two ways to use the Firebase Hacker News API: use the JSON API or use the
Firebase API. The JSON API can be used to pull the data from the server. The Firebase
API can be used to let the server push the data to the application.

The JSON API has the URL endpoint https://hacker-news.firebaseio.com/v0/
item/{story id}. For example, the URL to a story at https://hacker-news.firebaseio.
com/v0/item/8863.json returns the JSON data of the story.

To use the Firebase API, we use the Firebase database reference. First we create the
Firebase database, and then we get the Firebase database reference of the story list and
story detail (Listing 6-6).

134

https://hacker-news.firebaseio.com/v0/item/{story
https://hacker-news.firebaseio.com/v0/item/{story
https://hacker-news.firebaseio.com/v0/item/8863.json
https://hacker-news.firebaseio.com/v0/item/8863.json

CHAPTER6 ASYNCHRONOUS EVENTS

Listing 6-6. Firebase Database References

1. import * as firebase from 'firebase/app';
import 'firebase/database’;

3. firebase.initializeApp({ databaseURL: "https://hacker-news.
firebaseio.com' });

4. const db = firebase.database().ref('/v0");

5. const list ref = db.child(${category}stories™);
const item ref = db.child(item/${id}");

The stories posted to Hacker News are categorized as Top, New, Best, Show, Ask,
and Jobs. The story list of each category has the Firebase database reference. We can get
the Firebase database reference of the story list (line 5). Also, we can get the Firebase
database reference of the story detail (line 6).

The Story List

The Firebase story list reference publishes the value event with an array of at most

500 story IDs when the application connects to Firebase; in addition, the story list has
updates at the server side. We can create the getList function to subscribe to the value
event to get the story IDs (Listing 6-7).

Listing 6-7. Getting the Story List

1. export const getlist = (category, min, max) => {

2 const ref = db.child(${category}stories’);

3 ref.on('value', async snapshot => {

4 const items = await Promise.all(snapshot.val().map((id, idx) =>
5. (idx >= min 8& idx < max && (typeof id === 'number')) ?
6 fetchJSON(item/${id}") : id

7));

8 app.run('refresh', category, { min, max, items });

9

1

10. };

135

CHAPTER6 ASYNCHRONOUS EVENTS

Since the story list is just an array of story IDs, we then retrieve the story details of
each story ID (line 4). We use the fetchJSON function to retrieve story details within the
index range between min and max. The fetchJSON function is an async function that
returns a Promise object. We use Promise.all to wait until all fetchJSON function calls
are completed.

The fetchJSON function is a wrapper of the Fetch API that handles the JSON data
format (Listing 6-8).

Listing 6-8. fetchJ[SON

1 const fetchJSON = async (url: string) => {

2 url = “https://hacker-news.firebaseio.com/vo/${url}.json";
3 const response = await fetch(url);

4 if (!response.ok) {

5. const data = await response.text();

6 throw data;

7 }

8 return response.json();

9. }

The Story Detail

Like the story list, the Firebase story reference publishes the value event with the story
detail. We can create the getItem function to subscribe to the value event to get story
IDs (Listing 6-9).

Listing 6-9. Getting the Story

1. export const getItem = (id) => {

2 const ref = db.child(item/${id}");

3 ref.on('value', async snapshot => {

4. const item = await fetchItem(snapshot.val());
5 app.run('refresh', id, item);

6 1)

7. 5

136

CHAPTER6 ASYNCHRONOUS EVENTS

The story detail object has a kids property, which is an array of IDs of the child
stories. A child story can also have its own child stories. This makes the story a
hierarchical structure. We need to use the fetchItem function to retrieve all the child
stories using the story IDs recursively (Listing 6-10).

Listing 6-10. Getting a Story and Its Children

1 const cache = {};

2 const fetchItem = async ({ id }) => {

3 const item = cache[id] || await fetchJSON(item/${id}");

4 if (item && item.kids) item.kids =

5. await Promise.all(item.kids.map((kid) =>

6 typeof kid === "number' ? fetchItem({id: kid}) : kid
7));

8 return item;

9. }

Both the fetchList function and the getItem function share a common pattern.
They both subscribe to the Firebase event. In the Firebase event handler, they use the
async functions to download more data. Once all the async functions are completed,
they publish the AppRun refresh event to the main application to render the screen.

The Application

The main application has a global AppRun application architecture (Listing 6-11).

Listing 6-11. The Hacker News Reader Main Program

1. import app from 'apprun';

2. import { getlList, getItem } from './hn’;

3. const page_size = 30;

4. type State = {

5. id: 'top' | 'new' | 'best' | 'ask' | 'show' | 'job' | number
6. }

7. const state: State = {

8. id: "top'

9. }

137

CHAPTER6 ASYNCHRONOUS EVENTS

10. //#region view functions
11. /* Omitted the view code*/
12. //#endregion

13. const update = {

14. "#': (state, mode, id) => {

15. id = id || mode || 'top';

16. if (!state[id]) {

17. mode === 'item' ?

18. getItem(id) :

19. getlList(id, 0, page size);
20. }

21. return { ...state, mode, id };
22. },

23. 'refresh': (state, id, data) => {

24. state[id] = data;

25. if (id === state.id) return state;
26. }

27. };

28. app.start('my-app', state, view, update);

We have omitted the view functions to focus on analyzing the application
architecture. In the application, a state is an object. It has an id property that is the story
list ID or story detail ID of the screen (line 7). The story list ID is the story category (Top,
New, Best, Show, Ask, and Jobs). The story detail ID is a number. The state object caches
the story list and story detail using the id value as the cache key.

The application has two event handlers for event # and event refresh. The # event
handler is the routing event hander (line 14). It accepts the following URL fragments:

o /#/{category}
o /#/item/{story id}

When the story list or story detail has already been cached, the event handler returns
the current state to render the screen. Otherwise, it uses the fetchList function and the
getItem function to subscribe to the Firebase event (lines 17-19).

The refresh event handler is called when Firebase has pushed data to the
application (line 23). It stores the data into the state and returns the state for screen
rendering only when the ID matches the current screen ID (lines 24-25). For example,

138

CHAPTER6 ASYNCHRONOUS EVENTS

when the screen is displaying the new story list and the new story list has the update
pushed down, it refreshes the screen to show an updated story list. However, when the
screen is displaying a story and the new story list has the update pushed down, it only
stores the updates but does not refresh the screen.

Now we can enjoy reading the stories and let the application update the stories
automatically behind the scenes.

To conclude, the Hacker News reader application uses both the Firebase API and the
JSON API. It leverages AppRun pub-sub to connect the Firebase events to the AppRun

events.

Source Code and Examples

You can get the source code of this chapter by cloning the GitHub project from https://
github.com/yysun/apprun-apress-book. You can run the two examples of this chapter
using the npm scripts in Table 6-1.

Table 6-1. npm Scripts of This Chapter

Example Script

The weather application (Listings 6-4 and 6-5) npm run weather

The Hacker News reader (Listings 6-6 and 6-11) npm run hn

Summary

JavaScript uses an asynchronous operation to handle long-running code execution using
only a single thread. The asynchronous operation uses callback functions. The Promise
object and the async/await syntax make the code easier to read and write.

AppRun supports asynchronous event handlers using the async/await syntax. We
only need to add the async keyword in front of the event handler to allow calling the
async functions in the event handlers. AppRun manages and resolves the promises.

Data access is an asynchronous operation. Calling to the async functions of data
access in AppRun async event handlers feels like synchronous code. The error handling
using the try and catch structure also feels just like synchronous code.

139

https://github.com/yysun/apprun-apress-book
https://github.com/yysun/apprun-apress-book

CHAPTER6 ASYNCHRONOUS EVENTS

Furthermore, we can bind the asynchronous data access with real-time database
update events to the development of push-based applications.

From Chapter 3 up to this chapter, we have covered the three parts of the AppRun
architecture and shown examples of small applications. Starting in the next chapter,
we will discuss how to use AppRun in real application development scenarios, such as
single-page applications, administrative dashboards, and line-of-business applications.

140

CHAPTER 7

Single-Page Applications

The Web started as static web sites that served static HTML documents. The HTML
documents contained hyperlinks to other documents distributed on web servers all over
the world. Later, the web sites became web applications when web servers could generate
dynamic content based on the user navigation and input. These web servers use a server-
side technology, such as ASP, JSP, or PHP, to retrieve and update data from and to databases
and generate HTML dynamically. This is called traditional server-side rendering (SSR).

Traditional SSR has the problem that every user interaction requires a full-page
reload. User interactions such as button clicks and form submissions trigger either a
GET or a POST on the web server, and the web server always generates the entire HTML
page. The full-page reload causes a white page flicker, which impacts the smoothness of
the user experience. It also makes more server load when rendering the whole page. The
server has to know the application state in the browser such as the logged-in user’s ID,
page number, and form content to render a whole page. Synchronizing the state between
the browser and the server is difficult.

The Web application programming interface (API) and Asynchronous JavaScript and
XML (Ajax) were created to solve the SSR problems, which eventually led to the single-
page application (SPA). SPAs are the technology that manages application state and logic
mainly in the browser. When the applications require dynamic data, they send requests
to the Web API. The Web API retrieves the data from the database and sends back the
data in JSON format. The web application then renders the page in the browser. There is
no more full-page reload. The pages can be updated partially, which provides a smooth
user experience more like a desktop application installed on a computer.

The state of an SPA stays in the browser, and JavaScript frameworks such as AppRun
manage the state in the browser and update the screen partially and dynamically. When
applications are complicated, AppRun supports using components as the building
blocks of the SPA. The components are organized and managed using ECMAScript
modules. Components communicate with each other through AppRun events.

141
© Yiyi Sun 2019

Y. Sun, Practical Application Development with AppRun, https://doi.org/10.1007/978-1-4842-4069-4_7

CHAPTER 7 SINGLE-PAGE APPLICATIONS

This chapter introduces the architecture of SPAs, the routing events that activate
components, and the techniques to manage the modules such as dynamic import and
native module import.

SPA Architecture

AppRun comes with a command-line interface (CLI) that can create an SPA project’s
boilerplate. You can create a project folder and run the following command in your
application project folder to initialize an AppRun SPA project:

npx apprun -i --spa
The AppRun CLI has the following files in the project folder:
o index.html: The default HTML file
e main.tsx: The main program
e Home.tsx: The Home page component
e About.tsx: The About page component
e Contact.tsx: The Contact page component

The AppRun CLI also configures the development environment, including the
project file (package. json), TypeScript configuration(ts.config), and webpack
configuration (webpack.config.js). The convention to compile and bundle the
application is to use these npm scripts:

e npm start: Starts the webpack development server
e npm run build: Creates the application code for production use

Run the command npm start, and you will see a new browser open with the SPA
running inside it (see Figure 7-1).

142

CHAPTER 7 SINGLE-PAGE APPLICATIONS

Home

: i) = o X
/ [AppRun x\\ N
< C : @ localhost:8080/#Home ir ! H
Project Name Home About Contact

Figure 7-1. AppRun SPA

To summarize, the AppRun CLI-generated SPA project boilerplate includes an

HTML file, the main program, and three components for three pages (Figure 7-2).

index.html

<div id="main”>

.....
.

main.tsx

view = state => <>
<nav> ... </nav>
<div id="my-app”>

.
e,
LN
g tea
‘e
.
‘e
0
.

‘e

LN
,
e,
....
.......
~,

.
0
.,

.
e,
o

-
L
.,

g
e,
.
.

Home.tsx

Class extends Component {
state = {}
view = state = <></>
update = {
‘#fHome’: state => {}
}
1

| Abount.tsx

| Contact.tsx

Figure 7-2. AppRun SPA architecture

143

CHAPTER 7 SINGLE-PAGE APPLICATIONS

The HTML is the starting point of the SPA. The main program renders the SPA screen
layout. The components render the SPA pages. To develop the AppRun SPA, we create
the HTML file, the main program, and the components. Or we can modify the AppRun
CLI-generated files.

HTML

index.html is the default application start page (Listing 7-1).

Listing 7-1. AppRun SPA index.html

<!doctype html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,
initial-scale=1, maximum-scale=1">
6. <title>AppRun</title>
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/
bootstrap/3.3.7/css/bootstrap.min.css">

uvi B W N R

. </head>
9. <body>
10. <div id="main"></div>
11. <script src="app.js"></script>

12. </body>
13. </html>

The index.html file has an empty <div> tag with an id value of main (line 10) and a
script tag for the bundled application code, app. js (line 11). The index.html file also
references the Bootstrap styles (line 7).

Main Program

The main program (app. js) renders the screen layout project. app. js is the result of
compiling and bundling the main program, main.tsx (Listing 7-2).

144

CHAPTER 7 SINGLE-PAGE APPLICATIONS

Listing 7-2. AppRun SPA Main Program

Ui B W N R

O 00 N O

10.

12.
13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

import app from ‘apprun’;
app.on('#', _ => app.run('#Home"))
app.on('//', route => {

1)

const menus = document.querySelectorAll('.navbar-nav 1i');
for (let i = 0; i < menus.length; ++i) menus[i].classlList.
remove('active');

const item = document.querySelector(” [href="${route}']");
item 88 item.parentElement.classList.add('active');

const view = state => <div>

<nav className="navbar navbar-default">
<div className="container">
<div className="navbar-header">
<button type="button" className="navbar-
toggle collapsed" data-toggle="collapse" data-
target="#navbar" aria-expanded="false"
aria-controls="navbar">
Toggle navigation

</button>
Project Name
</div>
<div id="navbar" className="navbar-collapse collapse">
<ul className="nav navbar-nav">
<1i className="active">Home</1i>
About</1i>
Contact</1i>

</div>
</div>
</nav>

145

CHAPTER 7 SINGLE-PAGE APPLICATIONS

31. <div className="container" id="my-app"></div>
32. </div>

33. app.start('main’, {}, view, {})

34. import Home from './Home';

35. import About from './About’;

36. import Contact from './Contact';

37. const element = 'my-app’;

38. new Home().mount(element);

39. new About().mount(element);

40. new Contact().mount(element);

The SPA main program is an AppRun global application. It renders the web page
layout using the Bootstrap styles, which includes the top menu bar (lines 9-30) and the
main content area, which is a <div> tag with an id value of "my-app" (line 31). SPA pages
will be rendered into the my-app div.

The SPA has three pages: Home, About, and Contact. Each page is an AppRun
component. The components are implemented and exported from modules. The SPA
main program imports the three components from the modules (lines 34-36). It then
creates the components and mounts them to the my-app div (lines 37-40). We do not
need to embed the components into the HTML structure.

Components

An SPA’s codebase contains all the features and functionalities of the applications. The
codebase could be large and complex to manage. To develop SPAs, we use components
to divide the application code into smaller and manageable units. As the building blocks
of the SPA, components are developed and tested independently. They are combined to
form the complete application code.

An SPA component is a subclass of the AppRun Component class. For example, the
Home page component is a class that extends the AppRun Component class (Listing 7-3).

Listing 7-3. Home Page Component

1 import app, {Component} from 'apprun’;

2 export default class extends Component {
3. state = 'Home';

4 view = (state) => {

146

CHAPTER 7 SINGLE-PAGE APPLICATIONS

5 return <div>

6 <hi>{state}</h1>

7. </div>

8 };

9 update = {

10. "#Home': state => state,
11. };

12. };

The component consists of the state, view, and update (event handlers), which form
the AppRun architecture (Listing 7-3).

To use the AppRun components, we mount them to a web page element or element ID.
When the components are mounted to a page element, they are sitting there doing
nothing until the related events are published. The events cause the component to
render its state to the page element. In the Home page component example, the event
is #Home (line 10). If someone publishes the #Home event, the Home page renders to the

screemn.

Routing Events

In the SPA when users navigate around, the application renders the relevant pages onto
the screen. The mechanism to load, execute, and render the pages is called routing.
Routing sends users’ interactions to the component code. In AppRun, SPA routing is
simple. It is based on the AppRun event pub-sub and requires no routing code. It is not
too much different from button clicks.

Location Hash Change Event

The three pages (Home, About, and Contact) of the example SPA are linked from the top
navigation menu (Listing 7-4).

Listing 7-4. SPA Top Navigation Menu

1. <div id="navbar" className="navbar-collapse collapse">
2. <ul className="nav navbar-nav">
3. Home</1i>

147

CHAPTER 7 SINGLE-PAGE APPLICATIONS

4 About</1i>

5. Contact</1i>
6

7 </div>

When the URL fragment in the address of the browser changes, the browser
window publishes the onpopstate event. AppRun applications just need to convert the
onpopstate event into the AppRun events. It’s business as usual; the event drives the
application logic through the event lifecycle.

AppRun automatically converts the onpopstate event to an AppRun event. For
example, when the anchor element Home is clicked, AppRun
publishes the global event #Home. The event is handled by the event handler of the Home
page component.

update = {'#Home': state => state };

The Home page then is activated and rendered to the screen. The same mechanism
applies to the About and Contact pages.

Generic Routing Events

To automatically convert the onpopstate event to an AppRun event, AppRun publishes
three built-in events, named #, /, and //.

AppRun publishes the # event and the / event after the web page has loaded and is
ready to run the scripts. We can subscribe to the # event and publish the #Home event to
activate the Home page once the application starts (Listing 7-2, line 2).

app.on('#', _ => app.run('#Home'));

Upon each of the onpopstate events, AppRun also publishes to the // event. AppRun
parses the web address path. It breaks the URL fragments into an easily consumable data

array as the event parameter. Here are some examples:

o http://..... /# => app.on('//", '#', [])
o http://..... /#Home => app.on('//', '#Home', [])
o http://..... /#/Home => app.on('//"', '#', ['Home'])

148

CHAPTER 7 SINGLE-PAGE APPLICATIONS

o http://..... /#Home/1/2/3 => app.on('//', '#Home', ['1',
1 2 1 , 1 3 1])
o http://..... /#/Home/1/2/3 => app.on('//"', '#', ['Home',
1 1 1 , 1 2 1 s 1 3 1])
SPAs could have different routing URL requirements. Some applications require us to
use the hash sign only, asin http://...... /#Home. Some other applications require us
to use the hash sign and the slash sign, asin http://...... /#/Home. The // event lets us

handle either routing URL requirement.

The // event also provides us with the opportunity to update the navigation menu to
have the menu of the current page highlighted. We can subscribe to the # event directly
(Listing 7-5).

Listing 7-5. Update Navigation Menu

1. app.on('//", route => {

2 const menus = document.querySelectorAll('.navbar-nav 1i');
for (let i = 0; i < menus.length; ++i) menus[i].classList.
remove('active');

4. const item = document.querySelector(" [href="${route}']");

5. item && item.parentElement.classlList.add('active');

1)

Listing 7-5 is used in the main program of the SPA example (Listing 7-2, lines 3-8).

Using the hash sign or the URL fragments is the default routing mechanism
supported by AppRun. The benefit of using the hash sign is that AppRun publishes the
routing events out of the box. We can subscribe to the routing events in the components
and wait for the user interaction. When the back and forward buttons of the browsers
and even the refresh button are clicked, the application works properly.

History API

By default, AppRun SPAs use URL fragments. Sometimes, we might have the application
requirements ask us not to use URL fragments, in which case the navigation menu has
no hash signs. AppRun supports this scenario too. Listing 7-6 shows the menu structure.

149

CHAPTER 7 SINGLE-PAGE APPLICATIONS

Listing 7-6. SPA Top Navigation Menu: No Hash

1 <div id="navbar" className="navbar-collapse collapse">
2 <ul className="nav navbar-nav">

3 Home</1i>

4. About</1i>

5 Contact</1i>

6

7 </div>

Without the hash sign, the hyperlinks make the web browser redirect to new
pages. The browser window will still publish the onpopstate event, but the event is not
cancelable, which means we cannot stop the page redirection in the onpopstate event
handler. To handle this situation, we need to change the anchor’s behavior and handle
the browser history API (Listing 7-7).

Listing 7-7. Changing the Anchors

1 const rendered = () => {

2 const menus = document.querySelectorAll('.navbar-nav 1li a');
3 for (let i = 0; i < menus.length; ++i) {

4 const menu = menus[i] as HTMLAnchorElement;

5. menu.onclick = event => {

6 event.preventDefault();

7 history.pushState(null, ", menu.href);
8 app.run('route', menu.pathname);
9. };
10. }
1. }

In Listing 7-7, we attached the onclick event handler to all the navigation menus
that will stop the click event (line 6). Then, the event handler will continue with calling
the History API history.pushState() and publishing the AppRun route event using the
href link of the menu (lines 7-8).

Also, we need to change the component event handlers, for example, to handle the
/Home event instead of the #Home event (Listing 7-8).

150

CHAPTER 7 SINGLE-PAGE APPLICATIONS

Listing 7-8. Handle /Home Event

1 import app, {Component} from 'apprun’;
2 export default class extends Component {
3 state = 'Home';

4 view = (state) => {

5. return <div>

6 <hi>{state}</h1>

7 </div>

8 };

9 update = {

10. '/Home': state => state,

11. };

12. }

After changing the component event handlers, the components can handle URLs
without the hash sign. The navigation menu will publish the /Home event (see Figure 7-3).

Y . \
;" [AppRun ® ~_-J

€ = C | @ localhost:8080/Contact b4

Project Name Home About Contact ‘

Contact

Figure 7-3. SPA navigation without hash
151

CHAPTER 7 SINGLE-PAGE APPLICATIONS

AppRun will also publish the /Home event when the browser’s back and forward
buttons are clicked. However, the browser refresh button does not work, because when
the browser is refreshed, it will reload the web from the server. We need to implement
the server-side rendering technique to solve the problem, which you will learn how to do
in Chapter 9.

SPA Modules

SPA components are organized and managed using modules. Each SPA component

is a JavaScript module. In complex SPAs, there could be many modules. ECMA Script
2015 (ES6) finalized the module standard in 2014, but it only started being supported
by the browsers in 2018. Meanwhile, the ECMAScript module standard has been well
supported by JavaScript bundlers like webpack, which can bundle modules into one
script file safely and reliably to run in the browsers. We have been using webpack from
the AppRun application development environment.

Static Import

We import the modules into the main program using the import expression.

import Home from './Home';
import About from './About’;
import Contact from './Contact’;

Webpack combines the main program code with the module code. The result of the
webpack bundling is the app. js file that contains the code of the main program and
three components. It is called static import.

Dynamic Import

The application code contains all the modules and could become a large script file.
However, a larger script file takes longer to download, which slows down the initial
display of the applications. We need to use some techniques to split the application code
into smaller files. We want the browser to load just enough application code to get the
applications displayed to the screen and started. It should import the module code only
when the modules are required, which is called dynamic import.

152

CHAPTER 7 SINGLE-PAGE APPLICATIONS

ECMAScript has a proposal that defines the dynamic module import syntax using
the Promise-based import function. Meanwhile, webpack can inject runtime helper
functions during the module-bundling process to support dynamic module import.' For
the AppRun components exported from a module, we can dynamically import them only
when needed and then start the components in a page element.

import('./About").then(module => new module.default().start(element));

We can change the AppRun SPA main program to demonstrate the dynamic module
import (Listing 7-9).

Listing 7-9. Main Program of Dynamic Module Import

1 import app from 'apprun';

2 app.on('#', _ => app.run('#Home'));

3 app.on('//', route => { ... }); // omitted details
4 const view = state => ... <div> // omitted details
5. </div>

6 app.start('main', {}, view, {});

7 import Home from './Home';

8 const element = "my-app';

9. new Home().start(element);

10. app.on('#About', async () => {

11. const module = await import('./About");
12. new module.default().start(element);

13. }1);

14. app.on('#Contact', async () => {

15. const module = await import('./Contact');
16. new module.default().start(element);

17. 1)

The main program has the Home component module statically imported, but it
has the About component module and the Contact component module dynamically
imported only when the corresponding routing events are published.

'For more information about the webpack configurations, please visit https://webpack. js.org/
guides/code-splitting/#dynamic-imports.

153

https://webpack.js.org/guides/code-splitting/#dynamic-imports
https://webpack.js.org/guides/code-splitting/#dynamic-imports

CHAPTER 7 SINGLE-PAGE APPLICATIONS

Run the modified main program; you can see it loads the first statistically bundled

code file, called app. js (see Figure 7-4).

/D Apptun _.
€ -~ C | @ localhosts0s0

Project Name Home About Contact

Home

ipt Profiler icati Security Audits

R (] | Eements Console Sources Memory Metwork
® O = F Q| view I=m "= O Groupbyframe | [Praservelog B Disable cache | O Offiine Online

L

3ms 23 ms 1163 1435

Name [Metos satus Type [intator [sze |Time | watertan
GET 200 seript (e] Te2ms |

[2ppis

1/ 7 requests | 342 KB / 363 KB transferred | Finishc 1405 | DOMCententloaded: 1155 | Load: 1.37 5

Figure 7-4. Statistically bundled code file

The app. js file contains the main program and the Home component. When the
About menu is clicked, it loads the script that includes the About component (0. js), as

shown in Figure 7-5.

154

o 0
%

CHAPTER 7 SINGLE-PAGE APPLICATIONS

< > C |®buhutm1*About

Project Name Home About Contact

About

Lo

[R @] | Eements Console Sources Memory Network Performance JavaScriptProfiler Application Security Augits

® O | m§ Q View IZ = O Gouwpbyframe | O Presenvelog [Disadlecache | O Offtine Online v

Name [Metros [suts | Tipe [inftator | Size Time Watertall

| apnis GET 3 set (index) w08 747ms e
GET 304 script octstrapd.. 7 11ms

2/ &req | 358B /98B 1 Finish: 3.105 | DOMContentLoaded: 1.36 5 | Load: 1.63 5

Figure 7-5. Dynamically imported about module

When the Contact menu is clicked, it loads the script that contains the Contact

component (1.7js), as in Figure 7-6.

155

CHAPTER 7 SINGLE-PAGE APPLICATIONS

/D apphun x LY

€ — C | localhost8080/#Contact Y| :

Project Name Home About Contact

Contact
= U—] Elements Console Sources Memory Netwaork Performance lavaSeript Profiler Appilication Security Augits
® O | = § Q| view IZ % O Groupbytame | [Preservelog [Disable cacne | O Offiine Online
Name Method Status Tyoe Initiator Size Time Waterfall
] 2pais GET 304 seript (index) 1808 747ms | @
L ois GET 3 script bogtstragd. TEE 11ms I
115 GET s seript bootstrag.. 1788 305 ms

3/9requests | 536 B /1.1 KB transferred | Finish: 28.97 5 | DOMContentloaded: 1365 | Load: 1635

Figure 7-6. Dynamically imported contact module

The modules require being imported only one time. Once they are imported, there
will be no more imports when the menus are clicked.

Leveraging webpack, we only made some minor changes to the main program; we
can easily control which modules should be statically imported and which modules
should be dynamically imported. It is a technique generally used for large SPAs.

Native Modules

In addition to dynamic module import, AppRun also supports fine-tuning modules
manually. We can compile the modules into its script files and import them into HTML
as native modules. Most of the latest browser versions have also added native module
support.?

For more information about the browser support of ES6 module, please visit https://caniuse.
com/#feat=es6-module.

156

https://caniuse.com/#feat=es6-module
https://caniuse.com/#feat=es6-module

CHAPTER 7 SINGLE-PAGE APPLICATIONS

AppRun supports native modules. To demonstrate using native modules, we first
change the HTML file (Listing 7-10).

Listing 7-10. HTML with Native Modules

1. <!doctype html>

2. <html>

3. <head>

4. <meta charset="utf-8">

5. <title>AppRun * SPA * Native Modules</title>

6. <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/
bootstrap/3.3.7/css/bootstrap.min.css">

7. </head>

8 <body>

9. <div id="main"></div>

10. <script src="https://unpkg.com/apprun@beta/dist/apprun-html.js">
</script>

11. <script src="dist/main.js"></script>

12. <script type="module">

13. import Home from './dist/Home.js’;

14. import About from './dist/About.js’;

15. import Contact from './dist/Contact.js';

16. const element = 'my-app';

17. new Home().mount(element);

18. new About().mount(element);

19. new Contact().mount(element);

20. </script>

21. </body>

22. </html>

The HTML file has a mix of using a regular script file (lines 10-11) and using the
<script type="module"> syntax to import native JavaScript modules (lines 12-20).

The main program is a global AppRun application. It is the script file compiled into
main.js and loaded into the HTML file (Listing 7-11).

157

CHAPTER 7 SINGLE-PAGE APPLICATIONS

Listing 7-11. Main Program of Native Modules

1. declare var app: typeof import("apprun").app;

2. app.on('#', => app.run('#Home'))

3. app.on('//", route => {

4. const menus = document.querySelectorAll('.navbar-nav 1i');

5. for (let i = 0; i < menus.length; ++i) menus[i].classlList.

remove('active');

6. const item = document.querySelector(” [href="${route}']");

7. item 88 item.parentElement.classList.add('active');

8. 1

9. const view = () => <div>

10. <nav className="navbar navbar-default">

11. <div className="container">

12. <div className="navbar-header">

13. <button type="button" className="navbar-
toggle collapsed" data-toggle="collapse" data-
target="#navbar" aria-expanded="false"

14. aria-controls="navbar">

15. Toggle navigation

16.

17.

18.

19. </button>

20. Project Name

21. </div>

22. <div id="navbar" className="navbar-collapse collapse">

23. <ul className="nav navbar-nav">

24. <1i className="active">Home</1i>

25. About</1i>

26. Contact</1i>

27.

28. </div>

158

CHAPTER 7 SINGLE-PAGE APPLICATIONS

29. </div>
30. </nav>
31. <div className="container" id="my-app"></div>

32. </divy;
33. app.render(document.getElementById('main’), view());

The main program renders the main screen layout using AppRun’s virtual DOM.
The main program does not need to import other modules because the HTML file has
imported them. The main program is decoupled and has no dependency on other
modules. Also, it does not even import the AppRun library. Instead, it imports the type
definition from the AppRun library (line 1). The HTML file loads the AppRun library
from unpkg.com, which is the content delivery network (CDN) of npm packages
(Listing 7-10, line 10). The AppRun library can be shared across all modules.

The technique of importing just types from the AppRun library applies to all other
modules, such as the Home component module (Listing 7-12).

Listing 7-12. Home Component Module for Native Module

1. declare var app: typeof import("apprun").app;
2. declare var Component: typeof import("apprun").Component;
3. export default class extends Component {

4. state = 'Home';

5. view = (state) => {

6. return <div>

7. <h1>{state}</h1>

8. </div>

9. };

10. update = {

11. "#Home': state => state,

12. }s

13. }

159

http://unpkg.com

CHAPTER 7 SINGLE-PAGE APPLICATIONS

The Home component module (Listing 7-12) uses the globally shared AppRun library.
It only imports the types of app and components from the AppRun library. It does not
import the entire AppRun library. The TypeScript compiler compiles the Home. tsx file
into the JavaScript module code. Listing 7-13 shows Home. js.

Listing 7-13. Compiled Home Component Module

1 export default class extends Component {

2 constructor() {

3 super(...arguments);

4 this.state = 'Home';

5. this.view = (state) => {

6 return app.createElement("div", null,

7 app.createElement("h1", null, state));
8

9

s
this.update = {
10. "#Home': state => state,
11. };
12. }
13. }

The compiled JavaScript file (Listing 7-13) can be imported as the native module. We
make the same changes to other components, About and Contact.

Run the modified HTML, main program, and Home, About, and Contact pages, and
watch the network in the browser’s DevTool. You can see that the AppRun library, the
main script files, and the components are imported separately (see Figure 7-7).

160

CHAPTER 7 SINGLE-PAGE APPLICATIONS

a = a X

_/Q AppRun * SPA * Native b x\\" A\

< C | @ localhost:2020 Y| ¢

Project Name Home About Contact

= ﬂ Elements Console Scurces Network Performance Memory Application Security Audits AdBlock : X
® O m ¥ Q | View = == [Groupbyframe | [Preservelog [Disable cache | [Offine Online v

Mame Status Type Initiator Size Time | Waterfall A
[] tecalhost 304 document Other 2488 309.. |

|| mainyjs 200 script findex) {from memory cache) Oms |

|| bootstrap.min.css 200 stylesheet (index) (from disk cache) 268 ... ==
|| apprun-htmljs 302 text/plain {indax) 1378 268.. =
|| apprun-htmljs 200 seript apprun-htmljs (from disk cache) 7 ms |
L Homejs 200 seript findex)i18 (from disk cache) 3 ms I
L Aboutjs 200 script {indexi17 (from disk cache}) 3 ms I
L Contactjs 200 script {index):18 (frem disk cache) 4ms I
8 requests | 385 B transferred | Finish: 631 ms | DOMContentLoaded: 715 ms | Load: 715 ms

Figure 7-7. SPA using native modules

To summarize the technique of using native modules, we compile modules
individually and import them as needed. Modules communicate with each other using
events. For example, the main program publishes the #Home event to activate the Home
component. AppRun event pub-sub decouples the modules. We can continue to modify
the components and deploy the changed modules without impact on other modules.

Although each module has a dependency on the AppRun library, we do not need
to import AppRun into each module. We include AppRun in the HTML file and share
AppRun with all modules.

Source Code and Examples

You can get the source code of this chapter by cloning the GitHub project at
https://github.com/yysun/apprun-apress-book. You can run the four examples
of this chapter using the npm scripts in Table 7-1.

161

https://github.com/yysun/apprun-apress-book

CHAPTER 7 SINGLE-PAGE APPLICATIONS

Table 7-1. npm Scripts of This Chapter

Example Script

The AppRun SPA (Listings 7-1 to 7-5) npm run spa

The example of routing without hash (Listings 7-6 and 7-7) npm run spa-non-hash

The example of dynamic import (Listing 7-8) npm run spa-dynamic-import
The example of the native module (Listings 7-9 to 7-13) npm run spa-es-module
Summary

AppRun SPAs usually include an HTML file, a main program that renders the screen
layout, and some components that render the pages.

AppRun SPAs use the events to route user interaction to the components. Treating
routing like other web events is the smart idea of AppRun. All web events are unified
under the event pub-sub pattern, which is one of the core concepts of the AppRun
architecture. Routing does not require special treatment. AppRun SPAs can route with or
without the hash sign in URLs.

AppRun components can be mounted to the web page elements using the code
without embedding the component in HTML. It provides the flexibility to load and
activate the components in code.

AppRun components are modularized using the ECMAScript module standard. We
can import the modules statically and dynamically. We can also use the native module
from modern browsers.

We are now equipped with many techniques and are ready for AppRun
SPA development. In the next chapter, we will use the SPA template to make an
administrative user interface on the home page of an SPA.

162

CHAPTER 8

Third-Party Library
Integration

In Chapter 7, we discussed how to build the structure of single-page applications. In
this chapter, we will build an administrative dashboard on the home page of the SPA
boilerplate that was created by using the AppRun CLI. This will demonstrate how to use
AppRun to build a complex user interface and administrative interface.

An administrative interface is for administrators to configure and manage web
applications. It usually is a stand-alone web application or a restricted area of an
application. The administrative interface is important because it is the management tool
of the applications and systems. For a consumer-facing e-commerce web application,
the administrative interface is for the owner to manage the production, prices, and
orders. In a line-of-business application, the administrative interface is for managing the
business processes, back-end databases, and systems.

In many cases, the administrative interface has a dashboard on its home page. The
administrative, or admin, dashboard provides the overall status of the applications being
managed. It is a special kind of interface that usually has a complicated layout involving
a lot of visualization widgets. You should try to design one that is pleasing to view and
easy to use. Often it also needs to be responsive for different devices and screen sizes.
The front-end part is an important part of the administrative interface and is what we
will focus on in this chapter. The back end of the administrative interface is data-driven
and requires security trimming, which means it displays the content based on the user
permissions. The back end is beyond the scope of this chapter.

There are many third-party libraries in the JavaScript ecosystem that have already
provided excellent data visualization on the front end. In general, there are two purposes
for using third-party libraries: to build the page layout and style the elements as widgets
and to create the widgets from the libraries. You will learn how to use the stateless

163
© Yiyi Sun 2019

Y. Sun, Practical Application Development with AppRun, https://doi.org/10.1007/978-1-4842-4069-4_8

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

components introduced in Chapter 4 to build the layout and style the elements. Also,

you will learn how to integrate third-party libraries into the AppRun components using
the extended AppRun architecture.

Example: An Admin Dashboard

The example application we will build is a single-page application that has an
administrative dashboard on the home page. First, we will create the SPA project using
the AppRun CLI as discussed in Chapter 7. We will modify the code of the Home page

component to make it look like Figure 8-1 (and Figures 8-2, 8-3, and 8-4 in the following
sections).

/D Apphun-Dsstboard %\ S .x
& | D jocaihost 2080 4
Admin Dashboard Home Abcut Contact Q Search
& Hom
e Events 69% 49% T4% 31% S4% 32%
62 17 82 29 9 55
KPl #1 KPI #2 KPl #3 KPl w4 KPI #5 KPI #5

i 4 ®

Primary Secondary Success Danger Warning Info

Chart JS Dz Map

[Dacases 1 [Dataset2 [Dataset 3
100

50
0
-£0

-100

Jul 18 Jul g <l 20

Shoee 10 = enfries. Saarch:

Figure 8-1. SPA Home page as an admin dashboard

The example admin dashboard mimics a real-world application. The top navigation
is the first-level navigation that has menus to load various web pages such as the Home
page, the About page, and the Contact page.

The top navigation is from the SPA boilerplate. The sidebar navigation is the second-
level navigation that has the menus for the page. For example, the Home, Events, Team,
and More menus are part of the Home page. We will explore more about the UI first.

164

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

Responsive Ul

The example application Ul is responsive to the screen size. On the computer screen, it
displays all the top navigation menus and sidebar menus (see Figure 8-1). When running
on mobile devices, the top navigation menus are collapsed inside the hamburger menu
at the top right of the screen; the sidebar menus are also collapsed to a row of icon

menus (see Figure 8-2).

—_— 2= = x
/O AppRun®Deshboerd % ey
C | @ localhast-2080 [
Fad ¥ 3 ox 1024 0% Y Onfnev 3 i [Al CEements Conscle Sowces » | X
EFE ® top L it lew]

Admin Dashboard =

* = L J =-

89% 23% 06%

40 22 79

KPl &1 KP| #2 KPl#3
06% 2.2% 43%

92 26 90

KPI 24 KPI #5 KPl #6

Primary Secondary Success Danger Warning

Info

Figure 8-2. The admin dashboard on a mobile device

The responsive layout of the top navigation comes from the SPA boilerplate out of
the box. We will create the side navigation menus in the “Sidebar Menu” section of this
chapter. Also, we will create the side navigation menus based on an array contains the
data that represents the menus dynamically.

Dashboard Widgets

The main content area of the home page has various kinds of widgets to visualize the data.
There are widgets such as key performance indicator (KPI) cards, several types of notification/
altering messages, a chart, and a map, as you can see from Figure 8-1 and Figure 8-2.
There are also a data table widget and a widget calendar in the main content area.

165

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

The data table widget displays an example of an employee list. The data is loaded
dynamically from a JSON file, which includes the employee’s name, position, office
location, age, start date, and salary as a data table. The data table has many features
commonly used in line-of-business applications, such as it is configurable to the number
of rows, searchable/filterable, and sortable. It also includes the pagination for the list
(see Figure 8-3).

(T S
c G) Io::alhost.stlat! 4 .
Show 10 2 |entries Search:
Mame 1 Position Office Age Start date Salary
Airi Satou Accountant Tokyo 33 2008/11/28 $162,700
Angelica Ramos. Chief Executive Officer (CEO) London a7 2009/10/09 $1,200,000
Ashiton Cox Junicr Technical Author San Francisco 66 2009/01/12 586,000
Bradley Greer Software Engineer Londan 41 2012/10/13 $132,000
Brenden Wagner Software Engineer San Francisco 28 2011/06/07 5206850
Brielle Williamson Integration Specialist Mew York 61 2012/12/02 $372,000
Bruno Mash Software Engineer London 38 2011/05/03 $163,500
Caesar Vance Pre-Sales Support Mew York 21 2022 $106,450
Cara Stevens Sales Assistant MNew York 45 2011/12/06 $145,600
Cedric Kelly Senior Javascript Developer Edinburgh 22 2012/03/29 $433,080
Showing 1 te 10 of 57 entries Previous . 23|45 6 Net

Figure 8-3. Data table on the admin dashboard

The calendar widget in the example application displays several events for July 2018.
The event data is stored in an array. It is also a feature-rich widget. We can view the
events in other years and months, and we can view the events monthly, weekly, or daily.
Each event has a hyperlink that leads to the event’s detail screen (see Figure 8-4).

166

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

—_ ® - 0O x
y [AppRun ” Dashbaard x\C\J
| © localhost:2030 i
e Fen
< > today Ju[y 20']8 | month | week day
Sun Mon Tue Wed Thu Fri Sat
1 2 3 q 5 6 7
T — [E T —
8 9 10 11 12 13 4
[| Conference | Tamimhdayrany |
p—— e
+3 more
15 16 17 18 19 20 21
8 Repesting Event |
22 23 24 25 26 a7 28
[Ciick for Google |
29 30 n

Figure 8-4. Calendar on the admin dashboard

Third-Party Libraries

The dashboard specification can be overwhelming the first time you look at it. The layout
is complicated. The widgets are a variety of types, such as KPIs, alerts, charts, maps, data
tables, and calendars. Creating all the widgets from scratch is impossible. Our plan of
attack is to use the third-party libraries as much as possible.

The good news is that the development community has developed many libraries for
pretty much everything, from page layout to data visualization widgets. There is probably
a JavaScript library out there for anything you can think of. There is no need to re-invent
the wheel. The framework we use to develop applications should always integrate easily
with other libraries.

AppRun embraces open web technologies. It respects and welcomes third-party
libraries. In fact, AppRun was designed to support third-party libraries. Combining
the power of many third-party libraries with AppRun is the practical application
development method. Table 8-1 shows the third-party libraries we will use for the admin
dashboard application.

167

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

Table 8-1. npm Scripts of This Chapter

Feature/Widget

Third-Party Library Name

Third-Party Library URL

Responsive layout
Sidebar menu

KPI cards
Notifications/alerts

Chart widget
Map widget
Data table widget

Calendar widget

Bootstrap

Chart.js
D3.js
DataTables (the jQuery plug-in)

FullCalendar

http://getbootstrap.com/

https://www.chartjs.org/

https://d3js.org/
https://datatables.net/
https://fullcalendar.io/

Extended Architecture

We will integrate the third-party libraries for more complicated dashboard widgets such

as charts, maps, tables, and calendars. To do so, we will first review the extended AppRun

architecture (see Figure 8-5).

AppRun Application / Component

N
r
(Initial State)
Web Event Update View Rendered
Mounted Handlers (Event Handlers) (Optional)
(Optional in
Component) |
’ (AppRun Events) ‘ ’ (Current State) ‘ ’ (New State) H (New State) ‘ ’ (HTML/VDOM) ‘ (New State)
Checkpoint 1 Checkpoint 2 l
State History || Event Engine AppRun Render DOM

Figure 8-5. AppRun extended architecture

168

http://getbootstrap.com/
https://www.chartjs.org/
https://d3js.org/
https://datatables.net/
https://fullcalendar.io/

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

In the extended AppRun architecture, the event lifecycle has two optional functions:
the mounted function and the rendered function. The mounted function is available
only in the AppRun component architecture. The rendered function is available in the
AppRun component architecture as well as in the AppRun global architecture.

When using stateful components in JSX, AppRun creates the component object
behind the scenes. We don’t have access to the constructor to initialize the state.
However, AppRun will call the mounted function if presented and will pass the JSX
properties as the parameters to the mounted function. By using the mounted function, we
can initialize the state based on the JSX properties.

The rendered function plays a different role in the AppRun event lifecycle. Upon
each AppRun event, AppRun processes the event through the event handlers to get a
new state. It calls the view function to turn the new state into the virtual DOM. It then
renders the virtual DOM to the real DOM. Finally, if the AppRun application or AppRun
components have defined the rendered function, AppRun calls the rendered function
to give us an opportunity to change the actual DOM. The rendered function is the place
where we can integrate with many third-party libraries perfectly.

With the AppRun extended architecture in mind, we are ready to build the example
application. We will start by creating the page layout and styles.

Layout and Styles

We usually use a CSS framework to build the page layout and style the elements. For
example, we will use Bootstrap for the admin dashboard application of this chapter.

Bootstrap is a free and open source front-end framework that contains the design
templates for typography, forms, buttons, navigation, and other interface components.
It was initially developed at Twitter as a framework to encourage consistency across
internal tools. It has become one of the most popular front-end user interface
frameworks for web applications.

We start developing the admin dashboard application by using the AppRun CLI-
generated SPA boilerplate, which has already included the references to Bootstrap. We
will use the Bootstrap CSS classes to create the admin dashboard layout, the responsive
sidebar menus, and the rows and columns of the main content on the home page.

The admin dashboard layout has the structure shown in Listing 8-1.

169

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

Listing 8-1. Bootstrap Dashboard Layout

1. <div className="row h-100">

2. <aside className="col-1g-2 p-0">

3. <nav className="navbar navbar-expand align-items-start
navbar-light" >

4 <div className="collapse navbar-collapse">

5 {*/ menus/*}

6. </div>

7 </nav>

8 </aside>

9 <main className="col">

10. {/* main content */}

11. </main>

12. </div>

Because we start with using the Home component of the SPA, we do not need to worry
about the full HTML layout and the responsive top navigation. We only need to focus
on the area belonging to the home page. However, the admin dashboard page has many
widgets and elements. If we put all the HTML elements and the CSS class into one place,
the code will become long, complicated, and hard to read and maintain. To keep it clean,
we use AppRun stateless components. The home page component is quite simple after
all (Listing 8-2).

Listing 8-2. Home Page Component

1 export default class extends Component {
2 state = 'Dashboard’;

3 view = (state) => <Dashboard>
4 <Sidebar menus={menus} />
5. <Widgets></Widgets>
6 </Dashboard>;

7 update = {

8 "#Home': state => state,
9

16. }

170

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

The capitalized JSX tags <Dashboard>, <Sidebar>, and <Widgets> are the stateless
components introduced in Chapter 4. They are the calls to the Dashboard, Sidebar, and
Widgets functions (Listing 8-3).

Listing 8-3. Dashboard and Sidebar Components

1. const Dashboard = (_, children) => <div className="row h-100">

2 {children}

3 </div>

4 const Sidebar = (props, children) => <aside className="col-1lg-2 p-0">
5. <nav className="navbar navbar-expand align-items-start navbar-light" >
6 <div className="collapse navbar-collapse">

7 {props.menus ? <Menus menus={props.menus} /> : "}

8 </div>

9 </nav>

10. </aside>
11. const Widgets = () => <main className="col">

12. <CardList />

13. <Alerts />

14. <Row>

15. <Column><Chart /></Column>

16. <Column><Map /></Column>

17. </Row>

18. <Row className="my-4" />

19. <DataTable />

20. <Row className="my-4" />

21. <Row className="my-4">

22. <Column className="col-md-6">

23. <Calendar id="c1" name="My Calendar" />
24. </Column>

25. <Column className="col-md-6">

26. <Calendar id="c2" name="Team Calendar" />
27. </Column>

28. </Row>

29. </main>

171

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

Using the stateless components, we break down the complicated HTML into
smaller pieces from top to bottom. This abstracts away the complexity when it is not a
concern at a certain stage. For example, when building the page layout, we only need to
focus on that the dashboard has a sidebar and a widgets area. The elements inside the
sidebar and the widgets area are considered when developing the Sidebar and Widgets
functions. One level at a time is the much easier approach. The code is also easier to
understand and maintain; just compare Listing 8-2 with Listing 8-1.

Once finished with the page layout, we can move to the sidebar and then the
widget area.

Sidebar Menu

The sidebar navigation is the main content of the side. The sidebar navigation menus
are data-driven to mimic the real-world application scenario where the menus are
dynamically created based on the logged-in user’s permissions. We use a two-level

menu, as shown in Listing 8-4.

Listing 8-4. Menu Data

const menus = [

icon: 'home', text: 'Home', href: '#' },

icon: 'star', text: 'Events', href: '#' },
icon: 'book', text: 'Teams', href: '#' },
icon: 'heart', text: 'Favorites', href: '#' },

Lot U e W et W e W et}

1
2
3
4.
5.
6 icon: 'list', text: 'More', href: '#', menus:

7 [{ icon: 'check', text: 'Admin', href: '#' }]
8

9. I;

The Sidebar component uses the Menu component to create the Bootstrap menus
(Listing 8-5).

Listing 8-5. Menu Component

1. const Menus = ({ menus }) => <ul className="flex-1lg-column flex-row
navbar-nav w-100 justify-content-between">
2. {menus.map(menu => menu.menus ?

172

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

3. <1i className="nav-item dropdown">

4. <a className="nav-1link pl-0 pr-0 dropdown-toggle" data-
toggle="dropdown" href={menu.href} role="button" aria-
haspopup="true" aria-expanded="false">

5 <i className={"fa fa-${menu.icon} fa-fw }></i>

6 {menu.text}
7.

8 <div className="dropdown-menu border-0"»>

9 <Menus menus={menu.menus} />

10. </div>

11. </1i>

12. <li className="nav-item">

13.
14. <i className={"fa fa-${menu.icon} fa-fw" }></i>

15. {menu.text}
16.

17. </1i>

18.)}

19. ;

The Menu component supports nested child menus. It checks whether one menu
item has child menus (line 2). If there are child menus, it creates the child menu
structure (lines 3-11). Otherwise, it creates the regular menu item (lines 12-17).

The Bootstrap classes to make the menu responsive are flex-1g-column and
flex-row (line 1). This means the menus should be displayed vertically in a column on
a large screen. Otherwise, the menus should be displayed horizontally in a row. You can
see that the Bootstrap classes are declarative. They clearly express our intention.

Rows and Columns

Inside the widget area, we use the Bootstrap CSS classes row and col to make the layout
responsive. We create AppRun stateless components that have the row and col classes
(Listing 8-6).

173

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

Listing 8-6. Row and Column

1 const mergeClassName = (name, props) => {

2 props = props || {};

3 if (props.className) {

4. name = ~${name} ${props.className}";
5. delete props.className;

6 }

7

8

return name;

}

9. const Row = (props, children) => <div className={mergeClassName
('row', props)}>

10. {children || "}

11. </divy;

12. const Column = (props, children) => <div className={mergeClassName
('col', props)}>

13. {children || "}

14. </divy;

The Row and Column components are the <div> elements that have Bootstrap row
and col classes. Both the Row and Column components have input parameters called
props and children. The props parameter contains the JSX tag properties. The children
parameter contains the child JSX tags, which are called by the two components directly
without modification.

By using the props parameter, the two components accept additional CSS classes.
The mergeClassName function is used to merge the additional CSS classes with the basic
CSS classes. For example, <Row className="my-4" /> adds the my-4 class to the row. By
the way, my-4 is the Bootstrap 4 spacing utility class that adds top and bottom margins to
the row.!

Allowing the ability to add more classes to the stateless component is such a useful
feature that we will demonstrate it again when discussing the notification and alert
components.

'For more information about Bootstrap utility classes and spacing, please visit https://
getbootstrap.com/docs/4.1/utilities/spacing/.

174

https://getbootstrap.com/docs/4.1/utilities/spacing/
https://getbootstrap.com/docs/4.1/utilities/spacing/

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

Notifications and Alerts

Notifications and alerts are messages to users. Depending on the importance of

the messages, they are highlighted differently. Bootstrap has a CSS class alert for all
messages and several other CSS classes for the message types, such as alert-primary,
alert-secondary, alert-success, alert-danger, alert-warning, and alert-info. The
class merge technique used for the rows and columns applies to the Alert component.
The Alert component shown in Listing 8-7 allows us to add the CSS classes for the
message types.

Listing 8-7. Alert Component

1. const Alert = (props, children) => <div className={mergeClassName
('alert', props)} role="alert">

2. {children || "}

3. </divy;

We can add additional classes to create different types of alerts (Listing 8-8).

Listing 8-8. Different Types of Alerts

1 const Alerts = () => <

2 <Alert className="alert-primary">Primary</Alert>

3 <Alert className="alert-secondary">Secondary</Alert>
4 <Alert className="alert-success">Success</Alert>

5. <Alert className="alert-danger">Danger</Alert>

6 <Alert className="alert-warning">Warning</Alert>

7 <Alert className="alert-info">Info</Alert>

8 </>;

It feels natural to add extra classes to the Alert component to define the message
type by using the props parameter and the mergeClassName function.

Next, we will demonstrate another technique of using the props parameter in the
Card component.

175

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

Cards

The Card component is one of the most useful Bootstrap components. It defines a
rectangular area on the screen for displaying specific content. It can include a header, a
body, and a footer. We will build a Card component to display the KPI and to wrap the chart
and map widget. The Card component is an AppRun stateless component (Listing 8-9).

Listing 8-9. Card Component

1 const Card = (props, children) => {

2 props = props || {};

3. return <div className={mergeClassName('card', props)}>

4 {props.header ? <div className="card-header">{props.header}
</divy> : "'}

5. {children || "'}

6 {props.body ? <div className="card-body">{props.body}</div> : "'}
{props.footer ? <div className="card-footer">{props.footer}
</div> @ "'}

8. </div>

9. }

The Card component is composed of the header, body, and footer, which are passed
in as the properties of the props parameter and are all optional. To demonstrate the
Card component, we will create the CardList component. The CardList component
randomly generates six KPIs to create six cards using the Card component (Listing 8-10).

Listing 8-10. Card List

1 const CardlList = () => <Row className="my-4">

2 {[1, 2, 3, 4, 5, 6].map(i => <div className="col-sm-4 col-1g-2">
3 <Card>

4 <div className="card-body text-center">

5. <div className="text-right text-green">

6 {(Math.random() * 10).toFixed(1)} %

7 </div>

8 <div className="h1 m-0">{(Math.random() * 100).
toFixed(0)}</div>

176

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

9. <div className="text-muted">KPI #{i}</div>
10. </div>

11. </Card>

12. </div>)}

13. </Row>;

The CardList component is a row in the widget area (line 2). It also organizes the
KPI cards responsively using the CSS classes col-sm-4 and col-1g-2. When creating the
Card component, the contents of the card (some emphasized text and some muted text)
are passed into the Card component as the children parameters (lines 4-10).

So far, we have created AppRun stateless components in a top-down fashion to
manage the UI complexity. We have also demonstrated how to use the props and
children parameters. We encourage you to visit the open source project at https://
github.com/yysun/apprun-bootstrap to get many AppRun components for Bootstrap.
There is also an open source project that has the AppRun components: Framework?
(https://framework7.io) is a CSS framework for developing mobile applications; see
https://github.com/yysun/apprun-£7.

Components and Widgets

By using the AppRun stateless components, we can create some simple widgets that
display only with dynamic element composition and styling such as the notification/
alert widget and card widget. To create more complex widgets that have arich

user interface and user interactions, we will use the AppRun stateful components
that integrate with third-party libraries. We will create four stateful components to
demonstrate the approaches planned in Table 8-1.

Chart

We will follow one of the examples from the Chart.js web site that generates three
random datasets and displays them as a bar chart and line chart for the admin
dashboard.? We will also put the chart inside a card (see Figure 8-6).

%You can find out the original example from the Chart.js web site at www.chartjs.org/samples/
latest/charts/combo-bar-line.html.

177

https://github.com/yysun/apprun-bootstrap
https://github.com/yysun/apprun-bootstrap
https://framework7.io
https://github.com/yysun/apprun-f7
http://www.chartjs.org/samples/latest/charts/combo-bar-line.html
http://www.chartjs.org/samples/latest/charts/combo-bar-line.html

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

Chart JS

[Dataset 1 [Dataset2 [Dataset 3

100

50

-50

-100
Jul 14 Jul 16 Jul 18

Figure 8-6. Chart component

Chart.js is a simple-to-use yet powerful library to build charts in web applications.
It renders chart data into the <canvas> node. All it needs is a single <canvas> node. The
general pattern of using Chart.js in the AppRun component is to create the <canvas>
node in the view function and then create the Chart object in the rendered function, as
shown in Listing 8-11.

Listing 8-11. Chart Component Pattern

1 export default class extends Component {

2 state = {

3 data: { /* data of the chart */ }

4 b

5. view = _ => <canvas id="canvas"></canvas>;

6 update = {};

7 rendered = ({ data }) => {

8 const ctx = (document.getElementById('canvas') as any).

getContext('2d");
9. new Chart(ctx, data);
10. }
11. };

The Chart component pattern renders the <canvas> node in the view function (line 5).
It then creates the Chart object in the rendered function (line 9). That’s all that’s needed
to create the structure of a Chart component. The rest of work is to follow the Chart.js
document to develop the data structure to the charts.

178

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

We will use the color codes and the logic of generating the random datasets from
the Chart.js example with the AppRun chart component pattern to get the complete
component code (Listing 8-12).

Listing 8-12. Chart Component

1. import app, { Component } from 'apprun';

2. import { Card } from './ui';

3. declare var Chart;

4. declare var moment;

5. const timeFormat = "MM/DD/YYYY HH:mm';

6. const color = Chart.helpers.color;

7. const chartColors = {

8. red: 'rgb(255, 99, 132)',

9. orange: 'rgb(255, 159, 64)",

10. yellow: 'rgbh(255, 205, 86)',

11. green: 'rgh(75, 192, 192)°',

12. blue: 'rgb(54, 162, 235)",

13. purple: 'rgb(153, 102, 255)°,

14. grey: 'rgb(201, 203, 207)'

15. };

16. const newDateString = (days) => moment().add(days, 'd").
format(timeFormat);

17. const randomScalingFactor = (min = -100, max = 100) => Math.random() *
(max - min) + min;
18. export default class extends Component {

19. state = {

20. data: {

21. type: 'bar',

22. data: {

23. labels: [

24. newDateString(0),
25. newDateString(1),
26. newDateString(2),
27. newDateString(3),
28. newDateString(4),

179

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

29. newDateString(5),

30. newDateString(6)

31. 1,

32. datasets: [{

33. type: 'bar',

34. label: 'Dataset 1',

35. backgroundColor: color(chartColors.red).
alpha(0.5).rgbString(),

36. borderColor: chartColors.red,

37. data: [

38. randomScalingFactor(),

39. randomScalingFactor(),

40. randomScalingFactor(),

41. randomScalingFactor(),

42. randomScalingFactor(),

43. randomScalingFactor(),

44. randomScalingFactor()

45. 1,

46. b A

47. type: 'bar',

48. label: 'Dataset 2',

49. backgroundColor: color(chartColors.blue).

alpha(0.5).rgbString(),

50. borderColor: chartColors.blue,

51. data: [

52. randomScalingFactor(),

53. randomScalingFactor(),

54. randomScalingFactor(),

55. randomScalingFactor(),

56. randomScalingFactor(),

57. randomScalingFactor(),

58. randomScalingFactor()

59. 1,

60. b o

61. type: 'line’,

62. label: 'Dataset 3',

180

63.

64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

backgroundColor: color(chartColors.green).

alpha(0.5).rgbString(),

borderColor: chartColors.green,

fill: false,

data: [
randomScalingFactor(),
randomScalingFactor(),
randomScalingFactor(),
randomScalingFactor(),
randomScalingFactor(),
randomScalingFactor(),
randomScalingFactor()

])
}
}J
options: {
title: {
text: 'Chart.js Combo Time Scale'
})
scales: {
xAxes: [{
type: 'time’,
display: true,
time: {
format: timeFormat,
}
H,
})
}
}
};
view = _ => <Card header="Chart JS">
<canvas id="canvas"></canvas>
</Card>;
update = {};

rendered = ({ data }) => {

181

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

98. const ctx = (document.getElementById('canvas') as any).
getContext('2d");

99. new Chart(ctx, data);

100. }

101. }

Comparing Listing 8-11 with Listing 8-10, you will notice that you can plug the Chart.
js code into the AppRun component to create the state (lines 7-17 and lines 19-92). The
state is used to create the chart in the rendered function (line 99). The only difference is
that the view function wraps the <canvas> node with a Card component (lines 93-95).

Adding a Card component to the chart is a particular requirement of the example
application of this chapter. You can use the pattern (Listing 8-10) out of the box without
adding the Card component. On the other hand, you can follow this example to add
other elements or components if needed.

D3 Map

We will use D3.js to create an interactive map using SVG, in which every country is an
SVG element that can react to the mouse hovering over it to show the highlighted color.
Each country graphic also has a county code attached to it. When the country graphic is
clicked, we display the country code in the card header (see Figure 8-7).

D3 Map - Country Code:124

Figure 8-7. Interactive map component

D3.js (or just D3 for “data-driven documents”) is a library for producing dynamic
and interactive data visualizations. It can render complicated charts and maps into the
<svg> node. The pattern to use D3 in the AppRun component is to create the <svg> node

182

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

in the view function and then use D3 to create the map in the rendered function, as
shown in Listing 8-13.

Listing 8-13. Map Component Pattern

1. import app, { Component } from 'apprun’;

2. import { Card } from './ui';

3. declare const d3, topojson;

4. export default class extends Component {

5. state = {}

6. view = () => <svg id="svg"></svg>

7. update = {

8. "draw-map': (_, features) => features

9. b

10. rendered = (features) => { /* draw svg map using D3*/ }
11. mounted = () => { /* load the data for the svg map*/ }
12. }

The map drawing code is the typical process that creates SVG elements out of a
dataset. In D3’s terminology, the technique is called a join.* We load the data for drawing
the map asynchronously using the d3. json function in the mounted function of the Map
component and draw the map in the rendered function to the <svg> node created in the
view function (Listing 8-14).

Listing 8-14. Map Component

1. import app, { Component } from 'apprun';

2. import { Card } from './ui’';

3. declare const d3, topojson;

4. export default class extends Component {

5. state = {}

6. view = () => <Card header={<div id="map-text">D3 Map</div>}>
7. <svg id="svg"></svg>

8. </Card>;

9. update = {

’The join concept is explained by the author of D3.js in the post at https://bost.ocks.org/
mike/join/.

183

https://bost.ocks.org/mike/join/
https://bost.ocks.org/mike/join/

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

10. "draw-map': (_, features) => features

11. };

12. rendered = (features) => {

13. if (!features.length) return;

14. const sphere = { type: "Sphere" };

15. const element = document.getElementById('svg');

16. const width = element.clientWidth;

17. const height = width / 2;

18. const projection = d3.geo.naturalEarth()

19. .scale(width / 6)

20. .rotate([180, 0])

21. .translate([width / 2, height / 2])

22. .precision(.5);

23. const path = d3.geo.path().projection(projection);

24. const svg = d3.select(element)

25. .attr("width", width)

26. .attr("height", height);

27. svg.append("path")

28. .attr("class", "background")

29. .attr("d", path(sphere));

30. svg.append("g")

31. .attr("id", "states")

32. .selectAll("path")

33. .data(features)

34. .enter()

35. .append("path")

36. .attr("d", path)

37. .attr("id", function (d) { return d.id; })

38. .on('click", function () {

39. d3.select("#map-text").text("D3 Map - Country Code:"
+ this.id);

40. };

41. }

42. mounted = () => {

43. const _this = this;

44. d3.json("./world-110m.json", function (error, topo) {

184

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

45. if (error) throw error;

46. const features = topojson.feature(topo, topo.objects.
countries).features;

47. _this.run('draw-map', features);

48. ;s

49. }

50. }

The Map component uses the AppRun D3 pattern in Listing 8-12, which uses the
rendered function and the mounted and view functions to integrate D3.js. It is quite
amazing that we can draw an interactive map by using only 30 lines of code (lines 12-41).

Data Tables

HTML tables are the commonly used way to visualize tabular data, especially in business
applications. We will use DataTables, a jQuery plug-in to create the HTML table that has
advanced interaction such as pagination, search, and sort (see Figure 8-8).

Show 10 & entries Search:
Name T Position Office Age Start date Salary
Airi Satou Accountant Tokyo 33 2008/11/28 $162,700
Angelica Ramos Chief Executive Officer (CEO) London 47 2009/10/09 $1.200,000
Ashton Cox Junior Technical Author San Francisco 66 2008/01/12 $86,000
Bradley Greer Software Engineer London 4 2012/10/13 $132,000
Brenden Wagner Software Engineer San Francisco 28 2011/06/07 $206,850
Brielle Williamson Integration Specialist New York 61 2012/12/02 $372,000
Bruno Nash Software Engineer London 28 2011/05/03 $163,500
Caesar Vance Pre-Sales Support New York 21 2011/12/12 $106,450
Cara Stevens Sales Assistant New York 46 2011/12/06 $145,600
Cedric Kelly Senior Javascript Developer Edinburgh 22 2012/03/29 $433,060

Showing 1 to 10 of 57 entries Previous 23 4 5 6 Next

Figure 8-8. Data table component
185

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

This is a two-step approach. First, we create regular HTML in the view function.
Then, we apply the DataTables jQuery plug-in to the HTML table (Listing 8-15).

Listing 8-15. Table Component

1 import app, { Component } from 'apprun';

2 import data from './table-data’;

3 declare var $;

4. export default class extends Component {

5 state = { data };

6 view = ({ data }) => <table id="table-example"
className="table table-striped table-bordered">

7 <thead>

8. <tr>

9 <th>Name</th>

10. <th>Position</th>
11. <th>0ffice</th>

12. <th>Age</th>

13. <th>Start date</th>
14. <th>Salary</th>

15. </tr>

16. </thead>

17. <tbody>

18. {data.map(p => <tr>

19. <td>{p.name}</td>
20. <td>{p.position}</td>
21. <td>{p.office}</td>
22. <td>{p.age}</td>
23. <td>{p.date}</td>
24. <td>{p.salary}</td>
25. </tr>)}

26. </tbody>

27. </table>;

28. update = {};

29. rendered = state => {

30. $('#table-example').DataTable();
31. }

32. }

186

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

The Table component loads the table data from the table-data. json file (line 2).
It renders the regular HTML table in the view function (lines 6-27). In the rendered
function, it applies the DataTables plug-in to the HTML table (lines 28-31).

You can see it is a simple approach to add search, sort, and pagination to the HTML
table by using the DataTables jQuery plug-in.

Calendar

The calendar is a Ul feature that is no less complicated than the data tables. Most likely,
you will not write a calendar from scratch for your applications because the FullCalendar
library has implemented many calendar features for us already. Here, we will integrate
FullCalendar into the AppRun application by creating a Calendar component (see
Figure 8-9).

Calendar
week
< > September 2018
Sun Meon Tue Wed Thu Fri Sat
1
i DayEvent |
2 3 4 5 6 7 8
[——
9 10 1 12 13 14 15
longEwent | Conference) fagithdayParty |
#p Repeating Event | 10:30a veeting |
Mplunch
+3 more
16 T 18 19 20 2 22
Hp Rapeating Event |
23 24 25 26 27 28 29

Figure 8-9. Calendar component

187

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

FullCalendar is also a jQuery plug-in. We can use the same two-step approach as
we used for developing the DataTables component to integrate FullCalender with the
AppRun component: create the HTML element in the view function and apply the
jQuery plug-in to the element in the rendered function (Listing 8-16).

Listing 8-16. Calendar Component

1. import app, { Component } from 'apprun’;

2. declare var $;

3. const yyyymm = new Date().toISOString().substr(o, 7);
4. export default class extends Component {

5. state = {

6. id:",

7. name: ",

8. events: [/* Event Data */]

9. b

10. view = (state) => <div>

11. <h5>{state.name}</h5>

12. <div id={"calendar-${state.id} }></div>
13. </divy;

14. update = {};

15. mounted = ({ id, name }) => {

16. this.setState({ ...this.state, id, name})
17. }s

18. update = {};

19. rendered = state => {

20. $('#tcalendar').fullCalendar({

21. header: {

22. left: 'prev,next today',

23. center: 'title',

24. right: "month,basicWeek,basicDay’,
25. title: state.name

26. 1,

27. defaultDate: ~${yyyymm}-12",

28. navLinks: true, // can click day/week names to navigate views
29. editable: true,

188

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

30. eventlLimit: true, // allow "more" link when too many events
31. events: state.events

32. 1)

33. }

34. }

FullCalender is also a jQuery plug-in. We can use the same method used for the
DataTables to create the Calendar component. The view function creates a <div>
node as the placeholder for rendering the calendar (lines 2-12). The rendered function
applies the FullCalendar plug-in to the <div> node created in the view function with an
object that has the configurations for the calendar (lines 20-32).

Itis so much fun to integrate many great third-party libraries into the AppRun
components. Again, we must stop here and move on to summarize all the techniques we
have used. The Chart component demonstrates the pattern that creates the <canvas>
node in the view function and creates the chart object in the <canvas> node in the
rendered function. The Map component demonstrates the pattern that creates the
<svg> node in the view function and creates the D3 SVG map in the <svg> node in the
rendered function. It also demonstrates how to load data asynchronously. The Table
component demonstrates the pattern of using jQuery plug-ins. It creates the <table>
node in the view function and applies the jQuery plug-in to the <table> node in the
rendered function. The Calendar component follows the jQuery plug-in pattern. It is
only different in that it creates a <div> node as the placeholder.

Source Code and Examples

You can get the source code of this chapter by cloning the GitHub project at https://
github.com/yysun/apprun-apress-book. You can run the examples in this chapter
using the npm scripts in Table 8-2.

Table 8-2. npm Scripts of This Chapter

Example Script
The administrative dashboard npm run admin
AppRun components for Bootstrap https://github.com/yysun/apprun-bootstrap

AppRun components for Framework7 https://github.com/yysun/apprun-{7

189

https://github.com/yysun/apprun-apress-book
https://github.com/yysun/apprun-apress-book
https://github.com/yysun/apprun-bootstrap
https://github.com/yysun/apprun-f7

CHAPTER 8 THIRD-PARTY LIBRARY INTEGRATION

Summary

We have seen how to use AppRun to build complex Uls in this chapter. AppRun was
designed to support third-party libraries. The virtual DOM is resilient to allow other
libraries to change to the DOM. Also, the extended AppRun architecture event lifecycle
has the mounted and rendered functions to makes it easy to use other libraries in
AppRun applications.

Using jQuery and the jQuery plug-ins is not an anti-pattern. It is welcomed and
encouraged. We embrace third-party libraries and recommend you use them because it
is an important AppRun application development technique.

In the next chapter, we will introduce another important technique, server-side
rendering.

190

CHAPTER 9

Server-Side Rendering

The single-page application (SPA) has become popular because it has a smooth and
fluent user experience more like a native desktop application or even a native mobile
app. This approach solves the problem of being interrupted by a white/blank screen
caused by reloading the full page on the server side. However, an SPA comes with its own
problems. It tends to be slow on startup because the application code is compiled into
client-side scripts. The scripts usually are large files that require some time to download
and parse. When the browser is downloading and parsing the scripts, the screen is blank
when the application is starting. Users have to wait. Besides, the JavaScript rendered
content is not search-engine-friendly.

Now, server-side rendering (SSR) takes client-side templates of SPAs and renders
them on the server side. Most of the front-end frameworks have specific SSR libraries to
render the client-side templates on the server side. Examples include Next.js for React,
Angular Universal for the Angular framework, and Nuxt.js for the Vue framework.

AppRun is a front-end library for developing SPAs. It also supports the rendering
of SPAs on the server side just like other frameworks. Furthermore, it allows us to turn
existing traditional server-side rendered applications into SPAs. AppRun can make
it easy to convert many applications built using the server-side Model-View-Control
(MVC) architecture into SPAs.

This chapter introduces the AppRun features that support SSR. You will learn about
the project structure and techniques of building SSR AppRun applications, as well as the
methods of converting traditional SSR applications into SPAs.

AppRun SSR

We will start by analyzing the SPA architecture. Then we will discuss the AppRun SSR
architecture and create an example AppRun SSR/SPA.

191
© Yiyi Sun 2019

Y. Sun, Practical Application Development with AppRun, https://doi.org/10.1007/978-1-4842-4069-4_9

CHAPTER9 SERVER-SIDE RENDERING

SPA Architecture

SPAs usually load an HTML skeleton and application code from the server. The

application code then loads the page content and renders the content to the screen

dynamically upon user interaction (see Figure 9-1).

Static Server & API

\ 4

a

HTML/JS/CSS
(Prerendered)

v

JS Framework

Client (SPA)

HTML Initial Requests

I
< HTML/JS/CSS
AJAX Requests

I
Data as JSON

Views

Figure 9-1. SPA architecture

a

REST Endpoints
(Data as JSON)

{

Database

When the SPA starts, the HTML is empty. The screen is blank until the browser
finishes downloading and parsing application code and then retrieves the page data.

The page content usually is the JSON format and is rendered using the client-side

templates/views.

One of the techniques to improve the startup experience is to prerender the home

page. The prerendering technique is to create the home page and some important

pages as static HTML files.! The initial requests to the Home page and those important
pages get the HTML content on the screen immediately. Users can view the pages while
application code is downloading and parsing in the background.

'For example, there is a webpack plug-in for prerendering pages at https://github.com/
chrisvfritz/prerender-spa-plugin.

192

https://github.com/chrisvfritz/prerender-spa-plugin
https://github.com/chrisvfritz/prerender-spa-plugin

CHAPTER9 SERVER-SIDE RENDERING

AppRun SSR Architecture

The prerendering technique is limited and does not scale. When applications have many
pages and routes or when they have dynamic content, such as when page content is
based on user privileges, it is impossible to prerender the dynamic content into HTML
files. A better approach is the so-called isomorphic JavaScript approach or universal
JavaScript, which renders the same application code on both the client and server sides.
AppRun is isomorphic/universal. AppRun components can render on the client side, as
well as on the server side using the AppRun server-side view engine (see Figure 9-2).

Client (SPA) AppRun for express.js
HTML HTML Requests > AppRun
[View Engine
< HTML/JS/CSS |« Router
AppRun
AJAX Requests »| | Components
I
VDOM as JSON [e=— (HTML/VDOM)
AppRun API / Database

Figure 9-2. AppRun SSR architecture

AppRun components are event-driven. We can handle the server-side routing to
publish AppRun events to drive AppRun components to produce the virtual DOM on the
server side.

The AppRun server-side view engine performs the content negotiation. When
accessing the pages directly, for example, the get /About page, the view engine returns
server-rendered HTML based on the virtual DOM produced by the components. When
accessing the pages with the HTTP Accept header to be application/json, the view
engine returns the virtual DOM in JSON format. AppRun on the client side can render
the virtual DOM to the screen directly.

193

CHAPTER9 SERVER-SIDE RENDERING

The content negotiation and the virtual DOM as JSON make the client side of
AppRun SSR/SPA small and effective. Unlike a regular SPA that gets data as JSON from
the server and then applies the client-side templates/views to the data, AppRun SSR/SPA
does not need to have client-side templates anymore. The client-side scripts only need
to request pages from the server by setting the HTTP Accept header to be application/
json. It then gets the virtual DOM to render the screen right away.

Getting the virtual DOM from the server is a unique feature of AppRun.

An SSR/SPA Example

We'll develop an example AppRun SSR/SPA. The pages of the application are rendered on
the server side. When the application starts, the Home page is the server-rendered full-page
HTML. It has the same timestamp in the navigation bar and the Home page (see Figure 9-3).
We can click the Home menu after the application starts to reload the Home page.

The screen is partially updated to have a different timestamp than the timestamp in the
navigation bar. The JSON data returned from the server is the virtual DOM (see Figure 9-4).

w - O X
/D) Appiun -SSR x
< C © localhost:3000 ¥r
AppRun App Home About Contact 14:57:34
Home - 14:57:34
&= 4l Elements Console Sources Memory Network Performance JavaScriot Profiler Application Security Audits PoxX
® 9wy Q| view = ™o O Goupbyframe | O Preservelog [Disable cacne | £ Offline Oniline L
Filte L Hide data U?J.!m XHR)5 CS5 Img Media Font Doc WS Manifest Other
Name ¥ Headers Preview Response Cookies Timing
| | lecalhost 1| chtaml> =
= & - <head>
[bootstrap.mincss <meta charset="utf-8"></netas
Jauery-32.1.minjs - «meta names“viewport™ contentw"widthedevice.width, initial.scalesl, shrink.to.fiteno®»</metas
f=s v <title>AppRun - SSRe/titles
| boofstrapumings - <link rel="styleshest™ href="https://maxcdn.bootstrapcdn.com/bootstrap/4.9.8/css/bootstrap. min.css” i
apprunjs = </head>
<bodys
[l spajs - ediv class="container”s
2 P - <nav classe™navbar navbar-expand-lg navbar-light bg-light™s
&) cataimage/png:base... - <& classs"navbar-brand” hrefs"/">AppRun App</as
<button class="navbar-toggler” type="button™ data-toggle="collapse” data-target="snavbarsuppot
<5pan class="navbar-toggler-icon™»
</button>
«div classs"collapse navbar-collapse™ ide"navbarSupportedContent™s
<ul classs"navbar-nav ar-auto”s =
<1i class="nav-itea">
.14 l
7 requests | 2.0 KB transfarmed | Finish: 1.30 s | DOMContent... {} Line 1, Column 1581

Figure 9-3. Server-rendered Home page
194

CHAPTER9 SERVER-SIDE RENDERING

. 7 = o X
/ [} AppRun - SSR x \s, \
“ C | @ localhost:3000/home o
AppRun App Home About Contact 14:57:34
Home - 14:58:39
&x 4l Elements Console Sources Memory Metwork Performance JavaScript Profiler Application Security Audits 4

® 9 wF Q| View = ™ O Groupbyframe | [0 Presenve log (D Disable cache | O Offline Oriline
Fitter) Hide data UaLs m XHR)5 CS5 Img Media Font Doc WS Manifest Other
Name X Headers Preview Response (ookies Timing
[] tecatnost 1| [{"tag":"div","children":[“Home - °,"14:58:39"]}]
[] bootstrap.min.css

] jquery-3.2.7.minjs

| beotstrap.mings

|| 2pprunjs

[speis

® dataimage/pngbase...

| | heme?_=1531335455743

& requests | 2.2 KB transferred | Finish: 1.1 min | DOMConte.. Line 1, Column 50

Figure 9-4. Client-rendered Home page

The page links of the top navigation menu are links without using the hash.

They are /, /home, /about, and /contact. The client-side script (spa. js) changes these
page links to send Ajax requests that have an HTTP Accept header as application/json.
The client-side script switches the application into the SPA mode.

To summarize, when users type the page links into the browser address bar or when
users hit the browser’s refresh button, the pages are rendered on the server side. When
users click the page links or users hit the browser’s back or forward button, the pages are
rendered on the client side using the virtual DOM JSON retrieved from the server by the
Ajax requests.

The SSR for SPA

To build the SSR AppRun application, we will develop the following:
o The server application (server.ts)

o The site layout (components/layout.tsx)

195

CHAPTER9 SERVER-SIDE RENDERING

o The components (components/*.tsx)
o The client-side application (/public/spa.js)

In this section, we walk through the development of all of these elements.

Server Application

The server application is an Express.js application. Express.js (https://expressjs.com)
is a minimal and flexible Node.js web application framework. Express.js implements the
MVC architectural pattern. It separates the different concerns of the application (input
logic, business logic, and Ul logic). The objects and components are loosely coupled.

Express.js applications route user requests to the controllers. The controllers invoke
the model, process the business logic, and then render the HTML using a view engine.
The view engine is configurable; it can be Pug, Mustache, and EJS.

The AppRun server application (server.ts) routes the user requests to AppRun
components and uses the AppRun view engine for rendering (Listing 9-1).

Listing 9-1. The Server Application

1. import * as viewEngine from 'apprun/viewEngine';

2. import * as express from 'express';

3. const app = express();

4. app.use(express.static('public'));

5. app.engine('js', viewEngine());

6. app.set('view engine', 'js');

7. app.set('views', dirname + '/components');

8. const route = async (Component, req, res) => {

9. const ssr = req.headers.accept.indexOf('application/json') < 0;
10. const getState = (component) => new Promise((resolve, reject) => {
11. const state = component. state;

12. if (state instanceof Promise)

13. state.then(s => resolve(s))

14. .catch(r => reject(r));

15. else

16. resolve(state);

17. 1

196

https://expressjs.com

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.

46.

CHAPTER9 SERVER-SIDE RENDERING

const component = new Component();

try {
const event = (req.path === '/' ? '/home' : req.path);
component.mount();

component.run(event);

const state = await getState(component);

const vdom = component.view(state);

res.render('layout', { ssr, vdom });
} catch (ex) {

res.render('layout', { ssr, vdom: { Error: ex.message || ex } });
} finally {

component.unmount();

}

import Home from './components/Home';

import About from './components/About’;

import Contact from './components/Contact’;

app.get(/~\/(home)?$/, async (req, res) => {
route(Home, req, res);

Ds

app.get('/about’, async (req, res) => {
route(About, req, res);

}s

app.get('/contact', async (req, res) => {
route(Contact, req, res);

};

const listener = app.listen(process.env.PORT || 3000, function () {
console.log('Your app is listening on port ' + listener.address().
port);

D;

The server application in the listing has four parts. It imports and sets the AppRun

view engine as the view engine for Express.js (lines 3-7). It has a route function to route

user requests to components (lines 8-31). It then imports the components and does the

routing (lines 32-43). Finally, it starts the web server (lines 44-46). We will explain each

of these parts.

197

CHAPTER9 SERVER-SIDE RENDERING

View Engine

AppRun includes a view engine for Express.js. We can import and use it to replace the
default view engine (Listing 9-2).

Listing 9-2. Use AppRun View Engine

import * as viewEngine from 'apprun/viewEngine';
app.engine('js', viewEngine());

app.set('view engine', 'js');

app.set('views', dirname + '/components');

B W N R

The AppRun view engine takes in the virtual DOM from the components and outputs
the HTML or JSON of the virtual DOM based on the ssr flag. We use the render function
to invoke the view and the AppRun view engine.

res.render('layout', { ssr, vdom });

By default, Express.js loads views from the views folder. We configure Express.js
to load the view from the components folder instead (line 4). It loads layout. js, the
compiled file of 1ayout.tsx from the components folder.

Site Layout

The layout. js file has a view function to be loaded by the AppRun view engine, which
processes the virtual DOM of each page based on the ssr flag (Listing 9-3). When the ssr
flag is true, it combines the page and layout to form the full-page structure. Otherwise,
it just uses the virtual DOM of the page content. At this stage, regardless of whether the
layout and the page content are combined, the output of the view function is also the
virtual DOM.

The AppRun view engine renders the output of the view function. It checks the ssr
flag again. When the ssr flag is true, it renders the virtual DOM as HTML. Otherwise, it
renders the virtual DOM as JSON.

Listing 9-3. The Site Layout

1. import app from 'apprun’;
2. export default ({ ssr, vdom }) => lssr ? vdom :
3. <html>

198

10.
11.
12.

13.
14.

15.
16.
17.

18.
19.
20.

21.
22.
23.

24.
25.
26.

27.

CHAPTER9 SERVER-SIDE RENDERING

<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-
scale=1, shrink-to-fit=no" />
<title>AppRun - SSR</title>
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/
bootstrap/4.0.0/css/bootstrap.min.css"/>
</head>
<body>
<div className="container">
<nav className="navbar navbar-expand-lg navbar-light
bg-light">
AppRun App
<button className="navbar-toggler" type="button"
data-toggle="collapse" data-target="4#navbar
SupportedContent"
aria-controls="navbarSupportedContent"
aria-expanded = "false"
aria-label="Toggle navigation">

</button>
<div className="collapse navbar-collapse"
id="navbarSupportedContent">
<ul className="navbar-nav mr-auto">
<li className="nav-item">
<a className="nav-1link active"
href="/home" >Home
</1i>
<li className="nav-item">

About
</1i>
<li className="nav-item">

Contact
</1i>

199

CHAPTER9 SERVER-SIDE RENDERING

28.
29. {new Date().
toLocaleTimeString()}

30. </1i>

31.

32. </div>

33. </nav>

34. <div className="container" id="my-app">

35. {vdom || "}

36. </div>

37. </div>

38. <script src="https://code.jquery.com/jquery-3.2.1.min.js">
</script>

39. <script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/
js/bootstrap.min.js"></script>

40. <script src="https://unpkg.com/apprun@latest/dist/apprun.js">
</script>

41. <script src="spa.js"></script>

42. </body>

43. </html>

The layout function creates the layout of the web application, including the HTML
structure, the navigation menus including a timestamp (line 29), and the <div> element
that can embed other pages (lines 34-36). The layout uses the jQuery library (line 38),
the Bootstrap framework (line 39), AppRun (line 40), and the client-side code of the
spa.js application (line 41).

Both the layout function and the AppRun view engine require the input of the
sst flag and the virtual DOM. They are produced by the route function.

Routing

The route function does four steps including setting the ssr flag, routing the user
requests to components, retrieving the virtual DOM output from the components, and
invoking the layout view (Listing 9-4).

200

CHAPTER9 SERVER-SIDE RENDERING

Listing 9-4. The route Function

1 const route = async (Component, req, res) => {

2 const ssr = req.headers.accept.indexOf('application/json') < 0;

3 const getState = (component) => new Promise((resolve, reject) => {
4 const state = component._state;

5. if (state instanceof Promise)

6 state.then(s => resolve(s))

7 .catch(r => reject(r));

8

9

else

. resolve(state);
10. 1
11. const component = new Component();
12. try {
13. component.mount();
14. const event = (req.path === "/"' ? "/home' : req.path);
15. component.run(event);
16. const state = await getState(component);
17. const vdom = component.view(state);
18. res.render('layout', { ssr, vdom });
19. } catch (ex) {
20. res.render('layout', { ssr, vdom: { Error: ex.message || ex }
IOF
21. } finally {
22. component.unmount();
23. }
24. }

The route function sets the ssr flag based on the accept parameter of the request
HTTP header (line 2). Regular HTTP requests have the accept parameter of */*, which
means they require SSR. The Ajax requests have the accept parameter of application/
json, which means they do not need SSR.

Routing requests to the components is relatively easy. We create a new instance
of the component and mount it. The component mounts to nothing and becomes the
hidden component that does not render to real DOM elements. It can react to the events
to create states (line 12).

201

CHAPTER9 SERVER-SIDE RENDERING

Then we publish the path of the requests as the AppRun events to the components
using the component.run function (line 14).

Getting the state out of the component after the event publication is a little tricky
because if the AppRun event handler is asynchronous, we don’t know when the event
handling is completed. The asynchronous event handlers return Promise. The good
news is that the AppRun component saves the output of the asynchronous event
handlers to an internal property called state. The state property could be a value
or a Promise object. Therefore, we create a helper function called getState to watch
the state property (line 6). If the _state property is a Promise, we wait for Promise to
resolve or reject (lines 5-7). Otherwise, we return the _state right away (line 9).

With the getState Promise, the route function waits for the state and then invokes
the view of the component to produce the virtual DOM and renders the virtual DOM
(Listing 9-5).

Listing 9-5. Component Routing

1. const event = (req.path === "/"' ? "/home' : req.path);
2. component.mount();
3. component.run(event);
4. const state = await getState(component);
5. const vdom = component.view(state);
6. res.render('layout', { ssr, vdom });
7. component.unmount();
At the end of the process, we unmount the component to clean up event handlers to
prevent memory leak.

Finally, we connect the Express.js route to the route function and components
(Listing 9-6).

Listing 9-6. Express Routing

import Home from './components/Home';

import About from './components/About’;

import Contact from './components/Contact’;

app.get(/~\/(home)?$/, (req, res) => {
route(Home, req, res);

S v B~ W N

};

202

CHAPTER9 SERVER-SIDE RENDERING

7. app.get('/about', (req, res) => {
route(About, req, res);

9. 1)

10. app.get('/contact', (req, res) => {
11. route(Contact, req, res);

12. });

To summarize, for the requests coming to Express.js, we call the route function,
which waits for the component state. Once the AppRun components create the state,
it calls the view function of the component to create the virtual DOM. Then, the route
function passes the virtual DOM into the layout view along with the SSR flag. Finally, the
AppRun view engine renders the virtual DOM into HTML or JSON.

Components

The components of SSR applications are regular AppRun components, covered in
Chapter 7. We are making some modifications to them. The Home component sets a
timestamp to the state in the event handler (Listing 9-7).

Listing 9-7. The Home Component

1 import app, {Component} from 'apprun’;

2 export default class extends Component {

3 state = ";

4 view = (state) => <div>

5. Home - {state}

6 </divy>;

7 update = {

8 "/home': _ => new Date().toLocaleTimeString()
9 }

10. }
The Home component displays the timestamp (see Figure 9-3 and Figure 9-4).

Also, we make the Contact component return the state as a Promise (Listing 9-8) to
demonstrate asynchronous event handlers.

203

CHAPTER9 SERVER-SIDE RENDERING

Listing 9-8. The Contact Component

1. import app, {Component} from 'apprun’;

2. export class Contact extends Component {

3. state = ";

4. view = (state) => <div>

5. Contact - {state}

6. </div>;

7. update = {

8. "/contact': async _ => new Promise(resolve =>

9. setTimeout(() => resolve(new Date().toLocaleTimeString() +
' - delayed'), 200))

10. }

11. }

The Contact component has a delay to mimic the long-running operations

(see Figure 9-5).

e (m} X
/ & AppRun - SS5R x \D =

< c | @ localhost:3000/contact %

AppRun App Home About Contact 10:56:33

Contact - 10:56:33 - delayed

[T ﬂ Elements Console Sources MNetwork Performance Memory Application Security Audits X

® O ™Y Q Vew IE = [Groupbyframe | [Preservelog @ Disable cache | [Offline Online ¥

Name X Headers Preview Response Cookies Timing
= — ury
l_:l contact - </fdivy
|| boctstrap.min.css - </navy)
[l 3.2.1mini - <aiv class="container” id="my-app">
JQuEny:Z.c: LN, . <div>Contact - 10:56:33 - delayed</aiv>
] boctstrap.mings . </dive
P - - <fdiv>
LJ apprunjs - <script src="https://code.jquery.com/jquery-3.2.1.min.js"></script>
] spajs src="https://maxcdn.bootstrapcdn. com/bootstrap/4.9.0/js/bootstrap.min. js" integrity="sha3f
. = <seript src="https:/ unpkg.com/apprunglatest/dist/apprun.js »</script> -
L) apprunjs - <script srca®spa.jst»</scripty
- </body>
- | </htmd >
FEE | b

7 requests | 749 KB transferred | Finish: 347 m... {} Line 1, Column 1

Figure 9-5. Component async event handler

204

CHAPTER9 SERVER-SIDE RENDERING

Also, we make the About component throw an error (Listing 9-9) to demonstrate the
error handling (see Figure 9-6).

Listing 9-9. The About Component

1. import app, {Component} from 'apprun';
2. export class About extends Component {
3. state = ";
4. view = (state) => <div>
5. About - {state}
6. </divy>;
7. update = {
8. "/about': => {
9. throw new Error('test');
10. }
11. }
12. }
w - o X
/ [AppRun - SSR x\m
& C | @ localhost:3000/contact r
AppRun App Home About Contact 14:57:34
{*Error":"Cannot route:/contact”}
x EI Elements Console Sources Memory Network Performance JavaScrigt Profiler Application Security Audits 4
® 9wy Q| View = ™= [0 Goupbyframe | [Pressne log [Disable cache | O Offline Oriline ¥
Filter 0 nide datz URLs [xeR 5 €SS Img Media Font Doc WS Manifest Other
Nare X Headers Preview Response Cookies Timing
[] lecalhost 1| {"error™:“Cannot route:/contact™}

[] oootstrap.miness

] jquery-32.1.minjs

| bootstrapmings

Ll spajs

® dataimage/prg;base..

|| neme?_=1331335455743
[2bout?_=1531335435744
|| centact? =1531335455745

10 requasts | 2.7 KB transferred | Finish: 2.4 min | DOMCont... Line 1, Column 34

Figure 9-6. Component error message

205

CHAPTER9 SERVER-SIDE RENDERING

The error thrown from the component event handler is displayed correctly. That’s

all for the server side. The server-side code is ready for the client to request HTML or the
virtual DOM.

Client-Side Script

On the client side, there is a global AppRun application, spa. js, that can switch from the
SSR pages into an SPA (Listing 9-10).

Listing 9-10. Client-Side Script

OW 60N O U1 B W N B

N N NN NNERRRPRRR R R P R R
Ui AN W NP O WODOWNOUL A WN L O

206

$.ajaxSetup({ cache: false });
const get = url => new Promise((resolve, reject) => {
$.getISON(url)
.then(d => resolve(d))
.fail(e => reject(e))
1)
window.addEventListener('popstate’, (e) => {
const path = document.location.pathname;
app.run('/', path);
1)
$('.navbar-nav 1i a').on('click', function (event) {
event.preventDefault();
$('.navbar-nav 1i a').removeClass('active');
const menu = $(this).addClass('active')[0];
history.pushState(null, ", menu.href);
app.run('/', menu.pathname);
1
const view = (state) => state;
const update = {
"/': async (_, path) => {
const json = await get(path);
return json;

};
app.start('my-app', null, view, update);

CHAPTER9 SERVER-SIDE RENDERING

The client-side application modifies the menu link behavior. It stops the browser
from loading a new page and instead publishes the AppRun / event when the menu is
clicked (lines 11-17).

The event handler makes an Ajax call to the server to get the virtual DOM as the state
(lines 20-22). The view function returns the virtual DOM directly without the client-
side rendering of JSON data (line 20). AppRun renders the virtual DOM to the screen.
Because of it communicating with the server using the virtual DOM, the client-side
application is simple. The components and their JSX code reside on the server side only.

This is a brilliant solution that simplifies not only the client-side logic but also the
server-side logic. It does not increase the server-side load because the server needs to
pull data from the databases or API calls and serialize the data into JSON. Now the server
serializes the data into the virtual DOM instead. No big deal.

The SPA for SSR

Because AppRun can handle the virtual DOM from the server, we can develop
middleware that outputs the virtual DOM to turn many traditional SSR applications into
SPAs (see Figure 9-7). It is not limited to JavaScript and node.js. It applies to all back-end

server technologies.
Client (SPA) Traditional SSR
HTML HTML Requests > Middleware
I
< HTML/JS/CSS |« Model
View
AJAX Requests > Controller
I
VDOM as JSON |e— (HTML/VDOM)
AppRun Database

Figure 9-7. SPA for traditional SSR
207

CHAPTER9 SERVER-SIDE RENDERING

The middleware is the web server technology that allows us to add extra logic to
the web request process pipeline before and after the application code. It makes the
application clean and has no dependence on infrastructure-related configurations and
implementations. Most of the server-side technology supports middleware.

Once the server has middleware to output the virtual DOM, we can alter the
client-side menu behavior to get the virtual DOM. The application can become an SPA
immediately.

We will modify an application developed using the ASP.NET MVC framework
(https://www.asp.net/mvc) and turn it into an SPA.

ASP.NET MVC

The ASP.NET MVC framework is the server-side technology for building dynamic web
applications on the .NET platform. ASP.NET MVC applications are traditional SSR
applications where each page is fully rendered HTML on the server side. ASP.NET
MVC applications have the same problems as traditional SSR. By adding AppRun to
the traditional SSR applications, we can make them SPAs to solve the user experience
problem. At the same time, we can continue to get the benefits of SSR.

The SPA starts with the server-rendered page (see Figure 9-8). When users navigate
to other pages, it gets the virtual DOM from the server. AppRun renders the screen using
the virtual DOM (see Figure 9-9).

208

https://www.asp.net/mvc

CHAPTER9 SERVER-SIDE RENDERING

Kome Fage - My ASPNE X W\

C | @ lecalhe:

_E.
ASP.NET

ASP.NET is a free web framework for building great Web sites and Web applications using HTML, CSS and
JavaScript.

x
Oifline
Name
10 requests | 536 KB transierred | 388 ms | DOMContentloade... {1} '
Figure 9-8. ASPNET MVC application
L= &) e

/1 Hame Fage - My 25P1E %

<« C | @ lecalhost?

[omorrie e e]
ASP.NET

ASP.NET is a free web framework for building great Web sites and Web applications using HTML, CSS and
JavaScript.

Audits I 4

Preserve lcg B Disabile cache Ciffline

Headers Preview Co Timing

enildren: [,-), progs: {classhame: “row”}}]

leren: [“ASP.MET*]}, (%
3

", ¢hild 1, props: {classhame: “lem

1, props: {className: “row"}}

11 requests | 536 KB transferred |

DOMCont

Figure 9-9. Virtual DOM of the ASPNET MVC application
209

CHAPTER9 SERVER-SIDE RENDERING

ASP.NET MVC applications also implement the MVC architectural pattern. Models
are the objects that have application logic for the data access. Views are the components
that render the HTML. The views use the Razor syntax for embedding server-based
code into web pages.? Controllers are the components that route user interaction to the
models and then invoke the views to render the data of the models to HTML.

Itis a well-designed architecture. We can easily turn the application into an SPA. To
do so, we follow these three steps:

1. Create the middleware or filter (VirtualDomAttribute.cs).
2. Apply the filter to the controller.

3. Add the client-side script to make it SPA.

Virtual DOM Filter

The middleware in the ASPNET MVC framework is the filter attribute that can attach
to a route in the controller (Listing 9-11) .

Listing 9-11. Virtual DOM Filter

1. public class VirtualDomAttribute : FilterAttribute, IResultFilter
2. {
3. Stringhriter textWriter;
4. TextWriter originalWriter;
5. bool isSSR;
public VirtualDomAttribute()
6. {
7 }
public void OnResultExecuting(ResultExecutingContext filterContext)
{
9. var accept = filterContext.HttpContext.Request.Headers["accept"];
10. this.isSSR = accept.IndexOf("application/json™) < 0;
11. originalWriter = filterContext.HttpContext.Response.Output;
12. textWriter = new StringWriter(CultureInfo.InvariantCulture);

For more information about the Razor syntax, please visit https://docs.microsoft.com/en-us/
aspnet/core/mvc/views/razor?view=aspnetcore-2.1.

210

https://docs.microsoft.com/en-us/aspnet/core/mvc/views/razor?view=aspnetcore-2.1
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/razor?view=aspnetcore-2.1

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

24.

25.

26.
27.
28.
29.
30.

32.
33.
34.
35.
36.
37.
38.
39.

41.
42.

}

CHAPTER9 SERVER-SIDE RENDERING

filterContext.HttpContext.Response.Output = textWriter;

public void OnResultExecuted(ResultExecutedContext filterContext)

{

}

var capturedText = textWriter.ToString();

var vdom = capturedText;

if (!this.isSSR)

{
var doc = new HtmlDocument();
doc.LoadHtml(capturedText);
var root = doc.DocumentNode.SelectSingleNode("//div[@
id="apprun-app']");
if (root == null) root = doc.DocumentNode.
SelectSingleNode("/div");
vdom = RemoveWhiteSpace(Convert(root).
GetValue("children").ToString(Formatting.None));

}

filterContext.HttpContext.Response.Output = originalWriter;

filterContext.HttpContext.Response.Write(vdom);

string RemoveWhiteSpace(string s)

{
}

return s.Replace("\\r", "").Replace("\\n", "").Trim();

public JObject Convert(HtmlNode documentNode)

{

if (documentNode.Name == "#comment") return null;
if (documentNode.Name == "#document") documentNode.Name = "div";
var children = new JArray();
foreach (var child in documentNode.ChildNodes)
{
if (child.Name == "#text")
{

211

CHAPTER9 SERVER-SIDE RENDERING

43.
44.
45.

46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.

212

}

if (RemoveWhiteSpace(child.InnerText).Length > 0)

{
children.Add(new JValue(HtmlEntity.
DeEntitize(child.InnerText)));
}
}
else
{
var ch = Convert(child);
if (ch != null) children.Add(ch);
}
}
var vdom = JObject.FromObject(new
{

tag = documentNode.Name,
children = children
Ds
var props = JObject.FromObject(new {});
documentNode.Attributes.TolList().ForEach(attr =>
{
var name = attr.Name;
if (name == "class") name = "className";
props.Add(name, attr.Value);
Ds
if (props.HasValues) vdom.Add("props", props);
return vdom;

There are major functions in the virtual DOM filter.

The OnResultExecuting function (lines 9-16) checks the request
HTTP header for the accept parameter to decide whether it is an SSR
request. If yes, it sets the 1sSSR flag (line 10).

CHAPTER9 SERVER-SIDE RENDERING

The OnResultExecuted function (lines 17-32) outputs the HTML
when the request is SSR. Otherwise, it parses the HTML using the
HTML Agility Pack (http://html-agility-pack.net) and then uses
the Convert function to create the virtual DOM (line 19-26). Notice
that it searches the element for the main content of the SPA, an
element that has an id of apprun-app in this example. By converting
the HTML inside the main content element, the virtual DOM only
has the page content. The page header, navigation, and footer are not
included in the virtual DOM.

The Convert function (lines 36-71) walks through the HTML recursively
and collects the elements and properties into the virtual DOM.

The virtual DOM filter attribute is a generic utility that you can use in other ASP.

NET MVC applications.

The Controller

In the three-page example application, the controller is a class that has three routes for

the Home page, the About page, and the Contact page. We add the virtual DOM filter to

each route (Listing 9-12).

Listing 9-12. Controller of the MVC Application

1
2
3
4.
5.
6
7
8
9

10.
11.
12.
13.

public class HomeController : Controller

[VirtualDom]
public ActionResult Index()
{

return View();

}
[VirtualDom]

public ActionResult About()
{

ViewBag.Message = "Your application description page.";
return View();

213

http://html-agility-pack.net

CHAPTER9 SERVER-SIDE RENDERING

14. [VirtualDom]

15. public ActionResult Contact()

16. {

17. ViewBag.Message = "Your contact page.";
18. return View();

19. }

20. }

Adding the filter attribute to the routes of the controller does not require
modification of the regular application logic. It has no impact on the existing application
logic of the controller. It can be turned on and off as needed.

With the filter attribute, the routers and views have no knowledge and relationship
to the final output format. The output is the result of the content negotiation.

The Layout

The layout provides the overall page structure including the top navigation menu, the
area for each page, and the footer (Listing 9-13).

Listing 9-13. Layout of the MVC SPA

1. <!DOCTYPE html>

2. <html>

3. <head>

4. <meta charset="utf-8" />

5. <meta name="viewport" content="width=device-width, initial-scale=1.0">

6. <title>@ViewBag.Title - My ASP.NET Application</title>

7. @Styles.Render("~/Content/css")

8. @Scripts.Render("~/bundles/modernizr")

9. </head>

10. <body>

11. <div class="navbar navbar-inverse navbar-fixed-top">

12. <div class="container">

13. <div class="navbar-header">

14. <button type="button" class="navbar-toggle" data-
toggle="collapse" data-target=".navbar-collapse”>

15.

214

16.
17.
18.
19.

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.

CHAPTER9 SERVER-SIDE RENDERING

</button>
@Html.ActionLink("Application name", "Index", "Home", new

{ area = }, new { @class = "navbar-brand" })
</div>
<div class="navbar-collapse collapse">
<ul class="nav navbar-nav">
@Html.ActionLink("Home", "Index", "Home")</1i>
About</1i>
Contact</1i>

</div>
</div>
</div>
<div class="container body-content" id="my-app">
@RenderBody()
</div>
<div class="container">
<hr />
<footer>
<p>© @DateTime.Now.Year - My ASP.NET Application</p>
</footer>
</div>

@Scripts.Render("~/bundles/jquery")
@Scripts.Render("~/bundles/bootstrap")

@RenderSection("scripts"”, required: false)

<script src="https://unpkg.com/apprun@latest/dist/apprun.js"></script>
<!-- AppRun application for SPA -->

<script>
$.ajaxSetup({ cache: false });
const get = url => new Promise((resolve, reject) => {
$.getISON(url)
.then(d => resolve(d))
.fail(e => reject(e))
9

215

CHAPTER9 SERVER-SIDE RENDERING

51. window.addEventListener('popstate', (e) => {

52. const path = document.location.pathname;

53. app.run('/', path);

54. };

55. $('.navbar-nav 1i a').on('click', function (event) {
56. event.preventDefault();

57. $('.navbar-nav 1i a').removeClass('active');
58. const menu = $(this).addClass('active')[0] ;
59. history.pushState(null, ", menu.href);

60. app.run('/', menu.pathname);

61. 1

62. const view = (state) => state;

63. const update = {

64. "/': async (_, path) => {

65. const json = await get(path);

66. return json;

67. }

68. };

69. app.start('my-app', null, view, update);

70. </script>

71. </body>
72. </html>

The change to the layout is minimal. The original site structure has no difference.
We only add a reference to AppRun (line 42) and an AppRun application for switching
SSR to an SPA (lines 44-69). You can see the AppRun application is the same as the one
(spa.js) in Listing 9-10

To summarize, we have successfully changed a traditional SSR application
developed with ASP.NET MVC into an SPA by using the virtual DOM filter and the
client-side AppRun application (spa. js). The virtual DOM filter and the spa. js file are
reusable for your projects.

We can apply the same technology to change an ASP.NET Core MVC application
into an SPA. We have listed the GitHub project of an ASP.NET Core MVC SPA in the next

section.

216

CHAPTER9 SERVER-SIDE RENDERING

Source Code and Examples

You can get the source code of this chapter by cloning the GitHub project at https://
github.com/yysun/apprun-apress-book. You can find the examples of this chapter
using the npm scripts in Table 9-1.

Table 9-1. npm Scripts of This Chapter

Example Script

The server-side rendering example npm run ssr

The ASP.NET MVC middleware https://github.com/yysun/apprun-ssr-aspnet

The ASP.NET Core MVC middleware https://github.com/yysun/apprun-ssr-aspnet-core
The node/express middleware https://github.com/yysun/apprun-ssr-express
Summary

AppRun is isomorphic/universal. The client-side AppRun components can render on the
server side using the AppRun server-side view engine. The server-side application routes
the requests to the AppRun events. The AppRun components handle the events and
create the virtual DOM. The server-side application performs the content negotiation. In
the case of SSR requests, the AppRun view engine outputs the fully rendered HTML. In
the case of Ajax requests, the AppRun view engine outputs the virtual DOM as JSON. On
the client side, a simple AppRun application alters the menu links and switches the
application to the SPA mode.

To convert the traditional server-side rendered application into SPAs, we develop the
middleware for the application platform. The middleware does the content negotiation
to decide whether to output HTML or the virtual DOM on the server side. The same
client-side application can turn traditional server-side rendered applications into SPAs.

The original application can be on any platform including but not limited to node.js,
ASP.NET, and ASP.NET Core. You are welcome to use the techniques introduced in this
chapter for other frameworks and platforms.

Starting from the SPA boilerplate (Chapter 7), we have developed the admin
dashboard SPA (Chapter 8) and the SSR/SPA (this chapter). In the next chapter, we will
develop an AppRun SPA that mimics a real-world line-of-business application that has
authentication and full create, retrieve, update, and delete (CRUD) functionality.

217

https://github.com/yysun/apprun-apress-book
https://github.com/yysun/apprun-apress-book
https://github.com/yysun/apprun-ssr-aspnet
https://github.com/yysun/apprun-ssr-aspnet-core
https://github.com/yysun/apprun-ssr-express

CHAPTER 10

A Real-World SPA

RealWorld (https://github.com/gothinkster/realworld) is a project that
demonstrates how to build a full-stack application by developing a blog application—a
clone of medium.com, called Conduit.! Conduit has the following general functionality:

e Authenticate users via JWT (login/signup pages and logout button)
e CRU* users (sign-up and settings pages—no deleting required)

e CRUD articles

e CR*D comments on articles (no updating required)

o GET and display paginated lists of articles

e Mark articles as favorites

o Follow other users

RealWorld is meant to be the new TodoMVC. Its specifications include more
functions than a to-do application. The RealWorld/Conduit back-end specification
includes the following features: querying and persisting data to a database; an
authentication system; session management; and full create, retrieve, update, and delete
(CRUD) for resources. For the RealWorld/Conduit front-end specification, we’ll build an
API-based single-page web application. By implementing RealWorld, not only will we
learn how to develop the application with AppRun, but we also can compare the AppRun
application architecture frameworks and libraries such as React/Redux, React/MobX,
Angular, Elm, Vue, and others.

In this chapter, we will use all the techniques introduced in the previous chapters
to develop the RealWorld blogging application. In addition, you will learn about
authentication and authorization, which is a commonly needed feature in the real-world

'You can see the live demo of Conduit at https://demo.realworld. io.

219
© Yiyi Sun 2019

Y. Sun, Practical Application Development with AppRun, https://doi.org/10.1007/978-1-4842-4069-4_10

https://github.com/gothinkster/realworld
http://medium.com
https://demo.realworld.io

CHAPTER 10 A REAL-WORLD SPA

application. You will also learn about using the state pattern of editing the data, using
modal dialog for confirmation, and implementing error handling. Also, we will develop
the application using statically typed data models and use the event decorator for
event handlers.

Single-Page Application

The RealWorld project has published a standard design, which includes Ioncoin icons,
Google fonts, and the Bootstrap 4 base theme CSS. The CSS produces the user interface’s
look and feel for all Conduit applications.

Conduit is a single-page application. The page has a page header, a main content
area, and a page footer (see Figure 10-1). The front-end application runs inside the page.
The footer content is static and contains the copyright information.

/[Conduit x W el

€ & C | localhostB050/#/ ¥| i

conduit Home Signin SignUp

conduit

A place to share your knowledge.

Your Feed Global Feed Popular Tags

No articles are here... yet.

CondURt Anintemcte lening prosect fram THinksber Code & desien licernsed Under M

Figure 10-1. Conduit home page

220

CHAPTER 10 A REAL-WORLD SPA

There is only one HTML file, the index.html file (Listing 10-1).

Listing 10-1. index.html

S UV B~ W N

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Conduit</title>
<!-- Import Ionicon icons & Google Fonts our Bootstrap theme
relies on -->
<link href="//code.ionicframework.com/ionicons/2.0.1/css/ionicons.
min.css"
rel="stylesheet" type="text/css">
<link href="//fonts.googleapis.com/css?family=Titillium+Web:700
| Source+Serif+Pro:400,700|Merriweather+Sans:400,700|Source+San
s+Pro:400,300,600,700,300italic,400italic,600italic,700italic"
rel="stylesheet" type="text/css">
<!-- Import the custom Bootstrap 4 theme from our hosted CDN -->
<link rel="stylesheet" href="//demo.productionready.io/main.css">
<style>
.modal-backdrop.show { opacity: 0.5; z-index: 1040 !important; }
.modal-open { position: absolute; width: 100% }
.modal-dialog { z-index: 1100 !important; }
</style>
</head>
<body>
<nav class="navbar navbar-light">
<div class="container">
conduit
<div id="header" />
</div>
</nav>
<div id="my-app'></div>
<script src='app.js'></script>

221

CHAPTER 10 A REAL-WORLD SPA

26. <footer>

27. <div class="container">

28. conduit

29.

30. An interactive learning project from Thinkster.
Code & design licensed under MIT.

31.

32. </div>

33. </footer>

34. </body>

35. </html>

The <div id="header"> node is the page header (line 21). The <div id="my-app'>
node is the main section (line 24). The front-end application (line 25) updates the
content of the header section and main section dynamically.

Page Header

The page header is the section on the top of the page. It displays the logo of Conduit. It
also shows menu options in the top-right corner. The menu options are different

for visitors versus registered users. The menus for visitors are Sign In and Sign Up

(see Figure 10-2). The menus for the registered and signed-in users are New Post,
Settings, Profile (shown as the username), and Sign Out (see Figure 10-3).

‘ conduit Home

Figure 10-2. The Home page menus for visitors

‘ conduit Home
Figure 10-3. The Home page menus for signed-in users

We will develop the HeaderComponent component and mount it to <div id =
"header">.

222

CHAPTER 10 A REAL-WORLD SPA

Main Section

The main section displays all the functional pages of the applications. The pages are
the Home page (see Figure 10-4), Sign In page (see Figure 10-5), Sign Up page (see
Figure 10-6), Settings page (see Figure 10-7), Profile page (see Figure 10-8), Article page
(see Figure 10-9), and Article Editor page (see Figure 10-10).

We will develop AppRun components and mount them to <div id="my-app'>.
Every component is a mini-application that has the state, view, and update. If the view
is complicated, we use a stateless component to break down the view into smaller and
more manageable pieces.

The components are HomeComponent, SigninComponent, RegisterComponent,
SettingsComponent, ProfileComponent, ArticleComponent, and EditorComponent.

Components

Each component implements client-side routing and standard user interaction functions
as per the Conduit functional specification.

Home Page

The Home page (see Figure 10-4) displays all the articles or the articles by feed and by
tag as a paginated list. Each article on the list has the hyperlink to the Article page and
a hyperlink to the author’s Profile page. It also has a button displaying how many times
the article has being favorited. A button is enabled for the signed-in user to favorite or
unfavorite the article.

The routes of the home page are as follows:

o All articles: /#/
o User article feed: /#/feed
o Articles by tag: /#/tag/ :name

« Pagination for list of articles: /#/ (feed|tag)?/:page

223

CHAPTER 10 A REAL-WORLD SPA

W - O X

/[Conduit » \B @ il

€ = C | @ localhosts0s0/#/feed - %|IE
conduit Home [MNewPost ©Settings userl SignOut

conduit

A place to share your knowledge.

Your Feed Global Feed Popular Tags
— DO
@ ... v OOCDED
Some article [cockies] cars] caromet]
conduit Aninteractive learning project from Thinkster. Code & design licensed Under M

Figure 10-4. Home page

Sign In Page

The Sign In page (see Figure 10-5) allows the user to sign in using the back-end API. If
the back-end authentication succeeds, it stores the security token returned from the
server to the local storage. It then redirects to the original page. Otherwise, it displays an
error message.

The route of the Sign In page is /#/login.

224

CHAPTER 10 A REAL-WORLD SPA

v \ W - O X
[Conduit X W }
€ C | O localhost:8080/#/login o
conduit Home Sig
Sign In
Need an account?
Email
Password

conduit

Figure 10-5. Sign In page

Sign Up Page

The Sign Up page (see Figure 10-6) allows the user to register a user account. It redirects
to the home page when the API call succeeds. Otherwise, it displays an error message.
The route of the Sign Up page is /#/register.

225

CHAPTER 10 A REAL-WORLD SPA

i - (=]
J [Conduit x W\ N
L c E@ localhost:8080/#/register ov ¥r| i
conduit Home Sz Sign up
Sign Up
Have an account?
Your Name

Email

Password

conduit

Figure 10-6. Sign Up page

Settings Page

The Settings page (see Figure 10-7) allows the user to set up a picture, e-mail, bio, and
password. It redirects to the Home page when the API call succeeds. Otherwise, it
displays an error message.

The route of the Settings page is /#/settings.

226

CHAPTER 10 A REAL-WORLD SPA

= @

€ & C | @ iocathostaos/#/settings o |

conduit Home & New Post € Settings userl SignOut
Your Settings
https://static.producti dy.io/i fsmiley-cyrus.jpg
user 1
test user 1
&
1@1test.com
sssssnses
Update Settings

Figure 10-7. Settings page

Profile Page

The Profile page (see Figure 10-8) displays necessary information about the user. It also
shows the articles authored and favorited by the user. For the signed-in user, it enables a
button to follow the user.

The route of the Profile page is /#/profile/:username.

227

CHAPTER 10 A REAL-WORLD SPA

i - (=]
J [Conduit A T
& C | @ localhostB080/#/profile/user%201 o ¥
conduit Home @1 O Settings user1 Sigr
user 1l
..+ Follow user 1
My Articles Favorited Articles

e user 1 Yo |

Hello world

eyser; B w; |

OK

Figure 10-8. Profile page

Article Page

The Article page (see Figure 10-9) displays the selected article from the article lists
including My articles, Favorited Articles on the Profile page, and My Feed and Global
Feed on the Home page. It can render the Markdown format for the article body. It has
many interaction functions, as follows:

o Edit and Delete article buttons for the article author
o Follow the author button for signed-in user, but not the article’s author
o Favorite the article button for signed-in user, but not the article’s author

o Display the comments of the article

228

CHAPTER 10 A REAL-WORLD SPA
¢ Add anew comment to the article
¢ Delete the comment button for the comment’s author

The route of the Article page is /#/article/:article-slug.

r \
J,.f [Conduit B
“ C | @ localhostB080/#/article/hello-world-6n0suy ov fr| ¢

conduit Home

Hello world

= userl

Hello world

Delete Article

conduit

Figure 10-9. Article page

Editor Page

The editor (see Figure 10-10) page is used for creating new articles as well as editing
articles. You get to this page when you click New Post and also when you click Edit
Article on an article page. It has the HTML form to collect the article’s title, description,
body, and tags (separated by commas). It has a button to create or update the article.

If the API call fails, it displays an error message.

229

CHAPTER 10 A REAL-WORLD SPA
The routes of the Editor page are as follows:
e New article page: /#/editor

o Article editor page: /#/editor/:article-slug

W - 0O X
J [Conduit » W
i (&) i(D localhost:3050/#/editor/hello-world-6n0suv o | i
conduit Home [NewPost 05
Hello world

Hello world

Hello world

Enter tags

Publish Article

conduit

Figure 10-10. Editor page

The Main Program

Each of the application pages is an AppRun component. The main program imports all
components and routes the AppRun routing events to the components (Listing 10-2).

Listing 10-2. The Main Program

1. import app from 'apprun';
2. import './components/header’;
3. import './components/home’;

230

CHAPTER 10 A REAL-WORLD SPA

4 import './components/signin’;

5 import './components/register’;

6. import './components/profile';

7 import './components/settings';

8 import './components/editor’;

9. import './components/article';

10. app.on('#', async (route, ...p) => {
11. app.run(#/${route || "}, ...p);
12. })

13. app.run('/get-user');

The default AppRun routing event convention is to support the routes with a hash
sign, asin #/, #/article, #profile, and so on. This is different from the Conduit
convention. The Conduit convention has an extra slash sign, asin /#/, /#/article, /#/
profile, and so on. We can easily translate AppRun routing events into the Conduit
convention (line 11).

After importing all the components, the main program publishes the /get-user
event to load the current user.

Back-End API

The RealWorld project has more than 20 back-end servers implementing the RealWorld
specification, which includes the standardized data models and API.

Core Data Models

The data models of the RealWorld specification include User, Profile, Article, Comment,
and Tag. We define them using the TypeScript interface (Listing 10-3).

Listing 10-3. Data Models

1. export interface IUser {
2 username: string;

3 bio: string;

4. image: string;

5 following: boolean;
6. }

231

CHAPTER 10 A REAL-WORLD SPA

7. export interface IProfile extends IUser {
email: string;

9. token: string;

10. }

11. export interface IArticle {

12. slug: string;

13. title: string;

14. description: string;
15. body: string;

16. createdAt: Date;

17. updatedAt: Date;

18. favorited: boolean;

19. favoritesCount: number;
20. author: IAuthor;

21. taglist: Array<string>;
22. }

23. export interface IComment {

24. id: number;

25. body: string;

26. createdAt: string;
27. author: IAuthor;
28. }

29. export type ITag = string;

API Data Models

The RealWorld API specification uses the request-response pattern. We need a few more
data types to model the API (Listing 10-4).

Listing 10-4. API Data Models

1. export interface IAuthResponse {
user: IUser

232

10.

11.
12.
13.
14.
15.
16.
17.

18.
19.
20.
21.
22.
23.

24.
25.
26.

27.
28.
29.

30.
31.
32.

CHAPTER 10

export interface ITags {
tags: Array<string>;

}

export interface IFeed {
articles: Array<IArticle>;
articlesCount: number;

}

export interface IArticlesRequest {
tag?: string;
author?: string;
favorited?: string;
limit: number;
offset: number;

}

export interface INewArticle {
title: string,
description: string,
body: string,
taglist: Array<string>;

}

export interface IArticlesResponse {
article: IArticle

}

export interface ICommentsResponse {
comments: Array<IComment>

}

export interface IProfileResponse {
profile: IProfile

A REAL-WORLD SPA

233

CHAPTER 10 A REAL-WORLD SPA

API Layer

We have introduced the technique of breaking the APT access logic into the API layer and
fetch wrappers introduced in Chapter 6.

We create an API layer where we group the Conduit API functions into several API
namespaces such as auth, articles, comments, profile, and tags. Also, we make the
API namespaces static typing by using the core data models and the API data models
(Listing 10-5).

Listing 10-5. API Namespaces

1 export const auth = {

2 current: () => getToken() ? get<IUser>('/user') : null,

3. signIn: (user: { email: string, password: string }) =>

4 post< IUser >('/users/login', { user }),

5 register: (user: { username: string, email: string, password:
string }) =>

6 post< IUser >('/users', { user }),

7. save: user => put('/user', { user }),

8 authorized: () => {

9. return app['user'] ? true : app.run('#/login');

10. }

11. }

12. export const articles = {

13. search: (request: IArticlesRequest) =>

14. get<IFeed> (" /articles?${toQueryString(request)}"),
15. feed: (request: {limit: number, offset: number}) =>
16. get<IFeed> (" /articles/feed?${toQueryString(request)}),
17. get: (slug: string) =>

18. get<IArticlesResponse> (" /articles/${slug}),

19. delete: (slug: string) =>

20. del("/articles/${slug}"),

21. favorite: (slug: string) =>

22. post("/articles/${slug}/favorite”),

23. unfavorite: (slug: string) =>

24. del("/articles/${slug}/favorite™),

234

25.
26.
27.
28.
29.

30.
31.
32.
33.
34.
35.
36.
37.

38.
39.
40.
41.
42.
43.
44.
45.

46.
47.
48.

CHAPTER 10 A REAL-WORLD SPA

update: (article: IArticle) =>
put("/articles/${article.slug}”, { article }),

create: (article: INewArticle) =>
post<IArticlesResponse>('/articles’, { article })

}

export const comments = {
create: (slug: string, comment: { body: string }) =>
post("/articles/${slug}/comments™, { comment }),
delete: (slug: string, commentId: string) =>
del("/articles/${slug}/comments/${commentId}"),
forArticle: (slug: string) =>
get<ICommentsResponse> (" /articles/${slug}/comments”)

};

export const profile = {
get: (username: string) =>
get<IProfileResponse> (" /profiles/${username}"),
follow: (username: string) =>
post<IProfileResponse>("/profiles/${username}/follow"),
unfollow: (username: string) =>
del(" /profiles/${username}/follow™)

};
export const tags = {

all: () => get<ITags>('/tags")
}

The API functions use the functions get<T>, post<T>, del<T>, and put<T>. They are

the statically typed wrappers of the browser fetch function (Listing 10-6).

Listing 10-6. Fetch Wrappers

1.

export async function fetchAsync(method: 'GET' | 'POST' | 'DELETE' |
"PUT', url: string, body?: any) {
const headers = { 'Content-Type': 'application/json; charset=utf-8' };
if (access_token) headers['Authorization'] = “Token ${access token}";

235

CHAPTER 10 A REAL-WORLD SPA

4. const response = await window['fetch']("${defaultBasePath}${url}", {
5. method,

6. headers,

7. body: body && JSON.stringify(body)

8. D;

9. if (response.status === 401) throw new Error('401');

10. const result = await response.json();

11. if (!response.ok) throw result;

12. return result;

13. }

14. export function get<T>(url: string): Promise<T> {

15. return fetchAsync('GET', url);

16. }

17. export function post<T>(url: string, body?: any): Promise<T> {
18. return fetchAsync('POST', url, body);

19. }

20. export function del(url: string) {

21. return fetchAsync('DELETE', url);

22, }

23. export function put(url: string, body?: any) {
24. return fetchAsync('PUT', url, body);
25. }

The fetchAsync function wrapper sets the content type in the HTTP header to
application/json; charset=utf-8 toletthe back-end server send back the data in
JSON format (line 2). It also sets the authorization in the HTTP header using the security
token obtained after the successful user sign-in (line 3).

Authentication

Conduit allows anonymous access for reading articles, and authenticated users can
submit and edit articles. The API authorizes a user’s permission by verifying the security
token in the HTTP header. The security token is issued from the server when the user is
signed in using the sign-in page. The security token is saved to local storage.

236

CHAPTER 10 A REAL-WORLD SPA

Get User

Because the security token is saved to local storage, when the application starts, the
main program publishes the /get-user event to reload the signed-in user information.
The event is handled in api.ts as one of the global events (Listing 10-7).

Listing 10-7. Getting the Current User

1 app.on('/get-user', async () => {

2 try {

3 const current = await auth.current();

4. if (current) app.run('/set-user', current.user);
5. } catch {

6 setToken(null);

7 document.location.reload(true);

8 }

9. 1)

The event handler calls the auth. current() function to retrieve the user. If it
successfully gets the user, it publishes another global event, /set-user. If the saved token
is not valid and the auth. current () API call fails, it clears the token and reloads the page.

Set User

The /set-user event is handled in two places. First, it is handled in HeaderComponent,
where the component displays the menus accordingly (Listing 10-8).

Listing 10-8. Setting the User in the Page Header

1 view = state => {

2 {user 8& <a>New Post}

3 {user && <a>Settings}

4. {user ? ": <a>Sign In}

5 {user ? " : <a>Register}

6 {user && <a>{state.user.username}}
7

237

CHAPTER 10 A REAL-WORLD SPA

The /set-user event is handled in api.ts, where the event handler stores the user
globally and sets the security token to the fetch module and local storage (Listings 10-9
and 10-10).

Listing 10-9. Setting the User in the API Module

app.on('/set-user', user => {
app['user'] = user;
setToken(user ? user.token : null);

};

2 W N R

Listing 10-10. Setting the User in the Fetch Module

1 export function setToken(token: string) {

2 access_token = token;

3 if (!'window.localStorage) return;

4 if (token)

5. window.localStorage.setItem('jwt', token);
6 else

7 window.localStorage.removeItem('jwt");

8. '}

Authorization

The /set-user event stores the authenticated user globally in the app object. The
globally saved user is used for authorization. The auth.authorized() function verifies
the global user (Listing 10-11).

Listing 10-11. Authorization Function

1 export const auth = {

2 authorized: () => {

3. return app['user'] ? true : app.run('#/login');
4 }

5.}

238

CHAPTER 10 A REAL-WORLD SPA

Whenever we need authorization, we call the auth.authorized() function.
For example, on the home page, the personal feed is available only to the signed-in user.
It requires authorization (Listing 10-12).

Listing 10-12. Authorization of Personal Feed

1 switch (type) {

2 case 'feed':

3 if (lauth.authorized()) return { ...state, articles: [], max: 0};
4 feed = await articles.feed({ limit, offset });

5. break;

6 case 'tag':

7 feed = await articles.search({ tag, limit, offset });
8 break;

9 default:

10. feed = await articles.search({ limit, offset });

11. break;

12. }

The authorization function publishes the #/1ogin event to bring out the Sign In page
in case the user fails to sign in.

Sign-In

The #/1ogin event activates SigninComponent. It saves the return-to route and calls the
API function auth.signIn with the username and password (Listing 10-13).

Listing 10-13. Sign-in Component

1. import app, { Component, on } from 'apprun';

2. import { auth, serializeObject } from '../api’

import Errors from './error-list’;

class SigninComponent extends Component {
state = {}
view = (state) => {
return <div className="auth-page">
<div className="container page">

0 N O vl b

239

CHAPTER 10 A REAL-WORLD SPA

9. <div className="row">
10. <div className="col-md-6 offset-md-3 col-xs-12">
11. <h1 className="text-xs-center">Sign In</h1>
12. <p className="text-xs-center">
13. Need an account?
14. </p>
15. {state.errors 8% <Errors errors={state.errors} />}
16. <form onsubmit={e => this.run('sign-in", e)}>
17. <fieldset className="form-group">
18. <input className="form-control form-control-lg"
type="text"
placeholder="Email" name="email" />
19. </fieldset>
20. <fieldset className="form-group">
21. <input className="form-control form-control-lg"

type="password"
placeholder="Password" name="password" />

22. </fieldset>

23. <button className="btn btn-1g btn-primary pull-xs-
right">

24. Sign In

25. </button>

26. </form>

27. </div>

28. </div>

29. </div>

30. </div>

31. }

32. @on('#/login")

33. login = state => ({ ...state, messages: [], returnTo: document.

location.hash })

34. @on('sign-in")
35. signIn = async (state, e) => {

240

CHAPTER 10 A REAL-WORLD SPA

36. try {

37. e.preventDefault();

38. const session = await auth.signIn(serializeObject(e.target));

39. app.run('/set-user', session.user);

40. const returnTo: string = (state.returnTo || ").replace
(/\#\/login\/2/, ")

41. if (!returnTo)

42. document.location.hash = "#/feed’;

43. else {

44. app.run('route', returnTo);

45. history.pushState(null, null, returnTo);

46. }

47. } catch ({ errors }) {

48. return { ...state, errors }

49. }

50. }

51. @on('#/logout")

52. logout = state => {

53. app.run('/set-user', null);

54. document.location.hash = '#/';

55. }

56. }

57. export default new SigninComponent().mount('my-app")

When the user sign-in succeeds, SigninComponent publishes the /set-user event to
update the menu in HeaderComponent and the security token in the API module (line 39).
It also reroutes to the return-to route. If the user sign-in fails, it sets the error messages
into the state (line 48), which will be displayed in the view function (line 15).

Sign-Out

The SigninComponent component also has the #/logout event handler (lines 51-55).
It sets the current user to null and redirects the user to the home page.

241

CHAPTER 10 A REAL-WORLD SPA

Event Decorator

The event handlers in SigninComponent use the on decorators. A decorator is an
ECMAScript 2018 feature that is already supported by the TypeScript compiler. You
need to enable the experimentalDecorators flag in the tsconfig. json file for using the
decorators.

The decorator is the syntax sugar that makes the code easier to read. The event
handlers using the decorators (Listing 10-14) are the same as those that use the update
object (Listing 10-15).

Listing 10-14. Event Handlers Using Decorators

1. the class extends Component {

2. @('/#login') login = ()=> {}

3. @('/#logout'): logout = ()=> {}
4 @('sign-in'): signout=()=> {}
5.}

Listing 10-15. Event Handlers in Update

1 class extends Component {

2 update = {

3. "/#login': ()=> {},
4. "/#logout': ()=> {},
5 'sign-in': ()=> {}
6 }

7.}

Modal Dialog

Applications often require a modal dialog to confirm a user interaction and notify the
user of the result of the interaction. We can create a generic model component using the
Bootstrap classes (Listing 10-16).

242

CHAPTER 10 A REAL-WORLD SPA

Listing 10-16. Modal Dialog

1 import app from ‘apprun’;
2 export default function ({ title, body, ok, cancel, onOK, onCancel }) {
3 return <div className="modal-open">
4 <div className="modal-dialog" role="document">
5. <div className="modal-content">
6 <div className="modal-header">
7 <h5 className="modal-title">{title}
8 <button type="button" className="close"
data-dismiss="modal"
aria-label="Close" onclick={e =>

onCancel(e)}>
9. x
10. </button>
11. </h5>
12. </div>
13. <div className="modal-body">
14. <p>{body}</p>
15. </div>
16. <div className="modal-footer">
17. {cancel && <button type="button"

className="btn btn-secondary"
data-dismiss="modal" onclick={e =>

onCancel(e)}>

18. {cancel}

19. </button>}8nbsp;

20. <button type="button" className="btn btn-primary"
onclick={e => onOK(e)}>

21. {ok}

22. </button>

23. </div>

24. </div>

25. </div>

243

CHAPTER 10 A REAL-WORLD SPA

26. <div className="modal-backdrop show" onclick={e =>
onCancel(e)}></div>

27. </div>

28. }

ModalComponent is a stateless component. It accepts the dialog title, the dialog
body, the OK button caption, and the Cancel button caption. It also takes two callback
functions: onOK and onCancel. The onOK and onCancel functions are called when the
user clicks the OK or Cancel button.

We use ArticleComponent as the example to demonstrate the Modal component
(Listing 10-17). The application prompts a modal dialog to confirm with the user when
the user clicks the button to delete an article (see Figure 10-11).

Listing 10-17. Article Component (Simplified)

1 class ArticleComponent extends Component {

2 state = { /* article */ }

3 view = (state) => {

4. return <div className="article-page">

5. {

6 state.deleting ? <Modal title='Delete Article’

7 body="'Are you sure you want to delete this article?’
8 ok="'Delete' cancel="No'

9 onOK={e => this.run('ok-delete-article', e)}

10. onCancel={e => this.run('cancel-delete-article', e)} /> : "
11. }

12. <div className="banner">

13. <div className="container">

14. {/* code to display the article */}

15. </div>

16. </div>

17. }

18. @on('#/article")

19. root = async (state, slug) => { /* load article */}

20. @on('delete-article')

21. deleteArticle = (state, article) => ({ ...state, deleting: true })

244

22.
23.
24.
25.
26.

27.
28.
29.

CHAPTER 10 A REAL-WORLD SPA

@on('ok-delete-article")

okDelete = (state, e) => {
articles.delete(state.article.slug);
document.location.hash = '#/';

}

@on('cancel-delete-article')
cancelDelete = (state, article) => ({ ...state, deleting: false })

}

export default new ArticleComponent().mount('my-app")

C | ® tocalhost8080/#/article/nello-worid-6n0suv

Delete Article

Are you sure you want to delete this article?

Figure 10-11. Article deletion confirmation

245

CHAPTER 10 A REAL-WORLD SPA

To display the modal dialog, ArticleComponent sets the deleting property to true in
the state when the user clicked the delete button (line 21). The view function displays
the Modal component when the deleting property is true (lines 5-11). When the user
clicks the OK button, the Modal component calls the onOK callback function, which then
publishes the ok-delete-article event to do the deletion.

Similarly, when the user clicks the Cancel button, the Modal component calls the
onCancel callback function, which then publishes the cancel-delete-article event.
In the cancellation case, ArticleComponent sets the deletion property to false. The view
function does not display the modal dialog.

To summarize, we do not delete the article right away when the user clicks the delete
button. We add a confirmation step by using a deletion property to display the modal
dialog. It is easy to implement the deletion confirmation using ModalComponent.

ModalComponent is used in other components of the example application. You can
use it in your applications too.

Live Demo and Source Code

The AppRun RealWorld example application is live at https://gothinkster.github.
io/apprun-realworld-example-app.

You can get the source code from the GitHub project at https://github.com/
gothinkster/apprun-realworld-example-app.

Summary

In this chapter, we discussed several important design concepts used in developing the
AppRun RealWorld example application, including the project structure, components,
routes of the components, and back-end API data model. We demonstrated the
authentication/authorization and modal dialog features. We only explained
SigninComponent and ModalComponent in detail, because other components use the
patterns and techniques introduced in the previous chapter. Combining the knowledge
of this chapter and previous chapters, you can build a line-of-business application in the
real world.

The RealWorld example applications is a complicated application. In addition to
building the application, we will test the application and verify it in the next two chapters.

246

https://gothinkster.github.io/apprun-realworld-example-app
https://gothinkster.github.io/apprun-realworld-example-app
https://github.com/gothinkster/apprun-realworld-example-app
https://github.com/gothinkster/apprun-realworld-example-app

CHAPTER 11

Unit Testing

Unit testing is a software development process in which the smallest testable parts of
an application, called units, are individually and independently scrutinized for proper
operation.! Many companies and teams apply the test-driven development (TDD)
process. Unit testing is important to these companies and teams.

The AppRun architecture is unit test-oriented. The three architectural parts—the state,
view, and update (event handlers)—are decoupled and easy to test. In AppRun application
development, there are two types of unit test. The first type is the white-box test, which is
to test the events and the states. The testing process can be generalized as publishing the
events and asserting the states. The second type of unit testing is the black-box test, which
is to set the states and assert the virtual DOM output of the view function.

We will use the AppRun RealWorld example application developed in Chapter 10
to demonstrate unit testing techniques. Let’s start with the testing framework and a few
patterns of writing unit tests that are useful for testing AppRun applications.

Jest Framework

The AppRun development environment includes the Jest framework (https://jestjs.io).
The convention to run the tests is to use the npm script.

npm run jest
We can also run the Jest testing interactive mode using the npm script.
npm test

Jest watches for file changes and runs the test files only on changed files. Jest quickly
executes the tests in parallel. The interactive way for us to define which tests to be
executed is during the watch mode. Listing 11-1 shows the available Jest usage options.

'https://searchsoftwarequality.techtarget.com/definition/unit-testing

247
© Yiyi Sun 2019

Y. Sun, Practical Application Development with AppRun, https://doi.org/10.1007/978-1-4842-4069-4_11

https://jestjs.io
https://searchsoftwarequality.techtarget.com/definition/unit-testing

CHAPTER 11 UNIT TESTING
Listing 11-1. Jest Usage

Watch Usage
» Press a to run all tests.

» Press f to run only failed tests.

» Press p to filter by a filename regex pattern.

» Press t to filter by a test name regex pattern.

» Press u to update failing snapshots.

» Press i to update failing snapshots interactively.

» Press q to quit watch mode.

» Press Enter to trigger a test run.

By typing only one character, we can choose to run all tests, failed tests, tests in

files matching a regex pattern, or tests that have names matching a regex pattern. It is a

pleasure to write and run tests using Jest.

We can open the component file being tested, the unit test file, and the integrated

terminal side by side in Visual Studio Code (see Figure 11-1).

[8] home.spes.ts - appran-reahwerid. eample-app - Visual Studia Code
| File Edt Sewcton Yiew Go Debug Jerminsl Help

X X

COMpPonents

¥ home.tsk » *o I5tate » M articles

const PAGE_SIZE = 19
const Tag = ({ tag }) = <a href={ #/tag/${tagh

You, a year ago | 1 author (You) | 1 reference
declare interface

12

<strings

c'
max: number

PROBLEMS ouTPUT DEBUG CONSOLE TERMINAL

Test Suites: 4 passed, 4 total

Tests: , 36 passed, 43 total
Snapshots: 8 passed, 8 total
Time:

Ran all test suites.

Watch Usage: Press w 1o show mnr@,.

| Pmaster G ©040 B typescript|B homespects

- o x
TS homespects % = o € m
tests * T3 homespects » .
You, 2 manith suthor (You)
1 import app from
impore home Fromw J nts,/home " ;
pore | tags, articles from ' .. /src/api';
import './mocks';
describe(‘home component’
J.runi T
setTimeout
const st state;
expect(s -tobBe P
expect ~toBe(1};
expect! s . toBel(101);
.toHaveBeenCalledWith
articles.search).toHaveBeenCalledwith({
1: node v 4 M & ~ O %
i
< You. ayearago Indents0 Ln1.Coll Spaces2 UTF-8 CRLF TypeScript 303 @ 4

Figure 11-1. Interactive unit testing in Visual Studio Code

248

CHAPTER 11 UNIT TESTING

The home component source file is in the left panel. The unit test code file is
in the middle panel. The terminal window is in the right panel. We run Jest in the
terminal window, where Jest monitors the file changes and executes the relevant tests
automatically.

Test Suites and Tests

The default folder to store the source code of the tests isnamed _ tests .JavaScript
and TypeScript files are treated as the source code of tests. Also, JavaScript and
TypeScript files that are named as *. spec. js, *.spec.jsx, *.spec.ts, or *.spec.tsx in
any other folders are treated as the source code of the tests.

We write unit tests using syntax like the Jasmine unit testing framework and organize
them into test suites (Listing 11-2).

Listing 11-2. Test Suites and Tests

1 describe('home component', () => {

2 it('should update state: #/', () => {
3. /* unit test code*/

4 1s

5. 1);

The describe() function defines the test suites. The it () function defines the test.
Usually we group the tests by AppRun component. Each test suite is for one AppRun
component. We do not mix tests for different components into one test suite. Jest reports
the testing results by component (Listing 11-3).

Listing 11-3. Jest Testing Results

HeaderComponent
y/ should handle the event: /set-user (13ms)
HomeComponent
y/ should handle the event: #/ (5ms)
y/ should handle the event: #/feed (4ms)
y/ should handle the event: #/tag (2ms)
y/ should handle the event: update-article (ims)

249

CHAPTER 11 UNIT TESTING

SigninComponent
y/ should handle
y/ should handle
y/ should handle
RegisterComponent
y/ should handle
y/ should handle
ProfileComponent
y/ should handle
y/ should handle
y/ should handle
SettingsComponent
y/ should handle
\/ should handle

the event: #/login (3ms)
the event: #/logout (3ms)
the event: sign-in (2ms)

the event: #/register (2ms)
the event: register (2ms)

the event: #/profile (2ms)
the event: update-article
the event: update-follow (ims)

event:
event:

O skipped 2 tests

EditorComponent
y/ should handle
y/ should handle

ArticleComponent
y/ should handle
y/ should handle
y/ should handle
y/ should handle

event:
event:

event:
event:
event:
event:

O skipped 5 tests

Test Coverage

#/settings (1ms)
submit-settings (1ms)

#/editor (ams)
submit-article (ams)

#/article (4ms)
/new-comment (3ms)
update-article (2ms)
delete-article

We can have Jest report the test coverage by adding the --coverage option to the npm

script (Listing 11-4).

npm run jest -- --coverage

250

CHAPTER 11 UNIT TESTING

Listing 11-4. Jest Testing Coverage

| | |
File | % Stmts | % Branch | % Funcs | % Lines | Uncovered Line #s |
------------------- D S L B
All files | 62.85 | 51.74 | 42.65 | 62.72 | |

sTC | 28.18 | 13.46 | 9.09 | 29.17 |
api.ts | 32.73 | 25 | 8.33 | 34.04 |... 31,132,133,134 |
fetch.ts | 23.64 | 10 | 11.11 | 24.49 |... 74,76,78,79,84 |

src/components | 70.51 | 64.63 | 59.04 | 70.98 |
article-list.tsx | 90.91 | 100 | 80 | 88.89 | 17 |
article-meta.tsx | 63.64 | 50 | 20 | 60 | 20,24,30,37 |
article.tsx | 62.5 | 63.64 | 42.86 | 64.71 |... 97,103,104,105 |
comment-list.tsx | 54.55 | 12.5 | 20 | 50 | 5,6,25,39,54 |
editor.tsx | 54.29 | 40 | 80 | 51.72 |... 64,65,66,67,68 |
error-list.tsx | 40 | 100 | 0| 50 | 4,5 |
header . tsx | 100 | 60 | 100 | 100 | 11,17,23,27,31,35 |
home . tsx | 94.55 | 88 | 9 | 93.02 | 102,103,115 |
modal.tsx | 15.38 | 0| 0| 28.57 | 4,9,19,21,25 |
page-list.tsx | 100 | 100 | 100 | 100 | |
profile.tsx | 72,09 | 77.27 | 75 | 72.22 |... 78,79,80,81,94 |
register.tsx | 751 77.78 | 80 | 78.95 | 23,49,50,51 |
settings.tsx | 69.7 | 72.73 | 50| 67.86 |... 68,69,70,71,78 |
signin.tsx | 67.74 | 53.85 | 83.33 | 69.23 |... 53,54,55,57,58 |
tests | 96.88 | 100 | 30 | 100 | |
mocks.ts | 96.88 | 100 | 30 | 100 | |
------------------- B S L B

Asynchronous Tests

When testing the asynchronous code, such as AppRun asynchronous event handlers, we
use the done function callback (Listing 11-5).

251

CHAPTER 11 UNIT TESTING

Listing 11-5. done Callback

1
2
3.
4.
5
6

it('should update state: #//2', (done) => {
setTimeout(() => {
/* unit test code */
done();
IOk
};

We use setTimeout to schedule the test code execution. Jest waits until we call the

done function.

Mock API

During the testing, we don’t want to call the back-end server. We need to mock the API

functions (Listing 11-6).

Listing 11-6. Mocking the API Functions

OW 60N O U1 B W N -

I O N = O = =
~ o u b wN PR O

252

import { auth, tags, articles, comments, profile } from '../src/api';
auth.current = jest.fn(() => null);
auth.signIn = jest.fn(() => { });
auth.register = jest.fn(() => { });
auth.save = jest.fn(() => { });
tags.all = jest.fn(() => ({ tags: [1, 2, 3] }));
articles.search = jest.fn(() => ({ articles: [], articlesCount: 10 }));
articles.feed = jest.fn(() => ({ articles: [], articlesCount: 5 }));
articles.get = jest.fn((slug) => ({
article: {
slug,
author: {},
title: ",
body: ",
taglist: []
})
D);

CHAPTER 11 UNIT TESTING

18. articles.delete = jest.fn(() => { });

19. articles.favorite = jest.fn(() => { });
20. articles.unfavorite = jest.fn(() => { });
21. articles.update = jest.fn(() => { });

jest.fn(() => { });

22. articles.create
23. comments.create = jest.fn(() => { });

24. comments.delete = jest.fn(() => { });

25. comments.forArticle = jest.fn(() => ({ comments: [] }));
26. profile.get = jest.fn(() => { });

27. profile.follow = jest.fn(() => { });

28. profile.unfollow = jest.fn(() => { });

Mock functions® replace the actual implementation of functions. The mocked API
functions will not call the back-end server. Also, the mocked functions can capture
calls to the functions (and the parameters passed in those calls) and can return values.
For example, tags.all (line 6), articles.search (line 7), articles.feed (line 8), and
articles.get (lines 9-17) return the data values to the caller functions.

In Chapter 6, we recommended building the data access logic using an API layer that
has the API namespaces on top of the fetch module. Now, we can reveal the reason is
that we can mock the API functions.

Building the data access logic using the API layer and the APl namespaces lets us
mock the API functions for unit testing.

Testing Events

To demonstrate the patterns of writing Jest unit tests, we will test the event handling of
the home component.

The home component displays the article list of three types: all articles, personal
feed, or articles of a tag. It also displays the list of tags and the list of pages for pagination.
Listing 11-7 shows the data model of the state.

*https://jestjs.io/docs/en/mock-functions

253

https://jestjs.io/docs/en/mock-functions

CHAPTER 11 UNIT TESTING

Listing 11-7. Data Model of the Home Component State

declare interface IState {
type: " | 'feed' | 'tag'
articles: Array<IArticle>
tags: Array<string>
max: number
page: number

We define the testing plan shown in Table 12-1.

Table 12-1. Home Component Route Test Plan

Route Expectations

#/ The default route of the home page should display the first ten articles. It is an
asynchronous event.
e The component state should have a type property of " (an empty string).
e The component should call tags.all to retrieve tags.
e The component should call articles.search to retrieve tags in order to
retrieve ten articles for the first page.
e The component state should have a page property of 1.
e The component state should have max set to 101 (returned by the mock function).

#//2 This route should display the second ten articles. It is also an asynchronous event.
e The component state should have a type property of ".
* The component should call tags.all to retrieve tags.
e The component should call articles.search to find ten articles for the second
page (offset 10).
¢ The component state should have a page property of 2.
e The component state should have max set to 101 (returned by the mock function).

#/feed This route is available only for the signed-in user.
e |t should publish the #/1ogin event.
e |t should not call the articles.feed function.

(continued)

254

CHAPTER 11 UNIT TESTING

Table 12-1. (continued)
Route Expectations
#/feed/3 Assuming the user is signed in, this route displays the third page of the user’s feed.

l#/tag

[#/tag/t2

[#/tag/t3/20

e The component state should have the type of property be 'feed'.

¢ The component should call tags.all to retrieve tags.

e The component should call articles.feed to retrieve ten articles for the third
page (offset 20).

» The component state should have a page property of 1 (the last page of the total
five articles).

e The component state should have max set to 5 (returned by the mock function).

This route displays the first page of articles with no tags.

The component state should have a type property of 'tag".

¢ The component state should have the tag property be undefined.

The component should call tags.all to retrieve tags.

The component should call articles.search to retrieve ten articles without tags.
The component state should have page be 1.

e The component state should have max be 100 (returned by the mock function).

This route displays the first page of articles that have a tag of 't2".

¢ The component state should have the type property be ‘tag".

The component state should have the tag property be 't2'.

¢ The component should call tags.all to retrieve tags.

The component should call articles.search to retrieve ten articles that have
thetag 't2".

The component state should have the page property be 1.

e The component state should have max be 101 (returned by the mock function).

This route displays the 20th page of articles that have the tag 't3".

¢ The component state should have a type property of 'tag".

e The component state should have a tag property of 't3".

¢ The component should call tags.all to retrieve tags.

¢ The component should call articles.search to retrieve ten articles that have
the tag "t3".

¢ The component state should have the page property be 11 (the last page of the
total 101 articles).

e The component state should have max be 101 (returned by the mock function).

255

CHAPTER 11

UNIT TESTING

We can develop the tests for the home components as shown in Listing 11-8.

Listing 11-8. Home Component Test

1
2
3
4
5.
6
7
8
9

10.
11.
12.
13.
14.

15.
16.
17.

18.
19.
20.
21.
22.
23.
24.
25.
26.

27.

28.
29.

256

import app from ‘apprun’;

import home from '../src/components/home’;
import { tags, articles } from '../src/api’';

import

"./mocks’;

describe('home component', () => {

it('should update state: #/', (done) => {
app.run('route', '#/');

setTimeout(() => {

1)

1)

1)

const state = home.state;
expect(state.type).toBe(");
expect(state.page).toBe(1);
expect(state.max).toBe(101);
expect(tags.all).toHaveBeenCalledWith();

expect(articles.search).toHaveBeenCalledWith({ offset:

limit: 10 });
done();

it('should update state: #//2', (done) => {
app.run('route', '#//2');
setTimeout(() => {

1)

const state = home.state;
expect(state.type).toBe(");
expect(state.page).toBe(2);
expect(state.max).toBe(101);
expect(tags.all).toHaveBeenCalledWith();

expect(articles.search).toHaveBeenCalledWith({ offset:

limit: 10 });
done();

10,

30.
31.
32.
33.
34.
35.
36.

37.
38.
39.
40.
41.
42.
43.
44.
45.
46.

47.
48.
49.

50.
51.
52.
53.
54.
55.
56.
57.
58.
59.

60.
61.
62.

CHAPTER 11 UNIT TESTING

it('should not call #/feed w/o user', () => {
const login = jest.fn();
app.on('#/login', login);
app.run('route', '#/feed');

1)

expect(login).toHaveBeenCalled();
expect(articles.feed).not.toHaveBeenCalled();

it('should update state: #/feed/3", (done) => {
app['user'] = {};

app.run('route', '#/feed/3");

setTimeout(() => {

1)

1)

const state = home.state;
expect(state.type).toBe('feed');
expect(state.page).toBe(1);
expect(state.max).toBe(5);
expect(tags.all).toHaveBeenCalledWith();

expect(articles.feed).toHaveBeenCalledWith({ offset:

limit: 10 });
done();

it('should update state: #/tag', (done) => {
app.run('route', '#/tag');
setTimeout(() => {

)

1)

const state = home.state;
expect(state.type).toBe('tag"');
expect(state.tag).toBeUndefined();
expect(state.page).toBe(1);
expect(state.max).toBe(101);
expect(tags.all).toHaveBeenCalledWith();
expect(articles.search).toHaveBeenCalledWith(
{ tag:undefined, offset: 0, limit: 10 });
done();

20,

257

CHAPTER 11 UNIT TESTING

63. it('should update state: #/tag/t2", (done) => {

64. app.run('route', '#/tag/t2");

65. setTimeout(() => {

66. const state = home.state;

67. expect(state.type).toBe('tag"');

68. expect(state.max).toBe(101);

69. expect(state.tag).toBe('t2");

70. expect(state.page).toBe(1);

71. expect(tags.all).toHaveBeenCalledWith();

72. expect(articles.search).toHaveBeenCalledWith(
{ tag: 't2', offset: 0, limit: 10 });

73. done();

74.)

75. 3]

76. it('should update state: #/tag/t3/20", (done) => {

77. app.run(‘route', '#/tag/t3/20");

78. setTimeout(() => {

79. const state = home.state;

80. expect(state.type).toBe('tag"');

81. expect(state.tag).toBe('t3");

82. expect(state.page).toBe(11);

83. expect(tags.all).toHaveBeenCalledWith();

84. expect(articles.search).toHaveBeenCalledWith(
{ tag: 't3', offset: 190, limit: 10 });

85. done();

86.)

87. 1)

88. 1)

The testing code is expressive. It matches exactly the test plan in Table 12-1. We can
develop similar unit test plans and test code for other components.

258

CHAPTER 11 UNIT TESTING

Testing Views

Besides testing the events and routes, we can also test the view function. Testing the
AppRun function is easy because the view function is a pure function. The output of the
view function depends only on the state parameter that is passed into the view function.

The view function testing process is to set the state value and assert the virtual DOM
output of the view function. The process itself is simple, but writing the assertions of the
virtual DOM is tedious and time-consuming. The good news is that we can leverage a
particular type of test call snapshot test provided by the Jest testing framework.

We convert the virtual DOM into JSON format and tell Jest to save it as a snapshot.
Jest saves the first snapshot as a new snapshot. Jest then compares the further snapshots
with the saved snapshot. It reports an error if the snapshots are different.

If the snapshots are different, then obviously either the saved one is wrong or the
new one is wrong. If the saved snapshot is wrong, it means that we have developed
something new. We need to update the saved snapshot to be the new one. If the new
snapshot is wrong, it means that we have introduced an issue and have broken the test.
We need to fix our code to match the saved snapshot.

Take the home component as an example again; we can develop a snapshot test of its
view function (Listing 11-9).

Listing 11-9. Snapshot Test

1 import home from '../src/components/home’;
2 describe('home component', () => {

3 it('view test', () => {

4 const state = {

5. type: 'feed’,

6 articles: [],

7 tags: ['1', '2', '3'],

8

9

max: 10,
. page: 1
10. }
11. const vdom = home['view'](state);
12. expect(JSON.stringify(vdom, undefined, 2)).toMatchSnapshot();
13.)
14. });

259

CHAPTER 11 UNIT TESTING

In the test, we don’t need to write many assertions to verify the virtual DOM. Instead,
we create snapshots of the virtual DOM. Jest saves the snapshot the first time it runs the
test (Listing 11-10).

Listing 11-10. Saving the Snapshot

PASS tests/home.view.spec.ts
home component view
y/ view test (11ms)

» 1 snapshot written.
Snapshot Summary
» 1 snapshot written from 1 test suite.

Test Suites: 1 passed, 1 total

Tests: 1 passed, 1 total
Snapshots: 1 written, 1 total
Time: 7.12s

Ran all test suites matching /home.view/i.
We can make a change to the test code by changing the tag from 3 to 3x.
tags: ['1', '2', '"3x']
When we run the test again, Jest detects the differences in the virtual DOM
(Listing 11-11).
Listing 11-11. Snapshot Differences

FAIL tests/home.view.spec.ts
home component view
x view test (28ms)
* home component view » view test
expect(value).toMatchSnapshot()
Received value does not match stored snapshot "home component view test 1".

- Snapshot
+ Received

260

CHAPTER 11

@@ -195,15 +195,15 @@

UNIT TESTING

]
b
{
"tag": "a",
"props": {
- "href": "#/tag/3/1",
+ "href": "#/tag/3x/1",
"className": "tag-pill tag-default”
}’
"children": [
- "3"
+ "3x"
]
}
]
}
]
11 | }
12 | const vdom = home['view'](state);
> 13 | expect (JSON.stringify(vdom, undefined, 2)).
toMatchSnapshot();
| A
14] 1)
15 [}1);
16 |

at Object.<anonymous> (tests/home.view.spec.ts:13:48)

» 1 snapshot failed.
Snapshot Summary

» 1 snapshot failed from 1 test suite. Inspect your code changes or press

“u” to update then.

261

CHAPTER 11 UNIT TESTING

Test Suites: 1 failed, 1 total

Tests: 1 failed, 1 total
Snapshots: 1 failed, 1 total
Time: 8.018s

Ran all test suites matching /home.view/i.
Watch Usage: Press w to show more.

Jest has successfully found the changes in the virtual DOM. It recommends the
following: Inspect your code change or press "u to update them.If we have
broken the test, we need to fix the code. If we have updated the virtual DOM, we press u
to update the snapshot. It is a smart way of testing the user interfaces.

Debugging the Unit Tests

Although an error message can show us a stack trace when unit tests fail, sometimes we
also need to go through the code execution to find the data context that is causing the
problems. Many developers use console. log to print the values of variables. However,
we can debug unit tests in Visual Studio Code.

To configure Visual Studio Code for debugging the Jest tests, open the file .vscod/
launch. json (create it if it does not exist). We can add the debug configurations as
shown in Listing 11-12.

Listing 11-12. Visual Studio Code Jest Debug Configuration

1. |

2. // Use IntelliSense to learn about possible attributes.

3. // Hover to view descriptions of existing attributes.

4. // For more information, visit: https://go.microsoft.com/
fwlink/?1inkid=830387

5. "version": "0.2.0",

6. "configurations": [

7. {

8. "type": "node",

9. "request": "launch",

10. "name": "Launch Jest",

262

CHAPTER 11 UNIT TESTING

11.
12.

13.

14.

15.

16.

17.

18.]
19. }

The debug configuration makes Visual Studio Code start the debug process and runs

"program": "${workspaceFolder}/node modules/jest/bin/jest.js",
"args": [
"${relativeFile}"
1,
"console": "integratedTerminal”,
"internalConsoleOptions": "neverOpen"

Jest against the current file in the editor. We can open the unit test file to be debugged in
Visual Studio Code and set breakpoints. Then we press F5 to start the debugging
(see Figure 11-2).

2] nemets: - apprun-reabworid-samale-aps - Viswal Stugle Code st i
file [t Selecton View Go Debug Jeminal Lelp |
= CERUS B Launch* ¥ B @ hometsx % TS homespects (LI G o - | ® e $ m
4 VARIABLES src » components ¢ & hometsk » i HomeComponent » J updateState
) 4Llocal <div className="tag-list">
.~ a this: [iCSSCORAGmENE state.togs.Mapitag =+ <Te tag«{tag} />
e b _actions: Array(4) [Obj. div>
L4 z </div>
b _app: t {_events: Objec.. </ divs>
» _history: array(@) [] < divs
@ _history_idx: -1 </div>
b _state: Dbject {type: ".. <fdiv>
[a? element : “my-app® ¥
= enable_history: false _
¥ Faad: Function [state, S retermnces —
(T-} o e updateState = async (state, type: ' | 'feed’ | 'tag’', page, tag® string) = {
s global_event: undefined try
b options: Object {} T4 let taglList = state.tags.length
¢+ root: function (state, - i gs: state.tags
b start: function (t,e}{ . 1 await tags.all();
v state: Object {type: "".. 2 ii'4
» tag: function (state, t.. i;:!; " Lf:nile‘:f 40 o
update: undefined Pl e
» WATCH const nffset = = PAGE ST7F |
» CALLSTACK PAUSED ON BREASPOINT PRCBLEMS OUTPUT DEBUG CONSOLE TERMINAL 2:NodeDebugConsolir o M @ ~ [X
+ LOADED SCRIPTS
lworld-example-app” && "C:'Program Files'nodejs'node.exe” --inspect-brk=4861 node_modules' jest'bin'
4 BREAKPOINTS % :
i jest.js tests/home.spec.ts
£ All Exceptions Debugger listening on ws://127.0.0.1:4861/bccOacsb-8d55-4856-9a6a-097F3b4Ge714
£ Uncaught Exceptions For help see https://nodejs.org/en/docs/inspector
- Debugger attached.
®) homespects tests 11 CRUNS | tests/home.spec.ts
® ¥ hometsx 74

2 UTF-8 CRLF

[installing pac

Ln 74, Col 11 5 Type:

Figure 11-2. Debugging unit tests in Visual Studio

263

CHAPTER 11 UNIT TESTING

Live App and Source Code

The RealWorld example application is live at https://gothinkster.github.io/apprun-
realworld-example-app.

You can get the source code from the GitHub project at https://github.com/
gothinkster/apprun-realworld-example-app.

After getting the source code, run npm install and npm test to watch the unit tests
described in this chapter.

Summary

Unit testing makes you sleep well. Whether you or your team has decided to enforce the
TDD practice or not, unit tests should be part of the codebase. A well-developed unit test
is as important as the application code.

The white-box type of testing is how we test the AppRun events. We use mock
functions and assertions to verify the exact behavior of the event handlers. The tests can
even serve as documentation. Reading the event testing example, you can see it is a code
version of the event test plan.

The black-box type of testing is how we test the view functions. By leveraging the
Jest snapshot testing feature, we can save time. Once we have developed the screens, we
always look to see if they display correctly. We take advantage of this visual checking and
automate the testing against the initial snapshot.

The unit tests should cover the happy path as well as the corner cases. Write a test
while you are developing new features. Write a test while you are fixing bugs. The unit
tests should have good coverage. In the next chapter, we will introduce the AppRun
DevTools to automatically generate the event tests and the snapshot tests that help to
achieve excellent testing coverage.

264

https://gothinkster.github.io/apprun-realworld-example-app
https://gothinkster.github.io/apprun-realworld-example-app
https://github.com/gothinkster/apprun-realworld-example-app
https://github.com/gothinkster/apprun-realworld-example-app

CHAPTER 12

AppRun DevTools

After we have developed the unit tests for the AppRun applications, there is one more
thing to do. We must make sure the events and states in the AppRun applications work
as expected. AppRun comes with handy tools for developers to fine-tune the events
and states.

In this chapter, we will use the AppRun RealWorld example application to
demonstrate the AppRun DevTools. You will learn how to verify the registered
components and events and how to monitor the events and state changes of the running
application.

Use AppRun DevTools

AppRun exposes the app instance globally to the window object. AppRun event
publication and subscription allows us to attach the DevTools to examine and
monitor the components, states, and events of the AppRun applications. There is no
need to set any debug flag or compile the code into debug mode. The application
code remains the same.

The AppRun DevTools script is distributed with the AppRun package. To use the
AppRun DevTools, we include the script in the HTML file, as shown here:

<script src="https://unpkg.com/apprun@latest/dist/apprun-dev-tools.js">
</script>

Once we finish using the AppRun DevTools, we remove the AppRun DevTools script
from the HTML file.

265
© Yiyi Sun 2019

Y. Sun, Practical Application Development with AppRun, https://doi.org/10.1007/978-1-4842-4069-4_12

CHAPTER 12 APPRUN DEVTOOLS

Command Line in the Console

The AppRun DevTools script adds a command-line interface (CLI) to the JavaScript
console. The CLI provides a few commands that we can type in the JavaScript console.
To run the commands, type the following:

_apprun “<command> [options]®

The help command lists the available commands (see Figure 12-1).

. ..
/ [Condut ® _ N
&« C | @ localhostB0BD/#/profile/user201 o fr| i

~ & & Sewmerts Conscle Sources Memory Netwers Performance lavalcriot Profiler »

conduit Home

5 ¥ [Geoup sim

el.s:-'1 [w]
Hello world
Ql.)-."! Z

0K

Figure 12-1. AppRun CLI in the console

The AppRun DevTools CLI has the following commands:
o components: Lists registered components
e events: Lists registered events
o log: Configures the logging of the AppRun debug events

We can use the CLI commands to verify the components, events, and debug events
of the AppRun RealWorld example application.

266

Components

CHAPTER 12 APPRUN DEVTOOLS

When we developed the AppRun RealWorld example application in Chapter 10, we

planned the components and their events, as shown in Table 12-1.

Table 12-1. Components and Events

Element Component

Events

fimy-app HomeComponent

SigninComponent

RegisterComponent

SettingsComponent

ProfileComponent

ArticleComponent

EditorComponent

#header HeaderComponent

o it/

o #/feed

o #/tag

® update-article
e #/login

* #/logout

® sign-in

e #/register

® register

o #/settings

e submit-settings
® ok

e cancel

e i#/profile

e update-article
¢ update-follow

e #t/article

® /new-comment

e /delete-comment
e edit-article

e update-article
¢ update-follow

e delete-article
e cancel-delete-article
e ok-delete-article
e #/editor

e submit-article

e /set-user

267

CHAPTER 12 APPRUN DEVTOOLS

In Table 12-1 the events that have names starting with #/ are the routing events.
The events that have names starting with / are global events. The other events are local
events.

We can use the AppRun DevTools CLI to verify whether the components are
registered as planned. To do so, we can run the components command in the console
(see Figure 12-2).

W - 0O X
‘ / [Condut ® \m
L C | @ localhostBOBD/® profile/user¥20 |

~ & @& Sewmerss Conscle Sources Memory Netwers Performance lavaleriot Profiler »

conduit fome E ® e v | e Dedaclt bevels * [Group simiar

Appitun DevTools @.2: type "_sporun “help'™ to list all avadladle commands, BpRrun-dev.tools, tex 178
b _mppros " components”
+ cdly

header s
» e -

userl
+ Follow user 1
I avor s S
e user 1 v
Hello world
e userl :V_]

0K

Figure 12-2. The components command

You can see that the running components and the events match the design. There
is one component mounted to the header #element. There are seven components
mounted to the #my-app elements.

The benefit of using the browser’s JavaScript console is that it prints the objects
nicely and allows us to drill down to the properties. We can further drill down to see the
events subscribed to by each component (see Figure 12-3).

268

CHAPTER 12 APPRUN DEVTOOLS

[Condut ®
& 5 C | O tocalhostBos/#/profie/users201 7|
= . = R f] | Semerts Comscle Soures Memoy Network Performerce lsvaScritProfler ® o
conduit Home @ Mew Fo user ™ - Defiulfeveis ¥ 1 Group siriar hidden 8

appitun DevTools @.2: type "_sporun “help™™ to list all avaflable comands. apmrun-cev.tools. tee:17%
» _mpprom " components”
v adiv fds"header™s_c/divy eerun-dey-tools, SR 131
[0
we:
*compoednt: HEadercosponent {state: {1, view: 7, updster undefined, optiens: (.}, _ape: &, o}
v events: Array(l}
b B {neme: "/set-user”, fni f}

userl
test user 1 T Aoarun-@ 100l SR K2

w7 {i-be f-be 4o dobe i-h 0 LMD
+ Follow user 1 »8: (component: MomeComponent, events: Array(4l}
®1: (component: SigninComponent, events: Array(3)}
B3 (cemponant: RAELITATCOnOCEANt, evTiEr Arrap(3)}
» 3: {component: Frofilecompontnt, events: array(3)}
. . 4 (cemponent: SettingsComocment, events: Array(+)}
My Articles Favorited Articles 5 [components EditorComponent, eventsc drray(21}
va:
* comporent: Articlecomponent {state: {_}, view: f, update: undefined, cptions: {_}, _app: t, -}
wevents: Array(s)
@ user 1 [wa] + B {ramen “iarticle, #u £
TIIL/I018, 22503 AM * 13 {nemgs "/new-gomment”, fn:1 £)
*# 21 {neme: “/delete-comment™, fn: £}
F 3 {rame: “update-article”, fa: 5}

Hello world »5: fosmes “update.follont, fn: 7]
Hello world » 51 {name: “edit-article”, i £}
*6: {name: “gelete.sriicle, ¥n: 7}

» 71 {namer “ok-delete-article™, fnr £}
» 81 {neme: "cancel.celete.article®, fn: 7}

user 1 @
1/3/2018, 11:54:12 AM

OK

0K

Figure 12-3. Elements, components, and events

The components command has a print option.
_apprun ~components print’

The print option makes the AppRun DevTools CLI print the elements, components,

and events in a new window (see Figure 12-4).

269

CHAPTER 12 APPRUN DEVTOOLS

|r-,,=~ ~Gasgle Chrome = = =
(D aboutblank

* sheader
¢ HeaderComponent
= feet-user
* #my-app
© HomeComponent
m &
= #ffeed
- K‘f[ag
= update-article
o SigninComponent
= #flogin
= Eflogout
= sign-in
o RegisterComponent
= #fregister
= register
e ProfileComponent
= &fprofile
= update-article
= update-follow
e SettingsComponent
= #&fsettings
= submit-settings
= ok
= cancel
o EditorComponent
= &feditor
» submit-artide
o AricleCompeonent
#/article
fmew-comment
fdelete-comment
update-article
update-follow
edit-article
delete-article
ok-delete-article
cancel-delete-article

Figure 12-4. Printing the elements, components, and events

We can print to a printer to get a hard copy of the elements, components, and events
of our applications.

Events

Besides verifying the components, we want to verify the events subscribed to by the
components globally and locally. It is important to use the events only when they are
necessary. Unnecessary events could cause memory leak and performance issues.
We run the events command in the console. The events command lists all event
subscriptions grouped by global and local events in the console (see Figure 12-5).

270

CHAPTER 12 APPRUN DEVTOOLS

[Condut ®
€ 3 C @ localhostBOBD/#/ profile/user’201 $‘:| H
n “| R] | Semtrts Corscle Soues Memory Network Peformbnce lpSerict Profler ¥ i x
conduit Home @ HewPost D Settings wserl SignOut E O e v | pne Defaclt beveis ¥ [Group simiar Thidden X
Appitun DevTools 8.3: type "_sporun “help'™ to list a1l available comands. apprundev.tools teeii78
¥ _pprun events”
s MO IIBIS e Aegrun-gey-tools S 106
* {events a"} ¥ [HomeCompenent] Angrun-oey-Sools.Sex: g
» (event: “aforticle®} » [Articlecomponent] anqrun-gev.tools, teeleg
* {event: “mieditor) » [Editorcomponent] Apgrisnsdey tools. e 108
* {event: “wifeec”} v [Hesrconpongnt] Aprnace otools See W0E
v {event: “aflogin™) » [SigminComponpnt] anarun-dav-eola. SRl
useril » {event: “aflogeut”) w [Signincospontat] St
» fevent: “wipropile} » [Profilecospoment] AAcun-dey-tools, Tanc1eg
et user 1 *{#vent: “efregister) » [Registenconponent] Amrnegey.tools, Sav ey
»{events “wizeltings”} » [Seltingsiomponent] asnrun-gay-teals. Red
* fevent: “aftag"} v [Wmecoagonent] ALeebelit S
» {event: “fgelete.conment™} » farticleComponent] aRnun-dev-tols Sncied
» {evant: “aeu-comment™} » [ArticteComonent] Aeprundev.tools. fav: 93
) . B {Events “/oet-user”} v [HEcORrCompOnent] angryn-gev.tools. 1o 103
My Articles Favorited Articles | aes LOEAL EVENTS sas anarun-de-tools, T 0
ey ¥ {event: “cancel”) v [SettingsCorsontnt] e
*» {event: “"concel.delete.orticle”) » [articlecomponent] aagcun-gev-tools Sex il
@ s I ’0] ® fevent: “celete-oriicie”} » farticlecomponent] amrun-dev-tools, CaniiL
- | v {event: “esiz-erticie™} » [Articiecompenent] nounedev-toole Sen LIl
* (events "ok} ¥ [SettingsCompanent] Bpprun-Sev-toole. SRCIIL
Hello world » {event: “okegelete-orticle™] v [ar Begrinsdev-to0ls, S0 LIL
Hello world » {event: “register<} [Registercomponent] aRcun-dev-tooli il
* {ewamt: “sige-ia7} » [Signincomponent] apprunadev.tools. tin:10]
* (evénts “submit.griicle”} » [EitorCompondnt] 20RCUN- S8y -T00LE, 80111
» fevent: “pabmit-settiegst] » [frivingscemsoasnt] aeerun-goy-toels. SR AL
* fevent: “upcete.criicte”) awnnedev-tools Sac il
*(3) f
e ”s IE] | v levent: “wpdste-foliae”) v (2) [Profilecomponeat, Articlefomponent] Aprin-Sav-toolE. TR
+ uncefined
oK » 1
oK

Figure 12-5. The events command
We can also use the print option with the events command.
_apprun “events print’

The print option prints the events and the components in a new window
(see Figure 12-6).

271

CHAPTER 12 APPRUN DEVTOOLS

| € Appin - Google Chrome - o >
(D aboutblank
GLOBAL EVENTS

.

¢ HomeComponent
* #farticle

e ArticlsCamponent
* #feditor

o EditorComponent
» #ffeed

e HomeComponent
+ #/login

o SigninComponent

#/logout
o SigninComponent
* #fprofile

e ProfileComponent

#/register
e RegisterComponent

* #/settings

o SettingsComponent
. #ftag

© HomeComponent
+ jdelete-comment

o AricleCompenent
* [new-comment

o ArticleComponent
* fset-user
o HeaderComponent

LOCAL EVENTS

+ cancel

o SettingsComponent
+ cancel-delete-article

e ArticleComponent
+ delete-article

@ ArticleComponent
* edit-article

o ArticleCompenent
. ok

o_Safti

Figure 12-6. Printing events

By verifying the components and events, we have confirmed the AppRun RealWorld
example application has been developed as per the design (see Table 12-1). Next, we will
see whether the events are published and handled as expected.

Debug Events

AppRun publishes the debug events at the two AppRun event lifecycle checkpoints:
when AppRun components complete handling the events and when AppRun
components complete the view function. Using the AppRun DevTools CLI, we can turn
on and off the logging of the debug events.

o log on: Starts logging the event handling and view function
o log off: Stops logging the event handling and view function

o log event on: Starts logging the event handling

272

CHAPTER 12 APPRUN DEVTOOLS
o log event off: Stopslogging the event handling
o log view on: Starts logging the view function
o log view off: Stops logging the view function

We can turn on logging the event handlers and view functions of the AppRun
RealWorld example application (see Figure 12-7).

= 8] x
/[Condut x\g b |

“ C | @ localhost:B0B0,#/profile/user¥20

5 “ [N (] | Semerts Conscle Sources Memory Metwor Peformence lovaSorictProfier % = o
conduit Home & F 0 5 userl E ® e v e Defaclt bevels * [Group simiar dnidden €2
Agptun DavTools @.2: Rype "_aporun “help™™ to 1st all avaflable comands. Apprun-dev-tools ten:17s
» _mpprum “leg en”
* log ea Bnnrun-dey-tools, SR 16T
uncefines
snru s tmele Spe 13
» {component: WomeComponent, ewemt: “w/", & AProy(e), stote: {_}, mexsiste: Fromize, _}
* (component: mMomelomponent, state: {.], woee: {.]]) A00CUn- Sy -T0018, SEX: 138
anerun-gey-teals. TR 127
» {comsonent: EFitorComonent, e wfegitor”, e: Arroy(), stete: (L), newstete: Prowise, _)
user 1 » (component: EditorComponent, state: (.}, wdom: {.}}
test user 1 {romponent: Settingsoompoment, event: “wisettings®, e: Arrop(e), stcte: {_}, re
_— < i Settingstomponint, siater [}, wemr (L)
+ Follow user 1

F1 1t S
* {gomoonent: Profilecomponent, event: “wiorofile”, e Arroy(l), stete: (.}, AewstoTe: Proeis
» {tomponent: Prefilecomponent, state: (-}, vaom {_}) aonrun-gey-100ls, S i3E

Favorited Articles

el.:sc.-'l.) !0:
Hello world

Figure 12-7. Debugging events

We can also drill down to examine the details of the events, the state, the new state,
and the virtual DOM (see Figure 12-8).

273

CHAPTER 12 APPRUN DEVTOOLS

——

€ 5 C O localhostB080/#/profile/users20t o 7r|
| . 2| R A) | Semerts Corscle Soures Memoy Network Performorce laiScriptirofer » | i
conduit Home [e : ! E & |t v e Defscltlevels ¥ [Group simizar 4hidden 8
Apptun DevTools @.2: type "_sporun “help'™ to list all avadladle commands, ApRrun-dev.tools, tex 178
» _mpprum “log en”
= log ce Aterun-dry-tools e 167
uncefines

asgryn-dav-toale Tee: 137
e: {_}, mewstste: Promise, _}

anrun sy seole Tev:13g

» {tomoonent: HomeComponent, event:

* (comgonent:

angrun- S5
rT, €3 Afrey(0), stoter (L), newStete! Prosise,)
widom: {_}}

» {component: EditorComponent, &
user1 » (component: EditorcComponent, state: {.

settings®, e Arroy(e), stcte: {.},
, won: {.]}

» (corponent: SettingsCompoment, ew
* (ComEonint: SATTINGSCORIOMNT, 4T

+ Follow user 1 anorun-
* {coRzonent: Pref 2 s BVEAt: “wioeofile”, &2 Arroy(l), stete: (.}, mewitote: Proeiee,
Aoarun-@a-teols. S0 138

» [eomgonent: PrEFiLecoRponent, f-}, woom o
* concontnts ProfileCosponent (-1, view: £, update: undefined, ootions: (), _802: t, =)
»state: {name: “wser 1%, tyoe: "srticles®, articles: array(7), page: 1, profile: {_}, -}

ldren: Arrey(3)

wir

e user 1 |wo v children: Areayil)
172018 ;] vor abv®, progs: (-}, chiléren: AProyil))

_: areay(e)
3: {classnans: “usersinfo”}
“a

Hello world
ane: “coatainer=)

e userl | w1 . : Arrayie)
< — * pro asupne: “prefile-sege”)

OK

Figure 12-8. Debug event, state, and virtual DOM

Extend the Command Line

The AppRun DevTools CLI in the console is extensible. You can create your commands
to enhance the CLI by registering your command function in the window object.

Register the Command

The AppRun DevTools CLI uses the following naming convention:

window[' apprun-<command>'] = [

"command brief description]’,

(p) => { /* command implementation*/},
" [command long description]”

]

The AppRun CLI command is like a tuple that has three fields: the brief description,
the function implementation, and the optional long description of the command.

274

CHAPTER 12 APPRUN DEVTOOLS

When users type _apprun ~command” in the browser’s DevTools console, the
AppRun CLI searches the window object for _apprun-command. If it finds the command
tuple, it executes the command function.

In the command function, we use the two AppRun built-in events to retrieve the
components and monitor the checkpoints of the AppRun event lifecycle. To demonstrate
the AppRun DevTools CLI's extensibility, we will develop two commands to generate
unit tests and to generate snapshot tests.

Generate Unit Tests

The built-in AppRun event get-components returns the mounted components grouped
by the elements that the components mount to. We can iterate through the components
to do many interesting things. For example, we can develop a command to generate unit
tests of the components and events (Listing 12-1).

Listing 12-1. Generating Unit Tests

1 let win;

2 function openWin(name) {

3 win = window.open(", name);

4. win.document.write(" <html>

5 <title>AppRun Analyzer | ${document.location.href}</title>
6

7

<style>
body { font-family: -apple-system, BlinkMacSystemFont,
"Segoe UI" }
8. </style>
9. <body><pre>);
10. }
11. function write(text) {
12. win.document.write(text + "\n');
13. }
14. function closeWin() {
15. win.document.write(</pre>
16. </body>
17. </html>");
18. win.document.close();

19. }
275

CHAPTER 12 APPRUN DEVTOOLS

20. const createEventTests = () => {

21. const o = { components: {} };

22. app.run('get-components', o);

23. const { components } = o;

24. openhin(");

25. Object.keys(components).forEach(el => {

26. components[el].forEach(component => {

27. write(const component = ${component.constructor.name};");

28. write(describe('${component.constructor.name}', ()=>{");

29. component. actions.forEach(action => {

30. write(® it ('should handle event: ${action.name}’,
0=>{");

31. write(" component.run('${action.name}"');");

32. write(expect(component.state).toBeTruthy();");

33. write("})7);

34. });

35. write("});7);

36. ;s

37. IOk

38. closeWin();

39. }

40. window[' apprun-create-event-tests'] = ['create-event-tests’,
41. () => _createEventTests()
42.]

If we print the generated result in the console, it would be difficult to copy from the
console. We want to print the results into a new window instead. The three functions—
openWin, write, and closeWin—are the helper functions that let us write text to a new
window (lines 2-19).

The createEventTests function generates the unit tests (lines 20-39). It is
registered as an AppRun DevTools command (lines 40-42).

The _createEventTests function uses the get-component event to retrieve the
mounted components from AppRun (lines 20-23). It then iterates through the results
and prints the unit tests.

276

CHAPTER 12 APPRUN DEVTOOLS

Include the script (Listing 12-1) into the HTML and run the command _apprun

“create-event-tests” in the console (see Figure 12-9). This generates the unit tests for

components and events in a new window (see Figure 12-10).

conduit

A place to share your knowledge.

Your Feed Global Feed

e .. [

Some article

/ [Conduit x Y AppRun Analyzer | http: x\m 4 T
€ & C | @ localostsososk/eed %|
" . %] | Eemerts Console Sources Memory Network » P X
conduit Home: faNewFost SXSetting [@ |too v | Fiter Defaultlevels ¥ O Group simiiar 1 nidaen | §
AppRun CevTools 9.2: type "_apprun “help’= to aporun-dev-tools tex:180

Just an test
Popular Tags
D ED O O 0 D CD CD D @

conduit Aninteractue leam ing projact from Thinkster Code & design Loensad under

1ist all available conmands,
» _apprun "create.event.tests®
 undefined
x|

Figure 12-9. Command create-event-tests

277

CHAPTER 12 APPRUN DEVTOOLS

/D Conduit xy AppRun Analyzer | hitp:/ X \D

(¢ |® zboutblank 4

const component = HeaderComponent;
describe(HeaderComponent', ()=>{
it ('should handle event: /set-user’, ()=>{
component.run('/set-user');
expect(component.state).toBeTruthy();

i}:r}mst component = HomeComponent;
describe(HomeComponent®, ()=>{
it ("should hendle event: 2/", (}=>{
coamponent.run{'#/");
expect (component . state) . toBeTruthy();
)

it ("should handle event: #/feed’, ()=>{

component.run('®/feed');
expect(component.state).toBeTruthy();

H

it ('should hendle event: #/tag', ()=>{
component.run('®/tag’);
expect(component.state).toBeTruthy();

D

it ('should handle event: update-article’, ()=»{
component.run{'update-article');
expect(component . state) . toBeTruthy();

H

zc}mlt companent = SigninComponent;
describe("SigninComponent’, ()=*{
it ('should handle event: #/login', ()=>{
component.run('#/login");
expect(component.state).toBeTruthy();

n

it ('should handle event: #&/logout’, ()=>{
component.run('#/logout’);
expect(component.state). . toBeTruthy();

n

it ("should handle event: sign-in®, (}=>{
component.run{'sign-in");
expect (component.state).toBeTruthy();

)
1
const & = RegisterC: H
describe(RegisterComponent’, ()=>{
it ('should handle event: ®/register’, ()=>{
component.run{'#/register’);
expect(component . state). toBeTruthy();

n
it ("should hendle event: register®, ()s»{
.run{'register');

Figure 12-10. Generated event tests

We can copy the generated unit tests into the project and continue to add mock
functions and assertions.

Generate Snapshot Tests

Besides getting components out of AppRun, we can also create an AppRun CLI
command to monitor the AppRun events at application runtime using the debug event
that AppRun publishes at the two checkpoints of the event lifecycle.

For example, we can develop an AppRun DevTools command, create-state-tests
(Listing 12-2) to record the states and generate snapshot tests.

278

CHAPTER 12 APPRUN DEVTOOLS

Listing 12-2. create-state-tests

N

0 N O U1 B~ W

10.
11.
12.
13.
14.
15.
16.
17.
18.

19.

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

let recording = false;
let events = [];

app.on(‘debug', p => {
if (recording && p.vdom) {
events.push(p);
console.log("* ${events.length} state(s) recorded.");

}
};

const createStateTests = (s) => {
const printTests = () => {
if (events.length === 0) {
console.log('* No state recorded.');
return;
}
openhin(");
events.forEach((event, idx) => {
write(Tit ('view snapshot: #${idx+1}', ()=>{");
write(const component = ${event.component.constructor.
name};");
write(const state = ${JSON.stringify(event.state,
undefined, 2)};7);
write("const vdom = component['view'](state);");
write("expect(JISON.stringify(vdom)).toMatchSnapshot();");
write("})");

1;

closeWin();
}
if (s === 'start') {

events = [];

recording = true;

console.log('* State logging started.');
} else if (s === 'stop') {

printTests();

279

CHAPTER 12 APPRUN DEVTOOLS

32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

recording = false;
events = [];
console.log('* State logging stopped.');
} else {
console.log('create-state-tests <start|stop>');

}

window[' apprun-create-state-tests']
(p?) => _createStateTests(p)

['create-state-tests <start|stop>',

]

The create-state-tests command accepts a parameter. When we run _apprun

“create-state-tests start’, it starts recording the states (see Figure 12-11).

W - o X
J/ [Conduit x W
« C | @ localhost:B080/#/settings o 7
) . “ [n (1] | Eements Comscle Sources Memony Network % e
conduit Home [t OSettings u [O |t * | Fiter Datauitlevels * © Grous simiiar 3 nigden | 4
| AppRun DevTools 8.2: type =_aporun “help” to aporun-dev-tools ts:ilge
1ist all available comsands.
. | » _apprun “create-state.tests start’
Your Settin gs = state Topging stertes. P P
« undefined
PR, 2 o P 2 * 1 state(s) recorded. apprun.dey.tools.tests. tex:sy
https://static.productionready.iof/images/smiley-cyrus.jpg = 2 state(s) recorded. oprun-sgy. v N eaich

* 3 state(s) recorded.

userl

test user 1

1@1test.com

LTI

Update Settings

Figure 12-11. create-state-tests start

280

CHAPTER 12 APPRUN DEVTOOLS

When we run _apprun "create-state-tests stop’, it stops recording the states
and generates the snapshot tests (see Figure 12-12).

/[Condut %) AppRun Analyzer | httgs X \|__\
(¢ |® zbout:blank 4

it (“view snapshot: #1', ()=>{
const component = HomeComponent;
const state =

“typet: "

“articlas”: [

“title”: "gdfg",
“slug”: "gdfg-rdwS7q",
“body": “dfgdfg”,
“createdAt”: "2815-97-26T16:51:36.6542",
“updatedAt”: "2018-07-26T16:51:36.6541",
“taglist™: [],
“description”: "dfg”,
“auther™: {
“username”: “itsyaboy",
“pio™: null,
"image": "https://static.productionready.io/images/smiley-cyrus.ipg",
“following": false

,
“favorited”: false,
“favoritesCount™: @

“title”: "dasda”,
“slug”: "dasda-15b7zy",
“body": “dsaasas”,
“ereatedAt™: “2018-@7-26T15:23:22.5892",
“updatedAt™: "2818-07-26T15:23:22.58%2",
“tagiist™: [
“eung”
1.
“description”: “ssdasadsa”,
“auther™: {
“username”: “sadsaas”,
“pio”: “ddasas”,
“image™: “https://static.productionready.io/images/smiley-cyrus.jpg”,
“following": false

s
“favorited": false,
“favoritesCount™: 1

b

¢ “title”: "disda”,
“slug”: “dasda-31n143",
“body": “dsaasas",
“createdAt”: "2015-97-26T15:23:08.6472",
“updatedAt™: "2018-07-26T15:23:08.6471",
“taglist”: [v

Figure 12-12. create-state-tests stop

Using the create-state-tests command, we can click through pages and let it
record the states into the snapshot tests to be copied into the project.

The create-events-tests command and the create-state-tests command are
included in a script file and released with the AppRun package. You can reference the
script file in the HTML when you need to generate the tests.

<script src="https://unpkg.com/apprun@latest/dist/apprun-dev-tools-tests.
js"></script>

You can remove the script reference from the HTML when you no longer need the
commands.

281

CHAPTER 12 APPRUN DEVTOOLS

Browser DevTools Extension

The AppRun debug event has another great benefit. We can connect AppRun events to
the Redux DevTools Extension (https://github.com/zalmoxisus/redux-devtools-
extension). Redux DevTools Extension is a browser extension for monitoring Redux
applications. Ever since the version 2.0 release, it allows other non-Redux applications to
communicate with the extension directly.

It is simple and straightforward to connect to the extension (Listing 12-3).

Listing 12-3. Connecting to the Redux DevTools Extension

1. let devTools running = false;

2. const devTools = window[' REDUX DEVTOOLS EXTENSION_ _'].connect();
3. devTools.subscribe((message) => {

4. if (message.type === 'START') devTools running = true;

5. else if (message.type === 'STOP') devTools running = false;
6. 1});

7. app.on('debug', p => {

8. if (devTools running && p.event) {

9. const state = p.newState;

10. const type = p.event;

11. const payload = p.e;

12. const action = { type, payload };

13. if (state instanceof Promise) {

14. state.then(s => devTools.send(action, s));

15. } else {

16. devTools.send(action, state);

17. }

18. }

19. 1);

We can turn on and off monitoring the AppRun debug event based on the extensions’
start and stop messages (lines 3-6). In the AppRun debug event handler, we send the
AppRun event and state of the AppRun event handler to the extension (lines 7-19).

282

https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/zalmoxisus/redux-devtools-extension

CHAPTER 12 APPRUN DEVTOOLS

We can install the Redux DevTools Extension from the Chrome Web Store or the
Firefox add-ons. Then we can run the AppRun RealWorld example application and see
AppRun events (see Figure 12-13) and application states on the Redux tab inside the
browser’s DevTools (see Figure 12-14).

3 W - O X
/D condu x W
&« C | @ https/fgothi github.io/: hworld-example-app,/#/profile fuseri20001 o 9| §
I (% (] | Sements Cowole Souces Memorny Metworc Peformance Reouc W Pox
conduit Home
Inspecior Corduit
Ll actiom Action | State Dd#f
Siet.user 3
Chart Raw
L1
wjarticle
L r
user 001 /settings
[+5 o
My Articles
e user 001 L0
Hello World
Welala] e | ¢+ | &] o]]] =] o |

Figure 12-13. Events in Redux DevTools Extension

The AppRun events are logged and displayed in the Redux extension in the sequence
of the events being published. Each of the events is displayed as an action using the
Redux terminology. The AppRun event name becomes the action type. The AppRun
event parameters become the action payload.

283

CHAPTER 12 APPRUN DEVTOOLS

e A — 5] X
f/ [y Conduit x Wy
& Q| a hittps//gothinkster.github io/apprun-realworld-example-app/#/profile/useri2 0001 e fr i
i & d i ke Sou emcry Metworc Pefformance Reux ¥ x
conduit Home
Inspecior Cend:
Gemit || state action | Stote Di#f
feet.umer 125030 00
Tree Chart Raw
. ez 23
wiarticle e @ -
#/agitor R e a
user 001 u/settings ~2002.26 e Ao B page
profile 2.
+ Follow user 001
My Articles
e user 001 v
Hello World

Figure 12-14. States in Redux DevTools Extension

The states of each AppRun component are logged and displayed with the associated
AppRun event. If the AppRun events are asynchronous events, the state is a Promise
object. The AppRun DevTools wait for the Promise object to resolve and then send the
state to the DevTools Redux Extension. The extension can display the state on the Chart
tab in a tree view.

The AppRun connection to the Redux DevTools Extension is included in the file that
has the AppRun DevTools CLI engine and commands.

<script src="https://unpkg.com/apprun@latest/dist/apprun-dev-tools.js">
</script>

Summary

Developing applications involves more than just coding. We need tools to explore, verify,
measure, and monitor the applications to confirm the code was developed according to
the design specifications. AppRun has provided the DevTools to assist us in achieving
that goal.

284

CHAPTER 12 APPRUN DEVTOOLS

The AppRun DevTools are nondestructive to the application codebase. We attach the
AppRun DevTools when they are needed and detach them when they are not needed.
The application does not require recompiling to use DevTools.

The AppRun DevTools introduced in this chapter are part of the AppRun package in
two files.

<script src="https://unpkg.com/apprun@latest/dist/apprun-dev-tools.js">
</script>

<script src="https://unpkg.com/apprun@latest/dist/apprun-dev-tools-tests.
js"></script>

You can use the commands and the Redux extension out of the box. You can also
use the code in this chapter as a demonstration and reference to extend the AppRun
DevTools.

285

Index

A

Administrative dashboard
calendar, 166-167
data table, 165-166
home page, 164
layout and styles
(see Layout and styles)
npm scripts, 168
responsive UI, 165
Application programming interface
(API), 141
app.render function, 73
AppRun
application state, 18
app.start function, 6
architecture, 168-169
async event handler, component, 204
CLI (see Command-line
interface (CLI))
command registration, 274-275
component, 9-10
counter application, 11-12
create-event-tests command, 277
DevTools, 265
Elm architecture, 5-7
event pub-sub, 7-9
event-tests generating, 278
generating unit tests, 275-276
mounting components, 275

© Yiyi Sun 2019

MVC architecture, 5-6
rendered function, 8-9
static typed counter application, 20-21
unit testing (see Unit testing)
update type, 19-21
view function, 7-8, 19
AppRun event handlers, 122-123
AppRun events, 94-95
AppRun SSR
SPA, 194-195
architecture, 192-193
client-rendered home page, 195
client side, 206
components, 203
layout function, 198
route function, 200
server application, 196
server-rendered Home page, 194
view engine, 198
Article component modal dialog, 244-246
async/await, 121
async functions, 137
Asynchronous events
operations (see Asynchronous
operations)
pulling data, weather application
(see Weather application)
server requests
Fetch API, 125-126
XHR, 124-125

287

Y. Sun, Practical Application Development with AppRun, https://doi.org/10.1007/978-1-4842-4069-4

https://doi.org/10.1007/978-1-4842-4069-4

INDEX

Asynchronous JavaScript and XML
(Ajax), 141
Asynchronous operations
AppRun event
handlers, 122-123
async/await syntax, 119, 122
callback function, 120
Promise object, 120-121
source code, 139
Authentication, SPA
authorization, 238-239
getuser, 237
set user, 237
sign-in, 239-241
sign-out, 241

B

Back-end API, SPA
API data models, 232-233
API layer, 234-236
core data models, 231-232
Black-box test, 247
Bootstrap, 169, 173, 175-176
Brower history event, 112-114

C

Calendar component, 188-189
Callback functions, 120

Chart component, 177-178, 180-182

Click events

Hello World application, 100-101

onclick event handler, 102
Client-rendered Home page, 195
closeWin function, 276
Cloud Firestore, 61
Cloud state

288

add, delete, and toggle to-do items, 64
firebase web project configuration, 62
Firestore events and AppRun events, 65
Google Cloud Firestore, 62
new-state and save-state events, 63
onSnapshot event, 64
saving and load data, 62-63
to-do application, multiple
browsers, 66
Code editor, 21
Code snippets, 34
Command-line interface (CLI), 23, 142
boilerplate project, 24-25
commands, 266-270
console, 266
debugging events, 273
events
global and local, 270-271
prints, 271-272
i command, 24
logging, 272-273
view functions, 273
virtual DOM, 273-274
component.run function, 202
Components, AppRun applications, 4, 9-10
constructors, 83
ES6 class, 82-83
global and component
application, 82
JSX, 84-86
lazy components, 84
my todos and team todos, 86, 88
SPAs, 84
start function, 83
TypeScript Component class, 82
web, 88
Conduit application, 219-220
Conduit home page, 220

INDEX

Contact component, 204 connect, 95-96
Counter application, 11-12 DOM, 94
app.run function, 7, 9, 20 global and local, 97-100
app.start function, 16, 20 input, 103-104
debug event, 13-14 keyboard, 105-106, 108-109
initial state, 13 mouse, 109-112
state history, 15-17 npm Scripts, 118
VDOM, 14-15 web workers, 115-117
view function, 16 Event pub-sub, 4, 7-9
Coupling, 4 Express.js web application, 196
createEventTests function, 276 Express routing, 202
Create-state-tests command, 280-281
Create-view-tests command, 278-280 F
Custom JSX Tags Fetch API, 125-126

app.createElement, 72
components, 72, 84-86

fetchList function, 137

) Fetch Wrappers, 235-236
properties, 72, 85 Filters, 78-79

stateful components, 77

Firing/triggering event, 7
ToDoMVC HTML Structure, 75

view function structure, 76 G
GitHub project, 139
D Global and local events
Data-driven documents (D3) map, app.run function, 97-98
182-183, 185 clock application, 99-100
Data transfer object (DTO), 45 component, 98
Development history, JavaScript, 2 Google Cloud Firestore, 62
document.getElementID function, 84
Document Object Model (DOM), 6, 94 H
Dynamic import, 152
Hacker News
cloud-hosted database, 132
E Firebase API, 134, 139
Elm architecture, 3-7, 11 JSON API, 134, 139
Error message, component, 205 partners, 132
Event patterns reader main program, 137
AppRun, 94-95 reader application, 132
brower history, 112-114 story and comments, news reader, 134
click events, 100-102 HTML vs. JSX, 71

289

INDEX

Immutable array

add-counter and remove-counter

events, 51
array.push function, 51
array.splice function, 51

multiple-counter application, 50

operations, 52

source Code, 52-53

update-counter event, 51
Immutable object state

event handlers, 55

to-do application, 54-56, 58-59

to-do item list, 56

ToDoMVC applications, 53
Input event, 103-104
IntelliSense, 30

J

JavaScript, 23, 249
Jest framework
asynchronous code, 251
Jest usage, 247-248
mock API functions, 252-253
test coverage, 250-251
test suites, 249-250
visual studio code, 248
jQuery, 1-3
JSX fragment wraps, 77
JSX patterns
checked property, 79
CSS class, 79
filters, 78-79
JSX fragment, 77
JSX Tags (see Custom JSX Tags)
listitem, 78

290

Set Active Classes, 80

show and hide elements, 80-81
ToDoMVC-styled to-do application, 75
Ul features, 74

K

Keyboard events
onSearch property, 106
type-ahead application, 108-109
TypeAhead component, 106, 108
Key performance indicator (KPI), 165,
167-168, 176-177

L

Layout and styles
bootstrap dashboard layout, 169-170
card component, 176
card list, 176-177
dashboard and sidebar components, 171
home page component, 170
notifications and alerts, 175
rows and columns, 173-174
sidebar navigation, 172

Lazy components, 84

Local state, 59-61

mergeClassName function, 174
Model-View-Controller (MVC), 5-6, 191
Module bundler, 28
mounted function, 169
Mouse events
DOM, 109, 112
float action button application, 110-111
float action button component, 111-112

N

Node.js web application, 196

O

onpopstate event, 148
openWin function, 276

PQ

Persistent state
cloud state, 61-64, 66
local, 59-61
npm Scripts, 66
source code, 66

R

Redux DevTools extension
connecting, 282
events, 283
installation, 283
states, 283-284
Rendered function, 8, 9, 169, 178
Route function, 201
Routing event, 147

S

Separation of concerns (SoC), 26
Server-rendered Home page, 194
Server-side rendering (SSR), AppRun,
see AppRun SSR
Single-page application (SPA)
Single-page web applications
(SPAs), 10, 84
AppRun, 143

INDEX

changing the anchors, 150
changing the handlers, 151
components, 146-147
article page, 228-229
editor page, 229-230
home page, 223-224
profile page, 227-228
settings page, 226-227
sign in page, 224-225
sing up page, 225-226
event decorator, 242
HTML, 144, 221-222
main program, 144, 146, 230-231
main section, 223
modal dialog, 242, 244-246
modules
dynamic import, 152
native, 156
static import, 152
navigation menu
without hash, 150-151
update, 149
page header, 222
project folder, creation, 142
routing events
APT history, 149
generic routing, 148
hash change, 147
SSR

ASP.NET MVC framework, 208-209

controller, 213-214
layout, 214, 216
tradition, 207
virtual DOM filter, 210, 212-213
State concept
AppRun applications, 46
AppRun CLI, 46

291

INDEX

State concept (cont.)
data flow, 45-46
DTO, 45
history, 47-49
initial state, 47
source code, counter
application, 46-47
state.filter, 80
state.list, 77
Static import, 152

T

Test-driven development (TDD)
process, 247
Todo function, 78
To-do application
different browsers, 65
event handlers, 55
with Firestore, 63
functional specifications, 53
immutable state update, 56
local storage, 60
source code, 56, 58
state of, 55
Todoltem, 54
undo and redo features, 54
ToDoMVC-styled to-do application, 75
Two to-do lists, 86-88
Type checking, 21
TypeScript, 1, 4, 18
TypeScript compiler
async, 27
await, 27
class syntax, 26
JSX, 26
TypeScript files, 249

292

U

Unit testing
debugging, visual studio, 262-263
events
data model, 253-254
home component test, 256-258
testing plan, 254-255
Jest framework (see Jest framework)

\'

VDOM/]SX, 4, 15
view function, 6-8, 11, 13, 15-16, 19, 21
View concept
custom JSX Tag, 72
function, 69, 71
HTML vs. JSX, 71
virtual DOM, 73
View patterns
AppRun event lifecycle, 69
JSX (see JSX patterns)
npm Scripts, 92
source code, 92
state parameter, 92
view concept (see View concepts)
Virtual DOM (VDOM), 14-15,
73, 259-262
Visual Studio Code
code snippets, 34-37
debugging, 38-42
importing AppRun types, 31
integrated terminal, 37-38
IntelliSense, 30
project folder, 29
type checking, 32-33
Vue, 3

w

Weather application
async event handler, 131
back-end server push data
AppRun application architecture,
137-138
get story IDs, 136
reader, Hacker News
(see Hacker News)
Story and Children, 137
story list, 136
data access architecture, 130
displays, 126
error message, 128-129
global AppRun application, 131

Open Weather Map API, 129-130

URL fragment, 127
Web components, 89-91
Webpack development server, 28
Web workers

AppRun, 115

code, 116-117

DOM, 115

and web page, 116, 117
White-box test, 247
window.setInterval function, 99
write function, 276

XY,Z

XMLHttpRequest (XHR), 124-125

INDEX

293

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started
	Background
	Introducing AppRun
	AppRun Architecture
	Event Pub-Sub
	Component

	A Counter App
	Event Lifecycle
	Watch the State
	Virtual DOM
	State History

	Typed Architecture
	State
	View
	Update

	Summary

	Chapter 2: AppRun Development Environment
	The AppRun CLI
	Project Boilerplate
	Compiler
	JSX
	Class
	async and await

	Module Bundler
	Development Server
	Visual Studio Code
	IntelliSense
	Gradually Adding Types
	Type Checking
	Code Snippets
	Integrated Terminal
	Debugging

	Summary

	Chapter 3: Model the State
	State Concept
	Initial State
	State History

	Immutable State
	Immutable Array
	Immutable Object

	Persistent State
	Local State
	Cloud State

	Source Code of Examples
	Summary

	Chapter 4: View Patterns
	View Concept
	The View Function
	HTML vs. JSX
	Custom JSX Tag
	Virtual DOM

	JSX Patterns
	Custom JSX Tags
	JSX Fragments
	Create a List
	Create a List Item
	Filter a List
	Apply a Class
	Set the Element Property
	Set Active Classes
	Show and Hide Elements

	Components
	Component Class
	Create Components in Code
	Create Components in JSX
	Two To-Do Lists

	Web Components
	Source Code of Examples
	Summary

	Chapter 5: Event Patterns
	Event Concept
	DOM Events
	AppRun Events
	Connect the Events
	Global and Local Events

	User Input
	Click Events
	Input Event
	Keyboard Events
	Mouse Events

	Brower History Event
	Web Workers
	Source Code and Examples
	Summary

	Chapter 6: Asynchronous Events
	Asynchronous Operations
	Callbacks
	Promise
	async/await
	AppRun async Event Handlers

	Server Requests
	XMLHttpRequest
	The Fetch API

	Pulling Data
	Weather Application
	The Data API
	Data Access Architecture

	Pushing Data
	Hacker News Reader
	The Hacker News API
	The Story List
	The Story Detail
	The Application

	Source Code and Examples
	Summary

	Chapter 7: Single-Page Applications
	SPA Architecture
	HTML
	Main Program
	Components

	Routing Events
	Location Hash Change Event
	Generic Routing Events
	History API

	SPA Modules
	Static Import
	Dynamic Import
	Native Modules

	Source Code and Examples
	Summary

	Chapter 8: Third-Party Library Integration
	Example: An Admin Dashboard
	Responsive UI
	Dashboard Widgets
	Third-Party Libraries

	Extended Architecture
	Layout and Styles
	Sidebar Menu
	Rows and Columns
	Notifications and Alerts
	Cards

	Components and Widgets
	Chart
	D3 Map
	Data Tables
	Calendar

	Source Code and Examples
	Summary

	Chapter 9: Server-Side Rendering
	AppRun SSR
	SPA Architecture
	AppRun SSR Architecture
	An SSR/SPA Example

	The SSR for SPA
	Server Application
	View Engine
	Site Layout
	Routing
	Components
	Client-Side Script

	The SPA for SSR
	ASP.NET MVC
	Virtual DOM Filter
	The Controller
	The Layout

	Source Code and Examples
	Summary

	Chapter 10: A Real-World SPA
	Single-Page Application
	Page Header
	Main Section
	Components
	Home Page
	Sign In Page
	Sign Up Page
	Settings Page
	Profile Page
	Article Page
	Editor Page

	The Main Program

	Back-End API
	Core Data Models
	API Data Models
	API Layer

	Authentication
	Get User
	Set User
	Authorization
	Sign-In
	Sign-Out

	Event Decorator
	Modal Dialog
	Live Demo and Source Code
	Summary

	Chapter 11: Unit Testing
	Jest Framework
	Test Suites and Tests
	Test Coverage
	Asynchronous Tests
	Mock API

	Testing Events
	Testing Views
	Debugging the Unit Tests
	Live App and Source Code
	Summary

	Chapter 12: AppRun DevTools
	Use AppRun DevTools
	Command Line in the Console
	Components
	Events
	Debug Events

	Extend the Command Line
	Register the Command
	Generate Unit Tests
	Generate Snapshot Tests

	Browser DevTools Extension
	Summary

	Index

