
Principles
of Package
Design

Creating Reusable Sof tware Components
—
Matthias Noback

www.allitebooks.com

http://www.allitebooks.org

Principles of Package
Design

Creating Reusable Software
Components

Matthias Noback

www.allitebooks.com

http://www.allitebooks.org

Principles of Package Design: Creating Reusable Software Components

ISBN-13 (pbk): 978-1-4842-4118-9 ISBN-13 (electronic): 978-1-4842-4119-6
https://doi.org/10.1007/978-1-4842-4119-6

Library of Congress Control Number: 2018962262

Copyright © 2018 by Matthias Noback

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Shiva Ramachandran
Development Editor: Laura Berendson
Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484241189. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Matthias Noback
Zeist, The Netherlands

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4119-6
http://www.allitebooks.org

To Lies, Lucas, & Julia

www.allitebooks.com

http://www.allitebooks.org

v

Part I: Class Design... 1

Chapter 1: The Single Responsibility Principle ... 3

A Class with Too Many Responsibilities �� 3

Responsibilities Are Reasons to Change ��� 5

Refactoring: Using Collaborator Classes ��� 6

Advantages of Having a Single Responsibility �� 9

Packages and the Single Responsibility Principle �� 9

Conclusion �� 10

Chapter 2: The Open/Closed Principle .. 11

A Class That Is Closed for Extension ��� 11

Refactoring: Abstract Factory�� 15

Refactoring: Making the Abstract Factory Open for Extension ��� 19

Replacing or Decorating the Encoder Factory ��� 20

Making EncoderFactory Itself Open for Extension ��� 21

Refactoring: Polymorphism ��� 24

Packages and the Open/Closed Principle ��� 29

Conclusion �� 30

Table of Contents

About the Author ... xi

About the Technical Reviewer ... xiii

Acknowledgments ...xv

Introduction ...xvii

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 3: The Liskov Substitution Principle ... 31

Violation: A Derived Class Does Not Have an Implementation for All Methods ��������������������������� 33

Leaky Abstractions �� 37

Violation: Different Substitutes Return Things of Different Types ��� 38

More Specific Return Types Are Allowed ��� 43

Violation: A Derived Class Is Less Permissive with Regard to Method Arguments ��������������������� 43

Violation: Secretly Programming Against a More Specific Type �� 48

Packages and the Liskov Substitution Principle ��� 52

Conclusion �� 53

Chapter 4: The Interface Segregation Principle .. 55

Violation: Multiple Use Cases �� 55

Refactoring: Separate Interfaces and Multiple Inheritance ��� 58

Violation: No Interface, Just a Class �� 60

Implicit Changes in the Implicit Interface �� 62

Refactoring: Add Header and Role Interfaces ��� 63

Packages and the Interface Segregation Principle ��� 65

Conclusion �� 66

Chapter 5: The Dependency Inversion Principle ... 67

Example of Dependency Inversion: the FizzBuzz Generator ��� 67

Making the FizzBuzz Class Open for Extension �� 69

Removing Specificness ��� 71

Violation: A High-Level Class Depends on a Low- Level Class ��� 74

Refactoring: Abstractions and Concretions Both Depend on Abstractions ���������������������������������� 77

Violation: Vendor Lock-In �� 82

Solution: Add an Abstraction and Remove the Dependency Using Composition ������������������������� 87

Packages and the Dependency Inversion Principle �� 91

Depending on Third-Party Code: Is It Always Bad? �� 91

When to Publish an Explicit Interface for a Class �� 94

Conclusion �� 104

Table of ConTenTs

vii

Part II: Package Design .. 105

Chapter 6: The Release/Reuse Equivalence Principle .. 115

Keep Your Package Under Version Control �� 116

Add a Package Definition File ��� 117

Use Semantic Versioning �� 118

Design for Backward Compatibility ��� 119

Rules of Thumb �� 120

Don’t Throw Anything Away ��� 121

When You Rename Something, Add a Proxy �� 121

Only Add Parameters to the End and with a Default Value �� 124

Methods Should Not Have Implicit Side-Effects �� 125

Dependency Versions Should Be Permissive ��� 127

Use Objects Instead of Primitive Values �� 128

Use Objects for Encapsulation of State and Behavior ��� 131

Use Object Factories �� 133

And So On… �� 135

Add Metafiles �� 136

README and Documentation ��� 136

License �� 137

Change Log (Optional) ��� 139

Upgrade Notes (Optional) �� 139

Guidelines for Contributing (Optional) ��� 140

Quality Control �� 140

Quality from the User’s Point of View �� 141

What the Package Maintainer Needs to Do ��� 142

Static Analysis ��� 142

Add Tests ��� 142

Set Up Continuous Integration ��� 143

Conclusion �� 144

Table of ConTenTs

viii

Chapter 7: The Common Reuse Principle ... 145

Feature Strata ��� 146

Obvious Stratification �� 147

Obfuscated Stratification ��� 148

Classes That Can Only Be Used When … Is Installed ��� 151

Suggested Refactoring �� 155

A Package Should Be “Linkable” ��� 157

Cleaner Releases ��� 158

Bonus Features ��� 162

Suggested Refactoring �� 165

Guiding Questions ��� 167

When to Apply the Principle ��� 168

When to Violate the Principle ��� 168

Why Not to Violate the Principle �� 169

Conclusion �� 170

Chapter 8: The Common Closure Principle ... 171

A Change in One of the Dependencies �� 172

Assetic ��� 173

A Change in an Application Layer ��� 175

FOSUserBundle �� 176

A Change in the Business ��� 179

Sylius ��� 180

Packaging Business Logic �� 181

The Tension Triangle of Cohesion Principles ��� 183

Conclusion �� 184

Chapter 9: The Acyclic Dependencies Principle ... 185

Coupling: Discovering Dependencies �� 185

Different Ways of Package Coupling ��� 186

Composition ��� 187

Inheritance �� 188

Table of ConTenTs

ix

Implementation ��� 188

Usage ��� 188

Object Instantiation ��� 189

Global Function Usage ��� 190

Not to Be Considered: Global State �� 191

Visualizing Dependencies ��� 191

The Acyclic Dependencies Principle ��� 193

Problematic Cycles ��� 194

Cycles in a Package Dependency Graph ��� 197

Solutions for Breaking the Cycles ��� 198

Some Pseudo-Cycles and Their Dissolution �� 198

Some Real Cycles and Their Dissolution ��� 201

Dependency Inversion ��� 203

Inversion of Control ��� 205

Mediator �� 205

Chain of Responsibility �� 208

Mediator and Chain of Responsibility Combined: An Event System ������������������������������������ 210

Conclusion �� 215

Chapter 10: The Stable Dependencies Principle ... 217

Stability ��� 218

Not Every Package Can Be Highly Stable �� 221

Unstable Packages Should Only Depend on More Stable Packages ��� 222

Measuring Stability ��� 223

Decreasing Instability, Increasing Stability ��� 224

Question: Should We Take Into Account All the Packages in the Universe? ������������������������ 226

Violation: Your Stable Package Depends on a Third- Party Unstable Package ��������������������������� 227

Solution: Use Dependency Inversion ��� 230

A Package Can Be Both Responsible and Irresponsible ��� 234

Conclusion �� 235

Table of ConTenTs

x

Chapter 11: The Stable Abstractions Principle ... 237

Stability and Abstractness �� 237

How to Determine If a Package Is Abstract ��� 239

The A Metric �� 240

Abstract Things Belong in Stable Packages �� 240

Abstractness Increases with Stability ��� 241

The Main Sequence �� 243

Types of Packages �� 245

Strange Packages �� 246

Conclusion �� 249

Chapter 12: Conclusion ... 251

Creating Packages Is Hard �� 251

Reuse-in-the-Small ��� 251

Reuse-in-the-Large ��� 252

Embracing Software Diversity ��� 252

Component Reuse Is Possible, But Requires More Work ��� 253

Creating Packages Is Doable �� 254

Reducing the Impact of the First Rule of Three ��� 254

Reducing the Impact of the Second Rule of Three �� 255

Creating Packages Is Easy? �� 256

 Appendix A: The Full Page Class ... 257

Index ... 273

Table of ConTenTs

xi

About the Author

Matthias Noback is a professional PHP developer. He

runs his own web development, training, and consultancy

company called Noback's Office. In the past, he has worked

as a software developer at Driebit (Amsterdam) and IPPZ

(Utrecht), and as a CTO at Ibuildings (Utrecht). Since 2011, he

has been regularly writing on his blog (matthiasnoback.nl)

about advanced software development-related topics. His

favorite topics are software architecture, legacy code, testing,

and object design. Other books by the author are A Year with

 Symfony and Microservices for Everyone. You can find him on

Twitter as @matthiasnoback.

xiii

About the Technical Reviewer

Ross Tuck is a software engineer and coach. He speaks about software development

at conferences around the world and is a frequent contributor to podcasts, articles,

and occasionally GitHub Repos. Originally from the United States, he now lives in the

Netherlands with his wife and cat. You can find him on Twitter as @rosstuck.

xv

Acknowledgments

A quick word of thanks to some people in particular. First of all, to Robert C. Martin.

Many of the design principles covered in this book originate from his work.

There were many people who provided some valuable feedback based on their

proofreading of the first edition, like Brian Fenton, Kevin Archer, Luis Cordova, Mark

Badolato, Matthijs van Rietschoten, Ramon de la Fuente, Richard Perez, Rolf Babijn,

Sebastian Stok, Thomas Shone, and Peter Rehm. One of the proofreaders that I want to

mention in particular is Peter Bowyer, who offered many detailed suggestions. He also

did the brilliant suggestion to turn this initially PHP-specific book into something that is

interesting and useful for every software developer.

Even though this book is language-agnostic, I owe a lot to the particular community

to which I belong: the PHP community. Thank you all for being awesome—providing

great reading material, insights, friendly invitations, and lots of good code—on a daily

basis.

A big “thank you” goes out to Ross Tuck, who performed a thorough technical review

of the second edition of this book. Although he certainly provided me with a lot of extra

work, I’m extremely happy that he did. He pointed out many things I could do to make

the book more useful and understandable for a broad range of people, with different

perspectives and different experiences in the field.

Thanks to Apress—in particular Shiva, Laura, and Rita—for adopting the Principles

of Package Design and creating the opportunity to release it in a much better shape, and

at the same time making it available to many more readers.

Finally, thank you Lies, Lucas, and Julia. Thank you for letting me step away from

family business and write this book in solitude. And thank you for always embracing me

when I stepped back in.

xvii

Introduction

While writing this book, I assumed that you, the reader, are a programmer who uses

an object-oriented programming language to create applications. This means that you

have some experience creating classes, methods, interfaces, etc. and are trying to make

all of these things work well together. While you know how to do that, you may also be

wondering from time to time: “Am I doing this right?”

It’s not a bad question, and certainly an understandable one. As a programmer, you

have to make so many choices in a single working day; it’s only natural to worry if you’re

making all the right decisions. A bad decision today could lead to a lot of extra work later.

Unfortunately, there’s no way to know for sure if you’re doing it right. The best thing

you can do is keep an eye on how things evolve and be ready to change course when

needed. But to train your eye and learn to predict where things will be heading, you

should also tap into other sources. For instance, you could read a book on programming.

Or you could learn from another programmer’s experience.

When I started to open source some code that I thought would be useful for other

programmers, I also regularly wondered: “Am I doing this right?” I went to look for

sources that I could learn from. For class design, there are an awful lot of online and

offline sources. Way more than there are about package design. I couldn’t find a lot of

material that would help me do a better job at creating packages, except for a few book

sections (never an entire book) and some old articles.

One recurring source was Robert C. Martin’s website butunclebob.com, which

features some articles about the SOLID principles of class design, and two articles about

component design principles. In these articles, Robert provides some very straight-

forward design principles for reusable components. When I first read them, it was

immediately clear to me that every programmer should know about them. So I started

writing this book, elaborating on these principles, and explaining them in the context of

creating reusable and distributable software components, also known as “packages”. The

package design principles provide an answer to the following questions:

• Which classes belong inside a package and which don’t?

• Which packages are safe to depend on and which aren’t?

xviii

• What can I do for my users to enhance the usability of a package?

• What can I do for myself to keep a package maintainable?

If you’re interested in creating your own (not necessarily open source) packages,

knowing these answers will help you do a good job from the start. The principles will be

a guiding help along the way. If you have already created some packages, knowing these

principles will help you make your next release even better.

If, on the other hand, you’re not at all interested in developing packages, you’ll still

gain a lot useful insights from this book. First, because the book also provides many

clues about good class design. Second, because these package design principles will

help structure any software project, whether that be a reusable library, some standalone

component, or even an entire module within an application. This book offers many

useful techniques for organizing your code into groups of any size.

 Overview of the Contents
The majority of this book covers package design principles. But first we must consider

the contents of a package: classes and interfaces. The way you design them has great

consequences for the characteristics of the package in which they will eventually reside.

So, before considering package design principles themselves, we first need to take a look

at the principles of class design. These are the so-called SOLID principles. Each letter of

this acronym stands for a different principle, and we will briefly revisit them in the first

part of this book.

The second part of the book covers the six major principles of package design. The

first three are about cohesion. While class cohesion is about which methods belong inside

a class, package cohesion is about which classes belong inside a package. The package

cohesion principles tell you which classes should be put together in a package, when to split

packages, and if a combination of classes may be considered a “package” in the first place.

The second three package design principles are about coupling. Coupling is

important at the class level, since most classes are pretty useless on their own. They need

other classes with which to collaborate. Class design principles like the Dependency

Inversion principle help you write nicely decoupled classes. But when the dependencies

of a class lie outside its own package, you need a way to determine if it’s safe to couple

the package to another package. The package coupling principles will help you choose

the right dependencies. They will also help you recognize and prevent wrong directions

in the dependency graph of your packages.

InTroduCTIon

xix

 Notes About the Code Samples
Although I wanted this book to be useful for any programmer, the code samples

themselves still needed to be written in a particular language. I chose PHP, because it’s

the programming language I know best, which is convenient for me. If you don’t know

PHP, it shouldn’t be a problem to understand the code, as long as you’re familiar with

some other object-oriented programming language.

Be aware that the sample code isn’t exactly production-ready. It’s only there to bring

across some technical points. You shouldn’t copy/paste it into your projects.

To simplify the code samples and point out the areas that matter most, I’ve

established the following conventions:

• I abbreviate property and method declarations using //...

• I abbreviate expressions using ...

• When an example shows the same code again, but modified, I repeat

as little of the original code as possible.

• Although I don’t consider using the "Interface" suffix to be a best

practice, I’ll still do it in the code samples, because it makes it easier

to talk about interfaces in the regular text.

• Although I do consider it best practice to declare classes as "final"

(I’ll explain why later), I won’t do it in most of the code samples,

because it can be a bit of a distraction.

InTroduCTIon

PART I

Class Design
Developers like you and I need help making our decisions: we have incredibly many

choices to make, each day, all day. So if there are some principles we think are sound,

we happily follow them. Principles are guidelines, or “things you should do”. There is no

real imperative there. You are not required to follow these principles, but in theory you

should.

When it comes to creating classes, there are many guidelines you should follow, like:

choose descriptive names, keep the number of variables low, use few control structures,

etc. But these are actually quite general programming guidelines. They will keep your

code readable, understandable, and therefore maintainable. Also, they are quite specific,

so your team may be very strict about them (“at most two levels of indentation inside

each method,” “at most three instance variables”, etc.).

Next to these general programming guidelines there are also some deeper principles

that can be applied to class design. These are powerful principles, but less specific

in most cases, and it is therefore much harder to be strict about them. Each of these

principles brings some room for discussion. Also, not all of them can or should be

applied all the time. (Unlike the more general programming guidelines—when not

applied, your code will most certainly start to get in your way pretty soon.)

The principles I refer to are named the “SOLID” principles, a term coined by Robert

Martin. In the following chapters, I give a brief summary of each of these principles. Even

though the SOLID principles are concerned with the design of classes, a discussion of

them belongs in this book, since the class design principles resonate with the package

design principles we discuss in the second part of this book.

2

 Why Follow the Principles?
When you learn about the SOLID principles, you may ask yourself: why do I have to stay

true to them? Take for example the Open/Closed principle: “You should be able to extend

the behavior of a class without modifying it.” Why, actually? Is it so bad to change the

behavior of a class by opening its file in an editor and making some changes? Or take for

instance the Dependency Inversion principle, which says: “Depend on abstractions, not

on concretions.” Why again? What’s wrong with depending on concretions?

Of course, in the following chapters I take great care in explaining to you why you

should use these principles and what happens if you don’t. But to make this clear

before you take the dive: the SOLID principles for class design are there to prepare your

codebase for future changes. You want these changes to be local, not global, and small,

not big.

 Prepare for Change
Why do you want to make as few and as little changes as possible to existing code?

First of all, there is the risk of one of those changes breaking the entire system. Then

there is the amount of time you need to invest for each change in an existing class—to

understand what it originally does, and where best to add or remove some lines of

code. But there is also the extra burden in modifying the existing unit tests for the class.

Besides, each change may be part of some review process. It may require a rebuild of

the entire system, or it may even require others to update their systems to reflect the

changes.

This would almost lead us to the conclusion that changing existing code is something

we don’t want. However, to dismiss change in general would be way too much. Most

real businesses change heavily over time, and so do their software requirements. So to

keep functioning as a software developer, you need to embrace change yourself too. And

to make it easier for you to cope with the quickly changing requirements, you need to

prepare your code for them. Luckily, there are many ways to accomplish that, which can

all be extracted from the following five SOLID class design principles.

Part I Class DesIgn

3
© Matthias Noback 2018
M. Noback, Principles of Package Design, https://doi.org/10.1007/978-1-4842-4119-6_1

CHAPTER 1

The Single Responsibility
Principle
The Single Responsibility principle says that1:

A class should have one, and only one, reason to change.

There is a strange little jump here, from this principle being about “responsibilities”

to the explanation being about “reasons to change”. Well, this is not so strange when you

think about it—each responsibility is also a reason to change.

 A Class with Too Many Responsibilities
Let’s take a look at a concrete, probably recognizable example of a class that is used to

send a confirmation to the email address of a new user (see Listing 1-1 and Figure 1-1).

It has some dependencies, like a templating engine for rendering the body of the email

message, a translator for translating the message’s subject, and a mailer for sending the

message. These are all injected by their interface (which is good; see Chapter 5).

1 Robert C. Martin, “The Principles of OOD,” http://butunclebob.com/ArticleS.UncleBob.
PrinciplesOfOod

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

4

Listing 1-1. The ConfirmationMailMailer Class

class ConfirmationMailMailer

{

 private $templating;

 private $translator;

 private $mailer;

 public function __construct(

 TemplatingEngineInterface $templating,

 TranslatorInterface $translator,

 MailerInterface $mailer

) {

 $this->templating = $templating;

 $this->translator = $translator;

 $this->mailer = $mailer;

 }

 public function sendTo(User $user): void

 {

 $message = $this->createMessageFor($user);

 $this->sendMessage($message);

 }

 private function createMessageFor(User $user): Message

 {

 $subject = $this

 ->translator

 ->translate('Confirm your mail address');

 $body = $this

 ->templating

 ->render('confirmationMail.html.tpl', [

 'confirmationCode' => $user- >getConfirmationCode()

]);

Chapter 1 the Single reSponSibility prinCiple

5

 $message = new Message($subject, $body);

 $message->setTo($user->getEmailAddress());

 return $message;

 }

 private function sendMessage(Message $message): void

 {

 $this->mailer->send($message);

 }

}

 Responsibilities Are Reasons to Change
When you talk to someone about this class, you would say that it has two jobs, or two

responsibilities—to create a confirmation mail and to send it. These two responsibilities

are also its two reasons to change. Whenever the requirements change regarding the

creation of the message or regarding the sending of the message, this class will have to

be modified. This also means that when either of the responsibilities requires a change,

the entire class needs to be opened and modified, while most of it may have nothing to

do with the requested change itself.

Figure 1-1. A diagram of the initial situation

Chapter 1 the Single reSponSibility prinCiple

6

Since changing existing code is something that needs to be prevented, or at least be

confined (see the Introduction), and responsibilities are reasons to change, we should

try to minimize the number of responsibilities of each class. This would at the same time

minimize the chance that the class has to be opened for modification.

Because a class with no responsibilities is a useless class, the best we can do with

regard to minimizing the number of responsibilities is reduce it to one. Hence, the

Single Responsibility principle.

RECOGNIZING VIOLATIONS OF THE SINGLE RESPONSIBILITY PRINCIPLE

this is a list of symptoms of a class that may violate the Single Responsibility principle:

• the class has many instance variables.

• the class has many public methods.

• each method of the class uses different instance variables.

• Specific tasks are delegated to private methods.

these are all good reasons to extract so-called “collaborator classes” from the class, thereby

delegating some of the class’ responsibilities and making it adhere to the Single Responsibility
principle.

 Refactoring: Using Collaborator Classes
We now know that the ConfirmationMailMailer does too many things and is therefore

a liability. The way we can (and in this case should) refactor the class is by extracting

collaborator classes. Since this class is a “mailer,” we let it keep the responsibility of

sending the message to the user. But we extract the responsibility of creating the message.

Creating a message is a bit more complicated than a simple object instantiation

using the new operator. It even requires several dependencies. This calls for a dedicated

“factory” class—the ConfirmationMailFactory class (see Listing 1-2 and Figure 1-2).

Chapter 1 the Single reSponSibility prinCiple

7

Listing 1-2. The ConfirmationMailFactory Class

class ConfirmationMailMailer

{

 private $confirmationMailFactory;

 private $mailer;

 public function __construct(

 ConfirmationMailFactory $confirmationMailFactory

 MailerInterface $mailer

) {

 $this->confirmationMailFactory = $confirmationMailFactory;

 $this->mailer = $mailer;

 }

 public function sendTo(User $user): void

 {

 $message = $this->createMessageFor($user);

 $this->sendMessage($message);

 }

 private function createMessageFor(User $user): Message

 {

 return $this->confirmationMailFactory

 ->createMessageFor($user);

 }

 private function sendMessage(Message $message): void

 {

 $this->mailer->send($message);

 }

}

class ConfirmationMailFactory

{

 private $templating;

 private $translator;

Chapter 1 the Single reSponSibility prinCiple

8

 public function __construct(

 TemplatingEngineInterface $templating,

 TranslatorInterface $translator

) {

 $this->templating = $templating;

 $this->translator = $translator;

 }

 public function createMessageFor(User $user): Message

 {

 /*

 * Create an instance of Message based on the

 * given User

 */

 $message = ...;

 return $message;

 }

}

Now the creation logic of the confirmation mail has been nicely placed inside

ConfirmationMailFactory. It would be even better if an interface was defined for the

factory class, but it’s fine for now.

Figure 1-2. Introducing the ConfirmationMailFactory class

Chapter 1 the Single reSponSibility prinCiple

9

 Advantages of Having a Single Responsibility
As a side effect of the refactoring to single responsibilities, both of the classes are

easier to test. You can now test both responsibilities separately. The correctness of

the created message can be verified by testing the createMessageFor() method of

ConfirmationMailFactory. Testing the sendTo() method of ConfirmationMailMailer is

also quite easy now, because you can mock up the complete message-creation process

and just focus on sending the message.

In general, you will notice that classes with single responsibilities are easier to test.

Having a single responsibility will make a class smaller, so you have to write fewer tests

to keep that class covered. This will be easier for your mind to grasp. Also, these small

classes will have fewer private methods with effects that need to be verified in a unit test.

Finally, smaller classes are also simpler to maintain. It is easier to grasp their

purpose and all the implementation details are where they belong: in the classes

responsible for them.

 Packages and the Single Responsibility Principle
While the Single Responsibility principle should be applied to classes, in a slightly

different way it should also be applied to groups of classes (also known as packages).

In the context of package design, “having only one reason to change” becomes “being

closed against the same kind of changes”. The corresponding package principle is called

the Common Closure principle (see Chapter 8).

A somewhat exaggerated example of a package that doesn’t follow this

Common Closure principle would be a package that knows how to connect with a

MySQL database and knows how to produce HTML pages. Such a package would have

too many responsibilities and will be opened (i.e., modified) for all sorts of reasons. The

solution for packages like this one is to split them into smaller packages, each with fewer

responsibilities, and therefore fewer reasons to change.

There is another interesting similarity between the Single Responsibility principle of

class design and the Common Closure principle of package design that I’d like to quickly

mention here: following these principles in most cases reduces class (and package)

coupling.

Chapter 1 the Single reSponSibility prinCiple

10

When a class has many responsibilities, it is likely to have many dependencies too.

It probably gets many objects injected as constructor arguments to be able to

fulfill its goal. For example, ConfirmationMailMailer needed a translator service,

a templating engine, and a mailer to create and send a confirmation mail.

By depending on those objects, it was directly coupled to them. When we applied the

Single Responsibility principle and moved the responsibility of creating the message to a

new class called ConfirmationMailFactory, we reduced the number of dependencies of

ConfirmationMailMailer and thereby reduced its coupling.

The same goes for the Common Closure principle. When a package has many

dependencies, it is tightly coupled to each of them, which means that a change in

one of the dependencies will likely require a change in the package too. Applying the

Common Closure principle to a package means reducing the number of reasons for a

package to change. Removing dependencies, or deferring them to other packages, is one

way to accomplish this.

 Conclusion
Every class has responsibilities, i.e. things to do. Responsibilities are also reasons for

change. The Single Responsibility principle tells us to limit the number of responsibilities

of each class, in order to minimize the number of reasons for a class to be changed.

Limiting the number of responsibilities usually leads to the extraction of one or more

collaborating classes. Each of these classes will have a smaller number of dependencies.

This is useful for package development, since every class will be easier to instantiate,

test, and use.

Chapter 1 the Single reSponSibility prinCiple

11
© Matthias Noback 2018
M. Noback, Principles of Package Design, https://doi.org/10.1007/978-1-4842-4119-6_2

CHAPTER 2

The Open/Closed
Principle
The Open/Closed principle says that1:

You should be able to extend a class’s behavior without modifying it.

Again, a small linguistic jump has to be made from the name of the principle to its

explanation: a unit of code can be considered “open for extension” when its behavior can

be easily changed without modifying it. The fact that no actual modification is needed to

change the behavior of a unit of code makes it “closed” for modification.

It should be noted that being able to extend a class’s behavior doesn’t mean you

should actually extend that class by creating a subclass for it. Extension of a class means

that you can influence its behavior from the outside and leave the class, or the entire

class hierarchy, untouched.

 A Class That Is Closed for Extension
Take a look at the GenericEncoder class shown in Listing 2-1 and Figure 2-1. Notice

the branching inside the encodeToFormat() method that is needed to choose the right

encoder based on the value of the $format argument.

1 Robert C. Martin, “The Principles of OOD,” http://butunclebob.com/ArticleS.UncleBob.
PrinciplesOfOod.

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

12

Listing 2-1. The GenericEncoder Class

class GenericEncoder

{

 public function encodeToFormat($data, string $format): string

 {

 if ($format === 'json') {

 $encoder = new JsonEncoder();

 } elseif ($format === 'xml') {

 $encoder = new XmlEncoder();

 } else {

 throw new InvalidArgumentException('Unknown format');

 }

 $data = $this->prepareData($data, $format);

 return $encoder->encode($data);

 }

}

Figure 2-1. The initial situation

Let’s say you want to use the GenericEncoder to encode data to the Yaml format,

which is currently not supported by the encoder. The obvious solution would be to

create a YamlEncoder class for this purpose and then add an extra condition inside the

existing encodeToFormat() method shown in Listing 2-2.

Chapter 2 the Open/ClOsed prinCiple

13

Listing 2-2. Adding Another Encoding Format

class GenericEncoder

{

 public function encodeToFormat($data, string $format): string

 {

 if (...) {

 // ...

 } elseif (...) {

 // ...

 } elseif ($format === 'yaml') {

 $encoder = new YamlEncoder();

 } else {

 // ...

 }

 // ...

 }

}

As you can imagine, each time you want to add another format-specific encoder,

the GenericEncoder class itself needs to be modified: you cannot change its behavior

without modifying its code. This is why the GenericEncoder class cannot be considered

open for extension and closed for modification.

Let’s take a look at the prepareData()method of the same class. Just like the

encodeToFormat() method, it contains some more format-specific logic (see Listing 2-3).

Listing 2-3. The prepareData() Method

class GenericEncoder

{

 public function encodeToFormat($data, string $format): string

 {

 // ...

 $data = $this->prepareData($data, $format);

 // ...

 }

Chapter 2 the Open/ClOsed prinCiple

14

 private function prepareData($data, string $format)

 {

 switch ($format) {

 case 'json':

 $data = $this->forceArray($data);

 $data = $this->fixKeys($data);

 // fall through

 case 'xml':

 $data = $this->fixAttributes($data);

 break;

 default:

 throw new InvalidArgumentException(

 'Format not supported'

);

 }

 return $data;

 }

}

The prepareData() method is another good example of code that is closed for

extension since it is impossible to add support for another format without modifying the

code itself. Besides, these kind of switch statements are not good for maintainability.

When you would have to modify this code, for instance when you introduce a new

format, it is likely that you would either introduce some code duplication or simply make

a mistake because you overlooked the “fall-through” case.

RECOGNIZING CLASSES THAT VIOLATE THE OPEN/CLOSED PRINCIPLE

this is a list of characteristics of a class that may not be open for extension:

• it contains conditions to determine a strategy.

• Conditions using the same variables or constants are recurring inside the

class or related classes.

• the class contains hard-coded references to other classes or class names.

Chapter 2 the Open/ClOsed prinCiple

15

• inside the class, objects are being created using the new operator.

• the class has protected properties or methods, to allow changing its behavior

by overriding state or behavior.

 Refactoring: Abstract Factory
We’d like to fix this bad design, which requires us to constantly dive into the

GenericEncoder class to modify format-specific behavior. We first need to delegate the

responsibility of resolving the right encoder for the format to some other class. When you

think of responsibilities as reasons to change (see Chapter 1), this makes perfect sense:

the logic for finding the right format-specific encoder is something which is likely to

change, so it would be good to transfer this responsibility to another class.

This new class might as well be an implementation of the Abstract Factory design

pattern2. The abstractness is represented by the fact that its create() method is bound to

return an instance of a given interface. We don’t care about its actual class; we only want

to retrieve an object with an encode($data) method. So we need an interface for such

format-specific encoders. And then, we make sure every existing format-specific encoder

implements this interface (see Listing 2-4 and Figure 2-2).

Listing 2-4. The EncoderInterface and Its Implementation Classes

/**

 * Interface for format-specific encoders

 */

interface EncoderInterface

{

 public function encode($data): string;

}

class JsonEncoder implements EncoderInterface

{

 // ...

}

2 Erich Gamma e.a., Design Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1994.

Chapter 2 the Open/ClOsed prinCiple

16

class XmlEncoder implements EncoderInterface

{

 // ...

}

class YamlEncoder implements EncoderInterface

{

 // ...

}

Figure 2-2. Introducing the EncoderInterface

Now we can move the creation logic of format-specific encoders to a class with just

this responsibility. Let’s call it EncoderFactory (see Listing 2-5).

Listing 2-5. The EncoderFactory Class

class EncoderFactory

{

 public function createForFormat(

 string $format

) : EncoderInterface {

 if ($format === 'json') {

 return new JsonEncoder();

 } elseif ($format === 'xml') {

 return new XmlEncoder();

Chapter 2 the Open/ClOsed prinCiple

17

 } elseif (...) {

 // ...

 }

 throw new InvalidArgumentException('Unknown format');

 }

}

Then we have to make sure that the GenericEncoder class does not create

any format-specific encoders anymore. Instead, it should delegate this job to the

EncoderFactory class, which it receives as a constructor argument (see Listing 2-6).

Listing 2-6. The GenericEncoder Class Now Uses EncoderFactory

class GenericEncoder

{

 private $encoderFactory;

 public function __construct(

 EncoderFactory $encoderFactory

) {

 $this->encoderFactory = $encoderFactory;

 }

 public function encodeToFormat($data, string $format): string

 {

 $encoder = $this->encoderFactory

 ->createForFormat($format);

 $data = $this->prepareData($data, $format);

 return $encoder->encode($data);

 }

}

By leaving the responsibility of creating the right encoder to the encoder factory, the

GenericEncoder now conforms to the Single Responsibility principle.

Chapter 2 the Open/ClOsed prinCiple

18

Using the encoder factory for fetching the right encoder for a given format

means that adding an extra format-specific encoder does not require us to modify the

GenericEncoder class anymore. We need to modify the EncoderFactory class instead.

But when we look at the EncoderFactory class, there is still an ugly hard-coded list

of supported formats and their corresponding encoders. Even worse, class names are

still hard-coded. This means that now the EncoderFactory is closed against extension.

That is, its behavior can’t be extended without modifying its code. It thereby violates the

Open/Closed principle.

QUICK REFACTORING OPPORTUNITY: DYNAMIC CLASS NAMES?

it seems there is some low-hanging fruit here. as you may have noticed there is a striking

symmetry inside the switch statement: for the json format, a JsonEncoder instance

is being returned, for the xml format an XmlEncoder, etc. if your programming language

supports dynamic class names, like php does, this could be easily refactored into something

that is not hard-coded anymore:

$class = ucfirst(strtolower($format)) . 'Encoder';

if (!class_exists($class)) {

 throw new InvalidArgumentException('Unknown format');

}

Yes, this is in fact equivalent code. it’s shorter and it removes the need for a switch

statement. it even introduces a bit more flexibility: in order to extend its behavior you don’t

need to modify the code anymore. in the case of the new encoder for the Yaml format, we only

need to create a new class that follows the naming convention: YamlEncoder. and that’s it.

however, using dynamic class names to make a class extensible like this introduces some

new problems and doesn’t fix some of the existing problems:

• introducing a naming convention only offers some flexibility for you as the

maintainer of the code. When someone else wants to add support for a new

format, they have to put a class in your namespace, which is possible, but not

really user-friendly.

• a much bigger issue: creation logic is still being reduced to new ...(). if,

for instance, an encoder class has some dependencies, there is no way to

inject them (e.g., as constructor arguments). We will address this issue next.

Chapter 2 the Open/ClOsed prinCiple

19

 Refactoring: Making the Abstract Factory
Open for Extension
A first step we could take is to apply the Dependency Inversion principle (see

Chapter 5) by defining an interface for encoder factories. The EncoderFactory we

already have should implement this new interface and the constructor argument of the

GenericEncoder should have the interface as its type (see Listing 2-7 and Figure 2-3).

Listing 2-7. An Interface for the Factory

interface EncoderFactoryInterface

{

 public function createForFormat(

 string $format

): EncoderInterface;

}

class EncoderFactory implements EncoderFactoryInterface

{

 // ...

}

class GenericEncoder

{

 public function __construct(

 EncoderFactoryInterface $encoderFactory

) {

 // ...

 }

 // ...

}

Chapter 2 the Open/ClOsed prinCiple

20

 Replacing or Decorating the Encoder Factory
By making GenericEncoder depend on an interface instead of a class, we have added a

first extension point to it. It will be easy for users of this class to completely replace the

encoder factory, which is now a proper dependency that gets injected as a constructor

argument of type EncoderFactoryInterface (see Listing 2-8).

Listing 2-8. Replacing the Encoder Factory with a Custom One

class MyCustomEncoderFactory implements EncoderFactoryInterface

{

 // ...

}

$encoder = new GenericEncoder(new MyCustomEncoderFactory());

By introducing the interface, we’ve provided the user with another very powerful

option. Maybe they aren’t looking to completely replace the existing EncoderFactory,

but they just want to enhance its behavior. For example, let’s say they want to fetch

the encoder for a given format from a service locator and fall back on the default

EncoderFactory in case of an unknown format. Using the interface, they can compose

Figure 2-3. Introducing the EncoderFactoryInterface

Chapter 2 the Open/ClOsed prinCiple

21

a new factory, which implements the required interface, but receives the original

EncoderFactory as a constructor argument (see Listing 2-9). You could say that the new

factory “wraps” the old one. The technical term for this is “decoration”.

Listing 2-9. Decorating the Original EncoderFactory

class MyCustomEncoderFactory implements EncoderFactoryInterface

{

 private $fallbackFactory;

 private $serviceLocator;

 public function __construct(

 ServiceLocatorInterface $serviceLocator,

 EncoderFactoryInterface $fallbackFactory

) {

 $this->serviceLocator = $serviceLocator;

 $this->fallbackFactory = $fallbackFactory;

 }

 public function createForFormat($format): EncoderInterface

 {

 if ($this->serviceLocator->has($format . '.encoder') {

 return $this->serviceLocator

 ->get($format . '.encoder');

 }

 return $this->fallbackFactory->createForFormat($format);

 }

}

 Making EncoderFactory Itself Open for Extension
It’s great that users can now implement their own instance of EncoderFactoryInterface

or decorate an existing instance. However, forcing the user to re-implement

EncoderFactoryInterface just to add support for another format seems a bit inefficient.

When a new format comes along, we want to keep using the same old EncoderFactory,

but we want to support the new format without touching the code of the class itself.

Also, if one of the encoders would need another object to fulfill its task, it’s currently not

Chapter 2 the Open/ClOsed prinCiple

22

possible to provide that object as a constructor argument, because the creation logic of

each of the encoders is hard-coded in the EncoderFactory class.

In other words, it’s impossible to extend or change the behavior of the

EncoderFactory class without modifying it: the logic by which the encoder factory

decides which encoder it should create and how it should do that for any given format

can’t be changed from the outside. But it’s quite easy to move this logic out of the

EncoderFactory class, thereby making the class open for extension.

There are several ways to make a factory like EncoderFactory open for extension.

I’ve chosen to inject specialized factories into the EncoderFactory, as shown in

Listing 2-10.

Listing 2-10. Injecting Specialized Factories

class EncoderFactory implements EncoderFactoryInterface

{

 private $factories = [];

 /**

 * Register a callable that returns an instance of

 * EncoderInterface for the given format.

 *

 * @param string $format

 * @param callable $factory

 */

 public function addEncoderFactory(

 string $format,

 callable $factory

): void {

 $this->factories[$format] = $factory;

 }

 public function createForFormat(

 string $format

): EncoderInterface {

 $factory = $this->factories[$format];

Chapter 2 the Open/ClOsed prinCiple

23

 // the factory is a callable

 $encoder = $factory();

 return $encoder;

 }

}

For each format it is possible to inject a callable3. The createForFormat() method

takes that callable, calls it, and uses its return value as the actual encoder for the given

format.

This fully dynamic and extensible implementation allows developers to add as many

format-specific encoders as they want. Listing 2-11 shows what injecting the format-

specific encoders looks like.

Listing 2-11. Dynamic Definition of Encoder Factories

$encoderFactory = new EncoderFactory();

$encoderFactory->addEncoderFactory(

 'xml',

 function () {

 return new XmlEncoder();

 }

);

$encoderFactory->addEncoderFactory(

 'json',

 function () {

 return new JsonEncoder();

 }

);

$genericEncoder = new GenericEncoder($encoderFactory);

$data = ...;

$jsonEncodedData = $genericEncoder->encode($data, 'json');

3 See also the documentation for PHP’s “callable” type: https://secure.php.net/manual/en/
language.types.callable.php

Chapter 2 the Open/ClOsed prinCiple

https://secure.php.net/manual/en/language.types.callable.php
https://secure.php.net/manual/en/language.types.callable.php

24

By introducing callable factories, we have relieved the EncoderFactory from the

responsibility of providing the right constructor arguments for each encoder. In other

words, we pushed knowledge about creation logic outside of the EncoderFactory, which

makes it at once adhere to both the Single Responsibility principle and the Open/Closed

principle.

PREFER IMMUTABLE SERVICES

as you may have noticed, EncoderFactory suddenly became a mutable service when

we add the addEncoderFactory() method to it. this was a convenient thing to do, but

in practice it’ll be a smart to design a service to be immutable. apply the following rule to

achieve this:

After instantiation, it shouldn’t be possible to change any of a service’s properties.

the biggest advantage of a service being immutable is that its behavior won’t change on

subsequent calls. it will be fully configured before its first usage. and it will be impossible to

somehow get different results upon subsequent calls.

if you still prefer having separate methods to configure an object, make sure to not make

these methods part of the published interface for the class. they are there only for clients

that need to configure the object, not for clients actually using the objects. For example, a

dependency injection container will call addEncoderFactory() while setting up a new

instance of EncoderFactory, but regular clients, like GenericEncoder itself, will only call

createForFormat().

 Refactoring: Polymorphism
We have put some effort into implementing a nice abstract factory for encoders, but the

GenericEncoder class still has this ugly switch statement for preparing the data before it

is encoded (see Listing 2-12).

Chapter 2 the Open/ClOsed prinCiple

25

Listing 2-12. Revisiting prepareData()

class GenericEncoder

{

 private function prepareData($data, string $format)

 {

 switch ($format) {

 case 'json':

 $data = $this->forceArray($data);

 $data = $this->fixKeys($data);

 // fall through

 case 'xml':

 $data = $this->fixAttributes($data);

 break;

 default:

 throw new InvalidArgumentException(

 'Format not supported'

);

 }

 return $data;

 }

}

Where should we put this format-specific data preparation logic? In other words,

whose responsibility would it be to prepare data before encoding it? Is it something

the GenericEncoder should do? No, because preparing the data is format-specific, not

generic. Is it the EncoderFactory? No, because it only knows about creating encoders. Is

it one of the format-specific encoders? Yes! They know everything about encoding data

to their own format.

So let’s delegate the “prepare data” logic to the specific encoders by adding a

method called prepareData($data) to the EncoderInterface and calling it in the

encodeToFormat() method of the GenericEncoder (see Listing 2-13).

Chapter 2 the Open/ClOsed prinCiple

26

Listing 2-13. Moving prepareData() to EncoderInterface

interface EncoderInterface

{

 public function encode($data);

 /**

 * Do anything that is required to prepare the data for

 * encoding it.

 *

 * @param mixed $data

 * @return mixed

 */

 public function prepareData($data);

}

class GenericEncoder

{

 public function encodeToFormat($data, string $format): string

 {

 $encoder = $this->encoderFactory

 ->createForFormat($format);

 /*

 * Preparing the data is now a responsibility of the

 * format-specific encoder

 */

 $data = $encoder->prepareData($data);

 return $encoder->encode($data);

 }

}

In the case of the JsonEncoder class, this would look like Listing 2-14.

Chapter 2 the Open/ClOsed prinCiple

27

Listing 2-14. An Example of a prepareData() Implementation

class JsonEncoder implements EncoderInterface

{

 public function encode($data): string

 {

 // ...

 }

 public function prepareData($data)

 {

 $data = $this->forceArray($data);

 $data = $this->fixKeys($data);

 return $data;

 }

}

This is not a great solution, because it introduces something called “temporal

coupling”: before calling encode() you always have to call prepareData(). If you don’t,

your data may be invalid and not ready to be encoded.

So instead, we should make preparing the data part of the actual encoding process

inside the format-specific encoder. Each encoder should decide for itself if and how it

needs to prepare the provided data before encoding it. Listing 2-15 shows what this looks

like for the JSON encoder.

Listing 2-15. Making the Preparation of the Data Part of the encode() Method

class JsonEncoder implements EncoderInterface

{

 public function encode($data): string

 {

 $data = $this->prepareData($data);

 return json_encode($data);

 }

Chapter 2 the Open/ClOsed prinCiple

28

 private function prepareData($data)

 {

 // ...

 return $data;

 }

}

In this scenario, the prepareData() method is a private method. It is not part of the

public interface of format-specific encoders, because it will only be used internally. The

GenericEncoder is not supposed to call it anymore. We only have to remove it from the

EncoderInterface, which now exposes a very clean API (see Listing 2-16).

Listing 2-16. The EncoderInterface

interface EncoderInterface

{

 public function encode($data): string;

}

Summarizing, the GenericEncoder we started with at the beginning of this chapter

was quite specific. Everything was hard-coded, so it was impossible to change its

behavior without modifying it. We first moved out the responsibility of creating the

format-specific encoders to an encoder factory. Next we applied a bit of dependency

inversion by introducing an interface for the encoder factory. Finally, we made the

encoder factory completely dynamic: we allowed new format-specific encoder factories to

be injected from the outside, i.e., without modifying the code of the encoder factory itself.

By doing all this, we made GenericEncoder actually generic. When we want to add

support for another format we don’t need to modify its code anymore. We only need to

inject another callable in the encoder factory. This makes both classes (GenericEncoder

and EncoderFactory) open for extension and closed for modification. In fact, maybe

there is no longer a need for a GenericEncoder class anymore, if you consider what it

looks like now (see Listing 2-17). We might ask users to directly call the encoder factory

themselves.

Chapter 2 the Open/ClOsed prinCiple

29

Listing 2-17. The GenericEncoder May No Longer Deserve to be a Class

class GenericEncoder

{

 public function encodeToFormat($data, string $format): string

 {

 return $this->encoderFactory

 ->createForFormat($format)

 ->encode($data);

 }

}

 Packages and the Open/Closed Principle
Applying the Open/Closed principle to classes in your project will greatly benefit the

implementation of future requirements (or changed requirements) for that project.

When the behavior of a class can be changed from the outside, without modifying its

code, people will feel safe to do so. They won’t need to be afraid that they will break

something. They won’t even need to modify existing unit tests for the class.

When it comes to packages, the Open/Closed principle is important for another

reason. A package will be used in many different projects and in many different

circumstances. This means that the classes in a package should not be too specific and

leave room for the details to be implemented in different ways. And when behavior

has to be specific (at some point a package has to be opinionated about something),

it should be possible to change that behavior without actually modifying the code.

Especially since most of the time that code cannot be changed by its users without

cloning and maintaining the entire package themselves.

This is why the Open/Closed principle is highly useful and should be applied widely

and generously when you are designing classes that are bound to end up in a reusable

package. In practice, this means you allow classes to be configured by injecting different

constructor arguments (also known as dependency injection). For collaborating objects

that you may have extracted while applying the Single Responsibility principle, make sure

these objects have a published interface, which allows users to decorate existing classes.

Applying the Open/Closed principle everywhere will make it possible to change

the behavior of any class in your package by switching out or decorating constructor

arguments only. Since users should never have to rely on subclassing to override a

Chapter 2 the Open/ClOsed prinCiple

30

class’s behavior anymore, this gives you the powerful option to mark all of them as

final4. If you do this, you make it impossible for users to create subclasses for them.

This decreases the number of possible use cases you need to consider when you make a

change to the class. Effectively it will help you keep backward compatibility in the future,

and give you all the freedom to change any implementation detail of the class.

 Conclusion
Usually, if you want to change the behavior of a class, you’d need to modify its code. To

prevent a class from being modified, in particular if that class is part of a package, you

should build in options for changing the behavior of a class from the outside. In other

words, it should be possible to extend its behavior without modifying any part of its code.

This is what it means to apply the Open/Closed principle: we make sure that objects

are open for extension, but closed for modification. Several techniques to accomplish

this have been discussed:

• Apply the Single Responsibility principle and extract collaborating

objects.

• Inject collaborating objects as constructor arguments (dependency

injection).

• Provide interfaces for collaborating objects, thereby allowing the user

to replace dependencies, or decorate them.

• Mark classes as final, to make it impossible for the user to change

the behavior of a class by extending it.

4 An excellent discussion on the topic of marking classes as “final” can be found at:
Marco Pivetta, “When to Declare Classes Final,” https://ocramius.github.io/blog/
when-to-declare-classes-final/.

Chapter 2 the Open/ClOsed prinCiple

31
© Matthias Noback 2018
M. Noback, Principles of Package Design, https://doi.org/10.1007/978-1-4842-4119-6_3

CHAPTER 3

The Liskov Substitution
Principle
The Liskov Substitution principle can be stated as1:

Derived classes must be substitutable for their base classes.

The funny thing about this principle is that it has the name of a person in it: Liskov.

This is because the principle was first stated (using different wording) by Barbara Liskov.

But otherwise, there are no surprises here; no big conceptual leaps. It seems only logical

that derived classes, or “subclasses” as they are usually called, should be substitutable

for their base, or “parent” classes. But of course there’s more to it. This principle is not

just a statement of the obvious.

Dissecting the principle, we recognize two conceptual parts. First it’s about derived

classes and base classes. Then it’s about being substitutable.

The good thing is, we already know from experience what a derived class is: it’s a

class that extends some other class: the base class. Depending on the programming

language you work with, a base class can be a concrete class, an abstract class, or

an interface. If the base class is a concrete class, it has no “missing” (also known as

virtual) methods. In this case a derived class, or subclass, overrides one or more of the

methods that are already implemented in the parent class. On the other hand, if the

base class is an abstract class, there are one or more pure virtual methods that have to be

implemented by the derived class. Finally, if all of the methods of a base class are pure

virtual methods (i.e., they only have a signature and no body), then generally the base

class is called an interface.

1 Robert C. Martin, “Principles of OOD,” http://butunclebob.com/ArticleS.UncleBob.
PrinciplesOfOod

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

32

To make sure we’re not lost in translation, take a look at Listing 3-1 for an

explanation of the terms base class, derived class, and interface using PHP code.

Listing 3-1. The Differences Between an Interface, an Abstract Class, and a

Regular Class

/**

 * A concrete class: all methods are implemented, but can be

 * overridden by derived classes

 */

class ConcreteClass

{

 public function implementedMethod()

 {

 // ...

 }

}

/**

 * An abstract class: some methods need to be implemented by

 * derived classes

 */

abstract class AbstractClass

{

 abstract public function abstractMethod();

 public function implementedMethod()

 {

 // ...

 }

}

/**

 * An interface: all methods need to be implemented by derived

 * classes

 */

Chapter 3 the Liskov substitution prinCipLe

33

interface AnInterface

{

 public function abstractMethod();

}

Now we know all about base classes and derived classes. But what does it mean for

derived classes to be substitutable? There is plenty of room for discussion it seems. In

general, being substitutable is about behaving well as a subclass or a class implementing

an interface. “Behaving well” would then mean behaving “as expected” or “as agreed

upon”.

Bringing the two concepts together, the Liskov Substitution principle says that if we

create a class that extends another class or implements an interface, it has to behave as

expected.

Words like “behaving as expected” are still pretty vague though. This is why pointing

out violations of the Liskov Substitution principle can be pretty hard. Among developers,

there may even be disagreement about whether or not something counts as a violation

of the principle. Sometimes it’s a matter of taste. And sometimes it depends on the

programming language itself and the constructs it offers for object-oriented programming.

Nevertheless, we can point out some general bad practices that can prevent classes

from being good substitutes for their parent classes or from being good implementations

of an interface. So even though the principle itself is stated in a positive way, what

follows is a discussion of some recurring violations of the principle. This will give you an

idea of what it means to behave badly as a substitute for a class or an interface. This will

indirectly help you to form an idea about how to behave well as a derived class.

 Violation: A Derived Class Does Not Have
an Implementation for All Methods
When a class does not have a proper implementation for all the methods of its parent

class (or its interface for that matter), this results in a clear violation of the Liskov

Substitution principle. It is bad behavior of substitutes to not do everything they are

supposed to do. Consider for instance this FileInterface interface (see Listing 3-2).

Chapter 3 the Liskov substitution prinCipLe

34

Listing 3-2. The FileInterface

interface FileInterface

{

 public function rename(string $name): void;

 public function changeOwner(string $user, string $group): void;

}

It may seem obvious that a file always has a name and an owner and that both can

be changed. But you may also imagine that for some files, changing the owner would not

be possible at all. Take for instance files that are stored using a cloud storage provider

like Dropbox. If we create a Dropbox implementation of the FileInterface, we have to

prevent users from trying to change the owner of a file because that simply doesn’t work

for a Dropbox file (see Listing 3-3).

Listing 3-3. A Dropbox-Specific Implementation of FileInterface

class DropboxFile implements FileInterface

{

 public function rename(string $name): void

 {

 // ...

 }

 public function changeOwner(string $user, string $group): void

 {

 throw new BadMethodCallException(

 'Not implemented for Dropbox files'

);

 }

}

Throwing exceptions like this should be considered bad behavior for substitutes:

when someone calls the changeOwner()method of DropboxFile, their entire application

might crash, without any warning.

In fact, we don’t want a user to call FileInterface::changeOwner() when the class

they use is DropboxFile. So maybe we can ask the user to check that, using a simple

conditional (see Listing 3-4).

Chapter 3 the Liskov substitution prinCipLe

35

Listing 3-4. Using a Conditional to Check if We Can Change the File Owner

if (!$file instanceof DropboxFile) {

 $file->changeOwner(...);

}

This will prevent the nasty exception inside changeOwner() from being thrown.

Unfortunately, this is not a viable solution. Most likely these lines will be repeated all

over the user’s codebase, quickly becoming a maintenance burden for them.

Instead of throwing an exception, we might just be secretive about the fact that you

can’t change the owner of a DropboxFile (see Listing 3-5).

Listing 3-5. Silently Skip Non-Implemented Methods

class DropboxFile implements FileInterface

{

 // ...

 public function changeOwner(string $user, string $group): void

 {

 // shhh... this is not supported, but who needs to know?

 }

}

Implementing this simple solution might be very tempting. Unfortunately, we can’t

do this—changing the owner of a file is a significant operation. It’s about security after

all. Some other parts of the system may count on DropboxFile::changeOwner() to really

change the owner of the file; for instance, to make it unavailable for a previous owner. If

for some reason changing the owner is not possible for a given type of file, it should be

clear by its contract. In other words, its interface should not offer a method that makes it

seem like this is possible.

The best solution would be to split the interface (see Listing 3-6).

Listing 3-6. Splitting FileInterface

interface FileInterface

{

 public function rename(string $name): void;

}

Chapter 3 the Liskov substitution prinCipLe

36

interface FileWithOwnerInterface extends FileInterface

{

 public function changeOwner(

 string $user,

 string $group

): void;

}

Together these interfaces form a hierarchy of file types. There is the generic file type

defined by FileInterface (which only offers a method for it to be renamed). Then there

is a subtype of files of which the owner can be changed. When we have defined these

interfaces, the DropboxFile class would implement only the generic FileInterface

interface (see Listing 3-7).

Listing 3-7. DropboxFile Doesn’t Have to Implement changeOwner() Anymore

class DropboxFile implements FileInterface

{

 public function rename($name)

 {

 // ...

 }

}

And any other file type that supports a change of ownership, like LocalFile,

implements FileWithOwnerInterface (see Listing 3-8).

Listing 3-8. LocalFile Implements Both rename() and changeOwner()

class LocalFile implements FileWithOwnerInterface

{

 public function rename(string $name): void

 {

 // ...

 }

Chapter 3 the Liskov substitution prinCipLe

37

 public function changeOwner(string $user, string $group): void

 {

 // ...

 }

}

Figure 3-1 shows the resulting class hierarchy.

Finally we made the code adhere to the Liskov Substitution principle again. All the

derived classes (DropboxFile and LocalFile) now behave well as substitutes for their

base classes (FileInterface and FileWithOwnerInterface), and all of the methods of

the base classes are properly implemented in the derived classes.

 Leaky Abstractions
When we started out with this example, FileInterface was intended to be an

abstraction for all the files in the world. The idea of a FileInterface was to expose some

actions (“rename” or “change owner”) that would work for any file, no matter where it’s

stored.

Figure 3-1. The new hierarchy of file classes

Chapter 3 the Liskov substitution prinCipLe

38

By trying to abstract (i.e., take away the details of) particular files and their behaviors,

we made the incorrect assumption that any implementation of FileInterface would be

able to provide meaningful implementations for all the methods of that interface.

When we started implementing FileInterface for a file stored with Dropbox,

however, the assumption turned out to be wrong. FileInterface turned out to be an

improper generalization of the “file” concept. Such an improper generalization is usually

called a leaky abstraction. This term has been made famous by Joel Spolsky2 when he

stated his Law of Leaky Abstractions:

All non-trivial abstractions, to some degree, are leaky.

As programmers, we are looking for abstractions all day. We want to treat a specific

thing as a more general thing. When we do this consistently, we can later fearlessly replace

any specific thing with some other specific thing. The system will not break because every

part of it depends only on abstract things and doesn't care about the specifics.

The problem with most (all?) abstractions, as the Law of Leaky Abstractions states,

is that they are leaky, which means that it will never be possible to abstract away every

underlying specificness. Some underlying detail is bound to pop up and get in our way.

As long as you’re aware of this limitation, though, you can still have a good time

designing abstract things, which are only abstract up to a certain point. Just make sure

the abstraction serves your purpose, and don’t try to fit every possible specific thing in

the world into your abstraction. This advice is known among scientists (and domain-

driven design enthusiasts) as:

Essentially, all models are wrong, but some are useful.3

 Violation: Different Substitutes Return Things
of Different Types
This violation applies in particular to programming languages that are not strictly typed,

like PHP. These languages allow for a lot of uncertainty with regard to the type of, for

instance, return values.

2 Joel Spolsky, “The Law of Leaky Abstractions,” https://www.joelonsoftware.com/2002/11/11/
the-law-of-leaky-abstractions/

3 Box, G. E. P.; Draper, N. R. (1987), Empirical Model-Building and Response Surfaces, John Wiley & Sons.

Chapter 3 the Liskov substitution prinCipLe

39

If a programming language has no way to pin down the type of the return value of

a method, a common solution is to mention it inside the docblock of the method (see

Listing 3-9).

Listing 3-9. The RouterInterface Interface

interface RouterInterface

{

 /**

 * @return Route[]

 */

 public function getRoutes();

 // ...

}

The getRoutes() method is supposed to return something iterable (hence the [])

containing Route objects. But different router implementations may return different

types of iterable things, like arrays or (in PHP) an object that implements Traversable4.

For instance, the SimpleRouter returns a plain array of Route objects (see Listing 3-10).

Listing 3-10. An Implementation of getRoutes() That Returns an Array

class SimpleRouter implements RouterInterface

{

 public function getRoutes()

 {

 $routes = [];

 // add Route objects to $routes

 $routes[] = ...;

 return $routes;

 }

}

4 See the documentation for PHP’s Traversable type at: https://secure.php.net/traversable

Chapter 3 the Liskov substitution prinCipLe

https://secure.php.net/traversable

40

But the AdvancedRouter returns a much more advanced RouteCollection object

(see Listing 3-11), which implements Traversable (actually, it implements Iterator5,

which itself implements Traversable).

Listing 3-11. An Implementation of getRoutes()That Returns a RouteCollection

class AdvancedRouter implements RouterInterface

{

 public function getRoutes()

 {

 $routeCollection = new RouteCollection();

 // ...

 return $routeCollection;

 }

}

class RouteCollection implements Iterator

{

 // ...

}

Now AdvancedRouter and SimpleRouter look like good substitutes for

RouterInterface, but in reality they are not. Even though both classes implement the

getRoutes()method, they both return a value of a different type.

This violation of the Liskov Substitution principle may go unnoticed for a while,

when people only iterate over the return value of getRoutes() using a simple foreach

loop (see Listing 3-12).

Listing 3-12. Looping Over the Return Value of getRoutes()

// $router implements RouterInterface, so $routes is iterable

$routes = $router->getRoutes();

foreach ($routes as $route) {

 // $route is a Route object

}

5 See the documentation for PHP’s Iterator type at: https://secure.php.net/iterator

Chapter 3 the Liskov substitution prinCipLe

https://secure.php.net/iterator

41

This is bound to work in all situations, because foreach loops over the values in an

array as well as over the values provided by an iterator. But since many things that are

iterable (or at least all arrays) are also countable, one day someone may try to use the

count() function on the return value of getRoutes() (see Listing 3-13).

Listing 3-13. Counting the Return Value of getRoutes()

if (count($routes) > 10) {

 // ...

}

Using the SimpleRouter this will work, but using the AdvancedRouter this won’t

work, since the RouteCollection does not implement Countable6. So it becomes clear

that there is a problem with the relation between parent classes and their derived classes.

Contrary to the previous violation that we discussed, the problem is not that

SimpleRouter and AdvancedRouter are bad substitutes for RouterInterface. The real

problem is the ambiguously defined return type of its getRoutes() method: Route[].

The solution to the problem is to define the type of the return value more strictly and

to not allow for accidental deviations from the expected type. So interfaces and abstract

classes should always document their return values in a strict way, using specific types7

(Listing 3-14 shows an example of this).

Listing 3-14. Documenting Return Types

/**

 * @return array<Route>

 */

However, when we use the array type, this still leaves room for some questions.

Arrays are pretty vague data structures. The implementer of this interface might wonder

what type of keys they should use: integers or strings. And what are the expected values

for those?

6 See the documentation for PHP’s Countable type at: https://secure.php.net/countable
7 See the unofficial guideline for documenting types in PHP code, as proposed by
phpDocumentor, at: https://docs.phpdoc.org/references/phpdoc/types.html

Chapter 3 the Liskov substitution prinCipLe

https://docs.phpdoc.org/references/phpdoc/types.html

42

Because we still have this ambiguity, preferably we would introduce a new

type to make sure that there can be no doubt. For example, we could define a

RouteCollectionInterface interface to provide a contract for the return type of the

getRoutes() method (see Listing 3-15).

Listing 3-15. Introducing the RouteCollectionInterface Interface

interface RouterInterface

{

 public function getRoutes(): RouteCollectionInterface;

}

interface RouteCollectionInterface extends Iterator, Countable

{

}

With the introduction of this new interface for collections of routes, it will be much

easier for the derived classes (i.e., SimpleRouter and AdvancedRouter) to behave well

as substitutes for their base class (i.e., RouterInterface). Now it’s clear what their

getRoutes() method is supposed to return.

Figure 3-2 shows what the class hierarchy looks like after the latest changes.

Figure 3-2. The new dependency diagram

Chapter 3 the Liskov substitution prinCipLe

43

 More Specific Return Types Are Allowed
The Liskov Substitution principle does not allow for wrong or unspecific return types.

Still, derived classes are allowed to return values that are a subtype of the type prescribed

by the base class.

Consider the return type RouteCollectionInterface—any value that is an object

that implements this interface will suffice as a proper return value, like an instance of

SomeSpecificRouteCollectionClass (see Listing 3-16).

Listing 3-16. SomeSpecificRouteCollectionClass

class SomeSpecificRouteCollectionClass

 implements RouteCollectionInterface

{

 // ...

}

Any route collection class is a derived class of RouteCollectionInterface, hence,

it’s allowed as a return value. But the same goes for any class that extends such a route

collection class, because the extending class is also supposed to be a well-behaving

substitute for RouteCollectionInterface.

 Violation: A Derived Class Is Less Permissive
with Regard to Method Arguments
As we saw earlier, to be a good substitute means to implement all the required methods

and make them return the right things, according to the contract of the base class. When

it comes to method arguments, a substitute needs to be equally or more permissive than

the contract defines.

What does it mean for a method to be “more or less permissive” about its method

arguments? Well, let’s take a look at a so-called “mass mailer”. Its interface says it should

have a single method: sendMail() (see Listing 3-17).

Chapter 3 the Liskov substitution prinCipLe

44

Listing 3-17. The MassMailerInterface Interface

interface MassMailerInterface

{

 public function sendMail(

 TransportInterface $ransport,

 Message $message,

 Recipients $recipients

): void;

}

Derived classes of this interface (i.e., base classes) should use the provided mail

transport to send a message to all recipients at once. TransportInterface hides the

messy details of how the message should be physically sent to the recipients. For

instance, there may be implementations of TransportInterface that use sendmail,

SMTP, or PHP’s built-in mail() function to deliver mails.

Listing 3-18 is a partial implementation of the MassMailerInterface, which uses

SMTP to send an email to lots of recipients at once. The first thing it does is verify that

the user has provided the right type of argument for $transport (after all, this class only

works with SMTP, so it needs an SMTP transport).

Listing 3-18. The SmtpMassMailer Implementation of MassMailerInterface

class SmtpMassMailer implements MassMailerInterface

{

 public function sendMail(

 TransportInterface $transport,

 Message $message,

 Recipients $recipients

): void {

 if (!($transport instanceof SmtpTransport)) {

 throw new InvalidArgumentException(

 'SmtpMassMailer only works with SMTP'

);

 }

Chapter 3 the Liskov substitution prinCipLe

45

 // ...

 }

}

By restricting the set of allowed arguments—from all instances of

TransportInterface to only instances of SmtpTransport—the SmtpMassMailer violates

the Liskov Substitution principle. As a substitute of the base class MassMailerInterface,

it’s supposed to work with any mail transport, as long as it’s an object of type

TransportInterface. Instead, SmtpMassMailer is less permissive with regard to method

arguments than the base class. This is bad substitute behavior.

The only way to fix this is to make sure that the contract of the base class reflects the

needs of derived classes in a better way. Apparently, TransportInterface as a type for

$transport is not sufficiently specific because it turns out that not every kind of mail

transport is suitable for mass mailing.

Whenever we reason about class design like this, we need to keep an eye on

phrases like:

not every … is a …

not every … can be used as a …

They usually indicate that there is something wrong with the type hierarchy

of our classes. In this particular situation, our base classes/interfaces need to

reflect that there are different kinds of mail transports. Redefining our class

hierarchy, we might define a generic TransportInterface and one specialized

TransportWithMassMailSupportInterface that extends TransportInterface.

SmtpTransport should then implement TransportWithMassMailSupportInterface

and the other transports merely implement TransportInterface (see Listing 3-19 and

Figure 3-3).

Chapter 3 the Liskov substitution prinCipLe

46

Listing 3-19. Introducing a New Interface for Transports That Support Mass

Mailing

class SmtpTransport implements

 TransportWithMassMailSupportInterface

{

 // ...

}

Finally we can change the expected type of the $transport argument to

TransportWithMassMailSupportInterface to prevent the wrong type of transport from

being provided to the sendMail() method (see Listing 3-20).

Listing 3-20. Using a More Specific Type for the Transport Parameter

interface MassMailerInterface

{

 public function sendMail(

 TransportWithMassMailSupportInterface $transport,

Figure 3-3. The new class diagram

Chapter 3 the Liskov substitution prinCipLe

47

 Message $message,

 Recipients $recipients

);

}

Then we can modify SmtpMassMailer and remove the extra check on the type of the

provided $transport argument (see Listing 3-21).

Listing 3-21. There’s No Need to Restrict Usage of sendMail() Anymore

class SmtpMassMailer implements MassMailerInterface

{

 public function sendMail(

 TransportWithMassMailSupportInterface $transport,

 Message $message,

 Recipients $recipients

): void {

 /*

 * No need to validate $transport anymore, it supports

 * mass mailing

 */

 // ...

 }

}

Finally, SmtpMassMailer adheres to the Liskov Substitution principle. It behaves well

as a substitute because it does not put more restrictions on the input arguments than its

base class (MassMailerInterface) does.

Depending on your particular situation, it may not be justifiable to introduce this

extra layer of abstraction. Maybe you are trying to redefine things in an abstract way

but they are really just concrete things. Or maybe you are trying to find similarities that

can’t be found because they don’t exist. For example, it might be impossible to use any

other transport for mass mailing than the SMTP transport. This means there can’t be any

other mass mailer than an SMTP mass mailer. Then we could just as well leave out the

inappropriate abstraction called MassMailerInterface and define one concrete class

suitable for mass mailing (see Listing 3-22).

Chapter 3 the Liskov substitution prinCipLe

48

Listing 3-22. Removing Abstraction Is an Option Too

class SmtpMassMailer

{

 public function sendMail(

 SmtpTransport $transport,

 Message $message,

 Recipients $recipients

): void {

 // ...

 }

}

Since SmtpMassMailer is not derived from a base class, it doesn’t violate the Liskov

Substitution principle anymore.

 Violation: Secretly Programming Against a More
Specific Type
Base classes like interfaces are used to expose an explicit public API. For instance, the

public API of the HttpKernelInterface consists of just one method that is by definition

public (see Listing 3-23).

Listing 3-23. The HttpKernelInterface Interface

interface HttpKernelInterface

{

 public function handle(Request $request): Response;

}

Sometimes derived classes have additional public methods. These methods

constitute its implicit public API. The getEnvironment() method is an example of such a

method (see Listing 3-24).

Chapter 3 the Liskov substitution prinCipLe

49

Listing 3-24. HttpKernel Adds Another Public Method: getEnvironment()

class HttpKernel implements HttpKernelInterface

{

 public function handle(Request $request): Response

 {

 // ...

 }

 public function getEnvironment(): string

 {

 // ...

 }

}

The getEnvironment() method is not defined in HttpKernelInterface. So

whenever you want to use this method, you have to explicitly depend on the HttpKernel

class, instead of the interface, like CachedHttpKernel does (see Listing 3-25). It wraps an

HttpKernel instance and adds some additional HTTP caching functionality to it.

Listing 3-25. An Implementation of HttpKernelInterface: CachedHttpKernel

class CachedHttpKernel implements HttpKernelInterface

{

 public function __construct(HttpKernel $kernel)

 {

 if ($kernel->getEnvironment() === 'dev') {

 // ...

 }

 }

 public function handle(Request $request): Response

 {

 // ...

 }

}

Chapter 3 the Liskov substitution prinCipLe

50

As the creator of CachedHttpKernel, we might want to make it a bit more generic by

allowing users to wrap any instance of HttpKernelInterface. This requires just a simple

modification to the constructor of the class, as is done in Listing 3-26.

Listing 3-26. Calling getEnvironment() on an Instance of HttpKernelInterface

class CachedHttpKernel implements HttpKernelInterface

{

 public function __construct(HttpKernelInterface $kernel)

 {

 if ($kernel->getEnvironment() === 'dev') {

 // ...

 }

 }

 // ...

}

You may have spotted the problem already: we still use the getEnvironment()

method, which was legitimate when the $kernel was guaranteed to be an instance

of HttpKernel. After changing the type of the constructor argument, we can’t be sure

anymore. Now we only know that $kernel is an instance of HttpKernelInterface.

The provided argument might still be an instance of HttpKernel and since this is a

PHP example, the code would run perfectly well in that case. The validity of the code is

only determined at runtime, so even though the types don’t match, we might still be able

to call the getEnvironment() method on the $kernel.

So the CachedKernel pretends to be part of a nice hierarchy of substitutable classes,

while in fact it isn’t. It breaks the tradition of implementing and requiring just the

handle() method of KernelInterface and thereby it violates the Liskov Substitution

principle.

The solution to this problem is to be more careful about respecting the contracts

of the base class. For example, we could expand the interface to contain the required

getEnvironment() method (see Listing 3-27).

Chapter 3 the Liskov substitution prinCipLe

51

Listing 3-27. Adding getEnvironment() to KernelInterface

interface KernelInterface

{

 public function handle(Request $request): Response;

 public function getEnvironment(): string;

}

Or we could split the interface, just like we did on several previous occasions, so you

can require more specific types of objects (see Listing 3-28).

Listing 3-28. Splitting the Interface

interface HttpKernelInterface

{

 public function handle(Request $request): Response;

}

interface HttpKernelWithEnvInterface

 extends HttpKernelInterface

{

 public function getEnvironment(): string;

}

class CachedHttpKernel implements HttpKernelInterface

{

 public function __construct(

 HttpKernelWithEnvironmentInterface $kernel

) {

 // ...

 }

}

As a last resort, you may verify that the actual argument implements the desired

interface before calling its getEnvironment() method (as shown in Listing 3-29).

Chapter 3 the Liskov substitution prinCipLe

52

Listing 3-29. Checking for a Specific Type

class CachedHttpKernel implements HttpKernelInterface

{

 public function __construct(HttpKernelInterface $kernel)

 {

 if ($kernel instanceof HttpKernelWithEnvInterface) {

 $environment = $kernel->getEnvironment();

 // ...

 }

 }

}

Besides being an ad-hoc solution, it feels a lot like there is a missed opportunity for

polymorphism here. We’d like to always be able to call getEnvironment() on an instance

of HttpKernelInterface. So why not add it to the interface, thereby making sure that all

implementations will return a sensible value when calling this method?

 Packages and the Liskov Substitution Principle
The Liskov Substitution principle is relevant for you as a package developer in two ways:

first, when your package defines an interface (or base class), and second, when your

package provides an implementation of some interface (or base class), potentially one

from a different package.

Defining an interface, as we’ve learned in the previous chapter, is useful when you

want to provide a user with an extension point by means of dependency injection (and

optionally decoration). If you provide a new interface, make sure it at least makes sense

for a user to provide alternative implementations, which can still be proper substitutes

for that interface. That is, get your abstractions right and don’t force users to implement

methods that don’t make sense in their context. Sometimes this means you have to make

an interface more narrow, offer multiple interfaces that can be implemented separately,

or switch to a different level of abstraction. All cases will be covered in more detail in

Chapter 4 when we discuss the Interface Segregation principle.

You can make it easier for implementers to write good substitutes for the

interface you introduce by being specific about the types of arguments and return

values. As we saw in the example about the getRoutes() method returning a

Chapter 3 the Liskov substitution prinCipLe

53

RouteCollectionInterface object, the situation can be drastically improved by

introducing dedicated types. This is particularly true when the programming language’s

built-in types aren’t useful or specific enough, or if it doesn’t even support proper typing

at all levels.

If your package contains a class that implements some interface, make sure this

class adheres to the contract communicated by that interface and its accompanying

documentation. In other words, make sure your implementation is a good substitute for

the given interface (“base class”). This way, the user won’t be confused when they switch

implementations and things suddenly don’t work anymore, or work in subtly different ways.

Finally, always consider the option not to provide an interface or base class for the

user to implement or derive from. It may reduce the flexibility or extensibility of your

package, but it will also make your package more opinionated. This often has the effect

of making the package easier to understand and work with. Some things shouldn’t be

replaced by users; some things are just the way you want them to be, or how you think

they make the most sense. It could be that the part that can’t be reconfigured, replaced,

or overridden by a user is also the part that makes your package stand out among the

more generic ones.

 Conclusion
The Liskov Substitution principle demands from derived classes that they are good

substitutes. We discussed some examples of being a bad substitute. Based on these

negative examples of bad substitutes, we can form an idea of what “being a good

substitute” would mean. A good substitute:

• Provides an implementation for all the methods of the base class.

• Returns the type of things the base class prescribes (or more

specific types).

• Doesn’t put extra constraints on arguments for methods.

• Doesn’t use non-strict typing to break the contract that was

provided by the base class.

Chapter 3 the Liskov substitution prinCipLe

55
© Matthias Noback 2018
M. Noback, Principles of Package Design, https://doi.org/10.1007/978-1-4842-4119-6_4

CHAPTER 4

The Interface Segregation
Principle
The fourth SOLID principle is the Interface Segregation principle. It gives us the following

instruction1:

Make fine-grained interfaces that are client specific.

“Fine-grained interfaces” stands for interfaces with a small amount of methods.

“Client specific” means that interfaces should define methods that make sense from the

point of view of the client that uses the interface.

In order to reach an understanding of this principle, we will, just like in the previous

chapter, discuss some common violations of it. Each violation is followed by a change in

the code that would fix the problem.

 Violation: Multiple Use Cases
Sometimes the interface of a class (i.e., its public API) contains too many methods

because it serves multiple use cases. Some clients of the object will call a different set of

methods than other clients of the same object.

Almost every existing service container implementation serves as a great example

of a class that has different clients, since many service containers are used both as a

dependency injection (or inversion of control) container and as a service locator.

A service container is an object you use to retrieve other objects (i.e., services), as

demonstrated in Listing 4-1.

1 Robert C. Martin, “The Principles of OOD,” http://butunclebob.com/ArticleS.UncleBob.
PrinciplesOfOod

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

56

Listing 4-1. The ServiceContainerInterface

interface ServiceContainerInterface

{

 public function get(string $name);

 // ...

}

// $serviceContainer is an instance of ServiceContainerInterface

$mailer = $serviceContainer->get('mailer');

The mailer service will return a fully initialized object that can be used as a mailer.

This allows for lazy loading of services. Because the service container locates services for

you, a service container is also called a “service locator” (read more about why using a

service locator is not a good idea in most cases in this article by Paul M. Jones2).

Before you can retrieve a service from a service container, some other part of the

system should configure it correctly. The container should be instructed how to initialize

services like the mailer service. This is the aspect of a service container that makes it a

dependency injection container. See how this is done in Listing 4-2.

Listing 4-2. Configuring the Service Container Using set()

interface ServiceContainerInterface

{

 public function get(string $name);

 public function set(string $name, callable $factory): void;

}

// $serviceContainer is an instance of ServiceContainerInterface

// configure the mailer service

$serviceContainer->set(

 'mailer',

 function () use ($serviceContainer) {

2 Paul M. Jones, “Quicker, Easier, More Seductive: Restraining Your Service Locators,”
http://paul-m-jones.com/archives/4792

Chapter 4 the InterfaCe SegregatIon prInCIple

http://paul-m-jones.com/archives/4792

57

 return new Mailer(

 // a mailer needs a transport

 $serviceContainer->get('mailer.transport')

);

 }

);

// configure the mailer transport service

$serviceContainer->set(

 'mailer.transport',

 function () use ($serviceContainer) {

 return new MailerSmtpTransport();

 }

);

Other parts of the application don’t need to worry anymore about how they should

instantiate and initialize the mailer service—the creation logic is all handled by

something else—the dependency injection container. This is why such a container is

often called an Inversion of Control (IoC) container.

What’s interesting is that the use case of configuring a service container (i.e., telling

it how to instantiate services) is entirely different from the use case of fetching services

from a service container (i.e., using it as a service locator). Still, both use cases will be

provided by one and the same service container, since both get() and set() methods

are defined in ServiceContainerInterface.

This means that any client that depends on ServiceContainerInterface can both

fetch previously defined services and define new services. In reality, most clients of

ServiceContainerInterface only perform one of these tasks. A client either configures

the service container (for example, when the application is bootstrapped) or fetches a

service from it (when the application is up and running).

When an interface tries to serve several types of clients at once, like the

ServiceContainerInterface does, it violates the Interface Segregation principle. Such

an interface is not fine-grained enough to be client-specific.

Chapter 4 the InterfaCe SegregatIon prInCIple

58

 Refactoring: Separate Interfaces and Multiple
Inheritance
One type of client is the part of the application that bootstraps the service container

by configuring the available services. Such a client would only need the part of the

ServiceContainerInterface that makes it mutable, i.e., its set() method. Another

type of client is, for example, a controller that fetches a service to process a request. This

type of client only needs get(), not set(). The difference between clients should be

reflected in the interfaces that are available; for instance, by splitting the interface into a

MutableServiceContainerInterface and a ServiceLocatorInterface, as is shown in

Listing 4-3.

Listing 4-3. Splitting the Interface

interface MutableServiceContainerInterface

{

 public function set(string $name, callable $factory): void;

}

interface ServiceLocatorInterface

{

 public function get(string $name): object;

}

Now each client can require its own appropriate type of service container. In

practice, there would be a single ServiceContainer class, which serves both types of

clients at the same time by implementing both MutableServiceContainerInterface

and ServiceLocatorInterface (see Listing 4-4 and Figure 4-1).

Listing 4-4. ServiceContainer Can Still Implement Both Interfaces

class ServiceContainer implements

 MutableServiceContainerInterface,

 ServiceLocatorInterface

{

 public function set(string $name, callable $factory): void

 {

Chapter 4 the InterfaCe SegregatIon prInCIple

59

 // ...

 }

 public function get(string $name): object

 {

 // ...

 }

}

Figure 4-1. The ServiceContainer class hierarchy

None of the clients need to be bothered by this, since none of them will depend on

the ServiceContainer class, only on one of the interfaces, as you can see in Listing 4-5.

Listing 4-5. Most Clients Will Depend on the ServiceLocatorInterface Only

class Kernel

{

 public function initializeServiceContainer(

 MutableServiceContainerInterface $serviceContainer

) {

 $serviceContainer->set(...);

 }

}

Chapter 4 the InterfaCe SegregatIon prInCIple

60

class SomeController

{

 private $serviceLocator;

 public function __construct(

 ServiceLocatorInterface $serviceLocator

) {

 $this->serviceLocator = $serviceLocator;

 }

 public function indexAction(): Response

 {

 $mailer = $this->serviceLocator->get('mailer');

 // ...

 }

}

Having the ServiceContainer class implement both interfaces is not strictly

necessary. It will just make it easier for you to maintain the code. The point to take

from this is: it doesn’t matter if a class does not strictly follow the Interface Segregation

principle. That’s not a problem, as long as all parts of the application depend only on one

small, client-specific part of the public API of that class. To enable clients to do this, make

sure that you always offer an interface. Then split that interface whenever you notice that

different clients tend to use a different subset of its methods.

 Violation: No Interface, Just a Class
Say you are working on a package called FabulousORM, which is supposed to contain

a better object-relational mapper than any of the existing ones. You define an

EntityManager class that can be used to persist entities (objects) in a relational database

(see Listing 4-6). It uses a unit of work3 to calculate the actual changes that need to be

made to the database. The EntityManager class has some public methods—persist()

and flush()—and one private method that internally makes the UnitOfWork object

available to other methods.

3 Martin Fowler, “Unit of Work,” https://martinfowler.com/eaaCatalog/unitOfWork.html

Chapter 4 the InterfaCe SegregatIon prInCIple

https://martinfowler.com/eaaCatalog/unitOfWork.html

61

Listing 4-6. The EntityManager Class

class EntityManager

{

 public function persist(object $entity): void

 {

 // ...

 }

 public function flush(): void

 {

 // ...

 }

 private function getUnitOfWork(): UnitOfWork

 {

 // ...

 }

}

People who use your package in their projects can depend on the EntityManager in

their own classes, like the UserRepository does (see Listing 4-7).

Listing 4-7. The UserRepository Class

class UserRepository

{

 public function __construct(EntityManager $entityManager)

 {

 // ...

 }

}

Unfortunately, we can’t use an interface as the type for the $entityManager

constructor argument. The EntityManager class doesn’t implement an interface. So the

best we can do is use the class itself as the type for the constructor argument.

Even though there is no explicit interface for the EntityManager class, it still

has an implicit interface. Each method of the class comes with a certain scope

(public, protected, or private). When a client like UserRepository depends on the

Chapter 4 the InterfaCe SegregatIon prInCIple

62

EntityManager class, it depends on all the public methods of EntityManager: persist()

and flush(). None of the methods with a different scope (i.e., protected or private)

can be called by a client. So the public methods combined form the implicit interface of

EntityManager.

 Implicit Changes in the Implicit Interface
One day you decide to add a Query class to your ORM package. It can be used to

query the database and retrieve entities from it. This Query class needs the UnitOfWork

object that is used internally by EntityManager. So you decide to turn its private

getUnitOfWork() method into a public method. That way, the Query class may depend

on the EntityManager class and use its getUnitOfWork(), as shown in Listing 4-8.

Listing 4-8. Query Needs EntityManager Only for Its UnitOfWork

class EntityManager

{

 // ...

 /**

 * This method needs to be public because it's used by the

 * Query class

 */

 public function getUnitOfWork(): UnitOfWork

 {

 // ...

 }

}

class Query

{

 public function __construct(EntityManager $entityManager)

 {

 $this->entityManager = $entityManager;

 }

Chapter 4 the InterfaCe SegregatIon prInCIple

63

 public function someMethod()

 {

 $this->entityManager->getUnitOfWork()->...

 }

}

This new public method—getUnitOfWork()—will automatically become part of the

implicit interface of EntityManager. From this moment on, all clients of EntityManager

implicitly depend on this method too, even though they may only use the persist() and

flush() methods.

This is a dangerous situation. Maybe some clients start using the publicly available

method getUnitOfWork() too. They may do some pretty crazy things with the unit of

work, which you would normally never authorize.

Adding methods to the implicit interface of a class is also bound to cause backward

compatibility problems. Say that one day you refactor the Query class and remove its

dependency on the EntityManager class. Since none of your classes need the public

getUnitOfWork() method anymore, you then decide to make that method private again.

Suddenly all the clients that use the previously public getUnitOfWork() method will

break.

 Refactoring: Add Header and Role Interfaces
You can solve this problem by defining an interface for each use case that the

EntityManager class provides. For example, you may define the primary use case

of “persisting entities” as the PersistsEntitiesInterface and introduce a second

interface, HasUnitOfWorkInterface, to define a second use case (see Listing 4-9).

Listing 4-9. Use Header and Role Interfaces

interface PersistsEntitiesInterface

{

 public function persist(object $entity): void;

 public function flush(): void;

}

Chapter 4 the InterfaCe SegregatIon prInCIple

64

interface HasUnitOfWorkInterface

{

 public function getUnitOfWork(): UnitOfWork;

}

Then you can add a main interface that combines the two interfaces, and a class that

implements the main interface (see Listing 4-10 and Figure 4-2).

Listing 4-10. The Header Interface for EntityManager Combines All Its Role

Interfaces

interface EntityManagerInterface extends

 PersistsEntitiesInterface,

 HasUnitOfWorkInterface

{

}

class EntityManager implements EntityManagerInterface

{

 // ...

}

Figure 4-2. The EntityManager class hierarchy

Chapter 4 the InterfaCe SegregatIon prInCIple

65

Several of the interfaces we have just defined describe the roles that a class can play:

PersistsEntitiesInterface and HasUnitOfWorkInterface. Then there is one interface

that combines these roles and together constitutes a thing we know as an entity manager,

which “can persist entities” and “has a unit of work”: the EntityManagerInterface.

Martin Fowler calls these different types of interfaces role interfaces and header

interfaces,4 respectively. You can determine role interfaces for a class by looking at the

different clients that use the class. Then you group the methods that are used together in

separate interfaces, like we did for the EntityManager class.

Header interfaces are usually the easiest to define, since:

all you have to do is duplicate the public methods [of the class], no thought
needed5.

Often defining only a header interface is not enough, just like with the EntityManager.

Clients won’t need any other public methods than persist() and flush(). If the header

interface could contain some other public methods, like getUnitOfWork(), they would

be superfluous. As Robert C. Martin puts it6:

Clients should not be forced to depend on methods they do not use.

 Packages and the Interface Segregation Principle
For package developers, applying the Interface Segregation principle has several

advantages. First, it will lead to smaller interfaces, which are relevant for a subset of

all the clients. As we saw earlier when discussing the Single Responsibility principle,

making a class (or interface) smaller will reduce the number of reasons for it to change.

An interface that needs to change less frequently is much preferable, since it will

make it easier for you to maintain backward compatibility. An example would be the

ServiceLocatorInterface we ended up with earlier in this chapter—having just a

get($id) method makes the interface very stable and less likely to change.

Second, when you add a small, focused interface to a class in your package, you are

free to add more public methods to that class that aren’t part of the published interface.

4 Martin Fowler, “RoleInterface,” https://martinfowler.com/bliki/RoleInterface.html
5 Martin Fowler, “RoleInterface,” https://martinfowler.com/bliki/RoleInterface.html
6 Robert C. Martin, “The Interface Segregation Principle,” Engineering Notebook, C++ Report,
Nov-Dec, 1996 (PDF available on http://www.butunclebob.com/ArticleS.UncleBob.
PrinciplesOfOod).

Chapter 4 the InterfaCe SegregatIon prInCIple

https://martinfowler.com/bliki/RoleInterface.html
https://martinfowler.com/bliki/RoleInterface.html
http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

66

You could even change or remove existing methods that aren’t part of the interface,

giving you more freedom to redesign or refactor classes without disturbing its users.

I’ll repeat here that not every class in a package actually needs an interface. We’ll

take a moment to discuss some rules for when and when not to add an interface to a

class at the end of Chapter 5.

 Conclusion
An interface usually has multiple methods, although not every client of the interface

uses the same subset of those methods. By depending on the interfaces, a client will be

implicitly depending on all of the unused methods too. The Interface Segregation principle

tells us to split (segregate) the interface methods according to how they are used.

Splitting an interface could happen by making a distinction between the particular

roles of the larger interface. You will end up with a “header” interface and several “role"

interfaces. Sometimes there is no overarching concept. In that case, segregating an

interface will lead to several independent interfaces.

If a class has no explicit (“published”) interface, the set of public methods it offers

counts as its interface. To limit the number of public methods a client needs to depend

on in order to use this class, you’d first need to publish an interface for the class. Then

you can apply the Interface Segregation principle and make the interface smaller, or split

it into separate ones for each set of clients.

Chapter 4 the InterfaCe SegregatIon prInCIple

67
© Matthias Noback 2018
M. Noback, Principles of Package Design, https://doi.org/10.1007/978-1-4842-4119-6_5

CHAPTER 5

The Dependency
Inversion Principle
The last of the SOLID principles of class design focuses on class dependencies. It tells you

what kinds of things a class should depend on1:

Depend on abstractions, not on concretions.

The name of this principle contains the word “inversion,” from which we may infer

that without following this principle we would usually depend on concretions, not on

abstractions. The principle tells us to invert that direction: we should always depend on

abstractions.

 Example of Dependency Inversion:
the FizzBuzz Generator
There is a well-known programming assignment that serves as a nice example of

dependency inversion. It’s called “FizzBuzz” and is often used as a little test to see if a

candidate for a programming job could manage to implement a set of requirements,

usually on the spot. The requirements are these:

• Generate a list of numbers from 1 to n.

• Numbers that are divisible by 3 should be replaced with Fizz.

• Numbers that are divisible by 5 should be replaced with Buzz.

• Numbers that are both divisible by 3 and by 5 should be replaced

with FizzBuzz.

1 Robert C. Martin, “The principles of OOD,” http://butunclebob.com/ArticleS.UncleBob.
PrinciplesOfOod

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

68

Applying these rules, the resulting list would become:

1, 2, Fizz, 4, Buzz … 13, 14, FizzBuzz, 16, 17 …

Since not all the list’s elements are integers, the resulting list should be a list of

strings. A straightforward implementation might look like the one shown in Listing 5-1.

Listing 5-1. An Implementation of the FizzBuzz Algorithm

class FizzBuzz

{

 public function generateList(int $limit): array

 {

 $list = [];

 for ($number = 1; $number <= $limit; $number++) {

 $list[] = $this->generateElement($number);

 }

 return $list;

 }

 private function generateElement(int $number): string

 {

 if ($number % 3 === 0 && $number % 5 === 0) {

 return 'FizzBuzz';

 }

 if ($number % 3 === 0) {

 return 'Fizz';

 }

 if ($number % 5 === 0) {

 return 'Buzz';

 }

 return (string)$number;

 }

}

$fizzBuzz = new FizzBuz();

$list = $fizzBuzz->generateList(100);

Chapter 5 the DepenDenCy InversIon prInCIple

69

Given the assignment, this is a very accurate implementation of the requirements.

Reading through the code, we are able to recognize every requirement in it: the rules about

the divisibility of the numbers, the requirement that the list of numbers starts at 1, etc.

Once the candidate has produced some code like this, the interviewer adds another

requirement:

It should be possible to add an extra rule without modifying the

FizzBuzz class.

 Making the FizzBuzz Class Open for Extension
Currently the FizzBuzz class is not open for extension, nor closed for modification. If

numbers divisible by 7 should one day be replaced with Whizz, it will be impossible to

implement this change without actually modifying the code of the FizzBuzz class.

Pondering about the design of the FizzBuzz class and how we can make it more

flexible, we note that the generateElement() method contains lots of details. Within the

same class, though, the generateList() method is rather generic. It just generates a list

of incrementing numbers, starting with 1 (which is somewhat specific), and ending with a

given number. So the FizzBuzz class has two responsibilities: it generates lists of numbers,

and it replaces certain numbers with something else, based on the FizzBuzz rules.

These FizzBuzz rules are liable to change. And the requirement is that when the

rules change, we should not need to modify the FizzBuzz class itself. So let’s apply some

things that we’ve learned in the chapter about the Open/Closed principle. For starters,

we can extract the rules into their own classes and use them in generateElement(), as

shown in Listing 5-2.

Listing 5-2. Extracting a Method for Generating Separate Elements Using “Rules”

class FizzBuzz

{

 public function generateList(int $limit): array

 {

 // ...

 }

Chapter 5 the DepenDenCy InversIon prInCIple

70

 private function generateElement(int $number): string

 {

 $fizzBuzzRule = new FizzBuzzRule();

 if ($fizzBuzzRule->matches($number)) {

 return $fizzBuzzRule->getReplacement();

 }

 $fizzRule = new FizzRule();

 if ($fizzRule->matches($number)) {

 return $fizzRule->getReplacement();

 }

 $buzzRule = new BuzzRule();

 if ($buzzRule->matches($number)) {

 return $buzzRule->getReplacement();

 }

 return (string)$number;

 }

}

The details about the rules can be found in the specific rule classes. Listing 5-3 shows

an example of the “Fizz” rule, as implemented in the FizzRule class.

Listing 5-3. A Class that Represents One of the FizzBuzz Rules

class FizzRule

{

 public function matches($number): bool

 {

 return $number % 3 === 0;

 }

 public function getReplacement(): string

 {

 return 'Fizz';

 }

}

Chapter 5 the DepenDenCy InversIon prInCIple

71

This is one step in the right direction. Even though the details about the rules (the

numbers 3, 5, 3 and 5, and their replacement values) have been moved to the specific

rule classes, the code in generateElement() remains very specific. The rules are still

represented by (very specific) class names, and adding a new rule would still require a

modification of the generateElement() method, so we haven’t exactly made the class

open for extension yet.

 Removing Specificness
We can remove this specificness from the FizzBuzz class by introducing an interface (see

Listing 5-4) for the rule classes and allowing multiple rules to be injected into a FizzBuzz

instance.

Listing 5-4. Introducing Abstraction

interface RuleInterface

{

 public function matches($number): bool;

 public function getReplacement(): string;

}

class FizzBuzz

{

 private $rules = [];

 public function addRule(RuleInterface $rule): void

 {

 $this->rules[] = $rule;

 }

 public function generateList($limit): array

 {

 // ...

 }

Chapter 5 the DepenDenCy InversIon prInCIple

72

 private function generateElement(int $number): string

 {

 foreach ($this->rules as $rule) {

 if ($rule->matches($number)) {

 return $rule->getReplacement();

 }

 }

 return $number;

 }

}

Now we need to make sure that every specific rule class implements the

RuleInterface and then the FizzBuzz class can be used to generate lists of numbers

with varying rules, as shown in Listing 5-5 and Figure 5-1.

Listing 5-5. Setting Up a FizzBuzz Instance with Concrete Rules

class FizzRule implements RuleInterface

{

 // ...

}

$fizzBuzz = new FizzBuzz();

$fizzBuzz->addRule(new FizzBuzzRule());

$fizzBuzz->addRule(new FizzRule());

$fizzBuzz->addRule(new BuzzRule());

// add more rules if you want, e.g.

// $fizzBuzz->addRule(new WhizzRule());

// ...

$list = $fizzBuzz->generateList(100);

Chapter 5 the DepenDenCy InversIon prInCIple

73

Now we have a highly generic piece of code, the FizzBuzz class, which “generates

a list of numbers, replacing certain numbers with strings, based on a flexible set of

rules”. There’s no mention of “FizzBuzz” in that description and there’s no mention of

“Fizz” nor “Buzz” in the code of the FizzBuzz class. Actually, the FizzBuzz class may

be renamed so that it better communicates its responsibility. Of course, naming things

is one of the hardest parts of our job and NumberListGenerator isn’t a particularly

expressive name, but it would better describe its purpose than its current name.

Looking at the initial implementation of the FizzBuzz class, it has become clear

that the class had an abstract task from the start: to generate a list of numbers. Only

the rules were highly detailed (being divisible by 3, by 5, etc.). To use the words from

the Dependency Inversion principle: an abstraction depended on concrete things. This

caused the FizzBuzz class to be closed for extension, as it was impossible to add another

rule without modifying it.

By introducing the RuleInterface and adding specific rule classes that implemented

this interface, we fixed the dependency direction. The FizzBuzz class started to depend

on more abstract things, called “rules” (see Figure 5-2). When creating a new FizzBuzz

instance, concrete implementations of RuleInterface have to be injected in the right

order. This will result in the correct execution of the FizzBuzz algorithm. The FizzBuzz

class itself is no longer concerned about it, which is why the class ends up being more

flexible with regard to changing requirements. This is exactly the way things should be

according to the Dependency Inversion principle2:

Abstractions should not depend upon details. Details should depend upon
abstractions.

2 Robert C. Martin (May 1996), “The Dependency Inversion Principle,” C++ Report (PDF available
at http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod).

Figure 5-1. FizzBuzz with concrete dependencies

Chapter 5 the DepenDenCy InversIon prInCIple

http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

74

Now that we’ve seen the Dependency Inversion principle in action, we can take a look

at some situations where it’s clearly being violated.

 Violation: A High-Level Class Depends
on a Low- Level Class
The first violation arises from mixing different levels of abstraction. It’s an interesting

concept that needs further explanation before we dive into the example.

On a daily basis we have to deal with a great diversity of things that exist in the

universe. We wouldn’t be able to do anything meaningful if we’d consider every little

detail of everything we talk about, everything we use while doing our job, everyone we

love. So to preserve our sanity, we come up with abstractions all the time. “Abstraction”

means “taking away the details”. What remains is a concept that can we can use to group

all the specific things from which the abstraction has been created, and a name for

what’s essential to all these specific things, ignoring the little differences.

In conversation we usually end up establishing some level of abstraction, so we can

safely ignore the details (or the larger picture). When discussing software design, this

means we zoom in or out until we can address the issue at hand. For instance, when

discussing a code smell, we’ll be talking about method signatures, variable names, etc.

so we can safely ignore the message queue software, or the particular Linux filesystem

that we use on our server. When we talk about how the application gets data from the

database, we discuss SQL queries, so we can ignore the underlying TCP protocol that’s

being used.

Figure 5-2. FizzBuzz with abstract dependencies

Chapter 5 the DepenDenCy InversIon prInCIple

75

Zooming in and out is the same as moving from abstraction to concretion and back

again. The more we zoom in on a part of our software, the closer we get to the low-level

details (also known as “internals”). The more we zoom out, the closer we get to a

high- level view of the system; what features it aims to provide to its users.

In class design, we have to consider the same kind of zooming in and out. Every class

has two levels of abstraction: the first is the one perceived by clients. The second is the

one that’s going on inside. By definition, a class or an interface is going to hide some

implementation details for its client, meaning that the clients will perceive it to be more

abstract, while the class internally is more concrete.

So a class’s internals are always more concrete than the abstraction that the class

represents. However, when a class depends on some other class, it should again depend

on something that is abstract, not concrete. That way, the class itself becomes a client

of something abstract and can safely ignore all the underlying details of how that

dependency works under the hood.

As an example of a class that has a dependency that isn't abstract, consider the

Authentication class in Listing 5-6.

Listing 5-6. The Authentication Class

class Authentication

{

 private $connection;

 public function __construct(Connection $connection)

 {

 $this->connection = $connection;

 }

 public function checkCredentials(

 string $username,

 string $password

): void {

 $user = $this->connection->fetchAssoc(

 'SELECT * FROM users WHERE username = ?',

 [$username]

);

Chapter 5 the DepenDenCy InversIon prInCIple

76

 if ($user === null) {

 throw new InvalidCredentialsException(

 'User not found’

);

 }

 // validate password

 }

}

The Authentication class needs a database connection (see Figure 5-3), in this case

represented by a Connection object. It uses the connection to retrieve the user data from

the database.

Figure 5-3. The Authentication class depends on Connection

There are many problems with this approach. They can be articulated by answering

the following questions about this class:

 1. Is it important for an authentication mechanism to deal with the

exact location of the user data?

Well, definitely not. The only thing the Authentication class

really needs is user data, as an array or preferably an object

representing a user. The origin of that data is irrelevant.

 2. Is it possible to fetch user data from some other place than a

database?

Currently it’s impossible. The Authentication class requires a

Connection object, which is a database connection. You can’t

use it to retrieve users from, for instance, a text file or from some

external web service.

Looking at the answers, we have to conclude that both the Single Responsibility

principle and the Open/Closed principle have been violated in this class. The

Authentication class is not only concerned about the authentication mechanism

Chapter 5 the DepenDenCy InversIon prInCIple

77

itself, but also about the actual storage of the user data. Furthermore, it’s impossible to

reconfigure the class to look in a different place for user data. The underlying reason

for these issues is that the Dependency Inversion principle has been violated too: the

Authentication class itself is a high-level abstraction. Nevertheless, it depends on a

very low-level concretion: the database connection. This particular dependency makes it

impossible for the Authentication class to fetch user data from any other place than the

database.

Trying to rephrase what the Authentication class really needs, we realize that

it’s not a database connection, but merely something that can provide the user data.

Let’s call that thing a “user provider”. The Authentication class doesn’t need to know

anything about the actual process of fetching the user data (whether it originates from a

database, a text file, or an LDAP server). It only needs the user data.

It’s a good thing for the Authentication class not to care about the origin of the user

data itself. All the implementation details about fetching user data can be left out of that

class. At once, the class will become highly reusable, because it will be possible for users

of the class to implement their own “user providers”.

 Refactoring: Abstractions and Concretions
Both Depend on Abstractions
Refactoring the high-level Authentication class to make it follow the Dependency

Inversion principle means we should first remove the dependency on the low-level

Connection class. Then we add a higher-level dependency on something that provides

the user data, the UserProvider class (see Listing 5-7).

Listing 5-7. Introducing the UserProvider Class

class Authentication

{

 private $userProvider;

 public function __construct(UserProvider $userProvider)

 {

 $this->userProvider = $userProvider;

 }

Chapter 5 the DepenDenCy InversIon prInCIple

78

 public function checkCredentials(

 string $username,

 string $password

): void {

 $user = $this->userProvider->findUser($username);

 if ($user === null) {

 throw new InvalidCredentialsException(

 'User not found’

);

 }

 // validate password

 }

}

class UserProvider

{

 private $connection;

 public function __construct(Connection $connection)

 {

 $this->connection = $connection;

 }

 public function findUser(string $username): array

 {

 return $this->connection->fetchAssoc(

 'SELECT * FROM users WHERE username = ?',

 [$username]

);

 }

}

The Authentication class has nothing to do with a database anymore (as depicted

in Figure 5-4). Instead, the UserProvider class does everything that’s needed to fetch a

user from the database.

Chapter 5 the DepenDenCy InversIon prInCIple

79

It’s still not easy to switch between different user provider implementations. The

Authentication class depends on the concrete UserProvider class. If anybody wants

to fetch their user data from a text file, they’d have to extend this class and override its

findUser() method (as is done in Listing 5-8).

Listing 5-8. Overriding Functionality of UserProvider

class TextFileUserProvider extends UserProvider

{

 public function findUser(string $username): array

 {

 // ...

 }

}

They would thereby inherit any behavior that was implemented in the UserProvider

class itself and that's not a desirable situation. The solution is to provide an interface, e.g.

UserProviderInterface, for any class that wants to be a user provider. Then every class

that implements this interface can and should also have a more meaningful name than

UserProvider, e.g. MySQLUserProvider (see Listing 5-9).

Listing 5-9. Introducing the UserProviderInterface and Some Implementations

interface UserProviderInterface

{

 public function findUser(string $username): array;

}

class MySQLUserProvider implements UserProviderInterface

{

 // ...

}

Figure 5-4. Authentication depends on UserProvider

Chapter 5 the DepenDenCy InversIon prInCIple

80

class TextFileUserProvider implements UserProviderInterface

{

 // ...

}

And of course we have to change the type of the constructor argument of the

Authentication class to UserProviderInterface (see Listing 5-10).

Listing 5-10. The Authentication Class Now Accepts a UserProviderInterface

class Authentication

{

 private $userProvider;

 public function __construct(

 UserProviderInterface $userProvider

) {

 $this->userProvider = $userProvider;

 }

 // ...

}

As you can see in the dependency diagram in Figure 5-5, the high-level

class Authentication does not depend on low-level, concrete classes like

Connection anymore. Instead, it depends on another high-level, abstract thing:

UserProviderInterface. Both are conceptually on more or less the same level. Lower-

level operations like reading from a file and fetching data from a database are performed

by lower-level classes—the concrete user providers. This completely conforms to the

Dependency Inversion principle, which states that:

High-level modules should not depend upon low-level modules. Both
should depend upon abstractions.3

3 Robert C. Martin (May 1996), “The Dependency Inversion Principle,” C++ Report (PDF available
at http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod).

Chapter 5 the DepenDenCy InversIon prInCIple

http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

81

A nice side-effect of the changes we made is that the maintainability of the code has

greatly improved. When a bug is found in one of the queries used for fetching user data

from the database, there’s no need to modify the Authentication class itself anymore.

The necessary changes will only occur inside the specific user provider, in this case the

MySQLUserProvider. This means that this refactoring has greatly reduced the chance that

you will accidentally break the authentication mechanism itself.

SIMPLY DEPENDING ON AN INTERFACE IS NOT ENOUGH

the step from UserProvider to UserProviderInterface was an important one

because it helped users of the Authentication class easily switch between user provider

implementations. But just adding an interface to a class is not always sufficient to fix all

problems related to dependencies.

Consider an alternative version of the UserProviderInterface, shown in listing 5-11.

Figure 5-5. Authentication depends on UserProviderInterface

Chapter 5 the DepenDenCy InversIon prInCIple

82

Listing 5-11. An Alternative UserProviderInterface

interface UserProviderInterface

{

 public function findUser(string $username): array;

 public function getTableName(): string;

}

this is not a helpful interface at all. It’s an immediate violation of the Liskov Substitution

principle. not all classes that implement this interface will be able to be good substitutes for

it. If one implementation doesn’t use a database table for storing user data, it most certainly

won’t be able to return a sensible value when someone calls getTableName() on it. But

more importantly: the UserProviderInterface mixes different levels of abstraction and

combines something high-level like “finding a user” with something low-level like “the name

of a database table”.

so even if we would introduce this interface to make the Authentication class

depend on an abstraction instead of concretion, that goal won’t be reached. In fact, the

Authentication class will still depend on something concrete and low-level: a user provider

that is table-based.

 Violation: Vendor Lock-In
In this section, we discuss a common violation of the Dependency Inversion principle

that is especially relevant to package developers. Say a class needs some way to fire

application-wide events. The usual solution for this is to use an event dispatcher

(sometimes called “event manager”). The problem is that there are many event

dispatchers available, and they all have a slightly different API. For instance, the Symfony

EventDispatcherInterface4 looks like the one in Listing 5-12.

4 https://github.com/symfony/event-dispatcher/blob/2.3/EventDispatcherInterface.php

Chapter 5 the DepenDenCy InversIon prInCIple

83

Listing 5-12. The EventDispatcherInterface

interface EventDispatcherInterface

{

 public function dispatch(

 string $eventName,

 Event $event = null

): void;

 public function addListener(

 string $eventName,

 callable $listener,

 int $priority = 0

);

 // ...

}

Note that events are supposed to have a name, which is a string (e.g., "new_user"),

and when firing (or “dispatching”) the event you can provide an Event object carrying

additional contextual data. The event object will be enriched and used as the first

argument when the event listener (which can be any PHP callable) gets notified. An

example of an event and an event listener class can be found in Listing 5-13.

Listing 5-13. An Event Class and an Event Listener

use Symfony\Component\EventDispatcher\Event;

class NewUserEvent extends Event

{

 private $user;

 public function __construct(User $user)

 {

 $this->user = $user;

 }

Chapter 5 the DepenDenCy InversIon prInCIple

84

 public function getUser(): User

 {

 return $this->user;

 }

}

class EventListener

{

 public function onNewUser(NewUserEvent $event): void

 {

 // ...

 }

}

$eventDispatcher = new EventDispatcher();

$eventDispatcher->addListener(

 'new_user',

 [new EventListener(), 'onNewUser']

);

$user = new User();

$eventDispatcher->dispatch('new_user', new NewUserEvent($user))

An event dispatcher from another framework, Laravel looks like the one in

Listing 5-14 (based on version 4.0 of the framework5).

Listing 5-14. The Event Dispatcher from the Laravel Framework

class Dispatcher

{

 public function listen(

 string $event,

 callable $listener,

 int $priority = 0

): void {

 ...

 }

5 https://github.com/laravel/framework/blob/4.0/src/Illuminate/Events/Dispatcher.php

Chapter 5 the DepenDenCy InversIon prInCIple

https://github.com/laravel/framework/blob/4.0/src/Illuminate/Events/Dispatcher.php

85

 public function fire(string $event, array $payload = []): void

 {

 // ...

 }

 // ...

}

Note that it doesn’t implement an interface. And instead of an event object, the

contextual data for events (the “payload”) consist of an array, which will be used as

a method argument when a listener gets notified of an event. See Listing 5-15 for an

example of how it’s used.

Listing 5-15. Using the Laravel Event Dispatcher

class EventListener

{

 public function onNewUser(User $user)

 {

 // ...

 }

}

$dispatcher = new Dispatcher();

$dispatcher->listen(

 'new_user',

 [new EventListener(), 'onNewUser']

);

$user = new User();

$dispatcher->fire('new_user', [$user]);

It appears that you can do more or less the same things with both event dispatchers,

i.e. fire events and listen to them. But the way you do it is different in subtle ways.

Let’s say the package you’re working on contains a UserManager class like the one in

Listing 5-16. Using this class you can create new users. Afterwards you want to dispatch

an application-wide event, so other parts of the application can respond to the fact that a

new user now exists (for instance, maybe new users should receive a welcome email).

Chapter 5 the DepenDenCy InversIon prInCIple

86

Listing 5-16. The UserManager Class

use Illuminate\Events\Dispatcher;

class UserManager

{

 public function create(User $user): void

 {

 // persist the user data

 // ...

 // fire an event: "new_user"

 }

}

Let’s assume you want to use the package containing the UserManager class in a

Laravel application. Laravel already provides an instance of the Dispatcher class in its

Inversion of Control (IoC) container. This means you can easily inject it as a constructor

argument of the UserManager class, as is done in Listing 5-17.

Listing 5-17. Using the Laravel Event Dispatcher in the UserManager

use Illuminate\Events\Dispatcher;

class UserManager

{

 private $dispatcher;

 public function __construct(Dispatcher $dispatcher)

 {

 $this->dispatcher = $dispatcher;

 }

 public function create(User $user): void

 {

 // ...

 $this->dispatcher->fire('new_user', ['user' => $user]);

 }

}

Chapter 5 the DepenDenCy InversIon prInCIple

87

A couple of weeks later, you start working on a project built with the Symfony

framework. You want to reuse the UserManager class, since it offers exactly the

functionality that you need, and you install the package containing it inside this new

project. Now, a Symfony application also has an event dispatcher readily available in its

service container. But this event dispatcher is an instance of EventDispatcherInterface.

It’s impossible to use the Symfony event dispatcher as a constructor argument for the

UserManager class because the type of the argument wouldn’t match the type of the

injected service. You have effectively prevented reuse of the UserManager class.

If you still want to use the UserManager class in a Symfony project, you would need

to add an extra dependency on the illuminate/events package to make the Laravel

Dispatcher class available in your project. You’d have to configure a service for it,

next to the already existing Symfony event dispatcher and end up having two global

event dispatchers. Then you’d still need to bridge the gap between the two types of

dispatchers, since events fired on the Laravel Dispatcher won’t be fired automatically

on the Symfony event dispatcher too. In fact, they even use incompatible types (event

objects versus arrays).

The moment you picked the Laravel event dispatcher as the event dispatcher of

your choice, you coupled the package to a specific implementation, making it harder

or impossible to just use the package in a project that uses a different event dispatcher.

Introducing such a dependency to your package is known as “vendor lock-in”; it will only

work with third-party code from a specific vendor.

 Solution: Add an Abstraction and Remove
the Dependency Using Composition
As we discussed earlier, depending on a concrete class can be problematic all by

itself because it makes it hard for users to switch between implementations of that

dependency. Therefore, we should introduce our own interface, which decouples this

class from any concrete event dispatcher implementation. This abstract event dispatcher

is not framework-specific, it just offers one method that can be used to dispatch events.

Then we can change the UserManager class to only accept an event dispatcher, which is

an instance of our very own DispatcherInterface (see Listing 5-18).

Chapter 5 the DepenDenCy InversIon prInCIple

88

Listing 5-18. Introducing an Abstraction and Using it in UserManager

interface DispatcherInterface

{

 public function dispatch($eventName, array $context = []);

}

class UserManager

{

 private $dispatcher;

 public function __construct(DispatcherInterface $dispatcher)

 {

 $this->dispatcher = $dispatcher;

 }

 // ...

}

The UserManager is now fully decoupled from the framework. It uses its own event

dispatcher, which is quite generic and contains the least amount of details possible.

Of course, our DispatcherInterface is not a working event dispatcher itself. We

need to bridge the gap between that interface and the concrete event dispatchers

from Laravel and Symfony. We can do this using the Adapter pattern6. Using object

composition, we can make the Laravel Dispatcher class compatible with our own

DispatcherInterface, as shown in Listing 5-19.

Listing 5-19. Concrete Implementation of the Abstract DispatcherInterface That

Uses the Laravel Event Dispatcher

use Illuminate\Events\Dispatcher;

class LaravelDispatcher implements DispatcherInterface

{

 private $dispatcher;

 public function __construct(Dispatcher $dispatcher)

6 Erich Gamma e.a., Design Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1994.

Chapter 5 the DepenDenCy InversIon prInCIple

89

 {

 $this->dispatcher = $dispatcher;

 }

 public function dispatch(

 string $eventName,

 array $context = []

): void {

 $this->dispatcher->fire(

 $eventName,

 array_values($context)

);

 }

}

By introducing the DispatcherInterface, we have cleared the way for users of other

frameworks to implement their own adapter classes. These adapter classes only have to

conform to the public API defined by our DispatcherInterface. Under the hood they

can use their own specific type of event dispatcher. For example, the adapter for the

Symfony event dispatcher would look like the one shown in Listing 5-20.

Listing 5-20. Alternative Implementation of DispatcherInterface That Uses the

Symfony Event Dispatcher

use Symfony\Component\EventDispatcher\EventDispatcherInterface;

use Symfony\Component\EventDispatcher\GenericEvent;

class SymfonyDispatcher implements DispatcherInterface

{

 private $dispatcher;

 public function __construct(

 EventDispatcherInterface $dispatcher

) {

 $this->dispatcher = $dispatcher;

 }

Chapter 5 the DepenDenCy InversIon prInCIple

90

 public function dispatch(

 string $eventName,

 array $context = []

): void {

 $this->dispatcher->dispatch(

 $eventName,

 new GenericEvent(null, $context)

);

 }

}

Before we introduced the DispatcherInterface, the UserManager depended on

something concrete—the Laravel-specific implementation of an event dispatcher, as

depicted in Figure 5-6.

Figure 5-6. The UserManager has a dependency on the concrete Laravel
Dispatcher

After we added the DispatcherInterface, the UserManager class now depends on

something abstract. In other words, we inverted the dependency direction, which is

exactly what the Dependency Inversion principle tells us to do. The resulting dependency

diagram is shown in Figure 5-7.

Chapter 5 the DepenDenCy InversIon prInCIple

91

Figure 5-7. The UserManager has a dependency on an abstract dispatcher, on
which several adapters depend

 Packages and the Dependency Inversion Principle
Although the Dependency Inversion principle is a class design principle, it’s all about

the relationship between classes. This relationship often crosses the boundaries of a

package. Therefore the Dependency Inversion principle resonates strongly at a package

level. According to this principle, classes should depend on abstractions, not on

concretions. In parallel to this, packages themselves should also depend in the direction

of abstractness, as we see in Chapter 11.

 Depending on Third-Party Code: Is It Always Bad?
We got rid of vendor lock-in for the UserManager class and we now know the principle

by which we can achieve the same thing in many other situations. However, in doing

so, there’s a certain cost involved—the cost of defining our own interface and our own

adapter implementations. Even if we use dependency inversion for every dependency

of every class, there are still other ways in which our code will remain dependent on

third- party code.

So the question is, in which cases should we allow ourselves to depend on

third- party code and which cases definitely call for dependency inversion?

First, we need to make a distinction between frameworks and libraries. Even though

both can be distributed as packages, the difference is most apparent if you consider

how they deal with your code. Frameworks follow the Hollywood principle7: “Don’t call

7 Craig Larman, Applying UML and Patterns, Prentice Hall (2001).

Chapter 5 the DepenDenCy InversIon prInCIple

92

If you’re a package developer who wants to extract part of the userland code and

publish it as a package, you should only take out the part of the code that isn’t coupled to

the framework. Make sure the code will be useful to all users, no matter what framework

they put in front of it. The remaining part of the userland code that is coupled to the

framework can be extracted into a framework-specific package, often known as a

“bridge” package.

Looking at the framework-independent code that has now been extracted to a

package, you can start applying the Dependency Inversion principle there and introduce

interfaces and adapter code for concrete classes from libraries that your package uses.

Figure 5-9 shows the dependency graph of the resulting packages when the userland

code has been extracted and both a framework bridge and a library adapter have been

added. The package can be used with framework X, but it should be easy to create

another bridge package and make it work with framework Y too. The same goes for

library A, for which an adapter is already available. It implements an interface from the

package, making it easy to provide a second adapter that will make the package work

with library B.

us, we’ll call you”. For instance, a web server may forward an HTTP request to your web

application, and its framework will analyze the request and call one of your controllers.

Once the framework has called your code (also known as “userland code”), you’re

free to use anything to accomplish your task, including third-party library code.

Figure 5- 8 shows how framework, userland, and library code call each other.

Figure 5-8. Framework calls userland code, which calls library code

Chapter 5 the DepenDenCy InversIon prInCIple

93

Not all third-party code requires you to apply the Dependency Inversion principle.

If you’d never be allowed to depend on any third-party code directly, you’d have to

reinvent everything again and again. In the next section, we enumerate the types of

classes that definitely need an interface. What remains are classes that can be used as

they are. In practice, I find that these will be classes that do one thing and do it well.

Don’t be afraid to depend on those, in particular if their maintainers do a good job in

terms of package design.

Examples of third-party code you can depend on as they are can be found in libraries

related to:

• Assertions

• Reflection

• Mapping

• Encoding/decoding

• Inflection

You’ll likely be able to add some more examples. In practice, you may also decide

to depend directly on other concrete third-party code, even though it would call for

dependency inversion. You can always add an interface later, and for now enjoy building

on top of other people’s ready-to-use building blocks, sacrificing flexibility for an earlier

release.

Figure 5-9. The dependency graph after extracting a package and making it
independent of the framework and libraries

Chapter 5 the DepenDenCy InversIon prInCIple

94

There’s another option that you should think of when you consider using third-party

code. Instead of working around their somewhat awkward API, or dealing with their

unpredictable release cycle, you may also decide to copy their idea and build your own

version of it. For example, if you need an event dispatcher, but none of the popular event

dispatcher packages matches your expectations, consider writing one yourself. It isn’t

much code anyway, and by doing it, you can design it just the way you want it to be. It’s

not always the most efficient thing to do, but at least you have to consider it as a valid

option. When reinventing the wheel, sometimes you end up with a better wheel.

 When to Publish an Explicit Interface for a Class
In previous chapters, we’ve seen interfaces being used to make classes open for

extension and closed for modification. We’ve learned how subclasses can be good

substitutes for their interfaces. We’ve also discussed how to split interfaces according

to how they are used. And finally we’ve learned how to invert dependency directions

toward more abstract things. What we didn’t discuss in detail is which classes actually

need an interface. As mentioned several times before, not every class needs an interface.

So before we wrap up this chapter and dive into the package design principles, let’s first

answer this question: when should you publish an explicit interface for a class? And

when is a class without an interface sufficient?

 If Not All Public Methods Are Meant to be Used by Regular Clients

A class always has an implicit interface, consisting of all its public methods. This is how the

class will be known to other classes that use it. An implicit interface can easily be turned

into an explicit one by collecting all those public methods (except for the constructor,

which should not be considered a regular method), stripping the method bodies, and

copying the remaining method signatures into an interface file (see Listing 5-21).

Listing 5-21. The Original EntityManager Class and its Extracted Explicit Interface

// the original class with only an implicit interface:

final class EntityManager

{

 public function persist(object $object): void

 {

Chapter 5 the DepenDenCy InversIon prInCIple

95

 // ...

 }

 public function flush(object $object = null): void

 {

 // ...

 }

 public function getConnection(): Connection

 {

 // ...

 }

 public function getCache(): Cache

 {

 // ...

 }

 // and so on

}

// the extracted - explicit - interface:

interface EntityManagerInterface

{

 public function persist(object $object): void;

 public function flush(object $object = null): void;

 public function getConnection(): Connection;

 public function getCache(): Cache;

 // ...

}

Chapter 5 the DepenDenCy InversIon prInCIple

96

However, regular clients of EntityManager won’t need access to the internally

used Connection or Cache object, which can be retrieved by calling getConnection()

or getCache(), respectively. You could even say that the implicit interface of the

EntityManager class unnecessarily exposes implementation details and internal data

structures to clients.

By copying the signatures of these methods to the newly created

EntityManagerInterface, we missed the opportunity to limit the size of the interface

as it gets exposed to regular clients. It would be most useful if clients only needed to

depend on the methods they use. So the improved EntityManagerInterface should

only keep persist() and flush(), as shown in Listing 5-22.

Listing 5-22. The Improved EntityManagerInterface

interface EntityManagerInterface

{

 public function persist(object $object);

 public function flush(object $object = null);

}

We’ve discussed this strategy in more detail in Chapter 4 when we covered the

Interface Segregation principle, which tells you not to let clients depend on methods they

don’t use (or shouldn’t use!).

 If the Class Uses I/O

Whenever a class makes some call that uses I/O (the network, the filesystem, the

system’s source of randomness, or the system clock), you should definitely provide an

interface for it. The reason being that in a test scenario, you want to replace that class

with a test double and you need an interface for creating that test double. An example of

a class that uses I/O is the CurlHttpClient in Listing 5-23.

Listing 5-23. The CurlHttpClient and its Interface

// a class that uses I/O:

final class CurlHttpClient

{

 public function get(string $url): string

Chapter 5 the DepenDenCy InversIon prInCIple

97

 {

 $ch = curl_init();

 curl_setopt($ch, CURLOPT_URL, $url);

 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

 // this call uses the network!

 $result = curl_exec($ch);

 // ...

 return $result;

 }

}

// an explicit interface for HTTP clients like CurlHttpClient

interface HttpClient

{

 public function get(string $url): string;

}

If you’d like to know more about using test doubles to replace actual I/O calls, take a

look at my article series on “Mocking at Architectural Boundaries”8.

 If the Class Depends on Third-Party Code

If there is some third-party code (e.g., from a package you don’t maintain yourself) that

is used in your class, it can be wise to isolate the integration of your code with this third-

party code and hide the details behind an interface. Good reasons to do so are:

• The (implicit) interface wouldn’t be how you would’ve designed it

yourself.

• You’re not sure if the package is safe to rely on.

8 “Mocking at architectural boundaries: persistence and time,” https://matthiasnoback.
nl/2018/02/mocking-at-architectural-boundaries-persistence-and-time/ “Mocking
at architectural boundaries: the filesystem and randomness,” https://matthiasnoback.
nl/2018/03/mocking-the-filesystem-and-randomness/ and “Mocking the network,”
https://matthiasnoback.nl/2018/04/mocking-the-network/

Chapter 5 the DepenDenCy InversIon prInCIple

https://matthiasnoback.nl/2018/02/mocking-at-architectural-boundaries-persistence-and-time/
https://matthiasnoback.nl/2018/02/mocking-at-architectural-boundaries-persistence-and-time/
https://matthiasnoback.nl/2018/03/mocking-the-filesystem-and-randomness/
https://matthiasnoback.nl/2018/03/mocking-the-filesystem-and-randomness/
https://matthiasnoback.nl/2018/04/mocking-the-network/

98

Let’s say you need a diffing tool to calculate the differences between two multi- line

strings. There’s an open source package (nicky/funky-diff) that provides more or less

what you need, but the API is a bit off. You want a string with pluses and minuses, but the

class in this package returns a list of ChunkDiff objects (see Listing 5-24).

Listing 5-24. The FunkyDiffer

class FunkyDiffer

{

 /**

 * @param array $from Lines

 * @param array $to Lines to compare to

 * @return array|ChunkDiff[]

 */

 public function diff(array $from, array $to)

 {

 // ...

 }

}

Besides offering a strange API, the package is being “maintained” by someone you’ve

never heard of (and it has 15 open issues and 7 pull requests). So you need to protect the

stability of your package and you define your own interface. Then you add an Adapter

class9 that implements your interface, yet delegates the work to the FunkyDiffer class,

as shown in Listing 5-25.

Listing 5-25. An Adapter for the FunkyDiffer

interface Differ

{

 public function generate(string $from, string $to): string;

}

9 Erich Gamma e.a., Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994.

Chapter 5 the DepenDenCy InversIon prInCIple

99

final class DifferUsesFunkyDiffer implements Differ

{

 private $funkyDiffer;

 public function __construct(FunkyDiffer $funkyDiffer)

 {

 $this->funkyDiffer = $funkyDiffer;

 }

 public function generate(string $from, string $to): string

 {

 return implode(

 "\n",

 array_map(

 function (ChunkDiff $chunkDiff) {

 return $chunkDiff->asString();

 },

 $this->funkyDiffer->diff(

 explode("\n", $from),

 explode("\n", $to)

)

)

);

 }

}

The advantage of this approach is that from now on you can always switch to a

different library, without changing the bulk of your code. Only the adapter class needs to

be rewritten to use that other library.

By the way, a good old Façade10 might be an option here too (see Listing 5-26), since

it would hide the use of the third-party implementation. However, due to the lack of an

explicit interface, you wouldn’t be able to experiment with alternative implementations.

The same goes for the users of your package: they won’t be able to write their own

implementation of a “differ”.

10 Erich Gamma e.a., Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994.

Chapter 5 the DepenDenCy InversIon prInCIple

100

Listing 5-26. A Façade for FunkyDiffer

final class Differ

{

 public function generate(string $from, string $to): string

 {

 $funkyDiffer = new FunkyDiffer();

 // delegate to FunkyDiffer

 }

}

 If You Want to Introduce an Abstraction for Multiple
Specific Things

If you want to treat different, specific classes in some way that is the same for every one

of them, you should introduce an interface that covers their common ground. Such an

interface is often called an “abstraction,” because it abstracts away the details that don’t

matter to the client of that interface. A nice example is the VoterInterface from the

Symfony Security component11. Every application has its own authorization logic, but

Symfony’s AccessDecisionManager12 doesn’t care about the exact rules. It can deal with

any voter you write, as long as it implements VoterInterface and works according to

the instructions provided by the documentation of that interface. An example of such an

implementation is shown in Listing 5-27.

Listing 5-27. Example of a VoterInterface Implementation

final class MySpecificVoter implements VoterInterface

{

 public function vote(

 TokenInterface $token,

 $subject,

11 https://symfony.com/doc/current/components/security/authorization.html
12 https://github.com/symfony/security/blob/v4.1.6/Core/Authorization/
AccessDecisionManager.php

Chapter 5 the DepenDenCy InversIon prInCIple

https://symfony.com/doc/current/components/security/authorization.html
https://github.com/symfony/security/blob/v4.1.6/Core/Authorization/AccessDecisionManager.php
https://github.com/symfony/security/blob/v4.1.6/Core/Authorization/AccessDecisionManager.php

101

 array $attributes

): int {

 // ...

 }

}

In the case of the VoterInterface, the package maintainers serve the users of their

package by offering them a way to provide their own authorization rules. But sometimes

an abstraction is only there for the code in the package itself. In that case too, don’t

hesitate to add it.

 If You Foresee That the User Wants to Replace Part of the
Object Hierarchy

In most cases, a final class is the best thing you can create. If a user doesn’t like your

class, they can simply choose not to use it. However, if you’re building up a hierarchy of

objects, you should introduce an interface for every class. That way the user can replace

a particular piece of logic somewhere in that hierarchy with their own logic. It will make

your code useful in as many situations as possible.

A nice example comes from Tactician13, which offers a command bus

implementation.

The package ships with a CommandBus class14 (see Listing 5-28). It’s a class, not an

interface, because its implicit interface isn’t larger than its explicit interface would be—

the only public method is handle().

Listing 5-28. The CommandBus Class (Abbreviated)

class CommandBus

{

 // ...

 public function __construct(array $middleware)

 {

 // ...

 }

13 https://tactician.thephpleague.com/
14 https://github.com/thephpleague/tactician/blob/v1.0.3/src/CommandBus.php

Chapter 5 the DepenDenCy InversIon prInCIple

https://tactician.thephpleague.com/
https://github.com/thephpleague/tactician/blob/v1.0.3/src/CommandBus.php

102

 public function handle($command)

 {

 // ...

 }

 // ...

}

To set up a working CommandBus instance, you need to instantiate a number of

“middleware” classes that all implement the Middleware interface15 (see Listing 5-29).

This is an example of an interface that was introduced as an abstraction, allowing the

package maintainer to treat multiple specific things in some generic way, as well as to

allow users to plug in their own specific implementations.

Listing 5-29. The Middleware Interface (Abbreviated)

interface Middleware

{

 public function execute($command, callable $next);

}

One of these middleware interfaces is the CommandHandlerMiddleware16, which itself

needs a “command name extractor,” a “handler locator,” and a “method name inflector”.

All of which have a default implementation inside the package (the command name is

the class name, the handler for a command is kept in memory, and the handle method is

handle plus the name of the command), as shown in Listing 5-30.

Listing 5-30. Setting Up CommandHandlerMiddleware

$handlerMiddleware = new CommandHandlerMiddleware(

 new ClassNameExtractor(),

 new InMemoryLocator([...]),

 new HandleClassNameInflector()

);

15 https://github.com/thephpleague/tactician/blob/v1.0.3/src/Middleware.php
16 https://github.com/thephpleague/tactician/blob/v1.0.3/src/Handler/
CommandHandlerMiddleware.php

Chapter 5 the DepenDenCy InversIon prInCIple

https://github.com/thephpleague/tactician/blob/v1.0.3/src/Middleware.php
https://github.com/thephpleague/tactician/blob/v1.0.3/src/Handler/CommandHandlerMiddleware.php
https://github.com/thephpleague/tactician/blob/v1.0.3/src/Handler/CommandHandlerMiddleware.php

103

$commandBus = new CommandBus(

 [

 ...,

 $handlerMiddleware,

 ...

]

);

Each collaborating object that gets injected into CommandHandlerMiddleware

can easily be replaced by re-implementing the interfaces of these objects

(CommandNameExtractor, HandlerLocator, and MethodNameInflector, respectively).

Because CommandHandlerMiddleware depends on interfaces, not on concrete classes,

it will remain useful for its users, even if they want to replace part of the built-in logic

with their own logic, such as when they would like to use their favorite service locator to

retrieve the command handler from.

By the way, adding an interface for those collaborating objects also helps the user

decorate existing implementations of the interface by using object composition.

 For Everything Else: Stick to a Final Class

If your situation doesn’t match any of the ones described previously, most likely the best

thing you can do is not add an interface, and just stick to using a class, preferably a final

class. The advantage of marking a class as “final” is that subclassing is no longer an

officially supported way of modifying the behavior of a class. This saves you from a lot of

trouble later on when you’re changing that class as a package maintainer. You won’t have

to worry about users who rely on your class’s internals in some unexpected way.

Classes that almost never need an interface are:

• Classes that model some concept from your domain (entities and

value objects).

• Classes that otherwise represent stateful objects (as opposed to

classes that represent stateless services).

• Classes that represent a particular piece of business logic, or a

calculation.

What these types of classes have in common is that it’s not at all needed nor

desirable to swap their implementations out.

Chapter 5 the DepenDenCy InversIon prInCIple

104

 Conclusion
As we’ve seen in this chapter, following the Dependency Inversion principle is helpful

when others start using your classes. They want your classes to be abstract, only

depending on other abstract things, and leaving the details to a couple of small classes

with specific responsibilities.

Applying the Dependency Inversion principle in your code will make it easy for users

to swap out certain parts of your code with other parts that are tailored to their specific

situation. At the same time, your code remains general and abstract and therefore highly

reusable.

Chapter 5 the DepenDenCy InversIon prInCIple

PART II

Package Design
Code consists of statements, grouped into functions, grouped into classes, grouped into

packages, combined into systems. There are several insights about this chain of concepts

that I would like to discuss here, before we dive into the actual principles of package design.

 Becoming a Programmer
It occurred to me that in my programming career I learned about these different

concepts in the exact same order in which I just mentioned them. The first thing I

learned about PHP as a young website builder was to insert PHP statements into a

regular HTML file. By doing so, it was possible to turn a static HTML page into a dynamic

one. You could conditionally show some things on the page, dynamically build a

navigation tree, do some form processing, and even fetch something from a database.

<?php

$name = htmlentities($_GET['name'], ENT_QUOTES);

$day = date('l');

?>

<html>

 <head>

 <title>My first homepage</title>

 </head>

 <body>

 <h1>Welcome, <?=$name?></h1>

 <p>Today it's <?=$day?></p>

 </body>

</html>

106

When the pages I created became more complicated, I felt the need to organize

things in a better way, to make my work easier and to support my future self when a

client would change their mind again. At first I resorted to so-called include files. The

behavior of those include files could be influenced using global variables:

<?php

// display_day.php

global $day;

?><p>Today it's <?=$day?></p>

<?php

// index.php

global $day;

$day = date('l');

include(‘display_day.php');

Looking back at this strange code from my oldest projects, I realize that I was actually

using those include files as some kind of functions (not in a truly functional manner

though, because these “functions” had some nasty side effects, like sending output

directly to the client).

Using include files as functions worked fine for some time, until customer

requirements got more complicated and I had to build an authentication mechanism

for users, using a login form. I copied some code from the Internet that contained some

actual functions. Of course I just pasted the code in my project (and it worked). But then

I started to unravel it, diving into this “new” concept of a function.

When I got it, things changed dramatically. On every opportunity to introduce a new

function, I added one to a file called functions.php. This file was included in every PHP

script, to make all those functions available everywhere:

function wrap($text, $maxLineLength) {

 // ...

}

function fetch_user_data($id) {

 // ...

}

Part II Package DesIgn

107

function array_merge_deep($array1, $array2) {

 // ...

}

function copy_shopping_cart() {

 // ...

}

function rename_file($source, $destination) {

 // ...

}

// ...

Even though many of those functions still echoed things directly to the client

(instead of buffering the output), I felt that my applications were already becoming

pretty advanced (of course, I copied this functions.php file into every new project I

started).

At some point I was browsing through the php.net1 website and stumbled upon the

page about classes2. I recognized this “class” thing as a way of grouping functions that

were related to each other. So I created a big Page class, which became the core of the

first CMS I ever built. I’ve added the source of the Page class as an appendix to this book,

for your enjoyment, but let me show you some of the more interesting parts of the code

here.

class Page

{

 public $uri = null;

 public $page = array();

 public $site_title = “;

 public $breadcrumbs = array();

 public $js = array();

 public $css = array();

 public $auto_include_dir = “;

 /* @public $smart Smarty */

1 https://secure.php.net/
2 https://secure.php.net/manual/en/language.oop5.basic.php

Part II Package DesIgn

https://secure.php.net/
https://secure.php.net/manual/en/language.oop5.basic.php

108

 public $smarty = null;

 public $default_template = “;

 public $template = “;

 public $cms_login = null;

 public $user_login = null;

 public $is_user = false;

 public $is_admin = false;

 public $languages = array();

 public $default_language = null;

 public $language = null;

 public $menu_items = array();

 protected $_extra_request_parameters = array();

 public function __construct($uri)

 {

 $this->connect_db();

 header('Content-Type: '.HEADER_CONTENT_TYPE);

 $this->smarty = new Smarty;

 if (isset($_GET['clear_cache']))

 {

 $this->smarty->clear_cache();

 }

 if (DEBUGGING)

 {

 $this->smarty->caching = false;

 if (trusted_ip())

 {

 $this->smarty->debugging = true;

 }

 }

 if (trusted_ip())

 {

 ini_set('display_errors', '1');

 error_reporting(

Part II Package DesIgn

109

 E_ERROR | E_PARSE | E_WARNING | E_USER_ERROR

 | E_USER_NOTICE | E_USER_WARNING

);

 }

 else

 {

 $this->smarty->debugging = false;

 ini_set('display_errors', '0');

 error_reporting(0);

 }

 // ...

 if (!table_exists('content'))

 {

 require(ROOT.'/includes/install.php');

 install();

 }

 $this->add_title_part(SITE_TITLE);

 $this->cms_login = new LoginClass('admins', 'cms_login');

 $this->user_login = new LoginClass('users', 'user_login');

 if ($this->cms_login->isLoggedIn())

 {

 $this->is_admin = true;

 }

 if ($this->user_login->isLoggedIn())

 {

 $this->is_user = true;

 }

 // ...

 $this->open_page();

 }

Part II Package DesIgn

110

 public function connect_db()

 {

 $this->db_connection = @mysql_connect(

 MYSQL_HOST,

 MYSQL_USER,

 MYSQL_PASSWORD

);

 if ($this->db_connection)

 {

 $this->db = @mysql_select_db(MYSQL_DB);

 if (!$this->db)

 {

 ?><p class="warning">Geen database!</p><?

 exit;

 }

 }

 else

 {

 ?><p class="warning">Geen verbinding!</p><?

 exit;

 }

 }

}

Several highlights from this masterpiece:

• The Page class has about 20 or 30 instance variables.

• It depends on about 20 constants that are defined outside that class

(more specifically, in the config.php file).

• It refers to so-called super-globals, like $_GET.

• It globally modifies the settings of the PHP process by configuring the

PHP error mode in the constructor.

Part II Package DesIgn

111

• Error messages (in Dutch) are being echoed directly to the user, after

which the program simply terminates.

• It connects to a MySQL database and verifies that the required tables

are there. If not, it runs the install script.

• It sends response headers.

Although I would never write such code today, when I look at the Page class now, I

don’t feel ashamed about what I did back then. It’s clear to me that I wasn’t struggling

to get things working (because everything just worked; I always tried to do a good job in

that respect). Rather, I was struggling to get things organized.

 The Hardest Part
It took me a couple of years before I learned how to make my classes moderately good.

And still every day there’s something new to learn about class design, some old habit

to drop, some new principle to apply. From this I draw the conclusion that organizing

code into classes is a difficult thing. It’s fairly easy to learn all there is to know about

the keywords that a programming language provides for working with classes (class,

extends, implements, abstract, final, etc.). Learning how to use them well—that’s

much harder.

Let’s get back to this chain of concepts: statements, grouped into functions, grouped

into classes, grouped into packages, combined in a system. Let me ask: what is the

“meat” of a program? Well, it’s the statements. Statements actually make things happen.

If we were to transform all class methods of a program to regular functions and then

inline those functions, we’d get one long page of statements and, when executed, the

program would still do the same thing.

From this we can draw the conclusion that code does not need to be organized if

you only need to make it just work. For the computer, what counts is statements. Still,

we make great efforts to modularize our statements. We put them in class methods, and

we group the classes together in packages. And judging by the order in which you learn

things as a developer, writing classes and creating packages is much more difficult than

writing just statements.

Part II Package DesIgn

112

 Principles of Cohesion
Over the years you struggle to organize your code in the best way possible. While doing

so, you’ll gradually develop a strong sense of “belonging together”. It’ll help you decide

whether or not two pieces of code belong together. This intuition keeps evolving forever:

when you’re writing statements and put them into functions, when you write classes for

those functions, and when you combine those classes into packages.

This intuition you have as a programmer, this sense of “belonging together,” is

actually about something called cohesion. Cohesion is a degree of relatedness. Some

things are highly cohesive, and some are less cohesive, depending on how much they are

related to each other.

Early in life you learn to determine whether or not things are cohesive. In school

you get these little exercises: “One of the following words does not belong in the list,

which is it? Duck, frog, fish, camel.” When you have the list “duck, frog, fish,” you have a

highly cohesive list of words. The words stand for things that are highly related to each

other (because they are all names of animals that live or survive in water). When you

add “camel” to the list, it definitely becomes less cohesive. This resembles your job as a

programmer: you need to find out which things you can add without making the whole

less cohesive, and which things you can remove to make the whole more cohesive.

In the context of package design, cohesion is mainly about which classes belong

together in a package. There are many different ways in which you can arrange and

combine classes and all of them produce a different kind of cohesion. For example, you

can group all classes that serve as a controller, or all classes that are entities. The result is

something called logical cohesion. But when you group the “blog post” controller and the

“blog post” entity, the result is communicational cohesion: all classes in such a package

operate on the same data, i.e. blog post records from the database.

There are several other types of cohesion (sequential, temporal, etc.), but the

most important type of cohesion, the one you should strive for, is functional cohesion.

Functional cohesion is achieved when all things in a “module” (e.g., a package) together

can be used to perform a single, well-defined task.

Part II Package DesIgn

113

 Class Design Principles Benefit Cohesion
Earlier I said that the programmer’s sense of belonging together was based on intuition,

shaped by experience. Of course there’s also a rational side of that sense: if you know

about class design principles then that will help you write highly cohesive code. For

example, when you apply the SOLID principles to your classes, they will automatically

become more cohesive:

• You will end up with classes having fine-grained, client-specific

interfaces, which makes it unlikely that those interfaces contain

methods that don’t belong there. So applying the Interface

Segregation principle will give you highly cohesive classes.

• You will also have classes with just one reason for change, which

means they are not “all over the place”. So applying the Single

Responsibility principle also has the beneficial effect of making

classes more cohesive.

Once we know how to create highly cohesive classes, we can take the next step. After

statements, functions, and classes we arrive at packages. Packages are groups of classes,

and just like everything that is a group of things, a package has cohesion (a certain

degree of relatedness) too. If classes were grouped arbitrarily, the package containing

them would have coincidental cohesion. Of course, the trick is to group classes in such

a way that the package has a high level of functional cohesion: all the classes in the

package should serve to perform a single, well-defined task.

There are three package design principles that support you in creating highly cohesive

packages. In the following chapters, we will discuss each of them extensively. They are

called, respectively, the Release/Reuse Equivalence principle (Chapter 6), the Common

Reuse principle (Chapter 7) and the Common Closure principle (Chapter 8). Applying

these principles will lead to smaller packages that are easier to maintain and use.

Focusing on the package and its degree of cohesion is important, but it’s equally

important to consider how the package behaves in relation to other packages—in other

words, how it’s coupled to them.

Part II Package DesIgn

114

 Principles of Coupling
Most classes can’t survive on their own: they have some kind of a dependency and most

likely even multiple dependencies. Maybe they need an instance of another class to

delegate some of the work. Or they produce instances of another class. In other words,

many classes depend on other classes, which actually couples them to each other.

As we saw in the first part of this book, applying the SOLID principles to class design

has a healthy effect on coupling between classes. As you may remember, according to

the Dependency Inversion principle, a class should only depend on another class or

interface that is abstract, not concrete. It should also not depend on lower-level classes,

only on high-level classes. And according to the Open/Closed principle, a class should be

open for extension, but closed for modification, which means that its behavior should be

modifiable, without actually modifying its code.

When we discussed the Dependency Inversion principle, we already briefly

considered the situation in which one class depends on a class in another package. A

class from one package that depends on a class from another package introduces a new

level of coupling, called package coupling.

If you’ve worked with packages and a dependency or package manager, you already

know that package coupling can go wrong in many ways. Often you get into trouble

because of incompatible dependency versions. Or somehow circular dependencies

occur. Maybe unstable packages that are liable to change cause your own project to

break frequently. Or maybe some of your dependencies have unstable dependencies

themselves, the effects of which ripple through to your own code.

Because of these problems, we are in need of some guiding principles that help

us design packages that have good dependencies. We need packages that can be

trustworthy dependencies of other packages and projects. The relevant package design

principles are called “principles of coupling” and we discuss them in the last three

chapters: the Acyclic Dependencies principle (Chapter 9), the Stable Dependencies

principle (Chapter 10), and the Stable Abstractions principle (Chapter 11), after we’ve

covered the cohesion principles in full.

Part II Package DesIgn

115
© Matthias Noback 2018
M. Noback, Principles of Package Design, https://doi.org/10.1007/978-1-4842-4119-6_6

CHAPTER 6

The Release/Reuse
Equivalence Principle
The first of the actual package design principles discussed in this book is the Release/

Reuse Equivalence principle. This principle says1:

The granule of reuse is the granule of release.

This principle has two sides. First of all, you should only release as much code as

you (or others) can reasonably reuse. It makes no sense to invest all the time and energy

needed to properly release code if nobody is going to use it in another project anyway.

This may require you to do some kind of research to establish the viability of your

package once you would privately or publicly release it. Maybe the package only seems to

be reusable, but in the end it turns out to be useful in your specific use case only.

The other side of the principle is that you can only reuse the amount of code that you

can actually release. By applying all the principles of class design, you may have created

perfectly generic, reusable code. But if you never release that code, then it’s not reusable

after all. So before you start making all your code reusable, try to answer this question

first: are you going to be able to release that code and manage future releases too?

Being aware of the effort that’s required to release a package will help you decide on

the number and the size of the packages that you’re going to create. Releasing hundreds

of tiny packages is something you can’t possibly do. Each package requires a certain

amount of time and energy from its maintainer. Think about tracking and fixing issues,

adding version tags to new releases, keeping the documentation up-to-date, etc. On the

other hand, releasing one very big package is equally impossible. It will undergo so many

1 Robert C. Martin, “The principles of OOD,” http://butunclebob.com/ArticleS.UncleBob.
PrinciplesOfOod

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

116

changes related to different parts of the package that it will be a very volatile package, a

constantly moving target. This is not helpful at all for its users.

As I explained in the Introduction, cohesion is always about “belonging together”.

And so the cohesion principles of package design offer strategies to decide if classes

should be grouped in a package. The Release/Reuse Equivalence principle helps you

decide if you would be able to release such a package at all. It makes you aware of the

fact that a released package requires the careful nurturing of its maintainer.

The remaining sections of this chapter will give you an overview of all the things you

need to take care of when you start releasing packages. While the previous part of the

book was about the way in which you can prepare your classes for reuse, this chapter is

about how you can prepare your package of classes to be reused, that is, to be released.

Although we’ll talk about code and discuss tactics for keeping it backward

compatible, you should know that the other half of this chapter covers other, more

practical, topics related to package design, like semantic versioning, quality assurance,

and metafiles that need to be present in a package. If you’re not (yet) interested in these

topics, either because you know about them already, or you want to dig into them only

when you’re actually starting to release a package, feel free to skip the following sections

and go straight to the Conclusion of this chapter.

 Keep Your Package Under Version Control
The first thing you need to do is set up a version control system for your package. You

need to be able to keep track of changes by you or any of the contributors, and

people need to be able to pull in the latest version of the package. So even though

mailing around code snippets would technically be a kind of version control (the sent

date of the message could be used as the version number of the package), you should

always use a real version control system (like Git2).

If you have an idea for a package (which would primarily be a coherent set of

classes), the first thing you do is set up a version control repository for it. This will enable

you to revert to previous situations if one particular change endangered the whole

project. If you work in a team, using version control also helps you prevent conflicting

changes. It enables you to work on and test a new or experimental feature in a separate

branch, without jeopardizing the stability of the master branch of the package.

2 https://git-scm.com/

Chapter 6 the release/reuse equivalenCe prinCiple

https://git-scm.com/

117

The version control repository should be treated as a full description of the history of

the project. You and your team are going to use the version control repository as a way to

figure out when or why a bug was introduced. Make sure to only commit changes to the

repository that are cohesive (i.e., belong together) and add explanatory comments when

you commit something.

In order to make your package available, you have to make sure it’s hosted

somewhere. Depending on your needs, this can be something public or private, hosted

or self-hosted.

 Add a Package Definition File
Most programming languages have a standardized way of defining packages. And often

this is just a simple file that provides some or all of the following properties of the package:

• Name of the package

• Maintainers, possibly some contributors

• URL and type of the version control repository

• Required dependencies, like other packages, specific language

versions, etc.

Read as much as you can about your different options. A package containing a rich

definition file that utilizes all the options in the right way is likely to be a well-behaving

package in the package ecosystem of your programming language.

Once you’ve created a correct package definition file, you probably have to register

the package to some sort of a central package repository or registry. Each programming

language has its own remote package repositories, with different manuals and

requirements.

Chapter 6 the release/reuse equivalenCe prinCiple

118

 Use Semantic Versioning
When you release a package, you have to answer the following questions and make your

intentions clear:

• Do you introduce changes in the API of your code with great care?

• Will you try to make sure that those changes don’t break the way in

which users interact with your package?

• In which situations would you allow yourself to heavily change your API?

In other words, how’re you going to take care of backward compatibility? Package

maintainers generally follow a versioning strategy called “semantic versioning”. The

outline of this strategy is the following:

• Fix bugs and release them as patch versions (e.g., x.x.1 ⇒ x.x.2).

• Add new things to your package, but make sure to release a new

minor version each time you do so (e.g., x.1.x ⇒ x.2.x). When you

want to deprecate things, just keep them around for a while.

• Remove deprecated parts or introduce backward incompatible

changes when you release a new major version (e.g., 1.x.x ⇒ 2.x.x).

The first part of a package’s version number, the number before the first dot, is

called the major version. The first major version is usually 0. This version should be

considered unfinished, experimental, heavily changing without too much care for

backward compatibility. Starting from major version 1, the public API is supposed to

be stabilized and the package has a certain trustworthiness from that moment on. Each

subsequent increment of the major version number marks the moment that part of the

code breaks backward compatibility. It’s the moment when method signatures change,

and deprecated classes or interfaces are removed. Sometimes even a complete rework of

the same functionality is being released as a new major version.

The second part of the version number is the minor version. It also starts counting

from 0, though this has no special significance, except “being the first”. Minor versions

can be incremented when new functionality has been added to the package or when

parts of the existing public API have been marked as deprecated. The promise of a

new minor version is that nothing will change for its users, existing ways in which they

use the package will not be broken. A minor version only adds new ways of using the

package.

Chapter 6 the release/reuse equivalenCe prinCiple

119

The last part of the version number is the patch version. Starting with version 0, it

gets incremented for each patch that is released for the package. This can be either a bug

fix, or some refactored private code, i.e. code that’s not accessible by just using the public

API of the package. Since refactoring means changing the structure of code without

changing its behavior, refactoring private package code will not have any negative side-

effect on existing users.

Immediately after the version number (consisting of the major, minor and patch

version, separated by dots), there may be a textual indication of the state of the package:

alpha, beta, rc (release candidate), optionally followed by another dot and another

incremental number.

The number combined with the optional meta-identifier can be used to compare

version numbers. Listing 6-1 shows a sorted list of version numbers.

Listing 6-1. Sorted Version Numbers

1.9.10

2.0.0

2.1.0

2.1.1-alpha

2.1.1-beta

2.1.1-rc.1

2.1.1-rc.2

2.1.1

Comparison is done in the natural way, so 2.1.1 is a lower version than 2.10.1. There’s

no limit to each part of the version number, so you can just keep incrementing it.

 Design for Backward Compatibility
When you use semantic versioning for your packages, providing backward compatibility

means that you strive to provide the exact same functionality in minor version x + 1 as

in the previous minor version x. In other words, if some user’s code relies on a feature

provided by version 1.1.0, you promise that this same feature will be available in 1.2.0.

Using it will have exactly the same effects in both versions. Not only would it have the

same behavioral effects, the feature can also still be invoked in the same way.

Chapter 6 the release/reuse equivalenCe prinCiple

120

Of course, you may have fixed some bugs between two minor versions, and you may

have added some features. But none of these things should pose any problems for users

who upgrade their dependency on your package to the next minor version. All their

tests should still pass, and everything should still work as it did before upgrading the

dependency.

As you can imagine, providing true backward compatibility can be really hard. You

want to make some progress, but your promise for backward compatibility can hold you

back. Still, if you want your package to be used by other developers, you need to give

them both new features and continuity.

There’s a time when you don’t have to provide the continuity, which is when your

package’s major version is still 0.x.x. During this period, your package will be considered

unstable anyway and you can move everything around. This may enrage some early

adopters, but since they are aware of the fact that the package is still unstable, they can’t

complain really.

Working forever on 0.* versions of a package would seem to alleviate you from the pain

of keeping backward compatibility. However, an unstable package will likely not be used

in any serious project that itself intends to be stable. In such a project, people would get

really mad when they upgrade such a package and nothing works anymore. They would

have to add extra integration tests, to test the boundaries between their and your code, so

they will notice any compatibility problems early on. They will be scared to upgrade your

package and therefore also miss all relevant bug or security vulnerability fixes.

In conclusion, you should make up your mind about the design of your code and, as

soon as you have tested your package in one or two of your projects, release it as version

1.0.0. If you then really hate the design of your code, your strategy could be to start

working on version 2.0.0 and announce that you will stop developing features for version

1.0 soon. Using version control branches, you would still be able to provide fixes for the

previous major version if you want.

 Rules of Thumb
Even though you could get away with only releasing major versions, the more likely

scenario is that you will release minor versions too. So designing for backward

compatibility should be part of your strategy from the moment you release the first major

version of your package. In the following sections, I discuss some things you should and

should not do in order to provide backward compatibility.

Chapter 6 the release/reuse equivalenCe prinCiple

121

These are just examples and rules of thumb. There are many more ways in which

you can prevent a backward compatibility break and still they can accidentally happen.

Software is already complex by nature, but there are also ways in which people use your

code that you don’t officially support, or don’t know of yet. This means you will never be

fully covered. But you can at least minimize the potential damage.

 Don’t Throw Anything Away
Whenever you add something to your package, make sure it still exists in the next

version. This applies to things like:

• Classes

• Methods

• Functions

• Parameters

• Constants

A class exists if it can be auto-loaded, so classes don’t necessarily need to be in the

same file. Just make sure the class loader is always able to find them. This means you

may move a class to another package and add that package as a dependency.

 When You Rename Something, Add a Proxy
Renaming classes is possible, but make sure that the old class can still be instantiated

(see Listing 6-2).

Listing 6-2. The Old Class Is Still Available

/**

 * @deprecated Use NewClass instead

 */

class DeprecatedClass extends NewClass

{

 // will inherit all methods from NewClass

}

Chapter 6 the release/reuse equivalenCe prinCiple

122

class NewClass

{

 // ...

}

This may require you to temporarily remove the final keyword from the declaration

of the old class, or instead use object composition as an alternative approach to keeping

compatibility.

Renaming a method is possible, but make sure you forward the call to the new

method (see Listing 6-3).

Listing 6-3. The Old Method Is Still Available

class SomeClass

{

 /**

 * @deprecated use newMethod() instead

 */

 public function deprecatedMethod()

 {

 return $this->newMethod();

 }

 public function newMethod()

 {

 // ...

 }

}

Or if you have moved the functionality to another class, make sure it still works when

someone uses the old method (see Listing 6-4).

Chapter 6 the release/reuse equivalenCe prinCiple

123

Listing 6-4. The Old Method Is A Proxy for the New Method

class SomeClass

{

 /**

 * @deprecated Use Something::doComplicated() instead

 */

 public function doSomethingComplicated()

 {

 $something = new Something();

 return $something->doComplicated();

 }

}

ADD @DEPRECATED ANNOTATIONS

Whenever you deprecate an element of your code, be it a class, a method, a function, or a

property, you should not remove it immediately, but keep it around until you release the next

major version. in the meantime, make sure it has the @deprecated annotation. Don’t forget

to add a little explanation and tell the users what they should do instead, or how they can

modify their own code to make it ready for the next major version in which the deprecated

things will be removed.

Renaming parameters of a method is not problematic (in PHP at least), as long as

their order and type doesn’t change. Renaming parameters of a method defined in an

interface is also not problematic. Classes that implement an interface may always use

different names, as long as the parameter types correspond (see Listing 6-5).

Listing 6-5. Renaming Parameters Is Fine, as Long as Their Types Are the Same

// interface defined inside the package

interface SomeInterface

{

 public function doSomething(ObjectManager $objectManager);

}

Chapter 6 the release/reuse equivalenCe prinCiple

124

// class created by a user of the package

class SomeClass implements SomeInterface

{

 public function doSomething(ObjectManager $entityManager)

 {

 // ...

 }

}

 Only Add Parameters to the End and with a Default Value
When you need to add a parameter to a method, make sure you add it to the end of the

existing list of parameters. Also make sure that the new parameter has a sensible default

value (see Listing 6-6).

Listing 6-6. Only Add New Parameters with a Default Value to the End of the

Method Signature

// current version

class StorageHandler

{

 public function persist(object $object): void

 {

 $this->entityManager->persist($object);

 /*

 * The current implementation always flushes

 * the entity manager

 */

 $this->entityManager->flush();

 }

}

// next version

class StorageHandler

{

 public function persist(

Chapter 6 the release/reuse equivalenCe prinCiple

125

 object $object,

 $andFlush = true

): void {

 $this->entityManager->persist($object);

 // the new implementation only flushes if requested

 if ($andFlush) {

 $this->entityManager->flush();

 }

 }

}

The extra parameter $andFlush has been introduced with a default value of true

to make sure that the new method behaves exactly the same as the old method, which

already flushed the entity manager by default.

 Methods Should Not Have Implicit Side-Effects
Don’t expect the users of your code to rely on a particular implicit side-effect of calling

a method. When you later change the code, the side-effect may disappear, which breaks

the user’s code. See Listing 6-7 for an example of this.

Listing 6-7. Example Side-Effect That Disappears in a Later Version of the Method

// previous version

class Stream

{

 public function open(string $file): void

 {

 /*

 * The previous implementation creates a directory

 * if necessary

 */

 $this->createDirectoryIfNotExists($file);

 $this->handle = fopen($file, 'w');

 }

Chapter 6 the release/reuse equivalenCe prinCiple

126

 private function createDirectoryIfNotExists(

 string $file

): void {

 // ...

 }

}

// next version

class Stream

{

 public function open(string $file): void

 {

 /*

 * The new implementation does not create a directory

 * automatically

 */

 $this->handle = fopen($file, 'w');

 }

}

In the previous version, Stream::open() implicitly created a directory when a file

was opened. This behavior turned out to be problematic in some situations, so the next

version of Stream::open() leaves it to the user to make sure the directory exists. Users

can use Filesystem::isDirectory() and Filesystem::createDirectory()

(see Listing 6-8).

Listing 6-8. The Filesystem Class

class Filesystem

{

 public function createDirectory(string $directory): void

 {

 // ...

 }

Chapter 6 the release/reuse equivalenCe prinCiple

127

 public function isDirectory(string $directory): bool

 {

 // ...

 }

}

Of course this change causes a backward compatibility break. But this could have

been prevented in the first place; make sure every method has no hidden side-effects

and does one thing, and one thing only. Define that one thing clearly in the method’s

documentation.

 Dependency Versions Should Be Permissive
If your package has some dependencies itself, make sure you don’t put too many

restrictions on their version numbers. For instance, when you write the code for a new

package you may prefer to work with the latest version of one of its dependencies; let’s

say that’s version 2.4.3.

If the maintainer of that package has taken proper care of backward compatibility,

it’s likely that your package works well with version 2.3, and maybe even with 2.2 or 2.1.

However, by requiring version 2.4.3 or higher of the dependency, you have effectively

excluded all users who have lower versions of that same dependency installed in their

project, even though your package would work fine with these older versions.

There are two solutions—force your users to upgrade to a new version of that

dependency or make your own requirements less restrictive. Since the first option

may break things in their project (a pain of which you don’t want to be the cause), it’s

almost always best to choose the second option—make your code compatible with older

versions and loosen your own requirements.

This is also true the other way around: if a new stable version of a package becomes

available. As a package maintainer you are expected to make your package work with

that new version too. You should check if it already does by installing the new version of

the dependency and running the tests of your package. If necessary, make some changes

to your code until all the tests pass. Of course, you need to make sure that the package

continues to work with the previous version of the dependency. You might set up some

continuous integration process (we’ll get back to that) to do this automatically for you.

Chapter 6 the release/reuse equivalenCe prinCiple

128

 Use Objects Instead of Primitive Values
In order to provide backward compatibility, it’s a good idea to use objects where you

would normally use arrays or primitive-type values. Consider the incremental changes

to HttpClientInterface shown in Listing 6-9.

Listing 6-9. Incremental Changes to HttpClientInterface

// version 1.0.0

interface HttpClientInterface

{

 public function connect(string $host): void;

}

// version 1.1.0

interface HttpClientInterface

{

 public function connect(

 string $hostname,

 int $port = 80

): void;

}

// version 1.2.0

interface HttpClientInterface

{

 public function connect(

 string $hostname,

 int $port = 80,

 bool $useTls = false

): void;

}

// version 1.3.0

interface HttpClientInterface

{

 public function connect(

 string $hostname,

Chapter 6 the release/reuse equivalenCe prinCiple

129

 int $port = 80,

 bool $useTls = false,

 bool $verifyPeer = true

): void;

}

Instead of adding more and more parameters with default values, it would be

much easier if connect() would have a single parameter from the start, which could

itself be expanded without breaking backward compatibility. We could combine all

these separate values (hostname, port, etc.) into one easy-to- upgrade object called

ConnectionConfiguration (see Listing 6-10).

Listing 6-10. HttpClientInterface Accepts a Single Configuration Object

interface HttpClientInterface

{

 public function connect(

 ConnectionConfiguration $configuration

): void;

}

By doing so, subsequent upgrades of the package won’t need to change

the signature of the connect() method, but will only add new settings to the

ConnectionConfiguration class (see Listing 6-11).

Listing 6-11. Incremental Changes to ConnectionConfiguration

// version 1.0.0

class ConnectionConfiguration

{

 private $hostname;

 public function __construct(string $hostname)

 {

 $this->hostname = $hostname;

 }

Chapter 6 the release/reuse equivalenCe prinCiple

130

 public function getHostname(): string

 {

 return $this->hostname;

 }

}

// version 1.1.0

class ConnectionConfiguration

{

 // ...

 private $port = 80;

 public function getPort(): int

 {

 return $this->port;

 }

 public function setPort(int $port): void

 {

 $this->port = $port;

 }

}

// version 1.2.0

class ConnectionConfiguration

{

 // ...

 private $useTls = false;

 public function shouldUseTls(): bool

 {

 return $this->useTls;

 }

Chapter 6 the release/reuse equivalenCe prinCiple

131

 public function useTls(bool $useTls): void

 {

 $this->useTls = $useTls;

 }

}

// version 1.3.0

class ConnectionConfiguration

{

 // ...

 private $verifyPeer = false;

 public function shouldVerifyPeer(): bool

 {

 return $this->verifyPeer;

 }

 public function verifyPeer(bool $verifyPeer): void

 {

 $this->verifyPeer = $verifyPeer;

 }

}

Users of this package would not get in trouble when the maintainer adds an extra

setting to ConnectionConfiguration, as long as it has a sensible default value.

 Use Objects for Encapsulation of State and Behavior
Using an object instead of a primitive-type value like we did in the example of the

ConnectionConfiguration is not only useful when you’re aiming for making backward

compatible changes to a method signature. An object’s natural encapsulation of

implementation details also helps you maintain backward compatibility.

Take for example the constructor of ConnectionConfiguration. At one point in time

it wasn’t possible to separately configure the port—it was extracted from the hostname

instead. In a later version of the class, the setPort() method was added, but to maintain

backward compatibility, the old logic for extracting the port from the hostname is still

there (see Listing 6-12).

Chapter 6 the release/reuse equivalenCe prinCiple

132

Listing 6-12. setHostname() Supports Some Old Behavior

class ConnectionConfiguration

{

 private $hostname;

 private $port = 80;

 public function setHostname(string $hostname): void

 {

 // for backward compatibility, extract the port

 // from the hostname, if applicable:

 if (strpos($hostname, ':') !== false) {

 list($hostname, $port) = explode($hostname);

 $this->setPort($port);

 }

 $this->hostname = $host;

 }

 public function setPort(int $port): void

 {

 if ($port <= 0) {

 throw new InvalidArgumentException(

 Port should be larger than 0

);

 }

 $this->port = $port;

 }

 // ...

}

Supporting different types of arguments can also be a great way to normalize data and

keep backward compatibility over time. For example, you can upgrade a parameter type

from a single value to a list of values by leaving out the type (or overloading the method

if your language supports it), without breaking backward compatibility. Or you could

upgrade a primitive-type value to an object if the client still uses a primitive-type value

but internally you already use a proper object. Both examples are shown in Listing 6-13.

Chapter 6 the release/reuse equivalenCe prinCiple

133

Listing 6-13. Supporting Different Argument Types

/**

 * @param string|array $emailAddresses

 */

public function setTo($emailAddresses): void

{

 if (!is_array($emailAddresses)) {

 $emailAddresses = [$emailAddresses];

 }

 // ...

}

/**

 * @param int|DateTimeImmutable $time

 */

public function setLastModified($time): void

{

 if (is_int($time)) {

 $time = DateTimeImmutable::createFromFormat('U', $time);

 }

 if (!$time instanceof DateTimeImmutable) {

 throw new \InvalidArgumentException(...);

 }

 // ...

}

 Use Object Factories
It’s likely that between different package versions, a class will have different

dependencies. Consider the Validator class in Listing 6-14. The initial version

of this class requires no constructor arguments at all. A later version has been

“internationalized” and consequently requires a Translator service to be injected.

Chapter 6 the release/reuse equivalenCe prinCiple

134

Listing 6-14. In the Next Version, the Validator Class Has an Extra Constructor

Argument

// version 1.0.0, no constructor arguments

class Validator

{

 public function __construct()

 {

 // ...

 }

}

// usage:

$validator = new Validator();

// version 2.0.0, added one constructor argument

class Validator

{

 public function __construct(Translator $translator)

 {

 // ...

 }

}

// usage:

$validator = new Validator(new Translator());

When users upgrade the validator package from version 1.0.0 to 2.0.0, their application

will be broken because they don’t provide that extra constructor argument yet.

To prevent such backward compatibility breaks, it would be better if we had provided

a factory for Validator objects from the start. This way, users only need to create a

factory (which should require no constructor arguments), and from then on they could

use the factory to create a new validator (see Listing 6-15).

Chapter 6 the release/reuse equivalenCe prinCiple

135

Listing 6-15. The ValidatorFactory Class

class ValidatorFactory

{

 public function createValidator(): Validator

 {

 $translator = new Translator();

 return new Validator($translator);

 }

}

// usage:

$validator = (new ValidatorFactory())->createValidator();

If in a future version, the Validator class would need any other constructor

argument, the factory will add it behind the scenes and the user wouldn’t need to

know about it. Again, the trick is called “encapsulation”: this time ValidatorFactory

encapsulates the creation logic of Validator.

 And So On…
By now you probably get the idea. There are many ways in which you can make

your code backward compatible and still allow for future changes. For more on this

subject I would like to point you to an article by Garrett Rooney entitled “Preserving

Backward Compatibility”.3 He describes many interesting ways in which developers of

the Subversion project have tried to maintain backward compatibility, while enabling

forward compatibility. Another interesting document is “Our Backward Compatibility

Promise”4 delivered by the Symfony framework team. It may become a good guide for

you too. One last suggestion: for PHP, there’s a tool called Roave Backward Compatibility

Check5 that can analyze the code in a repository and find out if it introduces any

backward compatibility breaks. It provides a detailed overview of the changes to the API

3 Garrett Rooney, “Preserving Backward Compatibility,” https://web.archive.
org/web/20180121015221/http://www.onlamp.com/pub/a/onlamp/2005/02/17/
backwardscompatibility.html (the original page is no longer available)

4 https://symfony.com/doc/current/contributing/code/bc.html
5 https://github.com/Roave/BackwardCompatibilityCheck

Chapter 6 the release/reuse equivalenCe prinCiple

http://www.onlamp.com/pub/a/onlamp/2005/02/17/backwardscompatibility.html
http://www.onlamp.com/pub/a/onlamp/2005/02/17/backwardscompatibility.html
https://web.archive.org/web/20180121015221/http://www.onlamp.com/pub/a/onlamp/2005/02/17/backwardscompatibility.html
https://web.archive.org/web/20180121015221/http://www.onlamp.com/pub/a/onlamp/2005/02/17/backwardscompatibility.html
https://web.archive.org/web/20180121015221/http://www.onlamp.com/pub/a/onlamp/2005/02/17/backwardscompatibility.html
https://symfony.com/doc/current/contributing/code/bc.html
https://github.com/Roave/BackwardCompatibilityCheck

136

of your package and how these changes may break client code. This could spare you

from a lot of time and frustration later on.

Finally, there’s a meta-perspective that you have to take into consideration while

doing all this work to prevent backward compatibility breaks. If backward compatibility

is your main concern when working on your packages, it will be very hard to move

forward. As Anthony Ferrara puts it:

[…] every release adds more cruft for you to maintain. Over time this creates
a halting effect on the code base involved that makes it nearly impossible to
clean up and “make things better. […] So next time you want to propose a
change, rather than thinking how it can break BC, try thinking how you
can make the change compatible with future use cases and changes. The
best way to prevent BC breaks is to plan for them from the beginning.6

 Add Metafiles
The metafiles that are absolutely necessary are a quick start guide in the form of a README

file and some legal stuff in the form of a license file.

 README and Documentation
The README file should be in the root directory of the package. It contains everything a

user needs to get started. The README file may be the only official documentation for a

package. If not, it should contain a link to some other source of documentation inside

the package (for instance, in its docs directory) or a dedicated website. Whichever

strategy you choose, the README file is mandatory since it’s the starting point for people

to learn more about your package.

A README file is a text file. The lines should be wrapped at an appropriate width (e.g.,

80 columns) in order to make it readable in the terminal. It’s also a good idea to apply

some styling and structuring to it. It’s fairly conventional to write the file in Markdown,7

which gives you some basic markup options. You can write some words in italics or bold,

add code blocks, and use section headers. If you use Markdown in your README file,

rename the file to README.md.

The README file should at least contain the following sections.

6 Anthony Ferrara, “Backwards Compatibility Is For Suckers,” https://blog.ircmaxell.com/
2013/06/backwards-compatibility-is-for-suckers.html

7 https://daringfireball.net/projects/markdown/syntax

Chapter 6 the release/reuse equivalenCe prinCiple

https://blog.ircmaxell.com/2013/06/backwards-compatibility-is-for-suckers.html
https://blog.ircmaxell.com/2013/06/backwards-compatibility-is-for-suckers.html
https://daringfireball.net/projects/markdown/syntax

137

 Installation and Configuration

This can be as simple as mentioning the command by which you can install the package

in a PHP project, for example:

composer require matthiasnoback/some-package

Then tell the users everything else they need to do in order to use the package.

Maybe they need to set up or configure some things, clear a cache, add some tables to a

database, etc.

 Usage

You need to show users how they can use the code in your package. This requires a quick

explanation of some use cases and code samples for those situations. Packages often

contain a separate directory with (working) sample code too.

 Extension Points (Optional)

If the package is designed to be extended, if there are plugins for it, or bundles/modules

that make it easy to integrate the library in a framework-based project, make sure you

mention those extension points.

 Limitations (Optional)

You should mention use cases for which the package currently offers no solution. You

should also mention known problems (bugs or other limitations) and maybe some

features that you intend to implement some time.

 License
Another file that is mandatory is the LICENSE file. Even though you have possibly already

provided the name of the license that applies to your package in the package definition

file, you should still add the full license to your package. It should be in a file called

Chapter 6 the release/reuse equivalenCe prinCiple

138

LICENSE in the root of the package. A very common license for open source software is

the MIT license8 (see Listing 6-16).

Listing 6-16. The MIT License

Copyright (c) <year(s)> <name(s)>

Permission is hereby granted, free of charge, to any person

obtaining a copy of this software and associated documentation

files (the "Software"), to deal in the Software without

restriction, including without limitation the rights to use,

copy, modify, merge, publish, distribute, sublicense, and/or

sell copies of the Software, and to permit persons to whom

the Software is furnished to do so, subject to the following

conditions:

The above copyright notice and this permission notice shall

be included in all copies or substantial portions of the

Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY

KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS

OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR

OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR

OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

If you wonder why it’s important to have a license file in your package, it depends on

the country you live in, but some companies need your explicit permission to use your

code in the way they intend to. They want to prevent legally uncomfortable situations

caused by accidental copyright infringement. Equally important is that it relieves you of

any damage your code may cause when used by somebody else.

8 https://opensource.org/licenses/MIT

Chapter 6 the release/reuse equivalenCe prinCiple

https://opensource.org/licenses/MIT

139

 Change Log (Optional)
Besides the mandatory README and LICENSE files, you should also consider adding

a change log. This will make it easy for users to find out what has changed between

versions of the package. Based on the information, they can decide if it’s necessary or

useful for them to upgrade their installed version of the package.

Each new version (major, minor or patch) gets its own section in the change log in

which you describe the changes that were made since the previous version. You should

briefly describe new features that were added, things that were deprecated (but not

removed), and problems that were fixed, as well as possibly point to issues in the issue

tracker. See Listing 6-17 for an example of a CHANGELOG.md file.

Listing 6-17. An Excerpt from a CHANGELOG.md File

Changelog

v0.5.0

- Automatically resolve a definition's class before comparing

it to the expected class.

v0.4.0

- Added `ContainerBuilderHasSyntheticServiceConstraint` and

corresponding assertion (as suggested by @WouterJ).

...

There is no standard format, although the one proposed on keepachangelog.com9 is

both simple and complete.

 Upgrade Notes (Optional)
Each section of the change log may contain some upgrade notes that tell users what they

need to do when they upgrade to a newer version. For instance, if some classes were

deprecated, it’s a good idea to mention in the change log in which version you actually

removed them.

9 https://keepachangelog.com/

Chapter 6 the release/reuse equivalenCe prinCiple

https://keepachangelog.com/

140

In some cases, these upgrade notes start taking up too much space, which will

muddle the view on the actual change log. Then it’s time to move the upgrade notes

to specific UPGRADE-x files. For example, UPGRADE-3.md will contain instructions for

upgrading the dependency on this package from version 2.x.x to 3.x.x. Remember that in

between major versions no actions from the user should be required, because minor and

patch versions only introduce backward compatible changes.

 Guidelines for Contributing (Optional)
In particular, if your project is an open source project, you may consider adding a

separate file in which you describe the process of contributing to the package. This file

should contain things like:

• Suggestions on how to install the package in such a way that you can

run its test suite and start working on a new feature, bug fix, etc.

• Guidelines for submitting your work to the project (requirements for

the pull request description, coding style, etc.).

• How to reach out for help, where to discuss issues, etc.

 Quality Control
We already discussed many characteristics of a package that would make it qualify as

a good package (or a “good product”). Most of these characteristics were related to the

infrastructure of the package: a package should display some good manners when it

comes to version control, the package definition file, dependencies and their versions,

and backward compatibility. Several metafiles need to be in place, for the package to be

usable, like documentation and a license file, etc.

You may have noticed that until now we haven’t given much attention to the actual

code in your package. We will of course discuss the required characteristics of classes

in a package at great length in the next chapters. But in the last sections of this chapter,

I first point out some aspects of the package infrastructure that will help you create

packages with high-quality code.

Chapter 6 the release/reuse equivalenCe prinCiple

141

 Quality from the User’s Point of View
A package makes some implicit promises about the code it contains. It basically says:

“You can add me to your project. My code will fulfill your needs. You won’t have to write

this code yourself. And that will make you very happy.”

When I stumble upon a package that may provide the functionality that I need, the

first thing I do is read the README file (and possibly any other documentation that is

available). When the description of the package resembles my own ideas about the code

that I was going to write if this package wouldn’t exist, the next thing I do is dive into the

code. I quickly scan the directory structure, the class names, then the code inside those

classes, which I will then critically evaluate.

In the first place I look for the use cases that the package supports. The package

maintainer has probably created this package to support one of their particular use

cases. Most likely my own use case is (slightly if not vastly) different from theirs. So

one particular characteristic I’m looking for is extensibility: is it possible to change the

behavior of some of the classes in a package without actually modifying the code itself?

Some good signs of extensibility are the use of interfaces and dependency injection.

Furthermore, the package’s code probably contains bugs, which need to be

fixed. While wading through the code, I try to estimate the amount of work needed

to fix any problem with the code—does the package contain classes with too many

responsibilities? Would it be possible to swap out faulty implementations by simply

implementing an interface defined in the package, or would I be forced to copy long

pages of code to replicate its behavior (after which I’ll decide to drop the package

anyway)?

Finally, I take a look at the automated tests that are available inside this package.

Are there enough tests? Do they consist of clean code themselves? Do they make sense

or are they just there for test coverage? What if there are no tests at all (which is the case

for many packages out there)? How can I trust this code to work in my own project?

How could I ever have the courage to put this code on a production server and let it be

executed by real users?

The reason for my cautiousness when adding a dependency to my project is that

once it’s installed and I start using the code it contains, I become responsible for it.10

Although many package maintainers are quite serious about delivering support for

10 Igor Wiedler discusses this in detail in his article “Dependency Responsibility,”
https://igor.io/2013/09/24/dependency-responsibility.html

Chapter 6 the release/reuse equivalenCe prinCiple

https://igor.io/2013/09/24/dependency-responsibility.html

142

their packages, not every one of them will always fix any problem that gets reported, or

add any feature that’s missing, even if you’re nice enough to create a pull request for it.

Chances are you’ll be on your own when the package doesn’t meet your expectations.

So you need to be able to fix bugs, and add features to the package, without

modifying the code inside the package (since you’re not actually able to do so). You need

to be comfortable with that.

 What the Package Maintainer Needs to Do
As a package maintainer, you need to write code following established design principles,

like the SOLID principles explained in the previous part of this book. But there are some

other (much simpler) guidelines you should follow to produce good, or “clean,” code.

 Static Analysis
To verify that code quality has a certain level and doesn’t degrade over time, you can

leverage automated static analysis tools. These tools can inspect the code and bring out

a verdict based on a set of rules that in most cases can be fully configured to reflect your

own quality standards. Popular static analysis tools for PHP are PHPStan and so-called

“inspections” in IDEs like JetBrains’s PhpStorm. There are lots of other tools available

though, most of which have been conveniently listed on a website called “PHP Quality

Assurance”.11

 Add Tests
Of course it’s important that your code looks good. But it’s even more important that it

runs well. And how would you be able to verify that? By adding an “appropriately sized”

suite of tests to your package.

There are vastly different opinions about what this means exactly: how many tests

should you write? Do you write the tests first12 and later the code? Should you add

integration tests or functional tests? What is the amount of code coverage your

package needs?

11 See also https://phpqa.io/
12 Robert C. Martin discusses what a test-first approach means in his article “Test First,”
https://8thlight.com/blog/uncle-bob/2013/09/23/Test-first.html

Chapter 6 the release/reuse equivalenCe prinCiple

https://phpqa.io/
https://8thlight.com/blog/uncle-bob/2013/09/23/Test-first.html

143

The crucial question you should ask yourself is this: do I care about the future of my

code? Tests are meant to allow for safe refactoring later on. If you just write the code and

use it in one project then you may not feel the need to write tests for this code. On the

contrary, you’d definitely need quite a large test suite if that code is going to be used by

anyone else in any other project. In that case you want to keep fixing bugs or add new

features to the package. If you have no tests, making those changes becomes difficult and

dangerous. How can you trust the package to work as expected after you’ve made the

changes?

So tests support refactoring. They will greatly help you prevent regressions in

future commits. But tests also serve as the specification of your code. They describe

the expected behavior when a user would do something with the code in some specific

situation. This is why tests could in theory serve as documentation for the code.

This is not really true of course, because tests only tell little parts of the story, but

never the whole story. They have no introduction, no epilogue, and they don’t fill in any

(conceptual) knowledge gaps. Nevertheless, tests as a specification of the code and a

description of its behavior are important because they let users of the code know which

method calls they can make, what kind of arguments they should provide, and which

preconditions are required before they can do so.

If a package has no tests or too few tests, this is what it communicates to users:

“I don’t care about the future of this code. I’m not sure that, when I change something,

everything will keep working. In fact, I give you no hope that this code is reliable at all.

I use it today; I don’t care about tomorrow.”

 Set Up Continuous Integration
All tests need to be run often. Of course, you run tests all the time while developing. But

every time you create another branch (for a new version), patch branches with some bug

fix, or when you accept pull requests, you would have to run the tests again. Otherwise

you won’t know for sure that everything works as expected. Doing all of this manually

would be too much work. And this is where continuous integration comes in handy.

Continuous integration means that every change to a project’s repository will trigger

its build process. If anything goes wrong, the project team will receive a notification and

they can (immediately) fix the problem.

Chapter 6 the release/reuse equivalenCe prinCiple

144

For software products that will be shipped, a build process may include the creation

of an executable, or a ZIP file. For most projects the build process is mainly interesting

because all the tests will be run. Some other artifacts that may be produced by the build

process are code coverage and code quality metrics.

 Conclusion
Most of the things that we discussed in this chapter were of a very practical nature. The

underlying reason for this was: you need to get the infrastructure of your package right,

before you can make it reusable in the first place. For you, your teammates, or external

developers from all over the world to be able to use your package in their projects, it

needs to be a really good product. You (or the package maintainer succeeding you) need

to be able to release the package once and to support future releases by means of a good

infrastructure. Users should be able to understand what the package is all about, how

they can use it, and what they can expect from you with regard to future versions.

Code being released as one package constitutes the first aspect of the cohesion of a

package. If the release process of a package is unmanageable or not managed at all, it can

not be properly reused. This chapter gave you an overview of what it means for a package

to be released in a manageable way, from the first release, to any future release, and from

patch versions to major versions. There are many details to this process that we didn’t

cover here, but those are often specific for the programming language that you use.

One last remark before we continue to discuss the second cohesion principle, the

Common Reuse principle. It’s possible that I have scared you, writing about all these

things that you need to do to create “good” packages. Maybe you are tempted to put

this book down and to let go of your dream to one day publish a package that is used by

many, many people. But don’t give up! Of course, creating your first package might give

you some trouble. It will take some time, you may feel a bit insecure about the steps you

take, you may forget some things, you may make some mistakes. The good thing is that

you will learn quickly, develop some kind of habit, and in my experience other people

are not shy about giving you useful feedback on your packages, which should help you

release even better packages over time.

After you finish reading this book, go ahead and look for some practical suggestions

to do the things that were described in a more abstract way in this chapter, and become

part of the lively, code-sharing community of developers.

Chapter 6 the release/reuse equivalenCe prinCiple

145
© Matthias Noback 2018
M. Noback, Principles of Package Design, https://doi.org/10.1007/978-1-4842-4119-6_7

CHAPTER 7

The Common Reuse
Principle
In Chapter 6, we discussed the Release/Reuse Equivalence principle. It’s the first principle

of package cohesion: it tells an important part of the story about which classes belong

together in a package, namely those that you can properly release and maintain as a

package. You need to take care of delivering a package that is a true product.

If you follow all the advice given in the previous chapter, you will have a well-

behaving package. It has great usability and it’s easily available, so it will be quickly

adopted by other developers. But even when a package behaves well as a package, it may

at the same time not be very useful.

Let’s say you have a nice collection of very useful classes, implementing several

interesting features. When you group those classes into packages, there are two extremes

that need to be avoided. If you release all the classes as one package, you force your users

to pull the entire package into their project, even if they use just a very small part of it.

This is quite a maintenance burden for them.

On the other hand, if you put every single class in a separate package, you will have

to release a lot of packages. This increases your own maintenance burden. At the same

time, users have a hard time managing their own list of dependencies and keeping track

of all the new versions of those tiny packages.

In this chapter, we discuss the second package cohesion principle, which is called the

Common Reuse principle. It helps you decide which classes should be put together in a

package, and what’s more important, which classes should be moved to another package.

When we’re selecting classes or interfaces for reuse, the Common Reuse principle tells us that1:

Classes that are used together are packaged together.

1 Robert C. Martin, “The principles of OOD,” http://butunclebob.com/ArticleS.UncleBob.
PrinciplesOfOod

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

146

So when you design a package you should put classes in it that are going to be used

together. This may seem a bit obvious; you wouldn’t put completely unrelated classes

that are never used together in one package. But things become somewhat less obvious

when we consider the other side of this principle—you should not put classes in a

package that are not used together. This includes classes that are likely not to be used

together (which leaves the user with irrelevant code imported into their project).

In this chapter, we look at some packages that obviously violate this rule: they contain

all sorts of classes that are not used together—either because those classes implement

isolated features or because they have different dependencies. Sometimes the package

maintainer puts those classes in the same package because they have some conceptual

similarity. Some may think it enhances the usability of the package for them or its users.

At the end of this chapter, we try to formulate the principle in a more positive way

and we discuss some guiding questions that can be used to make your packages conform

to the Common Reuse principle.

There are many signs, or “smells,” by which you can recognize a package that violates

the Common Reuse principle. I’ll discuss some of these signs, using some real-world

packages as examples. A quick word before we continue—in no way do I want to dispute

the greatness of these packages. They are well-established packages, created by expert

developers, and used by many people all over the world. However, I don’t agree with some

of the package design choices that were made. So you should take my comments not as

angry criticism, but as a gesture toward what I think is the ideal package design approach.

 Feature Strata
The most important characteristic of packages that violate the Common Reuse principle

is what I call “strata of features”. I really like the term strata, and this is the perfect time to

use it. A stratum is:

A layer of material, naturally or artificially formed, often one of a number
of parallel layers, one upon another.2

I’d like to define “feature strata” as features existing together in the same package,

but not dependent on each other. This means that you would be able to use feature A

2 https://www.dictionary.com/browse/strata

Chapter 7 the Common reuse prinCiple

https://www.dictionary.com/browse/strata

147

without feature B, but adding feature B is possible without disturbing feature A. It also

means that afterward, disabling feature B is no problem and won’t cause feature A to

break. Feature A and B don’t touch; they work in parallel.

In the context of packages, feature strata often manifest themselves as classes that

belong together because they implement some specific feature. But then after one

feature has been implemented, the maintainer of the package kept adding new features,

consisting of conglomerates of classes to the same package. In most cases, this happens

because the features are conceptually, but not materially, related.

 Obvious Stratification
Sometimes you can recognize a stratified package by the fact that it literally contains a

different namespace for each feature stratum. There are many examples of this, but let’s

take a look at the symfony/security package,3 which contains the Symfony Security

component.4 As you can see by looking at its directory/namespace tree, it has four major

namespaces—Acl, Core, Csrf, and Http—each of them containing many classes (see

Listing 7-1).

Listing 7-1. The Directory Tree of the symfony/security Package

.

├── Acl
│ ├── Dbal
│ ├── Domain
│ ├── Exception
│ ├── Model
│ ├── Permission
├── Core
│ ├── Authentication
│ ├── Authorization
│ ├── Encoder
│ ├── Event

3 https://packagist.org/packages/symfony/security
4 https://github.com/symfony/Security

Chapter 7 the Common reuse prinCiple

https://packagist.org/packages/symfony/security
https://github.com/symfony/Security

148

│ ├── Exception
│ ├── Role
│ ├── User
│ ├── Util
│ └── Validator
├── Csrf
└── Http

Classes from these major namespaces don’t have to be used together at the same

time: classes in Acl only depend on Core, classes in Http depend on classes in Core and

optionally on classes in Csrf. Not the other way around. This means that if someone

were to install this package to use the Csrf classes, they would only use a small subset

of this package. So if we think about what the Common Reuse principle was all about

(“Classes that are used together are packaged together”), then this is a clear violation of

this principle.

As you can see, some of the major namespaces are split up into minor namespaces.

And as it turns out, many of the classes from the minor namespaces can be used

separately from classes in the other namespaces. This again indicates that the Common

Reuse principle has been violated, and that the package should be split. Fortunately, the

package maintainers already decided to split this package into several other packages,

so now at least the major namespaces have their own package definition file and can be

installed separately.

 Obfuscated Stratification
In many other cases, a package has feature strata that aren’t so easy to spot. The classes

that are grouped around a certain functionality are not separated by their namespace,

but by some other principle of division, for instance by the type of the class. Take a look

at the nelmio/security-bundle package,5 which contains NelmioSecurityBundle,6

which can be used in Symfony projects to add some specific security measures that are

not provided by the framework itself. Because of the nature of the Symfony HttpKernel,7

5 https://packagist.org/packages/nelmio/security-bundle
6 https://github.com/nelmio/NelmioSecurityBundle
7 https://github.com/symfony/HttpKernel

Chapter 7 the Common reuse prinCiple

https://packagist.org/packages/nelmio/security-bundle
https://github.com/nelmio/NelmioSecurityBundle
https://github.com/symfony/HttpKernel

149

everything related to security can be implemented as an event listener, which hooks into

the process of converting a request to a response. Some security-related event listeners

will prevent the kernel from further handling the current request (for instance, based on

the protocol used), and some listeners modify the final response (e.g., encrypt cookies or

session data).

By looking at the directory tree of this package, you can easily recognize the fact that

most of the features are introduced as event listeners, some of which may use utility

classes like Encrypter and Signer (see Listing 7-2).

Listing 7-2. The Directory Structure of the nelmio/security-bundle Package

.

├── ContentSecurityPolicy
│ └── ContentSecurityPolicyParser.php
├── Encrypter.php
├── EventListener
│ ├── ClickjackingListener.php
│ ├── ContentSecurityPolicyListener.php
│ ├── EncryptedCookieListener.php
│ ├── ExternalRedirectListener.php
│ ├── FlexibleSslListener.php
│ ├── ForcedSslListener.php
│ └── SignedCookieListener.php
├── Session
│ └── CookieSessionHandler.php
└── Signer.php

As you could’ve guessed by the names of the listeners, each listener has a particular

functionality and each of the listeners can be used separately. This guess can be confirmed

by looking at the available configuration options for this package (see Listing 7-3).

Listing 7-3. The Available Configuration Options for the nelmio/security- bundle

Package

nelmio_security:

 # signs/verifies all cookies

 signed_cookie:

 names: ['*']

Chapter 7 the Common reuse prinCiple

150

 # encrypt all cookies

 encrypted_cookie:

 names: ['*']

 # prevents framing of the entire site

 clickjacking:

 paths:

 '^/.*': DENY

 # prevents redirections outside the website's domain

 external_redirects:

 abort: true

 log: true

 # prevents inline scripts, unsafe eval, external

 # scripts/images/styles/frames, etc

 csp:

 default: [self]

 ...

It becomes clear that all of these listeners represent a different functionality that can

be configured on its own and any of the listeners can be disabled, while the other one

will still keep working. This forces us to conclude that when you use one class from this

package, you will not always use all the other (nor even most of the other) classes inside

this package. And thus, the package violates the Common Reuse principle in a very clear

way. Somebody who wants to use only one of the features provided by this bundle (and

they can!) still has to install the entire bundle.

It becomes slightly more interesting when we look at the remaining configuration

options, where it appears that some parts of this package are even mutually exclusive:

HTTPS handling can not be “forced” and “flexible” at the same time (see Listing 7-4).

Listing 7-4. HTTPS Handling Can’t Be Configured to be “Forced” and “Flexible”

at the Same Time

nelmio_security:

 ...

Chapter 7 the Common reuse prinCiple

151

 # forced HTTPS handling, don't combine with flexible mode

 # and make sure you have SSL working on your site before

 # enabling this

forced_ssl:

hsts_max_age: 2592000 # 30 days

hsts_subdomains: true

 # flexible HTTPS handling

flexible_ssl:

cookie_name: auth

unsecured_logout: false

This means that when you use one particular class in this package, i.e. the

ForcedSslListener, you will definitely not use all other classes of this package. In fact,

you will with certainty not use FlexibleSslListener. Of course, this definitely asks for a

package split, so users would not have to be concerned with this exclusiveness.

 Classes That Can Only Be Used When … Is Installed
It should be noted that the previous examples were about packages that provide separate

feature strata, but each of those features has the same dependencies (in this case, other

Symfony components or the entire Symfony framework). The following examples will be

about feature strata within packages that have different dependencies themselves.

Let’s take a look at the monolog/monolog package,8 which contains the Monolog

logger.9 The primary class of this package is the Logger class (obviously). However, the

real handling of log messages is done by instances of HandlerInterface. By combining

different handlers, activation strategies, formatters, and processors, every part of logging

messages can be configured. The package tries to offer support for anything you can

write log messages to, like a file, a logging server, a database, etc. This results in the list of

files in Listing 7-5 (it’s quite big and still it’s shorter than the real list).

8 https://packagist.org/packages/monolog/monolog
9 https://github.com/Seldaek/monolog

Chapter 7 the Common reuse prinCiple

https://packagist.org/packages/monolog/monolog
https://github.com/Seldaek/monolog

152

Listing 7-5. List of Files in the monolog/monolog Package (Abbreviated)

.

├── Formatter
│ ├── ChromePHPFormatter.php
│ ├── FormatterInterface.php
│ ├── GelfMessageFormatter.php
│ ├── JsonFormatter.php
│ ├── LogstashFormatter.php
│ └── WildfireFormatter.php
├── Handler
│ ├── AmqpHandler.php
│ ├── BufferHandler.php
│ ├── ChromePHPHandler.php
│ ├── CouchDBHandler.php
│ ├── CubeHandler.php
│ ├── DoctrineCouchDBHandler.php
│ ├── ErrorLogHandler.php
│ ├── FingersCrossedHandler.php
│ ├── FirePHPHandler.php
│ ├── GelfHandler.php
│ ├── HandlerInterface.php
│ ├── HipChatHandler.php
│ ├── MailHandler.php
│ ├── MongoDBHandler.php
│ ├── NativeMailerHandler.php
│ ├── NewRelicHandler.php
│ ├── NullHandler.php
│ ├── PushoverHandler.php
│ ├── RavenHandler.php
│ ├── RedisHandler.php
│ ├── RotatingFileHandler.php
│ ├── SocketHandler.php
│ ├── StreamHandler.php
│ ├── SwiftMailerHandler.php
│ ├── SyslogHandler.php

Chapter 7 the Common reuse prinCiple

153

│ ├── TestHandler.php
│ └── ZendMonitorHandler.php
├── Logger.php
└── Processor
 ├── MemoryProcessor.php
 ├── ProcessIdProcessor.php
 └── PsrLogMessageProcessor.php

A developer can install this package and start instantiating handler classes for any

storage facility that is already available in their development environment. As a user

you don’t need to think about which package you should install; it’s always the main

package. This would seem to have a high usability factor: isn’t this easy? Whatever your

situation is, just install the monolog/monolog package and you can use it right away (this

is known as the “batteries included” approach).

As we will see, this design choice complicates things a lot, for the user as well as

for the package maintainer. The thing is, this package isn’t entirely honest about its

dependencies. It contains code for all kinds of things, but all this code needs many

different extra things to be able to function correctly. For instance, the MongoDBHandler

needs the mongo PHP extension to be installed. Now when I install monolog/monolog,

the package manager won’t verify that the extension is installed, because it’s listed as an

optional dependency (ext- mongo under the suggest key) in the package definition file

(see Listing 7-6).

Listing 7-6. Optional Dependencies for the monolog/monolog Package

{

 "name": "monolog/monolog",

 ...

 "require": {

 "php": ">=5.3.0",

 "psr/log": "~1.0"

 },

 ...

 "suggest": {

 "mlehner/gelf-php": "Send log messages to GrayLog2",

 "raven/raven": "Send log messages to Sentry",

 "doctrine/couchdb": "Send log messages to CouchDB",

Chapter 7 the Common reuse prinCiple

154

 "ext-mongo": "Send log messages to MongoDB",

 "aws/aws-sdk-php": "Send log messages to AWS services"

 ...

 },

 ...

}

Why didn’t the maintainer of monolog/monolog add the ext-mongo dependency

to the list of required packages? Well, imagine a developer who only wants to use the

StreamHandler, which just appends log messages to a file on the local filesystem. They

don’t need a Mongo database nor the mongo extension to be available. If ext-mongo

would be a required dependency, installing the monolog/monolog package would force

them to also install the mongo extension, even though the code that really needs the

extension will never be executed in their environment. This is why ext-mongo is just a

suggested dependency.

So if I want to use its MongoDBHandler for storing my log messages in a Mongo

database, I have to manually add ext-mongo as a dependency to my own project (as is

shown in Listing 7-7). This will make the package manager check if the mongo extension

has indeed been installed.

Listing 7-7. Manually Adding ext-mongo as a Project Dependency

{

 "require": {

 "ext-mongo": ...

 }

}

The first issue for me is that I don’t know which version of the mongo PHP

extension I need to install to be able to use the MongoDBHandler. There’s no way

to find that out, other than to just try installing the latest stable version and

hope that it’s supported by MongoDBHandler. I will only know this for sure if the

MongoDBHandler comes with tests that fully specify its behavior. Then I could run the

tests and see if they pass with the specific version of ext-mongo that I just installed.

This is my first objection to the design choice of making the MongoDBHandler part of

the core Monolog package.

Chapter 7 the Common reuse prinCiple

155

The second objection to this approach is that it forces me to add the mongo extension

to the list of dependencies of my own project. This is wrong, since it’s not a dependency

of my project but of the monolog/monolog package. It’s a dependency of a class inside

that package. My own project might not contain any code related to MongoDB at

all, yet I have to require the mongo extension in my project because I want to use the

MongoDBHandler class.

So the monolog/monolog package doesn’t handle its dependencies well, and I have to

do this myself. But this doesn’t really match with the idea of a package manager, which I

instruct to install each of my own dependencies and any dependencies required by these

dependencies. I want all the packages I install to fully take care of their own dependencies.

It’s not my responsibility to know the dependencies of each class inside a package and to

guess which ones I need to manually install to be able to use them. Furthermore, I should

not be the one who needs to find out which version of a dependency is compatible with

the code in the package. This is the task of the package maintainer.

This reasoning applies to each of the specific handlers that the monolog/monolog

package supplies. And nearly all handlers will be used exclusively by any particular

user, which means that the package violates the Common Reuse principle an equal

number of times. For any handler in the package, the other handlers and their optional

dependencies will probably never be used at the same time.

 Suggested Refactoring
The solution to this problem is easy—split the monolog/monolog package. Each

handler should have its own package, with its own true dependencies. For example, the

MongoDBHandler would be in the monolog/mongo-db-handler package, which can be

defined as in Listing 7-8.

Listing 7-8. The Definition File for the monolog/mongo-db-handler Package

{

 "name": "monolog/mongo-db-handler",

 "require": {

 "php": ">=5.3.2",

 "monolog/monolog": "~1.6"

 "ext-mongo": ">=1.2.12,<1.6-dev"

 }

}

Chapter 7 the Common reuse prinCiple

156

This way, each specific handler package can be explicit about its dependencies

and the supported versions of those dependencies too, and there are no optional

dependencies anymore (think about it: how can a dependency be “optional” really?).

If I choose to install the monolog/mongo-db-handler, I can rest assured that every

dependency will be checked for me and that after installing the package, every line of

code inside it is executable in my development environment. Figure 7-1 shows what the

dependency hierarchy looks like after this change.

Previously, the package definition file of monolog/monolog contained some useful

suggestions as to what other extensions and packages the user could install to unlock

some of its features. Now that the ext-mongo dependency was moved to the monolog/

mongo-db-handler package, how does a user know they can use a Mongo database

to store log messages? Well, this monolog/mongo-db- handler package itself could be

listed under the suggested dependencies for the monolog/monolog package, as shown in

Listing 7-9.

Listing 7-9. Suggested Dependencies for the monolog/monolog Package

{

 "name": "monolog/monolog",

 ...

Figure 7-1. monolog packages with explicit dependencies

Chapter 7 the Common reuse prinCiple

157

 "suggest": {

 "monolog/mongo-db-handler": "Send log messages to MongoDB",

 "monolog/gelf-handler": "Send log messages to GrayLog2",

 "monolog/raven-handler": "Send log messages to Sentry",

 ...

 },

 ...

}

 A Package Should Be “Linkable”
Let’s take one last look at MongoDBHandler, as it’s currently still a part of the monolog/

monolog package. We already concluded that after installing the package, you would

not be able to use this class without also installing the mongo PHP extension first. If

we don’t do this, and we try to use this specific handler, we would get all kinds of

errors, in particular errors related to classes that were not found. The code inside the

MongoDBHandler is syntactically correct, it just doesn’t work in the context of this project.

We need to make a conceptual division here when it comes to correctness, a division

that is not often made by PHP developers. In many programming languages, problems

with the code can occur at compile time or at link time. Compiling code means checking

its syntax, building an abstract syntax tree, and converting the higher-level code to

lower-level code. The result of the compile step are object files, which need to be linked

together, in order to be executable. During the link process, references to classes and

functions will be verified. If a function or class is not defined in any of the object files, the

linker produces an error.

One of the characteristics of PHP is that it has no link process. It compiles code, yes,

but if a class or a function does not exist, it will only be noticed at runtime, and even then

in most cases, at the very last moment.

I strongly believe that even though PHP allows us to be very flexible in this regard,

we must teach ourselves to think more in a “compiled language” way. We have to ask

ourselves: would this code compile? It should, definitely, otherwise it would just be

malformed code. And regarding every explicit, non-optional dependency of my package:

would this code “link”? The answer would be “No” if the MongoDBHandler stays inside the

monolog/monolog package, which has the mongo extension as a suggested dependency

only. If we move the MongoDBHandler to its own monolog/mongo-db-handler package,

which has an explicit dependency on ext-mongo, the answer will be “Yes,” as it should be.

Chapter 7 the Common reuse prinCiple

158

STATIC ANALYSIS TOOLS AS SUBSTITUTES FOR A REAL COMPILER

over the last few years, php as a programming language has moved further and further into

the direction of being a statically typed language. php code will remain a dynamic language

with compilation at runtime. But the language has better type checking with every release.

Besides, php developers compensate for what the language doesn’t offer by using all kinds of

static analysis tools. these tools become more and more popular, since they help catch a lot of

potential issues with the code, before the code runs on some server.

in the context of our discussion about compiling and linking, phpstan deserves a first mention

here:

PHPStan moves PHP closer to compiled languages in the sense that the correctness

of each line of the code can be checked before you run the actual line.10

Comparable tools are psalm11 and phan.12

there’s another tool worth mentioning here. it’s called Composer require Checker13 and it

checks whether a package uses imported symbols (classes, interfaces, etc.) that aren't part

of its direct dependencies. this is very useful, since it will prevent the scenario where your

package uses a class that’s inside a package that is only indirectly a dependency of your

package. in other words, if package a depends on package B and B depends on C, then if a

also depends on C, it needs to make this dependency explicit. otherwise, if one day B stops

depending on C, this will break a. if you use phpstorm as your iDe, the php inspections plugin

can also tell you about implicit dependencies.

 Cleaner Releases
There’s one more characteristic of the monolog/monolog package that I’d like to discuss

here, which again points us in the direction of creating separate packages for each of the

specific handlers.

10 https://github.com/phpstan/phpstan
11 https://github.com/vimeo/psalm
12 https://github.com/phan/phan
13 https://github.com/maglnet/ComposerRequireChecker

Chapter 7 the Common reuse prinCiple

https://github.com/phpstan/phpstan
https://github.com/vimeo/psalm
https://github.com/phan/phan
https://github.com/maglnet/ComposerRequireChecker

159

As we saw in the chapter about the Release/Reuse Equivalence principle, it’s

important for a package to be a good software product. One of the important

characteristics of good software is that new versions don’t cause backward compatibility

breaks. However, the MongoDBHandler in the monolog/monolog package shows clear signs

of a struggle for backward compatibility (see Listing 7-10).

Listing 7-10. The MongoDBHandler

class MongoDBHandler extends AbstractProcessingHandler

{

 // ...

 public function __construct(

 $mongo,

 $database,

 $collection,

 ...

) {

 if (!($mongo instanceof MongoClient

 || $mongo instanceof Mongo)) {

 throw new InvalidArgumentException('...');

 }

 // ...

 }

 // ...

}

The first constructor parameter $mongo has no explicit type. Instead, the validity of

the argument is being checked inside the constructor and this validation step allows

us to use two different kinds of $mongo objects. It should be either an instance of

MongoClient or an instance of Mongo. Both are classes from the mongo PHP extension, but

the Mongo class is deprecated since version 1.3.0 of the extension.

So now there’s an ugly if clause inside the constructor of this class, which prevents

the $mongo argument from being strictly typed, even if I have the latest version of the

mongo extension installed in my environment. This shouldn’t be necessary. I’d like the

handler to look like the one in Listing 7-11 instead.

Chapter 7 the Common reuse prinCiple

160

Listing 7-11. The MongoDBHandler with a Strictly Typed Constructor Argument

class MongoDBHandler extends AbstractProcessingHandler

{

 ...

 public function __construct(

 MongoClient $mongo,

 $database,

 ...

) {

 // no need for extra validation

 // ...

 }

 // ...

}

But if we remove the if clause, this class would be useless for people who have an

older version of mongo installed on their system.

The only way to solve this dilemma is to create extra branches in the version

control repository of the monolog/monolog package—a branch for version ranges of

MongoDB that should receive special treatment, e.g. monolog/monolog@mongo_db_

older_than_1_3_0 and monolog/monolog@mongo_db. Of course, this will soon end in a

big mess. The monolog/monolog package has many more handlers that may require such

treatment.

Let’s fast-forward to the already suggested solution of moving the MongoDBHandler to

its own package, the definition file of which looks like the one in Listing 7-12.

Listing 7-12. The Definition File for the monolog/mongo-db-handler Package

(Revisited)

{

 "name": "monolog/mongo-db-handler",

 "require": {

 "php": ">=5.3.2",

Chapter 7 the Common reuse prinCiple

161

 "monolog/monolog": "~1.6"

 "ext-mongo": ">=1.2.12,<1.6-dev"

 }

}

This monolog/mongo-db-handler package is hosted inside a separate repository, so

it doesn’t need to keep up with the versions of the core monolog/monolog package. This

means it’s possible to add branches corresponding to different versions of the mongo

extension. For instance, you could have a 1.2.x branch and a 1.3.x branch, corresponding

to the version of the mongo extension that is supported. Then someone who has version

1.2 of the mongo extension installed could add version 1.2 of monolog/monolog-db-

handler as a dependency to their project (see Listing 7-13).

Listing 7-13. Adding Version 1.2 of monolog/monolog-db-handler as a

Dependency

{

 "require": {

 "monolog/monolog-db-handler": "1.2.*"

 }

}

Someone who already has the latest version of the mongo extension would simply

choose "~1.3" as the version constraint.

Splitting the package based on its (optional) dependencies is advantageous not only

to the user of the package. It will also help the maintainer a lot. They can let someone

else maintain the MongoDB-specific handler package, someone who already keeps a

close eye on the mongo extension releases. This person doesn’t have to be able to modify

the main monolog/monolog package. This package automatically becomes a more stable

package, because it has fewer reasons to change (see also Chapter 8 about the Common

Closure principle). This is by itself a good thing for its users, who don’t need to keep track

of every new version that is released because of a change in one of the handlers they

don’t use.

Chapter 7 the Common reuse prinCiple

162

THE COST OF SPLITTING

When discussing the package design principles and applying them to real-world

packages, the advice is usually to split the package into smaller ones. While we’re still in

the middle of discussing all the reasons for doing so, it’s good to mention that there’s a

trade-off involved in splitting packages. the smaller your packages are, the more you will

have of them, the more work you have to put into making new releases, managing the

repositories, their issues and pull requests, etc. the larger your packages are, the more

complicated they are to work with from a user perspective. the package will need to be

upgraded often, and the user will pull in lots of code and lots of dependencies they

don’t need.

it's good to keep this in mind when you’re a package developer. You need to find that golden

middle between too many small packages, and too few large packages.

a technical solution that could be helpful is the so-called “mono-repo”. it means that the code

for all your packages will be hosted in one repository. any change to any of the packages

will be committed to that repository. to make it possible for users to install every package

separately, there will be a read-only repository for each of the subpackages inside the mono-

repo. these sub-repositories will be updated upon every change to the main repository. For

Git, this process is called “subtree split”. there’s no need to manually set it up, since there are

automated solutions, like Git subtree split as a service.14

 Bonus Features
We’ve looked at obvious and non-obvious feature strata and why these are

characteristics of packages that violate the Common Reuse principle. Sometimes

features are not really strata, but single classes that nevertheless don’t belong inside

a package. Let’s take a look at the matthiasnoback/microsoft-translator package15

I created myself. This package contains the MicrosoftTranslator library,16 which can

14 https://www.subtreesplit.com/
15 https://packagist.org/packages/matthiasnoback/microsoft-translator
16 https://github.com/matthiasnoback/microsoft-translator

Chapter 7 the Common reuse prinCiple

https://www.subtreesplit.com/
https://packagist.org/packages/matthiasnoback/microsoft-translator
https://github.com/matthiasnoback/microsoft-translator

163

be used for translating text using the Microsoft (Bing) Translator API. The translator

depends on the kriswallsmith/buzz package,17 which itself contains an HTTP

client called Buzz.18 My package uses its Browser class to make HTTP requests to the

Microsoft OAuth and Translator APIs, as you may guess by its (stripped) directory

structure (see Listing 7-14).

Listing 7-14. The Abbreviated Directory Structure of the matthiasnoback/

microsoft-translator Package

.

├── Buzz
├── Exception
├── MicrosoftOAuth
└── MicrosoftTranslator

While I was developing this library, I realized that my application might make

many duplicate calls to the Microsoft Translator API. For instance, it would ask the

translation service several times to translate the word “Submit” to Dutch. And even

though this would trigger a new HTTP request every time, the response from the API

would always be the same. In order to prevent these duplicate requests, I decided to

add a caching layer to the package and I thought it would be a good idea to do this by

wrapping the Buzz browser client in a CachedClient19 class. The CachedClient class

would analyze each incoming request and look in the cache to see if it had made this

request before. If so, the cached response would be returned; otherwise, the request

would be forwarded to the real Buzz client, and afterwards the fresh response would

be stored in the cache.

See Figure 7-2 for the dependency diagram of the microsoft-translator

package.

17 https://packagist.org/packages/kriswallsmith/buzz
18 https://github.com/kriswallsmith/Buzz
19 https://github.com/matthiasnoback/microsoft-translator/blob/v0.6.1/src/
MatthiasNoback/Buzz/Client/CachedClient.php

Chapter 7 the Common reuse prinCiple

https://packagist.org/packages/kriswallsmith/buzz
https://github.com/kriswallsmith/Buzz
https://github.com/matthiasnoback/microsoft-translator/blob/v0.6.1/src/MatthiasNoback/Buzz/Client/CachedClient.php
https://github.com/matthiasnoback/microsoft-translator/blob/v0.6.1/src/MatthiasNoback/Buzz/Client/CachedClient.php

164

Though at the time I thought the design of this library was pretty good, I would

now try to eliminate the dependency on Buzz. There’s nothing so special about

Buzz that this package would really need it. In fact, all it needs is “some HTTP

client”. Considering the need for abstraction, I would introduce an interface for

HTTP clients (e.g., HttpClientInterface) and then create a separate package,

called matthiasnoback/microsoft-translator-buzz, which would provide an

implementation of my own HttpClientInterface that uses Buzz. Even better, I could

rely on an existing abstraction for HTTP clients (e.g., HTTPlug20) or some otherwise

standardized and widely supported interface, like the upcoming PHP Standards

Recommendation (PSR) 18.21

But there’s some other thing that’s wrong with the design of this library: it contains

this smart little CachedClient class. Since it’s indeed such a useful class, every user of

this package will likely use this CachedClient class together with the other classes in the

package. So there’s no immediate violation of the Common Reuse principle here.

However, suppose that your project already depends on the kriswallsmith/buzz

Figure 7-2. Dependency diagram of the microsoft-translator package

20 https://github.com/php-http/httplug
21 https://www.php-fig.org/psr/

Chapter 7 the Common reuse prinCiple

https://github.com/php-http/httplug
https://www.php-fig.org/psr/

165

package and you need a cache implementation for the Buzz browser client. The

matthiasnoback/microsoft-translator package contains such an implementation, so

you would simply install it and use only its CachedClient class, and no other class from

the same package. Now this makes it crystal-clear that the package does indeed violate

the Common Reuse principle. If you use a class from this package, you will not use all the

other classes.

 Suggested Refactoring
As you may have guessed, the solution to this problem would be to extract the

CachedClient class and put it in another package, matthiasnoback/cached-buzz-

client, which has nothing to do with the Microsoft Translator and just depends on

kriswallsmith/buzz. That way, anybody can install just this package in their project and

use the cache layer for Buzz clients. Even better, this package could evolve separately

from the microsoft-translator package. Other people may contribute to it by adding

features or fixing bugs. These enhancements would become available for everyone

who depends on the cached-buzz-client package. When installing the microsoft-

translator package, the cached-buzz-client package could be a suggested, optional

dependency (see Figure 7-3).

Figure 7-3. Dependency diagram of the microsoft-translator package after
moving the CachedClient class out

Chapter 7 the Common reuse prinCiple

166

It’s really great that Buzz now has a way to cache HTTP responses, and this could

indeed be interesting functionality for other people. However, if we would have thought

more carefully before jumping in and extending the Buzz HTTP client itself, we could

have realized that a much simpler solution was just around the corner. Rephrasing

the functional requirements as “to be able to cache translation results,” all we need

is to extend the functionality of the translator class itself. We could do so using the

previously demonstrated technique of class decoration using composition. First, we

need an interface for the translator class. Then we create a new class that implements

that interface and receives an instance of that interface as a constructor argument. See

Listing 7-15 for the result. The demonstrated technique of caching a function’s return

value is called “memoization”.

Listing 7-15. Wrapping the Translator and Caching Return Values of the

translate() Method

interface TranslatorInterface

{

 public function translate(string $text, string $to): string;

}

final class MicrosoftTranslator implements TranslatorInterface

{

 public function translate(string $text, string $to): string

 {

 // make a call to the remote web service

 }

}

final class CachedTranslator implements TranslatorInterface

{

 private $results = [];

 public function __construct(TranslatorInterface $translator)

 {

 $this->translator = $translator;

 }

Chapter 7 the Common reuse prinCiple

167

 public function translate(string $text, string $to): string

 {

 if (!isset($this->results[$text][$to])) {

 $result = $this->translator

 ->translate($text, $to);

 $this->results[$text][$to] = $result;

 }

 return $this->results[$text][$to];

 }

}

$translator = new CachedTranslator(new MicrosoftTranslator());

// this call will hit the remote service:

$translator->translate('Submit', 'nl');

// the next call will use the cached result:

$translator->translate('Submit', 'nl');

The CachedClient class we just discussed was a nice example of a “bonus feature”

that consists of only a single class. It seems overkill to install an entire package with

many classes in your project, just to use one class. But of course, this is a sliding scale.

Which number or percentage of classes would be acceptable for a package to remain

intact and not be split into multiple other packages?

 Guiding Questions
These questions help you decide for each class whether or not it should be in the

package you’re working on. In practice I tend to just create the class inside the package

I’m already working on. Afterward, I may decide to move it to another package, based on

the following guiding questions:

• Does the class introduce a dependency?

If it does, is it an optional/suggested dependency? Then you

have to create a new package containing this class, explicitly

mentioning its dependency.

Chapter 7 the Common reuse prinCiple

168

• Would the class be useful without the rest of the package?

If it would, then you have to create a new package to enable users

to pull in only the code they want to use.

Asking yourself these two questions, and following the advice they give, will

automatically divide your packages according to their dependencies and the

functionality they provide. These aspects are also the main reasons why people

will select a certain package and not another one—whether or not it introduces

too much or too little of the functionality they need, and whether or not its

dependencies are compatible with the dependencies of their own projects. If either

of these aspects don’t match with the requirements of the user, they won’t install

the package.

 When to Apply the Principle
You can apply the Common Reuse principle at different moments in the package

development lifecycle, for instance when you’re creating a new package for existing

classes. The first thing you will need to do is group the classes that are always used

together and put them in a package. When you need class A and it always needs class B, it

would be a bad idea to put these classes in different packages, package-a and package-b.

Separating these classes would require a developer who would like to use class A to

install both package-a and package-b.

But the Common Reuse principle should also constantly be applied when you’re

adding new classes to an existing package. You need to check if the new class you’re

about to add will always be used together with all the other classes in the package.

Chances are that by adding a new class to a package you’re adding features to the

package that aren’t used by everybody who would require the package as a dependency

of their project.

 When to Violate the Principle
As we see in the next chapter, the Common Reuse principle is a principle that can only be

maximized. You cannot always follow it perfectly. There are times when you may choose

to put two classes in one package that can be used separately. Strictly speaking, you

would thereby violate the principle, but there may be good reasons to do so. First of all,

Chapter 7 the Common reuse prinCiple

169

for convenience. Every package you create needs some extra care. It requires time and

energy from you as the package maintainer and there’s a limit to how many packages

you can or want to maintain.

Another reason to violate the principle is that you may know all about your target

audience. When you know that almost all of the developers who use your package are

using it inside a project built using the Laravel framework, you can follow the Common

Reuse principle less strictly and add some classes to your package, which may only

make sense when someone uses the full-stack Laravel framework. These classes would

normally belong in a separate package because they could in theory be used separately,

but in practice they will always be used together, which allows you to put them in the

same package.

 Why Not to Violate the Principle
In most cases, however, there’s the following good reason to not violate the Common

Reuse principle: every class that’s part of your package is susceptible to change. Maybe

one of its methods contains a bug, or some of its functionality needs to be changed.

Maybe its interface needs to be modified and a backward compatibility break will be

introduced. As a user of the package, you need to follow all the changes and decide if and

when to upgrade to a new version. This takes time, because after upgrading a package,

you need to check all the parts of your project that use classes from the package. Maybe

you have some automated tests for this, maybe not.

However, you can’t choose not to upgrade. You need to take care that your project

depends on the latest stable versions of all packages, to prevent (future) problems like

depending on deprecated or even abandoned packages. If the package you depend on is

big, contains lots of classes, and is related to all kinds of things, upgrading it will be quite

a problem. There are many points of contact between the code in your project and the

code inside the package, which means that changes will have many side effects.

On the contrary, when the package you depend on is small, it will be easier to track

the changes and less painful to upgrade the package. There will be fewer points of

contact, and the chance that an upgrade will break your project is consequently much

smaller.

So you greatly help the users of your package when you keep your package small and

only put classes in it that they will actually use. Then they will be able to upgrade their

dependencies fearlessly.

Chapter 7 the Common reuse prinCiple

170

 Conclusion
We have found out many things about the Common Reuse principle and by now it should

be clear that there are some good reasons for splitting packages. Those reasons have

advantages for both users and maintainers. A package that adheres to the Common

Reuse principle has the following characteristics:

• It’s coherent: All the classes it contains are about the same thing.

Users don’t need to install a large package just to use one class or a

small group of classes.

• It has no “optional” dependencies: all its dependencies are true

requirements; they are mentioned explicitly and have sensible

version ranges. Users don’t need to manually add extra dependencies

to their project.

• They use dependency inversion to make dependencies abstract

instead of concrete.

• As an effect, they are open for extension and closed for modification.

Adding or modifying an alternative implementation doesn’t mean

opening the package, but creating an extra package.

Chapter 7 the Common reuse prinCiple

171
© Matthias Noback 2018
M. Noback, Principles of Package Design, https://doi.org/10.1007/978-1-4842-4119-6_8

CHAPTER 8

The Common Closure
Principle
In the previous chapter, we discussed the Common Reuse principle. It was the second

principle of package cohesion and it told us that we should put classes in a package that

will be used together with the other classes in the package. If a user wants to use a class

or a group of classes separately, this calls for a package split.

The third principle of package cohesion is called the Common Closure principle. It’s

closely related to the Common Reuse principle because it gives you another perspective

on granularity: you will get another answer on the question as to which classes belong

together in a package and which don’t. The principle says that1:

The classes in a package should be closed together against the same kinds of
changes. A change that affects a package affects all the classes in that
package.

So “common closure” actually means being closed against the same kinds of changes.

With regard to the code in a package, this means that when something needs to change,

it’s likely that the change that is requested will affect only one package. Also, when a

requirement changes and it affects one package, it will likely affect all classes inside that

package.

The primary justification for this principle is that we want change to be limited to

the smallest number of packages possible. People who have added your package as a

dependency to their project will likely keep track of new releases of that package, to keep

all the code in their project up-to-date. When a new version of the package becomes

available, the user will upgrade their project to require the new version. But they only

1 Robert C. Martin, Engineering Notebook, C++ Report, Nov-Dec, 1996 (PDF available on
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod).

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

172

want to do so if the changes you made to the package have something to do with the way

the package is used in their project, since every upgrade requires them to verify that their

code still works correctly with the new version of your package.

As a package maintainer, you should follow the Common Closure principle to prevent

yourself from “opening” a package for all kinds of unrelated reasons. It helps you prevent

bringing out new releases that are irrelevant to most of your users. With this goal in

mind, the principle advises you to put classes in different packages if they have different

reasons to change.

These reasons can be divided into several types, each of which we discuss in the

following sections.

 A Change in One of the Dependencies
Consider a package that still uses the deprecated PHP mysql_* functions for interaction

with a MySQL database. You decide that you want to remove all occurrences of these

functions in the package and instead use the much better alternative, PDO2. You start

working on this, but it soon becomes clear that of all the classes inside the package, only

two classes need to be modified. This would normally be a good thing, but in the context

of package design, it means that the package violates the Common Closure principle—

the files inside the package are not all closed against the same kinds of changes. Only

some classes are affected by the recently changed requirements, while many classes

are not. In other words, most classes are closed against a change related to database

management, while some are not.

The classes that were changed together should have been in a separate package.

This package would contain all the classes that will together be affected by the same

kinds of changes. It would contain classes responsible for communicating with a MySQL

database. The other packages would contain the remaining classes, which have nothing

to do with the concrete way in which a database is being accessed.

2 https://www.phptherightway.com/#databases

Chapter 8 the Common Closure prinCiple

173

 Assetic
A real-world example of a package that contains classes that are closed against many

different kinds of changes is the kriswallsmith/assetic package,3 which contains

the Assetic library4 used for managing web assets (e.g., combining, compressing, and

filtering JS and CSS files).

Looking at its directory structure (see Listing 8-1; I’ve removed many files to make

the picture clearer), you can see that it contains the core classes as well as many classes

called “filters,” which are used to modify the contents of an asset file (e.g., to compile

Less to CSS, compress JS, etc.).

Listing 8-1. The Directory Tree of the kriswallsmith/assetic Package

(Abbreviated)

.

└── Assetic
 ├── Asset
 ├── Cache
 ├── Exception
 ├── Factory
 ├── Filter
 │ ├── CoffeeScriptFilter.php
 │ ├── CompassFilter.php
 │ ├── CssEmbedFilter.php
 │ ├── CssImportFilter.php
 │ ├── CssMinFilter.php
 │ ├── CssRewriteFilter.php
 │ ├── DartFilter.php
 │ ├── EmberPrecompileFilter.php
 │ ├── FilterCollection.php
 │ ├── FilterInterface.php
 │ ├── GoogleClosure
 │ ├── GssFilter.php

3 https://packagist.org/packages/kriswallsmith/assetic
4 https://github.com/kriswallsmith/assetic

Chapter 8 the Common Closure prinCiple

https://packagist.org/packages/kriswallsmith/assetic
https://github.com/kriswallsmith/assetic

174

 │ ├── HandlebarsFilter.php
 │ ├── JpegoptimFilter.php
 │ ├── JpegtranFilter.php
 │ ├── JSMinFilter.php
 │ ├── JSMinPlusFilter.php
 │ ├── LessFilter.php
 │ ├── LessphpFilter.php
 │ ├── OptiPngFilter.php
 │ ├── PackagerFilter.php
 │ ├── PackerFilter.php
 │ ├── PhpCssEmbedFilter.php
 │ ├── PngoutFilter.php
 │ ├── RooleFilter.php
 │ ├── Sass
 │ ├── ScssphpFilter.php
 │ ├── SprocketsFilter.php
 │ ├── StylusFilter.php
 │ ├── TypeScriptFilter.php
 │ ├── UglifyCssFilter.php
 │ ├── UglifyJs2Filter.php
 │ ├── UglifyJsFilter.php
 │ └── Yui
 └── Util

At first glance, this package clearly violates the Common Reuse principle. It’s obvious

that not all classes in this package will be used together, since many of the filters aren’t used

at the same time by the same user. Maybe each user really requires just two or three of them.

But when we switch our perspective from the user to the package maintainer and try

to apply the Common Closure principle, we should notice that these classes are not all

closed against the same kinds of changes. For example, if anything changes with regard

to the way the Less compiler works, or the type of input that the RooleFilter expects,

a change will be made in just one or two classes inside the package. Afterwards the

package maintainer needs to release a new version of the entire package to make the

changes available to all its users. This will require people to upgrade their projects (and

probably also bring in many unrelated changes from the repository), which may or may

not have unwanted side-effects.

Chapter 8 the Common Closure prinCiple

175

To make Assetic comply with the Common Closure principle its maintainer should

create separate packages for each filter. Each filter-specific package will only be sensitive

to specific kinds of changes (namely changes related to its own dependencies, like the

Less compiler). The main assetic package will not be affected by any such change.

When one of the specialized filters changes, only a new version of the filter-specific

package needs to be released. In such cases, there will be no need to release a new

version of the main assetic package.

Adhering to the Common Closure principle with regard to changes made in

(optional) dependencies will thus prevent unnecessary package releases. This

will effectively lower the burden on your users. They don’t need to upgrade their

dependencies because of changes that don’t apply to them.

 A Change in an Application Layer
The first kind of change we discussed was somewhat external to the package: it was

caused by a change in one of its dependencies, be it a package, an extension, or the

programming language itself. The second kind of change is related to something called

architectural layers.

Layers are a way to apply the Single Responsibility principle to an application. One

traditional method of layering an application is by separating the model from the view and

putting controllers in between. The controllers will regulate traffic from the front controller

down into the model and back to the view. Depending on who you to talk to, other

divisions may make more sense. Personally I like to use separate Domain, Application, and

Infrastructure layers in my applications (if you want to know the details, take a look at my

article “Layers, Ports, & Adapters - Part 2, Layers”5). No matter what kind of rules you apply,

layering is always a useful organizational pattern for applications.

Most applications already apply some grouping along the lines of the application’s

subdomains, or sets of related features. The resulting groups are often called modules.

Defining modules should be considered vertical slicing, since the code for each of the

modules will be more or less independent of other modules.

Each of the modules can also be horizontally sliced by designating parts of those

modules to their own layers. It’s useful to have a set of conventions for these layers. This

helps developers find the right place for every file. Combined with rules about how these

5 https://matthiasnoback.nl/2017/08/layers-ports-and-adapters-part-2-layers/

Chapter 8 the Common Closure prinCiple

https://matthiasnoback.nl/2017/08/layers-ports-and-adapters-part-2-layers/

176

layers can use each other’s code, you can make the design of each module very flexible.

For instance, pushing all the presentation logic into the Infrastructure layer, you would

make it possible to rewrite this logic using a different templating engine, or switch from

HTML pages to JSON responses, without the need to change any of the code in the other

layers (i.e., Application and Domain).

Although application modules usually shouldn’t end up in packages (we’ll talk about

this at the end of the chapter), you may still want to reuse (part of) a module. You may be

tempted to take out those files that you want to reuse and put them all in one package.

This will make code for all the application layers end up in a single package.

Now remember that you introduced the layering to allow swapping out (part of) one

layer, without requiring a change to any of the other layers. Considering the Common

Closure principle again, we wouldn’t want changes to be made to only one layer within a

package, and not to the others. If that’s bound to happen, the principle encourages us to

split the package, and in this case it means we have to split it according to its layers.

Each package will then have code for only one layer, and will therefore be closed

against the same kinds of changes. It would also allow users to depend on the Domain

and Application packages of the reusable module, but implement all the infrastructure

code themselves.

 FOSUserBundle
Let’s take a look at a real-world example of a package that uses layers—the

friendsofsymfony/user-bundle6 package, which contains the FOSUserBundle.7 It can be

used in a Symfony application as a way to quickly set up user management. Out-of-the-

box it provides several useful things that almost every web application needs:

• Persistent users and user groups

• A password reset page

• A registration page

• A change password page

• User management from the command-line

• …

6 https://packagist.org/packages/friendsofsymfony/user-bundle
7 https://github.com/FriendsOfSymfony/FOSUserBundle/

Chapter 8 the Common Closure prinCiple

https://packagist.org/packages/friendsofsymfony/user-bundle
https://github.com/FriendsOfSymfony/FOSUserBundle/

177

Looking at the directory structure (see Listing 8-2), you can roughly recognize these

features in the files that are present.

Listing 8-2. The Directory Tree of the friendsofsymfony/user-bundle Package

(Abbreviated)

.

├── Command
│ ├── ActivateUserCommand.php
│ ├── ChangePasswordCommand.php
│ ├── CreateUserCommand.php
│ ├── DeactivateUserCommand.php
│ ├── DemoteUserCommand.php
│ ├── PromoteUserCommand.php
├── Controller
│ ├── ChangePasswordController.php
│ ├── GroupController.php
│ ├── ProfileController.php
│ ├── RegistrationController.php
│ ├── ResettingController.php
├── Doctrine
│ ├── CouchDB
│ ├── MongoDB
│ └── Orm
├── Document
├── Entity
├── Event
├── EventListener
├── Form
├── Mailer
├── Model
├── Propel
└── Resources
 ├── translations
 └── views

Chapter 8 the Common Closure prinCiple

178

Coincidentally, this is another example of a package that violates the Common Reuse

principle because it’s quite possible that someone would want to use only the model

classes that are provided by this package in their own project, which is not a Symfony

application. There’s no way to do it without pulling in the entire user-bundle package,

which is otherwise quite useless to them.

The same objection to the particular lack of cohesion of this package arises

when we consider the Common Closure principle with regard to application layers.

It’s immediately clear that this package contains code related to all kinds of layers.

Therefore a change in requirements related to the user model would result in just a few

modifications within this package. Many files will remain untouched. The same goes for

a visual makeover of the web pages provided by this package. To make the new templates

available to everyone, a new release needs to be issued, which is irrelevant to everyone

who uses their own templates. Because some other things may have changed in the

new release, users would still need to verify that their application is not broken after

upgrading their dependencies.

Following the Common Closure principle with respect to application layers would

therefore require the package maintainer to split this package according to the different

layers for which it contains code and other resources. That way only relevant changes

will cause users to upgrade their dependencies. At the same time, it allows users to

replace one layer implementation provided by the package maintainer with their own

implementation, without the need to pull unused code into their projects.

THE PROBLEM WITH PLUGINS FOR FRAMEWORKS

most frameworks for web applications offer an all-round solution for each of the traditional

application layers (model, view, and controller). although this idea is quite outdated and

many people have been experimenting with other types of layers and architectures, still

some applications can be reduced to these main layers. You always need some model of

the domain of your business. You always need a way to show something to a user of your

application, and you always need something that the framework can invoke in order to put

things in motion.

Whenever a new framework starts to attract attention from developers, everything that already

exists will be recreated to work well with that particular framework. and since the framework

provides a standard way of doing things in each layer, you will end up with packages…

Chapter 8 the Common Closure prinCiple

179

• For symfony, called “bundles,” that use twig for views and Doctrine orm for

persistence

• For laravel, called “packages,” that use Blade for views and eloquent orm for

persistence

• For Zend Framework, called “modules,” that use Zend_View for views and

Zend_Db for persistence

• …

this doesn’t make sense. it means that reuse is actually obstructed, because of the

narrowness of the area of reuse. if the maintainers of these packages would care more about

package design principles, they would split their packages according to responsibilities,

with respect to dependencies as well as application layers and subject matter. this way,

there would only need to be one package that modeled the domain. there would be several

packages that implemented persistence for domain objects using different kinds of database

and persistence libraries. and there would also be several packages that provided a

presentation layer that works with different templating engines. separating packages like this

would make true reuse possible (at least between projects that use the same programming

language).

 A Change in the Business
We have considered layers as a way to partition your packages. Each package should

contain code that’s related to only one application layer. That way, when a requirement

changes with regard to other layers, the package will remain untouched.

When you follow the Common Closure principle with regard to layers, you end up

with packages that all have just one of the big responsibilities (like modeling things,

presenting things, etc.). Nevertheless, these packages would still contain code that’s

likely to be modified for entirely different reasons. A package that contains all the code

of the domain layer, would contain classes that model a person, an article, an address,

a payment, etc. Whenever the requirements of the domain layer change because of

business reasons (“we need to support another payment type”), only one file in the

domain package will be modified, and the other ones will stay as they were before the

requirements changed.

Chapter 8 the Common Closure prinCiple

180

This of course looks like another violation of the Common Closure principle since

the classes in a package should be closed against the same kinds of changes. A package

entirely dedicated to the domain layer is closed against all different kinds of changes.

When you need to decide how to group classes into packages, you therefore need to

consider business changes as one kind of change to close classes against.

 Sylius
Let me end this section with a good example of a project that separates packages by

domain. It’s the Sylius project8 and it offers one big sylius/sylius package9 containing

multiple smaller packages (using Git subtree splits), nicely divided by subject matter (see

Listing 8-3).

Listing 8-3. Sub-Packages of the sylius/sylius Package

SyliusAddressingBundle

SyliusCartBundle

SyliusFlowBundle

SyliusInventoryBundle

SyliusOmnipayBundle

SyliusOrderBundle

SyliusProductBundle

SyliusPromotionsBundle

SyliusResourceBundle

SyliusSettingsBundle

SyliusShippingBundle

SyliusTaxationBundle

SyliusTaxonomiesBundle

SyliusVariableProductBundle

Although none of these packages has been split according to architectural layers,

when it comes to the problem domain, these packages are all nicely separated from

each other. This way the maintainer will be able to limit modifications necessitated by

changing requirements to just one or two packages at a time.

8 https://sylius.com/
9 https://packagist.org/packages/sylius/sylius

Chapter 8 the Common Closure prinCiple

https://sylius.com/
https://packagist.org/packages/sylius/sylius

181

 Packaging Business Logic
In this chapter, we’ve covered various topics from the realm of application

development (as opposed to package development). We talked about architectural

layering—something that’s usually considered within the context of an application, not

a package. We also talked about domain or business logic and why you should limit a

package to a particular subdomain. Again, this separation into subdomains is usually

considered within a larger software project only, not as often in the context of package

development.

The reason is that using architectural layers and dividing a domain into subdomains

is usually only needed when there’s a fair amount of code. Since the three cohesion

principles will lead to smaller packages in general, there isn’t a lot of code left to layer or

divide. You’ll find that most packages therefore belong to just one layer, and don’t even

span multiple subdomains. Let’s take a look at the bigger picture, to find out why this

happens.

Every application needs a user management system, a login page, a password

reset page, some way to keep track of user rights, some management modules where

administrators can quickly go into the database and change something for the customer,

etc. As a programmer, you may sometimes feel like you’re only getting to the heart of the

matter after weeks of laying out technical foundations like these for a new application.

This means that intuitively you know which part of the overall business domain is central

to the application you’re working on now, and which ones are much less relevant.

Of course, a login system should be in place. It should function correctly and be

secure. But a login system is something that many more teams need and it doesn’t

have to be reinvented again and again. Instead, it would be smart to get done with this

part of your application as soon as possible, and start working on the parts where your

application can really make a difference.

Eric Evans summarizes his advice on this topic as follows:

Identify cohesive subdomains that are not the motivation for your project.
Factor out generic models of these subdomains and place them in separate
modules. Leave no trace of your specialties in them. Once they have been
separated, give their continuing development lower priority than the core
domain, and avoid assigning your core developers to the tasks (because
they will gain little domain knowledge from them). Also consider off-the-
shelf solutions or published models for these generic subdomains.10

10 Eric Evans, Domain-Driven Design, Addison-Wesley Professional (2003)

Chapter 8 the Common Closure prinCiple

182

He calls this strategic distillation—finding out what your core domain is, thereby

recognizing subdomains, including “generic” ones. For application developers, this is

useful advice, because it helps you focus your development effort on areas where your

application can stand out among many others. At the same time, it will help you decide

for which parts of your application you should rather use an existing library or external

service, also known as an “off-the-shelf solution”.

For package developers, this is useful advice too, because application developers

looking for off-the-shelf solutions can be the users of the packages you publish. So when

you consider extracting part of your application into a reusable package, consider if it

can be used by others to help them get to their core domain quicker. The FOSUserBundle

is an excellent example of such a package that looks like it has been extracted from

a project in order to be reused again and again in every project that needs user

management and a login system.

You can also create a larger reusable package or a set of packages and include

with it a full-fledged domain model and application services (like Sylius does for

e-commerce software). It will be a challenge to make packages like these useful for

all users, because the code in it is bound to be specific to some understanding of

the business domain. This means that users will want to change baked-in behavior.

As soon as this happens, however, users will also have to evaluate whether they

have properly separated their core and generic subdomains. Reusable code is

mostly successful for generic subdomains; a core domain needs a custom modeling

effort to get it just right. And to make it easier to evolve with changing business

requirements.

Because the classes you write for subdomains other than the generic ones are likely

to be very specific and not useful in other projects. don’t put them in packages. Just use

namespaces to group classes into the subdomains they belong to. Likewise, you can use

namespaces to structure application code according to the architectural layers you want

to apply. This will save you a lot of frustration when you’re working on the application. A

change to the application can be released in one go, even if it spans multiple layers and

subdomains. If instead you create packages for every combination of architectural layer

and subdomain, you will soon end up with an unmaintainable application that’s very

resistant to change.

Chapter 8 the Common Closure prinCiple

183

 The Tension Triangle of Cohesion Principles
Before we continue with the next set of package design principles related to coupling,

we will briefly discuss an interesting concept mentioned by Robert Martin in one of

his training videos on cleancoders.com.11 It’s called the tension triangle of cohesion

principles, as shown in Figure 8-1.

You can draw a triangle within each corner one of the package cohesion principles.

Then you can locate any package somewhere within that triangle. Moving a package to

one of the corners means that it implements that principle maximally, while it neglects

the other principles. Moving to the vertex opposite to one of the corners means that the

package definitely does not follow the corresponding principle, but follows the other

principles equally well.

What Robert suggests is that a package may move within the diagram. When you

first start working on a project, packages may be primarily designed according to the

Common Reuse principle. Later on you may choose to follow the Common Closure

principle more strictly because that will ease maintenance. Then in the end, you may

focus on making the package reusable so that all the effort you put into it will give you an

advantage in your next project (or will help other developers around the world solve the

problems you have already solved quite well).

11 https://cleancoders.com/episode/clean-code-episode-16/show

Figure 8-1. Tension triangle of cohesion principles

Chapter 8 the Common Closure prinCiple

https://cleancoders.com/episode/clean-code-episode-16/show

184

The tension triangle is a nice way to estimate the quality of the cohesion of a

package at any moment in time. It’s easy to notice when a package doesn’t follow the

Release/Reuse Equivalence principle, because then it’s hard to add it as a dependency

to your project and difficult to keep it up-to-date once you’ve managed to do so. It’s

also easy to verify how well the Common Reuse principle is obeyed—when you feel

like you have to pull in a lot of code, just to use one or two classes, then something is

wrong. And finally if the package contains classes that have responsibilities in many

different fields of expertise, the Common Closure principle is not followed very well.

Drawing a triangle for one of your packages might help you find out how to improve it.

 Conclusion
When some aspect of a package needs to change, it has to be “opened”. The code has to

be modified, and the updated package needs to be released again. It will be easier for

the maintainer of the package if it doesn’t have to be modified and released again for all

kinds of reasons. Therefore, the Common Closure principle tells us to consider all the

reasons a package might need to change, and to split it accordingly. This will eventually

make each package “closed against the same kinds of changes”.

Common reasons for opening a package are:

• If something changes about a dependency (e.g., it needs to be

upgraded, or it needs to be replaced).

• If requirements have changed regarding a piece of business logic.

• If part of the infrastructure changes, but the core logic remains as it

is (e.g., when you change the layout of the UI, or if you switch to a

different database).

When you’re a package maintainer, keep track of how many packages need to be

released again after a change. Aim to minimize this number by splitting the package.

Also keep track of how many classes are modified for every release. If this is only a

fraction of all the classes in that package, split the package. Moving out the classes that

rarely change, or change for different reasons, will ease future maintenance. It will be

good for the users too, since they won’t need to upgrade the package for reasons that are

not relevant to them.

Chapter 8 the Common Closure prinCiple

185
© Matthias Noback 2018
M. Noback, Principles of Package Design, https://doi.org/10.1007/978-1-4842-4119-6_9

CHAPTER 9

The Acyclic Dependencies
Principle
As I explained in the introduction to the package design principles, all programmers

develop a sense of “belonging together”. But next to this intuition with regard to cohesion,

programmers also have a nose for coupling. Looking at a piece of code, they will be able

to figure out what it is coupled to. As their careers progress, they will develop an ever

stronger “coupling radar” by figuring out the actual dependencies of any piece of code.

 Coupling: Discovering Dependencies
Looking at some code, you can ask yourself, on which other things does this code

rely in order to be successfully executed? Thinking long and hard about this question

reveals some obvious dependencies, but probably also some less obvious, or indirect,

dependencies.

Consider the Kernel class defined in Listing 9-1.

Listing 9-1. The Kernel Class

namespace SomeFramework;

class Kernel

{

 public function __construct(EventDispatcher $eventDispatcher)

 {

 // ...

 }

}

186

In order to be used successfully in an application, the Kernel class depends on:

• The EventDispatcher class. It gets an instance of this class injected

as a constructor argument.

• The PHP interpreter. It needs this in order to be run at all. More

specifically, the version of the PHP interpreter should be at least 5.3,

since the class resides in a namespace that’s not supported by earlier

PHP versions.

We could go much, much further in specifying dependencies. A PHP interpreter

depends on an operating system, running on a computer, which needs power and

should be accessible to you as the user of this software. It should therefore be in this

world, this universe (well, maybe your code is even cross-universe compatible, who

knows?), and so on.

I agree with you, that this is taking things too far. However, merely looking at the

classes used in the code and the PHP version that is required to run the code is not

sufficient in most cases. Some code may rely on a database server being up and running

and reachable from the server on which the code is being executed. Or maybe a certain

amount of memory is required to run the code, or the user who runs the software should

have certain filesystem rights, etc.

In this chapter and in the next two chapters, we discuss package dependencies.

When we discuss the coupling principles for packages, we won’t consider the physical

dependencies of a package. We only take other units of code—external to the package—

into consideration. These external units of code can be actual packages (with or without a

package definition file), language extensions (which are really a special kind of packages

themselves), or other conglomerates of code that are necessary to run the code in a given

package.

 Different Ways of Package Coupling
Let’s first settle on the following convention: we call “the given package” the “root

package”. Starting with any root package, we can enumerate the dependencies of that

package. Those dependencies can be any kind of package, or even a language extension,

but we just call those dependencies “packages” too, for simplicity’s sake.

Chapter 9 the aCyCliC DepenDenCies prinCiple

187

Now we can make a list of ways in which the code in the root package introduces

dependencies on other packages. As a package maintainer we need this list when we are

collecting the names of required packages for our package definition file. We also need

this list of dependencies when we are going to apply the package coupling principles.

When we don’t know exactly in which ways the code in the root package introduces

coupling to other packages, we won’t know how to draw a dependency graph of the root

package as part of a larger system of packages. We also won’t know how to fix problems

in the dependency graph.

 Composition
We already looked at one particular way of coupling: when the type of a constructor

argument is a class (see Listing 9-2).

Listing 9-2. Coupling Through Constructor Arguments

namespace RootPackage;

use OtherPackage\EventDispatcher;

class Kernel

{

 private $eventDispatcher;

 public function __construct(EventDispatcher $eventDispatcher)

 {

 $this->eventDispatcher = $eventDispatcher;

 }

}

The Kernel class is in the root package. When the EventDispatcher class is in

another package (as it should be), this particular piece of code introduces package

coupling. For example, the kernel package would depend on the event-dispatcher

package. This is called a dependency by composition, because the pattern of storing one

object inside another object for later use is called “composition”.

Chapter 9 the aCyCliC DepenDenCies prinCiple

188

 Inheritance
Another way in which a class can be coupled to another class is by inheriting from it

(see Listing 9-3).

Listing 9-3. Coupling Through Inheritance

namespace RootPackage;

use OtherPackage\Controller;

class LoginController extends Controller

{

 // ...

}

When the parent class Controller (or any of its parent classes) is in another package

than the LoginController, inheritance introduces package coupling.

 Implementation
Very much like inheritance, implementing an interface or extending an abstract class

and implementing its abstract methods introduces coupling too (see Listing 9-4).

Listing 9-4. Coupling Through Implementing an Interface

namespace RootPackage;

use OtherPackage\RequestListener;

class IpBlocker implements RequestListener

{

 // ...

}

 Usage
Often coupling between classes occurs when an instance of one class simply uses an

instance of another class, for instance, as one of its method parameters (see Listing 9-5).

Chapter 9 the aCyCliC DepenDenCies prinCiple

189

Listing 9-5. Coupling Through Method Arguments

namespace RootPackage;

use OtherPackage\NewRequestEvent;

class IpBlocker

{

 public function onKernelRequest(NewRequestEvent $event): void

 {

 // ...

 }

}

 Object Instantiation
In the previous examples, dependencies on classes outside the root package were out in

the open, because they were part of the public interface (a parent class, an implemented

interface, and a type of a method argument). But there are also some more private ways

of coupling. For instance, when one object creates other objects of a class inside another

package (see Listing 9-6).

Listing 9-6. Coupling Through Object Instantiation

namespace RootPackage;

use OtherPackage\ServiceContainer;

class Kernel

{

 public function boot(): void

 {

 $container = new ServiceContainer();

 // ...

 }

}

Chapter 9 the aCyCliC DepenDenCies prinCiple

190

 Global Function Usage
The usual suspects for coupling are classes, but you shouldn’t forget to look at the

functions that are used in a package. Many functions are only available when a particular

package or language extension has been installed, for instance, the curl PHP extension

(see Listing 9-7).

Listing 9-7. Coupling Through Function Usage

class HttpClient

{

 public function send(): void

 {

 $ch = curl_init();

 // ...

 }

}

Functions are only used in the internal parts of a class, i.e. inside the body of its

methods. So spotting these dependencies takes a bit more effort. The same goes for

public static methods, which also introduce coupling inside methods, as shown in

Listing 9-8.

Listing 9-8. Coupling Through Public Static Method Usage

class Controller

{

 public function indexAction()

 {

 $translator = Zend_Registry::get('Zend_Translator');

 // ...

 }

}

Chapter 9 the aCyCliC DepenDenCies prinCiple

191

 Not to Be Considered: Global State
Code in a package often relies on a particular global state. The most obvious example

is that each package implicitly relies on the presence of an autoloader, which is able to

(auto)load the classes inside the package.

Depending on global state should otherwise always be avoided, but even when it

happens, we don’t consider it a package dependency in this book, since we can’t make it

explicit inside the list of requirements of a package.

 Visualizing Dependencies
Before we can start to apply the coupling principles to our package design, we need

to be able to visualize any current state of package coupling. When we do this,

we only consider one system (i.e., application) at a time. We take all the packages

inside that system and, one by one, consider them as a root package. We then use

this list of coupling types (e.g. composition, inheritance, etc.) to extract a list of all

the dependencies of classes in this package. As soon as such a class dependency

goes beyond the boundaries of the package itself, it should be marked as a package

dependency.

The result of such an exercise is a list like this:

• Package A depends on Package C

• Package B depends on Packages A and D

• Package C depends on Package B

Packages and their dependencies, when written down as shown in Figure 9-1, form

a recipe for a graph, where each package is a vertex (node) and each dependency is an

edge (line).

Chapter 9 the aCyCliC DepenDenCies prinCiple

192

Since dependencies have directionality (a package depends on another package, not

automatically the other way around), we can convert the graph into a directed graph by

simply adding some arrows to the lines, as shown in Figure 9-2.

What’s left out of these diagrams are self-referencing packages. These aren’t of

interest at this point, although I will briefly get back to this subject later. Almost all

packages are self-referencing actually, because often a class in a root package uses

another class or a function from the same package.

When it comes to package dependencies, there is another important aspect that we

need to take into consideration when we draw the dependency graph of packages within

a system: there are probably some version constraints with regard to the dependencies.

Figure 9-1. A graph with vertices as packages and edges as dependencies

Figure 9-2. A directed graph

Chapter 9 the aCyCliC DepenDenCies prinCiple

193

For instance, Package C may require at least version 1.0 of Package B. We can write these

constraints as annotations in the graph, as shown in Figure 9-3.

 The Acyclic Dependencies Principle
With all this acquired knowledge about package coupling, it’s only one small step toward

the explanation of the Acyclic Dependencies principle. The principle states that:

The dependency structure between packages must be a directed acyclic
graph; that is, there must be no cycles in the dependency structure.1

We already discussed how you can figure out the actual dependencies of all the

packages in a system, then draw a directed graph of the outcome. The only missing piece

of information is what an acyclic directed graph is.

A directed graph has no cycles if, starting from any vertex, there is no path that via

any number of vertices leads back to the original vertex. Such a directed graph is called

an acyclic graph. Translated to the language of dependency graphs—whichever package

you take as the root package, by following the dependency arrows, you will not be able to

return to the root package. See Figure 9-4.

1 Robert C. Martin, Engineering Notebook, C++ Report, Nov-Dec, 1996 (PDF available on
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod).

Figure 9-3. A directed graph with annotations for version constraints

Chapter 9 the aCyCliC DepenDenCies prinCiple

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

194

Conversely, if a directed graph has cycles, it means that there is at least one vertex for

which you can find a path that leads back to that same vertex. In terms of a dependency

graph, this means that there is at least one package that is the beginning of a path of

subsequent dependencies that leads back to that same package (see Figure 9-5).

Figure 9-4. An acyclic directed graph: no cycles

Figure 9-5. A cyclic directed graph: one cycle

The Acyclic Dependencies principle just says that when you draw your dependency

graph, it should look like an acyclic directed graph, meaning that it has no cycles.

 Problematic Cycles
As a programmer you’re likely familiar with cycles, often caused by mistakes easily

made, like the one shown in (see Listing 9-9).

Chapter 9 the aCyCliC DepenDenCies prinCiple

195

Listing 9-9. Programming Mistakes with Cycles

$somethingThatIsAlwaysTrue = ...;

while ($somethingThatIsAlwaysTrue) {

 // ...

}

// or something similar:

for ($i = 0; $i < 100;) {

 // we forgot to increment...

}

// but also:

class Node

{

 private $parent;

 public function getParent(): ?Node

 {

 if ($this->parent) {

 return $this->parent;

 }

 // hmm

 return $this->getParent();

 }

}

An example of a common type of cycle that’s not really a mistake, but more a design

issue, is shown in Listing 9-10.

Listing 9-10. Desk and Programmer Need an Instance of Each Other

class Desk

{

 private $programmer;

 public function __construct(Programmer $programmer)

 {

 $this->programmer = $programmer;

Chapter 9 the aCyCliC DepenDenCies prinCiple

196

 }

}

class Programmer

{

 private $desk;

 public function __construct(Desk $desk)

 {

 $this->desk = $desk;

 }

}

$desk = new Desk($programmer);

$programmer = new Programmer($desk);

// ??

No matter how hard we try, we won’t get this straight. It’s a real circular dependency.

We first need to instantiate a Desk, but in order to do that we need a Programmer, who

needs a Desk, etc.

We commonly fix issues like these by first constructing an object, then injecting the

dependency that caused the cycle (see Listing 9-11).

Listing 9-11. Breaking the Cycle

class Desk

{

 private $programmer;

 public function setProgrammer(Programmer $programmer): void

 {

 $this->programmer = $programmer;

 }

}

class Programmer

{

 private $desk;

 public function __construct(Desk $desk)

Chapter 9 the aCyCliC DepenDenCies prinCiple

197

 {

 $desk->setProgrammer($this);

 $this->desk = $desk;

 }

}

$desk = new Desk();

$programmer = new Programmer($desk);

When you use this solution, you can be sure that at one point in time at least one

of the objects is in an invalid state. In this case it’s the Desk object. It has no associated

Programmer until it has been assigned in the constructor of the Programmer itself, so this

isn’t the ultimate solution.

Instead of sacrificing consistent state for our objects, we should find a way to break

the cycle. In real-world modeling situations you may ask the following questions to find

a better solution:

• Is it really the entire object you need, or just part of it, maybe even a

single value? If you only need part of the object, you can inject that

part, and effectively remove the cycle.

• Do these two objects really need to know about each other? Is

it possible to change the relationship from a bidirectional to a

unidirectional one?

 Cycles in a Package Dependency Graph
The problems described previously usually don’t travel across package boundaries,

but remain private to the package and should be fixed there. However, when a circular

dependency between classes goes beyond the boundary of their containing package,

it does become a circular dependency between packages and then some other, bigger

problems arise.

For some package or dependency managers it may be impossible to resolve circular

dependencies. This is the same for dependency injection, a.k.a. service containers,

which may not be able to instantiate services if their dependencies form a cycle too

(e.g., if service B depends on service A, but eventually it turns out that A’s instantiation

depends on the proper instantiation of service B).

Chapter 9 the aCyCliC DepenDenCies prinCiple

198

But even if the resolution of circular dependencies is not a problem for your

package manager of choice, release management of circular dependencies can still

be problematic. Imagine how releasing the next major version of Package A will be

depending on the next major version of Package B, which is being rewritten to take full

advantage of all the good things to be released with the next major version of Package A.

Which package should be released first?

It will be difficult to coordinate major releases when a dependency graph has cycles,

although this can be overcome by doing “kamikaze” releases, adding some backward or

forward compatibility measures, and providing friendly version constraints for the package

dependencies involved. In the end this may not cause you too much pain. The problem

of circular package dependencies is actually much bigger with programming languages

that have a build process. When dependencies of the build process are being resolved, a

circular dependency may even prevent the entire build process from succeeding.

Still, there’s the programmer’s intuition that something is wrong about cycles in

software, in particular cycles that transcend the boundaries of one package. So you may

want to fix them anyway. The good news is that there are some easy solutions to remove

cycles from a dependency graph.

 Solutions for Breaking the Cycles
In the first place, some cycles are “more real” than other cycles.

 Some Pseudo-Cycles and Their Dissolution
Consider the two packages shown in Figure 9-6, which have a direct dependency on

each other (it doesn’t really matter for this example whether or not the cycle consists of

more packages).

Figure 9-6. Two packages that are dependent on each other

Chapter 9 the aCyCliC DepenDenCies prinCiple

199

When a dependency is considered a “package dependency,” this means that part of

the code in the root package depends on a part of the code in the other package. Most

often the root package contains a class that uses a class from the other package in one of

the ways described at the beginning of this chapter. When zooming in on both packages,

we discover in this case that, indeed, one class in the root package (Class A) depends

on a class in the other package (Class C), which explains one direction of the package

dependency (see Figure 9-7).

Trying to explain the reason why this package dependency is circular, we notice

that the reciprocal dependency is totally unnecessary, because it concerns two other,

unrelated classes—Classes B and D.

This means that these two packages are used in two different, unrelated ways

and that the classes have not been divided correctly among the two. These packages

simply violate the Common Reuse principle: not all of their classes are reused

together at the same time. This is also reminiscent of the Interface Segregation

principle (Chapter 4), but applied to the package itself instead of just one class.

Apparently there are multiple different clients for this package, and only some of

them cause a dependency cycle.

I call this type of dependency cycle a pseudo-cycle. It can easily be dissolved by

rearranging the code and creating one or two new packages. For instance, you can put

Classes B and D together in one package, which makes the dependency internal to that

package, as shown in Figure 9-8.

Figure 9-7. Zooming in on the actual dependencies

Chapter 9 the aCyCliC DepenDenCies prinCiple

200

Or you can put Classes B and D in their own separate packages, which leaves the

package dependency as it is, but at least removes the cycle from the dependency graph

(see Figure 9-9).

Figure 9-8. One solution for dissolving the pseudo-cycle

Figure 9-9. Another solution for dissolving the pseudo-cycle

Chapter 9 the aCyCliC DepenDenCies prinCiple

201

You should choose the second solution when other parts of the system rely on just

Class B or just Class D, which would mean that according to the Common Reuse principle,

these classes should be in separate packages.

 Some Real Cycles and Their Dissolution
We’ve discussed a nice pseudo-cycle, but what does a real cycle look like? Figure 9-10

shows a schematic example of such a circular dependency relation.

Again, there may be any number of packages between these two, as long as there is

an actual cycle.

To make this a bit more concrete, let’s say Class A is used to process web forms

and Class B is a generic validator. Forms and validation are very much related, but at

least validation is not limited to forms. So the validation package should be available

for separate use in different scenarios (for instance, to validate query parameters or

deserialized objects).

In the form package, we find the Form class (see Listing 9-12).

Listing 9-12. The Form Class from the Form Package

use Validator\Validator;

class Form

{

 private $validator;

 private $errors = [];

Figure 9-10. A real cycle

Chapter 9 the aCyCliC DepenDenCies prinCiple

202

 public function __construct(Validator $validator)

 {

 $this->validator = $validator;

 }

 public function isValid(): bool

 {

 $this->validator->validateForm($this);

 return count($this->errors) === 0;

 }

 public function addError(Error $error): void

 {

 $this->errors[] = $error;

 }

}

In the validator package, we find the Validator class (see Listing 9-13).

Listing 9-13. The Validator Class from the Validator Package

use Form\Form;

class Validator

{

 public function validateForm(Form $form): void

 {

 // ...

 $form->addError(...);

 }

}

These code snippets expose a circular dependency between Validator and Form of

type “usage” (see the list of coupling types at the beginning of this chapter).

To break this type of cycle, it won’t suffice to merely move code around (like it did

when we discussed a pseudo-cycle in the previous section). We must do some actual

programming to fix this problem. We will refactor the code, i.e. change its structure,

not its behavior, by applying some design patterns to it. There are many conceivable

solutions and I will show some of the most used ones.

Chapter 9 the aCyCliC DepenDenCies prinCiple

203

 Dependency Inversion
The first thing we can do is remove the hard dependency on a class in another package.

As explained in Chapter 5, by applying the Dependency Inversion principle, we can easily

revert dependency directions by depending on something abstract, i.e. an interface,

instead of something concrete, i.e. a class. If we then move the interfaces to separate

packages, we are saved (see Listing 9-14).

Listing 9-14. Introducing a FormInterface and a ValidatorInterface

interface FormInterface

{

 public function isValid(): bool;

 public function addError(Error $error): void;

}

class Form implements FormInterface

{

 public function __construct(ValidatorInterface $validator)

 {

 // ...

 }

 public function isValid(): bool

 {

 // ...

 }

 public function addError(Error $error)

 {

 // ...

 }

}

interface ValidatorInterface

{

 public function validateForm(FormInterface $form): void;

}

Chapter 9 the aCyCliC DepenDenCies prinCiple

204

class Validator implements ValidatorInterface

{

 public function validateForm(FormInterface $form): void

 {

 // ...

 }

}

We introduce interfaces and we make the existing classes implement those

interfaces. Then we use only the interfaces as parameter types, not the classes. When

we put the interfaces in separate packages, we have successfully diverted some of the

problematic dependencies and there are strictly no circles left in the dependency graph,

as shown in Figure 9-11.

The real trick here is that even though Form originally depended on an instance of

Validator (injected as a constructor argument), FormInterface doesn’t, which means

there is no dependency arrow from FormInterface to ValidatorInterface.

Figure 9-11. Removing the cycle with dependency inversion

Chapter 9 the aCyCliC DepenDenCies prinCiple

205

So, using dependency inversion, we have actually dissolved the cycle in the

dependency graph. However, it’s not really the best solution there is, since we also had to

move Form to its own package.

 Inversion of Control
The design problem with the Form and Validator classes that caused them to be

tightly coupled is that they know too much about each other, and this results in lots

of communication back and forth between them. Remember, the reason for having a

separate package for data validation was that data validation is not necessarily limited

to validation of data submitted using a web form. So it is surprising to say the least that

the Validator class actually has a validateForm() method. This clearly violates the

Interface Segregation principle (Chapter 4), since only a portion of the clients of the

Validator class will use that method.

When an object communicates with another object by calling methods on it, it really

exercises control over it. Calling a method triggers an action in the other object. When objects

call each other’s methods, i.e. communicate with each other, this should thus be seen as

exercising control over each other. But communication that goes back and forth creates a

cycle. To resolve that cycle, we must break the communication lines between objects and

let some intermediate object do the talking. This would basically invert the direction of the

controlling behavior of these objects. Hence this technique is known as inversion of control.

There are quite a lot of options when you want to refactor code that is too much

“in control”. In fact, all the design patterns known as “behavioral patterns” (see also

the famous “Gang of Four” book entitled Design Patterns: Elements of Reusable Object-

Oriented Software) are suitable for this purpose. It’s still up to you to judge if they apply

to your situation. Also, you don’t necessarily need to follow the exact patterns.

 Mediator
The first and easiest solution is to use the Mediator pattern.2 The Form object then

shouldn’t make any direct calls to a Validator object anymore. Instead, it may only call

the mediator, which on its turn will make any form-specific calls to the Validator

(see Listing 9-15).

2 Erich Gamma e.a., Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994.

Chapter 9 the aCyCliC DepenDenCies prinCiple

206

Listing 9-15. The FormValidationMediator

class FormValidationMediator

{

 private $validator;

 public function __construct(ValidatorInterface $validator)

 {

 $this->validator = $validator;

 }

 public function validate(FormInterface $form): void

 {

 $formData = $form->getData();

 $errors = $this->validator->validate($formData);

 foreach ($errors as $error) {

 $form->addError($error);

 }

 }

}

class Form implements FormInterface

{

 private $formValidator;

 public function __construct(

 FormValidationMediator $formValidator

) {

 $this->formValidator = $formValidator;

 }

 public function isValid(): bool

 {

 // the FormValidationMediator will add errors to the form

 $this->formValidator->validate($this);

 return count($this->errors) === 0;

 }

}

Chapter 9 the aCyCliC DepenDenCies prinCiple

207

This basically removes the dependency from the validator package to the form

package. Validator is now truly standalone. The mediator that runs validation on forms

should be in its own package, having dependencies on both the form and the validator

interface packages, as shown in Figure 9-12.

Figure 9-12. Removing the dependency from ValidatorInterface to FormInterface
by introducing another package to be the mediator between the two

NAMING PATTERN-INSPIRED CLASSES

i think that FormValidationMediator is a bit of a strange class name, since it incorporates

the name of the pattern that’s been used. in my experience, it makes a lot more sense to

name the class whatever is most appropriate in the context of your application and make sure

it reads well. then in the documentation of the class you could mention the pattern you’ve

used and possibly why you’ve used it, if it may help the reader understand what’s going on

(as shown in listing 9-16).

Chapter 9 the aCyCliC DepenDenCies prinCiple

208

Listing 9-16. Using Documentation to Explain Which Design Pattern Has

Been Used

/**

 * Mediator for validating Form objects using a generic

 * Validator object

 */

class FormValidation

{

 // ...

}

A mediator package is also known as a bridge package. A bridge connects two

packages that will become more useful when used together, but shouldn’t know about

each other’s existence or inner workings.

In some cases it even makes sense to call such a mediator package an adapter

package. This would be the case if the mediator was defined inside the form package as

an interface, e.g., FormValidationMediatorInterface. You could then create an adapter

package containing an implementation of the FormValidationMediatorInterface

using the particular validation library we’ve used in this example. Introducing the

interface would also make it possible for users of the form package to use their own

favorite validator by writing a single adapter class. This may remind you of a previous

example involving the HandlerInterface from the monolog package, for which users

could provide their own adapter implementation as well, and optionally distribute it as a

package too.

 Chain of Responsibility
Another useful pattern in our quest to break a dependency cycle is the Chain of

Responsibility.3 You can use it to allow other parts of the application to hook into a

certain process and let them do whatever they like (see Listing 9-17).

3 Erich Gamma e.a., Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994.

Chapter 9 the aCyCliC DepenDenCies prinCiple

209

Listing 9-17. Using the Chain of Responsibility Pattern

interface FormValidatorInterface

{

 public function validate(FormInterface $form);

}

class Form implements FormInterface

{

 private $validators = [];

 public function addValidator(

 FormValidatorInterface $validator

): void {

 $this->validators[] = $validator;

 }

 public function isValid(): bool

 {

 foreach ($this->validators as $validator) {

 $validator->validate($this);

 }

 // ...

 }

}

Any class implementing FormValidatorInterface can be added to the stack of

validators. This is a nice example of applying the Open/Closed principle (Chapter 2) to

the Form class. It is possible to change the behavior of the class with regard to validation

by just injecting other objects into it, instead of modifying its code.

Please note that the original recipe for a Chain of Responsibility includes a separate

object for the request and each of the candidates for this request needs to pass the

request object to the next candidate explicitly. In most cases such an implementation

is way too complex. A simple loop over the candidates makes much more sense and is

definitely more readable too.

Chapter 9 the aCyCliC DepenDenCies prinCiple

210

Using a chain of objects that have the same responsibility is a great way to decouple

packages. The package may contain just one interface, which other packages can depend

on (i.e., implement). The project that uses these packages then only needs to configure

the object graph correctly. See Figure 9-13.

 Mediator and Chain of Responsibility Combined: An Event
System
There’s one last solution that’s a very common and appropriate way of dissolving

dependency cycles. It’s a combination of a Mediator and a Chain of Responsibility. It is

often known as an event dispatcher or an event manager.

An event dispatcher is an abstract mediator: the names and types of the messages

are not predefined. It simply passes messages (events) to delegates (event listeners). In

Listing 9-18, you will find a simple implementation of such an event dispatcher. It allows

for event listeners (which should implement ListenerInterface) to be registered using

the name of the event they want to listen to.

Figure 9-13. A chain of responsibility used to break the dependency cycle

Chapter 9 the aCyCliC DepenDenCies prinCiple

211

Listing 9-18. An EventDispatcher Implementation and the ListenerInterface

class EventDispatcher

{

 private $listeners = [];

 public function registerListener(

 string $eventName,

 ListenerInterface $listener

): void {

 $this->listeners[$eventName][] = $listener;

 }

 public function dispatch(

 string $eventName,

 $eventData

): void {

 foreach ($this->getListeners($eventName) as $listener) {

 $listener->notify($eventData);

 }

 }

 private function getListeners($eventName): array

 {

 if (isset($this->listeners[$eventName])) {

 return $this->listeners[$eventName];

 }

 // no listeners are defined for this event

 return [];

 }

}

interface ListenerInterface

{

 public function notify($eventData): void;

}

In the Form class we can use the event dispatcher to trigger an event whenever the

form has been submitted. Let’s call this event form.submitted (see Listing 9-19).

Chapter 9 the aCyCliC DepenDenCies prinCiple

212

Listing 9-19. Form Triggers an Event Upon Submission

class Form

{

 private $eventDispatcher;

 public function __construct(EventDispatcher $eventDispatcher)

 {

 $this->eventDispatcher = $eventDispatcher;

 }

 public function submit(array $data): void

 {

 // create the event object, provide the right context

 $event = new FormSubmittedEvent($this, $data);

 $this->eventDispatcher

 ->dispatch('form.submitted', $event);

 }

 // ...

}

The FormSubmittedEvent class is quite simple. It’s only used to carry some

contextual data about the event that occurred. In this case it allows event listeners

to inspect (and modify) the form object itself and the data that was submitted (see

Listing 9-20).

Listing 9-20. The Class of the Event That Gets Triggered Upon Form Submission

class FormSubmittedEvent

{

 private $form;

 public function __construct(FormInterface $form, array $data)

 {

 $this->form = $form;

 }

 public function getForm(): FormInterface

Chapter 9 the aCyCliC DepenDenCies prinCiple

213

 {

 return $this->form;

 }

 public function getData(): array

 {

 return $this->data;

 }

}

Now we only need to implement an event listener that validates the form based

on the submitted data. It listens to the form.submitted event and unpacks the

FormSubmittedEvent object. When some of the submitted data from the event object is

invalid, the listener adds an error to the form object (see Listing 9-21).

Listing 9-21. The Event Listener That Validates the Form’s Data

class ValidateDataOnFormSubmitListener

{

 public function __construct(ValidatorInterface $validator)

 {

 $this->validator = $validator;

 }

 public function notify(FormSubmittedEvent $event): void

 {

 $form = $event->getForm();

 $submittedData = $event->getData();

 if (!$this->validator->validate(...)) {

 // part of the submitted data is invalid

 $form->addError(...);

 }

 }

}

To make all of this work, you need to set up the event dispatcher and register the

form validation listener, then provide the event dispatcher as the constructor argument

of the Form object (see Listing 9-22).

Chapter 9 the aCyCliC DepenDenCies prinCiple

214

Listing 9-22. Setting Up the Event Dispatcher, Listener, and Form

$eventDispatcher = new EventDispatcher();

$validationListener = new ValidateDataOnFormSubmitListener();

$eventDispatcher->registerListener(

 'form.submitted',

 $validationListener

);

$form = new Form($eventDispatcher);

// will trigger the event listener

$form->submit([...]);

The EventDispatcher is a proper mediator: a Form never talks to a Validator

directly, but always by means of the EventDispatcher. Inside the EventDispatcher, the

listeners form a Chain of Responsibility. Each of them gets a chance to respond to the

form.submitted event.

Looking at the dependency diagram (see Figure 9-14), we see no circles.

Figure 9-14. The new dependency diagram, including the event dispatcher

Chapter 9 the aCyCliC DepenDenCies prinCiple

215

Maybe you’re missing a connection between the event dispatcher and the

event listener in this diagram. In a sense, the EventDispatcher should depend

on the ValidateDataOnFormSubmitListener class. However, this is only a

runtime dependency. If we look at the code there is no strict dependency on the

ValidateDataOnFormSubmitListener class. You can use the EventDispatcher class

without this particular event listener. Hence it should not result in a dependency

between packages.

Using events to decouple packages can be very effective. However, there are also

some disadvantages to doing so. First of all, an event dispatcher is a highly abstract

mediator. There’s nothing about the call to EventDispatcher::dispatch() that tells

you that validation is going to happen. At the same time, validation is a concept that’s

very central to handling forms, so dealing with it behind the scenes in some event

listener may not be the best solution. The better solution in this case would be to use

dependency inversion. Introduce a FormValidatorInterface and have an adapter

package with an implementation of this interface that knows how to use the Validator

class. This will effectively remove the cyclic dependency.

There are other situations where using an event subsystem would be a smart

solution though. For example, when you want to allow users to be notified when a

process enters or leaves a certain phase. In that case, always aim to model the events

themselves to be immutable. This should prevent hard-to-debug issues related to state

that get modified in surprising ways inside event listeners.

If you do consider allowing event listeners to modify event data, see if you could

instead use something like a filter or pipe mechanism. This allows you to stay away from

the abstractness of the name “event dispatcher” and introduce some more meaningful

class/interface names, like “form data filter,” “request preprocessor,” “response header

collector,” etc.

 Conclusion
In this chapter we discussed many aspects of coupling. First we looked at different

types of dependencies between classes, which can lead to package dependencies when

the dependency of one class on another transcends the boundary of the package that

contains the class.

Chapter 9 the aCyCliC DepenDenCies prinCiple

216

When following the path from dependency to dependency, you sometimes

return to the package from which you started. In that case, you have a cycle in your

dependency graph. The Acyclic Dependencies principle told us not to have cycles in

our dependency graph. Thinking about this, we concluded that cycles indeed cause a

lot of trouble and, toward the end of this chapter, we learned that they are also not that

hard to overcome.

Breaking all the cycles in our dependency graph (which is then an acyclic directed

graph) makes it possible for us to easily create branches in the history of the packages.

This means we can work on new minor and even major versions of a package, without

preventing other packages from making progress or ever releasing their next major

version at all. Having no cycles means that a change in one package affects only the

smallest number of packages possible.

Being susceptible to changes in other packages, or necessitating other packages to

change when your package changes, is the subject of the following two chapters.

Chapter 9 the aCyCliC DepenDenCies prinCiple

217
© Matthias Noback 2018
M. Noback, Principles of Package Design, https://doi.org/10.1007/978-1-4842-4119-6_10

CHAPTER 10

The Stable Dependencies
Principle
In the previous chapter, we discussed the Acyclic Dependencies principle, which helps us

prevent cycles in our dependency graphs. The greatest danger of cyclic dependencies is

that problems in one of your dependencies might backfire after they have travelled the

entire cycle through the dependency graph.

Even when your dependency graph has no cycles, there’s still a chance that

dependencies of a package will start causing problems at any time in the future.

Whenever you upgrade one of your project’s dependencies, you hope that your project

will still work as it did before. However there’s always the risk that it suddenly starts to

fail in unexpected ways.

When your project still works after an upgrade of its dependencies, the maintainers

of those dependencies are probably aware that many packages depend on their package.

So in each patch or minor release, they will only fix bugs or add new features. They never

push changes that would cause failure in a dependent package.

If, however, something is suddenly broken in your project after an upgrade of one of

the dependencies, its package maintainers apparently made some changes that are not

backward compatible. These kinds of changes bubble up through the dependency graph

and cause problems in dependent packages.

When a dependency of your project suddenly causes failures, you must first rethink

your choice of dependencies instead of blaming the maintainers. Some packages are

highly volatile, some are not. It can be in the nature of a package to change frequently,

for any reason. Maybe those changes are related to the problem domain, or maybe they

are related to one of its dependencies.

Likewise, before adding a dependency to your project, you need to decide: is it likely

that this dependency is going to change? Is it easy for its maintainers to change it? In

other words, can the dependency be considered stable, or is it unstable?

218

SEMANTIC VERSIONING AND STABILITY

As we discussed in the chapter about the Release/Reuse Equivalence principle (Chapter 6),

the word “stable” is also used in the context of semantic versioning. A package is considered

stable if it has a version that is at least 1.0.0, and is not in a development (or alpha, beta, RC)

branch. Such a stable version promises to have a public API that does not change in backward

incompatible ways.

The Stable Dependencies principle is also about the stability of a package, but isn’t necessarily

related to semantic versioning. In this chapter, “stable” means “not likely to change”. A stable

package in this context is a package on which many other packages depend, while it does not

depend on other packages itself.

 Stability
The stability of a package is all about how easy it is to change something in its code. This

is not about clean code, or if the code can be easily refactored. It is about how responsible

the package is with respect to other packages and if the package is susceptible to changes

in any one of its dependencies.

Changes in the dependencies of a package are likely to bubble up to the package

itself. You will often need to make changes to your own package to accommodate for

changes in its dependencies. If you have a lot of dependencies, it’s much more likely that

an update of your dependencies will require you to modify your own package. Such a

package would be called a dependent package (see Figure 10-1). When a package needs

to be changed often to accommodate a change in one of its dependencies, it should be

considered an unstable package.

ChAPTeR 10 The STAble DePenDenCIeS PRInCIPle

219

If a package has no dependencies, or just a small number of them, chances are that

an update of your dependencies will cause no problems at all. Such a package is called

an independent package (see Figure 10-2). Such a package isn’t very susceptible to

changes in its dependencies, so it should be considered a stable package.

Figure 10-1. A highly dependent package

Figure 10-2. An independent package

There’s another direction in the dependency graph that needs to be considered:

the direction toward a package. In other words, how many other packages depend on a

given package? If the number is high, it will be difficult to make changes to the package,

because so many other packages are depending on it, and those local changes may

require many modifications elsewhere. Such a package is called a responsible package

(see Figure 10-3).

ChAPTeR 10 The STAble DePenDenCIeS PRInCIPle

220

On the other hand, if the number of incoming dependencies is low or even lacking,

it will be very easy for the package maintainer to make changes to it, since those changes

will have little impact on other packages. We call a package with no other packages

depending on it an irresponsible package, because it will not be held responsible for any

changes that are made to it (see Figure 10-4).

Figure 10-3. A responsible package is a package that has many packages
depending on it

Figure 10-4. An irresponsible package with no packages depending on it

The maintainer of such an irresponsible package is free to change anything they like.

On the contrary, a package with many dependents can be called responsible since its

maintainer cannot just change anything they want. Any change should be expected to

have an impact on depending packages.

At this point, it makes sense to not only take into account the number of packages

depending on your package, but to also consider the number of applications that are

depending on the package. As a package developer, you can’t always get an accurate

ChAPTeR 10 The STAble DePenDenCIeS PRInCIPle

221

view of this, but package managers usually track the number of downloads for a package.

If it’s high, you can be certain that the package has many users. In that case, you have a

responsible package, meaning that it needs to be stable for its users.

 Not Every Package Can Be Highly Stable
Packages that are more independent and responsible should be considered highly

stable. Those are packages that don’t need to change because of a change in one of their

dependencies, but they also can’t easily change themselves because other packages

heavily depend on them. See Figure 10-5.

Figure 10-5. A highly stable package: no dependencies, only dependents

These highly stable packages are usually small libraries of code that implement some

abstract concepts that are useful in many different contexts.

On the other side of the scale, packages that are more dependent but at the same

time very irresponsible should be considered highly unstable. These packages are

susceptible to changes in any of their dependencies, but they are not depended on by

any other package, so it is no problem for them to change because a change would not

ripple through. See Figure 10-6.

ChAPTeR 10 The STAble DePenDenCIeS PRInCIPle

222

These highly unstable packages are likely to contain concrete implementations that

are, for example, coupled to a specific persistence library, or they may contain detailed

implementations of business rules that are liable to change. Code that is only useful

in the context of a certain application framework is also likely to be inside an unstable

package, since a framework is itself highly unstable according to the definition used in

this chapter.

Finally, there are packages that have no dependencies, but no other packages (or

applications) depend on them too. These packages are independent and irresponsible.

These are useless packages. Most packages, however, are somewhere between highly

independent and responsible and highly dependent and irresponsible.

 Unstable Packages Should Only Depend on More
Stable Packages
Intuitively it would be alright for an unstable package to depend on a stable package.

After all, the stable package is unlikely to have negative effects on an already unstable

package. However, the other way around—a stable package that depends on an unstable

package—would not be acceptable. The volatility of an unstable package would pose a

threat to the stability of the stable package and would in fact make it less stable.

Figure 10-6. A highly unstable package: many dependencies, no dependents

ChAPTeR 10 The STAble DePenDenCIeS PRInCIPle

223

To prevent package designers from introducing “bad” dependencies, the Stable

Dependencies principle tells us that:

The dependencies between packages in a design should be in the direc-
tion of the stability of the packages. A package should only depend upon
packages that are more stable than it is.1

In other words, less stable packages may depend on more stable packages. Stable

packages should not depend on unstable packages.

 Measuring Stability
Stability is actually a quantifiable unit, which we can use to determine if any package in a

dependency graph satisfies the Stable Dependencies principle.

The conventional way of expressing stability is by calculating the I metric for

packages. First you need to count the number of classes outside a package that depend

on a class inside the package. We call this value C-in. Then you need to count the

number of classes outside the package that any class inside the package depends on. We

call this C-out.

You can then determine the I metric for the package by calculating C-out divided

by C-in + C-out. This means that I will be between 0 and 1, where 1 indicates that the

package is maximally unstable and 0 indicates that it is maximally stable.

A highly stable package is responsible: it has many dependents, so C-in is a high

number. At the same time it’s independent: it has no dependencies, so C-out = 0. This

means that I = 0 since C-out / (C-in + C-out) = 0.

A highly unstable package is very dependent: it has many dependencies, so C-out is

a high number. But it’s also irresponsible: it has no other packages depending on it, so

C-in = 0. Then I = 1 since C-out / (C-in + C-out) = 1.

Of course, these are very extreme examples. Most packages have an I that is

not 0 nor 1, but somewhere in between. For example, the package in the center of

1 Robert C. Martin, Engineering Notebook, C++ Report, Feb 1997 (PDF available on
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod).

ChAPTeR 10 The STAble DePenDenCIeS PRInCIPle

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

224

 Decreasing Instability, Increasing Stability
According to the Stable Dependencies principle, the dependencies between

packages in a design should be “in the direction of the stability of the packages”.

In other words, each step we take in the dependency graph should lead to a more

stable package. More stable also means less unstable, so we are only allowed to take

steps in the dependency graph leading to packages with a lower value for I (see

Figure 10-8).

Figure 10-7. Calculating C-in and C-out for the package in the center

Figure 10-7 has a C-out of 3 and a C-in of 2, so the value of I for that package is

3 / (2 + 3) = 0.6. This means that the package should be considered relatively

unstable; the number of outgoing dependencies is higher than the number of

incoming dependencies.

ChAPTeR 10 The STAble DePenDenCIeS PRInCIPle

225

When you draw such a diagram for your packages it’s useful to put packages

with a low I near the bottom and packages with a high I near the top. Then every

dependency arrow should point downward since that is the direction of stability. If

an arrow would point upward, like in Figure 10-9, the Stable Dependencies principle

has been violated (we will later discuss your options to force the arrow in the right

direction again).

Figure 10-8. An example of packages that all depend in the direction of
stability

ChAPTeR 10 The STAble DePenDenCIeS PRInCIPle

226

 Question: Should We Take Into Account All the
Packages in the Universe?
It’s an interesting question. The more packages that depend on a package, the more

responsible that package will be, and therefore the more stable it becomes. But when

calculating package coupling metrics, it would be practically impossible to take all

the other packages and applications in the world into consideration. So, when we do

calculate the I metric, and later the A metric, we can and should only look at all the

packages that are installed in a given application. We can put them all into one big

dependency diagram, and start verifying how well they follow the package coupling

principles.

In the following sections, we discuss some violations of the Stable Dependencies

principle and how you can fix them (if you have the power to do so!).

Figure 10-9. An example of packages that do not all depend in the direction of
stability

ChAPTeR 10 The STAble DePenDenCIeS PRInCIPle

227

 Violation: Your Stable Package Depends on a
Third- Party Unstable Package
In the following example, I use the Gaufrette library,2 which offers an abstraction

layer for filesystems. It allows you to switch from a local filesystem to an in-memory

filesystem, or even to Dropbox or Amazon storage, without the need to make changes to

your own code.

The FileCopy class in Listing 10-1 is part of my own package. Its naive

implementation of a copy mechanism allows you to copy files between any two

filesystems. It depends on the Filesystem class offered by the Gaufrette library.

Listing 10-1. The FileCopy Class

use Gaufrette\Filesystem as GaufretteFilesystem

class FileCopy

{

 private $source;

 private $target;

 public function __construct(

 GaufretteFilesystem $source,

 GaufretteFilesystem $target

) {

 $this->source = $source;

 $this->target = $target;

 }

 public function copy($filename)

 {

 $fileContents = $this->source->get($filename);

 $this->target->write($filename, $fileContents);

 }

}

2 https://github.com/KnpLabs/Gaufrette

ChAPTeR 10 The STAble DePenDenCIeS PRInCIPle

https://github.com/KnpLabs/Gaufrette

228

The package that contains the FileCopy class, let’s call it filesystem- manipulation,

has an explicit dependency on the knplabs/gaufrette package that contains the

Filesystem class, as shown in Listing 10-2.

Listing 10-2. List of Dependencies of the filesystem-manipulation Package

{

 "name": "filesystem-manipulation",

 "require": {

 "knplabs/gaufrette": "~0.1"

 }

}

Currently, FileCopy is the only class in this package. It has one dependency on a

class of another package, which causes the C-out of this package to be 1. In the project in

which the filesystem-manipulation package is being used, there is one class that uses

the FileCopy class, so C-in is also 1, which causes I to be 1 / (1 + 1) = 0.5.

Figure 10-10. Calculating I for filesystem-manipulation

ChAPTeR 10 The STAble DePenDenCIeS PRInCIPle

229

When we make the same calculation for the knplabs/gaufrette package, we need

to count the number of classes outside that package that are depended on by classes

inside the package. This package contains lots of adapter classes to make its filesystem

abstraction work with all kinds of external storage solutions. All of these classes need

extra dependencies to do the work. So this explains the high number of outgoing

dependencies, which after counting turns out to be 54. So C-out = 54. Within the current

project, only the FileCopy class depends on one of the classes of knplabs/gaufrette, so

C-in = 1. This results in a fairly high value for I, namely 54 / (54 + 1) = 54/55, which

is almost 1.

So knplabs/gaufrette turns out to be a highly unstable package. Much more

unstable than our own filesystem-manipulation package. Nevertheless, the

filesystem-manipulation package depends on the entire knplabs/gaufrette package.

So we clearly violate the Stable Dependencies principle, since our packages do not all

depend in the direction of stability. Instead, our package depends in the direction of

instability. This becomes even more clear when we order the packages according to their

stability and then draw the dependency arrows (see Figure 10-11).

Figure 10-11. The filesystem-manipulation package depends on a less stable
package

ChAPTeR 10 The STAble DePenDenCIeS PRInCIPle

230

The reason why knplabs/gaufrette is such an unstable package is that it contains

many concrete filesystem adapters for Dropbox, Amazon S3, SFTP, etc. These adapters

are not used by everyone at the same time. So, according to the Common Reuse

principle, they should have been in separate packages.

The filesystem-manipulation package does not need all those specific filesystem

adapters; it only needs the Filesystem class, which provides generic methods for

communicating with any specific filesystem.

 Solution: Use Dependency Inversion
In order to fix the dependency graph and force the arrows to point in the direction

of stability, we would very much like to take the Filesystem class (which is the

actual filesystem abstraction layer) and put it inside a separate package: knplabs/

gaufrette- filesystem- abstraction. Then the adapter classes should be placed

inside other packages, like knplabs/gaufrette-amazon-adapter, knplabs-/

gaufrette-sftp- adapter, etc. We could then change the dependency on knplabs/

gaufrette to knplabs/gaufrette-filesystem-abstraction and this would do

the trick.

However, we can’t do this, since we are not the maintainers of knplabs/gaufrette.

So we need to resort to another solution, one which we’ve already discussed: we

should apply the Dependency Inversion principle. First, instead of depending on

the Gaufrette\Filesystem class, which is still inside a highly unstable package, we

define our own FilesystemInterface (see Listing 10-3) inside our filesystem-

manipulation package.

Listing 10-3. The FilesystemInterface

interface FilesystemInterface

{

 public function read($path): string;

 public function write($path, $contents): void;

}

Then we let the constructor of FileCopy accept objects that implement this new

FilesystemInterface (see Listing 10-4).

ChAPTeR 10 The STAble DePenDenCIeS PRInCIPle

231

Listing 10-4. FileCopy Uses the New FilesystemInterface

class FileCopy

{

 // ...

 public function __construct(

 FilesystemInterface $source,

 FilesystemInterface $target

) {

 // ...

 }

 // ...

}

Now we can actually remove the dependency on knplabs/gaufrette from the

package definition of our filesystem-manipulation package. As a matter of fact, the

package has become independent at once: it has no dependencies at all. This means that

it now has an I of 0 and it is to be considered highly stable.

As already mentioned, we’d still want to make use of the Gaufrette library. Therefore,

we need to bridge the gap between FilesystemInterface and the Gaufrette\

Filesystem class. We may accomplish this by introducing a new class, called

GaufretteFilesystemAdapter (see Listing 10-5).

Listing 10-5. The GaufretteFilesystemAdapter

use Gaufrette\Filesystem as GaufretteFilesystem;

class GaufretteFilesystemAdapter implements FilesystemInterface

{

 private $gaufretteFilesystem;

 public function __construct(

 GaufretteFilesystem $gaufretteFilesystem

) {

 $this->gaufretteFilesystem = $gaufretteFilesystem;

 }

ChAPTeR 10 The STAble DePenDenCIeS PRInCIPle

232

 public function read($path): string

 {

 return $this->gaufretteFilesystem->get($path);

 }

 public function write($path, $contents): void

 {

 $this->gaufretteFilesystem->write($path, $contents);

 }

}

This class uses Gaufrette’s filesystem object by composition and is at the same time

a proper substitute for FilesystemInterface. We put this class in a new package, called

gaufrettefilesystem-adapter. Since the class needs both the FilesystemInterface

and the Gaufrette\Filesystem class, it depends on both knplabs/gaufrette and

filesystem-manipulation (see Listing 10-6).

Listing 10-6. List of Dependencies of the gaufrette-filesystem-adapter

Package

{

 "name": "gaufrette-filesystem-adapter",

 "require": {

 "knplabs/gaufrette": "1.*"

 "filesystem-manipulation": "*"

 }

}

The C-out of this new gaufrette-filesystem-adapter package is 2, because it uses

two classes outside the package. Its C-in is 0, since no other package uses a class from

this package. This means I = 2 /(2 + 0) = 1. It’s highly unstable (i.e., easy to change),

which is totally fine for an adapter package.

Take a look at Figure 10-12 to find out what all this did for the dependency graph and

the arrows in it.

ChAPTeR 10 The STAble DePenDenCIeS PRInCIPle

233

The packages are now sorted in the direction of stability, and all dependency arrows

are pointing downward, which means that no package in this system violates the Stable

Dependencies principle anymore.

All of this was accomplished without making any changes to third-party code.

We applied the Dependency Inversion principle to the FileCopy class by letting it

depend on something abstract instead of something concrete. This automatically

makes the FileCopy class easily extensible: others can implement their own adapters

for Filesystem and make it compatible with, for instance, the Flysystem filesystem

abstraction library.3 It also makes the filesystem-manipulation better maintainable,

since changes in knplabs/gaufrette will not affect it anymore.

Staying unaffected by external changes makes the filesystem-manipulation

package very stable. It’s unlikely to change because of its dependencies (since it has no

dependencies anymore). Its previous instability is pushed away to the more concrete

gaufrette-filesystem-adapter package, which is now susceptible to changes in

knplabs/gaufrette. But even though the code inside the gaufrette-filesystem-

adapter package is likely to change, it poses no threat to other parts of the system, since

no other package depends on it.

3 https://github.com/thephpleague/flysystem

Figure 10-12. Each package depends in the direction of stability

ChAPTeR 10 The STAble DePenDenCIeS PRInCIPle

https://github.com/thephpleague/flysystem

234

 A Package Can Be Both Responsible
and Irresponsible
As I already quickly pointed out, the knplabs/gaufrette package has some design

issues. It contains classes that would not be used by everyone who uses the package

in their project, so it violates the Common Reuse principle. It also contains classes (the

same classes actually) that are not closed against the same kinds of changes, so the

package violates the Common Closure principle.

Now that we are looking at the knplabs/gaufrette package from the perspective

of stability, it becomes clear that grouping those classes that actually don’t belong

together is the reason why this package has become very unstable. It introduces

many external dependencies, which makes it no longer safe for other packages to

depend on it.

Not being safe to depend on is not a good property for packages that are supposed to

be highly reusable. In fact, a reliable package should be very safe to depend on: it should

be stable. In other words, it should be independent and responsible.

In the previous section we discussed a solution for this stability problem. It

entailed the introduction of an interface and an adapter to rearrange the dependency

directions. We needed to resort to this solution because we could not do what was really

necessary—to split the package into a package containing the more generally reusable

parts (like the Gaufrette\Filesystem class and the Gaufrette\Adapter interface)

and one or more packages containing the more specific and concrete parts (like the

filesystem adapters for SFTP, Dropbox, etc.).

The first package would have no dependencies, only dependents, which would

make it independent and responsible, i.e. very stable. We would call it knplabs/

gaufrette-filesystem-abstraction. The other packages would be named after the

specific filesystems they provided an implementation for, like knplabs/gaufrette-

sftp- adapter. Each of those packages could then have as many dependencies as

needed by the specific filesystem implementation. And of course each of them would

depend on knplabs/gaufrette-filesystem-abstraction because that package will

contain the interface that each filesystem adapter needs to implement. It would make

those adapter packages dependent and a bit less irresponsible. That is, the number of

package depending on it will be smaller than the number of packages and applications

depending on the core filesystem abstraction package.

ChAPTeR 10 The STAble DePenDenCIeS PRInCIPle

235

The great thing is that in such a constellation of packages, knplabs/gaufrette-

filesystem- abstraction would be very stable, and the filesystem-manipulation

package containing the FileCopy class could safely depend on it. The filesystem-

manipulation package itself has an I of 0.5, while knplabs/gaufrette-filesystem-

abstraction has an I of 0, which is lower. All package dependencies would follow the

direction of stability, so the Stable Dependencies principle would not be violated.

 Conclusion
According to the Stable Dependencies principle, packages should depend in the direction

of stability. This means that every package should depend only on packages that are

more stable than the package itself is. The stability of a package is a measurement of how

likely it is to change.

A stable package will be both independent (it has only a few dependencies, or none at

all) and responsible (many classes depend on it). An unstable package will be dependent

(it has many dependencies) and irresponsible (no classes, or just a few, depend on it).

With the I-metric, (in)stability can be quantified as C-out / (C-out + C-in),

where C-out is the number of classes the package depends on, and C-in is the number

of classes that depend on a class in this package. If I gets closer to 1, the package is

relatively unstable. If it gets closer to 0, it’s relatively stable.

Figure 10-13. knplabs/gaufrette-* packages after refactoring

ChAPTeR 10 The STAble DePenDenCIeS PRInCIPle

237
© Matthias Noback 2018
M. Noback, Principles of Package Design, https://doi.org/10.1007/978-1-4842-4119-6_11

CHAPTER 11

The Stable Abstractions
Principle
We’ve reached the last of the design principles related to package coupling, which

means we have in effect reached the last of all the package design principles. This

principle, the Stable Abstractions principle, is about stability, just like the Stable

Dependencies principle. While the previous principle told us to depend “in the

direction of stability,” this principle says that packages should depend in the direction

of abstractness.

 Stability and Abstractness
The name of the Stable Abstractions principle contains two important words: “stable”

and “abstract”. We already discussed stability of packages in the previous chapter.

A stable package is not likely to change heavily. It has no dependencies so there is

no external reason for it to change. At the same time, other packages depend on it.

Therefore, the package should not change, in order to prevent problems with those

depending packages.

In the previous chapter, we learned that you can calculate stability and that you can

verify that the dependency graph of a project contains only dependencies of increasing

stability, or decreasing instability. In this chapter, we learn that we also have to calculate

the abstractness of packages and that the dependency direction should be one of

increasing abstractness, or decreasing concreteness.

The concept of abstractness is something we also encountered in previous chapters.

For example, in the chapter about the Dependency Inversion principle (Chapter 5),

we learned that our classes should depend on abstractions, not on concretions.

238

We discussed several ways in which a class can be abstract. The most obvious way

is when a class has abstract (also known as virtual) methods. These methods have

to be defined in a subclass. This subclass is a concrete class because it is a full

implementation of the type of thing that the abstract class tries to model. When a class

only has abstract methods, we usually don’t call it a class, but an interface. Classes that

implement the interface eventually have to provide an implementation for all of the

abstract methods defined in the interface.

The Dependency Inversion principle told us to depend on abstractions, not on

concretions. The reason was, like always, that we need to be prepared for change. A class

that depends on a concrete thing is likely to change whenever some implementation

detail of the concrete thing changes (see Figure 11-1). Besides, if at some point we want

to replace the concrete thing with another concrete thing, we’d have to modify the class

to understand and use that new concrete thing. And in that situation it’s probably not the

only class that needs to be modified.

If instead we define something abstract, like an abstract class or preferably an interface,

and we depend on it, we are much better prepared for change (see Figure 11- 2). Most

changes occur in concrete things, i.e., in fully implemented classes. The abstract things,

like interfaces, will remain the same over a longer period of time. So if we depend on an

abstract thing, it is likely that we will not be negatively influenced by it—it’s supposed to be

very stable.

Figure 11-1. Depending on concrete things

Chapter 11 the Stable abStraCtionS prinCiple

239

And this is where the two concepts, stability and abstractness, meet. If we consider

stability to be the likeliness that something is going to change, then what is true for

classes is also true for packages. As we know now, it’s better to depend on stable

packages than to depend on unstable packages. Stable packages are less likely to change,

so a depending package won’t be negatively influenced by changes in its dependencies.

In the same way it’s safer to depend on abstract classes or interfaces because they are

less likely to change.

We can follow the same reasoning while we apply the concept of abstractness to

packages: it would be better to depend on an abstract package than on a concrete

package. For the same reason—an abstract package would contain no particular

implementation details that would be susceptible to change. Over a longer period of

time it will stay the same.

 How to Determine If a Package Is Abstract
The question is: is it possible to mark a package as either abstract or concrete? It is

possible, even though “being abstract” is not a Boolean value. There are many degrees of

abstractness. We might consider a class to be abstract if it contains at least one abstract

method. Then a class is concrete if it has no abstract (or virtual) methods.

Figure 11-2. Depending on abstract things

Chapter 11 the Stable abStraCtionS prinCiple

240

We can determine the abstractness of packages in a similar way. A package is

abstract if it contains no regular classes, only interfaces and abstract classes. And a

package is concrete if it has at least one fully implemented, concrete class.

Still we’d need a little nuance here. According to this definition of abstract and

concrete packages, a package with 10 interfaces and 1 concrete class would count as

a concrete package, even though it contains many more abstract things than concrete

things. Therefore, we should take the total number of classes and interfaces into account.

 The A Metric
The suggested way to find an indication of the abstractness of packages is to calculate

the number of abstract classes and interfaces in a package, then divide that number by

the total number of concrete classes, abstract classes, and interfaces in that package. The

resulting thing would be a quotient with a value somewhere between 0 and 1. We call

this number the A metric for packages:

A = C-abstract / (C-concrete + C-abstract)

When the value of the A metric for a package is equal to or near 0, it’s a highly

concrete package. It contains (almost) no interfaces, only concrete classes, so it’s full of

implementation details, and therefore liable to change.

When, on the other hand, the A metric is equal to or near 1, it’s a highly abstract

package. It contains (almost) no concrete classes, but mostly abstract classes and

interfaces. It’s likely that these abstract things will stay the same over time. After all, only

concrete classes and consequently concrete packages are liable to change.

 Abstract Things Belong in Stable Packages
So abstract packages are stable too. Or at least, they should be. This is where the Stable

Abstractions principle steps in:

Packages that are maximally stable should be maximally abstract. Instable
packages should be concrete. The abstraction of a package should be in pro-
portion to its stability.1

1 Robert C. Martin, Engineering Notebook, C++ Report, Feb 1997 (PDF available on
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod).

Chapter 11 the Stable abStraCtionS prinCiple

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

241

We already know that a package should depend only on packages that are more

stable. Now we also know that abstract things are likely to be more stable, i.e., they

change less often and less dramatically. Hence concrete classes can safely depend

on them. But what if an interface is part of a highly unstable package? Then it’s

consequently not safe to depend on that package. The unstable package is likely to

change. The interface inherits the instability of its containing package.

Interfaces and abstract classes are better off in a stable package. The stability of the

package itself will be beneficial for the abstract things it contains. At the same time, the

abstract things are good for the stability of the containing package. Packages that apply

the Dependency Inversion principle start to depend on it because of the abstract things

it contains. This turns it into a more responsible package and will thereby force it to

become more stable.

The opposite is also true: concrete classes are better off in unstable packages.

The implementation details of the classes are likely to change anyway and this

would better happen in an unstable package, which has less responsibility toward

depending packages. If, however, a concrete class would be inside a highly stable

package, it would make that package more unstable because a concrete class is liable

to change.

 Abstractness Increases with Stability
The Stable Abstractions principle adds one extra requirement. It wants to unify

abstractness and stability into this simple rule: a package should be as abstract as it is

stable.

Let’s assume you have a number of packages and have calculated the I values for all

of them. Remember the I value indicates the stability of a package: the closer the value

is to 1, the more unstable a package is. The closer it is to 0, the more stable it is. When

you draw them in a diagram, the packages with the highest value for I are at the top and

those with the lowest value for I are at the bottom. When you travel from a package to

its dependencies you encounter packages that only have decreasing values for I (see

Figure 11-3), that is, they become more and more stable.

Chapter 11 the Stable abStraCtionS prinCiple

242

To figure out if you have also applied the Stable Abstractions principle correctly, you

also need to calculate the values for A (by dividing the number of abstract classes and

interfaces by the total number of classes and interfaces). Then add the resulting A values

to the dependency diagram (see Figure 11-4).

Figure 11-3. All dependencies go in the direction of stability

Chapter 11 the Stable abStraCtionS prinCiple

243

Now you only need to verify that each dependency arrow leads to a package

with a higher value for A. In other words, dependencies should have an increasing

abstractness.

Strictly speaking, the values for I and A added together should be exactly 1. This

would mean that all packages are as abstract as they are stable. But this is completely

unrealistic. There is always some margin to this. However, I + A should not be too far

away from 1. In general, highly abstract packages should be highly stable, and concrete

packages should be unstable.

 The Main Sequence
It’s possible that stable packages contain concrete classes and unstable packages contain

abstract classes or interfaces. These packages might be easy to spot, but there are many

degrees of stability and abstractness. To find out which packages have imbalanced values

for I and A, we can plot the packages in a diagram called the main sequence diagram.

We first draw a vertical axis going from 0 to 1. It stands for the degree of abstractness

of a package (expressed by A). Then we draw a horizontal axis going from 0 to 1.

Figure 11-4. All dependencies go in the direction of abstractness

Chapter 11 the Stable abStraCtionS prinCiple

244

This represents the degree of instability of a package (expressed by I). Finally, we draw

a diagonal line from the top-left corner to the bottom-right corner. This line is called the

main sequence (see Figure 11-5).

Now we plot each package at the right spot in the diagram, based on its values for I

and A (see Figure 11-6).

Figure 11-5. The main sequence diagram template

Figure 11-6. The main sequence diagram for the packages in the previous
dependency diagram

Chapter 11 the Stable abStraCtionS prinCiple

245

You’ll know when you have applied both the Stable Dependencies principle and the

Stable Abstractions principle correctly if all the packages are near or on the diagonal, i.e.

the main sequence. According to this rule, the previously shown main sequence diagram

looks pretty good.

If you find any package that lies quite far from the main sequence, you should take

a closer look at it. Consider its surrounding packages too and try to make some changes

to its dependencies or its dependents in order to achieve the right amount of stability.

It may also be necessary to change the abstractness of the package by relocating some

abstract classes or interfaces.

Once you’ve fixed the biggest issues with stability and abstractness, you

shouldn’t forget to regularly come back to see if packages have not started to drift

away from the main sequence. After some time the nature of existing packages may

change because of new features being added to them and this may eventually cause

an imbalance.

 Types of Packages
When you travel down the main sequence from the top-left to the bottom-right corner,

you will first come across highly concrete, highly unstable packages. These should all be

application-level packages. They are full of implementation details, specific to the actual

project you’re working on. They are allowed to be concrete, because no other package

depends on them. Hence, they are unstable packages bound to change as often as the

business changes.

Taking some more steps on the main sequence you will find in the middle packages

that are somewhat abstract and somewhat stable. They are much less affected by

external changes, but to a certain degree they are allowed to change themselves without

bringing the whole project in danger.

When the journey on the main sequence ends, you will be in the realm of abstract,

stable packages: the foundational blocks of your application. These contain lots

of interfaces and abstract classes, which is why many classes (and consequently

packages) depend on them. These classes apply the Dependency Inversion principle

correctly in order to be less susceptible to change. Hence, these abstract packages

should be stable too. And they are, because they are responsible and have no

dependencies themselves.

Chapter 11 the Stable abStraCtionS prinCiple

246

INTERFACE PACKAGES

When you want to create highly abstract, stable packages, you may end up simply extracting

the interfaces from existing packages and putting them all in one big interface package.

this is not the best thing you can do for your project. by putting all the interfaces in

one package, you are going to violate the Common Reuse principle: some clients need

just one or two interfaces from the package, but still they would have to depend on the

entire package.

besides, not all interfaces are meant to be depended on outside of a given package.

You may have lots of interfaces that are only for private use within the same package

(depending on your programming language, you may be able to mark an interface

as private).

one last thing to be aware of: before moving interfaces to a separate project, make sure

that you have properly applied the Interface Segregation principle to all of them. that way,

clients won’t be forced to depend on interfaces with methods they do not or should not

want to use.

if you properly apply these rules, go ahead and create lots of small interface packages, each in

support of one specific feature.

 Strange Packages
What happens in the corners that lie far away from the main sequence? What

misbehaving packages can be found there (see Figure 11-7)?

Chapter 11 the Stable abStraCtionS prinCiple

247

In the top-right corner, we will find packages that are both highly abstract and highly

unstable. These packages can thus be characterized as:

• Irresponsible (no other packages depend on them)

• Dependent (they depend on lots of other packages)

• Abstract (they contain only abstract classes or interfaces)

This is a very strange kind of package. It’s very unlikely that such a package can

be found in your project, because it would most likely contain dead code. It’s never

used by any part of the project, yet the code is abstract, meaning that it cannot be used

standalone—someone has to provide an implementation for it. In other words, packages

like these are useless and you should try to get rid of them.

On the opposite side of the diagram, in the bottom-left corner (see Figure 11-8), you

will find packages that are highly concrete, yet highly stable.

Figure 11-7. A package in the top-right corner

Chapter 11 the Stable abStraCtionS prinCiple

248

Such packages are:

• Responsible (many packages depend on them)

• Independent (they have no dependencies)

• Concrete (they contain only concrete classes)

This kind of package would be heavily used all over the project. Because it doesn’t

need any other packages to do its work, this is probably some kind of low-level library.

However, it doesn’t offer any abstractions for the things it does. This means that it’s

hard for classes in other packages to naturally comply to the Dependency Inversion

principle: they have to depend on the concrete classes from this package instead of

interfaces.

The solution for getting this package back in shape is to apply the Dependency

Inversion principle to depending packages. They should not depend on the concrete

classes from this package anymore, but instead depend on their own interfaces or

interfaces defined in some more stable and abstract package.

Figure 11-8. A package in the bottom-left corner

Chapter 11 the Stable abStraCtionS prinCiple

249

 Conclusion
In this chapter, we discussed the intimate relation between stability and abstractness.

We learned that the more stable a package is, the more abstract things it should contain.

The counterpart of this is that the more concrete things a package contains, the more

unstable it becomes.

We looked at the main sequence diagram to get a grip on different kinds of packages

and where they are on the sliding scale between concrete/unstable and abstract/stable.

Using this diagram, we are able to spot packages with extraordinary characteristics.

Chapter 11 the Stable abStraCtionS prinCiple

251
© Matthias Noback 2018
M. Noback, Principles of Package Design, https://doi.org/10.1007/978-1-4842-4119-6_12

CHAPTER 12

Conclusion
Now that we have discussed so many design principles, you may feel that it’s time to get

a little bit more practical. You just want to finally start creating wonderful packages and

share them with your co-workers, or even with the international open source software

audience. I definitely think you should do that. Before you do, I want to give you some

last words of advice.

 Creating Packages Is Hard
In his book, Facts and Fallacies of Software Engineering, Robert Glass mentions some

interesting “facts” about reusable software components (or “packages”). First of all:

Reuse-in-the-small (libraries of subroutines) […] is a well-solved problem.1

 Reuse-in-the-Small
There are all kinds of little shared functions that are very useful and help you quickly

solve ever-recurring problems, like sorting an array, reading bytes from a file, etc. These

are often distributed as “standard libraries” along with the runtime of your programming

language.

By combining basic functions like these, you can produce some new low-level

functions. As long as these functions are sufficiently small and unspecific, there should

be no problem in reusing them in other projects. You only have to make sure that you

release the code properly.

1 Robert L. Glass, Facts and Fallacies of Software Engineering, Pearson Education, 2003.

252

 Reuse-in-the-Large
When we keep combining and restructuring these low-level functions, we eventually

produce complex and advanced software components. If you want to reuse entire

software components in other projects, that’s a whole different story. As Glass puts it:

Reuse-in-the-large (components) remains a mostly unsolved problem […].2

It’s much harder to prepare these bigger components for reuse than it is to

write small, reusable functions. The main reason is that components usually fulfill

an application- specific goal. Most components in a project are the result of actual

requirements for that project.

Even though there are still lots of projects in the world that share some or a big part

of their requirements (probably because they are part of the same business domain),

no two applications are the same. This means that there is always some aspect of a

component that wouldn’t be useful in another project, or that would contradict some of

the other project’s requirements, etc.

When you’re working on a component that you want to make reusable, it can be very

hard, maybe impossible, to think of all the ways in which other developers might want to

use it. Often you recognize room for improvement only after someone points it out

to you.

 Embracing Software Diversity
Glass attributes the fact that reuse-in-the-large is so hard to something called software

diversity:

If, as many suspect, the diversity of applications and domains means that
no two problems are very similar to one another, then only those common
housekeeping functions and tasks are likely to be generalized.3

Creating reusable components (or “packages”) may be possible only if:

• The domain of two projects is the same

or

• The component offers general-purpose functionality

2 Robert L. Glass, Facts and Fallacies of Software Engineering, Pearson Education, 2003.
3 Robert L. Glass, Facts and Fallacies of Software Engineering, Pearson Education, 2003.

Chapter 12 ConClusion

253

In the first case, components model some part of the shared domain in a reusable

way, leaving some details to the client. For example, it may be possible to reuse an online

payment component in several e-commerce applications. Or, if you write flight control

software like NASA does, you will likely be able to reuse some components in the next

project. As Robert Glass mentions, NASA reports the amount of code reuse to be around

70%, which should be mainly attributed to the fact that most of their projects have a

shared problem domain.

In the second case, components offer some generally useful features, like logging

things, talking to a server over HTTP, processing web requests, converting Markdown

to HTML, etc. These types of things are useful in large subsets of all applications. As

long as they offer lots of configuration options and apply the SOLID and package design

principles correctly, these components or packages have a good chance of being easily

reusable.

 Component Reuse Is Possible, But Requires More Work
When you intend your code to be reusable, you should be constantly concerned with

extensibility, readability, automated tests, code quality, etc. If you want your reusable

code to be successful in lots of projects, you should be aware of any environmental

differences between those projects (different versions of the programming language,

different operating systems, etc.). You have to provide some level of care for the package,

like offering support or providing bug fixes. You need to offer some kind of a product

experience, e.g. by writing a bit of documentation and providing usage examples. All of

the effort you put into it leads to the following rule of thumb, as proposed by Glass:

It is three times as difficult to build reusable components as single use com-
ponents […].4

After all of that, you would still be in the position where only you have used the

component in a project. You don’t know yet how it will behave in other projects, if it

will live up to any other developer’s expectations. Therefore a second rule of thumb is

introduced:

[…] a reusable component should be tried out in three different applications
before it will be sufficiently general to accept into a reuse library.5

4 Robert L. Glass, Facts and Fallacies of Software Engineering, Pearson Education, 2003.
5 Robert L. Glass, Facts and Fallacies of Software Engineering, Pearson Education, 2003.

Chapter 12 ConClusion

254

 Creating Packages Is Doable
I agree with the first rule of thumb. In my experience creating reusable software takes

definitely more time than creating non-reusable software. I don’t know exactly how

much more, but three times more sounds about right. However, you can certainly

influence this amount of time (and effort) by considering these factors:

• The number of features that your package provides

• The area of the domain that your package covers

• The level of extensibility of your package

 Reducing the Impact of the First Rule of Three
If your package has too many features because you want to satisfy a group of users that

is as large as possible, it’s likely that you will spend ever-increasing amounts of time on

maintaining that package. All those features will start to get in each other’s way. Fixing

a bug in one feature might break another feature. Besides, each of those features has its

own dependencies, which makes the package quite unstable.

If your package tries to cover a big area of the problem domain, you will most likely

be spending lots of time trying to implement all imaginable details that can be part of

the domain. A business domain usually has so many aspects that may be slightly or even

largely different for distinct projects in the same domain that it’s impossible to cover

them all with your package. Users of your package will always be able to point out some

more details that you overlooked.

These two factors for the amount of time and effort required to create a package

are both related to the scope of the package. Our conclusion based on these discussions

should be that we always need to limit scope.

There is one other thing that we need to do in order to influence the amount of time

that we need to invest: we need to make sure that our packages are highly extensible. If

users of a package are not able to change the behavior of its classes without modifying

or overriding the actual code, they will come to you to complain about that. Instead

of asking you to add that one feature they’re missing, you should enable them to add

that feature themselves. This should save you a lot of time and make your package very

attractive to its users.

Chapter 12 ConClusion

255

 Reducing the Impact of the Second Rule of Three
The second rule of three stated that we should try our reusable component out in at least

three different applications. In my experience, this isn’t always necessary. Whether or

not to follow this rule depends on the situation, though.

Do you consider sharing the code with the world? Then you may as well ship it right

away and find out what will happen. Of course, it helps to imagine potential use cases

and accommodate the code to enable those. But there will always be one edge case you

didn’t think of. Releasing a package with a license that provides no guarantees to the

users can be a great way to get feedback that shows you how reusable your code really is.

Maybe you don’t intend to open source your code, but you want to reuse it in

different applications of your own making. Then you shouldn’t immediately put the code

in a package, but simply copy it over to the next project and see if it proves its usefulness

there.

The reason to make this distinction is that there’s a significant cost involved in

packaging code. As you know, applying the Release/Reuse Equivalence principle to

packages can provide you with a lot of extra work. You don’t know yet if all this work is

going to pay off. If you’ve used the code in only one project, you don’t know yet if it’s

actually reusable. First you need to find out if the code deserves packaging by seeing

how well it adapts to a second project. That’s also why you shouldn’t immediately aim

for reusability of any piece of code you write for a project. Only when you experience

the need for this code in a second project, and possibly a third, you should consider

packaging it.

An application is usually better off with code that is specific to the project and its

domain. Always aiming for abstract and generic solutions is an interesting programming

exercise, but the project and its developers are better off with code that recognizably

matches the expected behavior of the application, and the concepts of the application’s

problem domain. That’s why it isn’t smart to always write code with potential reusability

in mind.

Once you spot a couple of classes that show some potential for being reusable, you

can always move those classes to a separate directory/namespace within the project and

see if they are viable as a standalone component. It will be a good incentive to improve

the design of those classes, and to hide some logic behind a Façade or interface provided

by the component. In practice though, I’ve found that the vast majority of the code that I

wrote in this a manner never ended up in an actual package.

Chapter 12 ConClusion

256

On the other hand, looking at my own experiences as a package developer, some

packages turn out to be very useful for others. My personal return-on-investment in

terms of time spent versus time saved isn’t always that favorable (on the contrary I’d say).

Nevertheless, it’s great to see that releasing code that I thought should’ve been publicly

available indeed turned out to be useful for others.

 Creating Packages Is Easy?
In the previous sections we changed our mind from “creating packages is hard” to

“creating packages is doable”. Could we take the next step and conclude that creating

packages is easy? On the one hand, yes, I think that it can be very easy. When you make

a habit of following good class design practices, writing clean code and testing your code

before or while you’re writing it, you’ll find that it isn’t hard to pick up that code and

distribute it as a package.

On the other hand, if you start with concrete, single use-case, project-specific code,

and no quality assurance measurements in place, it can be very hard as well to create a

reusable package from that. In that case, I’d say you will have a hard time maintaining

that code anyway.

So in general my advice is to write code in the best way you can. That way, if you ever

want to make it reusable, it will be a goal you can achieve. And if you don’t, you will have

a good time maintaining it. Write your code well, and you will always be better off.

Chapter 12 ConClusion

257
© Matthias Noback 2018
M. Noback, Principles of Package Design, https://doi.org/10.1007/978-1-4842-4119-6

APPENDIX A

 The Full Page Class
<?php

class Page

{

 public $uri = null;

 public $assigns = array();

 public $page = array();

 public $parent_node = 0;

 public $site_title = '';

 public $breadcrumbs = array();

 public $auto_include_dir = '';

 /* @public $smart Smarty */

 public $smarty = null;

 public $default_template = '';

 public $template = '';

 public $cms_login = null;

 public $user_login = null;

 public $available = true;

 public $is_user = false;

 public $is_admin = false;

 public $menu_items = array();

 public $caching = 1;

 public $cache_id = null;

 protected $_extra_request_parameters = array();

 /**

 * @param array $parameters

 */

https://doi.org/10.1007/978-1-4842-4119-6

258

 public function setExtraRequestParameters(array $parameters)

 {

 $this->_extra_request_parameters = array_values($parameters);

 }

 /**

 * @return array

 */

 public function getExtraRequestParameters()

 {

 return $this->_extra_request_parameters;

 }

 public function __construct($uri)

 {

 $this->connect_db();

 header('Content-Type: '.HEADER_CONTENT_TYPE);

 $this->smarty = new Smarty;

 if (isset($_GET['clear_cache']))

 {

 $this->smarty->clear_cache();

 }

 if (DEBUGGING)

 {

 $this->smarty->caching = false;

 if (trusted_ip())

 {

 $this->smarty->debugging = true;

 }

 }

 if (trusted_ip())

 {

 ini_set('display_errors', '1');

 error_reporting(

Appendix A The Full pAge ClAss

259

 E_ERROR | E_PARSE | E_WARNING

 | E_USER_ERROR | E_USER_NOTICE | E_USER_WARNING);

 }

 else

 {

 $this->smarty->debugging = false;

 ini_set('display_errors', '0');

 error_reporting(0);

 }

 $this->smarty->template_dir = ROOT.'/site/templates';

 $this->smarty->compile_dir = ROOT.'/site/templates_c';

 $this->smarty->use_sub_dirs = true;

 $this->default_template = DEFAULT_TEMPLATE;

 if (!table_exists('content'))

 {

 require(ROOT.'/includes/install.php');

 install();

 }

 $this->add_title_part(SITE_TITLE);

 $this->cms_login = new LoginClass('admins', 'cms_login');

 $this->user_login = new LoginClass('users', 'user_login');

 if ($this->cms_login->isLoggedIn())

 {

 $this->is_admin = true;

 }

 if ($this->user_login->isLoggedIn())

 {

 $this->is_user = true;

 }

Appendix A The Full pAge ClAss

260

 $parsed_url = parse_url($uri);

 $relative = ROOT;

 $url = $parsed_url['path'];

 $this->assign('header_content_type', HEADER_CONTENT_TYPE);

 $this->determine_page($url);

 if ($this->smarty->is_cached(", 'page_'.$this- >page['id']))

 {

 $this->smarty->display(

 $this->default_template,

 'page_'.$this->page['id']);

 exit;

 }

 $this->smarty->register_function(

 'translate',

 'smarty_function_translate'

);

 $this->smarty->register_modifier(

 'translate',

 'smarty_modifier_translate'

);

 $this->smarty->register_function(

 'url_for',

 'smarty_function_url_for'

);

 $this->open_page();

 }

 function get_page_info($id)

 {

 $result = mysql_query(

 "SELECT c.id, c.uri, t.title, t.menu_name, " .

 "c.node, c.skip_to_first_subpage FROM content c ".

 "WHERE c.id='$id';"

);

Appendix A The Full pAge ClAss

261

 if ($result && mysql_num_rows($result))

 {

 return mysql_fetch_assoc($result);

 }

 return false;

 }

 function determine_page($url)

 {

 $url_parts = explode('/', trim($url, '/'));

 $page_ids = array();

 $uri_prefix = ";

 $parent_id = 0;

 foreach($url_parts as $key => $part)

 {

 if ($key == 0 || empty($part))

 {

 unset($url_parts[$key]);

 continue;

 }

 $result = mysql_query("SELECT id, skip_to_first_subpage ".

 "FROM content c WHERE t.uri='".addslashes($part)."' ".

 "AND c.parent_id='$parent_id';");

 if (!$result)

 {

 throw new RuntimeException('MySQL error');

 }

 if (mysql_num_rows($result))

 {

 $page_id = mysql_fetch_assoc($result);

 $parent_id = $page_id['id'];

 $page_ids[] = $page_id;

 unset($url_parts[$key]);

 }

Appendix A The Full pAge ClAss

262

 else

 {

 break;

 }

 }

 // remaining URL parts are extra request parameters

 $this->setExtraRequestParameters($url_parts);

 while(empty($page_ids)

 || $page_ids[count($page_ids)-1]['skip_to_first_subpage'])

 {

 $page_id = $this->find_first_subpage(

 $page_ids[count($page_ids)-1]['id']);

 $result = mysql_query("SELECT id, skip_to_first_subpage ".

 "FROM content WHERE id='$page_id';");

 if ($result && mysql_num_rows($result))

 $page_ids[] = mysql_fetch_assoc($result);

 else

 break;

 }

 $page = array();

 foreach($page_ids as $id)

 {

 $page = $this->get_page_info($id['id']);

 if ($page)

 {

 $uri_prefix .= '/'.$page['uri'];

 $this->breadcrumbs[] = array('id' => $page['id'],

 'uri' => $page['uri'], 'href' => $uri_prefix,

 'menu_name' => $page['menu_name'],

 'title' => $page['title']);

 if ($page['node']) $this->parent_node = $page['id'];

 $this->add_title_part($page['title']);

 }

Appendix A The Full pAge ClAss

263

 else

 break;

 }

 $this->page_url = $uri_prefix;

 $this->page = $page;

 $this->assign('breadcrumbs', $this->breadcrumbs);

 return true;

 }

 function redirect($page_id)

 {

 if ($this->page['id'] != $page_id && $page_id > 0)

 {

 session_write_close();

 header('HTTP/1.1 301 Moved Permanently');

 header('Location: '.$this->get_url($page_id));

 exit;

 }

 }

 function open_page()

 {

 $result = mysql_query("SELECT * FROM content c ".

 "WHERE id='{$this->page['id']}';");

 if ($result && mysql_num_rows($result))

 {

 $this->page = mysql_fetch_assoc($result);

 $this->page['contents'] = plain_text($this->page['contents']);

 if ($this->is_admin)

 {

 if (!$this->page['available_for_admins'])

 {

 $this->page['contents'] =

 TPL_NOT_AVAILABLE_FOR_ADMINS;

 $this->available = false;

 }

Appendix A The Full pAge ClAss

264

 else if ($this->cms_login->user['id'] != 1

 && !$this->page['available_for_guests']

 && !$this->page['available_for_users']

 && !$this->has_permission(

 $this->cms_login->user['id'],

 $this->page['id'])

)

 {

 $this->page['contents'] =

 TPL_NOT_AVAILABLE_FOR_SPECIFIC_ADMIN;

 $this->available = false;

 }

 }

 else if ($this->is_user)

 {

 if (!$this->page['available_for_users'])

 {

 $this->page['contents'] =

 TPL_NOT_AVAILABLE_FOR_USERS;

 $this->available = false;

 }

 }

 else

 {

 if (!$this->page['available_for_guests'] && !$this- >is_user)

 {

 $this->page['contents'] =

 TPL_NOT_AVAILABLE_FOR_GUESTS;

 $this->available = false;

 }

 }

Appendix A The Full pAge ClAss

265

 if (!$this->page['show_contents'])

 {

 $this->page['contents'] = TPL_INVISIBLE;

 $this->available = false;

 }

 }

 else

 {

 $this->page['contents'] = TPL_NOT_FOUND;

 }

 }

 function has_permission($admin_id, $page_id)

 {

 $result = mysql_query("SELECT id FROM permissions WHERE ".

 "admin_id='$admin_id' AND page_id='$page_id';");

 if ($result && mysql_num_rows($result))

 return true;

 return false;

 }

 function find_first_subpage($parent_id = 0)

 {

 $result = mysql_query("SELECT id FROM content WHERE ".

 "parent_id='$parent_id' ORDER BY priority ASC, id ASC;");

 if ($result && mysql_num_rows($result))

 return mysql_result($result, 0, 0);

 }

 function show_page()

 {

 if ($this->available)

 {

 $this->cache_id = 'page_'.$this->page['id'];

 if ($this->page['include_file'] != "

 && file_exists(ROOT.'/site/'.$this->page['include_file']))

Appendix A The Full pAge ClAss

266

 {

 include_once(ROOT.'/site/'.$this->page['include_file']);

 }

 }

 $this->menu = $this->load_menu();

 $this->assign('menu', $this->menu);

 $this->assign('page_id', $this->page['id']);

 $this->assign('site_title', $this- >get_site_title());

 $this->assign('contents', $this->page['contents']);

 $this->assign('description', $this->page['description']);

 $this->assign('keywords', $this->page['keywords']);

 $this->assign('page_title', $this->page['title']);

 $this->assign('page_url', $this->page_url);

 $this->assign('subnavigation', $this- >subnavigation());

 $this->assign('main_navigation', $this- >main_navigation());

 $this->assign('is_admin', $this->is_admin);

 $this->assign('is_user', $this->is_user);

 $this->assign('parent_node', $this->parent_node);

 $this->assign('meta_title', $this- >get_page_title(' - ', true));

 $this->assign('timers', sfTimerManager::getTimers());

 $this->smarty->caching = $this->caching;

 $this->smarty->display(

 ($this->template != " ?

 $this->template

 : $this->default_template),

 $this->cache_id);

 }

 function add_title_part($title_part)

 {

 $this->title_parts[] = $title_part;

 }

Appendix A The Full pAge ClAss

267

 function get_title_parts()

 {

 return $this->title_parts;

 }

 function get_page_title($separator = ' - ', $reverse = false)

 {

 $title_parts = $this->get_title_parts();

 if ($reverse)

 {

 $title_parts = array_reverse($title_parts);

 }

 return implode($separator, $title_parts);

 }

 function menuitems($parent_id=0, $uri_prefix=")

 {

 $timer = sfTimerManager::getTimer('navigation');

 $timer->startTimer();

 $menu_items = array();

 $result = mysql_query("SELECT c.id, t.uri, t.menu_name ".

 "FROM content c "

 "LEFT JOIN content_translations t ON c.id = t.content_id ".

 "WHERE ".

 "c.parent_id='$parent_id' AND c.show_in_menu='1' AND (".

 ($this->is_admin ? "c.available_for_admins='1' OR ":") .

 ($this->is_user ?

 "c.available_for_users='1'"

 : "c.available_for_guests='1'").

 ") ORDER BY c.priority ASC, c.id ASC;")

 or $this->trigger_error(mysql_error());

Appendix A The Full pAge ClAss

268

 if ($result && mysql_num_rows($result))

 {

 while ($item = mysql_fetch_assoc($result))

 {

 $item['href'] = $uri_prefix.$item['uri'];

 $menu_items[$item['id']] = $item;

 }

 }

 $timer->addTime();

 return $menu_items;

 }

 function load_menu()

 {

 $menu = array();

 $menu[0] = $this->menuitems(0, '/');

 foreach($this->breadcrumbs as $item)

 {

 $menu[$item['id']] = $this->menuitems(

 $item['id'],

 $item['href'].'/'

);

 }

 return $menu;

 }

 function subnavigation()

 {

 if ($this->page['id'] != $this->parent_node

 && !empty($this->menu[$this->page['id']]))

 return $this->menu[$this->page['id']];

 else if ($this->page['parent_id'] != $this- >parent_node

 && $this->page['parent_id'] != 0)

 return $this->menu[$this->page['parent_id']];

 }

Appendix A The Full pAge ClAss

269

 function main_navigation()

 {

 return $this->menu[$this->parent_node];

 }

 function get_uri_prefix($page_id)

 {

 $uri_prefix = '/';

 if ($page_id > 0)

 {

 foreach ($this->breadcrumbs as $item)

 {

 $uri_prefix .= $item['uri'].'/';

 if ($item['id'] == $page_id) break;

 }

 }

 return $uri_prefix;

 }

 public function get_url($page_id)

 {

 $timer = sfTimerManager::getTimer('get_url');

 $timer->startTimer();

 $url = ";

 while ($page_id > 0)

 {

 $result = mysql_query("SELECT c.id, c.parent_id, t.uri ".

 "FROM content c WHERE c.id='$page_id';");

 if ($result && mysql_num_rows($result))

 {

 $page = mysql_fetch_assoc($result);

 $url = '/'.$page['uri'].$url;

 $page_id = $page['parent_id'];

 }

Appendix A The Full pAge ClAss

270

 else {

 break;

 }

 }

 $timer->addTime();

 return $url;

 }

 function get_site_title()

 {

 $site_title = SITE_TITLE;

 foreach($this->breadcrumbs as $crumb)

 {

 if ($crumb['id'] == $this->page['id'])

 $crumb['title'] = $this->page['title'];

 if ($crumb['title'] != ")

 $site_title .= ' - '.$crumb['title'];

 }

 return $site_title;

 }

 public function connect_db()

 {

 $this->db_connection = @mysql_connect(

 MYSQL_HOST,

 MYSQL_USER,

 MYSQL_PASSWORD);

 if ($this->db_connection)

 {

 $this->db = @mysql_select_db(MYSQL_DB);

 if (!$this->db)

Appendix A The Full pAge ClAss

271

 {

 ?><p class="warning">Geen database.</p><?

 exit;

 }

 }

 else

 {

 ?><p class="warning">Geen verbinding.</p><?

 exit;

 }

 }

 function assign($name, $value)

 {

 $this->smarty->assign($name, $value);

 }

 function trigger_error($message, $error_type=E_USER_WARNING)

 {

 $this->smarty->trigger_error($message, $error_type);

 }

}

Appendix A The Full pAge ClAss

273
© Matthias Noback 2018
M. Noback, Principles of Package Design, https://doi.org/10.1007/978-1-4842-4119-6

Index

A
Abstract Factory design

pattern, 15–18
Abstraction, 37, 67

A-metric, 240
vs. concretion, 67, 75, 77–81
decoupling using, 87–88
degrees, 239, 243
depending on, 38
introducing, 71–72
leaky, 37–38
levels, 74–77, 82
removing, 48
stability, 237–239, 241–243

Abstractness, see Stable Abstractions
principle

Acyclic Dependencies
principle, 185–186, 191–205,
209–210, 217

cycles
problematic, 194–197

dependency inversion, 203–205
pseudo-cycles, 198–200
visualizing dependencies, 191–193

Adapter design pattern, 88, 91, 98–99, 208,
215, 229–234

Architectural layers, 175

B
Backward compatibility, 119–127, 131–135
Business logic, 103, 181–182, 184, 222, 245,

252, 254

C
Chain of Responsibility design

pattern, 208–215
Cohesion, 112, 185
Collaborator classes

mailer, 6
message creation, 6
responsibilities, 10

Common Closure principle, 10, 161,
171–178, 180–182

Common Reuse principle, 145–184, 199,
201, 230, 234, 246

Composition, 87–91, 122, 166, 187, 191
Coupling, 9, 10, 87, 114, 185–190, 202

See also Temporal coupling

D
Decorator design pattern, 20–21
Decoupling, 87–88, 210, 215

See also Coupling

https://doi.org/10.1007/978-1-4842-4119-6

274

Dependency diagram, 42, 80, 90, 163–165,
214, 226, 242, 244

Dependency graph, 92, 93, 187, 192–194,
197–198, 200, 204, 205, 216, 217,
219, 223, 224, 230, 232

See also Dependency diagram
Dependency injection, 24, 29, 30, 52,

55–57, 141, 197
container, 24, 55–57, 86–87
service locator, 55–56

Dependency inversion principle, 74–91,
203–205, 230–233

See also SOLID principles
Dependent package, 217–219, 237, 239,

241, 245–248
Documentation, 53, 100, 115, 127,

136–137, 140–141, 143, 207,
208, 253

Domain knowledge, 181
See also Business logic

E
Encapsulation, 131–133, 135
Evans, Eric, 181
Event dispatcher, 82, 84, 85, 87–90, 94, 210,

211, 213–215
Explicit interface, 48, 61, 94, 97, 99, 101

See also Implicit interface; Published
interface

F
Façade design pattern, 99, 100, 255
Factory, 6, 8, 21, 134, 135

See also Abstract Factory design
pattern

Final class, 30, 103

Forward compatibility, 135
Fowler, Martin, 65
Framework plugins, 178

G
Glass, Robert, 251–253

H
Header interface, 64–65

See also Role interface
Highly dependent package, 219
Highly stable package, 221
Hollywood principle, 91

I, J, K
Immutability, 24
Implicit interface, 61–63, 94, 96, 97, 101
Independent package, 219, 221–223, 231,

234, 235, 248
Inheritance, 31, 58–60, 188, 191
Interface package, 246
Interface Segregation principle, 52, 55–65,

96, 199, 205, 246
Inversion of Control (IoC), 57, 86, 205
I/O, 96–97

database, 9, 76–77
filesystem, 96, 126, 227–228

Irresponsible package, 220, 234–235, 247

L
Laravel, 84–88, 90, 179
Layers, 175–176, 178, 182
License, 137–138, 255
Liskov Substitution principle, 31–53, 82

Index

275

M, N
Main sequence, 243–245
Mediator design pattern, 205–208,

210–215
bridge package, 208

O
Open/Closed principle, 2, 11–30, 69, 76, 209

P, Q
Package definition file, 117, 137, 140, 148,

153, 156, 186, 187
Polymorphism, 24–29, 52
Published interface, 24, 29, 65

See also Explicit interface

R
README, 136–137, 139, 141

See also Documentation
Release/Reuse Equivalence

principle, 115–144, 159, 218, 255
Responsible package, 219–221, 234–235,

241, 248
Reuse, 252

in-the-large, 252
in-the-small, 251
overhead, 253
scope, 254
software diversity, 252–253

Role interface, 63–65

S
Semantic versioning, 116, 118–119, 218
Single Responsibility principle, 3–10, 17,

24, 29, 30, 65, 76, 175

SOLID principles, 1, 2, 55, 67, 113,
114, 142

Spolsky, Joel, 38
Stable Abstractions

principle, 237–247
Stable Dependencies principle, 217–235,

237, 245
Stable package, 219, 221–224, 227–230,

237, 240–241, 243, 245
Static analysis, 142, 158
Strata, 146–147
Symfony, 82, 87–89, 100, 147, 148, 151,

178–179

T
Tactician, 101
Temporal coupling, 27
Tension triangle of cohesion

principles, 183–184
Testing, 9, 67, 96–97, 116, 120, 127,

140–143, 256
continuous integration, 143–144

Third-party code, 91–93, 98–100, 233

U
Unstable package, 218, 221–223, 227–230,

235, 239, 241, 243, 245, 247

V, W, X, Y
Vendor lock-in, 82–87, 91

See also Third-party code
Visualizing dependencies, 191–193

Z
Zend Framework, 179

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Class Design
	Chapter 1: The Single Responsibility Principle
	A Class with Too Many Responsibilities
	Responsibilities Are Reasons to Change
	Refactoring: Using Collaborator Classes
	Advantages of Having a Single Responsibility
	Packages and the Single Responsibility Principle
	Conclusion

	Chapter 2: The Open/Closed Principle
	A Class That Is Closed for Extension
	Refactoring: Abstract Factory
	Refactoring: Making the Abstract Factory Open for Extension
	Replacing or Decorating the Encoder Factory
	Making EncoderFactory Itself Open for Extension

	Refactoring: Polymorphism
	Packages and the Open/Closed Principle
	Conclusion

	Chapter 3: The Liskov Substitution Principle
	Violation: A Derived Class Does Not Have an Implementation for All Methods
	Leaky Abstractions

	Violation: Different Substitutes Return Things of Different Types
	More Specific Return Types Are Allowed

	Violation: A Derived Class Is Less Permissive with Regard to Method Arguments
	Violation: Secretly Programming Against a More Specific Type
	Packages and the Liskov Substitution Principle
	Conclusion

	Chapter 4: The Interface Segregation Principle
	Violation: Multiple Use Cases
	Refactoring: Separate Interfaces and Multiple Inheritance
	Violation: No Interface, Just a Class
	Implicit Changes in the Implicit Interface

	Refactoring: Add Header and Role Interfaces
	Packages and the Interface Segregation Principle
	Conclusion

	Chapter 5: The Dependency Inversion Principle
	Example of Dependency Inversion: the FizzBuzz Generator
	Making the FizzBuzz Class Open for Extension
	Removing Specificness
	Violation: A High-Level Class Depends on a Low-Level Class
	Refactoring: Abstractions and Concretions Both Depend on Abstractions
	Violation: Vendor Lock-In
	Solution: Add an Abstraction and Remove the Dependency Using Composition
	Packages and the Dependency Inversion Principle
	Depending on Third-Party Code: Is It Always Bad?
	When to Publish an Explicit Interface for a Class
	If Not All Public Methods Are Meant to be Used by Regular Clients
	If the Class Uses I/O
	If the Class Depends on Third-Party Code
	If You Want to Introduce an Abstraction for Multiple Specific Things
	If You Foresee That the User Wants to Replace Part of the Object Hierarchy
	For Everything Else: Stick to a Final Class

	Conclusion

	Part II: Package Design
	Chapter 6: The Release/Reuse Equivalence Principle
	Keep Your Package Under Version Control
	Add a Package Definition File
	Use Semantic Versioning
	Design for Backward Compatibility
	Rules of Thumb
	Don’t Throw Anything Away
	When You Rename Something, Add a Proxy
	Only Add Parameters to the End and with a Default Value
	Methods Should Not Have Implicit Side-Effects
	Dependency Versions Should Be Permissive
	Use Objects Instead of Primitive Values
	Use Objects for Encapsulation of State and Behavior
	Use Object Factories
	And So On…

	Add Metafiles
	README and Documentation
	Installation and Configuration
	Usage
	Extension Points (Optional)
	Limitations (Optional)

	License
	Change Log (Optional)
	Upgrade Notes (Optional)
	Guidelines for Contributing (Optional)

	Quality Control
	Quality from the User’s Point of View
	What the Package Maintainer Needs to Do
	Static Analysis
	Add Tests
	Set Up Continuous Integration

	Conclusion

	Chapter 7: The Common Reuse Principle
	Feature Strata
	Obvious Stratification
	Obfuscated Stratification

	Classes That Can Only Be Used When … Is Installed
	Suggested Refactoring
	A Package Should Be “Linkable”
	Cleaner Releases

	Bonus Features
	Suggested Refactoring

	Guiding Questions
	When to Apply the Principle
	When to Violate the Principle
	Why Not to Violate the Principle

	Conclusion

	Chapter 8: The Common Closure Principle
	A Change in One of the Dependencies
	Assetic

	A Change in an Application Layer
	FOSUserBundle

	A Change in the Business
	Sylius

	Packaging Business Logic
	The Tension Triangle of Cohesion Principles
	Conclusion

	Chapter 9: The Acyclic Dependencies Principle
	Coupling: Discovering Dependencies
	Different Ways of Package Coupling
	Composition
	Inheritance
	Implementation
	Usage
	Object Instantiation
	Global Function Usage
	Not to Be Considered: Global State

	Visualizing Dependencies
	The Acyclic Dependencies Principle
	Problematic Cycles
	Cycles in a Package Dependency Graph
	Solutions for Breaking the Cycles
	Some Pseudo-Cycles and Their Dissolution
	Some Real Cycles and Their Dissolution
	Dependency Inversion
	Inversion of Control
	Mediator
	Chain of Responsibility
	Mediator and Chain of Responsibility Combined: An Event System

	Conclusion

	Chapter 10: The Stable Dependencies Principle
	Stability
	Not Every Package Can Be Highly Stable
	Unstable Packages Should Only Depend on More Stable Packages
	Measuring Stability
	Decreasing Instability, Increasing Stability
	Question: Should We Take Into Account All the Packages in the Universe?

	Violation: Your Stable Package Depends on a Third-Party Unstable Package
	Solution: Use Dependency Inversion
	A Package Can Be Both Responsible and Irresponsible
	Conclusion

	Chapter 11: The Stable Abstractions Principle
	Stability and Abstractness
	How to Determine If a Package Is Abstract
	The A Metric
	Abstract Things Belong in Stable Packages
	Abstractness Increases with Stability
	The Main Sequence
	Types of Packages
	Strange Packages

	Conclusion

	Chapter 12: Conclusion
	Creating Packages Is Hard
	Reuse-in-the-Small
	Reuse-in-the-Large
	Embracing Software Diversity
	Component Reuse Is Possible, But Requires More Work

	Creating Packages Is Doable
	Reducing the Impact of the First Rule of Three
	Reducing the Impact of the Second Rule of Three

	Creating Packages Is Easy?

	Appendix A:
The Full Page Class
	Index

