
Pro .NET
Memory
Management

For Better Code, Performance,
and Scalability
—
Konrad Kokosa

www.allitebooks.com

http://www.allitebooks.org

Pro .NET Memory
Management

For Better Code, Performance,
and Scalability

Konrad Kokosa

www.allitebooks.com

http://www.allitebooks.org

Pro .NET Memory Management

ISBN-13 (pbk): 978-1-4842-4026-7 ISBN-13 (electronic): 978-1-4842-4027-4
https://doi.org/10.1007/978-1-4842-4027-4

Library of Congress Control Number: 2018962862

Copyright © 2018 by Konrad Kokosa

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484240267. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Konrad Kokosa
Warsaw, Poland

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4027-4
http://www.allitebooks.org

To my beloved wife, Justyna, without whom nothing
really valuable would happen in my life.

www.allitebooks.com

http://www.allitebooks.org

v

About the Author ���xvii

About the Technical Reviewers ��xix

Acknowledgments ��xxi

Foreword ��xxiii

Introduction ���xxv

Table of Contents

Chapter 1: Basic Concepts �� 1

Memory-Related Terms ��� 3

The Static Allocation �� 10

The Register Machine �� 11

The Stack ��� 12

The Stack Machine �� 19

The Pointer �� 22

The Heap ��� 25

Manual Memory Management �� 28

Automatic Memory Management �� 35

Allocator, Mutator, and Collector �� 37

Reference Counting �� 42

Tracking Collector ��� 49

Mark Phase �� 50

Collect Phase ��� 54

Small History ��� 59

Summary��� 62

Rule 1 - Educate Yourself �� 63

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 2: Low-Level Memory Management �� 65

Hardware �� 66

Memory ��� 73

CPU �� 76

Operating System ��� 96

Virtual Memory �� 96

Large Pages ��� 102

Virtual Memory Fragmentation �� 103

General Memory Layout �� 103

Windows Memory Management �� 105

Windows Memory Layout �� 112

Linux Memory Management �� 115

Linux Memory Layout �� 118

Operating System Influence �� 120

NUMA and CPU Groups ��� 121

Summary��� 123

Rule 2 - Random Access Should Be Avoided, Sequential Access Should
Be Encouraged �� 123

Rule 3 - Improve Spatial and Temporal Data Locality �� 124

Rule 4 - Consume More Advanced Possibilities �� 124

Chapter 3: Memory Measurements �� 127

Measure Early ��� 129

Overhead and Invasiveness ��� 130

Sampling vs� Tracing ��� 130

Call Tree ��� 131

Objects Graphs �� 133

Statistics �� 135

Latency vs� Throughput ��� 139

Memory Dumps, Tracing, Live Debugging ��� 141

Table of ConTenTs

vii

Windows Environment �� 142

Overview �� 143

VMMap �� 143

Performance Counters ��� 144

Event Tracing for Windows �� 152

Windows Performance Toolkit ��� 167

PerfView �� 180

ProcDump, DebugDiag ��� 192

WinDbg �� 193

Disassemblers and Decompilers ��� 196

BenchmarkDotNet ��� 197

Commercial Tools �� 199

Linux Environment �� 210

Overview �� 210

Perfcollect ��� 212

Trace Compass �� 214

Memory Dumps ��� 227

Summary��� 227

Rule 5 - Measure GC Early ��� 231

Chapter 4: �NET Fundamentals ��� 233

� NET Versions �� 234

� NET Internals �� 238

Sample Program in Depth ��� 242

Assemblies and Application Domains ��� 250

Collectible Assemblies ��� 252

Process Memory Regions ��� 254

Scenario 4-1� How Big Is My Program in Memory? ��� 260

Scenario 4-2� My Program’s Memory Usage Keeps Growing �� 263

Scenario 4-3� My Program’s Memory Usage Keeps Growing �� 266

Scenario 4-4� My Program’s Memory Usage Keeps Growing �� 269

Table of ConTenTs

viii

Type System �� 272

Type Categories ��� 273

Type Storage �� 275

Value Types �� 277

Reference Types �� 288

Strings ��� 296

String Interning �� 304

Scenario 4-5� My Program’s Memory Usage Is Too Big ��� 311

Boxing and Unboxing �� 315

Passing by Reference ��� 321

Pass-by-Reference Value-Type Instance ��� 321

Pass-by-Reference Reference-Type Instance ��� 323

Types Data Locality ��� 324

Static Data �� 328

Static Fields ��� 328

Static Data Internals �� 330

Summary��� 335

Structs ��� 335

Classes �� 336

Chapter 5: Memory Partitioning ��� 339

Partitioning Strategies �� 340

Size Partitioning �� 342

Small Object Heap ��� 343

Large Object Heap ��� 344

Lifetime Partitioning �� 349

Scenario 5-1� Is My Program Healthy? Generation Sizes in Time ��������������������������������������� 356

Remembered Sets ��� 361

Card Tables �� 368

Card Bundles ��� 375

Table of ConTenTs

ix

Physical Partitioning ��� 378

Scenario 5-2� nopCommerce Memory Leak? �� 386

Scenario 5-3� Large Object Heap Waste? �� 398

Segments and Heap Anatomy ��� 400

Segments Reuse�� 403

Summary��� 406

Rule 11 - Monitor Generation Sizes ��� 407

Rule 12 - Avoid Unnecessary Heap References��� 408

Rule 13 - Monitor Segments Usage ��� 409

Chapter 6: Memory Allocation �� 411

Allocation Introduction �� 411

Bump Pointer Allocation �� 412

Free-List Allocation ��� 422

Creating New Object ��� 427

Small Object Heap Allocation �� 429

Large Object Heap Allocation �� 434

Heap Balancing ��� 438

OutOfMemoryException �� 442

Scenario 6-1� Out of Memory �� 444

Stack Allocation �� 446

Avoiding Allocations �� 449

Explicit Allocations of Reference Types ��� 451

Hidden Allocations ��� 481

Various Hidden Allocations Inside Libraries ��� 492

Scenario 6-2� Investigating Allocations ��� 498

Scenario 6-3� Azure Functions �� 502

Summary��� 503

Rule 14 - Avoid Allocations on the Heap in Performance Critical Code Paths ��������������������� 503

Rule 15 - Avoid Excessive LOH Allocations �� 504

Rule 16 - Promote Allocations on the Stack When Appropriate ��� 505

Table of ConTenTs

x

Chapter 7: Garbage Collection - Introduction ��� 507

High-Level View �� 508

GC Process in Example ��� 509

GC Process Steps �� 518

Scenario 7-1� Analyzing the GC Usage �� 519

Profiling the GC ��� 524

Garbage Collection Performance Tuning Data ��� 526

Static Data ��� 526

Dynamic Data �� 529

Scenario 7-2� Understanding the Allocation Budget �� 533

Collection Triggers �� 546

Allocation Trigger ��� 547

Explicit Trigger ��� 548

Scenario 7-3� Analyzing the Explicit GC Calls �� 553

Low Memory Level System Trigger ��� 560

Various Internal Triggers �� 561

EE Suspension �� 562

Scenario 7-4� Analyzing GC Suspension Times ��� 566

Generation to Condemn �� 567

Scenario 7-5� Condemned Generations Analysis ��� 572

Summary��� 574

Chapter 8: Garbage Collection - Mark Phase �� 575

Object Traversal and Marking ��� 575

Local Variable Roots �� 577

Local Variables Storage ��� 578

Stack Roots ��� 579

Lexical Scope �� 580

Live Stack Roots vs� Lexical Scope ��� 581

Live Stack Roots with Eager Root Collection ��� 583

GC Info ��� 591

Table of ConTenTs

xi

Pinned Local Variables��� 597

Stack Root Scanning ��� 601

Finalization Roots �� 601

GC Internal Roots �� 602

GC Handle Roots ��� 604

Handling Memory Leaks ��� 612

Scenario 8-1� nopCommerce Memory Leak? �� 615

Scenario 8-2� Identifying the Most Popular Roots ��� 619

Summary��� 622

Chapter 9: Garbage Collection - Plan Phase ��� 623

Small Object Heap ��� 624

Plugs and Gaps �� 624

Scenario 9-1� Memory Dump with Invalid Structures ��� 630

Brick Table ��� 632

Pinning �� 634

Scenario 9-2� Investigating Pinning �� 640

Generation Boundaries �� 646

Demotion ��� 647

Large Object Heap ��� 653

Plugs and Gaps �� 653

Decide on Compaction �� 656

Summary��� 658

Chapter 10: Garbage Collection - Sweep and Compact �� 659

Sweep Phase �� 659

Small Object Heap ��� 660

Large Object Heap ��� 661

Compact Phase ��� 661

Small Object Heap ��� 662

Large Object Heap ��� 667

Scenario 10-1� Large Object Heap Fragmentation �� 668

Table of ConTenTs

xii

Summary��� 679

Rule 17 - Watch Runtime Suspensions ��� 680

Rule 18 - Avoid Mid-Life Crisis �� 681

Rule 19 - Avoid Old Generation and LOH Fragmentation ��� 682

Rule 20 - Avoid Explicit GC �� 683

Rule 21 - Avoid Memory Leaks �� 683

Rule 22 - Avoid Pinning ��� 684

Chapter 11: GC Flavors ��� 687

Modes Overview ��� 687

Workstation vs� Server Mode �� 687

Non-Concurrent vs� Concurrent Mode ��� 690

Modes Configuration ��� 692

� NET Framework �� 693

� NET Core ��� 693

GC Pause and Overhead �� 695

Modes Descriptions �� 698

Workstation Non-Concurrent ��� 698

Workstation Concurrent (Before 4�0) ��� 700

Background Workstation ��� 702

Server Non-Concurrent�� 714

Background Server �� 716

Latency Modes �� 718

Batch Mode ��� 719

Interactive �� 719

Low Latency �� 720

Sustained Low Latency�� 721

No GC Region ��� 723

Latency Optimization Goals ��� 726

Choosing GC Flavor ��� 727

Scenario 8-1� Checking GC Settings �� 729

Scenario 8-2� Benchmarking Different GC Modes ��� 732

Table of ConTenTs

xiii

Summary��� 741

Rule 23 - Choose GC Mode Consciously �� 741

Rule 24 - Remember About Latency Modes �� 742

Chapter 12: Object Lifetime �� 743

Object vs� Resource Life Cycle �� 744

Finalization �� 746

Introduction ��� 746

Eager Root Collection Problem �� 752

Critical Finalizers ��� 756

Finalization Internals ��� 757

Scenario 12-1� Finalization Memory Leak ��� 768

Resurrection �� 776

Disposable Objects ��� 780

Safe Handles ��� 789

Weak References �� 796

Caching �� 803

Weak Event Pattern ��� 806

Scenario 9-2� Memory Leak Because of Events �� 814

Summary��� 817

Rule 25 - Avoid Finalizers �� 818

Rule 26 - Prefer Explicit Cleanup ��� 819

Chapter 13: Miscellaneous Topics �� 821

Dependent Handles ��� 821

Thread Local Storage �� 830

Thread Static Fields ��� 831

Thread Data Slots �� 835

Thread Local Storage Internals ��� 836

Usage Scenarios �� 845

Table of ConTenTs

xiv

Managed Pointers ��� 846

Ref Locals �� 848

Ref Returns �� 849

Readonly Ref Variables and in Parameters �� 852

Ref Types Internals �� 857

Managed Pointers in C# - ref Variables ��� 874

More on Structs��� ��� 882

Readonly Structs ��� 883

Ref Structs (byref-like types) ��� 885

Fixed Size Buffers �� 888

Object/Struct Layout ��� 893

Unmanaged Constraint ��� 907

Blittable Types ��� 913

Summary��� 915

Chapter 14: Advanced Techniques �� 917

Span<T> and Memory<T> ��� 917

Span<T> ��� 918

Memory<T> �� 938

IMemoryOwner<T> ��� 942

Memory<T> Internals ��� 948

Span<T> and Memory<T> Guidelines �� 951

Unsafe ��� 952

Unsafe Internals �� 958

Data-Oriented Design �� 959

Tactical Design �� 961

Strategic Design �� 966

More on Future��� ��� 979

Nullable Reference Types �� 979

Pipelines �� 986

Summary��� 995

Table of ConTenTs

xv

Chapter 15: Programmatical APIs �� 997

GC API�� 997

Collection Data and Statistics �� 998

GC Notifications ��� 1009

Controlling Unmanaged Memory Pressure �� 1012

Explicit Collection �� 1012

No-GC Regions �� 1013

Finalization Management �� 1013

Memory Usage �� 1014

Internal Calls in the GC Class��� 1016

CLR Hosting ��� 1017

ClrMD �� 1030

TraceEvent Library �� 1039

Custom GC �� 1042

Summary��� 1046

 Index ��� 1049

Table of ConTenTs

xvii

About the Author

Konrad Kokosa is an experienced software designer and developer with a specific interest

in Microsoft technologies, while looking with curiosity at everything else. He has been

programming for over a dozen years, solving performance problems and architectural

puzzles in the .NET world, and designing and speeding up .NET applications. He is

an independent consultant, blogger at http://tooslowexception.com, meetup and

conference speaker, and fan of Twitter (@konradkokosa). He also shares his passion as

a trainer in the area of .NET, especially regarding application performance, coding good

practices, and diagnostics. He is the founder of the Warsaw Web Performance group.

He is a Microsoft MVP in the Visual Studio and Development Tools category. He is the

co-founder of the Dotnetos.org initiative of three .NET fans organizing tours and

conferences about .NET performance.

http://tooslowexception.com/

xix

About the Technical Reviewers

Damien Foggon is a developer, writer, and technical reviewer in cutting-edge

technologies and has contributed to more than 50 books on .NET, C#, Visual Basic, and

ASP.NET. He is the co-founder of the Newcastle based user-group NEBytes (online at

http://www.nebytes.net), is a multiple MCPD in .NET 2.0 onward, and can be found

online at http://blog.fasm.co.uk.

Maoni Stephens is the architect and main developer for the .NET GC in Microsoft. Her

blog is at https://blogs.msdn.microsoft.com/maoni/.

http://www.nebytes.net/
http://blog.fasm.co.uk/
https://blogs.msdn.microsoft.com/maoni/

xxi

Acknowledgments

First of all, I would like to thank my wife very, very much. Without her support this book

would never have been created. Starting to work on this book, I did not imagine how

much time not spent together we would have to sacrifice while writing it. Thank you for

all the patience, support, and encouragement you have given to me during this time!

Secondly, I would like to thank Maoni Stephens for such extensive, accurate, and

invaluable remarks when reviewing the first versions of this book. Without a shadow of a

doubt I can say that thanks to her, this book is better. And the fact that the lead .NET GC

developer helped me in writing this book is for me a reward in itself! Many thanks go also

to other .NET team members that helped in reviewing some parts of the book, organized

also with great help from Maoni (ordered by the amount of work they contributed):

Stephen Toub, Jared Parsons, Lee Culver, Josh Free, and Omar Tawfik. I would like also to

thank Mark Probst from Xamarin; he reviewed notes about Mono runtime. And special

thanks go to Patrick Dussud, “the father of .NET GC,” for taking time to review the history

of CLR creation.

Thirdly, I would like to thank Damien Foggon, technical reviewer from Apress, who

put so much work into a meticulous review of all chapters. His experience in publishing

and writing was invaluable to make this book clearer and more consistent. Not once or

twice, I was surprised by the accuracy of Damian’s comments and suggestions!

I would obviously like to thank everyone at Apress, without whom this book

wouldn’t have been published in the first place. Special thanks go to Laura Berendson

(Development Editor), Nancy Chen (Coordinating Editor), and Joan Murray (Senior

Editor) for all the support and patience in extending the deadline again and again. I

know there was a time when the date of delivery of the final version was taboo between

us! I would also like to thank Gwenan Spearing, with whom I started working on the

book, but I did not manage to finish it before she left the Apress team.

I would like to thank a great .NET community in Poland and all around the world, for

inspirations from so many great presentations given, articles and posts written by you,

for all encouragement and support, and for endless questions about “how a book goes?”

Such thanks especially go to (alphabetically): Maciej Aniserowicz, Arkadiusz Benedykt,

Sebastian Gębski, Michał Grzegorzewski, Jakub Gutkowski, Paweł Klimczyk,

xxii

Szymon Kulec, Paweł Łukasik, Alicja Musiał, Łukasz Olbromski, Łukasz Pyrzyk, Bartek

Sokół, Sebastian Solnica, Paweł Sroczyński, Jarek Stadnicki, Piotr Stapp, Michał Śliwoń,

Szymon Warda, and Artur Wincenciak, all MVP guys (Azure guys, looking at you!), and

many more; and I sincerely apologize for those omitted, big thank you to everyone who

feels like receiving such thanks. It is simply not possible to list all of you here. You’ve

inspired me and encouraged me.

I’d like to thank all experienced writers that found time to give me advice about

book writing, including Ted Neward (http://blogs.tedneward.com/) and Jon Skeet

(https://codeblog.jonskeet.uk) - although I bet they do not remember those

conversations! Andrzej Krzywda (http://andrzejonsoftware.blogspot.com) and

Gynvael Coldwind (https://gynvael.coldwind.pl) also gave me a lot of very valuable

advices on writing and publishing a book.

Next, I’d like to thank all the great tools and libraries creators that I’ve used during this

book writing: Andrey Shchekin, a creator of SharpLab (https://sharplab.io); Andrey

Akinshin, a creator of BenchmarkDotNet (https://benchmarkdotnet.org); and Adam

Sitnik, the main maintainer of it; Sergey Teplyakov, a creator of ObjectLayoutInspector

(https://github.com/SergeyTeplyakov/ObjectLayoutInspector); 0xd4d, an

anonymous creator of dnSpy (https://github.com/0xd4d/dnSpy); Sasha Goldshtein,

creator of many useful auxiliary tools (https://github.com/goldshtn); and creators of

such great tools like PerfView and WinDbg (and all its .NET-related extensions).

I’d also like to thank my former employee, Bank Millennium, who helped and

supported me in starting to write this book. Our path has parted, but I will always

remember that it was there that my writing, blogging, and speaking adventure began.

Many thanks go also collectively to my former colleagues from there, for the same

amount of encouragement and motivation by the “how a book goes?” question.

I’d like to thank all anonymous Twitter users that answered my book-related surveys,

giving me directions about what is - and what is not - interesting, useful, and valuable for

our .NET family.

And the last, but not least, I would collectively thank all my family and friends that

missed me during my work on this book.

aCknowledgmenTs

http://blogs.tedneward.com/
https://codeblog.jonskeet.uk/
http://andrzejonsoftware.blogspot.com/
https://gynvael.coldwind.pl/
https://sharplab.io/
https://benchmarkdotnet.org/
https://github.com/SergeyTeplyakov/ObjectLayoutInspector
https://github.com/0xd4d/dnSpy
https://github.com/goldshtn

xxiii

Foreword

When I joined the Common Language Runtime (the runtime for .NET) team more than

a decade ago, little did I know this component called the Garbage Collector was going to

become something I would spend most of my waking moments thinking about later in

my life. Among the first few people I worked with on the team was Patrick Dussud, who

had been both the architect and dev for the CLR GC since its inception. After observing

my work for months, he passed the torch, and I became the second dedicated GC dev

for CLR.

And so my GC journey began. I soon discovered how fascinating the world of

garbage collection was - I was amazed by the complex and extensive challenges in a GC

and loved coming up with efficient solutions for them. As the CLR was used in more

scenarios by more users, and memory being one of the most important performance

aspects, new challenges in the memory management space kept coming up. When I

first started, it was not common to see a GC heap that was even 200mb; today a 20GB

heap is not uncommon at all. Some of the largest workloads in the world are running on

CLR. How to handle memory better for them is no doubt an exciting problem.

In 2015 we open sourced CoreCLR. When this was announced, the community asked

whether the GC source would be excluded in the CoreCLR repo - a fair question as our

GC included many innovative mechanisms and policies. The answer was a resounding

no, and it was the same GC code we used in CLR. This clearly attracted some curious

minds. A year later I was delighted to learn that one of our customers was planning to

write a book specifically about our GC. When a technology evangelist from our Polish

office asked me if I would be available to review Konrad’s book, of course I said yes!

As I received chapters from Konrad, it was clear to me that he studied our GC code

with great diligence. I was very impressed with the amount of detail covered. Sure, you

can build CoreCLR and step through the GC code yourself. But this book will definitely

make that easier for you. And since an important class of readers of this book is GC users,

Konrad included a lot of material to better understand the GC behavior and coding

patterns to use the GC more efficiently. There is also fundamental information on memory

at the beginning of the book and discussions of memory usage in various libraries toward

the end. I thought it was a perfect balance of GC introduction, internals, and usage.

xxiv

If you use .NET and care about memory performance, or if you are just curious about

the .NET GC and want to understand its inner workings, this is the book to get. I hope

you will have as much enjoyment reading it as I did reviewing it.

Maoni Stephens

July 2018

foreword

xxv

Introduction

In computer science, memory has been always there - from the punch cards, through

magnetic tapes to the nowadays, sophisticated DRAM chips. And it will be always there,

probably in the form of sci-fi holographic chips or even much more amazing things that

we are now not able to imagine. Of course, the memory was there not without a reason.

It is well known that computer programs are said to be algorithms and data structures

joined together. I like this sentence very much. Probably everyone has at least once

heard about the Algorithms + Data Structures = Programs book written by Niklaus Wirth

(Prentice Hall, 1976), where this great sentence was coined.

From the very beginning of the software engineering field, memory management was

a topic known by its importance. From the first computer machines, engineers had to

think about the storage of algorithms (program code) and data structures (program data).

It was always important how and where those data are loaded and stored for later use.

In this aspect, software engineering and memory management have been always

inherently related, as much as software engineering and algorithms are. And I believe

it always will be like that. Memory is a limited resource, and it always will be. Hence, at

some point or degree, memory will always be kept in the minds of future developers.

If a resource is limited, there always can be some kind of bug or misuse that leads to

starvation of this resource. Memory is not an exception here.

Having said that, there is for sure one thing that is constantly changing regarding

memory management - the quantity. First developers, or we should name them

engineers, were aware of every single bit of their programs. Then they had kilobytes

of memory. From each and every decade, those numbers are growing and today we

are living in times of gigabytes, while terabytes and petabytes are kindly knocking into

the door waiting for their turn. As the memory size grows, the access times decrease,

making it possible to process all this data in a satisfying time. But even though we can say

memory is fast, simple memory-management algorithms that try to process all gigabytes

of data without any optimizations and more sophisticated tunings would not be feasible.

This is mostly because memory access times are improving slower than the processing

power of CPUs utilizing them. Special care must be taken to not introduce bottlenecks of

memory access, limiting the power of today’s CPUs.

xxvi

This makes memory management not only of crucial importance, but also a really

fascinating part of computer science. Automatic memory management makes it even

better. It is not as easy as saying “let the unused objects be freed.” What, how, and when -

those simple aspects of memory management make it continuously an ongoing process

of improving the old and inventing new algorithms. Countless scientific papers and PhD

theses are considering how to automatically manage memory in the most optimal way.

Events like the International Symposium on Memory Management (ISMM) shows every

year how much is done in this field, regarding garbage collection; dynamic allocation;

and interactions with runtimes, compilers, and operating systems. And then academic

research slightly changes into commercialized and open sourced products we use in

everyday work.

.NET is a perfect example of a managed environment where all such sophistication

is hidden underneath, available to developers as a pleasant, ready-to-use platform. And

indeed, we can use it without any awareness of the underlying complexity, which is a

great .NET achievement in general. However, the more performance aware our program

is, the less possible it is to avoid gaining any knowledge about how and why things work

underneath. Moreover, personally I believe it is just fun to know how things we use every

day work!

I’ve written this book in a way that I would have loved to read many years ago - when

I started my journey into the .NET performance and diagnostic area. Thus, this book

does not start from a typical introduction about the heap and the stack or description

of multiple generations. Instead, I start from the very fundamentals behind memory

management in general. In other words, I’ve tried to write this book in a way that will let

you sense this very interesting topic, not only showing “here is a .NET Garbage Collector

and it does this and that.” Providing information not only what, but also how, and more

importantly - why - should truly help you understand what is behind the scene of .NET

memory management. Hence, everything you will read in regard to this topic in the

future should be more understandable to you. I try to enlighten you with knowledge

a little more general than just related to .NET, especially in the first two chapters. This

leads to deeper understanding of the topic, which quite often may be also applied

to other software engineering tasks (thanks to an understanding of algorithms, data

structures, and simply good engineering stuff).

I wanted to write this book in a manner pleasant for every .NET developer. No matter

how experienced you are, you should find something interesting here. While we start

from the basics, junior programmers quickly will have an opportunity to get deeper into

InTroduCTIon

xxvii

.NET internals. More advanced programmers will find many implementation details

more interesting. And above all, regardless of experience, everyone should be able to

benefit from the presented practical examples of code and problem diagnoses.

Thus, knowledge from this book should help you to write better code - more

performance and memory aware, utilizing related features without fear but with

full understanding. This also leads to better performance and scalability of your

applications - the more memory oriented your code is, the less exposed it is for resource

bottlenecks and utilization of them not optimally. I hope you will find the “For Better

Code, Performance, and Scalability” subtitle justified after reading this book.

I also hope all this makes this book more general and long lasting than just a simple

description of the current state of the .NET framework and its internals. No matter how

future .NET frameworks will evolve, I believe most of the knowledge in this book will

be actually true for a long time. Even if some implementation details will change, you

should be able to easily understand them because of the knowledge from this book.

Just because underlying principles won’t change so fast. I wish you a pleasant journey

through the huge and entertaining topic of automatic memory management!

Having said that, I would like also to emphasize a few things that are not particularly

present in this book. The subject of memory management, although it seems very

specialized and narrow at the first glance, is surprisingly wide. While I touch a lot of

topics, they are sometimes presented not as detailed as I would like, for lack of space.

Even with such limitations, the book is around 1104 pages long! Those omitted topics

include, for example, comprehensive references to other managed environments (like

Java, Python, or Ruby). I also apologize to F# fans for so few references to this language.

There were not enough pages for a solid description simply, and I did not want to

publish anything not being comprehensive. I would also have liked to put much more

attention to the Linux environment, but this is so fresh and uncovered by the tools topic

that at the time of writing, I only give you some proposals in Chapter 3 (and omitting the

macOs world completely for the same reasons). Obviously, I’ve also omitted a large part

of other, not directly memory-related part of performance in .NET - like multithreading

topics.

Secondly, although I’ve done my best to present practical applications of the topics

and techniques discussed, this is not always possible without doing so in a completely

exhausting way. Practical applications are simply too many. I rather expect from a reader

reading comprehensively, rethinking the topic, and applying the knowledge gained in

their regular work. Understand how something works and you will be able to use it!

InTroduCTIon

xxviii

This especially includes so-called scenarios. Please note that all scenarios included

in this book are for illustrative purposes. Their code has been distilled to the bare

minimum to easier show the root cause of one single problem. There may be various

other reasons behind the observed misbehaving (like many ways how managed memory

leaks may be noticed). Scenarios were prepared in a way to help illustrate such problems

with a single example cause as it is obviously not possible to include all probable reasons

in a single book. Moreover, in real-world scenarios, your investigation will be cluttered

with a lot of noisy data and false investigation paths. There is often no single way of

solving the described issues and yet many ways how you can find the root cause during

problems analysis. This makes such troubleshooting a mix of a pure engineering task

with a little of an art backed by your intuition. Please note also that scenarios sometimes

reference to each other to not repeat themselves again and again with the same steps,

figures, and descriptions.

I especially refrained from mentioning various technology-specific cases and sources

of problems in this book. They are simply… too much technology specific. If I was writing

this book 10 years ago, I would probably have had to list various typical scenarios of

memory leaks in ASP.NET WebForms and WinForms. A few years ago? ASP.NET MVC,

WPF, WCF, WF,… Now? ASP.NET Core, EF Core, Azure Functions, what else? I hope you

get the point. Such knowledge is becoming obsolete too soon. The book stuffed with

examples of WCF memory leaks would hardly interest anyone today. I am a huge fan of

saying: “Give a man a fish; you have fed him for today. Teach a man to fish; and you have

fed him for a lifetime.” Thus, all the knowledge in this book, all the scenarios, are teaching

you how to fish. All problems, regardless of underlying specific technology, may be

diagnosed in the same way, if enough knowledge and understanding are being applied.

All this also makes reading this book quite demanding, as it is sometimes full of

details and maybe a little overwhelming amount of information. Despite everything, I

encourage you to read in-depth and slow, resisting the temptation of only a skimming

reading. For example, to take full advantage of this book, one should carefully study

the code shown and presented figures (and not just look at them, stating that they are

obvious, so they may be easily omitted).

We are living in a great time of open sourced CoreCLR runtime. This moves CLR

runtime understanding possibilities to a whole new level. There is no guessing, no

mysteries. Everything is in code, may be read, and understood. Thus, my investigations

of how things work are heavily based on CoreCLR’s code of its GC (which is shared

with .NET Framework as well). I’ve spent countless days and weeks analyzing this huge

amount of good engineering work. I think it is great, and I believe there are people who

InTroduCTIon

xxix

would also like to study famous gc.cpp file, with a size of several tens of thousands of

lines of code. It has a very steep learning curve, however. To help you with that, I often

leave some clues where to start CoreCLR code study with respect to described topics.

Feel free to get an even deeper understanding from the gc.cpp points I suggest!

After reading this book you should be able to:

• Write performance and memory-aware code in .NET. While

presented examples are in C#, I believe with the understanding and

toolbox you gain here, you will be able to apply this also to F# or

VB.NET.

• Diagnose typical problems related to .NET memory management. As

most techniques are based on ETW/LLTng data and SOS extension,

they are applicable both on Windows and Linux (with much more

advanced tooling available on Windows).

• Understand how CLR works in the memory management area. I’ve

put quite a lot of attention to explain not only how things work but

also why.

• Read with the full understanding of many interesting C# and CLR

runtime issues on GitHub and even participate with your own

thoughts.

• Read the code of the GC in CoreCLR (especially gc.cpp) file with

enough understanding to make further investigations and studies.

• Read with the full understanding of information about GCs and memory

management in different environments like Java, Python, or Go.

As to the content of the book itself, it presents as follows. Chapter 1 is a very general

theoretical introduction to memory management, without almost any reference to .NET

in particular. Chapter 2 is similarly a general introduction to memory management on

the hardware and operating system level. Both chapters may be treated as an important,

yet optional introduction. They give a helpful, broader look at the topic, useful in the rest

of the book. While I obviously and strongly encourage you to read them, you may omit

them if you are in a hurry or interested only in the most practical, .NET-related topics. A

note to advanced readers - even if you think topics from those two first chapters are well

known to you, please read them. I’ve tried to include there not only obvious information,

which you may find interesting.

InTroduCTIon

xxx

Chapter 3 is solely dedicated to measurements and various tools (among which

some are very often used later in the book). It is a reading that contains mainly a list

of tools and how to use them. If you are interested mostly in the theoretical part of the

book, you may only skim through it briefly. On the other hand, if you plan to use the

knowledge of this book intensively in the diagnosis of problems, you will probably come

back to this chapter often.

Chapter 4 is the first one where we start talking about .NET intensively, while still in

a general way allowing us to understand some relevant internals like .NET type system

(including value type versus reference type), string interning, or static data. If you are

really in a hurry, you may wish to start reading from there. Chapter 5 described the

first truly memory-related topic - how memory is organized in .NET applications,

introducing the concept of Small and Large Object Heap, as well as segments. Chapter 6

is going further into memory-related internals, dedicated solely to allocating memory.

Quite surprisingly, quite a big chapter may be dedicated to such a theoretically simple

topic. An important and big part of this chapter is the description of various sources of

allocations, in the context of avoiding them.

Chapters from 7 to 10 are core parts describing how the GC works in .NET, with

practical examples and considerations resulting from such knowledge. To not overwhelm

with too much information provided at the same time, those chapters are describing the

simplest flavor of the GC - so-called Workstation Non-Concurrent one. On the other hand,

Chapter 11 is dedicated to describing all other flavors with comprehensive considerations

that one can choose. Chapter 12 concludes the GC part of the book, describing three

important mechanisms: finalization, disposable objects, and weak references.

The three last chapters constitute the “advanced” part of the book, in the sense of

explaining how things work beyond the core part of .NET memory management.

Chapter 13 explains, for example, the topic of managed pointers and goes deeper into

structs (including recently added ref structs). Chapter 14 puts a lot of attention to types

and techniques gaining more and more popularity recently, like Span<T> and Memory<T>

types. There is also a smart section dedicated to the not-so-well known topic of data-

oriented design and, few words about incoming C# features (like nullable reference types

and pipelines). Chapter 15, the last one, describes various ways how we can control and

monitor the GC from code, including GC class API, CLR Hosting, or ClrMD library.

Most of the listings from this book are available at the accompanying GitHub

repository at https://github.com/Apress/pro-.net-memory. It is organized into

chapters and most of them contain two solutions: one for conducted benchmarks and

InTroduCTIon

https://github.com/Apress/pro-.net-memory

xxxi

one for other listings. Please note that while included projects contain listings, there is

often more code for you to look at. If you want to use or experiment with a particular

listing, the easiest way will be just to search for its number and play around with it and

its usage. But I also encourage you to just look around in projects for particular topics for

better understanding.

There are not so many important conventions I would like to mention here. The most

relevant one is to differentiate two main concepts used throughout the rest of the book:

• Garbage collection (GC) - the generally understood process of

reclaiming no-longer needed memory.

• The Garbage Collector (the GC) - the specific mechanism realizing

garbage collection, most obviously in the context of the .NET GC.

This book is also pretty self-contained and does not refer to many other materials or

books. Obviously, there is a lot of great knowledge out there, and I would need to refer to

various sources many times. Instead, let me just list the suggested books and articles of

my choice as a complementary source of knowledge:

• Pro .NET Performance book written by Sasha Goldshtein, Dima

Zurbalev, and Ido Flatow (Apress, 2012.

• CLR via C# book written by Jeffrey Richter (Microsoft Press, 2012).

• Writing High-Performance .NET Code by Ben Watson (Ben Watson,

2014).

• Advanced .NET Debugging by Mario Hewardt (Addison-Wesley

Professional, 2009).

• .NET IL Assembler by Serge Lidin (Microsoft Press, 2012)

• Shared Source CLI Essentials by David Stutz (O’Reilly Media, 2003).

• “Book Of The Runtime” open source documentation developed

in parallel to the runtime itself, available at https://github.com/

dotnet/coreclr/blob/master/Documentation/botr/README.md.

There is also a huge amount of knowledge from various online blogs and articles.

But instead of flooding those pages with a list of them, let me just redirect you to a

great https://github.com/adamsitnik/awesome-dot-net-performance repository

maintained by Adam Sitnik.

InTroduCTIon

https://github.com/dotnet/coreclr/blob/master/Documentation/botr/README.md
https://github.com/dotnet/coreclr/blob/master/Documentation/botr/README.md
https://github.com/adamsitnik/awesome-dot-net-performance

1
© Konrad Kokosa 2018
K. Kokosa, Pro .NET Memory Management, https://doi.org/10.1007/978-1-4842-4027-4_1

CHAPTER 1

Basic Concepts
Let’s start from a simple, yet very important question. When you should care about .NET

memory management if it is all automated? Should you care at all? As you probably

expect by the fact that I wrote such a book - I strongly encourage you to remember about

memory in every developer’s situation. This is just a matter of our professionalism. A

consequence of how we conduct our work. Are we trying to make our best or just make?

If we take care of the quality of our work, we should worry not only about our piece of

work to be just working. We should be worried about how is it working. Is it optimal in

terms of CPU and memory usage? Is it maintainable, testable, opened for extension but

closed for modification? Is our code SOLID? I believe all those questions distinguish

beginners from more advanced, experienced programmers. The former are mainly

interested in getting the job done and do not care much about the above-mentioned,

nonfunctional aspects of their work. The latter are experienced enough to have enough

“mental processing power” to consider the quality of their work. I believe everyone

wants to be like that. But this is, of course, not a trivial thing. Writing an elegant code,

without any bugs, with each possible nonfunctional requirement fulfilled is really hard.

But should such a desire for the mastery be the only prerequisite for gaining

deeper knowledge about .NET memory management? Memory corruptions revealing

as AccessViolationException are extremely rare.1 The uncontrolled increase in

memory usage can also appear so. Do we have anything to be worried about then? As

.NET runtime has a sophisticated Microsoft implementation, luckily we do not have

to think about memory aspects a lot. But, on the other hand, when being involved in

analyzing performance problems of big .NET-based applications, memory consumption

problems were always high on the list of issues. Does it cause trouble in the long-term

1 AccessViolationException or other heap corruption can often be triggered by the automatic
memory management, not because it is the cause, but because it is the heaviest memory-related
component in the environment. Thus, it has the biggest possibility to reveal any inconsistent
memory states.

2

view if we have a memory leak after days of continuous running? On the Internet we

can find a funny meme about a memory leak that was not fixed in the software of some

particular combat missile, because the memory was enough before the missile reached

its destination. Is our system such a one-time missile? Do we realize whether automated

memory management introduces a big overhead for our application or not? Maybe we

could use only two servers instead of ten? And further, we are not memory free even in

the times of server-less cloud computing. One of the examples can be Azure Functions,

which are billed based on a measure called “gigabyte seconds” (GB-s). It is calculated

by multiplying the average memory size in gigabytes by the time in seconds it takes to

execute a particular function. Memory consumption directly translates into money we

spent.

In each case, we begin to realize that we have no idea where to start looking for the

real cause and valuable measurements. This is the place where we begin to understand

that it is worthwhile to understand internal mechanisms of our applications and the

underlying runtime.

In order to deeply understand memory management in .NET, it is best to start from

scratch. No matter whether you are a novice programmer or very advanced one. I would

recommend that together we went through the theoretical introduction in this chapter.

This will establish a common level of knowledge and understanding of concepts,

which will be used through the rest of the book. For this not to be simply boring theory,

sometimes I refer to specific technologies. We will have a chance to get a little history

of software development. It fits well in the development of concepts related to memory

management. We will notice also some little interesting facts, which I hope will prove

to be interesting for you also. Knowing history is always one of the best ways to get the

broader perspective of the topic.

But do not be afraid. This is not a historical book. I will not describe biographies of

all engineers involved in developing garbage collection algorithms since 1950. Ancient

history background won’t be necessary either. But still, I hope you will find it interesting

to know how this topic evolved and where we are now in the history timeline. This will

also allow us to compare the .NET approach to the many other languages and runtimes

you might hear about from time to time.

Chapter 1 BasiC ConCepts

3

 Memory-Related Terms
Before we begin, it is useful to take a look at some very important definitions, without

which it is difficult to imagine discussing the topic of memory:

• bit - it is the smallest unit of information used in computer technology.

It represents two possible states, usually meaning numerical values

0 and 1 or logic values true and false. We briefly mention how

modern computers store single bits in Chapter 2. To represent bigger

numerical values, a combination of multiple bits needs to be used to

encode it as a binary number explained below. When specifying the

data size, bits are specified with the lowercase letter b.

• binary number - integer numerical value represented as a sequence

of bits. Each successive bit determines the contribution of the

successive power of 2 in the sum of the given value. For example, to

represent the number 5 we can use three successive bits with values

1, 0, and 1 because 1x1 + 0x2 + 1x4 equals 5. An n-bit binary number

can represent a maximum value of 2^n - 1. There is also often an

additional bit dedicated to represent the sign of the value to encode

both positive and negative numbers. There are also other, more

complex ways to encode numeric values in a binary form, especially

for floating-point numbers.

• binary code - instead of numerical values, a sequence of bits can

represent a specified set of different data - like characters of text.

Each bits sequence is assigned to specific data. The most basic one

and the most popular for many years was ASCII code, which uses

7-bit binary code to represent text and other characters. There are

other important binary codes like opcodes encoding instructions

telling the computer what it should do.

• byte - historically it was a sequence of bits for encoding a single

character of text using specified binary code. The most common

byte size is 8-bit long, although it depends on the computer

architecture and may vary between different ones. Because of this

ambiguity, there is a more precise octet term, which means exactly

an 8-bit long data unit. Nevertheless, it is the de facto standard to

Chapter 1 BasiC ConCepts

4

understand the byte as an 8-bit length value, and as such it has

become an unquestionable standard for defining data sizes. It is

currently unlikely to meet anything different than the standard one

architecture with 8-bit long bytes. Hence, when specifying the data

size, bytes are specified with the uppercase letter B.

By specifying the size of the data, we use the most common multiples (prefixes)

determining their order of magnitude. It is a cause of constant confusion and

misunderstanding, which is worth it at this point to explain. Overwhelmingly popular

terms such as kilo, mega, and giga mean multiplication of thousands. One kilo is 1000

(and we denote it as lowercase letter k), one mega is 1 million (uppercase letter M),

and so on. On the other hand, sometimes a popular approach is to express orders of

magnitude in successive multiplications of 1024. In such cases, we talk about one kibi,

which is 1024 (denoted as Ki), one mebi is 1024*1024 (denoted as Mi), one gibi (Gi) is

1024*1024*1024, and so on. This introduces common ambiguity. When someone talks

about 1 “gigabyte,” they may be thinking about 1 billion of bytes (1 GB) or 1024^3 of

bytes (1 GiB) depending on the context. In practice, very few care about the precise

use of those prefixes. It is absolutely common to specify the size of memory modules

in computers nowadays as gigabytes (GB) when they are truly gibibytes (GiB) or

the opposite in case of hard drives storage. Even JEDEC Standard 100B.01 “Terms,

Definitions, and Letter Symbols for Microcomputers, Microprocessors, and Memory

Integrated Circuits” refers to common usage of K, M, and G as multiplications of 1024

without explicitly deprecating it. In such situations, we are just left to common sense in

understanding those prefixes from the context.

Currently we are very used to the terms such as RAM or persistent storage installed

in our computers. Even smart watches are now equipped with 8 GiB of RAM. We can

easily forget that the first computers were not equipped with such luxuries. You could

say that they were not equipped with anything. A look at the short history of computer

development will allow us to look differently on the memory itself. Let’s start from the

beginning.

We should bear in mind that it is very disputable which device can be named as

“the very first computer.” Likewise, it is very hard to name the one and only “inventor of

the computer.” This is just a matter of definition what “computer” really is. So instead of

starting endless discussions what and who was first, let’s just look at some of the oldest

machines and what they offered to programmers, although the word programmer was to

be coined a lot of years later. At the beginning, they were called coders or operators.

Chapter 1 BasiC ConCepts

5

It should be emphasized that machines that may be defined as the first computers

were not fully electronic, but electromechanical. For this reason, they were very slow

and despite the impressive size offered very little. The first of these programmable

electromechanical computers was designed in Germany by Konrad Zuse, named the

Z3 computer. It weighed one ton! One addition took about one second and single

multiplication took three seconds! Built from 2,000 electromechanical relays, it

offered an arithmetical unit capable of add, subtract, multiply, divide, and square root

operations only. Arithmetical units included also two 22-bit memory storages used

for calculations. It offered also 64 general-purpose memory cells, each 22 bits long.

Nowadays we could say it offered 176 bytes of internal memory for data!

The data was typed via a special keyboard, and the program was read during

calculation from punched celluloid film. The possibility of storing a program into

internal computer memory was to be implemented a few years later, and we will come

back to it shortly, although Zuse was fully aware of this idea. In the context of the

book you are reading, more important is the question of access to the Z3’s memory.

Programming the Z3, we had at our disposal only nine instructions! One of them

allow you to load the value of one of the 64 memory cells to the memory storage of the

arithmetic unit. Another was to save the value back. And that’s all when it comes to

“memory management” in this very first computer. Although Z3 was ahead of his time

in many ways, for political reasons and the outbreak of World War II, its impact on the

development of computers has become negligible. Zuse had been developing its line of

computers for many years after the war, and its latest version of the Z22 computer was

built in 1955.

During the war and shortly after, the main centers of development of computer

science were the United States and the United Kingdom. One of the first computers built

in the United States was the Harvard Mark I developed by IBM in collaboration with

Harvard University called the Automatic Sequence Controlled Calculator. It was also

electromechanical, like the Z3 mentioned before. It was enormous in size, measuring

8 feet high, 51 feet long, and 3 feet deep. And it weighed 5 tons! It is called the biggest

calculating machine ever. Built a few years, the first programs launched at the end of

the Second World War, in 1944. It served the Navy, but also John von Neumann, during

his work in the Manhattan Project, on the first atomic bomb. Regarding its size, it

offered only 72 memory slots for 23-digit numbers with sign. Such a slot was called an

accumulator - a dedicated small memory place where intermediate arithmetic and logic

results are stored. Translated into measures today, we could say that this 5-ton machine

Chapter 1 BasiC ConCepts

6

provided access to 72 memory slots each 78-bit long (we need 78 bits to represent quite

a big 23-digit number); therefore, it offered memory of 702 bytes! The programs were

then de facto a series of mathematical calculations operating on those 72 memory slots.

Those were the first-generation programming languages (denoted as 1GL) or machine

languages where programs were stored on punched tape, which was physically fed

into the machine as needed or operated by front panel switches. It could proceed with

only three additions or subtractions per second. Single multiplication took 20 seconds

and calculation of sin(x) took one minute! Just like in the Z3, memory management

did not exist in this machine at all - you could only read or write the value to one of the

mentioned memory cells.

What is interesting for us that from this computer the Harvard architecture term has

originated (see Figure 1-1). In accordance with this architecture, the storage of program

and storage of data are physically separated. Such data is being processed by some

kind of electronic or electromechanical device (like Central Processing Unit). Such a

device is often also responsible for controlling Input/Output devices like punch card

readers, keyboards, or displaying devices. Although Z3 or Mark I computers used this

architecture because of its simplicity, it is not completely forgotten nowadays. As we

will see in Chapter 2, it is used today in almost every computer as the modified Harvard

architecture. And we will even see its influence on programs that we write on a daily

basis.

The much better-known computer ENIAC, completed in 1946, was already

an electronic device based on vacuum tubes. It offered thousands of times better

mathematical operations speed than the Mark I. However, in terms of memory it looked

still very unattractive. It offered only 20 10-digits signed accumulators, and there was

no internal memory to store programs. Simply put, due to World War II, the priority

was to build machines as fast as possible, for military purposes, not to build something

sophisticated.

CPU
data

program

I/O

memory

memory

Figure 1-1. Harvard architecture diagram

Chapter 1 BasiC ConCepts

7

But academics like Konrad Zuse, Alan Turing, and John von Neumann were

investigating the idea of using an internal computer’s memory to store the program

altogether with its data. This would allow a much easier programming (and especially,

reprogramming) than coding via punched cards or mechanical switches. John von

Neumann wrote in 1945 an influential paper named “First Draft of a Report on the

EDVAC” in which he described architecture named the von Neumann architecture. It

should be stated that it was not solely von Neumann’s concept as he was inspired by

other academics of his time.

The von Neumann architecture showed in Figure 1-2 is a simplified Harvard

architecture in which there is a single memory unit for storing both the data and the

program. It for sure reminds you of a current computer and this is not without a reason.

From a high-level point of view, this is exactly how modern computers are still being

constructed where von Neumann and Harvard architecture meets in a modified Harvard

architecture.

The Manchester Small-Scale Experimental Machine (SSEM, nicknamed “Baby”)

built in 1948 and the Cambridge’s EDSAC built in 1949 were the world’s first computers

that stored program instructions and data in the same space and hence incorporated

the von Neumann architecture. “Baby” was much more modern and innovative because

it was the first computer using a new kind of storage - the Williams tubes, based on

cathode ray tubes (CRT). Williams tubes can be seen as the very first Random Access

Memory (RAM) explained below. The SSEM had a memory of 32 memory cells, each

32-bits long. So, we can say that the first computer with RAM had 128 bytes of it! This

is the journey we are taking, from 128 bytes in 1949 to a typical 16 gibibytes in 2018.

Nevertheless, Williams tubes become a standard at the turn of the 1940s and 1950s,

when a lot of other computers where built.

CPU data

program

I/O
+

memory

Figure 1-2. Von Neumann architecture diagram

Chapter 1 BasiC ConCepts

8

This leads us historically to a perfect moment that we may explain all the basic

concepts of computer architecture. All are gathered below and shown in Figure 1-3:

• memory - responsible for storing data and the program itself. The

way in which memory is implemented has evolved over time in a

significant way, starting from the above-mentioned punch cards,

through magnetic types and cathode ray tubes, until currently

used transistors. Memory can be further divided into two main

subcategories:

• Random Access Memory (RAM) - allows us to read data at the

same access time irrespective of the memory region we access. In

practice, as we will see in Chapter 2, modern memory fulfills this

condition only approximately for technological reasons.

• Non-uniform access memory - opposite of RAM, the time required

to access memory depends on its location on physical storage.

This obviously includes punch cards, magnetic types, classical

hard disks, CDs and DVDs, and so on where storage media has to

be positioned (for example, rotated) to the correct position before

accessing.

• address - represents a specific location within the entire memory

area. It is typically expressed in term of bytes as a single byte is the

smallest possible, addressing granularity on many platforms.

• arithmetic and logic unit (ALU) - responsible for performing

operations like addition and subtraction. This is the core of the

computer, where most of the work is being done. Nowadays

computers include more than one ALU, allowing for parallelization of

computation.

• control unit - decodes program instructions (opcodes) read from

memory. Based on the internal instruction’s description, it knows

which arithmetical or logical operation should be performed and on

which data.

• register - memory location quickly accessible from ALU and/or

Control Unit (which we can collectively refer to as execution units),

usually contained in it. Accumulators mentioned before are a special,

Chapter 1 BasiC ConCepts

9

simplified kind of registers. Registers are extremely fast in terms

of access time, and there is in fact no place for data closer to the

execution units than them.

• word - fixed-size basic unit of data used in particular computer

design. It is reflected in many design areas like the size of most

registers, the maximum address, or the largest block of data

transferred in a single operation. Most commonly it is being

expressed in the number of bits (referred to as the word size or word

length). Most computers today are 32-bit or 64-bit so they have 32-bit

and 64-bit words length respectively, 32-bit or 64-bit long registers,

and so on.

Von Neumann architecture incarnated in SSEM or EDSAC machines leads as to

the term of stored-program computers that is obvious nowadays, but it was not at the

beginning of the computer era. In such a design, program code to be executed is stored

in the memory so it can be accessed like normal data - including such useful operations

like modifying it and overwriting with a new program code.

A control unit stores an additional register, called instruction pointer (IP) or program

counter (PC), to point to a currently executing instruction. Normal program execution

is as simple as incrementing the address stored in PC to the succeeding instructions.

Things like loops or jumps are as easy as changing the value of the instruction pointer to

the other address, designating where we want to move the program execution.

CPU

data

instructions

memory

control unit

ALU

PC

registers

Figure 1-3. Stored-program computer diagram - memory + instruction pointer

Chapter 1 BasiC ConCepts

10

The first computers were programmed using a binary code that directly described

the executed instructions. However, with the increasing complexity of programs, this

solution has become increasingly burdensome. A new programming language (denoted

as second-generation programming languages - 2GL) has been designed describing the

code in a more accessible way by means of the so-called assembly code. This is a textual

and very concise description of the individual instructions executed by the processor.

However, it was much more convenient than direct binary encoding. Then even higher-

level languages have been designed (3GL), such as well-known C, C ++, or Pascal.

What is interesting to us is that all these languages must be transformed from

text to binary form and then put into the computer memory. The process of such a

transformation is called a compilation, and the tool that runs it is called a compiler. In

the case of assembly code, we are rather naming it assembling by the assembler tool. In

the end, the result is a program in a binary code format that may be later executed - a

sequence of opcodes and their arguments (operands).

Equipped with this basic knowledge, we can now begin our journey in the memory

management topic.

 The Static Allocation
Most of the very first programming languages did allow only static memory allocation -

the amount and the exact location of memory needed had to be known during

compilation time, before even executing the program. With the fixed and predefined

sizes, memory management was trivial. All major “ancient times” programming

languages, starting from machine or assembly code to the first versions of FORTRAN

and ALGOL had such limited possibilities. But they have many drawbacks also. Static

memory allocations can easily lead to inefficient memory usage- not knowing in

advance how many data will be processed, how do we know how much memory we

should allocate? This makes programs limited and not flexible. In general, such a

program should be compiled again to process bigger data volumes.

In the very first computers, all allocations were static because the memory cells

used (accumulator, registers, or RAM memory cells) were determined during program

encoding. So, defined “variables” lived over the whole lifetime of the program. Nowadays

we still use static allocation in such a sense when creating static global variables and the

like, stored in a special data segment of a program. We will see in later chapters where

they are stored in the case of .NET programs.

Chapter 1 BasiC ConCepts

11

 The Register Machine
So far, we have seen examples of machines that were using registers (or accumulators

as a special case) to operate on Arithmetic Logic Units (ALUs). Machine that constitute

such a design is called the register machine. It is because while executing programs on

such a computer, we are in fact making calculations on registers. If we want to add,

divide, or do anything else, we must load proper data from memory into proper registers.

Then we call specific instructions to invoke proper operations on them and then another

one to store the result from one of the registers into memory.

Let’s suppose we want to write a program that calculates an expression s=x+(2*y)+z

in a computer with two registers - named A and B. Let’s assume also that s, x, y, and z

are addresses to memory with some values stored there. We assume also some low-level

pseudo-assembly code with instructions like Load, Add, Multiply. Such a theoretical

machine can be programmed with the following simple program (see Listing 1-1).

Listing 1-1. Pseudo-code of a sample program realizing s=x+(2*y)+z calculation

on the simple, two-register register machine. Comments shows register’s state

after executing each instruction.

Load A, y // A = y

Multiply A, 2 // A = A * 2 = 2 * y

Load B, x // B = x

Add A, B // A = A + B = x + 2 * y

Load B, z // B = z

Add A, B // A = A + B = x + 2 * y + z

Store s, A // s = A

If this code reminds you of x86 or any other assembly code you have ever learned -

this is not a coincidence! This is because most modern computers are kind of complex

register machines. All Intel and AMD CPUs we use in our computers operate in such

a way. When writing x86/x64-based assembly code, we operate on general-purpose

registers like eax, ebx, ecx, etc. There are, of course, many more instructions, other

specialized registers, etc. But the concept behind it is the same.

Chapter 1 BasiC ConCepts

12

Note Could one imagine a machine with an instruction set that allows us
to execute an operation directly on memory, without a need to load data into
registers? Following our pseudo-assembly language, it could look much more
succinct and higher level, because there are no additional load/store instructions
from memory to registers and their opposites:

Multiply s, y, 2 // s = 2 * y

Add s, x // s = s + x = 2 * y + x

Add s, z // s = s + z = 2 * y + x + z

Yes, there were such machines like iBM system/360, but nowadays i am not aware
of any production-used computer of such kind.

 The Stack
Conceptually, the stack is a data structure that can be simply described as “last in, first

out” (LIFO) list. It allows two main operations: adding some data on the top of it (“push”)

and returning some data from top of it (“pop”) illustrated in Figure 1-4.

Stack from the very beginning become inherently related with computer

programming, mainly because of the concept of the subroutine. Today’s .NET heavily

uses a “call stack” and “stack” concepts, so let’s look how it all started. The original

meaning of the stack as a data structure is still valid (for example, there is a Stack<T>

collection available in .NET), but let’s now look how it evolved into a more general

meaning of the computer memory organization.

push 4 push 9 pop pop
(returns 9) (returns 4)

4 4

9

4

Figure 1-4. Pop and push stack operations. This is a conceptual drawing only, not
related to any particular memory model and implementation.

Chapter 1 BasiC ConCepts

13

The very first computers we were talking about earlier allowed only sequential

program execution, reading each instruction one after another from the punch card or

film. But the idea to write some parts of programs (subroutines) that could be reused

from different points of the whole program was obviously very tempting. The possibility

to call different parts of the program required, of course, the code to be addressable as

we need somehow to point to what other part of the program we want to call. The very

first approach was used by the famous Grace Hooper in the A-0 system- called the first

compiler. She encoded a set of different programs on the tape, giving each a succeeding

number to allow the computer to find it. Then “a program” consists of a sequence

of numbers (programs’ indexes) and its parameters. Although it is indeed calling

subroutines, it is obviously a very limited way. A program could only call subroutines

each after another, and no nested calls were allowed.

Nested calls require a little more complicated approach because computers must

remember somehow where to continue with execution (where to return) after executing

a specific subroutine. The return address stored in one of the accumulators was the very

first approach invented by David Wheeler on the EDSAC machine (a method called

“Wheeler jump”). But in his simplified approach, recursive calls were not possible, which

means calling the same subroutine from itself.

A first mention of the stack concept as we know it today in the context of computer

architecture was probably mentioned by Alan Turing in his report describing Automatic

Computer Engine (ACE) written in the early 1940s. It described a concept of the von

Neumann-like machine, which was in fact a stored-program computer. Besides a lot of

many other implementation details, he described two instructions - BURY and UNBURY -

operating on the main memory and accumulators:

• When calling a subroutine (BURY), the address of the currently

executing instruction, incremented by one to point to the next

(returning) instruction, was stored in the memory. And another

temporary storage, serving as a stack pointer, was incremented by 1.

• When returning from the subroutine (UNBURY), the opposite action

was taken.

This constituted the very first implementation of the stack in terms of the LIFO-

organized place for the subroutines return addresses. This is a solution still used in

modern computers, and besides that it has obviously evolved considerably since then,

the foundations are still the same.

Chapter 1 BasiC ConCepts

14

The stack is a very important aspect of memory management because when

programming in .NET, a lot of our data may be placed there. Let’s take a closer look at the

stack and its use in function calls. We will use an example program from Listing 1-2

written in C-like pseudo-code that calls two functions - main calls fun1 (passing two

arguments a and b), which has two local variables x and y. Then function fun1 at some

moment calls function fun2 (passing single argument n), which has a single local

variable z.

Listing 1-2. Pseudo-code of a program calling function inside another function

void main()

{

 ...

 fun1(2, 3);

 ...

}

int fun1(int a, int b)

{

 int x, y;

 ...

 fun2(a+b);

}

int fun2(int n)

{

 int z;

 ...

}

At first, imagine a continuous memory area, designed to handle the stack, drawn in

such a way that subsequent memory cells have addresses growing up (see left part of

Figure 1-5a) and also a second memory region where your program code resides (see

right part of Figure 1-5a) organized the same way. As a code of functions does not have to

Chapter 1 BasiC ConCepts

15

lie next to each other, main, fun1, and fun2 code blocks have been drawn separated. The

execution of the program from Listing 1-2 can be described in the following steps:

 1. Just before calling fun1 inside main (see Figure 1-5a). Obviously

as the program is already running, some stack region is already

created (grayed part of stack region at Figure 5a). Stack pointer

(SP) keeps an address indicating the current boundary of the

stack. Program counter (PC) points somewhere inside the

main function (we marked this as address A1), just before the

instruction to call fun1.

 2. After calling fun1 inside main (see Figure 1-5b). When function is

called, stack is being extended by moving SP to contain necessary

information. This additional space includes:

• Arguments - all function arguments can be saved on stack. In our

sample, arguments a and b were stored there.

• Return address - to have a possibility to continue main function

execution after executing fun1, the next instruction’s address just

after the function call is saved on stack. In our case we denoted it

as A1+1 address (pointing to the next instruction after instruction

under A1 address).

Figure 1-5a. Stack and code memory regions - at the moment before calling
function fun1 from Listing 1-2

SP

hi
gh

er
 a

dd
re

ss

stack

PC

code

main

fun1

fun2

A1

Chapter 1 BasiC ConCepts

16

• Local variables - a place for all local variables, which can be saved

also on stack. In our sample variables x and y were stored there.

Such a structure placed on stack when a subroutine is being called

is named an activation frame. In a typical implementation the stack

pointer is decremented by an appropriate offset to point to the place

where a new activation frame can start. That is why it is often said

that the stack grows downward.

 3. After calling fun2 inside fun1 (see Figure 1-5c). The same pattern

of creating a new activation frame is being repeated. This time it

contains a memory region for argument n, return address A2+1,

and z local variable.

Figure 1-5b. Stack and code memory regions - at the moment after calling
function fun1 from Listing 1-2

SP

stack

arguments

return address

locals

activation
frame (fun1)

hi
gh

er
 a

dd
re

ss

code

main

fun1
PC

fun2

A1+1

a

b

x

y A2

Chapter 1 BasiC ConCepts

17

An activation frame is also called more generally as stack frame, meaning any

structured data saved on a stack for specific purposes.

As we see, subsequent nested subroutines’ calls just repeat this pattern adding a

single activation frame per each call. The more nested the subroutine calls, the more

activation frames on the stack will be. This of course makes calling infinite nested calls

impossible as it would require a memory for an infinite number of activation frames.2

If you ever encountered StackOverflowException, this is the case. You have called so

many nested subroutines that the memory limit for the stack has been hit.

Bear in mind that mechanism presented here is merely exemplary and very general.

Actual implementations may vary between architectures and operating systems. We will

look closely how activation frames and stack is being used by .NET in the later chapters.

When a subroutine ends, its activation frame is being discarded just by incrementing

stack pointer with the size of the current activation farm, while saved return address

is used to accordingly set PC to continue execution of the calling function. In other

words, what was inside stack frame (local variables, parameters) is no longer needed so

incrementing stack pointer is just enough to “free” memory used so far. Those data will

be simply overwritten in next stack usage (see Figure 1-6).

Figure 1-5c. Stack and code memory regions - at the moment after calling
function fun2 from fun1

SP

stack

activation
frame (fun1)

hi
gh

er
 a

dd
re

ss

arguments

return address

locals

activation
frame (fun2)

code

main

fun1

fun2
PC

A1+1

a

b

x

y

n

A2+1
z

2 There is one interesting exception called tail calls, not described here for its lack of brevity.

Chapter 1 BasiC ConCepts

18

Regarding implementation, both SP and PC are typically stored in the dedicated

registers. At this point the size of the address itself, the observed memory areas and

registers are not particularly important.

A stack in modern computers is supported both by the hardware (by providing

dedicated registers for stack pointers) and by the software (by operating system

abstraction of thread and its part of the memory designated as a stack).

It is worth noticing that one can imagine a lot of different stack implementations

from the hardware architecture point of view. The stack can be stored on a dedicated

memory block inside the CPU or on a dedicated chip. It can also reuse a general

computer’s memory. The latter is exactly the case in most modern architectures, where a

stack is just a fixed-size region of a process memory. There can even be implementations

with multiple stacks architecture. In such an exemplary case, the stack for return

addresses could be separated from the stack with data- parameters and local variables.

This can be beneficial for performance reasons because it allows for simultaneous access

to two separated stacks. It allows for additional tunings of CPU pipelining and other low-

level mechanisms. Nevertheless, with the current personal computers, the stack is just a

part of the main memory.

FORTRAN can be seen as the very first broadly used high-level, general-purpose

programming language. But since 1954, when it was defined, only static allocation was

possible. All arrays had to have sizes defined during compile time and all allocations

were stack based. ALGOL was another very important language that more or less directly

SP

stack
hi

gh
er

 a
dd

re
ss

code

main

fun1

fun2

A1+1

a

b

x

y

n

A2+1

z

PCA1+1

Figure 1-6. Stack and code memory regions - after returning from function fun1
both activation frames are discarded

Chapter 1 BasiC ConCepts

19

inspired a myriad of other languages (like C/C++, Pascal, Basic, and through Simula and

Smalltalk - all modern object-oriented languages like Python or Ruby). ALGOL 60 had

only stack allocation - together with dynamic arrays (with a size specified by variable).

Alan Perlis, a notable member of the team that created ALGOL, said:

Algol 60 would have been impossible to adequately process in a reasonable
way without the concept of stacks. Though we had stacks before, only in
Algol 60 did stacks come to take a central place in the design of processors.

While the family of ALGOL and FORTRAN languages was mainly used by the

scientific society, there was another stream of development for business-oriented

programming languages starting from “A-0,” FLOW-MATIC, through COMTRANS to

more widely known COBOL (Common Business Language). All of them were lacking

explicit memory management, operating mainly on primitive data types like numbers

and strings.

 The Stack Machine
Before we move on to other memory concepts, let’s stay for a while with a stack-related

context - so-called stack machines. In contrast to the registry machine, in the stack

machine all instructions are operating on the dedicated, expression stack (or evaluation

stack). Please bear in mind that this stack does not have to be the same stack that

we were talking about before. Hence, such a machine could have both an additional

“expression stack” and a general-purpose stack. There can be no registers at all. In such

a machine, by default, instructions are taking arguments from the top of the expression

stack - as many as they require. The result is also stored on the top of the stack. In such

cases, they are called pure stack machines, opposite to impure implementations when

operations can access values not only from the top of the stack but also deeper.

How exactly does operation on the expression stack looks? For example, hypothetical

Multiply instruction (without any argument) will pop two values from the top of the

evaluation stack, multiply them, and put back the result on the evaluation stack (see

Figure 1-7).

Chapter 1 BasiC ConCepts

20

Let’s back to the sample s=x+(2*y)+z expression from the register machine example

and rewrite it in the stack machine manner (see Listing 1-3).

Listing 1-3. Pseudo-code of the simple stack machine realizing s=x+(2*y)+z

calculation. Comments show evaluation stack state.

 // empty stack

Push 2 // [2] - single stack element of value 2

Push y // [2][y] - two stack elements of value 2 and y

Multiply // [2*y]

Push x // [2*y][x]

Add // [2*y+x]

Push z // [2*y+x][z]

Add // [2*y+x+z]

Pop l // [] (with side effect of writing a value under l)

This concept leads to very clear and understandable code. Main advantages can be

described as follows:

• There is no problem regarding how and where to store temporary

values - whether they should be registers, stack, or main memory.

Conceptually this is easier than trying to manage all those possible

targets optimally. Thus, it simplifies implementation.

• Opcodes can be shorter in terms of required memory as there

are many no-operand or single-operand instructions. This allows

efficient binary encoding of the instructions and hence produces

dense binary code. So even the number of instructions can be bigger

than in the registry-based approach because of more load/store

operations; this is still beneficial.

Multiply

4

9

36

Figure 1-7. Hypothetical Multiply instruction in stack machine - pops two
elements from the stack and pushes the result of multiplying them

Chapter 1 BasiC ConCepts

21

This was an important advantage in the early times of computers when memory was

very expensive and limited. This can be also beneficial today in case of downloadable

code for smartphones or web applications. Dense binary encoding of instructions

implies also better CPU cache usage.

Despite its advantages, the stack machine concept was rarely implemented in the

hardware itself. One notable exception was the Burroughs machines like B5000, which

included hardware implementation of the stack. Nowadays there is probably no widely

used machine that could be described as the stack machine. One notable exception is

x87 floating-point unit (inside x86 compatible CPUs), which was designed as a stack

machine, and because of backward compatibility it is still programmed as such even

today.

So why mention these kind of machines at all? Because such architecture is a great

way of designing platform-independent virtual machines or execution engines. Sun’s

Java Virtual Machine and .NET runtime are perfect examples of stack machines. They are

executed underneath by well-known register machines of x86 or ARM architecture, but

it doesn’t change the fact they realize stack machine logic. We will see this clearly when

describing .NET’s Intermediate Language (IL) in Chapter 4. Why have .NET runtime and

JVM (Java Virtual Machine) been designed that way? As always, there is some mix of

engineering and historical reasons. Stack machine code is of higher level and abstracts

away actual underlying hardware better. Microsoft’s runtime or Sun’s JVM could be

written as registry machine, but then, how many registers would be necessary? As they

are only virtual, the best answer is - an infinite number of registers. Then we need a way

of handling and reusing them. What would an optimal, abstract registry-based machine

look like?

If we leave such problems away by letting something else (Java or .NET runtime, in

this case) to make specific platform optimizations, it will translate either registry-based

or stack-based mechanisms into specific registry-based architecture. But stack-based

machines are conceptually simpler. Virtual stack machine (the one that is not executed

by a real, hardware stack machine) can provide good platform independence while still

producing high-performant code. Putting it together with the mentioned better code

density makes a good choice for a platform to be run on a wide range of devices. That

was probably the reason why Sun decided to choose that path when Java was invented

for small devices like set-top boxes. Microsoft, while designing .NET, followed that path

either. The stack machines concept is simply elegant, simple, and it just works. This

makes implementing a virtual machine a nicer engineering task!

Chapter 1 BasiC ConCepts

22

On the other hand, registry-based virtual machines’ designs are much closer to

the design of the real hardware they are running at. This is very helpful in terms of

possible optimizations. Advocates of this approach say that much better performance

can be achieved, especially in interpreted runtimes. The interpreter has much less

time to proceed with any advanced optimizations so the more that the interpreted

code is similar to the machine code, the better it is. Additionally, operating on the most

frequently used set of registers provides a great cache locality of reference.3

As always, when making a decision, you need to make some compromises. The

dispute between advocates of both approaches is long and unresolved. Nevertheless,

the fact is that currently the .NET execution engine is implemented as a stack machine,

although it is not completely pure - we will notice this in Chapter 4. We will see also how

the evaluation stack is being mapped to the underlying hardware consisting of registers

and memory.

Note are all virtual machines and execution engines stack machines? absolutely
not! one notable exception is Dalvik, which was a virtual machine in Google’s
android until the 4.4 version, which was a registry-based JVM implementation. it
was an interpreter of intermediate “Dalvik bytecode.” But then Jit (Just in time
compilation explained in Chapter 4) was introduced in Dalvik’s successor - android
runtime (art). other examples include BeaM - a virtual machine for erlang/elixir,
Chakra - Javascript execution engine in ie9, parrot (perl 6 virtual machine) and Lua
VM (Lua virtual machine). no one can therefore say that this kind of machine is not
popular.

 The Pointer
So far we have introduced only two memory concepts: static allocation and stack

allocation (as a part of stack frame). The concept of a pointer is very general and could

be spotted from the very beginning of the computing era - like previously shown concept

3 Note: we will look at the importance of memory access patterns in the context of cache usage in
Chapter 2.

Chapter 1 BasiC ConCepts

23

of instruction pointer (program counter) or stack pointer. Specific registers dedicated to

memory addressing like index registers can be also seen as pointers.4

PL/I was a language proposed by IBM in about 1965, intended to be a general

proposition for both scientific and business worlds. Although its goal was not quite

achieved, it is an important element of history because it was the first language that

introduced the concept of pointers and memory allocation. In fact, Harold Lawson,

involved in PL/I language development, was awarded by IEEE in 2000 “for inventing

the pointer variable and introducing this concept into PL/I, thus providing for the first

time, the capability to flexibly treat linked lists in a general-purpose high level language.”

That was exactly the need behind the pointer invention - to perform list processing and

operate on other more or less complex data structures. The pointer concept was then

used during the development of the C language, which evolved from the language B (and

predecessors or BCPL and CPL). Only as late as the FORTRAN 90 version, a successor

of FORTRAN 77, defined in 1991, introduced dynamic memory allocation (via allocate/

deallocate subroutines), POINTER attribute, pointer assignment, and the NULLIFY

statement.

Pointers are variables in which we store the address of the position in memory.

Simply put, it allows us to reference other places in memory by its address. Pointer size

is related to word length mentioned before, and it results from the architecture of the

computer. Thus nowadays, we typically deal with 32- or 64 bit-wide pointers. As it is

just some small region of memory, it can be placed on the stack (for example, as a local

variable or function argument) or CPU register. Figure 1-8 shows a typical situation

where one of the local variables (stored within function activation frame) is a pointer to

another memory region with the address Addr.

4 In the context of the memory addressing, an important enhancement was an index register
introduced in the Manchester Mark 1 machine, the successor of “Baby.” An index register
allowed us to reference memory indirectly, by adding its value to the other register. Hence, less
instructions were required to operate on continuous memory regions like arrays.

Chapter 1 BasiC ConCepts

24

The simple idea of pointers allows us to build sophisticated data structures like

linked lists or trees because data structures in memory can reference each other, creating

more complex structures (see Figure 1-9).

stack

arguments

return address

locals

hi
gh

er
 a

dd
re

ss
other memory region

some data
Addr

ptr

Figure 1-8. Local variable of a function being a pointer ptr pointing to the
memory under address Addr

value1prev next value2prev next value3prev next

NULL

HEAD

Figure 1-9. Pointers used to build double-linked list structure when each element
points its previous and next elements

Chapter 1 BasiC ConCepts

25

Moreover, pointers can provide so-called pointer arithmetic. They can be added or

subtracted to the reference relative part of memory. For example, the increment operator

increases the value of the pointer by the value of the size of the pointed object, not by

single byte as one could expect.

Pointers in high-level languages like Java or C# are often not available or must be

explicitly enabled, and it makes such code unsafe. Why that is will be clearer when

talking about manual memory management using pointers in the next subchapter.

 The Heap
Eventually, we reach the most important concept in the context of the .NET memory

management. The heap (less known also as the Free Store) is an area of memory used for

dynamically allocated objects. The free store is a better name because it does not suggest

any internal structure but rather a purpose. In fact, one might rightly ask what is the

relationship between the heap data structure and the heap itself. The truth is - there is

none. While the stack is well organized (it is based on LIFO data structure concept), the

heap is just more like a “black box” that can be asked for providing memory, no matter

where it will come from. Hence “the pool” or mentioned “free store” would be probably

a better name. The heap name was probably used from the beginning in a traditional

English sense meaning “messy place” - especially the opposite of well-ordered, stack

space. Historically ALGOL 68 introduced heap allocation but this standard was not

widely adopted. But this is where this name probably come from. Fact is, the true

historical origin of this name is now rather unclear.

The heap is a memory mechanism able to provide a continuous block of memory

with a specified size. This operation is called dynamic memory allocation because both

the size and the actual location of the memory need not be known at compile time. Since

the location of the memory is not known at compile time, dynamically allocated memory

must be referenced by a pointer. Hence pointer and heap concepts are inherently

related.

An address returned by some “allocate me X bytes of memory” function should be

obviously remembered in some pointer for future reference to a created memory block.

It can be stored on a stack (see Figure 1-10), on the heap itself, or anywhere else.

 PTR ptr = allocate(10);

Chapter 1 BasiC ConCepts

26

The reverse operation of an allocation operation is called a deallocation, when the

given block of memory is returned to the pool of memory for future use. How exactly

heap is allocating a space with a given size is an implementation detail. There are many

“allocators” possible, and we will learn about some of them soon.

By allocating and deallocating many blocks, we may end up with a situation where there

is not enough free space for a given object, although in total there is enough free space on

heap. Such situation is called heap fragmentation and may lead to significant inefficiency

in memory usage. Figure 1-11 illustrates such problem, when there is not enough free

continuous space for object X. There are many different strategies used by allocators to

manage space as optimally as possible to avoid fragmentation (or make good use of it).

stack

hi
gh

er
 a

dd
re

ss

heap

ptr

10 bytes

Figure 1-10. Stack with pointer ptr and 10-bytes wide block on the heap

heap

A

B

C

D
E

F

free(B)

free(D)

A

C

E

F

X

Figure 1-11. Fragmentation - after deleting objects B and D, there is no enough
space for new object X although in total there is enough free space for it

Chapter 1 BasiC ConCepts

27

Table 1-1. Comparison of the Stack and the Heap Features

Property The Stack The Heap

Lifetime scope of local variables (pushed on entry,

popped on exit)

explicit (by allocate and optional

free)

scope Local (thread5) Global (anyone who has a pointer)

access Local variable, function arguments pointer

access time Fast (probably cached memory region in the

CpU)

slower (may be even temporarily

saved to hard drive)

allocation Move stack pointer Different possible strategies

allocation

time

Very fast (pushing stack pointer further) slower (depends on allocation

strategy)

Freeing Move stack pointer Different possible strategies

Usage subroutine parameters, local variables,

activation frames, not big compile-time size

known data (arrays)

everything

Capacity Limited (typically few MB per thread) Unlimited (to extent of hard drive

space)

Variable size no Yes6

Fragmentation no Likely

Main threats stack overflow Memory leak (forgetting to free

allocated memory), fragmentation

It is also worth noting that whether there is a single heap or multiple heap instances

within a single process is yet another implementation detail (we will see it when

discussing .NET more deeply).

Let’s make a short summary of the stack and the heap differences in Table 1-1.

5 This is not entirely true as you can pass a pointer to the stack variable to other threads. However,
it is definitely abnormal usage.

6 Due to the dynamic nature of the heap, there are functions allowing us to resize (reallocate) a
given block of memory.

Chapter 1 BasiC ConCepts

28

Besides their differences, most commonly both the stack and heap are located at

opposite ends of the process’s address space. We will return to a detailed stack and

heap layout inside the process address space when considering low-level memory

management in Chapter 2. Nevertheless, one should remember it is still just an

implementation detail. By providing abstractions of value and reference types (which

will be introduced in Chapter 4), we should not care where they are created.

Now let’s now move forward to the discussion over manual versus automatic

memory management. As Ellis and Stroustrup write in The Annotated C++ Reference

Manual:

C programmers think memory management is too important to be left to
the computer. Lisp programmers think memory management is too impor-
tant to be left to the user.

 Manual Memory Management
Until now what we have been seeing was a “manual memory management.” What it

means, in particular, is that a developer is responsible for explicitly allocating memory,

and then when it is no longer needed, she should deallocate it. This is real manual

work. It’s exactly like a manual gear in most European cars. I am from Europe and we

are just used to manually changing the transition. We must think whether it is a good

time to change it now, or we should wait a few seconds until the engine speed is high

enough. This has one big advantage - we have complete, full control over the car. We

are responsible whether an engine is used optimally or not. And as humans are still

much more adaptive to changing conditions, good drivers can make it better than an

automatic gear. Of course, there is one big disadvantage. Instead of thinking about our

main goal - getting from place A to place B, we have to additionally think about changing

gears - hundreds, thousands of times during a long trip. This is both time consuming and

tiresome. I know some people will say that it is fun and giving control to the automatic

gear is boring. I can even agree with them. But still, I quite like how this automotive

metaphor relates the memory management.

When we are talking about explicit memory allocation and deallocation, it is exactly

like having a manual gear. Instead of thinking about our main goal, which is probably

some kind of a business goal of our code, we must think also about how to manage

memory of our program. This moves us back from the main goal and takes our valuable

attention. Instead of thinking about algorithms, business logic, and domains, we are

Chapter 1 BasiC ConCepts

29

obliged to think also about when and how much memory I will need. For how long? And

who will be responsible for freeing it? Does it sound like business logic? Of course not.

The question whether it is good or is not another story.

The well-known C language was designed by Dennis Ritchie somewhere around

the early 1970s and had become one of the most widely used programming languages

in the world. The history how C evolved from ALGOL through intermediate languages

CPL, BCPL, and B is interesting on its own, but in our context, it is important that

altogether with Pascal (being a direct ancestor of ALGOL), they were the two most

popular languages with explicit memory management at the time. Regarding C, without

a doubt, I can say that a compiler of it has been written for any hardware architecture

ever created. I will not be surprised if alien spaceships had their own C compiler on

board (probably implementing TCP/IP stack as an example of another widely used

standard). The relevance of this language on other programming languages is huge and

not to imagine. Let’s pause for a moment and take a deeper look into it in the context of

memory management. This will allow us to list some of the characteristics of the manual

memory management.

Let’s look at simple example code written in C at Listing 1-4.

Listing 1-4. Sample C program showing manual memory management

#include <stdio.h>

void printReport(int* data)

{

 printf("Report: %d\n", *data);

}

int main(void) {

 int *ptr;

 ptr = (int*)malloc(sizeof(int));

 if (ptr == 0)

 {

 printf("ERROR: Out of memory\n");

 return 1;

 }

Chapter 1 BasiC ConCepts

30

 *ptr = 25;

 printReport(ptr);

 free(ptr);

 ptr = NULL;

 return 0;

}

This is, of course, a little exaggerated example but thanks to it we can illustrate the

problem clearly. We can notice that this simple code has in fact only one simple business

goal: printing “a report.” For simplicity, this report consists only of a single integer, but

you can image it is a more complex structure containing pointers to other data structures

and so on. This simple business goal looks over-helmed by a lot of “ceremony code”

taking care of nothing more than memory. This is a manual memory management in its

essence.

Summarizing the above piece of code, besides business writing logic, a developer

must:

• allocate a proper amount of memory for the required data using

malloc function.

• cast returned generic (void*) pointer to proper pointer type (int*)

to indicate we are pointing to the numerical value (int type in

case of C).

• remember the pointer to the allocated region of memory in local

pointer variable ptr.

• check whether it succeeded in allocating such amount of memory

(returned address will be 0 in case of failure).

• dereference the pointer (access memory under its address) to store

some data (numerical value of 25).

• pass the pointer to other function printReport, that dereferences it

for its own purpose.

• free allocated memory when it is no longer needed using free

function.

Chapter 1 BasiC ConCepts

31

• to be assured we should mark the pointer with a special NULL value

(which is a way of telling this pointer points to nothing and in fact

corresponds to value of 07).

As we see, there are a lot of things to be kept in mind by us when we must manage

memory manually. Moreover, each of the above steps can be mistakenly used or

forgotten, which can lead to bunch of serious problems. Going through each of those

steps, let’s see what bad things can happen:

• We should know exactly how much memory we need. It is as simple

as sizeof(int) in our example, but what if we dealt with much more

complex, nested data structures? One can easily imagine a situation

in which we allocate too little memory because of some minor error

in manual calculations of the required size. Later, when we want to

write or read from such a memory region, we will probably end up

with Segmentation Fault error - trying to access memory that has not

been allocated by us or allocated for another purpose. On the other

hand, by a similar mistake we can allocate way too much memory,

which will lead us to memory inefficiency.

• Casting can be always error prone and can introduce really hard

to diagnose bugs if we accidentally introduce a type mismatch.

We would be trying to interpret a pointer of some type as it was

a completely different type, which easily leads to danger access

violations.

• Remembering the address is an easy thing. But what if we forget to do

that? We will have a bunch of memory allocated and no way to free

it - we’ve just forgotten its address! This is a direct path to the memory

leak problem, as unfreeable memory can grow in time endlessly.

Moreover, a pointer can be stored in something more complicated

than a local variable. What if we forget a pointer to a complex graph

of objects because we freed some structure containing it?

• A single check whether we were able to allocate the desired amount

of memory is not cumbersome. But doing it a hundred times in each

7 The implementation details of the NULL value in case of .NET will be explained in Chapter 10.

Chapter 1 BasiC ConCepts

32

and every function for sure will be. We are probably going to decide

to omit those checks, but this may lead us to undefined behavior in

many points of our application, trying to access memory that was not

successfully allocated in the first place.

• Dereferencing pointers is always dangerous. No one ever knows

what is at the address pointed by them. Is there still a valid object,

or maybe it has been freed already? Is this pointer valid in the first

place? Does it point to the proper user-memory address space?

Full control over a pointer in languages like C leads to such worries.

Manual control over pointers leads to serious security concerns - it

is only the programmer who must take care about not exposing data

beyond regions that should be available according to the current

memory and type model.

• Passing the pointer between functions and threads only multiplicates

worries from the previous points in the multithreaded environment.

• We must remember to free the allocated memory. If we omit this

step, we get memory leak. In an example as simple as the one above,

it is of course really hard to forget about calling free function. But it

is much more problematic in more sophisticated code bases, when

ownership of data structures is not so obvious and where pointers to

those structures are passed here and there. There is also yet another

risk - no one can stop us from freeing memory that has been already

freed. Yet it is another occasion to undefined behavior and a likely

cause of segmentation fault.

• Last but not least, we should mark our pointer as NULL (or 0 or

whatever we can name it) to note that it no longer points to a valid

object. Otherwise it is called a dangling pointer, which sooner or later

will lead to Segmentation Fault or other undefined behavior because

it can be dereferenced by someone who believes it represents still

valid data.

As we can see from the developer perspective, explicit memory allocation and

deallocation can become really cumbersome. It is a very powerful feature, which for

sure has its perfect applications. Where extreme performance matters and the developer

must be 100% sure what is going under the hood - this approach can be found useful.

Chapter 1 BasiC ConCepts

33

But “with great power comes great responsibility” so this is a two-edged sword. And as

software engineering evolved, so languages were becoming more and more advanced in

terms of helping the developer to escape from all those worries.

Going further, the C language direct successor, C++, has not changed a lot in this

field either. However, C++ is worth devoting a few moments to because is so popular and

introduces other broadly used concepts. As we all know, it is the language with manual

memory management. Translating the previous example into C ++, we get the code as in

Listing 1-5.

Listing 1-5. Sample C++ program showing manual memory management

#include <iostream>

void printReport(int* data)

{

 std::cout << "Report: " << *data << "\n";

}

int main()

{

 try

 {

 int* ptr;

 ptr = new int();

 *ptr = 25;

 printReport(ptr);

 delete ptr;

 ptr = 0;

 return 0;

 }

 catch (std::bad_alloc& ba)

 {

 std::cout << "ERROR: Out of memory\n";

 return 1;

 }

}

Chapter 1 BasiC ConCepts

34

In the context of our considerations we can spot some significant improvements:

• The new operator takes care to allocate enough memory, knowing

how much it needs, thanks to the support of the compiler (which

suggests proper type size).

• We need not cast the obtained pointer to the appropriate type. This

removes some type safety concerns we were considering previously.

• Error handling is also improved as we are not obliged to check

allocation success manually, because an exception will be thrown in

case of a problem.

Still, we do see a lot of ceremony code in this example. There is also a new concern

introduced. What if printReport() function will throw an exception? Without proper

error handling, we can easily omit delete operator and introduce a memory leak. Fixing

our sample code is easy, but it can be not so obvious in more complex applications as

ownership of the data (who and on which layer should delete such pointers) may be not

trivial.

All problems we saw in this chapter are additionally exaggerated in multithreaded

environments, when pointers can be shared between multiple units of execution. Careful

synchronization must be considered to not allow mixing invalid data. For example, what

if one threads check whether a given pointer is valid (not NULL), while the other, just after

that, will free memory pointed by it? Such situations can lead to intermittent and very

hard to diagnose problems. In explicit memory management world, it is a developer

responsibility to provide a suitable synchronization mechanism to avoid such situations.

the C++ example presented in Listing 1-5 is on purpose not aligned with the
current memory usage patterns in this language. it should use some sort of raii
(resource acquisition is initialization) technique - where a resource (like memory)
is represented by a local variable of type implementing some kind of memory
ownership logic. an example of such will be presented later in Listing 1-10.
although, as we will see, such patterns help to solve some of the problems, they
do not change a lot in our general discussion about manual and automatic memory
management.

Chapter 1 BasiC ConCepts

35

 Automatic Memory Management
To overcome problems with manual memory management and provide the programmer

a more pleasing way of handling it, different automatic memory management

approaches have been proposed. It is interesting to know that as old as the second oldest

high-level programming language - LISP - proposed about 1958 (just a few years after

FORTRAN), have much to offer in this field. As in a mainly functional language heavily

based on the processing of the lists - manual memory management would be very

uncomfortable. A functional programming paradigm treats programs as an evaluation

of combined functions and strongly avoids modification of data (mutation) and side

effects. Allocating and deallocating memory is heavily mutable and has obvious side

effects. Handling memory in such a way in functional code would clutter it a lot with

imperative smell, while LISP was designed to be a highly declarative language. As

LISP language creator said, “it was going to make everything absolutely ugly to have to

explicitly erase lists.” Hence, something more sophisticated had to be developed. The

very first versions of LISP had a built-in eralist (erase list) function, but it was removed

after automatic memory management had been introduced.

In general, LISP was a very innovative language, and the design of it have helped to

invent many important computer science ideas, and automatic memory management

was one of them. In fact, John McCarthy, one of the co-founders of Artificial Intelligence

and the inventor of LISP, is also a father of the first garbage collection algorithms. Many

of the ideas thought then are still valid and used in languages today. One can certainly

say that automatic memory management was born in LISP. The first paper written by

McCarthy in 1958 introduced the Mark and Sweep algorithm that we will investigate in

depth in later chapters because it is still used in the .NET environment and many other

places.

LISP, thanks to its expressiveness and conciseness, represents our sample program in

a simple form shown in Listing 1-6.

Chapter 1 BasiC ConCepts

36

Listing 1-6. Sample LISP program showing automated memory management

(defun printReport(data)

 (write-line (format nil "Report: ~a" data))

)

(prog

 ((ptr 25))

 (printReport ptr)

)

Thanks to automatic memory management, all the code clutter has gone, and we can

clearly see the high-level description of the program business goal - printing “a report.”

An interesting anecdote is one by John McCarthy in the paper on LISP design,

“Recursive Functions of Symbolic Expressions and Their Computation by Machine,

Part I.” He described this mechanism succinctly but named it simply as “reclamation.”

Later, he annotated this part:

We already called this process “garbage collection,” but I guess I chickened
out of using it in the paper - or else the Research Laboratory of Electronics
grammar ladies wouldn’t let me.

Besides its name, the idea was there and ready to implement. Currently the

automatic memory management mechanism and garbage collection names are used

interchangeably. We can define it as a mechanism that removes from the programmer

the responsibility of manual memory management so that once created, objects are

automatically destroyed (and the memory after them recovered) when no longer

needed.

One of the main messages I would like to give in this book is the fact that even when

memory management is fully automatic, it can cause problems. As a small confirmation,

it is worth quoting a fun fact regarding first LISP’s implementation of garbage collection.

As McCarthy recalls in the book History of Programming languages I, during the very first

public demonstration of LISP in one of MIT’s Industrial Liaison Symposia, due to minor

oversight, the Flexowriter (the electric typewriter of those times) started to print a lot of

pages with an error message beginning with:

THE GARBAGE COLLECTOR HAS BEEN CALLED. SOME INTERESTING
STATISTICS ARE AS FOLLOWS

Chapter 1 BasiC ConCepts

37

Due to this, the presentation had to be canceled while the audience was full of

laughs. No one ever known it was due to garbage collector misuse, only John itself. And

while it was rather a human than algorithmic error, still we can say garbage collectors

make troubles from the very beginning!

 Allocator, Mutator, and Collector
Mutators and other concepts we are going to familiarize with in this chapter are

important terms in the automatic memory management academic research. Thanks

to clear definitions, we can distinguish them later in academic and technical papers

without ambiguity. One can say about, for example, an “overhead on Mutator” of specific

algorithms. When considering various garbage collection designs, there will often be a

discussion about the impact of the Collector on the Mutator and vice versa. Let’s look

closer at those terms.

 The Mutator

Among the few basic concepts related to memory management, the most basic one and

the pretty important one at the same time is an abstraction called the Mutator. In its

simplest version, we can define a Mutator as an entity that is responsible for executing

application code. Its name comes from the fact that Mutator mutates (changes) the state

of the memory - objects are being allocated or modified and references between them

are being changed. In other words, Mutator is a driving machine of all the changes in

the application with respect to the memory. This name was coined (among others, in

the same paper) by Edger Dijkstra in 1978 in the paper, “On-the-Fly Garbage Collection:

An Exercise in Cooperation,” where we can find detailed elaboration on this topic. An

interesting side fact is that Dijkstra’s proposition from this quite old paper is still being

used, for example, by the Go language in 2015 and with good results.

I like the Mutator abstraction as it provides a nice and clean categorization of things

inside a specific framework or runtime. We can define the Mutator as everything that

has the possibility to modify memory, either by modifying existing objects or by creating

new ones. Although it is not strict, additionally, we can extend it to everything that can

read memory (as reading is a crucial operation for program execution). This leads us to

Chapter 1 BasiC ConCepts

38

an important observation. To be fully operable, Mutator needs to provide the running

application three kind of operations:

• New(amount) - allocate a given amount of memory, which then will

be used by a newly created object. Please note that at this abstraction

level, we are not considering an object’s type information, which

may be or not be available from runtime. We are just providing the

required size of the memory to be allocated.

• Write(address, value) - write a specified value under a given

address. Here we also abstract whether we are considering an object

field (in object-oriented programming), global variable, or any other

kind of data organization.

• Read(address) - read a value from the specified address.

In the simplest world, where none of the garbage collection algorithms exists, those

three operations have trivial implementation (written in C-like pseudo- code at

Listing 1-7).

Listing 1-7. Three main Mutator’s methods implementation without automated

memory management

Mutator.New(amount)

{

 return Allocator.Allocate(amount);

}

Mutator.Write(address, value)

{

 *address = value;

}

Mutator.Read(address) : value

{

 return *address;

}

Chapter 1 BasiC ConCepts

39

But in the world of automated garbage collection, those three operations are

places when Mutator cooperates with the garbage collector (Collector) and allocation

mechanism (Allocator). How this cooperation looks and how much it disturbs the

simplicity of the above implementations is one of the most important design concerns.

The most common enhancement we will meet in this book is adding a so-called barrier -

either it will be a read barrier or a write barrier. A barrier is a way of augmenting an

additional operation before or after particular operations. Barriers let us synchronize

(directly or indirectly, synchronously or asynchronously) with the garbage collector

mechanism to inform about the execution of the program and the memory usage. Three

methods from Listing 1-7 are the injection points that every garbage collector may

wish to plug in. We will return to some of the most common possible variations in the

following chapters when describing different garbage collection algorithms.

In the everyday reality of developers, the most often implementation of the Mutator

abstraction is a well-known thread. It suits out the definition perfectly - it is a single

unit that runs code and mutates objects and references graphs between objects. This is

perfectly intuitive for us, because the vast majority of the most popular runtimes uses

this implementation. Among a lot of other functionalities, threads, via some additional

layer, communicates with the operating system to allow operations New, Write, and

Read.

Mutators do not have to be implemented as threads in the terms of the operating

system threads. The popular example can be Erlang ecosystem with its processes - they

are managed as super lightweight co-routines living in the runtime itself. They can be

seen as so-called “green threads,” but in the terms of Erlang VM it is better to call them

“green processes” as the separation enforced by runtime is much stronger than between

thread-like entities. This means they are entities managed on the runtime level, not the

operating system level. Another common implementation of Mutator could be based on

so-called fibers, lightweight units of execution implemented both in Linux and Windows.

 The Allocator

Mutator has to be able to consume New operation, which we discussed in the previous

point. When it comes to internals of those methods, sooner or later another very

important concept must be mentioned - the Allocator. By simple means, Allocator is

an entity responsible for managing dynamic memory allocation and deallocation. As

we mentioned before, in ancient languages like ALGOL or FORTRAN, there was no

Allocator, as there was no dynamic memory allocation at all.

Chapter 1 BasiC ConCepts

40

Allocator must provide two main operations:

• Allocator.Allocate(amount) - allocates a specified amount of

memory. This can be obviously extended by methods able to allocate

memory for a specific type of object if type information is available

for Allocator. As we have seen, this is internally used by Mutator.New

operation.

• Allocator.Deallocate(address) - frees a memory under a given

address to be available for future allocations. Please note that in

case of automatic memory management, this method is internal

and not exposed to the Mutator (and hence, no user code can call it

explicitly).

The idea can appear to be really simple, not to say - trivial. But as we will see, it is

not as easy as one would expect. There a lot of different aspects of Allocator design. And

as always, in fact, all is about trade-offs, mainly between performance, implementation

complexity (which leads directly to maintainability), and others. We will dig into the two

most popular kinds of allocators: sequential and free-list. But as it is an implementation

detail, it will be much better to learn about them in the specific context of the .NET in

Chapter 4.

 The Collector

While we defined a Mutator as an entity that is responsible for executing application

code, we can similarly define the Collector as an entity that runs garbage collection

(automatic memory reclaiming) code. In other words, we can see a Collector as a piece

of software (code) or thread executing it, or both. It depends on the context.

How does Collector know which objects are no longer needed and can be

deallocated? This is an impossible problem because it should in fact guess the future - is

a specific object going to be used anymore? It depends on the code that will be executed,

and this may furthermore depend on independent factors such as user actions, external

data, and so on. An ideal Collector would know the liveness of the object - live objects are

those which will be needed. In opposite - dead (or garbage) objects are not going to be

used and can be destroyed. Obviously, therefore commonly Collector is called Garbage

Collector or GC in short.

Chapter 1 BasiC ConCepts

41

There is an interesting consequence of Mutator, Allocator, and Collector cooperation.

Please note again that as there is no public Allocator.Deallocate method exposed,

Mutator has no possibility to explicitly free memory obtained. Mutators can only ask to

allocate more and more memory as there would be an infinite source of it. This indeed

means that Garbage Collection mechanism is in fact a simulation of a computer with an

infinite amount of memory. How this simulation works and how efficient it is become an

implementation detail.

One can think of a special Garbage Collector that does not free allocated memory

at all. It is being called Null or Zero Garbage Collector. It would work correctly only on

computers with an infinite amount of memory, which unfortunately does not yet exist.

But Null Garbage Collectors are not without any practical usage. It may be used for

example for very short living programs where unbounded memory growth is acceptable.

Maybe they will become more and more popular in the world of server-less, short-

running single functions. An example draft of such Zero Garbage Collector for .NET is

presented in Chapter 15.

Because knowing a liveness of an object is impossible,8 Collector is based on a

less strict property of the object - whether it is reachable by any Mutator. Reachability

of an object means that there is a sequence of references (starting from any Mutator’s

accessible memory) between objects that eventually leads to that object (see Figure 1- 12).

Reachability obviously does not mean liveness of an object but it is the best approximate

we can have. If an object is not reachable from any Mutator, it cannot be used anymore,

so it is dead (garbage) and can be safety reclaimed. The opposite is obviously not

truth. The reachable object can stay reachable forever (kept by some complex graph of

references) but because of the execution conditions may be never accessed and as such

it is dead. In fact, it is between liveness and reachability where most managed memory

leaks reside.

8 In Chapter 4 we will discuss escape analysis - a method for determining the true liveness of
pointers for at least some special cases.

Chapter 1 BasiC ConCepts

42

Mutator’s starting points in terms of reachability are called roots. What they exactly

are depends on specific Mutator implementation. But in most common cases, where a

Mutator is simply a thread (represented by operating system-based native thread), roots

can be:

• local variables and subroutine arguments - placed on stack or stored

in registers.

• statically allocated objects (e.g., global variables) - placed on the

heap.

• other internal data structures stored inside Collector itself.

Having knowledge about three major building blocks - Mutator, Allocator, and

Collector - we could now move on to getting familiar with a plethora of different

automatic memory management approaches. While it is tempting to provide a

comprehensive list with detailed description of all of them, this is much more this book

can cover. Instead, we will learn about some of the major, most popular approaches we

can meet in today’s languages.

 Reference Counting
One of the two most popular methods of automatic memory management is called

Reference Counting. The idea behind it is very simple. It is based on counting the

number of references to an object. Every object has its own reference counter. When an

object is being assigned to a variable or a field - the number of references to it is being

Figure 1-12. Reachability - objects C amd F are not reachable because there is no
path from roots (Mutator's locations) leading to them

Chapter 1 BasiC ConCepts

43

increased. At the same time, the reference counter of the object to which this variable

was previously indicated decreases.

The liveness of objects in the reference counting approach is being tracked by

the number of objects referencing a referent. If the counter drops to zero, no one is

referencing an object and thus it can be deallocated. But what if the counter does not

drop to zero? This says nothing about the liveness of an object - it says only that someone

is keeping a reference to it, not that it will use it. Thus, reference counting is yet another

less strict way of guessing liveness of an object.

Coming back to our trivial Mutator example from Listing 1-7, in case of reference

counting, it could be described as shown at Listing 1-8.

Listing 1-8. Pseudo-code describing simple reference counting algorithm

Mutator.New(amount)

{

 obj = Allocator.Allocate(amount);

 obj.counter = 0;

 return obj;

}

Mutator.Write(address, value)

{

 if (address != NULL)

 ReferenceCountingCollector.DecreaseCounter(address);

 *address = value;

 if (value != NULL)

 value.counter++;

}

ReferenceCountingCollector.DecreaseCounter(address)

{

 *address.counter--;

 if (*address.counter == 0)

 Allocator.Deallocate(address)

}

Chapter 1 BasiC ConCepts

44

The reference counting behavior is illustrated by a simple program in Figure 1-13

and Listing 1-9. Three simple lines of code are rewritten in terms of Mutators’ methods

to show how references change.

Listing 1-9. Sample pseudo-code illustrating reference counting

o1 = new SomeObject();

o2 = new SomeObject();

o2 = o1;

// becomes:

addr1 = Mutator.New(SizeOf(SomeObject)) // addr1.counter = 0

Mutator.Write(&o1, addr1) // addr1.counter = 1

addr2 = Mutator.New(SizeOf(SomeObject)) // addr2.counter = 0

Mutator.Write(&o2, addr2) // addr2.counter = 1

Mutator.Write(&o2, &o1) // addr1.counter = 0; addr2.

counter = 2

As we see at Listing 1-9, a big overhead has been added to the Mutator.Write

operation. It must check and modify counter data and take a deallocation action if the

counter drops to zero. This becomes much more complicated in a multithreaded (where

multiple Mutators are working in parallel) environment. In such a case, those operations

should be thread-safe so synchronization adds its own additional overhead. Mutator.

Write is a very common operation (introduced by any assignment), so an overhead in

it introduces significant overhead for a whole program execution. Moreover, from an

implementation point of view, it is not obvious where to store objects’ counters. This can

be a dedicated space or some kind of header kept as close to the object itself as possible.

In both cases, it does not change the fact that each assignment generates additional

o1 addr1

counter=1

o2 addr2

counter=1

o1 addr1

counter=0

o2 addr2

counter=2

Mutator.Write(&o2, &o1)

Figure 1-13. Reference counting illustration of Listing 1-8

Chapter 1 BasiC ConCepts

45

value 1 next value 2 next

HEAD

Figure 1-14. Reference counting circular reference problem

memory writes, which are very undesirable. This may also lead to inefficient CPU cache

usage, but this is a topic we will learn about more in the following chapter.

If we return to the reachability property mentioned before, one can say that reference

counting is approximating liveness by local references and does not track a global state

of an object graph of references. In particular, without any additional improvements, it

can be mistaken by circular references. Such can be found in popular data structures like

double-linked lists (see Figure 1-14). In such a case, the reference counter never drops

to zero as the data structure with value1 and data structure with value2 points to each

other.

However, creating circular references can be made difficult on the language level,

which is a win situation. In this case, the reference count algorithm may be used without

much concern for memory leaks resulting from this problem.

One very big advantage and source of reference counting popularity is the fact it does

not require any runtime support. It can be implemented as an additional mechanism

for some specific types in the form of external library. It means that we can leave original

Mutator.New and Mutator.Write intact and just introduce higher-level counterparts

of such logic like classes with properly overloaded operators and constructors. For

example, this is exactly the case with the most popular C++ implementations.

So-called smart pointers (also known as intelligent pointers) were introduced, which

in a more sophisticated way manage the lifetime of objects they point to. From an

implementation point of view, smart pointers in C++ are in fact just template classes that

Chapter 1 BasiC ConCepts

46

behave like normal pointers by appropriate operator overloading. In case of C++ we can

use two kinds of them:

• unique_ptr that realizes unique ownership semantics (such as the

pointer is a sole owner of an object that is going to be destroyed as

soon as unique_ptr goes out of scope or another object is assigned

to it).

• shared_ptr that realizes reference counting semantics.

Continuing with our sample code from Listing 1-5, using smart pointers we may

result in the C++ code as presented in Listing 1-10.

Listing 1-10. Sample C++ program showing automated memory management

with usage of smart pointers

#include <iostream>

#include <memory>

void printReport(std::shared_ptr<int> data)

{

 std::cout << "Report: " << *data << "\n";

}

int main()

{

 try

 {

 std::shared_ptr<int> ptr(new int());

 *ptr = 25;

 printReport(ptr);

 return 0;

 }

 catch (std::bad_alloc& ba)

 {

 std::cout << "ERROR: Out of memory\n";

 return 1;

 }

}

Chapter 1 BasiC ConCepts

47

If we called data.use_count() method inside the printReport function, it would

result in the value 2 because inside this function two different shared pointers point to

the same object. On the other hand, after going out from try block scope, the use count

will be 0 because no more smart pointers are pointing to our object.

please note that code from Listing 1-10 is not aligned with C++ good practices.
passing a smart pointer just to read underlying data should be rather done by
a constant reference (const&) than by a value, but this would not increase a
reference count; hence it is not useful for our explanatory purposes.

We see big further improvement in such code because:

• We do not have to manually destroy an object using the delete

operator.

• Exception handling is simplified because in case of any exception

being thrown by a printReport() function, the smart pointer is just

going out of the try region scope (and all enclosed scopes either) so

it will be automatically destroyed. This is thanks to the RAII (Resource

Acquisition Is Initialization) principle mentioned before, which takes

care about the lifetime of the object based on the variable scope of

the pointer it is represented by.

Shared and unique pointers can also be used as fields in the classes, which makes

them quite powerful and useful tools.

The problem is smart pointers in C++ were introduced on the standard library level,

not the language itself. Other libraries were introducing their own implementations,

and it was sometimes problematic to make all them speaking with each other nicely. Qt

has its QtSharedPointer, wxWidgets has wxSharedPtr<T> and so on. Without support of

the compiler and the language it just must be like that. This is why automatic memory

management is so crucial in the component-oriented9 programming like .NET. When

.NET was born, moving responsibility about memory management from developer to

the runtime itself was one of the major, crucial design decisions. A common platform of

how objects are created, managed, and reclaimed means each component will reuse it in

the same way, and there is no coupling between components other than runtime itself.

9 This consists of many smaller, interchangeable dependencies.

Chapter 1 BasiC ConCepts

48

Regarding C++ it is interesting to note that Bjorne allowed more sophisticated GC in

the C++ standard - it is not prohibited, it is just not yet implemented. Moreover, thanks

to flexibility of the C++, although with the Memory Pool System, or the Boehm–Demers–

Weiser collector, it is possible to use garbage collection as an extended library - we will

introduce it shortly.

Other languages can incur smart pointers (incorporating reference counting) directly

into their design and it is exactly the case with Rust - a modern, low-level programming

language created by Mozilla. It enforces data safety on the compilation level by

incorporating the concept of smart pointers (a few different kinds of them in fact) into

the language. It strongly uses ownership semantics and the RAII principle, which allows

to check at the compilation time whether there are no violations like dereferencing a

dangling pointer. Another notable usage of reference counting is Automatic Reference

Counting build into Swift language.

A brief summary of the drawbacks and advantages of reference counting is as follows:

Advantages:

• Deterministic deallocation moment - we know that deallocation will

happen when an object’s reference counter will drop to zero. Therefore,

as long as it is no longer needed, the memory will be reclaimed.

• Less memory constraint - as memory is reclaimed as fast as objects

are no longer used, there is no overhead of memory consumed by the

objects waiting to be collected.

• Can be implemented without any support from the runtime.

Disadvantages:

• Such a naive implementation as at Listing 1-8 introduces very big

overhead on Mutator.

• Multithreading operations on reference counters require well-

thought synchronization, which can introduce additional overhead.

• Without any additional enhancements, circular references cannot be

reclaimed.

There are improvements to naive Reference Counting algorithms like Deferred

Reference Counting or Coalesced Reference Counting, which eliminate some of these

problems at the expense of some of the advantages (mainly immediate reclamation of

memory). However, describing them here is far beyond the scope of this book.

Chapter 1 BasiC ConCepts

49

 Tracking Collector
Finding objects’ reachability is hard because it is an object’s global attribute (it depends

on the whole object graph of the whole program), and the simple explicit call for freeing

an object is very local. In this local context, we are not aware of the global context - are

other objects using this object now? Reference Counting tries to overcome that by

looking only at this local context with some additional information - the number of

references to an object. But this obviously can lead to problems with circular references

and has others drawbacks as we seen before.

Tracking Garbage Collector is based on knowledge of global context of an object’s

lifetime and can make a better decision whether it is good time to delete an object

(reclaim memory). It is, in fact, such a popular approach that almost certainly when

someone says something about Garbage Collector, he probably means Tracking Garbage

Collector. We can encounter it in runtimes like .NET, different JVM implementations,

and so on.

The core concept is that Tracking Garbage Collector finds true reachability of an

object by starting from the Mutator’s roots and recursively tracks the whole object’s

graph of a program. This is obviously not a trivial task because process memory can

take several GB and tracking all interobject references in such big volumes of data can

be difficult, especially while Mutators are running and changing all those references all

the time. The most typical approach of Tracing Garbage Collector consists of two main

steps:

• Mark - during this step Collector determines which objects in

memory can be collected by finding their reachability.

• Collect - during this step Collector reclaims memory of objects that

were found to not be longer reachable.

Implementation of this simple two-phase logic can be extended as is exactly the case

in .NET that can be described as Mark-Plan-Sweep-Compact. We will see those internal

workings in detail in the next chapters. For now, let’s just look at the Mark and Collect

steps in more general way as they also incur interesting issues.

Chapter 1 BasiC ConCepts

50

 Mark Phase
During the Mark step Collector determines which objects in memory should be

collected by finding their reachability. Starting from Mutator’s roots, Collector travels

through the whole objects graph and marks those which were visited. Those objects

that are not marked at the end of Mark phase are not reachable. Thanks to an object’s

marking, there is no problem with cyclic references. If during the graph’s traversing we

will get back to a previously visited object, we break further traversing because the object

is already marked.

A few starting steps of such an algorithm are presented on Figure 1-15. Starting from the

roots, we travel inside object’s graph through interobjects references. It is an implementation

detail whether we are visiting this graph in a depth-first or breadth-first manner. Figure 1-15

shows a depth-first approach, showing three possible states of each object:

• Not yet visited object, marked as a white box.

• Object remembered to be visited, marked as light gray box.

• Object already visited (marked as reachable), marked as

dark gray. box

The first steps illustrated in Figure 1-15 may be described as follows (with each step

describing the corresponding subfigure):

 1. Initially all objects are not yet visited

 2. An object A is added to be visited, as the first root.

 3. As an object A has pointers (as fields) to objects B and D, they

are added to be visited. Object A itself is at this stage marked as

reachable.

 4. Next object from “to visit” set is being visited - an object B. As

it does not have any outgoing references, it is simply marked as

reachable.

 5. Next object from “to visit” set is being visited - an object D. It

contains a single reference to object E so it is remembered to be

visited. Object D itself is marked as reachable.

 6. Object’s E outgoing reference to object G is remembered to be

visited. Object E is itself marked as reachable.

Chapter 1 BasiC ConCepts

51

 7. The last object from “to visit” set is being visited - an object G. It

contains no references to it is simply marked as reachable. At this

stage, there are no more objects to be visited so we have identified

that objects C and F are not reachable (dead).

Figure 1-15. A few first steps of Mark phase

Chapter 1 BasiC ConCepts

52

Obviously traversing such a graph is hard during normal Mutator’s work as the

graph is changing constantly due to normal program execution - creating new objects,

variables, object’s field assignments, and so on. Therefore, in some Garbage Collector

implementations all Mutators are simply stopped for the duration of Mark phase. This

allows for a safe and consistent traverse of the graph. Of course, as soon as the threads

resume operation, the knowledge that Collector holds based on the object graph

becomes obsolete. But this is not a problem for non-reachable objects - if they were not

reachable before, they never become reachable again. However, there are many Garbage

Collector implementations where the Mark phase is done in a concurrent flavor, so

the marking process can be run alongside with the Mutator’s code. This is the case for

popular algorithms like CMS in JVM (Concurrent Mark Sweep), G1 in JVM, and in .NET

itself. How exactly such concurrent marking is implemented in .NET will be described in

detail in Chapter 11.

There is one not obvious problem with a Mark phase. To track reachability, Collector

should be able to know the roots and know where on the heap are placed references to

other objects. It is a trivial problem if runtime supports such an information. But it can

be overcome also in a different way.

 Conservative Garbage Collector

This type of Collector can be seen as a poor man’s solution. It can be used when the

runtime or compiler does not support collection directly by providing exact type

information (object’s layout in memory) and Collector does not get Mutator’s support

when operating on pointers. If the so-called Conservative Collector wants to find out

what objects are reachable, it is scanning whole stack, static data areas and registers.

As without any help it does not know what is a pointer or not, it simply tries to guess

that. It does that by checking a several things (and all depends on specific Collector

implementation), but the most important one check is whether interpreting a given

word as an address (pointer) points to a valid, managed by Allocator heap region? If it

does so, Collector conservatively (hence its name) assumes it is a pointer indeed. And

it treats it as a reference to follow as in generic Mark phase graph traversing described

above.

Obviously, Collector can be mistaken in guessing which will lead to some

inaccuracy - random bits can look as a valid pointer with a proper address. This will

lead to retain memory that is garbage. This is not a very common problem as most

numerical values in memory are rather small (counters, financial data, indexes) so the

Chapter 1 BasiC ConCepts

53

only problem can be with dense binary data like bitmaps, floating-point numbers or

certain blocks of IP addresses.10 There are subtle algorithm’s improvements that help

to overcome that issue but we will not touch it here. Moreover, conservative reporting

means you are not able to move objects around in memory. This is because you must

update pointers to moved objects, which is obviously not possible if you are not sure

whether something looking as a pointer is a pointer indeed.

So who may need such a Collector in the first place? Its main advantage is it can work

without support of the runtime - in fact it just scans memory and so runtime support

(reference tracking) is not needed. This is therefore, for example, convenient approach

when developing a new runtime when full type information for GC is not yet developed.

Without blocking of the work, the development of the rest of the system may take place.

When providing the right type information is already implemented, you can simply turn

off conservative tracking. Microsoft has used such an approach when developing some

versions of their runtime.11

However, Conservative Collector requires the support of Allocator to overcome

problems of the not-known object’s memory layout. It can, for example, arrange the

allocation of the objects in such a way that they are grouped into segments of equal

size objects. Conservative scanning of such regions is possible because the object’s

boundaries are defined as simple multiplication of a particular segment object size.

In many languages Allocator can be replaced on the language (library) level, which

leads to popularity of Conservative Garbage Collection as library. One of the most

commonly used API-agnostic implementations for C and C++ is Boehm–Demers–Weiser

GC (shortnamed Boehm GC).

It was used, for example, in Mono (open source CLR implementation) until version

2.8 (year 2010), which introduced the so-called SGen Garbage Collector - somehow

mixed approach that still scans stack and registers conservatively but scanning the heap

is being supported by the runtime type information.

10 Boehm GC and other conservative GC lets you allocate a block or region with special flag (like
GC_MALLOC_ATOMIC in Boehm’s case) which indicates to the Collector that the block will not
contain any pointers and should not be scanned. So we can use such block for storing dense
binary data like bitmaps.

11 An interesting fact is that .NET already contains conservative collector implementation inside,
which is disabled by default.

Chapter 1 BasiC ConCepts

54

Let’s briefly summarize the main points regarding Conservative Garbage Collection:

Advantages:

• Easier for environments without support for garbage collection

from ground up - for example, early runtime stages or unmanaged

languages.

Disadvantages:

• Inaccuracy - everything that randomly looks like a valid pointer

blocks memory from being reclaimed - although this is not a

common situation and can be overcome by an improvement of the

algorithm and additional flags.

• In a simple approach, objects cannot be moved (compacted) -

because Collector is not sure what is a pointer indeed (and it cannot

just update a value that it only assumes to be a pointer).

 Precise Garbage Collector

In a so-called Precise Garbage Collector situation, this is much simpler because compiler

and/or runtime provides a Collector full information about an object’s memory layout.

It can also support stack crawling (enumerating all objects roots on the stack). In such

a case, there is no point in guessing. Starting from the well-defined roots, it just scans

the memory object by object. Given a memory address pointing at the beginning of the

object (or so-called interior pointer pointing inside an object and knowledge proper

to interpret such a reference), Collector simply knows where the outgoing references

(pointers) are placed, so it can recursively follow them during graph traversing.

.NET uses Precise Garbage Collector so we will see a lot more of its internals in the

following chapters. In fact, entire chapters from 7 to 10 are dedicated to that purpose.

 Collect Phase
After Tracking Garbage Collector has found reachable objects, it can reclaim memory

from all the other dead objects. Collectors’ Collect phase can be designed in many

different ways due to many different aspects. It is impossible to describe all the possible

combinations and variants in one short paragraph. But two major approaches can and

should be distinguished, which various implementations are focused around.

Chapter 1 BasiC ConCepts

55

 Sweep

In this approach, dead objects are simply marked as a free space that can be later reused.

This can be a very fast operation because (in exemplary implementation) only a single bit

mark of a memory block must be changed. Such a situation is being shown in Figure 1-16

where no longer used objects C and F (following an example from Figure 1-15) become

available space just by marking them as a free space.

Then, in naive implementation, during allocation the memory is being scanned for

the gap size not less than the object’s size to be created.

But nontrivial implementations may need to build data structures storing

information about free blocks of memory for faster retrieval, typically in a form of a so-

called free-list (shown in Figure 1-17). Moreover, those free-lists must be smart enough

to merge adjacent free blocks of memory. Further optimization may lead to storing a

set of free-lists for memory gaps of ranging size. In terms of implementation details,

there are also different ways of how such a list can be scanned. Two of the most popular

approaches are best-fit and first-fit methods. In the first-fit method, we stop free-list scan

as fast as any suitable free memory block has been found. In the best-fit approach, we

always scan all free-list entries trying to find the best match of the required size. The

former is faster but may lead to bigger fragmentation, and the latter is exactly opposite.

A B EC D F G

A B ED G

Figure 1-16. Sweep collection - naive implementation

Chapter 1 BasiC ConCepts

56

Although quite fast, the Sweep approach has one major drawback - it eventually

leads to bigger or smaller memory fragmentation. As objects are being created and

destroyed, more and more smaller or larger free gaps occur on the heap. This may lead

to a situation when although there is enough free memory in total for a new object, as

there is no single, continuous free space for it. We have seen such situation at Figure 1-11

when describing heap allocation in general.

 Compact

In this approach, fragmentation is eliminated at the expense of lower performance

because it requires moving around objects in memory. Objects are moved in a way that

reduces the gap created after the deleted objects. Here two main different approaches

can be further distinguished.

In a simpler way, from an implementation point of view, Copying Compacting all live

(reachable) objects are copied to the different region of memory each time collections

occurs (see Figure 1-18). Compacting is a simple consequence of copying each live

object one after another, omitting those no longer needed. Obviously, this induces high

memory traffic as all live objects have to be copied back and forth. It also puts a bigger

memory overhead because we have to maintain twice more memory than normally

would be needed.

A B EC D F G

A B ED G

free-list head

Figure 1-17. Sweep collection - free-list implementation

Chapter 1 BasiC ConCepts

57

Due to these weaknesses, it would seem that the algorithm has no practical

application. However, it may be used effectively. We just must remember to use it only

for certain, small memory regions and not for the whole process memory. This is exactly

the case in some JVM’s implementation when copying compacting is being used for

smaller memory regions.

In a more complex scenario, one can implement In-Place Compacting. The objects

are moved toward each other so as to remove gaps between them (see Figure 1-19). This

is the most intuitive solution and is exactly how we would move the Lego blocks. From

an implementation point of view, it is not trivial but still doable. The main problem one

can spot here is the question - how objects can be moved relative to each other without

overwriting each other and without the use of any temporary buffer?

A B EC D F G

A B ED G

Figure 1-18. Compact collection - copying implementation

A B EC D F G

A B ED G

Figure 1-19. Compact collection - in-place implementation

As we will see in Chapter 9, .NET is using exactly this approach with a very clever

data structure used for optimization, so we will find an answer to that question there.

Chapter 1 BasiC ConCepts

58

Comparing Garbage Collectors

one can ask a question: Which Garbage Collector is better? is it hotspot Java
1.8 or .net 4.6? or maybe python or ruby has better GC? and what actually
does “better GC” mean in the first place? the first and most important rule
for comparing Garbage Collection algorithms is that every comparison is from
ground up very ambiguous. this is because GC is extremely difficult to separate
and compare between themselves as such. they are so fused with the runtime
environment that it is virtually impossible to test them separately. thus, it is difficult
for any truly objective comparison. if we would like to compare performance of
the different GC - we can use measures like throughput, Latency, and pause
time (we will see difference between those concepts in Chapter 3). But all those
measures will be taken in the context of the whole runtime, not the sole GC only. a
framework or runtime mechanism (for example, allocation patterns, internal object
pooling, additional compilations, or any other hidden, internal mechanism) can
be introduced so the noticeable overhead that the GC contribution to the overall
performance will be negligible. Moreover, there are many fine-tunings in each and
every GC that makes it performing better in a certain type of workloads. some can
be optimized to respond quickly in an interactive environment, others to process
huge data sets. others may try to dynamically change their characteristics to align
with the current workload. Moreover, different GCs may behave differently because
of the hardware configuration used (optimized for specific processor architectures,
CpU core counts, or memory architecture).

of course, we can compare GC for the algorithms used and the functionality
provided. there are many others ways how Garbage Collectors can be categorized.
as we already saw, we define a CG to be Conservative (Mono till 2.8) or precise
(.net) or even a mix of it (Mono 2.8+). one implements the sweep collection,
the other Compact collection, and yet another both of them. another important
distinction is how GC partitions the memory. We will see in detail how a heap can be
divided into smaller parts in Chapter 5. it may use reference Counting in some parts
or not at all completely. how is allocator is implemented? is it parallel or Concurrent
GC? (Chapter 11). With so many possible functional differences, it is really hard to
say which combination is “better” - simply there is not one perfect solution.

Chapter 1 BasiC ConCepts

59

A brief summary of the drawbacks and advantages of Tracking Garbage Collector is

as follows:

Advantages:

• Complete transparency from the developer’s perspective - a memory

is just abstracted as would be infinite, without having to worry about

freeing memory of no longer needed objects.

• No problems with circular references.

• No big overhead on Mutators.

Disadvantages:

• More complicated implementation.

• Non-deterministic freeing objects - they will be released after some

time not being reachable.

• Stop the world needed for Mark phase - but only in a non-concurrent

flavor.

• Bigger memory constraint - as objects are not reclaimed as fast after

not being needed, more memory pressure can be introduced (more

garbage lives for some period of time).

Mainly because of the first advantage, tracking GC is so popular in different runtimes

and environments.

 Small History
Having learned a solid dose of basic theoretical knowledge, let’s now take a brief look at

the history of automatic memory management in the context of different programming

languages.

LISP is one of the longest living languages, with many appearing and disappearing

dialects with the two most popular - Common LISP and Scheme. Nevertheless, without

a doubt, the most popular is now dialect known as Clojure that compiles, among others,

to Java Virtual Machine, Common Language Runtime (.NET), and JavaScript. This makes

it very flexible and powerful, and of course this is nowadays an incarnation when the

garbage collection and the LISP meet.

Chapter 1 BasiC ConCepts

60

But not only functional language like LISP featured automated memory

management at times when it was popular. Any language-related history should not

ignore the influence of the other extremely influential language - Simula. Called the

first fully object-oriented language, it introduced concepts of objects and classes,

inheritance, polymorphism, and other fundamental pillars of OOP. All languages,

beginning from Smalltalk, and then from C++, through Java and C#, to Python or Ruby,

have been somehow inspired by this language. What is important, Simula 67 featured

automatic memory management, which was first a combination of reference counting

and tracking garbage collector but during the language development was replaced

with the compacting garbage collector inspired by the LISP language. Altogether with

its ancestor - Smalltalk - garbage collection had become a popular choice for language

designers. The increasing complexity of the software pushed language designers to

introduce more or less sophisticated ways to help the programmer with the memory

management.

The popularity of the Web and the start of the Internet age in the 1990s has pushed

software development to the need of higher-level programming. The times where C and

C++ were the kings were passing by. Their low-level control over the system had no value

in the context of web application programming and massive growth of the server-side

applications. Along with the extremely rapid development of the Internet, it increased

the complexity of web applications and the need to produce more code faster.

No one could tell the history of automatic memory management without a mention

of the language and the Java platform. Planned by Sun Microsystem company as a

“better C++,” garbage collection mechanisms were one of the first and fundamental

assumptions that the new platform should meet. Beginning from the 1990s, where the

project started as an internal Oak language, it contained Mark and Sweep mechanisms.

The very first publicly available Java 1.0a had been announced in 1994. With the

explosion of the popularity of Java, awareness of the existence of garbage collection

mechanisms was constantly growing. From that time, automatic memory management

has become almost a “no-brainer” for all high-level language designers.

When Java was born, two other mainstream languages were coined - Python and

Ruby. Both languages were equipped with automatic memory management for the same

reasons mentioned before. Python prior to version 2.0 had only reference counting but

then incorporated also more complex ways of taking care about cyclic references. Ruby

provides a simpler mechanism based on the Mark and Sweep approach.

In our short historical stories, we cannot ignore JavaScript, which appeared in the

same years as Java. And although the similarity to the name Java was more a marketing

Chapter 1 BasiC ConCepts

61

ploy than a real similarity, JavaScript has also been conceived as a high-level scripting

language. There was no room for manual memory management. The aim was to allow

operating an HTML content at a high level, without thinking over such aspects as

memory usage. The JavaScript runtime environment was responsible for these tasks.

In the context of more long-running usages of JavaScript - Single Page Applications

and node.js back-end services - the importance of automatic garbage collections in

JavaScript engines becomes more and more important. For example, a very popular V8

JavaScript engine, used by node.js, is using the Mark, Sweep, and Compact approach

with its own additional optimizations.

As can thus be noted, even languages with automatic memory management have

existed for 50 years, the real growth of their popularity occurred in the 1990s. This is the

place where we can pass into the history of the most important and most interesting

environment for us - history of the .NET Framework.

What’s more important, Microsoft has developed at those times its own

implementation of JavaScript called JScript. JScript is an important part of our story

because it has created the foundation for solutions used to create the .NET. Of course,

we are most interested in the topic of memory management. Actually, it all started with

JScript written by four people over several weekends. One was Patrick Dussud, which we

can undoubtedly name as the father of the garbage collector in .NET. He wrote a simple

Conservative GC as a proof of concept.

Before starting work on the CLR, Patrick Dussud worked on the JVM. And yes,

Microsoft at one point in time seriously considered its own implementation of the JVM,

instead of creating something which we now know as the .NET runtime. So, inspired

by the JVM and based on the already implemented JScript version he wrote another

version, yet another Conservative GC. But the team, which in the future had partially

formed a CLR, quickly found that JVM introduces uncomfortable limitations. First,

the expectation for a newly created environment was strong support for the COM

and unmanaged code. One of the objectives was to create an environment in which

recompilation of the C++ program with a new flag of kind /CLR should make it possible

to run it under a new environment. Moreover, a standardization was troublesome, and

they were just probably scared of the resulting limitations. They even thought for a

moment over the release of C ++ runtime with the garbage collection extension.

Afterward, after consulting with a friend (David Moon from the Symbolics company,

dealing with generational garbage collectors) Patrick had made an educated decision to

write “the best possible GC” from scratch and he implemented a prototype in Common

Chapter 1 BasiC ConCepts

62

LISP. Why was this language chosen? It was the language he had been dealing with for

many years and in which just worked well. In addition, he had experience in using “the

best debugging tools” at that time for LISP. After writing the LISP version, he wrote a

converter that transpiled12 the code to C ++. And that is how an experimental Garbage

Collector for the experimental implementation of the JVM has been created. When

work on the CLR had been started, part of this experimental code was used in a project

written from scratch in C++. It is therefore only a legend that the CLR’s GC code has been

completely converted from LISP.

Having already learned theoretical basics and some history, it is time to get to know

the first of the many rules that will be introduced in this book.

 Summary
We have covered a very wide range of material in this chapter. One could easily devote

several separate books to the mentioned topics. Beginning with such basic concepts as

bits and bytes, we learned the main types of computer architectures - Harvard and von

Neumann. We have learned the basics of building computers, including definitions such

as registry, address, and word. Learning concepts such as static or dynamic allocation,

pointer, stack, or heap, we went on to discuss the most important concepts - automatic

memory management also referred to as garbage collection. By the way, we met also

inconveniences of manual memory management and the reasons to automate it.

Fundamental to .NET implementations concepts such as tracing garbage collection and

its phases Mark, Sweep, and Compact are only briefly discussed. We will look at them

more closely in the corresponding chapters of this book. Everything we talked about

was also covered with a bit of history and a broader context that allowed us to look at the

subject from a wider perspective.

In the end, the knowledge we have gained here will allow us to better understand

subsequent chapters. From chapter to chapter, we will be getting closer to the practical

implementation issues of the .NET environment. However, without understanding the

broader context presented in this chapter, it would have been an incomplete look. I

now invite you to Chapter 2, where we will move from the theoretical foundations to the

fundamentals of low-level computer and memory design.

12 Transpilation is a source-to-source compilation.

Chapter 1 BasiC ConCepts

63

 Rule 1 - Educate Yourself
Applicability: As general as possible.

Justification: The most general rule in this book, it is applicable in a much broader

scope than memory management alone. It means nothing less than that we should

always set in expanding our knowledge to strive for being a professional. Knowledge

does not come by itself. We have to earn it. It’s a tedious, time-consuming, and laborious

process. That is why we have to constantly motivate ourselves. Does such an obvious truth

deserve a separate rule? I think so. In everyday life, we can easily forget about it. It seems

to us that everyday tasks can teach us something. And certainly, to some extent, they do.

But it is obvious, to get out of comfort zone, we need to follow a few steps. Consciously.

And that means reaching out for a book, watching a web tutorial, reading an article.

The possibilities are plentiful and it makes no sense to mention them here all. However,

it is so fundamental that it must be on the list of rules of every professional. If you are

not convinced of my words, get interested in the concept of Software Craftmanship

and manifest available at http://manifesto.softwarecraftsmanship.org. I’m also

a big fan of the concept of Mechanical Sympathy, which came up with the rally driver

Jackie Stewart:

You don’t have to be an engineer to be a racing driver, but you do have to
have Mechanical Sympathy.

This concept was then introduced into the IT world by Martin Thompson. What

does it mean? Obviously, you do not need to be a mechanic to be a racing driver. But

without some deeper knowledge about how a car works, what are its mechanics, how an

engine works, what forces are influencing it - it is really hard to be a good racing driver.

She should just “feel the car,” to work with it in a harmony. She should feel Mechanical

Sympathy. This is an exactly the case with us, programmers. Of course, we can just think

about frameworks like .NET or JVM and stop there. But then we will be just like Sunday

drivers, seeing a car from the perspective of a steering wheel and few pedals.

How to apply: In a such general rule, there is hardly one simple approach to take. You

may read books about how a computer or your framework of choice works. You can

use many online training services. You can watch or attend conferences and local user

groups. You can start a blog and write about such topics because there is no better way to

learn than to teach. There are so many possibilities, I will not even try to list them all. Just

keep in mind the motto “educate yourself” and try to implement this rule in your life!

Chapter 1 BasiC ConCepts

http://manifesto.softwarecraftsmanship.org

65
© Konrad Kokosa 2018
K. Kokosa, Pro .NET Memory Management, https://doi.org/10.1007/978-1-4842-4027-4_2

CHAPTER 2

Low-Level Memory
Management
To understand how memory management works, we need to acquire a broader context.

In the previous chapter we learned the theoretical basis for this topic. We could now go

directly to the details of automatic memory management, how the Garbage Collector

works, and where memory leaks may occur. But if we really want to “feel” the topic, it is

worthwhile to spend a few more moments on the basic reminder of yet another aspect

of this topic. This will allow us to better understand the various design decisions that

were made by Garbage Collector creators in .NET (as well as other managed runtime

environments). The creators of such mechanisms do not live in a vacuum and have to

adapt to the state of being - limitations and mechanisms that govern computer hardware

and operating systems. That’s the aspect we’re going to touch on now.

So I invite you to a chapter in which we will learn about those mechanisms and

limitations. Of course, those topics are in themselves powerful enough that they can be

devoted to a few large, separate books. We will focus only on some basics, more or less

loosely related with memory management. To be honest, it is not easy to present such

comprehensive subjects in a way that is not overwhelming and does not involve too many

insignificant issues. And at the same time, I wanted to present it detailed enough so that the

resulting influence on memory management in .NET is actually visible. I invite you to read!

Getting to know all of these details, even briefly, gives you the power to take on the

complexity of a topic that is managing memory. Even if in the day-to-day management

of memory, we associate it only with the call of the new operator, it is useful to be aware

of how many mechanisms exist and on how many levels. Hardware, operating system,

compiler – all these affect how it works and how .NET was written, although it is not

always obvious. This knowledge is very consistent with the spirit of the Mechanical

Sympathy presented in the previous chapter. I hope you will find it also just fun to know

some of the little facts mentioned here.

66

Having said all that, please feel free to treat this chapter as the optional one.

It provides a lot of theoretical information that, although helps a lot in the feeling memory

management topic, is not necessary to understand the rest of the book. So if you are in

a hurry or just want to move to more practical .NET internals and examples, feel free to

skim this chapter or omit it completely (to return to it in a more relaxed time, hopefully).

 Hardware
How does a modern computer work? It seems that any programmer for better or

worse will be able to answer this question. If we studied computer science, something

about this may be remembered from lectures. If we are self-taught, we probably read

something here and there. And probably we recite the facts from memory, such as:

a computer consists of a processor, which is the main processing unit - it executes

programs. It has access to RAM (which is fast) and hard disks (which are slow). There

is also a graphics card that is very important for gamers (and different kind of graphic

designers), which is responsible for generating the image displayed on the monitor.

Such a ten thousand foot look at the topic is not sufficient for our purposes. We need to

get into the subject deeper. For the purposes of our deliberations, let me introduce the

architecture of a modern computer, as in the diagram below in Figure 2-1.

The modern personal computers market is being dominated by PCs and Macs. I’ve
modeled a schematic, generic computer architecture diagram based on them. If
needed, I will mention hereinafter some possible nuances, such as those involving
ARM processors or more sophisticated server machines.

Such main components of typical computer architecture can be listed as:

• Processor (CPU, central processing unit) - main unit, responsible for

executing instructions. We have already seen it in Chapter 1. Here are

components located such as the Arithmetic and Logical Units (ALUs),

Floating-Point Units (FPUs), registers, and instruction execution

pipelines - responsible for efficiently executing instructions divided

into a set of smaller operations and executed (if possible) in parallel.

• Front Side Bus (FSB) - data bus that connects CPU with Northbridge.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

67

• Northbridge - unit that contains mainly memory controller, responsible

for controlling communication between memory and CPU.

• RAM (Random Access Memory) - main computer memory. It stores

data and programs code as long as the power is on - hence it is also

referred to as Dynamic RAM (DRAM) or volatile memory.

• Memory Bus - data bus that connects RAM with Northbridge.

• Southbridge - chip that handles all of a computer’s I/O functions,

such as USB, audio, serial, the system BIOS, the ISA bus, the interrupt

controller, and the IDE channels -mass storage controllers such as

PATA and/or SATA.

• Storage I/O - non-volatile memory that stores data, including popular

HDD or SDD disks.

CPU

Northbridge

PCI-E

Southbridge

USB

Front Side Bus

Memory Bus

SATA

RAM

HDD
SDD

PCI

eg. graphic
card

Figure 2-1. Computer architecture - CPU, RAM, Northbridge, Southbridge,
and others. The width of the bus illustrates the proportion of the amount of data
transferred (very roughly).

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

68

It is worth mentioning that formerly the CPU, Northbridge and Southbridge were

separate chips but now they are closely integrated. From Intel’s Nehalem and AMD’s

Zen microarchitectures, they include Northbridge inside (which is in such case often

referred to as uncore or System Agent). This evolution of the architecture has been shown

in Figure 2-2.

CPU

PCI-E

Platform
Controller
Hub

USB

Front Side Bus

Memory Bus

SATA

RAM

HDD
SDD

PCI

eg. graphic
card

DMI

Figure 2-2. Modern hardware - CPU with Northbridge inside, RAM, Southbridge
(renamed to Platform Controller Hub in case of Intel terminology), and others. The
width of the bus illustrates the proportion of the amount of data transferred (very
roughly).

Such integration helps because the memory controller (inside Northbridge), closely

placed to the CPU’s execution units, reduces delays due to smaller physical distances

and enhanced collaboration. But there are still processors on the market (of which most

popular are AMD FX family) that have CPU, Northbridge, and Southbridge separated.

The main problem behind any memory management is a discrepancy between

performance of today’s CPU with respect to the memory and mass storage subsystems.

The processor is much faster than memory so every access to the memory introduces

unwanted delays. When the CPU needs to wait for a data access to memory (either read

or write), we call it a stall. The more stalls occur, the worse for the CPU utilization as its

power is just being wasted for waiting.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

69

The typical current processor operates at a frequency of 3 GHz or above. Meanwhile,

the memory works with an internal clock with frequencies of only 200–400 MHz. This

makes the order of magnitude performance difference. It would be too expensive to

build RAM chips working with a frequency of CPU. This is because of how modern RAMs

are built - loading and unloading of internal capacitors takes time, which is very difficult

to reduce.

You may be surprised to find that memory works with such low frequencies. In fact,

in the computer stores we buy memory modules marked as having a popular clocking

like 1600 or 2400 MHz, which are far closer to the CPU speed. Where do such numbers

come from? As we will see, such specifications are only part of the more complex truth.

Memory module consist of internal memory cells (storing data) and additional

buffers that help to overcome their low internal clock frequency limitations. Some

additional tricks are used (see Figure 2-3). Most of them rely on multiplying the read of

data:

• Sending data from the internal memory cell twice within a single

clock cycle. To be accurate, it is both on the falling as well as the

rising slope of the signal. Hence the name by far is the most popular

memory of various generations - Double Data Rate (DDR). This

technique is also referred to as double-pumping.

• Using internal buffering to make a few reads at once in one memory

clock cycle. This allows you to multiply the amount of data provided

seen outside compared to the amount that comes from the internal

frequency. DDR2 memory interface doubles the external clock

frequency while DDR3 and DDR4 quadruple it.

These techniques are currently used in DDR modules as opposed to the much

simpler SDRAM (Synchronous DRAM) modules used in the past.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

70

Let’s look at the typical DDR4 memory chip like 16 GB 2400 MHz (described in

specifications as DDR4-2400, PC4-19200). In such case the internal DRAM array clock

works at 300 MHz. The memory bus clock is quadrupled to 1200 MHz thanks to the

internal I/O buffer. Additionally, as with each clock cycle there are two transfers (both

slopes of the clock signal), and it results in a 2400 MT/s data rate (mega transfers per

seconds). This is where the 2400 MHz specification comes from. Simply put, due to the

Memory
cells

SDRAM
I/O

buffer Memory bus

300 Mhz 300 Mhz 300 MT/s

1 transfer

Memory
cells

DDR
I/O

buffer Memory bus

300 Mhz 300 Mhz 600 MT/s

1 transfer

Memory
cells

DDR2
I/O

buffer
Memory bus

300 Mhz 600 Mhz 1200 MT/s

2 transfers

Memory
cells

DDR3
DDR4

I/O
buffer

Memory bus

300 Mhz 1200 Mhz 2400 MT/s

4 transfers

Figure 2-3. SDRAM, DDR, DDR2, DDR3, DDR4 internals. An example of memory
modules with 300 MHz internal clock. MT/s means “Mega transfers per second.”

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

71

nature of double-pumping in DDR memory, speed is typically specified as double of I/O

clock frequency, which is then multiplication of the internal memory clock. Providing

this value in MHz is just a marketing simplification. The second signature - PC4-

19200 - comes the maximum theoretical performance of such memory - it is 2400 MT/s

multiplied by 8 bytes (a single word 64-bit long is being transferred) gives the result of

19200 MB/s.

Let’s look at example of my desktop PC in the context of the whole architecture. It

is equipped with CPU Intel Core i7-4770K (Haswell generation) running at 3.5 GHz.

Front Side Bus frequency is only 100 MHz. DDR3-1600 Memory (PC3-12800) used has

200 MHz internal memory clock, and due to the DDR3 mechanism the I/O bus clock

is 800 MHz. This has been illustrated in Figure 2-4. We can confirm all of that using

hardware diagnostic tools like CPU-Z (see Figure 2-5).

CPU

PCI-E

Platform
Controller
Hub

USB

Front Side Bus

Memory Bus

SATA

RAM

HDD
SDD

PCI

eg. graphic
card

3.5 GHz

100 MHz

200 MHz

800 MHz

DMI

Figure 2-4. Modern hardware architecture with sample clocking (Intel Core
i7- 4770K and DDR3-1600)

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

72

Regardless of all the DDR memory improvements described here, CPUs are still faster

than the memory they use. To overcome this problem, a similar approach on different levels

is applied - by bringing some part of the data closer to the component with more performant

(and more expensive) memory units. Such an approach is being referred to as caching.

In case of mass storage memory like HDD, data is usually being cached in RAM - or

in a faster but smaller dedicated storage like a small SDD inside hybrid HDD drives

dedicated for most frequently used data. In case of RAM, data is being cached inside

CPU cache and we will see it shortly.

Of course there are more generic RAM optimizations including better hardware

design, better memory controllers. and optimizing DMA (Direct Memory Access) for

devices. However, we do not touch DMA in this book as it is not directly related with the

program data and those regions are not managed by Garbage Collector.

Figure 2-5. CPU-Z screenshot - Memory tab showing Northbridge (NB)
and DRAM frequencies together with FSB:DRAM frequency ratio (which is
unfortunatelly incorrect in the current version of the tool and should be 1:8)

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

73

 Memory
A comprehensive book about memory should at least touch the topic of how memory

is physically built nowadays. You may be surprised by some of the facts given in this

section. They will, I hope, give you a better understanding of why modern computers

have this and no other architecture.

There are currently two main types of memory found on personal computers, and

they differ significantly both in terms of production and usage cost and performance:

• Static Random Access Memory (SRAM) - they provide very fast access

but are quite complex, consisting of 4–6 transistors per cell (storing

single bit). They hold data as long as power is on, and no refresh is

needed. Because of high speed, they are used mainly in CPU caches.

• Dynamic Random Access Memory (DRAM) - very simple cell

construction (much smaller than SRAM) consists of a single

transistor and capacitor. Because of capacitor “leakage,” a cell

requires a constant refresh (which takes precious milliseconds and

stales memory reads). A signal read from the capacitor has to be

amplified also, which complicates things more. Reads and writes

also take time and are not linear because of capacitor delays (there is

some time required to wait to get a proper read or successful write).

Let’s devote a few more words to DRAM technology because it is the basis of

commonly used memory installed in our computers DIMM slots. As mentioned, a

single DRAM cell consists of a transistor and a capacitor and stores a single bit of data.

Such cells are grouped into DRAM arrays. The address to access a specific cell is being

provided via so-called address lines.

It would be very complicated and costly to have each cell in the DRAM array have

its own address. For example, in case of 32-bit addressing there would be 32-bit wide

address lines decoder (component responsible for specific cell selection). The number

of address lines influence overall cost of the system to a great extent - the more lines, the

more pins and interconnections between the memory controller and memory (RAM)

chips (modules). It would be too expensive and complicated, of course, even more so in

the case of computers with 64-bit word. Because of that address lines are being reused as

row and column lines (see Figure 2-6) and providing a full address is being split into two

phases.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

74

Within a single array, the address (row) line selects the row and the column (data)

line selects the column. A single bit from a particular cell is being read in the following

process:

 1. The number of the row is put on the address lines.

 2. Interpretation is triggered by the Row Address Strobe (RAS) signal

on a dedicated line.

 3. The number of the column is put on the address lines.

 4. Interpretation is triggered by the Column Address Strobe (CAS)

signal.

 5. Retrieve data - single bit (particular DRAM cell has been

addressed).

DRAM modules we install in our computers consist of many such DRAM arrays

organized in a way allowing us to access multiple bits (single word) in a single clock

cycle.

The transition times between individual steps of obtaining this single bit strongly

affects memory performance. These times can be familiar to you because they are an

important factor in the specification of memory modules, which greatly affect their price

by the way. So you are probably aware of DIMM modules timings like DDR3 9-9-9-24

DRAM cell

column decoder

ro
w

 d
ec

od
eraddress

lines

data

row
address

latch

column
address

latch

RAS

CAS

DRAM array

Figure 2-6. DRAM chip example with DRAM array and the most important
channels: address lines, RAS, and CAS

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

75

numbers. All those timings are specified in clock cycles required to perform specific

action. Subsequently they have the following meanings:

• tCL (CAS latency) - the time between a column address strobe (CAS)

and beginning of the reply (receiving data).

• tRCD (RAS to CAS delay) - the minimal time between the row address

strobe (RAS) and column address strobe (CAS) may occur.

• tRP (Row Precharge) - the time it takes to precharge a row before

accessing it. The row cannot be used without prior preparation,

which is calling precharging.

• tRAS (Row active delay) - minimum time the row has to be active to

access information in it. This is typically at least the sum of the three

above times.

Please note the importance of those times. If the row and column you are interested

in have already been set, the readout is almost immediate. If you want to change the

column, it will take tCL clock cycles. If we want to change the row, the situation is much

worse. It must be first recharged (tRP cycles), followed by RAS and CAS delays (tCL and

tRCD).

All these times are important for computer users expecting maximum performance.

Players especially pay great attention to these parameters. What is enough for us to

know is that while buying memory modules you should take care of the lowest possible

timings you can afford if performance is a top priority for you.

However, we are interested in the impact of DRAM memory architecture and its

timings on memory management. As you can see, the biggest is the cost of the row

change - RAS signal timings and precharging. This is one of the many reasons why

sequential memory access patterns are much faster than non-sequential ones. Reading

data in a burst from a single row (changing column occasionally) is much faster than

a need to change a row frequently. If the access pattern is completely random, most

probably we will be hit by those row-changing timings on each and every memory

access.

All of the information presented here has one goal - to make sure you have a deep

reason to remember why non-sequential access to memory is so undesired. And as we

will see, this is not the only reason why completely random access is the worst scenario.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

76

 CPU
Let’s now go to the central processing unit topic. The processor is compatible with

the so-called Instruction Set Architecture (ISA) - it defines, among others, the set of

operations that can be executed (instructions), registers and their meaning, how

memory is addressed, and so on. In this sense, ISA is a contract (interface) established

between the processor manufacturer and its users - programs written under a given

contract. This is the layer we see in programming, for example, in the assembly language

of a given architecture. ISA IA-32 (32-bit i386, Pentium 32-bit processors) and AMD64

compliant (the vast majority of modern processors including Intel Core, AMD FX and

Zen, etc.) are the most widely used in the world of the .NET ecosystem. Under ISA

is the so-called microarchitecture of the processor that implements it. This allows us

to improve microarchitecture without affecting the system and software, and so in a

backwards compatible manner.

Note There is a lot of confusion with the names of the 64-bit architecture
standards, and you will often encounter the x86-64, eMT64T, Intel 64, or AMD64
interchangeably used. Despite the presence of producers’ names and sometimes
minor differences, we can safely assume for the purpose of this book that these
are unambiguous names and can be used safely interchangeably.

As stated in the previous chapter, a key role in the operation of the CPU occupies

registers because currently all computers are implemented as registry machines. In the

context of data manipulation, access to registers is immediate in the sense that it takes

place within a single processor cycle and does not introduce any additional delays. There

is no space for your data closer to the CPU than just the processor registers. Of course,

registers store data needed for the current instructions so they cannot be considered as

a general-purpose memory. In fact, in general, the processor has more registers than

is apparent from its ISA. This allows for various types of optimizations (like so-called

register renaming). However, these are implementation details of microarchitecture and

does not affect the mechanisms of memory management.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

77

 CPU Cache

As we mentioned earlier, to mitigate the performance gap between CPU and RAM, an

indirect component is used to store a copy of the most used and most needed data - CPU

cache. In a very general way this is illustrated in Figure 2-7.

This cache is transparent from the ISA point of view. Neither the programmer (nor

even the operating system) does not necessarily need to know about its existence. They

do not have to manage it. In an ideal world, proper use and management of the cache

should be the sole responsibility of the CPU.

Because as a cache we want to use as fast-as-possible memory, the previously

mentioned SRAM chips are used. Due to the cost and the size (which takes up precious

space in the processor) resulting from this technology, they obviously cannot have as

large capacities as the main RAM. But depending on the assumed costs they can match

the speed of the CPU or may be only one/two orders of magnitude slower.

 Cache Hit and Miss

The idea behind a cache is trivial. When the instruction executed by the processor

needs access to memory (whether it is write or read), it first looks at the cache to check

whether the data we need is there already. If so, fantastic! We have just gained a very fast

memory access and such a situation is referred to as cache hit. If the data is not in the

cache (so-called cache miss), then it is being stored there after reading from RAM, which

is obviously a much slower operation. Cache hit ratio and cache miss ratio are the very

important indicators telling us whether our code uses the cache efficiently.

CPU Memory Bus

Cache

RAM

Figure 2-7. CPU with cache and RAM relationship

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

78

 Data Locality

But why is such a cache helpful in the first place? Cache idea is based on the very

important concept - locality of data. We can distinguish two kinds of locality:

• temporal locality - if we access some memory region, we will most

probably access it again in the near future. This makes using a

cache perfectly valid - we read some data from memory and we will

probably reuse it later a few more times. Why is there a temporal

locality? This is quite intuitive. We rarely use data once. In general,

we load some data structures into variables and use those variables

repeatedly. These are all kinds of counters, temporary data read from

files, and so on.

• spatial locality - if we access some memory region, we will most

probably access data from the close neighborhood. This type of

locality can become our ally if we cache a little more surrounding

data than we currently need. For example, if we need a few bytes

from memory, let’s read and cache them and a dozen or so more.

This is also perfectly intuitive. We rarely use very isolated small areas

of memory. We soon will find out the stack and heap are organized

into segments so threads doing their job generally access similar

areas of memory. Local variables or data structures are also generally

placed close together.

Please note that the cache is beneficial if the above conditions actually apply.

However, this is a double-edged weapon. If we write the program in a way that breaks

data locality, the cache will become an unnecessary burden. We’ll see about that later in

the chapter.

 Cache Implementation

In addition, as long as the compatibility with the ISA memory model is maintained,

cache implementation details are theoretically unimportant. It should be just there to

speed up memory access and that’s it. However, this is a perfect example of The Law of

Leaky Abstractions coined by Joel Spolsky:

All non-trivial abstractions, to some degree, are leaky

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

79

What it means is that an abstraction that theoretically should hide the

implementation details, unfortunately under certain circumstances exposes them

outside. And it usually does so in an unpredictable and/or undesired way. How it

does in case of a cache should be clear soon, but let just now dig into a little more

implementation detail.

The most important and most influential fact is that the data between the RAM and

the cache is transferred in blocks called cache line. Cache line has a fixed size and in the

vast majority of today computers it is 64 bytes. It is very important to remember - you

cannot read or write less data from memory than the cache line size, so 64 bytes. Even if

you would want to read one single bit from memory, the whole block of a 64-bytes wide

cache line will be populated. Such a design is utilizing better sequential DRAM access

(remember the precharging and RAS delays described earlier in this chapter?).

As stated before, DRAM access is 64-bit wide (8 bytes), so eight transfers are required

from RAM to populate such cache line. This requires quite a lot of CPU cycles so there

are various techniques to accommodate that. One of them is Critical Word First & Early

Restart. It makes the cache line not read word by word but starts with the word that is

most needed. Imagine that in the worst case, such an 8-byte word could be at the end of

the cache line so you would have to wait for all the previous seven transfers to access it.

This technique first reads the most important word. Instructions waiting for this data can

continue execution and the rest of the cache line will be filled asynchronously.

Note how does a typical memory access pattern look? when someone wants
to read data from memory, the corresponding cache line entry is created in the
cache and 64 bytes of data are being read into it. when someone wants to write
data in memory, the first step is exactly the same – the cache line is being filled
in the cache if it is not there already. This cached data is modified in cache when
someone writes data. now one of two strategies can occur:

— write-through - after writing to the cache line, the modified data is saved
immediately to the main memory. This is a simple approach to implement but
creates a big overhead on the memory bus.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

80

— write-back - after writing to the cache line it is marked dirty. Then, when there
is no space in cache for other data, this dirty block is written to memory (and the
modified dirty cache entry is deleted). The processor may write these blocks from
time to time, as it deems appropriate (e.g., during idle times).

There is yet another one optimization technique called write-combining. It ensures
that a given cache line from a given memory area is written in its entirety (rather
than writing its individual words), again utilizing the fact of faster sequential access
to memory.

Because of cache lines, each data stored in memory is aligned to 64-bytes

boundaries. So in the worst-case scenario to read two successive bytes, two cache

lines have to be consumed with a total size of 128 bytes. It will land into the cache

but if no more data from this memory region will be needed, it will be waste of time.

This is illustrated in Figure 2-8 when we want to read only 2 bytes under address A.

Unfortunately address A is just one byte before the end of cache line-rounded boundary

so in fact two whole cache lines have to be read.

64 bytes aligned
address

64 bytes aligned
address

64 bytes 64 bytes

cache line

cache line

address A

Figure 2-8. Access to two successive bytes requires populating two cache lines
because they were unfortunately located

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

81

OK. Although it’s really the tip of the iceberg, you can ask why we have to know

such hardware implementation details? Does it really matter in a comfortable world of

managed code? Let’s continue our journey to find out.

A cost of non-sequential memory access patterns has been illustrated by sample

code from Listing 2-1 and by results in Table 2-1. The sample program accesses the

same two-dimensional array in two ways - row by row and column by column. Results

are presented for three different environments: PC (Intel Core i7-4770K 3.5GHz), laptop

(Intel Core i7-4712MQ 2.3GHz), and Raspberry Pi 2 board (ARM Cortex-A7 0.9GHz).

Listing 2-1. Column versus row indexing when accessing an array (5000x5000

array of ints)

int[,] tab = new int[n, m];

for (int i = 0; i < n; ++i)

{

 for (int j = 0; j < m; ++j)

 {

 tab[i, j] = 1;

 }

}

int[,] tab = new int[n, m];

for (int i = 0; i < n; ++i)

{

 for (int j = 0; j < m; ++j)

 {

 tab[j, i] = 1;

 }

}

Table 2-1. Column versus Row Indexing results (n,m = 5000)

Pattern PC Laptop Raspberry Pi 2

By Rows 52 ms 127 ms 918 ms

By Columns 401 ms 413 ms 2001 ms

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

82

This example shows how unfavorable the non-sequential retrieval of data can be for

performance. The sample program in the second version reads the data column after

the column. As a result, we need to change the active line of DRAM cells every now and

then. What’s more, we use the cache very badly because we read only one byte of data

by loading the entire cache line. And afterwards we immediately read under the other,

distant address so another cache line must be populated. The difference in performance

may be six times as you can see in Table 2-1! The CPU stalls very often to wait for

memory access.

Figure 2-9 illustrates the difference between accessing elements by rows and by

columns of some small array containing values from 1 to 40 (and illustration is assuming

that four such values fit into a single cache line). Let’s assume also for illustrative

purposes that array access from Figure 2-9 happens on the CPU with a buffer for only

four cache lines.1 As we read memory row by row (left side of Figure 2-9), in fact we are

reading successive integers within successive cache line-rounded memory regions:

• To read the first four elements (1,2,3,4), the first cache line is read and

all those elements are used.

• To read the next four elements (5,6,7,8), the second cache line is read

and again, all those elements are used.

• To read the next four elements (9,10,11,12), the third cache line is

read. This access repeats through the entire array (and no cache line

is needed to be read again).

The right side of Figure 2-9 show the second pattern, when we read only a single

integer per each cache line and then move on to the another one:

• To read the first four elements, we read four cache lines but only one

element from each of them is used (1 from first cache line, 9 from the

second, and so on).

• To read the next element (33). one of the already cache lines must

be purged because the buffer is already full. It most probably will be

least accessed once (so containing 1,2,3,4 elements) and replaced

with the new one (containing 33,34,35,36).

1 In a real CPU, the “buffer” for cache lines is the entire CPU cache so it typically fits hundreds or
thousands of 64-byte wide cache line-sized entries.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

83

• To read the next element (2), again the least used data will be purged

and the CPU will need to reload the first line (containing 1,2,3,4),

unloaded just before.

• This access pattern repeats many times, requiring the cache line to be

read four times.

Obviously, real CPUs have more than four cache-line buffers and the cache line

fits more data than four integer values, so Figure 2-9 is a simplification for illustrative

purposes. But exactly the same problem happens in the real-world scenarios and its

results are clearly seen in Table 2-1.

As you can see, the entire .NET runtime environment and advanced memory

management techniques used in it are not able to hide those CPU implementation

details that are hitting us back. An unfavorable memory access pattern causes many

times worse performance of our code. It will not be comforting that a similar test for Java

and C/C ++ would produce very similarly unfavorable results.

 Data Alignment

There is yet one other very important aspect of accessing memory. Most CPU

architectures are designed to access data that are properly aligned - meaning the starting

address of such data is a multiplication of a given alignment specified in bytes. Each type

has its own alignment and a data structure alignment depends on its field’s alignment.

A lot of care must be taken to not access unaligned data that may be a few times slower

than a proper way. This is a responsibility of the compiler and a developer designing

data structures. In case of CLR data structures, layout is mostly managed by the runtime

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

Figure 2-9. By row versus by column access pattern - arrows show access
triggering cache line invalidation (when accessing first 10 elements)

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

84

itself. This is why we can spot a lot of code related to proper alignment handling in the

Garbage Collector code. We will see in Chapter 13 how object memory layout looks and

how it may be controlled, taking into consideration data alignment.

 Non-temporal Access

What have been mentioned so far is the fact that in most common types of CPU

architecture, there is no access to the memory other than via the cache. All memory

read or written from DRAM by the CPU is being stored in cache. Let’s assume one wants

to initialize a very big array but we know we will use it in a fairly distant point of time.

From what we have learned so far, we know such array initialization will induce quite

big memory traffic. An array will be written in blocks and each cache line one by one.

Moreover, each such write operations include three steps - reading cache line into cache,

modifying cache content. and then writing back the cache line into main memory. We

will populate cache lines only to write data back to main memory. Not only this is not

optimal by itself, it also takes away cache from other programs.

We can avoid such cache traffic by using a so-called non-temporal access set of

assembler instructions - MOVNTI, MOVNTQ, MOVNTDQ, etc. They allow the programmer to

prevent caching of the data during the write to memory. They are exposed through _mm_

stream_* set of C/C++ functions so no assembler is required to use them. For example,

_mm_stream_si128 executes MOVNTDQ instruction, which writes to memory a single quad-

word (4 words of 4 bytes). An example of a fast array initialization using this technique is

shown in Listing 2-2.

Listing 2-2. Example of low-level API in C++ to use non-temporal writes

#include <emmintrin.h>

void setbytes(char *p, int c)

{

 __m128i i = _mm_set_epi8(c, c, c, c, c, c, c, c, c, c, c, c, c, c, c, c);

// sets 16 signed 8-bit integer values

 _mm_stream_si128((__m128i *)&p[0], i);

 _mm_stream_si128((__m128i *)&p[16], i);

 _mm_stream_si128((__m128i *)&p[32], i);

 _mm_stream_si128((__m128i *)&p[48], i);

}

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

85

Why do we mention that at all? Currently there is no .NET support for non- temporal

writes, although there are plans to use them in some parts of the runtime itself. And

there are also some ideas to provide developers a way to hint the runtime to use non-

temporal writes in their code (see Listing 2-3 showing an example of how it could look).

Listing 2-3. A possible implementation of future feature - asking runtime to use

non-temporal write while storing data

public int[] Sum (int[] op1, int[] op2)

{

 var result = new int[op1.Length];

 Contract.Assume(Performance.NonTemporal(result));

 result[i] = op1[i] + op2[i]

}

Besides, before it will be implemented on the JIT level, somebody may decide to use

proper P/Invokes of _mm_stream_si128 inside C# in a very critical code performance,

after obviously seriously deep thinking about it.

Note There are also non-temporal access (nTA) load instructions MOVNTDQA
exposed through _mm_stream_load_si128 functions.

 Prefetching

Data locality is a great feature used by the cache mechanism automatically, as long as the

programmer has not specifically tried to disrupt it. There is one additional mechanism

that seeks to improve the cache utilization. It is about populating the cache with data

that are likely to be needed in the nearest future – so-called prefetching. It can work in

two different modes:

• Hardware driven - when the CPU notices a few cache misses with

some certain pattern. Most CPUs track from 8 to 16 memory access

patterns (to compensate a typical, multithreaded/multiprocess way

of work). Note: Although we do not cover so-called memory pages

yet, please bear in mind that hardware prefetching is page limited.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

86

If not, it would trigger page miss, which would be big unnecessary

overhead if the guess was not correct.

• Software driven - by explicit call from our code by using PREFETCHT0

instruction exposed through C/C++ _mm_prefetch () function.

Prefetch, like all other caching mechanisms, is a double-edged weapon. If we

understand the memory access patterns in our code well, using prefetch can noticeably

accelerate the performance of our program. On the other hand, it is very difficult to

be sure that we really understand those memory access patterns, given the very broad

context in which our code works - influenced by other threads in our program, other

programs’ threads, and threads in the operating system itself. There is a PREFETCHT0

instruction call contained in the .NET code but due to the fact that required PREFETCH

identifier is not defined, prefetching is not used (see Listing 2-4).

Listing 2-4. Prefetching related parts of the .NET code shows it is disabled by

default.

//#define PREFETCH

#ifdef PREFETCH

__declspec(naked) void __fastcall Prefetch(void* addr)

{

 __asm {

 PREFETCHT0 [ECX]

 ret

 };

}

#else //PREFETCH

inline void Prefetch (void* addr)

{

 UNREFERENCED_PARAMETER(addr);

}

#endif //PREFETCH

The prefetch call has been spread out through many places in CLR Garbage Collector

code. But the use of PREFETCHT0 has been disabled in the .NET code probably for the

reasons given earlier. Runtime is a very generic code, and it’s hard to imagine a code

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

87

snippet that can be found in it ensuring that, under all circumstances, the use of prefetch

will be beneficial. This is therefore a safe-side selection.

Prefetching and cache-lined memory access obviously work against us if we won’t

try to lay out data in memory in a proper way. An example would be, if we designed a

garbage collection algorithm in such a way that some very small, 1-byte diagnostic data

is scattered all the way through memory in random places, an operation to gather this

information will be very costly in terms of caching. We will have to fill cache through

cache lines just to read single byte. And as we said, prefetching can make things even

worse - “if you are reading those 64 bytes, let read twice more because you might be

probably interested in it.”

Algorithms that intensively operate on memory (and garbage collection is operating

on memory in its essence) must be taking into consideration such CPU internals.

Memory is just not a flat space where we can pick some single bytes or bits from here or

there without penalty!

 Hierarchical Cache

Returning to our architecture, due to performance requirements on the one hand and

cost optimization on the other, the CPU design evolved today into a more complex

hierarchical cache. The idea is simple. Instead of a single cache, let’s create a few, with

several different sizes and speeds. This allows you to create a very small and very fast

first-level cache (called L1), then a bit bigger and a bit slower cache level 2 (L2), and

finally the third-level cache (L3). This enumeration in modern architecture ends on three

levels. Such hierarchical cache of modern computers is shown in Figure 2-10. It is true

that sometimes we can spot processors equipped with L4 cache, but it is a little different

kind of memory and is designed mainly for integrated graphics cards inside those CPUs.

CPU

C
a

ch
e Memory Bus

RAM

L1d

L2

L3

L1i

Figure 2-10. CPU with hierarchical cache - first-level cache split into instruction
(L1i) and data (L1d) cache and second (L2) and third (L3) level cache. The CPU is
connected to DRAM via Memory Bus.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

88

The first-level cache is divided into two separate blocks. One is for data (labeled L1d)

and the other one for instructions (labeled L1i). The instructions read from the memory

and executed by the processor are also in fact data but interpreted appropriately. Data

and code instructions at levels higher than L1 are actually treated identically, which

should remind us of the Von Neumann architecture mentioned in Chapter 1. However,

practice has shown that it is preferable to treat data and instructions separately for

the lowest cache level. It is therefore the approach of the Harvard architecture. For

this reason, the architecture of today’s computers is referred to as Modified Harvard

Architecture. This solution works well because of the strong independence of using

memory regions for storing data and program code, but only at the lowest level.

Knowing that there are three main levels of cache, an obvious question arises - What

are the typical differences in speed and size between them and the main memory?

Memory at lower-cache levels can be fast enough that L1 and even L2 access may take up

enough CPU cycles to be faster than the pipeline execution time (unless you have to wait

for the exact address to be computed, which is also an expensive operation). So what do

those timings look like?

At the moment, I am writing this chapter on a laptop with Intel Core i7-4712MQ CPU

(Haswell generation) running at 2.30 GHz. Assuming one CPU cycle on my laptop takes

approximately 0.4 ns (~1/2.30 GHz) and using Haswell i7 specification, the latency to

access different memory levels can be seen as in Table 2-2.

Table 2-2. Latency to Access Different Parts of Memory

Operation Latency

L1 cache < 2.0 ns

L2 cache 4.8 ns

L3 cache 14.4 ns

Main memory 71.4 ns

hDD 150 000 ns

We can clearly see it is worth fighting for optimal cache usage. Latency can be as

much as 5 times faster when the CPU has needed data available in an L3 cache rather

than in RAM. With an L1 cache it is over 30 times better. That is why it is extremely

important for the overall performance how the cache is utilized. How much data fits into

the cache? It all depends on the specific CPU model but my i7-4770K specification pretty

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

89

well reflects market standards. L1 cache has 64 KiB of data (split into 32 KiB for code and

32 KiB for data) while the L2 cache has 256 KiB. The L3 cache, always much bigger, is

8 MiB big.

Do those timings influence developers live, especially in the managed world of

.NET? Let’s look at the simple example showing the latency in accessing data depending

on the amount of memory being processed. Using code from Listing 2-5, one can made

a series of sequential readings (and therefore the most optimal). As the used structure

has a 64 bytes size, the read is done with a 64-byte step and every time a new cache line

needs to be loaded. Figure 2-11 shows average access times per single element of the tab

array, depending how much memory this array took in total.

There is a clear deterioration of access time when the data size exceeds the cache

size of each level. As benchmarks were performed on an Intel i7-4770K processor, the

clearly visible performance degradation points are around 256 KiB and 8192 KiB, which

correspond to L2 and L3 cache sizes. We can see that operating on small data sizes may

be a few times faster than operating on data that does not fit the L3 cache.

Listing 2-5. Sequential read of succeeding cache lines

public struct OneLineStruct

{

 public long data1;

 public long data2;

 public long data3;

 public long data4;

 public long data5;

 public long data6;

 public long data7;

 public long data8;

}

public static long OneLineStructSequentialReadPattern(OneLineStruct[] tab)

{

 long sum = 0;

 int n = tab.Length;

 for (int i = 0; i < n; ++i)

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

90

 {

 unchecked { sum += tab[i].data1; }

 }

 return sum;

}

Note There is one interesting yet not so important topic in the context of cache -
the eviction strategies. It’s about how you get space for new data if it’s missing at a
given level. There are two possible approaches, sometimes mixed on the different
levels:

— Exclusive cache - data is only on one level of cache. This method is most
commonly used in AMD processors.

— Inclusive cache - where each cache line in a higher level (for example, L1d) is
also present in a lower level (for example, L2).

Although interesting, this does not affect our thoughts on memory management.
It should be assumed that CPU manufacturers are doing their best to ensure the
most effective implementation of these mechanisms.

Figure 2-11. Access time depending on the data size - Intel x86 architecture/
sequential read. Please note: both axes are logarithmic.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

91

 Multicore Hierarchical Cache

However, this is not the end of our journey through computer design. Contemporary

CPUs have a majority of more than one core. In simplified terms, the core is what the

individual, simplified processor is - it can execute code independently of other cores.

In the past, each core performed exactly one thread. Thus, a quad-core processor

could execute four threads simultaneously. At present, practically all processors have a

simultaneous multithreading mechanism (SMT), allowing simultaneous execution of two

threads within a single core. It is called Hyper-threading in case of Intel processors and

full SMT support has been added into AMD Zen microarchitecture. The distribution of

caches between individual cores in sample quad-code CPU is shown in Figure 2-12.

As we can see, each of the cores has its own first- and second-level cache. The

third-level cache is shared between them. How cores and L3 cache are interconnected

is in fact an implementation detail. For example, in most modern Intel CPUs there is

a bidirectional, extremely fast 32-byte wide bus that further connects them with the

integrated GPU and System Agent. Note that for SMT processors, two threads running on

the same core share L1 and L2 caches, so their actual usage is split in half unless care is

provided that both threads have the biggest range of shared data. This obviously requires

operating system support to deliberately assign threads to the cores based on their

memory access patterns.

Core

C
a

ch
e

Memory Bus

RAM

L1d

L2

L3

L1i

Core

C
a

ch
e L1d

L2

L1i

Core

C
a

ch
e L1d

L2

L1i

Core

C
a

ch
e L1d

L2

L1i

CPU

Figure 2-12. Multiple Core CPU - each core owns its first-level cache split into
instruction (L1i) and data (L1d) cache and second-level cache (L2). Third (L3)
level cache is shared among cores. CPU is connected to DRAM via Memory Bus.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

92

Because each thread can run on a separate processor and/or core, there is a

consistency problem of cached data. Each core has its own version of the first- and

second-level cache, and only the third level is being shared. This leads to the need

to introduce an entire complex concept known as cache coherency. This mechanism

describes how consistency of stored data is maintained, and it is being applied by cache-

coherency protocol - a way of informing about data change between cores. One of the

basic states is that the data in the local cache has been modified (maintained by some

dirty or modification flag). Information about such change has to be broadcasted or

updated as needed.

There are many extensions and advanced cache coherence protocols that are

designed to provide efficient operations - in particular the very popular MESI protocol.

Its name comes from the names of the four states in which the cache line can be found -

modified, exclusive, shared, and invalid. Nevertheless, cache-coherency protocols can

impose a big overhead on memory traffic and thus on overall program performance.

Intuitively, the constant need for mutual updating of the cache between the cores can

result in noticeable overhead. Code we write should try to minimize any access from

different cores to the memory addresses under the same cache lines. This in particular

means trying to avoid intra-thread communication at all or at least taking a lot of care

about what data and how this data are being shared between threads.

Note As non-temporal instructions mentioned earlier omit normal cache-
coherency rules, using them should be in a pair with special sfence assembler
instruction in order to make their results visible to other cores.

But again, is this knowledge useful in such high-level environments as .NET? Does

Garbage Collector with its all knowledge and internal mechanisms hide such deep

hardware implementation details? The answer to this question can be found in the

following example.

Listing 2-6 shows multithreaded code that can simultaneously run a threadsCount

number of threads accessing the same sharedData array. Each of the thread just

increments a single element array without (theoretically) influencing other threads. In

our example, there are two important parameters indicating how those elements are

laid out within a shared array - whether there is a starting gap and how distant they are

from each other (offset). As we will run this code for threadsCount=4 on a four-core

machine, most probably each thread will have its own physical core assigned.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

93

Listing 2-6. Possibility of False sharing between threads

const int offset = 1;

const int gap = 0;

public static int[] sharedData = new int[4 * offset + gap * offset];

public static long DoFalseSharingTest(int threadsCount, int size =

100_000_000)

{

 Thread[] workers = new Thread[threadsCount];

 for (int i = 0; i < threadsCount; ++i)

 {

 workers[i] = new Thread(new ParameterizedThreadStart(idx =>

 {

 int index = (int)idx + gap;

 for (int j = 0; j < size; ++j)

 {

 sharedData[index * offset] = sharedData[index * offset] +

1;

 }

 }));

 }

 for (int i = 0; i < threadsCount; ++i)

 workers[i].Start(i);

 for (int i = 0; i < threadsCount; ++i)

 workers[i].Join();

 return 0;

}

Table 2-3. Benchmark Results of Code from Listing 2-6 Showing False Sharing

Influence on Processing Time

Version PC Laptop Raspberry Pi 2

#1 (offset=1, gap=0) 5.0s 6.7s 29.0s

#2 (offset=16, gap=0) 2.4s 2.6s 13.8s

#3 (offset=16, gap=16) 0.7s 0.8s 12.1s

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

94

In Table 2-3 you can see significant differences in performance between various

combinations of gap and offset. If we use an array in definitely the most intuitive and

simple way, it means the gap is 0 and offset is 1. The layout and thread accesses are

illustrated in Figure 2-13a. This unfortunately introduces a very big cache-coherency

overhead. Each thread (core) has its own local copy of the same memory region (in its

own cache line), so after each incrementation it has to invalidate the others’ local copies.

This forces cores to constantly invalidate their caches.

The obvious solution for this problem is to spread elements accessed by each thread

to different cache lines. The simplest way is to create a much bigger array and use only

every 16th element (16 times 4 bytes of single Int32 makes 64 bytes). This is a version

when offset is 16 and gap is still 0 (see Figure 2-13b). As we can see in Table 2-3, the

performance is much better but we can still do more.

Figure 2-13a. Version #1 with 1 byte offset and no gap - each thread access
modifies the same cache line

Figure 2-13b. Version #2 with 16 byte offset and no gap - each thread access and
modifies its own cache line

There is still a single cache line constantly invalidated but it can be not so obvious

at the first glance, leading to a problem referred to as False sharing - an unfortunate

data access pattern in which theoretically not modified shared data is located within a

cache line altered by some other thread, incurring its constant invalidation. As we will

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

95

learn in the next chapter, each type in .NET has some additional header attached to its

beginning. This in particular relates also to arrays. In case of arrays there is important

data at the beginning of the object - the length of the array. What’s more, when accessing

array elements by an index operator, it internally checks whether it is not out of index.

This means accessing the beginning of the array object to check the length of the array,

every time we access any array element. Therefore, the first core is sharing the beginning

of the object with other cores, constantly invalidating correspondent cache lines. To fix

this we have to shift our elements by a single cache-line offset. This is a version when the

offset is still 16 but the gap is also 16 (see Figure 2-13c).

In this case each core has its own local copy of the first cache line for read only

purposes. And it modifies their own cache lines with data. No cache-coherency protocol

overhead is added. From Table 2-3 we can see this makes such code running even 7

times faster than with extensive false sharing!

other architectures sometimes abandon the sequential consistency present in x86,
which simplifies their design but makes programming difficult (explicit memory
barriers are required). An example of such an architecture is applied to the 2006
PowerPC on Apple computers.

So far we have spent a lot of time understanding the caching of data. However, few

pages ago it was mentioned that there is also a cache for program instructions (L1i). We

do not look at it here for a few reasons. First of all, it is much less problematic in itself.

Compilers can take good care of properly prepared code, and CPUs also do quite well in

guessing code access patterns. As a result, this cache works well - the compiler and the

nature of the program execution cause a good temporal and spatial locality that the CPU

Figure 2-13c. Version #3 with 16 bytes offset and 16 byte gap - each thread
modifies its own cache line and reads shared cache line with the array header

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

96

can use.2 Moreover, instruction cache management does not fall into the area of memory

management in .NET because it narrows it down to data management. The only obvious

indication in this regard is the desire to generate the smallest code. Because it is cached

at levels higher than L1, it consumes these resources. However, in fact it is difficult today

to put this advice into practice - everything is done by the great compiler optimization,

and the length of the code is rather due to business needs.

 Operating System
We’ve spent quite a lot of time very close to the hardware so far. I initially also promised

to look at the operating system. It is the best time now to do so. Actually, the designers of

the operating system have to take very seriously all the previously presented facts, which

have been presented only briefly. And as you will see shortly, it’s still just a fragment of a

wider reality.

Due to both operating system and hardware architecture, physical memory limits

vary from 2 GB to 24 TB. And typical commodity hardware nowadays is equipped with

from 4 to 8 GB of memory. If a given program had to use physical memory directly,

it would need to manage all memory regions it creates and deletes. Such memory

management logic would be not only complex, but also repeated in each and every

program. Moreover, from a low-level programming perspective, it would be also

cumbersome to use memory in such an approach. Each program would have to

remember which regions of memory it uses so that programs do not interfere with each

other. Allocators would need to cooperate with such region management to properly

manage created and deleted objects. This is also quite dangerous from a security

perspective - without any intermediate layer, a program could access not only its own

memory regions.

 Virtual Memory
Thus a very convenient abstraction has been introduced - a virtual memory. It moves

memory management logic to the operating system, which provides a program a so-

called virtual address space. In particular it means that each process thinks it is the only

2 However, even in .NET we can still design method calls with L1i cache misses kept in mind. It
mainly includes avoiding lot of virtual calls and favourites repetitive calls of the same method
over a big set of data. We will see such example in Chapter 10.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

97

one running in the system and that the whole memory is for its own purposes. Even

more. Because address space is virtual, it can be larger than the physical memory. This

allows it to extend physical DRAM memory with secondary storage like mass storage

hard drives.

Note Are there operating systems without virtual memory? For any commodity
usage, no. But yes, there are some special purpose, mostly very small operating
systems and frameworks targeted to embedded systems. one of the examples is
(micro)Clinux kernel.

Here is where the operating system memory manager comes to play. It has two main

responsibilities:

• Mapping virtual address space to physical memory - there is 32-bit-

long virtual address on 32-bit machines and 64-bit long on 64-bit

machines (although currently only lower 48 bits are used, which

still allows an address of 128 TB of data; and both simplify the

architecture and allows us to avoid unnecessary overhead).

• Moving some memory regions from DRAM memory to hard drives and

back as they are requested or currently not needed. Obviously as the

total used memory may be bigger than physical memory, sometimes

some parts of it must be temporarily stored to slower media like

HDD. A place where such data is stored is called page file or swap file.

The OS memory manager has also two main additional responsibilities: managing

memory-mapped files and a copy-on-write memory mechanism. We do not touch them

here, however, as they are irrelevant for our purposes.

The need to get rid of a piece of data from RAM and to save it on a temporary storage

is obviously associated with a large decrease in performance. This process is defined in

different systems as swapping or paging mainly for historical reasons. Windows has a

dedicated file called a page file that stores data from memory, hence the term paging.

For Linux, such data is stored on a dedicated partition, called swap partition. Hence the

term swapping on Unix-like systems.

Virtual memory is implemented in CPU (with the help of Memory Management

Unit - MMU) and used with cooperation with OS. Virtual memory management is

organized in so-called pages. As it would be impractical to map virtual to physical space

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

98

byte by byte, instead whole pages (continuous blocks of memory) are mapped. A page

is therefore the basic building block for managing memory from the operating system

point of view. A schematic illustration of virtual memory and physical memory is shown

in Figure 2-14.

There is also a page directory maintained by OS per each process that allows us to

map a virtual address to a physical one. Simply put, page directory entries point to a

page’s physical starting addresses and other metadata like privileges. In old times there

was a simple, one-level mapping where an address consisted of a page selector and offset

within a page, which is illustrated in Figure 2-15.

RAM
secondary

storage
process A

virtual memory

process B
virtual memory

single page

Figure 2-14. Virtual to physical pages mapping. Each process (A is light gray and
B is dark gray) sees its own virtual address space but physically their pages are
stored both in RAM (solid-filled pages) and paged (swapped) to disk (dash-filled
pages).

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

99

A one-level page directory has the main drawback of producing too big pages or too

big of page directory size. A big page is a major problem because it would be a waste of

resources – an operating system requires page alignment when allocating memory. So

even for small data it would need to allocate a whole big page. On the other hand, too

big of a page directory is also a problem as it is being stored in the main memory per

each process so it would be a waste of memory. Let’s see simple calculations of page size

versus page directory size on both 32- and 64-bit machines (see Table 2-4).

selector (S) offset (O)

page directory

page entry

page address

O

physical
memoryvirtual address

physical address

S

Figure 2-15. One-level page directory - virtual address consists of selector (S) that
choose single page entry from page directory and offset (O) within the page

Table 2-4. Possible One-Level Page Directory Size on Different Machines

Page size Offset size
32 bit 64 bit (48-bit address)

Selector size Page directory size Selector size Page directory size

4 kB 12 b 20 b 4 MB 36 b 512 gB

4 MB 22 b 10 b 4 kB 26 b 512 MB

Notes: Offset size has to be big enough to cover whole page size. Then Selector size is the remainder
of the whole address. Page Directory Size is 2^selector * address size.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

100

So enormously big page directories are impossible to implement in case of 64-bit

machines. In the case of 4 kB pages, each process should store 512 GB dedicated for a

page directory, which is obviously not possible. On the other hand, a 4 MB page size is

a huge overhead. Even if a process needed a few kilobytes, it would need to get from the

system an entire 4MB-wide big memory page. And a 512 MB page directory size is

still a lot.

Moreover, processes do not consume the whole available virtual memory. They

tend to group used memory in logical blocks (stack, heap, binaries, and so on) so such

directories are rather sparse with big holes between them, and storing a whole directory

is a waste of resources.

Nowadays a commonly used approach is to introduce multiple levels of indexes.

This allows us to compact the storage of a sparse page directory data while maintaining

a small page size. Currently on most architectures, a typical page size is 4 kB (including

x86, x64 and ARM) and 4-level page directory (see Figure 2-16).

page entry

offset (O)

Level 3
directory

page entry

physical
memoryvirtual address

physical address

Level 2
directory

page entry

Level 1
directory

page entryentry

Level 4
directory

page entry

entry

page entrypage entryentry

Level 1
selector

Level 2
selector

Level 3
selector

Level 4
selector

O

Figure 2-16. Four-level page directory with 4kB page size - three level of pages
selector allows it to represent much more sparse data

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

101

When a virtual address is being translated into a physical address, it requires a page

directory walk:

• Level 1 selector selects an entry within level 1 directory, which points

to one of the level 2 directory entries.

• Level 2 selector selects an entry within specific level 2 directory entry,

which points to one of the level 3 directory entries.

• Level 3 selector selects an entry within specific level 3 directory entry,

which points to one of the level 4 directory entries.

• Eventually level 4 selector selects an entry within specific level 4

directory entry, which points directly to some page in the physical

memory.

• Offset points to specific address within selected page.

Such translation requires traversing a tree but as we said, a page directory is kept

in the main memory as all other data. This means it could be also cached through L1/

L2/L3 caches. But still, it introduced an enormous overhead if each and every address

translation (operation performed very often) would require access to those data (even

using L1 cache). Thus, Translation Look-Aside Buffers (TLB) has been introduced, which

cache the translation itself. The idea is simple - TLB works as a map where the selector is

a key and the page’s physical address start is a value. TLBs are built to be extremely fast

so they are small in terms of storage. They are also multilevel as was the case with page

directory structure. The result of the TLB miss (no virtual-to-physical translation already

cached) is performing a full-page directory walk, which is costly as we mentioned.

Interesting note As always with cache, TLB prefetching is tricky - if the CPU
itself is to be the one who triggers prefetching (for example, because of branch
prediction), it can induce unnecessary page directory walk (as the branch prediction
could be invalid). Thus, rather software prefetching of TLBs is being used.

Are there any relevant to software development TLB optimizations? It can mainly

mean one thing: reduce the number of pages in general to avoid many TLB misses. This

will also allow us to keep page directory small, which is a way to increase chances it will

stay in TLB for long time. However, we do not have influence on page management from

the .NET perspective.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

102

Interesting note Typically, L1 operates on the virtual addresses because the
cost of translation to the physical address would be much bigger than the fast
cache access itself. This means when a page is being changed, all or some cache
lines have to be invalidated. Thus, often page changes negatively impact cache
performance also.

 Large Pages
As it can be seen from previous descriptions, a virtual address translation can be costly

and it would be great to avoid it as often as possible. The main approach would be to use

a big page size. This would require less address translations as many addresses would fit

into the same page, with already a TLB-cached translation. But as we stated, big pages

are a waste of resources. There is one solution - so-called large (or huge) pages. With

hardware support they allow us to create a large, continuous physical memory block

consisting of many sequentially laid-off normal pages. These pages are typically two/

three orders of magnitude bigger than a normal page. They can be useful in scenarios

when a program requires random access throughout gigabytes of data. Database engines

are examples of large pages consumers. A Windows operating system also maps its core

kernel images and data with large pages. A large page is non-pageable (can’t be moved

to page file) and is supported both on Windows and Linux. Unfortunately, it is quite hard

to allocate a large page because of fragmentation, and there may not be an adequate

continuous range of physical memory.

Large pages are not currently used by the .NET runtime because it actually wants the

pages to be smaller for the large percentage of possible scenarios. However, using large

pages is on the list of things for consideration for the .NET GC but no timeline has been

given yet. We can also try to use large pages when designing our custom CLR host, as

presented in Chapter 15.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

103

 Virtual Memory Fragmentation
As always, when it comes to allocating and deallocating memory, the threat may be

the fragmentation. We mentioned it in Chapter 1 while discussing the heap concept.

In case of virtual memory, it means the operating system will not be able to allocate

a continuous block of memory of a given size because there is not a big enough gap

between used memory, although the total size of all free gaps can significantly exceed

the required size.

This problem can be severe for 32-bit applications where virtual space may be too

small for today’s needs. Fragmentation can be particularly acute when the process

allocates quite large segments of memory and works for quite a long time: exactly the

kind of situation we may have, for example, to deal with in web-based .NET applications

in a 32-bit version (hosted on IIS). To prevent fragmentation, it is the process who must

properly manage memory (and for .NET process this process is the CLR itself). We will

delve it into such details when describing garbage collection algorithms in Chapters 7-10

as it requires a bit deeper understanding of .NET itself.

 General Memory Layout
Knowing the basic memory builder block, we can now go on to discuss memory at a

higher level. The first question that arises is how a program looks in the memory. When

describing a typical memory layout of a program, one can often spot a figure like the

shown in Figure 2-17. It shows the structure of program memory written in C or C++

layout throughout all the virtual memory space. And that is why we are also interested

in it. As we will see in the next chapters, CLR is written in C++, so managed programs

perform in a similar environment.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

104

As can be easily seen, the virtual address space is divided into two areas:

• Kernel space - the upper range of addresses is occupied by the

operating system itself. It is known as the kernel space, since it is the

kernel that owns this area and only the kernel is allowed to operate

on it.

• User space - the lower part of the address range is assigned to the

process. This area is referred to as user space because it is the user

process that has access to that area.

ke
rn

el
 s

pa
ce

us
er

 s
pa

ce

high address

(0xFFFFFF...)

low address

(0x000000...)

stack

heap

text
(EXE)

unitialized data

kernel
data/binaries

Figure 2-17. Typical, generic process memory layout

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

105

From our point of view, of course, the most interesting is user space, because this is

the area of memory where a .NET program resides. Thanks to the existence of a virtual

memory mechanism, each process sees the memory in that way -as if it were the only

process in the system.

Regarding address space, when presenting schematic diagrams of a memory layout,

the most common is a convention in which low addresses (starting at 0) are at the

bottom and then are rising upward. Remember the stack and heap from Chapter 1? The

usual convention is to draw a stack at high addresses and a heap underneath. The stack

grows down, and the heap grows up. This may suggest that the stack could meet with

the heap; but in reality, if only because of the imposed restrictions on the size, it never

happens.

Here are the remaining memory segments description from Figure 2-17:

• The data segment includes both initialized and uninitialized global

and static variables.

• The text segment containing the application binaries along with

string literals. It is named as such for historical reasons because it

contained, by definition, only read-only data.

Such a scheme is actually useful to realize the general layout of memory. But as

soon as we see, reality is more complicated. And it is better described in the context of

two major operating systems from the perspective of the .NET - Windows and Linux

environments.

 Windows Memory Management
The Microsoft Windows operating system is without a doubt the most popular .NET

platform environment. So when we want to look at memory management in the context

of the operating system, the obvious choice is to start from Microsoft Windows.

Because of the system design, the virtual address space is limited depending on the

version of the system. A summary of these limitations is provided in Table 2-5.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

106

Note There is a mechanism called Address windowing extensions (Awe) that
allows us to allocate more physical memory than listed here and then map only
parts of it into a virtual address space through an “Awe window.” This can be
especially useful on a 32-bit environment to overcome a 2 or 3 gB limitation
per process. however, this is not relevant for us because CLR does not use this
mechanism.

Limitations of the size of virtual memory of a single process had become painful at

the end of the reign of 32-bit systems. Limiting up to 2GB (or 3GB in extended mode)

can be problematic in larger enterprise applications. The classic example is ASP.NET

web application hosted on IIS at Windows Server 32-bit machines. If this limit was to be

exhausted, there was no other choice than restarting the entire web application. This

forced horizontal scaling across large web systems, creating multiple instances of servers

that process less traffic, and consequently consuming less memory. Nowadays the world

is dominated by 64-bit systems, and limiting virtual memory is no longer a problem. We

have not yet seen the days when standard programs need tens of terabytes of RAM. But

please note, however, that a 32-bit compiled program has a virtual memory limit of 4 GB

even on 64-bit Windows Servers.

The memory management subsystem in Windows is exposed by two main layers:

• Virtual API - this is a low-level API that is operating on the

page-granularity. You may have heard of the VirtualAlloc and

VirtualFree functions that are examples of functions that belong to

this layer.

Table 2-5. Virtual Address Space-Size Limitations on Windows (User/Kernel)

Process type Windows (32-bit) Windows 8/Server 2012 Windows 8.1+/Server 2012+

32-bit 2/2 gB 2/2 gB 2/2 gB

32-bit (*) 3/1 gB 4 gB/8 TB 4 gB/128 TB

64-bit - 8/8 TB 128/128 TB

*large address aware flag (also known as /3GB switch)

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

107

• Heap API - higher-level API providing Allocator (recall it from

Chapter 1) for allocations smaller than page size. This layer includes,

among others, HeapAlloc and HeapFree functions.

Heap API (exposing Heap Manager) is being typically consumed by the C/C++

runtime implementation of memory management. You are probably familiar with

the popular operators new and delete or malloc and free from C/C++. As CLR has its

own Allocator implementation for creating .NET objects (which we will see in detail

in Chapter 6), mostly Virtual API is being used by it. In a nutshell, the CLR asks the

operating system for additional pages, and the appropriate allocation of objects within

these pages is handled by itself. Heap API is also used by the CLR to create many smaller,

internal data structures.

On Windows, it is important to understand the different memory categories

associated with the process. It’s not as trivial as it might seem. At the same time, without

this knowledge it will be hard for us to understand one of the most important issues -

how much memory the process we observe actually consumes?

In order to answer this question, we need additional knowledge about managing

pages in Windows. Page can be in the four different states listed below:

• Free - not assigned yet to any process nor system itself.

• Committed (private) - assigned to a process. They are also called

private pages because they can be used only by this particular

process. When a committed page is being accessed for the first time

by the process, it is being zero-initialized. Committed pages can be

paged to disk and back.

• Reserved - reserved to a process. Memory reservation means

obtaining a continuous range of virtual addresses without actually

allocating memory. This allows us to reserve some space in advance,

and only then actually commit some parts of it as they are needed.

This does not consume memory physically and is only lightweight

preparation of some internal data structures. Programs can also

reserve and commit memory at once, when they know how big a

block of memory they need at the moment.

• Shareable - reserved for a process but may be shared with other

processes. This typically means binary images and memory- mapped

files of system-wide libraries (DLLs) and resources (fonts, translations).

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

108

Moreover, private pages can be locked, which makes them remaining in physical

memory (will not be moved to the page file) until explicitly unlocked or when the

application ends. Locking can be beneficial for a performance-critical path in the

program. We will see an example of utilizing page locking in a custom CLR host shown in

Chapter 15.

Reserved and committed pages are managed by a process with the help of above-

mentioned VirtualAlloc/VirtualFree and VirtualLock/VirtualUnlock method calls.

It is also worth noticing that attempting to access free or reserved memory will result

in an Access Violation Exception because this memory cannot be mapped to physical

memory yet.

Note why did someone invent such a two-way process of obtaining memory? As
mentioned earlier, a sequential memory access pattern is good for many reasons.
A space consisting of a continuous sequence of pages prevents fragmentation
and thus optimizes the use of TLBs and avoids page-directory walks. Continuous
memory is, of course, also advantageous for cache utilization. It is therefore good
to reserve some bigger space in advance, even if we do not need it now.

Armed with the knowledge of the page statuses, we can look at into what categories

a Windows process memory is divided (Figure 2-18 graphically depicts the relationship

between these indicators as overlapping sets):

• Working set - this is a part of virtual address space that currently

resides in the physical memory. This means it can be further divided

into:

• Private working set - consists of committed (private) pages in the

physical memory.

• Shareable working set - consists of all shareable pages (no matter

if they are actually shared or not).

• Shared working set - consists of shareable pages that are actually

shared with other processes.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

109

physical storage

virtual address space

private bytes

virtual bytes
working set

shared

private
working set

Figure 2-18. Relationship between different memory sets withing a process on
Windows

• Private bytes - all committed (private) pages - both in the physical

and paged memory.

• Virtual bytes - both committed (private) and reserved memory.

• Paged bytes - part of the virtual bytes that are stored in the page file.

Quite complicated, isn’t it? Perhaps now we realize that the answer to the question

of “how much memory actually takes up our .NET process” is not so obvious. Which

of these indicators are we asking for? It is assumed that the most important indicator

is the private working set because it shows what is the actual impact of our process on

the consumption of the most important physical RAM. You will find out how to monitor

these indicators in the next chapter. We will understand also what de facto is being

displayed by Task Manager as a Memory column of a process.

Due to its internal structures, when Windows reserves a memory region for a

process, it takes into account the following restriction - both the region start and its

size has to be a multiple of the system page size (usually 4kB) and so-called allocation

granularity (usually 64kB). This in fact means that each reserved region starts with an

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

110

address being a multiplication of 64kB and has size being a multiplication of 64kB. If

we want to allocate less, the reminder will be inaccessible (unusable). Thus proper

alignment and size of the blocks are crucial in not wasting memory.

Let’s illustrate it by an example. The simple code used for it is shown at Listing 2-7.

It allocates virtual memory pages starting at the provided baseAddress and with a

specified blockSize (specified in bytes). VirtualAlloc function returns an address ptr

of the page that has been eventually allocated.

Listing 2-7. Page allocation code via Virtual API, illustrated to show page and

allocation granurality pitfalls

IntPtr ptr = DllImports.VirtualAlloc(new IntPtr(baseAddress),

 new IntPtr(blockSize),

 DllImports.AllocationType.Reserve,

 DllImports.MemoryProtection.

ReadWrite);

At Figure 2-19 we see a result of calling this code for a few different scenarios. At

Figure 2-19a there is a single, not yet used page illustrated, which starts at address

0x9B0000. Figure 2-19b shows a typical, intuitive situation - we reserve 64kB of memory

(single-page size) at a specific, properly aligned address. As a result, we obtain these

64kB of reserved memory under such address (ptr will be 0x9B0000). Figure 2-19c shows

very similar situation. When 4kB was reserved with a proper base address, an entire

allocation granularity block has been reserved but the rest of it (60 kB) is being marked

as unusable. This memory has been wasted. There is no way to reuse it now. We can spot

such situation in VMMap tool, which we will learn in the next chapter.

Figure 2-19d illustrates a situation when block size is not a multiplication of page

size - it is being rounded up to the nearest multiplication. Thus even we wanted to

allocate 6kB, 8kB is provided to us. The remaining 56kB are again unusable, obviously.

A similar situation illustrates Figure 2-19e where the base address is shifted by 17kB

(0x9B4400) and we want to allocate 4kB. Hence, theoretically, only two pages are needed.

But in such case VirtualAlloc still returns an allocation granularity-rounded start

address of the entire block (0x9B0000), not the value that we provided as a base address

Taking all that into consideration, the worst case would be to reserve memory near

the end of allocation granularity block, what was illustrated in Figure 2-19f. Here even we

want to allocate only 8kB, a two 64 kB blocks are being consumed and almost half of this

memory is unusable.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

111

0x9B0000 0x9C0000

unusable

private

64kB

free

private

4kB at 0x9B0000

unusable

private

6kB at 0x9B0000

unusable

private

4kB at 0x9B4400

unusable

private

8kB at 0x9BF000

64kB at 0x9B0000

(a)

(c)

(d)

(e)

(f)

(b)

Figure 2-19. From the top to bottom: (a) Free single page before any action, (b)
Reserve 64 kB with base address 0x9B0000 (multiplication of 64kB), (c) Reserve 4
kB (single page) with base address 0x9B0000 (multiplication of 64kB), (d) Reserve
6 kB (over single page size) with base address 0x9B0000 (multiplication of 64kB),
(e) Reserve 4 kB (single page) with base address unaligned by 2kB (0x9B0800), (f)
Reserve 8 kB (two pages) with base address very unaligned by 2kB (0x9AF000)

All this is to show us how important it is to care for correct page alignment. Although

we do not manage memory at a Virtual API level on a daily basis, this knowledge can

help us understand the concern for alignment in the CLR code. This knowledge will of

course be necessary if we were to write such low-level code in the future.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

112

A careful reader may ask why allocation granularity is 64kB while page size is
4kB? Raymond Chen, a Microsoft employee, responded to this question in 2003
[why is address space allocation granularity 64K? - https://blogs.msdn.
microsoft.com/oldnewthing/20031008-00/?p=42223]. And as usual in
such cases, the answer is very interesting. Such granularity of allocation is mainly
due to historical reasons. The kernel of the entire family of today’s operating
systems goes back to the roots of the early windows nT kernel. It had supported
a number of platforms, including the DeC Alpha architecture. And it was precisely
this need for adapting to it that such a restriction was introduced. And since it was
found not to be a nuisance to other platforms, the advantage of a common kernel
base code was over the disadvantage of customization to one of the platforms.
Detailed reasons why such a value on this platform you will find in the mentioned
article.

Windows Memory Layout
Now let’s look deeper into the processes running on Windows and executing .NET

application. A process contains one default process heap (mostly used by internal

Windows functions) and any number of optional heaps (created via Heap API). One

example of such an optional heap is a heap created by Microsoft C runtime, consumed

by C/C++ operators as mentioned before. There are three main heap types:

• normal (NT) heap - used by normal (non-Universal Windows

Platform - UWP) apps. It provides basic functionality of managing

memory blocks.

• low-fragmentation heap - an additional layer above normal heap

functionality that manages allocations in varied-sized predefined

blocks. This prevents fragmentation for small data and additionally,

due to the internal OS optimizations makes this access slightly faster.

• segment heap - used by Universal Windows Platform apps, which

provides more sophisticated allocators (including low-fragmentation

allocator similar to mentioned above).

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

https://blogs.msdn.microsoft.com/oldnewthing/20031008-00/?p=42223
https://blogs.msdn.microsoft.com/oldnewthing/20031008-00/?p=42223

113

As mentioned in the case of general process memory layout, virtual address space

is divided into two parts where upper addresses are occupied by the kernel and lower

addresses are occupied by the user (program). This is shown in Figure 2-20 (32-bit on

the left, 64-bit on the right). On 32-bit machines, depending on the large address flag, the

user space is the lower 2 or 3 GB. On modern 64-bit CPUs that support 48-bit addressing,

both user and kernel space have 128 TB of virtual memory available (8TB on previous

versions - Windows 8 and Server 2012).

With some approximation, we can say that the typical user-space layout of the .NET

program on Windows is as follows:

• Default heap mentioned earlier,

• Most images (exe, dlls) are located at high addresses,

• Thread stacks (referred to in the previous chapter) are mainly located

at fairly low addresses but can be located anywhere. Each thread

in the process has its own thread stack region. This includes CLR

threads, which are using native system threads mechanism,

• GC heaps managed by the CLR to store .NET objects we create (they

are regular pages in the Windows nomenclature, acquired by Virtual

API),

• Various private CLR heaps managed by the CLR for its internal

purposes. We will look at them in more detail in the following

chapters,

• There is also of course quite a lot of free virtual address space,

including huge blocks in the order of gigabytes and terabytes

(depending on the architecture) somewhere in the middle of virtual

address space.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

114

The initial thread stack size on Windows (both reserved and initially committed)

is taken from the executable file (commonly known EXE file) header but can also

be specified by methods like CreateThread when creating threads manually by

Windows API.

How .NET runtime calculates the default size of the stack is quite complicated. The

default value is 1 MB for typical 32-bit compilation and 4 MB for typical 64-bit compilation.

Stack data are rather small and the call stack is typically rather shallow (hundreds of nested

calls are rather uncommon). This makes 1 or 4 MB a good default value.

ke
rn

e
l s

p
a

ce
u

se
r

sp
a

ce

high address
(0xFFFF FFFF)

low address
(0x0000 0000)

stack

default heap

DLLs

kernel
data/binaries

4GB

3GB

2GB

kernel/user

stack

GC heap

private CLR heap V
ir

tu
a

lA
llo

c
g

ro
w

ke
rn

e
l s

p
a

ce
u

se
r

sp
a

ce

high address
(0xFFFF FFFF FFFF FFFF)

low address
(0x0000 0000 0000 0000)

stack

default heap

DLLs

kernel
data/binaries

16EB

128TB

stack

GC heap

private CLR heap V
ir

tu
a

lA
llo

c
g

ro
w

16EB - 128TB

Figure 2-20. x86/ARM (32bit) and x64 (64bit) virtual memory layout of process
on Windows runing .NET managed code

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

115

However, if you have ever encountered a StackOverflowException, you have just

collided with this barrier. Even then, this is most probably due to our error of infinite

recursion, which would obviously use an arbitrary large stack space. If we develop our

program in a way that for some reason would like to store a lot of data on the stack, we

can modify the header of the binary file. .NET executable is interpreted as a regular

executable file, so this change will be reflected by the operating system. We will increase

this stack size limit for such a purpose in Chapter 4.

Due to security reasons, Address space layout randomization (ASLR) mechanism
was introduced, which makes all layouts shown at Figure 2-20 only schematic
as all components (images, heaps, stacks) are placed randomly over the entire
address space to not repeat any common pattern that could be used by the
attacker.

I hope that such a birds-eye view will allow us to better understand the place of the

CLR’s memory in the context of the whole Windows ecosystem. We will refer to this

knowledge once again when describing the CLR process layout in details.

 Linux Memory Management
Until not so long ago, a chapter devoted to Linux in a book about .NET would find

at most as a reference on the occasion of the Mono project. But times are changing.

With the advent of the .NET Core environment, it is no longer possible to separate

this platform from non-Windows systems. Moreover, you can anticipate the growing

popularity of running .NET on non-Windows machines. We will devote a lot of attention

to the CoreCLR, the runtime implementation of .NET Core. However, because Linux will

be an alternative with growing popularity, we also need to look a little at this system.

Because Linux uses the same hardware technology, including pages, MMU and TLB,

much of the knowledge is covered by the descriptions in the previous subsections. Here

we will focus only on the differences we are interested in. As more and more people

will have to understand this new .NET environment, I believe it is very beneficial to

understand at least some Linux basics also.

The popular and most-used Linux operating system distributions also use the

concept of virtual memory. Their limits per process are also very similar and are

summarized in Table 2-6.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

116

Like Windows, the basic builder block in Linux is the page, and it is also typically

4kB. The page can be in three different states listed below:

• free - not assigned yet to any process nor system itself.

• allocated - assigned to a process.

• shared - reserved for a process but may be shared with other

processes. This typically means binary images and memory-mapped

files of system-wide libraries and resources.

This makes a simpler and clearer view of the memory consumption by a process than

in the case of the Windows operating system. As you can see, compared to Windows,

the implicit page reservation stage is missing, while still it exists explicitly. Linux has

built-in a lazy allocation mechanism that takes care of it. When one allocates memory

on Linux, it is being treated as allocated but no physical resources are assigned (hence

this is like a reservation on Windows). Actual resources assignment (consuming physical

memory) will not take place until it is actually needed by accessing this particular

region of memory. If you want to proactively prepare such pages in performance-critical

scenarios, you can just “touch” them by memory access like reading at least one byte

within them.

Knowing the possible page statuses, we can look at which categories a process

memory on Linux is divided. There is quite a lot of confusion around this. Many

Linux-based tools say slightly different things about this topic. Here is a most generic

classification I was able to prepare. Process memory utilization can be measured with

respect to the following terms:

• virtual (marked by some tools as vsz) - total size of the virtual

address space reserved so far by the process. In popular “top” tool it

is a VIRT column.

Table 2-6. Virtual Address Space-Size

Limitations on Linux (User/Kernel)

Process type Linux 32-bit Linux 64-bit

32-bit process 3/1, 2/2, 1/3 gB -

64-bit process - 128/128 TB*

*canonical 48-bit addressing

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

117

• resident (Resident Set Size, RSS) - space of pages that resides

currently in the physical memory. Some resident pages can be

shared among processes (those which are file backed or anonymous

also). Therefore, this corresponds to “working set” measurement on

Windows platform. In “top” tool this is referred to as a RES column.

Further it can be split into:

• private resident pages - those are all anonymous resident pages

reserved for this process (indicated by MM_ANONPAGES kernel

counter). That somehow correspond to the “private working set”

measurement from Windows.

• shared resident pages - those are both file backed (indicated by

MM_FILEPAGES kernel counter) and anonymous resident pages of

the process. Corresponding to “shared working set.” In “top” this

is referred to as SHR memory.

• private - all private pages of the process. In the “top” tool this is a

DATA column. Please note this is an indicator of reserved memory and

does not say how much of it has been already accessed (“touched”)

and thus has become resident. Corresponds to “private bytes” on

Windows.

• swapped - part of the virtual memory that has been stored in the swap

file.

Figure 2-21 graphically depicts the relationship between these indicators as

overlapping sets.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

118

Pretty complicated. Just like with Windows, the answer to the question of what is

consuming the memory of our .NET process is not trivial. The most sensible thing is to

look at the “private resident pages” measurement because it shows the actual use of our

valuable RAM resource by the process.

while on windows, allocation granularity is 64kB; on Linux it is just page size
bounded, which is 4kB in most cases.

 Linux Memory Layout
The memory layout of the Linux process is very similar to that presented for Windows.

For a 32-bit version, the user’s space is 3GB and the kernel space is 1GB. This split point

can be changed with the CONFIG_PAGE_OFFSET parameter configurable at kernel build

time. For 64-bits, the split is made at a similar address like on Windows (see Figure 2-22).

physical storage

virtual address space

private

virtual (vsz)
resident (RSS)

shared resident

private
resident

Figure 2-21. Relationship between different memory sets within a process on
Linux

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

119

Similar to Windows, the system provides an API for operating on memory pages. It

contains:

• mmap - to directly manipulate pages (including file maps, shared and

normal ones, and anonymous mapping that is not related to any file

but being used to store program data).

• brk/sbrk - this is the closest equivalent of the VirtualAlloc method.

It allows us to set/increase so-called “program break,” which in fact

means increasing the heap size.

ke
rn

el
 s

pa
ce

us
er

 s
pa

ce

high address
(0xFFFF FFFF)

low address
(0x0000 0000)

stack

dynamic
libraries

kernel
data/binaries

4GB

3GB

data

heap

ke
rn

el
 s

pa
ce

us
er

 s
pa

ce

high address
(0xFFFF FFFF FFFF FFFF)

low address
(0x0000 0000 0000 0000)

kernel
data/binaries

16EB

CONFIG_PAGE_OFFSET

program
break
(brk)

stack

dynamic
libraries

data

heap

program
break
(brk)

0xFFFF 8800 0000 0000

12
8T

B

128TB

Figure 2-22. x86/ARM (32bit) and x64 (64bit) virtual memory layout of process
on Linux

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

120

The well-known C/C++ allocators are using mmap or brk depending on the allocation

size. This threshold can be configured by mallopt and the M_MMAP_THRESHOLD setting. As

we will see later on, CoreCLR goes with mmap way with anonymous private pages.

There is one significant difference in thread stack handling between Linux and

Windows. Because there is no two-stage memory reservation, the stack is just expanded

as needed. There is no prior reservation of the corresponding memory pages. And since

the next pages are created as needed, the thread stack is not a continuous memory area.

 Operating System Influence
Are there any differences in memory management that were taken into consideration in

the cross-platform version of Garbage Collector included in CoreCLR? In general, the GC

code is very platform independent, but for obvious reasons, at some point it must reach

system calls. A memory management subsystem in both systems works in a similar way -

it is based on virtual memory, paging, and a similar way of allocating memory. Although,

of course, called system APIs are different, conceptually there are no specific differences

in code, except for two situations that I would like to describe now.

The first difference has already been mentioned. Linux does not have a two-step way

to allocate memory. In Windows, we can use a system call to reserve a large memory

block first. This will be the creation of appropriate system structures without actually

seizing physical memory. Only if necessary, we make the second stage of committing

memory range of our interest. Because Linux does not have this mechanism, memory

can only be allocated without “reservation.” However, a system API was needed imitating

such a two-step way of work. A popular trick was used for this purpose. On Linux,

“reservation” is made by allocating memory with access mode PROT_NONE, which de

facto means no access to this memory. However, in such a reserved area, we can then

allocate again specific subregions with normal rights, thus simulating “committing”

memory.

The second difference is the so-called memory write watch mechanism. As we will

see in later chapters, the Garbage Collector needs to track which memory areas (pages)

have been modified. For this purpose, Windows provides a convenient API. By allocating

a page, we can set MEM_WRITE_WATCH flag. Then, using the GetWriteWatch system call, we

can retrieve a list of modified pages. While working on CoreCLR, it turned out that there

was no reliable mechanism in the Linux system with a similar API. For this reason, this

logic had to be moved to a write barrier (mechanism explained in details in Chapter 5),

which is supported in runtime without operating system support.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

121

 NUMA and CPU Groups
There is one more important piece of memory management jigsaw puzzle worth

mentioning in the context of the hardware and operating system. Symmetric

multiprocessing (SMP) means a computer with multiple, identical CPUs that are

connected to a shared main memory. They are controlled by a single operating system

that may or may not treat all processors equally. As we know, each CPU has its own

set of L1 and L2. In other words, each CPU has some dedicated local memory that

is accessible much faster than the other regions. Threads and programs running on

different CPUs will probably share some data, and this is by far not an optimal case

because sharing data through CPUs interconnections induces significant delays. Here

is where non-uniform memory architecture (NUMA) comes to play. It means that not

all shared memory is the same from a performance perspective. And software (mostly

operating system but optionally a program itself) should be NUMA-aware to prefer

using those local memories over those more distant. Such a configuration is illustrated

in Figure 2-23.

CPU

cache

CPU

cache

CPU

cache

CPU

cache

CPU

cache

CPU

cache

CPU

cache

CPU

cache

memory memory

NUMA node 1 NUMA node 2

Figure 2-23. Simple NUMA configuration consiting of eight processors grouped
into two NUMA nodes

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

122

Such additional overhead of accessing non-local memory is called NUMA factor.

Because connecting each CPU peer to peer would be very expensive, CPU has typically

connections to two or three other CPUs. In a bad scenario to access distant memory, a

few hops between a processor has to be taken. The more CPUs, the NUMA factor is more

relevant if not only local memory is being used. There are also systems with a somehow

mixed approach where groups of processors have some shared memory and memory is

non-uniform between those groups with a big NUMA factor between them. This is in fact

the most common approach in a NUMA-aware system. CPUs are grouped into smaller

systems called NUMA nodes. Each NUMA node has its own processors and memory

with a small NUMA factor due to hardware organization. NUMA nodes are of course

interconnected but transfers between them imply bigger overhead.

The main requirement of NUMA awareness of an operating system and program

code is to stick with the process memory on DRAM local to the NUMA node containing

the CPU executing it. But this may lead to an unbalanced state if some processes

consume much more memory than others. In Linux it is possible to control NUMA-

awareness behavior per process - whether it should stick with local memory only (good

for small processes) or try to distribute it more evenly (big for huge processes). On

Windows NUMA, awareness must be taken into account during program development.

The question arises, is .NET CLR NUMA-aware? The simple answer is yes, it is!

NUMA awareness could be theoretically disabled by GCNumaAware settings within a

runtime section configuration but currently it is not being exposed.

However, there are two other important application settings shown in Listing 2-8

related to so-called processor groups. On Windows systems with more than 64 logical

processors, they are being grouped into mentioned CPU groups.

We can enable awareness of CPU groups in Windows-based .NET runtimes (see

Listing 2-8), which is obviously important in environments with more than 64 logical

processors.

Listing 2-8. Configuration of processor groups awerness in .NET runtime

<configuration>

 <runtime>

 <Thread_UseAllCpuGroups enabled="true"/>

 <GCCpuGroup enabled="true"/>

 <gcServer enabled="true"/>

 </runtime>

</configuration>

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

123

GCCpuGroup setting specifies whether Garbage Collector should support CPU groups

by creating internal GC threads across all available groups and whether it takes all

available cores into consideration when creating and managing heaps.

Thread_UseAllCpuGroups specify whether CLR should distribute normal managed

threads (executing our code) across all CPU groups. Both options should be enabled

simultaneously with the gcServer setting.

 Summary
We have come a long way in this chapter. We have briefly identified the most important

hardware and system memory management mechanisms. I hope that this knowledge,

together with the theoretical introduction from the previous chapter, has allowed you to

give you a much broader context: the context in which we are when it comes to memory

management in .NET. I also hope that if you did not have it yet, you have gained some

respect for the complexity of this topic. Yes, all we’ve talked about is the foundation of

Garbage Collector in .NET! With each subsequent chapter, we will be moving further

away from general hardware and theoretical statements. And we’ll go deeper into the

.NET environment.

 Rule 2 - Random Access Should Be Avoided, Sequential
Access Should Be Encouraged
Applicability: Mostly low-level, performance-oriented code.

Justification: Due to internal mechanisms on many levels, including RAM and processor

cache designs, sequential access is definitely more optimal. DRAM requires far more

CPU cycles to reach remote memory than its cache. The processor loads data in 64-

byte blocks called cache lines. Each memory access less than 64 bytes is a waste of

expensive resources. What’s more, random access patterns make it unlikely that the

cache prefetching mechanism will work. The processor has no chance of discovering

any predictable pattern with the random access to memory. What is important, by

randomness we do not mean total randomness, but rather the fact that it is not an

ordered access that is compatible with any detectable pattern.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

124

How to apply: Obviously, the opposite of random access is sequential access, so try

always to use it. If you are operating on a large amount of data, you might want to

consider packing them into arrays that are taking care of memory continuity. Iterating

over double-linked lists can be an example of a typical, unstructured access. We will look

closer at this aspect of memory access in Chapter 13 when describing so-called Data-

oriented design.

 Rule 3 - Improve Spatial and Temporal Data Locality
Applicability: Mostly low-level, performance-oriented code.

Justification: Spatial and temporal locality are the pillars of the cache. If present, the

cache is used effectively and helps to achieve better performance. On the contrary. If we

interfere with the temporal and spatial locality, we will lead to a significant decrease in

productivity.

How to apply: Design your used data structures in such a way as to take care of

your data’s locality and to maximize their reusability in time. As we have seen in the

examples given, distributed, random access to data is very unfavorable in terms of

performance and can be several times slower. Sometimes, in very advanced and high-

performance parts of the program, this means applying such non-intuitive changes as

will be presented in Design-oriented design in Chapter 13. Sometimes it only comes

down to ensuring that our data structures are reasonably small, preallocated, and used

repeatedly.

 Rule 4 - Consume More Advanced Possibilities
Applicability: Extremely low-level, performance-oriented code.

Justification: The .NET runtime environment is written in the most generic way. This

is to ensure proper operation in a variety of possible scenarios. However, when writing

our application, we know our needs perfectly. We may need to write extremely fast-

performing fragments of memory-related code. If so, we may consider using some more

advanced operating system-specific mechanisms. Such mechanisms will probably need

about 0.0001% .NET developers in the world. If you are writing memory-related library

like serializers, messaging buffers, or any kind of extremely fast event processor - maybe

you can benefit by using some of the mentioned here low-level APIs of the system (like

non-temporal memory access).

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

125

How to apply: This will require writing a really hard code. This code will be a pain to

manage and probably no one will want to maintain it. Except you. Because it will use

the low-level API of the operating system, it may also cause problems after updating or

changing operating system versions. It is also very unlikely that you need such low-level

memory management at all, because it will require extreme caution in coding. And it’s

very easy to make a mistake, which, instead of increasing performance, will drastically

reduce it.

Read this book carefully. Then read carefully specific operating system books about

its internals. And then try to use advanced mechanisms like large pages, non-temporal

operations, and others mentioned in this chapter.

ChAPTeR 2 Low-LeveL MeMoRy MAnAgeMenT

127
© Konrad Kokosa 2018
K. Kokosa, Pro .NET Memory Management, https://doi.org/10.1007/978-1-4842-4027-4_3

CHAPTER 3

Memory Measurements
Perhaps it is surprising to have a chapter with such a title almost at the beginning of

the book. We have not really said anything about .NET memory management yet,

and we are already looking at the tools associated with it? It is a deeply thought-out

decision. Firstly, using the tools described here, I will often illustrate the specific

concepts discussed later. Secondly, even though I’m trying to make this book be well

balanced, it has a very practical meaning. When discussing various topics, we will

touch on real problems and examples. With the tools outlined in this chapter, you can

see how these problems can be identified and diagnosed. So as long as we do not deal

only with the academic discussion of the Garbage Collector construction, the tools are

inseparable from the theory.

Without knowing what tools to use, we are quite clumsy. We do not know how to

check if our process has memory problems. We do not know how to make sure that

high CPU or memory consumption is associated with .NET memory management.

We do not know what is the possible cause of observed unwanted behavior, as for the

tools themselves. The truth is that there is no single, super universal Swiss Army knife.

Sometimes it is better to check one, sometimes another tool. To fully feel comfortable in

the topic of memory management, it is best to learn how to use each of them. At least if

we want to feel like being an expert in this field.

The range of tools described here will find a wide range of sophistication. At one

end, you can place such low-level tools as WinDbg. With its help we can proceed with

really deep analyses. Knowledge of dozens of magic commands that should be used in

the right order will allow us to investigate a lot. At the other end can be put commercial

products flattering with a convenient user interface. Here everything is pleasant and

easy, so we can get a lot of answers quickly. Even before asking. On the other hand, these

tools only allow what was provided by their creators. and customization is sometimes

very limited. Between these extremes, there are many other tools that are always a

compromise between versatility and ease of use. In my experience, these - let’s call

128

them - high-level commercial programs are almost always enough. But this “almost”

makes a big difference. From time to time. we encounter a problem that we will not solve

easily within the analysis that those programs provide. In other words, if we deal with

this topic seriously, sooner or later, your hands get dirty with grease from the engine.

You may be surprised by the lack of strong representation of static code analysis

tools among those presented here. Almost all tools are based on runtime analysis.

This is because it is not really that simple. The code can translate into many behaviors

depending on the usage characteristics. Even the most inefficient memory management

code fragment will not adversely affect the process if the operations associated with it are

performed - like once per hour. Static code analysis can help, but it can also hurt. It can

concentrate unnecessarily on irrelevant parts of the code.

Performance is more difficult than functionality or code quality, as we often do not

know what “could” or “should” is. There are tools to help us show the violation of certain

thresholds. But even then, without understanding the subject, we are not sure whether

these thresholds apply in our application, in our specific circumstances. That is why

although this chapter is extremely important, without the context of the entire book it

would not be particularly practical.

The way we measure the behavior of .NET programs is radically different depending

on the operating system we use. That is why the chapter is divided into two parts. Each

one is dedicated to one of the two most popular solutions - Windows and Linux. Due to

the very low popularity of using .Net on macOS, tools for this platform are not described

in this book.

Importantly, this chapter is to present what are the different tools and the

basics of how to use them. Their specific use and interpretation of the results will

be provided later in the book. We do not yet have sufficient knowledge about the

Garbage Collector to start using these tools to solve specific problems. Consider this

chapter as a comprehensive list of tools that you can and should use. I encourage you

to try them out while reading, at least a little. Thanks to this, you will gain a powerful

dose of practical knowledge and familiarity with them. It will be useful in the next

chapters. Obviously, there is a big chance that some or all of those tools are known to

you. Feel free to skip their description, especially in the part showing basic steps in

using them.

Please note also that this chapter suffers a little of the chicken and egg problem -

it is impossible to show the practical side of many GC-related topics without

using tools described here, while tools described here require often quite a good

Chapter 3 MeMory MeasureMents

129

understanding of those GC-related topics. To not clutter the whole book with those

tool descriptions introduced here and there, some basic usage is presented now,

even if it mentions GC-related concepts. Therefore, do not be afraid if you do not

understand every detail described here. I expect you will occasionally return to this

chapter when using these tools in your regular work, with the full understanding

gained from this book.

 Measure Early
When we ask experts about performance optimization, frameworks developers,

or simply professionals who have already seen many issues - what is the most

important thing to take care of performance? – they all respond in the same way:

measure early. Everyone probably heard the phrase that premature optimization

is the root of all evil. First of all, it just does not pay off to spend hours or days

optimizing code that will give us a really negligible return without compromising

on either the economy or the hardware resources, or the shorter processing times of

the application. And worse, it will surely translate into increased development costs.

And probably unnecessarily complicated and thus unreadable code. The good rule

is the opposite - instead of prematurely focusing on optimization, let’s first measure

whether we have any need at all. And since it’s a book on memory management in

.NET, it leads us to the next general rule - Measure GC Early - which I introduce at

the end of this chapter.

Each measurement can be saddled with greater or lesser error. In addition,

measuring may interfere with the observed process. We know these facts from

physics and it’s no different in the case of process parameters’ measurements.

Therefore, the answer to the question “how to measure” can be either very simple

(if we do not go into details) or very complicated (if we take into consideration the

precision). Different tools provide different precision and I will talk about it a little.

However, the statistical discussions about the measurement errors are out of the

scope of this book. Just be aware that certain inaccuracies can always happen as

soon as we measure something.

Still, just because it is so important in the context of measurements, I want to

highlight here a few major concepts and misconceptions. With these issues we will meet

in the later part of this chapter as well as throughout the rest of the whole book. And

most importantly, also in our daily work.

Chapter 3 MeMory MeasureMents

130

 Overhead and Invasiveness
When it comes to different tools for measuring our application, it’s always important to

keep in mind the two following, most important concepts:

• overhead - it is hard to find a tool whose usage to measure an

application does not make it slower or consume more resources

in some way. We are talking then about the overhead of this tool

and we usually express it by percentage. Certain tools can cause

barely noticeable overheads at a few-percent level. This means,

for example, that web application response times will be a few

percent longer. Or these percentages will decrease the fluency of

the animation in the desktop application. Such low-overhead tools

can be used even on production environments. On the other hand,

there are tools that by attaching to our application slow it down

by orders of magnitude. In general, they provide a great deal of

detailed information in return. However, due to the overhead they

bring, they are only suitable for use on development environments

or only single-developer stations.

• invasiveness - this concept is similar and is about how much the tool

affects the functioning of the application as such. Does using the tool

require running this application again? Do you need any additional

permissions or installed extensions? Ideally a non-invasive solution

can be turned on and off during application running without any

effect on it. On the other hand, a completely invasive solution would

require recompiling our application and re-deploying it to a given

environment.

 Sampling vs. Tracing
Another aspect of tool activity is how it collects diagnostic information. There are two

main approaches:

• tracing - in this approach diagnostic data is collected on the occasion

of specific, highlighted events (hence its other name - event-based).

An example may be saving tracking data when opening or closing

Chapter 3 MeMory MeasureMents

131

a file, at the moment of clicking the mouse, or starting the process

of garbage collection. The undoubted advantage of this solution

is the precision of the data, because they come from the moment

of occurrence of the event and we may write all events of a given

kind. However, if such events were very frequent, this would cause

a very big overhead. Therefore, this kind of mechanism is not used

for such frequent and low-level events as entering or returning from

functions. Unless we can afford a very big overhead, for example, at a

local developer station.

• sampling - in this approach, we agree to the loss of data precision

and we only collect diagnostic data from time to time (hence

its other name - time-based). This way we only try to sample the

application state and the less frequently we do it, the less accurate

the results we get from our measurements. A typical example of

this approach is a periodical-saving functions call stacks on all

processors, for example, every 1 ms. This allows you to statistically

find out which functions are executing the longest. Although of

course we can unfortunately lose information about functions that

always run faster than 1 ms.

 Call Tree
One of the most commonly used visualizations of application behavior is to build a

call tree. In such a tree, each node represents one function. The children of such node

represent other functions that this function has called. Each function has also some

measurement attached, most likely total execution time. In fact, there is very often a pair

of indicators related to each function (each element of a tree):

• exclusive - only measures the value of this particular function. In case

of execution time, this will be the time spent only in this particular

function.

• inclusive - measures the value of this particular function and the sum

of all its descendants’ measurements. In case of execution time, this

will be the time spent in this function, all other functions called by it,

all functions called by them and so on, and so forth, recursively.

Chapter 3 MeMory MeasureMents

132

In addition, the percentage of a given measure is often determined with

respect to the entire range examined. This is known as inclusive % and exclusive

% measurements. Let’s look at an example in Figure 3-1 showing results from a

hypothetical profiler.

We see here that function main has spent 100% inclusive time of the program - which

was 3 seconds. This is the main function calling all other functions so this is an expected

behavior. But only 22% of this time was spent in the main function itself; the rest was

spent in other functions called by it. For example, 78% of time was spent in SomeClass.

Method1 function. Then, 66.7% of all time this function was devoted to calling another

method called SomeClass.HelperMethod. Navigating through this call tree we will very

quickly find out which application components are the slowest.

Please also note that such trees typically present aggregated data. In case of our

example from Figure 3-1, it aggregates all mentioned method calls occurrences. So the

main method was called only once, while the HelperMethod was called two thousand

times (which explains why its aggregated inclusive time is so big). Therefore, analysis of

such a tree involves searching for long-lasting methods or methods not necessarily slow

but called many times.

main

SomeClass.Method1

SomeClass.HelperMethod

OtherClass.MethodA

OtherClass.MethodB

Method name
Inclusive

[ms]
Inclusive

[%]
Exclusive

[ms]
Exclusive

[%]

3000

2340

2000

360

120

100.0

78.0

66.7

12.0

4.0

660

50

200

10

10

22%

1.7%

6.7%

3.3%

3.3%

Exclusive
Counter

1

3

2000

20

21

Figure 3-1. Example of a call tree showing performance data

The same idea can be used to visualize memory usage, where each node

represents one particular type of object. Its children are other types whose instances of

that type this object contains or refers to. Believe me, when analyzing the performance

or memory consumption of your application, you will often be using these types of

visualizations.

Chapter 3 MeMory MeasureMents

133

 Objects Graphs
In the context of memory, we often use a graph representing relationships between

objects in memory called an object graph or reference graph. An example of such a

graph was seen in Figure 1-12 in the first chapter and is illustrated in Figure 3-2. In our

example, it shows a set of objects with some referencing the other and only a single root.

In general, such graphs for normal program sizes can be very large so their visualization

is not easy; thus typically we analyze only a smart part of it. You can use them to show

both aggregated information (how many instances of a given type have references to

other types) or information about a particular instance (to which other object instances

given objects have references).

A B F

E

HGC

D

root

Figure 3-2. Example of objects’ graph. Retained subgraph of object B has been
additionally marked.

With object graphs, there are three important concepts that appear in the different

tools you will have the opportunity to use:

• shortest root path - determined for the selected object, this is the

shortest path of references from a particular object to some root. As

the object graph can be complex and there may be multiple paths

between the root (or even multiple roots) and the object, there is

also obviously the shortest one. For illustration 3-2, the shortest

root path for object H is the path root-A-H. There are also longer

paths: root-A-C-G-H and root-A-B-G-H. The shortest path to the

root may be important because it most often indicates the main and

Chapter 3 MeMory MeasureMents

134

strongest relationships between objects and is a good indication

what is the main reason that makes an object impossible to be

considered unreachable (and thus removable). Other paths are

most often created as a side effect of other complex dependencies.

However, sometimes the shortest root path may be misleading as it

is created by some (sometimes temporary) auxiliary references like

caches. With such a situation we seem to be dealing in Figure 3-2

where object A probably holds the reference to object H for

convenience (like caching), while H business owner is located

among objects B, C, or G.

• dependency subgraph - determined for the selected object, this

is the subgraph that contains the object itself and all objects that

have direct or indirect references to it. At Figure 3-2, for example,

the dependency subgraph of object B contains B and objects D, E,

F, G, and H.

• retained subgraph - determined for the selected object, this is the

subgraph that would have been removed if you removed the given

object itself. Because the dependency graph can be complex, deleting

an object does not necessarily mean that all objects that depend on

it are removed. References to them may still be kept by other objects.

The retained subgraph of object B from Figure 3-2 contains object B

and objects D, E, and F.

Along with these concepts there are also different interpretations of

how the object size is indicated in the tools:

• shallow size - the size of the object itself (all its fields including

the size of references to other objects). This is obviously easy to

calculate.

• total size - the sum of the shallow size of the object and all shallow

sizes of objects to which it has direct or indirect references. In other

words, it is the total size of all objects in the dependency subgraph.

This is also easy to calculate because we just need to find an object’s

dependency subgraph and sum all the shallow sizes of included

objects.

Chapter 3 MeMory MeasureMents

135

• retained size - total sum of all objects in the retention graph. In other

words, retention size is the amount of memory that can be released

after deletion of a given object. The more objects are shared by

different references in the object graph, the retention size is smaller

than total size. It is the hardest to count because it requires complex

analysis of the entire graph of objects.

Whenever the tool we are using is talking about the size of the object,

it is worth asking yourself which of the mentioned “sizes” is taken

into consideration.

 Statistics
Whenever we aggregate some measurements in different ways, we use statistical tools

to a greater or lesser extent. If we do it unconsciously, this involves the risk of erroneous

conclusions. For example, the most commonly used method of aggregating data is to

calculate the average, which should give a sense of “typical value.” But the average has

two main disadvantages: its results do not point to any specific sample (did anyone

see 2.43 children of the average family?). And it easily hides the true nature of the data

distribution (as will soon be illustrated). Similar to other simple measures such as

variance, those problems are perfectly illustrated by the so-called Anscombe’s quartet

(see Figure 3-3 taken from Wikipedia). Sometimes very different data sets may lead to

statistically identical conclusions.

Chapter 3 MeMory MeasureMents

136

The advantage and the cause for the popularity of the average is its intuitiveness and

the fact that it can easily be calculated without storing individual samples - with each

additional sample, we increase the sum and then divide it by the number of samples

observed. Other aggregation methods require that all samples be kept up to date. This

can create a lot of overhead for the tool.

What other methods of aggregation should you use? The most common include:

• median - the value separating the higher half and the lower half of the

samples. It gives a better idea of the typical value because it is more

resistant to very mismatched samples. Moreover, it indicates one of

the real samples, not an artificially calculated one.

• percentile - the value below which a given percentage of samples

fall. For example, the 95th percentile is the value below which

95% of the samples may be found. This is a great indicator of

Figure 3-3. Anscombe’s quartet - four datasets with the same average and
variance of x and y data. Source: Wikipedia

Chapter 3 MeMory MeasureMents

137

the data we are interested in, without taking into account very

unusual measurements. I strongly encourage you to measure

percentiles in the tools you use. Percentiles are also often

business driven. For example, we want to make sure that 90%

of response times of our application will not be slower than 1

second and 99% will not be slower than 4 seconds. Measuring

90th and 99th percentiles of response times will allow us to easily

control this.

• histogram - graphical representation of the distribution of samples.

It shows how many samples fall within specific ranges of values.

It is the best possible measurement as it shows us the whole data

distribution.

All those metrics are presented in Figure 3-4, showing an example histogram

of the response time distribution - how many responses there were within each

response time range (expressed in milliseconds). From the histogram we can clearly

see that the most common response time is between 110 +/- 5 ms, and the more

response time differs from this value, the less frequently it occurs. Moreover, we can

say that:

• The average response time is 104.3 ms.

• 10% of all responses are shorter than 60 ms (10th Percentile).

• Median is 100 ms.

• 90% of all responses are shorter than 150 ms (90th Percentile).

Chapter 3 MeMory MeasureMents

138

Distribution showed in Figure 3-4 is very similar to so-called normal distribution,

often named also the bell curve, due to its characteristic shape. Many measurements will

fall into this category, making interpretation of percentiles (and even an average) quite

sensible.

However, be especially careful about the occurrence of so-called bimodal (and

multimodal in general) distribution of data, which produces both the average and even

the median and percentiles values that do not make a lot of sense (see Figure 3-5).

Clearly, there are two types of responses measured (in fact, two different normal

distributions), so making any aggregations on both of them is quite misleading. We

would rather like to say that there are two categories of responses with medians around

40 and 150 ms (and should probably investigate why such bimodal response time

happens in the first place).

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Average
(104.3ms)

10th Percentile
(60 ms)

Median
(100 ms)

90th Percentile
(150 ms)

Response Time Range [ms]

N
u

m
b

er
 o

f r
es

p
on

se
s

Figure 3-4. Example of histogram with the values of median, 10th, and 90
percentile shown - normal distribution of data

Chapter 3 MeMory MeasureMents

139

Fortunately, multimodal distribution may be easily, visually detected on a

histogram; thus it makes it so crucial to have such data available when measuring

something (or at least have an automatic indication that multimodal distribution has

been detected).

The more measurements other than the average the tool offers, the better.

Unfortunately, the vast majority still use only the average (with a very few showing any

histograms). You need to be very careful when drawing conclusions. And it is best to try

to use a tool that will also show us the distribution of results by means of percentiles or a

histogram.

 Latency vs. Throughput
Two title concepts are very important in the context of any performance analysis and

optimization. Unfortunately, they are also sometimes misunderstood and mistakenly

interpreted. Most often we think that one comes from the other and that they are

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Average
(92.4 ms)

10th Percentile
(30 ms)

Median
(70 ms)

90th Percentile
(170 ms)

N
u

m
b

er
 o

f r
es

p
on

se
s

Response Time Range [ms]

Figure 3-5. Example of histogram with the values of median, 10th, and 90
percentile shown - bimodal distribution of data

Chapter 3 MeMory MeasureMents

140

completely dependent on each other. Therefore, it is worth giving them a few words of

explanation. Let’s start from their simple definitions:

• latency - time required to perform a given action. It is measured in

some units of time - days, hours, milliseconds, and so on.

• throughput - number of actions executed per specific amount of time.

It is measured in actions (or whatever a single specific item is) per

some unit of time - like bytes per second, iterations per millisecond,

or books per year.

A simple equation called Little’s Law designates the relationship between these

indicators:

occupancy = latency * throughput

where occupancy means a number of actions in a period of time designated by

the latency. What is important, this equation applies to a stable system, where there

is no unnatural queuing or dynamic adaptation to load change (e.g., during startup or

shutdown of the system).

These two concepts are most commonly encountered in the context of computer

networks but for our purposes we will use a more useful context of web applications.

The processing time of a single user request determines the latency. The number of user

requests per unit of time determines the throughput. Occupancy will be the number of

requests in our system during considered period of time.

Of course, lowering latency (for example, by using a more powerful CPU) makes us

process more user requests per unit of time so it also raises throughput. On the other

hand, we can increase throughput just by increasing the number of processed requests

in parallel (for example, by using more CPU cores, etc.) without changing latency (see

Figure 3-6). In general, in computer science it is easier to increase throughput (by any

kind of parallelization) than to decrease latency (by introducing complexity in more

sophisticated hardware or algorithm design).

Chapter 3 MeMory MeasureMents

141

Of course, increasing throughput is not possible indefinitely. And often after some

threshold, further increasing throughput also negatively impacts latency as actions are

not completely independent. Additional synchronization costs impacting latency may

swallow the gain from increased throughput.

There is also a popular Amdahl’s law derived from the fact that potential latency speedup

is limited by the serial (not possible to parallelize) part of the program. So, for example, if 90%

part of the program may be parallelized, there is still 10% that will run normally. Thus, the

maximum potential speedup in such case is limited to at most 10 times.1

 Memory Dumps, Tracing, Live Debugging
In order to analyze the state of our application, we have several standard approaches

that differ in invasiveness:

• monitoring - usually means non-invasive application monitoring

and the use of diagnostic information that it generates (either with

the help of tracking or sampling). Sometimes it takes a more invasive

form (such as a reboot of an application) but still allows you to

observe it in action, even in a production environment.

1 Please note that it extends to the whole application and underlying libraries, runtime, and other
components, not only our code. So in case of an ASP.Net web application, even if all requests
processing may be parallelized, there still may be some serial parts like session management,
parts of the framework/hosting and, parts of the Garbage Collector executions.

(a)

(b)

(c)

X seconds

Figure 3-6. Throughput vs. latency relationship: (a) with some base latency we
are able to process 5 requests per X seconds, (b) with shortened latency we are able
to process 7 requests per X seconds, (c) by doubling parallelization we doubled
throughput to 10 requests per X seconds without changing latency

Chapter 3 MeMory MeasureMents

142

• core dump (memory dump) - means saving the memory state of a

process at a given moment. Most of the time, the state of the entire

memory is saved to a file, and only then, on another machine, is

being analyzed by various tools. Such a memory dump can take up

a few gigabytes, but using the right skills can provide very detailed

information about the state of our application. On the other hand,

it is just a glimpse of the snapshot of the process at a given moment,

and without the context of the change in time it is sometimes

difficult to come to concrete conclusions. Therefore, two or more

memory dumps are often performed and compared to each other.

Invasiveness of taking a memory dump differs. Most often it causes

the process to temporarily pause for some time. An important

application of memory dumps is their automatic execution after

application failure, which allows for later investigation of its cause

(called post-mortem analysis) - hence we can spot also a crash dump

name as a special case of memory dump. In practice, the concept of

crash dump and memory dump are used interchangeably in the tools

you will encounter.

• live debugging - the most invasive approach is to connect the

debugger to the process and analyze the application step by step.

This is the least common approach since the two previous ones

are generally sufficient. Live debugging stops application entirely

so it is possible only on development environment, if it is needed

at all. Thanks to extensive monitoring and diagnostic tools, live

debugging is rather uncommon in case of memory management

solving.

 Windows Environment
Let’s get started by getting to know the tools on the native platform where .NET was

born. It has been present here for about 15 years. The power of choice and level of

refinement of tools on Windows are very good. We will begin by learning the low-level

tools, free and built into the system. We devote the most time to them just because they

will be used frequently later in the book. But for completeness, we’ll finish with a review

of commercial programs.

Chapter 3 MeMory MeasureMents

143

 Overview
Windows monitoring and tracing infrastructure is quite mature, including context

of the .NET environment. There are two main components available: metrics-driven

performance counters providing time series of measurements and an event-driven

mechanism called Event Tracing for Windows (ETW). Those two tools cover almost

all the monitoring and diagnostic needs. There is also a Windows Management

Instrumentation mechanism, but it is not being used for our purposes at all (as it is more

dedicated to, as its name suggests, management and administration).

When developing .NET, the choices were obvious in the field of the diagnostic

mechanism used. Both a mature .NET Framework and its multiplatform counterpart

.NET Core support both performance counters and ETW as diagnostic platform. More

precisely:

• .NET application - can use EventSource class (from System.

Diagnostics.Tracing namespace) to emit ETW events or obviously

can use any other library to log directly into the files and many other

possible targets.

• .NET framework - emits both Performance Counters and ETW data.

• Operating system API and kernel - also emits both Performance

Counters and ETW data.

Now we will devote quite a lot of words to those two mechanisms and how to

consume them in various tools.

 VMMap
This great tool, part of Microsoft’s Sysinternals tools suite, allows you to analyze process

memory usage from the operating system point of view. It will be used by us in later

chapters to see how .NET application consumes memory, with respect to organization

described in Chapter 2 (pages that may be committed or reserved for various purposes).

It is a stand-alone tool not requiring any installation and may be downloaded from

the a https://docs.microsoft.com/en-us/sysinternals/downloads/vmmap site.

After unpacking and running it, we select process of our interest to immediately see

its memory usage analysis (see Figure 3-7). VMMap detects pages used by the .NET

Managed Heap as well as pages dedicated for stack or loaded binaries.

Chapter 3 MeMory MeasureMents

https://msdn.microsoft.com/en-us/library/system.diagnostics.tracing(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.diagnostics.tracing(v=vs.110).aspx
https://docs.microsoft.com/en-us/sysinternals/downloads/vmmap

144

 Performance Counters
One of the most commonly used tools for monitoring virtually every aspect of Windows

is the so-called Performance Counters mechanism. This is a very lightweight mechanism

that can be described in one sentence - processes can use it to share diagnostic data

in a form of time series of numbers. The huge advantage of it is that it is a completely

non-invasive mechanism and does not have a noticeable overhead. The disadvantage

is precision - it is generating samples each single second, which may be not enough for

specific purposes.

There are many different categories in which these data are published. Thanks to this

we can get very comprehensive knowledge about the system. The general performance

counters architecture is shown in Figure 3-8.

Figure 3-7. Sample VMMap view of simple .NET application (for example,
Managed Heaps were properly detected)

Chapter 3 MeMory MeasureMents

145

In general, each process can decide to publish data under some specific

Performance Counter and there can be multiple processes doing it. This mechanism

works in user space rather than kernel level.

Each performance counter has several important attributes:

• category - defines what general scope of a given topic is the counter

about;

• name - uniquely identifies counter within a given category;

• instance name - there may be multiple instances of the same

counter in the system. By far the most common instances represent

individual processes.

The combination that uniquely identifies the performance counter is written as

"\<Category>(<Instance>)\<Name>". For example, the counter that indicates the CPU

usage by the notepad process (notepad.exe) will be referred to as "\Process(notepad.

exe)\% Processor Time".

What sample data can we get this way? I mention only a few of them to show the

wealth of information provided:

• How the CPU usage spreads between the kernel and the programs

(Processor/% Privileged Time, Processor/% User Time);

• To what extent the individual processes consume the CPU

(Process/% Processor Time);

\CategoryA\Name1

Kernel

Reader

\CategoryX(Process A)\Name1

data

\CategoryX(Process B)\Name1\CategoryX(Process A)\Name1

\CategoryX(Process A)\Name2 \CategoryX(Process B)\Name2

\CategoryY(Process B)\Name1

Reader

Process A Process B

Performance Monitor ...

Figure 3-8. Performance counters architecture

Chapter 3 MeMory MeasureMents

146

• To what extent and how the individual processes consume the

memory (Process/Working Set, Process/Working Set -

Private);

• How the hard drive is used (Process/IO Read Bytes/sec, Process/

IO Write Bytes/sec, Process/Page Faults/sec);

• Is write/read to disk queued (PhysicalDisk/Current Disk Queue

Length);

• How many exceptions does the .NET application generate? (.NET

CLR Exceptions/# of Exceps Thrown/sec).

Of course, we are most interested in the .NET CLR Memory category where we find the

following counters (spelling and capitalization unchanged):

• # Bytes in all Heaps

• # GC Handles

• # Gen 0 Collections, # Gen 1 Collections, # Gen 2 Collections

• # Induced GC

• # of Pinned Objects

• # of Sink Blocks in use

• # Total committed Bytes, # Total reserved Bytes

• % Time in GC

• Allocated Bytes/sec

• Finalization Survivors

• Gen 0 heap size, Gen 1 heap size, Gen 2 heap size, Large

Object Heap Size

• Gen 0 Promoted Bytes/Sec, Gen 1 Promoted Bytes/Sec

• Process ID

• Promoted Finalization-Memory from Gen 0

• Promoted Memory from Gen 0, Promoted Memory from Gen 1

Chapter 3 MeMory MeasureMents

147

Note those performance counters names (as others in .net CLr categories)
are translated into the language of the operating system, so in your computer
or server you may find it under different names and categories. this can be
Very annoying because in many translations, those names sound a bit odd. I
suggest you switch to english for this and many other reasons as the default
Windows language.

If the Garbage Collection topic is at least a little known to you, you probably guessed

the meaning of most of the above counters. We will see them successively throughout

the rest of the book. It is already enough to say that this is a complete set of data allowing

for a very in-depth understanding of the state of our application.

Calculation of the counters is synchronized with the Garbage Collection life

cycle. In particular, most measurements take place at the beginning or the end of

the GC. In this sense, performance counters can provide very valuable and accurate

information. However, there are some important remarks that should be mentioned

in this context:

• The reading of the performance counter values is purely

controlled by how often the tool we use samples it. If it samples

often enough (like every second), the data will be completely

accurate. However, if it samples rarely, the results may be very

erroneous and misleading. For example, taking samples in such

an unfortunate way that we will always hit full Garbage Collection

(the one consuming the most resources), we will get false view

about how much % time in GC is being spent. In other words,

let’s pay close attention to the way we sample data when we use

performance counters. The best rule is to simply sample the data

as often as possible.

Chapter 3 MeMory MeasureMents

148

• Performance counters data are only updated when specific events

occur (mainly the mentioned GC start and end), and then their

values remain unchanged. This may lead to misleading readings.

Suppose, for example, that in our process full GC has recently

occurred during which % Time in GC was at level of 50%. From this

point on, the counter % Time in GC will indicate a high 50% value

even if the observed process does not perform any work. As long as

no new GC occurs, those values will not be updated. In other words,

by observing counters, we should focus more on the changes than

on current values. The observed value is just the last one that was

sampled recently.

Microsoft, since .NET 4.0, prefers the use of ETW data (described in the following

subchapter) instead of performance counters. However, the use of performance counters

is much simpler than that of ETW and hence the high popularity of this mechanism. We

will observe in detail the difference between measurements of performance counters

and ETW in Chapter 5.

There may be many different consumers of data provided by performance counters.

A lot of monitoring tools are using underneath performance counters because it is a very

lightweight, no-waste way to get massive amounts of information. But one of the easiest

tools, very often used, is the built-in Windows Performance Monitor. Run it with the

perfmon.exe command or by searching on the Start menu.

Then select Performance ➤ Monitoring Tools ➤ Performance Monitor item on the

left. In the graph that appears, in the context menu select Add Counters... option (see

Figure 3-9).

Chapter 3 MeMory MeasureMents

149

Figure 3-9. Performance Monitor - overall view with Add Counters context option

Figure 3-10. Performance Monitor - Add Counters dialog

Use the dialog box to select the category of interest (.NET CLR Memory in our case)

and specific counters and instances (see Figure 3-10).

Chapter 3 MeMory MeasureMents

150

After adding counters, we often need to take a moment to adapt the charts to our

needs. It is primarily about:

• Scaling of each chart (Data tab, Scale parameter),

• Frequency and number of samples (General tab, Sample every

parameters, and Duration),

• Graph vertical scale (Graph tab, Vertical scale Minimum, and

Maximum parameters),

• How the graph is being scrolled (Graph tab, Scroll style parameter).

Properly selecting the above parameters (and possibly choosing the thickness and

color of each data series), we can adjust the graph to short-term analysis or to observe

daily trends. The following examples in Figures 3-11 and 3-12 illustrate this.

Figure 3-11. Performance Monitor - short period analysis (100 seconds) with GC
generation sizes visible

Chapter 3 MeMory MeasureMents

151

The performance counters mechanism has a certain annoying trait that we will

have to learn to live with. As I mentioned, every process that publishes counters

under the same name has a unique instance name. It corresponds to the name of

the process. For example, a web application hosted on IIS will have a \.NET CLR

Memory(w3wp)\# Bytes in all Heaps counter (because application pool process

has name w3wp.exe). However, if there are several applications on the server hosted

in different application pools, there will be several instances numbered sequentially,

like w3wp, w3wp#1, w3wp#2, etc. How can we find out which instance corresponds to

which application pool? Here will help us: .NET CLR Memory/Process ID counter.

Thanks to it, we may find out what the PID of each instance process is. But be careful!

The annoying part starts here – the assignment between a process and performance

counter instance can change over time! If, for example, one of the application pools is

stopped (due to inactivity or so), the remaining processes will override their instance

assignment (see Table 3-1).

Figure 3-12. Performance Monitor - long-term analysis (50 minutes) with GC
generation sizes visible

Chapter 3 MeMory MeasureMents

152

It is very annoying, especially if you want to create, for example, an automatic

mechanism to observe specific application pools. Then it is important to ensure that

things like automatic stopping of the application pool do not take place at all. With a

similar mechanism we are also dealing with if IIS has enabled the option to restart the

application pool by means of overlapping. Then we have two instances of the same

counter for a moment, so such an unfortunate instance of reassignment is certain.

Due to the above-mentioned nonobvious mapping, in the case of manually

observing IIS hosted applications, the most common scenario is as follows: we check the

current PID of the application pool we are interested in and look for a w3wp instance that

has a corresponding .NET CLR Memory/Process ID counter. Then we add the counters

of this particular instance.

It’s actually all about what you can say about Performance Monitor. There are many

other programs that consume performance counters, but let’s just stop here. We will use

Performance Monitor to illustrate Garbage Collection in action on Windows.

 Event Tracing for Windows
Among the various diagnostic tools available, undoubtedly one of the most powerful is

the mechanism called Event Tracing for Windows (ETW). It seems to be, unfortunately,

still a little underrated as per its capabilities. Perhaps this is due to the fact that this

mechanism is developed gradually over the years and has yet to earn his rightful

interest. It was present since Windows 2000 but with every new version of the system

offers more and more. It has been extensively developed in Windows Vista and

Windows Server 2003. In Windows 7, it introduces key logging capabilities of storing

call stack per every event (see https://msdn.microsoft.com/en-us/library/

windows/desktop/dd392330).

Table 3-1. Problem with Application Pool Instances Dynamic Renaming

Before process with PID 11200 stops After process with PID 11200 stops

w3wp instance represents pID11200 w3wp instance represents pID 8710

w3wp#1instance has pID 8710 w3wp#1 instance represents pID 10410

w3wp#2instance has pID 10410

Chapter 3 MeMory MeasureMents

https://msdn.microsoft.com/en-us/library/windows/desktop/dd392330
https://msdn.microsoft.com/en-us/library/windows/desktop/dd392330

153

The power of the ETW mechanism is to provide vast amounts of information with

very low overhead, which typically is smaller than few percent. Thanks to that it can be

used in production systems without problems. It can be turned on or off while running

our applications, without having to restart them. Many tools benefit from the ETW in

fact. We may not even be aware of how much. For example, the well-known Event Log

and its browser (eventvwr.exe) and Resource Monitor (resmon.exe) are built on this

mechanism. They simply visualize events logged via ETW. However, to dispel doubts,

the performance counters mechanism described in the previous section is not based on

Event Tracing for Windows.

Before we go into the description of specific tools, it is good to get acquainted with

the overall architecture of this solution. The ETW mechanism can distinguish certain

concepts, which knowledge is very useful when using it. These are:

• ETW event - a single event that can be logged in the system.

• ETW session - central part of the whole mechanism. Conceptually

it means, as the name suggests, an ongoing tracing session.

Technically, this is a collection of system resources, such as in-

memory buffers and threads for writing to disk (see Figure 3-13).

• ETW provider - each user or kernel mode element that can deliver

events. There are many built-in system providers, grouped by certain

categories, such as network providers, processes, etc. This also

includes .NET runtime and our code as well (if we wish to publish

our custom ETW events). Providers are identified by a global unique

identifier (GUID).

• ETW controller - the process that is responsible for creating a session

and connecting it to selected providers.

• ETW consumer - any tool that somehow consumes events data,

storing them into so-called Event Trace Log (ETL) file or presenting in

real time.

ETW Session is designed for the lowest possible overhead (see Figure 3-13). From the

point of view of the process, this is just a quick action involving a non-blocking write to

the queue (in-memory buffer) maintained at the kernel level. And when the application

continues normal operation, the dedicated kernel thread processes those queues and

writes events to specific targets - usually to the file or to some another in-memory buffer

(to conduct real-time analysis).

Chapter 3 MeMory MeasureMents

154

Conceptually, the same provider can provide information to several sessions (see

Figure 3-14). Conversely, a session can receive information from multiple providers.

ETW’s characteristic feature is to operate on the level of the providers rather than

processes. In order to gather information from one or more providers, with the help of

controller we create a new session to which we attach them. Since the session starts, all

processes in the system that implement that provider will log events to our session. So

it can be said that it is gathering events for the whole machine, not a specific process.

Filtering of data for the processes we are interested in is only at the analysis level, in the

consumer program.

user mode kernel mode

in-memory buffer

FILE

process
(ETW Provider)

ETW Sessionlock-free
writes

kernel
thread

Figure 3-13. Event Tracking for Windows internals

Chapter 3 MeMory MeasureMents

155

Holding events in buffers outside the application process also has another

advantage - the application crash will not cause the loss of diagnostic data. Of

course, when logging a large number of events, access to the disk can become the

bottleneck and create overhead for the entire machine. However, we will encounter

this situation only when we choose too many intensively used providers for our

session. Another threat could be the exhaustion of disk space, but there is a solution.

You can write data to a file in circular-buffer mode, where we do not have to worry

about disk overflow. Data will be overwritten cyclically in a fixed size buffer. The

most typical scenario is to run session storing data in a circular-buffer and wait for

a specific scenario to happen. Only then we close the session and save data from

buffer to the file.

From Windows 7 it is possible to collect a stack trace associated with kernel and

user events. The payload of such special events (paired with the source events) are the

hexadecimal addresses on the stack frames, which are decoded only after, at the analysis

phase. This applies, however, to native code (that is, also the CLR code), but no managed

code prior to Windows 8. The stack trace of dynamic code generated by the 64-bit JIT

in this case will not be decoded (it will be, however, for 32-bit code). This problem was

fixed in Windows 8, where the ETW framework in the kernel was changed to recognize

64-bit JIT frames and traverse them without issues.

ETW Provider

Kernel Process B

ETW ConsumerETW Consumer
ETW Controller

ETW Provider ETW Provider

ETW SessionETW Session ETW Session

Process A

Process C
Process F Process E

Process B
Process C

ETV events

Event Viewer PerfView

File

Figure 3-14. Event Tracing for Windows (ETW) building blocks, illustrating
various configuration possibilities. Please note that a process may have a role of
multiple ETW providers; thus some processes are listed multiple times.

Chapter 3 MeMory MeasureMents

156

A built-in CPU-sampling ETW event allows us, for example, to track problems with

high CPU usage. At every sampling event (generated each 1 ms), the call stack of all

threads is collected from all processes. Thanks to that, statistically, we can see the cause

of the problem - in which functions CPU most often stayed. With the support from OS

providers, you can also track sync issues (such as deadlocks). It is being used by the

Concurrency Visualizer plugin for Visual Studio, for example.

By using various diagnostic tools in the Windows environment, we often need
access to symbol files (pDB - program Database), which allows us to decode
information about methods and functions from call stacks. the most convenient
setting is an environment variable _NT_SYMBOL_PATH in which we specify the
address of the public Microsoft symbol server:

srv*C:\Symbols*https://msdl.microsoft.com/download/symbols

this will allow us to obtain pDB files of the Windows operating system and CLr
libraries. also, in the path, we set up a local folder where files will be cached once
downloaded.

There is a special NT Kernel Logger session that can be used only with kernel-level

providers and not with user mode. The base kernel group logs, for example, the start and

end of the process. There is, for example, the Microsoft-Windows-TCPIP user provider,

which logs its events from the tcpip.sys kernel-mode driver.

Most often, with the session using the user-mode providers, additionally the NT

Kernel Logger session is started. It provides information about running / destroying

processes and threads. The results are then combined together during the analysis

phase.

The operating system provides a lot of interesting information, such as process and

thread management, networking, I/O operations, etc. But what interests us the most

is that CLR is also an ETW provider, and this mechanism allows us to learn a lot about

runtime in the context of our application.

We can use build-in logman.exe utility to find all .NET-related providers in the

system (see Listing 3-1).

Chapter 3 MeMory MeasureMents

157

Listing 3-1. Using logman utility to list all .NET-related ETW providers

> logman query providers | findstr DotNET

Microsoft-Windows-DotNETRuntime {E13C0D23-CCBC-4E12-931B-

D9CC2EEE27E4}

Microsoft-Windows-DotNETRuntimeRundown {A669021C-C450-4609-A035-

5AF59AF4DF18}

We can also use it to find out what providers are available in the context of a

particular process. For example, if we ask about the ASP.NET WebAPI hosted on

IIS, we will get a list as in Listing 3-2 (the result presents only several of many listed

providers).

Listing 3-2. Using logman utility to list all ETW providers of specified ASP.NET

process

> logman query providers -pid 6228

Provider GUID

.NET Common Language Runtime {E13C0D23-CCBC-4E12-931B-

D9CC2EEE27E4}

ASP.NET Events {AFF081FE-0247-4275-9C4E-

021F3DC1DA35}

IIS: WWW Global {D55D3BC9-CBA9-44DF-827E-

132D3A4596C2}

IIS: WWW Isapi Extension {A1C2040E-8840-4C31-BA11-

9871031A19EA}

IIS: WWW Server {3A2A4E84-4C21-4981-AE10-

3FDA0D9B0F83}

Microsoft-Windows-Application {C651F5F6-1C0D-492E-8AE1-

Server-Applications B4EFD7C9D503}

Microsoft-Windows-Application-Experience {EEF54E71-0661-422D-9A98-

82FD4940B820}

Microsoft-Windows-DotNETRuntimeRundown {A669021C-C450-4609-A035-

5AF59AF4DF18}

Chapter 3 MeMory MeasureMents

158

Microsoft-Windows-IIS {DE4649C9-15E8-4FEA-9D85-

1CDDA520C334}

Microsoft-Windows-IIS-Configuration {DC0B8E51-4863-407A-BC3C-

1B479B2978AC}

...

If we ask about the console application running on CoreCLR then we will get a

slightly different set of providers (see Listing 3-3).

Listing 3-3. Using logman utilit to list all ETW providers of console .NET Core

process

> logman query providers -pid 8528

Provider GUID

.NET Common Language Runtime {E13C0D23-CCBC-4E12-931B-

D9CC2EEE27E4}

Microsoft-Windows-AsynchronousCausality {19A4C69A-28EB-4D4B-8D94-

5F19055A1B5C}

Microsoft-Windows-COM-Perf {B8D6861B-D20F-4EEC-BBAE-

87E0DD80602B}

Microsoft-Windows-Crypto-BCrypt {C7E089AC-BA2A-11E0-9AF7-

68384824019B}

Microsoft-Windows-Crypto-RSAEnh {152FDB2B-6E9D-4B60-B317-

815D5F174C4A}

Microsoft-Windows-DotNETRuntimeRundown {A669021C-C450-4609-A035-

5AF59AF4DF18}

Microsoft-Windows-Networking-Correlation {83ED54F0-4D48-4E45-B16E-

726FFD1FA4AF}

Microsoft-Windows-Shell-Core {30336ED4-E327-447C-9DE0-

51B652C86108}

Microsoft-Windows-User-Diagnostic {305FC87B-002A-5E26-D297-

60223012CA9C}

Microsoft-Windows-WinRT-Error {A86F8471-C31D-4FBC-A035-

665D06047B03}

Chapter 3 MeMory MeasureMents

159

{012616AB-FF6D-4503-A6F0-EFFD0523ACE6} {012616AB-FF6D-4503-A6F0-

EFFD0523ACE6}

{05F95EFE-7F75-49C7-A994-60A55CC09571} {05F95EFE-7F75-49C7-A994-

60A55CC09571}

...

As we can see, apart from many different providers, we also find those .NET-related

ones. They have the same GUID both for the WebAPI .NET Framework and console

CoreCLR application. You will also note that there are two names for the same provider

used interchangeably: Microsoft-Windows-DotNETRuntime is also being called .NET

Common Language Runtime.

Each ETW event emitted within a given provider has several important attributes:

• Id - unique identifier of the event,

• Version - used for events versioning,

• Keyword - it can be used to assign an event to one or several meanings

(keywords) because this field is actually a bit mask,

• Level - the logging level,

• Opcode - it means a specific action (stage) within a given event. The

most commonly used built-in values are the Start and End opcodes,

• Task - it is used to group events within the provider into certain

functionalities.

With the logman tool we can also learn the details of a particular provider. For the

main .NET ETW provider, we will get information as in Listing 3-4.

Listing 3-4. Getting details about .NET ETW providers

> logman query providers ".NET Common Language Runtime"

Provider GUID

.NET Common Language Runtime {E13C0D23-CCBC-4E12-931B-

D9CC2EEE27E4}

Chapter 3 MeMory MeasureMents

160

Value Keyword Description

0x0000000000000001 GCKeyword GC

0x0000000000000002 GCHandleKeyword GCHandle

0x0000000000000004 FusionKeyword Binder

0x0000000000000008 LoaderKeyword Loader

0x0000000000000010 JitKeyword Jit

0x0000000000000020 NGenKeyword NGen

0x0000000000000040 StartEnumerationKeyword StartEnumeration

0x0000000000000080 EndEnumerationKeyword StopEnumeration

0x0000000000000400 SecurityKeyword Security

0x0000000000000800 AppDomainResourceManagementKeyword

AppDomainResourceManagement

0x0000000000001000 JitTracingKeyword JitTracing

0x0000000000002000 InteropKeyword Interop

0x0000000000004000 ContentionKeyword Contention

0x0000000000008000 ExceptionKeyword Exception

0x0000000000010000 ThreadingKeyword Threading

0x0000000000020000 JittedMethodILToNativeMapKeyword

JittedMethodILToNativeMap

0x0000000000040000 OverrideAndSuppressNGenEventsKeyword

OverrideAndSuppressNGenEvents

0x0000000000080000 TypeKeyword Type

0x0000000000100000 GCHeapDumpKeyword GCHeapDump

0x0000000000200000 GCSampledObjectAllocationHighKeyword

GCSampledObjectAllocationHigh

0x0000000000400000 GCHeapSurvivalAndMovementKeyword

GCHeapSurvivalAndMovement

0x0000000000800000 GCHeapCollectKeyword GCHeapCollect

0x0000000001000000 GCHeapAndTypeNamesKeyword GCHeapAndTypeNames

0x0000000002000000 GCSampledObjectAllocationLowKeyword

GCSampledObjectAllocationLow

0x0000000020000000 PerfTrackKeyword PerfTrack

0x0000000040000000 StackKeyword Stack

0x0000000080000000 ThreadTransferKeyword ThreadTransfer

Chapter 3 MeMory MeasureMents

161

0x0000000100000000 DebuggerKeyword Debugger

0x0000000200000000 MonitoringKeyword Monitoring

Value Level Description

0x00 win:LogAlways Log Always

0x02 win:Error Error

0x04 win:Informational Information

0x05 win:Verbose Verbose

...

For a list of events generated by .NET providers, for example, you can use the MSDN

documentation at https://msdn.microsoft.com/en-us/library/dd264810(v=vs.110).

aspx. However, it is not always up to date. Therefore, it is best to reach the source, which

means the manifest file of the given provider. The ETW manifest file defines strongly

typed event information generated by the given provider. This allows the consumer to

correctly interpret the recorded session data. The manifest files are different for each

.NET runtime environment. And so you can find it under different locations:

• In case of CoreCLR under- .\coreclr\src\vm\ClrEtwAll.man;

• In case of .NET Framework 4.0 and further under c:\Windows\

Microsoft.NET\Framework64\v4.0.30319\CLR-ETW.man;

• In case of .NET Framework 2.0 and earlier, it is not available as the

first versions did not support ETW.

When we look at this file, we will see complete information about Microsoft-

Windows- DotNETRuntime and Microsoft-Windows-DotNETRuntimeRundown providers.

Fragments of this file are presented in Listing 3-5.

Listing 3-5. Fragments of ETW manifest file of .NET ETW providers

<instrumentationManifest xmlns="http://schemas.microsoft.com/win/2004/08/

events">

 <instrumentation xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:win="http://

manifests.microsoft.com/win/2004/08/windows/events">

 <events xmlns="http://schemas.microsoft.com/win/2004/08/events">

 <!--CLR Runtime Publisher-->

Chapter 3 MeMory MeasureMents

https://msdn.microsoft.com/en-us/library/dd264810(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/dd264810(v=vs.110).aspx

162

 <provider name="Microsoft-Windows-DotNETRuntime" guid="{e13c0d23-

ccbc- 4e12-931b-d9cc2eee27e4}" symbol="MICROSOFT_WINDOWS_

DOTNETRUNTIME_PROVIDER" resourceFileName="%WINDIR%\Microsoft.NET\

Framework64\v4.0.30319\clretwrc.dll" messageFileName="%WINDIR%\

Microsoft.NET\Framework64\v4.0.30319\clretwrc.dll">

 <!--Keywords-->

 <keywords>

 <keyword name="GCKeyword" mask="0x1" message="$(string.

RuntimePublisher.GCKeywordMessage)" symbol="CLR_GC_KEYWORD"/>

 <keyword name="GCHandleKeyword" mask="0x2" message="$(string.

RuntimePublisher.GCHandleKeywordMessage)" symbol="CLR_GCHANDLE_

KEYWORD"/>

 ...

 </keywords>

 <!--Tasks-->

 <tasks>

 <task name="GarbageCollection" symbol="CLR_GC_

TASK" value="1" eventGUID="{044973cd-251f-4dff-a3e9-

9d6307286b05}" message="$(string.RuntimePublisher.

GarbageCollectionTaskMessage)">

 <opcodes>

 <!-- These opcode use to be 4 through 9 but we added 128 to

them to avoid using the reserved range 0-10 -->

 <opcode name="GCRestartEEEnd" message="$(string.

RuntimePublisher.GCRestartEEEndOpcodeMessage)" symbol="CLR_

GC_RESTARTEEEND_OPCODE" value="132"> </opcode>

 <opcode name="GCHeapStats" message="$(string.

RuntimePublisher.GCHeapStatsOpcodeMessage)" symbol="CLR_GC_

HEAPSTATS_OPCODE" value="133"> </opcode>

 ...

 </opcodes>

 </task>

 <task name="WorkerThreadCreation" symbol="CLR_

WORKERTHREADCREATE_TASK" value="2" eventGUID="{cfc4ba53-fb42-

4757-8b70-5f5d51fee2f4}" message="$(string.RuntimePublisher.

WorkerThreadCreationTaskMessage)">

Chapter 3 MeMory MeasureMents

163

 <opcodes>

 </opcodes>

 </task>

 ...

 </tasks>

 <!--Maps-->

 <maps>

 <!-- ValueMaps -->

 <valueMap name="GCSegmentTypeMap">

 <map value="0x0" message="$(string.RuntimePublisher.GCSegment.

SmallObjectHeapMapMessage)"/>

 <map value="0x1" message="$(string.RuntimePublisher.GCSegment.

LargeObjectHeapMapMessage)"/>

 <map value="0x2" message="$(string.RuntimePublisher.GCSegment.

ReadOnlyHeapMapMessage)"/>

 </valueMap>

 ...

 </maps>

 <!--Templates-->

 <templates>

 <template tid="GCStart">

 <data name="Count" inType="win:UInt32"

outType="xs:unsignedInt"/>

 <data name="Reason" inType="win:UInt32" map="GCReasonMap"/>

 <UserData>

 <GCStart xmlns="myNs">

 <Count> %1 </Count>

 <Reason> %2 </Reason>

 </GCStart>

 </UserData>

 </template>

 ...

 </templates>

 <events>

Chapter 3 MeMory MeasureMents

164

 <!-- CLR GC events, value reserved from 0 to 39 and 200 to 239 -->

 <!-- Note the opcode's for GC events do include 0 to 9 for

backward compatibility, even though they don't mean what those

predefined opcodes are supposed to mean -->

 <event value="1" version="0" level="win:Informational"

template="GCStart" keywords="GCKeyword" opcode="win:Start"

task="GarbageCollection" symbol="GCStart" message="$(string.

RuntimePublisher.GCStartEventMessage)"/>

 <event value="1" version="1" level="win:Informational"

template="GCStart_V1" keywords="GCKeyword" opcode="win:Start"

task="GarbageCollection" symbol="GCStart_V1" message="$(string.

RuntimePublisher.GCStart_V1EventMessage)"/>

 ...

 </events>

 </provider>

As you can see, this is a real mine of knowledge if we want to use the ETW in the

context of .NET. Let’s take a brief look at the events generated by both providers. We will

return to all of these events through the following chapters of this book so you will have

a full understanding of each of them. Here, however, we will pay attention to the most

interesting of them. This will allow you to see how rich is the information provided by the

ETW mechanism.

Looking at the generated events alone can lead to some interesting questions.
For example, what is the ReadOnlyHeapMapMessage segment of type
GCSegmentTypeMap? We will answer to this question in Chapter 5.

We are mostly interested in the Microsoft-Windows-DotNETRuntime provider,

offering events grouped into 29 various Tasks (as in the ETW nomenclature,

a Task’s event attribute corresponds to its functional category). To get an idea

of the richness of the information provided, these include (in parentheses the

number of events of a given Task is shown): AppDomainResourceManagement (5),

Chapter 3 MeMory MeasureMents

165

CLRAuthenticodeVerification CLRILStub (2), CLRLoader (18), CLRMethod

(25), CLRPerfTrack (1), CLRRuntimeInformation (1), CLRStack (1),

CLRStrongNameVerification (4), Contention (3), Exception (3), ExceptionCatch

(2), ExceptionFilter (2), ExceptionFinally (2), GarbageCollection (58),

IOThreadCreation (4), IOThreadRetirement (4), Thread (2), ThreadPool (5),

ThreadPoolWorkerThread (3) and Type (1).

As we can see, the most numerous group is Garbage Collector’s task - it contains

58 various events! Actually, there are 44 distinct ones, because some occur in several

versions. What do we find there? Very interesting stuff! A few selected events along with

the description and data that they contain, you will find in Table 3-2.

Table 3-2. Example ETW Events Related to the GC

Event Data

GCstart_V2 ClientSequenceNumber(win:uInt64), ClrInstanceID(win:uInt16),

Count(win:uInt32), Depth(win:uInt32), Reason(GCreasonMap),

Type(GCtypeMap)

Informs about beginning of the Garbage Collection, providing the reason

and the generation triggering it (as Depth field).

GCend_V1 ClrInstanceID(win:uInt16), Count(win:uInt32), Depth(win:uInt32)

Informs about the end of the Garbage Collection.

GCCreatesegment_V1 Address(win:uInt64), ClrInstanceID(win:uInt16), Size(win:uInt64),

Type(GCsegmenttypeMap)

Informs about creation of new memory segments, providing information

about its size and type.

GCsuspendeeBegin_V1 ClrInstanceID(win:uInt16), Count(win:uInt32),

Reason(GCsuspendeereasonMap)

Informs about beginning of the suspending runtime required by some

parts of Garbage Collection.

GCsuspendeeend_V1 ClrInstanceID(win:uInt16)

Informs about the end of the runtime suspending process. From now

most of the threads are suspended.

(continued)

Chapter 3 MeMory MeasureMents

166

If we consider that each event has a precise timestamp and may contain a call stack,

we are presented with a vision of the powerful diagnostics we can create on this basis.

And that’s why it is used by many different tools. Some of them will be revealed in the

following subsections.

Do not be afraid if you do not understand descriptions of ETW events given in

Table 3-2. It is obvious that some knowledge about the GC is needed to properly

understand them. We will come back to many ETW events (including those from

Table 3-2) in the following chapters.

The NT Kernel Logger session also provides much valuable information, including

events like: Windows Kernel\ProcessStart, Windows Kernel\ProcessEnd - when process

start and ends, Windows Kernel\ImageLoad - when dynamic library is being loaded,

Windows Kernel\TcpIpRecv - when TCP/IP packets are being received, Windows Kernel\

ThreadCSwitch - when a thread gets or loses access to the CPU. There are obviously many

others, but listing only a small part of them here does not make any sense. Please refer to

the NT Kernel Logger Trace Session documentation on MSDN for further details.

Table 3-2. (continued)

Event Data

GCallocationtick_V3 Address(win:pointer), AllocationAmount(win:uInt32), Alloc

ationAmount64(win:uInt64), AllocationKind(GCallocationK

indMap), ClrInstanceID(win:uInt16), HeapIndex(win:uInt32),

TypeID(win:pointer), TypeName(win:unicodestring)

Very interesting periodic sampling event (emitted after each 100kB of

allocations) informs about allocation statistics.

GCheapstats_V1 ClrInstanceID(win:uInt16), FinalizationPromotedCou

nt(win:uInt64), FinalizationPromotedSize(win:uInt64),

GCHandleCount(win:uInt32), GenerationSize0(win:uInt64),

GenerationSize1(win:uInt64), GenerationSize2(win:uInt64),

GenerationSize3(win:uInt64), PinnedObjectCount(win:uInt32),

SinkBlockCount(win:uInt32), TotalPromotedSize0(win:uInt64),

TotalPromotedSize1(win:uInt64), TotalPromotedSize2(win:uI

nt64), TotalPromotedSize3(win:uInt64)

yet another one very interesting event provides rich information about

the heap statistics in general, including generation sizes.

Chapter 3 MeMory MeasureMents

167

 Windows Performance Toolkit
The Windows Performance Toolkit is a set of diagnostic tools in a Windows environment.

What we are most interested in is their ability for collecting and analyzing ETW data.

Prior to Windows 8, the main tool for this purpose was the rather cumbersome xperf

program. Moreover, it is still present in the files installed with the WPT. It was used to

set up and run ETW sessions as well as to analyze them later. In the ETW nomenclature,

therefore, it had the function of both the ETW controller and ETW consumer. We can

often meet him in many older ETW-related articles and blog posts. Due to the fact

that it is a very flexible tool, it is still occasionally used to manage ETW sessions from

the command line. However, since Windows 8, the Windows Performance Toolkit has

introduced two new tools:

• Windows Performance Recorder - being an ETW controller

• Windows Performance Analyzer - being an ETW consumer

And these two programs within the Windows Performance Toolkit are most

commonly used today. We will take a brief look at the basics of using these programs.

Note Windows performance toolkit can be installed in two ways. Both rely
on installing one of the two bigger packages - the Windows assessment and
Deployment Kit or the Windows sDK.

 Windows Performance Recorder

Windows Performance Recorder from the point of view of the user is a simple dialog

acting as ETW controller (see Figure 3-15). What events from which providers will be

recorded is being configured by profiles. There are many built-in profiles visible in

Figure 3-15, preinstalled with the tool.

Chapter 3 MeMory MeasureMents

168

Two more important options are available:

• Level of detail of recorded data - we are most interested in the

Verbose level. In addition to the time of occurrence of events, it also

says to record additional diagnostic information.

• Logging mode - we most often use the Memory mode, which records

events to a temporary cyclic buffer in memory. This ensures that we

never exceed the size of buffer and will not severely impact the entire

operating system and other applications by creating too huge of files

or memory buffers.

What exactly is included in the profile is not visible from the user interface. But we

can see it in command-line version of the program. A list of built-in profiles, visible in the

GUI, can be obtained using the profiles command switch (see Listing 3-6).

Listing 3-6. Using wpr command line version to list all profiles names

> wpr -profiles

Then we can ask for details of an individual profile using the profiledetails

command switch. Thanks to that we can see what providers and keywords are enabled

for .NET Activity profile (see Listing 3-7).

Figure 3-15. Windows Performance Recorder dialog box

Chapter 3 MeMory MeasureMents

169

Listing 3-7. Using wpr command-line version to list a given profile configuration

(some providers listed only by Guid were removed from the output for brevity)

> wpr -profiledetails DotNet

System Keywords: CSwitch, DiskIO, DiskIOInit, HardFaults, Loader,

MemoryInfo, MemoryInfoWS, NetworkTrace, ProcessCounter, ProcessThread,

SampledProfile

System Stacks: CSwitch, DiskFlushInit, DiskReadInit, DiskWriteInit,

FileCreate, FileRead, FileWrite, ImageLoad, ImageUnload, ProcessCreate,

SampledProfile, ReadyThread

Providers

...

Microsoft-Windows-DotNETRuntime: 0x4007ccbd: 0x05

Microsoft-Windows-IIS: : 0xffI

In case of .NET runtime, the provider-selected keyword mask has a value of

0x4007ccbd. We can use values from Listing 3-4 to decode it into a list of selected

keywords. We can easily notice that in fact not all possible keywords have been selected

(including several related to the Garbage Collector).

There are also built-in profiles for Windows Heap and VirtualAllocations. To

have a full picture when doing CLR analysis, one can decide to select all those three

profiles.

With the “Add profile” button, you can add manually defined profiles. This is the

only way to connect to the only set of providers we are interested in and fine-tune used

keywords. You can find the “Pro .NET Memory Management with stacks” sample profile

at this book’s accompanying GitHub repository (NetMemoryManagement.wprp file),

which enables all .NET events along with call stacks recording (but please be warned

that in such configuration tracing overhead will slow down .NET applications, mainly

due to the stack collection).

 Windows Performance Analyzer

Windows Performance Analyzer is a powerful ETW consumer. Very advanced analysis can

be made there. At the same time, it is one of the main tools for the convenient visualization

of ETW data. The first contact with this tool can be a bit overwhelming. The interface was

designed in a very generic way. And it’s really up to the user how to adapt it. As a result, it

is hard to get started, and it is hard at first glance to see the dormant power of this tool.

Chapter 3 MeMory MeasureMents

170

The exact description of using Windows Performance Analyzer interface

is beyond the scope of this book. Because it is so powerful, describing all its

capabilities could take another small book. We will concentrate here on some of the

most useful scenarios from our point of view. We will use the example of an open

source, load test program called SuperBenchmarker written in .NET 4.5 available

on GitHub at https://github.com/aliostad/SuperBenchmarker. During the load

test, it generates a systematic load on a target web application, so it is well suited for

experiments. The book is accompanied by a WPA-Tutorial.zip file containing an

example of a recorded scenario WPA-Tutorial.ETL taken during load test with the

following parameters:

.\sb.exe -u http://localhost/LeakWebApi/values/concatenated/100 -c 10 -n

100000 -y 100

This means 10 concurrent calls being made with 100 milliseconds gap between

them and total of 100,000 calls will be made. Our LeakWebApi is a very simple ASP.NET

MVC Web API project hosted on IIS. Due to the nature of ETW, there are many others

processes recorded obviously, but we will concentrate on two of them: sb.exe itself

and w3wp.exe hosting mentioned Web API project. The file was created with Windows

Performance Recorder using profiles: CPU usage, Heap usage, VirtualAlloc usage, and

our custom “.NET Memory Management with stacks.” If you want to do the following

exercises, unzip WPA-Tutorial.zip now to the folder of your choice.

Let’s now go through some of possible scenarios of using the Windows Performance

Analyzer. Please remember about the great flexibility of this tool. Therefore, if you follow

the exercises described below and some result looks different than on the presented

screenshots, double-check your view configuration - in particular, the visibility and order

of columns in tables.

Opening File and Configur ation

After launching the program, we will see an empty window with the Getting Started tab.

Open the recording file by selecting File ➤ Open ... from the menu.

Chapter 3 MeMory MeasureMents

https://github.com/aliostad/SuperBenchmarker

171

When you open the file, on the left we will see a new Graph Explorer panel with

several graph groups - depending on what data was recorded. In case of our WPA-

Tutorial.etl file there should be five groups of graphs:

• System Activity - broad data associated with the operation of the

system, processes, and threads. Here is also a very important Generic

Events chart, which we will look at in a moment.

• Computation – CPU-related data.

• Storage - data related to disks, including such precise data as used

disk offsets.

• Memory - data related to memory.

• Power – power-related data, including CPU frequency and states.

Next to each group name is an expand button that allows you to navigate through the

grouped graphs. Each of the visible graphs can be moved to the Analysis tab by dragging

or double-clicking. You can add to it many different data, which will be placed one below

the other. All the views added in the Analysis tab are synchronized (as well as the Graph

Explorer itself). Therefore, for example, if you change the scale on the timeline on one of

them, the change will be reflected on the others. This is similar to any kind of filtering or

underlining of the currently investigated data.

Let’s now create a first view that will allow us to learn the basics of program

navigation in practice. From the Graph Explorer, expand the System Activity group.

Let’s drag to the workspace (or double-click) the Processes graph. It will appear in the

Analysis tab. Then expand the Computation group and double-click the CPU Usage

graph (Sampled). It should appear under the previously added. We should achieve the

effect shown in Figure 3-16.

Chapter 3 MeMory MeasureMents

172

Quickly we may find out that a lot of elements have tooltips containing additional

information. In the Processes pane, there are processes showed running at the time of

recording. It is easy to find a block corresponding to the sb.exe process. Click it with

your left mouse button. The time range of this process will be automatically highlighted

on all other graphs. This is very helpful for navigation and referencing data to each other.

Sometimes data is more convenient to be analyzed in graphical or tabular form.

Hence, in the upper right corner of each panel three buttons are placed: show only the

chart, show only the table, and show both information (by default Display graph and

table option is selected). Now select the “Display graph only” option for both display

panels.

From the Graph Explorer add the Stacks panel from the System Activity group and

set it to “Display table only.” The stacks panel contains grouped information about all

collected stack traces.

We can now take a closer look at the w3wp.exe process. First, from the graph, select

the time range corresponding to the load test by right-clicking on the sb.exe block in

the Processes panel and select Zoom. Having such a chosen time range, we can filter

out data to only the web application process we are interested in. Thus, select the w3wp.

exe process from the list in Stacks panel and select the “Filter to selection” option in

Figure 3-16. A sample view with Processes and CPU Usage panels

Chapter 3 MeMory MeasureMents

173

its context menu. Next, expand (in Stacks panel) w3wp.exe in Process column, Thread:

CSwitch in Event Name column, CLR in Stack Tag column and [Root] under Stack

(Frame Tags) for JIT. After expanding several nodes starting with element [Root], we

probably notice that there is a lack of information about the functions invoked (see

Figure 3-17). Most of them are specified only with the name of the module and the

question mark. This is due to missing symbols (PDBs). We will now take care of their

configuration.

Figure 3-17. Missing symbols resulting in incomplete stack trace information

To configure the symbols used by the Windows Performance Analyzer, select Trace

➤ Configure Symbol Paths. In this pane we configure the directories where the PDBs are

searched for. It is best to have at least the two following sources set:

• If we set the environment variable _NT_SYMBOL_PATH in the previous

section, it will be added here by default.

• The path to the symbol files of our application (also provided along

with the WPA-Tutorial.etl file).

In the Symcache tab of the same window, you should also deliberately set up a

directory where local copies of the prepared symbols will be stored. After completing

the above configuration, we can close the Configure Symbols window. When you select

Trace ➤ Load symbols from the menu, “Loading symbols” information will appear.

Downloading and loading (even if they are already cached) all the needed symbols can

take quite a few minutes so please be patient.

After that operation we will have complete stack trace information. We can see this

by using the “Quick search” in the panel Stacks (visible as a small magnifier). Use it and

type “LeakWebApi” to find calls from within our test application (see Figure 3-18).

Chapter 3 MeMory MeasureMents

174

Generic Events

Quite a lot of events are interpreted in a special way in WPA, and in this way dedicated

panels such as Processes or CPU Usage are created. However, it is not possible, of course,

to prepare such views for any possible event recorded by ETW. For this purpose, a

dedicated panel called Generic Events was created with a view of all registered events.

Let’s add it to our view by selecting it from the System Activity group. By default we will

see all events grouped by the process. We can filter out all except those coming from the

sb.exe process by selecting “Filter to selection” from its context menu.2 By expanding

Microsoft-Windows-DotNETRuntime in Provider Name column and then Garbage

Collection task and win:Start opcode, we can create a view from Figure 3-19 (after

appropriately zooming in an interesting time region). Please note that to get such view

proper ordering of columns must be set, starting from Process, through Provider Name,

Task Name, and Opcode Name.

2 If you do not see a Process column, please add it and place it as a second column in the Generic
Events panel.

Figure 3-18. Complete stack trace information with symbols loaded

Chapter 3 MeMory MeasureMents

175

We have set up a view in which we focus on the sb.exe process (second column),

Microsoft-Windows-DotNETRuntime provider (third column) provider, and the

GarbageCollection task (fourth column). We see, for example, that during almost 0.5

seconds of the selected fragment, there are two GarbageCollection/Start events.

Moreover, we can see the data associated with each of these events. To do this

we need to expand the group (in our case by expanding the last grouped item in

column Id) and scroll the view accordingly to show columns behind the yellow

marker. Example of such a prepared view for GCStart and GCEnd events is shown

at Figure 3-20.

Figure 3-20. Garbage Collection start and stop events visible in Generic Events
table view

Figure 3-19. Generic Events view for process sb.exe and Microsoft-Windows-
DotNETRuntime-related events

Chapter 3 MeMory MeasureMents

176

Adjusting the view by setting columns visibility and ordering altogether with desired

grouping of items is the main task of which you will have to deal with in the Windows

Performance Analyzer. Fortunately, it is really flexible in this aspect.

The Windows Performance Analyzer can be customized a little more in order to

make analysis easier. This can be very helpful thanks to our own, custom regions of

interest, stack tags, and profiles.

Region of Interests

They allow you to define areas that are for some reason interesting to us. The

boundaries of these areas are determined by the specified events - opening and

closing events. This is the ideal mechanism to illustrate the duration of Garbage

Collection, for example, where the initial event is win:Start (with Id 1), and the

final is win:Stop (with Id 2). Regions are defined in a separate file, which can then

be loaded into the program from the menu Trace ➤ Trace Properties. In the tab that

appears we load the regions files with the Add ... button in the Regions of Interest

Definitions section. Afterwards, the Regions of Interests panel will become available in

the Graph Explorer.

We need to create such files ourselves or search for interesting ones on the Internet.

You can also use the ones that have been prepared for this book (located at the

accompanying GitHub repository): roi_dotnetfinalization.xml and roi_dotnetgc.

xml. Such files consist of region definitions expressed in terms of a starting and stopping

event (see Listing 3-8).

Listing 3-8. Example of region of interest file definition

<Region Guid="{4fbb5999-8f4e-4900-9482-000000000001}"

 Name="DotNETRuntime-GarbageCollection-GC"

 FriendlyName="Garbage Collection">

 <Start>

 <Event Provider="{E13C0D23-CCBC-4E12-931B-D9CC2EEE27E4}" Id="1"

Version="2" />

 </Start>

 <Stop>

 <Event Provider="{E13C0D23-CCBC-4E12-931B-D9CC2EEE27E4}" Id="2"

Version="1" />

 </Stop>

Chapter 3 MeMory MeasureMents

177

 <Match>

 <Event TID="true" PID="true" >

 </Event>

 <Parent PID="true" />

 </Match>

 <Naming>

 <PayloadBased NameField="ClrInstanceID" />

 </Naming>

</Region>

As you can see, we need to have some knowledge to define regions: what events will

be generated by the provider that we are interested in and how to pair them.

Based on Garbage Collector’s events, we can designate the following regions:

• Garbage Collection (events GCStart and GCEnd);

• Suspending runtime (events GCSuspendEEBegin and

GCSuspendEEEnd);

• Restarting runtime (events GCRestartEEBegin and GCRestartEEEnd);

• Finalization (events GCFinalizersBegin and GCFinalizersEnd).

This allows you to visualize and collect statistics (number and duration of

occurrences) as in Figure 3-21. Please note that the appropriate zoom was set to produce

such a view, as well as proper ungrouping of items in the left list (named Series).

Figure 3-21. View at Garbage Collection cycle with help of custom Region of
interest

Chapter 3 MeMory MeasureMents

178

Flame Charts

Performance analysis is possible using the mechanisms already outlined - among others

by grouping calls in the Stacks panel. There is another very convenient mechanism – so-

called flame charts. The “Flame by Process, Stack” view of CPU Usage (Sampled) panel is

available in the Computation group. I encourage you to use it as part of our sample ETL

file. By using the following steps, you should be able to get a view shown in Figure 3-22.

• While in the table part of the CPU Usage panel, use Find in Column…

option from the context menu and try to find LeakWebApi text. If

symbols are loaded, it should point you to the GetContatenated

method of our WebAPI controller.

• Select its parent method (which should be lambda_method) and use

Filter To Selection from its context menu. This should zoom in the

view to a single method call.

The flame chart shows the piles of calls in a very visual way, but it requires a bit of

assimilation. Each block visible on it represents calls of a single function. Blocks located

on top of each other represent one function calling the other. In this way, the chart

grows upward. The higher the function, the deeper the call stack. The width of a block is

proportional to the total duration of a particular function call (and all its subcalls). This

way we can quickly figure out which functions were associated with a long execution.

Figure 3-22. Flame charts example

Chapter 3 MeMory MeasureMents

179

For example, in Figure 3-22, we see that the vast majority of the time spent
by the WebapI method GetConcatened is because of System.String.
Concat calls, which then in the vast majority spends time in the SVR::gc_
heap::fire_etw_allocation_event calls. this is tangible proof that
connecting an etW session to our application caused a lot of overhead. this
is related to the option of writing a call stack at each CLr event - we can see
that by going further into the method calls made by fire_etw_allocation_
event. a lot of time is spent in clr.dll!ETW::SamplingLog::GetCurre
ntThreadsCallStack method. this is because getting a call stack per each
frequent allocation event is not necessarily a good idea. however, it is completely
fine for our learning purposes.

Stack Tags

As we have seen, ETW events can be logged together with a stack trace at their

occurrence. The Windows Performance Analyzer lets you view this information using

the Stack column. However, for a broader analysis than from the stack trace alone, more

valuable is the aggregated information. One such mechanism of aggregation is so-called

Stack Tags. They allow you to group called methods with respect to the given patterns.

This way all events with a stack trace matching the pattern will be marked with the

provided Stack Tag.

Default Stack Tags are located in C:\Program Files (x86)\Windows Kits\10\

Windows Performance Toolkit\Catalog\default.stacktags file, including those

related to the CLR and GC in particular. Thanks to that, when using Stack Tag column,

we will see stacks grouped into CLR and GC nodes (instead of listing all methods

inside).

Custom Graphs

From the Windows Performance Toolkit version for Windows 10, there is a way to draw

your own graphs based on event loads. In other words, we can draw graphs where the

Y-axis will come from one of the selected event fields. The X-axis will then automatically

be the time of the event. The only requirement is that the selected field has an integer

value.

Chapter 3 MeMory MeasureMents

180

Unfortunately, this restriction is very unfavorable for us. The vast majority of events

that are interesting from the Garbage Collector’s field are given in a hexadecimal format.

This applies to various sizes, memory usage, and so on, and so forth. This makes the

mechanism at this moment not very useful and we will simply not use it.

Profiles

Because configuration of all panels can be time consuming, the Windows Performance

Analyzer provides the ability to save current views by using profiles. We can now save

the current view using the Profiles ➤ Export... option. We load them with the Profiles

➤ Apply option. In addition to configuring the views themselves (including the order

and layout of the columns), the profile may also define, among others, the file defining

Region of Interests.

 PerfView
The Windows Performance Toolkit was primarily designed for Windows and driver

developers. Thanks to its high customizability, we can adapt it to the .NET environment,

as we did in the previous subchapter. However, there is another ETW-based tool that

was originally designed to help analyze .NET performance problems - PerfView. Its

creator and patron is Vance Morrison, .NET Runtime Performance architect, and this

tool is used by the .NET team to take care of the performance of the framework itself and

managed code in general. So we obviously should be interested in it also. What’s more,

all the performance and CLR internals geeks were pleased to hear recently that PerfView

has become a fully open source product available on GitHub.

In terms of ETW nomenclature PerfView is both a controller and a consumer

(providing an extensive analysing capabilities). It is written as a very non-intrusive tool.

It does not require any installation. It consists of just a single executable file - perfview.

exe. This makes it easy to use on any computer, including production servers. So to start

working with PerfView we have two options:

• The first one is to download the ZIP file from https://www.

microsoft.com/en-us/download/details.aspx?id=28567, extract it,

and simply run wherever you want.

• The second one is to compile the program from sources available on

GitHub: https://github.com/Microsoft/perfview.

Chapter 3 MeMory MeasureMents

https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://github.com/Microsoft/perfview

181

Just to notice, this tool can also be controlled from the command line and

PowerShell, which enables automation and is especially useful in production analysis

(prepared command line may be passed to a system administrator to be executed on

restricted environment).

While the startup is simple, the first contact with this tool may scare you off. This

program deserves the title of the most powerful, yet the most at first-glance overwhelming

tool ever. The interface is not very intuitive and pretty, so it is not clear even where to start.

Fortunately, it has very extensive help. Each option and GUI element have a link to the

documentation. Below you can find some basic usage scenarios, but I encourage you to

visit the help section frequently. You will find there an extension and broad explanation of

the topics covered here. Believe me, this tool is worth every minute spent on learning it.

Note Much of the functionality in perfView’s etW-based analysis is based on a
library TraceEvent. We’ll go back to it in Chapter 15 to briefly see its capabilities.
While perfView is mainly based on etW, it has also a built-in the etWCLrprofiler
(based on so-called CLr profiling apI) that allows perfView to intercept the .net
method calls (enable .net Call in the Collect dialog to start using it).

as a lightweight tool for etW analysis, consider also using the etrace tool created
by sasha Goldshtein and available at https://github.com/goldshtn/
etrace. It allows you to control etW sessions from the command line, with
various filtering features available.

While the Windows Performance Analyzer is in a sense based on the concept of

charts, Perfview focuses on the tabular view. Actually almost everything we can see in

this program is put in tabular form. This can sometimes be misleading because, in the

same way, the memory consumption, call stacks, and everything else is being analyzed.

After launching the program, we will see a window with extensive help. We can take

three main actions at this time:

• Start collecting ETW data using the Collect ➤ Collect option.

• Begin the data analysis by typing the path to the directory into

the text box below the menu and selecting the ETL file you are

interested in.

• Perform a memory dump using the option Memory ➤ Take Heap

Snapshot.

Chapter 3 MeMory MeasureMents

https://github.com/goldshtn/etrace
https://github.com/goldshtn/etrace

182

As with other tools, it is necessary to configure symbol paths, which can be done

from File ➤ Set Symbol Path menu. It is best to have three sources set:

• The public Microsoft symbol server, the same as in the _NT_

SYMBOL_PATH environment variable.

• Path to the subdirectory with the NGEN image symbols next to the

opened ETL file although this is not strictly necessary as PerfView is

able to automatically re-create them.

• The path to the symbol files of our application.

 Data Collection

Because PerfView is an ETW controller, it allows you to manage an ETW tracing session.

After selecting the Collect option, we will see a new dialog box with a number of

parameters (see Figure 3-23).

Figure 3-23. PerfView collection dialog with Advanced section expanded

Chapter 3 MeMory MeasureMents

183

By looking at the possible selection options, we will encounter quite a lot related to

.NET. It is worth taking a moment to explain them, although they are also described in

the program help. The most interesting options from our point of view are located under

Advanced Options:

• .NET - enables the default events from .NET providers.

• .NET Stress - enabled events from .NET providers related to stress

testing runtime itself. Those are rare events used rather internally by

the CLR team.

• GC Collect Only - disables all other providers and enables only

.NET provider with events associated with the GC process. This is a

very lightweight option that allows you to collect basic GC-related

diagnostic information for a long time.

• GC Only - similar to the above but additionally stack for sampling of

allocations on the GC heap are enabled (every time 100 kB of objects

were allocated).

• .NET Alloc - enables event with stack every time an object is allocated

on the GC heap. This is a very costly option and can slow down the

program several times. And we have recently seen this overhead, in

fact, in Figure 3-21.

• .NET SampAlloc - enables event generated every time 10KB of

objects are allocated on the GC heap. This is not based on built-in

ETW events but using CLR Profiler API by injecting ETWClrProfiler

library into the processes.

• ETW .NET Alloc - this enables events for allocations sampling but

instead of injecting a Profiler API-based library, it is based on the

GCSampledObjectAllocationHigh keyword available from .NET 4.5.3.

• Finalizers - enables events related to finalization process inside GC.

• Additional providers - this fields allows you to provide any additional

providers you need. It can also be used to fine-tune providers that

would anyway be enabled. For example, to enable stack capturing

for CLR exceptions we can type Microsoft-Windows-DotNETRuntime

:ExceptionKeyword:Always:@StacksEnabled=true. Extensive help

about using this field is also provided.

Chapter 3 MeMory MeasureMents

184

• CPU Ctrs - this counter allows you to enable low-level CPU-related

counters like branch mispredictions or cache misses. Keep in mind

you will have disable Hyper-V virtualization to have access to those

events.

Note: Apart from the discussed options for .NET, there are some general settings to

keep in mind:

• Zip - packaging the files into an archive so that it is easy to transfer

the whole thing for later analysis on another computer.

• Merge - merging the files into a single one but without creating a

separate ZIP file.

You can omit those two options if you do not plan to send your analysis to another.

However, it is extremely important to check the Merge option if you plan to do your

analysis on a different machine than on the one the data has been collected. The merge

option includes symbol-resolving preparation so if you omit it, most of the gathered data

will be useless on another computer.

a very popular way of triggering etW data collection is based on perfView’s
command-line usage. this way, for example, you can ask the support team to
easily gather data on the production environment, by providing them a single
command to be executed. For example, the following command will trigger a
lightweight session recording for GC-related events:perfview /GCCollectOnly
/nogui /accepteula /NoV2Rundown /NoNGENRundown /NoRundown
/merge:true /zip:true collectusing the command line we may also
provide session stop triggers, like stopping session when GC happened longer than
the specific number of milliseconds. please run perfview -? for more help on
the command line.

 Data Analysis

Using the PerfView we can open files ETL recorded both by himself and every other ETW

tool. After opening the sample ETL file, we will see the view as in Figure 3-24. On the left

side, all the prepared analyses are available - depending on which providers and what

events were selected during the session recording.

Chapter 3 MeMory MeasureMents

185

One of the most basic views is a Generic Events panel, allowing you to view instances

of all recorded events. When you open it and enter the GC in the Filter field, we will see

all GC-related DotNetRuntime events (see Figure 3-25).

Figure 3-24. Sample ETL file opened in PerfView

Figure 3-25. PerfView - events related to GC shown in Events panel

Chapter 3 MeMory MeasureMents

186

Aa you can see, in addition to the standard columns associated with the event,

there is also a Rest column containing all the details of the event. You can also select

particular data from events by clicking the Cols button. For example, filter out all

events except Microsoft-Windows-DotNETRuntime/GC/HeapStats event by typing

part of its name into the Filter field (like GC/HeapStats). Then, use the Cols button

to select all the GenerationSize fields. In addition, fill in the Process Filter with a

unique part of the process that we are interested in. We should have created a table

of GC statistics (see Figure 3-26) that can be pasted to Excel and visualized, for

example.

Figure 3-26. PerfView - customized view of events related to GC

However, viewing and analyzing individual ETW events are tedious. When it comes

to the .NET memory analysis, undoubtedly the most important view is the GCStats view

available in Memory Group from the main window. This view includes comprehensive

aggregated information about GC behavior, including statistics of performed GCs (see

Figure 3-27). We will return to this view quite often in this book.

Chapter 3 MeMory MeasureMents

187

Additionally, as you could see in the Rest column in Figure 3-25, the selected events

have the HasTrack = "True" attribute. If you want to see the stack trace of the event,

select one of them and select Open Any Stacks from its context menu (but be careful,

you must do it in the context of Time MSec column). This will open another very popular

PerfView’s call-tree view (see Figure 3-28).

Figure 3-27. PerfView - GCStats view

Chapter 3 MeMory MeasureMents

188

Remember, if the function name is not recognized, select Lookup Symbols from the

context menu. It should trigger reading appropriate symbols.

There are also many other, extremely useful views. We will use them many times.

But now I encourage you just to look around, including such views as CPU Stacks,

mentioned GC Stats, or Asp.Net Stats.

 Memory Snapshots

When you select Take Heap Snapshot from the menu, we will see a Collecting Memory

Data window. It is good to immediately use the Filter field to find the processes we are

interested in. Once you have selected the process and clicked on the Dump GC Heap,

you will need to wait a few or dozen seconds to get the results (see Figure 3-29).

Figure 3-28. PerfView - Any stacks view

Chapter 3 MeMory MeasureMents

189

Note Memory snapshot is not a typical memory dump - it does not contain all
the memory of the process. It is a view of the process state, storing a preprocessed
objects graph but without an object’s content and ignoring all unmanaged memory
regions.

The resulting window will show the table we already see, but this time it does

not represent the call tree, but the reference tree in which nodes are object types or

category of types. For example, initially visible “By Name” tab shows a summary of

all the types found in the memory dump. We can further investigate a given entry by

choosing Memory ➤ View Objects (or Alt + O) from the context menu. Let’s do this

for “[static vars]” entry to see a list of all static variables in the memory dump (see

Figure 3-30).

Figure 3-29. PerfView - Memory snapshot view

Chapter 3 MeMory MeasureMents

190

We see here pairs of lines one by one - where the given static variable was declared

and an object it is assigned to. If we expand this object, we can investigate it further by

navigating through all its children (fields).

There is one more important memory snapshots function - comparing them. This

allows us to keep track of trends in our program and, for example, to quickly identify

the cause of memory leaks. To compare two snapshots (created exactly as before), open

them both, and from the Diff menu choose the option to compare to the second file. We

will see Diff Stacks, which will display data in a similar way to a single snapshot but with

an important difference that columns values will indicate the difference between the two

files (see Figure 3-31).

Figure 3-30. PerfView - Memory snapshot listing of all static variables

Chapter 3 MeMory MeasureMents

191

please note that there is Freeze option disabled by default in the Collecting
Memory Data dialog. It controls whether we want to stop the entire process for
the time of making heap snapshot. Is it obviously very intrusive, but also very
precise approach. on production environment you will most probably be interested
in disabling Freeze option, which unfortunately may produce more or less
inconsistent data (as the snapshot is being made during normal application work).

The real power of PerfView is its low overhead and the ability to analyze

production environments. We can use it for continuous performance monitoring

or production troubleshooting. It can provide us a tremendous amount of data,

and most of the performance or memory-related problems should be possible to

diagnose using this tool. The only drawback is quite a steep learning curve to get

used with its user interface and all possibilities hidden here or there thorough all

available options.

Figure 3-31. PerfView - Memory snapshot difference

Chapter 3 MeMory MeasureMents

192

We should of course be cautious about the amount of information that we want to

collect with this mechanism. Although the overhead of a tool is low, if you exaggerate with

the amount of information collected, it will not be suitable for production use. Gathering

information from several providers and several selected keywords should not be a problem.

However, as we could see, gathering information about the call stack of each object

allocation causes an unacceptable overhead. The simplest principle is always the best -

before we run the desired set of data collected on a production environment, let’s test at the

any lower, pre-production environment how it affects applications and the entire system.

 ProcDump, DebugDiag
When there is a need to analyze memory problems, often it occurs as late as on a

production system. Then, one of the simplest possibilities is to take a memory dump

of the problematic application and analyze it offline. Various tools for taking memory

dump exists. I would like to mention two of them as they probably cover all the most

standard needs. Both tools are installed as stand-alone tools, which may be downloaded

from the following Microsoft sites:

• ProcDump - https://docs.microsoft.com/en-us/sysinternals/

downloads/procdump

• DebugDiag - https://blogs.msdn.microsoft.com/debugdiag/

ProcDump is a command-line tool that allows us to take a memory dump just by a

single command ad hoc:

procdump -ma <process_pid>

However, there are numerous additional options, such as taking a memory dump

when memory usage or a CPU exceeds a given threshold, as well as any other given

performance counter value. There is also the possibility to take a few memory dumps

periodically, etc. Look at ProcDump’s comprehensive command-line help for a list of all

available options.

DebugDiag is a GUI-based tool that allows you to do similar things but in a more

UI- oriented way. It has a slightly wider range of functionality, such as taking a dump

when the response times of a given HTTP address exceeds the specified threshold.

The DebugDiag Analysis tool is part of this software and is used to generate automatic

reports of taken memory dumps. This allows you to quickly and easily view the report for

the most obvious problems.

Chapter 3 MeMory MeasureMents

https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
https://blogs.msdn.microsoft.com/debugdiag/

193

you can also consider using a great Minidumper tool created by sasha Goldshtein
and available at https://github.com/goldshtn/minidumper. It has a great
capability of saving a minimal amount of memory necessary for .net memory analysis
(so excluding a lot of overhead in the form of executable and DLL files, unmanaged
memory regions, and so on, and so forth). such “mini dump” may be then analyzed
as any other memory dump but may be even a few times smaller than a regular one.
therefore, it may be especially useful in making memory dumps of huge processes.

 WinDbg
Among the various tools we know about in this chapter, WinDbg is undoubtedly

the most low level. We can do almost everything in it: starting with debugging .NET

applications, through native Windows applications, and debugging the kernel itself.

Universality with a bit of rigidity is the power of this tool. It allows you to go down really

deep and show things at the level of individual bits. The severity of this tool allows for a

fairly quick analysis of some cases, for example, without the overhead of nice drawings

presenting results of multiple analyses available in other tools. Thanks to that, from my

practice, I sometimes prefer to use WinDbg rather than wait for more advanced tools to

process the data in their own way.

Luckily there is a new, completely refreshed new version of WinDbg available since

mid-2017. which makes the user interface slightly more pleasant and customizable.

Currently there are two ways of installing WinDbg - as a part of Windows Driver

Kit (WDK) or Windows Software Development Kit (for older version) or from Windows

Store (newest version). When installing SDK, you can simply deselect any components

other than Debugging Tools for the Windows component, which includes WinDbg.

After installation of the old edition, there will be two versions of this tool - one for 32-bit

and one for 64-bit analysis. Which one we should use depends what we want to debug -

whether it is a 32- or 64-bit process or memory dump. The newest edition installed from

the Windows Store comes in a single, universal version (but at the time of this writing it

is available only in preview version).

WinDbg can be a great tool for experiments helping to understand the .NET runtime.

We can attach to our managed program and we can debug it (and the runtime itself)

as we are used to from Visual Studio. But in the context of daily work, if we need to

use WinDbg, we will probably use it to analyze a previously made memory dump.

Hereinafter we will use the new WinDbg edition.

Chapter 3 MeMory MeasureMents

https://github.com/goldshtn/minidumper

194

Note WinDbg is in fact a quite simple wrapper about the Dbgeng library,
which is responsible for the debugging platform on Windows. Its true power in
the context of .net analysis lies within extensions made especially for .net,
listed below.

When running WinDbg, we will see a window (see Figure 3-32) in which we can

perform a few different operations:

• Use any of the recent activities again - which is particularly useful

when attaching to or running the same process again and again;

• Launch or attach to the process - by selecting Attach to process

option, a list of all running processes will be displayed;

• Opening dump file.

Figure 3-32. WinDbg main window

Chapter 3 MeMory MeasureMents

195

There are other options available like using time debugging (currently not available

for managed code) or remotely connecting to another debugger, etc.

By default, WinDbg works as a native debugger so it does not understand .NET-related

structures and concepts. We have to use WinDbg extensions that will provide him with such

knowledge. There are many possible extensions, among which the most popular ones are:

• SOS - this is a basic, yet very powerful extension that comes with the

.NET runtime itself. The name is an abbreviation of Son of the Strike.

This is due to the fact that it is the successor of the debugging tool

called Strike used during the .NET framework development.

• SOSEX - this is an extension of SOS (hence its name), which can be

freely downloaded from its author, Steve Johnson’s page: http://

www.stevestechspot.com/default.aspx. It adds more powerful

functionality when it comes to debug managed code and memory

dumps.

• NetExt (from Rodney Viana, available at https://github.com/

rodneyviana/netext) and MEX (Managed-code Debugging

Extension, available at https://www.microsoft.com/en-us/

download/details.aspx?id=53304) - yet two other extensions that

allow us to do more sophisticated things than the two above.

To load an extension, we should use .load <path to file> command., for

example, .load g:\Tools\Sosex\64bit\sosex.dll. In case of .NET built in SOS,

you can also manually type an sos.dll extension path like that. Or you can use the

convenient .loadby method, which allows you to locate path according to the second

argument location. This means you can load sos.dll from the same path where clr.dll

(main .NET runtime library) is located:

> .loadby sos clr

You can check whether this command succeeded by issuing the !sos.help

command that prints all commands available in SOS. Just as a quick look, you can also

check the !threads command. To load another two extensions, just use !load <path to

sosex.dll> and for netext or mex accordingly. Remember to use the x86 or x64 version

depending on which version your target application or memory dump is using. Then you

can view the available commands using the !sosex.help and !netext.help commands.

Chapter 3 MeMory MeasureMents

http://www.stevestechspot.com/default.aspx
http://www.stevestechspot.com/default.aspx
https://github.com/rodneyviana/netext
https://github.com/rodneyviana/netext
https://www.microsoft.com/en-us/download/details.aspx?id=53304
https://www.microsoft.com/en-us/download/details.aspx?id=53304

196

There is yet another one helpful tool that can be used with WinDbg - command tree

windows. As it is quite cumbersome to type all the commands again and again, you can

create a file with a structured list of available commands. Then by using the .cmdtree

<file> command, you can create dedicated windows with all those commands available

just by simple clicking.

Note It is also possible to take the memory dump of an operating system kernel
itself by connecting to a remote machine or by analyzing the system crash dump. We
will not need that for our purposes, but just keep in mind how powerful WinDbg is.

Additionally, to WinDbg, you may consider using the msos tool created by Sasha

Goldshtein and available at https://github.com/goldshtn/msos, described as a

“command- line environment a-la WinDbg for executing SOS commands without

having SOS available.” We can think of it as a command-line wrapper around SOS

functionalities, without a need for installing WinDbg and searching for proper SOS

extensions. Besides that, it adds some additional features like interpreting arbitrary

dynamic queries over heap objects and classes.

 Disassemblers and Decompilers
Although not directly related to the topic of memory management, sometimes it may

be useful to understand the fragment of not your application – the one we only have in

the binary version. As we will soon see, .NET binary code is fairly transparent. There

are tools that let you see the code of other programs in a convenient way. One of the

best, which I will use, is the free and open source dnSpy tool created on GitHub by

the 0xd4d user and available at https://github.com/0xd4d/dnSpy. It is not only a

tool that allows us to see code but we can also debug it and modify it. We will use it to

show both the .NET standard library code itself and the programs compiled for that

framework.

There are others popular tools like ILSpy, JetBrains dotPeek, and Redgate .NET

Reflector, but dnSpy will be particularly useful due to the editing capabilities and will be

just enough for our purposes.

Chapter 3 MeMory MeasureMents

https://github.com/goldshtn/msos
https://github.com/0xd4d/dnSpy

197

 BenchmarkDotNet
We often need to measure the performance of certain pieces of code. This will be

particularly useful in this book because we will compare the effects of different

optimization techniques. It would be ideal if with the measurement of the performance

of the code itself (its execution time), it was possible to measure also the amount of

memory needed.

The BenchmarkDotNet library is exactly that and even more powerful. With it

we can test the performance of each method. We can conveniently compare their

performance with each other, for example, with respect to various parameters. We

can test against various .NET versions, JIT and GC configurations, and so on, and so

forth.

What’s more, this library takes care of avoiding any mistakes we might make

ourselves, by writing similar micro-benchmarks. It has well-thought out stages of

each test, such as warming up or cooling. Tests are carried out in many iterations. All

measurements are processed statistically. Percentiles are calculated and multimodal

distribution of data is also being detected (including visually presenting a simplified

histogram). As a result, we get a powerful yet very easy-to-use tool.

The preparation of a simple test is illustrated in Listing 3-9. It really comes down to

the attributes of the class and method we are interested in. As previously mentioned, we

can also test with respect to some additional parameters provided (like N in our example

benchmark).

Listing 3-9. Example of BenchmarkDotNet test

[BenchmarkDotNet.Attributes.Jobs.ShortRunJob]

[MemoryDiagnoser]

public class TailCallTest

{

 [Params(5, 10, 20)]

 public int N { get; set; }

 [Benchmark]

 public long FibonacciRecursive()

 {

 return FibonacciRecursiveHelper(N);

 }

Chapter 3 MeMory MeasureMents

198

 private long FibonacciRecursiveHelper(long n)

 {

 if (n < 3)

 return 1;

 return FibonacciRecursiveHelper(n - 2) + FibonacciRecursiveHelper

(n - 1);

 }

}

Execution of the test presented in Listing 3-9 is as simple as calling BenchmarkRunner.

Run<TailCallTest>() in our program. The result of this test (see Figure 3-33) shows the

average execution time of each method for each parameter and for two different JIT (Just

In Time) compilers, resulting in rich statistical data about the results.

Figure 3-33. Results of example BenchmarkDotNet test

You can also extend the library by additional loggers, analyzers, diagnosers, and

so on. Two are especially interesting for us. GC and Memory Allocation Diagnoser

(MemoryDiagnoser) analyze how many garbage collections occurred and how many

Chapter 3 MeMory MeasureMents

199

allocations have been made during the test. There is also the Hardware Counters

Diagnoser (HardwareCounters), which is available only on Windows and can provide us

deep insight into hardware-related statistics like CPU cache misses.

 Commercial Tools
The tools discussed so far are all free. Although they offer powerful capabilities,

sometimes their use is quite cumbersome. On the other hand, commercial programs are

from the very beginning written for a pleasant user interface in mind. Below you will find

a short list of possible tools to use. I cannot assure you that this list is complete. From

the time of writing a book to its publication, many things may change. The tools I’m

referring to have simply been used while working on the book and my own many years

of experience.

Your mileage may vary when using those tools. I encourage you to try each of them

during and after reading this book. You will decide which one suits you the most. They

are very convenient to use, especially in the hands of an expert who understands the

topic pretty well (which I hope you will become after reading this book).

There is no point in concentrating in this book for only one of those tools (which one

should I choose then?). Instead, I put much more effort on free, open source alternatives.

 Visual Studio

It is hard to imagine a .NET developer who has never used Visual Studio. It really is a

powerful and robust programming tool. In addition to commonly known functionalities,

it also provides options for monitoring and memory analysis:

• Opening memory dump files and analyzing them for the use of

objects (see Figure 3-34) including statistics, individual object

instances, and references between them.

• Live profiling is also possible. We are of course interested in the

Memory Usage tool, but there are also CPU Usage and GPU Usage

tools (see Figure 3-35). While using it we get a preview of the current

memory consumption and the occurrences of GC. At any time, we

can also take a snapshot that will give us insight into the statistics of

managed objects.

Chapter 3 MeMory MeasureMents

200

Figure 3-34. Visual Studio snapshot view

Visual Studio does not have such extensive diagnostic options as other commercial

programs listed here. However, its great advantage is undoubtedly the fact that with high

probability, you already use this tool.

Chapter 3 MeMory MeasureMents

201

Figure 3-35. Visual Studio live view

 Scitech .NET Memory Profiler

Scitech’s tool is one of the available dedicated tools for analyzing .NET. It provides very

powerful options for viewing the status of objects, including a breakdown by the different

generations, objects’ reachability, and so on. You can use it to display very complex

reference graphs.

In each of the views, you can use a variety of filters, allowing you to greatly narrow

down your research. As an example, we may find all interned strings (which we will

know about in Chapter 4) in Generation 2 with only two clicks. The interface has been

very well thought out and we will easily start working with the program. The application

in many places prompts us (with the help of icons and tooltips) about possible problems

and issues such as a large number of duplicate strings or a number of pinned instances.

At the same time, the interface is not too simplistic, allowing for in-depth analysis of the

situation with our chosen approach (see Figures 3-36 and 3-37).

Chapter 3 MeMory MeasureMents

202

Figure 3-36. .NET Memory Profiler snapshot view with reference graphs

Chapter 3 MeMory MeasureMents

203

With the program, we can use the .NET Memory Profiler API to study memory

usage or detect memory leaks. The free command-line NmpCore program allows you to

perform diagnostic sessions, including production environments. We can analyze them

later in .NET Memory Profiler.

 JetBrains DotMemory

JetBrains is known by a lot of people from .NET world, thanks to their ReSharper tool.

However, the company also has excellent products for CPU (dotTrace) and memory

(dotMemory) profiling. Of course, we are interested in the second one. dotMemory is

designed for both live application profiling and also offers the possibility of memory

dumps analysis. It is possible to remotely profile applications on another machine,

which can be useful in environments higher than development.

Compared to the .NET Memory Profiler, the dotMemory interface is clearly simplified

(which may be an advantage, though). Many possible analyses are being suggested in the

interface itself, giving the results even before we ask (see Figures 3-38 and 3-39).

Figure 3-37. .NET Memory Profiler snapshot live view

Chapter 3 MeMory MeasureMents

204

Figure 3-38. JetBrains DotMemory snapshot view with reference graphs

Chapter 3 MeMory MeasureMents

205

DotMemory provides some interesting visualizations, including heap fragmentation.

We will also quickly learn what objects have the largest retained size.

It is also worth mentioning two neighboring tools. The dotMemory Unit allows

you to perform unit tests that take into account memory consumption. It can be

included in Visual Studio as a part of unit testing framework or into your Continuous

Integration process. The second tool is a Heap Allocations Viewer extension to the

above-mentioned ReSharper Visual Studio extension. It supports static analysis of

our code with respect to unwanted hidden allocations (we will talk about them in

Chapter 5).

Figure 3-39. JetBrains DotMemory live view

Chapter 3 MeMory MeasureMents

206

 RedGate ANTS Memory Profiler

The RedGate tool is one I personally associate with one of the first products of this type

I have come in contact with. As for the user experience, it is very similar to the JetBrains

tool. It is easy to use, does not overwhelm with the options, and tries to get as many

responses as possible to the user before asking them. At the time of this writing, it is only

possible to do live code profiling, without the ability to load memory dumps (see Figures

3-40 and 3-41).

Figure 3-40. ANTS Memory Profiler snapshot view

Chapter 3 MeMory MeasureMents

207

 Intel VTune Amplifier and AMD CodeAnalyst
Performance Analyzer

Beyond the typical code and memory profilers, there are tools dedicated for low-level

hardware-based profiling of your code usually provided by the processor manufacturers.

Two main options mentioned in the title are provided by AMD and Intel as commercial,

paid tools. They offer a much deeper analysis beyond the classical profiling of the code

that states which methods perform the longest. We can get information from hardware

counters built into hardware (processor, graphics card) about its internal behavior -

cache and memory utilization, pipeline stalls, and many more.

In the everyday work of the .NET developer we are rather not interested in going into

such details. However, they may be very useful when fine-tuning your application, especially

when we consider optimizing hot paths and tight loops executed millions of times.

Figure 3-41. ANTS Memory Profiler live view

Chapter 3 MeMory MeasureMents

208

In fact, only such low-level tools can point us clearly to problems like False Sharing

shown in Chapter 2. Let’s look at the results of the sample analysis for Listing 2-6 from

Chapter 2 made in Intel VTune Amplifier (see Figure 3-42). It clearly states something

wrong is going on - our code is highly memory bound and there are 100% Contested

Accesses pointed out.

Because such tools track hardware counters on the lowest level, we can even figure

out statistics per single line of program to find out the precise roots of the problems. In

case of the program from Listing 2-6, such an analysis indeed points out to the source

of contested access. Obviously, because underneath the .NET application, it is executed

as native code (thanks to the JIT compiler explained in Chapter 4), VTune points us to

concrete lines of JITted assembly code. With a good understanding of the JIT and Intel’s

assembly code in general, we can match those lines to concrete lines of our .NET code.

For example, in case of our results, there are two problematic lines in particular (see

Figure 3-43):

Figure 3-42. Example results from Intel VTune Amplifier - summary view

Chapter 3 MeMory MeasureMents

209

• Checking the size of the array (first highlighted line),

• Accessing old counter data (second highlighted line).

Therefore, obviously usage of such tools requires quite low-level knowledge about

hardware used, the .NET runtime, and even the assembly language. It is also worth

noticing that both tools are available for Windows and Linux.

 Dynatrace and AppDynamics

Beyond many tools dedicated solely to .NET memory management, there are a bunch

of higher-level tools for application performance monitoring in general. They provide

a great insight into the application and are particularly well suited for production or

pre-production environments. Because memory management is an important aspect of

.NET applications, the tools that support this platform also provide convenient insight

into the application memory usage.

Such so-called Application Performance Management (APM) tools from the two

leading vendors listed in the title are excellent examples of this approach. Continuous

monitoring of applications for problems and its impact on the end user is even more

Figure 3-43. Example results from Intel VTune Amplifier - assembly code view

Chapter 3 MeMory MeasureMents

210

valuable than even the most sophisticated tools that work only on the local developer’s

computer. There is simply no confrontation with the reality and real traffic generated

by users.

 Linux Environment
Ideally, everything that was mentioned in the previous section should now be

repeated in the context of the Linux operating system. However, the truth is that

.NET on Linux is still very fresh in 2018. Initial production deployments are just

beginning to emerge. Consequently, development on this platform is only beginning

to show up. Because it is such a fresh field, there is a huge difference in knowledge

and good practices establishment compared to the Windows environment. In

Windows, many different tools are available, as we have seen: both free and

commercial ones. In the case of Linux, the choice is virtually unremarkable. There

are no standard procedures or even real experienced experts in the field. We are

moving onto unspoiled terrain.

 Overview
Linux rises up and develops as an extraordinary creation of countless contributors from

the open source community. It was not designed and implemented by one company

from the very beginning, as is the case with the Windows operating system. It is not

surprising that there is a lack of strict standardization in some fields. One such aspect

is monitoring and tracking applications that we are particularly interested in. There are

many mechanisms available; some of them are slowly losing popularity, and others are

just beginning to gain it. In this context, monitoring infrastructure in Linux becomes less

homogeneous than in a Windows environment.

There is no widely accepted diagnostic tracing standard used in all distributions

and the kernel of the system. When moving CoreCLR to the Linux environment,

decisions must be made what mechanism will be used. It is being well documented

in CoreCLR documentation at https://github.com/dotnet/coreclr/blob/master/

Documentation/coding-guidelines/cross-platform-performance-and-eventing.md.

For example, there were other mechanisms considered like SystemTap, DTrace4Linux,

FTrace, and Extended Berkeley Packet Filter (eBPF).

Chapter 3 MeMory MeasureMents

https://github.com/dotnet/coreclr/blob/master/Documentation/coding-guidelines/cross-platform-performance-and-eventing.md
https://github.com/dotnet/coreclr/blob/master/Documentation/coding-guidelines/cross-platform-performance-and-eventing.md

211

Currently the following mechanisms are used on the different levels:

• .NET application - as in case of Windows, we can use EventSource

library or obviously, any other library to log directly into the files and

many other possible targets,

• .NET Core runtime - emits LTTng (“Linux Tracing Toolkit Next

Generation”) events,

• Operating system API and kernel itself - emits so-called perf_events

data.

In the end, to have a good overview of the CoreCLR process on Linux, a combination

of two mechanisms should be used:

• perf_events - it provides various data based on both hardware and

software (including OS libraries and the kernel itself). This includes

system-wide measurements like CPU sampling, context switches,

memory usage.

• LTTng - event tracing on user mode side but with kernel-size

modules and buffers. It provides strongly typed events and as such is

very similar to the Event Tracing for Windows (ETW). Unfortunately,

by default it does not support tracking stack traces (program has been

recompiled to enable or disable them, which is not applicable for a

general-purpose framework like CoreCLR). The same event names

are used here as in the case of ETW events on Windows.

While perf_events is system-wide, the LTTng mechanism can be hooked up to

individual processes.

Please find Table 3-3 that can help to understand the similarities and differences

between the tracking mechanisms in Windows and Linux.

Chapter 3 MeMory MeasureMents

212

The most noticeable difference is the lack of a dynamic tracing mechanism in

Windows. By dynamic tracing, we mean that you can enable or disable single-function

call tracking in an application while it is running.

 Perfcollect
The easiest way of getting tracing data is by using the official perfcollect bash script

and then using Perfview on Windows to analyze this recorded data. This approach has

some drawbacks. The main one is fairly limited analysis results available in PerfView -

there is just a raw list of events available. The second, less burdensome one, is the need

for Windows to... analyze Linux data.

To start monitoring your .NET Core application, follow official CoreCLR instructions

at https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/

linux-performance-tracing.md. It is not complicated. You should get perfcollect

script from CoreCLR Github repository at http://aka.ms/perfcollect. Then you only

need to execute sudo ./perfcollect install, which will install perf_event and LLTng

tools on your Linux machine. Then, to start a tracing session you need to export two

environment variables (the first enables generation of so-called decoding maps, needed

to decode symbols from recorded traces, which will be stored in /tmp/perf-PID.map) as

shown in Listing 3-10.

Table 3-3. Tracking Mechanisms Comparison Between Linux and Windows

Aspect Windows Linux

static tracing

 Kernel-mode etW Kernel Logger perf_events, BCC

 user-mode etW providersperformance Counters Lttng

 Definition etW manifest Lttng tracepoint definition

 system-wide yes no

Dynamic tracing

not available perf_events

systemtrap

BCC

Chapter 3 MeMory MeasureMents

https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/linux-performance-tracing.md
https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/linux-performance-tracing.md
http://aka.ms/perfcollect

213

Listing 3-10. Setting environment variables needed for CoreCLR monitoring

> export COMPlus_PerfMapEnabled=1

> export COMPlus_EnableEventLog=1

> sudo ./perfcollect collect sampleTrace [-pid <PID>] [-threadtime]

After stopping the session, it will result in a ZIP file containing registered data. What

exactly does the perfcollect script do? In short, it manages sessions and prepares the

resulting file:

• It configures the LTTng session:

• with the context consisting of procname, vpid (process ID), and

vtid (thread ID)

• with by default all events added from the groups

DotNetRuntime:* and DotNetRuntimePrivate:* (a detailed list

and available settings we can see in the script itself)

• It starts the LTTng session

• It starts the perf session to take CPU samples each 1 ms

(at 999 Hz frequency)

• It prepares result the ZIP file with all necessary data:

• lttngTrace subfolder contains recorded LTTng traces

• main folder contains:

 – all perf.map files created during session

 – all symbol files generated for native images (AOT/NGEN) with the

help of crossgen tool

 – all perf data and related logs

• debuginfo subfolder - contains debuginfo (symbol files) for all

other modules

After recording a session, we can also view it using the perfcollect script (see

Listing 3-11).

Listing 3-11. Viewing perfcollect data

> sudo ./perfcollect view <tracefile>

> sudo ./perfcollect view <tracefile> -viewer lttng

Chapter 3 MeMory MeasureMents

214

The first command displays perf data as a call tree, and the second is just a textual

listing of all LTTng events without any interpretation.

You can, of course, manually manage LTTng session (so what is scripted in perfcollect),

to have better control over a created session and recorded events (see Listing 3-12).

Listing 3-12. Manually managing LTTng session

> lltng create sample_trace

> lltng add-context --userspace --type procname // or vpid, vtid

> lltng enable-event --userspace --tracepoint DotNetRuntime:Exception*

> lltng enable-event --userspace --tracepoint DotNetRuntime:GC*

> lltng start

> lltng stop

> lltng destroy

Similarly, you can manually manage perf_events to create perf session (see Listing 3-13).

Listing 3-13. Manually managing perf session

> perf record -g -F 999 --pid=<PID> -e cpu-clock

This will start a session with call-graph recording (-g option) and sample at 999 Hz

frequency, which in fact means each 1 ms (-F 999 option).

 Trace Compass
As this tool main page says: “Eclipse Trace Compass is an open source application for

viewing and analyzing any type of logs or traces. Its goal is to provide views, graphs,

metrics, and more to help extract useful information from traces, in a way that is more

user-friendly and informative than huge text dumps.”

Among the various supported formats, the most important for us is CTF format

(Common Trace Format), in which events are generated by an LTTng mechanism used by

CoreCLR. Trace Compass looks like a mix of PerfView and Windows Performance Analyzer

tools - if you had contact with them, you might guess what I mean. It is powerful and

allows us to make great things. But unfortunately, like the two mentioned programs, it has

a very steep learning curve. Extensive configuration options make it hard to know where

to start when you run it for the first time. If you are not interested in Linux diagnostics or if

you just do not want to spend time to read a rather detailed description of Trace Compass

adaptation to our needs, feel free to omit the rest of this subchapter for now.

Chapter 3 MeMory MeasureMents

215

 Opening File

Assuming you get a perfcollect recording, please unzip it to some folder. The LTTng

data we’re interested in are in the lttngTrace subfolder, more specifically in the path

that follows the schema lttngTrace\auto-20170801-103533\ust\uid\1000\64-bit.

To open it in Trace Compass, select File ➤ Open Trace... and select metadata file. The

default view we will see (see Figure 3-44) includes two main views: a list of all events (a

“64-bit” bookmark for a sample file), and a histogram of event instances over time.

Figure 3-44. Eclipse Trace Compass - The default view of LTTng trace

We can take a moment to look at the events tab, where as you can see, along with

each event there are also accompanying fields (including the generic context._vpid

and context._vtid, respectively the process ID and the thread ID from which the

event was generated). You can search and filter that view by manipulating the first

Chapter 3 MeMory MeasureMents

216

row. On the other hand, the histogram can only help us to figure out the number of

events in time and in that sense is not very helpful. We can close it, like other tabs:

Control, Control Flow, Resources, Properties, and Bookmarks. After that we should

end up only with Project Explorer, Statistics, and tracing tabs. Such a view, however,

is not particularly useful, and this is where the complex customization process

begins.

For this moment we will just open a file containing the ready-made analyses

prepared for this book, and then one by one I will explain how they were created and

what they show. To do that it is best to close the current trace by selecting Clear from

the context menu under Tracing ➤ Traces in Project Explorer tab. Download coreclr_

analyses.xml file attached with this book and store it somewhere. Then select Manage

XML analyses... from the same context menu. In the window that appears, select

Import and point to the file you just downloaded. Then open the same trace once

again. Three new views should be visible under Tracing ➤ Traces ➤ 64-bit ➤ Views

item (see Figure 3-45).

By expanding any of the new custom views, you will see additional possible views.

You can double-click any of them to add it to the main view.

All these views are based on the Trace Compass feature called Data driven

analysis http://archive.eclipse.org/tracecompass/doc/stable/org.eclipse.

tracecompass.doc.user/Data-driven-analysis.html#Data_driven_analysis. It

allows us to specify an interpretation of events sequences in a various way by providing

dedicated XML files.

Figure 3-45. Eclipse Trace Compass - Three new custom views of LTTng trace

Chapter 3 MeMory MeasureMents

http://archive.eclipse.org/tracecompass/doc/stable/org.eclipse.tracecompass.doc.user/Data-driven-analysis.html#Data_driven_analysis
http://archive.eclipse.org/tracecompass/doc/stable/org.eclipse.tracecompass.doc.user/Data-driven-analysis.html#Data_driven_analysis

217

 CoreCLR.GC.collections

Let’s start from the simplest custom view. It is based on a simple pattern, matching

Garbage Collection start and end events. Each such pair of starting and closing events

generates a so-called “segment” in Trace Compass nomenclature, which is understood

simply as a time interval with a name and possible attributes. Such analysis in Trace

Compass is carried out with Finite State Machine (FSM) describing transitions of our

interest (reactions to subsequent events) and related actions. Listing 3-14 shows a brief

structure of such analysis (for simplicity I’ve removed the part matching the start and

end of the same GC).

Listing 3-14. Fragments of CoreCLR.GC.collections custom analysis for Trace

Compass

 <pattern version="0" id="CoreCLR.GC.state">

 ...

 <patternHandler initial="gcsegments">

 <action id="gc_starting">

 <stateChange>

 <stateAttribute type="constant"

value="#CurrentScenario" />

 <stateAttribute type="constant" value="Generation" />

 <stateValue type="eventField" value="Depth"/>

 </stateChange>

 </action>

 <action id="gc_ending">

 <segment>

 <segType>

 <segName>

 <stateValue type="query">

 <stateAttribute type="constant"

value="#CurrentScenario" />

 <stateAttribute type="constant"

value="Generation" />

 </stateValue>

 </segName>

 </segType>

Chapter 3 MeMory MeasureMents

218

 </segment>

 </action>

 <fsm id="gcsegments" initial="state_before_gc">

 <state id="state_before_gc">

 <transition event="DotNETRuntime:GCStart_V2"

target="state_during_gc" action="gc_starting"

saveStoredFields="true" />

 </state>

 <state id="state_during_gc">

 <transition event="DotNETRuntime:GCEnd_V1"

target="state_after_gc" action="gc_ending"

cond="count_condition" saveStoredFields="true"

clearStoredFields="true" />

 </state>

 <final id="state_after_gc" />

 </fsm>

 </patternHandler>

 </pattern>

The name of each segment corresponds to the generation on which the GC was

made (section segName in the above description). Therefore, views generated by this

analysis include a list of all Garbage Collections per generation and their statistics (see

Figures 3-46 and 3-47) - segment duration is being called latency.

Figure 3-46. Eclipse Trace Compass - Statistics of all GCs during recorded trace -
level indicates generation

Chapter 3 MeMory MeasureMents

219

It means that in our sample trace, there were, for example, six GC on 2 generations

and they took almost 10 ms in average. Type and Reason are additional recorded fields

that come from GCStart_V2 event (not yet documented but those fields are also present

in GCStart_V1 event (see https://docs.microsoft.com/en-us/dotnet/framework/

performance/garbage-collection-etw-events#gcstartv1-event for details).

 CoreCLR.threads.state

This is by far the most complex custom view made by me so far. It utilizes yet another

powerful Trace Compass feature to create Gantt-like diagrams of XML-based data-

driven analyses. You can open it by double-clicking CoreCLR.threads.state.view under

CoreCLR.threads.state view. Just to show an overview of the underlying FSM, the

beginning of its definition is presented in Listing 3-15.

Listing 3-15. Fragments of CoreCLR.threads.state custom analysis for Trace

Compass.

<patternHandler initial="thread">

 <test id="thread_condition">

 <if>

Figure 3-47. Eclipse Trace Compass - List of all GCs during recorded trace -
including additional parameters like Type and Reason

Chapter 3 MeMory MeasureMents

https://docs.microsoft.com/en-us/dotnet/framework/performance/garbage-collection-etw-events#gcstartv1-event
https://docs.microsoft.com/en-us/dotnet/framework/performance/garbage-collection-etw-events#gcstartv1-event

220

 <condition>

 <stateValue type="eventField" value="context._vtid"/>

 <stateValue type="query">

 <stateAttribute type="constant"

value="#CurrentScenario" />

 <stateAttribute type="constant" value="ThreadId" />

 </stateValue>

 </condition>

 </if>

 </test>

 ...

 <action id="on_thread_restarting_begin">

 <stateChange>

 <stateAttribute type="constant" value="#CurrentScenario" />

 <stateAttribute type="constant" value="Status" />

 <stateValue type="int" value="11"/>

 </stateChange>

 </action>

 ...

 <fsm id="thread" initial="state_before_thread" consuming="false">

 <state id="state_before_thread">

 <transition event="DotNETRuntime:ThreadCreated"

target="state_normal_thread" action="on_thread_starting" />

 </state>

 <state id="state_normal_thread">

 <transition event="DotNETRuntime:ThreadTerminated"

target="state_dead_thread" action="on_thread_ending"

cond="thread_condition" />

 <transition event="DotNETRuntime:GCSuspendEEBegin_V1"

target="state_suspending_thread" action="on_thread_suspending_

begin" />

 <transition event="DotNETRuntimePrivate:BGCBegin"

target="state_during_bgc_nonconcurrent" action="on_bgc_

starting_nonconcurrent" cond="thread_condition" />

 </state>

 <state id="state_during_gc">

Chapter 3 MeMory MeasureMents

221

 <transition event="DotNETRuntime:GCEnd_V1" target="state_normal_

thread" action="on_gc_ending" cond="gc_thread_condition" />

 <transition event="DotNETRuntimePrivate:BGCBegin"

target="state_during_gc" action="on_bgc_starting_global" />

 </state>

 ...

</patternHandler>

Such a fairly complex state machine responds to individual CoreCLR (mostly

GC-related) events changing the state of one of the so-called “scenarios.” In this case,

scenario corresponds to s single thread, thanks to the thread_condition condition. In

other words, the event most often changes the state of only one selected thread, assigned

to a given scenario. This is not the case for some events like GCSuspendEEBegin_V1,

which are impacting all current managed threads. The actions associated with each of

these events (reactions) primarily change the Status field of a given scenario, which is

simply a numerical value. Interpreted later by the timeGraphView component, as shown

below in Listing 3-16.

Listing 3-16. Definition of timeGraphView showing CoreCLR.threads.state

analysis results

 <timeGraphView id="CoreCLR.threads.state.view">

 <head>

 <analysis id="CoreCLR.threads.state" />

 <label value="CoreCLR.threads.state.view" />

 </head>

 <definedValue name="USER THREAD" value="0" color="#CCCCCC"/>

 <definedValue name="GC THREAD" value="1" color="#D6F0FF"/>

 <definedValue name="FINALIZER THREAD" value="2" color="#118811"/>

 <definedValue name="THREADPOOL THREAD" value="4" color="#A0A0A0"/>

 <definedValue name="GCWORK" value="8" color="#0000FF"/>

 <definedValue name="SUSPENDING" value="9" color="#8C5656"/>

 <definedValue name="RESTARTING" value="11" color="#758C56"/>

 <definedValue name="GCPREPARE" value="12" color="#A38A8A"/>

 <definedValue name="BGCWORK NONCONCURRENT" value="16"

color="#00A4FC"/>

Chapter 3 MeMory MeasureMents

222

 <definedValue name="BGCWORK CONCURRENT" value="17"

color="#000099"/>

 <entry path="scenarios/*">

 <display type="self" />

 <name type="self" />

 <entry path="*">

 <display type="constant" value="Status" />

 <name type="constant" value="ThreadId" />

 </entry>

 </entry>

 </timeGraphView>

This component visualizes each of the scenarios in a separate line, which gives us

a separate line for each thread, colored according to the current state of the thread and

name according to its ThreadID. This allows for a nice view of the application state (see

Figure 3-48). And in particular, after zooming in, it shows us nice details of a single GC

run (see Figure 3-49).

Figure 3-48. Eclipse Trace Compass - Threads overall view

Chapter 3 MeMory MeasureMents

223

In the above examples, we see details of a single generation 2 garbage collection run

that triggered creation of the GC thread for non-concurrent parts of background GC (all

those details are thoroughly explained in Chapter 11).

 CoreCLR.GC.generations.ranges

The last option is to create so-called XY graphs (see http://archive.eclipse.org/

tracecompass/doc/stable/org.eclipse.tracecompass.doc.user/Data-driven-

analysis.html#Defining_an_XML_XY_chart for details) based on data provided by

events. Of course, it is especially tempting to visualize all kinds of measurable metrics

such as size of generations and the like. There is one event especially useful here -

GCGenerationRange, generated for each generation at the end of each GC run (see

Figure 3-50).

Figure 3-49. Eclipse Trace Compass - Single background GC, creating concurrent
GC thread

Chapter 3 MeMory MeasureMents

http://archive.eclipse.org/tracecompass/doc/stable/org.eclipse.tracecompass.doc.user/Data-driven-analysis.html#Defining_an_XML_XY_chart
http://archive.eclipse.org/tracecompass/doc/stable/org.eclipse.tracecompass.doc.user/Data-driven-analysis.html#Defining_an_XML_XY_chart
http://archive.eclipse.org/tracecompass/doc/stable/org.eclipse.tracecompass.doc.user/Data-driven-analysis.html#Defining_an_XML_XY_chart

224

We can consume its Generation, RangeUsedLength, and RangeReservedLength

fields to visualize generations’ sizes. Such analysis is based on a simpler mechanism and

does not require creating s separate FSM. It is just event handler reacting on a particular

event (see Listing 3-17).

Listing 3-17. Definition of CoreCLR.GC.generations.ranges custom analysis for

Trace Compass and its corresponding view

<stateProvider version="0" id="CoreCLR.GC.statistics">

 <head>

 <traceType id="org.eclipse.linuxtools.lttng2.ust.tracetype" />

 <label value="CoreCLR.GC.generations.ranges" />

 </head>

 <eventHandler eventName="DotNETRuntime:GCGenerationRange">

 <stateChange>

 <stateAttribute type="constant" value="Generations" />

 <stateAttribute type="eventField" value="Generation" />

Figure 3-50. Eclipse Trace Compass - DotNETRuntime:GCGenerationRange
events emitted at the end of GC run

Chapter 3 MeMory MeasureMents

225

 <stateValue type="eventField" value="RangeUsedLength"

forcedType="long"/>

 </stateChange>

 </eventHandler>

</stateProvider>

<xyView id="CoreCLR.GC.statistics.view">

 <head>

 <analysis id="CoreCLR.GC.statistics" />

 <label value="CoreCLR.GC.statistics.view" />

 </head>

 <entry path="Generations/*">

 <display type="self" />

 </entry>

</xyView>

We obtain graphical visualization of the size of generations over time, which can be

very useful in analysis (see Figure 3-51).

Figure 3-51. Eclipse Trace Compass - XY visualization of generation sizes in time

Note there is yet another very interesting event DotNETRuntime:
GCHeapStats_V1, but unfortunately, currently its payload is interpreted as a byte
array so it is not possible to consume it.

Chapter 3 MeMory MeasureMents

226

 The Final Results

All this allows us to customize the Trace Compass for a fairly convenient analysis of the

collected traces (see Figure 3-52). Of course, there is still a lot to do, but such an analysis

will make some preliminary conclusions: how frequently and why GC runs occur and

how memory consumption changes over time. Reviewing the list of events may allow

you to get an idea of the details.

Figure 3-52. Eclipse Trace Compass - CoreCLR analysis with all custom views
altogether

Chapter 3 MeMory MeasureMents

227

 Memory Dumps
Taking the .NET Core application memory dump conceptually is no different than taking

it for any other program running on Linux. To make a dump, execute the command

gcore, one of the gdb (The GNU Project Debugger) tools (see Listing 3-18).

Listing 3-18. Taking a memory dump of process

$ gcore <PID>

It is just like using the already described Procdump on Windows.

When it comes to dump analysis, it is currently mostly based on using an SOS

debugging extension - already mentioned as a very powerful extension that comes

with the .NET Core runtime itself. To proceed with dump analysis, you have to use lldb

debugger to open the dump file, load the SOS plugin and, additionally, tell the debugger

where the CoreCLR runtime is placed - with the help of the setclrpath command (see

Listing 3-19).

Listing 3-19. Loading memory dump and appropriate configuration into lldb

> lldb --core ./path.to.coreListing 3-20.

(lldb) plugin load /usr/share/dotnet/shared/Microsoft.NETCore.App/2.0.0/

libsosplugin.soListing 3-21.

(lldb) setclrpath /usr/share/dotnet/shared/Microsoft.NETCore.App/2.0.0

From now on we should be able to use any SOS command like in WinDbg.

Note lldb is based on llvm and can be seen as just a completely new debugging
environment not related to gdb at all.

 Summary
In this extensive chapter we reviewed various tools that are useful in the context of .NET

memory management analysis – both from the diagnostic side and from its monitoring

side. Inevitably, it was only a brief review without going into the details of each service

tool. Despite this, the chapter has grown to a substantial size. There are a lot of tools

Chapter 3 MeMory MeasureMents

228

running on the Windows operating system and a little less operating on Linux. Most

often these are not simple programs, and their manuals are the subject of separate,

dedicated books. I highly recommend using these tools in your daily work and treating

the list contained in this chapter as a starting point for further exploration. Download

them and try them. Certainly, you will like some more than others.

Just as a little help, please find a brief summary of tools mentioned so far in

Tables 3-4 and 3-5.

Table 3-4. Summary of the .NET-Related Tools for Windows.

Tool Purpose Pros and cons

performance monitor performance counters viewer.

records and visualizes performance

counter data.

+ easy to use

+ low overhead

- may be sometimes

misleading

Windows performance

toolkit

record and visually analyze etW data.

Focused mainly on Windows/drivers

analysis.

+ very powerful

+ low overhead possible

- steep learning curve

perfview record and analyze etW data with

the help of many predefined views.

Focused mainly on .net related analysis.

+ very powerful for .net

+ low overhead possible

- steep learning curve

procDump, DebugDiag taking memory dump of a process. either

ad hoc or based on various metrics.

+ easy to use

WinDbg Debugging both managed and native

code. With the help of powerful extensions

provides extensive analysis possibilities.

+ very low-level insight

into process possible

- very steep learning curve

- may be too low level for

many everyday purposes

dnspy editing and debugging .net assemblies

even if source code is not available.

(continued)

Chapter 3 MeMory MeasureMents

229

Table 3-4. (continued)

Tool Purpose Pros and cons

BenchmarkDotnet Benchmarking library allowing us to

benchmark .net code with respect to

execution time and resource utilization.

Visual studio

(commercial)

Well-known, general purpose IDe. Includes

debugging, profiling, and memory dump

analysis capabilities.

+ well-known to .net

developers

- profiling and dump

analysis slightly limited

in comparison to other

dedicated, commercial

tools

scitech .net Memory

profiler (commercial)

JetBrains DotMemory

(commercial)

redGate ants Memory

profiler (commercial)

tools dedicated to .net memory analysis. + easy-to-use user

interface

+ many predefined

analyses

- paid tools

Intel Vtune amplifier

and aMD Codeanalyst

performance analyzer

hardware-level profiling of both native

and managed code, including insight into

cache utilization, Cpu pipeline utilization,

and much more.

+ very deep insight into

hardware performance

- may be too detailed for

many typical scenarios

- requires at least some

basic hardware knowledge

Dynatrace &

appdynamics

(commercial)

Continuous monitoring tools including

collecting .net-related data (depends on

the tool).

+ deep insight into running

applications

- paid tools

Chapter 3 MeMory MeasureMents

230

Some of the tools presented in this chapter will be used later in this book to show

you the topics discussed. That is why it was so important for them to be presented before

we could actually use them. We will have an opportunity to practice them in different

circumstances later on. Since we have not introduced any details about GC in .NET yet,

it was too early to address specific diagnostic issues in this chapter. There will be also

some other small tools used later not mentioned here. It would be just too expansive to

mention them all here.

The first three chapters you have just read are a general introduction to memory

management. In Chapter 1 we learned about many theoretical concepts on this subject.

In Chapter 2 we learned the hardware and system details of it. And now we are closing

this extensive introduction by the third chapter about tools that can be used. And we’re

going to the right part, describing .NET itself, its internals, and common best practices.

I invite you to read!

Table 3-5. Summary of the .NET-Related Tools for Linux

Tool Purpose Pros and cons

perfcollect script for collecting and simple

viewing LLtng and perf data.

+ helps with configuring LLtng

and perf sessions

- very limited analysis

trace Compass record and visually analyze LLtng

data. Created for general purpose

analysis, and can be tuned for .net-

related events.

+ quite powerful visualizations

- a lot of customization required

- steep learning curve

lldb native debugger with managed

code debugging capabilities via sos

extension.

+ very low-level insight into

process possible

- step learning curve

Intel Vtune amplifier

and aMD Codeanalyst

performance analyzer

refer to the Windows counterparts

description.

Chapter 3 MeMory MeasureMents

231

 Rule 5 - Measure GC Early
Justification: Continuous monitoring of different metrics allows to answer to the

question “whether we have a memory problem?” from the very beginning of our

application existence. What’s more, we can observe trends that will reveal the

degradation of the performance of our process. Of course, this principle is general

enough to apply not only in the GC context. Similarly, we should measure overall

performance (e.g. response times) or synchronization problems (like number of context

switches), etc.

How to apply: It is important to develop the habit of measuring GC parameters

as early as possible, from first deployments in lower environments to continuous

monitoring of production environments. Because it is more conceptual than

practical advice, the answer to how to use it can be very broad. Undoubtedly,

the goal should be, preferably automatic process of continuous monitoring of

applications for memory usage and GC operation. The other rules listed in this

book should be the starting point for creating this process. Thanks to them we

will know what to measure and how to interpret the results. How this process will

look to a large extent depends on what tools we use. In the case of Windows, most

often measurements will be based, one way or another, on readings of relevant

performance counters (section 3.2) or cyclic ETW event analysis (section 3.3). In

the case of Linux, it will automate the analysis of the perf_events and LTTng data.

Such automated checks can be integrated into our Continuous Integration and

Delivery processes, such as after every build of a new product release. Absolutely the

minimum approach should be to manually monitor the metrics selected after each

production deployment and compare them with behavior against previous versions.

What should we measure? Your mileage may vary. It all depends on the severity of

our monitoring process. But I cannot imagine a well thought-out system that does

not measure the following features of our applications:

• How much memory is in our process and does not grow out of

control it in time;

• How often and how long the Garbage Collector is called and whether

there is a noticeable overhead for the whole process.

Chapter 3 MeMory MeasureMents

233
© Konrad Kokosa 2018
K. Kokosa, Pro .NET Memory Management, https://doi.org/10.1007/978-1-4842-4027-4_4

CHAPTER 4

.NET Fundamentals
Although we are only in the fourth chapter, we have gone through quite a long journey

about various aspects of memory management. They were discussed in general to make

a more theoretical introduction to this topic. There were quite rare, specific references

to .NET, which after all is what this book about. It’s time to change that frequency. From

this chapter to the end of the book, .NET will accompany us constantly. In this chapter

we will look at it with a slightly broader perspective, we will learn some mechanisms

behind it, and we will begin to delve into the topics related to how it manages memory.

I strongly encourage you to acquire knowledge from the previous three chapters before

continuing reading this one, but treat it as an optional approach. From now on, I will also

assume some basic knowledge about assembly language for x86/x64 platforms as we are

going into the .NET deeper and deeper. If you need some knowledge refresh, read, for

example, an excellent book, Modern X86 Assembly Language Programming, by Daniel

Kusswurm (Apress, 2014).

If the .NET Framework was a man, he would have gone to junior high school now,

and in a few years slowly began preparing for the matriculation exam. In other words,

it is a product developed and used for about 15 years now. During this period, both the

rich collection of accompanying libraries and the runtime environment itself evolved

significantly. All .NET developers have to know well the basic subjects - knowledge of

the standard library and syntax of C# - the main programming language used in .NET

environment (or others, like VB.NET constantly losing popularity and F# constantly

gaining it). This is our “everyday bread.” However, with the age, or as you like, with the

experience, often comes the reflection that it is worth knowing more. So let’s learn

more a little!

234

Be aware that this book concentrates on memory management, only briefly
mentioning other .NET-related topics. Thus, for example, do not expect detailed
description of C# language features or approaching multithreading issues. There
are many other great books and online materials dedicated solely to them.

 .NET Versions
The .NET environment is not as homogeneous as it may seem at a first glance. It is most

commonly associated with the most popular version of the .NET Framework, which runs

from version 1.0, through versions like 2.0, 3.5, or 4.0, up to the current version 4.7.2.

But when we talk about the .NET environment, you can really now have in mind a lot of

the richness of its versions and implementations. An important approach that allowed

such richness was standardization. From the very beginning, the whole .NET concept

was based on the specification called Common Language Infrastructure (CLI). This

fundamental technical standard (standardized as ECMA 335 and ISO/IEC 23271 in 2003)

describes the concept of a code and runtime environment that allows it to be used on

different machines without being recompiled. I will refer to it many times in this chapter

as there is no better source of truth than that.

Describing all components of CLI, including all implementation variations and

differences between them, is very tempting. However, we will mainly focus on how they

affect the topic about which we are concerned. Now just let’s take a look at the various

.NET variations in the context of memory management and Garbage Collection:

• .NET Framework 1.0 - 4.7.2 - Developed since 2002, the commercial

and most mature product known to us all. It has been here for

years so that the core of Garbage Collector has been developed and

improved from version to version. Over the years, the subject was

treated as a black box, described more or less casually on the occasion

of releasing the new .NET version. Because the .NET Framework’s

commercial runtime code is closed, how exactly these mechanisms

work, we could mainly learn from the information provided by

Microsoft itself. The information was quite detailed, allowing us to

understand and diagnose memory problems in applications. But still

developers remained a little unsatisfied, especially if you confront it

with the openness of sources, for example, of Java.

ChapTEr 4 .NET FuNdamENTals

235

• Shared Source CLI (also known as Rotor) - Released in 2002 (version

1.0) and 2006 (version 2.0) runtime implementation for educational

and academic purposes. It has never been intended to run a

production code. It let you know the numerous implementation

details of the CLR. There is even a great book, Shared Source CLI

Essentials, by David Stutz, Ted Neward, and Geoff Shilling (O’Reilly

Media, 2003), which describes this version in detail. However, first

of all, it did not fully implement a “mature” .NET 2.0 Framework.

Secondly, the implementation of it was sometimes very different

from the proper CLR, unfortunately, especially in the memory

management area. Only a very simplified Garbage Collector has been

implemented there.

• .NET Compact Framework - The “mobile” version of .NET since

Windows CE/Mobile and Xbox 360 times. Its Garbage Collector was

significantly different from the main version and much simplified, for

example, it does not include the generation concept (which we will

learn about in the next chapter). However, it is already a historical

system and probably we do not have to worry about it anymore.

But a lot of lessons have been learned during development of this

framework, especially because of porting for platforms like various

processors running Windows CE devices. Here is where the CoreCLR

we know all started conceptually.

• Silverlight - A web browser plugin that allows you to run applications

like normal window applications. Since Microsoft started building it

in times of .NET 2.0, it was based on a runtime copy of that period.

If you still use it, lots of information about the current .NET will also

apply here. Except that this would have to be information about an

older runtime version of .NET 2.0. This was a runtime ported to the

OSX platform, which provided code base for the current CoreCLR

(.NET Core) runtime.

ChapTEr 4 .NET FuNdamENTals

236

• .NET Core (with its runtime called the CoreCLR) - The appearance

of the open source version of. NET has changed a lot. From now on,

there is a production-ready runtime code that we can study ourselves

in depth. More importantly, the Garbage Collector code has been

practically copied here from the commercial runtime code. It seems

that .NET Core can slowly begin to overtake the functionality of the

.NET Framework, whose changes will be successively “merged” back.

.NET Core is also an officially supported cross-platform solution. It

works on Windows as well as on Linux and MacOS.

• Windows Phone 7.x, Windows Phone 8.x, and Windows 10

Mobile - The older versions of the system were based on simple

memory management known from the .NET Compact Framework

3.7. Windows Phone 8.x introduced significant enhancements of

the internal .NET runtime, which was based on the mature .NET

Framework 4.5 version, inheriting its Garbage Collector.

• .NET Native - A technology that allows CIL code to be compiled

directly into machine code. It is based on a lightweight runtime called

CoreRT (formerly MRT). They share the Garbage Collector code with

.NET Core.

• .NET Micro Framework - A separate implementation for small

devices, with open source code. The most popular application is the

.NET Gadgeeter that contains its own, simplified version of Garbage

Collector. Due to the niche and the hobby nature of this solution, we

will not deal with it in this book.

• WinRT - A new way to expose the OS functionality to developers that

is set up of APIs used to build Metro style apps available in JavaScript,

C++, C#, and VB.NET languages and is to replace Win32. It is written

in C++ and it is in fact not .NET implementation at all. But it is object

oriented and it is based on .NET metadata format so it may look like a

normal .NET library (especially when using from within .NET).

ChapTEr 4 .NET FuNdamENTals

237

• Mono - A completely separate, cross-platform implementation of

the CLI, with its own memory management. Getting to know it does

not do much to understand the main theme of .NET. However, there

are at least two very popular solutions based on this technology -

Xamarin, the framework for writing mobile applications; and

Unity3D, a popular game engine. Due to the popularity of those

projects, we will sometimes look at Unity by the comparison.

A pretty positive picture emerges from the above list - the memory-management

mechanism is very similar (not to say - almost identical) to all the major .NET platforms

currently in use - the .NET Framework, the .NET Core, and the one used in .NET Native.

This book is full of explanations about the internal mechanisms of the Garbage
Collector in .NET, based on the .NET Core 2.1 source code. as we mentioned, there
is a great convergence of this implementation with the main variant of the .NET
Framework and the mobile variation. as a result, relying on the source code for
.NET Core is a very valuable and comprehensive form of information acquisition.
hereinafter, when showing .NET source code examples, I mean by default the
.NET Core 2.1 source code, unless otherwise noted. I also refer to so-called “Book
of the runtime” open source documentation developed in parallel to the runtime
itself, available at https://github.com/dotnet/coreclr/blob/master/
Documentation/botr/README.md. It contains much valuable information about
the runtime implementation.

We should know some .NET internals to fully understand the memory-management

topic. We will look at them now, however, by omitting much information that is not

needed in this context. There are many other valuable sources in which you will find

more information including the great CLR via C# book written by Jeffrey Richter

(Microsoft Press, 2012); Pro .NET Performance written by Sasha Goldshtein (Apress,

2012); or Writing High- Performance .NET Code by Ben Watson (Ben Watson, 2014).

ChapTEr 4 .NET FuNdamENTals

https://github.com/dotnet/coreclr/blob/master/Documentation/botr/README.md
https://github.com/dotnet/coreclr/blob/master/Documentation/botr/README.md
https://www.google.pl/search?q=pro+.net+performance:+optimize+your+c#+applications+sasha+goldshtein&stick=H4sIAAAAAAAAAOPgE-LRT9c3NErKtcgyNs5WAvMMjcsLzOMrsrRkspOt9JPy87P1y4syS0pS8-LL84uyrRJLSzLyiwAHrIWSPAAAAA&sa=X&ved=0ahUKEwjG-Kek-_DbAhVH2SwKHdS4CqcQmxMIqgEoATAP

238

 .NET Internals
When writing a program in C or C++, the compiler compiles it into an executable file. It

can then be directly executed on the target machine, because apart from libraries that

cooperate with the operating system, it contains a binary code directly executed by the

processor.

On the other hand, the .NET runtime environment has a lot of important

responsibilities, which, together, make the whole thing doing what it is supposed to

do - executing application written by us. Unlike programs written in C or C++, when you

write a program in C#, F#, or any other .NET-compatible language, it is compiled into the

so-called CIL (Common Intermediate Language). This code is then used by the Common

Language Runtime (CLR). CLR is the place when all the managed magic happens. Above

the CLR, there is a more general concept of the whole .NET framework - including all

standard libraries and the tooling (so we have various .NET framework versions that may

or may not include runtime changes). CLR has several responsibilities, among which we

can mainly distinguish:

• Just-in-time compiler (JIT compiler)- Its function is to transform the

CIL code into machine code. This way of executing managed code

is really a clever encapsulation of native-system mechanisms - like

memory management includes the stack for threads and the heap

and so on and so forth.

• type system - takes care of the type control and compatibility

mechanisms. It consists of, among others, Common Type System

(CTS) and Metadata (used by the Reflection mechanism).

• exception handling - It takes care of exception handling, both at

the user-program level and the runtime itself. Also, both native

mechanisms built into Windows SEH (Structured Exceptions

Handling) mechanism and C++ exceptions are used here.

• memory management (commonly referred to as Garbage

Collector) - this is a whole part of runtime that manages memory

used by the runtime and our application. Obviously one of its main

responsibilities is taking care of the automatic release of no longer

needed objects.

ChapTEr 4 .NET FuNdamENTals

239

We often split those responsibilities into two main units:

• Execution Engine - is taking care of most of the runtime

responsibilities included above, like JIT compilation and exception

handling. It is named in ECMA-335 as Virtual Execution System (VES)

and described as “responsible for loading and running programs

written for the CLI. It provides the services needed to execute managed

code and data using the metadata to connect separately generated

modules together at runtime.”

• Garbage Collector - is taking care of memory management, objects

allocation, and reclaiming no longer used memory regions.

ECMA- 335 describes it as “the process by which memory for managed

data is allocated and released.”

All these elements work together as in a well-folded machine full of large and

small chunks. It is difficult to remove one of them and expect that the whole machine

continues to work. And so it is with memory management. We can talk about memory-

management mechanisms, but it is good to realize that other components work closely

with it. The JIT compiler, for example, produces the lifetime information of variables

that are then used by the Garbage Collector. Type systems provide the information

necessary to make key decisions - for example, whether the type has a so-called finalizer.

Exception handling must be written in a manner that is aware of the memory-reclaiming

mechanisms - for example, to be stopped when the garbage collection takes place.

A number of such functionalities of the various components within the CLR are very

interesting, little facts.

We may often hear about managed code in the context of .NET. What it particularly

means is that code executed by the runtime should be able to cooperate with it to

provide responsibilities mentioned above. As ECMA-335 standard says:

managed code: Code that contains enough information to allow the CLI to
provide a set of core services. For example, given an address for a method
inside the code, the CLI must be able to locate the metadata describing that
method. It must also be able to walk the stack, handle exceptions, and store
and retrieve security information.

ChapTEr 4 .NET FuNdamENTals

240

To summarize, let’s look at the bird’s-eye view of the .NET runtime executing our

application (see Figure 4-1).

We can describe such process as consisting of the following steps:

• We write our code in the editor of our choice - Visual Studio, Visual

Studio Code, or whatever else. As a result, we get a project containing

a set of source files. Those are, simply put, text files with the source

of our program written in C#, VB.NET, F#, or any other supported

language.

• We compile our project with the help of a proper compiler - whether

it is the Visual Studio built-in compiler (for .NET Framework

projects) or .NET Core compiler. As a result, we get a set of files

(assemblies) containing our code in the form of binary code

representing instructions in Common Intermediate Language.

This code represents our program as a set of low-level instruction

operating on a “virtual” stack machine (see Chapter 1). There may be

other assemblies containing libraries we use in our program. Such set

of assemblies can be now distributed to other users as a ZIP package

or via installer.

C# CIL asm

.cs .dll/.exe in-memory
EE GC

Figure 4-1. Source code (text files) are being compiled into Common Intermediate
Language (binary files). Then on a target machine with .NET runtime installed,
it is being run by the runtime itself. It consist of two main units: Execution Engine
(EE) and Garbage Collection (GC). EE is taking CIL from the binary files and
transforms it in memory to the machine code.

ChapTEr 4 .NET FuNdamENTals

241

• We run application - this is obviously the most important part and

can be subsequently split into the following steps:

• for .NET Framework - executable file contains a bootstrap code

that is loading the proper version of the .NET Runtime with the

support of the Windows operating system.

• for .NET Core - multiplatform solution does not depend on

Windows cooperation. If we want to run managed assembly, we

have to explicitly use a proper command like dotnet run in the

catalog containing our program. This will bootstrap the runtime.

• .NET runtime will load the currently needed part of the assembly

CIL code from the file and pass it to the JIT compiler.

• JIT compiler will compile CIL code to the machine code,

optimized for the platform it is running at. It will additionally

inject different calls to the Execution Engine providing

cooperation between your code and .NET runtime.

• From now on, your code is being executed like normal

unmanaged code. The difference is that there is cooperation with

the runtime mentioned above.

It is now probably a good time to explain some common misconceptions we may

encounter related to the .NET environment:

• .NET is not a virtual machine in a common sense - .NET runtime

does not create any isolated environment and is not simulating

any particular architecture or machine. In fact, .NET runtime

is reusing built-in system resources like the operating system

memory management, including the heap and the stack, processes

and threads, and so on and so forth. It is then building just some

additional functionality on top of them (automated memory

management and so on).

ChapTEr 4 .NET FuNdamENTals

242

• There is no single .NET Runtime running on a machine - there is

one binary distribution, but it is loaded and executed per each .NET

application running. For example, garbage collection from process

A does not influence directly garbage collection from process B.

Obviously there is some sharing of resources on the hardware and

operating system level, but in general each .NET runtime is not aware

of any other managed application running their own .NET runtime

instances. In fact, we can host a .NET runtime inside an unmanaged

application (what is the case of SQL Server CLR capabilities). Even

more, we can host multiple .NET runtimes in a single process,

although there is a little practical usage of such behavior.

 Sample Program in Depth
Let’s now follow a step-by-step process of compiling and running a simple Hello world

application (see Listing 4-1) to better understand some .NET internals. This will allow us

to familiarize with some basic concepts needed later. Everyone ever learning C# probably

recognizes this example whose only purpose is to display a short text on the console. We

will use it as our playground run under .NET Core 2.1 runtime on Windows. Obviously,

we are not going too deep here as we are mostly interested in memory-management

stuff. If you are really interested in how .NET runtime loads itself, manage its types and

similar topics, yet once again I recommend the great books introduced earlier.

Listing 4-1. Sample Hello World program written in C#

using System;

namespace HelloWorld

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Hello world!");

 }

 }

}

ChapTEr 4 .NET FuNdamENTals

243

Sample code from Listing 4-1, when compiled by C# compiler (Roslyn in case of

used here Visual Studio 2017), will produce a single DLL file, which in my case is called

CoreCLR.HelloWorld.dll. This file contains all the data required to run such a program.

We can see it in details, for example, by opening it in dnSpy tool. After doing that we are

able to navigate through various decoded sections of the file (see Figure 4-2):

• metadata describing itself (in terms of a Windows or Linux binary file

description) - called DOS and PE header in case of Windows binary

file visible in Figure 4-2;

• metadata describing its .NET-related content - including all types

declared in our assembly, their methods, and other properties

(visible as Storage Stream #0 named #~);

• list of references to the other required files;

• binary stream of the declared types and their methods encoded as

bytes representing Common Intermediate Language.

ChapTEr 4 .NET FuNdamENTals

244

Figure 4-2. Content of the CoreCLR.HelloWorld.dll binary file - the result of
compiling the program from Listing 4-1

Each method or type has its unique identifier called a token, and its location is

identifiable within the file because of metadata streams mentioned above. Thanks to

that, we can identify file regions containing each method body. For example, to see the

Main method body, select it from the Assembly Explorer and use Show Method Body in

Hex Editor option from its context menu (see Figure 4-3).

ChapTEr 4 .NET FuNdamENTals

245

Of course, looking at raw bytes, it is really hard to understand their meaning. But

we can decode CIL of each method into a more readable form thanks to decompilation

mentioned in Chapter 3. To do that, just select Main method in Assembly Explorer and

select IL as the decompilation language from the dnSpy menu.

The result of the decompilation of Program type from CoreCLR.HelloWorld.dll is

shown at Listing 4-2 (constructor has been removed for clarity). In comments we can

see original bytecode for given instructions (for example, byte 2A represents ret CIL

instruction) so now we can fully understand 7201000070280C00000A2A bytes highlighted

in Figure 4-3.

If we look at the simple CIL code of the Main method (see Listing 4-2), we will see

how it has been compiled into the stack machine code:

• ldstr "Hello World!" - reference to string literal is being pushed

onto the evaluation stack;

• call System.Console::WriteLine - static method is called, taking

first argument from the evaluation stack;

• ret - method returns (without a return value as there is nothing on

evaluation stack).

Figure 4-3. A few bytes containing Common Intermediate Language instructions
for the Program.Main method (arrow was added for clarity)

ChapTEr 4 .NET FuNdamENTals

246

Listing 4-2. Sample program from Listing 4-1 transpiled into Common

Intermediate Language. Output comes from dnSpy tool.

// Token: 0x02000002

.class private auto ansi beforefieldinit CoreCLR.HelloWorld.Program

 extends [System.Runtime]System.Object

{

 // Token: 0x06000001

 .method private hidebysig static

 void Main (

 string[] args

) cil managed

 {

 // Header Size: 1 byte

 // Code Size: 11 (0xB) bytes

 .maxstack 8

 .entrypoint

 /* 7201000070 */ IL_0000: ldstr "Hello World!"

 /* 280C00000A */ IL_0005: call void [System.Console]System.

Console::WriteLine(string)

 /* 2A */ IL_000A: ret

 } // end of method Program::Main

} // end of class CoreCLR.HelloWorld.Program

If you look closely at listing 4-2 code, you can see a .maxstack 8 instruction,
which seems to be related with the program execution. This is, however, not CIl
instruction. such a metadata description can be consumed by various tools to
validate code safety. maxstack tells how many maximum bytes can be allocated
on the evaluation stack due to method execution. In case of Main method, eight
bytes are required for the string literal reference. a tool like pEVerfiy can use this
information to confront it with what method’s CIl code wants to do. This makes
.NET code verifiable and secure as many kinds of buffer overruns are the most
dangerous threats in computer environments.

ChapTEr 4 .NET FuNdamENTals

247

When considering a .NET stack machine, we should mention an important concept

of locations. When considering storage of various values required for program execution,

a few logical locations exists:

• local variables in a method;

• arguments of a method;

• instance field of another value;

• static field (inside class, interface or module);

• local memory pool;

• temporarily on the evaluation stack.

How each location is mapped into a particular computer architecture is the sole JIT

compiler responsibility and we will dive into that a little while.

Note There are few JIT compilation engines currently available in .NET’s
ecosystem:

- legacy x86 JIT used by the .NET runtime (till version 4.5.2) and .NET
Core 1.0/1.1 for x86 architecture (32-bit versions)

- legacy x64 JIT used by the .NET runtime till version 4.5.2

- new ryuJIT used by the .NET Core 2.0 (and later) and .NET Framework
4.6 (and later) for both 32- and 64-bit compilations

- mono JIT for x86 and x64 platforms

as replacing legacy ones is an ongoing work, I am concentrating here only on the
new ryuJIT engine.

Now, we may use WinDbg if we want to see how our program has been translated

into machine code by JIT in case of 64-bit Windows. Obviously, we need to run our

application as it triggers bootstrapping the runtime and JIT compilation of the necessary

methods.

ChapTEr 4 .NET FuNdamENTals

248

Assuming we are using the newest WinDbg distributed as Universal Windows App,

we may choose Launch executable (advanced) from the File panel and provide the

following parameters (assuming our solution is located in C:\Projects):

• Executable: C:\Program Files\dotnet\dotnet.exe

• Arguments: \CoreCLR.HelloWorld.dll

• Start directory: C:\Projects\CoreCLR.HelloWorld\bin\Release\

netcoreapp2.1

many people prefer to launch Windbg from the command line to debug programs. In
our case, to start a debugging session, you can use this command: windbgx C:\
Program Files\dotnet\dotnet.exe C:\Projects\CoreCLR.HelloWorld\
bin\x64\Release\netcoreapp2.1\CoreCLR.HelloWorld.dll

After clicking OK, the Hello world application will start and its execution will

immediately break. We now need to set a breakpoint that will stop the program just

before terminating (after printing the Hello World! message). We may specify the

following command:

bp coreclr!EEShutDown

Now hit Go and wait a moment until this breakpoint will be hit. After that we should

load an SOS extension (mentioned in Chapter 3) and look for the Main method by using

commands:

.loadby sos coreclr

!name2ee *!CoreCLR.HelloWorld.Program.Main

The second one should produce the following output - saying that JITted code for the

Main method is located under address 00007ffbca3e06b0:

Module: 00007ffbca284d78

Assembly: CoreCLR.HelloWorld.dll

Token: 0000000006000001

MethodDesc: 00007ffbca285d30

Name: CoreCLR.HelloWorld.Program.Main(System.String[])

JITTED Code Address: 00007ffbca3e06b0

ChapTEr 4 .NET FuNdamENTals

249

We can use the !U 00007ffbca3b0480 command to see emitted assembly code and

the results are presented at Listing 4-3. We see there the following steps of execution:

• sub rsp,28h - move stack pointer by 40 bytes;

• mov rcx,24D6CCA3068h - store address 24D6CCA3068h into rcx

register (this is a handle to our "Hello World!" string literal, which is

used here because of a string-interning mechanism explained later);

• mov rcx,qword ptr [rcx] - dereference the address stored in rcx

register which points to a string with our string literal value;

• call 00007ffb`ca3b0330 - call static Console.WriteLine method

passing text to be displayed in rcx register;

• nop, add rsp,28h and ret - end function call.

Listing 4-3. Machine code produced by JITting code from Listing 4-2

Normal JIT generated code

CoreCLR.HelloWorld.Program.Main(System.String[])

Begin 00007ffbca3b0480, size 1c

00007ffb`ca3b0480 4883ec28 sub rsp,28h

00007ffb`ca3b0484 48b96830ca6c4d020000 mov rcx,24D6CCA3068h

00007ffb`ca3b048e 488b09 mov rcx,qword ptr [rcx]

00007ffb`ca3b0491 e89afeffff call 00007ffb`ca3b0330 (System.

Console.WriteLine(System.String), mdToken: 0000000006000083)

00007ffb`ca3b0496 90 nop

00007ffb`ca3b0497 4883c428 add rsp,28h

00007ffb`ca3b049b c3 ret

This is how our simple C# program has been translated through CIL into executable

code. The evaluation stack location used by ldstr and call CIL instructions has been

consumed by the JIT compiler as a CPU register rcx. There is no the stack or the heap

allocation from inside the Main method - but please keep in mind that there are already

some allocations made from the runtime itself and the framework assemblies.

ChapTEr 4 .NET FuNdamENTals

250

as there are many possible ways of utilizing registers and memory during functions
calls, standardized ways of doing it exists called a calling convention. They define
how to pass arguments and manage the stack during a method call and how they
return a value. When illustrating assembly code in this book, I assume a Microsoft
x64 calling convention. simplified for our purposes, the set of rules states that:

- first four integer and pointer arguments are passed into registers rCX,
rdX, r8 and r9;

- first four floating-point arguments are passed in Xmm0 through Xmm3
registers;

- additional arguments are pushed onto the stack;

- integer return values are returned in raX if 64 bits or less.

please note the linux x64 calling conventions are different so please feel free to
read about this if you need to.

I hope that this very short, yet possible, and slightly overwhelming journey shows

you what .NET runtime is. In the end, all methods are JIT compiled into regular assembly

code, utilizing optionally some “managed” parts of the runtime.

 Assemblies and Application Domains
A basic unit of functionality in the .NET environment is called assembly.1 It can be seen

as a bunch of stored CIL code that may be executed by the .NET runtime. A program

consists of at least one or more assemblies. For example, when we compiled code from

Listing 4-1, we have produced a single assembly represented by CoreCLR.HelloWorld.dll

file. Such program also uses various other assemblies, starting from a Basic Class Library

(called mscorlib, including so important namespaces like System.IO, System.Collections.

Generic) and so on and so forth. A complex .NET application may consist of many

1 Please do not confuse it with assembly (machine) code. Those are two completely separate
concepts just having the same name.

ChapTEr 4 .NET FuNdamENTals

251

different assemblies containing our code. In terms of source project management, there

is simple correspondence - one project in our solution is built into a single assembly.

There is also a possibility to create dynamic assembly during program execution

(often used to emit dynamically created code into such dynamic assembly), which is a

functionality often used by various serializers.

In other words, an assembly may be seen as the unit of deployment for managed

code, which typically corresponds one to one with some DLL or EXE file (such file is

referred to as a module).

The .NET Framework provides a possibility to isolate different parts of the managed

application code (assemblies) separating them into so-called application domains

(commonly abbreviates as AppDomains from its BCL type name). Such separation may

be desired because of security, reliability, or versioning needs. To execute code from

assembly, we must load it to some application domain (the same applies to dynamically

created assemblies).

There is a quite complicated yet well-documented relation between assemblies
and appdomains. please refer to this great .NET Framework documentation:
https://docs.microsoft.com/en-us/dotnet/framework/app-
domains/application-domains for the details.

Keeping .NET Core small required cutting out some features and AppDomains were

one of them. They were just too heavy for the functionality they provided and for the

functionality they needed. Hence no AppDomain API has been exposed in .NET Core

related to the application domain handling. However, the piece of code responsible

for them is still available in CoreCLR as the runtime itself is using them internally. For

developers, Microsoft suggests using plain old processes or shiny new containers for

isolation of .NET Core applications. As for dynamic loading of assemblies, there is a new

AssemblyLoadContext class you can look at.

ChapTEr 4 .NET FuNdamENTals

https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains

252

AppDomains are in our interest because they affect the memory structure of the

.NET process. In general, runtime can create a few different application domains:

• Shared Domain - all code shared between domains is loaded

here. It includes Basic Class Library assemblies, types from System

namespace, and so forth.

• System Domain - it used to be responsible for creating and

initializing other domains as core runtime components are loaded

here. It also keeps process-wide interned string literals (we will talk

about interning later in this chapter).

• Default Domain (for example, called Domain 1) - user code is loaded

to such a default domain.

• Dynamic domains - with the help of the runtime, .NET Framework

application can create (and delete afterwards) as many additional

AppDomains as it wishes. For example, via AppDomain.CreateDomain

method (but as mentioned, .NET core is missing that functionality by

design and it is unlikely it will be ever provided).

In case of a .NET Core there are no dynamically created domains obviously. There

is Shared Domain responsibility for all shared code. And there is a single default

AppDomain for all user code. System Domain is not physically visible in the process

memory but its structures and logic are also included.

 Collectible Assemblies
Assemblies we load contain a manifest describing what other assemblies they require.

Standard CLR behavior consists of loading all required assemblies into the main

application domain - the one that will live for the entire program execution. This is fine

for most cases, but there are some in which we would like to have some more control

about an assembly’s lifetime:

• Scripting - if we allow it to execute user-defined scripts in our

application (for example, compiled with the help of Roslyn API), it

would be ideal to compile such script into some temporary assembly

and delete it as soon as the script is no longer needed.

ChapTEr 4 .NET FuNdamENTals

253

• Object-relational mapping (ORM) - we may wish to map some

database data to .NET objects but do not necessarily need this for the

entire application lifetime - especially if our application is specific

enough to temporarily connect to a lot of different sources. Cleaning

up created ORM data (separated into assemblies) would be a nice

feature.

• Serializers - like above, we may need to serialize/deserialize many

various entities (be it files or HTTP requests), so if we have done it a

lot of times, it would be nice to clean created temporary assemblies

no longer needed. Such assemblies are created by serializers for

performance reasons - types dedicated for serialization of concrete

data are created to omit any unnecessary “generic” way of handling it.

• Plugins - our application may provide extensibility capabilities by

loading user-provided plugins. It would be obviously great to load

them and unload as necessary.

In case of the .NET Framework, the unloading assembly is possible indirectly

by unloading an entire application domain where it is loaded to. So, for example, a

typical scenario of handling user-defined scripts would consist of creating a dynamic

application domain, emitting an assembly with the compiled script, loading it into

our temporary application domain, executing code, and eventually - unloading such

application domain. In case of .NET Core, due to AppDomain’s API unavailability, such

scenarios are currently not available (at the time of this writing, with .NET Core 2.1).

While in the .NET Framework case, it is a perfectly working solution, it has its own

caveats - especially the cost of the remoting communication between application

domains.

Exactly because of mentioned overhead, most often, even in the need of creating
dynamic assembly, they are simply loaded into the main application domain - even
if it means they cannot be unloaded afterward (as it would require unloading the
application itself). This is the case of popular XmlSerializer we can meet in .NET,
which may lead to a memory leak described later in this chapter in scenario 4-4.

ChapTEr 4 .NET FuNdamENTals

254

Thus, an idea of more lightweight, collectible assemblies is present. A Collectible

assembly is a dynamic assembly that can be unloaded, without unloading the application

domain in which it lives. It makes perfect sense in all the above-mentioned scenarios.

However, they are currently not available in both Microsoft .NET runtimes. Stay tuned to

.NET Core announcements because a work about unloadable AssemblyLoadContext is

ongoing.

In .NET Framework, collectible assemblies are implemented but only partially, in
case of emitting code manually with the help of Reflection.Emit. as msdN
documentation says: “reflection emit is the only mechanism that is supported for
loading collectible assemblies. assemblies that are loaded by any other form of
assembly loading cannot be unloaded.”

 Process Memory Regions
As mentioned in Chapter 2 and shown in Figure 2-20, .NET runtime inside a process

manages multiple memory regions. When we consider memory usage of the .NET

process, we should take into consideration each of them. Let’s look at these areas one

by one to understand the anatomy of the .NET process. We will be using the excellent

VMMap tool that shows us memory regions used in a process we are attached to.

Memory regions shown hereinafter are from the moment just before exiting the

application from Listing 4-1.

When we look inside the Hello World application, we will see memory regions

as listed in Figure 4-4. To interpret such VMMap output, it is worth it to recall the

description of virtual memory regions presented in Chapter 2. As we can see, the process

has nearly 128 TB of free memory (which corresponds to 128 TB of virtual address space

on 64-bit platform).

ChapTEr 4 .NET FuNdamENTals

255

Let’s look at all of these items along with a brief description and meaning from the

.NET perspective:

• Shareable (around 2 GiB) - shareable memory that we are not

particularly interested in - only 32 MiB has been committed and only

20 KiB resides in the physical memory. Those regions are dedicated

for system management purposes not related to .NET at all.

• Mapped files (around 4 MiB) - as mentioned in Chapter 2, those

regions contain mapped files for things like fonts and localization

files. Although they are consumed by the .NET runtime, consuming

various localization APIs, those regions should not cause any

problems in our applications.

• Images (around 37 MiB) - binary images containing images of various

binary files including .NET runtime itself and a library with our .NET

assembly. Please note most of this space is shared and only 772 KiB

are a private working set. Those are files read from the disk during

application startup.

Figure 4-4. Memory regions shown in VMMap tool for the running application
from Listing 1.64-bit .NET Core 2.0 runtime

ChapTEr 4 .NET FuNdamENTals

256

• Stacks (around 4.5 MiB) - there are three threads in our Hello World

application so there are three stack regions dedicated for them.

• Heap and Private Data (around 9 MiB) - those are various native

memory regions managed by the .NET runtime for its internal

purposes. They mostly store things not relevant to us (and even not

known without deep CoreCLR sources analysis). However, we may

note that there are some fundamental data structures stored here

used by Execution Engine and Garbage Collector like:

• Mark list and card tables, which we will get familiar with in

Chapters 5, 8, and 11.

• String interning enrollment lives in those regions.

• Please note also the two last memory regions are marked with

Execute/Read/Write protection flags. Those are regions where

the JIT compiler emits machine code when compiling CIL code.

That’s why they are marked with Execute flag as they have to

be normally callable as any other program code. Those regions

constitute in fact the core of our application executing code

we wrote in C# or other .NET-compatible language. If by some

reason our application is JITting a lot, we may observe constant

growth of such Execute/Read/Write private memory regions.

ChapTEr 4 .NET FuNdamENTals

257

• Various temporary memory regions needed during JIT

compilation also will be visible here.

• Managed Heaps (around 384 MiB) - the core part of the .NET

memory management is the Managed Heap maintained by the

Garbage Collector and other heaps used by the runtime. Since this

is definitely the most important memory area for us, we look at it

separately in a moment.

• Page Tables (small 36 KiB region) - page table directory structures

described in Chapter 2 lives there.

• Unusable (almost 2 MiB) - due to page allocation granularity

also described in Chapter 2, some parts of memory have become

unusable.

ChapTEr 4 .NET FuNdamENTals

258

We can split a group denoted above as Managed Heaps further into the following

categories:

• GC Heap - by far the most important heap for us, managed by the

Garbage Collector. Most of the types our application creates go there

and hence it is the most important place we should understand

and the most probable source of any problems. All chapters from

Chapter 5 to the end of the book will be describing how GC manages

this heap. In terms of what we have learned so far, this is a Free Store

managed by the Garbage Collector mechanism and its Allocator.

Please note, however, how many interesting facts we have seen so far

until we even reached this memory region! And many chapters will

be dedicated to describing it in detail.

• Other domains heaps - each AppDomain has its own set of heaps

so there can be heaps for Shared Domain, System Domain, Default

Domain, and any other dynamically loaded domains. Each may have

multiple subregions:

• High Frequency Heap - used to store any data frequently accessed

by the AppDomain for its internal purposes. As comments

from CoreCLR states, those are “Heaps for allocating data

that persists for the life of the AppDomain. Objects that are

allocated frequently should be allocated into the HighFreq heap

for better page management.” Because of that, for example, a

High Frequency Heap of Shared Domain contains the most

frequently used type-related data like detailed methods and fields

descriptions. Here is also where primitive static data lives.

• Low Frequency Heap - contains less frequently used type-related

data. In case of a type system they are, among others, EEClass

and other data required for JITting, Reflection, and type-loading

mechanism.

• Stub Heap - As the documentations says, it “hosts stubs that

facilitate code access security (CAS), COM wrapper calls,

and P/Invoke.”

ChapTEr 4 .NET FuNdamENTals

259

• Virtual Call Stub - contains data structures and code used by a

virtual stub dispatching (VSD) technique (using stubs for virtual

method invocations instead of the traditional virtual method

table) used for interface dispatch. They are subsequently divided

into heaps of types Cache Entry Heap, Dispatch Heap, Indcell

Heap, Lookup Heap, and Resolve Heap. All those include just

various types of data required for VSD. Those heaps are pretty

small (hundreds of kibibytes) even for thousands of interfaces in

our applications.

• High Frequency Heap, Low Frequency Heap, Stub Hub, and

various Virtual Call Stub Heaps are altogether called Loader

Heap type because they are responsible for storing data required

by a type system (and hence loading types). In contrary to what

we may hear sometimes, there is no such thing as Loader Heap

created as a memory region. It is just a concept of grouping

mentioned regions altogether.

Note Those heaps are by default really small, in the order of magnitude of a
single page - typically about 64 KiB. We can see this in the CoreClr default sizes
definitions:

#define LOW_FREQUENCY_HEAP_RESERVE_SIZE (3 * GetOsPageSize())

#define LOW_FREQUENCY_HEAP_COMMIT_SIZE (1 * GetOsPageSize())

#define HIGH_FREQUENCY_HEAP_RESERVE_SIZE (10 * GetOsPageSize())

#define HIGH_FREQUENCY_HEAP_COMMIT_SIZE (1 * GetOsPageSize())

#define STUB_HEAP_RESERVE_SIZE (3 * GetOsPageSize())

#define STUB_HEAP_COMMIT_SIZE (1 * GetOsPageSize())

remember that any type once loaded to a loader heap region will not be unloaded
until the whole corresponding appdomain is unloaded. If we constantly load a lot
of types (for example, dynamically loading or generating assemblies), we can end
up with big memory usage. moreover, the default appdomain will not be unloaded
ever until the program stops.

ChapTEr 4 .NET FuNdamENTals

260

As mentioned in Chapter 2, there is a possibility to change the default stack size of

the program’s threads. It is possible with the help of a dumpbin command-line program

distributed with the Visual Studio. By issuing the following command, it appropriately

edits the binary header of the provided executable file:

editbin DotNet.HelloWorld.exe /stack:8000000

In case of a .NET Framework-based executable (as above), it currently works but

should be treated as an unsupported approach - there is no guarantee that in the future,

.NET Framework will not ignore those values while creating threads. In case of .NET

Core based builds, the executable is a runtime launcher itself, located most commonly

at C:\Program Files\dotnet\dotnet.exe. We would need to edit this file with the help

of editbin to change stack size of threads in .NET Core applications, which is obviously

unacceptable in most cases. Thus, although manipulating stack size in the described way

is possible, we should rather not rely on it at all.

Let’s now move to one of the important parts of this book- our first scenario. As it

always will be, it consists of some situation description, altogether with the description

of how to approach analyzing and solving it.

 Scenario 4-1. How Big Is My Program in Memory?
Problem: The customer for whom we are writing a .NET application asked us how much

RAM it requires and what is its typical memory usage because she suspects it consumes

too much. This caused consternation in the team because suddenly it turned out that no

one knows the answer and even does not know how to properly measure it. Everybody

suggests another tool and different way to interpret it. Let’s assume we are Paint.NET

(https://www.getpaint.net/) developers!

Answer: To properly answer our customer’s question, we should understand how

the operating system sees our process memory usage. It has been described briefly in

Chapter 2 and you may probably notice there is no great consistency between various

tools showing it. From the high-level point of view, we should concentrate on the

following measurements:

• private working set - the most important measurement that indicates

the amount of physical RAM memory occupied by the process. This

obviously may be the main bottleneck so we should look here at first.

ChapTEr 4 .NET FuNdamENTals

https://www.getpaint.net/

261

Figure 4-5. Window's Task Manager showing basic memory usage data

• private bytes (aka commit size) - indicates the amount of memory

both in the physical RAM and paged to disk. We do not want

excessive paging so if this size is much bigger than the private

working set, we should start to be suspicious. Indefinite growth of the

paging file is also dangerous as our hard drives do not have infinite

storage obviously.

• virtual bytes - indicates all virtual bytes, both committed (private)

and only reserved, regardless of its location. This measurement is

the most abstract one because it does not incur a big consumption

of physical resources except page tables directories (see Chapter 2).

However, the size of the hundreds of gigabytes or simply constantly

growing can arouse our anxiety.

On Windows, to measure those sizes we can simply use the Task Manager’s Details

tab, which shows them as Memory (private working set) and Commit size columns

respectively (virtual bytes are not shown there) - see Figure 4-5.

We may also use Performance Monitor tool (see Figure 4-6) to record them in time

by adding \Process(processname)\Working Set - Private, \Process(processname)\

Private Bytes and \Process(processname)\Virtual Bytes counters respectively.

Apart from absolute sizes, trends are of course equally important. On Linux you can use

the top tool and corresponding columns described in Chapter 2.

ChapTEr 4 .NET FuNdamENTals

262

You may also consider analyzing what is included in the measured process size by

using VMMap tool on Windows (see Figure 4-4 where it was already presented). You will

notice there what counts in into corresponding to the above measurement columns:

Private WS, Private, and Size. Regarding memory types, of course, it is important to look

at Managed Heap first. However, knowing what are parts of the .NET process, it is also

worth looking at the other memory types. If you suspect a memory leak - observe all

memory types’ sizes in time and try to discover what is constantly growing. There may be

memory leak both in your managed code or some unmanaged component used by you

(even implicitly while you are not aware of it).

Figure 4-6. Performance counters showing basic memory usage data

ChapTEr 4 .NET FuNdamENTals

263

Figure 4-7. Performance counters for Scenario 4-2 show stable managed heap
size, but the private working set is constantly growing

 Scenario 4-2. My Program’s Memory Usage Keeps Growing
Description: Our customer reports an OutOfMemory exception after a few days of

continuous work with our Windows Service written in .NET. We have to investigate the

reason and, of course, we have to do it quickly.

Answer: Given that we are not provided with the full memory dump of a process, we may

start our investigation from observing a program’s memory usage in time. We may start

from using the Performance Monitor tool to watch a few most important counters (see

Figure 4-7):

• \Process(processname)\Working Set - Private

• \Process(processname)\Private Bytes

• \Process(processname)\Virtual Bytes

• \.NET CLR Memory(processname)\# Total committed Bytes -

counter to observe Managed Heap usage

ChapTEr 4 .NET FuNdamENTals

264

From what we see it is clear there is a memory leak - the process memory usage

constantly grows. However, the Managed Heap size is very stable so this is probably an

unmanaged memory leak not related to our .NET code (however, still it might be as we

will see in scenario 4-3!). Knowing that, it is worth it to look inside a process with the

help of a VMMap tool. As we may notice during short observation, the Heap memory

type Private size is constantly growing. Our program slowly produces more and more

around 16 MiB Heap memory regions (see Figure 4-8).

Figure 4-8. VMMap view of Heap memory regions for Scenario 4-2. There are
constantly growing and occasionally created Heap (Private Data) memory regions.

This is a first clue in our investigation - Heap regions are most probably growing

because of extensive usage of Heap API (like calling malloc in C or new operator in

C++). Now we should find out what code is calling it. Doing that with the help of a

memory dump of the process may be tedious because unmanaged memory analysis is

very difficult (especially for .NET-based people not used to unmanaged world at all).

Fortunately, there is a much simpler way to investigate it using the PerfView tool. Within

its Collect dialog box, type the executable name into the OS Heap Exe field or process

ID into the OS Heap Process field (keep in mind that only in the second case you may

attach to already running process). Providing one of the OS Heap options enables ETW

tracking of the Heap API usage. Start collection and wait the appropriate amount of time

depending how fast your process is growing.

After stopping collection and all processing is ended, you should open Net OS Heap

Alloc Stacks from the Memory Group folder. Gradually expand the individual elements

of the tree, descending more and more into the most allocating part of the code (with the

highest value in Inc % column). You may need for some nodes to load symbols with the

help of Lookup Symbols from the context menu. It is also worth it to disable grouping of

our modules by using the Ungroup Module option from the same context menu. Soon

you should be able to clearly see the reason of over 90% of allocations (see Figure 4-9).

This is the power of ETW in our hand!

ChapTEr 4 .NET FuNdamENTals

265

We see that the reason behind most of allocations is the new operator used inside

CUnmanagedLibrary::CalculateSomething method, which is called by other components

of our .NET application. This is indeed the root cause of the problem, as the mentioned

method has a specially prepared, indeed silly implementation (see Listing 4-4).

Listing 4-4. The reason behind memory leak in Scenario 1-2

int CUnmanagedLibrary::CalculateSomething(int size)

{

 int* buffer = new int[size];

 return 2 * size;

}

In real-world scenarios, there may be many other allocations sources so you will

have to investigate them a little and make an educated guess, which may be the real

trouble. Please note also that if we do not have symbol files for the unmanaged libraries

consumed by our application, we will not see specific method and function names in

Net Virtual Alloc Stacks view. It will however still point us to what component is making

trouble so we may contact its producer or search for the solution online. It is also worth

it to remember that ETW tracing for Heap API may introduce quite big overhead, so be

cautious when enabling it, especially in production environments.

Figure 4-9. PerfView analysis for Scenario 4-2. We see the aggregated call stack for
operator new.

ChapTEr 4 .NET FuNdamENTals

266

 Scenario 4-3. My Program’s Memory Usage Keeps
Growing
Description: Something strange is going on with our application on a client’s machines.

Its memory usage seems to grow infinitely although it seems to not have any negative

impact and the program executes properly. The client reports “gigabytes of memory” is

being consumed while we have never observed such behavior in our environments. No

one knows whether we should be afraid or not.

Analysis: We should again start our investigation from observing the program’s memory

usage in time. We may start from using the Performance Monitor tool to watch:

• \Process(processname)\Working Set - Private

• \Process(processname)\Private Bytes

• \Process(processname)\Virtual Bytes

• \.NET CLR Memory(processname)\# Total committed Bytes

We may soon notice that both managed heap usage and private working set sizes

are stable. However, there is constant growth of private bytes - probably most of the

allocated memory does not reside in physical RAM. Virtual bytes are also constantly

growing indicating gigabytes of virtual memory “consumed”! When looking into the

process with the help of a VMMap, we will see the reason behind it (see Figure 4-10).

There is over 40 GB of virtual memory indeed. However, around 37 GB of it is marked as

unusable! This indicates someone is allocating pages very inefficiently (recall

Chapter 2). We can see it by looking at the memory regions list (see Figure 4-11) where

there are many, many pages with unusable data.

Figure 4-10. VMMap view of a process for Scenario 4-3. There is a huge amout of
virtual memory (Size) but most of it is Unusable.

ChapTEr 4 .NET FuNdamENTals

267

Now we need to understand what part of our program is using pages in such an

improper way. Again, we may use the PerfView tool. This time we are interested in

the Virtual API (like calling VirtualAlloc) because Private Data memory type is used

(not Heap type). Again, we may use the PerfView tool to investigate related ETW data.

This time we should check the VirtAlloc option within the Collect dialog box and start

collection while our problematic applications are running. Enabling this provider

introduces smaller overhead than the Heap API used in Scenario 4-2.

After stopping collection and all processing ended, you should open the Net Virtual

Alloc Stacks from the Memory Group folder. If the memory leak is significant you will

probably find the root cause on the top of the presented list - in our case 94.1% of all

allocations were done through VirtualAlloc call (see Figure 4-12)!

Figure 4-11. VMMap view of a Unusable regions for Scenario 4-3. There are
many, many such regions interleaved with single page-sized Private Data.

Figure 4-12. PerfView analysis for Scenario 4-3 show there is a lot of
VirtualAlloc calls

ChapTEr 4 .NET FuNdamENTals

268

If we double-click on it, a call tree will be presented. Expand nodes with the biggest

allocation contribution. Optionally use symbol loading and grouping disabling through

Lookup Symbols and Ungroup Module options from the context menu. In that way we

should be able to find the most allocating source of the program. It is a MemoryLeaks.

Leaks.UnusableLeak.Run() method from MemoryLeaks module in our case (see

Figure 4-13).

Figure 4-13. PerfView analysis for Scenario 4-3 shows the aggregated call stack for
VirtualAlloc

And indeed, this method contains the VirtualAlloc interop call, which allocates

only a single page (typically 4 KiB) while as we know, allocation granularity on Windows

is 64 KiB (see Listing 4-5). Hence unusable 60 KiB of memory is wasted per each

VirtualAlloc call.

Listing 4-5. Fragment of problematic code for Scenario 4-3

ulong block = (ulong)DllImports.VirtualAlloc(IntPtr.Zero, new

IntPtr(pageSize),

 DllImports.AllocationType.Commit,

 DllImports.MemoryProtection.ReadWrite);

In a real-world scenario some unmanaged library used by us my use VirtualAlloc

in such inefficient way. By using ETW data for Virtual API we’ve managed to track down

the source of it to the single method call.

ChapTEr 4 .NET FuNdamENTals

269

 Scenario 4-4. My Program’s Memory Usage Keeps
Growing
Description: Our customer is complaining about big memory usage of our application.

It is constantly growing up to gigabytes and then crashes due to an OutOfMemory

exception. We are sure we do not use any unmanaged components so we are convinced

that the memory leak happens in C# code (although always keep in mind that libraries

we use may internally use some unmanaged code so… always be cautious and

remember about previously presented scenarios). The customer has sent us a couple

of Task Manager screenshots showing that, indeed, all memory sizes are constantly

growing.

Analysis: We start our analysis by typical Performance Counter monitoring of the

process. We monitor for few hours the following counters:

• \Process(processname)\Working Set - Private

• \Process(processname)\Private Bytes

• \Process(processname)\Virtual Bytes

• \.NET CLR Memory(processname)\# Total committed Bytes

We are very surprised because it turns out that the managed heap size is stable. But

indeed, all other observed sizes are actually growing, including the most problematic

private working set. Instinctively we look inside the interior of the process using VMMap.

We see after a few minutes of observation that Managed Heap’s private working set is

constantly growing so apparently our memory leak is related to .NET somehow. But why

is it not reflected by used performance counters? Looking at the Managed Heap type list

in VMMap, we notice something unusual (see Figure 4-14). The Managed Heap region

marked as GC (the part which stores objects allocated by our application) grows very

slowly. On the other hand, there are dozens of Domain 1, Domain 1 Low Frequency

Heap, and Domain 1 High Frequency Heap memory regions! This means a lot of

additional assemblies are being created, most probably because of dynamic assembly

loading.

ChapTEr 4 .NET FuNdamENTals

270

We confirm that by coming back to the Performance Monitor and adding the

following additional counters:

• \.NET CLR Loading(processname)\Bytes in Loader Heap

• \.NET CLR Loading(processname)\Current Classes Loaded

• \.NET CLR Loading(processname)\Current Assemblies

• \.NET CLR Loading(processname)\Current appdomains

The first three counters are constantly growing, so apparently we’ve just found the

root cause of the memory leak. Some part of our code is loading dozens of dynamic

assemblies. Unfortunately, we will not be able to deeply analyze such kind of memory

leak with the help of commercial tools like JetBrains dotMemory or .NET Memory

Profiler (at least at the moment of the book writing). Even though such a leak is related to

the .NET runtime, such memory growth is often seen under those tools as “unidentified”

memory without the possibility to dig further into details. Again, ETW and PerfView

comes to the rescue! This time we are interested in events related to assembly loading.

We can enable tracking them by using an Additional Providers field from within the

Collect dialog box. Type there Microsoft- Windows- DotNETRuntime:LoaderKeyword:

Always:@StacksEnabled=true that means we are interested in loader-related events

and we want to register stack calls during the event’s occurrence. Start the collection

Figure 4-14. VMMap view of managed heaps for Scenario 4-4

ChapTEr 4 .NET FuNdamENTals

271

and wait the appropriate amount of time (for example, during which loading of few new

assemblies will be visible under Current Assemblies performance counter).

After stopping collection and all processing ended, you should open the Events list

and find Microsoft-Windows-DotNETRuntime/Loader/AssemblyLoad events for our

process (see Figure 4-15) .

Select one of them and select the Open Any Stacks context menu option for

Time MSec column (stack will not be displayed if cell in any other column has been

right-clicked). The stack trace of the event occurrence will be displayed. By grouping

modules of not our interest (like clr, mscoree, or mscoreei .NET runtime modules)

and ungrouping our own modules, we will clearly identify the source of dynamic

assembly creation (see Figure 4-16). It is a XmlSerializer constructor called in our

XmlSerializerLeak.Run() method.

Figure 4-15. PerfView event's view for Scenario 4-4. We see lot of AssemblyLoad
events.

Figure 4-16. PerfView stack trace view for a single AssemblyLoad events points to
XmlSerializer constructor

ChapTEr 4 .NET FuNdamENTals

272

We have just found the problem! Indeed, MSDN documentation for XmlSerializer

states that:

To increase performance, the XML serialization infrastructure dynamically
generates assemblies to serialize and deserialize specified types. The infra-
structure finds and reuses those assemblies. This behavior occurs only when
using the following constructors:

* XmlSerializer.XmlSerializer(Type)

* XmlSerializer.XmlSerializer(Type, String)

If you use any of the other constructors, multiple versions of the same assem-
bly are generated and never unloaded, which results in a memory leak and
poor performance. The easiest solution is to use one of the previously men-
tioned two constructors. Otherwise, you must cache the assemblies in a
Hashtable, as shown in the following example.

In our case, as it may be visible in Figure 4-16, one of the other, unfortunate

constructors is being used that does not reuse generated assembly, hence the observed

memory leak.

Note The cause of the problem may be similarly addressed in other situations
related to dynamic assembly creation like calling AppDomain.CreateDomain
without unloading it or by various script engines creating assemblies for compiled
scripts.

 Type System
A type is a fundamental concept in CLI, defined in ECMA 335 to “describe values and

specify a contract that all values of that type shall support.” A lot of words could be

spoken about Common Type System itself. For our memory-management purposes it

will be enough, however, to stay with the intuitive type definition we all have from the

everyday work with C# or other language code. We will however later learn in depth

about various type categories existing in .NET.

ChapTEr 4 .NET FuNdamENTals

273

Each type in .NET is described by a data structure called a MethodTable. It contains a

lot of information about the type, among which the most important in our perspective are:

• GCInfo - data structure for Garbage Collector purposes (and we will

investigate it in next chapters obviously);

• flags - describing various type properties;

• basic instance size - indicates the size of the object;

• EEClass reference - stores “cold” data that are typically only needed

by type loading, JITing or Reflection, including description of all

methods, fields, and interfaces;

• description of all methods (including inherited ones) required to call

them;

• static fields-related data - they include data related to primitive static

fields (we will delve into static fields details later in this chapter).

Runtime uses address to the MethodTable (denoted as TypeHandle) whenever it has

to gain information about the loaded type through it. We will see them a lot in the rest

of the book as MethodTable is one of the fundamental building blocks of cooperation

between the Execution Engine and the Garbage Collector.

 Type Categories
Almost every article about .NET memory tells the same story - “there are value types

allocated on the stack and reference types allocated on the heap.” And “classes are

reference types while structs are value types.” They are so many popular job interview

questions for .NET developers touching this topic. But this is by far not the most

appropriate way of seeing a difference between value types and reference types. Why it

is not quite correct? Because it describes the concept from the implementation point of

view, not from the point that explains the true difference behind those two categories of

types.

We will delve into implementation details later, but it is worth it to note that they

are still only implementation details. And as all implementations behind some kind

of abstractions, they are subject to change. What really matters is the abstraction

they provide to the developer. So instead of taking the same implementation-driven

approach, I would like you to present a rationale behind it. And only then we can reach

ChapTEr 4 .NET FuNdamENTals

274

the point when understanding the current implementation will be possible (and will be

sensible also).

Let’s start from the beginning, which is an ECMA 335 standard. Unfortunately,

the definitions we need are a little blurry, and you can get lost in different meanings

of words like type, value, value type, value of type, and so on, so forth. In general,

it is worth remembering that this standard defines that “any value described by a

type is called an instance of that type.” In other words, we can say about value (or

instance, interchangeably) of value type or reference type. Going further, those are

defined as:

type, value: A type such that an instance of it directly contains all its data.
(...) The values described by a value type are self-contained.

type, reference: A type such that an instance of it contains a reference to its
data. (...) A value described by a reference type denotes the location of
another value.

We can spot here the true difference in abstraction that those two kinds of types

provide: instances (values) of value types contain all its data in place (they are, in fact,

values itself), while reference types values only point to data located “somewhere”

(they reference something). But this data-location abstraction implies a very significant

consequence that relates to some fundamental topics:

Lifetime:

• Values of value types contain all its data - we can see it as a single,

self-contained being. The data lives as long as the instance of the

value type itself.

• Values of reference types denote the location of another value whose

lifetime is not defined by the definition itself.

Sharing:

• Value type’s value cannot be shared - if we would like to use it

in other place (for example, although we are passing a bit of

implementation details here, method argument, or another local

variable), it will be copied byte by byte by default. We say then about

passing-by-value semantics. And as a copy of the value is passed to

another place, the lifetime of the original value does not change.

ChapTEr 4 .NET FuNdamENTals

275

• Reference type’s value can be shared - if we would like to use it in

other place, passing-by-reference semantics will be used by default.

Hence, after that, one more reference type instance denotes the

same value location. We have to track somehow all references to

know the value lifetime as discussed in Chapter 1.

Identity:

• Value types does not have an identity. Value types are identical if and

only if the bit sequences of their data are the same.

• Reference types are identical if and only if their locations are the

same.

Again, there is no single mention about heap or stack in this context at all. Keeping

in mind those differences and definitions should clarify things a little, although you may

need a while to get used to them. Next time when asked during job interview about where

value types are stored, you may start from such an alternative, extended elaboration.

There is yet another type category we should know - immutable types. Immutable

type is a type whose value cannot be changed after creation. No more and no less. They

do say nothing about their value or reference semantics. In other words, both value type

and reference type can be immutable. We can enforce immutability in object-oriented

programming by simply not exposing any methods and properties that would lead to

changing an object’s value.

 Type Storage
But one could insist on asking where is the place here that implies using stack or heap for

those two, basic kinds of types? The answer is - there is none! This is an implementation

detail taken during design of Microsoft .NET Framework CLI standard. Because it was

for years overwhelmingly the most popular one, the “value types allocated on the stack

and reference types allocated on the heap” story have been repeated again and again

like a mantra without deep reflection. And since it is a very good design decision, it was

repeated in different CLI implementations we have discussed earlier. Keep in mind, this

sentence is not entirely true in the first place. As we will see in the following sections,

there are exceptions to that rule. Different locations can be treated differently as to how

to store the value. And this is exactly the case with CLI as we will soon see.

ChapTEr 4 .NET FuNdamENTals

276

Nevertheless, we only can think about the storage of the value types and reference

types when designing CLI implementation for a specific platform. We simply just need

to know whether we have stack or heap available at all on that particular platform. As the

vast majority of today’s computers have both, the decision is simple. But then probably

we have also CPU registers and no one is mentioning them in the “value types allocated

on the...” mantra although it is the same level of implementation detail like using

stack or heap.

The truth is that the storage implementation of one or another type may be located

mostly in the JIT compiler design. This is a component that is designed for a specific

platform on which it is running so we know what resources will be available there. x86/

x64-based JIT has obviously both stack, heap, and registers at its disposal. However, such

a decision on where to save a given type value can be left not only at the JIT compiler

level. We can allow the compiler to influence this decision based on the analysis that

it performs. And we can even expose somehow such a decision to the developer at the

language level (exactly like in C++ where you can allocate objects both on the stack or

on the heap).

There is an even simpler approach taken by Java, where there are no user-defined

value types at all, hence no problem exists where to store them! A few built-in primitives

(integers and so forth) are said to be value types there, but everything else is being

allocated on the heap (not taking into consideration escape analysis described later). In

case of .NET design, we could also decide to allocate all types instances on the heap, and

it would be perfectly fine as long as the value type and reference type semantic would

not be violated. When talking about memory location, the ECMA-335 standard gives

complete freedom:

The four areas of the method state - incoming arguments array, local vari-
ables array, local memory pool and evaluation stack - are specified as if
logically distinct areas. A conforming implementation of the CLI can map
these areas into one contiguous array of memory, held as a conventional
stack frame on the underlying target architecture, or use any other equiva-
lent representation technique.

Why these and no other implementation decisions were taken will be more

practical to explain in the following sections, discussing separately the value and the

reference types.

ChapTEr 4 .NET FuNdamENTals

277

There is only single important remark left. When we know now that talking about

stack and heap is an implementation detail, it can still be reasonable to do that.

Unfortunately, there is a place where “as it should be” odds with the “as is practical.” And

this place is a performance and memory usage optimization. If we are writing our code in

C# targeting x86/x64 or ARM computers, we know perfectly that heap, stack, and registers

will be used by those types in certain scenarios. So as The Law of Leaky Abstractions

mentioned in Chapter 2 says, value or reference type abstraction can leak here. And if we

want, we can take advantage of it for performance reasons (what will be especially visible

in Chapter 14, describing various more advanced optimization techniques).

 Value Types
As previously said, value type “directly contains all its data”. ECMA 335 defines value as:

A simple bit pattern for something like an integer or a float. Each value has
a type that describes both the storage that it occupies and the meanings of
the bits in its representation, and also the operations that can be performed
on that representation. Values are intended for representing the simple
types and non-objects in programming languages.

We have two categories of value types in the Common Language Specification:

• structs - there are many built-in integral types (char, byte, integer, and

so forth), floating-point types, and bool. And, of course, the user can

define its own structs.

• enumerations - they are basically an extension of integral types,

becoming a type that consists of a set of named constants. From the

memory-management point of view, they are just integral types so we

won’t deal with them in this book at all as they are in fact structs also

internally.

 Value Types Storage

So what about “value types are stored on stack” part of the story? Regarding

implementation, there is nothing stopping from storing all value types on the heap,

irrespective of the location used. Except the fact that there is a better solution - using

the stack or CPU register. As described in Chapter 1, the stack is quite a lightweight

mechanism. We can “allocate” and “deallocate” objects there by simply creating a

ChapTEr 4 .NET FuNdamENTals

278

properly sized activation frame and dismissing it when no longer needed. As the stack

seems to be so fast, we should use it all the time, right? The problem is it is not always

possible, mainly because of the lifetime of the stack data versus desired lifetime of the

value itself. It is the life span and value sharing that determines which mechanism we

can use to store value type data.

Let’s now consider each possible location of value type and what storage we can use

there:

• local variables in a method - they have a very strict and well-defined

lifetime, which is a lifetime of a method call (and all its subcalls). We

could allocate all value-type local variables on the heap and then just

deallocate them when the method ends. But we could also use stack

here because we know there is only a single instance of the value

(there is no sharing of it). So there is no risk that someone will try to

use this value after the method ends or concurrently from another

thread. It is then just perfectly fine to use a stack inside an activation

frame as a storage for local value types. Additionally, CLI clearly

says that “a managed pointer which references a local or parameter

variable may cause the reference to outlive the variable, hence it is

not verifiable.” (we will return to managed pointers in Chapter 14).

• arguments of a method - they can be treated exactly as local variables

here so again, we can use stack instead of a heap.

• instance field of reference type - their lifetime depends on the

lifetime of the containing value. For sure it may live longer than

the current or any other activation frame so a stack is not the right

place for it. Hence, value types that are fields of reference types (like

classes) will be allocated on the heap along with them.

• instance field of another value-type - here the situation is slightly

complicated. If the containing value is on the stack, we would also

use it. If it is on the heap already, we will use the heap for the field’s

value also.

ChapTEr 4 .NET FuNdamENTals

279

• static field (inside class, interface or module) - here the situation is

similar to using an instance field of reference type. The static field has

a lifetime of the type in which it is defined. This means we could not

use stack as a storage, as an activation frame may live much shorter.

• local memory pool - its lifetime is strictly related to the method’s

lifetime (ECMA says “the local memory pool is reclaimed on method

exit”). This means we can without a problem use stack and that’s why

local memory pool is implemented as growth of the activation frame.

• temporarily on the evaluation stack - value on the evaluation

stack has a lifetime strictly controlled by JIT. It perfectly knows

why this value is needed and when it will be consumed. Hence, it

has complete freedom whether it would like to use heap, stack, or

register. From performance reasons it will obviously try to use CPU

registers and the stack.

So that is how we come to the first part - “value types are stored on stack.” As we see,

the truer is the statement - “value types are stored on the stack when the value is a local

variable or lives inside local memory pool. But are stored on the heap when they are

a part of other objects on the heap, or are a static field. And they always can be stored

inside CPU register as a part of evaluation stack processing.” Slightly more complicated,

isn’t? And this is not still the whole truth because as we will see so-called closures capture

local variables into a reference type context promoting it to being the heap allocated.

 Structs

Structures are probably one of the most overlooked and underestimated elements of C#,

existing from the very beginning of .NET at the same time. This seems to be due to the

following reasons:

• It is difficult to understand the meaning of the existence of structures

if we reduce them to formula “value types are stored on the stack.”

• They introduce many limitations (no possibility to define a

parameterless constructor, no inheritance is possible).

• Using only classes works very well enough and we do not feel the

need to change anything in this regard.

ChapTEr 4 .NET FuNdamENTals

280

• Knowing that they are realizing the copy-by-value semantics, we

know that passing them as parameters to methods or assigning them

between variables results in a poor performance of data copying

(which is in general not true, as we will soon see).

• Their behavior is not always obvious, and in the absence of visible

need for their use, it effectively discourages their use at all.

So why may we may need structs in our code? Here are the main advantages of using

structs:

• They may be allocated on stack instead of the heap - and yes, this

is where an implementation detail leaks and where we can benefit

from a performance point of view. Allocation on the stack simply

avoids overhead of managing such a type instance by the GC, which

is always good.

• They are smaller - as structs stores only its data and not any

additional kind of metadata, they need less memory than classes.

And although memory is cheap, it may be beneficial when

considering really large data volumes.

• They provide us better data locality - as structs are smaller, we can

pack our data more densely in collections (as will be illustrated later).

And this, as we’ve seen in Chapter 2, is always good from a cache

utilization point of view.

• Access to them is faster - they contain data directly so no additional

dereferencing is needed.

• They provide pass-by-value semantic out of the box - we may wish to

create a type that is immutable and hence struct is a good candidate. But

we may also use pass-by-reference semantic with them (as explained

soon), combining advantages of both value and reference- type worlds.

We will look through those advantages in detail in the rest of the book, as using

structs is one of the most common and effective memory and performance optimizations

available. We will pay especially big attention to them in Chapters 13 and 14, when

describing passing by reference with the help of in, out, and ref keywords (especially

in the context of types like Span<T>). Before that we just need to continue our short,

general introduction.

ChapTEr 4 .NET FuNdamENTals

281

 Structs in General

Struct can be seen just as a type describing a layout of a memory region together with

methods we can invoke on its instances. Struct instances contain only its data (being

aligned with value-type definition) so when we define a sample struct from Listing 4-6,

it will have memory representation visible at Figure 4-17 (both for 32-bit and 64-bit

architecture). It needs a place for four integers so it will occupy 16 bytes.

For 32-bit systems, the de facto standard is called ILP32 - that is, int, long and
pointer are all 32-bit wide long. For 64-bit systems there is a slight difference
between Windows and linux. The primary unix standard is LP64 - long and
pointer are 64-bit (but int is still 32-bit). The Windows 64-bit standard is LLP64 -
specially defined “double-long” (long long) and pointer are 64-bit (but long and
int are both 32-bit).

Listing 4-6. Sample struct definition

public struct SomeStruct

{

 public int Value1;

 public int Value2;

 public int Value3;

 public int Value4;

}

4B 4B

Value1

4B 4B

Value2 Value3 Value4

Figure 4-17. Memory layout of struct from Listing 4-6

Depending of the location used (and particular implementation), such a memory

region could be used on the stack or the heap (or even just CPU register, as we will see).

Current CLR implementations however do not allow us to use such memory layout

directly on the managed heap. Objects on the managed heap must be self-descriptive

reference types. Hence, when there is a need to store struct on the heap, so-called boxing

ChapTEr 4 .NET FuNdamENTals

282

happens. We will elaborate on boxing more in the section about it later in this chapter.

We will also talk a little about how memory layout depends on the fields of a given type

here and in Chapter 13 because it touches both structs and classes.

What is interesting for us now is using structs from the memory-management point

of view. If a struct becomes boxed (its copy allocated on the heap), it is probably too

late to take benefits from it. The real power of structs reveals when we are utilizing their

non-boxed versions. In other words, we want to benefit from the fact that they are not

heap allocated. As one of the core rules states, “Avoid allocation,” structs are one of the

mechanisms that can help us to achieve this. Moreover, due to many limitations structs

have, like no inheritance, compiler and/or JIT compiler are able to infer a lot about how

they are used. Inheritance, on the other hand, implies virtual calls and polymorphism

and so it is much harder to infer the final look of the data usage.2

 Structs Storage

Let’s consider a sample class from Listing 4-7, which uses a struct defined in Listing 4-6.

We see there a method Main that has one local variable sd storing an instance of a

struct type SomeStruct. So here is what we can say about this structure based on the

information you heard so far:

• sd instance is passed to Helper method by value, which probably

means copying its data. Helper operates on its own copy of the data

so modifying it would not change the original sd value.

• sd is a local value-type variable so it will be (most probably) allocated

on the stack, not on the heap.

Listing 4-7. Sample code with method using struct from Listing 4-6

public class ExampleClass

{

 public int Main(int data)

 {

 SomeStruct sd = new SomeStruct();

2 Although so-called devirtualization, meaning a way to discover during compilation which
particular method will be called, is slowly being planned to be added to .NET at the time of this
writing.

ChapTEr 4 .NET FuNdamENTals

283

 sd.Value1 = data;

 return Helper(sd);

 }

 private int Helper(SomeStruct arg)

 {

 return arg.Value1;

 }

}

If we look at the CIL code of the Main method, for example, by using dnSpy as

previously (see Listing 4-8), we will see how it has been compiled into the stack machine

operating on the evaluation stack and what steps are executed step by step:

• ldloca.s 0 - address of the first local variable (with index 0) is

pushed onto the evaluation stack.

• initobj Samples.SomeStruct - memory region under address taken

(and removed) from the evaluation stack is initialized as SomeStruct

(as MSDN states, initobj “initializes each field of the value type

at a specified address to a null reference or a 0 of the appropriate

primitive type”).

• ldloca.s 0 - address of first local variable is pushed again onto the

evaluation stack.

• ldarg.1 - second method’s argument is pushed onto the evaluation

stack (which is int data, the first argument is the class instance by

default).

• stfld int32 Samples.SomeStruct::Value1 - store the value from the

first element on the evaluation stack into SomeStruct.Value1 field

at address under the second element on the evaluation stack. Both

elements are removed from the evaluation stack.

• ldarg.0 - first method’s argument (the class instance itself, known as

this keyword in C#) is pushed onto the evaluation stack.

ChapTEr 4 .NET FuNdamENTals

284

• ldloc.0 - value of the first local variable is pushed onto the

evaluation stack - here is the place where we can assume a whole

16-bytes of SomeStruct data are being copied and then accessed

inside Helper method.

• call instance int32 Samples.ExampleClass::Helper(valuetype

Samples.SomeStruct) - call Helper method, push the result onto the

evaluation stack.

• ret - return from the method to the caller.

Listing 4-8. Method Main from Listing 4-7 compiled into Common Intermediate

Language

.method public hidebysig instance int32 Main (int32 data) cil managed

{

 // Method begins at RVA 0x2048

 // Code size 24 (0x18)

 .maxstack 2

 .locals init (

 [0] valuetype Samples.SomeStruct

)

 IL_0000: ldloca.s 0

 IL_0002: initobj Samples.SomeStruct

 IL_0008: ldloca.s 0

 IL_000a: ldarg.1

 IL_000b: stfld int32 Samples.SomeStruct::Value1

 IL_0010: ldarg.0

 IL_0011: ldloc.0

 IL_0012: call instance int32 Samples.ExampleClass::Helper(valuetype

Samples.SomeStruct)

 IL_0017: ret

} // end of method ExampleClass::Main

Three different locations are used in code from Listing 4-8 - local variable, method

arguments, and evaluation stack itself. What we can clearly see is that there is no heap

allocation indeed (which uses newobj instruction as we will see in the counterpart

ChapTEr 4 .NET FuNdamENTals

285

example for class in Listing 4-13)! This is the optimization we desired. We can expect

that there will be SomeStruct allocated on the stack and copied over into the Helper

activation frame when calling it. This obviously implies that we should think deeply

whether using struct is beneficial (but see below Note).

Copying struct data because of pass-by-value can outweigh performance
improvement we gained by avoiding heap allocation. however, there are two
aspects that still makes using structs seriously considerable when writing high-
performance code:

- often small struct data may be nicely optimized by the JIT compiler to use only
Cpu registers and no stack at all (as is illustrated in the next paragraphs).

- popular workaround is based on passing struct data by reference, which is
also possible (with the help of already mentioned ref, in and out keywords,
explained in detail in this book also).

This all makes perfect sense and we could stop just here. However, it is really worth

taking a moment to see how the code operating on such an abstract stack machine is

transformed by the JIT compiler into the proper machine code. How are those three

locations mapped into the heap, the stack, and CPU registers? This obviously depends

on what JIT compiler we are talking about but let’s just stick to the most popular

combination of RyuJIT in .NET Framework on x64 platform. The result we see at Listing 4-9

is overwhelmingly positive. JIT was able to optimize the whole evaluation stack

processing and noticed that single mov instruction is enough! What just this code does is:

• mov eax, edx - it moves second argument data (stored in edx register

according to Microsoft x64 calling convention) to the register eax,

which should contain the result at the method exit

• ret - return from the method

There is no call to the Helper method (it has been inlined), there is no struct data

copying, and in fact there is no struct at all!

ChapTEr 4 .NET FuNdamENTals

286

Listing 4-9. Method Main from Listing 4-7 after Just-In-Time compilation by

RyuJIT x64

Samples.ExampleClass.Main(Int32)

0x00007FFA`5178BA40: L0000: mov eax, edx

0x00007FFA`5178BA42: L0002: ret

One could say that this is because the Helper method is so trivial. But the truth is

the SomeStruct would not be probably stack allocated even if we made more complex

processing inside the Helper method and using all its fields. This is just the level of

sophistication that nowadays’ JIT algorithms provide.

What I would like to provide to you is the conviction that the structures are efficient

data containers, which due to their simplicity allow for far-reaching code optimizations.

There is a lot of truth in the “local variables of structs are allocated on the stack” but as

we see, things can be even better. Local variables can be just optimized to be handled by

CPU registers without the need to touch the stack at all. Even if we expect that passing

by value a struct data will incur memory copying, the JIT compiler may optimize it to

simply CPU registers usage.

Optimizations seen in listing 4-9 happen when we compile in the release mode
because then all possible optimizations are enabled. If we compiled a sample
from listing 4-7 in debug mode, Main method would be JITted into a 41-line long
assembly code containing stack copying of SomeStruct and the Helper method
would not be inlined either (and it would take additional 25 lines of assembly
code). so instead of 2 lines of assembly code in release, we would get 66 lines in
debug mode!

There is still one very important remark to be mentioned. .NET runtime may treat

and optimize structs differently depending on their size. For example, if we added yet

another integer field to the SomeStruct from Listing 4-6, JIT would not optimize the Main

method. Stack allocation and memory copying would indeed happed. This boundary

of different struct treatment is yet another deep implementation detail but we can spot

it around 24 bytes. It is then said to quite safely assume such optimizations are done for

structs no bigger than 16 bytes although I believe 24 bytes will be still fine.

ChapTEr 4 .NET FuNdamENTals

287

memory copying in such cases is also optimized to its extent and tries to utilize
processor capabilities as much as possible. For example, data on my Intel 4th
generation haswell processor is being copied with the help of the vmovdqu
instruction. This AVX (Advanced Vector Extensions) assembly instruction moves
values from an integer vector to an unaligned memory location back and forth.
still, if we care about high performance, care should be taken to avoid copying
wherever possible.

Funny interesting fact. Maybe you already know it, but it is possible to assign new

value to this field inside a struct’s method. Although it may sound like curiosity from a

language point of view, there is nothing unusual about memory management in such an

example:

public struct SomeData

{

 public int Value1;

 public int Value2;

 public int Value3;

 public int Value4;

 public void Bizzarre()

 {

 this = new SomeData();

 }

}

As value types store their data in place, we can just treat such reassignment as a re-

initialization of the struct’s fields.

ChapTEr 4 .NET FuNdamENTals

288

When you define your struct, it is most probably better to make it behave as
immutable. When passing around your object between method calls and fields
assignments, one may have the impression that modifying it will modify its original
value. This, as we know, is not true with pass-by-value semantics realized by
value types. It is better than to explicitly state that object should not be modified by
making it immutable - for example, by making all its fields to have only getters and
its methods not modifying data. It may help in avoiding unexpected behavior.

 Reference Types
As we said, reference types are such that an instance of them contains a reference

to its data. We have two main categories of reference types in Common Language

Specification:

• object type - as ECMA 335 says, object is a “reference type of

self-describing value” and “its type is explicitly stored in its

representation.” They include well-known classes and delegates.

There are some built-in reference types, among which by far the most

known is Object type.

• pointer type - it is a plain machine-specific address of a memory location

(see Chapter 1). Pointers can be managed or unmanaged. Managed

pointers will be thoroughly explained in Chapter 13 as they play an

important part in implementing passing-by-reference semantics.

When talking about reference types, it is convenient to consider them as consisting

of two entities (see Figure 4-18):

• reference - a value of the refence type is a reference to its data. This

reference means in particular an address of data stored elsewhere.

A reference itself can be seen as a value type because internally it

is just a 32- or 64-bit wide address. References have copy-by-value

semantics so when passed between locations, they are just copied.

• reference type’s data - this is a memory region denoted by the

reference. Standard does not define where this data should be stored.

It is just stored elsewhere.

ChapTEr 4 .NET FuNdamENTals

289

This reassembles Figure 1-10 from Chapter 1 describing pointers and the data they

refer to. This is because references can be seen as a kind of pointers with additional

safety provided by the runtime.

Considering possible storage for each location of reference type is simpler than for

value types. As mentioned, because references can share data, the lifetime of them is

not well-defined. In general cases, it is impossible to store reference types on the stack

because their lifetime is probably much longer than an activation frame life (method call

duration). Hence it is quite an obvious implementation decision where to store them

and that is how we come to “reference types are stored on the heap” part of the story.

Of course, the .NET runtime has a few heaps available at its own disposal so even this

simple sentence is not entirely true.

Regarding the heap allocation possibilities for reference types - there is one

exception. If we could know that a reference type instance has the same characteristic

as a local value-type variable, we could allocate it on the stack as usually used for value

types. This particularly means we should know whether a reference does not escape

from its local scope (does not escape the stack or thread) and start to be shared among

other references. A way of checking this is called Escape Analysis (see Listing 4-10). It

has been successfully implemented in Java where it's especially beneficial because of

their approach of allocating almost everything on the heap by default. At the time of this

writing, .NET environment does not support Escape Analysis.3

3 However, this feature is being developed as a and is likely to be included (at least, optionally) in
.NET Core 3.0.

MethodTable

header field's values

reference

Figure 4-18. Reference type shown schematically

ChapTEr 4 .NET FuNdamENTals

290

Listing 4-10. Escape Analysis for a method Helper may notice that local variable

c does not “escape” method and thus could be safely allocated on the stack.

Currently this is not implemented in any of the .NET runtimes.

private int Helper(SomeData data)

{

 SomeClass c = new SomeClass();

 c.Calculate(data);

 return c.Result;

}

 Classes

Everyone using .NET-compatible language is using and declaring its own classes. Class is

a user-defined reference type. They are full first-class citizens in CTS and a cornerstone

of every C# application. They can contain fields, properties, methods, static fields and

static methods, and so on so forth. Let’s define a struct’s counterpart from Listing 4-6 as a

class to notice the difference between structs and classes (see Listing 4-11).

Listing 4-11. Sample class definition (a counterpart to the struct from

Listing 4-6)

public class SomeClass

{

 public int Value1;

 public int Value2;

 public int Value3;

 public int Value4;

}

ChapTEr 4 .NET FuNdamENTals

291

Because of how .NET memory management has been designed, each object on the

heap has a strict memory layout consisting of the following parts (sizes vary depending

on whether we are talking about a 32- or 64-bit runtime; see Figure 4-19):

• object header - place for “any addition information that we might

need to attach to arbitrary objects” as the CoreCLR source says. This

is often just zero but the most typical usage includes: information

about lock taken on the object or cached value of the GetHashCode

result. This field is used on a first-come, first-served basis. If the

runtime will need it for lock-related information, the hash code will

not be cached there and so on and so forth. This is also an important

place used by the Garbage Collector during its internal workings.

• method table reference - as previously said, object’s “type is explicitly

stored in its representation,” and this is exactly the MethodTable

from an implementation point of view. This is also the place where

all outgoing references to an object points - in other words, if a given

object has some references to it, they will point to an address of its

method table reference. That’s why it is said that object header is

located at a “negative index.” The MethodTable reference entry is

itself a pointer denoting a proper entry in the type’s description data

structures (from a High Frequency Heap of a domain containing this

type).

• optional data placeholder if type has no fields- current Garbage

Collector’s design requires that each object has room for one more

additional pointer-wide field. This field is reused for many purposes

like the first field in the case of normal objects (like illustrated in

Figure 4-19 by Value1 field) or the collection length in case of arrays.

And it is also very important for GC as stated before and as we will

see in Chapter 7.

ChapTEr 4 .NET FuNdamENTals

292

As a result, there is no possibility of an object’s existence on the heap smaller than

one that could accommodate these three fields (see Listing 4-12 from CoreCLR source).

It means the smallest object (without no fields) on the heap will be 12 bytes in case of a

32-bit runtime:

• 4 bytes for an object header

• 4 bytes (pointer size) for method table reference

• 4 bytes (pointer size) for internal data placeholder

and 24 bytes in case of a 64-bit runtime:

• 8 bytes for an object header - within which in fact only 4 bytes

are used and remaining 4 are just zero-filled alignment (because

memory layout with 8-byte alignment is desired in 64-bit

architecture)

• 8 bytes (pointer size) for method table reference

• 8 bytes (pointer size) for internal data placeholder

4B 4B 4B 4B32 bit

MethodTableObjHeader

Value1

4B 8B 4B 4B64 bit

MethodTableObjHeader

4B

AlignPad (zeros)

4B 4B

4B 4B

Value2 Value3 Value4

Value1 Value2 Value3 Value4

Figure 4-19. Memory layout of class from Listing 4-11

ChapTEr 4 .NET FuNdamENTals

293

Listing 4-12. The minium size of the heap allocated object

// The generational GC requires that every object be at least 12 bytes in

size.

#define MIN_OBJECT_SIZE (2*sizeof(BYTE*) + sizeof(ObjHeader))

We will benchmark this difference in section Types data locality, but the memory

overhead is clear. A struct containing a single byte allocated on the stack will occupy only

this single byte.4 The class containing a single byte allocated on the heap will occupy 24

bytes of memory in case of a 64-bit runtime.

Let’s consider now a sample class from Listing 4-13, which uses a class defined in

Listing 4-11 as we did for the struct example. We see there a method Main, which has

one local variable sd of class type SomeClass. So here’s what we can say about this, based

on the information you heard so far:

• Data referenced by sd local variable is passed to Helper method by

reference, which means no data copying. The reference itself is being

copied as it is just a single memory address. Helper operates on this

shared reference. Modifying the underlying value would change the

original sd value.

• Data represented by sd is a local reference-type variable so it

will be allocated on the heap as long as no Escape Analysis will be

introduced to .NET, which would notice it could be allocated on the

stack safely.

Listing 4-13. Sample code with method using class from Listing 4-11

public class ExampleClass

{

 public int Main(int data)

 {

 SomeClass sd = new SomeClass();

 sd.Value1 = data;

 return Helper(sd);

 }

4 Although memory alignment requirements may add some overhead. In Chapter 10 an object’s
memory layout is explained in detail, including alignment influence.

ChapTEr 4 .NET FuNdamENTals

294

 private int Helper(SomeClass arg)

 {

 return arg.Value1;

 }

}

Let’s look now at the CIL code of the Main method (see Listing 4-14) generated from

such code. The stack machine operating on the evaluation stack executes step by step

the following instructions:

• newobj instance void Samples.SomeClass::.ctor() - Allocator

is being called creating a new instance of SomeClass object and the

reference to it is pushed onto the evaluation stack. We will go deeply

what happens here inside Chapter 6.

• stloc.0 - reference from the top of the evaluation stack is removed

and stored into the first local variable location.

• ldloc.0 - the value from the first local variable location is pushed

onto the evaluation stack.

• ldarg.1 - the value of the second argument (as always, remember

that the first argument is this reference) is pushed onto the

evaluation stack.

• stfld int32 Samples.SomeClass::Value1 - the first element on the

evaluation stack is stored under the field Value1 of object referenced

by the second element on the evaluation stack (and both elements

are removed from the evaluation stack afterward).

• ldarg.0 - the value of the first argument (this reference) is again

pushed onto the evaluation stack.

• ldloc.0 - the value from the first local variable location (reference to

the newly created SomeClass instance) is pushed onto the evaluation

stack.

• call instance int32 Samples.ExampleClass::Helper(class

Samples.SomeClass) - a method is called, and it takes two arguments

from the evaluation stack (which we know by its definition).

• ret - return from the method.

ChapTEr 4 .NET FuNdamENTals

295

Listing 4-14. Method Main from Listing 4-13 compiled into Common

Intermediate Language

.method public hidebysig instance int32 Main (int32 message) cil managed

{

 .locals init ([0] class Samples.SomeClass)

 IL_0000: newobj instance void Samples.SomeClass::.ctor()

 IL_0005: stloc.0

 IL_0006: ldloc.0

 IL_0007: ldarg.1

 IL_0008: stfld int32 Samples.SomeClass::Value1

 IL_000d: ldarg.0

 IL_000e: ldloc.0

 IL_000f: call instance int32 Samples.ExampleClass::Helper(class

Samples.SomeClass)

 IL_0014: ret

} // end of method ExampleClass::Main

We may see a little redundancy here in calling stloc.0 and then calling the ldloc.0

instruction immediately. Obviously, the compiler has to be written in a generalized way

so we may sometimes meet such code that seems to be obviously optimizable.

Nevertheless, assembly code generated by the x64 .NET Framework JIT is very

simple and well-optimized (see Listing 4-15). It mainly calls the internal Allocator

function JIT_TrialAllocSFastMP_InlineGetThread inside .NET runtime. Still it is

much more complicated than the two-line assembly generated for the struct usage

from Listing 4-9!

Listing 4-15. Method Main from Listing 4-13 after Just-In-Time compilation in

RyuJIT x64

Samples.ExampleClass.Main(Int32)

0x00007FFA`5176E5A0: L0000: push rsi

0x00007FFA`5176E5A1: L0001: sub rsp, 0x20

0x00007FFA`5176E5A5: L0005: mov esi, edx

ChapTEr 4 .NET FuNdamENTals

296

0x00007FFA`5176E5A7: L0007: mov rcx, 0x7ffa5192f838

0x00007FFA`5176E5B1: L0011: call clr.dll!JIT_TrialAllocSFastMP_

InlineGetThread+0x0

0x00007FFA`5176E5B6: L0016: mov [rax+0x8], esi

0x00007FFA`5176E5B9: L0019: mov eax, [rax+0x8]

0x00007FFA`5176E5BC: L001c: add rsp, 0x20

0x00007FFA`5176E5C0: L0020: pop rsi

0x00007FFA`5176E5C1: L0021: ret

How does this difference translate into performance? We can run a simple

benchmark comparing the Main method performance from Listings 4-7 and 4-13 (see

Table 4-1). Because of object allocation, a method using a class is over four times slower

and, obviously, allocates memory while the struct version does not.

Table 4-1. Benchmark Results of Main Method Performance from

Listings 4-7 and 4-13. BenchmarkDotNet Was Used on .NET Framework 4.7

Method Mean Gen 0 Allocated

ConsumeStruct 0.6864 ns - 0 B

ConsumeClass 3.3206 ns 0.0076 32 B

In C++ a syntax of class instantiation allows us to allocate on the stack (MyClass c)
or on the heap (MyClass* c = new MyClass()). however, in the C++/ClI
language when you create an instance of a reference type using stack semantics,
the compiler does internally create the instance on the heap (using gcnew).

 Strings
String is a well-known reference type that represents a sequence of characters. In other

words, they represent some text. They are by far one of the most popular data types in a

usual .NET program, even if we are not aware of it. That is because most of our programs

nowadays, in fact, more or less, depend on text processing. Whether it will be data from

database, REST, or SOAP web requests or XML files read from disk - we have to get it,

ChapTEr 4 .NET FuNdamENTals

297

make some processing, and emit results in, most probably, textual form. That is why

when analyzing memory dumps of typical .NET applications (especially web based),

strings will always be high on the list of existing object types.

string popularity is very typical, so by analyzing the memory consumption of the
program and seeing a lot of strings there, do not assume right away that they are
root of the problem. They may be but not necessarily. Only a thorough analysis of
the relationship and comparison of memory dumps taken by some time interval
can provide an answer.

Strings have special treatment in the .NET environment as they are immutable

by default. Unlike in unmanaged languages like C or C++, we cannot change a string

value once it has been created. That’s why code from Listing 4-16 will end up with a

compilation error Property or indexer 'string.this[int]' cannot be assigned

to -- it is read only.

Listing 4-16. String immutability example

string s = "Hello world!";

s[6] = 'W';

Keep in mind that “strings are immutable so cannot be changed once created”
sentence is not entirely truth. It is only Basic Class library not exposing apI that
would allow us to modify a string’s value (even via reflection apI). Immutability is
however not enforced on the runtime level. string’s content is just a continuous
block of bytes interpreted as characters in provided encoding. Nothing could stop
us to get a pointer to some of those bytes in unsafe mode and change them in
place. This is however strictly not supported behavior, so you will be on your own
analyzing any issues happening with such an approach taken.

ChapTEr 4 .NET FuNdamENTals

298

Strings immutability introduces a lot of confusion in the first contact with the

C# language. It is often illustrated by examples like in Listing 4-17. Greet method is

creating a new string joining some string literals and method parameters. A beginner

C# programmer may expect that using operator += she step-by-step modifies the result

variable (like she is incrementing an integer value by using the same operator).

Listing 4-17. String concatenation and hidden temporary string creation example

public string Greet(string firstName, string secondName)

{

 string result = "Hello ";

 result += firstName;

 result += " ";

 result += secondName;

 result += "!";

 return result;

}

Sooner or later she learns that it is impossible because strings are immutable and

code from Listing 4-17 creates a temporary strings line by line (see Listing 4-18). Thus,

unintentionally we've created four temporary strings. Each of them has a very short

lifetime because it will be consumed only as soon as by the following Concat call. And

as we will see in later chapters, avoiding allocations is one of the most common ways of

improving our code.

Listing 4-18. CIL version of method from Listing 4-17. We see here that

each += operator has been changed into String::Concat method call which

concats two strings from the top of evaluation stack and pushes the result on

the evaluation stack.

.method public hidebysig instance string Write (string firstName, string

secondName) cil managed

{

 IL_0000: ldstr "Hello "

 IL_0005: ldarg.1

ChapTEr 4 .NET FuNdamENTals

299

 IL_0006: call string [mscorlib]System.String::Concat(string, string)

 IL_000b: ldstr " "

 IL_0010: call string [mscorlib]System.String::Concat(string, string)

 IL_0015: ldarg.2

 IL_0016: call string [mscorlib]System.String::Concat(string, string)

 IL_001b: ldstr "!"

 IL_0020: call string [mscorlib]System.String::Concat(string, string)

 IL_0025: ret

}

What can be done to improve such code? A common solution is to use a

StringBuilder type that provides mutable string behavior (see Listing 4-19). Internally

StringBuilder stores text as a linked list of characters blocks (called chunks; see

Figure 4-20). We can see StringBuilder as an entry point to the chain of internal buffers.

The number and size of chunks will be dynamically adjusted while our text will grow.

When we need a regular string at some time, we can call the ToString, which allocates a

new string and copies data into it chunk by chunk.

Listing 4-19. String creation using “mutable string” type StringBuilder instead

of string concatenation from Listing 4-17

public string Greet(string firstName, string secondName)

{

 StringBuilder sb = new StringBuilder();

 sb.Append("Hello ");

 sb.Append(firstName);

 sb.Append(" ");

 sb.Append(secondName);

 sb.Append("!");

 return sb.ToString();

}

ChapTEr 4 .NET FuNdamENTals

300

We should always consider using StringBuilder when we need complex string

creation: for example, when aggregating data from collections.

please note that for such simple cases like formatting a message with a few
arguments, the most efficient way will be to just use string.Format or string
interpolation built on top of it: public string Greet(string firstName,
string secondName) => $"Hello {firstName} {secondName}!";

Popular helper methods like string.Format or string.Join internally use

StringBuilder. They even go further and try to optimize more by using cached

StringBuilder instances wrapped by a StringBuilderCache class (see Listing 4-20).

Listing 4-20. Example of StringBuilder usage inside FormatHelper method

used by various string.Format overrides

private static String FormatHelper(IFormatProvider provider, String format,

ParamsArray args) {

 ...

 return StringBuilderCache.GetStringAndRelease(

 StringBuilderCache

 .Acquire(format.Length + args.Length * 8)

 .AppendFormatHelper(provider, format, args));

}

StringBuilder's reference

StringBuilder instance

char[] m_ChunkChars

StringBuilder m_ChunkPrevious

StringBuilder instance

char[] m_ChunkChars

StringBuilder m_ChunkPrevious

StringBuilder instance

char[] m_ChunkChars

StringBuilder m_ChunkPrevious

null

Figure 4-20. StringBuilder internal data structure

ChapTEr 4 .NET FuNdamENTals

301

StringBuilderCache stores internally the ThreadStatic static StringBuilder

instance (see Listing 4-21). Thus it can be safely reused without multithreading issues

because its value is unique for each thread (thread static storage is explained in detail in

Chapter 13).

Listing 4-21. Beginning of the StringBuilderCache class showing its internal

structure

internal static class StringBuilderCache

{

 // The value 360 was chosen in discussion with performance experts as a

compromise between using as litle memory (per thread) as possible and

still covering a large part of short-lived StringBuilder creations on

the startup path of VS designers.

 private const int MAX_BUILDER_SIZE = 360;

 [ThreadStatic]

 private static StringBuilder CachedInstance;

 ...

}

As there will be probably as many cached StringBuilder instances as threads in our

application, the capacity of it has been balanced between usefulness versus memory

overhead. Nevertheless, it shows us that it is always worth it to think about memory

overhead when designing such commonly used APIs like string formatting.

The performance difference can be significant when using mutable StringBuilder

versus concatenation of immutable strings. Table 4-2 shows benchmark results for three

methods from Listing 4-22. It is comparing two mentioned approaches. Additionally,

the third version uses StringBuilderCache, which although is not public, can be easily

copy-pasted from the .NET Framework sources (https://referencesource.microsoft.

com/#mscorlib/system/text/stringbuildercache.cs).

ChapTEr 4 .NET FuNdamENTals

https://referencesource.microsoft.com/#mscorlib/system/text/stringbuildercache.cs
https://referencesource.microsoft.com/#mscorlib/system/text/stringbuildercache.cs

302

Listing 4-22. Three approaches to building complex string. First uses classic

string concatenation, producing many temporary short-lived strings. Second

uses StringBuilder and the third utilizes StringBuilder instance caching

(acquiring cached instance big enough to contain produced text).

[Benchmark]

public static string StringConcatenation()

{

 string result = string.Empty;

 foreach (var num in Enumerable.Range(0, 64))

 result += string.Format("{0:D4}", num);

 return result;

}

[Benchmark]

public static string StringBuilder()

{

 StringBuilder sb = new StringBuilder();

 foreach (var num in Enumerable.Range(0, 64))

 sb.AppendFormat("{0:D4}", num);

 return sb.ToString();

}

[Benchmark]

public static string StringBuilderCached()

{

 StringBuilder sb = StringBuilderCache.Acquire(2 * 4 * 64);

 foreach (var num in Enumerable.Range(0, 64))

 sb.AppendFormat("{0:D4}", num);

 return StringBuilderCache.GetStringAndRelease(sb);

}

ChapTEr 4 .NET FuNdamENTals

303

As we can clearly see from the results in Table 4-2, the memory consumption may

be four times bigger if we are not aware of string concatenation caveats. It introduces a

four-time bigger GC overhead also. This may be trivial in our test case but for large web

application processing thousands of requests, it may make a real difference.

Two questions may arise when considering string design decisions:

• Why strings are immutable - if immutability introduces

counterintuitive behavior and hidden allocations problems, why

make a string immutable at all? The answer is quite simple - the use

of immutability for such an overwhelmingly popular type is very

beneficial because of the many advantages it gives us, at the expense

of the few defects that it introduces. On the benefits side of this

decision we can list:

• Safety - strings are widely used as important elements of other

data structures. Possibility to change them “in place” might lead

to many errors. Image things like keys in various dictionary-

like structures. If one could change such a key’s value, it would

probably invalidate the internal representation of such a structure

(often built upon different kinds of balancing trees). Strings are

also passed to various APIs to specify credentials, file names and

path, and so on and so forth. The possibility to change string

content after it has been checked would be very dangerous.

• Concurrency - data are not going to change so there is no risk in

sharing it between multiple threads. No need of locking, no risk

of False Sharing.

Table 4-2. Benchmark Results of Three String Building Methods from

Listing 4-22. BenchmarkDotNet Was Used on .NET Core 2.1.0.

Method Mean Gen 0 Allocated

StringConcatenation 12.420 us 6.3477 26.75 KB

StringBuilder 7.708 us 1.7090 7.64 KB

StringBuilderCached 7.630 us 1.4648 6.57 KB

ChapTEr 4 .NET FuNdamENTals

304

• A main disadvantage includes:

• Modifying operations will introduce additional instances of the

string (like Concat seen above). This may be particularly painful

for big text data. Image a few megabyte-long text stored in string

and a single Replace('a', 'b') call on it. It will create a few new

megabytes big string with possibly only a few characters changed.

• All this makes a perfectly good decision to treat string immutability as

an opt-in option. If you really need to make some mutable operation

on string, use StringBuilder. This forces the developer to expect that

he/she will consider which approach he/she should use.

• If string is immutable, why is string not a struct? Value types are

perfect candidates for being immutable - they store all their data

in place and realize pass-by-value semantics so making them

immutable seems natural. So why not make a string a struct? But

think for a minute. Although value type may be a good immutable

type, the opposite does not necessarily have to be true. Copying

by value large strings would introduce quite big overhead, and it is

much more efficient to pass them by reference.

Going further, if immutability is so good, why not make everything immutable by
default?! This is in fact what most functional languages are doing. and F# in not
an exception here. In F#, the type’s mutability is an opt-out solution so it has to be
explicitly declared (like by using mutable keyword).

 String Interning
There is a mechanism inside the .NET runtime called string interning, which sometimes

makes more confusion than it deserves. This is yet another one of those topics willingly

repeated as a question during the job interview. String interning is an optimization

technique for effective use of memory for repetitive texts. The same text is not repeatedly

copied, but only one copy is kept in memory. But the issue is that this mechanism by

default applies only to string literals and not to strings dynamically created during a

ChapTEr 4 .NET FuNdamENTals

305

normal application execution. As ECMA 335 says, “by default, the CLI guarantees that

the result of two ldstr instructions referring to two metadata tokens that have the same

sequence of characters, return precisely the same string object (a process known as string

interning).” And we have seen already usage of ldstr instruction to load a string literal in

Listing 4-18.

String interning is often illustrated by examples like in Listing 4-23. We see there two

"Hello world!" string literals in different contexts but with the same value. Line 4 from

the Main method would print True because runtime has interned "Hello world!" literal

and both s1 and Global are referencing the same string instance.

String interning used by default only for string literals makes this mechanism

not especially interesting for developers. It is rather an implementation detail of the

runtime-optimizing memory usage for an obvious thing - to not duplicate the same

hard-coded text again and again. It should be stressed once again - by default only string

literals are interned. This case is also shown in Listing 4-23. Although string s3 has the

same "Hello world!" value, line 5 shows that this is a different instance than the interned

one. Thus, string s3 created dynamically is not interned (although both "Hello " and

"world!" literals are).

Listing 4-23. String interning example with comments describing output

private static string Global = "Hello world!";

static void Main(string[] args)

{

 string s1 = "Hello world!";

 string s2 = "Hello ";

 string s3 = s2 + "world!";

 Console.WriteLine(string.ReferenceEquals(s1, Global)); // True

 Console.WriteLine(string.ReferenceEquals(s1, s3)); // False

 ...

Why are dynamically created strings not interned by default? Because it might

introduce significant overhead. When trying to create a new string, the runtime should

check whether it is not already interned. But such a check can be a noticeable cost if

there is already a huge amount of interned strings. Such checks could possibly outweigh

the benefit of not creating a new string in the first place.

ChapTEr 4 .NET FuNdamENTals

306

However, we have the possibility to explicitly manage string interning, the static

method string.IsInterned returns null if there is no interned string with a given

value and interned string reference otherwise. Listing 4-24 shows the continuation

of the Main method from Listing 4-23. In line 1, if we check using string.IsInterned

method whether there is a string interned with the value of s3 variable (which is "Hello

world!"), we get the interned reference - because indeed there is an interned “Hello

world!” string literal. This allows us to use the interned string version if it exists and the

original s3 instance would be eventually garbage collected as probably we will not be

using it anymore.

We can even explicitly intern string by using string.Intern method (see line

8 in Listing 4-24). It will return us an interned string reference. In case in which there

was no such value interned before, it will intern such reference and will return it to

us as a string.Intern result. In other words, interning dynamically created string

implies nothing more than just remembering it in some internal data structures. In

our example, string.Intern call interns a reference message, so s6 and message

references are equal.

Listing 4-24. Manual string interning example

string s4 = string.IsInterned(s3);

Console.WriteLine(s4); // Hello world!

Console.WriteLine(string.ReferenceEquals(s4, Global)); // True

string message = args[0];

string s5 = string.IsInterned(message);

Console.WriteLine(s5); // null

string s6 = string.Intern(message);

Console.WriteLine(string.ReferenceEquals(s6, message)); // True

This brings us gently to the next issue. There is quite a lot of confusion regarding

the location of the interned strings. If the dynamically created message string from

Listing 4-24 has been interned, where it is being stored? We can often read that interned

strings are stored in a so-called String Intern Pool that resides in a Large Object Heap

(LOH; we will learn about it in Chapter 5), a part of the Managed Heap. The problem is

ChapTEr 4 .NET FuNdamENTals

307

that LOH is designated for objects bigger than 85,000 bytes as we will soon learn. Our

string is obviously smaller. Does it mean it is being moved there during interning to some

kind of bigger buffer? We can also sometimes hear that interned strings are stored inside

an executable file, but this is unlikely for our dynamically created message string, isn’t it?

The truth is slightly more complicated.

There are a few places in memory related to the string interning (illustrated in

Figure 4-21). The core part is an internal String Literal Map that resides in a .NET

framework itself (within a private unmanaged heap). It manages a hash table of

strings grouped into buckets. Every interned string has its own entry there, and

it contains a calculated hash and an address to an entry in the other structure -

LargeHeapHandleTable. This handle table, which in fact resides in the Large Object

Heap, contains nothing more than references to the string instances. But those string

instances are “normal” strings living in the Managed Heap. Thus, we cannot say that

interned strings live in some special String Intern Pool data structure. They are simply

registered and maintained by string literal and handle table structures. The important

difference is that those structures live as long as the.NET application so interned strings

will be always referenced by them once registered. In GC terms, they will be always

reachable and thus never garbage collected! As interned strings live in Managed Heap

as any other objects - in Small Object Heap (SOH, if they are smaller than 85000 bytes)

or LOH (if they are bigger than 85,000 bytes), they eventually will be promoted to

generation 2 and stay there forever.

ChapTEr 4 .NET FuNdamENTals

308

header string content

StringLiteralMap

Small Object Heap Large Object Heap

header string content

header string content

header string content

LargeHeapHandleTable
(aka String Intern Pool)

Private Heap (unmanaged)

buckets object*
Hash
...

Figure 4-21. String interning internals. All interned strings are in fact normal
strings instances - kept in Small Object Heap or Large Object Heap depending on
their size. References to them are being held by LargeHeapHandleTable located in
Large Object Heap while information about those handles are stored in internal
.NET runtime data structures.

But what about string literals? Interestingly, their behavior is essentially the same.

Let’s assume we are using simple code like:

string s = "Hello world!";

When our source code is being compiled, all string literals (including "Hello

world!") are stored into executable file in a so-called #US storage stream (the name

comes from user strings abbreviation). The above line is being translated into one

already known to us CIL instruction with an argument describing that it refers to #US

ChapTEr 4 .NET FuNdamENTals

309

stream (0x70000000) value under index 1 (0x00000001) - let’s assume it is our “Hello

world!” text there:

ldstr 0x70000001

During JIT compilation such instruction, following sequence of steps happens:

• String data are being read from #US stream under a given index.

• String Literal Map is being checked for such data. If it exists already,

a proper handle address will be returned. If no entry exists for such

data:

• A new string is being allocated - as a normal string so it will be

created in Generation 0 (or LOH if it is large enough)!

• Data will be copied into that string from the stream.

• A new handle in LargeHeapHandleTable will be created, pointing

to the newly created string.

• A new entry in String Literal Map will be created.

String interning has been exposed to the developer via the string.Intern method

making it an opt-in setting. We can explicitly intern any string, including those

dynamically created. This is the cause of most confusion. Why and when we can benefit

from manual string interning? Let’s consider string interning pros and cons.

String interning advantages:

• String deduplication - the obvious advantage and the rationale

behind string interning is deduplication of the strings and thus

avoiding unnecessary memory overhead. This makes perfect sense

for strings literals as the runtime is taking care of it during JIT. When

considering string deduplication for dynamically generated strings,

things are not so obvious. We should analyze how many strings in our

application are duplicated and what memory overhead it produces. It

may just be not worth it to take into consideration the disadvantages

mentioned below.

ChapTEr 4 .NET FuNdamENTals

310

• Equality performance - string equality comparison may require

comparing both strings byte by byte and thus can be quite slow,

especially for bigger strings. However, string equality operators

contain fast-path answers when the same reference is being

compared (see Listing 4-25). Thus, if our code is based on comparing

tons of often duplicated strings, we may benefit by such optimization.

String interning disadvantages:

• Immortality - as mentioned before, interned strings stay reachable

until the runtime termination. Most probably the string we are

interning will become soon unreachable and thus garbage collected.

But by interning it we are just making it immortal and we should

think twice if it is worth it. Instead of better memory usage, we may

do just the opposite. It is like continuously keeping all strings we have

ever seen in our application. All depends on their uniqueness.

• Creation of temporary string - we can only intern string already

created. So for a short time, a non-interned string will exist, even if

only for checking if there is no interned version available.

Listing 4-25. Beginning of the string equality comparison. If both strings

represent the same reference, a very fast path is chosen.

public static bool Equals(String a, String b)

{

 if ((Object)a==(Object)b) {

 return true;

 }

 ...

If we are reading data from file, web request, and so forth, we are receiving strings

instances. Those instances are not interned and if they are very often duplicated (like,

for example, XML tags and attributes names), we may be tempted to intern them. But

the question is - what is the lifetime of those strings? If they are just temporarily read into

memory when doing input processing, they will be soon garbage collected. If we intern

them, they will reside in memory forever while the same temporarily created string

ChapTEr 4 .NET FuNdamENTals

311

still will be generated by an underlying library most probably.5 And as they are normal

strings eventually promoted to generation 2, they will put additional pressure on garbage

collection also.

Here we can come to the final conclusion - we may benefit by string interning mainly

when considering a scenario in which we keep in memory for a long time a lot of duplicated

strings. This is rather uncommon as most applications just process some burst of textual

data and forget about them. Moreover, if we rely on comparing those overwhelmingly

duplicated strings, it is an additional reason behind considering string interning.

please note that when having good control over how your strings are instantiated,
you have an option to implement string deduplication on your own. It requires
you to have a convenient place that allows it, like a place where you receive byte
stream data and want to deserialize it into a string. In such cases, we may write our
custom deduplication in a way not creating temporary strings. still, it will be mostly
beneficial if there are big amounts of duplicated strings living in our application.

All this balance between pros and cons is illustrated in the following scenario.

 Scenario 4-5. My Program’s Memory Usage Is Too Big
Description: During application development, testers noticed that after a few hours of

continuous work, the process is consuming gigabytes of memory. They let you know

and you indeed easily reproduced this behavior on your local machine by using test

automation tools.

Analysis: You have full control over the used environment so there are many possibilities

to attack this problem. By looking at performance counters or VMMap output, you will

easily confirm that the managed heap grows to gigabytes. In a development environment

without a problem, we can attach to the process or analyze a memory dump with the

help of various tools. Commercial tools will show us some predefined issues analysis

pointing out that there is a huge amount of memory wasted because of duplicated

strings (see Figure 4-22 from JetBrains dotMemory as an example).

5 Because of not-so-obvious string interning benefits, even System libraries like XML or HTTP
handling are not using interning by default.

ChapTEr 4 .NET FuNdamENTals

312

Figure 4-22. String duplication analysis shown in JetBrains dotMemory tool for
Scenario 4-5

We can come to a similar conclusion with the help of PerfView tool. Within the

Collect dialog box, we should check the .NET Alloc check box. This is a really expensive

tracking operation and it is unlikely you should enable it on the production environment.

However, we may agree to such overhead in the case of our local tests. Please not that

in case of a .NET Alloc option, you should start the profiled application after collection

starts. After stopping collection, open GC Heap Net Mem analysis from Memory

Group. A list of mostly allocated types will be presented. In our example scenario, the

string would be at the top of the list. If we double-click it, the aggregated stack of string

allocations will be presented (see Figure 4-23). As we see in our simplified case, there is

one main source of it - - System.IO.ReadLinesIterator.MoveNext() method.

Figure 4-23. PerfView graph for string allocation - used in Scenario 1-5

ChapTEr 4 .NET FuNdamENTals

313

If .NET alloc introduces too much overhead, you can still track allocations by
sampling with the help of .NET sampalloc or even GC only option, which can often
be sufficient (if problematic allocations stand out from the other allocations in our
application).

If we look at the code indicated by the analysis - System.IO.ReadLinesIterator.

MoveNext() (see Listing 4-26), we will see very simple file-parsing functionality that

counts each unique line occurrence and stores all lines in a dictionary altogether with

the occurrence timestamp. Obviously if there are many duplicated lines, there will be

many duplicated strings in memory.

Listing 4-26. Very simple line-counting C# code used to illustrate possible string

duplication

foreach (var line in File.ReadLines(file))

{

 bool counted = false;

 foreach (var key in counter.Keys)

 {

 if (key == line)

 {

 counter[key]++;

 counted = true;

 break;

 }

 }

 if (!counted)

 {

 counter.Add(line, 0);

 }

 list.Add(new Tuple<string, DateTime>(line, DateTime.Now));

}

ChapTEr 4 .NET FuNdamENTals

314

We can change this code to use string interning. Just after a line has been read from file

into string line, we may intern it (see Listing 4-27). New strings will be allocated for each

line read from file, but their lifetime will be very short. We will add only interned strings to

the dictionary. Those interned strings are stored for the whole application’s lifetime so we

will benefit from string deduplication. We may even gain an additional performance boost

because now string comparison may use reference equality underneath for similar strings.

Listing 4-27. Code from Listing 4-26 changed to use explicit string interning

foreach (var line in File.ReadLines(file))

{

 var line2 = string.Intern(line); // line lifetime ends here (except

first occurence when it will be

interned)

 bool counted = false;

 foreach (var key in counter.Keys)

 {

 if (key == line2) // should often use ReferenceEquals because of

comparing two interned string

 {

 counter[key]++;

 counted = true;

 break;

 }

 }

 if (!counted)

 {

 counter.Add(line2, 0); // adding interned string

 }

 list.Add(new Tuple<string, DateTime>(line2, DateTime.Now));

}

Such code will produce real benefits only if there are not so many unique strings that

otherwise would be duplicated many times for a long time. If any of those conditions

are not met, string interning will probably cause performance degradation instead of

improvement.

ChapTEr 4 .NET FuNdamENTals

315

 Boxing and Unboxing
In .NET, conversion exists between value type and a reference type. As ECMA-335 says:

For every value type, the CTS defines a corresponding reference type called
the boxed type. The reverse is not true: In general, reference types do not
have a corresponding value type. The representation of a value of a boxed
type (a boxed value) is a location where a value of the value type can be
stored. A boxed type is an object type and a boxed value is an object.

(...)

All value types have an operation called box. Boxing a value of any value
type produces its boxed value; i.e., a value of the corresponding boxed type
containing a bitwise copy of the original value.

As value type and reference type definitions do not mention the stack and the heap

at all, so a boxing definition does not either. We can see boxing as a process of converting

a value type instance into a reference type instance, hence converting those value’s

semantics.

Obviously, when we come to the implementation details, I’ve mentioned a few times

already that in certain scenarios value-type instances (like struct) need to be allocated

on the heap. And as we said, all objects on the managed heap need to have some

additional corresponding data like the object header and MethodTable reference. Thus,

when we want to allocate a value type on the heap, we need to wrap its value with those

additional data. In other words, boxing is a two-step operation:

• allocates on the heap boxed type for the corresponding value type

(a new reference type instance)

• copies data from value type instance to newly created reference type

instance

We probably already have intuition that this is a not-so-efficient operation. We need

to allocate an object and copy its data, which takes some precious clock cycles. What is

worse, a boxed-type instance at some time will have to be garbage collected, which puts

pressure on the GC.

ChapTEr 4 .NET FuNdamENTals

316

Let’s look at the typical boxing example from Listing 4-28. We see there that the

value-type integer is being assigned to a reference object type. In such a case it must be

boxed.

Listing 4-28. Implicit boxing example.

int i = 123;

object o = i; // implicit boxing

A Common Intermediate Language code shown at Listing 4-29 illustrates how

boxing looks from the perspective of the underlying stack machine. Box instruction

is taking a value and pushes on the evaluation stack the result of boxing (which is a

reference to a newly created reference-type instance).

Listing 4-29. CIL code generated for C# code from Listing 4-28

IL_0000: ldc.i4.s 123

IL_0002: box System.Int32

IL_0007: ret

This directly translates to the two-step operation mentioned above (see Listing 4-30).

First, a boxed-type System.Int32 is allocated and then a value (in this case, single

integer with value 123 so 0x7b in hexadecimal notation) is being copied into it.

Listing 4-30. Assembly mode generated from CIL code from Listing 4-29

(in Release x64 mode)

Samples.Echoer.Write(System.String)

0x00007FFB`7BE56180: L0000: sub rsp, 0x28

0x00007FFB`7BE56184: L0004: mov rcx, 0x7ffbd85e9288 ; (MT: System.Int32)

0x00007FFB`7BE5618E: L000e: call clr!JIT_TrialAllocSFastMP_

InlineGetThread

0x00007FFB`7BE56193: L0013: mov dword [rax+0x8], 0x7b

0x00007FFB`7BE5619A: L001a: add rsp, 0x28

0x00007FFB`7BE5619E: L001e: ret

ChapTEr 4 .NET FuNdamENTals

317

One of the main memory-related rules in .NET world is - avoid boxing. A massive

boxing code could indeed cause us performance problems. Unfortunately, most boxing

is done implicitly so we may be even not aware of it. Thus, it is worth it to remember

common places when such implicit boxing can occur:

• Value type is used where object (reference type) is expected - thus it

needs to be boxed. Besides a little artificial example from Listing 4-28,

we most often encounter this situation in the arguments of methods

that accept a type object like various string.Format, string.Concat,

and similar overrides:

int i = 123;

return string.Format("{0}", i);

We see in generated CIL code that boxing to System.Int32 occurs:

IL_0003: ldstr "{0}"

IL_0000: ldc.i4.s 123

IL_0009: box [mscorlib]System.Int32

IL_000e: call string [mscorlib]System.String::Format(string,

object)

Unfortunately, there is nothing we can do here to avoid boxing.

Even using more advanced syntax like string interpolation (return

$"{i}" in our example) will introduce boxing as it uses string.

Format underneath. We can call ToString on a value type during

method call (string.Format("{0}", i.ToString())) to avoid

boxing, but it will allocate a new string so the result will be in fact

the same in terms of memory pressure. As a general rule, it is good

to avoid methods taking objects as parameters, if possible. Before

generics were introduced in .NET Framework 2.0, all collections

types were storing its data as object references because they

had to be flexible enough to store any possible data. Thus, many

methods existed like ArrayList.Add(Object value) and so on,

and so forth with much possible boxing to happen. Thanks to

generic types, this problem no longer exists as a generic type or

method will be compiled for a specific value type (like List<T>

will become List<int>) and no boxing may be necessary.

ChapTEr 4 .NET FuNdamENTals

318

• Value type instance is used as any interface type implemented by this

value type. As the interface is a reference type, we also need boxing

here. Assuming SomeStruct implements ISomeInterface interface

with method GetMessage:

public string Main(string args)

{

 SomeStruct some;

 var message = Helper(some);

 return message;

}

 string Helper(ISomeInterface data)

{

 return data.GetMessage();

}

Again, implicit boxing is visible in the generated CIL code:

 IL_0000: ldarg.0

 IL_0001: ldloc.0

 IL_0002: box Samples.SomeStruct

 IL_0007: call instance string Samples.Program::Helper(class

Samples.ISomeInterface)

We can avoid boxing in such cases by introducing a generic method

that will expect a desired interface as a generic type parameter:

string Helper<T>(T data) where T : ISomeInterface

{

 return data.GetMessage();

}

Generic method will be compiled for this specific value type as an

argument, hence no boxing will be required:

IL_0000: ldarg.0

IL_0001: ldloc.0

 IL_0002: call instance string Samples.Program::Helper<valuetype

Samples.SomeStruct>(!!0)

ChapTEr 4 .NET FuNdamENTals

319

Let’s look at the one of the most common sources of boxing, which comes from the

fact of a value type being used as an interface - foreach instruction on IEnumerable<T>

(see Listing 4-31). In such a case we are passing List<int> instance as an

IEnumerable<int> to Print method. The foreach instruction underneath is operating

on an enumerator concept - it is making GetEnumerator() call on the passed collection

and then it calls Current() and MoveNext() on it sequentially. In the Print method,

list collection is seen as IEnumerable<int> so IEnumerable<int>.GetEnumerator()

will be called, which is expected to return IEnumerator<int>. List<T> implements

IEnumerable<int> obviously but the important fact is that GetEnumerator() returns

Enumerator, which is... struct. As this struct is being used as IEnumerator<int>, boxing

happened once at the beginning of the foreach loop.

Listing 4-31. Hidden allocation because of boxing when using foreach

statement

public int Main(string args)

{

 List<int> list = new List<int>() {1, 2, 3};

 Print(list);

 return list.Count;

}

public void Print(IEnumerable<int> list)

{

 foreach (var x in list)

 {

 Console.WriteLine(x);

 }

}

This obviously does not incur much overhead as a single boxing of Enumerator will

be most probably outweighed by the operations made inside the foreach loop. As always

in such problems, it can only hit us back if we are making tons of such foreach loops

on the hot path executed. And as always, Measure Early whether it a problem in your

application or not by investigating the number of Enumerator allocations. If you would

like to avoid boxing, you may simply pass list as List<int> to Print method (making it

public void Print(List<int> list)). In such a case, when foreach calls underneath

ChapTEr 4 .NET FuNdamENTals

320

List<int>.GetEnumerator(), List<int>.Enumerator, a struct is expected and such

local variable will be created for it. No need of boxing to happen. This is a place where

good programming practices may conflict with code optimization. In general, it is good

to design Print method to accept any IEnumerable<T> and do not tie it with concrete

List<T> implementation. But this will incur boxing on the other hand so we have to

choose between possible performance implications and good code practices.

The obvious questions may arise why common collections like List<T> have

enumerators implemented as a struct in the first place if this implies such hidden boxing

overhead? The answer is simple, and you may already guess it after all that has been said

so far. The overwhelming majority of use cases is to use enumerators as local variables,

so being value types, they can be cheaply and quickly allocated on the stack. This by far

outweighs possible problems with boxing.

Boxing has its complementary operation called unboxing, which means converting a

back-boxed reference-type value into a value type instance. This operation draws much

less attention because it does not cause such significant memory overhead. First of all,

we should do boxing first so if we do not do boxing, unboxing will not happen. Secondly,

unboxing does not incur heap allocation. The value will be copied from the heap back

to the stack so there is memory copying overhead. But as we already know, we are much

less afraid of performance impact of the stack allocations so we are much less afraid of

unboxing also.

There is a small, not-so-obvious caveat related to unboxing. as ECma-335 says:
“All boxed types have an operation called unbox, which results in a managed
pointer to the bit representation of the value.” and in fact, there is a CIl unbox
instruction that does exactly that - it pushes onto the evaluation stack the
managed pointer to the data in the boxed instance. We can then say that unboxing
in its pure form is neither copying nor allocating any data. But then such a pointer
has to be used to obtain the actual value. This is what ldobj instruction is doing, it
“copies the value stored at address src to the stack.” When the C# compiler wants
to do unboxing, it emits unbox.any CIl instruction, which is equivalent to unbox
followed by ldobj instructions.

ChapTEr 4 .NET FuNdamENTals

321

There are many possible places where implicit boxing may occur and it is really hard

to be aware of all of them all the time. What can we do to cope with this problem? For

sure we can learn the most basic and common cases. But there are tools that can help

us. There is a Heap Allocations Viewer extension for Visual Studio and Roslyn C# Heap

Allocation Analyzer plugin for ReSharper that do exactly that. They show us any hidden

allocations, including those coming from implicit boxing. I strongly encourage you to try

these tools during everyday work. More examples of possible hidden allocation sources

(including boxing) are also presented in Chapter 6, along with yet more scenarios of

investigating them.

 Passing by Reference
We have learned already, briefly, valuable types and reference types and passing-by

value and passing-by reference semantics associated with them. There is yet another

level of control above that. As mentioned already a few times, we can pass by reference

any value, irrespective of whether it is a value type instance or reference-type instance.

Thus, let’s take a look about those two respective contexts.

 Pass-by-Reference Value-Type Instance
As pointed out many times, value types have pass-by-value semantics, so whenever we

are assigning instances of value types, we are creating bitwise copy of its value. This is

very often illustrated by an example similar to the one shown at Listing 4-32. We are

using here the struct definition from Listing 4-6 defined earlier in this chapter. Helper

method has a single value type argument. When we pass SomeStruct instance into it, a

local copy inside Helper method is being created. Thus, modifying data.Value1 does

not make sense - it will modify only this local copy and leave the original ss instance

untouched. Main method will return 10.

Listing 4-32. Example of C# code passing struct by value

public int Main(int data)

{

 SomeStruct ss = new SomeStruct();

 ss.Value1 = 10;

 Helper(ss);

ChapTEr 4 .NET FuNdamENTals

322

 return ss.Value1;

}

private void Helper(SomeStruct data)

{

 data.Value1 = 11;

}

We can change this behavior by passing the data instance by reference with the help

of ref keyword (see Listing 4-33). In such a case we are using reference to the original

value instance on the stack. Any modifications of it inside Helper method will be

reflected in the original ss instance. Thus, Main method will return 11.

Listing 4-33. Example of C# code passing struct by reference

public int Main(int data)

{

 SomeStruct ss = new SomeStruct();

 ss.Value1 = 10;

 Helper(ref ss);

 return ss.Value1;

}

private void Helper(ref SomeStruct data)

{

 data.Value1 = 11;

}

Using structs (value types) as local variables and passing them by reference is a great

optimization trick - not only that we cause no heap allocation, we also eliminate the

overhead of possible data copying regardless of struct size.

please remember the JIT compiler is so great in code optimization. In the case of
release build of program from listing 4-33, the JIT compiler will notice that there
is no need for struct even on the stack at all (as we have previously seen at
listing 4-9). Therefore, Main method in our example will be JITted to mov eax,
0xb and ret instructions!

ChapTEr 4 .NET FuNdamENTals

323

 Pass-by-Reference Reference-Type Instance
Here we may get a little bit lost as we are talking about passing by reference a reference-

to- reference type. If you are familiar with C/C++ world, this would be something like

using a pointer to the pointer.

Using the class definition from Listing 4-11 we can illustrate it by Listing 4-34. Here

by reference is passed a reference to SomeClass reference-type instance. We can access

it as usual inside Helper class (which however would be a little slower than by accessing

normal reference as an additional pointer dereference is required here). But by having

reference to the reference type, we can modify it and change it to point another reference

type instance. In our sample Main method will return 11. If SomeClass was passed simply

by reference, Helper code would overwrite locally passed reference by locally creating a

new instance. But those changes would not be visible outside this method. You probably

need a moment or two to get your head around it.

Listing 4-34. Example of C# code passing reference type by reference

public int Main(int data)

{

 SomeClass sc = new SomeClass();

 sc.Value1 = 10;

 Helper(ref sc);

 return sc.Value1;

}

private void Helper(ref SomeClass data)

{

 data = new SomeClass();

 data.Value1 = 11;

}

We will put quite a lot of attention to the passing-by reference in this book, in

Chapter 14. This is a great and very interesting topic. It is also one of the most powerful

optimization tricks used for performance tuning. If your job is to write a super-efficient

library with the best possible performance, you should definitely focus on this kind

of optimization. This is how commonly used solutions with the highest expected

performance, such as the Roslyn compiler or the Kestrel server, are being optimized.

ChapTEr 4 .NET FuNdamENTals

324

For now, let’s just remember this mechanism as a great way of improving struct and class

usage performance and hence a perfect tool for avoiding allocations in our code.

passing-by reference is so important in terms of optimizing common code base of
different libraries that it constantly gains more and more attention from creators
of .NET and C# language. From C# 7.0 local reference variables and returning-
by-reference capabilities have been added. From C# 7.1 and 7.2 there is the
possibility to pass by read-only reference (by using in keyword instead of ref)
to explicitly say that a reference is passed only for accessing data, without a
possibility to modify it. We will look at all those possibilities in Chapter 14.

 Types Data Locality
Due to no overhead from any additional data, structs are very compact. This is desirable

for two reasons:

• It is always good to process less data - this obvious reason does not

need any special comment. Even in the times when the memory is

cheap, we can benefit from processing less - the time.

• It is always good to utilize cache to its extent - when we can load

more objects into single cache line because they are smaller, we may

gain a significant performance boost. As we saw in Chapter 2, it pays

off if we lay out data in a way that helps to have as much as possible

usable data into cache line. This is exactly where structs can help us.

Data structures build from structs provide more dense memory utilization because

there is no overhead related with the reference types. What is even more important,

arrays of structs constitute continuous regions of memory filled with its data, whereas in

case of reference types, only references are laid out sequentially. Value they are referring

to may be scattered through all the managed heaps, and we do not have control about it

(see Figure 4-24).

ChapTEr 4 .NET FuNdamENTals

325

header field's values

4B 4B

Value1

4B 4B

Value2 Value3 Value4

4B 4B

Value1

4B 4B

Value2 Value3 Value4

4B 4B

Value1

4B 4B

Value2 Value3 Value4

4B 4B

Value1

4B 4B

Value2 Value3 Value4

8B 8B 8B 8B 8B 8B

header field's values

4B 4B

Value1

4B 4B

Value2 Value3 Value4

header field's values

4B 4B

Value1

4B 4B

Value2 Value3 Value4

Figure 4-24. Arrays of structs (at the top) constitute continuous regions of memory
because value types store their data in place. Arrays of classes (at the bottom) are
in fact only continuous arrays of references pointing to objects on the heap with
undefined locations.

Performance differences of such different data localities are presented with the help

of a program from Listing 4-35. This program simply calculates the total sum off the first

field in all array elements: once for arrays of structs and once for array of classes.

Listing 4-35. Benchmark showing performance difference in accessing array of

structs versus array of classes

public struct SmallStruct

{

 public int Value1;

 public int Value2;

}

public class SmallClass

{

 public int Value1;

 public int Value2;

}

ChapTEr 4 .NET FuNdamENTals

326

// both arrays are initialized with one million elements

private SmallClass[] classes;

private SmallStruct[] structs;

[Benchmark]

public int StructArrayAccess()

{

 int result = 0;

 for (int i = 0; i < items; i++)

 result += Helper1(structs, i);

 return result;

}

[Benchmark]

public int ClassArrayAccess()

{

 int result = 0;

 for (int i = 0; i < items; i++)

 result += Helper2(classes, i);

 return result;

}

public int Helper1(SmallStruct [] data, int index)

{

 return data[index].Value1;

}

public int Helper2(SmallClass [] data, int index)

{

 return data[index].Value1;

}

What may be interesting is that the only difference between those two approaches

lies in the JIT-compiled code generated for each of the helper methods (see Listing 4-36).

The difference is that struct's array access in Helper1 uses a single address dereference -

it calculates the address in an array by multiplication by index times struct size. Then

it stores value under this address in the result register. Helper2 has to dereference the

ChapTEr 4 .NET FuNdamENTals

327

address twice - first to get the reference to an object under a given index and second to

get the value under this reference.

Listing 4-36. Fragments of assembly code generated after JITting Helper

methods from Listing 4-35. In this case rdx register contains address of an array

object and rax contains an index in this array.

Helper1(Samples.SomeStruct[], Int32)

...

0x00007FFA`526A0E8D: L000d: mov eax, [rdx+rax*8+0x10]

...

Helper2(Samples.SomeClass[], Int32)

...

0x00007FFA`526A0E4D: L000d: mov rax, [rdx+rax*8+0x10]

0x00007FFA`526A0E52: L0012: mov eax, [rax+0x8]

...

Note The code for helper methods will be in fact inlined into benchmarked
methods, but they were presented in original form for clarity.

The result of both approaches is presented in Table 4-3. We can notice really big

differences that obviously cannot be explained only by executing one more address

dereference. The additional overhead comes from the fact of much worse data locality as

class instances are not guaranteed to lie next to each other. Hence, more cache lines have

to be loaded during such calculations.

Table 4-3. Benchmark Results of Struct versus Class Array Access

from Listing L1. BenchmarkDotNet Was Used on .NET Core 2.0.0.

Method Mean Allocated

StructArrayAccess 618.7 us 0 B

ClassArrayAccess 1,816.5 us 0 B

ChapTEr 4 .NET FuNdamENTals

328

 Static Data
Static data may be seen as a kind of global variable in our program. And while global

variables are not so welcome in good design practices, they still may be found useful.

In case of C#, there is only one type of static data available - static fields. While VB.NET

allows us to declare static variables in functions, they are simply a syntactic sugar

around a regular static field (in case of usage in Shared function). Let’s dig into static

fields a little then.

 Static Fields
Everyone programming in .NET perfectly understands static fields - their value is shared

among all instances of a given type. We access them by using a type’s name, globally

from everywhere such type is accessible (see Listing 4-37). It makes perfect sense and

probably does not need any more explanation.

Listing 4-37. Example of static field usage

public class C {

 public void Method1()

 {

 S.Value = 10;

 }

 public void Method2() {

 Console.WriteLine(S.Value);

 }

}

public class S

{

 public static int Value;

}

ChapTEr 4 .NET FuNdamENTals

329

However, from a memory-management perspective, a few additional remarks should

be added:

• Static data have per AppDomain scope - if we load the same

assembly into multiple application domains, there will be multiple,

same static data instances.

• Static data of types defined in an assembly lives as long as the

AppDomain lives, where such assembly was loaded - thus, until

assembly is unloaded, all static data and objects referenced by them

will stay reachable (thus, not garbage collected).

• While they are implementation details, one may wish to be aware

that:

• Static primitive data (like numbers) are stored in a High

Frequency Heap of the corresponding application domain (part

of its Loader Heap).

• Static reference type instances (objects) are living on the regular

GC Heap - the difference to normal objects is that they are

additionally referenced by the internal “statics table.” Because

such objects will obviously live long, they will eventually land in

generation 2 and stay there.6

• Static user-defined value type instances (structs) are also living

inside the regular GC Heap in a boxed form.

6 Unless it is large object, which will from the beginning live on a Large Object Heap.

ChapTEr 4 .NET FuNdamENTals

330

Having said that, if you are interested how exactly statics are implemented in .NET,

read the following section about its internals.

 Static Data Internals
Each application domain in a .NET application is represented by a set of internal

data structures (see Figure 4-25). For each module existing in loaded assemblies, the

DomainLocalModule data structure is maintained. It contains two crucial regions from

the internal static data point-of-view implementation:

• For fields of reference type and structs (in boxed form) - a reference

pointing inside Object[] table where static references of a given

module begins (m_pGCstatics in Figure 4-25). Such Object[] table

is shared between all modules and assemblies loaded into the

application domain.

• For fields of primitive types - its values, grouped by types where

they are defined, including necessary padding because of memory

alignment requirements (statics blob in Figure 4-25).

ChapTEr 4 .NET FuNdamENTals

331

The above-mentioned shared Object[] array is maintained by the internal

LargeHeapHandleTable data structure (already mentioned in section about string

interning, where it is also used) and it is allocated in a Large Object Heap (being also

pinned, to make it safe to store addresses pointing into it). Such a handle table maintains

arrays in buckets, so when the currently used array is filled, a new bucket and new

corresponding array will be created (which may happen, for example, if a new generic

type with static fields needs to be constructed).

H TMObject[]

statics blob

AppDomain

DomainLocalModule

Module1 Module2 Module3

H TM

H TM

lo
ng

do
ub

le

in
t

in
t

in
t

in
t

per Module
(typically one)

CLR Private Heap
(High Requency Heap)

Managed Heap

other
data

LargeHeapHandleTable

pinned handle

Type1 Type2

Type1 Type2 Type3

padding

SomeData

SomeData

m_pGCstatics

Assembly

LargeHeapHandleBucket

LargeHeapHandleBucket

m_pNext

Assembly

DomainLocalModule

lo
ng

do
ub

le

in
t

in
t

in
t

in
tother

data

Type1 Type2 Type3m_pArrayDataPtr

Figure 4-25. Internals of static fields storage in .NET Core (from the perspective of
single-application domain and two assemblies loaded into it). Places where static
data is indeed stored are marked as gray (while every other visible structure may
be seen as a supporting, auxiliary data). In case of .NET Framework, static blob is
stored next to given type's MethodTable.

ChapTEr 4 .NET FuNdamENTals

332

please note that all data structures in Figure 4-25 will be eventually deleted
if the corresponding application domain is deleted (including all static data in
loaded assemblies). In case of collectible assemblies mentioned earlier in this
chapter, only corresponding the DomainLocalModule would be deleted, and
corresponding entries in the shared handle table removed. anyway, it would
result in making all static reference-type instances unreachable (and all objects
referenced by them) so they would be eventually garbage collected.

Additionally, when building static-related data, offsets of all static fields are

calculated and stored in corresponding a MethodTable's field description. When the JIT

compiler is emitting code that is accessing the static field, it is consuming this data in the

following way:

• For primitive data static field - knowing address of the proper

DomainLocalModule and the offset of accessed field within its statics

blob, the absolute address of the data is calculated.

• For reference data static field (including structs, which are

heap allocated in a boxed form) - knowing address (via

LargeHeapHandleTable and its buckets) of the corresponding

Object[] array and the offset of accessed field within it, the absolute

address of the proper element of such array is calculated (which is a

reference, pointing to the appropriate object).

Using as an example a few simple types defined in Listing 4-38, we can see in action

using data structures shown in Figure 4-23.

Listing 4-38. Simple types used in the next code examples

public class ExampleClass

{

 public static int StaticPrimitive;

 public static S StaticStruct;

 public static R StaticObject = new R();

}

ChapTEr 4 .NET FuNdamENTals

333

public class R

{

 public int Value;

}

public struct S

{

 public int Value;

}

When accessing a primitive static field (see Listing 4-39), assembly code emitted

by the JIT compiler is indeed very simple (see Listing 4-40) - it consists only of reading

a given value from the proper statics blob region. Thus, accessing primitive static data

can be seen as a very fast operation without additional overhead (at least until we won't

guard it with some thread safety like using locks).

Listing 4-39. Trivial example of accessing primitive static field

[MethodImpl(MethodImplOptions.NoInlining)]

public void Method1()

{

 Console.WriteLine(ExampleClass.StaticPrimitive);

}

Listing 4-40. JIT-compiled code from Listing 4-39 (only relevant part)

...

mov ecx,dword ptr [00007ff9`3c8a4bd8] ; address in High Frequency Heap

(inside statics blob)

call 00007ff9`3c9c1380 (System.Console.WriteLine(Int32), mdToken:

000000000600007e)

...

Structs that are static fields are becoming heap allocated in a boxed form; thus they

are treated as any other object. When accessing such a static field data (see Listing 4-41),

assembly code emitted by the JIT is accessing the handle table to get an address of the

heap-allocated struct instance on the GC Heap (see Listing 4-42). We should be aware of

this additional overhead of handle dereference, because we could think that structs are

stored in statics blob as primitive value types described above.

ChapTEr 4 .NET FuNdamENTals

334

Listing 4-41. Trivial example of accessing user-defined value type static field data

[MethodImpl(MethodImplOptions.NoInlining)]

public void Method2()

{

 Console.WriteLine(ExampleClass.StaticStruct.Value);

}

Listing 4-42. JIT-compiled code from Listing 4-41

...

mov rcx,19510002938h ; addres in LOH (inside handle table)

mov rcx,qword ptr [rcx] ; dereference handle (rcx contains boxed

struct address)

mov ecx,dword ptr [rcx+8] ; access the first field of a boxed struct

call 00007ff9`3c9c2b60 (System.Console.WriteLine(Int32), mdToken:

000000000600007e)

...

Accessing the reference type static field data (see Listing 4-43) generates exactly the

same code as seen previously: to access the handle table to get an address of the object

(see Listing 4-44). Again, handle dereferencing overhead exists, but in case of reference

data it is more expected.

Listing 4-43. Trivial example of accessing reference-type static field data

[MethodImpl(MethodImplOptions.NoInlining)]

public void Method3()

{

 Console.WriteLine(ExampleClass.StaticObject.Value);

}

Listing 4-44. JIT-compiled code from Listing 4-43

mov rcx,19510002940h ; addres in LOH (inside handle table)

mov rcx,qword ptr [rcx] ; dereference handle (rcx contains object address)

mov ecx,dword ptr [rcx+8] ; access the first field of an object

call 00007ff9`3c9c2b60 (System.Console.WriteLine(Int32), mdToken:

000000000600007e)

ChapTEr 4 .NET FuNdamENTals

335

Exactly the same code (with slightly different addresses, obviously) would be
generated if ExampleClass was a struct. This is because the static field type is
important, not the type in which such field is defined.

 Summary
The first three chapters were merely .NET-related. We have learned some algorithmic

and computer architecture basics. However, this chapter is a game changer. We started

looking at .NET much more intensively. After starting with some basic historical

background, we took a deep dive into .NET internals. We have devoted a few pages to

learning the different areas of memory that are part of the .NET process. We have looked

deeper at some of these areas, for example, having the opportunity to diagnose the

problems related with them. This happened with the help of a new kind of information

also introduced in this chapter - scenarios. They are intended to show you various

problems and possible ways to analyze them. I hope this makes you feel that learning is

not only theory but also very practical aspects of .NET memory management.

We’ve seen quite a lot of this topic already and have not even touched on Garbage

Collector by itself. Some aspects mentioned in this chapter will even return to us from

time to time in the rest of the book. However, it is not hard to notice that most of this

chapter is dedicated to the type system and various aspects of different type categories in

.NET. After learning about structs and classes quite a lot in this chapter, it is worth ending

with a brief summary of their strengths and weaknesses summarized below.

 Structs
• better data locality - they contain all its data in place and are stored

without any additional overhead so cache utilization is much better

• may be allocated on stack - in certain scenarios, structs being local

variables are allocated on the stack, which is much more lightweight

and does not incur future GC- related overhead.

• may be overwhelmingly optimized - as we have seen in some scenarios,

the struct concept just disappears from the generated machine code

completely and whole processing is done via CPU registers.

ChapTEr 4 .NET FuNdamENTals

336

• risk of unintentional boxing - when used carelessly, structs may be a

source of boxing, which incurs hidden allocations.

• harder to understand - pass-by-value semantics and a few other various

caveats may sometimes be less intuitive than well-known classes.

• most of the performance benefits are strongly implementation

dependent - now they work but it is not guaranteed that in future the

implementation details won’t change.

 Classes
• “just works” - classes are the basic building blocks and code we write

using them just works. We are used to them very much and using

them is an obvious choice.

• overhead of GC - allocating class instances incur heap allocations

and those give GC additional work.

It is also high time we introduced some new Rules related to the material from

this chapter. There are a few as the topics we touch are becoming more and more

practical. Please note that the rule Avoid Hidden Allocation is highly related to string

concatenation shown in this chapter, will be presented in Chapter 5.

 Rule 6 - Measure Your Program

Justification: It is really hard to know whether your program consumes a lot of memory or

not if you do not know how to measure it. The answer to the question - how big my program

is - may be quite difficult. There are various metrics we can look at and without deeper

understanding of them, we may simply get lost. We do not know how to compare different

programs in terms of size. And we do not know how to ask our customer to check it.

How to apply: Using the knowledge gained in the second and fourth chapters, we can

understand quite precisely what each program size means. When analyzing different

memory-related issues, we should always start to investigate its size and how it changes

in time. We should always start to look at the most troublesome size - the one that

indicates how much physical RAM is being consumed. We should look at whole private

and virtual also. Only knowing those measurements gives us context wide enough to

proceed with further analysis.

Related scenarios: Scenario 4-1.

ChapTEr 4 .NET FuNdamENTals

337

 Rule 7 - Do Not Assume There Is No Memory Leak

Justification: It is tempting to assume that in a managed .NET environment there is

no chance that memory leaks will occur. Memory is automatically reclaimed so why

should we care? This is almost always true and it is a great engineering achievement of

.NET runtime creators. However, there still exists many scenarios that may hit us back

in the less-appropriate moment. And most probably they reveal some of the customer’s

production environment.

How to apply: Just don’t do that. Measure You Program (Rule 6) and Measure GC Early

(Rule 5). Keep your eyes open to suspicious trends, especially when one of the observed

sizes start to grow infinitely.

Related scenarios: Scenarios 4-2, 4-3, and 4-4.

 Rule 8 - Consider Using Struct

Justification: Using classes in object-oriented programming in C# is so popular that

it is used by default and without any thinking. Classes “just work” so why should we

care? However, structs were not invented without a reason. Add structs to your everyday

developer’s life toolbox. You do not need to start using them everywhere for now. Just try

to consider them after knowledge you gained in Chapter 4 of this book.

How to apply: Read about structures. Learn their strengths and weaknesses. Understand

pass-by-value and pass-by-reference semantics. Measure Early to find out whether

it makes sense to put effort in optimizing this part of code you are looking at. If so,

try to make use of some leaky implementation details of struct - the stack allocation,

JIT optimization, and so on and so forth. And if you decide to use struct in your code,

remember the possibility of passing them by reference - consider using ref parameters,

local ref and ref return values. This can help you gain even more performance. Also,

always remember a stack is precious resource - do not expect that you will be able to put

a huge amount of data there.

 Rule 9 - Consider Using String Interning

Justification: Strings are almost always one of the most common types in our program’s

memory. And storing in memory a lot of duplicated string is obviously inefficient. .NET

runtimes take care of it in case of string literals. If we want to take care of it in case of

ChapTEr 4 .NET FuNdamENTals

338

dynamically generated strings (for example, loaded or received from external source like

file or HTTP request), we may use string interning manually.

How to apply: Measure whether you indeed have a lot of duplicated strings. Consider

their lifespan and uniqueness. Do you have a lot of duplicated strings living for minutes

or hours inside your process? Or do you have only big bursts of temporary string during

some input processing. String interning has its own drawback and it may be beneficial

only in the first scenario. Remember that string once interned will live till the runtime

termination. Thus, interning a string is a very risky decision and must be well-thought out.

Related scenarios: Scenario 4-5.

 Rule 10 - Avoid Boxing

Justification: Boxing operation converts value type into a corresponding reference type.

This introduces hidden allocation as the reference type will be allocated on the heap.

Avoid Allocation (Rule 14) is one of the most important optimization approaches so

we should avoid boxing whenever possible, especially since most happen without our

knowledge as implicit boxing.

How to apply: Learn about typical implicit boxing scenarios and just try to avoid them.

You can Measure GC Early (Rule 5) whether your program allocates a lot and boxing

can turn out to be one of the reasons. You can help yourself in spotting implicit boxing

by using the Heap Allocations Viewer extension for Visual Studio and Roslyn C# Heap

Allocation Analyzer plugin for ReSharper.

ChapTEr 4 .NET FuNdamENTals

339
© Konrad Kokosa 2018
K. Kokosa, Pro .NET Memory Management, https://doi.org/10.1007/978-1-4842-4027-4_5

CHAPTER 5

Memory Partitioning
We have already learned some basic memory-related facts about .NET internals in the

previous chapter. We’ve looked inside process memory running managed code. As we have

seen, there are many various memory segments inside it. Some of them are used internally

by the .NET framework itself. Some of them are part of operating system cooperation.

But there are also more important heaps for us denoted as the Managed Heap.

As it was explained in Chapter 4, some of them contain various data required for the

Execution Engine, like types description. Those are Domain heaps, Low Frequency heaps,

and High Frequency heaps. But among all those different heaps, there is yet the most

important one that is for the sole Garbage Collector purposes (see Figure 5-1). Those are

the memory segments that contain the Heap (or the Free Store) as defined in Chapter 1

from the CLI perspective. Let’s agree that these memory areas will be called the Garbage

Collector’s Managed Heap (the GC Managed Heap or the GC Heap in short).

Figure 5-1. Among various heaps existing inside a process running .NET
application, there is one type that is the most interesting for us - GC Heap
containing all objects allocated by our program

When our application is running, the .NET runtime Allocator is allocating objects

inside the GC Heap. The Collector implemented in .NET runtime tracks the reachability

of objects located in the GC Heap to reclaim memory of those which are no longer

reachable.

340

As we have seen in the previous chapter, the misbehaving of any of those different

heaps can indicate some problem. Nevertheless, from the .NET developer’s point of

view, the GC Heap is the place of the most interest. Thus, we can freely say that the rest of

this book will focus on this area of memory.

 Partitioning Strategies
GC Heap can grow to the size of many gigabytes. It might not be a problem from the

Allocator perspective. But taking such possible big sizes into account, it is difficult to

imagine that the Collector is able to treat so much data uniformly. It’s difficult to handle

gigabytes of data in a timely manner. When designing Garbage Collector as a whole, one

of the most important parameters is the overhead it introduces. Among other things, for

example, for how long it stops thread activity due to garbage collection. Or how much CPU

it consumes. One would like to achieve less than millisecond pauses. However, due to

the memory access latencies listed in Chapter 2, in the time of milliseconds we may read

megabytes, not gigabytes of data. This is why one of the most important design decisions

behind every Garbage Collector implementation is the memory partitioning strategy.

Simply put, we want to split the whole GC Heap into smaller parts to have the

possibility to operate on them independently. If done wisely, it can tremendously speed

up the Garbage Collector work because, as it turns out, there is in fact no need to treat all

the data equally during program execution.

There are many different partitioning strategies possible. They are usually based on

one of the properties of the existing object:

• Size - we can split GC Heap into parts of various object’s sizes.

For example, you may want to treat differently small objects from

those really big ones. This may be especially important when the

compacting collection is used. Copying big objects may introduce

significant memory overhead, so we may decide to compact only

areas of small objects and use sweep collection for larger ones.

• Lifetime - the life of the object is pretty important. Intuitively, it is

worth treating objects that live very short differently from those that

live most of the entire application lifetime. Obviously we do not

know the future, but at least we can differentiate objects living long

Chapter 5 MeMory partitioning

341

from those recently created. Memory areas for objects with different

lifetimes are generally referred to as generations and called “young”

/ “old” or by consecutive numbers.

• Mutability - one of the most important properties of an object

is its mutability. If an object cannot be changed once created

(it is immutable), it may we worth it to treat it differently than

mutable ones.

• Type - one may decide to treat differently some specific type of

objects. Do we want to maintain a separate heap for strings, integers

or any other special classes, interface implementations, or attributes?

Your mileage may vary.

• Kind - objects can be classified in many different ways and

partitioned in this respect. For example, does an object contain

any pointers (outgoing references)? If not, we do not have to

worry about them when compaction of other objects happened.

Has an object been pinned (pinning will be described in detail

in Chapter 7) so it will not be moved even during compacting

collection? If yes, maybe it is worth it to move it to yet another

memory partition to not introduce all overhead related to moving

objects around those pinned instances.1

In case of both Microsoft’s .NET implementation and Mono implementation, only

the first two of these strategies were chosen. Their GCs do not particularly care about the

type or mutability of an object, they simply manage the appropriate number of required

bytes (like “give me N bytes for the new object”). However, as GC design is constantly

evolving, no one knows if in the future, one of the additional strategies will not be

implemented in either .NET’s or Mono’s GC.

Now just let’s look in detail at both of these partitioning strategies. As always, most

details will be related to Microsoft’s implementation with only side notes related to

Mono or any other runtime.

1 This is, however, much more complex that it sounds. For example, objects in .NET are not
created pinned - we can decide to pin and unpin them at any time afterward. Thus, such a
separate region of currently pinned objects in case of CLR could be counterproductive, requiring
copying the object back and forth during pin/unpin.

Chapter 5 MeMory partitioning

342

 Size Partitioning
The first strategy is to treat differently objects of various sizes. As mentioned above, the

main reason behind it is the memory copying overhead in case of compacting collection.

Since there is no particular justification for dividing into several size ranges, a single

threshold value was selected that defines the boundary between a small and a large

object. GC Heap is then divided into two physically separated memory regions:

• Small Object Heap (SOH) - all objects smaller than 85,000 bytes are

created here.

• Large Object Heap (LOH) - all objects equal or larger than 85,000

bytes are created here.

Most of the logic and code are shared between them, but obviously there are

important differences. Please note this threshold is 85,000 bytes but people tend to

understand it incorrectly as 85 times 1024 bytes as it would be 85 KiB (or 85 kB in

common sense).

Because we separated in that way “small” and “large” objects, we can treat both

heaps differently:

• Compacting collections may be used for SOH because for small

objects, we are not so afraid of memory copying. As we will see in

Chapter 7, both sweep and in-place compacting collection have

been implemented in case of Microsoft’s Small Object Heap. During

the additional Plan phase, it is decided which one of them will be

executed.

• Only a sweep collection is used in LOH because of the compacting

(copying) cost of large objects (although a user may trigger LOH

compaction explicitly).

Currently for Mono 5.4, the single threshold value is 8,000 bytes. all bigger objects
are allocated in a region named in Mono as Large object Store (LoS) and smaller
objects are allocated in nursery. Similar to Microsoft’s .net, small objects’ space
may be compacted while LoS is cleaned only by sweeping.

Chapter 5 MeMory partitioning

343

We may wonder why a threshold value of 85,000 bytes and not another has been

selected. As we’ve seen it already a few times in this book and we will see many times

in other places, there is often a mix of engineering and historical reasons. The simplest

answer is that this value has been selected experimentally based on numerous tests

conducted at the very beginning of .NET. There is a rumor that these tests were

conducted mainly in the context of a SharePoint product, but this is completely

unconfirmed. A bunch of various scenarios were selected including internal and external

teams. Since then, there is simply no evidence that changing this value would provide

any benefits.

you may also wonder what size 85,000 bytes threshold applies to. obviously it
considers the shallow size of an object - references are counted as references,
not the size of the objects they refer to. For this reason, in Loh most often we may
find… arrays. it is hard to imagine an object having so many large fields that its
shallow size exceeds 85,000 bytes. please also note that an object having a large
array as a field is not large itself - this field is only a small reference to the array.

There is one notable implementation detail worth mentioning. SOH has different

memory alignments on various platforms. In case of a 32-bit runtime, the alignment

is 4 bytes. It means that all allocated objects are arranged in the way that their starting

addresses are a multiplication of 4. In that way no unaligned memory access happens,

which would always come with noticeable performance cost. In case of a 64-bit platform,

the alignment in SOH is 8 bytes. LOH is different because the memory alignment there is

always 8 bytes, regardless of the bitness of the framework. For a 64-bit platform it seems

to be natural. However, why 8 bytes alignment in case of a 32-bit runtime, in opposite to

4-bytes alignment of SOH? It was mainly for arrays of doubles so their access is aligned

(as will be explained soon). And since 8 bytes is very small compared to how big a large

object is, LOH was 8-byte aligned without no worries.

 Small Object Heap
A Small Object Heap is by far the most popular memory region because most of the

objects we create are smaller than 85,000 bytes. Thus, typically the number of the

objects allocated in SOH outnumbers the number of LOH-located objects in orders

of magnitude. Since a large number of objects can cause problems (like traversing

Chapter 5 MeMory partitioning

344

a large graph during the Mark phase), it is worth considering dividing this area into

even smaller, separated pieces. Such a decision was made in the majority of known

environments with automatically managed memory for separating objects in terms of

their lifetime.

Because Small Object Heap organization is strictly related to lifetime partitioning,

any further details of it are provided in the next point.

 Large Object Heap
A Large Object Heap is sometimes called 3-th generation or is referenced by 3rd index

(after 0, 1, and 2 for three generations residing in SOH as we will soon see). Although the

idea behind is simple - store all objects equal or larger than 85,000 bytes

From the Collector point of view, large objects in Loh belong logically to
generation 2 because they are collected only when generation 2 is being collected.

There is an assumption that large object allocations are rather infrequent because

most programs do not need so many big data structures. This may be not true in some

cases and may lead to performance degradation (see Rule 15 Avoid Excessive LOH

Allocations in Chapter 6). In general, it is true that only objects bigger than 85,000 bytes

are allocated inside a Large Object Heap. However, there are some little exceptions as to

what is being placed there.

 Large Object Heap - Arrays of Doubles

The most noteworthy exception of what we can find inside LOH applies to arrays

of doubles in case of a 32-bit runtime environment (even when executed on 64-bit

machine). Arrays of double are treated as “large objects” and thus allocated in LOH

when they have equal or more than 1,000 elements (see Listing 5-1). As double is always

8-bytes long, it means that LOH contains around at least 8,000-byte big arrays, breaking

the rule of containing only objects bigger than 85,000 bytes.

Chapter 5 MeMory partitioning

345

Listing 5-1. In case of 32-bit .NET runtime, arrays of doubles with equal or more

than 1,000 elements are allocated in LOH so this sample program will print “0”

and “3” respectively.

double[] array1 = new double[999];

Console.WriteLine(GC.GetGeneration(array1)); // prints 0

double[] array2 = new double[1000];

Console.WriteLine(GC.GetGeneration(array2)); // prints 3

Why has such a strange and quite specific exception been made? As mentioned

before, in this case the reason is related to memory alignment, not to memory copying

overhead. Double is 8-byted long. Unaligned access to double is very expensive

(far more than for integral types). This is not a problem for a 64-bit environment,

which always uses 8-byte alignment for both SOH and LOH. But it may be problematic

for a 32- bit SOH with a 4-byte alignment.

Thus it is worth it to use LOH, which, as mentioned, always uses an 8-byte

alignment. In this way, we avoid a large cost of unaligned access for bigger arrays. But

why not always allocate arrays of doubles in LOH for 32-bit runtime then? Allocating

in LOH has its own drawbacks - as it is not being compacted, a lot of smaller structures

may introduce unwanted fragmentation. Choosing to allocate there only arrays above a

certain size is in fact a compromise balancing between costs of unaligned access versus

fragmentation. And again, a threshold of 1,000 was chosen experimentally.

We should still be aware of fragmentation caused by arrays of doubles when using
a 32-bit framework. a lot of continuously created and reclaimed arrays of doubles
bigger than one thousand elements may be, for example, created during some kind
of signal processing. in such a situation, we should create a reusable buffer (pool) of
arrays instead of constantly creating new ones. See Scenario 6-1 for further details.

 Large Object Heap - Internal CLR Data

There are no other exceptions to Large Object Heap allocations of objects we allocate in

our code and not being bigger than the given size threshold. However, LOH is also used

by the .NET Framework internally to store some additional data. We have mentioned

Chapter 5 MeMory partitioning

346

them twice in the previous Chapter 4, in the context of string interning and static fields.

We refer here to the LargeHeapHandleTable structure. Let’s now dedicate a few words

to it.

LargeHeapHandleTable

LargeHeapHandleTable is a data structure maintained by the .NET runtime, which

manages objects’ arrays allocated in Large Object Heap for its internal purposes.

Internally it is organized into buckets (see Figure 5-2 for an illustration of those data

structured in CoreCLR). Each bucket represents a single Object[] array allocated in

LOH. Those arrays are pinned so they will not be ever moved by the Garbage Collector.

This is because various unmanaged parts of CLR may store pointers to the array’s

elements, so moving them would require a lot of work by updating those pointers.

Each bucket stores a pinned handle to the corresponding array. It also stores (for

convenience) a direct pointer to the beginning of the array’s data (m_pArrayDataPtr)

and the current index of the not-yet-used array element (m_currentPos, as these arrays

are created with some spare space in advance). If all array elements have been used, a

new bucket will be created (which incurs creating a new Object[] array in Large Object

Heap). Buckets inside a LargeHeapHandleTable are chained into a single-linked list

(each bucket stores m_pNext pointer that points to the next bucket or null in case of being

the last element).

As mentioned earlier, there are two main usages of LargeHeapHandleTable structure.

As CoreCLR source code states:

// There are two locations you can find a LargeHeapHandleTable

// 1) there is one in every BaseDomain, it is used to keep track of the

static members in that domain

// 2) there is one in the System Domain that is used for the

GlobalStringLiteralMap

Those have been also illustrated in Figure 5-2. In other words, inside LOH there will be:

• one or more Object[] for global string literal map (aka String Intern

pool) - managed by single LargeHeapHandleTable as it consists of at

least a single bucket;

• one or more Object[] for each domain used for statics - managed

by LargeHeapHandleTable in BaseDomain, as it consists of at least a

single bucket.

Chapter 5 MeMory partitioning

347

even that SystemDomain is a domain in general, and it derives from BaseDomain
so it contains m_pLargeHeapHandleTable, it is not being used by it - System
Domain does not contain any managed module so there is no need for static
members in it.

We can see handle table arrays by using WinDbg, for example. After attaching to

the .NET process, we should load an SOS extension and list all GC-related memory

regions by the eeheap command (see Listing 5-2). After learning the address range

corresponding to LOH, use the dumpheap command to list all objects inside it. Results

for the simple “Hello world” console program are also listed in Listing 5-2. As we can

see, in such a pure program, there are only three Object[] arrays (column with value

00007ffb8f34a5b8 corresponds to MethodTable of Object[]).

m_pGlobalStringLiteralMap

Large Object Heap

LargeHeapHandleTable

Private Heap (unmanaged)

LargeHeapHandleBucket

BaseDomain

Object[] H MT n

LargeHeapHandleBucket

Object[] H MT n Object[] H MT nObject[] H MT m

LargeHeapHandleTable

LargeHeapHandleBucket

SystemDomain

(null)

pinning handles

m_pNextm_pNext

m_ArraySize
m_CurrentPos

m_pArrayDataPtr

m_hndHandleArray

n = m_ArraySize

m_pLargeHeapHandleTable

Figure 5-2. LargeHeapHandleTable structure

Chapter 5 MeMory partitioning

348

Listing 5-2. Using WinDbg and SOS extension to list handle tables inside Large

Object Heap

> .loadby sos clr

> !eeheap

...

Large object heap starts at 0x000001e5ad231000

 segment begin allocated size

000001e5ad230000 000001e5ad231000 000001e5ad235480 0x4480(17536)

> !dumpheap 000001e5ad231000 000001e5ad235480

 Address MT Size

000001e5ad231000 000001e59afc2ff0 24 Free

000001e5ad231018 000001e59afc2ff0 30 Free

000001e5ad231038 00007ffb8f34a5b8 8184

000001e5ad233030 000001e59afc2ff0 30 Free

000001e5ad233050 00007ffb8f34a5b8 1048

000001e5ad233468 000001e59afc2ff0 30 Free

000001e5ad233488 00007ffb8f34a5b8 8184

Those three arrays are:

• under 000001e5ad231038 address - handle table for Domain 1 (that

contains most libraries and modules with our program itself),

• under 000001e5ad233050 address - string intern pool,

• under 000001e5ad233488 address - handle table for Shared Domain

(which in case of simple console application may only contain

System.Private.CoreLib.dll module).

if you wonder why there are also very small Free spaces visible at Listing 5-1, the
answer is in Chapter 6 in the Large object heap allocation section.

Unfortunately, currently there is no single way of knowing which array corresponds

to which usage - we can investigate it mainly by looking at the content of each of them

(by issuing dumparray command on each address).

Obviously a string intern pool will contain references to interned strings. The other

two will contain mainly various static members of the used libraries and our code.

Chapter 5 MeMory partitioning

349

They will also contain strings that are created during resolving string literals of NGENed

assemblies (and not using string interning due to NoStringIntern option).

There is yet one more usage of table handles - runtime uses them to store various

Reflection- related data. If GetType, typeof, or any other Reflection API is used -

underlying RuntimeType and other information is also saved via a handle in table handles.

Thus we may also spot quite a lot of type-related objects referenced by those arrays.

It is rather unlikely that LargeHeapHandleTable will be a problem in our application.

It would require creating a lot of static members (dynamically) or loading many dynamic

AppDomains in general. Another possible reason would be interning a lot of strings.

If you see a lot of big Object arrays in a Large Object Heap whose only root is a pinned

handle - it may indicate you have just ended with one of such rare situations. However,

as those arrays store only references, you will probably first notice a lot of those objects

elsewhere in the first place.

 Lifetime Partitioning
As mentioned earlier, due to the possible huge amounts of objects inside Small Object

Heap, the decision was made to separate it into pieces regarding an object’s lifetime.

This concept is called Generational Garbage Collection because objects are divided into

generations - with similar lifetimes defined in some specific manner. We can define

lifetime in many possible ways, but let’s stay with the two most obvious ones:

• absolute time - we can somehow relate object lifetime to real time.

The simplest way would be to use the number of CPU clock ticks at the

moment when the object has been created. This approach, however,

comes with some drawbacks. How long should a “long life” last? And

how about short? Is a second a long or short life? It is almost impossible

to provide a generic answer because it depends on the specific program

characteristics - how many objects it allocates, how often they should be

garbage collected, and so on and so forth. We could create a self-learning

mechanism to calculate thresholds between short- and long-living

objects but it would be probably overcomplicated.

• relative time - instead of real time, we can relate an object’s lifetime

to some specific event, like garbage collection itself. In this way we

are counting how many garbage collections the object has survived.

Chapter 5 MeMory partitioning

350

We may manage some internal counter that counts those survivals

for each object. If it exceeds some given (or calculated) threshold, we

treat such object as being “older.”

We could even imagine less obvious ways of indicating an object’s lifetime. For
example, if Collector and allocator are designed in a way that objects are never
pushed back to the lower addresses, we can calculate the age of the object as the
difference of its address in relation to another place in the memory.

It is interesting to note that many Garbage Collection descriptions almost always

start from the fact that .NET has a Generational GC. But as we see, there is much more

before we came to this implementation detail.

But why are Generational Garbage Collections applicable at all? Why does splitting

and different treatment of objects due to their age make sense? This comes mainly from

an observation called generational hypothesis. In fact, there are weaker (less general)

and stronger (more general) versions of it, which put together are foundations of

Generational GCs. They are kind of against intuition about human life:

• weak generational hypothesis (also known as infant mortality) -

observation that most young objects live short. In other words, most

of the objects that a program allocates become unused quickly. Those

are all temporary objects represented by local variables, temporary

(hidden) allocations, and all short-lived processing. This hypothesis is

quite broadly confirmed by various computer science studies.

• strong generational hypothesis - observation that the longer an

object lives, it most probably will live even longer. This would be

various long-living objects like long caches, “managers,” “helpers,”

object’s pools, business workflows, and so forth. However, studies

do not confirm this hypothesis completely as an object’s lifetime

characteristics seem to be much more complex that such a single

sentence. There is even no universal definition of this hypothesis.

We can benefit knowing such distribution of objects regarding its age (see Figure 5-3).

It is worth it to reclaim memory for young objects as fast as possible (by separating them

into a “young” generation) if most of them die fast. And it is worth it to much less frequently

Chapter 5 MeMory partitioning

351

reclaim memory for old objects (by separating them into an “old” generation) if they die

rarely. We can, of course, also decide to create any number of “temporary,” intermediate

generations between them.

Having objects grouped into various generations, we can treat them separately. We

can, for example, do garbage collection only on the youngest generation or only on the

oldest one. We may also decide to collect all generations, which is typically referred to as

a full garbage collection.

When an object reaches a certain lifetime threshold, it said to be promoted to the

next generation. In other words, after promotion, we treat an object as belonging to the

successive, older generation. What does exactly such a promotion mean and why does it

vary significantly between various GC implementations?

One of the possibilities includes copying to some other region of memory. In such

case it realizes copying of GC mentioned in Chapter 1 (Figure 1-18). Imagine generations’

organization as in Figure 5-4 where we have three separate regions of memory for

generations named 0, 1, and 2. The following example steps might be as follows:

• After a while of program execution, we have created objects A, B, and

C - they are allocated in the youngest generation “0” (Figure 5-4a).

• After some time, GC happened - let’s assume that object A turned

out to be unreachable. Thus, only objects B and C are copied to

generation “1” (Figure 5-4b).

• After some time, we have created object D - it has been allocated in

generation “0” (Figure 5-4c).

"young"
generation

"old"
generation

"temporary"
generation

nu
m

be
r

of
 o

bj
ec

ts

lifetime

Figure 5-3. Weak and strong generational hypothesis illustrated as a number of
life (or reachable less precisely) objects regarding their age

Chapter 5 MeMory partitioning

https://doi.org/10.1007/978-1-4842-4027-4_1Fig#18

352

• After some time, GC happened again - let’s assume now B is no

longer reachable. So, objects C and D have been copied to older

generations (Figure 5-4d).

• After some time, we have created object E - it has been allocated in

generation “0” (Figure 5-4e).

A B C

B C

D CE

0 1 2

(a)

(b)

(e)

B CD(c)

D C(d)

Figure 5-4. Generations in case of copying GC, as separated memory regions.
Promotion means copying an object to a different region.

We can sometimes meet the claims that generations in Microsoft .NET work in such

a rather intuitive way. It is very important to remember that this is not true. Microsoft’s

implementation of CLR has slightly different, more complex, yet a more efficient

approach, thoroughly explained in Chapter 7.

In another approach, generations can be defined logically by addresses’ boundaries.

Promotion will be then just moving those boundaries, not the objects themselves

(see Figure 5-5). This is a much faster approach than copying as moving such logical

boundaries takes almost no time. Additionally, we may or may not compact survived

objects (although it will be a lot more complex if we do). Imagine generations’

organization as in Figure 5-5 where we have one continuous block of memory. The

following example steps might be as follows:

Chapter 5 MeMory partitioning

353

• After a while of program execution, we have created objects A, B,

and C - there is only a single, youngest generation “0” (Figure 5-5a).

Boundaries of generations 1 and 2 are degraded to zero or very small

sizes (it depends on specific implementation details).

• After some time GC happened - let’s assume again object A turned

out to be unreachable. Let’s assume also that we are doing a simple

sweep collection. Memory of object A has been reclaimed. And

because now objects B and C should belong to older generation “1”

we are moving its boundary after object C (Figure 5-5b), adjusting the

boundary of generation “0” as well. No memory copying was needed.

• After some time we have created object D - it has been allocated in

generation “0” (Figure 5-5c). But this has no drawbacks at all.

• After some time, sweeping GC happened again - let’s assume again

that B is no longer reachable so the memory of it has been reclaimed.

We have to adjust generations’ boundaries again. Object D now

belongs to generation “1” and C to generation “2” (Figure 5-5d).

Generation 0 boundary is also appropriately adjusted.

• After some time we have created object E - it has been allocated in

generation “0” (Figure 5-5e).

Chapter 5 MeMory partitioning

354

This is exactly how generations are handled in the case of Microsoft .NET runtimes.

The decision has been made to create three generations named just after successive

numbers, like in our previous examples. Hence, we have generation 0 (“young”),

generation 1 (“temporary”), and generation 2 (“old”). The other decision is how lifetime

boundaries between generations are being calculated. In case of Microsoft .NET

runtimes, it is very simple - in general, an object is promoted into its older generation if it

survives garbage collection.

there are exceptions to such a rule and we are calling it demotion (or simply not
promoting). Why this may happen will be described in the next chapters as it is
strongly related to various Collector and allocator mechanisms.

A B C

B C

C D

1 02

0

(a)

(b)

(d)

B C D

01

(c)

01

C D

1 0

E

2

(e)

2

2 and 1

2

Figure 5-5. Generation as logical boundaries inside single, continuous memory
regions. Promotion is only a fact of belonging to a different generation due to the
change of generations’ boundaries.

Chapter 5 MeMory partitioning

355

In other words, when an object survives generation N, it is now belonging to

generation N+1 (we say it has been promoted to generation N+1). It also means that

just after two successive GCs, it may land in generation 2 and stay there until it won’t be

needed any longer.

Mono, as the main alternative to Microsoft .net, has similar organization for small
objects (smaller than 8,000 bytes as mentioned in Loh description above). it
distinguishes only two generations - “young” is called nursery and the “old” is
called old space or just major heap. it also uses a simpler copying mechanism
of promotion described above - when an object in nursery survives garbage
collection, it is copied to the old generation.

Generational garbage collection has one quite notable drawback, however. As

generational hypotheses underlie its construction, failure to comply with them in our

application can cause severe disadvantageous behavior. This leads to an important

conclusion - in a healthy system consistent with the generational hypotheses, the older

the generation is, the less often it should be garbage collected. We should strongly follow

Rule 18 - Avoid Mid-Life Crisis described in Chapter 7.

However, we may be also very interested in the sizes of the generations. This is how

in fact we can most easily confirm whether we have a memory leak in our application

or not. The easiest way to observe generation sizes is by using Performance Counters

or ETW mechanisms (see Table 5-1). They both measure the state of the heap just after

garbage collection has happened. There are just two small caveats:

• Due to legacy reasons \.NET CLR Memory(processname)\Gen 0 heap

size counter does not show true generation 0 size but something

called its allocation budget (in simplest words - number of bytes

to be allocated into a generation before a GC is triggered on that

generation). Thus, looking at this counter may be misleading.

• We should remember that the highest possible sampling in the

Performance Monitor is one second regardless of the fact that

underlying data is refreshed more often. Therefore, if garbage

collection takes place more than once per second, we will lose some

measurements.

Chapter 5 MeMory partitioning

356

However, those caveats are not very annoying because the most often garbage

collected generations 0 and 1 are generally quite small and do not cause any problems.

 Scenario 5-1. Is My Program Healthy? Generation
Sizes in Time
Description: We want to observe generations’ sizes during web application execution.

Ideally we would like to do it in a non-invasive way during load tests performed on

our pre-production environment. This would give us some confidence that there are

no memory leaks in our code. The application under test is plain nopCommerce 4.0

installation - a universal open source e-commerce platform written in ASP.NET (you may

wish also to see Scenario 5-2 in which a similar test is performed under slightly different

conditions).

Analysis: Let’s skip the technical part of the load test preparation, assuming that the

appropriate procedures and tools are just in place. Load test execution will be executing

around 7 requests per second and last 170 minutes to create the opportunity to notice a

memory leak if any exists. nopCommerce is being hosted on IIS via .NET Core Windows

Server Hosting. It means although there is w3wp.exe process representing application

pool, it only passes a request to the self-hosted .NET Core web application. In our case

this process is named Nop.Web.exe.

First of all, we may wish to check overall memory usage of the application according

to Scenario 4-1 from Chapter 4. This includes observing Working Set - Private,

Private Bytes, and Virtual Bytes from Process(Nop.Web) counters altogether with

\.NET CLR Memory(Nop.Web)\# Total committed Bytes counter.

Table 5-1. Basic Generation Sizes Measurements (Where Processname

Is Obviously an Instance Name Corresponding to Your Process)

Generation ETW (GCHeapStats_V1
event)

Performance Counter (\.NET CLR
Memory(processname))

0 generationSize0 gen 0 heap size (“allocation budget”)

1 generationSize1 gen 1 heap size

2 generationSize2 gen 1 heap size

3 (LOH) generationSize2 Large object heap size

Chapter 5 MeMory partitioning

357

Secondly, the easiest observation is to use the Performance Monitor tool to observe

counters listed in Table 5-1. The results are showed in Figure 5-6 and a simple numerical

summary is provided in Table 5-2. Please note that generations are drawn with different

scales to visualize them clearly. As we may notice:

• generation 0 size (thin solid line) changes continuously between

two values of 4,194,300 and 6,291,456 bytes. As mentioned earlier,

those are not the real generation sizes but its allocation budgets. And

although they are not real values, we can interpret them as a sign of a

healthy state. The size of the generation is stable. If it grew with time,

the illustrated counter would also grow (even it does show only size-

related value).

• generation 1 size (dashed line) changes a lot due to its intermediate

nature. As there is no upward trend visible, here also the

measurement confirms the healthy state of an application.

• generation 2 size (thick solid line) shows a typical triangle pattern -

objects are gathering in the oldest generation and from time to time

they are garbage collected. It is typical to postpone full garbage

collection until really needed so periodical gathering of oldest data

is quite typical. In the case of web applications, the reachability of a

large part of the objects is related to the lifetime of the user session

and possible data caching. Thus, such a triangular pattern may be

just normal. However, it is a small indication of possible problems,

and we should treat it as a warning triggering further investigation.

The next step should be observing this pattern in an even longer

period in time and validate whether there is an increasing trend

in the maximum generation 2 size. We should also observe \.NET

CLR Memory(Nop.Web)\% Time in GC counter (see Scenario 7-1 for

details) to check GC overhead on the whole process.

Please also note that both generations 0 and 1 in total are quite small so any changes

here should not worry us much. This is a typical scenario as any memory leaks will

be visible by a constant increase of the oldest generation (more and more long-living

objects will be held).

Chapter 5 MeMory partitioning

358

It is also interesting to compare ETW data to those collected by performance

counters. As previously said, the latter are sampled only every second while the former

allows us to record each and every sample (GCHeapStats_V1 event emitted at the end

of GC). Figures 5-7a, b, and c illustrate this difference in case of much smaller 20-second

Table 5-2. Summary of Measurements Illustrated in Figure 5-6

Generation Min Max

0 4,194,300 6,291,456

1 ~18,268 7,384,704

2 52,654,336 447,385,748

LOH 0 38,826,368

Figure 5-6. Performance Monitor view of generation sizes during near 3-hour
long load test of ASP.NET application

Chapter 5 MeMory partitioning

359

time spans (to make it more visible). ETW-based generation sizes were recorded by

Perfview with a low-overhead GC Collect Only option selected. Data from GCHeapStats_V1

events was exported then to the CSV file. Performance counters data were collected by a

Data Collector Set mechanism available in Performance Monitor, which allows to record

a session to a file (including CSV text file format) instead of drawing it in real time. As we

can see:

• Performance counter data are indeed sampled every second.

Because the web site was heavy loaded during the test, garbage

collections happen much more frequently. Therefore, there are many

more ETW samples available.

• For generation 0 the difference between both data is huge (see

Figure 5-7a). This is due to mentioned legacy reasons. If we really

need to track generation 0 size in time, we should use ETW.

• For generation 1 it is clear that some performance counter samples

correspond to ETW data (see Figure 5-7b). However, there is again

much more happening in between. It is clearly seen how dynamic are

changes of generation 1 size. This is, of course, knowledge that we do

not necessarily need. One second-based sampling of performance

counters may be just fine. In most applications GC will not occur

so frequently so the difference may be even completely eliminated

(if GC mostly occurs less often than every second). However, it is

certainly worth being aware of this difference.

• For generation 2 we see almost complete adequacy of the data

(see Figure 5-7c). This is because of much less frequent full garbage

collections so almost no samples are lost in the case of performance

counters.

Chapter 5 MeMory partitioning

360

Figure 5-7. Generation size charts created from CSV data exported from ETW and
performance counters data

Chapter 5 MeMory partitioning

361

The general verdict is positive. We can consider the application to be healthy.

Long- running observation of appropriate performance counters did not show anything

especially alarming. In the scenario, only a small region of ETW data was shown to

visualize the difference in measurements between ETW and performance counters.

Analysis of the whole ETW data also would not show anything alarming. However,

further steps should be taken to measure overall GC overhead (see Scenario 7-1 from

Chapter 7).

 Remembered Sets
We have learned that objects in SOH are separated into generations, and thanks to that

we may treat each of them separately. In particular it means we should be able to run

garbage collection on each of the generations separately. We could garbage collect

objects in the “young” generation only. Or in the “old” generation only. This is, however,

an oversimplified point of view.

If we remember the general garbage collection mechanism described in Chapter 1,

we may recall the Mark phase used by the Collector. Its responsibility is to find out

reachability of the objects - starting from the roots and by a traversing objects graph.

During this process GC is following outgoing references contained in visited objects.

This works perfectly if we are visiting a whole objects graph, containing all objects in our

application. But what if we want to garbage collect only a subset of it - like collecting only

“young” generation? Let’s imagine a situation illustrated in Figure 5-8. It shows a

three- generational Garbage Collector in some moment in time:

• generation 0 contains objects A, B, C, and D. A is directly rooted

(most probably it held by a local variable hold on stack) and it has

a field referencing object B. C is only refenced by an object from an

older generation. Object D has no references pointing to it (it is thus

truly unreachable).

• generation 1 contains objects E, F, and G. E is directly rooted and

it has a field referencing object C (from a younger generation).

Object F has no references pointing to it (so this is yet another truly

unreachable object). Object G has a reference from object D in the

younger generation.

Chapter 5 MeMory partitioning

362

• generation 2 contains no objects to not clutter our explanation here -

the mechanism remains the same, no matter if an “older” generation

means generation 1 or 2.

Generation 0

roots
(like stack) H MTH MT H MT

H MTH MT H MT

Generation 1

A

E F

B C H MTH MT H MTH MTD

H MTH MTG

Generation 2

Figure 5-8. Cross-generational references illustrated in a sample scenario with
two generations

Figure 5-8 shows us the most typical possible references that may occur in our

applications. Cross-generational references showed there are perfectly valid:

• younger to older - recently created object may be created with a

reference to already existing older object (like objects D and G).

• older to younger - object created some time before may be set to

contain newly created object’s reference (like objects E and C).

From the Mark phase perspective such cross-generational references need to be

handled. We could of course traverse the whole objects graph to find the reachability

of objects A, B, C, D, E, F, and G. But traversing the whole graph would obviously defeat

the purpose of splitting objects into generations. So let’s take a naive approach of

marking only the “young” generation - which means traversing only objects in the young

generation. To be more precise, we start from the roots and continue traversing until

we meet objects from the generation other than the “young” generation. This obviously

leads to wrong results.

Chapter 5 MeMory partitioning

363

Starting from the roots, we will mark as reachable only objects A and B. Object E,

even it is rooted, will be ignored as it is located in an “old” generation. We will not visit

object C as none of roots or other “young” objects are referencing it. We will simply not

notice that object C is referenced by E. As a result, we will treat objects C and D as not

reachable. Object D is indeed unreachable and may be removed. But object C would

be garbage collected even it is still used by object E; we simply didn’t notice that! This

clearly shows that older to younger cross-generational references must be somehow

handled. We must include them while considering objects’ reachability in the younger

generations if we want only young-generation collection.

To handle older to younger cross-generational references, a technique called

remembered sets has been introduced. In general, a remembered set is a separately

managed collection of references between separate sets of objects. In our case, it is a

set of cross- generational collections remembering references from an older-to-younger

generation. They are then simply investigated during the Mark phase.

In our sample scenario during young-generation garbage collection, we will traverse

objects starting both from roots and from references stored in the remembered set -

which includes E-to-C reference. This leads to desired proper results.

Please note that younger-to-older cross-generational references could be

problematic only in case of collecting only old generation (without collecting younger

ones at the same time). On the other hand, if we do only young-generation collection

in our sample scenario, we may correctly garbage collect object D, even it is referencing

something. We will just leave object G temporarily unreferenced. It will be marked as

unreachable when doing older-generation garbage collection later. So both objects D

and G will be eventually collected.

However, when trying to do old generation-only garbage collection, we encounter

the same problem. We would not notice that G is being referenced by D. We should

create another remembered set for young-to-old cross-generational references. As we

will soon see, implementing remembered sets is not trivial so a simpler decision was

made instead. As Microsoft’s documentation says: “Collecting a generation means

Chapter 5 MeMory partitioning

364

collecting objects in that generation and all its younger generations.” This leads to some

of the most important information regarding .NET memory management. Garbage

collection in .NET may occur:

• for generation 0 only,

• for generations 0 and 1,

• for all generations 0, 1, and 2 and Large Object Heap (full garbage

collection).

But how can a remembered set may be maintained? When we add or remove

references to it? The common solution is to remember it when such reference is being

created, which happens mainly during field assignment (see Listing 5-3). It may be

triggered directly (in case of not private fields) or indirectly by property assignment or

constructor and method calls.

Listing 5-3. Public field assignment as an example of creating older-to- younger

cross-generational reference (assuming object e lives in older generation than

object c)

E e = new E();

...

C c = new C();

e.SomeField = c;

The last line from Listing 5-3 would be a perfect place to remember a newly created

reference in a remembered set. However, we should look at the problem in a more

general way. Fields as defined in C# may be only one of the possible ways to hold

references, resulting from the C# specification. However, we should not associate the

remembered sets mechanism with one specific language. There may be other ways to

store references in the future - be it in C# or in a new, not yet existing language.

Therefore, to implement this mechanism we should take advantage of a more

low- level technique on the runtime level - the write barrier concept mentioned the

Chapter 1. We may add appropriate write barrier code to the Mutator.Write operation

(look at Listing 1-7 in Chapter 1). This operation is executed by a Mutator always when

we want to store some value under a given address. Obviously this is a tremendously

Chapter 5 MeMory partitioning

365

common operation so adding anything to it may introduce enormous overhead. When

designing such a write barrier one must be extremely careful. It is beneficial for us

that we need only to augment a Write operation by such a write barrier under certain

conditions (representing storing a reference):

• value is a reference to a managed object,

• address is located in the Managed Heap and it represents some valid

object’s field,

• address is located inside generation older than generation where

object referenced by value lives in.

As a result we may end up with a schematic implementation shown in Listing 5-4

that checks the above conditions and remembers the reference if it is appropriate. When

executing the Mark phase, we should then include references stored in the RememberedSet

along with the other roots.

Listing 5-4. A very simple, schematic pseudo-code of write barrier supporting

remembered sets

Mutator.Write(address, value)

{

 *address = value;

 if (AreWriteBarrierConditionMeet(address, value))

 {

 RememberedSet.AddOrUpdate(address, value);

 }

}

This is a general concept illustrated how the .NET runtime could implement it.

Obviously checking all those conditions every time would introduce tremendous

overhead. If we think carefully about them, we may notice a lot of possible optimizations.

Most of them come from the fact that these conditions can be checked in advance during

Just-In- Time compilation. The JIT compiler perfectly knows from IL code whether

we are storing a reference to a managed object into another managed object’s field.

During assembly code emitting, JIT can emit the proper version of the Mutator.Write,

Chapter 5 MeMory partitioning

366

depending on whether the write barrier is needed or not. This is exactly an approach

used by the .NET runtime.

if you are interested in getting more details, you may start by looking at CoreCLr
code of method CodeGen::genCodeForTreeNode in case of GT_STOREIND
operand. it calls CodeGen::genCodeForStoreInd that inside decides (by calling
gcIsWriteBarrierCandidate) whether a write barrier is required or not. if the
decision is positive, CodeGen::genGCWriteBarrier method is being called.
this method emits assembly code of one of two helpers called CORINFO_HELP_
ASSIGN_REF or CORINFO_HELP_CHECKED_ASSIGN_REF (the former is
used when JIT compiler knows that it can optimize out checking
whether target lives inside the Managed Heap; the former is used
otherwise). those two helpers correspond to the assembly code of functions
JIT_WriteBarrier and JIT_CheckedWriteBarrier that you can find in
.\src\vm\amd64\JitHelpers_Fast.asm file. please note all this happens
during Jit compilation and at runtime only JIT_WriteBarrier or JIT_
CheckedWriteBarrier functions are being called (corresponding to two helpers
mentioned above). please also note this is a description in case of x64 runtime
only. x86 handling of write barriers is similar but goes a different path, which is not
described here for brevity.

Let’s look deeper how a write barrier can be seen in our .NET applications. Let’s start

from the very simple lines of C# from Listing 5-5. It creates two objects and assigns the

latter as a field of the former.

Listing 5-5. Sample code to illustrate write barriers in .NET

ClassA someClass = new ClassA();

ClassB otherClass = new ClassB();

someClass.FieldB = otherClass;

Chapter 5 MeMory partitioning

367

Code from Listing 5-5 may be compiled into CIL code shown at Listing 5-6 (it is

slightly simplified without losing important details). We see there creating objects of type

ClassA and ClassB. Both those instances are kept onto the evaluation stack. Then stfld

instruction is being called, which stores a first value from the evaluation stack into a field

(described by a token) of an object (second value from the evaluation stack).

Listing 5-6. Sample code from Listing 5-5 compiled into CIL

newobj CoreCLR.WriteBarrier.ClassA::.ctor

newobj CoreCLR.WriteBarrier.ClassB::.ctor

stfld CoreCLR.WriteBarrier.ClassA::FieldB

When doing JIT compilation, such code may be translated into an assembly code

from Listing 5-7. We cannot say with certainty that it will look like this because we are

already going down to a very low implementation level. How exactly this code will look

depends on many factors, including runtime versions and so on, and so forth. However,

it is general enough to help illustrate the issue. As you can see, stfld instruction has

been translated into JIT_WriteBarrier function call (checked version is not used as JIT

compiler knows that it is a managed object accessed here).

Listing 5-7. CIL code from Listing 5-6 after JIT compilation on x64 machine

; Those lines correspond to allocating memory for ClassA object and calling

its constructor

mov rcx,7FFCC4BA6600h (MT: CoreCLR.WriteBarrier.ClassA)

call CoreCLR!JIT_TrialAllocSFastMP_InlineGetThread (00007ffd`241d2130)

mov rdi,rax ; rdi contains ClassA reference

mov rcx,rdi

call System_Private_CoreLib+0xc04060 (00007ffd`22e44060) (System.

Object..ctor(), mdToken: 0000000006000103)

; Those lines correspond to allocating memory for ClassB object and calling

its constructor

mov rcx,7FFCC4BA67B8h (MT: CoreCLR.WriteBarrier.ClassB)

call CoreCLR!JIT_TrialAllocSFastMP_InlineGetThread (00007ffd`241d2130)

mov rsi,rax ; rsi contains ClassB reference

mov rcx,rsi

Chapter 5 MeMory partitioning

368

call System_Private_CoreLib+0xc04060 (00007ffd`22e44060) (System.

Object..ctor(), mdToken: 0000000006000103)

; Those lines are calling WriteBarrier, storing reference and using

remembered sets inside

lea rcx,[rdi+8] ; rcx contains address of FieldB field in ClassA

object

mov rdx,rsi ; rdx contains ClassB reference

call CoreCLR!JIT_WriteBarrier (00007ffd`2403fae0)

We will look inside JIT_WriteBarrier function, but before that we have to learn

about yet another important technique called card tables.

 Card Tables
You may notice a serious caveat in an approach of storing every single reference in

a remembered set. A remembered set is small in a such simple scenario like that

illustrated in Figure 5-8 (in fact it contains only a single reference). But what about real-

world applications with hundreds or thousands or even millions of objects referencing

each other? Even worse, .NET has three generations so the number of possible cross-

generational references is bigger. Additionally, changing references between objects

is quite a common operation. Managing a remembered set as a naive collection of

each and every single cross-generational reference would simply introduce too big of

overhead.

As it often happens, in order to solve this problem, we must decide on some

compromise. To reduce the overhead of collections management, individual references

are not tracked so we lose accuracy. Instead, certain predefined areas of memory are

tracked. They are managed by a technique called card tables.

To explain them let’s go back in time a little bit from the moment in Figure 5-8 (see

Figure 5-9a). We see there a moment before object E starts to hold cross-generational

reference to object C. The idea behind card tables is quite simple - we split the older

 generation in constant-size regions (continuous regions of memory with a given number

of bytes). In our exemplary case in Figure 5-9a, we see four such regions and a part of

five. The first region happens to not contain any objects. The second region contains

only a single object. The third region contains only part of some object (as it may happen

that an object will live on the boundary of regions). The fourth region contains the

Chapter 5 MeMory partitioning

369

remaining part of the same object and yet another part of other region, and so on,

and so forth.

Each such region is represented by a single card entry in a card table data structure.

At the beginning all cards are clean so the corresponding card entries have a flag set to

“clean” (which may be indicated by a single bit value of 0). Clean card means there are

no older-to-younger cross-generational references inside the corresponding memory

region.

Generation "young"

roots
(like stack) H MTH MT H MT

H MT

Generation "old"

H MTH MT

A

E F

B C H MTH MT H MTH MTD

H MTH MTG

card: clean card: clean card: clean card: clean card: ...

Card table {

single bit

0 0 0 0 0

Figure 5-9a. Card tables manage older-to-younger cross-generational references.
A moment just before situation from Figure 5-8 has been illustrated. All cards are
clean (no such reference exists).

When somewhere in an application code we assign object C to the object’s E field,

we end up with situation illustrated in Figure 5-9b. We calculate the card for object E

and mark the whole card as “dirty,” commonly referred to as set card (like just by setting

binary value to 1).

Chapter 5 MeMory partitioning

370

From now on, all objects inside such a set card are treated as possible, additional

roots. In other words, when young-generation garbage collection happens, we will start

traversing an objects graph both from the roots and from all objects inside set cards (in

this way we will find out that C is reachable in our sample because E is being considered

from set card).

the careful reader may ask, what if we were to change the last field of object F,
which is in the fourth card, while object F starts within the third card? What card
do we actually set then? Because the write barrier has to be as lightweight as
possible, we simply set the fourth card (as it corresponds to the changed address).
Later on, during the Mark phase, the object containing the starting address of the
card (which is F in our case) will be found, thanks to the brick tables technique,
described in Chapter 9.

This obviously comes with overhead. Even because of a single older-to-younger

reference, we must visit all objects inside a card and follow their references. It is a

trade- off between performance and accuracy. We may balance this trade-off by choosing

s smaller or larger card size. If a card was so small that at most it contained only a single

object, we would end up with a typical remembered set approach (each single reference

Generation "young"

roots
(like stack) H MTH MT H MT

H MT

Generation "old"

H MTH MT

A

E F

B C H MTH MT H MTH MTD

H MTH MTG

card: clean card: dirty card: clean card: clean card: ...

Card table {
single bit

0 1 0 0 0

Figure 5-9b. Card table manages older-to-younger cross-generational references.
After assignment of object C to object’s E,corresponding card in card table has been
set (marked as “dirty”).

Chapter 5 MeMory partitioning

371

would be tracked). If a card was so big that it covered a whole generation, we would end

up with the approach of traversing the whole objects graph.

In case of .NET runtime, a single card corresponds to 256 bytes (on 64-bit) or 128

bytes (on 32-bit). Each such card is represented by a single bit flag. If any part of such

128- or 256-byte long region has a reference written to, it will be set. Those bits are

grouped obviously into bytes so a single byte represents 8 times 256 bytes (2,048 bytes)

memory region. Cards are grouped into 32 elements called a card word. This means

the card word is a 4-byte-wide type DWORD (unsigned long). Thus, a single card word

represents 8,192 bytes. This is being illustrated in Figure 5-10 (case for 64-bit platform).

Card table

256B

card word
(4 bytes)

single bit

2048B
8192B

card
region

{

Figure 5-10. Card tables organization in .NET runtime (64-bit version). Each
single bit in card table represents 256 bytes of memory. Those bits are grouped into
bytes (so each byte represents 2,048 bytes memory region). Bytes are grouped into
card words representing 4 times bigger memory regions.

With such knowledge we can now jump into the above-mentioned

JIT_WriteBarrier function. What is interesting is that the memory region for

JIT_WriteBarrier function is treated only as a placeholder for one of its more specific

implementations. Those barriers may be changed at runtime, by copying over specific

implementation into it (obviously it happens while program execution is suspended).

This placeholder size is equal to the largest function implementation so any other can fit

into it. We will look at the simplest version (see Listing 5-8), but they all differ very little

so looking at one is completely sufficient (read below note for more details).

Chapter 5 MeMory partitioning

372

Different JIT_WriteBarrier implementations can be found in .\src\vm\
amd64\JitHelpers_FastWriteBarriers.asm file of CoreCLr source (in case
of amd64 implementations). it contains the following versions:

• JIT_WriteBarrier_PreGrow64 and JIT_WriteBarrier_PostGrow64 -
those are used in workstation gC mode. the first is used when generations 0
and 1 are located in their default locations. after some time, runtime may decide
to move it to another place and then PostGrow version will be injected.

• JIT_WriteBarrier_SVR64 - used in server gC mode where there are
multiple heaps so also multiple generations 0 and 1, so checking whether value
belongs to them would be too slow, therefore the cards are unconditionally set.

• JIT_WriteBarrier_WriteWatch_PreGrow64, JIT_WriteBarrier_
WriteWatch_PostGrow64 and JIT_WriteBarrier_WriteWatch_SVR64 -
corresponding version of previous functions using CLr implemented Write
Watch technique described soon (when oS implementation is not available).

When runtime decides to change the write barrier, it calls the following
method:int WriteBarrierManager::ChangeWriteBarrierTo(Write
BarrierType newWriteBarrier, bool isRuntimeSuspended)
{

 ...

 memcpy((PVOID)JIT_WriteBarrier,

(LPVOID)GetCurrentWriteBarrierCode(), GetCurrentWriteBarrierSize());

...

}

Look at StompWriteBarrierResize and StompWriteBarrierEphemeral
methods in .\src\vm\amd64\JITInterfaceAMD64.cpp for more details.

Chapter 5 MeMory partitioning

373

As we can see at Listing 5-8, the write barrier code is in fact very simple:

• Argument stored in register rcx contains a destination address

(address in our Mutator.Write sample) while register rdx contains a

source reference (value in Mutator.Write sample).

• Line 3 is doing the main job of writing a memory under given address

with a given value. We want to manipulate card table (set card) only

if rdx does belong to young generation because runtime is interested

only in older-to-younger cross-generational references (and it treats

generations 0 and 1 as young, while generation 2 as old).

• Thus, lines from 6 to 14 are checking whether source reference belong

to so-called ephemeral region (meaning both generations 0 and 1). If

no, function ends. If yes, card table is being checked if it is not already

set. Those are the most important lines for our considerations.

• Line 16 is storing an address to the card table (strange

0F0F0F0F0F0F0F0F0h constant is being replaced at runtime with

proper value) into rax register.

• Line 17 is dividing a destination address (stored it rcx) by value of

2048.2

• Lines from 18 to 22 compare a byte inside card table to the value FFh

and store it if not already set.

Listing 5-8. Implementation of the JIT_WriteBarrier_PostGrow64 function, with

some original comments removed while others added

01. LEAF_ENTRY JIT_WriteBarrier_PostGrow64, _TEXT

02. align 8

03. mov [rcx], rdx ; store value from register rdx

under address rcx

04. NOP_3_BYTE ; padding for alignment of constant

05. PATCH_LABEL JIT_WriteBarrier_PostGrow64_Patch_Label_Lower

06. mov rax, 0F0F0F0F0F0F0F0F0h ; 0F0F0F0F0F0F0F0F0h will be

patched at runtime with proper address

2 shr rcx, 0Bh instruction shifts value in rcx by 0Bh bits - which means 11 bits. Shifting by n bits
is equal to dividing by 2^n. 2^11 is equal to 2048

Chapter 5 MeMory partitioning

374

07. cmp rdx, rax ; Check the lower ephemeral region

bound (if rdx < ; rax, jump to Exit)

08. jb Exit

09. nop ; padding for alignment of constant

10. PATCH_LABEL JIT_WriteBarrier_PostGrow64_Patch_Label_Upper

11. mov r8, 0F0F0F0F0F0F0F0F0h ; 0F0F0F0F0F0F0F0F0h will be

patched at runtime with

proper address

12. cmp rdx, r8 ; Check the upper ephemeral

region bound (if rdx >= r8,

jump to Exit)

13. jae Exit

14. nop ; padding for alignment of

constant

15. PATCH_LABEL JIT_WriteBarrier_PostGrow64_Patch_Label_CardTable

16. mov rax, 0F0F0F0F0F0F0F0F0h ; 0F0F0F0F0F0F0F0F0h will be

patched at runtime with

proper card table address

17. s hr rcx, 0Bh ; Touch the card table entry,

if not already dirty.

18. cmp byte ptr [rcx + rax], 0FFh

19. jne UpdateCardTable

20. REPRET

21. UpdateCardTable:

22. mov byte ptr [rcx + rax], 0FFh

23. ret

24. align 16

25. Exit:

26. REPRET

27. LEAF_END_MARKED JIT_WriteBarrier_PostGrow64, _TEXT

What is important is the fact that the whole byte representing eight cards is being

set while we could set only a single bit in it. This is because of performance reasons. It

is much more efficient to compare and store a whole byte (which is possible with single

instruction, as we can see) than proceed with bit manipulation (which would require

preparing and operating on appropriate bit masks).

Chapter 5 MeMory partitioning

375

Of course, this introduces some overhead. Instead of setting only a single card (256

byte-wide memory region), we are setting a byte that correspond to 2,048 bytes. This is

yet another one example of compromise taken as a design decision.

please note that current write barrier implementations, including the example from
Listing 5-8, are only checking whether the source reference does belong to the
young generation. it does not check whether the target address does belong to an
older reference. thus, the card table will be marked dirty also for young-to-young
references. this is however acceptable because:

• during Mark phase, the card table may be checked only for the addresses
belonging to older generations. those related to young-to-young references will
just be ignored.

• during runtime checking inside WriteBarrier whether rcx belongs to older
generation would be too complicated. it is just faster to mark the card dirty than
proceed with all required checks.

 Card Bundles
The card tables technique optimizes remembered sets usage. Instead of tracking each

and every cross-generational reference, we are tracking groups of them. As we have seen,

in case of a .NET 64-bit framework, memory regions that are 256-bytes long are observed

to be covered by a card. If any of the objects inside such a block has been modified to

contain reference to the young generation, we should consider a whole block as dirty by

setting a corresponding bit. Even more, due to low-level optimizations, we are marking

the whole byte that corresponds to a 2,048-byte-long memory region. But there is still an

optimization possibility.

Let’s imagine we are running a typical web application on a server. Its memory

usage may be around a few gigabytes. Let’s assume that the older generation is 2GB

big. Every byte in the card table is representing 2kB. Thus, we need a 1MB card table to

cover the whole old generation. This may seem not so much at first glance. However,

these bytes will have to be scanned at every collection of the younger generations (to

find all possible older-to-younger references). Younger generation’s collection should

be extremely fast and it would be too much overhead to scan such a large card table -

Chapter 5 MeMory partitioning

376

even though it might take a few milliseconds. Those should be consumed by the whole

garbage collection process, not only by scanning a card table. Moreover, the card table

may be quite sparse - there are many non-set cards interleaved by set cards occasionally.

This is why one more level of observation has been added called card bundles. While

a single card word was grouping multiple cards, a single card bundle word is grouping

multiple card words. They have been designed to be much denser, to cover much bigger

memory regions (see Figure 5-11). A single bit in a card bundle word represents 32 card

words (they cover 256kB region). Thus, each byte represents 2MB, while whole a card

bundle word consisting of four bytes covers 8 MB.

Card bundle
table

256kB

card bundle word
(4 bytes)

single bit

32 card
words

{
8192kB

{

Figure 5.11. Card bundle table organization in .NET runtime (64-bit version).
Each single bit in card bundle table represents 32 card words (256 kB). Those bits
are grouped into bytes (so each byte represents 2,048 kilobytes memory region).
Bytes are grouped into card bundle words representing 4 times bigger memory
regions (8MB).

This allows a very fast (probably cached) scan of set cards. First, the card bundle

table is being scanned to find dirty big regions and only inside them more precise

scanning of the card table is being made. In our sample scenario with 2GB old

generation, we would need only 1,024 bytes in the card bundle table to represent them.

If any bit inside it is set, the corresponding 32 card words from the card table will be

scanned to find set cards.

But what is making card bundles set (“dirty”)? We have not seen any code in write

barriers responsible for that. The underlying mechanism varies depending on the

operating system.

Chapter 5 MeMory partitioning

377

In case of Windows, the operating system write-watching mechanism is being used

mentioned in Chapter 1. When pages are being reserved by the Virtual API for the card

table region, they are reserved with the special MEM_WRITE_WATCH flag. In such a case,

when later a page is being modified (because write barrier set some card), it is being

marked as dirty in a special Windows operating system structure. We can then ask for a

list of such dirty pages by a WinAPI GetWriteWatch function. This function is called by

.NET runtime at the beginning of the Mark phase inside gc_heap::update_card_table_

bundle() method. This method gets a list of all those dirty pages from the system and

sets corresponding bits in the card bundle table.

In case of Linux, the .NET Core team could not find a reliable equivalent of operating

system-based write watch mechanism. However, the advantages of a higher level of

cards management are so important that it was decided to manually implement a

replacement for this mechanism. This is why the write watch mechanism has been

implemented in a write barrier in case of Linux. We can see it in write barriers code in

.\src\amd64\jithelpers_fastwritebarriers.S file (see Listing Listing 5-9, which

shows a significant part of one of the functions).

Listing 5-9. Part of the write barrier assembly code for Linux version of .NET

runtime. It shows manual implementation of write watch mechanism managing

card bundles.

#ifdef FEATURE_MANUALLY_MANAGED_CARD_BUNDLES

 NOP_6_BYTE // padding for alignment of constant

PATCH_LABEL JIT_WriteBarrier_PreGrow64_Patch_Label_CardBundleTable

 movabs rax, 0xF0F0F0F0F0F0F0F0

 // Touch the card bundle, if not already dirty.

 // rdi is already shifted by 0xB, so shift by 0xA more

 shr rdi, 0x0A

 cmp byte ptr [rdi + rax], 0FFh

 .byte 0x75, 0x02

 // jne UpdateCardBundle_PreGrow64

 REPRET

 UpdateCardBundle_PreGrow64:

 mov byte ptr [rdi + rax], 0FFh

#endif

Chapter 5 MeMory partitioning

378

As we can see here also, the whole byte is being marked as dirty so card tables in the

Linux-based .NET Core operate on 2MB granularity.

there is one more interesting topic to be discussed - handling of arrays by card
tables. imagine a large table of objects that resides in the older generation. this
array is large enough to span over many cards and even card bundles. Let’s also
imagine that we assign a newly created object to one of the elements of this table.
What will happen? only a single corresponding byte in a card word will be made
dirty as well as a corresponding bit in a card bundle word. however, how will this
information be later consumed by a Mark process? Which elements of a table will
be scanned? only part of the corresponding card or maybe a whole array? the
answer is simple - only the parts of the array that have set cards will be scanned.

We have learned a lot about remembered sets, card tables, and card bundles in

.NET runtime. A lot of space has been devoted to this topic because it is one of the

key mechanisms that allows GC to operate in .NET. On the other hand, this is one of

the mechanisms described in less detail so far in the literature. One of the reasons for

this is probably the fact that it is a deeply hidden implementation detail. It is highly

optimized, which means it does not cause problems and does not have to be known in

the general consciousness. However, I believe that there is no better place to explain and

give you a chance to understand this topic than in the book on memory management in

.NET. Knowing all that we have learned so far, we can also address the rule introduced at

the end of the chapter - Avoid Unnecessary Heap References.

 Physical Partitioning
We know already that managed memory is divided into two separate memory regions.

Large Object Heap is a memory region for objects bigger than 85,000 bytes (and some

additional exceptions). Small Object Heap contains smaller objects and is further

divided into generations. We know also that all this lives in a memory region denoted as

heap from an operating system perspective (as seen in Figure 5-1 at the beginning of this

chapter). What is missing is how exactly GC Managed Heap is organized to contain both

LOH and SOH with its generations. We will look at the physical organization of GC Heap

at this point, putting all together what we have learned so far.

Chapter 5 MeMory partitioning

379

Physically, Managed Heap consists of a set of heap segments. A segment either

belongs to the LOH or the SOH. And for SOH segments, if there are multiple of them,

every segment is a generation 2 segment except one, which we call the ephemeral

segment that holds objects from generations 0 and 1 (and optionally from generation 2).

It is important to note also that Garbage Collector in Microsoft’s implementation may be

working in two significantly different modes:

• Workstation mode - it contains a single Managed Heap (so there will

be a single SOH and LOH).

• Server mode - it contains multiple Managed Heaps (so there will

be multiple SOHs and LOHs). By default, there are as many of

them as the number of logical cores on the machine running .NET

application.

We will go deep into many other differences between those two modes in the

following chapters. For now, it is enough to note the difference regarding the number of

managed heaps.

All these concepts are probably best explained by the example of creating individual

elements during the start of .NET runtime. Figure 5-12 shows three stages of creating a

managed heap in case of the simplest possible scenario (running in Workstation mode).

More complex scenarios are described later.

In such a simple scenario the following steps happen:

• .NET runtime tries to allocate (reserve) a single, continuous block

of memory (see Figure 5-12a) for the initial segments; it does this as

an optimization so all the segments stay together. If there’s no such

virtual address space available, the segments will be discontinuous.

• It then needs to create two separate segments for SOH and LOH. They

are created inside a newly reserved block by logically separating it

into two pieces (see Figure 5-12b).

• Generations 0, 1, and 2 will be created inside the SOH segment by

committing some specified amount of memory and LOH also will

have some amount of memory committed (see Figure 5-12c).

Chapter 5 MeMory partitioning

380

Segments are represented by heap_segment objects in .net runtime, which we
will look at more closely in the next and subsequent chapters. they are tracking
information about memory addresses, how much memory has been already
reserved and committed, and so on, so forth. as we will see in the next chapter,
a heap segment is consumed from the lower address to the higher address. the
more objects we allocate, the more memory must be committed inside a segment.

LOH segmentSOH segment

{
(a)

generations: 0,1 and 2

block

(b)

(c)

{
generation 3 (LOH)

reserved

reserved reserved

reserved reserved

committed committed

lower address higher address

Figure 5-12. Blocks and segments explained by an example of the simplest
scenario - single block contains both SOH and LOH segments

Chapter 5 MeMory partitioning

381

We can easily see the situation from Figure 5-12 in the real world by using the

VMMap tool for a simple console application. If we expand GC Managed Heap block

visible at Figure 5-1, we will notice the layout (see Figure 5-13) consistent with the one

described above and illustrated in Figure 5-12c. We see there the following memory

regions:

• around 260 KB dedicated for Gen0 (259 KB), Gen1 (24 bytes), and

Gen2 (24 bytes),

• almost 256 MB reserved memory for the rest of SOH segment,

• 72 KB dedicated for Large Object Heap,

• almost 128 MB reserved for the rest of LOH segment.

Figure 5-13. A single block inside simple console .NET application contains two
segements (SOH and LOH) as visible in VMMap tool

As already mentioned, the segment that contains generations 0 and 1 is called an

ephemeral segment. This is an important distinction that appears in the implementation

of GC in many places. Therefore, we will also come back to it many times in this book.

We can list all segments and generations information in WinDbg using an SOS

extension by issuing an eeheap command (see Listing 5-10). Information about two

separate segments is listed there corresponding to what we have seen at Figure 5-13.

You may rightly notice that, in fact, generation starts at 0x1000 offset from the segment

beginning. Why is that will be explained in subsequent Segments and heap anatomy

section.

Chapter 5 MeMory partitioning

382

Listing 5-10. Segments and generations listed by eeheap command from

WinDbg SOS extension. It shows the state of the same process as at Figure 5-13.

> !eeheap

Number of GC Heaps: 1

generation 0 starts at 0x0000026700001030

generation 1 starts at 0x0000026700001018

generation 2 starts at 0x0000026700001000

ephemeral segment allocation context: none

 segment begin allocated size

0000026700000000 0000026700001000 0000026700033b18 0x32b18(207640)

Large object heap starts at 0x0000026710001000

 segment begin allocated size

0000026710000000 0000026710001000 0000026710005480 0x4480(17536)

Total Size: Size: 0x36f98 (225176) bytes.

GC Heap Size: Size: 0x36f98 (225176) bytes.

The default segment sizes depend on several factors. One of the most important is the GC

mode of operation. The second is the bitness of the runtime environment. This is summarized

in Table 5-3. For example, the console application showed in Figures 5-9 and 5-10 was

executed on a 64-bit runtime working in Workstation mode. Thus, SOH segment was 256 MB

big while LOH was 128 MB. As we can also see, in case of Server mode, default SOH segments

sizes depend on the number of logical cores (the more cores, the smaller segment).

Table 5-3. Default Segment Sizes for Various Conditions

Workstation Server

32-bit 64-bit 32-bit 64-bit

SOH 16 MB 256 MB 64 MB (#CpU<=4)

32 MB (#CpU<=8)

16 MB (#CpU>8)

4 gB (#CpU<=4)

2 gB (#CpU<=8)

1 gB (#CpU>8)

LOH 16 MB 128 MB 32 MB 256 MB

Segments in Server mode are illustrated at Figure 5-14 by the VMMap view of the

ASP.NET 4.5 application hosted on 8-core machine and 64-bit .NET runtime with Server

mode enabled. As we can see, one single, huge, and continuous block has been reserved.

Chapter 5 MeMory partitioning

383

It contains eight SOH segments followed by eight LOH segments. Segments sizes

correspond to the default sizes listed in Table 5-3 (2 GB for SOH and 256 MB for LOH).

We can now see why it is so important to know the difference between reserved

and committed memory as described in Chapter 2. Although a managed heap in a

web application from Figure 5-14 seems to consume huge 18 GB (reserved memory),

obviously the real usage is only at the level of 8 MB (committed memory).

Figure 5-14. A huge, single block inside ASP.NET application contains eight
segments (both SOH and LOH) as visible in VMMap tool. Application was hosted
on a machine with eight logical cores (four physical cores and Hyper-Threading
enabled) on a 64-bit runtime working in Server mode

Chapter 5 MeMory partitioning

384

Both scenarios shown so far have common property - all segments have been created

inside a single continuous block. This is the most common initial scenario named an

all-at-once allocation pattern (illustrated at Figures 5-15a and 5-16a). However, there are

two other possible allocation patterns:

• two-stage - there are two separate blocks: for SOH and LOH segments

separately (see Figures 5-15b and 5-16b);

• each-block - there is a separate block for each segment

(see Figure 5- 16c).

They may happen, for example, when .NET runtime was unable to reserve a single

continuous block of virtual memory. If it happens, a two-stage pattern will be tried. If it

fails, an even more granular each-block pattern will be chosen in case of Server mode.

(a) SOH LOH

SOH

LOH

(b)

Figure 5-15. Possible Workstation GC initial segments configuration: (a) all-
at- once configuration, (b) two-stage configuration (the same as each-block
configuration)

Chapter 5 MeMory partitioning

385

When our application is running and allocating a lot of objects, the ephemeral

segment or LOH may become full. In such case an additional segment may be allocated.

We will see some typical ways of handling such situations in Chapter 6. Please also note

that the segments configurations described here are the same for the Windows and

Linux version of .NET Core.

in Mono (as the current 5.4 version state), physical organization of generations is
slightly different:
- small objects are stored into two kinds of memory regions. a nursery (representing

young generation) is a continuous block of memory in the size of 4 MB. it does not
change dynamically but may be set by configuration when Mono starts. Fast bump-
pointer technique of allocation is used here. old generation is organized into 16 kB
blocks (but they are allocated in larger chunks to avoid fragmentation).

- large objects in Large object Store are organized into 1 MB sections, while larger
objects than that are directly allocated by a Virtual api and they are remembered
as a single-linked list.

(a)

SOH1 LOH1

(b)

SOH2 SOH3 SOH4 LOH2 LOH3LOH4

LOH1LOH2 LOH3LOH4

SOH1 SOH2 SOH3 SOH4

LOH1 LOH2 LOH3 LOH4

SOH1 SOH2 SOH3 SOH4

(c)

Figure 5-16. Possible Server GC initial segments configuration (example of
4-core machine): (a) all-at-once configuration, (b) two-stage configuration,
(c) each- block configuration

Chapter 5 MeMory partitioning

386

A segment may be of three types:

• Small Object Heap,

• Large Object Heap,

• Read-Only Heap.

The third option is deprecated in .NET Framework since version 3.5 and in

.NET Core. However, other frameworks may still be using it (currently it is only .NET

Native) so we may find references to it in various places - including CoreCLR source

code, ETW events, and documentation (we even already noticed it in Chapter 3 as

ReadOnlyHeapMapMessage enumeration value of GCSegmentType when looking at ETW

events data). Read-only heap segments are used by the object freezing functionality,

which may be enabled by marking an assembly with StringFreezingAttribute.

When such an assembly will be serialized into a native image with the help of Native

Image Generator (Ngen.exe), all string literals will become pre-compiled (in managed

form) into a generated image. The memory region within this image with such strings (or

objects in general, although there is no API for handling them) may then be registered

as a read-only segment and become usable immediately (as object is there already in a

managed, allocated form).

Note the difference to string interning (described in Chapter 4), which requires

regular string allocation at runtime. Additionally, as MSDN states: “Note that the

common language runtime (CLR) cannot unload any native image that has a frozen

string because any object in the heap might refer to the frozen string. Therefore, you

should use the StringFreezingAttribute class only in cases where the native image

that contains the frozen string is shared heavily.”

 Scenario 5-2. nopCommerce Memory Leak?
Description: We have just downloaded a plain installation of nopCommerce – open

source e-commerce platform written in ASP.NET. As documentation states about

hosted ZIP file: “download this package if you want to deploy a live site to a web server

with the minimum required files.” Installation is easy: “to use IIS, copy the contents

of the extracted nopCommerce folder to an IIS virtual directory (or site root).” We

want to validate nopCommerce performance, including memory usage patterns. We

have prepared a simple load test scenario for JMeter 3.2 – a popular open source load

testing tool. It executes three steps in a loop - visiting home page, one of the categories

Chapter 5 MeMory partitioning

387

(“Computers”), and one of tags (“awesome”). We have added think times (pauses)

between each request to simulate real users. Test will be performed for one hour.

Note: this scenario is quite long as it includes a few approaches to show you different

ways you can take. Additionally, nopCommerce was chosen as a stable and well-proven

technology. Certain mistakes have been made specifically to illustrate how to solve

various problems. They should not be used to evaluate nopCommerce as a product.

Analysis: This scenario is similar to scenario 5-1 so we can start analysis in the same

way. Therefore, we start from observing the following performance counters with the

help of Performance Monitor (either in real time or via Data Collector Set):

• \Process(Nop.Web)\Working Set - Private

• \Process(Nop.Web)\Private Bytes

• \Process(Nop.Web)\Virtual Bytes

• \.NET CLR Memory(Nop.Web)\# Total committed Bytes

• \.NET CLR Memory(Nop.Web)\Gen 0 heap size

• \.NET CLR Memory(Nop.Web)\Gen 1 heap size

• \.NET CLR Memory(Nop.Web)\Gen 2 heap size

• \.NET CLR Memory(Nop.Web)\Large Object Heap size

We may quickly notice that the managed # Total committed Bytes are fast growing

during the first 20 minutes of the test. Then suddenly the memory drops just to grow

again very quickly. This pattern repeats again and again. Generation sizes recorded via

Performance Monitor look as follows (see Figure 5-17):

• generation 0 size (long-dashed line) varies between 4,194,300

and 6,291,456 in a stable way. As we already know, this is not a

real generation 0 size. However, “allocation budget” denoted by

this measure is stable so we may assume there is no problem with

generation 0.

• generation 1 size (short-dashed line) changes dynamically but is also

stable. No growing trend can be spotted there so we can assume there

are no problems either.

Chapter 5 MeMory partitioning

388

• generation 2 size (thin solid line) obviously stands out. It is

responsible for a strange triangle pattern of memory consumption.

This seems to be problematic as it reaches 1,314,381,592 bytes at

maximum. We will have to dig deeper into it to find the root cause of

the problem.

• Large Object Heap size (thick solid line) is growing very slowly. This

may indicate the same problem but is unlikely the root cause of it.

Please note this “memory leak” is not very burdensome. LOH grows

up to around 38 MB (with small 46 MB peaks) after one hour of

intensive work. This is hardly a problem compared to over 1 GB of

generation 2 memory.

Figure 5-17. Performance Monitor view of generation sizes during one-hour long
load test of ASP.NET Core application

Chapter 5 MeMory partitioning

389

If during the test we look at the state of the Nop.Web.exe process by VMMap tool, we

come across the first clue. There are tons of Domain 1 Low and High Frequency heaps

(see Figure 5-18a illustrating only a small part of them). As there are so many of them,

it may indicate creating a lot of dynamic types, for example, via Reflection or by loading

many assemblies. We may recall Scenario 4-4, which illustrated exactly such a problem

with XmlSerializer.

Figure 5-18a. Small part of VMMap view of the Nop.Web.exe process during test,
showing a lot of Domain 1 Low and High Frequency heaps

However, let us not jump to conclusions. As done in Scenario 4-4, we should confirm

our suspicions by adding the following counters to our observation:

• \.NET CLR Loading(Nop.Web)\Bytes in Loader Heap

• \.NET CLR Loading(Nop.Web)\Current Classes Loaded

• \.NET CLR Loading(Nop.Web)\Current Assemblies

• \.NET CLR Loading(Nop.Web)\Current appdomains

We may be surprised that these counters do not change their value even within a

few hours of testing. Our clue turned out to be false. In fact, even a large amount of Low

and High Frequency heaps does not mean problems. If we look at them from time to

time via VMMap, we will notice that their number does not change. We let ourselves

be fooled. They are so many probably because of a lot of dynamically created types in a

nopCommerce framework. Investigating it however does not make sense at this step.

Abandoning this trail, let’s look at our main suspect - generation 2. Looking again at

VMMap, we can sort Managed Heap regions by Details to have all GC Managed Heaps

next to each other (see Figure 5-18b). Looking through them, we quickly see many

Chapter 5 MeMory partitioning

390

segments containing only the second generation. What’s more, we could pay attention to

three more things:

• Addresses are short (the first half of them are zeroes) - so the process

is using 32-bit .NET runtime, but we should know it from our

deployment process.

• There is only a single segment with generation 0 and 1 (ephemeral

segment) - this indicates most probably GC is running in Workstation

mode.

• Segments containing generation 2 have size of 16 MB - according

to Table 5-3 it may happen only on 32-bit Workstation GC, which

confirms the two facts above.

The web application configured as running on 32-bit .NET runtime with Workstation

GC mode may not be the most optimal setting. Even if it is quite an important finding we

were not aware of so far, and it does not necessarily explain the observed memory leak.

We should continue our investigation.3

3 And by the way, there are other and better ways of checking GC’s configuration of the running
application. They are described in Chapter 8 (especially in dedicated Scenario 8-1).

Figure 5-18b. Small part of VMMap view of the Nop.Web.exe process during test,
showing a lot of GC Managed Heaps containing generation 2

Chapter 5 MeMory partitioning

391

VMMap tool usage is included in this scenario mainly to show the physical structure

of the .NET application, to be aligned with the knowledge presented in this chapter.

Additionally, it shows possible caveats if one decides to use it (like treating many high

frequency heaps as a problem). It is good to have VMMap in your toolbox when solving

problems. However, using VMMap is not a typical way that people would start an

investigation for a problem like this. We should probably jump straight into WinDbg or

PerfView after seeing presented performance counters.

At this point, we have to reach for other tools. The first choice may be WinDbg

with SOS extension. A full memory dump of the Nop.Web.exe was taken by ProcDump

tool. After loading it into WinDbg, we should load SOS by issuing .loadby sos clr

command. Then we may issue two more commands: eeversion (prints .NET runtime

information) and lmf (lists all loaded modules) - see Listing 5-11. As we can see, the

process is using .NET Framework 4.7 and Workstation GC mode. It has loaded a 32-bit

version of clr.dll (64-bit version is located under directory C:\Windows\Microsoft.

NET\Framework64). This is the final confirmation of our previous findings.

Listing 5-11. Inside WinDbg with SOS loaded, commands eeversion, and lmf

reveals that process is using 32-bit .NET Framework with Workstation GC mode

> !eeversion

4.7.2117.0 retail

Workstation mode

SOS Version: 4.7.2117.0 retail build

> lmf

...

72f70000 73656000 clr C:\Windows\Microsoft.NET\Framework\v4.0.30319\

clr.dll

...

To start investigation of generation 2, we issue commands heapstat and eeheap (see

Listing 5-12). As we may see, indeed generation 2 is huge (1,217,024,356 bytes) and it

contains not so much free space (10,981,728 bytes). Fragmentation of it is probably not

an issue. eeheap commands list a lot of segments details that we have seen previously in

the VMMap tool.

Chapter 5 MeMory partitioning

392

Listing 5-12. Inside WinDbg with SOS loaded, commands heapstat, and eeheap

reveals details about GC Managed Heap. eeheap command output has been

stripped to show only a few relevant lines.

> !heapstat

Heap Gen0 Gen1 Gen2 LOH

Heap0 9719400 280232 1217024356 38826368

Free space: Percentage

Heap0 7042304 1152 10981728 12587408SOH: 1% LOH: 32%

> !eeheap

 segment begin allocated size

024c0000 024c1000 034bffe4 0xffefe4(16773092)

0a070000 0a071000 0b06ffe0 0xffefe0(16773088)

0fb20000 0fb21000 10b1ffdc 0xffefdc(16773084)

122b0000 122b1000 132affe0 0xffefe0(16773088)

142f0000 142f1000 152effe0 0xffefe0(16773088)

...

41820000 41821000 4281ffec 0xffefec(16773100)

43820000 43821000 4410ea14 0x8eda14(9361940)

42820000 42821000 431aa510 0x989510(9999632)

Knowing the address range of segments, we may investigate its contents by the

dumpheap command. Because the memory leak seems to be huge and objects live for a

long time, let’s investigate the content of one of the first segments (which most probably

means one of the oldest ones). Listing 5-13 shows the result of the dumpheap command

for statistical objects data in the fourth segment. A lot of the lines have been stripped

for clarity and only a few last ones are shown. As we can see there is a huge number

of objects from namespace Microsoft.Extensions.Caching.Memory. A particularly

interesting class CacheEntry seems to indicate problems with caching.

Chapter 5 MeMory partitioning

393

Listing 5-13. Inside WinDbg with SOS loaded, dumpheap command shows

statistical data of objects inside one of the segments (a lot of output’s lines have

been stripped for clarity)

> !dumpheap -stat 122b1000 132affe0

 MT Count TotalSize Class Name

...

04aa58e4 33795 946260 Microsoft.Extensions.Primitives.IChangeToken[]

0b542680 33808 946624 Microsoft.Extensions.Caching.Memory.

PostEvictionCallbackRegistration[]

089f26fc 33818 1082176 Microsoft.Extensions.Caching.Memory.

PostEvictionDelegate

71f91d64 34858 4327314 System.String

089e2b70 33786 4459752 Microsoft.Extensions.Caching.Memory.CacheEntry

Total 431540 objects

Now we can start a rather tedious process of investigating different instances of the

CacheEntry object. Its MethodTable has an address 089e2b70 so we can modify dumpheap

command to list only Microsoft.Extensions.Caching.Memory.CacheEntry instances

inside the fourth segment (see Listing 5-14). The output will be a huge list of 33,786

instances, so only a few of the last lines are presented.

Listing 5-14. Inside WinDbg with SOS loaded, dumpheap command lists all

objects inside specified segment with a given MethodTable

> !dumpheap -mt 089e2b70 122b1000 132affe0

 Address MT Size

...

132af460 089e2b70 132

132af64c 089e2b70 132

132af98c 089e2b70 132

132afd08 089e2b70 132

Chapter 5 MeMory partitioning

394

Statistics:

 MT Count TotalSize Class Name

089e2b70 33786 4459752 Microsoft.Extensions.Caching.Memory.CacheEntry

Total 33786 objects

We can investigate each instance with the help of DumpObj command, providing its

address (see Listing 5-15). One of its fields has a name <Key>k__BackingField, which

suggests we can inspect what is the key of the cache entry (see also Listing 5-15). It turns

out to be Nop.pres.widget- 79740- 1-left_side_column_after_category_navigation-

DefaultClean, which seems to be a data cached for some widget on a page.

Listing 5-15. Inside WinDbg with SOS loaded, DumpObj commands shows

details of one of the instances listed in Listing 5-13

> !DumpObj 132afd08

Name: Microsoft.Extensions.Caching.Memory.CacheEntry

MethodTable: 089e2b70

EEClass: 089c4f2c

Size: 132(0x84) bytes

File: F:\IIS\nopCommerce\Microsoft.Extensions.Caching.Memory.dll

Fields:

...

71f81404 400000b 34 ...ffset, mscorlib]] 1 instance 132afd3c _

absoluteExpiration

...

71f92104 4000012 20 System.Object 0 instance 132afc18

<Key>k__BackingField

...

> !DumpObj 132afc18

Name: System.String

...

String: Nop.pres.widget-79740-1- left_side_column_after_category_

navigation-DefaultClean

Looking through all CacheEntry instances inside a segment in that way would

be very tiresome and time consuming. Fortunately, we can use for this purpose the

netext extension, mentioned in Chapter 3. Its wfrom command lets us write SQL-like

Chapter 5 MeMory partitioning

395

(or LINQ- like, if you wish) queries over objects. We can ask to list only _Key_k__

BackingField of objects with specified MethodTable, filtering them with respect to the

address of the segment we are interested in (see Listing 5-16).

Note netext slightly differently lists field’s names so _Key_k__BackingField
is used instead of <Key>k__BackingField.

Listing 5-16. Inside WinDbg with netext loaded. Part of the wfrom command’s

output is presented that selects _Key_k__BackingField from objects with

089e2b70 MethodTable and within a specified address range.

> !wfrom -mt 089e2b70 where (($addr() > 122b1000) && ($addr() < 132affe0))

select _Key_k__BackingField

...

_Key_k__BackingField: Nop.pres.widget-74954-1-mob_header_menu_after-

DefaultClean

_Key_k__BackingField: Nop.pres.widget-76130-1-header_menu_before-

DefaultClean

_Key_k__BackingField: Nop.pres.widget-75965-1-body_start_html_tag_after-

DefaultClean

_Key_k__BackingField: Nop.pres.widget-75369-1- searchbox_before_search_

button-DefaultClean

_Key_k__BackingField: Nop.pres.widget-75965-1- searchbox_before_search_

button-DefaultClean

_Key_k__BackingField: Nop.pres.widget-75867-1-header_selectors-DefaultClean

_Key_k__BackingField: Nop.pres.widget-75965-1-header_menu_before-

DefaultClean

_Key_k__BackingField: Nop.pres.widget-75573-1-body_start_html_tag_after-

DefaultClean

_Key_k__BackingField: Nop.pres.widget-75680-1-mob_header_menu_after-

DefaultClean

...

Chapter 5 MeMory partitioning

396

In the results, we will quickly see the obvious pattern. Actually almost all names

start with Nop.pres.widget, followed by some numbers and (probably) the name of

the widget. We should now be confident that the widget’s data caching is somehow

problematic. The question arises why there are so many cached similar entries. Why are

there almost identical entries with only a first number difference? Immediately we may

come to the question whether they are not cached for every request?

By looking at a few reference graphs with the help of the gcroot command, we may

notice those entries are held by MemoryCacheManager inside ProductTagService or

similar ones (see Listing 5-17).

Listing 5-17. Inside WinDbg with SOS loaded, gcroot command shows a

references path of a sample CacheEntry instance. As this path is quite long, only a

few relevant nodes are presented.

> !gcroot 132afd08

Thread 6d5c:

 0bc8f128 71ec99fa System.Threading.ExecutionContext.RunInternal(System.

Threading.ExecutionContext, System.Threading.ContextCallback, System.

Object, Boolean)

 ebp+4c: 0bc8f13c

 -> 0348777c System.Threading.Thread

 -> 025416d8 System.Runtime.Remoting.Contexts.Context

 -> 024c12e0 System.AppDomain

 ...

 -> 0ac5df50 Nop.Services.Catalog.ProductTagService

 -> 033dbacc Nop.Core.Caching.MemoryCacheManager

 -> 033db504 Microsoft.Extensions.Caching.Memory.MemoryCache

 ...

 -> 132afd08 Microsoft.Extensions.Caching.Memory.CacheEntry

This is the most difficult part of the puzzle to answer without access to the source

code. Fortunately, most often we will analyze our own application so we will have access

to its code that is well-known to us. In case of our scenario, it would turn out that the

cache key includes a customer identifier that is taken from the cookie for anonymous

users. But our test scenario in JMeter does not include HTTP Cookie Manager elements

Chapter 5 MeMory partitioning

397

that manage cookies! In other words, each and every HTTP request was treated as issued

by a new customer without a cookie set. There is certainly not a desired scenario that

results from our error in the preparation of the load test script.

nopCommerce is open sourced so we may also quickly find the root cause of the

problem:

• By searching for example name from a cache entry key (like mob_

header_menu_after identifier), we will find the following line in ./

src/Presentation/Nop.Web/Views/Shared/Components/TopMenu/

Default.cshtml file:

@await Component.InvokeAsync("Widget", new { widgetZone = "mob_

header_menu_after" })

• Widget component defined a file ./src/Presentation/Nop.Web/

Components/Widget.cs contains simple Invoke method calling

widget factory:

var model = _widgetModelFactory.PrepareRenderWidgetModel(widgetZo

ne, additionalData);

• WidgetModelFactory method PrepareRenderWidgetModel is building

cacheKey in the following way:

var cacheKey = string.Format(ModelCacheEventConsumer.WIDGET_MODEL_KEY,

 _workContext.CurrentCustomer.Id,

 _storeContext.CurrentStore.Id,

 widgetZone,

 _themeContext.WorkingThemeName);

As we can see, widgets are using CurrentCustomer.Id, which is managed by a

cookie in case of no logged users. If a cookie does not exist, a new integer value is used.

This scenario was to show that by understanding the concepts of generations

and segments, we can notice a problem and use the low-level tools to find its cause.

Of course, in situations you will encounter that causes of the problems can be very

Chapter 5 MeMory partitioning

398

diverse. The mistakes made when configuring the load test will probably be one of

the rarest. However, the exercise was not meant to show this one particular problem

and its solution, but rather how to approach it. We could also use more pleasant tools

like PerfView or any other commercial tool to analyze such a memory leak. Such an

approach will be taken in later scenarios.

 Scenario 5-3. Large Object Heap Waste?
Description: In our 64-bit workstation application, we are processing huge lists of

objects - let it be some kind of “big data” process. But unfortunately, after some period

of time, we are getting OutOfMemoryException and are unable to process all the data.

Our process starts with a pre-processing stage - we are creating a list of large arrays of

pre-processed objects. Each such block contains 10,000,000 references to objects located

elsewhere. OutOfMemoryException occurs during allocating those arrays. We want to

make processing possible so we start our investigation.

Analysis: It’s worth starting by looking at the process by VMMap tool at the time just

before when OutOfMemoryException occurs (see Figure 5-19). We see there indeed a

huge amount of memory being consumed. Private Working Set of a process takes around

15 GB, which is almost all available physical memory (machine was equipped with

16 GB of RAM). Moreover, if we looked at the page file of the system, we would see that

pagefile.sys takes almost 32 GB - the maximum possible value that has been set by the

system administrator. This means there was no free memory left for more arrays and we

just can do nothing about it (except changing system configuration by adding more RAM

and/or extending maximum page file size).

However, one can notice alarming segments consumption. There is a huge amount

of LOH segments and each and every one holds only around half of a size-committed

region while the rest is only reserved. Why does this happen? If we look at Table 5-3, we

recall that in the case of a 64-bit Workstation GC, LOH segments are 128 MB big. For our

processing purposes we are creating arrays of 10,000,000 references. Each reference is

8-bytes long so a whole array requires around 76 MB of data. When a new array is being

allocated, an existing LOH segment does not fit it as only around 52 MB is left in it. Thus,

a new segment must be created for each and every new array we create. This results

in “wasting” those 52 MB in each LOH segment (assuming our application does not

intensively create smaller objects in LOH whose would fit in this additional space).

Chapter 5 MeMory partitioning

399

But a careful reader can see a certain mistake in our thinking. Remembering what

has been said in Chapter 2, reserved virtual memory does not consume physical

memory directly (only small reservation descriptors have to be remembered). If we look

at Figure 5-19 carefully, we will notice that Reserved parts of LOH segments do not count

into Committed nor Private bytes. It is hardly “wasting” a memory. Let’s not be fooled

by these measurements. In fact, we are really consuming all available memory and we

cannot do anything about it (nothing else than allocating less arrays at once).

However, such memory waste due to unusable reserved space within LOH segments

is not a problem only in case of 64-bit configuration because we have plenty of virtual

address space. It could be a severe problem on 32-bit .NET Runtime, where virtual

address space is much more limited. If this is your case, you should consider splitting

processed data into smaller arrays to better utilize single LOH segments and avoid

fragmentation.

Figure 5-19. Part of VMMap view of the process a few moments before
OutOfMemoryException happens

Chapter 5 MeMory partitioning

400

 Segments and Heap Anatomy
As it will be explained later, a segment is the physical representation of a Managed Heap.

Its internal structure is simple but it is worth it to get to know it (see Figure 5-20). As

we have seen at Listing 5-10, the example program had an ephemeral segment with an

address 0x0000026700000000 but it “begins” at address 0x0000026700001000. Those

starting 4,096 bytes (0x1000 in hexadecimal) are dedicated to store segment information

managed by the runtime. Objects are created in a subsequent address. Each SOH and

LOH segment has the following structure:

• At the beginning segment information is stored (an instance of heap_

segment class). Although this class is only a dozen of bytes big, in

most cases the whole page is being committed for this purpose. This

is a performance optimization used in case of a runtime version that

supports a popular background GC (explained in Chapter 11), which

includes all publicly available runtimes at the time of this writing.

The beginning of this structure (and whole segment itself) is listed as

a segment address in previously seen eeheap command output.

• Objects are being allocated from the address named mem (in .NET source

code). However, this address is listed as begin in case of an eeheap

command. As we will see in Chapter 6, reserved memory of the segment

is being committed in advance (not only for a single object), so there will

be slightly more committed memory than required for current objects.

• Address where currently allocated objects end is named allocated.

segment_info

{

OS_PAGE_SIZE (4kB)

objects

{

commited

reserved

begin
(mem)

allocatedsegment

Figure 5-20. Internal structure of heap segment

Chapter 5 MeMory partitioning

401

Although it is not so useful for everyday work in .NET, when trying to analyze .NET

Core code, it is worth knowing the relationship between several fundamental classes

representing the entities described here. It will make it easier for you to start your own

journey through the CoreCLR source code if you ever feel like it.

There are the following important classes representing core Garbage Collection

functionality (see Figure 5-21):

• GCHeap - there is always one instance of this high-level API - it is used

as an interface between Garbage Collector and Execution Engine

(they both keep global instances g_pGCHeap and g_theGCHeap). It

contains methods like Alloc and GarbageCollect. Additionally, in

Server mode each Managed Heap is represented by an additional

GCHeap instance. Thus, there will be one instance in Workstation

mode and one plus number of cores instances in Server mode.

• gc_heap - low-level API of a single Managed Heap, used by GCHeap. It

contains all the heavy work of GC, including methods like allocate,

garbage_collect, make_gc_heap, make_heap_segment, and so on

and so forth. In Server mode GCHeap instance operates on the

corresponding gc_heap instance. In case of Workstation mode,

all relevant gc_heap methods are static so there is no need for any

instance at all. Thus, there will be no instances in Workstation mode

or number of cores instances in Server mode.

• generation - represents single generation. It contains information

about segments containing those generations, many allocation-

related information, and other relevant data.

• heap_segment - represents single segment information as described

before. All segments are chained into single-linked list so each

segment may contain a pointer to the next segment.

Chapter 5 MeMory partitioning

402

Knowing all the above, we may now understand, for example, the implementation of

GC.GetGeneration method used earlier (see Listing 5-18).

Listing 5-18. Method in gc_heap class that is called when GC.GetGeneration

method is executed

// return the generation number of an object.

// It is assumed that the object is valid.

// Note that this will return max_generation for a LOH object

int gc_heap::object_gennum (uint8_t* o)

rest of the segment

GCHeap

gc_heap

generation

generation

generation

generation

heap_segment

heap_segment

heap_segment

Alloc()
GarbageCollect()

make_gc_heap()
make_heap_segment()
make_large_segment()
allocate()
allocate_large_object()
garbage_collect()
...

ge
ne

ra
tio

n_
ta

bl
e

[0]

[1]

[2]

[3]

(vm_heap)

(gGenGCHeap)

start_segment

start_segment
next

heap_segmentstart_segment

rest of the segment

rest of the segment

rest of the segment

GC Managed Heap

next

next

start_segment

Figure 5-21. Relationship between fundamental GC-related classes in .NET
source code (based on .NET Core code). heap_segment instances are living in the
managed heap, at the beginning of segments as explained earlier. All other data
lives inside private heaps of the runtime.

Chapter 5 MeMory partitioning

403

{

 if (in_range_for_segment (o, ephemeral_heap_segment) &&

 (o >= generation_allocation_start (generation_of (max_

generation- 1))))

 {

 // in an ephemeral generation.

 for (int i = 0; i < max_generation-1; i++)

 {

 if ((o >= generation_allocation_start (generation_of (i))))

 return i;

 }

 return max_generation-1;

 }

 else

 {

 return max_generation;

 }

}

 Segments Reuse
During program execution, there may be more and more segments created to contain all

allocated objects. The question arises whether segments are ever removed? The answer is

positive. However, as often happens, the answer is more complicated than the simple “yes.”

First of all, let’s start by looking at the situations in which .NET runtime can decide

to remove a segment. In fact, there is only one reason for that - the segment has become

empty after garbage collection (it contains no objects at all). We will see when it happens

when learning about garbage collection in detail.

Chapter 5 MeMory partitioning

404

Secondly, what does “remove a segment” mean at all? In the simplest manner it

means calling VirtualFree (or Linux counterpart) on the whole reserved memory region

of a segment. In that way we simply reclaim that memory and return it to the operating

system. Let’s imagine a situation as illustrated in Figure 5-22a. Our program has four

segments. Generation 2 is quite big so it consumes two segments. As stated before, there

is more memory committed (white regions) than needed for current objects (dashed

regions) because memory is prepared in advance. After some time, compacting garbage

collection may occur in which many objects in generation 2 have been removed (see

Figure 5-22b). In fact, so much space has been reclaimed that one of the segments

containing generation 2 has become empty (contains no objects). But the whole memory

is still being committed at this moment. The simplest scenario is now just to free such

memory (see Figure 5-22c).

Although it seems a perfectly sensible approach, it has an important disadvantage.

Continual creating and removing segments may introduce a fragmentation problem. It

may be especially severe in 32-bit applications where virtual memory space was not so

big and particularly in case of long-running web applications. Those were the times of

.NET 2.0 and ASP.NET 2.0 and that’s why more intelligent handling of segments has been

introduced called VM Hoarding. The idea behind it is quite simple. Instead of freeing an

empty segment completely, we may store it (hoard) for later reuse (see Figure 5-22d).

In such a case:

• whole segment’s memory stays reserved;

• most of the segment’s memory is decommitted (does not consume

physical memory) - only small amount of the beginning memory

stays committed, including segment info itself;

• segment is remembered in a list of reusable segments (segment_

standby_list in case of CoreCLR) - when a new segment will be

needed, this list will be first checked for reusage possibility. One of

such segments may be then initialized as a new, valid segment.

Chapter 5 MeMory partitioning

405

(a)

SOH LOH

SOH

SOH (ephemeral)

Gen 2

Gen 2

Gen 0/1

objects

{

(b)

SOH LOH

SOH

SOH (ephemeral)

Gen 2

Gen 2 (empty)

Gen 0/1

(c)

SOH LOH

SOH (ephemeral)

Gen 2

removed

Gen 0/1

(d)

SOH LOH

segment_standby_list

SOH (ephemeral)

Gen 2

Gen 0/1

Figure 5-22. Possible segments’ reusability strategies illustrated

Chapter 5 MeMory partitioning

406

Hoarding is less important in the case of 64-bit executions engines because of much

bigger virtual address space. On the other hand, in very dynamic scenarios when there

are many segments created and destroyed, it is still faster to reuse already reserved

memory than ask the system to create a new one. Thus, even in a 64-bit scenario it may

be worth it to use it.

However, segments hoarding is disabled by default because .NET runtime does

not want to hold onto the virtual memory it doesn’t use (even if it is only reserved). If

you run a plain desktop or console .NET application (not hosted in external process),

most probably VM hoarding is simply disabled. This behavior may be overridden by the

GCRetainVM setting configured as an environment variable or in the registry (in case of

Windows). Additionally, process hosting .NET runtime may use System.GC.RetainVM

configuration to enable it. This is what happens in case of ASP.NET web applications

hosted in IIS, which enables it by default. We can also enable it manually, if we are

hosting .NET runtime inside our application via Hosting API (see Chapter 15 for details).

If you wish to track what, when, and why segments are created or destroyed in your

application, the easiest way is to use ETW events (with stack trace enabled):

• GCCreateSegment_V1 - shows an Address, Size, ClrInstanceID and

Type

• GCFreeSegment_V1 - shows an Address and ClrInstanceID

The Type listed above will contain two possible values: SmallObjectHeap or

LargeObjectHeap. It could also contain ReadOnlyHeap value mentioned before, but this

should not happen both in .NET Runtime and .NET Core as read-only segments are

disabled there.

 Summary
This chapter covers many topics that bring us closer to a better understanding of how

memory management works in .NET. It describes how the memory managed by Garbage

Collector has been physically and logically organized. Based on the knowledge from

previous chapters, it describes not only how something was done but also tries to explain

why. I hope that this allows you to better understand where the division into generations,

Small Object Heap and Large Object Heap, is derived from.

Chapter 5 MeMory partitioning

407

This chapter describes in some detail the various aspects related to the organization

of memory within Managed Heap. Some of those aspects are fundamental, and it is hard

to understand .NET without being aware of them. Those include especially the concept

of Generational Garbage Collection. Generations are a key concept that almost always

appear in the context of memory management in .NET programs. Therefore, these topics

should be considered very practical. On the other hand, topics with much less practical

use are also described because it allows us to go much deeper into CLR internals and

understand how some particular aspects of GC design have been implemented.

The chapter also contains three example scenarios for solving problems related to

the topics discussed here. They allow you to look at the topic of generation or segments

from a more practical side.

 Rule 11 - Monitor Generation Sizes
Justification: Weak generational hypotheses are the foundation of Generation Garbage

Collector implemented in .NET Runtime. A program, which due to uncommon (or

erroneous) object creation patterns violates it, may incur serious problems to the GC

performance.

How to apply: According to Rules 5 and 6 we should measure our program to

check memory management behavior. One of the most important measures include how

generations change their size in time. We should be aware (if not monitor continuously)

how big are generations 0, 1, 2, and LOH. Two common misbehaviors should arouse our

attention:

• One or more generations are constantly growing (even if it is spread

over time and happens after a lot of memory garbage collections) -

this may indicate a bigger or smaller memory leak.

• One or more generation changes in time very frequently - this may

indicate a big memory traffic that triggers a costly GC process.

Obviously, generation sizes by themselves are not the only important measurement.

One can imagine a generation 2 size that is stable but there is a lot of churn to it

 (meaning we are replacing a log of objects in it very often), so we are spending a lot of

time spending generation 2 GCs. Thus, measuring CPU overhead (like % Time in GC

counter) is at least as important as monitoring generation sizes.

Related scenarios: Scenarios 5-1, 5-2.

Chapter 5 MeMory partitioning

408

 Rule 12 - Avoid Unnecessary Heap References
Justification: In Generational Garbage Collection, a special technique exists to track

references between generations. This is called a Remembered Set technique in general.

.NET runtime uses write barriers and card tables to realize such a technique. As

described in this chapter, it has quite a sophisticated implementation, doing its best to

provide as small of overhead as possible. However, the best intragenerational reference

is a nonexisting one. We can help GC in reducing overhead by taking care of not

introducing too many, sometimes unnecessary references.

How to apply: When constructing any long-running buffers or caches, a quite

typical situation is to assign to them newly created objects. This may incur creating

intrageneration reference (triggering card table mechanism). However, there may be

cases when such a reference may be avoided: for example, when designing binary tree,

instead of holding references to nodes:

class Node

{

 Data d;

 Node left;

 Node right;

};

You may store just an index to them and store nodes in an array:

class Node

{

 Data d;

 uint left_index;

 uint right_index;

};

Please bear in mind, however, that such a change incurs much more changes than

just relieving a card table mechanism. For example, how will such arrays of nodes be

allocated? How will such a change influence performance of traversing a graph, which

now requires an additional array lookup per node? Only solid benchmarking can give as

an answer whether applying this rule is beneficial or quite the opposite.

Chapter 5 MeMory partitioning

409

 Rule 13 - Monitor Segments Usage
Justification: Segments are implementation details of how a Managed Garbage Collector

heap is being organized. In most cases it is perfectly hidden so we should not be aware of

it at all. However, as always, there are some exceptions. Segments itself and their layout

may provide us some diagnostic clues when analyzing memory usage problems. They

can even cause such problems rarely, especially in a tight 32-bit environment.

How to apply: It is sometimes good to look at our process under investigation with the

help of appropriate WinDbg commands (or tools like VMMap). By analysis of segments

created by the GC, we may gain some clues regarding possible issues. Knowing how

generations are located in segments may be especially useful when doing low-level

analysis in tools like WinDbg.

Related scenarios: Scenarios 5-2, 5-3.

Chapter 5 MeMory partitioning

411
© Konrad Kokosa 2018
K. Kokosa, Pro .NET Memory Management, https://doi.org/10.1007/978-1-4842-4027-4_6

CHAPTER 6

Memory Allocation
We have learned so far quite broad theoretical introduction about memory in general

and low-level aspects of it in the first chapters. Starting from Chapter 4 we are learning

more and more about the implementation of memory management in .NET. So far,

we have learned mostly about some .NET internals (in Chapter 4) and how memory is

being organized structurally (in Chapter 5). Based on the knowledge gained so far, in

this chapter it is time to go to the most important topics in this book - the principles of

operation and usage of Garbage Collector in .NET. As we are getting closer to the core

topics, beside implementation details, expect also more and more practical knowledge

both from diagnostics and from a code point of view.

We start with a mechanism without which the operation of any program would be

impossible - allocating memory. This mechanism provides memory for objects that we

create in our applications. And our programs need to create objects, no matter how hard

we try. Simply running the simplest console application creates a lot of auxiliary objects

even before the first line of our code is executed. Because of its crucial importance and

heavy usage, as we shall see in this chapter, every effort has been made to make allocator

in .NET as efficient as possible.

You may remember a brief mention of the concept of Allocator presented in Chapter 1

as “an entity responsible for managing dynamic memory allocation and deallocation.”

Method Allocator.Allocate(amount) has been defined there, which is responsible

for providing a specified amount of memory. It is true that on this level of abstraction,

Allocator especially does not care about the type of object, it just provides the right

number of bytes (which will be then filled by runtime in a proper way).

 Allocation Introduction
Obviously our abstract Allocator.Allocate(amount) is only the tip of the iceberg. This

whole chapter is devoted to the details of the implementation of this single method and

the practical tips resulting from it.

412

If we recall from Chapter 2, an operating system provides its own allocation

mechanisms. Unmanaged environments like C/C++ are relying on them directly to

acquire required memory. It is called Heap API (in case of Windows) or a combination

of mmap/sbrk calls (in case of Linux). However, the .NET environment may benefit by

introducing an additional layer between the operating system and executed program -

which is .NET runtime. Most often managed environments like .NET preallocate

continuous blocks of memory and implement their own allocation mechanism inside.

This may be much faster than asking an operating system for more memory each time

a new object is being created. Operating system calls may be costly and as we will see,

much simpler mechanisms may be used.

As we know from the previous chapter, the GC Managed Heap consists of segments.

This is exactly the place where the allocation of objects described in this chapter takes

place. Although it was not clearly enough stated so far, you could probably notice it

already - allocation of objects takes place:

• in generation 0 in case of Small Object Heap. It was illustrated by

Figures 5-4 and 5-5 in the previous chapter. This happens physically

is an ephemeral segment (containing generations 0 and 1).

• in Large Object Heap directly as it is not further partitioned into

generations. This happens physically in one of the segments

containing LOH.

As the Book Of The Runtime summarizes this: “Each time a large object is allocated,

the whole large object heap is considered. Small object allocations only consider the

ephemeral segment.”

There are two popular ways how an allocator may be implemented. Both are used

in .NET. They were already mentioned in Chapter 1 - sequential allocation and free-list

allocation. Let’s now dig into them one by one in the context of .NET implementation.

 Bump Pointer Allocation
The allocator has segments at his disposal. The simplest and fastest way of allocating

memory inside it is just to move some pointer indicating when the current memory

“ends.” This pointer is called an allocation pointer. If we moved it with a number of bytes

corresponding to the size of the object we want to create - congratulations, we’ve just

Chapter 6 MeMory alloCation

413

allocated memory for a given object! The idea is illustrated in Figure 6-1. Let’s assume

there are already some objects created (see Figure 6-1a). The allocation pointer points

where those objects end. This is a place where a newly created object will be placed.

When some memory for new object A is being requested, the pointer value becomes

an address of this object. Then allocator just moves this pointer further by a specified

number of bytes (see Figure 6-1b).

Pseudo-code from Listing 6-1 illustrates this simple yet efficient technique. As we

will later see, such implementation is one of the allocation possibilities inside CLR. Such

a simple function can be written in an assembly code with just a few instructions,

making it extremely efficient.

Listing 6-1. Simple bump pointer allocator implementation

Allocator.Allocate(amount)

{

 PTR result = alloc_ptr;

 alloc_ptr += amount;

 return result;

}

objects

allocation
pointer

allocation
pointer

A

(a)

(b)

object A
address

objects

Figure 6-1. Simple sequential allocator implementation

Chapter 6 MeMory alloCation

414

One may meet this kind of allocation also under the name bump pointer allocation

as what it does is provide memory by “bumping” the allocation pointer from time to

time. We can see two main properties of such an approach:

• Firstly, as its name states, this is a sequential algorithm - we just

move always in one direction when allocating memory. This may

lead to good data locality. If we create a bunch of objects in our

program at once, they may represent some consistent and self-

dependent data structures, so it is good that they will be laid near

each other. In other words, data created in a similar period of

time probably will later be used simultaneously (and as we may

remember from Chapter 2, CPU architecture is making the best

from temporal and spatial locality).

• Secondly, this model assumes an infinite memory availability.

Needless to say, this is overoptimistic. I would like to have an infinite

RAM in my PC, but unfortunately, I have only 16 GB. Does it make

sequential allocation nonsense? Of course not, as we can do something

with the left side of the pointer. For example, remove unused objects

and compact holes left by them. This is where Garbage Collection

comes into play obviously. Occasionally we may “rewind” the

allocation pointer back after unused objects have been collected.

One can wonder what happens to the memory contents in the place where the object

A is located. For the new object to be in a clean state, this memory must of course be

zeroed (some individual fields of the object will be set by its constructor, but this is the

role of the Execution Engine and not the Garbage Collector). This would require adding

such a cleaning call to the Allocate method from Listing 6-1 (see Listing 6-2).

Listing 6-2. Simple sequential allocator implementation (with memory zeroing)

Allocator.Allocate(amount)

{

 PTR result = alloc_ptr;

 ZeroMemory(alloc_ptr, amount);

 alloc_ptr += amount;

 return result;

}

Chapter 6 MeMory alloCation

415

Zeroing memory introduces overhead though, which is not negligible in such

an extremely important and common operation as creating new objects. Thus, to

make allocation as fast as possible, it is worth it to prepare some amount of zeroed

memory in advance. This would allow us to use code from Listing 6-1 as a fast path,

falling back to zeroing memory from Listing 6-2 only as needed. Zeroing memory

in advance makes also CPU cache usage more efficient because accessing it will

“warm” the cache.

An additional pointer is introduced in a called allocation limit, which points

where zeroed memory region ends. Such region is called an allocation context (see

Figure 6-2). Allocation context is a place where fast, optimistic allocation happens by

pointer bumping.

If there is not enough space in the allocation context for a required number of bytes,

a fallback mechanism is being triggered (see Listing 6-3). This fallback mechanism may

contain any level of sophistication. In case of CLR it contains quite a complicated state

machine of possible actions as we will see in subchapters describing in detail allocation

in Small and Large Object Heaps separately. One of the obvious possibilities is to grow

the allocation context or get a new one to fit the required space. A typical amount of such

growth is called allocation quantum. In other words, in a typical scenario, when there is

no room in the allocation context, it will be enlarged by at least an allocation quantum

(or more if more memory was requested).

objects

allocation
pointer

allocation
limit

zeroed

allocation
context

Figure 6-2. Allocation context spans between allocation pointer and allocation
limit. It contains ready-to-use zeroed memory.

Chapter 6 MeMory alloCation

416

Listing 6-3. More realistic bump pointer allocator with allocation context buffer

containing already zeroed memory

Allocator.Allocate(amount)

{

 if (alloc_ptr + amount <= alloc_limit)

 {

 // This is the fast path - we have enough memory to bump the pointer

 PTR result = alloc_ptr;

 alloc_ptr += amount;

 return result;

 }

 else

 {

 // This is the slow path - allocation context will be changed to fit

the amount (i.e. grow by at least allocation quantum bytes)

 if (!try_allocate_more_space())

 {

 throw OutOfMemoryException;

 }

 PTR result = alloc_ptr;

 alloc_ptr += amount;

 return result;

 }

}

As we remember from the previous chapter, GC already has one mechanism of

memory preparation - two-stage building of segments. First, a large block of memory is

reserved, and then, if necessary, subsequent pages are committed as needed. But when

segments grow by committing more pages, not necessarily all those pages are instantly

zeroed. In other words, allocation context may not consume all committed memory to

its end (see Figure 6-3). It is a compromise between the profit from the preparation of

memory and the cost of zeroing it. For example, in case of Small Object Heap, a default

allocation quantum is 8 kB while the segment is grown by committing 16 pages at once

(which is typically 64 kB).

Chapter 6 MeMory alloCation

417

While default allocation quantum size is 8 kB, it may be dynamically changed
under certain circumstances. the current Clr implementation can set a value
between 1,024 and 8,096 bytes depending on allocation’s intensiveness and
number of active contexts.

In this way an operating system is asked for committing pages much less frequently

and only the allocation context is being grown. As we can see, there is quite a well-

thought way of acquiring memory than just simple object by object allocation, which

would be not effective at all.

Allocation context can be also placed in other places than just at the end of the

segment. It may be spanned inside free space between existing objects (see Figure 6-4).

In such a case, it will start with an allocation pointer set to the beginning of the free space

and allocation limit pointing to its end.

segment_info objects

commited

reserved

begin
(mem)

allocation
pointer

segment

allocation
limit

zeroed

allocation
context

Figure 6-3. Allocation contex within segment - created at the end of current
allocations

Chapter 6 MeMory alloCation

418

One of the most important facts is that allocation context has a thread affinity. It

means that each managed thread (executing .NET code) in our application has its own

allocation context. As Book Of The Runtime states: “The thread affinity of allocation

contexts and quantums guarantee that there is only ever a single thread writing to a

given allocation quantum. As a result, there is no need to lock for object allocations, as

long as the current allocation context is not exhausted.”

This is extremely important from a performance perspective. If allocation context

was shared between threads, the Allocate method would introduce synchronization

overhead. But as each thread has dedicated its own context, a simple bump pointer

technique can be used without a worry that something else will modify the allocation

pointer or limit inside it. This mechanism is based on Thread-local storage (TLS) to store

allocation context per thread. And in general, we can meet this technique under the

name Thread Local Allocation Buffer.

Note on a machine with a single logic processor there will be only a single
allocation context. thus, access to it in such a case must be synchronized
because different threads may access such a single, global allocation context.
however, in such a case, synchronization is very cheap as only one thread can run
at any given time.

commited

reserved

free itemsobjects

allocation
context

ze
ro

edsegment
info

allocation
pointer

allocation
limit

Figure 6-4. Allocation contex within segment - created inside free space

Chapter 6 MeMory alloCation

419

Having multiple allocation contexts complicates our Figures 6-3 and 6-4 a little.

There is no single context at the end of segment as it has been drawn in simplified form

before. There are many managed threads in our application so a more typical scenario

is when multiple allocation contexts live within a single segment (see Figure 6-5). As the

program runs, some of them will be located at the end of segment and some will reuse

free space between objects.

Allocation context lives within an ephemeral segment - the one which contains

generation 0 and 1. Thus, Figure 6-5 shows ephemeral segment structure where

“objects” part will be split into generations 1 and 0 (and 2 if it is small, for example, at the

beginning of the program execution).

As we at this point pretty well touched .NET memory organization, it has been once

again summarized in Figure 6-6. Remember - generations are just logical and moving

boundaries inside a segment.

commited

reserved

zeroed

allocation
context 2

free itemsobjects

zeroed

allocation
context 3

allocation
context 1

ze
ro

edsegment
info

Figure 6-5. Multiple allocation contexts within segment - each for one thread

Chapter 6 MeMory alloCation

420

commited

reserved

zeroed

allocation
context 2

zeroed

allocation
context 3

allocation
context 1

ze
ro

edsegment
info

gen2 gen1 gen0

Figure 6-6. Ephemeral segment organization summary

Bump pointer allocation in its original form has one drawback. If we run sweeping

garbage collection on already allocated objects, we will obviously end up with

fragmentation. Many holes of free memory will exist to the left of the allocation pointer

(see Figure 6-7a). A very naïve bump pointer technique (not one used in .NET) is not

aware of them. It can only consume more and more memory. Obviously, no one would

create a serious GC that sweeps the heap yet doesn’t try to use the resulting free space

to allocate something in. The simplest solution is that we can run compacting garbage

collection so survived objects will be laid next to each other and whole allocation context

will be pushed back (see Figure 6-7b). There is a much better solution than relying on

compaction.

Chapter 6 MeMory alloCation

421

Fortunately, .NET implementation uses a smart combination of sequential allocation

within allocation context but as we see in Figures 6-4 and 6-5, it may create allocation

context inside free space (using fragmentation as a good thing). Once in a while GC may

decide to compact and then allocation contexts will be reorganized in a natural way at

the end of the segment (see Figure 6-8).

commited

reserved

zeroed

allocation
context

objects zeroed

(a)

(b)

unused free space

pushed back allocation context

objects

Figure 6-7. Bump pointer allocation and fragmentation problem: (a) Sweeping
Garbage Collection produces fragmentation and allocation context is not aware of
free memory, (b) Compact Garbage Collection reclaims memory by pushing back
allocation context but requires a lot of memory copying

Chapter 6 MeMory alloCation

422

 Free-List Allocation
The idea behind free-list allocation is trivial. When runtime asks GC to allocate a given

number of bytes, it searches through a free list to find a free gap big enough to fit the

specified number of bytes. As mentioned already in Chapter 1, two main strategies of

free-list scanning may be taken:

• best-fit - to find free memory gap best suiting required space (which

would be the smallest block bigger or equal than required size) to

leave as small leftovers as possible. Naïve approach would require

scanning the whole list of free items although a typical approach is

based on buckets, as explained below.

• first-fit - scanning ends as fast as first suitable free memory gap has

been found. This is fast in terms of required time but produces far

than optimal results in terms of fragmentation.

commited

reserved

zeroed

allocation
context 2

objects

(a)

(b)

free itemsobjects

zeroed

allocation
context 3

allocation
context 1

ze
ro

ed

ze
ro

ed

allocation
context 1

zeroed zeroed

allocation
context 3

allocation
context 2

segment
info

segment
info

Figure 6-8. Compacting Garbage Collector may reorganize all allocation contexts
after its work – (a) initial situation with three allocation contexts scattered around
the segment, (b) after compacting GC allocation segments will be reorganized
optimally

Chapter 6 MeMory alloCation

423

Microsoft .NET implementation uses buckets to manage a set of free lists for

various free gap sizes. In this way a fast scan may be used without compromising

fragmentation optimization too much. By controlling the number of buckets

(number of various size ranges of free gaps), a balance between performance and

fragmentation reduction may be set. If there was a single bucket (all gaps regarding

their size will land there), it would mean naïve first-fit approach. On the other

hand, if there was a lot of buckets (with very detailed gap sizes granularity), it would

mean a best-fit approach. As we will see, the number of baskets varies for each

generation.

Free lists are maintained partially directly on the GC Heap due to the way free

space is being represented. A free space between used objects is represented as it was

an (almost) regular array. Thus, it has structure very similar to a normal object (see

Figure 6-9). There is a special MethodTable representing such “free object.” A number

of the free space “elements” is stored after MethodTable pointer, as in the typical array.

“Free object” array assumes one-byte element size so the number of elements simply

becomes the size of the free space expressed in bytes. Additionally, instead of regular

object header (which is unnecessary for “free object”), there is an element called

“undo.” It temporarily keeps an address of other free list items during list processing as

we will see.

unused data

"free object"
MethodTable

size

size

undo

undo

MT

MT

next "free object"

next "free object""free object"
MethodTable

Figure 6-9. “Free object” structure representing free space on GC Heap

Chapter 6 MeMory alloCation

424

Note if you are interested in CoreClr code related to “free object,” start
from gc_heap::make_unused_array method, which prepares it. as you
will see it uses static global pointer to g_pFreeObjectMethodTable as
a new Mt. then it adds such gap to the free list by calling generation_
allocator(gen)->thread_item (gap_start, size). however,
threading is done only for gaps larger than the double size of the minimum
object size. this helps to ignore the list management overhead for such small
items.

An allocator for each generation maintains a list of buckets (see Figure 6-10). The

first bucket represents a free list of items with sizes lower than first_bucket_size.

Each next bucket doubles this size and the last bucket is for largest sizes with no limit.

Each bucket maintains a description of the corresponding free-item list, especially

its head. However, as we see in Figure 6-10, the list itself is implemented as single-

linked list between “free objects” on the GC Heap. This allows for fast traversal during

list manipulation as at least some part of the heap is in cache already. Maintaining a

separate list would be unnecessary here.

allocator

buckets

head tail

M
T

si
ze objects

head tail head tail

M
T

si
ze

M
T

si
zeobjects

alloc_list alloc_list alloc_list

free space free space free space

first_bucket_size

num_buckets

un
do

un
do

un
do

Figure 6-10. Free-list implementation in CLR based on buckets

Chapter 6 MeMory alloCation

425

you may be surprised by the fact that each generation has its own allocator
because it was clearly stated that allocation of objects takes place either in
Soh’s generation 0 or in loh. it is true, user allocations only happen in gen0 and
loh. But when GC promotes the survivors from one generation to the next one, it’s
also allocating into the next generation.

Each generation has its own configuration of the number and size of buckets. It

has been summarized in Table 6-1. As we can see, both ephemeral generations are

maintaining only a single bucket for all sizes. Generation 2 configuration varies between

32- and 64-bit runtimes. For example, in 64-bit runtime GC will maintain buckets for

sizes smaller than 256 B, 512 B, 1 kB, 2 kB, 4 kB, 8 kB, and last one for bigger than 8 kB.

Table 6-1. Free-List Buckets Configuration per Generation

Region First bucket size Number of buckets

Generation 0 int.Max 1

Generation 1 int.Max 1

Generation 2 256 B (64-bit)

128 B (32-bit)

12

12

LOH 64 kB 7

Allocation based on bucketed free lists is quite simple (see Listing 6-4). We have

to start from the first appropriate bucket and try to find first the matching free item in

the corresponding free-list. After allocating the needed amount of memory from the

free item, a certain amount of free memory may still remain. If it is larger than the two

minimum object sizes (that is, 48 bytes for the 64-bit platform), a new free item will be

created from them and included in the list. If not, this small free memory region will be

counted as unusable fragmentation.

Listing 6-4. Implementation of free-list allocation in pseudo-code

Allocator.Allocate(amount)

{

 foreach (bucket in buckets)

 {

Chapter 6 MeMory alloCation

426

 if (amount < bucket.BucketSize) // this will skip buckets with too

small items

 {

 foreach (freeItem in bucket.FreeItemList)

 {

 if (size < freeItem.Size)

 {

 UnlinkItem(freeItem);

 ZeroMemory(freeItem.Start, amount);

 if (RemainingFreeSpaceBigEnough())

 ThreadRemainingFreeSpace(freeItem, amount);

 return freeItem.Start;

 }

 }

 }

 }

}

please note that memory zeroing used in listing 6-4 is needed only in case of
user- allocated items (as they have to be created in a fresh, new state) but may be
omitted in case of allocating in older generations during promotion (as it will be
overwritten by the promoted object content). this is exactly how .net implements it.
additionally, in case of generation 0 and 1, a free item is being discarded (becomes
unusable fragmentation) if it fails to fit the required size. this means that in those two
generations each free item will be checked only once. this is yet another compromise
between the cost of maintaining a free list and the cost of allowing fragmentation.
two youngest generations are compacted often so the free list is built up often.

Undo element of “free object” mentioned earlier is used by Garbage Collector during

the Plan phase when it decides to use one of the free items for allocation. To be precise, it

is allocation in an older generation, used to find a place for a promoted object in an older

generation if the GC wants to use a free item for this. In such case the GC “unlinks” the

used free item from the free list by typical pointers manipulation as in single-linked lists

(see Figure 6-11):

Chapter 6 MeMory alloCation

427

• The removed item address is stored in the previous item’s “undo” (if

there is previous item).

• The previous item “next” pointer is changed to the next available free

item (the one that removed item pointed at).

M
T

si
ze objects M
T

si
ze

M
T

si
zeobjects

free space free space free space

un
do

un
do

un
do

M
T

si
ze objects M
T

si
ze

M
T

si
zeobjects

un
do

un
do

un
do

unlink_item
free space free space

Figure 6-11. Free-list item unlinking

However, as it was said, this is done during the planning phase and later the GC

may decide to do sweeping. Used free-list items have to be undone (because in case

of sweeping older generation is left untouched so previously mentioned planned

allocations need to be reversed). By using a free item’s address stored in “undo,” the

original list can be restored. But we will learn about the planning, compacting, and

sweeping stages relationship in much more detail in Chapter 7.

 Creating New Object
Knowing two basic techniques of allocating memory for objects, we can now move

on to the description how they are used together in case of .NET allocation. There

are important differences between Small and Large Object Heap allocation so the

description is divided into both areas.

When we create a new reference-type object (for example, by using new operator

in C# - see Listing 6-5) it will be translated into CIL instruction newobj (see Listing 6-6).

Listing 6-5. Object creation example in C#

var obj = new SomeClass();

Chapter 6 MeMory alloCation

428

Listing 6-6. Object creation example in Common Intermediate Language

newobj instance void SomeClass::.ctor()

JIT compiler will emit the proper function call for newobj instruction depending on

various conditions. The most typical case is to use one of the allocation helpers. The decision

tree is presented in Figure 6-12. All decisions are based on conditions known during JIT

compilation or even before, during runtime startup. We can spot there two main possibilities:

• If an object exceeds large size threshold (it will be created in LOH) or

it has a finalizer (a special method explained in details in Chapter 12) -

generic and slightly slower JIT_New helper will be used.

• Otherwise faster helper will be used - what specific version will be

chosen depends on the platform and the GC mode.

getNewHelperStatic

Size >
LargeObjectSize

||
HasFinalizer

Platform

Use allocation
context

JIT_New

True False

JIT_NewS_MP_FastPortable

JIT_TrialAllocSFastMP_InlineGetThread

non-Windows Windows

JIT_TrialAllocSFastMP

True False

True in case of
Server GC or

multiple logical
processors

Figure 6-12. Decision tree about choosing allocation helper during JIT
compilation (function names comes from CoreCLR code)

Chapter 6 MeMory alloCation

429

It is important to remember that this decision tree is being used during JIT

compilation and the proper allocation helper will be emitted as a result. Thus, no

overhead comes from it during normal program execution. One of the listed helpers will

be just called later on.

Note in case of creating arrays newarr Cil instruction will be emitted, which
has its own various versions: for example, optimized for creating one- dimensional
object arrays or one-dimensional value type arrays. however, as the allocation
implementation underneath them is essentially the same, it was omitted here for
brevity.

if you would like to dig more into the details of allocation in CoreClr code,
start from Jit compiler reaction on CEE_NEWOBJ opcode implemented in Jit
importer (importer.cpp:Compiler::impImportBlockCode). it decides
what to do - whether it is about creating an array, a string, a value type, or
a reference type. For reference types other than strings and arrays, it calls
CEEInfo::getNewHelper, which runs part of the decision tree from Figure 6-12.
Slower and more generic helper is represented by CORINFO_HELP_NEWFAST
constant and faster by CORINFO_HELP_NEWSFAST. What functions implement
those helpers are decided during runtime startup in InitJITHelpers1 method.
it realizes the other part of the decision tree from Figure 6-12.

 Small Object Heap Allocation
Allocation of small objects that land in a Small Object Heap is based mainly on bump

pointer allocation. The goal is to allocate most of the objects with a bump pointer

technique inside the allocation context as described earlier in this chapter. Only if it fails,

would a slower path of allocation be executed (described later).

The fastest allocation helper in case of SOH realizes an allocation helper from

Listing 6-3 in just a few lines of assembly code (see Listing 6-7). It will be used to

allocate all objects in SOH that do not have a finalizer (based on the decision tree

from Figure 6-12) in case of Server GC mode or in general, on a machine with multiple

logical processors.

Chapter 6 MeMory alloCation

430

a version for running on a single-processor machine is named JIT_
TrialAllocSFastSP and contains a locking mechanism to allow safe access to
a global, single synchronization context.

This is indeed very efficient code consisting of only a few assembly instructions

doing comparison and addition. This is the reason why it is common to say that

“allocations are cheap in .NET”. As we see (with the help of comments), in a fast-path

optimistic scenario it is indeed really fast to “allocate” a memory for an object - we are

just increasing a value of an allocation pointer inside the already zeroed memory inside

allocation context (of already Committed memory).

Listing 6-7. The fastest allocation helper

; As input, rcx contains MethodTable pointer

; As result, rax contains new object address

LEAF_ENTRY JIT_TrialAllocSFastMP_InlineGetThread, _TEXT

 ; Read object size into edx

 mov edx, [rcx + OFFSET__MethodTable__m_BaseSize]

 ; m_BaseSize is guaranteed to be a multiple of 8.

 ; Read Thread Local Storage address into r11

 INLINE_GETTHREAD r11

 ; Read alloc_limit into r10

 mov r10, [r11 + OFFSET__Thread__m_alloc_context__alloc_limit]

 ; Read alloct_ptr into rax

 mov rax, [r11 + OFFSET__Thread__m_alloc_context__alloc_ptr]

 add rdx, rax ; rdx = alloc_ptr + size

 cmp rdx, r10 ; is rdx smaller than alloc_limit

 ja AllocFailed

 ; Update alloc_ptr in TLS

 mov [r11 + OFFSET__Thread__m_alloc_context__alloc_ptr], rdx

 ; Store MT under alloc_ptr address (constituting new object)

 mov [rax], rcx

 ret

Chapter 6 MeMory alloCation

431

AllocFailed:

 jmp JIT_NEW ; fast-path failed, jump to slow-path

LEAF_END JIT_TrialAllocSFastMP_InlineGetThread, _TEXT

If the current allocation context does not fit the required size, the fastest assembly-

based allocator falls back to calling a more generic JIT_NEW helper (the same as used for

objects with finalizer or in LOH). This more generic helper contains inside the slow-path

allocation. It is the necessity of abandoning this fast path that makes the “allocation is

cheap” phrase not always true. Slow path is realized as a quite complex state machine

that tries to find a place with the required size.

How complex is the slow path? Figure 6-13 illustrates a state machine realizing it. It

starts with a_state_start state when the fast allocation described above fails. This state

unconditionally changes into a_state_try_fit, which calls gc_heap::soh_try_fit()

method (see Figure 6-14). And so the whole story begins. There are many possible

decisions, to name a few here are the most important:

• Slow-path starts from trying to use existing, unused space in

ephemeral segment (see Figure 6-14 describing soh_try_fit

method). It will:

• Try to use free list to find a suitable free gap for a new allocation

context (recall Figure 6-4).

• Try to adjust allocation limit inside already Commited memory.

• Try to Commit more memory from Reserved memory and adjust

allocation limit inside.

• If all above fails, garbage collection will be triggered. Depending on

conditions it may be called multiple times.

• If all above fails, allocator is not able to allocate requested memory,

which is a critical situation so handling of OutOfMemoryException starts.

Chapter 6 MeMory alloCation

432

a_state_try_fit

a_state_trigger_ephemeral_gc

a_state_trigger_full_compact_gc

a_state_try_fit_after_cg

a_state_check_and_wait_for_bgc

a_state_try_fit_after_bgc

a_state_trigger_2nd_ephemeral_gc

can_use_existing?

a_state_start

a_state_can_allocate

a_state_cant_allocate

True

commit_failed?

False

True

got_full_compacting_gc?

False True

did_full_compacting_gc?

segment shortage?

True

False

can_use_existing?

False

bgc_in_progress?

True

did_full_compacting_gc

True

False

False

True

True

commit_failed?

False

True False

segment shortage?

True

can_use_existing?

False

True

commit_failed?

False

True
False

can_use_existing?

segment shortage?

False

True

True

False

did_full_compacting_gc?

can_use_existing?

True

False

TrueFalse (Segment shortage or Commit failed)

False

soh_try_fit()

trigger_ephemeral_gc()

soh_try_fit()

check_and_wait_for_bgc()

trigger_full_compact_gc()

Fast allocation path
failed

handle OOM

soh_try_fit()

soh_try_fit()

trigger_ephemeral_gc()

soh_try_fit()

Figure 6-13. Complex state machine of Small Object Heap slow-path allocation

Chapter 6 MeMory alloCation

433

in case of Small object heap allocation, we may find slow-path code in CoreClr’s
gc_heap::allocate_small method, with logic illustrated in Figure 6-13.

triggering GC because of Soh allocation (thus, the most common one) is often
referred to as allocSmall reason in etW data.

a_fit_free_list_p

free list item found?

soh_try_fit

can_use_existing = True

True

size fits in Commited?

a_fit_segment_end_p

adjust limit &
zero memory

size fits in Reserved?

False

True

False

try to Commit more
pages

can_use_existing = False

True

False

pages commited?

True

False

Figure 6-14. Decision tree for soh_try_fit method

Describing the whole state machine from Figure 6-13 is not particularly useful. Those

are quite deep implementation details and may change until this book’s publication

(but I still encourage you to take a moment to analyze it on your own). However, it

is good to note how complex a slow path may become comparing it to the fast-path

allocation (like trying to fit in a free list item, triggering one or even multiple GCs). We

Chapter 6 MeMory alloCation

434

should keep in mind though that the “allocation is cheap” sentence is true only to some

extent. We should understand what allocations involve and use it carefully so we don’t

go and allocate objects unnecessarily or blindly use a heavy-allocating library without

understanding what it does. As we see, even without triggering GC, slow path may be

expensive. In absolutely performance-critical code the best rule about allocations is just

to avoid them at all (which leads us to performance-related Rule 14 - Avoid Allocations).

Please also bear in mind that objects with finalizers are using more generic

allocation helpers by default. And there is an additional overhead related to the

finalization mechanism described in Chapter 12. This makes Rule 25- Avoid Finalizers -

described there valid.

 Large Object Heap Allocation
Allocation of large objects that land in Large Object Heap is based on free-list allocation,

as well as a simplified bump pointer technique at the end of segment space (without using

allocation context). Allocation context and related optimizations are not so important

because the cost of clearing a large object is so dominant. Thus, it does not make sense to

invest a lot of effort in optimizing things that are not going to make a noticeable difference.

Instead, it better take care of possible fragmentation resulting from the fact that in LOH

only Sweeping Garbage Collector is used (until we ask to compact it explicitly).

Therefore, there is no differentiation into a fast and slow path in the LOH allocator. It

always takes the same path very similar to the SOH slow path (see Figure 6-15):

• It starts from trying to use existing, unused space (see Figure 6-16

describing loh_try_fit method). It will:

• try to use free list to find a suitable free gap for an object

In each segment containing LOH:

• try to adjust allocation limit inside already Committed memory,

• try to Commit more memory from Reserved memory and

adjust allocation limit inside.

• If all above fails, garbage collection will be triggered. Depending on

conditions it may be called multiple times.

• If all above fails, allocator is not able to allocate requested memory,

which is a critical situation so handling of OutOfMemoryException starts.

Chapter 6 MeMory alloCation

435

a_state_try_fit

a_state_trigger_full_compact_gc
a_state_aquire_seg

a_state_try_fit_new_seg

a_state_check_retry_seg

a_state_check_and_wait_for_bgca_state_try_fit_after_cg

a_state_aquire_seg_after_cg

a_state_try_fit_new_seg_after_cg

a_state_try_fit_after_bgc

a_state_acquire_seg_after_bgc

a_state_try_fit_no_seg

can_use_existing?

a_state_start

commit_failed?

False

a_state_can_allocate

True

got_full_compacting_gc?

True

False

can_get_new_segment?

did_full_compacting_gc?

False

True

True

False

can_use_existing?

a_state_can_allocate

True

False

a_state_cant_allocate

True

False

can_use_existing?

True

commit_failed?

False

True

False

can_get_new_segment?

True

False

should_retry_gc

should_retry_get_seg

True

False

True

a_state_cant_allocate

False

bgc_in_progress?

False

did_full_compacting_gc?

True

True

False

can_use_existing?

commit_failed?

False

a_state_can_allocate

True

True

False

can_use_existing?

commit_failed?

False
True

True

False

can_get_new_segment?

did_full_compacting_gc?

False

True

True False

can_use_existing?

a_state_cant_allocatea_state_can_allocate

True False

loh_try_fit()

trigger_full_compact_gc()
loh_get_new_seg

loh_try_fit()

loh_try_fit()

loh_get_new_seg

should retry full
compact gc?

should retry get
segment?

check_and_wait_for_bgc()

loh_try_fit()

loh_try_fit()

loh_get_new_seg

loh_try_fit()

NOT USED...

handle OOM

handle OOM

Figure 6-15. Complex state machine of Large Object Heap allocation

Chapter 6 MeMory alloCation

436

in case of large object heap allocation, we may find slow-path code in CoreClr’s
gc_heap::allocate_large method, with logic illustrated in Figure 6-16.

a_fit_free_list_large_p

free list item found?

loh_try_fit

can_use_existing = True

True

size fits in Commited?

a_fit_segment_end_p(seg)

adjust limit &
zero memory

size fits in Reserved?

True

False

try to Commit more
pages

can_use_existing = False

True

pages commited?

True

False

loh_a_fit_segment_end_pFalse

seg = generation_allocation_segment()
while (seg)
{
a_fit_segment_end_p(seg)
seg = heap_segment_next_rw(seg)
}

False

Figure 6-16. Decision tree for loh_try_fit method

Chapter 6 MeMory alloCation

437

As you can see, the state machine for LOH is even more complicated here than

the one shown in Figure 6-13. As in that case, it is not particularly useful to describe

exactly all possible transitions and behaviors here. Please note, however, that in LOH

there is no allocation context used. However, Allocator still has to guarantee a clear

object state after its creation so a memory for it must be zeroed. The cost of zeroing

memory of large objects may be quite significant. Taking into account the latencies

of memory access presented in Chapter 4 (Table 4-2), zeroing an object with a size of

several megabytes can take tens of milliseconds. This can be a very long time for our

application.

It is then important to remember that allocating objects in LOH is even more

expensive than in SOH. And that even more we should avoid it, which leads us to

Rule 15 - Avoid Excessive LOH Allocations. Creating a pool of reusable objects is the

simplest solution to this problem.

Note .net GC is being constantly improved and often a new version of runtime
introduces important improvements. For example, since .net 4.5 (and hence since
.net Core 1.0), loh allocator has been significantly improved to better utilize a
free list with the help of described bucketed approach.

An interesting question may arise. What largest object can we create in .NET? What

is the maximum object’s size? From the very beginning of .NET it was 2 GB. Although

we are rather not used to creating such big single objects, there may be scenarios where

a bigger array is needed. Until .NET 4.5 there were no way to omit this limitation. Since

version 4.5 a new gcAllowVeryLargeObjects setting was added (see Listing 6-8), which

allows us to create objects with size fitting 64-bit signed long value (reduced by small yet

not important value). While it enables arrays that are larger than 2 GB in size, it does not

change other limits on object size or array size:

• The maximum number of elements in an array is UInt32.MaxValue

(which is 2,147,483,591).

• The maximum index in any single dimension is 2,147,483,591

(0x7FFFFFC7) for byte arrays and arrays of single-byte structures, and

2,146,435,071 (0X7FEFFFFF) for other types.

• The maximum size for strings and other non-array objects is

unchanged.

Chapter 6 MeMory alloCation

https://doi.org/10.1007/978-1-4842-4027-4_4#Tab2

438

Listing 6-8. Configuration to enable gcAllowVeryLargeObjects settings (disabled

by default)

<configuration>

 <runtime>

 <gcAllowVeryLargeObjects enabled="true" />

 </runtime>

</configuration>

Where will such a huge object be created? Certainly it will be allocated in one of the

LOH segments as it is bigger than a large object size threshold. Most probably a whole

new segment will be created for this purpose because it is unlikely there is one big

enough already to fit our unimaginable big object. And remember - allocation of such a

big object may take a few seconds due to memory access latency!

 Heap Balancing
As mentioned a few times already, GC in Server Mode manages multiple heaps - one

per each logical processor available to the runtime. As there are multiple managed

heaps, it means that there are multiple ephemeral segments and multiple Large

Object Heap segments. On the other hand, there are multiple managed threads

running in our application. How do those two relate to each other? How is a heap

assigned to the thread?

This requires an earlier answer to yet another question - how are heaps assigned

to logical processors? In the discussion of this subject, we will need the knowledge

from Chapter 4 on CPU cooperation with memory. Obviously, CLR wants to keep the

managed heap as “close” to specific logical CPU (core) as possible (in terms of possible

access times). And it obviously would like to avoid any synchronization overhead

between them. As a consequence, the following design decisions were made:

• In case of OS supporting information about on which core current

thread is being executed (which is true for Windows and probably

most Linux and macOS versions) - each logical CPU is assigned to

a subsequent managed heap and this assignment is never changed.

This allows us to populate CPU caches accordingly during program

Chapter 6 MeMory alloCation

439

execution and do not destroy it too often. On the other hand,

managed heap is never shared between multiple cores to avoid cache

coherency protocols overhead.1

• In case of OS not supporting such information - micro-benchmark

is executed to empirically examine which heap has the best access

times for a particular core.

• If machine uses NUMA groups (mentioned in Chapter 2), heaps

assignment will stay inside single group.

if you are interested in how such a micro-benchmark is being executed, start from
heap_select::access_time method.

When a managed thread starts to allocate, a heap is assigned to it - this one,

which is assigned to the processor on which such thread is being executed. A typical

situation between GC Managed Heaps, threads, and logical cores has been illustrated

in Figure 6-17. Two logical processors are consuming managed memory built with

an all-at-once strategy described in the previous chapter. First CPU has SOH1 and

LOH1 segments assigned. Second CPU has SOH2 and LOH2 segments assigned (so no

segments are shared between them). Note that processors simply use certain memory

regions (isolated thanks to segment concept), but there is no magical mechanism in

memory separating each of them by any kind of OS or hardware support. However,

such isolation allows good cache utilization as each CPU operates on those segments

often and exclusively.

Threads running on CPU #1 (marked as T1 and T2) have their allocation context inside

SOH1. Threads on second CPU (here single one, marked as T3) utilize second heap and so

on, so forth. In LOH allocation context does not exists so it was not illustrated.

1 Sharing heaps between cores may happen, however, if for some reason we configured GC to have
less managed heaps than logical processors.

Chapter 6 MeMory alloCation

440

When a thread is created, the operating system decides on which logical processor

will be executed. This is okay until all managed threads in our application allocate more

or less the same amount of memory. However, there may be situations in which one

or several threads start to allocate much more than others. This can lead to a state of

unbalanced heaps illustrated in Figure 6-18. Thread 3 or 4 allocates much more memory

than threads 1 and 2 (so there is much less space in SOH2). This is an unwanted situation

for two main reasons:

• There will be soon memory shortage in second SOH probably. It will

trigger GC and eventually maybe new SOH segment will have to be

created.

• CPU cache utilization is unbalanced.

SOH1 SOH2

T1 T2 T3

CPU #1

T1 T2

CPU #2

T3

LOH1 LOH2

allocation context
for denoted thread

objects free space

Figure 6-17. Illustration of assigment between logical processors, threads, and GC
Managed Heaps

Chapter 6 MeMory alloCation

441

GC periodically (when allocating) performs a heap balance check. If it will notice

a heap unbalance, it will reassign a heap for most allocating thread. It means that its

allocation context will be moved to the other heap. This obviously would violate the

above- mentioned design patterns as thread executing on one logical core would use

a heap assigned to another logical core. That’s why GC will immediately ask operating

system to move execution of such thread to the corresponding logical CPU. Currently,

such behavior is supported only on Windows via SetThreadIdealProcessor function

call (as other operating systems sometimes simply don’t provide equivalent API).

Thanks to that situation from Figure 6-18, it may be balanced into the situation shown

in Figure 6-19.

SOH1 SOH2

T1 T2 T3

CPU #1

T1 T2

CPU #2

T3

LOH1 LOH2

T4

T4

Figure 6-18. Unbalanced heaps when several threads allocate much more than
others

Figure 6-19. Heap balancing situation from Figure 6-17

Chapter 6 MeMory alloCation

442

Since .NET 4.5 LOH heaps are balanced, which introduced substantial

improvements of allocation performance. The LOH heaps balance technique is the same

as for SOH so it has been omitted here for brevity.

 OutOfMemoryException
As we have seen in the allocator decision trees, sometimes a situation occurs when

the final decision is the lack of possibility to allocate the desired amount of memory.

It is good to stop at this topic for a moment to discuss the related, often repeated

misunderstandings.

First of all, when can OutOfMemoryException happen? As it happens as a very last

decision on the allocation paths described in Figures from 6-12 to 6-15, it means:

• The Garbage Collector has been already triggered. Maybe even more

than once, including full compacting GC, so SOH fragmentation

should not be a problem. There is a very little chance that your

problem is so intermittent and volatile that triggering GC once more

(adding to the GCs induced by allocator) could really help. For sure

OutOfMemoryException does not happen because .NET runtime

has forgotten to call GC to reclaim memory. On the other hand, if

OutOfMemoryException happened during LOH allocation, you may

consider explicitly triggering LOH compaction (as described in

Chapter 7) and trigger GC once more time.

• Allocator failed to prepare memory region with a given size. This may

happen because of two reasons:

• Virtual memory is exhausted so allocator can’t reserve

large enough memory region (for example, to create a

new segment). This may happen mainly because of virtual

memory fragmentation, especially on 32-bit runtimes.

Memory fragmentation confuses real memory usage so if

OutOfMemoryException happens in such a scenario, there still

may be quite a lot of free RAM visible in the system. Remember

the tight virtual address space size limits shown in Table 2-5. A

32-bit runtime has only 2 or 3 GB virtual address space on its own

disposal even on 64-bit systems with plenty of RAM installed!

Chapter 6 MeMory alloCation

https://doi.org/10.1007/978-1-4842-4027-4_2#Tab5

443

• Physical backing store (meaning both RAM and page/swap file)

is exhausted so allocator can’t commit enough memory (for

example, to grow already existing segment). Please note that

operating system manages memory taking into consideration all

processes in the system, not only your application. It may be a

perfectly valid situation when there is still some free RAM visible,

but your application’s total memory consumption (both in RAM

and on disk) is pushing the system to its limits so it declines the

runtime to commit more memory.

I would like to highlight two important conclusions arising from the above facts:

• Triggering GC manually unlikely helps if you hit

OutOfMemoryException (unless it happens while allocating

a large object, when you may consider explicitly trigger LOH

compaction).

• It is normal that you will notice some free RAM while

OutOfMemoryException happens.

How will your application may be improved if you experience

OutOfMemoryException? Consider taking one or more of the following steps:

• Allocate less objects - investigate your memory usage to cut off

unnecessary allocations. As we will see later in this chapter, there are

many sources of allocations and you may be even not aware of some

of them.

• Use objects pooling - one of the solutions to allocate less objects is to

reuse some pool of them. As we will see, there are ready-to-use pools

you can utilize (and you can always write your own).

• Use VM Hoarding - as described in Chapter 5 (especially in case of

32-bit runtimes).

• Recompile to 64-bit - it may be as simple as that because most

probably it will provide big enough virtual address space.

Chapter 6 MeMory alloCation

444

 Scenario 6-1. Out of Memory
Description: One of the .NET Core processes intermittently crashes on the production

environment with OutOfMemoryException exception. We are not able to reproduce

this problem on other environments. It also happens so rarely that it is impossible to

attach a more sophisticated monitoring tool. We would like to capture a full memory

dump to analyze memory consumption, but it is impossible to predict when the

OutOfMemoryException exception will come.

Analysis: The good news it is possible to automatically take a full memory dump when

OutOfMemoryException occurs! This method works both on Windows in case of .NET

Framework and .NET Core. The following steps must be taken:

• By using regedit tool - inside HKEY_LOCAL_MACHINE\SOFTWARE\

Microsoft\.NETFramework key, add (or set if exist already) a

value with name GCBreakOnOOM, type REG_DWORD and value 0x2.

This setting configures emitting Breakpoint Exception when

OutOfMemoryException occurs. Such exception may be then

consumed by DebugDiag.

• Configure DebugDiag rule accordingly:

• add a new rule, select a Crash type rule.

• select “A specific process” and select process of your interest.

• under Advanced Settings, click on Exceptions, then select Add

Exception.

• from the list of exceptions select: 80000003 Breakpoint Exception.

• from the Action Type list select: Full userdump and Action limit

to 1.

• click Save & Close button.

• provide a name for the rule and location where the dump files

will be saved.

• choose Activate the rule now and click Finish.

• From now on your process is monitored and a full dump will be taken

when OutOfMemoryException occurs.

Chapter 6 MeMory alloCation

445

• If this eventually happens, you have a set of possibilities how to

analyze such a dump. You can start by opening it from within

WinDbg. Start from loading the proper SOS extension. Then you may

use analyzeoom command, which will print detailed information

about OutOfMemoryException (see Listing 6-9).

Listing 6-9. Analyzing full memory dump with WinDbg -

OutOfMemoryException information

> .loadby sos coreclr

> !analyzeoom

Managed OOM occurred after GC #4 (Requested to allocate 0 bytes)

Reason: Didn't have enough memory to allocate an LOH segment

Detail: LOH: Failed to reserve memory (50331648 bytes)

You may additionally investigate threads at the time of the dump to find one which

triggered OOM - by using threads command followed by clrstack command (see

Listing 6-10). This will point you directly to the problematic place in your code.

Listing 6-10. Analyzing full memory dump with WinDbg - threads

> !threads

ThreadCount: 3

UnstartedThread: 0

BackgroundThread: 2

PendingThread: 0

DeadThread: 0

Hosted Runtime: no

 Lock

 ID OSID ThreadOBJ State GC Mode GC Alloc Context Domain

 Count Apt Exception

 0 1 3a5c 00a09c60 20020 Preemptive 0715D9C8:00000000 00a0c2e0

 0 Ukn System.OutOfMemoryException 0715d954

 2 2 512c 00a9ba78 21220 Preemptive 00000000:00000000 00a0c2e0

 0 Ukn (Finalizer)

 4 3 5660 00aa7758 21220 Preemptive 00000000:00000000 00a0c2e0

 0 Ukn

Chapter 6 MeMory alloCation

446

> ~0s

> !clrstack

OS Thread Id: 0x3a5c (0)

Child SP IP Call Site

0097ead8 73e008b2 [HelperMethodFrame: 0097ead8]

0097eb5c 06b404bf CoreCLR.LOHWaste.Program.Main(System.String[])

0097ecf0 0f8b926f [GCFrame: 0097ecf0]

0097f004 0f8b926f [GCFrame: 0097f004]

We can proceed with any other memory dump-based analysis mentioned in this

book, including investigating segments and heaps. Bear in mind that code triggering

OutOfMemoryException may not be a direct cause of the problem. It might just be only

one of the threads that could unfortunately hit the moment when the allocator could

not find a good place for a new object. However, the source of the memory congestion

may be somewhere else. Therefore, it is worth taking a close look at the recorded

memory dump for the most numerous objects, the largest objects, their distribution in

generations, and so on and so forth.

 Stack Allocation
So far, we have only touched on allocation of objects on the GC Managed Heap. This is

obviously by far the most popular and commonly used approach. We have seen here

how big an effort was put to make allocation on the heap as fast as possible. However, the

allocation and deallocation on the stack is much faster by default as we remember from

previous chapters. It is just only moving around stack pointer and it does not cause any

overhead on the GC.

As said, value types may be allocated on the stack in certain circumstances. It is good

news though that we may explicitly ask to allocate on the stack. Considering Rule 14 - Avoid

Allocations on the Heap, it can be a very useful option.

To allocate on the stack explicitly in C# one should use stackalloc operator

(see Listing 6-11). It returns a pointer to a requested memory region that will be

located on the stack. Because a pointer type is used, such code must be used in

unsafe code context (unless we use Span<T> type as showed later). The content of

the newly allocated memory is undefined so we should not assume anything about it

(like, for example, being zeroed).

Chapter 6 MeMory alloCation

447

Listing 6-11. Using stackalloc to allocate on the stack explicitly

static unsafe void Test(int t)

{

 SomeStruct* array = stackalloc SomeStruct[20];

}

stackalloc is a very rare creature in the C# code. This is mainly due to the

unconsciousness and misunderstanding of programmers. We can use it, for example, if

we want very high data processing efficiency and we do not want to allocate large tables

on the heap. Profit of such a solution is twofold:

• As previously said, the deallocation of object thus created is as fast

as the deallocation of any other object on the stack - there is no heap

allocation helper, no slow-path possibility, no GC involved at all.

• Address of such object is implicitly pinned (will not move) because

stack frames are never moved - we can safely pass the pointer to such

data to the unmanaged code without introducing pinning overhead.

stackalloc operator is being translated into localloc CIL instruction (see

Listing 6-12). Its description in ECMA standard says (with some parts stripped) that it

“allocates size bytes from the local dynamic memory pool. When the current method

returns, the local memory pool is available for reuse.” Please note it does not say

anything about the stack explicitly but more general “local memory pool” concept is

used (mentioned already in Chapter 4). And as we have already seen in the Chapter 4,

the ECMA standard tries to be technology agnostic and nowhere directly uses concepts

of the stack or the heap.

Listing 6-12. Part of CIL code generated from Listing 6-11 shows how

stackalloc operator has been translated into localloc instruction call

IL_0000: ldc.i4.s 10

IL_0002: conv.u

IL_0003: sizeof SomeStruct

IL_0009: mul.ovf.un

IL_000a: localloc

Chapter 6 MeMory alloCation

448

But what can be allocated on the stack that way? ECMA standard does not say

anything about it regarding localloc instruction and promises only allocation of a

specified number of bytes. As only what CIL guaranties is a block of memory, CLR is

currently not able to use it in other way than just a container for simple data types.

stackalloc operator definition from C# Language Specification describes those

constraints in more details. It says that only an array of “unmanaged_type” may be used.

An unmanaged_type is one of the following:

• primitive types - sbyte, byte, short, ushort, int, uint, long, ulong,

char, float, double, decimal, or bool;

• any enum type;

• any pointer type;

• any user-defined struct that is not a constructed type 2 and contains

fields of unmanaged_types only.

We should remember that there is no way to explicitly free memory allocated using

stackalloc. It will be implicitly released when the method ends. We should remember

about that when intensely using the stack because a large set of long-running methods

may end with StackOverflowException.

localloc instruction is translated by Jit into a series of assembly push and
sub rsp, [size] instructions to grow the stack frame accordingly. this growth
is rounded to 8 and 16 bytes in case of 32 and 64-bit frameworks respectively.
thus, even if you stackalloc array of two integers, which normally may take 8
bytes, the stack frame will be expanded by 16 bytes (for 64-bit framework). this
is because on x64 architecture stack need to be aligned on 16 bytes. if you are
interested in more details, refer for example to documentation at https://docs.
microsoft.com/en-us/cpp/build/stack-allocation

As mentioned before, we are not pushed to use unsafe code when working with

stackalloc. Since C# 7.2 and .NET Core 2.1 there is a Span<T> type (very solicitously

explained in Chapter 15) with support added to it so we can safely write code as from

Listing 6-11.

2 A generic type that includes type arguments.

Chapter 6 MeMory alloCation

https://docs.microsoft.com/en-us/cpp/build/stack-allocation
https://docs.microsoft.com/en-us/cpp/build/stack-allocation

449

Listing 6-13. Using stackalloc to allocate on the stack explicitly within safe

code thanks to Span<T> support.

static void Test(int t)

{

 Span<SomeStruct> array = stackalloc SomeStruct[20];

}

 Avoiding Allocations
Quite a lot has been said so far about allocations and their underlying mechanism. We

are now fully aware that “allocations are cheap” in .NET is sometimes true, thanks to a

bump pointer technique inside allocation contexts. But, there are a few remarks to this

simple rule:

• Allocations are cheap as far as fast path is used. In some cases, in

indeterministic points from the code perspective, allocation context

has to be changed, which will trigger more complex (and thus,

slower) allocation paths.

• Those more complex allocation paths from time to time will trigger

Garbage Collection.

• Allocations of big objects in LOH is slower because it may be mainly

dominated by zeroing memory costs.

• Allocating a lot of objects makes more work for Garbage Collection -

this may be obvious but of great importance. If we allocate a lot of

temporary objects, they will have to be cleaned. The more objects we

create, there is also more chance we break a generational hypothesis

about an object’s lifetime.

Due to the above, one of the most effective methods of memory optimization in

.NET is to avoid allocations or at least be aware of them. Little allocations mean little

memory pressure put on GC, less costly memory accesses, less communication with the

operating system. Thus, one of the main pieces of knowledge that a performance-aware

.NET developer should gain is to know what are the sources of allocations and how they

can be removed or minimized.

Chapter 6 MeMory alloCation

450

This section lists the most common sources of allocations and ways to overcome

them. Please bear in mind, however, a very important remark - we should treat with

full responsibility and awareness the topic of minimizing the allocations. There is such

a popular and sometimes even overused sentence that “premature optimization is the

root of all evil.” Certainly, analyzing every line of the code in terms of the amount of

allocations in each and every place of our program is unnecessary. It can paralyze our

work without giving much in return. Does it matter that a line of code executed once

per minute will allocate 200 bytes instead of 800 bytes? Probably not. It all depends

on requirements put on your code. Thus, analyzing the allocations you do in the most

performance-critical code paths is always a good place to start because reducing those

will cause the most effect.

First of all, you should learn the most common sources of allocation to avoid obvious

mistakes. Or at least be aware of how “heavy” for the memory is the code we are just

writing. Knowing the context of the entire application and the requirements for this

particular part, we will know if it is okay or not. Secondly, knowledge of the sources of

the allocation will be useful when we implement (and we should!) Rule 2 - Measure

GC Early. Only by the measurements we can avoid premature optimization of the

wrong places of our code. Only by the measurements we will find out if there is a need

to minimize the allocations at all. And we will be able to find out where in our code to

concentrate our forces for this purpose.

Please find below a list of the most common sources of allocations. Some of them are

obvious, some not so much. Along with information about their occurrence, information

on whether and how to avoid them is given.

When showing certain mechanisms used by the C# compiler later in this chapter,
it is good to see how it has transformed our original code. this allows us to better
understand what is going underneath and to check if we are unsure. For this
purpose, an excellent dnSpy tool was used again. i encourage you to experiment
with it to better understand the topics described below. play with the code,
change it, decompile - see how it influences code that will be eventually executed
by the runtime.

Chapter 6 MeMory alloCation

451

 Explicit Allocations of Reference Types
Most cases of allocations are obvious - we are creating objects explicitly. This does not

mean, however, that we should trivialize this source. We can consider whether in a given

case we really need a reference type object that will be created on the heap. You can find

below a set of different scenarios and solutions to them.

 General Case - Consider Using Struct

We may tend to use classes just because we do not even think about alternatives. Most

typical scenarios when instead we may use structs passing around small amounts of data

via methods arguments and returns. Listing 4-7 from Chapter 4 illustrated such case and

clearly showed how optimal code could be generated (see Listings 4-8 and 4-9) instead

of just creating a small object on the heap. A benchmark from Table 4-1 presented big

performance difference between those two approaches.

Thus, you may strongly consider using structs when passing around small data from

and to methods if this data is local to those methods (is not stored inside any heap-based

data). In fact, quite a lot of business logic meets these requirements - we get some data,

process it locally, and return some result. Imagine example from Listing 6-14, which

should return full names of all people employed with a given distance from a specified

location. It shows typical usage of collection returned by external service (or repository).

However, quite a lot of objects are created explicitly in this way:

• a list of PersonDataClass objects and PersonDataClass objects

themselves

• employee object returned from external service

Listing 6-14. Example of simple business logic based solely on classes

 [Benchmark]

public List<string> PeopleEmployeedWithinLocation_Classes(int amount,

LocationClass location)

{

 List<string> result = new List<string>();

 List<PersonDataClass> input = service.GetPersonsInBatchClasses(amount);

 DateTime now = DateTime.Now;

 for (int i = 0; i < input.Count; ++i)

Chapter 6 MeMory alloCation

https://doi.org/10.1007/978-1-4842-4027-4_4#Tab1

452

 {

 PersonDataClass item = input[i];

 if (now.Subtract(item.BirthDate).TotalDays > 18 * 365)

 {

 var employee = service.GetEmployeeClass(item.EmployeeId);

 if (locationService.DistanceWithClass(location, employee.

Address) < 10.0)

 {

 string name = string.Format("{0} {1}", item.Firstname,

item.Lastname);

 result.Add(name);

 }

 }

 }

 return result;

}

internal List<PersonDataClass> GetPersonsInBatchClasses(int amount)

{

 List<PersonDataClass> result = new List<PersonDataClass>(amount);

 // Populate list from external source

 return result;

}

What if code from Listing 6-14 was rewritten to use structs where possible? In fact,

data about persons and employees do not leak the PeopleEmployeedWithinLocation_

Classes method so it is safe to store them on stack using structs (see Listing 6-15).

GetPersonsInBatch method may return an array of structs that produces better data

locality and smaller overhead (as mentioned in Chapter 4). External services like

GetEmployeeStruct method may return small structs instead of objects. They may also

take value type arguments by reference(like DistanceWithStruct method) to explicitly

avoid copying.

Listing 6-15. Example of simple business logic based on structs where possible

 [Benchmark]

public List<string> PeopleEmployeedWithinLocation_Structs(int amount,

LocationStruct location)

Chapter 6 MeMory alloCation

453

{

 List<string> result = new List<string>();

 PersonDataStruct[] input = service.GetPersonsInBatchStructs(amount);

 DateTime now = DateTime.Now;

 for (int i = 0; i < input.Length; ++i)

 {

 ref PersonDataStruct item = ref input[i];

 if (now.Subtract(item.BirthDate).TotalDays > 18 * 365)

 {

 var employee = service.GetEmployeeStruct(item.EmployeeId);

 if (locationService.DistanceWithStruct(ref location, employee.

Address) < 10.0)

 {

 string name = string.Format("{0} {1}", item.Firstname,

item.Lastname);

 result.Add(name);

 }

 }

 }

 return result;

}

internal PersonDataStruct[] GetPersonsInBatchStructs(int amount)

{

 PersonDataStruct[] result = new PersonDataStruct[amount];

 // Populate list from external source

 return result;

}

Is code from Listing 6-15 a little “uglier” than from Listing 6-14? Probably a little,

because of passing by reference (and ref local usage, explained in Chapter 14). However,

this may be a matter of personal preference. Code from Listing 6-15 is still readable and

self-descriptive. What we gain is a measurable difference in the number of allocated

memory and thus, triggered GCs (see Table 6-2). The code based on structures allocates

about half of what the code is based on objects. It can be a very significant difference if

we call it very often!

Chapter 6 MeMory alloCation

454

 Tuples - Use ValueTuple Instead

Quite often there is a need to return or pass as an argument a very simple data structure

with only a few fields. If this type is used only once, we may be tempted to use a tuple

or anonymous type instead of defining a class (see Listing 6-16). It is worth it to note

however that both Tuple and anonymous types are reference types and thus, always

created on the heap.

Listing 6-16. Tuples and anonymous types created for data used only once

var tuple1 = new Tuple<int, double>(0, 0.0);

var tuple2 = Tuple.Create(0, 0.0);

var tuple3 = new {A = 1, B = 0.0};

According to the previous point, we should consider using user-defined structs

in such case. However, since C# 7.0, a new value type, has been introduced called a

value tuple represented by ValueTuple structure (see Listing 6-17). This can be a great

replacement for the previously used classes and in some scenarios, it relieves us of the

need to create our own structures.

Listing 6-17. Value tuples introduced in C# 7.0

var tuple4 = (0, 0.0);

var tuple5 = (A: 0, B: 0.0);

tuple5.A = 3;

Typical use case includes returning multiple values from a method. Commonly we

would use a Tuple (or custom class) to contain all results (see ProcessData1 method

from Listing 6-18). However, we may use a perfectly valid value tuple struct containing

just other structs (see ProcessData2 method from Listing 6-18).

Table 6-2. DotNetBenchmark Results for Code from Listings 6-14 and 6-15

Assuming Amount of Value 1,000 (One Thousand Objects or Structures are

Processed)

Method Mean Gen 0 Allocated

PeopleEmployeedWithinLocation_Classes 348.8 us 15.1367 62.60 KB

PeopleEmployeedWithinLocation_Structs 344.7 us 9.2773 39.13 KB

Chapter 6 MeMory alloCation

455

Listing 6-18. Value tuples versus Tuple used to return multiple values from a

method

public static Tuple<ResultDesc, ResultData> ProcessData1(IEnumerable<

SomeClass> data)

{

 // Do some processing

 return new Tuple<ResultDesc, ResultData >(new ResultDesc() { ... }, new

ResultData() { ... });

 // Or use:

 // return Tuple.Create(new ResultDesc() { ... }, new ResultData() {

Average = 0.0, Sum = 10.0 });

}

public static (ResultDescStruct, ResultDataStruct) ProcessData2(IEnumerable

<SomeClass> data)

{

 // Do some processing

 return (new ResultDescStruct() { ... }, new ResultDataStruct() { ... });

}

public class ResultDesc

{

 public int Count;

}

public class ResultData

{

 public double Sum;

 public double Average;

}

public struct ResultDescStruct

{

 public int Count;

}

Chapter 6 MeMory alloCation

456

public struct ResultDataStruct

{

 public double Sum;

 public double Average;

}

This may significantly reduce overhead of returning multiple values from a method

(see Table 6-3). Due to only structs usage, there are no allocations at all in case of

ProcessData2! And the whole function becomes twice faster.

There is also a nice feature of value tuples called deconstruction that allows us

to assign tuples returned from methods to tuples in place. It is also possible to use

discarding of tuples elements to explicitly point out that some elements of the tuple do

not interest us (see Figure 6-15). This may be useful in some scenarios as the compiler

and JIT may use such information to further optimize underlying structure usage.

Listing 6-19. Deconstructing tuple with discarding

(ResultDescStruct desc, _) = ProcessData2(list);

there are planned and possible upcoming changes in orMs to allow materializing
database query results into value tuples and structs. this will make using them much
more practical. Stay tuned to orMs you use or vote for such changes on your own!

 Small Temporary Local Data - Consider Using stackalloc

It has already been shown that the use of structures instead of objects can bring tangible

benefits for local, temporary data. Instead of creating a list of objects, we can use an array

of structures. However, remember that the array of structs is still allocated on the heap -

the only thing we gain is a denser data packing. But we can go further and get rid of any

heap allocations by using stackalloc.

Table 6-3. DotNetBenchmark Results for Code from Listing 6-18

Method Mean Allocated

ProcessData1 11.326 ns 88 B

ProcessData2 5.207 ns 0 B

Chapter 6 MeMory alloCation

457

Imagine a simple method that takes a list of objects, transforms it into some

temporary list, and processes such list to calculate some statistics. The typical LINQ-

based approach is presented in Listing 6-20 but hopefully you can extrapolate it to more

complex cases. Such method allocates a lot – a list of many temporary objects.

Listing 6-20. Example of simple list processing based solely on classes

public double ProcessEnumerable(List<BigData> list)

{

 double avg = ProcessData1(list.Select(x => new DataClass()

 {

 Age = x.Age,

 Sex = Helper(x.Description) ? Sex.Female : Sex.Male

 }));

 _logger.Debug("Result: {0}", avg / _items);

 return avg;

}

public double ProcessData1(IEnumerable<DataClass> list)

{

 // Do some processing on list items

 return result;

}

public class BigData

{

 public string Description;

 public double Age;

}

We could use array of structs here as in the previous examples. Let’s however use

stackalloc instead together with Span<T> to avoid making code unsafe (see Listing 6-21).

Listing 6-21. Example of simple list processing based solely on structs and

stackalloc

public double ProcessStackalloc(List<BigData> list)

{

 // Dangerous!

Chapter 6 MeMory alloCation

458

 Span<DataStruct> data = stackalloc DataStruct[list.Count];

 for (int i = 0; i < list.Count; ++i)

 {

 data[i].Age = list[i].Age;

 data[i].Sex = Helper(list[i].Description) ? Sex.Female : Sex.Male;

 }

 double result = ProcessData2(new ReadOnlySpan<DataStruct>(data));

 return result;

}

// Pass Span as read-only to explictly say it should not be modified

public double ProcessData2(ReadOnlySpan<DataStruct> list)

{

 // Do some processing on list[i] items

 return result;

}

New code version makes a huge difference (see Table 6-4). In fact, the improved

version does not allocate at all and is about four times faster! This is for sure worth

considering if such code was on our hot path.

Table 6-4. DotNetBenchmark Results for Code

from Listings 6-20 and 6-21 - Processing 100

Elements

Method Mean Allocated

ProcessEnumerable 2,208.6 ns 3272 B

ProcessStackalloc 542.9 ns 0 B

However, please bear in mind that stackalloc should be rather used for small

buffers (like not exceeding 1 kB). The main risk when using stackalloc approach

is StackOverflowException, which may happen if there is not enough stack space

left. StackOverflowException is one of those uncatchable exceptions that will kill

your entire application without the possibility to mitigate it. Thus, it is risky to use

too big of buffers. That’s why the stack-allocating line in Listing 6-21 is commented as

dangerous.

Chapter 6 MeMory alloCation

459

Allocating large data on the stack is even not so good from a performance

perspective because populating a big memory region on a thread’s stack will bring a lot

of its memory pages into working set (incurring page faults). But those pages are not

shared between other threads so it may be a wasteful approach.

If you decide to use stackalloc and want to be 100% sure that

StackOverflowException will not happen, you may be tempted to use

RuntimeHelpers.TryEnsureSufficientExecutionStack() or RuntimeHelpers.

EnsureSufficientExecutionStack() methods. As documentation says, each of

this method: “ensures that the remaining stack space is large enough to execute

the average .NET Framework function.” The current value is 128 kB and 64 kB for

64- and 32-bit environments respectively. In other words, if RuntimeHelpers.

TryEnsureSufficientExecutionStack() returns true, it is probably safe to

stackalloc buffer with size below 128 kB. I mean probably, because those values

are implementation details and are not guaranteed - only space for “average .NET

Framework function” is ensured, which probably does not include a large stackalloc.

In other words, it is only safe to stackalloc really small buffers (mentioned before 1 kB

size seems to be a good value).

 Creating Arrays - Use ArrayPool

We have already seen in Table 6-2 is that operating on temporary arrays of structs

instead of object’s collections may be substantially beneficial. However, allocating

array of structs each time as it is needed provides overhead - both in terms of

performance and introduced memory traffic. It may be especially noticeable for

large buffers. For such scenarios the best solution is to utilize objects pooling - reuse

objects from pool of preallocated objects. For exactly that purpose an ArrayPool has

been introduced (available in System.Buffers package) - a pool of reusable managed

arrays.

It manages set of various-sized arrays of a given type, grouped into buckets. Those

may be both reference and value types. Pooling arrays of a value typed object seems to

be more efficient as we are pooling both the array and all their objects.

Each of 17 buckets in the default ArrayPool contains arrays twice as large as the

previous ones, starting with the first containing 16-element arrays so it contains the

following lengths: 16, 32, 64, 128, 256, 512, 1,024, 2,048, 4,096, 8,192, 16,384, 3,2768,

65,536, 131,072, 262,144, 524,288 and 1,04,8576. Please not that all those arrays are

created on demand so there is no overzealous and rash allocation of so many arrays.

Chapter 6 MeMory alloCation

460

Such default pool of arrays is accessible as static ArrayPool<T>.Shared instance.

When we need an array, we call Rent on it. And when it is no longer needed, we call

Return to return it to the pool (see Listing 6-22).

Listing 6-22. Sample ArrayPool usage

var pool = ArrayPool<int>.Shared;

int[] buffer = pool.Rent(minLength);

try

{

 Consume(buffer);

}

finally

{

 pool.Return(buffer);

}

Please note that Rent method ensures returning an array with at least the specified

length. Most probably it will be bigger because it will be rounded up to the nearest

bucket size, not smaller than the requested size.

ArrayPool<T>.Shared returns an instance of TlsOverPerCoreLockedStack
sArrayPool<T> class, which uses quite sophisticated caching techniques - there
is a small per-thread cache of each array size and shared by all threads cache
split into per-core stacks (hence its name). We will return to it for a minute when
describing thread local Storage (tlS) in Chapter 13.

Let’s now use ArrayPool by slightly changing PeopleEmployeedWithinLocation_

Structs example from Listing 6-15. This time, instead of creating plain array each time,

we are consuming a pooled array from default ArrayPool instance (see Listing 6-23).

Listing 6-23. Example of simple business logic based on structs and ArrayPool.

public List<string> PeopleEmployeedWithinLocation_ArrayPoolStructs(int

amount, LocationStruct location)

{

Chapter 6 MeMory alloCation

461

 List<string> result = new List<string>();

 PersonDataStruct[] input = service.GetDataArrayPoolStructs(amount);

 DateTime now = DateTime.Now;

 for (int i = 0; i < amount; ++i)

 {

 ref PersonDataStruct item = ref input[i];

 if (now.Subtract(item.BirthDate).TotalDays > Constants.MaturityDays)

 {

 var employee = service.GetEmployeeStruct(item.EmployeeId);

 if (locationService.DistanceWithStruct(ref location, employee.

Address) < Constants.DistanceOfInterest)

 {

 string name = string.Format("{0} {1}", item.Firstname, item.

Lastname);

 result.Add(name);

 }

 }

 }

 ArrayPool<InputDataStruct>.Shared.Return(input);

 return result;

}

internal PersonDataStruct[] GetDataArrayPoolStructs(int amount)

{

 PersonDataStruct[] result = ArrayPool<PersonDataStruct>.Shared.

Rent(amount);

 // Populate array from external source

 return result;

}

Comparing code from Listing 6-23 to code from Listings 6-14 (using collection of

objects) and 6-15 (using allocated array of structs) reveals how much we can gain from

using ArrayPool (see Table 6-5). New code allocates only around 3.5% of what the

standard code based on arrays (and triggers no GC during benchmark). This may be of

great value when memory consumption is subject to strict restrictions. Remember that all

those kilobytes that make this difference would need to be reclaimed by Garbage Collector!

Chapter 6 MeMory alloCation

462

Such results as presented in table 6-5 are interesting. But we should be aware
that they can also be misleading - such synthetic benchmarks may not reflect
well real-world behavior. For example, if you had hundreds of these operations
in flight concurrently, only a small portion of them are going to actually succeed
in getting an array from the pool; the rest will pay the cost of a pool lookup
but end up still having to fall back to allocating the array, anyway. We should
assume results from table 6-5 as the best-case scenario, while not necessarily
expecting such great memory usage improvement in a real-world, multithreaded
application.

ArrayPool may be a default choice when your code needs to operate on large

buffers frequently. Instead of allocating them over and over again, reuse them with

the help of this class. More and more libraries are starting to support ArrayPool (and

as mentioned already, .NET standard library also uses it extensively). As an example

might serve the extremely popular Json.NET library. We can use it in a standard way by

utilizing JsonTextReader or JsonTextWriter (see Listing 6-24). But since 8.0 version

Json.NET supports using array pools for its internal working (see Listing 6-25), we can

specify implementation of its IArrayPool interface, which is based on ArrayPool (see

JsonArrayPool in Listing 6-25).

Table 6-5. DotNetBenchmark Results for Code from Listings 6-14 and 6-15 and 6-23

Assuming Amount of Value 1000 (One Thousand Objects or Structures Are Processed)

Method Mean Gen 0 Allocated

PeopleEmployeedWithinLocation_Classes 348.8 us 15.1367 62.66 KB

PeopleEmployeedWithinLocation_Structs 344.7 us 9.2773 39.13 KB

PeopleEmployeedWithinLocation_
ArrayPoolStructs

343.4 us - 1.35 KB

Chapter 6 MeMory alloCation

463

Listing 6-24. Example of standard usage of Json.NET library

public IList<int> ReadPlain()

{

 IList<int> value;

 JsonSerializer serializer = new JsonSerializer();

 using (JsonTextReader reader = new JsonTextReader(new

StringReader(Input)))

 {

 value = serializer.Deserialize<IList<int>>(reader);

 return value;

 }

}

Listing 6-25. Example of ArrayPool usage in Json.NET library

public int[] ReadWithArrayPool()

{

 JsonSerializer serializer = new JsonSerializer();7

 using (JsonTextReader reader = new JsonTextReader(new

StringReader(Input)))

 {

 // reader will get buffer from array pool

 reader.ArrayPool = JsonArrayPool.Instance;

 var value = serializer.Deserialize<int[]>(reader);

 return value;

 }

}

public class JsonArrayPool : IArrayPool<char>

{

 public static readonly JsonArrayPool Instance = new JsonArrayPool();

 public char[] Rent(int minimumLength)

 {

 // get char array from System.Buffers shared pool

 return ArrayPool<char>.Shared.Rent(minimumLength);

 }

Chapter 6 MeMory alloCation

464

 public void Return(char[] array)

 {

 // return char array to System.Buffers shared pool

 ArrayPool<char>.Shared.Return(array);

 }

}

By providing ArrayPool to the Json.NET serializer, memory allocations may be

significantly reduced (see Table 6-6). Please note this buffer is used internally by Json.

NET to store an array of chars. Currently it is not possible to deserialize into buffered

array (int[] in our example), which also would be very a desirable possibility.

Table 6-6. DotNetBenchmark Results for Code

from Listings 6-24 and 6-25

Method Mean Allocated

ReadPlain 14.58 us 6.10 KB

ReadWithArrayPool 13.37 us 4.42 KB

One important remark. There is yet another ArrayPool<T> implementation that

may be created with the help of ArrayPool<T>.Create(int maxArrayLength, int

maxArraysPerBucket) method - called ConfigurableArrayPool<T>. It has a little

simpler implementation based on buckets also, without usage of thread local storage.

But, as you can see in Create method’s signature, you can configure it to have a specified

number of arrays in each bucket and the maximum cached array size (incurring number

of buckets). The default maximum length of array in such pool is 1024*1024 (1 048 576)

elements and by default there are 50 arrays in a bucket.

When using ArrayPool (whenever shared or created) it is worth it to monitor its

usage with custom ETW provider named System.Buffers.ArrayPoolEventSource. For

example, we can collect its data with the help of PerfView. When defining collection

properties in the Collect dialog box type in Additional Providers field:

• *System.Buffers.ArrayPoolEventSource - if you want to collect

only event’s data

• *System.Buffers.ArrayPoolEventSource:::@StacksEnabled=true -

if you want also to record stack traces of the events

Chapter 6 MeMory alloCation

465

In that way we will be able to see all array renting and allocations (see Figure 6-20).

We should be particularly interested in the event BufferAllocated with the reason for

OverMaximumSize and PoolExhausted. If they occur frequently, the current ArrayPool

configuration probably does not suit your needs. In case of frequent OverMaximumSize

probably our pool has too small of a maximum pool size set. In case of PoolExhausted

maybe it is worth it to increase the number of arrays in a bucket. There is also Pooled

reason for BufferAllocated event, used currently only by ConfigurableArrayPool ,

when a new array had to be allocated inside a bucket.

There is one caveat when using ArrayPool. Remember that pooled arrays will live

forever - there is no “timing out” mechanism. This is ok if your arrays usage is quite

constant and spread over time. If you, however, need only a single burst of allocations,

you may grow your working set forever without much benefit. Please take into account

such “reusage ratio” of your buffers when considering usage of ArrayPool.

please note that ArrayPool is one of the mainstream improvements in .net Core
development (for example, it was significantly improved between .net Core 2.0
and 2.1). While the overall description presented here will not change, implementation
details may change in the next releases. one of the examples include the above-
mentioned trimming mechanism, which may be include some day.

Figure 6-20. ETW events generated by ArrayPool as seen by PerfView tool

Chapter 6 MeMory alloCation

466

 Creating Streams - Use RecyclableMemoryStream

If we use the System.IO.MemoryStream class extensively in our application, you

should consider using the pool of these objects. Pooling for .NET MemoryStream

objects has been implemented in Microsoft.IO.RecyclableMemoryStream package

by RecyclableMemoryStream and RecylableMemoryStreamManager classes. As the

comments in the code of these classes perfectly explain, intense use of MemoryStream is

associated with the following undesirable effects:

• LOH allocations - since MemoryStream's internal buffers tend to be

large, they will be allocated in LOH, which is costly both in terms of

allocation and memory reclamation.

• Memory waste - MemoryStream internal buffer doubles its size when

it becomes too small. This leads to continuous memory growth and

allocating bigger and bigger arrays all over again.

• Memory copying - each time a MemoryStream grows, all the bytes

are copied into new buffers, which introduces quite large memory

traffic.

• All these constant internal buffers’ re-creation may lead to

fragmentation.

RecyclableMemoryStream was designed to overcome all those problems. It is worth

citing here a good description in the comments to the class RecyclableMemoryStream:

“The stream is implemented on top of a series of uniformly-sized blocks. As the stream’s

length grows, additional blocks are retrieved from the memory manager. It is these

blocks that are pooled, not the stream object itself.

The biggest wrinkle in this implementation is when GetBuffer() is called. This

requires a single contiguous buffer. If only a single block is in use, then that block is

returned. If multiple blocks are in use, we retrieve a larger buffer from the memory

manager. These large buffers are also pooled, split by size--they are multiples of a chunk

size (1 MB by default).”

Example usage of standard MemoryStream to serialize an object has

been presented in Listing 6-26. In addition to creating XmlWriter and

DataContractSerializer (which should be cached), it also creates a new

MemoryStream. It may lead to the above-mentioned problems if serialized objects are

big and serialization happens often.

Chapter 6 MeMory alloCation

467

Listing 6-26. Example of XML serialization by using DataContractSerializer and

MemoryStream

public string SerializeXmlWithMemoryStream(object obj)

{

 using (var ms = new MemoryStream())

 {

 using (var xw = XmlWriter.Create(ms, XmlWriterSettings))

 {

 var serializer = new DataContractSerializer(obj.GetType());

// could be cached!

 serializer.WriteObject(xw, obj);

 xw.Flush();

 ms.Seek(0, SeekOrigin.Begin);

 var reader = new StreamReader(ms);

 return reader.ReadToEnd();

 }

 }

}

In case of high stream utilization RecyclableMemoryStream should be considered

(see Listing 6-27). A RecyclableMemoryStreamManager needs to be created that can then

provide pooled stream from its GetStream method. Such stream implements IDisposable

in a way that memory used by it will be returned to the pool while disposing. A set of

parameters may be passed when manager is created (Listing 6-27 shows default values):

• blockSize - size of each block that is pooled

• largeBufferMultiple - each large buffer will be a multiple of this value

• maximumBufferSize - buffers larger than this will not be pooled

Listing 6-27. Example of XML serialization by using DataContractSerializer and

RecyclableMemoryStream

static RecyclableMemoryStreamManager manager =

 new RecyclableMemoryStreamManager(blockSize: 128 * 1024,

 largeBufferMultiple: 1024 * 1024,

 maximumBufferSize: 128 * 1024 * 1024);

Chapter 6 MeMory alloCation

468

public string SerializeXmlWithRecyclableMemoryStream<T>(T obj)

{

 using (var ms = manager.GetStream())

 {

 using (var xw = XmlWriter.Create(ms, XmlWriterSettings))

 {

 var serializer = new DataContractSerializer(obj.GetType()); //

could be cached!

 serializer.WriteObject(xw, obj);

 xw.Flush();

 ms.Seek(0, SeekOrigin.Begin);

 var reader = new StreamReader(ms);

 return reader.ReadToEnd();

 }

 }

}

When using RecyclableMemoryStream it is worth it to monitor its usage with custom

ETW provider named Microsoft-IO-RecyclableMemoryStream. We can collect its data

with the help of PerfView. When defining collection properties in the Collect dialog box

type in Additional Providers field:

• *Microsoft-IO-RecyclableMemoryStream - if you want to collect

only event’s data

• *Microsoft-IO-RecyclableMemoryStream:::

@StacksEnabled=true - if you want also to record stack traces of the

events

Note During my experiments with RecyclableMemoryStream enabling etW
provider by its name was not working properly. i needed to refer to it by its Guide.
thus, you may also need to type B80CD4E4-890E-468D-9CBA-90EB7C82DFC7
instead of *Microsoft-IO-RecyclableMemoryStream as an additional
provider.

Chapter 6 MeMory alloCation

469

RecyclableMemoryStream may provide quite detailed insight into its pool usage (see

Figure 6-21). You may be especially interested in MemoryStreamOverCapacity event that

informs about requesting a buffer larger than the provided maximum buffer size.

Note When using Streams intensively, you should also consider using System.
IO.Pipelines api. it provides much more efficient and less allocating
substitution of Streams. it is described in more detail in Chapter 14.

 Creating a Lot of Objects - Use Object Pool

Like it is with collections, when using some type of object very extensively, you may

consider using that object’s pool. Please bear in mind however that if you allocate a lot of

objects just to throw them away shortly, it still holds generational hypothesis. Hence, it

might be just ok. Garbage Collector will clean them in generation 0 quickly. You should

mainly consider object’s pooling in one of the following scenarios:

• Objects are allocated on so an important and hot path, which

each single CPU cycle counts - in this case avoiding object

allocations (especially its slow path) by providing more stable

mechanism may be beneficial. Properly written object pool

should utilize CPU cache nicely so operating on pooled objects

may be really fast.

• Objects are big enough to be worried about its allocation cost - in this

case we may avoid memory zeroing overhead (especially for LOH

objects). Additionally, to the allocation cost itself, we may be worried

about object’s initialization cost - if it’s very complicated to initialize

Figure 6-21. ETW events generated by RecyclableMemoryStream as seen by
PerfView tool

Chapter 6 MeMory alloCation

470

fields of an object, we would not want to create new ones again and

again. Thus, we can benefit from reusing already initialized object (if

it is appropriate).

Writing a good object pool is not trivial though. It could be so if we considered only

a single-threaded environment. But making an object pool thread safe without overhead

of synchronization mechanisms is not so easy. Many trivial implementations may hurt

our performance more than original objects’ allocations. Listing 6-28 provides a well-

tested sample implementation solely based on the great ObjectPool class from Roslyn

C# compiler (with original comments explaining performance-driven details).

Listing 6-28. ObjectPool implementation based on ObjectPool class from Roslyn

compiler

public class ObjectPool<T> where T : class

{

 private T firstItem;

 private readonly T[] items;

 private readonly Func<T> generator;

 public ObjectPool(Func<T> generator, int size)

 {

 this.generator = generator ?? throw new ArgumentNullException

("generator");

 this.items = new T[size - 1];

 }

 public T Rent()

 {

 // PERF: Examine the first element. If that fails, RentSlow will

look at the remaining elements.

 // Note that the initial read is optimistically not synchronized.

That is intentional.

 // We will interlock only when we have a candidate. in a worst case

we may miss some recently returned objects. Not a big deal.

 T inst = firstItem;

 if (inst == null || inst != Interlocked.CompareExchange

(ref firstItem, null, inst))

Chapter 6 MeMory alloCation

471

 {

 inst = RentSlow();

 }

 return inst;

 }

 public void Return(T item)

 {

 if (firstItem == null)

 {

 // Intentionally not using interlocked here.

 // In a worst case scenario two objects may be stored into same

slot.

 // It is very unlikely to happen and will only mean that one of

the objects will get collected.

 firstItem = item;

 }

 else

 {

 ReturnSlow(item);

 }

 }

 private T RentSlow()

 {

 for (int i = 0; i < items.Length; i++)

 {

 // Note that the initial read is optimistically not

synchronized. That is intentional.

 // We will interlock only when we have a candidate. in a worst

case we may miss some recently returned objects. Not a big

deal.

 T inst = items[i];

 if (inst != null)

 {

 if (inst == Interlocked.CompareExchange(ref items[i],

null, inst))

Chapter 6 MeMory alloCation

472

 {

 return inst;

 }

 }

 }

 return generator();

 }

 private void ReturnSlow(T obj)

 {

 for (int i = 0; i < items.Length; i++)

 {

 if (items[i] == null)

 {

 // Intentionally not using interlocked here.

 // In a worst case scenario two objects may be stored into

same slot.

 // It is very unlikely to happen and will only mean that

one of the objects will get collected.

 items[i] = obj;

 break;

 }

 }

 }

}

 Async Methods Returning Task - Use ValueTask

Since async was introduced in the C# 5.0, it has become almost a canonical way of

programming. Actually, everywhere we see an asynchronous code. It is worth knowing

how its use corresponds to the memory consumption. Take, for example, a simple

asynchronous code for reading the entire contents of a file (see Listing 6-29). It first

checks synchronously whether file exists and only if yes, it asynchronously awaits for the

file operation to end.

Chapter 6 MeMory alloCation

473

Listing 6-29. An example of asynchronous method

public async Task<string> ReadFileAsync(string filename)

{

 if (!File.Exists(filename))

 return string.Empty;

 return await File.ReadAllTextAsync(filename);

}

Probably the majority of .NET programmers are already aware that applying the

keyword async turns the method into a rather complicated state machine. This state

machine is responsible for the proper processing of planned steps when subsequent

asynchronous actions are completed. If we look at the code generated by the

compiler on the basis of the ReadFileAsync method from Listing 6-29, we will see

the code from Listing 6-30. The method has been transformed into a code starting

the state machine represented by the enigmatically named object Program.<ReadFil

eAsync>d__14. There are many good descriptions of this mechanism, so let us skip it

here for brevity.

Listing 6-30. Method ReadFileAsync from Listing 6-29 after transformation

made by the compiler

[AsyncStateMachine(typeof(Program.<ReadFileAsync>d__14))]

public Task<string> ReadFileAsync(string filename)

{

 Program.<ReadFileAsync>d__14 <ReadFileAsync>d__;

 <ReadFileAsync>d__.filename = filename;

 <ReadFileAsync>d__.<>t__builder = AsyncTaskMethodBuilder<string>.

Create();

 <ReadFileAsync>d__.<>1__state = -1;

 AsyncTaskMethodBuilder<string> <>t__builder = <ReadFileAsync>d__.<>t__

builder;

 <>t__builder.Start<Program.<ReadFileAsync>d__14>(ref <ReadFileAsync>d__);

 return <ReadFileAsync>d__.<>t__builder.Task;

}

Chapter 6 MeMory alloCation

474

From our point of view, the following facts are important (supported by the code

from Listing 6-31):

• In compiler-generated code from Listing 6-30 all is a struct (including

Program.<ReadFileAsync>d__14 and AsyncTaskMethodBuilder<str

ing>) - this is a great example of conscious use of structures where it

would be tempting to use classes without thinking.

• <ReadFileAsync>d__14 - compiler-generated structure representing

state machine - will be boxed if asynchronous operation does not end

instantly (which happens inside AwaitUnsafeOnCompleted visible

in Listing 6-31)3 - in such case “state” must escape current method

because asynchronous operation may continue on different thread

that it was initially started. Thus, it must land on the heap rather than

stay on the stack. However, making <ReadFileAsync>d__14 struct still

makes sense because there may be common paths where such boxing

will not occur (see case of File.Exists returning false in Listing 6-31).

• Compiler-generated structure representing state machine

remembers (captures) all necessary local variables of the method

(filename in our example) - we should be aware of this because

in that way we may prolong their life significantly if state machine

(<ReadFileAsync>d__14) gets heap allocated.

Listing 6-31. Struct representing a state machine for ReadFileAsync method

from Listing 6-30

[CompilerGenerated]

[StructLayout(LayoutKind.Auto)]

private struct <ReadFileAsync>d__14 : IAsyncStateMachine

{

 void IAsyncStateMachine.MoveNext()

 {

 int num = this.<>1__state;

 string result;

 try

3 This works differently starting in .NET Core 2.1. It’s still moved to the heap, but as a strongly
typed field on a class rather than being boxed

Chapter 6 MeMory alloCation

475

 {

 TaskAwaiter<string> awaiter;

 if (num != 0)

 {

 if (!File.Exists(this.filename))

 {

 result = string.Empty;

 goto IL_A4;

 }

 awaiter = File.ReadAllTextAsync(this.filename,

default(CancellationToken)).GetAwaiter();

 if (!awaiter.get_IsCompleted())

 {

 this.<>1__state = 0;

 this.<>u__1 = awaiter;

 this.<>t__builder.AwaitUnsafeOnCompleted<TaskAwaiter

<string>, Program.<ReadFileAsync>d__14>(ref awaiter, ref

this);

 return;

 }

 }

 else

 {

 awaiter = this.<>u__1;

 this.<>u__1 = default(TaskAwaiter<string>);

 this.<>1__state = -1;

 }

 result = awaiter.GetResult();

 }

 catch (Exception exception)

 {

 this.<>1__state = -2;

 this.<>t__builder.SetException(exception);

 return;

 }

Chapter 6 MeMory alloCation

476

 IL_A4:

 this.<>1__state = -2;

 this.<>t__builder.SetResult(result);

 }

}

In addition to the possible overhead resulting from a heap-allocating state machine,

there is yet another caveat related to the async method. If we trace exactly what is

happening in the code from Listing 6-31 for the case when the file does not exist, we see

that after goto statement a SetResult is called on AsyncTaskMethodBuilder<string>

struct. This is theoretically a very fast synchronous path without any asynchronous waiting

overhead. However, mentioned SetResult method introduces allocation of the Task

object to contain a result of the method (see Listing 6-32).

Listing 6-32. AsyncTaskMethodBuilder struct

public struct AsyncTaskMethodBuilder<TResult>

{

 public static AsyncTaskMethodBuilder<TResult> Create()

 {

 return default(AsyncTaskMethodBuilder<TResult>);

 }

 public void Start<TStateMachine>(ref TStateMachine stateMachine) where

TStateMachine : IAsyncStateMachine

 {

 // ...

 stateMachine.MoveNext();

 }

 // ...

 public void SetResult(TResult result)

 {

 Task<TResult> task = this.m_task;

 if (task == null)

Chapter 6 MeMory alloCation

477

 {

 this.m_task = this.GetTaskForResult(result);

 return;

 }

 // ...

 }

 public Task<TResult> Task

 {

 get

 {

 Task<TResult> task = this.m_task;

 if (task == null)

 {

 task = (this.m_task = new Task<TResult>());

 }

 return task;

 }

 }

}

GetTaskForResult called inside SetResult will most probably allocate a new

Task wrapping provided result, but with some exceptions made for performance

reasons:

• for Task<bool> it returns one of the two cached objects (for true and

false values),

• for Task<int> it returns cached object for values from -1 to 9 but will

create a new Task for other values,

• for many numerical Task<T> it returns cached object for value 0,

• for reference types it returns cached task for value null,

• for other cases it creates a new Task.

It is not very efficient to allocate a Task object just to use it to pass the result value. If

our async method is called very often and such a synchronous fast answer is common,

we are introducing a lot of unnecessary allocations of the Task object. Exactly for that

Chapter 6 MeMory alloCation

478

purposes, a lightweight version of Task has been introduced called ValueTask. It is in

fact a struct made as a discriminated union - a type that may take one of three possible

values (see Listing 6-33):

• Ready-to-use result (if the operation completed successfully

 synchronously).

• A normal Task that may be awaited on

• It can also wrap an IValueTaskSource<T>, which can be

implemented by arbitrary objects to be represented by ValueTask<T>

(currently available only in .NET Core 2.1). These objects can then be

pooled and reused to minimize allocation.

Listing 6-33. ValueTask introduced in C# 7.0 (version as in .NET Core 2.1)

public struct ValueTask<TResult>

{

 // null if _result has the result, otherwise a Task<TResult> or a

IValueTaskSource<TResult>

 internal readonly object _obj;

 internal readonly TResult _result;

}

The corresponding AsyncValueTaskMethodBuilder<TResult> in its SetResult

method sets the result (if it is already available) or just creates a Task in a normal

way described above (if regular asynchronous path is to be taken). In that way we

may avoid allocation completely in case of a synchronous answer of async method.

This, in fact, requires nothing more than changing return type from Task<T> to

ValueTask<T> (see Listing 6-34). The compiler will take care of the rest by using

AsyncValueTaskMethodBuilder instead of AsyncTaskMethodBuilder.

Listing 6-34. An example of ValueTask usage

public async ValueTask<string> ReadFileAsync2(string filename)

{

 if (!File.Exists(filename))

 return string.Empty;

 return await File.ReadAllTextAsync(filename);

}

Chapter 6 MeMory alloCation

479

When consuming ValueTask-returning async methods, we may simply await it

as any other regular async method. Only in the tightest of tight loops, on absolutely

critical performance paths, we may additionally check whether it is already completed

and use Result if so (see Listing 6-35). This will be solely based on structs so no

allocation occurs. If task has not completed, then normal Task-driven path should be

started.

Listing 6-35. Usage of an async method returning ValueTask

var valueTask = ReadFileAsync2();

if(valueTask.IsCompleted)

{

 return valueTask.Result;

}

else

{

 return await valueTask.AsTask();

}

There is yet another optimization possible. As already stated, in case of

asynchronous path, Task must be still allocated. But if it is really frequently called on

our performance-critical path, it would be great to remove this allocation also. For this

reason, above-mentioned IValueTaskSource has been introduced. Since then we can

create ValueTask that is wrapping instance of such interface implementation - which is

beneficial if such instance is cached or pooled. In other words, asynchronous operation

is then represented by such cached or pooled instance (see Listing 6-36). Therefore,

there is no need for Task allocations at all.

Listing 6-36. An example of ValueTask usage backed by IValueTaskSource

implementation

public ValueTask<string> ReadFileAsync3(string filename)

{

 if (!File.Exists(filename))

 return new ValueTask<string>("!");

 var cachedOp = pool.Rent();

 return cachedOp.RunAsync(filename, pool);

}

Chapter 6 MeMory alloCation

480

private ObjectPool<PooledValueTaskSource> pool =

 new ObjectPool<PooledValueTaskSource>(() => new

PooledValueTaskSource (), 10);

When implementing IValueTaskSource interface, we must implement three

following methods:

• GetResult - called only once, when the async state machine needs to

obtain the result of the operation;

• GetStatus - called by the async state machine to check the status of

the operation;

• OnCompleted - called by the async state machine when wrapping

ValueTask has been awaited. We should remember here the

continuation to be called when the operation completes (but if

it already has been completed, we should call the continuation

immediately);

Additionally, for convenience, such type should provide a method to start the

operation and a method to react on the operation completion.

having said that, we should be aware that implementing fully working, functional,
and thread-safe IValueTaskSource is by far trivial. including here whole
PooledValueTaskSource implementation (used in listing 6-36) altogether
with all appropriate explanations is much more than this book can hold. it is
also expected that only a few developers will in fact need to implement it.
however, please refer to the accompanied source on Github to see the whole
PooledValueTaskSource implementation (with extensive comments) and a
dedicated blog post at http://tooslowexception.com/implementing-
custom-ivaluetasksource-async-without-allocations/.

Please note we should not treat ValueTask as a default replacement of Task wherever

we used it so far. Most often it is not worth the performance difference we could gain.

However, such difference may pay off in very intensively used code when our async

method often ends synchronously. There are also trade-offs to using a ValueTask instead

of Task, greatly explained in the ValueTask’s API:

Chapter 6 MeMory alloCation

http://tooslowexception.com/implementing-custom-ivaluetasksource-async-without-allocations/
http://tooslowexception.com/implementing-custom-ivaluetasksource-async-without-allocations/

481

• “while a ValueTask<TResult> can help avoid an allocation in the

case where the successful result is available synchronously, it also

contains two fields whereas a Task<TResult> as a reference type is

a single field. This means that a method call ends up returning two

fields worth of data instead of one, which is more data to copy. It also

means that if a method that returns one of these is awaited within an

async method, the state machine for that async method will be larger

due to needing to store the struct that’s two fields instead of a single

reference.”

• “Further, for uses other than consuming the result of an

asynchronous operation via await, ValueTask<TResult> can

lead to a more convoluted programming model, which can in

turn actually lead to more allocations. For example, consider

a method that could return either a Task<TResult> with a

cached task as a common result or a ValueTask<TResult>. If the

consumer of the result wants to use it as a Task<TResult>, such

as to use with in methods like Task.WhenAll and Task.WhenAny,

the ValueTask<TResult> would first need to be converted into a

Task<TResult> using AsTask, which leads to an allocation that

would have been avoided if a cached Task<TResult> had been

used in the first place.”

 Hidden Allocations
Besides being creating explicitly, many times objects are created implicitly by certain

operations. This is often referred to as hidden allocations and a lot of effort is put into

avoiding them. Of course, they are less pleasant in that sense; they do not stand out from

our code directly until we know about them.

 Delegate Allocation

Every time we create a new delegate (including popular Func and Action delegate), most

probably we are incurring a hidden allocation. It may happen both in case of a delegate

created from so-called method group (method referenced by name, see Listing 6-37)

and created from a lambda expression (in this case lambda expression is turned into

compiler-generated method; see Listing 6-38).

Chapter 6 MeMory alloCation

482

Listing 6-37. Delegate allocation from method group

Func<double> action = ProcessWithLogging; // hidden

Func<double> action = new Func<double>(this.ProcessWithLogging);

// explicit

Listing 6-38. Delegate allocation from lambda - hidden allocation

Func<double> action = () => ProcessWithLogging(); // hidden

Func<double> action = new Func<double>(this.<SomeMethod>b__31_0)();

//explicit

There is no way to avoid such allocations, but being aware of them we may more

consciously write our code (for example, avoiding repeating delegate creation inside

a loop).

there is an important optimization regarding lambda expressions. if they do not
close (capture) any data - most likely C# compiler will generate code to cache such a
delegate instance as a static field (so it will be allocated only once, at the first usage).

 Boxing

Boxing has been described in Chapter 4. There are the two most-common sources of

boxing mentioned there, so let just repeat them here shortly:

• A value type is used where object (reference type) is expected (see

Listing 6-39) - this includes many obvious implicit conversions.

• Value type instance is used as an interface type implemented by this

value type (see Listing 6-40).

Listing 6-39. Typical sources of boxing - common conversions

object obj = 0; // Int32 struct boxed

FooBar(0); // 0 will be boxed

static void FooBar(object obj)

{

}

Chapter 6 MeMory alloCation

483

Listing 6-40. Typical sources of boxing - passing as an interface

// ValueTuple to ITuple

FooBar(new ValueTuple() {A = 1});

static void FooBar(ITuple tuple)

{

 // ValueTuple will be boxed

}

The first source of allocation may not always be avoidable. However, when an object

is used as a way of telling that any object may be passed to a method (like FooBar in

Listing 6-39), it is better to use generics instead (see Listing 6-41).

Listing 6-41. Avoiding boxing by using generic method

void FooBar<T>(T obj)

{

 // FooBar<Int32> will be called without boxing

}

The second source of allocation may be overcome by using generic method with

generic constraint imposed (see Listing 6-42).

Listing 6-42. Avoiding boxing by using generic method with a constraint

void FooBar<T>(T tuple) where T : ITuple

{

 // ValueTuple will not be boxed

 Console.WriteLine($"# of elements: {tuple.Length}");

 Console.WriteLine($"Second to last element: {tuple[tuple.Length - 2]}");

}

There are three other less-known sources of boxing for value types:

• valueType.GetHashCode() and valueType.ToString() call when

those virtual methods are not overridden in valueType,

• valueType.GetType() always boxes valueType,

• when creating a delegate from value type method, it will be boxed

(see Listings 6-43 and 6-44).

Chapter 6 MeMory alloCation

484

Listing 6-43. Delegate allocation from value type method group

SomeStruct valueType;

Func<double> action2 = valueType.SomeMethod;

Listing 6-44. IL code from Listing 6-39

ldarg.1

box CoreCLR.Program.SomeStruct

ldftn instance float64 CoreCLR.Program.SomeStruct::SomeMethod()

newobj instance void class [System.Runtime]System.Func`1<float64>::

.ctor(object, native int)

callvirt instance !0 class [System.Runtime]System.Func`1<float64>::Invoke()

 Closures

Closures are mechanisms for managing the state of the calculations - “a function

together with a referencing environment for the non-local variables of that function”

(Wikipedia). To better understand them, let’s use as an example a simple LINQ-based

method using lambda expressions to filter and select values from a list (see Listing 6-45).

If you are reading this chapter one by one, you probably already noticed two possible

sources of allocations in the Closures method: two delegates may be created from

lambda expressions as both Where and Select are expecting Func<> as parameters.4

Listing 6-45. An example of code using lambda expressions

private IEnumerable<string> Closures(int value)

{

 var filteredList = _list.Where(x => x > value);

 var result = filteredList.Select(x => x.ToString());

 return result;

}

4 However, due to closures optimization mentioned before, most probably only a single delegate
will be allocated per Closures method call, the one passed to Where. Lambda passed to Select
doesn’t close over any state, so the C# compiler generates code to cache such delegate. We can
see it in Listing 6-46 as arg_43_1 field.

Chapter 6 MeMory alloCation

485

However, there is yet another important source of allocation. Code from

Listing 6-45 will be translated into a more complex construct utilizing an additional

<>c__DisplayClass1_0 class (see Listing 6-46). This class implements mentioned

closure. It contains both a function to be executed (under some internal name

<Closures>b__0) and all variables required for execution (value in our case). Please

note the following facts:

• Closure is implemented as a class so it incurs allocation - in our

example Program.<>c__DisplayClass1_0 will be allocated each time

Closures method is executed.

• Local variables that are stored (captured) inside a closure are

counting into the size of this closure on the heap - in our case,

the value integer is captured. The more such variables, the bigger

“closure class” becomes.

Listing 6-46. An example of code using lambda expressions after compiler

transformation

private IEnumerable<string> Closures(int value)

{

 Program.<>c__DisplayClass1_0 <>c__DisplayClass1_ = new Program.<>

c__DisplayClass1_0();

 <>c__DisplayClass1_.value = value;

 IEnumerable<int> arg_43_0 = this._list.Where(new Func<int, bool>(<>

c__DisplayClass1_.<Closures>b__0));

 Func<int, string> arg_43_1;

 if ((arg_43_1 = Program.<>c.<>9__1_1) == null)

 {

 arg_43_1 = (Program.<>c.<>9__1_1 = new Func<int, string>(Program.<>

c.<>9.<Closures>b__1_1));

 }

 return arg_43_0.Select(arg_43_1);

}

[CompilerGenerated]

private sealed class <>c__DisplayClass1_0

{

Chapter 6 MeMory alloCation

486

 public <>c__DisplayClass1_0()

 {

 }

 internal bool <Closures>b__0(int x)

 {

 return x > this.value;

 }

 public int value;

}

We should be aware of closure allocations when trying to write low memory usage

code - the less variables closure captures, the better. We can always check it, for example,

by using dnSpy tool and looking at our decompiled code.

Listing 6-47 shows some additional insights about what and when is being

captured. Be warned, however, that it is due to extensive compiler optimizations.

There are so many rules and exceptions that sometimes all investigations about

what and when are captured end with a conclusion - it’s a magic (or more seriously,

deep implementation detail of currently used optimizations). Please note that all

examples from Listing 6-47 may contain hidden allocation of a delegate from a lambda

expression.

Listing 6-47. Examples of different situations of closures capturing state

// There is no closure because nothing to be captured (this is not

captured):

Func<double> action1 = () => InstanceMethodNotUsingThis();

// There is no closure because nothing to be captured (this still is not

captured)

Func<double> action2 = () => InstanceMethodUsingThis();

// There is nothing to be captured

Func<double> action3 = () => StaticMethod();

// Captures ss

Func<double> action3 = () => StaticMethodUsingLocalVariable(ss);

// Closure captures ss and this (to call this.<>4__this.

ProcessSomeStruct(this.ss); inside)

Chapter 6 MeMory alloCation

487

// if ss argument was missing, nothing would be captured (this would not be

capture solely)

Func<double> action6 = () => InstanceMethodUsingLocalVariable(ss);

If we want to get rid of closures, we should produce code with lambda expressions

not capturing any variables or without lambda expressions at all. Listing 6-48 shows an

example of how the method from Listing 6-45 could be rewritten. Please note however

this method now needs to allocate a list for results, which may be even less efficient than

allocations made by the closure itself.

Listing 6-48. An example of code avoiding lambda expressions and closures

private IEnumerable<string> WithoutClosures(int value)

{

 List<string> result = new List<string>();

 foreach (int x in _list)

 if (x > value)

 result.Add(x.ToString());

 return result;

}

Local functions introduced in C# 7.0 are in fact similar to lambda expressions and

may incur a need to allocate a closure. Rewriting code from Listing 6-45 into code using

local functions, we get code with two local functions (see Listing 6-49). In this way,

however, we do not avoid capturing a value variable.

Listing 6-49. Code from Listing 6-45 rewritten to use local functions

private IEnumerable<string> ClosuresWithLocalFunction(int value)

{

 bool WhereCondition(int x) => x > value;

 string SelectAction(int x) => x.ToString();

 var filteredList = _list.Where(WhereCondition);

 var result = filteredList.Select(SelectAction);

 return result;

}

Chapter 6 MeMory alloCation

488

Code generated by the compiler (see Listing 6-50) still contains a closure capturing it.

Listing 6-50. An example of code using local functions after compiler

transformation

private IEnumerable<string> ClosuresWithLocalFunction(int value)

{

 Program.<>c__DisplayClass26_0 <>c__DisplayClass26_ = new Program.<>

c__DisplayClass26_0();

 <>c__DisplayClass26_.value = value;

 return this._list.Where(new Func<int, bool>(<>c__DisplayClass26_.<Closur

esWithLocalFunction>g__WhereCondition0)).Select(new Func<int, string>

(Program.<>c.<>9.<ClosuresWithLocalFunction>g__SelectAction26_1));

}

 Yield Return

In addition to async methods and closures, there is yet another mechanism that

causes hidden allocations of auxiliary classes generated by the compiler - yield return

mechanism. It is used for quick and convenient creation of iterator methods. All the

heavy work of creating an iterator class that will hold iteration state is on the compiler

side. For example, rewriting the method from Listing 6-45 using yield operator, we may

easily get rid of lambda expressions (see Listing 6-51).

Listing 6-51. An example of code using yield operator

private IEnumerable<string> WithoutClosures(int value)

{

 foreach (int x in _list)

 if (x > value)

 yield return x.ToString();

}

However, it does not allow us to get rid of the allocation of a temporary object

completely. It is created to represent the state of the iterator (Listing 6-52). As we can

see, it also captures value variable and additionally, this reference. But taking into

consideration that besides closures, code from Listing 6-45 allocates also enumerables

used by Where and Select methods; this is still a less-allocating alternative.

Chapter 6 MeMory alloCation

489

Listing 6-52. An example of code using yield operator after compiler

transformation

[IteratorStateMachine(typeof(Program.<WithoutClosures>d__26))]

private IEnumerable<string> WithoutClosures(int value)

{

 Program.<WithoutClosures>d__26 expr_07 = new Program.<WithoutClosures

>d__26(-2);

 expr_07.<>4__this = this;

 expr_07.<>3__value = value;

 return expr_07;

}

 Parameters Array

Since the old times of C# 2.0 it is possible to create a method with a variable number of

parameters with the help of params keyword (see Listing 6-53). One should know that it

is only syntactic sugar for a compiler. Underneath it is just an array of objects that is the

last argument of a method.

Listing 6-53. An example of method taking variable number of parameters

public void MethodWithParams(string str, params object[] args)

{

 Console.WriteLine(str, args);

}

Thus, when passing arguments to a method with params, new object[] array is

being allocated. There is a simple optimization in case of no parameters were passed

(see Listing 6-54).

Listing 6-54. Usage of method with params

SomeClass sc;

MethodWithParams("Log {0}", sc); // Allocates new object[] with single

element sc

int counter;

Chapter 6 MeMory alloCation

490

MethodWithParams("Counter {0}", counter); // Boxes integer and allocates

new object[] with single

element counter

p.MethodWithParams("Hello!"); // No allocation, uses static Array.

Empty<object>()

To overcome this source of hidden allocations, many methods that expect various

number of parameters provide overloads for typical, few parameters usage - in form of

objects or generic method (see Listing 6-55).

Listing 6-55. An example of method’s overload taking variable number of

parameters

public void MethodWithParams(string str, object arg1)

{

 Console.WriteLine(str, arg1);

}

public void MethodWithParams(string str, object arg1, object arg2)

{

 Console.WriteLine(str, arg1, arg2);

}

public void GenericMethodWithParams<T1>(string str, T1 arg1)

{

 Console.WriteLine(str, arg1);

}

public void GenericMethodWithParams<T1,T2>(string str, T1 arg1, T2 arg2)

{

 Console.WriteLine(str, arg1, arg2);

}

 String Concatenation

String concatenation and design decisions behind making a string class immutable

were described in Chapter 4. Let’s just remind for the completeness of typical examples

causing the allocation of temporary strings (see Listing 6-56).

Chapter 6 MeMory alloCation

491

Listing 6-56. Example of most common string manipulations

// This will produce a temporary string "Hello " + otherString

string str = "Hello " + otherString + "!";

// This allocates str + "you are welcome" (previous str will become

garbage)

str += " you are welcome";

As mentioned in Chapter 4, for middle-sized string manipulations, it is better to use

String.Format overrides as they use cached StringBuilder inside. For creating bigger

texts by appending smaller strings, StringBuilder would be the best choice. But for the

simplest scenarios when only two or three parts are concatenated, it is best to use simply

the plus operator (as in the first line in Listing 6-56), which underneath uses an efficient

string.Concat implementations (see Listing 6-57) directly manipulating string data (or

use such Concat explicitly).

Listing 6-57. Efficient string.Concat implementation (FillStringChecked

directly manipulates internal string data)

public static String Concat(String str0, String str1)

{

 if (IsNullOrEmpty(str0)) {

 if (IsNullOrEmpty(str1)) {

 return String.Empty;

 }

 return str1;

 }

 if (IsNullOrEmpty(str1)) {

 return str0;

 }

 int str0Length = str0.Length;

 String result = FastAllocateString(str0Length + str1.Length);

 FillStringChecked(result, 0, str0);

 FillStringChecked(result, str0Length, str1);

 return result;

}

Chapter 6 MeMory alloCation

492

if your code formatting strings is on a hot path and you really want to avoid any
allocations, consider using an external library like StringFormatter (https://
github.com/MikePopoloski/StringFormatter). it is an allocation- free
library with api very similar to string.Format. there are even more high- level
libraries built on top of it like allocation-free logging library Zerolog (https://
github.com/Abc-Arbitrage/ZeroLog). Since .net Core 2.1 you may also
wish to use all the new Span<T>-related apis for string manipulation (mentioned
in Chapter 14).

 Various Hidden Allocations Inside Libraries
Due to the many allocation sources (both explicit and hidden) that may occur, obviously

using other libraries puts as a risk of allocations we are not aware of. It is impossible to

describe here all possibilities as it would require an extremely extensive description of

the most popular libraries we can use. For this reason, we will only look at the most-

popular sources of this type of allocations.

 System.Generics Collections

Some commonly used collections from System.Generic namespace may be seen as

wrappers around an array. Let’s take as an example overwhelmingly popular List<T>

class (see Listing 6-58). Inside it just stores an array of elements with some predefined

size (if no capacity was specified in its constructor). When List grows (for example by

using Add method), this array may become too small - a new one will be created and all

existing items copied.

Listing 6-58. Beginning of the List<T> implementation (from .NET Reference

Source code)

public class List<T> : IList<T>, System.Collections.IList, IReadOnlyList<T>

{

 private const int _defaultCapacity = 4;

 private T[] _items;

 ...

Chapter 6 MeMory alloCation

https://github.com/MikePopoloski/StringFormatter
https://github.com/MikePopoloski/StringFormatter
https://github.com/Abc-Arbitrage/ZeroLog
https://github.com/Abc-Arbitrage/ZeroLog

493

Thus, a List<T> and collections like Stack<T>, SortedList<T>, or Queue<T>

may need to resize underlying arrays multiple times while being populated. If you

approximately know the resulting size in advance, it is always better to use construction

overload with the capacity provided. In general, it is always a good practice to

specify expected capacity if possible without worrying how it will be consumed by

the collections - let’s leave it to its operation, trusting that it will use this information

optimally.

 LINQ - Delegates

Using LINQ is elegant and pleasant. We may write complex data manipulations

succinctly in a just few lines of code. However, LINQ is one of the most allocation-like

mechanisms in C#. When using LINQ, there are many hidden sources of allocations (like

already described in Closure section). One of the most common was already described -

allocations of delegates. As LINQ methods are based on delegates, we create a lot of

them when using it (see Listing 6-59).

Listing 6-59. An example of delegate allocation in LINQ query

// Alocates delegates for lambda

var linq = list.Where(x => x.X > 0);

However, as explained previously, when executed function does not need to capture

anything, such delegates are cached internally. Thus, they will be allocated only once

(see Listing 6-60), which is a nice compiler optimization.

Listing 6-60. An example of delegate allocation in LINQ query from Listing 6-59

after compiler transformation

Func<SomeClass, bool> arg_152_1;

if ((arg_152_1 = Program.<>c.<>9__0_0) == null)

{

 arg_152_1 = (Program.<>c.<>9__0_0 = new Func<SomeClass, bool>

(Program.<>c.<>9.<Main>b__0_0));

}

arg_152_0.Where(arg_152_1);

Chapter 6 MeMory alloCation

494

 LINQ - Anonymous Types Creation

When writing LINQ queries, there is a temptation to create temporary anonymous types

that additionally adds to the already expensive bill of allocations. A contrived example

from Listing 6-61 shows a simple LINQ query written in such way with an SQL-like

query syntax.

Listing 6-61. An example of sinple LINQ query - with query syntax

public IEnumerable<Double> Main(List<SomeClass> list) {

 var linq = from x in list

 let s = x.X + x.Y

 select s;

 return linq;

We should be aware that the let statement is nothing else than creating an anonymous

temporary object (see compiler-generated <Main>b__0_0 method Listing 6-62).

Listing 6-62. An example of simple LINQ query after compiler transformation

[CompilerGenerated]

private sealed class <>c

{

 internal <>f__AnonymousType0<SomeClass, double> <Main>b__0_0

(SomeClass x)

 {

 return new <>f__AnonymousType0<SomeClass, double>(x, x.X + x.Y);

 }

 ...

}

public IEnumerable<double> Main(List<SomeClass> list)

{

 return list.Select(<>c.<>9__0_0 ?? (<>c.<>9__0_0 = <>c.<>9.<Main

>b__0_0))

 .Select(<>c.<>9__0_1 ?? (<>c.<>9__0_1 = <>c.<>9.<Main

>b__0_1));

}

Chapter 6 MeMory alloCation

495

We need those temporary types sometimes to write elegant LINQ queries. But

we should always think about whether you really need them or whether we use them

because it is just comfortable and looks nice. In our example, it is obviously redundant as

we could return a sum directly (see Listing 6-63), which generates much simpler, non-

allocating code (see Listing 6-64).

Listing 6-63. An example of sinple LINQ query - with method syntax

public IEnumerable<Double> Main(List<SomeClass> list) {

 var linq = list.Select(x => x.X + x.Y);

 return linq;

}

Listing 6-64. An example of LINQ query from Listing 6-63 after compiler

transformation

[CompilerGenerated]

private sealed class <>c

{

 internal double <Main>b__0_0(SomeClass x)

 {

 return x.X + x.Y;

 }

 ...

}

public IEnumerable<double> Main(List<SomeClass> list)

{

 return list.Select(<>c.<>9__0_0 ?? (<>c.<>9__0_0 = <>c.<>9.<Main

>b__0_0));

}

 LINQ - Enumerables

We may be not aware that LINQ methods are in fact building a chain of enumerables -

a type responsible for enumerating collection’s elements. Those enumerables must

be obviously allocated. Even the simplest methods like static Enumerable.Range does

that - allocating an iterator, one of the specific ways of implementing an enumerable

(see Listing 6-65).

Chapter 6 MeMory alloCation

496

Listing 6-65. A simple example of hidden iterator allocation

// Allocates System.Linq.Enumerable/'<RangeIterator>d__111'

var range = Enumerable.Range(0, 100);

Popular methods like Where or Select are also allocating their iterators. For example,

the Where method may allocate one of the following iterators:

• WhereArrayIterator - if it is called on an array

• WhereListIterator - if it is called on a List

• WhereEnumerableIterator - in other generic cases

Those iterators are around 48 bytes big because they contain data like a reference to

the source collection, delegate for selection, thread ID, and so on and so forth. Allocating

48 bytes a few times inside a single method just because of LINQ usage may be, or may

not be, a performance problem. As always, it depends on your performance criteria.

There are additional optimizations inside LINQ to combine iterators when

possible, but unfortunately it does not help to avoid allocations. For example, when

using popular Where and Select pair, a combined WhereSelectArrayIterator (or

WhereSelectListIterator or WhereSelectEnumerableIterator) will be used but

intermediate WhereArrayIterator (or corresponding ones) also will be created.

Let’s take a sample of a trivial string filtering method (see Listing 6-66). It will allocate

two different iterators:

• WhereArrayIterator - which is 48 bytes big, with very short lifetime

as it will be soon replaced by the following one

• WhereSelectArrayIterator - which is 56 bytes big

Listing 6-66. A simple example of hidden iterator allocation

string[] FilterStrings(string[] inputs, int min, int max, int charIndex)

{

 var results = inputs.Where(x => x.Length >= min && x.Length <= max)

 .Select(x => x.ToLower());

 return results.ToArray();

}

Additionally, it will allocate a delegate and the closure, which captures two integers

(min and max).

Chapter 6 MeMory alloCation

497

you may have your cake and eat it, too, by using one of the libraries that take
care of automatic rewriting linQ queries into more procedural code. two most
popular ones are roslyn-linq-rewrite (https://github.com/antiufo/
roslyn-linq-rewrite) and linqoptimizer (http://nessos.github.io/
LinqOptimizer).

Note nowadays, functional programming is becoming increasingly popular
in the .net environment, mainly due to the growing popularity of the F#
language and a general return to interest in functional languages. one of the
core principles of functional programming languages is the immutability of
data. Functional languages such as F# rely on executing subsequent functions
in such a way that they do not modify existing data but return new ones. this
may of course raise some concerns about the performance. From C# world
we know well that the immutability of string can create a series of temporary,
unwanted objects. We see through the eyes of the imagination a lot of created
objects and data copied between them. one could imagine that operating
on data in F# is similar. in general, it requires to change a mindset quite
significantly when working with immutable types and functional programming.
When comparing its performance in typical mutating scenarios, immutable types
may be much slower indeed. a typical example would be to benchmark how
fast myriad objects may be added to a mutable List<T> and its immutable
counterpart. obviously, as immutable collections will most probably all over and
over again create its own copy with new content added, it will be much slower
operation (and by the way, functional language designers probably put a lot
of effort to make such operations smarter than such dummy implementation,
like reusing common part of data collections). this is however not how such
collections should be compared. immutability gives very important advantages,
especially in the increasingly popular multithreaded world. Safe, lock-free
access to the read-only data may be much more beneficial in highly contented
scenarios (when a lot of threads are competing to access shared resource)
than overhead produced by immutability itself. this makes immutable types a
great choice for multithreaded and/or parallel processing. Due to its unchanging
nature, immutable types may also greatly utilize CpU cache without cache

Chapter 6 MeMory alloCation

https://github.com/antiufo/roslyn-linq-rewrite
https://github.com/antiufo/roslyn-linq-rewrite
http://nessos.github.io/LinqOptimizer
http://nessos.github.io/LinqOptimizer

498

coherency overhead. the same consideration applies to set of immutable
collections available in C# in System.Collections.Immutable (like
ImmutableArray<T>, ImmutableList<T> and so on so forth). this is thus
a matter of choosing a right tool for your problem. please only do not apply too
much importance to benchmarks showing that overwhelming changes to the
state of immutable collections are actually slow. of course, it is, because they
are not doing what they were designed for!

 Scenario 6-2. Investigating Allocations
Description: After new version deployment of our ASP.NET Core web application, we

noticed quite a big memory usage growth by observing Working Set - Private, Private

Bytes and Virtual Bytes from Process(dotnet) counters altogether with \.NET CLR

Memory(dotnet)\# Total committed Bytes. Developers can’t point to a suspicious place

in the changed code, which may be the source of the increased number of allocations. We

want to help them by providing analysis of the newly deployed application.

Analysis: One of the best methods to investigate allocation is to use PerfView tool.

You can choose between three different allocation sampling methods as described

in Chapter 4. For the most accurate results you should try to use .NET Alloc method

whenever possible. It utilizes .NET Profiling API injecting EtwCorProfiler library into a

sampled process. Each and every allocation will be registered in that way. Obviously,

this introduces a big overhead so should be used only on local or strictly controlled

development environment. If it is not possible, consider using .NET SampAlloc, which

uses the same technique but with less granularity. On the other hand, ETW-based

ETW .NET Alloc should introduce quite low overhead so it may be safe to use it even on

production environment. Please bear in mind, however, that those two last methods are

sampling so only coarse results will be available.

perfView .net alloc and .net Sampalloc use Clr profiling api to track allocation
in the application. it uses ICorProfilerCallback3::ObjectAllocated
callback called by runtime each time a new object is being allocated. to make it
possible, Jit will disable fast-path allocation based on assembly code. thus, only
by this fact will the program under investigation be slightly slower.

Chapter 6 MeMory alloCation

499

Let’s investigate memory allocations with the help of .NET Alloc method:

• Run PerfView.

• Use Collect with .NET Alloc option selected.

• Run web application you want to investigate - it is very important to

do that after collection with .NET Alloc (or .NET SampAlloc) has been

started.

• Navigate through the web site - most probably you will want to use

those areas whose were influenced by the latest changes.

• Stop collection.

• In PerfView, select GC Heap Net Mem Stacks from Memory Group.

• Select dotnet.exe application.

We can choose between two main investigation paths from this point:

 1. To gain high-level view of allocations:

• On By Name tab, use sorting by declining Exc column - it

will quickly show what are the most impactful sources of

allocations (see Figure 6-22). Please note that many times Type

<Unknown> will be one of the main contributors. Unfortunately,

ETWClrProfiler is not always able to get type information from

the runtime. In such cases it marks a type as <Unknown>.

Figure 6-22. High-level view of allocations inside ASP.NET Core web
application

Chapter 6 MeMory alloCation

500

The type itself, however, is not the only information because

the aggregated sources (stack traces) of allocations may be

equally useful. For example, to investigate sources of allocating

those <Unknown> types, select Goto ➤ Goto Item in Callers

from the found item context menu. Remember that during

investigation:

• You can always try to load symbols for unnamed modules (ending

with ?! like <<microsoft.codeanalysis.csharp!?>>) by using

Lookup Symbols from context menu.

• You can group modules by using Grouping ➤ Group Module from

context menu.

• By doing so we could, for example, group most allocating modules of

<Unknown> type (see Figure 6-23).

Figure 6-23. Most common sources of <Unknown> type allocations

We should carry out a thorough analysis of frequently created

objects. Unfortunately, this is quite a tedious task. To locate

suspicious areas worth analysis, we can help ourselves by

comparing heap snapshots taken by PerfView to identify the

objects incurring the most memory traffic.

 2. To investigate allocations made by a particular method:

• On By Name tab, select [No grouping] in GroupPats - to ungroup

everything for more details.

Chapter 6 MeMory alloCation

501

• In Find type the name of your function - let it be

HomeController.Contact.

• Click Goto ➤ Goto Item in Callees from the found item’s context

menu - you should see all allocations made by this method and

all its callees (see Figure 6-24).

Figure 6-24. Allocations made by single method and all dependent method calls

We can see that HomeController.Contact method allocates two arrays inside

System.Collections.Generic.Dictionary<>.Initialize method. Indeed Contact

method is trivial in our example as it only sets one item in ViewData dictionary (see

Listing 6-67). If we looked at Dictionary<TKey,TValue>.Initialize, we would see

that in fact it allocates two arrays - for buckets and entries. This is obviously only an

example of how detailed information we can get. During your investigations you will

be interested in allocations made by your code so it may be wise to group any other,

external modules.

Listing 6-67. HomeController.Contact method

public IActionResult Contact()

{

 ViewData["Message"] = "Your contact page.";

 return View();

}

Please note that in the case of Linux, diagnosis of allocations is not so easy and

pleasant. PerfView with its profiler will not help here. .NET Profiling API for Linux

is not so mature so there are no well-tested tools based on them. You can utilize

GCAllocationTick LTTng event to sample allocations - you will be able to get statistical

information about mostly allocated types of objects. Due to the LTTng mechanism you

will not get stack traces of the allocations in this way. They can be gotten by perf by

Chapter 6 MeMory alloCation

502

probing for the event-emitting function EventXplatGCEnabledAllocationTick inside

libcoreclr.so. In that way, however, we achieve opposite - we may analyze stack traces

but type information is missing. Currently there is no mechanism to join both pieces of

that information together. There is also no good support for commercial programs at the

moment for such diagnostics.

 Scenario 6-3. Azure Functions
Description: Azure Functions are billed based on per-second resource consumption

measured in Gigabyte-Seconds (GB-s) and number of executions. Functions pricing

from Microsoft site says: “Memory used by a function is measured by rounding up

to the nearest 128 MB, up to the maximum memory size of 1,536 MB, with execution

time calculated by rounding up to the nearest 1 ms. The minimum execution time and

memory for a single function execution is 100 ms and 128 MB respectively.” It means

each single function call will consume at least 0.0125 GB-s (100 ms times 128 MB which

is 0.1 s times * 0.125 GB). Additionally, there is a free grant of 400,000 GB-s and 1 million

of executions per month.

Taking such pricing into consideration, it seems clear that it is worth it to

minimize memory usage as far as possible. If our Azure Function consumes memory

inefficiently, we may exceed the free grant limit. We multiply the cost each time

the memory usage exceeds another 128 MB. It is difficult currently to find a place in

the .NET world where the use of memory so directly translates into the money spent

by us.

Analysis: Azure through Application Insights provides a way of monitoring Azure

Functions resource consumption. We can track their so-called Function Execution

Units. They are measured in MB-ms (Megabyte-Milliseconds) currently so we need

to scale them to get GB-s. By tracking Function Execution Units, we can monitor our

costs, but unfortunately, they do not provide any deeper insight into functions memory

usage. Thus, to analyze and optimize memory usage of our function, it is best to do it on

development environment. Thanks to Azure Functions Core Tools, we can run Functions

locally so the allocations investigation scenario would be as easy as in scenario 6-2. You

only need to profile func.exe process (it is the name of Azure Function CLI executable

hosting our functions).

Chapter 6 MeMory alloCation

503

Note if you would like to track the intensity of the allocation within
your program, one of the simplest solutions is to use the GC.GetAllocated
BytesForCurrentThreadstatic method. in that way you get accurate
information about how many bytes were allocated since the beginning of a
current thread’s lifetime.

 Summary
This chapter covered in depth how objects are being created in .NET. We should be now

fully aware that allocating an object may be really fast - but it may also trigger quite a

complex logic of finding a place for it, including triggering Garbage Collector.

In the first part of the chapter, implementation details about allocator in .NET

were presented. They reveal a big level of sophistication in making it as fast as

possible. A lot of effort was made so that creating new objects was really fast so

getting to know these details is very interesting and developing. It also allows us,

in some respects, to look at how complicated is the topic in general and how well-

implemented it is in .NET CLR.

The second part of this chapter is dominated by a practical review of one of the most

important issues from the point of view of efficient memory management - avoiding

allocation. Avoiding allocation is the obvious avoidance of its cost and the GC overhead.

Therefore, one of the main performance optimizations in the .NET world is this topic.

The presented list contains a rather extensive (though certainly not exhaustive) list of

possible sources of allocation and (where possible) potential ways to avoid them.

The chapter also contains three example scenarios for solving problems related to

the memory allocations. Besides the sections about avoiding allocations, they allow you

to look at the topic of creating new objects from a more practical, diagnostic side.

 Rule 14 - Avoid Allocations on the Heap in Performance
Critical Code Paths
Justification: It is said - allocations are cheap in .NET. However, this chapter shows

that it is not always entirely true. You should be aware of possible costs of allocations.

Your performance context dictates whether they introduce significant cost or not.

Chapter 6 MeMory alloCation

504

Just remember that allocation means introducing possible memory traffic and

communication with the operating system or triggering garbage collections. The more

objects we allocate, the more work we put on GC. Thus, in very performance parts of

code the best optimization solution is to avoid allocations.

How to apply: There are as many solutions how to avoid allocations as scenarios

where allocations may happen. They have been thoroughly described in the section

“Avoiding Allocations” in this chapter. Some allocations are explicit - we are fully

aware of them. But still we may want to get rid of them by using object’s pools or

value types. Some allocations are hidden - various libraries and techniques may

introduce them without our knowledge. To avoid them we obviously need to identify

them. We may learn some of the most popular sources of hidden allocations so we

will be able to quickly spot them in our code. Non-trivial ones should be traced via

diagnostic tools.

Related scenarios: Scenarios 6-2, 6-3.

 Rule 15 - Avoid Excessive LOH Allocations
Justification: While allocations are not always cheap in .NET, allocation of objects in

Large Object Heap is even more often not cheap. Assumption that allocations in LOH

are infrequent and the fact that they are big drives design decision to not preallocate

space for them in advance. Thus, allocation of object in LOH may be dominated by

the cost of zeroing its memory. If we are using really big objects frequently, it may be

a good idea to manage some pool of reusable objects. It will introduce more stable

memory usage and not only help with the allocation costs but also will relieve a little

GC in its work.

How to apply: If we allocate big objects frequently, it is probably not possible to take

a trivial optimization of not doing this at all. Using value types for this purpose is also

rather not possible because of the stack space limits. The best solution here is to use one

of the pooling mechanisms - see relevant parts of the “Avoiding Allocations” section in

this chapter.

Chapter 6 MeMory alloCation

505

 Rule 16 - Promote Allocations on the Stack When
Appropriate
Justification: Classes are the fundamental data types in .NET. When we learn C#,

classes accompany us from the very beginning. When we think - data structure - we

immediately think - class. It is our default decision during development to create and use

classes. On the other hand, structs are usually only some exotic thingy about which we

learn at the beginning and then forget. They seem strange and incomprehensible to us.

However, this does not have to be because they can provide really valuable features - like

better memory locality, avoiding heap allocations at all, and great possible optimizations

taken by the compiler and JIT.

How to apply: We should just learn about structs a little and try to add them to our

everyday toolbox. When implementing a new feature, does our method need to utilize

a class or maybe a simple structure will be just fine? Do we need a collection of objects?

Maybe a small array of structures will be enough? Do not be afraid of struct copying -

utilize more and more powerful C# possibilities to pass them by reference in various

ways. Obviously, do not overengineer simple things. Do that only in a performance-

driven parts of your code, executed often, and with a great impact on the perceived

performance or resource utilization.

Chapter 6 MeMory alloCation

507
© Konrad Kokosa 2018
K. Kokosa, Pro .NET Memory Management, https://doi.org/10.1007/978-1-4842-4027-4_7

CHAPTER 7

Garbage
Collection - Introduction
Welcome to the most important part of this book. Previous chapters have described

quite broadly the subject of memory management. We have experienced some

theoretical and hardware introduction. We also got to know a lot of details about the

organization of memory in the .NET environment - how it is divided into segments and

generations and how all this infrastructure works with the operating system. Much of this

knowledge is valuable in itself, allowing us, for example, to diagnose problems with too

many allocations or how to use different methods to avoid them.

However, it cannot be denied that when it comes to memory management, the .NET

world is inherently related to its automatic memory reclamation. We have learned

already about Allocator so we know how objects are being created. Now it’s high time

we learned how and when objects are being deleted and memory reclaimed after them,

when no longer needed.

This and the following three chapters constitute a long story about how GC works

in .NET. It has been split into four chapters to not overwhelm the reader with all that

knowledge given at once. However, all four are inherently related to each other and to

gain comprehensive knowledge should all be read.

Moreover, those chapters are based on knowledge from previous chapters.

Therefore, if you do not read the book one by one, I still strongly recommend at least

skimming previous chapters before reading this one (especially Chapters 5 and 6).

In this chapter we will find out in which situations GC can take place. We will find

out exactly what stages are executed and delve into details of first steps. All this will be

provided with comments and examples that allow you, besides the satisfaction of having

such knowledge, to apply it also in practice.

508

 High-Level View
Before going further, it is good to gain a 10,000-foot view of Garbage Collector

implemented in Microsoft .NET runtime. The most important is the fact already

mentioned in previous chapters: GC can operate in two main modes of operation:

• Workstation - it is designed to minimize delays introduced by the GC

as seen from the managed threads perspective. In general, it can be

summarized by a strategy that GC will happen more frequently so

it will have less work to do, so perceived pauses will be shorter. This

mode is especially useful for a desktop application where perceived

latency is important for user experience - we would not like to freeze

the whole application because a long-running GC happened.

• Server - it is designed to maximize application throughput. The strategy

is that GC will be executed less frequently so it introduces longer

pauses when it eventually happens. This also means that memory

consumption will be higher - GC will allow memory to grow to higher

values by rare collections. However, pauses and memory usage are not

so important in favor of statistical resulting throughput - how many

data were processed in a given amount of time.

There are important design differences between Workstation and Server GC modes.

One of the most important ones is how many Managed Heaps exist. As mentioned in

Chapter 5, in Workstation mode there is only a single Managed Heap while in Server

mode, there may be many logical cores on the machine.

Additionally, each of the above modes may work in one of the sub-modes:

• Non-concurrent - in this mode GC is executed while all managed

threads of our application are suspended.

• Concurrent - in this mode some parts of the GC are done while

managed threads are working.

These two types of work modes give a total of four options of how GC

can be configured in our application. Those combinations are described in detail in

Chapter 11, altogether with the discussion when and where using each of them is most

appropriate. For the simplicity of learning, in Chapters 7 to 10 only the simplest case is

discussed - Non-concurrent Workstation mode. This allows us to understand the vast

majority of GC aspects without going into cluttering details. In fact, other modes differ

Chapter 7 GarbaGe ColleCtion - introduCtion

509

only in details so knowledge from this and the following three chapters is perfectly valid

for all the others.

It is also worth recalling an important fact about the behavior of two areas of the

Managed Heap:

• Small Object Heap may use Sweep or Compact collection - it’s mainly

an autonomous GC decision. We may ask the GC to select one if we

wish to call GC manually.

• Large Object Heap uses only Sweep Collection by default - but we

may ask for a single Compacting collection explicitly.

hereinafter various CoreClr source code internals will be presented for those who
wish to investigate described topics on their own. When garbage collection starts in
CoreClr, several flags are representing selected options. one of the most important
is collection_mode enumeration, which may have the following flags set:

• collection_non_blocking - non-blocking (concurrent) GC

• collection_blocking - blocking (“stop the world”) GC

• collection_optimized - will proceed with GC only if it is needed (so-called
allocation budget of specified generation is running out)

• collection_compacting - collection with Small object heap compaction

• collection_gcstress - internal Clr’s stress testing mode

All those manual tunings and variations will be described later; let’s now concentrate

on the simplest Non-concurrent Workstation GC in detail.

 GC Process in Example
I think it is at this point worth it to explicitly denounce certain facts that have so far been

mentioned here and there. This will allow us to visualize a high-level view of the GC activity.

First of all, garbage collection happens in the context of a specific generation - which is

commonly referred to as the condemned generation. A whole-generational GC technique

benefits from the fact that we may decide to collect objects just from a single generation.

As explained in Chapter 5, the decision was made to collect also all generations younger

Chapter 7 GarbaGe ColleCtion - introduCtion

510

than the currently condemned generation. Additionally, objects in Large Object Heap

are treated as being in generation 2. This leads to the following possible scenarios:

• generation 0 is condemned - only generation 0 is being collected,

• generation 1 is condemned - only generations 0 and 1 are being,

collected,

• generation 2 is condemned - all three generations 0, 1, and 2 plus

Large Object Heap are being collected. Such a situation is commonly

named a Full Garbage Collection (hereinafter most of the time it will

be referred to as the full-GC).

During its work the GC will check the reachability of objects (by marking) only

in condemned and younger generations. Knowing this, each time GC has to decide

whether it wants to carry out Sweep or Compact collection.

Let’s now visualize all those possible cases in an illustration similar to Figure 5-5

from Chapter 5. Please, take some time to thoroughly understand the described example

scenarios because they really form the very core of how GC works in .NET.

First of all, let’s imagine an example situation that at some point in time .NET

memory in our program looks as in Figure 7-1. Based on the knowledge from

Chapter 5, we can recognize such typical layout - there is a single block of memory that

contains SOH (ephemeral) and LOH segments. The SOH segment is further divided

into generations 0, 1, and 2. All generations contain some objects and boundaries of

generations have also been marked.

1 02 LOH

objects

Figure 7-1. Initial memory state used in the three following figures. Objects have
been marked by dashed filling. Generation 0 has some free space at the end. SOH
segment as well is not fully consumed by generations.

Let’s now consider an example when generation 0 is condemned (see Figure 7-2).

In such case, Mark phase will only analyze reachability of objects in generation 0.

Let’s suppose only one object in generation 0 has been marked as reachable

Chapter 7 GarbaGe ColleCtion - introduCtion

511

(see Figure 7-2a; marked objects are filled by dark gray). Now the GC must decide which

collection technique to choose:

• Sweep Collection (see Figure 7-2b) - in such case all unreachable

objects from generation 0 are considered as free space. Generation

1 boundary has been moved accordingly to contain promoted,

reachable object (our single marked object has been promoted to

generation 1). As is often the case with the Sweep Collection, note

that this significantly increased fragmentation in generation 1 - there

is now a large hole of the empty space in it.1

• Compact Collection (see Figure 7-2c) - in such case reachable objects

in generation 0 are compacted and included by accordingly grown

generation 1. There is no fragmentation obviously but the whole

operation is more complex (requiring memory copying and updating

references to moved objects).

1 02 LOH

1 02 LOH

1 02 LOH

(a)

(b)

(c)

Figure 7-2. Garbage Collection with generation 0 condemned –(a) objects
marked as reachable, (b) Sweep Collection, (c) Compact Collection

1 As we know from a previous chapter, this free space is not unusable - it is being managed by
a free-list allocator. But for generations 0 and 1 free-list items are checked only once and then
discarded so this free space may quite fast become unusable; however, keep in mind gen0/1
collections also happen quite often so they get rebuilt often.

Chapter 7 GarbaGe ColleCtion - introduCtion

512

To summarize, after garbage collection with generation 0 being condemned:

• Only objects in generation 0 have been checked for reachability

(marked).

• Generation 0 has become empty (with only really small space

intentionally left) - this is the default behavior. All objects from the

youngest generation are either collected or promoted to an older

generation. As we will see later in this chapter, some exceptions may

occur. For now, however, let’s assume this simplest scenario.

• Reachable objects from generation 0 have been promoted to

generation 1.

• Generation 1 has grown - both in case of Sweep (larger growth

because of fragmentation) and Compact (smaller growth).

• Generation 2 and LOH have not changed. It was however analyzed to

mark what they point to in generation 0 (using card tables described

in Chapter 5).

Let’s now consider an example when generation 1 is condemned (see Figure 7-3). In

such case, the Mark phase will analyze the reachability of objects in generations 0 and 1.

Again, suppose the same single object in generation 0 and two additional in generation 1

have been marked as reachable (see Figure 7-3a). Now the GC must choose between two

techniques:

• Sweep Collection (see Figure 7-3b) - in such case all unreachable

objects from generations 0 and 1 are considered as free space.

Generations 2 and 1 boundaries were moved accordingly to

contain promoted reachable objects. Again, this introduced big

fragmentation (in our case in generation 1, but generation 2 could

become fragmented too).

• Compact Collection (see Figure 7-3c) - in such case reachable objects

in generations 0 and 1 are compacted and included by accordingly

changed boundaries of generations 2 and 1.

Chapter 7 GarbaGe ColleCtion - introduCtion

513

To summarize, after garbage collection with generation 1 being condemned:

• Only objects in generations 0 and 1 have been checked for

reachability (marked).

• Generation 0 has become empty.

• Reachable objects from generation 0 have been promoted to

generation 1.

• Reachable objects from generation 1 have been promoted to

generation 2.

• Generation 1 may grow or shrink - depending on which collection

technique has been chosen. This is interesting as theoretically

generation 1 may grow when... generation 1 is being collected. This

is of course due to fragmentation so GC is unlikely to decide to use

Sweep in our example scenario. But still, this is theoretically and

technically possible.

• Generation 2 has grown.

• LOH has not changed but it has been analyzed to mark what they

point to in generations 0 and 1 (as well as generation 2).

2 LOH

2 LOH

2 LOH

1 0

1 0

1 0

(a)

(b)

(c)

Figure 7-3. Garbage Collection with generation 1 condemned -(a) objects marked
as reachable, (b) Sweep Collection, (c) Compact Collection

Chapter 7 GarbaGe ColleCtion - introduCtion

514

• Collection with generation 1 condemned differs slightly to collection

with generation 0 condemned in terms of performance - obviously

more objects will become analyzed and possibly moved/touched.

However, in both cases GC operates inside a single ephemeral

segment (most probably at least partially already CPU-cached) so the

observed difference should not be huge.

in case of generation 0 or 1 being condemned, yet another technique of promotion
exists. besides simply extending the older one generation to properly include
promoted objects from the condemned generation, the GC may decide to “allocate
them in the older generation” by using free space (managed by free list) in the
older generation. this allows us to make use of fragmentation (reducing it at the
same time) instead of blindly extending the generation region.

in case of an example similar to Figure 7-3, one of the objects could be allocated in
the available free space:

this technique obviously makes sense only in case of a compacting GC. in case
of sweep collection, objects are not being moved so there is no possibility to place
them into existing free space.

Let’s now consider a last example, when generation 2 is condemned (see Figure 7-4).

Such Full Collection incurs analyzing many more objects than the two previous ones.

This is why care should be taken to not introduce too many unnecessary Full Collections

Chapter 7 GarbaGe ColleCtion - introduCtion

515

as we will discuss later. In case of Full Collections, the Mark phase will analyze the whole

Managed Heap - generations 0, 1, 2, and LOH. Certain objects have been marked for the

example (see Figure 7-4a). The GC must choose now between two techniques:

• Sweep Collection (see Figure 7-4b) - all unreachable objects from

all generations (including LOH) are considered as free space. All

generation boundaries have been moved accordingly. Please note we

introduced quite large fragmentation in generation 2, generation 1,

and LOH.

• Compact Collection (see Figure 7-4c) - all objects inside SOH have

been compacted (remember that LOH is not being compacted

automatically). This is an optimal solution in terms of memory usage

but obviously required the most work of copying many objects.

1 02 LOH

2 LOH1 0

(a)

(b)

(c)

1 02 LOH

Figure 7-4. Garbage Collection with generation 2 condemned (aka Full
Collection) – (a) objects marked as reachable, (b) Sweep Collection, (c) Compact
Collection

To summarize, after garbage collection with generation 2 being condemned (aka

Full-GC):

• All objects’ reachability have been checked from all generations and

the LOH.

• Generation 0 has become empty.

• Reachable objects from generation 0 and 1 have been promoted to

generation 1 and 2 accordingly.

Chapter 7 GarbaGe ColleCtion - introduCtion

516

• Reachable objects in generation 2 stayed in generation 2.

• LOH has been also collected without compacting - we’ve introduced

fragmentation, but this free space would be reused by free-list LOH’s

allocator.

A careful reader may notice that after each GC with generation 1 or 2 being

condemned, generation 2 may grow inside our segment (if there are many long-living,

non-reclaimable objects). Eventually there may be a moment when it is so big that

generations 0 or 1 do not have enough room (see Figure 7-5a). In such case a simple

Sweep or Compact collection is probably not enough. GC most probably will decide to

use the Compact method with the following steps (see Figure 7-5b):

• Current ephemeral segments are changed into gen2-only

segments - all reachable objects from generations 1 and 2 are being

compacted there.

• A new ephemeral segment is created - all reachable objects from

generation 0 are being compacted there (as generation 1 objects).

• LOH is treated with the Sweep collection as usual.

(a)

(b)

2 LOH1 0

2 LOH 1 0

Figure 7-5. Garbage Collection with generation 2 condemned (aka Full
Collection) with big generation 2 – (a) objects marked as reachable, (b) Compact
Collection with a new ephemeral segment created

In this way generation 2 may grow “endlessly.” If the same situation repeats in a

new ephemeral segment, it will be turned into a gen2-only segment and three different

scenarios may happen:

• A new ephemeral segment may be created by committing and

reserving memory for a new segment - as in the case just described

and illustrated in Figure 7-5.

Chapter 7 GarbaGe ColleCtion - introduCtion

517

• A new ephemeral segment may be created from the segment on the

segment’s standby list if any segments are on that list - we have seen

a situation of building a segments standby list in Figure 5-22

(in Chapter 5) where segments’ reusage was discussed. This requires

VM hoarding to be enabled, which is not always the case.

• An already existing gen2-only segment with small gen2 may be

reused as a new ephemeral segment (see Figure 7-6) - in this way

even when VM hoarding is not enabled, a new segment does not

need to be created. The old ephemeral segment will become s

gen2-only segment in such s situation.

gen2gen2-only

ephemeral

gen2

gen2

gen1 gen0

gen2

gen2

gen2 gen1

gen2

new
ephemeral

gen2-only

gen2-only gen0

before GC after GC

Figure 7-6. Garbage Collection with generation 2 condemned (aka Full
Collection) - Compact Collection with gen2-only segment reused as a new
ephemeral segment

please note that turning the current ephemeral segment into a gen2-only segment
(and making a new ephemeral segment by reusing some existing one or creating a
completely new one) may be caused by extensive pinning - a lot of pinned objects
living in ephemeral segments may make it hard to use (i.e., by fragmentation-
hindering creation of allocation contexts) so the whole segment will be promoted
to gen2. this is perfectly fine from the pinning requirements perspective, as
addresses of pinned objects are not changed by that - only logically such region
starts to represent generation 2.

It is worth reemphasizing this multiple times. A Full-GC includes marking all

objects through all generations and LOH. They might span multiple segments and

if a large amount of memory survives, this may be very costly. Moreover, during this

process a gen2 segment may be reused or a new segment may be created. Thus, Full-GC

Chapter 7 GarbaGe ColleCtion - introduCtion

518

performance overhead may be much, much bigger compared to the GC with generation

0 or 1 condemned that included operating only on a single, ephemeral segment most

probably cached at some parts inside the CPU. Thus, the overhead difference between

Full-GC and ephemeral GC (with generations 0 or 1 condemned) may be of orders of

magnitude. A full-GC should be avoided as much as possible!

 GC Process Steps
After the general introduction of what the effects of Garbage Collector work look like,

let’s look at what steps make up this process. From a high-level point of view, we can

distinguish the following steps related to the GC work:

 1. Trigger garbage collection - something triggers a need for the GC.

 2. Suspend managed threads - Execution Engine is asked to suspend

all threads executing managed code (in case of the Non-concurrent

GC for the whole time when garbage collection will happen).

 3. User thread starts the GC code - a thread that triggered GC starts

to execute the Garbage Collector code.

 4. Select generation to condemn - as the first step, the GC decides

which generation should be condemned based on the various

conditions.

 5. Mark - the marking of reachable objects in the condemned and its

younger generations are carried out.

 6. Plan - the GC decides whether compacting is worth doing or

maybe sweeping is just enough. Although this may not seem so

at first glance, this step contains most of the calculations that are

needed to complete the entire GC.

 7. Sweep or compact - after a decision has been made, either a

Sweep or Compact technique is used with the help of information

gathered during Plan phase. If compaction was chosen, an

additional relocate phase must be executed before, to update all

addresses to the new ones.

 8. Resume managed threads - Execution Engine is asked to resume

all threads executing managed code.

Chapter 7 GarbaGe ColleCtion - introduCtion

519

Because mentioned GC steps really make up all the work it does, the rest of this

chapter and Chapters 8 to 10 describe each of them thoroughly. You can treat them as a

map that will carry us up to the end of them.

During those steps various diagnostic data are emitted immediately and some

collected and emitted at the end of the process - using the well-known mechanisms of

Performance Counters and ETW/LLTng events. Some of the data is available internally

by SOS commands so we need to use WinDbg to access them. We will utilize those data

and SOS commands in various scenarios in this chapter.

 Scenario 7-1. Analyzing the GC Usage
Description: We want to observe usage of the GC during web application execution.

We would like to do it in a non-invasive way during load tests performed on our

pre-production environment. The application under test is plain nopCommerce 4.0

installation - a universal open source e-commerce platform written in ASP.NET

Core - this is a continuation of scenario 5-1 from Chapter 5.

Analysis: Let’s skip the technical part of the load test preparation, assuming that the

appropriate procedures and tools are just in place. The load test was prepared and

executed with the JMeter tool. It executes around 7 requests per second with a simple

scenario (visiting home page, single product page, and single tag page). It is exactly

the same JMeter test as used in scenario 5-1. However, this time only a 2-minute long

analysis will be performed to quickly recognize the GC utilization. Self-hosted .NET web

application will be monitored (process is named Nop.Web.exe).

First of all, we may wish to check the overall .NET memory and the GC usage of the

application. This includes observing the following performance counters:

• \.NET CLR Memory(Nop.Web)\Gen 0 heap size (which actually is

generation 0 allocation budget as explained in previous chapters)

• \.NET CLR Memory(Nop.Web)\Gen 1 heap size

• \.NET CLR Memory(Nop.Web)\Gen 2 heap size

• \.NET CLR Memory(Nop.Web)\Large Object Heap size

• \.NET CLR Memory(Nop.Web)\% Time in GC

Chapter 7 GarbaGe ColleCtion - introduCtion

520

The results of the first two minutes of the application run are shown in Figures 7-7

and 7-8. We can see quite stable generation sizes - the ephemeral ones are changing

rapidly but not growing in time. The oldest one has stabilized at the value of 89,520,308

bytes. However, % time spent in GC is alarming. An average value of around 24%

(clearly visible in Figure 7-8) means one-fourth of the process time is spent on garbage

collection. This starts to be a significant overhead.

We can continue further analysis of this situation by analyzing ETW events in the

PerfView. By selecting GC Collect Only option in the Collect dialog during our load

test, GC keyword events from Microsoft-Windows-DotNETRuntime providers will be

registered. After collection stops and processing ends, we will be able to investigate the

GC usage thanks to the GCStats report available in the Memory Group folder.

Figure 7-7. Performance Monitor view of generation sizes during near 2-minute-
long load test of ASP.NET Core application

Chapter 7 GarbaGe ColleCtion - introduCtion

521

Figure 7-8. Performance Monitor view of the GC utilization during near
2-minute- long load test of ASP.NET Core application

GCStats report shows a comprehensive summary of GC-related events for all .NET

runtime providers during session recording. At the beginning of the report all such

providers are listed so we select Nop.Web process. At the beginning of such report,

various diagnostic data are presented (see Figure 7-9). For example, CLR Startup Flags

listed as None means used GC was a simple non- concurrent workstation GC.

Chapter 7 GarbaGe ColleCtion - introduCtion

522

More interesting to us may be the next table summary - GC Rollup by Generation

(see Figure 7-10). It shows a summary of all GCs that happened in a given process

duringww an ETW session time lasting 2 minutes. As we can see, there were a total of

3,016 garbage collections during that time (which makes about 25 GCs per second). Total

pause time caused by GCs is over 12 seconds. For a 2minute-long test this makes around

10% of the time spent in the GC, while typical usage should not exceed a few percent at

maximum. Please also note significantly slower gen2 GCs compared to the lower ones

(Mean Pause column in Figure 7-10).

Figure 7-9. The beginning of the GCStats report for Nop.Web process

Figure 7-10. GC Rollup by Generation table from the GCStats report for
Nop.Web process

Chapter 7 GarbaGe ColleCtion - introduCtion

523

What we can pay attention to is a very large number of indicated allocations. There is

a total of over 12 GB of objects allocated! While, as we have seen in Figure 7-7, generation

sizes remain quite stable, this obviously indicates allocating a huge amount of short-

living, temporary data that fast becomes garbage.

Further analysis can be done with the help of great GC Events by a Time table from

the same GCStats report (see Figure 7-11). It lists all GCs during the recorded session

with various, extremely useful data. In case of a long session, the table is truncated

(as in the figure presented), but you can always get the raw CSV data and see it, for

example, in Excel.

Figure 7-11. GC Events by Time table from GCStats report for Nop.Web process

In the presented table fragment (as from the entire table, not presented here for

obvious reasons), we can see some interesting facts:

• All GCs were triggered because of AllocSmall reason - that means

GCs were triggered due to SOH allocation.

• Many GCs were triggered in a single second (see changes in Pause

Start column) and allocations are quite big (see Gen0 Alloc MB

column) - this confirms our suspicions stated before about

allocating a lot.

At this stage we should investigate what is being allocated so often like in scenario

6-2 from Chapter 6.

We will come back to different columns from GC Events by Time table in this chapter

in further scenarios. With the subsequent sections of this chapter, an increasing part of

the GCStats report will became understandable. Ultimately, it should allow you to read it

with full understanding.

Chapter 7 GarbaGe ColleCtion - introduCtion

524

please note interesting information in the Gen column, which describes not only
condemned generation but also the type of the GC:

- n - non-concurrent GC (blocking)

- b - background GC

- F - Foreground GC (blocking collection of an ephemeral generations during
background GC)

- i - induced (manually triggered) blocking GC

- i - induced non-blocking GC

 Profiling the GC
To roughly imagine the relative cost between these individual steps, look at

Figure 7-12 with profiling data gathered, thanks to the ETW CPU profiling during a

simple load test (the other one that presented in above scenario). Inc column shows

a total time (in milliseconds) spent in each listed method (and all its callees). The

application under the test was using Workstation GC. During the test, 627 garbage

collections occurred (as noted from ETW report not shown here) that gives us an average

pause time of 4.33 milliseconds per GC.

Figure 7-12. Profiling data for the GC phases taken for an application with
Workstation GC

The mark and plan steps have a relatively similar cost. The plan phase, due to the

GC code structure, contains both compact and relocate phases. It may be surprising

that relocation (updating addresses) takes more time than compaction itself (moving

objects).

Chapter 7 GarbaGe ColleCtion - introduCtion

525

Do not pay too much attention to those numbers though. They can vary significantly

depending on various conditions like ratio of survived objects, number of references

between objects, or number of objects in total. If you are really interested, investigate

them on your own, for your own specific scenario. This is as simple as using PerfView for

the following two, simple steps:

• Collecting ETW session with CPU profiling enabled - by enabling CPU

Samples option. You may also wish to change the sampling interval in

CPU Sample Interval MSec from 1 to a lower value to get more precise

results.

• Analyzing collected data from CPU Stacks view - you will most

probably need to carry out the following simple changes (again clear

all GroupPats and Folding):

• locate clr?! or coreclr?! row (in case of full .NET or .NET Core

respectively) and issue Lookup Symbols command on them.

• find garbage_collect method and start investigation by issuing

Goto Item in Callees command.

You can think about a few questions related to the nature of the GC activities -

particularly, how the following conditions influence the overall GC cost (in terms of CPU

usage and processing time):

• Big number of objects in general - the more objects, the more work

the Plan phase has to do. It consists of scanning the whole Managed

Heap object by object so it is natural that a large number of objects

will affect the longer execution time of the Plan phase. The advantage

is, however, strictly linear access to memory (object after object), so

the overall cost is mitigated by cache mechanisms.

• Big number of survived objects - the more live objects, the more work

the Mark phase has to do. It induces a lot of Managed Heap traversing, in

unstructured (not especially cacheable) way. This overhead will be higher

the more references between objects exist. Additionally, a big number

of live objects, if the Compact phase is executed, means a lot of memory

traffic and a costly need of updating many references. Plan phase is less

sensitive to the number of live objects - it operates on “plugs” (explained

thoroughly later in Chapter 9) of many live objects so the cost is alleviated.

Chapter 7 GarbaGe ColleCtion - introduCtion

526

The applications are simple and rather intuitive - the fewer objects we create the

better. For example, it is better to create one large array in LOH and reuse its fragments

(e.g., by using Span<T>) than create many smaller arrays.

 Garbage Collection Performance Tuning Data
Before we start the journey through the subsequent stages of GC work, it is worth paying

attention to the data that it manages. We often may hear about various “heuristics” or

“internal tunings” used by GC for its internal work. This is exactly what we will look at in

this section.

Data managed by GC may be split into two main groups: static and dynamic

data. Both play very important roles in what and how GC is doing. Describing them

in too much detail is not particularly sensible because they are a deeply hidden

implementation detail. It is not guaranteed in any way that these data with such values

will not be changed in subsequent versions of the framework.

On the other hand, those data are so important and so strongly affect the way GC

operates, that it is impossible to omit them completely in the description of the entire

process. It is also difficult to expect major changes in the functioning of at least the most

important indicators in the near future. And we will focus on them in this section.

 Static Data
Static data represents a configuration that is set at the beginning of the runtime start and

it never changes later. It contains the following attributes for each generation:

• minimum size - minimum so-called allocation budget (a term

explained thoroughly just a few paragraphs later),

• maximum size - maximum allocation budget,

• fragmentation limit and fragmentation ratio limit - used when

deciding whether we should compact,

• limit and max limit - used to calculate growth of the generation

allocation budget,

• time limit - time after which to collect generation (in some

scenarios),

Chapter 7 GarbaGe ColleCtion - introduCtion

527

• time_clock - time after which to collect generation, in performance

counts (see QueryPerformanceCounter),

• gc_clock - number of GCs after which to collect generation.

in case of CoreClr, static data described here is represented by static_data
struct defined in .\src\gc\gcpriv.h file. a static table static_data_table
is then initialized in .\src\gc\gc.cpp file for two different latency modes. Some
of the values are calculated at the runtime start in the gc_heap::init_static_
data method.

Static data are tuned in respect to the GC latency level configuration (discussed in

Chapter 11). Currently there are two modes that with respect to the static data differ

mainly in terms of generation sizes:

• balanced - pauses are more predictable and more frequent,

optimized for a balance between latency and memory footprint. This

is a default setting.

• memory footprint - optimized for minimum memory footprint;

pauses can be long and more frequent.

Static data values for both latency modes are presented in Tables 7-1 and 7-2 (with

the assumption of running on a computer with 8 MB L3 cache). We can find interesting

information there, for example:

• Generation 0 minimum allocation budget is strictly related to the

CPU cache size - if we remember from Chapter 2 the importance

of CPU cache utilization, this makes perfect sense. These settings

ensure that the most commonly used generation 0 will consume a

reasonable part of the CPU cache.

• Both ephemeral generations maximum allocation budgets are strictly

related to the ephemeral segment size - if we remember physical

memory organization from Chapter 5, this also makes perfect sense.

These settings are especially important in Workstation and 32-bit

Server mode because segments there are relatively small (refer to

Table 5-3).

Chapter 7 GarbaGe ColleCtion - introduCtion

https://doi.org/10.1007/978-1-4842-4027-4_5#Tab3

528

• Maximum allocation budget of generation 2 and Large Object Heap

are limited only by the maximum address limit (SSIZE_T_MAX is half

the size of word) - this also makes a perfect sense as all long-living

objects are gathering in those two. Such space must be logically

“unlimited” to handle any memory usage scenario. Obviously,

those sizes are limited by physical resources (RAM and paging files,

addressing limits).

Table 7-2. Static GC data - “Memory Footprint” Mode (Assuming 8 MB LLC Cache)

Min
alloc
budget

max
alloc
budget

fragmentation
limit

fragmentation
burdenlimit

limit max_limit time_
clock

gc_
clock

Gen0 1) 4/15

Mb

2) 6-200

Mb

40000 0.5 4)

9.0/20.0

4)

20.0/40.0

1,000 ms 1

Gen1 288 kb 3) at least

6 Mb

80000 0.5 2.0 7.0 10,000

ms

10

Gen2 256 kb SSiZe_t_

MaX

200000 0.25 1.2 1.8 100,000

ms

100

LOH 3Mb SSiZe_t_

MaX

0 0.0 1.25 4.5 0 ms 0

Table 7-1. Static GC Data - “Balanced” Mode (Assuming 8 MB LLC Cache)

Min alloc
budget

max alloc
budget

fragmentation
limit

fragmentation
burdenlimit

limit max_
limit

time_
clock

gc_
clock

Gen0 1) 4/15 Mb 2) 6-200

Mb

40000 0.5 9.0 20.0 1,000

ms

1

Gen1 160 kb 3) at least

6 Mb

80000 0.5 2.0 7.0 10,000

ms

10

Gen2 256 kb SSiZe_t_

MaX

200000 0.25 1.2 1.8 100,000

ms

100

LOH 3Mb SSiZe_t_

MaX

0 0.0 1.25 4.5 0 ms 0

Chapter 7 GarbaGe ColleCtion - introduCtion

529

 1. Minimum allocation budget is related to the CPU cache size (here

assuming 8 MB), differently calculated for different chips (done

by the hardware vendors). In general, a little smaller in case of

Workstation mode (first number) than in Server mode (second

number).

 2. For Workstation GC with Concurrent version - 6 MB. For Server

GC and Workstation GC with Non-concurrent version - half of the

ephemeral segment size (refer to Table 5-3) but not less than 6 MB

and no more than 200 MB.

 3. For Workstation GC with Concurrent version - 6 MB. For Server

GC and Workstation GC with Non-concurrent version - half of

the ephemeral segment size (refer to Table 5-3) but not less than

6 MB.

 4. Values for Workstation and Server GC respectively.

Those various limits, especially the minimum and maximum size of each generation,

will be explained later in the chapter.

Garbage Collector during its work uses those data to make various decisions. We will

return to them occasionally henceforth.

 Dynamic Data
Dynamic data are representing the current state of the Managed Heap from a

generation’s perspective. They are updated during GCs to calculate data required for

various decisions (including whether it should be compacting GC or not, whether

generation is “full” and GC should be triggered, and so on, and so forth). Dynamic data

contains a number of different attributes for each generation, the most important of

which are:

• allocation budget (also referred to as “desired allocation”) - the size

the GC would like to spend on new allocations until the next GC,

• new allocation - the size of how much space is left for allocations

until the next GC under the current allocation budget,

• fragmentation - total size consumed by free objects in that

generation,

Chapter 7 GarbaGe ColleCtion - introduCtion

https://doi.org/10.1007/978-1-4842-4027-4_5#Tab3
https://doi.org/10.1007/978-1-4842-4027-4_5#Tab3

530

• survived size - total size taken by survived objects,

• survived pinned size - total size taken by survived pinned plugs

(described in detail later in this chapter),

• survived rate - the ratio of the number of survived bytes divided by

the total bytes,

• current size - total size of all objects after the GC happens (it doesn’t

include memory due to fragmentation),

• GC “clock” - the number of GCs that collected this generation,

• time “clock” - the time when the last GC collecting this generation

started.

The new allocation attribute is essential for Allocator and the GC cooperation. It

tracks how many allocations inside a generation have been made relative to its allocation

budget - if it becomes negative, it means that the allocation budget has been exceeded

and garbage collection will be triggered for that generation

This leads us to one of the most important attributes - the allocation budget.

It represents a total size the GC would like to allow to be spent on allocations in a

particular generation. As we remember from Chapter 6, user-code triggered allocations

happen only in the generations 0 and LOH. However, the allocation budget is tracked

for each generation. This apparent inconsistency is easy to explain if we realize that

the promotion of objects between generations is regarded as their allocation in the

older generation. As we will see in the Plan phase description, the GC uses internal

allocator to find “places” for promoted objects (and we will also see that this sentence is

a simplification used for brevity here). Both types of allocations consume the allocation

budget.

The allocation budget is changed dynamically on each GC that collects that

generation. Its new value is mostly based on the survival rate of that generation. If

the survival rate is high (a lot of objects survived GC), the allocation budget is more

aggressively increased with the expectation that there will be a better ratio of dead to live

objects next time there is a GC for that generation. At the end of the GC it is recalculated

on the basis of survival rate- the size of the survived object in respect to the total object

size at GC beginning (i.e., not including fragmentation). Above a certain ratio threshold,

the new allocation budget is always simply the maximum budget. And it may be set

near to a minimum budget if the survival rate is low enough. The calculated value is

Chapter 7 GarbaGe ColleCtion - introduCtion

531

sometimes additionally refined with a linear model that for boundary survival ratios

mixes the current and previous allocation budget proportionally.

A general illustration of a function describing the new allocation budget in terms of

the survival rate is illustrated in Figure 7-13. Steepness of the slope, the threshold from

which the maximum size of the generation starts, and less important properties of such

functions depend on the static parameters limit and max_limit presented in Tables 7-1

and 7-2. The smaller the values of these limits, the steeper the slope and the faster the

maximum value is set.

GenSize min

GenSize max

0.0 1.0

new allocation
budget

survival
rate

Figure 7-13. An illustration of typical function describing relation between the
survival rate and the resulting, new allocation budget

For us, looking at values from Tables 7-1 and 7-2, it means that the younger

generations respond much more dynamically to the survival rate than the older ones.

Especially generation 0 “reacts” to it so sensitively that most often the new allocation

budget becomes one of the boundary cases - the minimum or maximum generation size.

Chapter 7 GarbaGe ColleCtion - introduCtion

532

this is why when using “.net Memory/Gen 0 heap size” performance counter,
which is due to historical reasons, shows a generation 0 allocation budget and
quite often stays in one of two possible values during the entire lifetime of the
application. this is perfectly visible in Figures 5-6 and 5-7 from Chapter 5 or
Figure 7-7, where “Gen 0 heap size” changes constantly between values of 4 Mb
and 6 Mb. this in turn means that according to tables 7-1 and 7-2, the GC was in
Workstation GC with Concurrent version mode.

During runtime initialization, the allocation budget of each generation is set

to the minimum budget from its static data (see Tables 7-1 and 7-2). How do the

generation size and allocation budget relate to each other? The key is to understand

that the allocation budget is a logical value. It represents the allocation limit in a given

generation, which may be exhausted but may also change in the future due to changing

conditions. Allocations in a given generation strive for the limit to be exhausted, but the

limit itself may change. It may be seen that allocation budgets dynamically react to the

survival ratios and as a result, generation sizes change dynamically in a way trying to be

optimal.

please note that in fact a popular question about “default generation sizes” is
pretty unjustified. Generations are simply created empty; there is nothing like
their default size. as objects are being allocated and promoted, they grow in size
according to allocation budgets.

The relation between new allocations, the allocation budget, and generation size

may be described in the simplest way by the current_generation_size method from

CoreCLR sources (see Listing 7-1). At any time, the approximate generation data size

(not including fragmentation) is its current data size plus the difference between the

allocation budget and new allocation. At the end of GC the new allocation is set to the

value of the allocation budget. While objects are allocated in generation 0 or LOH,

new allocations of those generations are decreased accordingly. Hence, the allocation

amount since the last GC is expressed in the difference of these two values.

Chapter 7 GarbaGe ColleCtion - introduCtion

533

Listing 7-1. Method to calculate current generation size (CoreCLR source code)

size_t gc_heap::current_generation_size (int gen_number)

{

 dynamic_data* dd = dynamic_data_of (gen_number);

 size_t gen_size = (dd_current_size (dd) + dd_desired_allocation (dd)

 - dd_new_allocation (dd));

 return gen_size;

}

A careful reader may wonder how it is possible that a new allocation is updated

with every object allocation. It was not mentioned in Chapter 6 at all. It is also difficult

to expect that this would actually happen on the fast track of the allocation presented in

Listing 6-7 or somewhere along the way. This is a fully justified suspicion. In fact, a new

allocation is reduced only by the creation or growth of allocation contexts that are the

units of memory that GC gives out.

If you are interested in understanding better how an allocation budget influences

GC work, and how it relates to the generation size, please you are strongly invited to read

comprehensive scenario 7-2 showing the first five GCs of a sample process.

 Scenario 7-2. Understanding the Allocation Budget
Description: One wants to better understand the allocation budget concept, especially

in terms of its relation to the generation size and overall influence on the GC job. This is

not only useful during learning. Such a thorough analysis may be used when trying to

understand what exactly triggers GC in your process.

Analysis: There is no better solution than a thorough debugging session analysis. A

simple C# program from Listing 7-2 has been prepared. It allocates one million byte

arrays in a loop and stores their references in an additional array, so everything is

reachable (will survive the GC) during the entire lifetime of the application. Each

individual byte array has a size of 25,024 bytes (25,000 bytes of the data plus 8 bytes for

array length and 16 bytes for object metadata).

Chapter 7 GarbaGe ColleCtion - introduCtion

534

Listing 7-2. Sample program used in this scenario

1 static void Main(string[] args)

2 {

3 Console.ReadLine();

4 Console.WriteLine("Hello, Windows");

5 Console.WriteLine("Love from CoreCLR.");

6 GC.Collect();

7 Console.ReadLine();

8 const int LEN = 1_000_000;

9 byte[][] list = new byte[LEN][];

10 for (int i = 0; i < LEN; ++i)

11 {

12 list[i] = new byte[25000];

13 if (i % 100 == 0)

14 {

15 Console.WriteLine("Allocated 100 arrays");

16 }

17 }

18 }

Thanks to detailed debugging in Visual Studio and ETW logging, the first five garbage

collections are comprehensively described in terms of the allocation budget, which

allows us to better understand it.

The experiment focuses on the simplest variant of GC operation - Non-concurrent

Workstation GC with “memory footprint” mode. The values of static data running on the

author’s machine are presented in Table 7-3 (calculated from Table 7-2). The maximum

ephemeral generation sizes are 128 MB because in this configuration the size of the

ephemeral segment is 256 MB (refer to Table 5-3 from Chapter 5).

Chapter 7 GarbaGe ColleCtion - introduCtion

https://doi.org/10.1007/978-1-4842-4027-4_5#Tab3

535

Table 7-3. Example Static GC Data - Non-concurrent Workstation GC in 64-bit,

“Memory Footprint” Mode (Assuming 8 MB LLC Cache)

min_size max_size limit max_limit

Gen0 4 Mb 128 Mb 9.0 20.0

Gen1 288 kb 128 Mb 2.0 7.0

Gen2 256 kb SSiZe_t_MaX 1.2 1.8

LOH 3 Mb SSiZe_t_MaX 1.25 4.5

To have full information provided in this scenario, a set of breakpoints were set

during CoreCLR runtime debugging to print “new allocation” values for each generation.

This step is obviously not required during normal problem analysis (which could be

based only on ETW data described below).

The following information can be obtained from an ETW-based session analysis

in PerfView by exporting data from GCStats report by Per Generation GC Events in the

Excel option:

• generation sizes at the beginning of a GC (Begin size) - from columns

Before0/1/2/3.

• allocation budgets (Allocation budget) - from columns

Budget0/1/2/3. Additionally, the generation 0 budget is listed as

FinalYoungestDesired field in Microsoft-Windows- DotNETRuntime/

GC/GlobalHeapHistory event and, as stated before, as .NET Memory/

Gen 0 heap size Performance Counter.

• promoted objects sizes (Promoted size) - from columns Surv0/1/2/3.

Additionally, they may be read from Microsoft-Windows-

DotNETRuntime/GC/HeapStats event.

• generation sizes at the end of a GC (Final size) - from columns

After0/1/2/3.

Per Generation GC Events additionally list data about the GC start and stop,

condemned generation, and fragmentation.

The following points provide a detailed description of internal GC workings during

such experiment. Please note that in this scenario we are also using All GC Events table

from the GCStats report in the PerfView, already presented in scenario 7-1.

Chapter 7 GarbaGe ColleCtion - introduCtion

536

Before GC
At the beginning of the application - before any object has been created - allocation

budgets are set to the minimum budget (see Table 7-3). Thus, initial values are as follows

(expressed in bytes):

Gen0 Gen1 Gen2 LOH

Allocation budget: 4,194,304 294,912 262,144 3,145,728

New allocation: 4,194,304 294,912 262,144 3,145,728

Begin size: 24 24 24 24

As noted, new allocation values for each generation are also set to those values to reflect

available space for allocations. Generations physically start empty at the beginning of the

process; the size simply indicates an object of minimal size as the start of a generation

GC #1 - triggered by explicit GC.Collect() call
The first Garbage Collection in a sample program is explicitly triggered (see line 6

at Listing 7-2). The corresponding excerpt of the All GC Events table from the GCStats

report in the PerfView looks as follows:

GCIndex Trigger

Reason

Gen Gen0

Alloc [MB]

Promoted

[MB]

Gen0

Survival

Rate [%]

Gen1

[MB]

Gen1

Survival

Rate [%]

LOH

[MB]

LOH

Survival

Rate [%]

1 induced 2ni 0.213 0.082 33 0.192 0 0.018 99

It confirms that induced a non-concurrent full-GC (2NI) has been triggered. Since

the program start, 0.213 MB has been allocated in SOH and 0.018 MB in LOH. This in fact

is reflected by the values of Begin size and New allocation at the beginning of GC:2

• New allocation of gen0 and LOH have been accordingly decreased,

while gen1 and gen2 are left untouched.

2 Note that those values are expressed in terms of allocation context changes, which are units
of memory that GC gives out. Additionally, there may be little discrepancies between New
allocation value (read at breakpoint in Visual Studio) and values from various ETW events -
explained by rounding that appears in both sources.

Chapter 7 GarbaGe ColleCtion - introduCtion

537

• Begin size of gen0 and LOH have increased, while gen1 and gen2 are

left untouched.

Gen0 Gen1 Gen2 LOH

New allocation: 3,995,024 294,912 262,144 3,128,216

Begin size: 192,256 24 24 17,512

Each generation promotion size shows the following values:

Gen0 Gen1 Gen2 LOH

Promoted size 64,088 0 0 17,440

It means that in generation 0, from a total 192,256 allocated, 64,088 bytes are

reachable and will be promoted to generation 1 (around 33% survival rate, visible as

Gen0 Survival Rate % in All GC Events table). Additionally, most of the LOH allocated

objects will survive (17,440 from total 17,512 bytes, resulting in 99% survival rate).

At this stage, new allocation budgets will be calculated for the collected and all

younger generations (that means for all generations in case of our full-GC) - mainly

based on above-mentioned survival ratio. Because those ratios were zero for generations

1 and 2, those generations allocation budgets are set again to the minimum budgets.

The generation 0 survival rate is high because it is common for the startup stage of the

process - normally the CC tries to tune for a few percent or less survival ratio in the

youngest generation. As a result, the new allocation budgets are as follows:

Gen0 Gen1 Gen2 LOH

Allocation budget 4,194,304 294,912 262,144 3,145,728

New allocation values for each generation will be also set to be the same as the

allocation budget.

Chapter 7 GarbaGe ColleCtion - introduCtion

538

And eventually, final generation sizes depend on objects physically promoted:

Gen0 Gen1 Gen2 LOH

Final size 24 192,3043 24 17,536

GC #2 - triggered by allocation
Second and subsequent Garbage Collections happen because of a cyclic allocation

of byte[] array. The corresponding excerpt of All GC Events table is as follows:

GCIndex Trigger
Reason

Gen Gen0
Alloc
[MB]

Promoted
[MB]

Gen0
Survival
Rate [%]

Gen1
[MB]

Gen1
Survival
Rate [%]

LOH
[MB]

LOH
Survival
Rate [%]

2 allocSmall 2n 4.204 12.286 99 4.204 100 8.018 99

We see that since the last GC:

• 4.204 MB were allocated in generation 0 - because of allocating many

byte arrays itself,

• around 8 MB in Large Object Heap - because of allocating

byte[1_000_000][] array at Line 9, which is an array of one million

8-byte long references.

After such allocations happened, we may expect that:

• by allocating 4.204 MB, clearly generation 0 allocation budget should

be exceeded (which was set to 4,194,304 bytes),

• 8 MB of LOH allocations also exceeds LOH allocation budget (which

was set to 3 MB).

3 Generation 1 is bigger than expected. It has size of 192,304 bytes while only 64,088 bytes are
promoted from generation 0. This is due to the big fragmentation introduced after this GC. It
could be noticed by the big Gen1 Frag % value of 66.69% in GC Events in Time table from the
GCStats report in the PerfView. This obviously indicates that only Sweep collection was done,
without compacting.

Chapter 7 GarbaGe ColleCtion - introduCtion

539

We can confirm that by looking at new, negative allocation values of gen0 and LOH

at the beginning of GC:

Gen0 Gen1 Gen2 LOH

New allocation: -21,952 294,912 262,144 -4,854,328

Begin size: 4,204,064 64,040 0 8,017,472

The LOH budget was exceeded, elevating this GC to full-GC, even initially only

generation 0 could be collected (thus, 2N generation value in events table above).

Each generation promotion size shows the following values:

Gen0 Gen1 Gen2 LOH

Promoted size 4,204,032 64,088 0 8,017,464

This leads to the following observations:

• generation 0 is fully promoted because all created byte arrays are

reachable (references are kept by byte[][] array),

• generation 1 promotes data promoted to it in the previous step.

Regarding the allocation budget, we may notice the following changes:

Gen0 Gen1 Gen2 LOH

Allocation budget 84,080,640 448,616 262,144 28,061,128

Current budget values may be explained as follows:

• generation 0 survival rate is now very close to 100%, hence generation

allocation budget is increased significantly,

• generation 1 survival rate is also 100% (see Gen1 Survival Rate % in

the events table), hence its budget is also increased,

• generation 2 allocation budget has not been changed because its

initial data size is 0,

Chapter 7 GarbaGe ColleCtion - introduCtion

540

• LOH allocation budget has been increased by a factor of 3.5 (such

multiplication factor is calculated by function similar to that Figure 7-13).

Eventually, final generation sizes depend on objects physically promoted:

Gen0 Gen1 Gen2 LOH

Final size 24 4,204,088 192,328 8,017,592

It is good to stop and look around now for a while. After two successive GCs

described so far, we ended up in the situation where:

• generation 0 allocation budget has grown to around 80MB because of

a high survival rate - many objects survived collection of the youngest

generation, so probably there may be even more and it is worth to

extend it. Based on the new budget, we may expect the next GC after

around 80MB of SOH allocations.

• generation 1 allocation budget is smaller than the actual generation

size - this may happen as GC has not yet been able to accommodate a

big rate of allocations/promotions. Further GCs will refine that either

by stabilizing the allocation budget (in case if it was a single memory

churn) or growing it constantly (in case if it was stable memory

growth). This clearly shows the logic nature of allocation budgets

and its good counterpart name - the desired allocation. It does not

represent an actual generation size.

• generation 2 allocation budget has not been changed but big

fragmentation has been “promoted” along with objects. It could be

noticed by the big Gen2 Frag % value of 66.69% in GC Events in Time

table.

• LOH allocation budget was increased to accommodate new large

object allocations.

Chapter 7 GarbaGe ColleCtion - introduCtion

541

GC #3 - triggered by allocation
The third Garbage Collection happens because of further allocations of byte[]

arrays. The excerpt of All GC Events table is as follows:

GCIndex Trigger
Reason

Gen Gen0
Alloc [MB]

Promoted
[MB]

Gen0
Survival
Rate [%]

Gen1
[MB]

Gen1
Survival
Rate [%]

LOH
[MB]

LOH
Survival
Rate [%]

3 allocSmall 0n 84.081 84.081 99 88.285 - 8.018 -

We see that since the last GC, as expected, around 84 MB were allocated in

generation 0. That should consume its allocation budget. Only generation 0 is being

collected (0N value in Gen column), which makes this the most typical, youngest-only

GC triggered by SOH allocations.

We can confirm that by looking at a new, negative allocation value of gen0 at the

beginning of GC:

Gen0 Gen1 Gen2 LOH

New allocation: -5,496 448,616 262,144 28,061,128

Begin size: 84,080,640 - - -

Each generation promotion size shows the following values:

Gen0 Gen1 Gen2 LOH

Promoted size 84,080,640 - - -

It leads to an interesting situation in calculating new allocation budgets:

Gen0 Gen1 Gen2 LOH

Allocation budget 134,217,728 -83,632,024 262,144 28,061,128

Chapter 7 GarbaGe ColleCtion - introduCtion

542

As we can see, the following changes has been made:

• According to the high survival rate, the new generation 0 allocation

budget has been set to the maximum generation size (128 MB),

• Allocation budget of generation 1 has been decreased by the size of

objects promoted from generation 0 - this makes its allocation budget

exceeded, hence it is expected to be considered during the next GC.

Remember that the new allocation values for each generation will be also

dynamically recomputed accordingly.

Eventually, final generation sizes present intuitive values according to the previous

and promotion sizes - only gen0 and gen1 sizes have been changed:

Gen0 Gen1 Gen2 LOH

Final size 24 88,284,752 192,328 8,017,592

GC #4 - triggered by allocation
The fourth GC happens also because of further allocations of byte[] arrays and

exceeding generation 0 budget. The excerpt of All GC Events table is as follows:

GCIndex Trigger
Reason

Gen Gen0
Alloc
[MB]

Promoted
[MB]

Gen0
Survival
Rate [%]

Gen1 [MB] Gen1
Survival
Rate [%]

LOH
[MB]

LOH
Survival
Rate [%]

4 allocSmall 1n 134.229 222.513 99 134.229 99 8.018 -

We see that indeed 134.229 MB were allocated that should exceed the previously set

gen0 allocation budget. However, as we remember, also generation 1 allocation budget

should be exceeded due to promoted allocations from the previous GC. Thus, GC is

elevated to generation 1 so instead of collecting only generation 0, also generation 1 will

be included (see value 1N in Gen column).

Chapter 7 GarbaGe ColleCtion - introduCtion

543

We can confirm that by looking at negative new allocation values of both gen0 and

gen1 at the beginning of GC (where gen1 value has been set in the previous GC):

Gen0 Gen1 Gen2 LOH

New allocation: -14,504 -83,632,024 262,144 28,061,128

Begin size: 134,228,736 88,284,672 - -

Each generation promotion size shows the following values:

Gen0 Gen1 Gen2 LOH

Promoted size 134,228,736 88,284,672 - -

Because both generations 0 and 1 are collected, and they contain only reachable

byte arrays, everything from them is being promoted (high 99% Gen0 and Gen1 Survival

Rate).

Regarding the new allocation budgets, we may notice the following changes:

Gen0 Gen1 Gen2 LOH

Allocation budget 134,217,728 134,217,728 -88,022,528 28,061,128

The following changes have been made to allocation budgets:

• The generation 0 allocation budget remains the same - despite the

high survival rate, it cannot be changed to a higher value as it already

hit maximum generation size.

• The generation 1 allocation budget has increased to the maximum

generation size - this is a reaction to a high survival rate and big

amount of promoted size.

• Allocation budget of generation 2 has been decreased by the size of

objects promoted from generation 1 - this means the gen2 allocation

budget is exceeded so it’s expected to be considered for collection

during the next GCs.

Chapter 7 GarbaGe ColleCtion - introduCtion

544

Final generation sizes present intuitive values according to the previous and

promotion sizes - all SOH generation sizes have been changed:

Gen0 Gen1 Gen2 LOH

Final size 24 134,228,760 88,477,048 8,017,592

GC #5 - triggered by allocation
A careful reader could expect now the GC triggered by SOH allocations exceeding

the gen0 allocation budget, as usual. However, before that, another condition triggers

GC. The excerpt of the All GC Events table is as follows:

GCIndex Trigger
Reason

Gen Gen0
Alloc
[MB]

Promoted
[MB]

Gen0
Survival
Rate [%]

Gen1
[MB]

Gen1
Survival
Rate [%]

LOH
[MB]

LOH
Survival
Rate [%]

5 outofSpaceSoh 2n 134.179 364.774 99 134.179 99 8.018 -

We can see there a new OutOfSpaceSOH reason that triggered the full-GC (2N Gen

value). It could be easily explained when looking at internal GC data:

Gen0 Gen1 Gen2 LOH

New allocation: 35,592 134,217,728 -88,022,528 28,061,128

Begin size: 134,178,688 134,228,736 88,348,760 8,017,440

Allocation budget is only exceeded for the generation 2 (due to promotions in the

previous GC), but it is not the reason of triggering this GC. The true reason is the total

size of both ephemeral generations (begin size) that exceeds the maximum ephemeral

segment size (256 MB). In such a case GC is being triggered to collect at least ephemeral

generations. And because of the generation 2 budget being exceeded, this GC is elevated

to the full-GC one additionally.

Each generation promotion size shows the following values:

Gen0 Gen1 Gen2 LOH

Promoted size 134,178,688 134,228,736 88,348,760 -

Chapter 7 GarbaGe ColleCtion - introduCtion

545

Because of high survival ratios, gen0 and gen1 allocation budgets remain at their

maximums:

Gen0 Gen1 Gen2 LOH

Allocation budget 134,217,728 134,217,728 178,062,152 28,061,128

Generation 2 allocation budget has been increased by a factor of 2 (such

multiplication factor is calculated by function similar to that Figure 7-13) to align with its

high survival rate.

At the end, generation sizes present as follows:

Gen0 Gen1 Gen2 LOH

Final size 24 134,178,712 222,705,808 8,017,592

Those sizes are as expected. Generation 0 is empty, intermediate generation 1 is

maximized, while generation 2 gathers all other SOH objects.

Subsequent GCs
Because memory usage of the sample program is constant, next GCs would repeat

the pattern presented here. GCs would be called alternately for two reasons: AllocSmall

(exceeding generation 0 budget) and OutOfSpaceSOH (exceeding total ephemeral

segment size). The size of generation 2 would gradually increase, while the remaining

ones would be at the same level.

Static data together with regularly updated dynamic data control the work of the

GC. They control when the GC is triggered, what generation is condemned, and whether

compaction or sweeping should be executed. It’s good to have a general idea of what

they are and how they affect the process.

Hopefully, the detailed description from scenario 7-2 illustrated the relation between

those static and dynamic data, altogether with the influence of allocations. Generation

sizes may be seen as dynamic values driven by the allocation budgets of corresponding

generations, calculated from their survival rate. As a result, GC is constantly tuning

generation sizes to accommodate current allocation and survival patterns, with respect

to static data from Tables 7-1 and 7-2 (especially, influencing the look of the important

function from Figure 7-13).

Remember that these are deep implementation details. It is not guaranteed that over

the years these parameters will influence GC’s work in an exactly way. In my opinion it is

unlikely, however, that the concept of allocation budget will be changed dramatically.

Chapter 7 GarbaGe ColleCtion - introduCtion

546

in case of CoreClr code, dynamic data described here is represented by
dynamic_data class defined in .\src\gc\gcpriv.h file. You can easily
map each attribute listed above to the corresponding fields of that class. among
others, the most important one is the allocation budget represented by desired_
allocation field. at the end of GC it is calculated in gc_heap::desired_
new_allocation method using various heuristics (mainly survivors rate-related
like in Figure 7-13 and corrected by gc_heap::linear_allocation_model
method - a linear correction between the previous and new value based on the
generation's fullness). You may start further investigation on that field from gc_
heap::compute_new_dynamic_data called at the end of GC.

 Collection Triggers
The first question about the GC we may ask is - when can it actually occur? What triggers

it? Before a concrete answer, it is worth it to understand the design decisions that were

behind the implementation of GC - they have been very accessibly written in the Book

Of The Runtime:

• GCs should occur often enough to avoid the Managed Heap

containing a significant amount (by ratio or absolute count) of

unused but allocated objects (garbage), and therefore use memory

unnecessarily.

• GCs should happen as infrequently as possible to avoid using

otherwise useful CPU time, even though frequent GCs would result in

lower memory usage.

• A GC should be productive. If GC reclaims a small amount of

memory, then the GC (including the associated CPU cycles) was

wasted.

• Each GC should be fast. Many workloads have low-latency

requirements.

• Managed code developers shouldn’t need to know much about the

GC to achieve good memory utilization (relative to their workload) –

The GC should tune itself to satisfy different memory usage patterns.

Chapter 7 GarbaGe ColleCtion - introduCtion

547

Having those design decisions in mind, the answer sounds like this: GC should

be called as rarely as possible, giving the best possible results. Of course, given the

innumerable use cases and rapidly changing conditions, designing such a self-tuning

GC is an extremely difficult challenge. However, realizing the above challenges posed by

GC, it is quite easy to reject the idea of its cyclic call. However, it could be one of the first

thoughts of an inexperienced .NET developer - maybe GC is called periodically, such as

after a certain number of milliseconds? The answer is short - no, it isn’t. It would not be

productive just to call it and “see what happens next.”

There are various reasons why a garbage collection may be started. The rest of

this section we will look at them, grouped according to the main reasons behind these

causes.

Various GC reasons are represented by an internal CoreClr gc_reason
enumeration. Start there if you want to investigate this topic on your own.

 Allocation Trigger
As we have seen in Chapter 6, both Small and Large Object Heap Allocators may trigger

Garbage Collection if it is unable to find a suitable space for an object being created.

Depending on the conditions one or even two ephemeral GCs (with generation 0 or 1

condemned) as well as Full-GC may be triggered.

This is by far the most common reason of GC occurrence in our applications. There

are four main reasons of this kind (names in parentheses denote names used in PerfView

reports, as already seen):

• small object allocation (AllocSmall) - running out of budget on

generation 0 during object allocation. This is the most common case,

triggered in case of generation 0 allocation budget exceeding (as

mentioned in Chapter 6).

• large object allocation (AllocLarge) - running out of budget on LOH

during large object allocation.

Chapter 7 GarbaGe ColleCtion - introduCtion

548

• small object allocation on slow-path (OutOfSpaceSOH) - allocator

is running out of space during the “slow-path” object allocation in

SOH, even after some segment reorganizations and maybe even GCs

already run, there is still no required free space. In 64-bit runtimes

with large virtual memory space, it should be a rather uncommon

reason. However, even on 64-bit runtime they may happen in the

case of Workstation GC, as shown in scenario 7-2.

• large object allocation on slow-path (OutOfSpaceLOH) - allocator

is running out of space during the “slow-path” object allocation in

LOH. Similar to the OutOfSpaceSOH, it should be uncommon.

Of course, good memory management usually boils down to creating the smallest

number of objects. That is why an allocation trigger is the most optimized source of GC -

if there is no allocation, this type of trigger does not occur. There is no allocation, so there

is no GC at all!

 Explicit Trigger
In certain circumstances one may wish to ask for GC explicitly. Such Garbage Collections

are often referred to as induced. They may be done in a few ways, thanks to the exposed

API. The most common one is an explicit call to trigger GC via GC.Collect method call.

It has several overrides with different level of control:

• GC.Collect() - ask for triggering full-GC, blocking but without

forcing compaction;

• GC.Collect(int generation) - ask for triggering GC of specified

generation, blocking but without forcing compaction;

• GC.Collect(int generation, System.GCCollectionMode mode) -

ask for triggering blocking GC of specified generation and mode

specifying whether it should be: Forced or Optimized (leaving

decision to the GC itself);

Chapter 7 GarbaGe ColleCtion - introduCtion

549

• GC.Collect(int generation, System.GCCollectionMode mode,

bool blocking) - ask for triggering GC of specified generation,

explicitly blocking or not, and with mode specifying whether it

should be: Forced or Optimized (leaving decision to GC);

• GC.Collect(int generation, System.GCCollectionMode mode,

bool blocking, bool compacting) - ask for GC with all options

specified explicitly.

As it will be later explained, GC contains a step to check a number of conditions

to see which generation collection is the most productive. Hence, even if we provide a

specific generation to GC.Collect call, while it is guaranteed that such generation will

be indeed garbage collected (and all younger ones), even an older generation may be

condemned - if current conditions incur that, for example, the older generation has

exceeded its budget.

it may seem strange to call GC.Collect(2, GCCollectionMode.Forced,
blocking: false, compacting: true) as we will learn in Chapter 11,
non-blocking (concurrent) full-GCs are non-compacting, so such arguments seem
to be contradicting. in such a case, indeed a triggered GC will be non-blocking and
not-compacting or blocking and compacting (the decision is left to the GC).

Calling GC.Collect is rarely justified. This whole book is dedicated to the fact that

the .NET GC is a complex and well-optimized thing. It keeps various statistics that

support heuristic decisions on whether to make a garbage collection and if so, which

generation will be the most productive to collect. By explicit calls to GC.Collect we

disturb those heuristics.

Moreover, it is really difficult to find a justification for using this method. As we

will see in Chapters 8 to 10, CLR makes its best to collect objects as fast as possible.

Determining which objects are eligible for collections is based on marking. If an object

is not garbage collected, it is because something still holds reference to it. Calling GC.

Collect will not help here. Calling this also will not help in the situation like “probably

CLR forgot to call the GC so I will remind him about it.” GC is not being called if it is not

productive. Thus, explicit GC.Collect call will also be non-productive. When you will see

Chapter 7 GarbaGe ColleCtion - introduCtion

550

next time in someone’s else code a GC.Collect call, it can mean two things: either the

author of such code was unaware of the aforementioned remarks, or she is a smart one

who has consciously used this method in this tiny fraction of the situations when it really

gives something.

Let’s consider the situations in which we would like to collect a memory of each

generation:

• generation 0 - you believe there are many dead objects in the

youngest generation and want to force collecting them. However,

if you allocate some objects in your application, this generation is

collected quite often anyway. And according to the CLR’s settings

(see Table 7-1), generation 0 would not grow to big sizes in the first

place. Thus, most probably it is best just to leave GC to do its job. Due

to self-tuning based on allocation and survivors’ rate, it will collect

generation 0 with optimized frequency. By explicit call we may only

ruin those self-tunings.

• generation 1 - this generation is an intermediate one. It is hard to

reason what, when, and for how long objects land there because

it heavily depends on dynamic conditions of your application.

Generation 1 is there to not promote young objects directly into

ever-old generation 2 objects. It is there to give objects a chance

to be collected before landing into generation 2. Allocation and

survival rates tracked by GC are helping with that. By explicit

call to collect generation 1, you are just throwing it all away. All

still reachable objects will be promoted into generation 2, some

of them probably prematurely and unnecessarily. And avoiding

promotion to the oldest generation is one of the things we should

consider really important. Explicitly triggering an ephemeral

collection may be tempting though because it is quite fast and is

the last resort before calling the full-blown full- GC. But I invite

you to rethink your data structures in terms of shortening their

lives instead.

Chapter 7 GarbaGe ColleCtion - introduCtion

551

• generation 2 - full-GC is much more expensive that others but it

does its job - everything that could be collected will be collected.

You may want to call it explicitly because you’ve noticed generation

2 is “big” or “constantly growing.” Most probably it happens

because of some roots that we are not aware of, not because the

GC forget to do its job. In fact, the GC probably is already doing

full garbage collections due to the memory pressure. Adding your

own explicit calls does nothing more that adds additional overhead

without possible positive effects. Instead of triggering GC, redesign

your application to not generate so long-living objects end up in the

oldest generation. Holding too big state, too long cached objects, or

unnecessarily large database data are tunings you may consider as

starting points of your optimizations.

And let’s not forget that regardless of which generation we give as the argument of

the GC.Collect call, it can end with full-GC anyway!

Having said that, what are the very few situations that may justify the use of GC.

Collect? There are some that may be grouped into the following use cases:

• You know the nature of some intermittent behavior of your

application that GC is unlikely to understand (but you will

understand your application data life cycle) - like occasional batch

processing that caused a large amount of allocations that ended

up in generation 2. If such allocation churns are rare, later on GC

may not decide to collect generation 2 for a long time. Thus, all that

garbage created during batch processing will stay there, increasing

total memory usage. It is not so bad (it does not incur GC overhead)

but it makes your process staying big while you know that it could

be not. Another example would be cleaning up memory before an

expected huge allocation churn - like occasional batch processing

mentioned before, loading a new level in a game and so on, and

so forth. It may be also useful before turning an application into

low-latency mode requiring as low GC (and runtime in general)

overhead as possible.

Chapter 7 GarbaGe ColleCtion - introduCtion

552

All those scenarios are exactly the opposite of, for example, the

steadily running web application that processes a stable number

of requests. The GC then has good insight into the allocation and

survival characteristics that will allow it to make better decisions

than we would be able to.

• Proactive cleaning at consciously selected points in the program

execution - similar to the first point, we can use the specificity of our

application to be able to collect garbage in advance in moments that

are not noticed by the user. A typical example is garbage collection

while waiting for a user’s input or displaying various kinds of loading

screens. This is, however, a weaker reason than the first one. We

should be really convinced about the meaningfulness of such calls.

Are such calls productive or do we call “just in case”? Remember that

they disrupt the work of GC tuning.

• Cleaning up due to benchmarking - any measurements require a

carefully prepared environment. To make sure that the GC overhead

will be repeatable, we should prepare a test environment to be in a

consistent state before each benchmark. This requires cleaning up

memory from everything that is possible to clean. Calling full-GCs

before benchmarks is a common pattern.

• As special cases of unit and integration tests - for example, those that

use WeakReference (an example is shown in Chapter 12) or are using

third-party code suspected of producing memory leak. By calling GC.

Collect explicitly before and after test (to clean everything that could

be cleaned), we are creating repeatable test results.

As a solution to used third-party libraries’ unfortunate memory usage

characteristics - the behavior of the library in use may involve something similar to the

first two reasons mentioned here. While we are not in control in such code, the only

thing we can do (except changing library) is to clean garbage before and/or after its

usage. Having said all that, still GC.Collect should be only an occasional call. Making it

cyclic to overcome some problems means you are most probably just trying to sweep the

whole problem under the rug. The typical, real problems are a mid-life crisis or ever-

holding roots - those are not be solved by explicit GC calls.

Chapter 7 GarbaGe ColleCtion - introduCtion

553

There is one additional way of triggering GC almost explicitly by using GC.

AddMemoryPressure (described in Chapter 15). By its call we inform GC that some

managed objects are holding a specified amount of unmanaged memory. Because from

a GC perspective such unmanaged data isn’t tracked by the GC heap, GC can’t take such

data size into its decision regarding memory usage. If total unmanaged memory size set

by GC.AddMemoryPressure calls exceeds dynamically tuned threshold, non-blocking GC

of a generation based on internal heuristics will be triggered.

Current implementation starts with threshold of value 100,000 bytes (and will never
drop below this value). it is then dynamically tuned based on the sizes passed via
GC.AddMemoryPressure (increasing it by 10% or 8 times the specified size,
depending which result is bigger) and GC.RemoveMemoryPressure calls. it also
considers the ratio between each generation collection count. although those are
internal implementation details that most probably will change, it is worth noticing
that memory pressure logic operates on its internal heuristics and do not relate to
the ones managed by the core GC logic.

 Scenario 7-3. Analyzing the Explicit GC Calls
Description: We are developing a desktop application written in WPF. Considering the

above remarks, we want to check whether it triggers GC explicitly. Of course, having its

source code, the simplest solution would be to search for GC.Collect calls. However,

firstly, our application consists of various components and we do not have the source

code for all of them. Secondly, the mere existence of a GC.Collect call does not say

much about its real use - whether and how often it occurs. For example, we will look

at the operation of the dnSpy application – a free, open source .NET debugger and

assembly editor presented already in previous chapters.

Analysis: We will start the analysis of the program by checking if there are explicit

GC triggers at all during its operation. The fastest and the easiest way is to use .\NET

CLR Memory(dnSpy)\# Induced GC Performance Counter, which counts all GC calls

of this type (see Figure 7-14). Clearly we see that indeed there are some induced GCs

happening (six during a one-minute test). By observing this graph during the test,

we may also quickly notice that they happen while opening new assemblies from the

Assembly Explorer panel.

Chapter 7 GarbaGe ColleCtion - introduCtion

554

Figure 7-14. Performance counter .\NET CLR Memory(dnSpy)\# Induced GC
during the first minute of dnSpy application run

After confirming that such calls are actually occurring, let’s go to the analysis where

it happens. For this purpose, we must again use the PerfView tool and GC analysis along

with collecting the events stack traces. To do that we should type Microsoft-Windows-

DotNETRuntime:GCKeyword:Informational:@StacksEnabled=true option into the

Additional Providers field at the Collect dialog box.

After recording the session, open GCStats report from Memory Group. In the GC

Rollup By Generation table of the dnSpy process, we will also find there a confirmation

of induced GC calls (see column Induced from Figure 7-15).

Figure 7-15. GC Rollup By Generation table from GCStats report of dnSpy process

Chapter 7 GarbaGe ColleCtion - introduCtion

555

Now open the Events panel from the recorded session and find Microsoft-Windows-

DotNETRuntime/GC/Triggered events that are emitted when explicit GC calls happen.

Because StacksEnabled option was turned on, we have corresponding stack trace of

each event occurrence (see Figure 7-16).

Figure 7-16. Events view filtered to the dnSpy process

The following three values can appear in the Reason field:

• Induced - explicitly induced GC without preferences regarding

compaction and blocking,

• InducedNotForced - explicitly induced GC that doesn’t have to be

blocking,

• InducedCompacting - explicitly induced GC that should be

compacting (but only SOH, remember that LOH compaction is

enabled explicitly by a different setting).

By selecting Open Any Stacks option from the context menu of values from Time

MSec column, we will be able to see the exact stack trace of each explicit GC trigger.

Microsoft-Windows-DotNETRuntime/GC/Start event might seem to be
a better place for an analysis start in this case. however, it is emitted from the
place where the actual GC work begins. in our case, most of GCs are processed in
background, on a dedicated thread. Stack trace of such event would always simply
indicate the place on a dedicated GC thread where it got the signal to start its job.

Chapter 7 GarbaGe ColleCtion - introduCtion

556

From stack trace analysis we would be able to identify two main sources of explicit

GC triggers (dnSpy tool is available on https://github.com/0xd4d/dnSpy that allows to

show you exact code):

 1. Cleaning memory after assembly decompilation (see Figure 7-17).

After it happens, the temporary cache may contain no longer

needed data. As fast as possible collection of them is triggered by

an explicit GC.Collect call.

Figure 7-17. Stack trace of the first kind of the explicit GC.Collect call

The excerpt of corresponding code is shown in Listing 7-3. It represents an approach

to wrap around resource-heavy object (DsDocumentService instance in our case) with

the helper implementing IDisposable interface. Such a helper realizes a very simple

reference-counting technique to track the usage of a wrapped object. If it is no longer

used, an explicit clean of heavy resources is conducted.

Listing 7-3. Sample of the explicit GC call in dnSpy code

sealed class DsDocumentService : IDsDocumentService {

 int counter_DisableAssemblyLoad;

 // ...

 public IDisposable DisableAssemblyLoad() => new DisableAssemblyLoadHelper

(this);

 sealed class DisableAssemblyLoadHelper : IDisposable

 {

Chapter 7 GarbaGe ColleCtion - introduCtion

https://github.com/0xd4d/dnSpy

557

 readonly DsDocumentService documentService;

 public DisableAssemblyLoadHelper(DsDocumentService document

Service) {

 this.documentService = documentService;

 Interlocked.Increment(ref documentService.counter_Disable

AssemblyLoad);

 }

 public void Dispose() {

 int value = Interlocked.Decrement(ref documentService.counter_

DisableAssemblyLoad);

 if (value == 0)

 documentService.ClearTempCache();

 }

 }

 // ...

 void ClearTempCache() {

 bool collect;

 lock (tempCache) {

 collect = tempCache.Count > 0;

 tempCache.Clear();

 }

 if (collect) {

 GC.Collect();

 GC.WaitForPendingFinalizers();

 }

 }

 // ...

}

The sample usage of such class is easy as presented in Listing 7-4.

Listing 7-4. Sample usage of code from Listing 7-3

using (context.DisableAssemblyLoad()) {

 // inside this block helper reference counter is incremented

 // context contains reference to the DsDocumentService instance

}

Chapter 7 GarbaGe ColleCtion - introduCtion

558

Code from Listing 7-3 is only one of the examples of how such defensive memory

cleaning could be implemented. Instead of reference counting, one could simply call

GC.Collect at some well-defined moment in time when an application notices that an

assembly has been decompiled (like an event sent from UI). It may also be tempting

to make DsDocumentService implement IDisposable directly and call GC.Collect

from inside its Dispose method. This would, however, change the semantic of using

DsDocumentService that not always might be appropriate. Another solution could be

calling GC.Collect from inside DsDocumentService finalizer.

Manual memory cleaning presented here is an example of the first case of

possible use cases listed above. The developer has decided to make the explicit GC call

because it knows that intermittent, user input-related action requires cleaning a lot of

temporary data.

 2. Controlling unmanaged memory due to bitmaps usage

(see Figure 7-18). As we can see, this time GC has been

triggered internally by Windows Presentation Foundation

(PresentationCore.dll is a part of WPF framework) because of

loading an image.

Figure 7-18. Stack trace of the second kind of the explicit GC.Collect call

It turns out that this is a known issue. Bitmaps - represented by BitmapSource

class in WPF - are small managed objects that hold image data as an unmanaged

memory. This makes them small to the GC as unmanaged data is not included in

object size. It could be done by making BitmapSource implementing IDisposable

and calling GC.AddMemoryPressure and GC.RemoveMemoryPressure in its constructor

and Dispose method respectively. Unfortunately, the design decision was the other.

Chapter 7 GarbaGe ColleCtion - introduCtion

559

Thus, as an internal WPF workaround, the bitmap data is held by an additional

handle with reference counting, which deals with GC.AddMemoryPressure and GC.

RemoveMemoryPressure calls (see Listing 7-5). As stated before, he AddMemoryPressure

method may trigger GC if certain thresholds have been exceeded and that is exactly what

we see in our scenario.

Listing 7-5. SafeMILHandleMemoryPressure class from the PresentationCore.

dll (Windows Presentation Foundation)

namespace System.Windows.Media

{

 internal class SafeMILHandleMemoryPressure

 {

 [SecurityCritical]

 internal SafeMILHandleMemoryPressure(long gcPressure)

 {

 this._gcPressure = gcPressure;

 this._refCount = 0;

 GC.AddMemoryPressure(this._gcPressure);

 }

 internal void AddRef()

 {

 Interlocked.Increment(ref this._refCount);

 }

 [SecurityCritical]

 internal void Release()

 {

 if (Interlocked.Decrement(ref this._refCount) == 0)

 {

 GC.RemoveMemoryPressure(this._gcPressure);

 this._gcPressure = 0L;

 }

 }

Chapter 7 GarbaGe ColleCtion - introduCtion

560

 private long _gcPressure;

 private int _refCount;

 }

}

This example shows a similar reference-counting wrapper approach as for the

previously shown assembly decompilation case. This time, however, the wrapper does

not call the GC explicitly but only informs it about an additional, unmanaged memory

pressure. It leaves the decision about triggering garbage collection to the GC itself.

Without this hack, GC would happen much less frequently than it should, leaving

the application with a high memory usage for a long time. It is the more severe problem

as more images are loaded. Most probably you will notice such induced GC calls in your

own WPF applications. As long as they do not introduce big overhead (like big % Time in

GC), this is fine. If it becomes severe, you can’t obviously change the internal WPF code.

As a workaround on an application level, one may create a pool of WriteableBitmap

objects and reuse them accordingly.

historically SafeMILHandleMemoryPressure managed its own set of counters
to control memory usage and called GC.Collect to trigger full-GC explicitly when
they were exceeded. it caused more problems than benefits, however. From .net
Framework 4.6.2, this logic has been transferred to the GC using a pair of AddMem
oryPressure/RemoveMemoryPressure methods.

note #2. if Clr is being hosted, there is yet another explicit GC trigger possible to
use via ICLRGCManager::Collect method. it induces blocking the full-GC of a
specified generation.

 Low Memory Level System Trigger
Garbage collection may be triggered “externally.” If an operating system notices it is

running out of memory, it may broadcast “low memory notification” signal. Well-behaving

applications may (but do not have to) listen to such a notification, trying to help or react

to this situation. They may start reducing their working sets in the manner deemed

appropriate by them. They may obviously also just ignore it if they consider it right.

Chapter 7 GarbaGe ColleCtion - introduCtion

561

.NET runtime is listening to such a signal. After receiving it, an ephemeral GC is

triggered (but it may be turned into full-GC under high memory pressure). Additionally,

GC becomes more aggressive during these collections. For example, it is more likely

that full-GC will be executed. The benefits are mutual because reducing the pressure on

memory helps all applications in the system (including our .NET-based).

low memory notification mechanism is currently only supported on Windows.
internally it uses CreateMemoryResourceNotification Winapi function.
Such notification is then observed by the Finalizer thread (it will be introduced in
Chapter 11), which was chosen because it is guaranteed to run throughout entire
lifetime of the application. after noticing the notification, GC is being called from
the Finalizer thread. according to the comment in the internal System.Runtime.
Caching.PhysicalMemoryMonitor class, that in turn is based on comments
from internal Windows implementations, the low memory notification is signaled
when 97–99% of physical memory is occupied (depending on the physical raM
amount installed in the system).

If we would like to check whether a low memory level notification triggers GC in

our application, the easiest way is to record the ETW session and look in reports or

Microsoft-Windows-DotNETRuntime/GC/Start for GCs with the following reasons:

• LowMemory - operating system has signaled low memory

notification.

• InducedLowMemory - operating system has signaled low memory

notification (and the runtime asked for blocking GC).

• LowMemoryHost - host has signaled low memory notification (this is

currently not a used one).

 Various Internal Triggers
There are various other places spread across both runtime and standard libraries that

ask for GC internally. Such GCs are mostly marked as induced ones (like in case of

explicit calls) because from GC perspective it does not matter whether it was being called

from user, runtime, or managed library code.

Chapter 7 GarbaGe ColleCtion - introduCtion

562

The most common reasons of this type include:

• AppDomain unload - cleaning up AppDomain-related objects is

a good reason to perform garbage collection. In this scenario a

blocking, full-GC is triggered.

• Cleanup of Thread objects representing dead threads - in a long-

running application various threads may be created and deleted.

Each such thread is represented by a managed object. This scenario

triggers non-blocking collection of generation that most dead Thread

object lives, but not more often than the default period value of 30

minutes.

• Before starting NoGC region (see Chapter 15) - a region of code asked

for not triggering GC may put some pressure on memory. Thus, it is

good to make a proactive cleanup in advance. This scenario triggers

blocking, full-GC to make sure every dead object will be collected.

there is also an internal mechanism used by .net team called GC stress. it
enables triggering GC much often for diagnostic reasons; mostly it’s for discovering
so-called GC holes, for example, things that are supposed to be reported to the GC
but aren’t.

In case of internal triggers listed here, most of them will be visible with reason

Induced in ETW-based data. Additionally, the following reasons exist:

• Internal - internal reason used by the runtime in a stress test mode,

• Empty and PMFullGC - currently not used.

 EE Suspension
During Garbage Collection work there are moments when threads executing application

code should not be working because they could access and modify memory regions

accessed by the GC itself. Depending on the GC mode those moments are shorter or

longer. In a Non-concurrent mode whole the GC is executed while user threads are

suspended. Even in Concurrent mode (described in Chapter 11) only some parts of the

Chapter 7 GarbaGe ColleCtion - introduCtion

563

GC are done while managed threads are working so even in such a case where there is a

need to suspend managed threads for those parts.

The process of suspending all threads executing user code is called “EE suspension”

(Execution Engine suspension meaning “suspending the managed threads”). In case

of Non-concurrent GC mode, which is described here, GC asks the suspension service

to suspend all managed threads at the beginning of its work and resume them when it

finishes. Such an intrusive approach is often referred to as “stop the world” technique

because from the application perspective the whole world is being paused for the time of

Garbage Collection.

As Book Of The Runtime says: “The CLR must ensure that all managed threads are

stopped (so they aren’t modifying the heap) to safely and reliably find all managed

objects. It only stops at safe point, when registers and stack locations can be inspected

for live references.”

Thus, a safe point is a code location where registers and stack locations can be

inspected for live references. Implementation of safe points is not trivial. Suspension

obviously must also be very efficient because suspending and resuming threads counts

into the overall GC pause time. From the perspective of the .NET memory management,

and thus our entire book, those implementation details are not so important though.

Thread suspension is not a part of GC at all. However, it is good to at least familiarize

yourself with the nomenclature used in this process, which can appear in various tools

during the analysis of memory consumption (especially in WinDbg). Moreover, thread

suspension logic is closely related to the local data liveness as we will soon see.

From the GC perspective, each managed thread may be in two distinct modes:

• cooperative - As CoreCLR source says in comments: “when a thread

is in cooperative mode, it is basically saying that it is potentially

modifying GC references, and so the runtime must Cooperate with

it to get to a ‘GC Safe’ location where the GC references can be

enumerated.” This is the mode that threads are in most of the time

when running managed code.

• preemptive - this mode means the suspension service does not

need to care about it - it is guaranteed to be in a place where a GC

can occur because it is executing code that does not access and

manipulate GC references. Most of the time it just means such a

thread knows how to suspend itself.

Chapter 7 GarbaGe ColleCtion - introduCtion

564

Having said that, EE suspension can be defined as forcing a situation when all

managed threads are in preemptive mode. Transition from cooperative to preemptive

mode may happen only at safe points. At every safe point a view of the thread’s state is

remembered - describing the layout of the stack and registers because they may contain

references to objects (constituting roots of the object tree). Such data is called GC info.

Treating all instructions in our application as safe points (making it possible to preempt

thread at each instruction) would require storing GC info for each of them. That would

consume quite large amounts of memory.

Thus, as often in such cases, a compromise has been introduced. Managed code

might be JITed into two kinds of code:

• partially interruptible - the only safe points are during calls to other

methods (including explicit GC pool calls checking whether a GC

is pending.4). Number of instructions between method calls is an

average .NET method is quite small. Thus, such approach provides

good safe points density with a reasonable overhead of GC info

storage. Generating partially interruptible code is preferred JIT

compiler’s choice.

• fully interruptible - every instruction of a method is treated as a

safe point (whole code is preemptive) except prolog and epilog

(small code fragments executed when the method starts and

ends respectively). JIT compiler must somehow store GC info for

every instruction but this makes fully interruptible code quickly

suspendable. Because of the storage overhead, JIT compiler rather

tries to avoid this approach. One of the typical scenarios when JIT

chooses it are loops of unknown repetition size without any method

calls inside (they do not guarantee a quick end that does not lead to

blocking off GC). One of the other typical solutions to such a problem

is injecting GC pool calls on back jumps of the loop. The doubtful

efficiency of such redundant pooling calls seems to be low though.

4 Such GC pool calls are spread around the runtime itself in various places and are also emitted by
JIT for some scenarios. They are rare, however, because pooling is not such an efficient approach,
and in an average method it is just enough to wait for the first method call that is also a safe
point.

Chapter 7 GarbaGe ColleCtion - introduCtion

565

if you want to investigate more, search for FC_GC_POLL and FC_GC_POLL_RET
macros inside CoreClr code that realize above-mentioned GC pool calls.

As Book Of The Runtime says: “The JIT chooses whether to emit fully- or partially

interruptible code based on heuristics to find the best trade-off between code quality,

size of the GC info, and GC suspension latency.”

During suspending the Execution Engine, it tries to orchestrate all threads currently

running in cooperative mode by forcing them to move into preemptive mode at their

safe points.5 First of all, operating system API is called to suspend underlying native

thread (SuspendThread function in case of Windows API) and then:

• For fully interruptible code this is easy. A thread is already at a safe

point so it may be just leaved suspended.

• For partially interruptible code we might be lucky and suspend a

thread during its safe point. In such case it may be left suspended as

above. If a thread was suspended outside a safe point (which is more

likely), the current stack frame’s return address is being manipulated

to a special stub that will “park” it in a safe point and the thread is

resumed for a short while (it may also hit its own safe point during

that time).

Resuming threads is much simpler than suspending. When a GC is finished, all the

suspended threads will be woken up by signaling an event about a suspension end and

they will resume their execution.

We may monitor GC suspension and thread resuming with the help of ETW

events pairs GCSuspendEE_V1/GCSuspendEEEnd_V1 and GCRestartEEBegin_

V1/GCRestartEEEnd_V1 accordingly.

5 Please note that such description is simplified for brevity. If you are interested in very deep
implementation details, please refer to the CLR Threading Overview section in the Book Of The
Runtime and ample comments at the beginning of the .\src\vm\threads.h file in CoreCLR
source code.

Chapter 7 GarbaGe ColleCtion - introduCtion

566

 Scenario 7-4. Analyzing GC Suspension Times
Description: Developing our .NET application, we would like to check with curiosity

how long GC suspension actually takes. We should not expect any problems here. Just

pure curiosity on our part.

Analysis: Thanks to the ETW events mentioned before, it is easy to calculate GC

suspension and resumption time. The easiest way is to look at GCStats report in

PerfView. GC Events by Time table shows a nice summary of each event, including the

suspension and GC execution time (see columns Suspend Msec and Pause MSec in

Figure 7-19). As we may see, suspension takes a lot less time than the GC itself.

Figure 7-19. GC suspension and GC execution times from GC Events by Time
table in PerfView's GCStat raport

Chapter 7 GarbaGe ColleCtion - introduCtion

567

We should not observe noticeable suspending times during our application

execution. It would most probably mean a bug in the runtime because we have no

control over the GC suspension mechanism. For example, there was a bug in some rare

conditions in .NET 2.0 that in certain scenarios (tight CPU-bound loops executing the

same code and not hitting any safe point) caused the suspend time to be extended to a

value of seconds. It has been fixed in .NET 4.0. In regular applications, we can observe

longer suspensions (let’s say, longer than 1 ms) in case of a long I/O operation or thread

priorities messed up.

unmanaged threads are not suspended and restarted. if you create a background
native thread doing its work (like executing a timer callback), it will run
independently from the ee suspensions. however, p/invoke mechanism must block
on a return from unmanaged code to managed code.

 Generation to Condemn
When GC is triggered with a specific generation to be collected, GC can decide to

condemn a generation that’s older one than specified. Thus, if something (including

your GC.Collect call) asked for collecting some particular generation, it may decide to

collect an older generation - based on various heuristics it tracks internally. We have

seen those data already in the section about static and dynamic GC data.

In this section an extensive list of possible reasons of changing condemned

generation is provided. This allows you to better understand what and why GCs take

place in our applications.

Let’s take into account that the order of decisions presented here is important. Each

subsequent decision (heuristics) can increase the condemned generation but not lower

it. In other words, for example, if one of the checks decides to condemn generation 2 and

some later check will like to decide to condemn generation 1, eventually the older one

will be condemned (effectively ignoring suggestion of condemning generation 1).

Chapter 7 GarbaGe ColleCtion - introduCtion

568

Below is a comprehensive list of various decisions that may change the condemned

generation (names in the parentheses are taken from PerfView’s Condemned reasons for

GCs table that is the best and only place when you can analyze this stage):

• Allocation budget has been exceeded (Generation Budget

Exceeded) - the oldest generation that exceeded allocation budget

will be condemned. This includes Large Object Heap in case of

which generation 2 will be condemned (triggering full-GC) but only if

background GC is not already running. Please note that, for example,

it means older generation may be condemned because of its

allocation budget even if originally only generation 0 budget violation

was detected during object allocation. We have seen such a typical

situation in scenario 7-2.

• Time-based tuning (Time Tuning) - it may be surprising but GC also

cares about the appropriate proportions of collections of individual

generations based on time dependencies and their counting. This is

done however only in Workstation mode, not in Server mode, and

only in case of Interactive or SustainedLowLatency latency modes.

GC may decide to condemn a generation if enough time has elapsed

since the last GC of that generation and the number of GCs of lower

generation has exceeded a certain threshold. Threshold values have

been already presented in Tables 7-1 and 7-2 in the clock_time and

gc_time columns. It means in particular that:

• generation 1 may be condemned if it was not collected since 10

seconds and 10 GCs,

• generation 2 (triggering full-GC) may be condemned if it was not

collected since 100 seconds and 100 GCs.

This is to accommodate the fact that processes running in

Workstation GC mode are less regular than those in Server GC

mode so the GC wants a chance to notice the allocation/survival

pattern sooner.

Chapter 7 GarbaGe ColleCtion - introduCtion

569

We can sometimes meet the so-called Golden Rule of GC that

in a healthy application’s proportions between a generation’s

collections count should be as 1:10:100 - clearly resulting from

the time tuning described here. Please note, however, this only

applies to Workstation GC and is considered no longer valid in

general. The “Healthy” proportions of GCs the count are much

more complex and dynamic than just such simple ratios.

• Low card table efficiency (Internal Tuning) - the card table has too

many “generation faults.” If we return to the information about card

tables from Chapter 5, we will remind ourselves that they introduce

a certain overhead. Each card represents continuous memory region

where multiple objects may live. Each of such objects may contain

references to other objects but only some of them will be truly cross-

generational (will point to objects in the generations being collected).

The ratio between these useful and all references is called card table

efficiency. Low card table efficiency means unnecessary traversing

through a lot of objects. Thus, if it drops below a certain threshold, it

is worth it to condemn generation 1. This should group long-living

objects into same generations, potentially removing most cross-

generational references.

• Running out of space in the ephemeral segment (Ephemeral Low and

Ephemeral Low with Very Fragmented Gen2) - there is a shortage of

space in the segment containing generations 0 and 1 (more precisely,

there is no space for the doubled size of minimum generation 0 in

the segment’s Reserved memory). In such case generation 1 will be

condemned to free up ephemeral memory (with reason Ephemeral

Low). Additionally, if there is a fragmentation in generation 2 big

enough to fit (after compaction) generation 1, generation 2 will be

condemned triggering full-GC (with reason Ephemeral Low with

Very Fragmented Gen2). This in general means that if the ephemeral

segment is running out of space, the GC is more aggressive in doing

collections (meaning doing mainly more generation 1 collections) to

avoid acquiring a new heap segment (or expanding current one).

Chapter 7 GarbaGe ColleCtion - introduCtion

570

• Ephemeral generation is too fragmented (Fragmented Ephemeral) -

the ephemeral generation whose threshold of fragmentation has

been exceeded will be condemned (that is, generation 0 or 1).

• Running out of space in the ephemeral segment requires expanding

it (Expand Heap) - if there is no other way to fit growing ephemeral

generations other than by expanding segment, generation 2 will be

condemned (triggering full, blocking GC).

• Running out of space during allocation (Compacting Full-GC) - as a

last resort before throwing OutOfMemoryException during Allocator’s

work, a full, blocking, and compacting GC will be triggered.

• Physical memory load in the system is more than 90% 6 or operating

system has sent a low-memory notification (High Memory) - if

generation 2 is heavily fragmented or it is already occupied in more

than 10% of its allocation budget, condemn generation 2 (in many

cases doing blocking GC). Please note, it means that the CLR may

ignore a low- memory notification from the OS and does not trigger

GC at all if it decides it is not worth doing it. In general, however,

thanks to this point, system-wide memory pressure makes GC more

aggressive if that’s likely to yield free space. This is important to

prevent unnecessary paging across the whole machine.

• Generation 2 is too fragmented (Fragmented Gen2) - the generation 2

threshold of fragmentation has been exceeded and it be condemned.

• Generation 2 or LOH is too small for doing background GC (Small

Heap) - in such a case full, blocking GC will be triggered.

• In case of low-latency mode only generation 0 or 1 can be

condemned (overriding any previous decisions).

Additionally, there is one special reason used in case of background GC (described

in Chapter 11) to note starting an ephemeral GC before a background GC (Ephemeral

Before BGC in PerfView).

6 This is the value used in most cases. For powerful machines with many logical cores, this
threshold may be bigger - up to 97%.

Chapter 7 GarbaGe ColleCtion - introduCtion

571

In some of the decisions described above, fragmentation threshold exceeding takes

an important role. One can wonder what its value is. Each generation maintains its own

threshold, consisting of two values taken from static generation data (see Tables 7-1

and 7-2):

• total memory size wasted because of unusable fragmentation -

unusable fragmentation includes:

• unused free space, not managed by the generation allocator -

those include small gaps created during Sweeping (as we will see

later) and space in ephemeral generations discarded after not

successful fitting (as mentioned in Chapter 5, free-list items in

these generations are checked only once and then released).

• expected allocator efficiency - how well it has been possible to

reuse free-list items so far.

• This value is represented by fragmentation_limit column in

Tables 7-1 and 7-2 (see Table 7-4 for a summary).

Table 7-4. Fragmentation Thresholds for Generations

Fragmentation limit Fragmentation ratio

Gen0 40,000 75%

Gen1 80,000 75%

Gen2 200,000 50%

• fragmentation ratio - this is the ratio of the above total unusable

fragmentation size to the size of the whole generation. This value is

calculated from the fragmentation_burden_limit column in Tables 7-1

and 7-2 by doubling it, but not exceeding 75% (see Table 7-4 for a

summary).

For example, generation 2 will be considered as too fragmented if the size of

unusable fragmentation will exceed 200,000 bytes and it will be more than 50% of total

generation size.

Chapter 7 GarbaGe ColleCtion - introduCtion

572

 Scenario 7-5. Condemned Generations Analysis
Description: We want to understand the most common reasons of GCs in our

application, altogether with the knowledge which and why generations were

condemned. Such kind of analysis is very in-depth and will probably be necessary

only in very specific cases (like, we see too many full-GCs happening and we want to

understand why they are full-GCs).

Analysis: Currently there is no better tool to understand generations being condemned

than analysis of GCStats report in PerfView. After recording even the simplest GC Collect

Only session, it provides Condemned reasons for GCs table that pretty much explain

everything (see Figure 7-20). This scenario is a follow-up of scenario 7-2 where the

first five GCs were thoroughly analyzed. Now we can observe how they are described

in PerfView. During analysis refer to the names from the list of various condemning

decisions presented above.

We can indeed see here confirmation of our analysis for the first five GCs from

scenario 7-2:

• GC #1 is explicitly induced (value of Blocking in Induced column) as

full-GC (value of 2 in Initial Requested Generation). And it is indeed

executed as full-GC (value of 2 in Final Generation).

Figure 7-20. Condemned reasons for GCs table from GCStats report in Perf View

Chapter 7 GarbaGe ColleCtion - introduCtion

573

• GC #2 is initially requested for generation 0 (value of 0 in Initial

Requested Generation) - because of this generation’s allocation

budget exceeding. However, it becomes full-GC because also

generation 2 budget has been exceeded (value of 2 in Final

Generation). As we know, it is in fact the LOH allocation budget being

exceeded, but as already explained, it is being treated as gen2.

• GC #3 is initially requested for generation 0 and actually performed

for it. There are no reasons for other generation condemnation.

• GC #4 is initially requested for generation 0 but due to generation 1

budget exceeding, finally generation 1 is condemned.

• GC #5 is initially requested for generation 1 - that happens in case of

OutOfSpaceSOH reason (see value of 1 in Ephemeral Low column).

However, due to generation 2 budget being exceeded, it becomes

full-GC.

Careful analysis of Condemned reasons for GCs together with GC Events by

Time tables may provide a great insight into your application GCs. However, this is

q quite mundane and laborious task. You can view the Condemned reasons for GCs

table and look for common patterns, frequently recurring reasons, and so on and so

forth. Unfortunately, there is currently no tool that will try to summarize and analyze

condemned reasons as a whole.

It is definitely worth paying special attention to the following columns that may

indicate a problem in your code:

• Induced - explicit GC calls are rarely justified. If they occur

frequently, we may wish to investigate why (refer to scenario 7-3).

• Fragmented Ephemeral and Fragmented Gen2 - if they occur

frequently, they show problems with memory fragmentation. We

probably should better understand the allocation patterns in our

application (refer to scenario 5-2 and scenario 6-2).

if you would like to perform your own CoreClr code analysis, carefully read gc_
heap::generation_to_condemn method. all condemnation reasons described
here are checked there one by one.

Chapter 7 GarbaGe ColleCtion - introduCtion

574

 Summary
In this chapter we started to investigate deeply the heart of the .NET memory

management - the Garbage Collector. We started here from the high-level view. An

overall, generalized concept of GC work has been presented, including GC process in

example and explained step by step. Then, all major phases of the GC were thoroughly

described. While three subsequent chapters describe them in details, this one explained

the three first:

• mechanisms that triggers garbage collection,

• how entire runtime cooperates to proceed with the EE suspension,

that is - stopping all managed threads,

• how GC selects which generation should be collected.

Because those are such important topics, five practical scenarios were also presented

here - including how to analyze the GC usage and finding explicit GC calls.

With all the knowledge from this chapter, we may proceed in explaining the next

phases of the GC. The next chapter contains detailed explanation of the Mark phase.

Chapter 7 GarbaGe ColleCtion - introduCtion

575
© Konrad Kokosa 2018
K. Kokosa, Pro .NET Memory Management, https://doi.org/10.1007/978-1-4842-4027-4_8

CHAPTER 8

Garbage Collection - Mark
Phase
In the previous chapter we have gained knowledge about some general GC topics,

like when it is triggered and how it decides which generation should be collected.

Let’s now move into the details of implementation of the first main GC phase - Mark

phase.

At this stage, GC decided which generations will be collected. It’s time to investigate

which objects may be reclaimed. As mentioned before, CLR implements a tracing

Garbage Collector. It starts from various roots and recursively traverses a whole object’s

graph of the current program state. All those that are not reachable from any roots are

considered dead (recall Figure 1-15).

In case of a Non-concurrent GC described in this chapter, at the beginning of this

stage, all managed threads are suspended. Managed Heap is guaranteed to be not

changing, and it remains the sole property of the GC. It can therefore start browsing

safely in search of reachable objects.

 Object Traversal and Marking
Despite the existence of many different roots, the mechanism of finding reachable

objects remains common. Given a specific root address, a traversal routine performs the

following steps:

• Translate it to the proper address of a managed object - in case

of a so-called interior pointer (indicating not at the beginning but

somewhere inside the managed object). It may be done efficiently

thanks to the bricks table mechanism described later.

576

• Set pinning flag - if an object is pinned (which is known by the fact of

traversal from the pinned handles table or flag reported to the GC), a

proper single bit is set in the object’s header.

• Start traversal through object’s references - thanks to the type

information (stored in a MethodTable), GC knows which offsets

(fields) represent outgoing references. It starts visiting them in a

depth-first manner by maintaining a collection of objects to be

visited. This is called a mark stack because it is organized as a stack

data structure with push and pop operations. During visiting an

object:

• already visited object is simply skipped.

• not yet visited object is being marked - which is done by setting a

bit in object’s MethodTable pointer.1

• its outgoing references are added to the mark stack collection.

Traversal ends when there are no more objects to visit on the mark stack.

Commonly, the typical approach to a depth-first graph traversal is based on
recursive calls. However, they are hard to guarantee that no stack overflow will
happen. It is easier and safer to replace the recursive-based technique with the
iterative one - based on the heap allocated, stack-like collection (like mark stack
used in CLR) that may be simply grown in case of exceeding its current size.

Please note, both pinned and marked flags are set during the Mark phase. Those

flags are used and then unset during the Plan phase. During a normal object’s lifetime

(while managed threads are running), both the fact of pinning or marking is not

presented in the object’s header nor its MT pointer.

1 It does not destroy the MT pointer because MethodTable data address is word-aligned (it is
multiplication of 4 or 8 bytes) so at least the two lowest bits are unused (always set to zero).
Getting a proper MT pointer from such a modified pointer requires only zeroing the two lowest
bits - see GetMethodTable method in CoreCLR for reference.

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

577

If you are interested in details and want to study CoreCLR code, start from
investigating GCHeap::Promote method. It calls the go_through_object_cl
macro that triggers traversal through all objects’ references. the main work is
done in gc_heap::mark_object_simple1 method that realizes depth-first
object graph traversal using an auxiliary stack-like collection called mark_stack_
array (with mark_stack_bos and mark_stack_tos indexes pointing to the
bottom and the top of the stack).

Knowing the overall structure of the marking process, let’s now investigate in detail

different GC roots that may exist in our application. Good understanding of them is

one of the most useful pieces of knowledge related to the .NET memory management.

Roots may be holding whole graphs of reachable objects, counting into the common

problems:

• big memory usage - we may be unaware of the existence of certain

roots that cause the reachability of a much larger number of objects

than we would expect. The mere fact of the existence of a large

number of objects can be an overhead for GC by itself.

• memory leak - even worse, roots may cause continuous growth of the

object graph hold by them, leading to constantly increasing memory

usage.

 Local Variable Roots
Local variables are one of the most common roots. Some of them are very temporary

(see Listing 8-1), while others live for the entire application lifetime (see Listing 8-2). We

simply create local variables constantly here and there.

Listing 8-1. An example of very short-living local variable fullPath

public static void Delete(string path)

{

 string fullPath = Path.GetFullPath(path);

 FileSystem.Current.DeleteFile(fullPath);

}

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

578

Listing 8-2. An example of very long-living local variable host that lives for an

entire self-hosted ASP.NET application lifetime

public static void Main(string[] args)

{

 var host = BuildWebHost(args);

 host.Run();

}

We often create them explicitly (like in Listings 8-1 and 8-2), but many times they are

also created implicitly (see Listing 8-3).

Listing 8-3. An example of very long-living local variable host created implicitly

(this code is in fact the same as in Listing 8-2)

public static void Main(string[] args)

{

 BuildWebHost(args).Run();

}

Local variable may represent a value type (like struct) or a reference to the reference

type value 2 (please recall an important distinction between “reference” and “reference

type data” discussed in Chapter 4). In this section a Garbage Collection of objects allocated

on the heap are considered so we will look into details of local variables holding references

(regardless of whether it is a typical reference type like class or boxed value type).

 Local Variables Storage
When we assign a managed object reference to a local variable, we create a root like in

Listing 8-4 where reference to a newly created object instance of type SomeClass has

been assigned to a local variable c. Since then we should consider this instance to be

reachable. Thus, assuming c is the only root, an object cannot be garbage collected until

the method Helper ends because local variable c is used throughout the entire Helper

method.

2 Local variable may represent a primitive type (like numbers), but those are not in our interest
here as they do not represent a heap-allocated object.

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

579

Listing 8-4. An example of local variable holding

private int Helper(SomeData data)

{

 SomeClass c = new SomeClass();

 c.Calculate(data);

 return c.Result;

}

In general, the situation from Listing 8-4 may be nicely illustrated by Figure 1-10

from Chapter 1. Maybe we are used to it and we would like to treat local variables

as being stack allocated (because reference may be treated as value type). Thus, the

situation from Listing 8-4 may be seen as follows: allocator creates an object instance

on the Managed Heap while local variable c should be stored on the stack within

Helper's method activation frame. However, as we have seen already in Chapter 4,

local variables may be enregistered (stored into CPU register) thanks to great JIT

compiler optimizations. This leads to an important fact endlessly worth repeating -

roots represented by local variables may be stored on the stack or in CPU registers.

The JIT compiler makes its best to allocate registers and stack slots as efficiently as

possible.

 Stack Roots
Roots described above in this chapter are called stack roots. Fundamentals of Garbage

Collection section in .NET Guide Docs are describing them as “stack variables provided

by the just-in-time (JIT) compiler and stack walker.” This description can be a bit

confusing. As we know, it is really about the local variables in a method that is currently

running and also local variables of all methods in the current call stack. It is the call stack

that the term “stack roots” refers to. But please remember, such “stack roots” may be on

the stack or in a CPU register.

When EE suspension is done, call stacks of all managed threads must be investigated

to find all local variables because they may constitute what is referred to as stack roots.

This is done by the mentioned stack walker. If a method from the current call stack

has some local variables holding reference to the managed object - it is considered as

live and starts such an object’s graph traversal. However, it is not trivial to answer the

question whether there are local variables at a given line of the method code (instruction

address, to be precise) and whether they are a reference to an object or not.

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

580

As described in the section on suspension in Chapter 7, threads may be suspended

at safe points - those include almost every instruction (in case of fully interruptible

methods) or only other methods calls (in case of partially interruptible methods). This

leads us to the conclusion that GC needs to store somehow the knowledge about live

“stack roots” (both stack and register slots) for every safe point of a method. This is what

GC info mentioned before really is.

 Lexical Scope
In C# inseparable from the concept of a local variable is the related concept of its lexical

scope. In the simplest words, it defines areas of code in which the given variable is

visible - considering all nested code blocks, etc. Taking as an example code from

Listing 8-5, there are three local variables defined:

• c1 - local variable that represents a reference to the managed

object of type ClassOne. Lexical scope of c1 spans to entire

LexicalScopeExample method - c1 is accessible in the entire method

because it has been declared in the most outer scope of it;

• c2 - local variable that represents a reference to the managed object of

type ClassTwo. Lexical scope of c2 is limited to the conditional block;

• data - local variable for primitive, integer type.

Listing 8-5. An example of two local variables with different lexical scopes

1 private int LexicalScopeExample(int value)

2 {

3 ClassOne c1 = new ClassOne();

4 if (c1.Check())

5 {

6 ClassTwo c2 = new ClassTwo();

7 int data = c2.CalculateSomething(value);

8 DoSomeLongRunningCall(data);

9 return 1;

10 }

11 return 0;

12 }

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

581

Let’s now elaborate how reachability of objects created within a method relates to

their lexical scope.

 Live Stack Roots vs. Lexical Scope
When considering reachability of an object represented by a local variable, a very

intuitive solution immediately comes to mind - it should be associated with the local

variable lexical scope. Thus, taking Listing 8-5 as an example:

• Created instance of ClassOne should be reachable during entire

method lifetime - since the creation (line 3) until the end of method

(line 11). In other words, c1 local variable constitutes live stack root

from line 3 until line 11;

• Created instance of ClassTwo may be reachable only within

conditional block - since the creation (line 6) until the block end

(line 9). In other words, c2 local variable constitutes live stack root

from line 6 until line 9.

Taking such approach, GC Info of LexicalScopeExample method from Listing 8-5:

• For fully interruptible case could be imagined as in Listing 8-6 - each

line has its own information (while obviously it would be created at

an assembler level, let’s now stick with C# lines of code for brevity).

• For partially interruptible case could be imagined as in Listing 8-7 -

 information is stored only at lines with method calls (including

allocation/constructor).

Listing 8-6. A visualization of GC Info of LexicalScopeExample method from

Listing 8-5-10 in fully interruptible case. Each line lists live stack roots.

1 No live slots

2 No live slots

3 Live slot of c1

4 Live slot of c1

5 Live slot of c1

6 Live slot of c1, live slot of c2

7 Live slot of c1, live slot of c2

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

582

8 Live slot of c1, live slot of c2

9 Live slot of c1, live slot of c2

10 Live slot of c1

11 Live slot of c1

12 No live slots

Listing 8-7. A visualization of GC Info of LexicalScopeExample method from

Listing 8-5 in partially interruptible case. Each line lists live stack roots.

3 Live slot of c1

4 Live slot of c1

6 Live slot of c1, live slot of c2

7 Live slot of c1, live slot of c2

8 Live slot of c1, live slot of c2

GC info stores information about JITted, assembly code. Thus, it obviously does not

operate on specific C# variable names, but on specific stack slots or CPU register slots.

For example, the more realistic GC info representation of Listing 8-6 would look like in

Listing 8-8 (assuming that JIT compiler has assigned register rax to local variable c1 and

rbx to local variable c2).

Listing 8-8. A visualization of GC Info (at JITted assembly level) of

LexicalScopeExample method from Listing 8-5 in fully interruptible case

1 No live slots

2 No live slots

3 Live slots: rax

4 Live slots: rax

5 Live slots: rax

6 Live slots: rax, rbx

7 Live slots: rax, rbx

8 Live slots: rax, rbx

9 Live slots: rax, rbx

10 Live slots: rax

11 Live slots: rax

12 No live slots

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

583

Imagine that due to GC, runtime has suspended a thread currently executing

LexicalScopeExample method at line 7 (assuming the method has been JITted as fully

interruptible). Thanks to the GC info presented in Listing 8-8, GC immediately knows

that there are live stack roots in CPU registers rax and rbx. The marking process may be

started with addresses stored in those registers.

Such an approach would be perfectly valid, leading to proper results. The

reference local variable lexical scope obviously counts into the reachability of

the reference type object. Similar, an even more relaxed approach is taken when

compiling an application in Debug mode. JIT compiler extends the reachability of

all local variables until the end of a method. This is very useful due to debugging

purposes (like inspecting variable values). But more can be done in the Release

mode to optimize memory usage.

 Live Stack Roots with Eager Root Collection
Looking at the code from Listing 7-10 once again, we may notice that lexical scope

is not the optimal representation of reachability. From the fact that due to its lexical

scope a local variable may be used does not mean it is used indeed. What really matters

is whether those variables are in fact used or not. Looking at LexicalScopeExample

method from such perspective we notice that:

• Created instance of ClassOne is no longer used since line 5 - so

despite lexical scope of variable c1, it constitutes live stack root only

from line 3 until line 4,

• Created instance of ClassTwo is used only at lines 6 and 7 - so despite

lexical scope of variable c2, it constitutes live stack root only at those

lines.

In other words, the C# compiler may notice the real usage of each object

(through local variables) and save this information. Then the JIT compiler will use

it during slots allocation (shorter object lifetimes allows it to reuse valuable CPU

registers) and while emitting GC info. This results in much more efficient generated

GC info (see Listing 8-9).

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

https://doi.org/10.1007/978-1-4842-4027-4_7#PC10

584

Listing 8-9. A visualization of GC Info (at JITted assembly level) of

LexicalScopeExample method from Listing 8-5 in fully interruptible case using

eager root collectiont

1 No live slots

2 No live slots

3 Live slots: rax

4 Live slots: rax

5 No live slots

6 Live slots: rax

7 Live slots: rax

8 No live slots

9 No live slots

10 No live slots

11 No live slots

12 No live slots

With a new GC info, most of the time while the method is running, there are no live

stack roots. Each object is treated as unreachable from local variables when it is indeed

no longer needed. Such eagerness to collect an object as fast as possible is referred to as

eager root collection. This obviously is more efficient from a memory usage perspective

because it shortens an object’s lifetime to the required minimum. This in turns also

allows it to use CPU registers more densely because they may be reused more often (like

reusing rax register in Listing 8-9). Generated GC info for partially interruptible methods

will be even shorter (see Listing 8-10).

Listing 8-10. A visualization of GC Info of LexicalScopeExample method from

Listing 8-5 in partially interruptible case using eager root collection

3 Live slots: rax

4 Live slots: rax

6 Live slots: rax

7 Live slots: rax

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

585

In all examples in this section, only CpU register slots were used. this is a typical
scenario because JIt makes its best to use only blazingly fast CpU registers
instead of stack slots. It may decide to use a stack slot in certain circumstances,
but this will not change the mechanisms described here. only a stack slot would
be listed instead of a register name. stack slots are represented as offsets to the
rsp or rbp address (depending which one is used by a method). thus, GC info also
stores current rsp and rbp register values for each safe point. Moreover, JIt in
x64 runtime is much more likely to consume registers because x64 platform added
eight new general-purpose registers (named r8 through r15).

When threads are suspended, their current context (including registers) is saved.

So for example, when LexicalScopeExample happens to be suspended at line 6, based

on the GC info, there will be one live stack root address taken from rax register (stored

in the context). The same logic will be repeated for all methods on the call stacks by

inspecting the call stack frame by frame (and restoring proper thread context thanks to

information inside activation frames - like previous values of registers).

Eager root collection is used by JIT when our code is compiled in Release mode. It

can sometimes lead to several surprising and even misleading behaviors. Most of the

questions about such scenarios starts with “In Debug, my code does X. But in Release, it

does Y... .”

First of all, setting a local variable to null to “inform” GC that we will no longer use

a given object is not needed in most cases (see Listing 8-11). Even before long-running

calls (to tell GC - hey, I am starting those very long-running calls so please note that

this object is no longer used and may be collected). Thanks to an eager root collection

technique, the compiler and JIT will perfectly notice the real scopes of our variables’

usage. There is no need to tell them explicitly. Code from Listings 8-5 and 8-11 are

perfectly identical in that respect. They produce the same GC Info and assembly code

(JIT will optimize out those redundant null settings in the first place).

Listing 8-11. An example of unnecessary null setting

private int LexicalScopeExample(int value)

{

 ClassOne c1 = new ClassOne();

 if (c1.Check())

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

586

 {

 c1 = null;

 ClassTwo c2 = new ClassTwo();

 int data = c2.CalculateSomething(value);

 c2 = null;

 DoSomeLongRunningCall(data);

 return 1;

 }

 return 0;

}

there is one exception to that rule in case of so-called untracked variables
(explained later), which are considered life for the entire method’s lifetime. so in
case of really, really crucial resources, you may wish to set a local variable to null
to help out the JIt compiler.

Secondly, eager root collection may cause strange results when imposed on

objects with methods causing side effects. We may expect particular object’s lifetime

based on its lexical scope, producing those side effects, while as we already know,

the lifetime is not based on lexical scope. The typical scenarios here include using

various timers, synchronization primitives (like Mutex), or system-wide resource

access (like files).

Listing 8-12 shows a typical behavior that is hardly explainable without knowledge

about eager root collection. Intuitively we expect Timer object lifetime to be

corresponding to the local variable timer lexical scope. Thus, the presented program

should print the current time endlessly until we do not hit any key. And this is a behavior

we will observe in Debug build. However, in Release build, eager root collection comes

into the play. As Timer object is not used since line 3, JIT compiler will emit GC Info

about it. Timer object becomes unreachable after line 3! If GC will happen while Main

method is executing code after that line, it will be collected (stopping printing current

time). Depending how fast the GC will be processed, the timer may be able to print the

current time a few times.

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

587

Listing 8-12. An example of unexpected Timer behavior due to early root

collection

1 static void Main(string[] args)

2 {

3 Timer timer = new Timer((obj) => Console.WriteLine(DateTime.Now.

ToString()), null, 0, 100);

4 Console.WriteLine("Hello World!");

5 GC.Collect(); // simulate GC happening here

6 Console.ReadLine();

7 }

Program result:

Hello World!

28/03/2018 14:29:01

Please note that in our example GC is called explicitly to produce repeatable results.

In a real-world scenario such GC may happen due to allocations on other threads.

Moreover, eager root collection is so aggressive that an object may be treated as

unreachable even while one of its methods is still running (if that method does not refer

to this). Listing 8-13 shows a behavior simulating such scenario. While DoSomething

method is running, GC occurs (again, for example purposes it is called explicitly).

Additionally, SomeClass has a finalize method (finalization will be explained in detail in

Chapter 12), which is executed when an object is being garbage collected.

Listing 8-13. An example of unexpected object behavior due to early root

collection

static void Main(string[] args)

{

 SomeClass sc = new SomeClass();

 sc.DoSomething("Hello world!");

 Console.ReadKey();

}

class SomeClass

{

 public void DoSomething(string msg)

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

588

 {

 GC.Collect();

 Console.WriteLine(msg);

 }

 ~SomeClass()

 {

 Console.WriteLine("Killing...");

 }

}

Program result:

Killing...

Hello world!

Surprisingly enough, the program produces an output suggesting that an object died

before its whole method had been executed. This is because DoSomething does not refer

to this, so in fact, it does not require its own object instance!

Going further, in certain circumstances eager root collection may collect an object

while one of its methods is still running and its code refers to this! Listing 8-14 shows a

behavior simulating such a scenario. Even DoSomethingElse method refers to this, and

SomeClass instance will be eagerly collected like in the previous example.

Listing 8-14. An example of unexpected object behavior due to early root

collection

static void Main(string[] args)

{

 SomeClass sc = new SomeClass() { Field = new Random().Next() };

 sc.DoSomethingElse();

 Console.ReadKey();

}

class SomeClass

{

 public int Field;

 public void DoSomethingElse()

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

589

 {

 Console.WriteLine(this.Field.ToString());

 // further code

 Console.WriteLine("Am I dead?");

 }

 ~SomeClass()

 {

 Console.WriteLine("Killing...");

 }

}

Program result:

615323

Killing...

Am I dead?

How does it happen? It is possible due to method inlining. If JIT compiler decides

to inline a method, it becomes a part of the calling method (see Listing 8-15). It may

incur further optimizations. For example, DoSomethingElse used this.Field only at the

beginning. After inlining into Main method, sc.Field reference will be the last one to the

object and further code may be executed while the object is being collected.

Listing 8-15. An example of unexpected object behavior due to early root

collection

static void Main(string[] args)

{

 SomeClass sc = new SomeClass() { Field = new Random().Next() };

 Console.WriteLine(sc.Field.ToString());

 // further code

 Console.WriteLine("Am I dead?");

 Console.ReadKey();

}

Please bear in mind that such optimizations are quite often as the JIT compiler

is very aggressive at making the local variable lifetime as short as possible. In most

cases the JIT compiler safely uses this technique because it does not change the

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

590

program’s logic. Any unexpected behaviors resulting from it should be very rare

and related only to the above-mentioned objects with side effects related to their

lifetime.

Sometimes for some reason we need to have better control over an object’s lifetime.

Coming back to Listing 8-12, we may really need a timer running for the whole lifetime

of the application. For such scenarios the GC.KeepAlive method has been exposed (see

Listing 8-16).

Listing 8-16. Fixing an example of unexpected Timer behavior due to early root

collection (based on Listing 8-17)

static void Main(string[] args)

{

 Timer timer = new Timer((obj) => Console.WriteLine(DateTime.Now.

ToString()), null, 0, 100);

 Console.WriteLine("Hello World!");

 GC.Collect(); // simulate GC happening here

 Console.ReadLine();

 GC.KeepAlive(timer);

}

GC.KeepAlive is a really simple trick to extend liveness of a stack root.

Its implementation contains no code (see Listing 8-17) but is attributed with

MethodImplOptions.NoInlining option. This makes KeepAlive no inlineable, which in

turn forces the compiler to treat the passed argument as used (and thus reachable). So

when GC.KeepAlive is used, resulting GC Info will extend liveness of the passed object

until its occurrence.

Listing 8-17. Implementation of the GC.KeepAlive method in Base Class

Library

[MethodImplAttribute(MethodImplOptions.NoInlining)] // disable

optimizations

public static void KeepAlive(Object obj)

{

}

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

591

Note In most cases objects with such side effects (like Mutex or timer) are
implementing IDisposable interface. thus, simple timer.Dispose() call at
the end of Main method (or using clause) would extend its lifetime appropriately,
without a need of using GC.KeepAlive. It is still worth keeping in mind eager
collection caveats.

 GC Info
Presented so far, visualizations of GC Info in Listings from 8-6 to 8-10 were only

simplifications. In reality, GC Info is a very densely packed, binary piece of information.

The actual implementation details of its storage are interesting but irrelevant for our

purposes. The idea behind it remains the same as presented so far.

The only tool currently available allowing us to see it is WinDbg with SOS extension.

To see GC info in WinDbg running and either memory dump or process attached,

find the method’s MethodDesc you are interested in (see Listing 8-18).

Listing 8-18. Looking for a managed heap in WinDbg with SOS loaded

> .loadby sos coreclr

> !name2ee *!Scenarios.EagerRootCollection.LexicalScopeExample

...

Module: 00007ffea9944f30

Assembly: Scenarios.dll

Token: 000000000600000d

MethodDesc: 00007ffea9948598

Name: Scenarios.EagerRootCollection.LexicalScopeExample(Int32)

JITTED Code Address: 00007ffea9a63310

...

Then you can see detailed GC info with command !gcinfo <MethodDesc> (see Listing

8-19). Let’s now analyze with its help the LexicalScopeExample method from Listing 8-5.

Command output contains various general information about the selected method (like

return type kind, whether it uses variable number of arguments, and so on, and so forth).

More importantly to us, it also lists all safe points together with live stack roots in each of

them (if any). With each safe point, an instruction offset inside a method is also provided.

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

592

Listing 8-19. !gcinfo command output for LexicalScopeExample method

> !gcinfo 00007ffea9948598

entry point 00007ffea9a63310

Normal JIT generated code

GC info 00007ffea9b29188

Pointer table:

Prolog size: 0

Security object: <none>

GS cookie: <none>

PSPSym: <none>

Generics inst context: <none>

PSP slot: <none>

GenericInst slot: <none>

Varargs: 0

Frame pointer: <none>

Wants Report Only Leaf: 0

Size of parameter area: 0

Return Kind: Scalar

Code size: 71

00000017 is a safepoint:

00000022 is a safepoint:

00000021 +rdi

0000002d is a safepoint:

00000040 is a safepoint:

0000004b is a safepoint:

0000004a +rdi

00000055 is a safepoint:

0000005c is a safepoint:

In case of LexicalScopeExample info showed in Listing 8-19, there are seven

safe points generated. This is a way to find out that this method has been JITted

as partially interruptible. In case of fully interruptible methods only stack root

changes are stored without any safe points listed (as we will soon see). At Listing 8-19

only two safe points contain a single stack root (enregistered in rdi CPU register).

Each safe point invalidates all other stack roots. Thus, from Listing 8-19 we can

infer that:

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

593

• rdi register is live stack root from instruction offset 21 till instruction

offset 2d,

• again rdi register is live stack root from instruction offset 4a till

instruction offset 55.

Fully interruptible method may require significant storage (of quantity similar
to the code itself). to make a good compromise between decoding time and
storage efficiency, the main part of GC Info is stored internally as a chunk of
bits representing stack roots’ liveness changes through corresponding code
regions. additionally, initial state of that liveness is remembered for each chunk.
thus, to decode stack root liveness for a specific code offset, the proper chunk
is being analyzed starting from initial liveness and then by applying described
liveness changes offset by offset until the offset of interest is not being hit.
WinDbg sos extension does the same multiple times (for each valid instruction
offset in a method) producing a nice summary seen in the presented listings.

However, such GC info without referring to code does not say much. Luckily,

there is another command that interleaves JITted code with the GC info - !u -gcinfo

<MethodDesc> (see Listing 8-20).

Listing 8-20. !u -gcinfo command output for LexicalScopeExample method

> !u -gcinfo 00007ffea9948598

Normal JIT generated code

Scenarios.EagerRootCollection.LexicalScopeExample(Int32)

Begin 00007ff81c5e3310, size 71

push rdi

push rsi

sub rsp,28h

mov esi,edx

mov rcx,7FF81C69AD08h (MT: Scenarios.EagerRootCollection+ClassOne)

call CoreCLR!JIT_New

0017 is a safepoint:

mov rdi,rax

mov rcx,rdi

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

594

call System_Private_CoreLib+0xc890f0 (System.Object..ctor())

0022 is a safepoint:

0021 +rdi

mov dword ptr [rdi+8],esi

mov rcx,rdi

call 00007ff8`1c5e2bb8 (Scenarios.EagerRootCollection+ClassOne .Check())

002d is a safepoint:

test eax,eax

je 00007ff8`1c5e3378

mov rcx,7FF81C69AFE8h (MT: Scenarios.EagerRootCollection+ClassTwo)

call CoreCLR!JIT_TrialAllocSFastMP_InlineGetThread

0040 is a safepoint:

mov rdi,rax

mov rcx,rdi

call System_Private_CoreLib+0xc890f0 (System.Object..ctor())

004b is a safepoint:

004a +rdi

mov rcx,rdi

mov edx,esi

call 00007ff8`1c5e2be0 (Scenarios.EagerRootCollection+ClassTwo.

CalculateSomething(Int32),)

0055 is a safepoint:

mov ecx,eax

call 00007ff8`1c5e2d70 (Scenarios.EagerRootCollection.

DoSomeLongRunningCall(Int32))

005c is a safepoint:

mov eax,1

add rsp,28h

pop rsi

pop rdi

ret

xor eax,eax

add rsp,28h

pop rsi

pop rdi

ret

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

595

Analysis of the result of the !u -gcinfo command confirms that safe points

have been set only when calling methods. Those include both calling internal

runtime methods (allocators) and calling other managed methods (including

object constructors). GC info seen in Listing 8-20 is very similar to the one proposed in

Listing 8-10. We see that:

• firstly, rdi register becomes live at offset 21 until the next safe point

at offset 2d - this offset range covers holding a reference to ClassOne

object from its construction untilcalling its Check method,

• secondly, rdi register becomes live again at offset 4a until the

next safe point at offset 55 - this offset range covers holding a

reference to ClassTwo object from its construction until calling its

CalculateSomething method.

To see how GC info is shown in case of a partially interruptible method, we must

write one. As mentioned before, its sole JIT responsibility is to choose between emitting

fully or partially interruptible code. However, using non- trivial loops with a dynamic

number of iterations makes generating a fully interruptible version more likely (see

Listing 8-21).

Listing 8-21. An example of a method that probably will be JITted into fully

interruptible code

private int RegisterMap(int value)

{

 int total = 0;

 SomeClass local = new SomeClass();

 for (int i = 0; i < value; ++i)

 {

 total += local.DoSomeStuff(i);

 }

 return total;

}

public int DoSomeStuff(int value)

{

 return value * value;

}

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

596

When looking at RegisterMap method under WinDbg with the help of !u -gcinfo

command, we will indeed notice that fully interruptible code has been generated (see

Listing 8-22). Please remember this decision is based on internal JIT heuristics and the

result may vary between versions, runtimes, and other not named conditions. Thus,

one may need to make a few approaches to modify RegisterMap in a way that will cause

generating fully interruptible code.

Listing 8-22. !u -gcinfo command output for fully interruptible RegisterMap

method

> !u -gcinfo 00007fff42c18518

Normal JIT generated code

Scenarios.EagerRootCollection.RegisterMap(Int32)

Begin 00007fff42d32f20, size 3d

push rdi

push rsi

sub rsp,28h

mov esi,edx

00000008 interruptible

xor edi,edi

mov rcx,7FFF42DEAAC8h (MT: Scenarios.EagerRootCollection+SomeClass)

call CoreCLR!JIT_TrialAllocSFastMP_InlineGetThread

00000019 +rax

mov rcx,rax

0000001c +rcx

call System_Private_CoreLib+0xc890f0 (System.Object..ctor())

00000021 -rcx -rax

xor eax,eax

test esi,esi

jle 00007fff`42d32f54

mov edx,eax

imul edx,eax

add edi,edx

inc eax

cmp eax,esi

jl 00007fff`42d32f47

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

597

mov eax,edi

00000036 not interruptible

add rsp,28h

pop rsi

pop rdi

ret

There are regions inside even fully interruptible code that is not interruptible

(this includes function prolog and epilog by default), and this is in fact reflected with

the presented output - interruptible code starts at offset 8 until offset 36. Instead of

safe points around method calls, we notice various slot liveness changes (of registers

rax and rcx in our example). In fact, all instructions within interruptible regions are

safe points so there is no need to print it so. With the information already gained in

this chapter and a little assembler knowledge, one can easily understand why so and

no other GC info was generated. Please note, for example, that thanks to inlining

DoSomeStuff method inside a loop, SomeClass object roots become dead even before

that loop starts.

When using !gcinfo or !u -gcinfo commands, you may also encounter a so-called

untracked root. Those represent an argument or local variable that contains a reference

but whose lifetime information is not available at runtime. Untracked locations are

assumed by the GC to be live during the entire method body (if they do not contain zero

value obviously).

If you would like to investigate Mark phase from the stack root perspective, start
from the gc_heap::mark_phase and its call to GCScan::GcScanRoots
method. It calls Thread::StackWalkFrames with GCHeap::Promote callback
for stack frames of the current call stack (for each managed thread). analyzing
Promote callback is a very good start to analyze marking in general.

 Pinned Local Variables
A special type of local variable is a pinned local variable. It is created implicitly in C# and

F# when using a fixed keyword (see Listing 8-23). VB.NET does not have it as it does not

allow pointers at all.

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

598

Listing 8-23. C# example of fixing keyword usage

public class Program

{

 private List<byte[]> list = new List<byte[]>();

 public unsafe int Run()

 {

 // ...

 fixed (byte* array = list[7])

 {

 // ...

 Console.ReadLine();

 }

 }

}

If we look at the CIL code generated for the method Run from Listing 8-23, we will

notice a special, pinned local variable - in our case the one with index 2 (see Listing 8-24).

Such a pinned keyword is for exactly what it stated - such local variable content should

not be moved by GC during its work.

Listing 8-24. Beginning of the CIL code from Listing 8-23

.method public final hidebysig newslot virtual

instance int32 Run () cil managed

{

 // Header Size: 12 bytes

 // Code Size: 166 (0xA6) bytes

 // LocalVarSig Token: 0x11000016 RID: 22

 .maxstack 4

 .locals init (

 [0] int32 i,

 [1] uint8[] bigArray,

 [2] uint8& pinned 'array',

 [3] uint8[],

 [4] int32 i)

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

599

 // ...

 // IL code

}

Information about pinned local variables is consumed by the JIT compiler and

appropriate GCInfo is being generated. This time, along with the information about the

root itself, the information is also preserved that it is pinned. We may notice it by looking

at GCInfo emitted for Run method from Listing 8-24 (see Listing 8-25). A stack location

under the address sp+20 (hence, relatively to the stack pointer at the beginning of the

method execution) is noted as untracked and pinned. It means that content of such a

stack address will be treated as pinned root during stack roots marking if the thread will

be suspended within the Run method.

Listing 8-25. Fragments of method from Listing 8-24 disassembled (with GCInfo)

> !u -gcinfo 00007ff9fa9277d8

Normal JIT generated code

CoreCLR.CollectScenarios.Scenarios.SOHCompactionWithPinning.Run()

Begin 00007ff9faa43070, size 103

Untracked: +sp+20(pinned)(interior)

00007ff9`faa43070 57 push rdi

00007ff9`faa43071 56 push rsi

00007ff9`faa43072 4883ec28 sub rsp,28h

00007ff9`faa43076 33c0 xor eax,eax

00007ff9`faa43078 4889442420 mov qword ptr [rsp+20h],rax

...

00007ff9`faa430bd 488b4e08 mov rcx,qword ptr [rsi+8]

00007ff9`faa430c1 ba07000000 mov edx,7

00007ff9`faa430c6 3909 cmp dword ptr [rcx],ecx

00007ff9`faa430c8 e8830d155e call System.Collections.Generic.

List`1.get_Item(Int32)

...

00007ff9`faa430eb 4883c010 add rax,10h

00007ff9`faa430ef 4889442420 mov qword ptr [rsp+20h],rax

Code in Listing 8-25 shows relevant fragments of the entire method. At the

beginning of the method execution, sp+20 stack location is being zeroed. Later, get_

Item method on generic List<T> is called and its result (reference to 7th element of

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

600

the list, which is reference to byte array) is stored in rax register. A few instructions

later, rax is modified accordingly to get an address of the array data within array

object. And, in the last shown line, such address is saved on the stack under sp+20

address. If thread will be suspended after this line, GC will see this address and treat

the whole object as pinned.

this is the reason why sp+20 root is also denoted as interior. address at sp+20
location in fact points inside the array object (so it is called interior). It is later
appropriately interpreted by the GC.

Such pinned roots will be visible for a short period of time - only during execution

of the containing method. In fact, they will be marked as pinned only during GC

execution - stack root scanning, based on the GCInfo, will mark them as pinned. And

during the plan phase, the pinned bit will be cleared. This makes finding such sources

of pinning not trivial. For example, when taking memory dumps, it is unlikely we will

hit the middle of GC. In a memory dump taken during a normal application execution,

simply they are not pinned at all.

Some tools may list sources of such pinning, however. With GCInfo for all methods

executed on current threads and the status of all their local variables, one could check

what variables would be pinned if the GC happened at the moment of memory dump. It

would of course be approximate data because during GC the threads would stop in safe

points, and not necessarily where they are at the moment of memory dump. Moreover,

remember that memory dump is only a single snapshot of memory at a given moment in

time. Such a single snapshot will not necessarily say a lot about local variable pinning in

general. We should make a lot of such snapshots to get a better view.

Luckily, there is an ETW event called PinObjectAtGCTime emitted each time an

object is being pinned. It is a great source of knowledge about every object being pinned,

including local pinned variables.

In WinDbg we are able to list pinned handles, as soon will be presented.
However, they are not the same as pinned local variables discussed here.
this makes a difference you may observe in \.net CLR Memory\# of pinned
objects counter - it counts all pinned (not moved) objects at the GC time,
while via WinDbg we can only list pinned handles. on the other hand, perfView

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

601

is clever enough to list both types of pinning roots from its Heap snapshots.
all this will be presented practically in scenario 9-2, including investigating
PinObjectAtGCTime etW events.

 Stack Root Scanning
With all the description provided so far, it is easy to understand how GC Info helps

to constitute stack roots. When all threads are suspended at their safe points, it can

be decoded from GC info what live slots are there. Each such slot (either on stack or

register) is being treated as root and starts marking traversal from it.

one can wonder how goto statement is being handled in the context of stack
roots. It allows us to transfer the program control directly to a labeled statement -
making an unconditional jump. It could disrupt the operation of the entire
technique related to GC info described here - all of a sudden a thread could be
executing a completely different set of data inside a completely different block of
code. However, goto statement is not so powerful. as C# Language specification
says about labels (which are goto targets): “a label can be referenced from
goto statements (§8.9.3) within the scope of the label. this means that goto
statements can transfer control within blocks and out of blocks, but never into
blocks.” thus, goto statement can’t simply jump out of a method to a different
method. It can’t also jump into nested blocks, omitting code in between. In
other words, goto statement is made safe. this is also useful for the GC Info
mechanism. With the current limitations, executing goto statement is nothing else
than changing the instruction pointer to a proper code inside a method.

 Finalization Roots
Finalization is a mechanism used to add some behavior when an object is being

collected. Most often it is used to make sure that unmanaged resources held by an object

will be released. Because of its importance and some common caveats, finalization is

described in detail in Chapter 12.

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

602

For now it will be enough to say that to track objects that need to be “finalized,” GC

maintains a special queues. Those queues hold references to “ready for finalization”

objects. Thus, they also constitute roots that should be scanned.

Scanning ready to the finalization queue is straightforward - GC goes through objects

in it one by one and starts marking traversal from each of them.

If you would like to investigate scanning finalization roots in CoreCLR source, start
from CFinalize::GcScanRoots method call from gc_heap::mark_phase
method (with GCHeap::Promote callback).

There is more practical, development related knowledge about finalization in

Chapter 12.

 GC Internal Roots
As explained in detail in Chapter 5, in case of partial GC there is a need to include

references from older-to-younger objects (see Figure 5-8). This step includes traversing

through references inside objects stored in cross-generational remembered sets -

through the cards mechanism. Card words and bundles described in Chapter 5 help to

quickly identify memory regions that may be sources of such references. These are called

the GC internal roots because they are originated from the user code.

Having cards information, scanning cards consists of the following, pretty

straightforward steps:

• Outer loop finds continuous regions of set cards - those represent

memory regions that contain objects with cross-generational

references (let’s call them set card regions). For each such region:

• the first object is found (in case of Small Object Heap, with the

help of bricks described in Chapter 9),

• Scanning of object starts inside this region one by one - objects

that contain references are checked whether such reference is

indeed cross-generational. If yes, it is treated as a root so it starts

marking traversal.

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

603

During such processing GC calculates also the card’s efficiency ratio - it’s for

detecting how many cards are pointing to the actual generation 0 region versus how

many are pointing to ephemeral regions. This ratio is then used during deciding

what generation should be collected - if this ratio is too low GC chooses to condemn

generation 1 instead of generation 0.

Card roots scanning is done after the previously described stack roots scanning. This

means a lot of objects were probably already visited (marked) so card roots may or may

not visit many more objects.

Marking through cards is realized by methods gc_heap::mark_through_
cards_for_segments (for soH) and gc_heap::mark_through_cards_for_
large_objects (for LoH) called from gc_heap::mark_phase method.

soH version uses gc_heap::find_card to find ‘set’ cards regions and gc_
heap::find_first_object for such region. For objects found in that way (that
contain outgoing references) gc_heap::mark_through_cards_helper is
being called, which goes through its reference fields. For target objects that are
indeed cross-generational, it calls gc_heap::mark_object_simple callback
that starts marking traversal.

LoH version uses very similar logic based on gc_heap::find_card and
gc::heap::mark_through_cards_helper methods. the main difference
is that dirty regions are scanned object by object due to not having bricks
there.

Low cards’ efficiency may be a reason for condemning the older generation that

initially requested. It was already mentioned in the “Generation to Condemn” section

in Chapter 7. Such situations may be observed by PerfView with the help of Condemned

reasons for the GCs table from GCStats report - if it occurs, Internal Tuning column will

point which generation was tried to be condemned because of this.

Regular Internal Tunings are most probably natural and we should not be worried

about them. From the user’s perspective, the only effect it has is that it would do a

generation 1 GC instead of a generation 0 so it’s not a big difference.

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

604

 GC Handle Roots
The last type of roots are various GC handles. We already seen them in Chapter 4. There

are various types of handles, but they are stored in a single global handle table map. That

handle table is being scanned for set of handle types and their targets are treated as roots

that start marking traversal. Two most important handle types that are searched for are:

• strong handles - strong handles are like normal references.

We may create them explicitly via proper GCHandle.Alloc

call. They are also used by CLR internally, for example to store

preallocated exceptions - like Exception, OutOfMemoryException or

ExecutionEngineException.

• pinned handles - a subcategory of strong handles. When an object is

being pinned via Pinned handle (with the help of proper GCHandle.Alloc

call), a new handle of type “pinned” is created with that object as a target.

During Mark phase those handles are treated as roots and the objects

they point to are pinned, which means “pinning bit” is set in the object

header. It is later on used by Plan phase (and cleared before GC ends).

There is also an important variation of a pinned handle type - so-called async

pinned handle. It has the same meaning as regular pinned handle (making an object not

movable) but it is used internally by the CLR with asynchronous I/O (like file or sockets

reading and writing). Such handle has an additional feature of unpinning an object

internally, as soon as the asynchronous I/O operation completes (without waiting for

the explicitly releasing such handle from code). It allows it to make pinning related to

such popular operations as short as possible, which is always good from its overhead

perspective. However, as it is only used for .NET internal needs, we will be rather not

interested in such type handle during our everyday work. At least not until our code

performs such a tremendous amount of long-running asynchronous I/O operations that

the resulting pinning starts to become a problem (i.e., by introducing fragmentation).

please note that pinning by handle (i.e., using GCHandle.Alloc(obj, GCHandle
Type.Pinned)) described here is different than pinning via fixed keyword
(described previously in the pinned local variables section). Result is the same - object
will not be moved during heap compaction. the difference is only the root of such
object - handles table in case of GCHandle and stack in case of fixed keyword.

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

605

Please note that handle roots play a much more important role in the current

runtime implementation than it may seem at first glance. Two crucial arrays stored in

Large Object Heap (per AppDomain) are: an array storing references to interned strings

and an array storing references to static objects (see Figure 8-1). Those arrays are pinned

by the runtime itself. This is useful because various internal CLR data contains addresses

to their elements. For example, in Figure 8-1, a string literal map has been illustrated

to clearly show that it is not treated as a root for interned strings - it is only an auxiliary

data structure for a fast search (referring to the appropriate elements of the array-storing

references to interned strings).

It is interesting to see how some mechanisms are used internally to implement

memory management logic!

Global handle table map

Small Object Heap Large Object Heap

String (interned)

(aka String Intern Pool)

Private Heap (unmanaged)

buckets

Object[] (pinned)

H MT

String literal map

buckets

GNORTS DENNIP

(for AppDomain statics)

Object[] (pinned)

pinned object

H MT

reference type static data

H MT

object with strong handle

H MT H MT

H MT

Figure 8-1. Handle tables as roots for different managed objects

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

606

In CoreCLR source code it starts from GCScan::GcScanHandles (with
GCHeap::Promote callback) methods that calls Ref_TracePinningRoots
(for types HNDTYPE_PINNED and HNDTYPE_ASYNCPINNED), Ref_
TraceNormalRoots (for types HNDTYPE_STRONG, HNDTYPE_SIZEDREF and
HNDTYPE_REFCOUNTED) and Ref_ScanDependentHandlesForRelocation.

We can easily see handle roots in actions thanks to WinDbg and SOS extension.

Taking very simple code from Listing 8-26 as an example, we will investigate how

different objects’ roots are reported. This is very useful to know while analyzing various

cases of uncontrolled memory growth - we should understand what are the roots of the

growing graph of objects.

Listing 8-26. An example program used to show different handle roots

public int Run()

{

 Normal normal = new Normal();

 Pinned onlyPinned = new Pinned();

 GCHandle handle = GCHandle.Alloc(onlyPinned, GCHandleType.Pinned);

 ObjectWithStatic obj = new ObjectWithStatic();

 Console.WriteLine(ObjectWithStatic.StaticField);

 Marked strong = new Marked();

 GCHandle strongHandle = GCHandle.Alloc(strong, GCHandleType.Normal);

 string literal = "Hello world!";

 GCHandle literalHandle = GCHandle.Alloc(literal, GCHandleType.

Normal);

 Console.ReadLine();

 GC.KeepAlive(obj);

 // ... free handles

 return 0;

}

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

607

public class Normal

{

}

[StructLayout(LayoutKind.Sequential)]

public class Pinned

{

 public long F1 = 301;

}

public class Marked

{

 public long F1 = 401;

}

public class ObjectWithStatic

{

 public static Static StaticField = new Static();

}

public class Static

{

 public long F1 = 501;

}

By attaching WinDbg to the application running code from Listing 8-26 at the

moment of Console.ReadLine, we may investigate various objects roots with the help

of the !gcroot command. First, we may confirm that the normal object will be already

treated as unreachable because JIT (with eager root collection) should notice that it is no

longer used at this moment (see Listing 8-27).

Listing 8-27. Normal object - is not reachable due to eager root collection

> !dumpheap -type CoreCLR.CollectScenarios.Scenarios.VariousRoots+Normal

 Address MT Size

000001c6b4dd26a0 00007fff8e84bce0 24

> !gcroot 000001c6b4dd26a0

Found 0 unique roots

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

608

Next, let’s see how roots are reported for an explicitly pinned onlyPinned object (see

Listing 8-28). We may notice that the result is in line with Figure 8-1 - the root is said to

be handle (of type pinned) from HandleTable that is an unmanaged internal CLR’s data

structure (see Listing 8-28).

Listing 8-28. Pinned object - is reachable from pinned handle table

(unmanaged)

> !dumpheap -type CoreCLR.CollectScenarios.Scenarios.VariousRoots+Pinned

 Address MT Size

000001c6b4dd26b8 00007fff8e84be80 24

> !gcroot 000001c6b4dd26b8

HandleTable:

 000001c6b0d015d8 (pinned handle)

 -> 000001c6b4dd26b8 CoreCLR.CollectScenarios.Scenarios.

VariousRoots+Pinned

Found 1 unique roots

> !gcwhere 000001c6b0d015d8

Address 0x1c6b0d015d8 not found in the managed heap.

Static reference type data are represented by ObjectWithStatic.StaticField field

of type Static. Roots reported for such object instance are also in line with Figure 8-1.

The reference to the instance is stored inside LOH allocated (denoted as generation 3

here) array that is kept by a pinned handle from HandleTable (see Listing 8-29).

Listing 8-29. Static object - is reachable from pinned array from LOH (that is

reachable from unmanaged pinned handle table)

> !dumpheap -type CoreCLR.CollectScenarios.Scenarios.VariousRoots+Static

 Address MT Size

000001c6b4dd2700 00007fff8e84c3b0 24

> !gcroot 000001c6b4dd2700

HandleTable:

 000001c6b0d015f8 (pinned handle)

 -> 000001c6c4dc1038 System.Object[]

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

609

 -> 000001c6b4dd2700 CoreCLR.CollectScenarios.Scenarios.VariousRoots+Static

Found 1 unique roots

> !gcwhere 000001c6c4dc1038

Address Gen Heap segment begin

allocated size

000001c6c4dc1038 3 0 000001c6c4dc0000 000001c6c4dc1000

000001c6c4dc5480 0x1ff8(8184)

You may often see a lot of such System.Object[] arrays being roots of various

objects but do not be misled. Most often they are there because such objects are statics

or interned strings as in our example.

A strong handle is similar to a pinned case - strong object from Listing 8-26 is said to

be referenced from handle (of type string) from HandleTable (see Listing 8-30).

Listing 8-30. Object with strong handle - is reachable from strong handle table

(unmanaged)

> !dumpheap -type CoreCLR.CollectScenarios.Scenarios.VariousRoots+Marked

 Address MT Size

000001c6b4dd26d0 00007fff8e84c020 24

> !gcroot 000001c6b4dd26d0

HandleTable:

 000001c6b0d01190 (strong handle)

 -> 000001c6b4dd26d0 CoreCLR.CollectScenarios.Scenarios.

VariousRoots+Marked

Found 1 unique roots

String literal in the example from Listing 8-26 should have two roots. One of them is

string intern pool (a pinned array in LOH containing interned string references), and the

other is strong handle created explicitly. Output of !gcroot command confirms that

(see Listing 8-31).

Listing 8-31. String literal with additional strong handle (instance found by

command !dumpheap -mt 00007fffed021400 -min 32 -max 32)

! do 000001c6b4dd2650

Name: System.String

MethodTable: 00007fffed021400

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

610

EEClass: 00007fffebcdddc0

Size: 50(0x32) bytes

File: F:\GithubProjects\coreclr\bin\Product\Windows_NT.x64.Debug\

System.Private.CoreLib.dll

String: Hello world!

> !gcroot 000001c6b4dd2650

HandleTable:

 000001c6b0d01198 (strong handle)

 -> 000001c6b4dd2650 System.String

 000001c6b0d015e8 (pinned handle)

 -> 000001c6c4dc3050 System.Object[]

 -> 000001c6b4dd2650 System.String

Found 2 unique roots

Additionally, we may check that normal ObjectWithStatic instance has no handles

roots but only stack roots (see Listing 8-32) - kept in register rsi to be more precise.

Listing 8-32. Instance of normal object - is still reachable from stack root

(enregistered into rsi) due to GC.KeepAlive call

> !dumpheap -type CoreCLR.CollectScenarios.Scenarios.

VariousRoots+ObjectWithStatic

 Address MT Size

000001c6b4dd26e8 00007fff8e84c200 24

> !gcroot 000001c6b4dd26e8

Thread 273c:

 000000793097d530 00007fff8e79319d CoreCLR.CollectScenarios.Scenarios.

VariousRoots.Run()

 rsi:

 -> 000001c6b4dd26e8 CoreCLR.CollectScenarios.Scenarios.

VariousRoots+ObjectWithStatic

Found 1 unique roots

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

611

It may be also very useful to list all (or specific type) handles in our application with

the help of !gchandles command (see Listing 8-33).

Listing 8-33. Convenient !gchandles command to list handles in our application

(with filtering possible)

> !gchandles

 Handle Type Object Size

 Data Type

000001c6b0d013e8 WeakShort 000001c6b4dc1e20 152

System.Buffers.ArrayPoolEventSource

000001c6b0d017a8 WeakLong 000001c6b4dd2740 152

System.RuntimeType+RuntimeTypeCache

000001c6b0d017f8 WeakLong 000001c6b4dc2878 64

Microsoft.Win32.UnsafeNativeMethods+ManifestEtw+EtwEnableCallback

000001c6b0d01190 Strong 000001c6b4dd26d0 24

CoreCLR.CollectScenarios.Scenarios.VariousRoots+Marked

000001c6b0d01198 Strong 000001c6b4dd2650 50

System.String

000001c6b0d011a0 Strong 000001c6b4dc2de0 32

System.Object[]

000001c6b0d011a8 Strong 000001c6b4dc2d78 104

System.Object[]

000001c6b0d011b0 Strong 000001c6b4dc13e0 24

System.SharedStatics

000001c6b0d011b8 Strong 000001c6b4dc1300 144

System.Threading.ThreadAbortException

000001c6b0d011c0 Strong 000001c6b4dc1270 144

System.Threading.ThreadAbortException

000001c6b0d011c8 Strong 000001c6b4dc11e0 144

System.ExecutionEngineException

000001c6b0d011d0 Strong 000001c6b4dc1150 144

System.StackOverflowException

000001c6b0d011d8 Strong 000001c6b4dc10c0 144

System.OutOfMemoryException

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

612

000001c6b0d011e0 Strong 000001c6b4dc1030 144

System.Exception

000001c6b0d011f8 Strong 000001c6b4dc13f8 128

System.AppDomain

000001c6b0d015d8 Pinned 000001c6b4dd26b8 24

CoreCLR.CollectScenarios.Scenarios.VariousRoots+Pinned

000001c6b0d015e0 Pinned 000001c6c4dc3488 8184

System.Object[]

000001c6b0d015e8 Pinned 000001c6c4dc3050 1048

System.Object[]

000001c6b0d015f0 Pinned 000001c6b4dc13a8 24

System.Object

000001c6b0d015f8 Pinned 000001c6c4dc1038 8184

System.Object[]

// ...

// statistical data

there are additional types of handles, especially weak handle described in
Chapter 12. However, they do not differ from the perspective of this chapter so
were omitted for brevity.

 Handling Memory Leaks
So you have observed that memory usage of your .NET application is growing in time?

Regardless of the complexity of the marking mechanisms, just do not assume that there

are any errors in it. In other words, increasing memory usage and memory leaks in our

application are not caused by bugs in determining the reachability of objects! If there

is a memory leak, most probably it is because in fact something continuously holds a

reference to something else. Thus, the most typical problem in the whole .NET memory

management topic is how to find the source of such memory leak - what are the roots

holding it?

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

613

But first of all, you need to find out if you really have a memory leak in the first place,

and whether it really comes from managed code. Thus, investigation should be started

with the two following steps:

• Check what part of the process memory is growing. It may be that due

to some unmanaged library bug or misuse, it is unmanaged memory

that is leaking. Such diagnostics are described in Chapter 4.

• If the occurrence of unmanaged memory leak is excluded, only then

look at the managed memory, as described below.

The only way to be definitively sure of a managed memory leak is if memory is

constantly growing despite the fact that full gen2 GCs are happening. Otherwise

it could simply be because GC hasn’t gotten around to collecting the full heap

yet. They may be such cases that memory is growing in gen2 but full GCs are not

triggered because conditions are not met yet - from the GC perspective there is

simply no need to do it (like, there is still a lot of memory available). Or there may

be only non-compacting background full GCs, so memory simply grows due to

fragmentation. Only if compacting full GCs happen without significantly helping in

stopping overall memory growth in time, we may suspect a memory leak indeed is

happening.

To distinguish those two cases, we should start from general measurements of

GCs in time - if and how many GCs of generation 2 are executed? Use the tool of your

preference, like Performance Counters or use GCStats view in PerfView. With the

knowledge from this book you should be able to figure out why full GCs are not triggered

by studying GC Events by Time and Condemned reasons for GCs tables from GCStats

view.

After confirming that indeed gen2 GCs are there, we may start investigating the

reason behind the memory leak. What are the roots holding more and more objects

not becoming dead? This is not an easy question to answer. In simple applications, it is

sometimes enough to carefully analyze the committed changes - because the problem

most often manifests itself after the deployment of the new version of the application.

However, it is difficult to count on such a solution.

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

614

In larger applications with tens of thousands or millions of objects, constantly

collected and created, it is really difficult to see this real source of the memory leak.

Complex maze of connections between objects all tangled up with each other do not

make things easier. There are two main ways how one could approach the diagnostics of

a memory leak problem:

• The first approach, simpler but requiring a bit more luck, involves

the analysis of a single memory dump of our application. We will

look for a large number of objects, which in total take up a lot of

memory. Preceding the analysis with additional measurements,

we can help ourselves by identifying, for example, a particular

generation (practically always it will be generation 2 or LOH), which

will narrow our search. We can notice the occurrence of many

objects from a similar area of our application (specific business

logic, specific cross-cutting concern, or specific technology like

database access). In this case, the knowledge about the structure

and overall source code of the application being researched is

very useful. However, this does not change the fact that such

analysis requires a lot of intuition. Groups of numerous objects

in our application can be many and not all must be a source of

the memory leakage. Some of them may simply have to exist in

order for the application to function properly. This makes analysis

of memory leaks a laborious but rewarding detective challenge.

Exactly such approach was presented in scenario 5-2 from

Chapter 5 and in scenario 8-1 below. In such cases we may also

help ourselves by analyzing several process memory dumps from

moments of increasing memory consumption. Analyzing them one

by one, we can help our intuition. However, we can also get some

help by comparing such snapshots automatically. This leads us to

another method of analysis.

• The second approach, which is in fact is the preferred one, involves

the analysis of two or more successive memory dumps and focusing

on the differences that occur. It makes things easier - now from the

whole complicated system of tangled up objects we may notice

groups of objects that are increasing in size. The better tool we use,

the easier such analysis should be. Still however, such approach

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

615

requires some intuition and insight into the structure and design of

the application because there may be several groups that grow in size

(and only one unintentionally). This approach is also presented in

scenario 8-1 soon.

As memory leak analysis is tedious and complicated, there is no single work-for-all

recipe. Most often the analysis of real-world problems involves mixing all three above-

mentioned techniques and scraping the surface of a problem layer by layer.

Finally, one more piece of advice. Regardless of the specifics of our application and

the source of the memory leak, in the analyzed memory dumps, strings will almost

certainly be the most numerous. This is generally the specifics of the application these

days, that they process text - from files, HTTP requests, data from the database, etc.

Let’s have strings in mind but do not necessarily start with the analysis from them.

Strings may, or may not, lead you to the real problem because at the end they may

point to the true roots - cumulating objects most probably will have some string data

in it.

 Scenario 8-1. nopCommerce Memory Leak?
Description: We have a plain installation of nopCommerce - open source e-commerce

platform written in ASP.NET. We want to validate nopCommerce performance, including

memory usage patterns. We have prepared a simple load test scenario for JMeter 3.2 -

popular open source load-testing tool. It executes three steps in a loop - visiting home

page, one of the categories (Computers) and one of tags (“awesome”). We have added

think times (pauses) between each request to simulate real users. During the test we

have noticed increasing memory usage while generation 2 GCs are happening regularly -

seems like we have a typical memory leak! This is an alternative approach to the same

problem as in scenario 5-2.

Analysis: We know that managed memory is somehow leaking during our load test (see

Figure 8-2). Full GCs are happening but apparently, long-living objects are gathering

in generation 2. We will try to find the cause using the methods described above for

dealing with memory leaks. We will use PerfView as our tool because it provides great

capabilities of gathering and analyzing memory snapshots. When Using this tool for this

purpose, read beforehand the great and comprehensive help topics Collecting GC Heap

Data and Understanding GC Heap Data available from the Collecting Memory Data

dialog box.

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

616

Note. Obviously, before jumping into .NET memory analysis, we may also check

whether it is indeed managed memory leak. Please refer to scenarios 4-2, 4-3, and 4-4.

Approach 1 - Analyzing single memory snapshot
In the first approach we take a single memory snapshot from PerfView (Memory

➤ Take Heap Snapshot option), the first one marked on Figure 8-2. When looking at

objects’ statistics, we may notice interesting things. Figure 8-3 shows the overall memory

usage of different objects sorted by their inclusive (total) memory space. Obviously,

[.NET Roots] reference all data so it takes 100% inclusive space (see Inc column). Most

of them are static roots (which is interesting in itself), but nevertheless most of the

memory seem to be hold by the Autofac IoC container (it holds 74% of all objects). This

still may or may not indicate the root cause - it is not surprising that in an IoC-controlled

application, most objects are in control of it. However, it is obviously some trace.

Additionally, a lot of “memory cache”-related objects are also noticeably big.

Figure 8-2. Performance Counters during first 10 minutes of load test - all
generation sizes are presented. The moments of performing memory dumps have
been marked on the chart.

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

617

We may look at this data with an even clearer view of Flame Graph (see Figure 8-4).

The same observations are confirmed, and it seems that via Autofac Container, a lot of

Microsoft.Extensions.Caching.Memory.CacheEntry entities are held in memory.

Figure 8-3. PerfView’s By Name view of the Heap Snapshot (sorted by Inc column
in descending order)

Figure 8-4. PerfView’s Flame Graph view of the Heap Snapshot (mousover label is
intentionally left)

This still however may be an expected behavior if our application is designed to

cache a lot of data. What is worrying is the constant increase of memory usage - maybe

we are caching more and more but release nothing? At this stage, without a doubt, it is

worth reaching for the application source code and checking the caching mechanisms

again. But we may help ourselves a little by looking at application-specific objects

referencing CacheEntry objects.

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

618

By digging into Referred-From view for CacheEntry objects, we may find indeed

some clues. When looking for nopCommerce-related objects, quite quickly we may find

Nop.Core.Caching.MemoryCacheManager instances held by Nop.Services.Catalog.

ProductTagService instances (see Figure 8-5). There are not so many, but it gives some

additional tracks to follow.

At this stage, we can look at the source code how the service ProductTagService

uses cache and find the real cause presented already in scenario 5-2, so we will not

repeat it here. Needless to say, it turns out that the problem lies not in the nopCommerce

but in bad preparation of our load test. Be warned, this is not a contrived example. Been

there, seen that.

By solving problems in this way, it is sometimes difficult to recognize the real source

of the problem. This is due to the very intermittent relations between objects that turn

out to be very important at the same time. For example, in our case Nop.Services.

Catalog.ProductTagService for the duration of the request actually has a reference to

Nop.Core.Caching.MemoryCacheManager, but it quickly disappears and in fact what

keeps the CacheEntry entities is the cache mechanism itself.

Approach 2 - Comparing memory snapshots
In the second approach we take two memory snapshots from PerfView (Memory

➤ Take Heap Snapshot option), the second and the third ones marked on Figure 8-2.

They are spaced in time by 3 minutes because the memory leak under analysis is quite

impressive. Sometimes you will need to compare snapshots taken every few dozen

minutes. After taking both snapshots, we can compare them from the Diff menu. The

results shown on By Name view seem to speak for themselves (see Figure 8-6). The

overwhelming majority of new objects are CacheEntry type and other caching related - it

Figure 8-5. PerfView’s Referred-From view of the Heap Snapshot (for type
Microsoft.Extensions.Caching.Memory.CacheEntry)

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

619

is indicated by positive values of the Exc (exclusive size of a given type) and Inc (inclusive

size of a given type) columns, which means in between the two snapshots the total size

of those types of instances increased.

In a properly functioning system, the number of new cache entries would be similar

to the number of those that have already expired (assuming stable traffic on the page).

Thus, inclusive size of CacheEntry instances and other cache-related types should be

around zero.3 This points directly to the problems with the caching mechanism. At

this stage, we can take a closer look at the CacheEntry instances in one or both of the

snapshots, similar to approach 1 shown above.

 Scenario 8-2. Identifying the Most Popular Roots
Description: We would like to analyze the most popular kind of roots in our application.

This may be helpful as an additional clue during memory leak analysis. By identifying

the most popular roots, as long as they change along the time, we may find interesting

patterns that will lead us to some conclusions. It is not realistic to expect that such

analysis will lead us directly to the root cause of a problem. However, in the tedious

process of reaching the truth, the more tips from different sources, the better.

Analysis: Events emitted by the runtime are great source of knowledge. It is no different

if you try to know the statistics of the roots. There is ETW/LTTng event MarkWithType

that provides information how many bytes of different root kinds were marked (thus,

reachable) during particular GC. There is one event emitted per each root kind, so most

typically there are several such events per GC. Types are represented by numbers that

comes from _GC_ROOT_KIND enum (see Listing 8-34).

3 Obviously there will be some fluctuations in the traffic on the page, which makes those numbers
not equal to zero.

Figure 8-6. PerfView’s By Name view of two Heap Snapshot difference (sorted by
Inc column in descending order)

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

620

Listing 8-34. Enum representing root kind..

namespace ETW

{

typedef enum _GC_ROOT_KIND {

 GC_ROOT_STACK = 0,

 GC_ROOT_FQ = 1,

 GC_ROOT_HANDLES = 2,

 GC_ROOT_OLDER = 3,

 GC_ROOT_SIZEDREF = 4,

 GC_ROOT_OVERFLOW = 5

 } GC_ROOT_KIND;

};

}

MarkWithType will be recorded when using simple GC Collect Only option at Collect

dialog box in PerfView. As a result, we will be able to list all events on Events view,

filtered to the process that interests us (see Figure 8-7). Unfortunately, currently there

is no any summary or any graphical representation of such data inside PerfView, which

makes analyzing those events quite difficult.

Figure 8-7. MarkWithType for a sample process (with columns Promoted, Type,
HeapNum and ThreadID displayed)

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

621

However, we can export filtered events as a CSV file (Open View in Excel option from

the context menu) and analyze it in any tool understanding it. The most obvious ones

are MS Excel or other spreadsheet-like tools. After importing such CSV data, we will be

able to analyze in a way we like. For example, Figure 8-8 presents distribution over time

of the size of promoted objects due to particular kinds of roots (prepared in MS Excel).

Please note that vertical scale is logarithmic.

Figure 8-8. Promoted sized with respect to root kind

Let’s take into account that the values of this events are mostly incremental

(excluding the case of rather uncommon GC_ROOT_SIZEDREF), in the order given in

Listing 8-34. Each subsequent MarkWithType event during GC indicates how many bytes

were additionally promoted due to the given root type. For example, promoted bytes

due to the finalization roots will not count in objects already marked due to stack roots.

Events for handles roots will not count in objects already promoted due to stacks or

finalization, and so on, so forth.

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

622

 Summary
In this chapter we thoroughly looked at the first crucial part of the GC - Mark phase.

Understanding it is crucial in understating which and why objects become dead or stay

alive. Thus, it is one of the most important practical parts of the knowledge about .NET

memory in general.

The marking mechanism starts from the subsequent types of roots and gradually

builds the final graph of reachable objects. Since the marking flag stored in an object

is considered for each subsequent type of roots, the same object outgoing references

(and thus the whole subgraphs of the entire resulting graph) are not repeatedly visited.

Another type of roots simply enlarges the resulting graph.

Hopefully, with such a comprehensive description of the marking mechanisms

described in this chapter, you understand much better what it is. Particularly surprising

may be the fact that both interned strings and static reference data are operated by the

same marking mechanism as for other objects!

Having said that, we may now proceed to description of the next important step in

the GC process - Plan phase - explained in the next chapter.

CHapteR 8 GaRbaGe CoLLeCtIon - MaRk pHase

623
© Konrad Kokosa 2018
K. Kokosa, Pro .NET Memory Management, https://doi.org/10.1007/978-1-4842-4027-4_9

CHAPTER 9

Garbage Collection - Plan
Phase
After the mark phase, all objects have been identified as reachable or not. Those

reachable are being marked by a dedicated bit. Some of the marked objects may be

additionally marked as pinned by another bit. At this moment Garbage Collector has all

necessary information to start its job. But the question arises - should it proceed with

Sweep or Compact collection?

To answer this question, we can do one of two things. We can make an educated

guess, for example - based on the previous memory usage patterns or the previous

effects of sweeping and compacting collections. However, this still would be only a guess.

And in such dynamic conditions as the continuous creation and removal of objects, it's

hard to expect that our guessing will be much more than just a lottery.

Instead of guessing, we can in some way calculate whether in current conditions it

pays off to Compact, or whether the resulting fragmentation is not so large and we can

do just Sweep. This is a much more promising approach. Depending on the accuracy

of our calculations, we are getting closer to the optimal solution. But as we will notice

soon, the exact prediction of the resulting fragmentation is not so easy (mainly due to the

pinning). We come to a certain paradox - to know if it is worth making compacting, you

need to make compacting and see the result.

But how to compact while not doing it? This is exactly what the Plan phase really

does. It calculates all information in such a way that they directly correspond to the

information about the result of the compacting process. This information is prepared “on

the side” - without actually moving objects. In this way we get to know the exact and the

actual result of possible compacting.

Moreover, that information is prepared in a way directly used by both Compacting

and Sweeping later on. If a compacting result is promising (and we will take a closer

look at this decision later in this chapter) - GC performs compacting using directly the

624

collected information. If Sweep is enough, the collected information is also directly used

for sweeping. And since compaction is a lot more often than sweeping, especially for

ephemeral collections, such simulated compaction results are rarely discarded.

In that way we may see the Plan phase as a main horsepower of the whole GC

process. It is doing all heavy, necessary calculations. Sweep or Compact phases are

only then consuming results of those calculations in a more or less complicated, but

straightforward manner.

So how this magic happens that the Plan phase somehow “executes” both

compacting and sweeping at the same time without manipulating objects on the

Managed Heap? The answer is very interesting, so I invite you to read further. The

description is quite detailed but we are in the heart of the GC here. Understanding the

Plan phase gives the best insight what and how GC really works. I believe it pays off to

really understand this!

The processes described in this chapter are slightly different in SOH and LOH.

 Small Object Heap
Let's start from the SOH planning description first. It is a little more complex than the

case of LOH, so after understanding it, we will understand LOH version easily.

 Plugs and Gaps
Imagine a fragment of the Managed Heap (inside Small Object Heap) right at the

beginning of the GC process (see Figure 9-1). There are some objects located next to

each other. Each object obviously consists of a header, Method Table pointer, and at least

one pointer-sized field (even if it is not used, as mentioned in Chapter 4). Some objects

are bigger, some are smaller.

Figure 9-1. A fragment of the Managed Heap (inside Small Object Heap) right at
the beginning of the GC process (H stands for header, MT stands for method table
pointer, objects are marked by light gray filling)

Chapter 9 GarbaGe ColleCtion - plan phase

625

Imagine that after the Mark phase described in the previous point, all reachable

objects have been marked (see Figure 9-2). At this point the planning phase comes into

action.

During the Plan phase whole condemned and younger generations are scanned

object by object. This is easy because the size of the current object is easily calculated

from the “hot” information inside an object. For arrays this is the base size of an object

plus number of components times the size of component. During such scanning a

dedicated pointer is simply advanced by the current object size (that's aligned).

The core principle of the planning phase is to group all marked and not-marked

objects into groups during such an object-by-object scan (see Figure 9-3). And so a

group of two kinds may be created:

• plug - represents an adjacent group of marked (reachable) objects

• gap - represents an adjacent group of not-marked (unreachable)

objects

By splitting the whole Managed Heap into a series of plugs and gaps, we can easily

calculate important information (see Figure 9-4):

• With each gap its size and location may be remembered. If Sweep

collection will be chosen, most of the gaps will become a free space

managed by the free-list item.

Figure 9-3. Plugs and gaps on the Managed Heap

Figure 9-2. A fragment of the Managed Heap right after Mark phase (medium
gray objects are marked)

Chapter 9 GarbaGe ColleCtion - plan phase

626

• With each plug its relocation offset and location are remembered. If

Compact collection will be chosen, it will be executed by moving plug

by plug using their relocation offsets.

How to calculate relocation offset? In the simplest scenario we could calculate it

as an accumulation of all sizes of previous gaps (as we have done in Figure 9-4). This is

however much more complex in a real implementation. It uses its own internal allocator

to find a proper address for each successive plug to relocate to, and this address is then

recorded instead of actually moving the plugs there.

if you are interested in details and want to study CoreClr code, all this happens
in gc_heap::plan_phase method. inside this method, by scanning successive
objects, plugs and gaps are discovered. the new location of each plug is calculated
by calling allocate_in_condemned_generations or allocate_in_older_
generations. You can start there with your own investigations.

In case of a simple scenario when we can move plugs, that is, it's not pinned, a bump

pointer allocator will lay each plug next to each other. Figure 9-5 illustrates some “virtual

space,” which is the Managed Heap representation from the internal allocator's point of

view (it represents how a heap would look like after compacting). This is an illustration

only for our convenience - normally, the allocator simply operates on the pointers

updating them accordingly. Plan phase for our small fragment of the heap would consist

of the following steps:

• At first allocation pointer is being reset to the beginning of the

generation (see Figure 9-5a).

Figure 9-4. Size and offset information associated with plugs and gaps. Example
values have been provided assuming single block (like header) is 8-bytes long

Chapter 9 GarbaGe ColleCtion - plan phase

627

• When first plug is encountered (consisting of one object), the

allocator finds a place for it where allocation pointer is located

(see Figure 9-5b) and moves the allocation pointer accordingly.

The difference between the new and old location of the plug is

remembered as its relocation offset.

• When next plug is encountered (consisting of three objects),

the allocator finds a new place for it just after the previous one

“allocated” plug. Again, the difference between new and old location

of the plug is remembered as its relocation offset.

• When last plug is encountered, the same logic happens.

Figure 9-5. Calculation of plug relocation offsets is based on the internal allocator
calculating a new address for each plug – (a) objects layout from Figure 9-4 and
resulting view of the allocator on the Managed Heap, (b) internal allocator found
a place for the first plug, (c) internal allocator found a plac for the second plug,
(d) internal allocator found a place for the last plug

Chapter 9 GarbaGe ColleCtion - plan phase

628

As a result, all relocation offsets have been calculated so the GC knows exactly

when eventually the allocation pointer will be placed if compaction occurs. That gives

direct information about compaction efficiency used later during GC's decision on

compacting.

in our example from Figure 9-5, we know that after compacting, space taken by
objects will shrink by 136 bytes because this is a difference between the current
and future location of the allocation pointer.

Our simplified case does not yet show why a more complex internal allocator is

needed. This will happen when we go over to discuss pinning of objects.

To summarize what we have learned so far, by organizing objects into plugs and

gaps, a complete set of information is obtained very efficiently:

• what is the compaction efficiency,

• where free-list items should be created in case of Sweep collection,

• where to move reachable objects in case of Compact collection.

The question arises, where to store plug- and gap-related data? GC could use a

dedicated memory area managed by it for this purpose. However, in case of scenarios

where there are many small gaps and plugs interleaved, this area would consume a lot

of memory. In addition, intensive access to memory areas of the Managed Heap and

separate areas for such information would not be efficient due to the CPU cache usage.

Therefore, since GC is already intensively using the Managed Heap memory area, why

not just reuse it to store plug- and gap-related information? This is exactly the approach

that was decided in the Microsoft .NET.

If we build gaps and plugs appropriately, each plug will have its corresponding gap

that precedes it.1 That is why GC stores interesting information only for every plug - just

before where it starts, at the end of the preceding gap (see Figure 9-6). Content of the

gap may be safely overwritten - it contains only unreachable objects that will be no

longer used. Such plug info takes exactly 24 bytes (on 64-bit runtimes) or 12 bytes (on

32-bit runtimes) - it contains the corresponding gap size, plug relocation offset, and

1 The only exception could be the first plug not preceded by any gap, but we can omit it in our
considerations. And as we will see soon, in fact each generation begins with a single empty
object so even the first plug is always preceded with a gap.

Chapter 9 GarbaGe ColleCtion - plan phase

629

some additional data explained later (two bits being a part of relocation offset and two

additional left/right offsets).

Storing plug info on the Managed Heap just before a plug is the main reason why

even an empty object must be 24-bytes big (in case of 64-bit runtime). As a gap before a

plug contains at least one object, it will be at least 24-bytes long. In this way it is nicely

and elegantly assured that there is always enough room to store a plug info!

In that way, each gap and plug pair information is stored on the Managed Heap

(see Figure 9-7). It will be used during Sweep or Compact phases later on.

If GC decides to perform compacting, it will use plug information very often. Please

note that with such information it can answer the most frequent question (used when

translating addresses) - what will be the new address of the object at address X? In this

case, we only need to check if the address X belongs to some plug and if so, subtract from

X the corresponding plug relocation offset. This question may be asked really, really

often. All efforts must be made to respond efficiently. This is why plugs are organized

into a binary search tree (BST).

Figure 9-6. Location of the plug information on the Managed Heap

Figure 9-7. Size and offset information associated with plugs and gaps stored on
the Managed Heap itself (based on situation from Figure 9-4)

Chapter 9 GarbaGe ColleCtion - plan phase

630

Each plug info contains an offset to the left and right child plug info related to the

given plug start (we have seen them in Figure 9-6) or 0 if there is no corresponding child.

In that way a binary plug tree is build that contains addresses of all plugs (see Figure 9- 8).

This tree is built in a balanced way so that for a node, all its left children are at smaller

addresses, and all its right children are at higher addresses.

addresses in a plug tree point to the first object in a plug (their Mt field, as usual in
Clr). GC knows where to find corresponding plug info by a constant offset related to it.

 Scenario 9-1. Memory Dump with Invalid Structures
Description: During some problem investigation, the full memory dump was taken off the

.NET application. However, it seems to be unusable because data structures are invalid.

For example, when invoking most SOS commands, the following message appears:

> !dumpheap -stat

The garbage collector data structures are not in a valid state for traversal.

It is either in the "plan phase," where objects are being moved around, or

we are at the initialization or shutdown of the gc heap. Commands related to

displaying, finding or traversing objects as well as gc heap segments may not

work properly. !dumpheap and !verifyheap may incorrectly complain of heap

consistency errors.

Analysis: Memory dump indeed could be taken during the GC planning phase, when

there is no guarantee that objects will be in “normal state” - because the heap is not

walkable by the normal means (meaning starting at the beginning of a segment and

advancing by the object size as we talked about earlier in this chapter). In fact, if we look

at CoreCLR code, we will see the following guard around Plan phase:

Figure 9-8. Plugs organized into a BST

Chapter 9 GarbaGe ColleCtion - plan phase

631

GCScan::GcRuntimeStructuresValid (FALSE);

plan_phase (n);

GCScan::GcRuntimeStructuresValid (TRUE);

It is the only place when such protection is made. Thus we can easily check if indeed

our memory dump was taken in a such unfortunate moment by looking for threads

executing GC-related code. There are four possible library and namespace combinations

we should look for, depending on our environment:

• coreclr!wks - .NET Core with Workstation GC

• coreclr!srv - .NET Core with Server GC

• clr!wks - .NET Framework with Workstation GC

• clr!srv - .NET Framework with Server GC

So, for example, if we have a dump of .NET Core application with Workstation GC

enabled, we may look for it in the following way:

> !findstack coreclr!wks

Thread 000, 6 frame(s) match

 * 00 000000a963b7cd30 00007ff903bb0b48 CoreCLR!WKS::gc_heap::

plan_phase+0xa9

 * 01 000000a963b7ce40 00007ff903bb095a CoreCLR!WKS::gc_heap::

gc1+0x178

 * 02 000000a963b7ceb0 00007ff903b90d21 CoreCLR!WKS::gc_heap::

garbage_collect+0x5ca

 * 03 000000a963b7cf20 00007ff903b90e98 CoreCLR!WKS::GCHeap::

GarbageCollectGeneration+0x191

 * 04 000000a963b7cf60 00007ff903b90b15 CoreCLR!WKS::GCHeap::

GarbageCollectTry+0xe8

 * 05 000000a963b7cff0 00007ff903670613 CoreCLR!WKS::GCHeap::

GarbageCollect+0x2a5

Obviously, in our case, we are indeed in the middle of Plan phase because there is a

thread executing it.

However, from my own experience, this message may be also displayed in case of

the generic problem of getting GC data because not the proper SOS was loaded (for

example, .NET 2.0 runtime version instead of .NET 4.0 version or opposite).

Chapter 9 GarbaGe ColleCtion - plan phase

632

 Brick Table
Root of plug tree needs to be stored somewhere. Creating a single, huge plug tree for

the entire Managed Heap would be impractical. While investigating consecutive gaps

and plugs, adding a new item to the tree may require rebalancing it. In case of a huge

tree covering each and every plug, it could be very costly. Traversing such a tree during

lookup would also be expensive because it would involve the need to jump over many

levels of the tree.

A much more practical approach is to build plug trees for consecutive address

ranges. Such range is called a brick in CLR. Brick size is 2,048 B for 32bit and 4,096 B for

64-bit runtimes. In other words, each 2 or 4 kB of the Managed Heap is represented by

a single brick that contains information about its plug tree. Bricks are stored in a brick

table that covers the whole Managed Heap (see Figure 9-9). Each brick table entry is a

16-bit integer that may take three logically distinct values:

• 0 - brick has no plugs information assigned (there are no plugs in a

specified address range).

• >0 - represents an offset of the plug tree root (this value is increased

by 1 so that 0 could mean no information, as indicated above) in the

corresponding memory region.

• <0 - represents an information that such brick is a continuation of

previous bricks (there is a big plug that spans multiple bricks) and we

should jump back a given amount of bricks to the start.

Figure 9-9. Bricks and brick table

Chapter 9 GarbaGe ColleCtion - plan phase

633

By combining the brick table entry with the left and right offsets inside plug

information of each plug, the plug tree is represented in an efficient way (see Figure 9- 10).

An example brick table entry contains value 0x6f1 - it represents an offset of plug tree root

inside corresponding memory region. Because it is a second brick table entry, it represents

a region between addresses 0x1000 and 0x2000. It means that the root is located at the

address 0x6f0 (positive values must be reduced by 1 as denoted above) plus 0x1000, which

gives address 0x16f0 on the Managed Heap. Starting from this address, we have access to

the entire plug tree using the appropriate offsets contained in the plug information.

both brick table entry and left/right offsets are short integers (16-bit) because they
allow us to store a value between -32767 to 32767 which is enough to represent
offsets inside at most 4-kb address ranges.

When answering the question, “what will be the new address of the object at

address X?,” the following, simple steps must be taken:

• Calculate the brick table entry based on address X - by simply

dividing it by a brick size.

• If brick table entry is <0 - jump into proper brick table entry and

repeat.

• If brick table entry is >0 - start to traverse plug tree to find proper

plug.

• Get relocation offset from the plug and subtract it from X.

Figure 9-10. Bricks and brick table example - (a) brick entry as a root of plug tree
and plug info entries with child information, (b) logical plug tree representation

Chapter 9 GarbaGe ColleCtion - plan phase

634

At this point, we could conclude the description of the operation of Plan phase. All

necessary information has been collected so GC could proceed further. Compaction

efficiency could be taken from the relocation offset of the last plug. However, there is still

one, very important piece of the puzzle to describe, which makes the whole technique

more complex.

 Pinning
If an object is pinned, it is most probably because we want to pass its address to the

unmanaged code (see Figure 9-11).

We cannot simply move a pinned object during compacting because unmanaged

code has no chance to be aware of it. It will still refer to the same address, which will now

point to a completely different set of data (see Figure 9-12).

Pinning complicates quite significantly a simple technique described in the

previous section. Pinned objects have to be taken into consideration in a special way by

internal allocator and when building a plug tree. This section explains how it has been

implemented.

Figure 9-11. Pinning example. Pinned objects are marked as dark gray

Figure 9-12. Pinning example - unmanaged code accessing undefined data after
pinned object has been moved

Chapter 9 GarbaGe ColleCtion - plan phase

635

Because of pinning, in fact there are three kinds of objects group possible:

• plug - represents a group of marked (reachable) objects,

• pinned plug - represents a group of pinned (and thus marked)

objects,

• gap - represents a group of not-marked (unreachable) objects.

Imagine first the simplest scenario - a pinned plug is located just after some gap (see

Figure 9-13). In this case we do not change much. We may store plug info as usual, at the

end of the corresponding gap. We will store proper left/right offset when building a plug

tree. The main difference is that we should zero relocation offset for such plug.

Additionally, with all pinned plugs a size of the free space before it (in case of

compacting will be chosen) is stored (see Figure 9-13b).

In that simple manner, during compaction normal plugs will be moved while the

pinned plug will not (see Figure 9-13c). This is because the internal allocator described

previously simply does not move pinned plugs (it “allocates” a space for them exactly

where they are).

Figure 9-13. Plug management when pinned plug is located after gap –
(a) an example object layout with single pinned plug, (b) organization of plug
information, (c) result of compaction

Chapter 9 GarbaGe ColleCtion - plan phase

636

please note that in such case as from Figure 9-13c, we may introduce a big free
space gap between the normal and pinned plug. such scenarios will be discussed
soon in the section, “Demotion,” to not overwhelm you now with all the details.

Data related to all pinned plugs are also remembered on a pinned plug queue. As we

will soon see, GC often needs to store more information about a pinned plug that will

just not fit in standard plug information, hence the necessity to maintain such a separate

pinned plug queue.

interestingly enough, to store pinned plug data already known mark_stack_
array is being reused. this time, however, it stores pointers to a dedicated mark
class instances instead of objects’ addresses. thus, besides its names, when
analyzing CoreClr code you can very often meet mark_stack_array (and
corresponding mark_stack_tos and mark_stack_bos pointers) in a code
related to the pinned plug handling.

Imagine now a more complex scenario - a pinned plug is located just after some

normal plug (see Figure 9-14a). We have a problem here - we would like to store

pinned plug info right before it starts, as usual, but there is a normal, reachable object

there! GC could make some exceptions, storing pinned plug info somewhere else

but... interestingly enough, GC actually overwrites such object preceding pinned plug

(see Figure 9-14b). It is possible because the Plan phase is guaranteed to run while all

managed threads are suspended. Thus, there is no chance that any .NET code will try to

access such “destroyed” object before we “recover” it later on.

The cut-off end of the last object (which is 3-pointer-sized 24 bytes on 64-bit) is

stored together with other pinned plug data inside a new pinned plug queue entry. Such

object ending is called pre plug (because it precedes pinned plug). It would be used later

during execution of compacting or sweeping.

Chapter 9 GarbaGe ColleCtion - plan phase

637

please note that again the requirement of an object to be at least 24-bytes long
helps here a lot - it is assured that in such scenario there will be enough space for
plug information even with the smallest preceding object.

Such an approach allows us to treat pinned plugs in a generic way. Related relocation

offset will be 0, gap size will be set artificially to 24 bytes,2 and such plug info will be

incorporated into the plug tree as usual (see Figure 9-15).

2 Although there is no real gap here, GC needs to account it for its statistical purposes.

Figure 9-14. Plug management when pinned plug is located after normal
plug - (a) an example object layout with single pinned plug after normal object,
(b) organization of plug information with end of the object stored as pre plug,
(c) possible result of compaction

Figure 9-15. Logical representation of plug tree for plugs from Figure 7-43

Chapter 9 GarbaGe ColleCtion - plan phase

https://doi.org/10.1007/978-1-4842-4027-4_7#Fig43

638

However, this is not the end of adventures with complications resulting from pinning

objects. Imagine a scenario when a pinned plug is located just before some normal plug (see

Figure 9-16a). This raises another problem – a normal plug would like to store its information

just before it starts, where the pinned object ends. But pinned objects may be accessed by

unmanaged threads that are not suspended even during GC (see Figure 9-16b). Hence,

pinned objects must be guaranteed to be untouched all the time. The solution is easy -

instead of creating a new plug, the object right after it is being incorporated into pinned plug

(see Figure 9-16c). Single pinned plug entry will be modified accordingly. We will see in a

later section how such information would be consumed in case of compacting.

Figure 9-16. Plug management when pinned plug is located before normal
plug - (a) an example object layout with single pinned plug, (b) organization
of plug information that needs to be handled properly, (c) organization of plug
information

It is a kind of compromise. From now on both pinned and normal objects are treated

as an extended pinned plug so they will count into all pinning-related disadvantages.

Pinning should be avoided but what is done here is exactly the opposite - we are

aggressively pinning an additional, normal object. The advantage of the still generic

treatment of plugs prevails here, however, over the disadvantages. If a normal object

located after a pinned object is small, the introduced disturbances will be negligible.

Chapter 9 GarbaGe ColleCtion - plan phase

639

This could be however problematic if a pinned object is followed by a large block

of marked objects. Should all of them be included as an extended pinned plug (giving

theoretically pinned plugs in size of megabytes or gigabytes)? Obviously not. Extension

of pinned plug is done only by a first, single object.

Imagine a pinned object followed by at least two marked objects (see Figure 9-17a).

Pinned plug will be extended as described previously. This allows us to create a normal

plug from the following marked objects because it is safe to overwrite the last normal

object (see Figure 9-17b). Obviously, the ending of such “destroyed” object must be

stored elsewhere like it was in case of pre-plug data. Such an object ending is called post

plug. It would be used later during the execution of compacting or sweeping.

To summarize, the most typical scenario is when a pinned object is lying inside a

larger block of marked objects (see Figure 9-18a). In such a case, both pre and post plugs

must be saved and three separate plugs (including one pinned and extended) will be

created (see Figure 9-18b).

Figure 9-17. Plug management when pinned plug is located before at least
two marked objects – (a) an example object layout with single pinned plug,
(b) organization of plug information

Chapter 9 GarbaGe ColleCtion - plan phase

640

This has several implications:

• Copying pre and post plugs introduces memory traffic - the more

pinned objects, the more cumbersome it may become.

• Pinned plug can be extended by a single object so more memory

is being pinned than it could be - if the normal object is big, we are

freezing a significant memory region, disturbing the achievement of

small fragmentation.

• During Plan phase some objects on the Managed Heap are

“destroyed” making it not “walkable” in a normal way. We may hit

this problem when analyzing memory dumps (see Scenario 9-1).

 Scenario 9-2. Investigating Pinning
Description: Thanks to \.NET CLR Memory\# of Pinned Objects Performance Counter, a

lot of pinning has been observed in our application on the production environment

(see Figure 9-19). We would like to investigate whether it is intentional or not.

Figure 9-18. Plug management when pinned plug is located inside larger
block of marked objects – (a) an example object layout with single pinned plug,
(b) organization of plug information

Chapter 9 GarbaGe ColleCtion - plan phase

641

Figure 9-19. \.NET CLR Memory()\# of Pinned Objects

Analysis: As you may remember from previous pinning descriptions, there are in fact

two sources of pinning:

• local pinned variables - objects that are local variables, often created

implicitly by using fixed keyword. Their life is limited to containing

method lifetime. Thus, memory dump or Heap Snapshot (from

PerfView) will show only a small slice of them based on what is

currently executing. However, there is PinObjectAtGCTime ETW

event emitted for every such object.

• pinned handles - objects that are pinned explicitly by pinned

handle reference. Those include some internal objects held by CLR

itself, as well as those explicitly created by GCHandle.Allocate

call. The handle table resides in memory for an entire application

lifetime so it may be easily analyzed from memory dump or Heap

Snapshot. ETW sessions contain such information also in the form of

PinObjectAtGCTime event, but only for the generation(s) that the GC

is collecting (since handle table is generation aware).

Performance counter \.NET CLR Memory()\# of Pinned Objects also counts both

types. At the beginning we do not know which type of pinning is contributing more.

We may start our analysis by recording ETW-based session during periods when

of Pinned Objects is high. Using PerfView, .NET option will be enough (without GC

Collect Only selected). After opening GCStats report from Memory Group, we should

see confirmation on noticeable number of pinned objects (see Figure 9-20). The last

Chapter 9 GarbaGe ColleCtion - plan phase

642

As said, there is PinObjectAtGCTime event emitted for every pinned object during

Mark phase. We can simply investigate those individual events from the Events view -

especially interesting there is a TypeName field (see Figure 9-21). Only by looking at it, we

can sometimes easily identify the source of pinning, if the pinned type is unique enough.

Figure 9-20. Pinned Obj column in GC Events by Time table

Figure 9-21. ETW Microsoft-Windows-DotNETRuntime/GC/PinObjectAtGCTime

column, named Pinned Obj, indicates the number of pinned objects each GC has

promoted. Those values should be the same as observed by Performance Counter. If

Performance Counters are not available (in case of .NET Core runtime), you can start

from here to check whether there is a noticeable pinning in your application.

Obviously, in our case, # of Pinned Objects value comes mainly from local pinned

variables, observed by PinObjectAtGCTime event.

please note that PinObjectAtGCTime have no stack traces attached. We could
enable them by using @StacksEnabled=true option for .net etW provider, but
it would not help us at all. the stack trace of such events is always inside the GC
code, not at the place where pinned object is being used.

Chapter 9 GarbaGe ColleCtion - plan phase

643

There is however a much better view to analyze this source of pinning - specially

dedicated Pinning At GC Time Stacks view from Advanced Group. It does additional

analysis and grouping to provide summarized data. The default By Name view will show

the main contribution of types that were pinned (see Figure 9-22). We see that all pinned

objects are grouped into a NonGen2 source.

Figure 9-22. Pinning At GC Time Stacks - By Name

Figure 9-23. Pinning At GC Time Stacks - Callers of NonGen2

By selecting Goto Item in Callers command on it, we will be able to further analyze

what types are the main sources of pinning. We may notice that they are in fact mostly

“StackPinned” (see Figure 9-23). In our example, clearly, types from the System.

Data.SqlServerCe namespace have the largest contribution (namely, SqlCeCommand,

SqlCeConnection and MEDBBINDING[] array).

Chapter 9 GarbaGe ColleCtion - plan phase

644

At this stage, by searching in source code for those type instances usage (with fixed

keyword) should be enough to unambiguously identify the root source of such pinning.

For example, System.Data.SqlServerCe.SqlCeCommand.ExecuteCommandText method

contains code shown in Listing 9-1, where DbBinding field is of type MEDBBINDING[].

Listing 9-1. An example of local variable pinning from System.Data.SqlServerCe.

dll (decompiled by dnSpy)

fixed (IntPtr* ptr = this.accessor.DbBinding)

{

 // ...

}

There's another way to analyze objects pinned by handles, which is the !GCHandles

SOS command inside WinDbg. Let's make a memory dump during high \.NET CLR

Memory\# of Pinned Objects value. After opening it in WinDbg and loading SOS

extension, we may list all pinned handles with the help of !GCHandles command (see

Listing 9-2). We will see a list of objects pinned due to pinned handles - including CLR

internals arrays (remember string intern pool or statics?), various buffers used by Kestrel

server, and so on, and so forth. Currently there is no WinDbg extension that would help

us listing stack-based pinning sources.

Listing 9-2. !GCHandles command to list all pinned handles

> !GCHandles -type Pinned

 Handle Type Object Size Data Type

007f1374 Pinned 04988078 131084 System.Byte[]

007f1378 Pinned 04968058 131084 System.Byte[]

007f137c Pinned 04948038 131084 System.Byte[]

007f1398 Pinned 0490f058 32780 System.Object[]

007f13ac Pinned 04928018 131084 System.Byte[]

007f13b4 Pinned 0490b038 16396 System.Object[]

007f13b8 Pinned 048fb028 65532 System.Object[]

007f13bc Pinned 048f9008 8204 System.Object[]

007f13c0 Pinned 0403dbac 12 Bid+BindingCookie

007f13c4 Pinned 048f7fe8 4108 System.Object[]

007f13c8 Pinned 04918008 65532 System.Object[]

007f13cc Pinned 048e7fd8 65532 System.Object[]

Chapter 9 GarbaGe ColleCtion - plan phase

645

007f13d0 Pinned 048e3ff8 16332 System.Object[]

007f13d4 Pinned 048e1ff8 8172 System.Object[]

007f13d8 Pinned 048e17d8 2060 System.Object[]

007f13dc Pinned 048d18b8 65292 System.Object[]

007f13e0 Pinned 048c9918 32652 System.Object[]

007f13e4 Pinned 048c94f8 1036 System.Object[]

007f13e8 Pinned 048c5518 16332 System.Object[]

007f13ec Pinned 048c3518 8172 System.Object[]

007f13f0 Pinned 048c2508 4092 System.Object[]

007f13f4 Pinned 048c22e8 524 System.Object[]

007f13f8 Pinned 038c121c 12 System.Object

007f13fc Pinned 048c1020 4788 System.Object[]

Statistics:

 MT Count TotalSize Class Name

720dff90 1 12 System.Object

57fbb464 1 12 Bid+BindingCookie

720dffe4 18 417536 System.Object[]

720e419c 4 524336 System.Byte[]

Total 24 objects

The conclusion is simple - to have a good overview of pinning, we should look at

ETW PinObjectAtGCTime events that take into consideration both pinning sources. Be

aware that SOS extensions list only handle-related pinning sources.

As a final remark, the PerfView ability to analyze its Heap Snapshots is slightly more

useful here. After opening such snapshot, we may look for [.NET Roots] row and select

Goto Item in CallTree command. After removing folding (by clearing out Fold% field),

you will be able to list all types of roots - including Pinned local vars (see Figure 9-24).

We will see there already known to us the MEDBBINDING[] type as the main source of

such kind of pinning. Remember that it is still only the static snapshot so stack-based

pinning sources will not be listed exhaustively.

Chapter 9 GarbaGe ColleCtion - plan phase

646

it is sometimes also good to remove any grouping from Grouppats field and
any folding from Foldpats field. this will produce more granular but yet more
descriptive results. Figure 9-24 was prepared in such a way.

After identifying sources of pinning, we may decide whether they are avoidable or

not. If they are not causing big fragmentation, most probably we may just leave them as

they are. In case of being problematic (like causing big fragmentation), we have to find

some solution. Approaches to avoid excessive pinning are presented in Chapter 13.

 Generation Boundaries
After Sweep or Compact, generation boundaries will be changed accordingly. It is rather

simple to do in scenarios without pinned objects. Generation boundaries are aligned in

such a way that they contain all accordingly promoted objects.

For example, imagine the layout of objects shown in Figure 9-25a during Full

Collection. There are all three generations presented, and some objects are marked

(reachable) in each of them. As we already know, during Plan phase the internal

allocator calculates new addresses for plugs (see Figure 9-25b). But additionally, new

generation boundaries are being calculated. All this is done again only virtually without

moving any objects, hence Figure 9-25b shows the resulting view of the internal allocator

on the Managed Heap as something abstract.

Figure 9-24. RefTree view of [.NET Roots] from PerfView Heap Snapshot analysis

Chapter 9 GarbaGe ColleCtion - plan phase

647

Figure 9-25. Calculating generation boundaries – (a) object layout, (b) resulting
view of the allocator on the Managed Heap (light gray - dead objects, medium
gray - live objects that are moved according to the dashed lines)

New generations’ boundaries are located in places that will contain all necessary

survived objects. This may be easily calculated during Plan phase. There is however one

small remark to mention. Each generation (even empty one) begins with a single Free

space with a size of a minimum object. Such a generation start is useful when considering

plug info storage for the first plug in the generation. It allows them to be treated in generic

way also without worrying about having plugs that span two generations.

Hereinafter such a generation’s start is most often omitted to not clutter figures too

much. Do not be surprised though when analyzing memory dumps to find out that each

generation starts with 24-byte-long free space.

 Demotion
Previously in Figures 9-13 and 9-14, possible results of the compacting have been shown.

It was not completely clear how the internal allocator will behave around pinned plugs

and where generations will start. From the implementation point of view, the simplest

solution would be just to reset the accumulated relocation offset after each pinned plug

so each following plug will be allocated after it. Then the generation would start in places

to cover all survived objects accordingly.

Chapter 9 GarbaGe ColleCtion - plan phase

648

This obviously would be very inefficient from the fragmentation point of view

because it introduced sometimes big regions of free memory. Instead, the inner allocator

is trying to fill all the gaps between pinned plugs with normal plugs and generation starts

(see Figure 9-26). Plan phase for our small example fragment of the heap would consist

of the following steps:

• At first allocation, pointer is being reset to the beginning of the

generation (see Figure 9-26a).

• The allocator finds a place for the first (see Figure 9-26b) and the

second (Figure 9-26c) plugs.

• The allocator “allocates” pinned plug under its original address (see

Figure 9-26d).

• The allocator finds a place for the last plug before pinned plug - there

is enough room for it (see Figure 9-26e).

One must now decide where generations should begin. At the beginning of our

example all objects were in generation 0. If we wanted to promote all survived objects

into generation 1 as expected, including a pinned one, generation 0 should start just after

the pinned plug - pinned object from generation 0 should be promoted to generation 1

as any other objects. But it would introduce a big fragmentation in generation 1. The

better decision is to reuse existing gap and end generation 1 earlier. Generation 0 will be

planned to start before pinned object (see Figure 9-26f)!

Thus, because of such decision, the pinned object remained in generation 0 - it was

not promoted from generation 0 to generation 1 as usual! In our example, this would

happen to all pinned plugs located after our pinned plug (if there were any, and if there's

no more non-pinned plugs).

Chapter 9 GarbaGe ColleCtion - plan phase

649

Figure 9-26. Inner allocator filling gaps created due to pinning – (a) object layout
taken from Figure 9-14 and resulting view of the allocator on the Managed Heap,
(b) internal allocator found a place for the first plug, (c) internal allocator found
a place for the second plug, (d) pinned plug was not moved, (e) internal allocator
found a place for the last plug before the pinned plug (there was enough room
for it), (f) generation 1 starts before theoretically promoted pinned plug - it was
demoted (not promoted).

Such an event is called demotion (as the opposite of promotion) and means that the

object does not end up in a generation that it is supposed to be in. Demotion could mean

that object is not promoted, but it also could mean that it lands in the lower generation.

Chapter 9 GarbaGe ColleCtion - plan phase

650

So because of pinning, all three possibilities about the object's promotion are possible.

Let's analyze it from the perspective of a pinned plug (extended by single object after it)

from generation 1. The following three scenarios can happen for such a pinned plug:

• Before it there is a gap big enough to allocate normal plugs and

generation starts for both generations 1 and 0 - in such case, a pinned

plug would be demoted from generation 1 to 0 (see Figure 9-27).

• Before it there is a gap big enough to allocate normal plugs and

generation start for generation 1 - in such case a pinned plug would

be demoted, staying in generation 1 (see Figure 9-28).

• Before it there is not enough room for normal plugs - therefore both

pinned plug and a normal plug (including large free space gap) must

be promoted into older generation (see Figure 9-29).

Figure 9-27. Demotion from generation 1 to 0 – (a) objects layout, (b) result of
compaction

Figure 9-28. Demotion from generation 1 to 1 – (a) objects layout, (b) result of
compaction

Chapter 9 GarbaGe ColleCtion - plan phase

651

Internal allocator operates on plugs, not on single objects. It means that even

there was enough place before the pinned object in Figure 9-29, for some objects from

the normal plug, it would not be split into smaller plugs to fill such a gap. This is a

compromise between inner allocator complexity over the fragmentation overhead it

introduces. However, in general, such overhead is rather negligible. Typical pinning

either should be short lived or long lived:

• In the former case, it dies in generation 0, which is small and

dynamic enough to accommodate that overhead and not introduce

fragmentation.

• In the latter case, pinned object lives in generation 2 so the fact

of pinning will just be irrelevant most of the time (as long as a

compaction in gen2 doesn't happen, whether it's pinned or not or is

of no relevance to the GC).

Note please note that in the current implementation, only pinned plugs may be
demoted (which mean pinned object optionally extended by single non- pinned
object following it, if there is one).

Obviously, when there are multiple pinned plugs, only some of them may be

demoted. It all depends on the current layout of plugs and gaps. It has been illustrated

in Figure 9-30. Normal plugs reused gaps as effectively as possible. It resulted in the first

gap being normally promoted white the second demoted from generation 1 to 0.

Figure 9-29. Normal promotion from generation 1 to 2 – (a) objects layout,
(b) result of compaction (introduces unwanted fragmentation)

Chapter 9 GarbaGe ColleCtion - plan phase

652

Demotion is an optimization to make sure that as many gaps have been reused

as possible. The remaining free space will be turned into free-list items if they are big

enough so they will get a chance to be reused also.

This is probably why there is no diagnostic data about demotion available. We can

observe it by thorough memory dump analysis, but it is unlikely you will ever need to.

What you should be concerned about is the fragmentation level induced by pinned

plugs. Demotion is however an important part of the internal allocator and Plan phase,

so describing them without demotion would be not comprehensive. It is good to know

that pinned objects may be promoted and demoted. Generational GC concept does not

incur any limitations here by design.

in case of previously mentioned ephemeral segment built by reusing already
existing gen2-only segment, pinned plugs living there will be demoted from
generation 2 to generations 1 and 0.

There is an undocumented !DumpGCData command in WinDBg's SOS extension. In

addition to data that can be obtained by other means (e.g., from ETW) - like compacting

reasons, a number of different kinds of GCs - it contains also nowhere else available

information called “Interesting data points”:

Interesting data points

 pre short: 0

 post short: 0

 merged pins: 0

 converted pins: 0

Figure 9-30. Example of both promotion and demotion

Chapter 9 GarbaGe ColleCtion - plan phase

653

 pre pin: 0

 post pin: 0

 pre and post pin: 0

 pre short padded: 0

post short padded: 0

As we see, those include:

• various types of pre and post pin - pinned plugs with both pre and

post plug info,

• various types of pre pin - pinned plugs with only pre plug info,

• various types of post pin - pinned plugs with only post plug info,

• converted pin - objects that were converted to pinned because of

pinned plug extension.

This method is obviously mostly useful for the GC developers because there is a little

practical usage of those data to users. It is even not guaranteed that this command will

exist in the future edition of SOS extension. If you would like to investigate more, search

for gc_heap::record_interesting_data_point method in CoreCLR's source code.

 Large Object Heap
In fact, actually the plan stage in LOH is almost never needed because it is mostly just

Sweeping. However, LOH must be organized in a way that allows it to Compact if we

explicitly asked the GC to do it.

 Plugs and Gaps
Plan phase for Large Object Heap is required only for compacting. The default is to

always sweep, which does not use plugs and gaps (as described later). In case of Large

Object Heap, compacting must be turned on explicitly and is not executed by default.

This means in the vast majority of .NET applications, LOH will never be compacted at

all. However, Large Object Heap must be prepared to make compacting possible. Thus, it

incorporates the concept of plugs and gaps in a simplified form.

Chapter 9 GarbaGe ColleCtion - plan phase

654

LOH is specific because it is guaranteed that only large objects are living there. This

makes some simplifications possible:

• There is no such urgent need to group objects into plugs as separate

objects are quite large by itself already. Thus, to simplify LOH Plan

phase, each reachable object is treated as a separate plug. First of

all, this is enough to provide good address translation efficiency

(the object density in LOH is a lot lower than in SOH). Secondly, it

helps to avoid fragmentation (it would be much harder to efficiently

relocate huge plugs consisting of many large objects).

• To overcome overhead of plug info storage handling (including pre

and post plugs around pinned plugs), objects in LOH are allocated

with the small padding between them (see Figure 9-31). This padding

in current implementation takes 4-pointer-sized words (32 bytes on

64-bit) and is made into a normal Free object.

padding in loh described here is used for all current .net runtime compilations
enabling explicit loh compaction. however, .net runtime may be compiled without
this feature enabled, which will turn allocations in loh into “without padding”
mode. because such runtime does not support loh compaction, there will be no
need to plan phase and to create plugs (storing their info).

During the mark phase, each object may be identified as marked or marked and

pinned. From each such object a corresponding plug is created (see Figure 9-32).

Figure 9-31. Layout of objects in Large Object heap, including padding between
objects in case of a runtime supporting LOH compaction

Chapter 9 GarbaGe ColleCtion - plan phase

655

Before each plug, its information needs to be stored but because of padding, there

is always enough space for it (see Figure 9-33). This information is really simple and

contains only a relocation offset of the plug.

Relocation offset is calculated on the same basis as in case of Small Object Heap.

Internal allocator finds a proper place for successive plugs (successive objects). As

mentioned, this is why it is good to treat each object as a plug and not to group them into

single, huge plugs. Allocator most probably would have a big problem to find a proper

place for such huge plugs between pinned plugs.

Because there is no possibility that the plug info will overwrite another object in

LOH, there is no need to maintain pre and post plug data.

Because of a relatively small number of objects and big objects sizes, there is no need

to manage a plug tree for plugs in LOH. When answering the question, “what will be the

new address of the object at address X?,” one simple step must be taken - get relocation

offset from the plug info of X and subtract it from X. Thus, there is also no need to

maintain bricks and a brick table for Large Object Heap.

As there are also no generations inside Large Object Heap, there is no need to

recalculate generation boundaries. There is no demotion possibility either.

Figure 9-32. Layout of objects in Large Object heap, after Mark phase

Figure 9-33. Plug information stored in Large Object Heap (in preceding padding)

Chapter 9 GarbaGe ColleCtion - plan phase

656

Taking all that into consideration, Plan phase in LOH is much more simplified

comparing to SOH. Before each normal or marked and pinned plug, corresponding

info will be stored (see Figure 9-34). Additionally, with all pinned plugs a size of the

free space before it, in case of compacting, is stored (in corresponding pinned plug

queue entry).

As an important side note, pinning in LOH does not differ comparing to SOH. It

introduces the same problem of possible fragmentation.

You will find large object heap planning code in gc_heap::plan_loh method
from CoreClr source code.

 Decide on Compaction
After performing complex calculations in the Plan phase, GC has to decide whether it

is worth compaction. There are some objective reasons that can force it. In most cases,

however, the decision is based on the level of fragmentation.

The list of reasons why GC might decide to compact is as follows:

• It is a last full GC before throwing OutOfMemoryException - GC

should do its best trying to reclaim memory.

• Compaction has been induced explicitly - for example, by providing

appropriate GC.Collect parameter.

• We are running out of space in the ephemeral segment - as

mentioned in the section about generation condemnation, GC is

aggressively trying to reclaim memory before it decides to expand

existing one or create a new ephemeral segment.

Figure 9-34. Result of the Plan phase in Large Object Heap (last padding does not
have reloc saved because it preceeds a gap)

Chapter 9 GarbaGe ColleCtion - plan phase

657

• Generation fragmentation is high - if some generation has high

fragmentation, collecting that generation with compaction is to be

productive - significant memory regions may be reclaimed.

• Physical memory load in the system is high - if possible reclamation

of memory due to compaction exceeds certain threshold, GC decides

to compact.

In some of the decisions described above, a fragmentation threshold violation

takes an important role. One can wonder what its value is. Each generation maintains

its own threshold, consisting of two values taken from static generation data

(see Tables 7-1 and 7-2):

• Total fragmentation - with the information gathered during Plan

phase, it is quite easy to calculate specific generation fragmentation.

It is enough to take into account the planned ending allocation's

addresses in individual segments and any free space that will be

created due to pinning. This value is represented by fragmentation_

limit column in Tables 7-1 and 7-2 (see Table 9-1 for a summary).

• Fragmentation ratio - this is the ratio of the above total fragmentation

size to the size of the whole collected generation. This value is

represented by the fragmentation_burden_limit column in the

Tables 7-1 and 7-2 (see Table 9-1 for a summary).

Table 9-1. Fragmentation Thresholds for Generations

Fragmentation size Fragmentation ratio

Gen0 40000 50%

Gen1 80000 50%

Gen2 200000 25%

For example, generation 2 will be considered as too fragmented if the size of all

fragmentation will exceed 200,000 bytes and it will be more than 25% of total generation size.

You will find compaction decision inside gc_heap::decide_on_compacting
method from CoreClr source code.

Chapter 9 GarbaGe ColleCtion - plan phase

https://doi.org/10.1007/978-1-4842-4027-4_7#Tab1
https://doi.org/10.1007/978-1-4842-4027-4_7#Tab2
https://doi.org/10.1007/978-1-4842-4027-4_7#Tab7
https://doi.org/10.1007/978-1-4842-4027-4_7#Tab2
https://doi.org/10.1007/978-1-4842-4027-4_7#Tab7
https://doi.org/10.1007/978-1-4842-4027-4_7#Tab2

658

 Summary
Plan phase described in this chapter is often overlooked in simple GC description as

consisting of “Mark-Sweep-Compact” phases. However, after reading descriptions in this

chapter, hopefully you already understand how crucial and important this phase is. By

preparing all necessary data, subsequent phases are just consuming it in a proper way.

Personally, I found it fascinating how clever is the combination of plugs, gaps, and

brick tables to proceed with calculating both compacting and sweeping results without

actually doing them. This is the part barely documented so far in GC-related materials.

Thus, although practical implications of the knowledge from this chapter are not huge

(except understanding how pinning may be troublesome to the GC implementation),

I believe the curious reader will find all this information very interesting.

This is almost the end of the GC description. The next chapter finishes with the

description of the last phases - Compact and Sweep.

Chapter 9 GarbaGe ColleCtion - plan phase

659
© Konrad Kokosa 2018
K. Kokosa, Pro .NET Memory Management, https://doi.org/10.1007/978-1-4842-4027-4_10

CHAPTER 10

Garbage Collection -
Sweep and Compact
This last chapter regarding the GC details is the smallest one. Although it describes such

crucial GC phases as Sweep or Compact, we already noticed how much is done to this

point in the previous phases. After the decision made in the Plan phase (described in the

previous chapter), now GC proceeds with one of the steps described here.

Please keep in mind, however, that while most of the calculations are already done

at this stage, from a performance overhead perspective, Sweep or Compact phases are

still the most contributing - it is the cost of accessing memory while modifying and/or

moving plugs that is the most costly. Thus, although from an implementation point of

view those stages are less complex than previous ones, from a performance perspective

they are the most important ones!

Please also note that the most typical GC combination is to make SOH compaction

and LOH sweeping, and then LOH sweeping is done before SOH compaction.

 Sweep Phase
If the GC does not decide to compact (or it has not been told explicitly in case of LOH), it

proceeds with the Sweep phase. As described in Chapter 1, Sweep collection is easy. All

no-longer reachable objects must be turned into a free space. We already know that in

.NET GC terminology, it means that it must transform all or some gaps into free-list items.

As mentioned earlier and as you may probably now understand on your own, both

Sweep and Compact phases are only a simple consumption of the information gathered

during Plan phase. For a person only skimming this book, it may be quite surprising

that both Sweep and Compact terms - which are so popular when describing GC in

literature - are taking such a small part of the book. This is because all heavy calculations

were already done in Plan phase!

660

 Small Object Heap
In case of Sweep of Small Object Heap, the following steps are taken (see Figure 10-1):

• Create free-list items from gaps - from each gap, bigger than two

minimal objects, a new free-list item is created and incorporated into

a free list (as described in Chapter 6). Smaller gaps are just treated as

unused free space (but counted into fragmentation statistics).

• Recover saved pre and post plugs - all “destroyed” objects are

recovered by writing back pre and post plugs.

• Additional tallying work is done to update the finalization queue

(to reflect new generations boundaries) and to age (or rejuvenate)

survived handles of appropriate type.

• Rearrange segments accordingly, for example, by removing those

no longer needed (or storing them in a reusable list in case of VM

hoarding).

H M
T H M
T H M
TH M
T

pluggap plug pinned pluggap gap

24 -2
4

0
| 0 56 -8
0

-8
0

| 0

56 -1
60

0
| 0

plug

H M
TH M
T

24 0

-4
8

| 5
6

saved_pre_plug

24242244 00000 HHH

-4
8

| 5
6

-4
8

| 5
6

4488
 |

56
-44

88
|55

66
48

56

0x
10

30

0x
10

48

0x
10

60

0x
10

98

0x
10

E
0

0x
11

18

0x
10

C
8

H M
T

u
n

d
o

M
T

M
TH M
T

free
(unused) free space free space

H M
TH M
T

u
n

d
o

5
6

5
6

Figure 10-1. Example of Sweep results in Small Object Heap (based on the
information from Plan phase)

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

661

if you would like to make your own investigations about Soh Sweep from CoreClr
code, start from the gc_heap::plan_phase method. in the part enclosed by else
block of should_compact conditional check, the two most important methods
are called: gc_heap::make_free_lists creates free-list items from gaps and
gc_heap::recover_saved_pinned_info recovers objects destroyed by pre
and post plugs.

 Large Object Heap
In case of a Sweep of Large Object Heap, there is no Plan phase involved at all. Sweeping

is implemented by scanning object by object (like in SOH Plan phase) and simply

creating free-list items between marked objects. Additionally, any no-longer needed

LOH segments are deleted (unless VM hoarding is enabled in which case they will be

remembered is segment reusage list).

Such simple implementation of LOH Sweep is easy and efficient. It leads only to

one disadvantage - fragmentation. Typically, it should not be a big deal. Allocated large

objects sizes distribution most probably is quite natural - there are some common

sizes and some variations around it. In such case, statistically reusage of free-list items

should be good. However, if that’s not the case, users can consider asking for LOH to be

compacted

 Compact Phase
If the GC does decide to compact (or it has been told explicitly to do so), it proceeds with

the Compact phase. As mentioned earlier, it means consumption of the information

gathered during Plan phase. Compaction phase in general consist of two main phases -

moving (copying) objects and updating all references to moved objects wherever they

occur. This makes the compact phase significantly more complex compared to Sweep

phase. Detailed descriptions for both Small and Large Object Heaps are presented here

although they are in principle similar to each other.

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

662

 Small Object Heap
Compacting of Small Object Heap must be extremely efficient. By default, there are many

gaps and plugs interleaved that may span gigabytes of data. Moving all that memory

around while keeping all addresses valid is not a trivial task from the performance point

of view. Let’s dig into proper implementation details.

if you would like to make your own investigations about Soh compaction from
CoreClr code, take a look at relocate_phase (which updates addresses to
moved objects) and compact_phase (which recursively traverses plug tree brick
by brick by calling compact_plug and compact_in_brick methods).

Having information from Plan phase, Compact is a process consisting of the steps

described in the following sections.

 Getting a New Ephemeral Segment if Necessary

This step is executed if the planning phase has shown a need of expanding the

ephemeral segment (there would be not enough space for generations 0 and/or 1 after

compaction). This is done either by expanding the current ephemeral segment, by

reusing the other one (as described in Chapter 7), or by creating a new one.

 Relocate References

This step updates all occurrences of addresses of objects that will be moved later on.

Thanks to the data gathered during Plan phase, this is possible before actually moving

those objects. Obviously, it requires quite a lot of work because there may be a lot of such

references scattered throughout the managed heap. Relocation makes a heavy usage of

bricks and plug trees to fast translate current address into a new one. During this step,

various memory areas are scanned for addresses to be updated. These include:

• references on the stack - all addresses on the stack are updated by

runtime support to scan all managed threads stack frames finding all

references to managed objects.

• references inside objects stored in cross-generational remembered set -

in case of non-Full GC, all cross-generational references stored through

cards (see Chapter 5) must be updated to reflect new addresses (those

include both SOH and LOH cross-generational references).

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

663

• references inside objects on Small and Large Object Heap - survived

objects that contain references to other objects must have their

references updated. In case of SOH, bricks and plug trees are used to

find survived objects fast (as we know they are grouped into plugs).

For full GC, in case of LOH, most typically there are only survived

objects at this stage because LOH sweeping is done before SOH

compaction. This allows us to scan survived LOH objects one by one

quite efficiently without bricks support.

• references inside pre and post plugs - as we know, the ending part

of some objects may have been damaged due to overwriting by plug

info. Its original memory content is being stored inside pinned plug

queue entries. If it contains references, they have to be updated also.

• references inside objects from ready to finalization queue - addresses

of objects staying in such queue (see Chapter 12) need to be updated.

• references from handle tables - handles need to update their

pointers.

The more reference rich your objects are, the more work you put on GC at this stage.

This may not be a problem in typical applications. However, in the case of very complex

data structures used on the hot performance path, it is worth considering the avoidance

of direct object references.

if you would like to investigate CoreClr code of the relocation phase, start from
gc_heap::relocate_phase method. the most important method used by it
internally is a gc_heap::relocate_address method that utilizes bricks and
a plug tree to translate address to a new relocated value. it is used among others
by GCScan::GcScanRoots, gc_heap::relocate_in_large_objects and
gc_heap::relocate_survivors’ methods.

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

664

 Compact Objects

After all required references have been updated in the previous step, it high time the GC

moved all survived objects eventually. It consists of the following steps (see Figure 10-2):

• copying objects - it is done plug by plug using their calculated

relocation offsets,

• restoring pre and post plug info - damaged parts of the objects are

being restored from the copy stored in pinned plug queue entries.

H M
T H M
T H M
TH M
T

pluggap plug pinned pluggap gap

24 -2
4

0
| 0 56 -8
0

-8
0

| 0

56 -1
60

0
| 0

plug

H M
TH M
T

24 0

-4
8

| 5
6

saved_pre_plug

242244224442244 0000000 HHHH

-4
8

| 5
6

-4
8

| 5
6

|
-44

888
| 55

66
44888

|55
66

488
566

0x
10

30

0x
10

48

0x
10

60

0x
10

98

0x
10

E
0

0x
11

18

0x
10

C
8

H M
T H M
T H M
TH M
T

len = 56

Figure 10-2. Compacting objects in Small Object Heap by using information
calculated during Plan phase

Although the description of this step is quite short and simple, it is worth realizing

how much heavy work may be done here. In case of the full GC, copying all plugs

throughout all Managed Heap may introduce quite significant memory traffic. This is in

fact the place where the most of the time during compacting GC is spent.

One may wonder how object copying is implemented. Because they are copied one

by one in-place as grouped, theoretically quite long plugs, how do they not overwrite

each other? (including themselves, see Figure 10-3).

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

665

The obvious solution immediately comes to mind - to use some intermediate buffer

(see Figure 10-4). However, this would double the memory traffic - now every object

would have to be copied twice. Such a solution is obviously unacceptable.

H M
T

?

Figure 10-3. Theoretical problem of copying objects - by copying in-place they
may overwrite themselves

H M
T

H M
TTTTHH TTTTHHH TTTTHHH MMMMHH MMMMMMM H M
TTTTHH TTTTHHH TTTTHHH MMMMHH MMMMMMMH M
T

H M
TTTTHH TTTTHHH TTTTHHH MMMMHH MMMMMMM

Figure 10-4. Possible solution to the problem of copying objects - using a
temporary buffer

After a deeper reflection, however, we will come to the conclusion that there is

really no problem here. We treat objects unnecessarily as consistent Lego bricks, which

must be copied in their entirety. However, these are only continuous areas of memory

that can be copied in smaller pieces. That’s exactly the approach chosen by CLR. The

point of sliding compaction is you always copy earlier addresses first, and you copy in

a small enough quantity that naturally makes overlapping impossible (in .NET, as the

smallest relocation address is at least one pointer size apart). Thus, object copying is

realized by memcopy function that copy memory in groups of four pointer-sized regions

at a time, then copying remaining space in two or single pointer-sized regions (see

Listing 10-1).

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

666

Listing 10-1. Main part of memcopy method used during object copying

void memcopy (uint8_t* dmem, uint8_t* smem, size_t size)

{

 const size_t sz4ptr = sizeof(PTR_PTR)*4;

 // ...

 // copy in groups of four pointer sized things at a time

 if (size >= sz4ptr)

 {

 do

 {

 ((PTR_PTR)dmem)[0] = ((PTR_PTR)smem)[0];

 ((PTR_PTR)dmem)[1] = ((PTR_PTR)smem)[1];

 ((PTR_PTR)dmem)[2] = ((PTR_PTR)smem)[2];

 ((PTR_PTR)dmem)[3] = ((PTR_PTR)smem)[3];

 dmem += sz4ptr;

 smem += sz4ptr;

 }

 while ((size -= sz4ptr) >= sz4ptr);

 }

 // copy remaining 16 and/or 8 bytes

}

Memory copying lines from Listing 10-1 will be compiled into several mov assembly

instructions making those operations extremely efficient.

if you would like to investigate CoreClr code of compaction phase, start from the
gc_heap::compact_phase method. its main job is to call for each active brick
gc_heap::compact_in_brick that underneath calls gc_heap::compact_
plug method.

 Fix Generation Boundaries

Called after the compact phase to fix all generation boundaries, these steps reset internal

allocation pointers, creates free space for planned allocation context, and do other

additional necessary corrections.

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

667

 Delete/Decommit Segments if Necessary

Rearrange segments accordingly, for example by removing those no longer needed (or

storing them reusable list in case of VM hording).

 Creating Free-List Items

Before each pinned plug, a new free object is created and added to the free list if it is big

enough (as we may remember, its length has been calculated and saved during Plan

phase in pinned plug queue entry) - see Figure 10-5.

H M
T H M
T H M
TH M
T

u
n

d
o

M
T

free space
56

Figure 10-5. Creating the appropriate free items before pinned plugs
(continuation of Figure 10-2)

Age roots

Additional aging are made to update the finalization queue (to reflect new generations

boundaries) and to age (or rejuvenate) survived handles of the appropriate type.

 Large Object Heap
Compacting Large Object Heap is based on a similar technique like in case of Small

Object Heap. However, due to the lack of generations, complex plugs, bricks and plug

tree, its implementation is much simpler.

If enabled, LOH compacting is executed before SOH compacting. It consists of a

single loop scanning LOH for marked objects and copying them to the destination one

by one (using relocation offset calculated during LOH planning phase). Additionally, for

pinned objects, a corresponding free space will be created before them (see Figure 10-6)

and threaded into a free list. Padding between objects will obviously remain because it

may be needed in the next GC runs.

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

668

 Scenario 10-1. Large Object Heap Fragmentation
Description: During our application development, we have noticed that its memory

usage is noticeable higher that we would expect. The application consists in processing

large data packages and producing resulting data packages from them - let’s say it is a

batch processing of images. The extract of its processing code is presented in Listing 10-2.

Notice comments describing sizes of the processed data. Both input and output frames

are allocated in LOH because they are bigger than 85,000 bytes. The data we want to store

is 100 kilobytes (largeBlocks), so they are also created in LOH.

Listing 10-2. An example code that illustrates LOH fragmentation

void Main()

{

// ...

List<byte[]> largeBlocks = new List<byte[]>();

while (someCondition)

{

 // ...

 var frame = reader.ReadBytes(size); // input frame is always bigger

than 85,000 bytes

 var output = processor.Process(frame); // output is slightly bigger

than input frame

H M
TH M
T H M
T H M
T H M
T H M
T8 8 8

padding
len = 56

H M
T H M
T8 0-8
0

-8
0

H M
T H M
T H M
T8 H M
T H M
T8 0H M
T 8

u
n

d
o

M
T

56

free space

Figure 10-6. Compacting objects in Large Object Heap by using information
calculated during Plan phase

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

669

 var largeBlock = new byte[102_400];

 // store some data from output in smallBlock

 largeBlocks.Add(largeBlock);

}

// ...

}

Please do not be fooled that it is only a contrived example that will never happen.

Obviously, you will most probably not write such naïve code as in Listing 10-2. But

processing a batch of data that produces some intermediate results that we need to

store - that sound much more practical. Using arrays (especially byte arrays) is also

not unjustified. It is really hard to introduce LOH fragmentation problems without

using arrays and strings because those are the most common types that land in Large

Object Heap. It is really hard to create a normal object with so many fields that it will

be allocated in LOH. Thus, such code as in this scenario quite realistically reflects the

essence of the real source of problems that you may encounter in the real world.

Analysis: Let’s assume that from some preliminary analysis, we already checked that

indeed LOH is bigger than expected (see Table 10-1). We may have done that by using

Performance Counters or ETW-based data.

Table 10-1. Expected versus Observed Size of Large Object Heap

objects Expected [MB] Observed [MB]

1,000 102,400,000 152,769,104

2,000 204,800,000 324,972,048

3,000 307,200,000 463,287,752

4,000 409,600,000 686,795,056

By recording the ETW-based session in PerfView (with standard GC Collect Only

option), we can quickly spot that the reason is LOH fragmentation (see Figure 10-7). As

LOH Frag % column states, the fragmentation is around 48%. A lot of space is wasted!

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

670

Obviously, as always, we can simply analyze our code to find what and when we

are allocating LOH objects. Is there any way we could help ourselves? As very often,

PerfView to the rescue! LOH fragmentation comes from the dead objects - they are

making up fragmentation. Therefore, it would be best to check what objects most

often die in Large Object Heap. In the case of such noticeable fragmentation, it is likely

that they will be the source of the problem. Fortunately, PerfView can provide us such

statistics if we record the ETW session with .NET option enabled (and not GC Collect

Only or GC Only). After such recording has ended, we should be able to open Gen 2

Object Deaths (Coarse Sampling) Stacks from Memory Group (see Figure 10-8). Besides

its name, this analysis includes also LOH objects. As we can see, a lot of System.Byte[]

arrays are dying. This may be helpful by itself (if this identifies unambiguously source of

such allocations). But we may go further.

Figure 10-7. GC Events by Time table from Perf View’s GCStats report for the
process under investigation

Figure 10-8. Gen 2 Object Deaths (Coarse Sampling) - By Name view from
PerfView showing objects dying in Gen2+

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

671

After selecting for type System.Byte[] an option Goto Item in Callers from Goto

group in the context menu, we will see allocations stack traces of such dying objects (see

Figure 10-9). This is now really useful information!

remember that this is sampling information based on an etw
GCAllocationTick event. however, it is enough for loh objects, because such
an event is generated for each 100k of allocations. in loh, 100k of memory can’t
contain two whole objects as they are at least 85,000 bytes big by definition. in
case of analyzing fragmentation in Soh, you can get less coarse results by using
.net alloc or .net Sampalloc when configuring perfView’s collection.

Figure 10-9. Gen 2 Object Deaths (Coarse Sampling) - Callers view from PerfView
showing methods that allocate System.Byte[]

We clearly see from the Callers view that there are two sources of dying byte[]

allocations. However, Reader.ReadBytes() method allocates only a single dying array.

On the other hand, Processor.Process allocates thousands of them.

In many applications, of course, there may be many different types of “often dying”

objects. Generally, it is good to search for the cause of the problem from the top of the

list of such objects. Thus, in our case, we should look suspiciously at Processor.Process

method allocating so many dying byte arrays.

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

672

Another way of diagnosing this problem is to use WinDbg and SOS extension,

whether by analyzing the memory dump or attaching to the process. By using !heapstat

command, we get an overview of the entire Managed Heap (see Listing 10-3). We indeed

see big fragmentation of LOH (of 22%). There are also many, not-yet collected but

already unreachable objects (of 25%). Altogether it gives an expected fragmentation of

47%, which confirms our previous findings.

Listing 10-3. Analyzing fragmentation - !heapstat command to get the Managed

Heap overview

> !heapstat -inclUnrooted

Heap Gen0 Gen1 Gen2 LOH

Heap0 1579192 96024 24 1907001192

Free space: Percentage

Heap0 7816 11160 0 434527752SOH: 1% LOH: 22%

Unrooted objects: Percentage

Heap0 1567816 65560 0 488427824SOH: 97% LOH: 25%

However, we can use the knowledge of how the memory in Large Object Heap is

organized and allocated. By using !eeheap command, we get a list of all LOH segments

(see Listing 10-4). As memory grows, there are many LOH segments, as expected (as

Table 5-3 states, they are 128MB big because our process runs on 64-bit runtime with

Workstation GC). We know that typically segments are created one by one when the

memory in the current one ends. And we know that Allocator allocates memory inside

segments linearly. Thus, simplifing a little, the higher the address, the newest data it

contains.

Listing 10-4. Analyzing fragmentation - !eeheap command to list LOH segments

> !eeheap -gc

Number of GC Heaps: 1

generation 0 starts at 0x0000013acb3c8730

generation 1 starts at 0x0000013acb3b1018

generation 2 starts at 0x0000013acb3b1000

ephemeral segment allocation context: none

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

https://doi.org/10.1007/978-1-4842-4027-4_10#Tab3

673

 segment begin allocated size

0000013acb3b0000 0000013acb3b1000 0000013acb549fe8 0x198fe8(1675240)

Large object heap starts at 0x0000013adb3b1000

 segment begin allocated size

0000013adb3b0000 0000013adb3b1000 0000013ae33af528 0x7ffe528(134210856)

0000013ae4a60000 0000013ae4a61000 0000013aeca5fdb0 0x7ffedb0(134213040)

0000013aed130000 0000013aed131000 0000013af512f300 0x7ffe300(134210304)

0000013af5130000 0000013af5131000 0000013afd11c870 0x7feb870(134133872)

0000013a80000000 0000013a80001000 0000013a87fecf10 0x7febf10(134135568)

0000013a8a890000 0000013a8a891000 0000013a9287d0d0 0x7fec0d0(134136016)

0000013a92890000 0000013a92891000 0000013a9a8811c8 0x7ff01c8(134152648)

0000013a9a890000 0000013a9a891000 0000013aa28881a0 0x7ff71a0(134181280)

0000013aa2890000 0000013aa2891000 0000013aaa879090 0x7fe8090(134119568)

0000013aaa890000 0000013aaa891000 0000013ab287d060 0x7fec060(134135904)

0000013ab2890000 0000013ab2891000 0000013aba87bb20 0x7feab20(134130464)

0000013aba890000 0000013aba891000 0000013ac2880680 0x7fef680(134149760)

0000013afd130000 0000013afd131000 0000013b05117f28 0x7fe6f28(134115112)

0000013b05130000 0000013b05131000 0000013b0d118458 0x7fe7458(134116440)

0000013b0d130000 0000013b0d131000 0000013b0ecb6fc8 0x1b85fc8(28860360)

Total Size: Size: 0x71c41750 (1908676432) bytes.

GC Heap Size: Size: 0x71c41750 (1908676432) bytes.

By dumping content of the oldest one segment (first one from Listing 10-4), we will

get an insight how old fragmentation looks (see Listing 10-5). Fragmentation is clearly

visible indeed - free memory areas of 78,974 bytes are interleaved with 102,424 bytes long

objects. We can easily identify them by using !gcroot command (see also Listing 10-5).

For example, the only root of the last object (byte array) is the local variable of type

List<byte[]> in the Main method, that is - largeBlocks. This is how typical

fragmentation looks - a large number of live objects (mostly arrays) interleaved with free

blocks of memory.

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

674

Listing 10-5. Analyzing fragmentation - !dumpheap command to list object

in the first LOH segment (the result trimmed to the last few lines) and !gcroot

command to identify roots of sample object

> !dumpheap 0000013adb3b1000 0000013ae33af528

...

0000013ae22b4cd8 00007fff857ebe10 102424

0000013ae22cdcf0 0000013ac914e200 78974 Free

0000013ae22e1170 00007fff857ebe10 102424

0000013ae22fa188 0000013ac914e200 30 Free

0000013ae22fa1a8 00007fff857ebe10 102424

0000013ae23131c0 0000013ac914e200 78974 Free

0000013ae2326640 00007fff857ebe10 102424

0000013ae233f658 0000013ac914e200 30 Free

0000013ae233f678 00007fff857ebe10 102424

0000013ae2358690 0000013ac914e200 78974 Free

0000013ae236bb10 00007fff857ebe10 102424

0000013ae2384b28 0000013ac914e200 30 Free

0000013ae2384b48 00007fff857ebe10 102424

0000013ae239db60 0000013ac914e200 78974 Free

0000013ae23b0fe0 00007fff857ebe10 102424

0000013ae23c9ff8 0000013ac914e200 30 Free

0000013ae23ca018 00007fff857ebe10 102424

> !gcroot 0000013ae23ca018

Thread 811c:

 000000233e9feeb0 00007fff28fc0645 CoreCLR.LOHFragmentation.Program.

Main(System.String[])

 rbp-80: 000000233e9fef20

 -> 0000013acb3b68d0 System.Collections.Generic.List`1

[[System.Byte[], mscorlib]]

 -> 0000013abaf50a68 System.Byte[][]

 -> 0000013ae23ca018 System.Byte[]

Found 1 unique roots (run '!GCRoot -all' to see all roots).

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

675

However, knowing that there are holes between still living objects is not very

revealing. The real question is, after what object those holes were created! We can

search for answers in the latest, just-allocated data. By dumping content of the newest

one segment (the last one from Listing 10-4), we will get an insight how the newest

fragmentation looks (see Listing 10-6). If we are lucky enough, there should be still some

objects instead of future free items. And this is so. The newest LOH region contains small

free items for padding (described earlier), 102,424byte-long objects we have seen already

but there are also still some objects between them!

Listing 10-6. Analyzing fragmentation - !dumpheap command to list object in

the last LOH segment (the result trimmed to the last few lines)

> !dumpheap 0000013b0d131000 0000013b0ecb6fc8

0000013b0ec0b4b0 0000013ac914e200 30 Free

0000013b0ec0b4d0 00007fff857ebe10 99634

0000013b0ec23a08 0000013ac914e200 30 Free

0000013b0ec23a28 00007fff857ebe10 102424

0000013b0ec3ca40 0000013ac914e200 30 Free

0000013b0ec3ca60 00007fff857ebe10 99627

0000013b0ec54f90 0000013ac914e200 30 Free

0000013b0ec54fb0 00007fff857ebe10 99635

0000013b0ec6d4e8 0000013ac914e200 30 Free

0000013b0ec6d508 00007fff857ebe10 102424

0000013b0ec86520 0000013ac914e200 30 Free

0000013b0ec86540 00007fff857ebe10 99628

0000013b0ec9ea70 0000013ac914e200 30 Free

0000013b0ec9ea90 00007fff857ebe10 99636

By analyzing roots of those objects, we will identify the root cause of fragmentation

(see Listing 10-7). Clearly, those are the byte arrays from inside DataFrame class created

in Program.Main and Processor.Process methods.

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

676

Listing 10-7. Analyzing fragmentation - !gcroot commands to identify roots of

objects causing fragmentation

0:000> !gcroot 0000013b0ec3ca60

Found 0 unique roots (run '!GCRoot -all' to see all roots).

0:000> !gcroot 0000013b0ec54fb0

Found 0 unique roots (run '!GCRoot -all' to see all roots).

0:000> !gcroot 0000013b0ec86540

Thread 811c:

 000000233e9feeb0 00007fff28fc0645 CoreCLR.LOHFragmentation.Program.

Main(System.String[])

 r15:

 -> 0000013acb549228 CoreCLR.LOHFragmentation.DataFrame

 -> 0000013b0ec86540 System.Byte[]

Found 1 unique roots (run '!GCRoot -all' to see all roots).

0:000> !gcroot 0000013b0ec9ea90

Thread 811c:

 000000233e9fee50 00007fff28fc0aad CoreCLR.LOHFragmentation.Processor.

Process(CoreCLR.LOHFragmentation.DataFrame)

 rbx:

 -> 0000013acb549240 CoreCLR.LOHFragmentation.DataFrame

 -> 0000013b0ec9ea90 System.Byte[]

Found 1 unique roots (run '!GCRoot -all' to see all roots).

This concludes our investigation. The example was simple, because only a few types

are allocated in LOH and because a large objects allocation pattern was prepared to

be so unfortunate (each successive input frame is slightly bigger than previous one). It

produces free-item holes that might be reused very rarely. In such a scenario the newest

objects gather at the end, so we could easily find the place where objects may be still live

before collection.

There will be many more different-sized objects in LOH in complex applications.

Then, the analysis of the origin of objects, which then become unusable holes is much

more tedious. There is no single golden rule of investigation of the fragmentation

problems. In fact, this is the most difficult aspect to analyze from various memory-

related problems. This is due to its temporal characteristic. There are holes, but there is

no easy way to check what was there before. In most cases, those holes are reused thanks

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

677

to a free-list allocator. It makes investigation even more difficult because new objects are

spread over the entire generation 2 or LOH within holes that were reusable. There is no

“here is a hole that was used by X object but is not used anymore for long time”-event

unfortunately. We only have circumstantial evidence, like shown above.

please remember that large object heap contains some arrays used by the Clr
internally. arrays including references for statics, created during assembly loading,
should not be a problem. however, there are also arrays used for string interning
(see Figure 8-1 in Chapter 8 and “String interning” section in Chapter 4). if you
do excessive explicit string interning, creating those tables may also cause loh
fragmentation!

Knowing that LOH fragmentation is a problem, what can we do about it?

Since .NET Framework 4.5.1 (and since .NET Core 1.0), there is a possibility

to explicitly force compacting Large Object Heap. It can be done by setting

GCLargeObjectHeapCompactionMode.CompactOnce to the static GCSettings.

LargeObjectHeapCompactionMode property. It will be done only once, during the first

blocking GC that occurs. Please note - it influences only blocking collections so any

typical non-blocking (background) GC will not take into account this setting. Thus, most

often just after setting this property, explicitly blocking full GC is being triggered explicitly.

So, as a solution to our problem, we may trigger LOH compaction explicitly. We

can do it periodically or only if the memory usage exceeds a certain limit (as in the

example from Listing 10-8). Both solutions are not perfect and should be thoroughly

thought out. They simply introduce all the problems already discussed when

describing explicit GC calls.

Listing 10-8. An example code that illustrates LOH fragmentation

if (GC.GetTotalMemory() > LOH_COMPACTION_THRESHOLD)

{

 GCSettings.LargeObjectHeapCompactionMode =

GCLargeObjectHeapCompactionMode.CompactOnce;

 GC.Collect();

}

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

678

Additionally, nevertheless since compacting LOH is blocking, it is also simply

slow. Pause time scales linearly with the total size of survived objects. Even for small

LOH when only a few hundreds of megabytes survived, it will pause your application

for something between 100 and 200 milliseconds. The larger the size of the surviving

objects, the worse. For the value of several gigabytes, we begin to notice over a second

freeze of our application! The graph for both Workstation and Server GC modes is

presented in Figure 10-10 (remember that exact values may vary depending on your

hardware performance).

Figure 10-10. GC pause times with LOH fragmentation for both Workstation GC
and Server GC with 8 managed heaps (taken on Intel i7- 4770K with 16 GB DDR3-
1600 memory)

Large Object Heap compacting is slightly faster for Server GC because LOH is split

into multiple segments that may be compacted concurrently.

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

679

There may be times when compacting LOH is the only solution to your problem - for

example, when troublesome code is not yours and you cannot do any refactoring toward

better management of LOH objects. If you do own source code, a much better solution

would be to introduce large objects pooling or arrays pooling (refer to section “Creating

Arrays - Use ArrayPool” and “Creating a Lot of Object - Use Object Pool” from Chapter 6).

there are some plans for an undetermined future that loh compaction may
become automatic in some scenarios. the following Github issue comment
explains it well: “For the near future, please assume that loh is still not
automatically compacted except for this one scenario where we will make it
automatic - if you have very little survived on loh compared to gen2 and loh’s
fragmentation ratio is high (eg, say it’s 75% fragmented) and/or loh is full of
objects that contain no references (as the relocation is really the expensive part).”

 Summary
As you can notice, sweeping may be really fast because it requires small memory traffic.

Only some local modifications are required to create free items and restore memory

after plug information. On the other hand, compaction is quite complex and may induce

quite big memory traffic. It is responsibility of the Plan phase described earlier to choose

between them.

This chapter concludes the great amount of knowledge concerning the heart of

the memory management in .NET that has been presented - the Garbage Collector

itself - presented from Chapters 7 to 10. Everything before those chapters was only an

introduction. And everything further is an extension.

To summarize those chapters, they are explained step by step, and all major phases

of the GC were thoroughly described:

• mechanisms that triggers garbage collection (Chapter 7),

• how entire runtime cooperates to proceed with the GC suspension,

that is - stopping all managed threads (Chapter 7),

• how GC selects which generation should be collected (Chapter 7),

• how GC discovers reachable objects, thanks to marking from various

roots (Chapter 8),

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

680

• how GC plans both Compact and Sweep collection at the same time

and then decides which one is more productive (Chapter 9),

• how compaction and sweeping is executed (this chapter).

Many of those points were interleaved both with theoretical knowledge (how and

why it works) and with practical scenarios (how to utilize that knowledge for problem

analysis and code development). From now on, if reading all chapters one by one, you

should have a really solid foundation about what the GC in .NET really is. Practical

scenarios mentioned allows you to investigate common problems and avoid making

common mistakes.

Because knowledge from those chapters is tightly coupled, all Rules related to it are

gathered and presented here, at the end of Chapter 10.

However, that’s not all. GC has still a lot of various nooks to discover. From now on,

the book will become even more and more practical. Of course, there is still something to

describe about the operation of internal mechanisms - different modes of GC (Chapter 11)

and finalization (Chapter 12). I invite you to continue the journey!

Note please note that the entire chapter devoted to garbage collection does
not mention the IDisposable interface in one place. Sometimes inexperienced
programmers seem to be somehow connecting it with the garbage collection
mechanism. they tend to think that IDisposable somehow “triggers” collection
of an object. this is obviously not true. IDisposable is only an interface, a
contract between an object and a developer, saying that its instance’s lifetime
should be carefully tracked and needs some additional actions when they are no
longer needed. in order not to deepen this misunderstanding and not too much
clutter in this chapter, the description of IDisposable mechanism was placed in
Chapter 10.

 Rule 17 - Watch Runtime Suspensions
Applicability: General but rare.

Justification: Runtime suspension is a service that the GC uses to suspend all managed

threads in order to make a safe ground for the GC to work. In other words, during a non-

concurrent GC, user threads should not modify and access memory that is manipulated

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

681

by the GC. This process has to be very optimized. Care was taken as much as possible

that the process of stopping (and resuming) the threads was as fast as possible. And it

really is - it takes fractions of milliseconds to suspend all threads! In rare cases when

suspension takes long, something is wrong and should be investigated if it happens

consistently.

How to apply: First of all, we can measure EE suspension times in our application. The

most convenient mechanism supporting it is ETW events. The easiest way to analyze

them is to look at GC suspension times from GC Events by the Timetable in PerfView’s

GCStat report. Everything near one millisecond and above would be starting to be an

interesting fact.

In such an alarming case, we can investigate it by thoughtful debugging or CPU

sampling during the suspension period - we may notice that our code is disturbing in

giving the control to the runtime (by executing high-priority threads or executing very

long IO operations synchronously).

Related scenarios: Scenario 7-4.

 Rule 18 - Avoid Mid-Life Crisis
Applicability: General and very popular.

Justification: Generational hypotheses underlie the .NET GC construction that make

the assumption that objects either die young or live for a very long time. We already

should be fully aware why collecting ephemeral generations introduces much less

overhead than collecting the older ones. Mid-life crisis is a failure to comply with the

generational hypotheses in our application - many objects are living long enough to

be promoted to generation 2 just to die there quickly. This is exactly what generation 2

was not designed for!

How to apply: We know that there are many allocations and that many of them are

eventually promoted to generation 2, where they die. Thus, you should be more aware of

your object’s lifetime. Creating a bunch of temporary data and storing them for too long

is a straightforward way to create Mid-life crisis. However, it is often really hard to reason

about the lifetime of objects we create in complex applications. Thus, the common way

of applying this Rule is the reactive approach - after measuring our application, only

after we notice that there is high % Time in GC. Then the diagnostics come in and we

start investigation.

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

682

We should watch then:

• What is the content of the older generation - by using any dump

analysis tool of your preference,

• What is dying in the older generation - for example, by using gen 2

Object Deaths view from PerfView session analysis (see scenario 10-1),

• What are the most common allocations - because Mid-life crisis

requires a lot of objects being created and eventually promoted to the

oldest generation (see scenario 6-2),

• What are the reasons for condemning the oldest generation (see

scenario 7-5).

Related scenarios: Scenarios 5-1, 6-2, 7-5, 10-1.

 Rule 19 - Avoid Old Generation and LOH Fragmentation
Applicability: General and very popular.

Justification: Fragmentation, as long as it is used, is not bad at all - allocator

reuses created free space for new objects. Fragmentation may be bad, however, if

left uncontrolled - if we observe that even GCs of given generation were done, the

resulting fragmentation does not drop. The program’s memory usage can grow in an

unpredictable way, even though we actually use a small number of objects. In Small

Object Heap, big fragmentation implies more common, but also more expensive,

compacting GCs. In Large Object Heap, fighting with fragmentation is even harder. We

need to call for it explicitly, and we may be sure that it will take noticeable time.

How to apply: SOH fragmentation is typically not so painful if it happens only in

ephemeral generations. Their compaction is really fast, so we should not be worried about

that. More problematic is the fragmentation of generation 2, for at least two reasons:

• Compacting generation 2 is much more costly than ephemeral

generations because it typically spans to many segments. This

requires a lot bigger memory traffic.

• Fragmentation of gen2 segments may lead to creating more

segments. And more segments mean more expensive garbage

collection of them.

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

683

For similar reasons, we should also take care of Large Object Heap fragmentation.

But the main problem there is that LOH is not automatically compacted at all. It exposes

LOH to fragmentation problems much more.

For sure, we should observe fragmentation ratios in our applications - for example,

by utilizing ETW/LTTng sessions. But knowing that big fragmentation occurs is just

the first step. Then we should consider whether it is actually problematic for us - does

it cause a large GC overhead or worrying memory usage? If yes, the hardest step takes

place - diagnostics of sources of fragmentation. There is no single Golden Rule of

Fragmentation Diagnostic. Most common approaches were presented in scenario 10-1.

There isn’t a common solution to fragmentation. Commonly its impact may be

reduced by pooling the source of fragmentation – namely, various types of arrays.

Related scenarios: Scenario 10-1.

 Rule 20 - Avoid Explicit GC
Applicability: General and very popular.

Justification: Explicit Garbage Collection calls are disturbing its work. Regardless of the

internal tunings that GC uses, we suddenly make him forget about them and make GC

happen at that specific moment. Although there are a few scenarios that calling it may be

justified, most often - it is not.

How to apply: Learn about the GC - why, how and when it works (for example, by

reading this book!). Then you will understand that very, very often, calling GC explicitly

is not the right solution to the problem you experienced. You should think twice or

three times before each usage of the GC explicit call in your code. There are really few

situations that justify that (listed in “Explicit Trigger” section in Chapter 7).

Related scenarios: Scenario 7-3.

 Rule 21 - Avoid Memory Leaks
Applicability: General and very popular.

Justification: This is easy. Memory leaks are bad. Period. They make our programs

unusable or so slow over time that we have to restart them. In the worst case, they simply

crash. I believe that no one needs to be convinced that memory leak is undesirable.

Still, there may be those small and unavoidable memory leaks that are just fine - if the

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

684

memory growth is so small that it does not hurt us in a practical sense. As in if we have

to restart the application process once every few days to deploy a new build, and we

know we have memory leaks but they account for such small amounts of memory - we

probably should spend effort investigating worse performance problems. Most often

such “accepted” memory leaks come from third-party code that we simply cannot fix.

How to apply: In .NET world a memory leak means an uncontrolled memory growth

due to the growth of the number of reachable objects. Simply put, something holds a

reference to leaking objects, even though we expect those objects are no longer in use

and should have died a long time ago.

This is one of the most common problems. There are various types of such “hidden”

roots: static variables, events, misconfigured IoC containers, and so on, and so forth.

In this book a few examples of memory leak diagnostics were presented in the form

of scenarios. They do not provide any technology-specific leaks (like some memory leaks

we may encounter in WCF or WPF). No matter what .NET technologies we use now and

will use in the coming years, the GC changes much slower - ds well as such essential

tools like WinDbg, SOS, and PerfView. If you have a memory leak problem, investigate it

with the knowledge gained in this book!

Related scenarios: Scenarios 5-2, 8-1, 8-2, 9-1, and from 1-1 to 1-5 (to distinguish a

managed leak from an unmanaged one).

 Rule 22 - Avoid Pinning
Applicability: General - moderately popular. High-performance code - important.

Justification: Pinning is bad because it may cause fragmentation (see Rule 21). It is also

a certain overhead for GC itself - it complicates the operation of the internal allocator.

As mentioned in Chapter 9, pinning can either be short lived or long lived - it’s

the middle ones that cause trouble. In the most commonly used concurrent GC,

if a pinned object is in generation 2, it will just be irrelevant most of the time, not

causing fragmentation, as most of the time gen2 collections are Background GCs (not

compacting and thus ignoring the fact of pinning). Short-living pinned objects also will

not have a chance to introduce big fragmentation before dying in generation 0.

Thus, the most problematic are those pinned objects that live enough to be

promoted to older generations, causing various unwanted side effects like limiting the

freedom of generation planning and necessity of segments reorganization (if ephemeral

segment has so many pinned elements that it becomes barely usable).

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

685

How to apply: In general, the best rule is just to avoid pinning but obviously sometimes

we just need it. In such a case, it is good to remember the fact that the middle-life

pinning makes the most trouble. Thus, when using pinning, it is best to:

• Pin for a short period of time, like using fixed keyword within a very

small amount of code. As described in Chapter 8, it only influences

GCInfo of a method, making it a special root during GC. So, if GC

does not happen during method execution, fixed keyword will have

no overhead at all.

• Create pinned buffers that will live long. This has an advantage both

of prolonging the lifetime of such reusable pinned objects (thus,

making them life in gen2 where their overhead is smaller) and by

better locality (making them stay together instead being scattered

around the Managed Heap).

As well as observing fragmentation, you should also observe the amount of pinning.

It is not that we should get rid of it as soon as we notice it. In a typical application, as long

as it does not cause much fragmentation, we have nothing to worry about. On the other

hand, in high-performance programs where every millisecond counts, we may want to

be fully aware of each pinned object. Your millage may vary here.

Related scenarios: Scenario 9-2.

Chapter 10 GarbaGe ColleCtion - Sweep and CompaCt

687
© Konrad Kokosa 2018
K. Kokosa, Pro .NET Memory Management, https://doi.org/10.1007/978-1-4842-4027-4_11

CHAPTER 11

GC Flavors
The previous four chapters contain a very detailed description of the Garbage Collector

in .NET - in the vast majority in its simplest variant. In this chapter, however, we will

look at all GC varieties. In addition to the standard knowledge of how and why they are

designed, we will consider their pros and cons. We will look at both the GC operating

modes and the latency settings.

In terms of the different GC flavors available in .NET, the most common question

that arises is - which one to choose? Therefore, after learning how they differ, we will try

to answer this important question in this chapter. Additionally, the scenarios contained

in this chapter may be interesting in this context - they examine the impact of the

selected mode on the performance and behavior of the application.

 Modes Overview
A short summary of various modes that .NET GC may operate on has been already

provided at the beginning of Chapter 7, in the section “High-Level View.” It was

necessary to give an overall context of the GC version described there. Let’s now take a

little, deeper insight into those modes, how they differ, and why.

 Workstation vs. Server Mode
The first dividing line is the division into Workstation and Server modes. It has existed

since the very beginning of the .NET runtime. The names of both modes come from the

typical applications for which they were intended. But let’s not take these names dead

seriously. Although they represent the typical usage, it may be perfectly fine to use Server

mode in your desktop application or Workstation mode in your web application - it all

688

depends on your current needs. It is better to treat Workstation and Server modes as

some two, noticeably different sets of GC configurations. However, this does not change

the fact that the names of these modes came from the settings adapted for these two

main environments.

 Workstation Mode

Workstation mode was designed mostly for responsiveness needed in interactive,

UI- based applications. Interactivity implies as noticeable pauses in the application as

short as possible. We do not want to stall the UI because a long GC was triggered. Longer

pauses could impact the smoothness and responsiveness of all actions in general.

Therefore:

• GCs will happen more frequently - but thanks to that, they will have

less work to do (fewer objects have been created so less can become

garbage).

• As a side effect of the above, memory usage will be lower - more often

GCs mean memory is reclaimed more aggressively, and there is no

large amount of “hanging” garbage.

• There is a single Managed Heap - because desktop applications

generally perform one main action related to user actions, there is

no need for a special parallelization of their work. Moreover, this

mode assumes that many applications are running on the computer.

Each of them utilizes some of the CPU cores and memory. Therefore,

it is not necessary or especially desirable to multiply GC threads

that process several heaps simultaneously. From the beginning,

Workstation mode was designed to have one Managed Heap

processed by one thread at a time.

• Segments are smaller - to operate on smaller areas of memory.

Please note that although most interactive applications can actually be satisfied

with such decisions, this does not necessarily apply to everyone. We can have a desktop

application that fits perfectly into, for example, parallel processing in the background.

Chapter 11 GC Flavors

689

 Server Mode

Server mode was designed for simultaneous, request-based processing applications.

It implies that big throughput is desirable - processing as much data in a unit of time

as possible. Assuming that the requests are processed relatively shortly, sporadic

application stalls will not affect them significantly because statistically GC will happen

during processig of at most several requests. Therefore:

• GCs will happen less frequently - but it may mean longer pauses

because more objects have been created between GCs.1 This,

however, allows us to improve throughput because we can process in

parallel multiple requests during longer no-pause times.

• As a side effect of the above, memory usage will be higher - less often

GCs mean more “hanging” garbage will be gathering between them.

It implies bigger Working Set than in case of Workstation mode.

However, generally understood “servers” are assumed to be equipped

with a large amount of memory so it is not such a big problem.

• There are multiple Managed Heaps - this ensures scalability relative

to the machine’s power. If the GC already happens, we want to do it

as fast as possible. Parallel processing of many heaps is faster than

of a single, large heap.2 What’s more, server applications are often

hosted on dedicated servers so they can quite freely consume all the

cores available to them.

• Default segment sizes are larger, especially on 64-bit systems - so if

necessary, many more allocations can be accommodated before a

GC is triggered.

• Taking the above into consideration, it’s often that the Server mode

would consume more memory but give you a smaller % time in GC.

1 However, because they are processed by parallel on multiple CPU cores, pauses may be even
shorter than in Workstation.

2 Remember that access to the memory is a bottleneck. Parallel heap processing with four CPU
cores will not be four times faster than processing the same memory size by only one CPU core.
Undoubtedly, however, it will be faster.

Chapter 11 GC Flavors

690

one may wonder how those two various modes are organized in .Net source code
and how much code they have in common. Using CoreClr as an example (while
all .Net sKUs share the same GC, as mentioned in Chapter 4), the vast majority is
implemented in the same .\src\gc\gc.cpp file that contains a lot of portions
managed by #if preprocessor directives. then, this file is compiled twice within
two different namespaces and set of defines - .\src\gc\gcsvr.cpp defines
SERVER_GC constant and SVR namespace:

#define SERVER_GC 1

namespace SVR {

 #include "gcimpl.h"

 #include "gc.cpp"

}

while .\src\gc\gcwks.cpp defines WKS namespace:

namespace WKS {

 #include "gcimpl.h"

 #include "gc.cpp"

}

thus, when seeing various GC-related types or methods, they will come from
either WKS:: or SRV:: namespaces. Definition of SERVER_GC implies a few other
important defines, especially MULTIPLE_HEAPS that many, many regions inside
gc.cpp rely on.

 Non-Concurrent vs. Concurrent Mode
Orthogonally to the mode of operation, the GC can also have two ways of operating

in the context of work relative to the user’s threads. In general, by non-concurrent,

we understand - not happening simultaneously with something else. Concurrent is

obviously the opposite.

Chapter 11 GC Flavors

691

 Non-Concurrent Mode

The non-concurrent GC version has existed since the beginning of .NET, both for

Workstation and Server modes. All managed user threads are suspended during a GC. It

is conceptually really simple - we have to stop all user threads, do GC, and resume user

threads.

 Concurrent Mode

Concurrent GC, as one may expect, runs while normal user threads are working. This

makes it more complex both in terms of concept as well as implementation. There

must by an additional synchronization between user threads and Collector during its

work so both have a coherent vision of reality and do not cause serious problems (like

modifying collected objects or collecting objects that are still live). Such synchronization

is obviously not easy to implement, especially due to the desired high performance of

the whole. We will see how such a technique is implemented in .NET soon.

The concurrent flavor of the GC is differently named in different versions of .NET. We

can summarize it in the following way:

• In case of Workstation GC, the concurrent flavor was available since

.NET 1.0 and was called Concurrent Workstation GC. In .NET 4.0,

after introducing important improvements, it has been renamed to

Background Workstation GC.

• In case of Server GC, the concurrent flavor was not available until

version .NET 4.5. It is called Background Server GC.

In terms of source code organization, again both modes are implemented in
the same .\src\gc\gc.cpp file. Concurrent version is enclosed by #if
BACKGROUND_GC preprocessor directive. BACKGROUND_GC is however always
defined in both SVR and WKS versions. they contain code for both concurrent and
non-concurrent flavors that are enabled or disabled during runtime startup.

Chapter 11 GC Flavors

692

 Modes Configuration
From the previous sections it becomes clear that we have two orthogonal settings with

two possible values each. It gives us four possible modes that GC may operate on. This

is mostly all we can set in terms of the GC. Those used to very fine-grained settings

from JVM world may be surprised. This is of course a design decision made with full

awareness. JVM offers a GC-centric approach - we can configure virtually every aspect

of a GC operation, but we need to understand it very well and be sure about what and

why we change. On the other hand, Microsoft has chosen the application-centric path.

Knowing what type of application that we are writing, we set one of the GC operation

modes and it is the GC who has to deal with the rest. It is responsible for adjusting

properly to the load and the specificity of the provided application mode.

The following sections describe briefly how you may change GC working modes both

in .NET Framework and in the newer .NET Core.

You can also set those modes when hosting Clr inside your own process via
ICLRRuntimeHost interface (including both .Net Framework and .Net Core
runtimes) with proper startup flags. Clr hosting is briefly presented in Chapter 15,
altogether with the mentioned flags. this is exactly what a simple hosting Corerun
application does if you built CoreClr from source code. Corerun uses its own, very
simplified configuration provider that ignores settings described below. only two
environment variables are respected by Corerun host: CORECLR_SERVER_GC and
CORECLR_CONCURRENT_GC (both can take value of 0 or 1). Use them if you want
to play with your own custom-build CoreClr hosted by Corerun.

As you may notice, there is no description here how those settings are represented

on the level of a project file - for example, in Visual Studio. There may be many tools and

project formats along the whole .NET ecosystem. Just refer to the current documentation

of your favorite tool. What is presented here are settings consumed by the runtime itself,

which will be unlikely changed in the near future.

Be aware that on a machine with only one logic CPU core, Workstation GC is always

used, regardless of the gcServer setting.

Chapter 11 GC Flavors

693

 .NET Framework
In case of .NET Framework applications, the main way to change both GC modes is via a

standard configuration file (see Listing 11-1):

• ASP.NET web applications - web.config file is used in case of web

applications hosted in IIS. Please note that in such a case ASP.NET

host enables Server GC by default (additionally, on post .NET 4.5+

runtimes, with Background mode enabled).

• Console applications or Windows Services - [appName].exe.config

file is used by default. If such file does not specify those settings,

concurrent Workstation mode is turned on by default. This may be

very important especially for Windows Services processing a lot

of data in a request-like manner! Such service behaves more like a

server application, not an interactive one. Changing to some flavor

of a Server GC may significantly improve performance in such a

situation.

Listing 11-1. GC-related configuration of .NET Framework applications

([appName].exe.config/Web.config file)

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <startup>

 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.7" />

 </startup>

 <runtime>

 <gcServer enabled="true"/>

 <gcConcurrent enabled="true"/>

 </runtime>

</configuration>

 .NET Core
In case of .NET Core, slightly better flexibility exists regarding configuration. There are

still file-based solutions, but two additional ones exist.

Chapter 11 GC Flavors

694

The file configuration is very similar to the one from .NET Framework, only the

configuration file format has been changed from XML to JSON (see Listing 11-2).

Listing 11-2. GC-related configuration of .NET Core application

SomeApplication.runtimeconfig.json

{

 "runtimeOptions": {

 "tfm": "netcoreapp2.0",

 "framework": {

 "name": "Microsoft.NETCore.App",

 "version": "2.0.0"

 },

 "configProperties": {

 "System.GC.Server": false,

 "System.GC.Concurrent": false

 }

 }

}

CoreCLR introduces the concept of so-called Configuration Knobs. Their values

may be provided in various ways, one of which is the most interesting - via setting

an environment variable (and registry in case of Windows). This may be especially

useful in strictly isolated environments like docker images. You will find the full list of

configuration knobs on the appropriate CoreCLR documentation page.

To set the configuration knob of the name X, you should add the environment

variable COMPlus_X with a desired value or HKCU\Software\Microsoft\.NETFramework

registry key with the Value of name X. Thus, in case of the GC mode settings, it will be:

• COMPlus_gcServer=0 or 1 environment variable or gcServer registry

with value 0 or 1,

• COMPlus_gcConcurrent=0 or 1 environment variable or

gcConcurrent registry key with value 0 or 1.

Note please remember that COMPlus_ settings will override the JsoN version if
both are set.

Chapter 11 GC Flavors

695

 GC Pause and Overhead
The topic of automatic memory management is inherently related to the overhead it

introduces. After all, the GC is a code that works as part of our application. It consumes

CPU cycles, and it may introduce pauses when the rest of the application is doing

nothing. We have not looked at the topic of the GC activity overhead with a special

interest so far. It’s time to take care of this topic. Different GC operating modes can

introduce a different overhead so here is an ideal place for it.

But how to measure such overhead? What overhead are we talking about? In the

context of overall .NET application performance, we may look at it from two sides:

• The GC side - as mentioned before, there are two of the most

important, unwanted side effects of the GC work:

• The GC pauses - currently no pauseless GC exists.3 When

application threads are paused by the GC, it is obviously

unwanted, especially in interactive applications. We may be

interested in measuring GC pauses time (total sum, average,

percentiles, and so on, so forth). What is an acceptable threshold

of the pause depends on your specific application characteristics.

In my personal opinion, single GC pause times above tens of

milliseconds should be rather alarming if they occur frequently.

• The GC CPU overhead - executing GC code, as executing any

other code, consumes CPU resources. The longer the GC works

or the more CPU cores it uses, the more CPU cycles have been

stolen from the execution of regular code of yours and other

applications. This is important both in case of concurrent and

non-concurrent GCs. Again, what’s an acceptable threshold

of the GC usage depends on your specific application

characteristics. In regular web applications. I’ve seen constant

usage above 10–20% that was rather alarming.

3 Although, you could meet in JVM world a commercial GC named Azul Pauseless GC, it was
not truly pauseless because sometimes threads need to stop allocations to “catch up” (e.g., GC
is not able to provide free space fast enough for allocations). Such a GC’s successor is called
Continuously Concurrent Compacting Collector (C4), which is probably a less confusing name.

Chapter 11 GC Flavors

696

• Application side - to the topic of measuring application performance,

yet another whole book could be dedicated. However, the most

obvious metrics should include are the following:

• Throughput - how fast the application executes. For example,

how long it takes to process a single HTTP request of specific user

actions.

• Latency - it’s common to look at tail latency, for example, how

long your longest x% actions take.

• Memory consumption - how memory is being consumed,

especially in terms of peak memory usage.

Figure 11-1 illustrates the two most popular measurements indicating GC overhead

in .NET. It presents two user threads (T1 and T2) and one GC thread (GC1). As you can

see, this picture shows the state of the threads over time. When the thread does not take

up processor time (it is waiting for something), it is marked with a dashed line. When

the thread executes the code associated with GC, it is marked with an arrow. The thread

executing the program code is represented by a light gray rectangle. Additionally, the

moment of suspending and resuming threads was marked with a dark gray area. We will

stick to this convention later in this chapter, illustrating how each GC mode works.

With this approach, it is easy to illustrate the two most popular .NET metrics:

• GC pause times - they are considered non-concurrent phases of

the GC, including GC suspension and resumption steps. They are

typically obtained from the ETW/LLTNg events - that is, the time

between SuspendEEStart and RestartEEStop events. We may

observe them in GC Events by Time table from GCStats report in

PerfView (as column Pause MSec).

• Relative GC time spent in CPU - it describes the ratio between the

whole time spent in GC (including concurrent part of GC) to the time

since the previous GC. We may observe it by % GC column in GC

Events by Time from GCStats in PerfView.

Chapter 11 GC Flavors

697

popular % time in the GC performance counter may be also used to measure GC’s
CpU overhead. however, it is less accurate and etW- based measurements are
advised by the .Net team (since introduction of background GC they are investing
more development in etW in favor of performance counters in general). please
note that in case of a performance counter, if there is no GC, this counter is not
refreshed, and it will indicate the previous value. thus, do not be surprised about
constant 99% time in GC drawn in the performance Monitor tool - it may just be a
last measured value not refreshed due to GC not happening! always check whether
GC happens, for example, by looking also at the # Gen 0 Collections counter.

Obviously, many other free or commercial tools provide their own ways of providing

those metrics. It is their implementation detail how exactly they are measured though.

Refer to their documentation to get to know the details.

We will come back to those measurements when considering various GC modes.

Now, let’s move to the comprehensive description of the four possible Garbage

Collection flavors we can run in .NET.

Figure 11-1. Pause times and % Time in GC as a typical .NET GC measurement

Chapter 11 GC Flavors

698

 Modes Descriptions
The next subsections of this section describe how the four GC modes available in

.NET work. They have been illustrated with figures similar to Figure 11-1. For clarity,

suspensions blocks were removed from most of them. Just remember they are around

each non-concurrent phase of the GC. Additionally, all figures assume that at some point,

the Allocator determines the need for GC. The lengths in the charts are only for illustration

purposes. How long GC/user threads take should be measured by a proper tool.

Along with the description of the operation, each mode also contains a list of typical

situations in which you can consider its use.

 Workstation Non-Concurrent
The simplest possible GC mode has been in fact already thoroughly described in

chapters from 7 to 10. It’s a foundation how GC works in .NET in general. Let’s look at it

now in the way that we will also look at other modes in this chapter.

Workstation Non-Concurrent GC mode executes typical GC - we will refer to it

simply as Non-Concurrent GC (without Workstation or Server annotation) hereinafter. It

has the following characteristics (see Figure 11-2):

• All managed threads are suspended for the time of the entire GC,

regardless of whether it is garbage collection of generation 0, 1, or

2 (full-GC) – a single ephemeral GC should take very little time so

making it non-concurrent is not an issue. But as it is specifically

pointed out in the figure, a full-blocking GC (when done in non-

concurrent fashion these full-GCs are called full-blocking GCs) can

take a lot more time that an ephemeral GC. Full-blocking GCs are

thus much more unwanted.

• The GC code is executed on the user thread that triggered collection

(from inside Allocator) without changing the user thread’s priority,

which is usually a normal priority, in which case it must therefore

compete with other threads of other applications.

• GC is always executed during the “stop the world” phase; it can be

compacting if it decides to.

Chapter 11 GC Flavors

699

If we would like to track such a GC in terms of ETW/LLTNg events, these are

generated as in Figure 11-3.

Typical usage scenarios:

• A highly saturated environment where many more applications work

than the available CPU resources - as there are no additional GC

threads, only those regular ones, GCs does not add its own overhead

consuming otherwise valuable CPU cores.

T1

T2

gen0/1 gen2+LOH

Figure 11-2. Workstation Non-concurrent GC mode illustration

T1

T2

1
2
1
2

3

GC/SuspendEEStart
GC/SuspendEEStop

GC/Start

1
2
5
6

4

GC/RestartEEStart
GC/RestartEEStop

GC/Stop

11

2

2222
3 4

15 26

Figure 11-3. ETW/LLTNg events emitted during Workstation Non-concurrent GC
mode

Chapter 11 GC Flavors

700

• Environment with many lightweight web applications (like

“dockerized” microservices) - if they are lightweight and their

memory usage is small, non-concurrent GCs may be just fine. But

we gain a small amount of threads needed to operate, which can

be valuable in terms of CPU cores utilization for many applications

running at the same time.

 Workstation Concurrent (Before 4.0)
As mentioned before, this was called “Concurrent GC” and was superseded by

“Background GC” in 4.0 and beyond. Thus, we will not put a lot of attention to it (for

example, omitting the whole section of the Concurrent GC implementation). The

successor presented in the next section basically describes this mode as well.

Workstation Non-concurrent GC mode has the following characteristics (see

Figure 11-4):

• There is one additional thread dedicated solely for the GC’s

purposes - most of the time it is just suspended waiting for work to do.

• Ephemeral collections are always Non-concurrent - they are just fast

enough to make them non-concurrently. This also allows them to be

compacting if they wish.

• A full-GC may be executed in two modes:

• Non-concurrent GC - because of the “stop the world” nature,

such a full-GC may be compacting.

• Concurrent GC - it executes most of the work while managed

threads are normally executed. Because this would complicate

the implementation very much, this GC variant is not compacting.

• Concurrent full-GC has the following additional characteristics:

• User-managed threads may allocate objects during its work –

however, such allocations are limited to the size of the ephemeral

segment because there is no way to make more space if it runs

out (no other GC may be triggered during Concurrent GC). If

such situation happens, user threads are suspended until the end

of the full-GC.

Chapter 11 GC Flavors

701

• It contains two short “stop the world” phases - at the beginning

and in the middle.

• Objects allocated since the beginning of the GC and before the

second “stop the world” phase will be promoted.

• Everything allocated after the second “stop the world” phase will

be promoted.

Typical usage scenarios:

• Most UI applications before .NET 4.0. Concurrent GC was a big

improvement toward smaller pause times, so desirable in interactive

applications. Most of the time there were no big stalls due to the

GC. Obviously, Concurrent GC were not compacting so from time to

time a Non-Concurrent full-GC ought to be triggered to fight with the

fragmentation. However, the fact it has to blocking allocating threads

when the ephemeral segment is exhausted is a severe limitation.

Segment sizes in Workstation mode were not large (especially in

32-bit mode it is only 16 MB!) so even Concurrent GCs can suspend

threads more often than desired because the ephemeral segment

runs out of space. Overcoming those limitations was the major

improvement introduced in the Background Workstation

GC mode.

T1

T2

GC1

gen0/1/2 full GC

Figure 11-4. Workstation Concurrent GC mode illustration (available until .NET
Framework 4.0)

Chapter 11 GC Flavors

702

 Background Workstation
Background Workstation GC superseded Workstation Concurrent GC since .NET

Framework 4.0 and it also exists in .NET Core. The major improvements lie in the fact

that even during concurrent GC, ephemeral GCs may be triggered if needed. It removes

the allocation limit from the work of normal threads, making them strongly independent

of the work of GC operating in the background.

Background Workstation GC mode has the following characteristics, mostly similar

to the Workstation Concurrent GC (see Figure 11-5):

• There is one additional thread dedicated solely for GC purposes -

most of the time it is just suspended waiting for work to do.

• Ephemeral collections are Non-Concurrent - they are just fast

enough to make them non-concurrently. This also allows them to be

compacting if they wish.

• A full-GC may be executed in two modes:

• Non-Concurrent GC - because of the “stop the world” nature,

such full-GC may be compacting.

• Background GC - it executes most of the work while managed

threads are normally executed. Exactly as in the case of

Concurrent GC, this mode is not compacting.

• Background full-GC has the following additional characteristics:

• User-managed threads may allocate objects during its work -

such allocations may trigger regular ephemeral collections

(called Foreground GCs, opposite to the Background GC).

• Foreground GCs may happen many times during Background

GC. As .NET documentations says: “The dedicated background

garbage collection thread checks at frequent safe points to

determine whether there is a request for foreground garbage

collection.” Foreground GCs are regular Non-Concurrent GCs,

during which Background GC is temporarily suspended. They

may be compacting (as everything is suspended) and can even

expand the heap by creating additional segments.

Chapter 11 GC Flavors

703

• It contains two short “stop the world” phases - at the beginning

and in the middle; both will be briefly described further.

Let’s now dig into the “anatomy” of Background Workstation mode. Its Non-

Concurrent GCs of generation 0, 1, or 2 are trivial. However, how does Background GC

work and when exactly may Foreground GCs happen? When considering Background

GC, it can be split into several phases (see Figure 11-6):

• Initial “stop the world” phase (A) - it is when the allocator triggered

regular GC code and it decided to start Background GC. Additionally,

likely there is a need to execute a normal ephemeral GC at this

stage (for example, some allocation budget has been exceeded).

During this phase also, an initial marking of objects is done, later on

consumed by Background GC.

• Concurrent mark phase (B) - while user threads are resumed,

Background GC proceeds with concurrently discovering reachability

of objects. How exactly this is solved despite the simultaneous

operation of user threads is described later in this chapter.

Additionally, during this phase zero or more Foreground GCs may be

triggered due to allocations.

• Final mark, “stop the world” phase (C) - while user threads are

suspended, Background GC determines eventual reachability of

objects it will collect in the next phase.

T1

T2

GC1

gen0/1/2

(gen0/1)

Background GC

Foreground GC

Figure 11-5. Background Workstation GC mode illustration (available since .NET
Framework 4.0)

Chapter 11 GC Flavors

704

• Concurrent sweep phase (D) - while user threads are running, GC

may safely sweep not-longer used objects so far discovered. During

this phase additional Foreground GCs may happen.

If we would like to track such Background and Foreground GCs in terms of ETW/

LLTNg events, these are generated as in Figure 11-7. There are much more than in case of

a simple Non-Concurrent GC (as seen in Figure 11-3). As we can see, besides the typical

GC-related events, there is a bunch of BGC-related events describing the Background GC

in details. There are two - BGCRevisit and BGCDrainMark - that will be explained a little

further. Other ones are pretty self-descriptive. Please note that Figure 11-7 shows a case

with only single Foreground GC during Background GC.

T1

T2

GC1

gen0/1/2 full GC

0 or 1
FGC

0+
FGC

0+
FGC

A CB D

Figure 11-6. Background Workstation GC mode in-depth view

Chapter 11 GC Flavors

705

Figure 11-7. ETW/LLTNg events emitted during single Background
Workstation GC

Chapter 11 GC Flavors

706

Background GC code is mostly shared between the Workstation and server version
(the main difference is the number of threads executing this code), obviously
compiled twice within SVR and WKS namespaces. If you want to investigate it
inside CoreClr code, start from gc_heap::garbage_collect method and look
for do_concurrent_p flag usage. If Background GC is to be run, gc_heap::do_
background_gc method will be called that wakes up background GC threads.
Interestingly enough, both Foreground and Background GCs are represented by the
same gc_heap::gc1 method; the difference lies inside with respect to the global
settings.concurrent flag. thus:

- in case of Foreground GC, gc_heap::gc1 method is executed while concurrent
flag is disabled (which is a variant described in chapters from 7 to 10).

- in case of Background GC, on a separate thread, gc_heap::gc1 method
is executed while concurrent flag is enabled. this triggers executing gc_
heap::background_mark_phase and gc_heap::background_sweep
methods. they are described briefly in the two following sections.

Typical usage scenarios:

• In most UI applications, a lot of effort has been put in to make GC

pause times in Background Workstation GC as short as possible. This

makes it a perfect choice for all varieties of interactive applications

(thus, mostly UI-based). Since Background GC still does not compact,

fragmentation may become a problem, and so blocking full-GC may

be triggered occasionally to fight with fragmentation, but it may ruin

low-latency efforts.

 Concurrent Mark

One may wonder how it is possible to determine reachability of objects while user

threads are running. Obviously, they are constantly modifying objects and creating and

deleting references between them. How can reachability be discovered in such dynamic

conditions?

As we know, Tracing Collector implemented in .NET discovers reachability of objects

starting from various roots and by traversing the whole object graph (see Mark Phase

Chapter 11 GC Flavors

707

in Chapter 1 and Figure 1-15). Those that it has already visited are marked. At the end

of this process, only marked objects are considered live. The rest is treated as garbage

and may be collected. This approach, when considering work concurrent with the user

threads, leads to two main problems:

• how to mark objects in a way not disturbing normal user threads

work?

• how to maintain consistent view of relations between objects from

both user threads and the Collector perspective?

Let’s consider marking the object problem first. In Chapter 9 it was said that marking

an object means setting a single bit in its MethodTable. It was perfectly fine in case

of the “stop the world” approach. However, modifying such a crucial pointer as an

object’s MethodTable while threads may be using it is unacceptable - both for safety and

performance reasons (including cache invalidation).

Thus, concurrent marking stores information about marking in a dedicated, separate

mark array. Its organization is similar to card tables described in Chapter 5. Each single

bit in a mark array correspond to 16 bytes region on the Managed Heap (in case of 32-bit

runtime it is 8 bytes) as illustrated in Figure 11-8. Mark array is organized into 4-byte-

long mark words. If GC visited an object and wants to mark it - the corresponding bit

in the mark array is being set. As the GC is the only owner of mark array, there are no

synchronization problems when accessing it. Moreover, during concurrent marking this

bit may be only set, not clear. This makes synchronization much simpler in case of many

threads doing parallel, concurrent marking (as is the case with Background Server GC,

described later).

Mark array

16B

Mark word
(4 bytes)

single bit

128B
512B

mark
region

{

Figure 11-8. Mark array organization (in case of 64-bit runtime)

Chapter 11 GC Flavors

708

Note that 16-byte granularity is enough because only a single object may lay inside

such a region (remember that minimum object size is 24 bytes). Later on, by scanning

the mark array for set bits, we get information about the reachability of corresponding

objects. This is an easy solution to the first concurrent marking problem.

The second problem requires a little of rethinking. What can go wrong when

references between objects are being modified while Collector is traversing objects

graph? We may end up then in the following situations:

• Not-yet-visited object has modified (added, removed, or both)

references to some other objects - this is fine, however. The object

has not been visited yet so those changes will be simply included if

GC will visit it.

• Already visited object has removed reference to the otherwise

unreachable object (see Figure 11-9a) - this is still fine. We will create

so-called floating garbage for a moment. Next, GC will discover that

such an object is unreachable and will collect it.

• Already visited object has added reference to otherwise unreachable

object (see Figure 11-9b), for example, by creating a new one or by

reassigning a reference from another object - this is dangerous. It

could mean that we will have no chance to visit (mark) an object that

after such change is reachable from another object. It is treated as

garbage and will be collected while it should still may in use! This is

the so-called “the lost object” problem. Correct concurrent marking

implementation should not allow such situations to happen.

• Already visited object has modified a reference to an otherwise

reachable object - determining whether it is “the lost object” problem

or not would require checking whether in fact we will have chance to

visit such an object.

• Currently visiting object has modified its references - it would require

checking whether such reference has been already visited or not. If

not, we come back to the first point. If yes, one of the three previous

points may apply here.

Chapter 11 GC Flavors

709

The solution to the problems mentioned seems obvious - problematic objects should

be revisited! Various concurrent marking techniques exist that introduce different trade-

offs between amount of “floating garbage,” number of objects to be revisited, and overall

synchronization costs between user threads and the Garbage Collector.

In case of .NET, a simple yet effective technique of write barriers was chosen. Every

time an already visited (or currently visited) object is being modified, it should be treated

as one “to revisit.” However, for simplicity, every object modification is treated as such. In

case of Windows, the list of modifications is managed by operating system with an already

known WriteWatch mechanism (used also by card tables as explained in Chapter 5). This

mechanism has page-wide granularity so even a single modified object will invalidate

the whole 4kB page. In case of non-Windows runtimes, CLR implements its own Write

Watch - with the help of appropriately prepared write barriers injected by JIT that modify

corresponding bytes in dedicated arrays. At some moments during the GC, such list of

modifications (let’s call it write watch list) is scanned and marked objects are revisited

(treating them as an additional roots). This is quite an easy solution to the second

concurrent marking problem.

RootA RootA

(a)

RootA RootB RootA RootB

(b)

"floating
garbage"

Figure 11-9. Possible problems during concurrent marking: (a) creating floating
garbage, (b) the lost object problem

Chapter 11 GC Flavors

710

Thus, coming back to the Background GC phases, as shown in Figures 11-6 or 11-7,

they do the following things:

• Initial “stop the world” phase (A) - while threads are suspended,

initial list is being prepared. Only stack and finalization queues are

scanned to populate “work list” for future, concurrent marking.

Such work list contains only discovered objects, and their outgoing

references are not followed at this stage.

• Concurrent mark phase (B) - while user threads are working, the

main part of concurrent marking is executed. It does an object’s graph

traversal for the following roots (marking objects in the mark array):

• Handles.

• work list prepared in a previous step - so a large graph of objects

from the stack is considered here. During this step BGCDrainMark

ETW/LLTNg event is emitted with the information about the

number of objects in a work list.

• write watch list - at the end of concurrent marking, all objects

modifications that happened during this stage are considered.

During this step BGCRevisit ETW/LLTNg event is emitted

describing how many pages were initially “dirty” and how many

objects have been eventually marked because of that.

• Final mark, “stop the world” phase (C) - this is the “the final truth”

point. All threads are suspended and the GC has an opportunity to

“catch up.” At this moment, a mark array should pretty well reflect

the actual state of reachability of objects. However, to be sure, they

must be checked again. Note that this is incremental work. Traversing

the graph of objects considers the marked flag from the mark array,

so many objects will not be visited again. The revisiting of the roots

is only to ensure that there are no new reachable objects available.

This, of course, will introduce some floating garbage (already marked

objects will not be “unmarked”), but as it was mentioned before, this

is not a problem in terms of correctness of the result. During such a

final marking the following roots are considered:

• stack, finalization queues, and handles

Chapter 11 GC Flavors

711

• write watch list - to include all modifications that the GC cannot

keep up with in the previous check

• additionally, all typical marking-related work is done like

scanning dependent handles and weak references

In case of CoreClr, the core code responsible for concurrent marking exists in
gc_heap::background_mark_phase method. the two most important data
structures are mark_array (realizing array from Figure 11-8) and c_mark_list
(realizing “work list” populated at the initial phase). c_mark_list is populated
with gc_heap::background_promote_callback method during stack and
finalization queue scanning and then consumed by gc_heap::background_
drain_mark_list method.

the write watch list in case of Windows is managed by the system itself and is
consumed in the GC within gc_heap::revisit_written_pages method.
It gets from the system a current list of dirtied pages (from the Managed
heap memory region) and scans them object by object with the help of gc_
heap::revisit_written_page method. In case of a non-Windows CoreClr
build, DFEATURE_MANUALLY_MANAGED_CARD_BUNDLES, and DFEATURE_
USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP are defined and enable the
software write watch mechanism. You may see its usage in write barriers like
JIT_WriteBarrier_WriteWatch_PreGrow64.

all concurrent marking is done with the help of gc_heap::background_
promote method that through gc_heap::background_mark_simple and
gc_heap::background_mark_simple1 traverses the object’s graph (marking
corresponding bits in mark_array from gc_heap::background_mark1
method).

In summary, the conclusions from the concurrent marking’s operation are as

follows:

• It produces some floating garbage so it results in less aggressive

garbage collection - more dead objects will occupy space for a longer

time than in case of blocking marking.

Chapter 11 GC Flavors

712

• Intense modification of the dependencies between objects during

Background GC may invalidate many pages, and thus force GC to

revisit many objects (remember that the page has 4 KB and may

contain many small objects).

 Concurrent Sweep

At the moment of concurrent sweep, the mark array already contains information about

all live objects. Similar to the non-concurrent Plan and Sweep phases described in

Chapters 9 and 10, such information may be used to sweep dead objects. During this

phase, objects from the heap are scanned one by one, checked against the mark array,

and appropriate free-list items are created (exactly in a way described in Chapter 10,

including updating generation allocators). Because SOH allocations may happen during

Concurrent Sweep, it is interesting also to see how they interact with each other.

Having said that, we can describe this process as consisting of the following steps:

• Before runtime resumes execution of user threads, free-item lists are

cleared in all generations - since then allocators will not be aware of

free space for a short period of time (allocating at the end of already

consumed segment part).

• Concurrent sweep on ephemeral generations is done - it creates free-

list items in generations 0 and 1, operating on a separate list that is

published to the allocator at the end (to avoid multithreaded access

to the free list both from allocating user threads and concurrent GC).

Thus, as soon as this fast step ends, allocators in ephemeral generations

are able to consume created free space. Also, during this step

Foreground GC is not allowed because it may be compacting - which

would conflict with the ongoing object-by-object scanning.

• Concurrent sweep on generation 2 and Large Object Heap - it creates

free-list items in generation 2 and LOH, immediately published to its

allocators. During this step:

• user threads, while allocating, are able to consume already

published free list in generation 0.

Chapter 11 GC Flavors

713

• Foreground GCs are allowed so if objects gets promoted from

generation 1 to 2, already created free-list entries in gen2 will be

consumed - it is safe because Foreground GCs are regular non-

concurrent GCs, during which a Background GC is temporarily

suspended so there is no simultaneous access to the list.

• During the entire process, LOH allocations are not allowed. This is

because it would require multithreaded access to the free list from

LOH allocators while the GC is modifying it. If a user thread wants

to allocate a large object during Concurrent Sweep, it is blocked

until its end. While such waiting happens, ETW/LLTng events

BGCAllocWaitBegin/BGCAllocWaitEnd pair is emitted so we can

search for it in our traces to be aware of such unwanted delays

(and they are also summarized as a “LOH Allocation Pause (due to

background GC) > 200 Msec” section in PerfView’s GCStats report).

• During concurrent sweeping, as in non-concurrent version, segments

may be deleted if becomes empty (by decommitting its memory).

In case of CoreClr code, concurrent sweep phase is included in the gc_
heap::background_sweep method. It calls gc_heap::background_
ephemeral_sweep method scanning objects from generation 0 and 1)
and then scans objects from generation 2 and large object heap (calling
gc_heap::allow_fgc method at some well-defined safe points, after each
of 256 objects has been scanned). During object scanning, already known gc_
heap::thread_gap or gc_heap::make_unused_array methods are used to
create a free-list item or small unusable free space respectively.

Mentioned loh allocations are blocked by global gc_heap::gc_lh_block_
event which is used in gc_heap::wait_for_background_planning by
calling gc_heap::user_thread_wait on it. this path is used at the beginning
of the gc_heap::a_fit_free_list_large_p method, which is in fact the
begging of the entire loh allocation path (as described in Chapter 6).

Chapter 11 GC Flavors

714

 Server Non-Concurrent
Since the beginning of .NET until .NET Framework 4.5, it was the default-only mode

dedicated for the server (mainly web) applications. In fact, it is a quite simple extension

of Workstation Non-Concurrent described earlier. All GCs are blocking, regardless which

generation is collected. As we remember, from a memory management point of view

there is an important difference though - by default, there are as many Managed Heaps

as logical CPU cores.

Server Non-concurrent GC modes have the following characteristics (see

Figure 11- 10):

• There are additional threads dedicated solely for the GC’s purposes -

by default exactly as many as Managed Heaps (they are called simply

Server GC threads). Most of the time they are suspended waiting

for work to do. Each such single thread is dedicated to handle the

corresponding Managed Heap.

• All collections are Non-Concurrent GCs - thanks to the parallel

collection from many GC threads, introduced pauses are shorter

than for corresponding heap sizes in case of Workstation mode.

Being “stop the world” collections also allows them to be compacting

if they wish.

• Marking is done in parallel from multiple GC threads - it speeds up

the blocking phase. Additionally, the mark stealing technique is used

to balance marking work between multiple threads. Heaps may be

unbalanced in terms of required marking jobs because of different

distribution of objects containing live outgoing references. Thus, GC

threads may occasionally “steal” from each other batches of objects

to be visited.

Chapter 11 GC Flavors

715

In case of Server GC, the number of GC Heaps, and thus the number of GC threads

also do not have to be equal to the number of logical CPU cores on the machine. Since

the .NET Framework 4.6+ and .NET Core, an additional configuration has been added -

GCHeapCount. It specifies the number of threads and Managed Heaps used by the GC. It

may be set only for Server GC mode, via COMPlus_GCHeapCount environment variable

or through XML/JSON configuration file (see Listing 11-3). The provided value must be

smaller than the number of logical CPUs the process is allowed to run on (as operating

systems provide various ways of limiting this number); otherwise it will be cropped to

such number.

Listing 11-3. Configuring number of GC-related threads and Managed Heaps

<configuration>

 <runtime>

 <gcServer enabled="true"/>

 <GCHeapCount enabled="6"/>

 </runtime>

</configuration>

Previously such limitations had to be configured via mentioned operating system

techniques - to make the runtime thinking it had less logical cores available than it

really had. But it had a severe caveat - the entire runtime had such limitation imposed,

not only the GC. It means unwanted limitations on possible concurrency of the entire

.NET program, while one would like to limit in that way only the GC configuration. Thus,

since the introduction of GCHeapCount setting, this is a preferred way of controlling that

GC aspect.

Figure 11-10. Server Non-concurrent GC mode illustration

Chapter 11 GC Flavors

716

there is an additional pair of settings related to the threads/heaps CpU affinity:
GCNoAffinitize and GCHeapAffinitizeMask. You may wish to refer to them in
scenarios where you have a huge number of CpUs not consumed entirely, thanks to
the settings like GCHeapCount. By using this setting, you can dedicate specific CpUs
to specific applications, making a fully CpU-aware distribution of your applications.

Typical usage scenarios:

• In heavily saturated web servers, where there is an intensive CPU

cores contention because of many concurrent threads from many

applications, this mode may be a better choice than even more

resource-heavy Background Server GCs described later. You can

additionally limit thread consumption by using GCHeapCount setting.

• Because all GCs, including full-GC, may be compacting, this mode

fights with fragmentation better than concurrent version. It results in

a smaller working set.

• Because all GCs are blocking, no floating garbage is introduced during

the concurrent marking state. It reduces the working set further.

 Background Server
Since .NET Framework 4.5, this is the default mode for server applications. This is by far

the most complex GC available. However, knowing both Non-Concurrent Server and

Background Workstation GCs, we will easily notice that it is in fact a combination of them.

Background Server GC mode has the following characteristics (see Figure 11-11) -

very similar to the Background Workstation GC:

• There are two threads dedicated solely for the GC purposes per each

Managed Heap - most of the time they are suspended waiting for

work to do:

• Server GC threads - as in non-concurrent Server GC, they

are responsible for performing all blocking GCs (including

Foreground GCs).

• Background GC threads - an additional per heap thread

responsible for performing Background GCs.

Chapter 11 GC Flavors

717

• Ephemeral collections are Non-Concurrent GCs - they are fast enough

to make them non-concurrently. This also allows them to be compacting

if they wish. They are executed by foreground GC threads in parallel -

each such thread is responsible for its dedicated Managed Heap.

• A full-GC may be executed in two modes:

• Non-Concurrent GC - because of the “stop the world” nature, it

may be compacting. Like in the ephemeral collection, all Server

GC threads are executing such GC in parallel.

• Background GC - it executes most of the work while managed

threads are normally executed. This mode is not compacting.

As in Background Workstation case, this GC is executed by

dedicated background GC threads (in parallel).

• Background full-GC has the following additional characteristics:

• User-managed threads can allocate objects during its work -

and these allocations can trigger ephemeral collections

(Foreground GCs).

• Foreground GCs may happen many times during a Background GC.

• It contains two short “stop the world” phases - at the beginning

and in the middle of the GC.

Figure 11-11. Background Server GC mode illustration

Chapter 11 GC Flavors

718

The exact description of Background Server GC would require repeating most of the

content from the description of the Background Workstation GC. The main difference is

that instead of a single additional GC thread, there are as many available CPU cores.

This obviously introduces quite a sophisticated solution combining the advantages

of both Background Workstation GC (short pauses, weak thread allocation restrictions)

and Non-Concurrent Server GC (scalability due to parallel collection). This is the most

resource-heavy GC in terms of thread utilization. On an 8-core machine, there will be an

additional 16 threads dedicated to the GC.

Typical usage scenarios:

• default GC for most server-based applications. If you have dozens of

.NET applications running on the same server instance, you would

not want to have them all use Background Server GC.

• Resource heavy desktop application running on dedicated machines.

If kind of controlled environment is used (like medical or factory

station), running solely your application, you may consider using

this mode - this most sophisticated GC should run well, having more

resources at its disposal.

 Latency Modes
In addition to the four GC modes available, an orthogonal setting is also available that

lets us control the latency (or pause) behavior. Thanks to the latency mode settings, we

can control the intrusiveness of the GC - how willing it will be to introduce blocking

pauses. Unlike the GC mode settings presented so far, the latency mode setting can be

also changed dynamically during program operation. It gives interesting possibilities

that we will also mention.

While latency mode can be configured via Configuration Knobs (by using COMPlus_

GCLatencyMode environment variable), the supported way is to set it from code via

GCSettings.LatencyMode static field. It may take one of the GCLatencyMode enumeration

values (see Listing 11-4), corresponding to the modes described in this section.

Chapter 11 GC Flavors

719

Listing 11-4. Latency modes enumeration

public enum GCLatencyMode

{

 Batch = 0,

 Interactive = 1,

 LowLatency = 2,

 SustainedLowLatency = 3,

 NoGCRegion = 4

}

As we will see, the latency mode in fact lets us to control concurrency of the GC also.

Let’s look at the subsequent sections where all those options are briefly described.

 Batch Mode
In Batch mode, we are not concerned about pauses length a lot. This allows to optimize

GC in different aspects, for example, throughput or memory usage. Batch mode is a

default latency setting for all non-concurrent GCs (meaning, started with the System.

GC.Concurrent or gcConcurrent setting disabled).

What this gives us in practice is the option to disable the possibility of Background

GC occurrence. In other words, we can use it to dynamically disable the concurrent GC,

even if it was started during runtime as such. But what happens to the background GC

threads in such case? The answer differs depending on the GC mode:

• in case of Server GC they are simply infinitely suspended, until one

will revert latency mode to the Interactive.

• in case of Workstation GC they will time out after some period of

time (currently it is 20 seconds) and will be destroyed, emitting

GCTerminateConcurrentThread ETW/LLTNg event.

 Interactive
In interactive mode, short pauses are most desired, even in cost of memory usage (for

example, we are running an interactive UI-based application). It is a default setting for

all concurrent GCs - it enables Background GC possibility. Thus, it is a default setting in

.NET because both Workstation and Server GC modes are concurrent by default.

Chapter 11 GC Flavors

720

Complementary to the Batch mode, we can use it to dynamically enable concurrent

GC - in such case, proper background GC threads will be created if they do not exist

already, emitting GCCreateConcurrentThread ETW/LLTNg event.

Additionally, in case of Workstation GC mode with interactive mode (so default

one), GC time tuning is enabled already described in Chapter 7 in the “Generation to

Condemn” section.

 Low Latency
Low-latency mode should be used when as short as possible pauses are essential, at any

cost. It is available only in Workstation GC mode. Low-latency mode disables all regular,

both concurrent and non-concurrent generation 2 (full) Garbage Collections - this is

quite a strong requirement! Full-GC will be possible only in case of receiving a low-

memory system notification or via explicit trigger (like calling GC.Collect method).

Needless to say, this mode actually has a very large impact on the operation of the

application:

• Overall pause times will be really short because only fast ephemeral

collections occur.

• Memory usage will likely grow vastly because all objects gathering in

generation 2 or Large Object Heap will not be collected at all.

Such a strong latency mode should be used only for small periods of time, when

latency requirements are absolutely essential - for example, during intensive interaction

with the user. We should be aware, however, that after operating in this mode, sooner or

later there will be intensive garbage collection - most often it is best to call the GC in a

controlled moment as soon as possible afterward.

When setting low-latency mode, special care should be taken to make sure it will be

soon reverted. Regular try/finally construct may be not enough because there still might

be rare situations when finally the block is not executed. To make latency mode setting

double-protected, it is best to use so-called Constrained Execution Regions. As .NET

Documentations says: “A constrained execution region (CER) is part of a mechanism for

authoring reliable managed code. A CER defines an area in which the common language

runtime (CLR) is constrained from throwing out-of-band exceptions that would prevent

the code in the area from executing in its entirety.” For example, the CLR delays thread

aborts for code that is executing within a CER. Regardless of its internal workings, using

Chapter 11 GC Flavors

721

them is as easy as preceding try block with the PrepareConstrainedRegions method call

(see Listing 11-5).

Listing 11-5. Safely setting LowLatency mode thanks to the Constrained

Execution Regions

GCLatencyMode oldMode = GCSettings.LatencyMode;

RuntimeHelpers.PrepareConstrainedRegions();

try

{

 GCSettings.LatencyMode = GCLatencyMode.LowLatency;

 //Perform time-sensitive, short work here

}

finally

{

 GCSettings.LatencyMode = oldMode;

}

 Sustained Low Latency
Because latency requirements of LowLatency mode are so strong and the heap might

grow too fast, another version of the low-latency requirement was introduced in .NET

Framework 4.5, available both in Workstation and Server GC modes. Sustained low

latency is a little compromise between desired short pauses and memory usage - in this

mode only non-concurrent full-GCs are disabled. In other words, only ephemeral and

Background Garbage Collections are allowed. This mode is available only if runtime has

started with the concurrent setting enabled (regardless of changing it later on via Batch

and Interactive latency modes). Like in the previous low-latency mode, a full, blocking

GC will be possible only in case of receiving a low-memory system notification or via

explicit trigger (like calling GC.Collect method).

Sustained low-latency mode allows us to stay in low-latency mode for a longer

period of time, without such fast heap growth and with still short pauses but not as short

as in LowLatency mode (due to pauses introduced by ephemeral and Background GCs).

It may be a very good compromise in situations of handling user input. While the user

makes some UI-based actions, we may enable it to improve interactivity. Exactly this

scenario can be found in the source code of the Roslyn parser, used by Visual Studio.

Chapter 11 GC Flavors

722

SustainedLowLatency mode is enabled when the user types something in the editor but

after a specified timeout, latency is reverted to the original value (see Listing 11-6).

Listing 11-6. Example of setting SustainedLowLatency mode from Roslyn

source code

/// <summary>

/// This class manages setting the GC mode to SustainedLowLatency.

///

/// It is safe to call from any thread, but is intended to be called from

/// the UI thread whenever user keyboard or mouse input is received.

/// </summary>

internal static class GCManager

{

 /// <summary>

 /// Call this method to suppress expensive blocking Gen 2 garbage GCs in

 /// scenarios where high-latency is unacceptable (e.g. processing

typing input).

 ///

 /// Blocking GCs will be re-enabled automatically after a short

duration unless

 /// UseLowLatencyModeForProcessingUserInput is called again.

 /// </summary>

 internal static void UseLowLatencyModeForProcessingUserInput()

 {

 var currentMode = GCSettings.LatencyMode;

 var currentDelay = s_delay;

 if (currentMode != GCLatencyMode.SustainedLowLatency)

 {

 GCSettings.LatencyMode = GCLatencyMode.SustainedLowLatency;

 // Restore the LatencyMode a short duration after the

 // last request to UseLowLatencyModeForProcessingUserInput.

 currentDelay = new ResettableDelay(s_delayMilliseconds);

 currentDelay.Task.SafeContinueWith(_ => RestoreGCLatency

Mode(currentMode), TaskScheduler.Default);

 s_delay = currentDelay;

 }

Chapter 11 GC Flavors

723

 if (currentDelay != null)

 {

 currentDelay.Reset();

 }

 }

}

 No GC Region
This is by far the strongest requirement that can be set, added in .NET Framework 4.6.

As the MSDN documentations says, this mode: “attempts to disallow garbage collection

during the execution of a critical path if a specified amount of memory is available.”

In other words, it will try to disable GC entirely but it cannot be done indefinitely.

Thus, we cannot set no GC mode simply by GCSettings.LatencyMode field (setting it

to GCLatencyMode.NoGCRegion will have no effect). Instead, a dedicated method was

introduced with several overloads:

• bool GC.TryStartNoGCRegion(long totalSize)

• bool GC.TryStartNoGCRegion(long totalSize, bool

disallowFullBlockingGC)

• bool GC.TryStartNoGCRegion(long totalSize, long lohSize)

• bool GC.TryStartNoGCRegion(long totalSize, long lohSize,

bool disallowFullBlockingGC)

As we can see, all those methods take the amount of memory (totalSize, in bytes) -

it specifies how much memory we would like to be able to allocate without triggering

any GC (in other words, how much memory should be already available upfront) per

each Managed Heap. TryStartNoGCRegion method returns true if the GC acknowledges

that much memory is indeed available and we have just entered no GC latency mode.

Additionally, we can specify how much of those allocations may be dedicated to Large

Object Heap (lohSize argument). If we do not specify lohSize, totalSize limit will be

applied separately for SOH and LOH (thus, in fact, we would be able to allocate twice the

totalSize size).

If initially there is less available memory than requested, a full non-concurrent GC

will be triggered inside TryStartNoGCRegion method implementation, trying to get it.

But we may disallow such behavior by disallowFullBlockingGC parameter.

Chapter 11 GC Flavors

724

An important limitation is the fact that a specified size must be less than or equal to

the total size of all ephemeral segments (that is, appropriate multiplication of ephemeral

segment size in case of Server GC):

• In case of specifying lohSize, the totalSize minus the lohSize value

(SOH size) must be less than or equal to the size of an ephemeral

segment.

• In case of specifying only totalSize, one can’t tell if you meant that

for SOH, LOH, or some combination of them, so it is assumed to be

on the safe side - the whole totalSize value must be less than or

equal to the size of an ephemeral segment.

This is because GC may be not triggered as long as allocations do not require

segment reorganization due to ephemeral segment shortage. If we specify a size

exceeding the ephemeral segment sizes, ArgumentOutOfRangeException will be thrown.

After entering no GC latency mode, we may proceed normally with our program

execution. As long as allocations do not exceed specified sizes in SOH and LOH,

no GC should be triggered. We should however remember to end no GC latency mode

explicitly by calling GC.EndNoGCRegion() method! From the GC perspective it is not so

important - even if we forget to, it is guaranteed that the latency mode will be reverted to

the original one after exceeding totalSize allocations.

However, from the no GC API perspective, it is important that each GC.

TryStartNoGCRegion method has its corresponding GC.EndNoGCRegion call - otherwise

subsequent GC.TryStartNoGCRegion calls will throw InvalidOperationException

with the message “The NoGCRegion mode was already in progress.” It will happen

even if the allocations limit were violated and latency mode was reverted to the

original one! In such case we still have to call EndNoGCRegion, knowing that it will throw

InvalidOperationException with the message “Allocated memory exceeds specified

memory for NoGCRegion mode.”

As no GC region is by design limited to certain amount of allocations, disabling

it does not have to be as much protected by using Constrained Execution Regions as

when setting low-latency modes. In the worst-case scenario, GC will just be triggered.

However, it is always good to check whether we should end previous no GC region

before calling TryStartNoGCRegion, to prevent throwing InvalidOperationException.

Taking all that into consideration, using a no GC region may require a few safe

checks and will end with a code similar to that in Listing 11-7.

Chapter 11 GC Flavors

725

Listing 11-7. An example of no GC region creation

// in case of previous finally block not executed

if (GCSettings.LatencyMode == GCLatencyMode.NoGCRegion)

 GC.EndNoGCRegion();

if (GC.TryStartNoGCRegion(1024, true))

{

 try

 {

 // Do some work.

 }

 finally

 {

 try

 {

 GC.EndNoGCRegion();

 }

 catch (InvalidOperationException ex)

 {

 // Log message

 }

 }

}

Please note that calling the GC.EndNoGCRegion method without preceding GC.

TryStartNoGCRegion call (that succeeds) will throw InvalidOperationException

with the message “NoGCRegion mode must be set.” Thus, you may see advice to check

latency mode in advance, like in code (GCSettings.LatencyMode == GCLatencyMode.

NoGCRegion) GC.EndNoGCRegion. This, however, is not useful in the finally block from

Listing 11-7. As mentioned, in case of an allocations limit violation, we still need to call

GC.EndNoGCRegion, even if GCSettings.LatencyMode will already have reverted a value

like Batch or Interactive.

Chapter 11 GC Flavors

726

If you would like to investigate no GC latency mode in CoreClr code,
start from GCHeap::StartNoGCRegion method, which implements
GC.TryStartNoGCRegion methods listed before. It may call
GCHeap::GarbageCollect method and it calls gc_heap::prepare_for_
no_gc_region - checking ephemeral segment size condition and setting
allowed no GC allocation amounts. afterward, when during normal program
execution, the GC would be triggered, gc_heap::should_proceed_for_
no_gc is called to check allocation limits violations.

 Latency Optimization Goals
If you recall section “Static Data” from Chapter 7, an additional level of latency control

was presented there - latency optimization goals (levels), affecting the values of static

data. As the CoreCLR comment says: “Latency modes required user to have specific

GC knowledge (e.g., budget, full-blocking GC). We are trying to move away from them

as it makes a lot more sense for users to tell us what’s the most important out of the

performance aspects that make sense to them” (and those aspects include memory

footprint, throughput, and pause predictability). Thus, in the future .NET releases we

may expect moving from previously described latency modes into more aspect-oriented

latency goals. Currently four such goals (levels) are planned:

• memory footprint (level 1) - where pauses can be long and more

frequent but heap size stays small,

• throughput (level 2) - where pauses are unpredictable but not very

frequent (and might be long),

• a balance between pauses and throughput (level 3) - where pauses

are more predictable and more frequent. The longest pauses are

shorter than level 1 pauses,

• short pauses (level 4) - where pauses are more predictable and more

frequent. The longest pauses are shorter than level 3 pauses.

Chapter 11 GC Flavors

727

As mentioned in Chapter 7, currently (at the time of .NET Framework 4.7 and .NET

Core 2.1) only levels 1 and 3 are supported, but their usage along runtime and GC is yet

very limited.

Latency level is accessible via GCLatencyLevel Configuration Knob, so it may be set

by COMPlus_GCLatencyLevel variable with values 1 or 3.

 Choosing GC Flavor
We have already gained a lot of knowledge regarding various modes that GC may operate

on as well as its intrusiveness control via latency settings. Although the pros and cons

of described modes were already discussed, a clear answer to the question - what is the

best GC choice in my case - has not been presented yet.

The simple answer is - use default GC mode! In many cases, this answer is enough

and you do not have to tangle your head with alternatives. However, there are various

knobs we may turn on and off. There are situations in which it is worth considering their

use. The two most common exceptions are:

• Web application hosted on a server with many other applications

running - in such case the default Background Server may be just too

resource consuming. You can tune it a little by using GCHeapCount

setting or change it to other mode.

• Windows Service making a lot of processing - in such case the default

Background Workstation may be not scalable enough and you may

wish to change it to some Server mode.

A summary of the available modes, taking into account the knowledge presented so

far, can be found in Table 11-1.

Chapter 11 GC Flavors

728

Ta
bl

e
11

-1
.

Su
m

m
ar

y
of

 V
ar

io
u

s
G

C
 M

od
es

W
or

ks
ta

tio
n

Se
rv

er

No
n-

 Co
nc

ur
re

nt
Ba

ck
gr

ou
nd

No
n-

Co
nc

ur
re

nt
Ba

ck
gr

ou
nd

CP
U

us
ag

e
th

er
e

ar
e

no
 G

C

th
re

ad
s

on
ly

 s
in

gl
e

GC
 th

re
ad

Nu
m

be
r o

f G
C

th
re

ad
s

is
 e

qu
al

 to

nu
m

be
r o

f v
is

ib
le

 lo
gi

ca
l C

pU
 c

or
es

Nu
m

be
r o

f G
C

th
re

ad
s

is
 e

qu
al

 to
 d

ou
bl

ed

nu
m

be
r o

f v
is

ib
le

lo
gi

ca
l C

pU
 c

or
es

)

Ba
tc

h
ye

s
(d

ef
au

lt)
ye

s
(d

is
ab

le
s

ba
ck

gr
ou

nd

GC
s)

ye
s

(d
ef

au
lt)

ye
s

(d
is

ab
le

s

ba
ck

gr
ou

nd
 G

Cs
)

In
te

ra
ct

iv
e

ye
s

(e
na

bl
es

ba
ck

gr
ou

nd
 G

Cs
)

ye
s

(d
ef

au
lt)

ye
s

(e
na

bl
es

 b
ac

kg
ro

un
d

GC
s)

ye
s

(d
ef

au
lt)

Lo
w

La
te

nc
y

ye
s

ye
s

no
No

Su
st

ai
ne

dL
ow

La
te

nc
y

no
ye

s
no

ye
s

GC
He

ap
Co

un
t

no
no

ye
s

ye
s

Ty
pi

ca
l u

sa
ge

a
lo

t o
f l

ig
ht

w
ei

gh
t

ap
pl

ic
at

io
ns

 o
n

a

si
ng

le
 m

ac
hi

ne
 th

at

m
ay

 a
cc

ep
t l

on
ge

r

br
ea

ks
 (p

ot
en

tia
lly

co
nt

ro
lle

d
fo

r s
ho

rt

Lo
wL
at
en
cy

 p
er

io
ds

)

In
te

ra
ct

iv
e

ap
pl

ic
at

io
ns

w
ith

 s
tri

ct
 re

sp
on

si
ve

ne
ss

re
qu

ire
m

en
t

(a
dd

iti
on

al
ly

 c
on

tro
lle

d

by
 L
ow
La
te
nc
y

an
d

Su
st
ai
ne
dL
ow
La
te
nc
y

m
od

es
)

Cu
rr

en
tly

 q
ui

te
 ra

re
. I

t c
an

 b
e

us
ed

as
 a

 c
om

pr
om

is
e

be
tw

ee
n

a
m

or
e

re
so

ur
ce

 c
on

su
m

in
g

Ba
ck

gr
ou

nd

se
rv

er
 a

nd
 B

ac
kg

ro
un

d

W
or

ks
ta

tio
n,

 in
tro

du
ci

ng
 lo

ng
er

 G
C

pa
us

es
. l

on
g

bl
oc

ki
ng

 G
Cs

 m
ay

 b
e

ac
co

m
m

od
at

ed
 b

y
GC

 n
ot

ifi
ca

tio
ns

.

M
os

t a
pp

lic
at

io
ns

ba
se

d
on

 p
ro

ce
ss

in
g

re
qu

es
ts

 (I
Is

 h
os

te
d

w
eb

 a
pp

lic
at

io
ns

,

pr
oc

es
si

ng
 w

in
do

w
s

se
rv

ic
es

)

Chapter 11 GC Flavors

729

 Scenario 8-1. Checking GC Settings
Description: We are developing or maintaining a .NET application. Due to various

reasons, we want to certainly identify its current GC settings on the production

environment - let’s say that based on the observed behavior, we suspect that it is

misconfigured. Obviously, we could check the application’s configuration file, but it will

not give us one hundred percent certainty. As we know, a file-based configuration may

be overridden by environment variables or a registry. Or maybe the file itself configures

it in a wrong way (misspelling?). Why not just check what the .NET process itself says

about its current settings?

Analysis: The easiest, fastest, and less intrusive way to check process settings is to

use ETW/LLTNg mechanism. Every time ETW session starts and stops, .NET runtime

sends additional diagnostics events (to be utilized by interpreting tools). We should be

interested in the event Microsoft-Windows-DotNETRuntimeRundown/Runtime/Start.

Although it is emitted when the runtime starts, it is also emitted, as mentioned, when

ETW session starts and ends.

So it is as simple as starting and ending the ETW session and looking at this event,

which contains the StartupFlags field that interests us. We can use for this purpose, for

example, PerfView - record a very short standard .NET session and look at this event on

the list of events (see Figure 11-12). StartupFlags are rather self-descriptive - we will be

mostly interested in the following three values:

• CONCURRENT_GC - runtime has started with the concurrent GC

enabled. If this value is not listed, Non-Concurrent GC is enabled.

• SERVER_GC - runtime has starter with the Server GC. If this value is

not listed, Workstation GC is enabled.

• HOARD_GC_VM - VM hoarding (see Chapter 5) is enabled.

Such values may be combined with each other so. for example, Background

Server GC will have both CONCURRENT_GC and SERVER_GC listed, while Non-Concurrent

Workstation GC will have nothing listed.

Chapter 11 GC Flavors

730

To make such a check even less invasive, we can use the great etrace tool created by

Sasha Goldshtein. It allows you to control ETW sessions from the command line, with

various filtering features available. In our case we are interested in only a single event of

a single process. Because etrace starts .NET-related ETW session, mentioned diagnostic

events will be emitted, including Runtime/Start. The appropriate command and its

result are shown in Listing 11-8.

Listing 11-8. etrace tool to list specific ETW events from given providers and

additional filters applied (like process ID)

.\etrace.exe --other Microsoft-Windows-DotNETRuntimeRundown --event

Runtime/Start --pid=21316

Processing start time: 30/04/2018 10:21:51

Runtime/Start [PNAME= PID=21316 TID=14648 TIME=30/04/2018 10:21:51]

 ClrInstanceID = 9

 Sku = 1

 BclMajorVersion = 4

 BclMinorVersion = 0

 BclBuildNumber = 0

 BclQfeNumber = 0

 VMMajorVersion = 4

 VMMinorVersion = 0

 VMBuildNumber = 30319

 VMQfeNumber = 0

 StartupFlags = 1

 StartupMode = 1

 CommandLine = F:\IIS\nopCommerce\Nop.Web.exe

 ComObjectGuid = 00000000-0000-0000-0000-000000000000

 RuntimeDllPath = C:\Windows\Microsoft.NET\Framework\v4.0.30319\clr.dll

Figure 11-12. Microsoft-Windows-DotNETRuntimeRundown/Runtime/Start
event showing CLR runtime settings

Chapter 11 GC Flavors

731

The only inconvenience of this approach is that the StartupFlags value is given

in numerical form, and we have to interpret it ourselves knowing the values of the

corresponding enumeration (see Listing 11-9). In case of the result from Listing 11-8,

StartupFlags has value 1, which means only CONCURRENT_GC flag is set.

Listing 11-9. Runtime StartupFlags enumeration

public enum StartupFlags

{

 None = 0,

 CONCURRENT_GC = 0x000001,

 LOADER_OPTIMIZATION_SINGLE_DOMAIN = 0x000002,

 LOADER_OPTIMIZATION_MULTI_DOMAIN = 0x000004,

 LOADER_SAFEMODE = 0x000010,

 LOADER_SETPREFERENCE = 0x000100,

 SERVER_GC = 0x001000,

 HOARD_GC_VM = 0x002000,

 SINGLE_VERSION_HOSTING_INTERFACE = 0x004000,

 LEGACY_IMPERSONATION = 0x010000,

 DISABLE_COMMITTHREADSTACK = 0x020000,

 ALWAYSFLOW_IMPERSONATION = 0x040000,

 TRIM_GC_COMMIT = 0x080000,

 ETW = 0x100000,

 SERVER_BUILD = 0x200000,

 ARM = 0x400000,

}

On the other hand, ASP.NET web application hosted on IIS will have StartupFlags

of value 208919 (33017 hexadecimally), which corresponds to flags: CONCURRENT_GC,

LOADER_OPTIMIZATION_SINGLE_DOMAIN, LOADER_OPTIMIZATION_MULTI_DOMAIN,

LOADER_SAFEMODE, SERVER_GC, HOARD_GC_VM, LEGACY_IMPERSONATION, DISABLE_

COMMITTHREADSTACK.

Chapter 11 GC Flavors

732

 Scenario 8-2. Benchmarking Different GC Modes
Description: The topic of different GC operating modes is inherently related to one

question - which one is best for our application? The answer is obvious on the one

hand - the default mode is probably good enough in most cases. Web application hosted

on server? Background Server GC? Interactive UI-based application? Background

Workstation GC? It is rarely justified to disable the concurrent mode. On the other hand,

each application is different, and there is no certainty that the default mode best suits it.

At this point, there is no answer to our question other than simply measuring the impact

of individual options.

But how to measure this influence? What tools? What to look for? This is what

the following scenario deals with. We assume in it an analysis of the already known

nopCommerce web application. Do not pay too much attention to the results though -

they are only significant for this application at its current stage of development. Do not

apply the conclusions from the analysis in this scenario directly into your applications.

This scenario is to show how to carry out such analyses so that you can apply them in

your specific situations. We will also see typical traps that we may come across when

analyzing such measurements.

Analysis: First of all, how to measure the effect of different GC settings? It was already

discussed in the GC pause and overhead section. nopCommerce application under tests

is a Windows-based application. So, in order to have a comprehensive overview of the

situation, we will be measuring the following aspects:

• GC overhead using:

• GC Rollup By Generation data from GCStats report in Perf View,

• Processed CSV data from Individual GC Events file from GCStats

report in PerfView -to calculate percentiles of pause times (Pause MSec

column) and CPU overhead (% GC column), memory usage using:

• processed CSV data from Individual GC Events file from GCStats

report in PerfView -to calculate the Managed Heap size using

After MB column (here we could also use/.NET CLR Memory/#

Bytes in all Heaps performance counter with similar accuracy),

• process private working set as manually measured from the Task

Manager (here we could also use /Process/Working Set - Private

performance counter).

Chapter 11 GC Flavors

733

• Application perspective:

• response times data from Summary Report in JMeter test.

• processed CSV data from Response Times Percentiles in JMeter

test (to calculate percentiles).

Processing all this data makes such benchmarking quite tedious. The procedure

is mainly manual due to the lack of good tools that would automate merging and

processing all those results. If you found one, use it! Nevertheless, I strongly encourage

you to look at GC settings measurements in a such comprehensive way. Otherwise, the

look at the experiment is incomplete and can lead to false conclusions.

Testing scenario consists of the following steps:

• Running load test with the help of JMeter, simulating a typical

user’s traffic on the site (as always, beware of repeatable starting

conditions - restart application pool, warm it up a little, disable any

other background applications, and so on, so forth).

• Immediately starting ETW session from PerfView - very simple one,

with the lowest overhead possible. Checking only .NET option is

just fine.

• Let the load test last for a specified amount of time.

• Stop everything and start analysis - that includes producing graphs

similar to those presented below. It may include some Excel (or any

other similar tool) manipulations to interpret CSV data, but such

trivial aspects were omitted here for brevity.

The main advantage of such approach is its very low invasiveness. We can start tests

at any time, even in a production environment. We do not even have to perform any load

tests; it’s enough that we carry out observations with similar user traffic (time of the day,

week, month, ...) if we are sure conditions are repeatable.

There is one more important aspect of this kind of measurements, mentioned in

Chapter 3 - beware of averages! The average is a statistical value that gives the illusion of

valuable information, but can really obscure many important facts. So while measuring

the above values, pay attention to their behavior over time. If, for example, private

Working Set does not change significantly, the average may be a sufficient value. But

for such key parameters as the response time of the application (or the GC pause in our

case), the average is often simply not enough.

Chapter 11 GC Flavors

734

For key metrics, the truly valuable information is provided by percentiles. Thus,

both for GC pause times and application response times, CSV data is used to produce

percentiles graphs. Percentiles directly translate into business requirements - for

example, we want 99% of users to have response times below 2 seconds and 99,99% users

below 10 seconds. In this scenario percentiles are calculated from observed data - ETW

and JMeter samples - with the help of manual work in Microsoft Excel. If we can afford

to be more invasive, including changing the application code, we can use an excellent

HdrHistogram.NET library (https://github.com/HdrHistogram/HdrHistogram.NET)

that calculates them from inside the application.

During the scenario, we try to answer the question of which of the four GC

configurations seems the most appropriate:

• Workstation Non-Concurrent,

• Background Workstation,

• Server Non-Concurrent,

• Background Server.

Of course, the “appropriateness” should be business-driven - whether it is about

response times SLA, resource consumption (CPU, memory) or any other metrics we

imagine. Note that the GC overhead itself is not really a business-centric metric. Can you

imagine a company management that requires % Time in GC to be less than 10%? In fact,

we will see the influence of GC overhead on the whole application also in this scenario.

Before each test, proper runtime settings are set in the configuration file. For each

mode, a few tests were conducted to minimize the chance of impact from external factors.

Let’s discuss CPU overhead first. As we can see in Figure 11-13, there are some facts

that can be noted from such results:

• Ephemeral GCs are a little faster in both Server GC flavors,

• Full-GCs introduce a little less overhead in both concurrent flavors.

This leads us to the conclusion that the best choice here is Background Server GC.

However, measured differences are not overwhelming in our scenario so from a CPU’s

overhead point of view, we can say that every mode behaves similarly. The point is, we

had to make detailed measurements to confirm that. Such ETW-based data analysis was

done with the help of a data processing tool (like Excel) to get average measurements

(while double-checking if histogram does not reveal multimodal distribution).

Chapter 11 GC Flavors

https://github.com/HdrHistogram/HdrHistogram.NET

735

If we used % time in the GC performance counter measure, we would end with
quite misleading results where it is much bigger in case of both Workstation modes
compared to server modes. If you recall Figure 11-1, % time in GC is a time of GC
versus time to the previous GC. In case of server mode, time spent in GC is small
but processing is done in parallel for multiple Managed heaps (on multiple cores).
thus, even the time is shorter, the overall CpU usage is similar, while % time in
GC is not accurately showing this. this is an important observation for us. the %
time in GC counter should be considered together with the GC mode we are in -
in Workstation mode we should be more tolerant to higher values than in server
mode. But, as mentioned earlier, it is just much better to use etW-based data
instead of a performance counter in the first place.

Figure 11-13. % in GC results (for each generation)

Chapter 11 GC Flavors

736

Memory usage distinguishes better various GC modes (see Figure 11-14). The

managed heap is noticeably bigger in case of both concurrent (background) versions

compared to non-concurrent ones - it confirms the already-mentioned bigger

fragmentation due to frequent, non- compacting background GCs. Moreover, overall

Working Set of each mode is also noticeably different. The smaller one is the simpler

one - Non-Concurrent Workstation mode that can often compact its small segments.

On the other side we have the most complicated one - Background Server that creates

the biggest segments and produces both fragmentation and floating garbage. If memory

usage is the most important metric for you, this data should help you decide.

Figure 11-14. Memory usage results

Chapter 11 GC Flavors

737

More interesting may be information about GC pauses introduced in each GC mode,

preferably with respect to each generation condemned. Such data are also in line with

expectations (see Figure 11-15). Both ephemeral generations are collected really fast

regardless of the GC mode. The real difference is seen for full-GCs. A definite loser here

is the Non-Concurrent Workstation mode - one thread in a blocking mode must collect

all garbage. The Non-Concurrent Server is faster because it does it in parallel on multiple

Managed Heaps. However, it is still noticeably slower than both concurrent versions.

However, as mentioned earlier, the average is not enough precise information for

such interesting measurements. Surprisingly enough, when we look at percentiles

(see Figure 11-16), Background Workstation looks the best while Workstation Non-

Concurrent is clearly the worst one (with a serious degradation for percentiles bigger

than 99). This is how we should comprehensively look at pause times in our applications.

Measure your own, and maybe you will be surprised by the results!

Figure 11-15. Mean GC pause time for each generation results

Chapter 11 GC Flavors

738

But as said earlier, GC overhead (including GC pauses) are only contributing to much

more relevant business-oriented metrics. How do those tests look from the application

perspective? Surprisingly, the average response times of the prepared scenario are big

enough to almost overwhelm benefits of the GC settings (see Figure 11- 17). In most

configurations, the application processed a similar number of requests (still, throughput-

driven Concurrent Server GC was able to process a little more). Average response times

are smaller with the more “complicated” version of GC we choose, but differences are

not huge. These are the specifics of the application being tested. If the response times

were generally much shorter, the impact of GC could be much more important.

Figure 11-16. GC pause time percentiles results

Chapter 11 GC Flavors

739

Averages are not enough though, so let’s look at the percentiles of response times

(see Figure 11-18). It only confirms a rather negligible influence of the GC settings.

However, this does not make this whole scenario senseless. On the contrary! It shows

how important it is to measure not only synthetic % Time in GC or pause time, but above

all - the resultant impact on the application, on the indicators that will be experienced by

real users.

Figure 11-17. Response count and average response time results

Chapter 11 GC Flavors

740

The conclusion in our case is that it is best to use one of the two concurrent GC

versions. Remember that these are conclusions for some assumptions - generated user

load, specific environment (number of CPU cores, memory amount, other running

applications). That is why it is extremely important to carry out such tests on possibly

near-production environments, not your development desktop PC.

the scenario presents a web application in which testing is quite obvious using
a load test. however, also desktop or mobile applications can be tested using
automated tests. We can also, if our logic is well separated (as in the case of the
MvvM approach), test only the logic layer exposed via apI. there is no excuse for
not performance testing!

For brevity, similar benchmarking of various latency modes was omitted. The

procedure would look the same. And the conclusions would be in line with the

expectations. Only the measurements of your own application will, however, answer the

question whether their use makes sense.

Figure 11-18. Response time percentiles results

Chapter 11 GC Flavors

741

 Summary
In this chapter we learned about different ways in which we can configure GC activity in

.NET. We have learned about differences between Workstation and Server mode, both

from the implementation and practical side. Similarly, we have learned what is Non-

Concurrent and Concurrent GC, and that currently the latter are named as Background

GC. We also learned briefly how such interesting mechanisms as concurrent marking

and sweeping are implemented.

The chapter ended with deliberations on the mode selection - including such an

important decision whether it is Workstation or Server GC. On the one hand, knowledge

of these different available modes seems quite common. On the other hand, we often do

not think about changing the default settings at all. It is a great success of the .NET team

that those default settings perform so well, and in fact we do not usually have to bother

about changing it.

There will always be a situation where the default settings may not be sufficient.

Therefore, the last scenario in the chapter describes in detail how to make an educated

decision to choose settings based on careful benchmarks.

The following two rules summarize the knowledge from this chapter. The next one is

dedicated to the important mechanism related to the object’s lifetime - finalization.

 Rule 23 - Choose GC Mode Consciously
Applicability: General - moderately popular. High performance code - very important.

Justification: As we have learned in Chapter 8, there are various GC modes and settings

available. We are in control of crucial GC parameters - number of heaps and GC threads,

aggressiveness, and so on, so forth. Most of the time the default settings are just fine.

However, you should be aware of alternatives and how to make a good, educated

decision about them.

How to apply: First of all, you should start with the major flavor that correctly reflects

the characteristics of your app. For example, whether it is Server or Workstation app,

whether you care about pauses or not. This should be very little work as you should

know the general characteristics of you app. On the other hand, each GC mode has its

own pros and cons in terms of CPU and memory usage. They may result in different

characteristics of the overall application performance. Without measuring them, it

Chapter 11 GC Flavors

742

is really hard to say which mode best suits your needs. Thus, if you really care about

performance, check them and measure. Applying Rules 5 - Measure GC Early and #6 -

Measure Your Program may help you in doing that, especially on your pre-production

environment (or even on production to some extent). When conducting tests, remember

about careful methodology - especially about using percentiles on measurements that

matter to you most.

Related scenarios: Scenarios 8-1, 8-2.

 Rule 24 - Remember About Latency Modes
Applicability: General - rather uncommon. High performance code - important.

Justification: Besides four .NET Garbage Collector modes, we can also influence GC’s

aggressiveness by using latency modes. They control how willing GC will be in executing

blocking GCs (thus, introducing unwanted pauses). This leads to a clear balance

between responsiveness (due to only short blocking pauses) and memory usage (due to

most non-compacting background GC). Modes that focus on short latencies is thus most

often used in interactive applications when we want to have additional control over UI

responsiveness - typically, for short periods of time requiring maximum fluency (e.g.,

keyboard typing). Some server apps like trading apps also use SustainedLowLatency to

indicate they don’t want the interruption from full-blocking GCs while making sure they

have enough memory during trading hours.

How to apply: Latency modes are changed from within application code. Various

ways and related patterns were presented in this chapter. We always set low-latency

modes for a certain time, the shorter the stronger our expectations are. On one side is

SustainedLowLatency mode that may last for a long time as it only disables blocking

full-GCs. On the other side we have no GC regions that disable garbage collection all

together. Additionally, we can switch between concurrent and non-concurrent GC

versions dynamically. If we well understand how users use our application, it can lead

to even better-tuned memory and CPU usage. However, such precise tuning is not

needed in typical applications. Only when we are approaching the limits of performance

requirements we may look at latency mode with interest.

Related scenarios: Scenario 8-2 (to use the same testing methodology).

Chapter 11 GC Flavors

743
© Konrad Kokosa 2018
K. Kokosa, Pro .NET Memory Management, https://doi.org/10.1007/978-1-4842-4027-4_12

CHAPTER 12

Object Lifetime
Previous chapters describe the automatic memory management process in .NET quite

comprehensively. Chapter 6 contains information about how objects are created,

while chapters from 7 to 11 inform in detail how they are collected when no longer

needed. However, there are some side mechanisms, without the description of which

our knowledge would not be complete. In this chapter we will focus on three such

mechanisms. Although they exist separately and can be used independently, they

relate to each other conceptually. All of them concern a common topic - the lifetime of

the object.

The three mentioned mechanisms include finalization, disposable objects (and

very popular Disposable pattern), and weak references. Through this chapter it should

become clear how and why they are implemented, as well as how to use them. Typically,

some practical scenarios are presented how to diagnose problems related to them.

Please note, however, that those mechanisms are presented mainly from a memory

management perspective. There are many more comprehensive descriptions available

in other books that discuss all possible pros and cons, including common caveats

you may face using them. This is not a C# learning book, so no general C#-related

discussions happen here.

Both finalization and Disposable patterns are strongly related with interoperability

with the unmanaged code (and P/Invoke mechanism), so a lot of this chapter is

dedicated to this topic. Keep in mind, however, that both of them, and weak references

especially, may be used in a regular managed code not related to unmanaged resources -

like for logging or cache purposes. Thus, even if unmanaged code and P/Invoke are not

your regular work, please feel invited to read this chapter nevertheless.

744

 Object vs. Resource Life Cycle
In the managed world, everything seems to be pretty easy. We create objects, use them,

and they are deleted by the GC sometime after we stop needing them. We do not have to

worry that garbage collection is non-deterministic - that we do not know exactly when it

will happen - as long as the GC will not delete objects too soon, while we are still using

it (and this will not happen because it would mean a very severe bug in the GC). Such

non-deterministic deallocation of objects is typical for tracing collectors, like the one

implemented in .NET.

This is all fine as long as we do not want some action to happen when an object will

be no longer needed - a technique called finalization. Out of a sudden non-deterministic

nature of GC becomes a problem - there is simply no place when a developer could put

appropriate code. This is because from the code perspective there is only a well-defined

moment of object creation (constructor), but not of object reclamation.

Managed runtimes like .NET provide dedicated finalization mechanisms - including

a well-defined place when a programmer can write code to be executed when an object

becomes garbage. In fact, most of this chapter is devoted to such a finalization process.

Because it is inherently related to the non-deterministic nature of garbage collection, it is

often referred to as non-deterministic finalization - it will happen, but it is not said when.

Additionally, deterministic finalization may be sometimes desired - to take an action

explicitly when we know that object becomes unused. .NET provides a contract in the

form of IDisposable interface that implies using such finalization. We will look at it also

later in this chapter.

In addition to the non-deterministic and deterministic finalization names,
sometimes also names of implicit and explicit cleanup are used, respectively.

Please note that conceptually finalization does not relate directly to the mechanisms

of garbage collection. It is for sure NOT garbage collection itself, as some developers

tend to think. Finalization is just producing a side effect - we may do some action when

an object becomes unreachable or simply is no longer needed. But neither finalizers

(as we may know it from C#) nor IDisposable interface is responsible for reclaiming

memory of a no-longer needed object! It happened to me several times during the

recruitment interviews to hear such answers that the Dispose method frees the memory

after the object. I hope after previous chapters, you are fully aware that it is not true.

Chapter 12 ObjeCt LIfetIme

745

Why, however, is the finalization mechanism is needed at all? In a completely

managed environment, its need is actually negligible. In such cases, all managed objects

are referencing each other but the whole resulting objects graphs is properly managed by

the GC. If one deletes an object (let’s say, by assigning a null to its last reference), tracing

GC will take care of deleting all other related objects, not reachable from other places.

Deleting all those related, owned objects was a typical responsibility of the destructor in

an unmanaged world (i.e., C/C++).

In a managed world, finalization is mostly helpful when an object holds resources

other than those managed by the GC and the runtime. Such unmanaged resources

are typically various types of handles, descriptors, and other data related to the system

resources that must be freed explicitly. The more the specific environment relies on such

unmanaged cooperation, the more important that finalization is. .NET environment

was from the very beginning designed as very “unmanaged-friendly.” As mentioned

previously, one of the design goals was to take regular C++ code and with very minimal

changes be able to compile it as .NET program (which resembles today’s C++/CLI

language). Many very popular APIs rely on unmanaged resources underneath (like files,

sockets, bitmaps, and so on, so forth). Thus, finalization exists in .NET developers’ minds

since the very beginning - both in the forms of deterministic IDisposable contract and

non-deterministic finalization.

jVm, as an extremely popular counterpart-managed environment, put much
less attention to non-deterministic finalization. they are considered unreliable,
problematic, and introducing unnecessary GC overhead. In fact, they are so
unpopular that since java 9 they have received deprecated status. Instead, various
methods of deterministic finalization are preferred since many years - by providing
an explicit cleanup method and requiring developers to invoke it on object no
longer needed (most typically by wrapping its usage within try-finally block). this
resembles the well-known IDisposable pattern from .Net world.

as a replacement for deprecated java.lang.Object.finalize method,
a suggested solution for non-deterministic finalization is to use java.lang.
ref.Cleaner class that manages object references by java.lang.ref.
PhantomReference and corresponding cleaning actions for them. phantom
references are enqueued after the collector determines that their referents may
otherwise be reclaimed (thus making this mechanism also non-deterministic).

Chapter 12 ObjeCt LIfetIme

746

Because of managed and unmanaged worlds’ coexistence, we should think about

two separate issues: management of the object lifetime and management of the

resources (unmanaged) that it holds. Object lifetime management is solely the GC

responsibility. On the other hand, runtime does not understand well our unmanaged

resources so resources management is our responsibility, with the help of features

described in this chapter.

Keeping in mind that the finalization is a side effect of removing the object, we will see

in this chapter that specific implementations included in .NET do affect the object lifetime.

 Finalization
What is most commonly referred to as “finalization” in .NET is generally understood as

non-deterministic finalization. As the ECMA-335 standard says: “A class definition that

creates an object type can supply an instance method (called a finalizer) to be called

when an instance of the class is no longer reachable.” This is exactly what we will look at

in this part of the chapter - how the finalizer method may be declared, used, and how it

is implemented in CLR.

 Introduction
For declaring a finalizer in a case of C# type, special syntax was introduced, called

destructor (see Listing 12-1). It represents code called when an object is no longer

reachable and is just about to be deleted. In our example it is used to close a handle to

the opened file (otherwise, sooner or later we could hit the limit of maximum handles

opened in the system). System resources are represented by “handles” in case of

Windows, which quite often are represented by IntPtr structure.1

Listing 12-1. Simple example of using finalizer in C# (by destructor definition)

class FileWrapper

{

 private IntPtr handle;

 public FileWrapper(string filename)

 {

1 In the case of Linux resources, they are commonly represented as regular integers.

Chapter 12 ObjeCt LIfetIme

747

 Unmanaged.OFSTRUCT s;

 handle = Unmanaged.OpenFile(filename, out s, 0x00000000);

 }

 // Destructor

 ~FileWrapper()

 {

 if (handle != IntPtr.Zero)

 Unmanaged.CloseHandle(handle);

 }

Destructor in C# is just a wrapper, which will be translated by compiler into a

method that overrides System.Object.Finalize method (see Listing 12-2).

Listing 12-2. IL method definition of destructor form

.method family hidebysig virtual

instance void Finalize () cil managed

{

 .override method instance void [System.Runtime]System.Object::Finalize()

 // ...

}

Overriding the Finalize method is crucial. It is a contract between the type and

the GC - objects that have the Finalize method overridden are called finalizable and

receive special treatment by the GC.

to declare a finalizable type in f# or Vb.Net, we simply have to override
Finalize method. this is however not possible in case of C#. trying to do so
will result in an error: “Do not override Object.Finalize. Instead, provide a
destructor.” thus the only way is to use ~Typename syntax. Its “destructor” name
is rather unfortunate because as we know, it has nothing in common with the
deconstruction of the managed objects itself but is more related with resource
management. Interestingly, because C++ has already used ~Typename() notion
for C++ destructor, finalizers are defined by !Typename() in C++/CLI.

Chapter 12 ObjeCt LIfetIme

748

Note also that as mSDN states: “every implementation of Finalize in a derived
type must call its base type’s implementation of Finalize. this is the only case in
which application code is allowed to call Finalize.” this is done automatically
by s destructor wrapper in C# but we should remember about that in other
languages.

We can, for example, use finalizers to manage an additional memory pressure

(by GC.AddMemoryPressure and GC.RemoveMemoryPressure methods) introduced

by a consumed resource (even if it is managed but we know it uses some resources

underneath). A typical example is using System.Drawing.Bitmap class that, in fact,

is represented as a single handle to a system resource, but obviously it requires some

additional memory when bitmap data are used (see Listing 12-3).

Listing 12-3. An example of finalizers usage to maintain additional memory

pressure

class MemoryAwareBitmap

{

 private System.Drawing.Bitmap bitmap;

 private long memoryPressure;

 public MemoryAwareBitmap(string file, long size)

 {

 bitmap = new System.Drawing.Bitmap(file);

 if (bitmap != null)

 {

 memoryPressure = size;

 GC.AddMemoryPressure(memoryPressure);

 }

 }

 ~MemoryAwareBitmap()

 {

 if (bitmap != null)

 {

Chapter 12 ObjeCt LIfetIme

749

 bitmap.Dispose();

 GC.RemoveMemoryPressure(memoryPressure);

 }

 }

 ...

}

However, using finalizers has certain limitations:

• As previously stated, their execution time is non-deterministic – s

finalizer will be called (most probably, see below) but it is not defined

when. This is bad from s resource management point of view. If

an owned resource is limited, it should be released as quickly as

possible. Waiting for non-deterministic cleanup is barely optimal.

If we really need to make sure that finalizers were executed, we may

call the GC.WaitForPendingFinalizers method. We will return to it

several times hereinafter.

• Order of execution of finalizers is not defined - even if one

finalizable object refers to the other finalizable object, it is not

guaranteed their finalizers will run in any logical order (like the

e.g., “slave” before the “master” or vice versa). Thus, we should not

refer to any other finalizable objects inside a finalizer, even if we

“own” them. Unordered execution is a well-thought-out design

decision - sometimes it is simply not possible to find a natural order

(for example, what about circular references between finalizable

objects?). There is, however, some ordering between finalizers

possible in the form of critical finalizers, as described later. However,

finalizer code may refer to the regular managed objects if the

corresponding object holds references to it - it is guaranteed that the

whole object graph is collected only after running the finalizer.

• The thread on which the finalizer will be executed is also not

defined - although we will see how current implementation defines

that, ECMA-335 does not impose any requirements on that field.

Thus, relying on any thread context should be avoided (including

threads synchronization like locking, which may lead to deadlocks

because nothing is guaranteed here).

Chapter 12 ObjeCt LIfetIme

750

• It is not guaranteed that finalization code will be executed at all,

exactly once, or may be executed only partially - for example, if some

finalizer is malfunctioned and blocks its execution indefinitely, or

the process is terminated rapidly without giving the GC chance

to execute them. Moreover, it is even possible that finalizer will

be executed more than once because of a resurrection technique,

described later.2

• Throwing an exception from the finalizer is very dangerous - by

default it simply kills the entire process. Because finalizer code is

considered really important (like, for example, releasing system-wide

synchronization primitive), being unable to execute it is treated with

the highest severity. Thus, you should be extremely careful in not

allow throwing any exception from the finalizer.

• Finalizable objects introduce additional overhead to the GC, which

may impact overall application performance - as we will see later

in the section describing the finalization implementation; this

mechanism requires additional handling of such objects that is not

without a cost.

All those points lead to one conclusion - implementing finalizers is tricky and using

them may be unreliable, thus they should be generally avoided. Treat them as implicit

“safety nets” for cases when a developer does not release resources explicitly by a

preferred explicit cleanup approach (like Disposable pattern). We will see such typical

usage when discussing Disposable patterns later on.

eCma-335 says that: “it is valid to define a finalizer for a value type. however, that
finalizer will only be run for boxed instances of that value type.” at least in the case
of .Net Core runtime, it is no longer valid. runtime simply ignores the finalizer
defined in value types during boxing.

2 Even worse, due to resurrection and possible timing, there may be multiple simultaneous calls to
the same finalizer.

Chapter 12 ObjeCt LIfetIme

751

From a programmer’s perspective it should be only important that the finalizer is

called “at some time” after the object becomes unreachable. And although it is rather

an implementation detail, it is good to be aware when in fact finalizers may be called. In

general, there are two scenarios when it happens:

• At the end of GC - no matter what triggered GC, at the end of

the process, finalizers are called for the object discovered to be

unreachable in this particular GC. Please keep in mind that this

means only finalizers of objects from condemned (and younger)

generations will be called.

• As the CLR internal bookkeeping - when runtime unloads

AppDomain and when it is shutting down.

As mentioned earlier, finalizers do not necessarily have to be related to the

unmanaged resources only. We may imagine other usages, like the lifetime logging

example from Listing 12-4. If for some reason we would like to perform log creation and

deletion of an object, its constructor and finalizer seem to be a perfect place - we may

need to do it, for example, because such an object represents very crucial or resource-

heavy functionality.

Listing 12-4. Simple example of using finalizer in C# (by destructor definition)

class LoggedObject

{

 private ILogger logger;

 public LoggedObject(ILogger logger)

 {

 this.logger = logger;

 // ...

 this.logger.Log("Object created.");

 }

 // Destructor

 ~LoggedObject()

 {

 this.logger.Log("Object destroyed.");

 }

Chapter 12 ObjeCt LIfetIme

752

Please note that even in such a “non-unmanaged” world, implementing a finalizer

is not trivial. In case of Listing 12-4, a finalizer could be using a dependency-injected

logger via interface. It means we are not guaranteed that an injected, concrete logger

instance will not be finalizable and thus we are exposing ourselves to the problem

of unordered finalization execution – the logger may be already disposed inside our

finalizer. This is a simple yet expressive example of finalization caveats.

How should such danger could be mitigated? Some solutions may be based on code

review or automated static analysis - to make sure that ILogger implementations are not

finalizable or they are critically finalizable (soon we will understand why it may help).

But the preferred solution is always the same - avoid using finalization. If the lifetime of

such an object is so important, most probably you will benefit more by incorporating

Disposable pattern into it, where the cleanup moment is also well-defined and much

safer to include logging facilities.

 Eager Root Collection Problem
Separate lifetime management of objects and resources can lead to unusual side effects.

We have already seen them in Chapter 8 in Listings from 8-13 to 8-16. Most of them are

related to the eager root collection technique. Although in itself it is a great JIT-based

optimization that takes care of the shortest possible lifetime of objects, in the context of

resource management, it can be sometimes problematic.

The very typical example of such a problem is using a stream to access a file (see

Listing 12-5). If we uncomment GC calls inside ProblematicObject.UseMe method

(simulating GC that could happen simultaneously during this method execution),

such program execution will end with an Unhandled Exception: System.

ObjectDisposedException: Cannot access a closed file. This is because due to JIT

optimization, inside the UseMe method the whole ProblematicObject instance is treated as

unreachable just after the last usage of this.3 Thus, after stream assignment to a localStream

variable, it is perfectly fine to expect ProblematicObject finalizer to be executed. But as we

see, such finalizer closes the stream so the following ReadByte call fails. In such a simple case

we can quickly correct it by always using Stream from the instance, not from a local variable

(so, for example, last line should be return this.stream.ReadByte()). In such a case, the

whole ProblematicObject instance is referenced by the last line of UseMe method (by using

this reference) so early root collection optimization will not come into play.

3 Refer to the early root collection technique described in Chapter 8.

Chapter 12 ObjeCt LIfetIme

753

Listing 12-5. Problem with finalizer releasing resources too early

class ProblematicObject

{

 Stream stream;

 public ProblematicObject() => stream = File.OpenRead(@"C:\Temp.txt");

 ~ProblematicObject()

 {

 Console.WriteLine("Finalizing ProblemticObject");

 stream.Close();

 }

 public int UseMe()

 {

 var localStream = this.stream;

 // Normal code, complex enough to make this method not inlineable and

partialy or fully-interrptible

 ...

 // GC happens here and finalizers had enough time to execute.

 // You can simulate that by the following calls:

 // GC.Collect();

 // GC.WaitForPendingFinalizers();

 return localStream.ReadByte();

 }

}

class Program

{

 static void Main(string[] args)

 {

 var pf = new ProblematicObject();

 Console.WriteLine(pf.UseMe());

 Console.ReadLine();

 }

Chapter 12 ObjeCt LIfetIme

754

During P/Invoke we may introduce the same problems and because of that, a few

ways of improving things have been introduced. Let’s start from extending the code

from Listing 12-1, by adding corresponding UseMe method but now using P/Invoke calls

directly (see Listing 12-6). We have introduced there exactly the same problem - eagerly

collected ProblematicFileWrapper instance will trigger its finalizer closing used file

handle, while the further code tries to use it. Unmanaged.ReadFile call will fail and UseMe

method will return -1. In our example, we can also quickly fix the problem by using

this.handle instead of local variable hnd but this is not always possible - quite often

IntPtr is not part of the managed object (but only static or local variables).

Listing 12-6. Problem with finalizer releasing resources to0 early (extension

from Listing 12-1)

public class ProblematicFileWrapper

{

 private IntPtr handle;

 public ProblematicFileWrapper(string filename)

 {

 Unmanaged.OFSTRUCT s;

 handle = Unmanaged.OpenFile(filename, out s, 0x00000000);

 }

 ~ProblematicFileWrapper()

 {

 Console.WriteLine("Finalizing ProblematicFileWrapper");

 if (handle != IntPtr.Zero)

 Unmanaged.CloseHandle(handle);

 }

 public int UseMe()

 {

 var hnd = this.handle;

 // Normal code

 // GC happens here and finalizers had enough time to execute.

 // You can simulate that by the following calls:

 //GC.Collect();

 //GC.WaitForPendingFinalizers();

Chapter 12 ObjeCt LIfetIme

755

 byte[] buffer = new byte[1];

 if (Unmanaged.ReadFile(hnd, buffer, 1, out uint read, IntPtr.Zero))

 {

 return buffer[0];

 }

 return -1;

 }

The first general solution to this problem is typical to controlling eager root

collection - we can add GC.KeepAlive(this) call just before return statement inside the

UseMe method. This way we extend the lifetime of the object holding the corresponding

handle. But this solution clutters code a lot and is cumbersome.

Such problems lead to introducing a helper structure HandleRef. It is a very simple

wrapper that holds both a handle and an object who owns it. It is then specially treated

by the interop marshaler, to extend the lifetime of the indicated object during the entire

P/Invoke call. APIs of such P/Invoke calls expect HandleRef instead of bare IntPtr (see

Listing 12-7).

Listing 12-7. Solving the problem with finalizer with the help of HandleRef struct

public int UseMe()

{

 var hnd = this.handle;

 // Normal code

 // GC happens here and finalizers had enough time to execute.

 // You can simulate that by the following calls:

 //GC.Collect();

 //GC.WaitForPendingFinalizers();

 byte[] buffer = new byte[1];

 if (Unmanaged.ReadFile(new HandleRef(this, hnd), buffer, 1, out uint

read, IntPtr.Zero))

 {

 return buffer[0];

 }

 return -1;

}

Chapter 12 ObjeCt LIfetIme

756

However, using HandleRef does not solve all the problems - especially related to the

malicious handle-recycling attack that we will discuss soon. Thus, it is rather an old and

deprecated approach, mainly used in legacy code (over 80% of its usage comes from

Windows Forms and System.Drawing code).

HandleCollector class was introduced at the same time as HandleRef, which

realizes reference counting semantics for the handles - if a given threshold of handles are

created, it triggers GC. It is also considered legacy and its usage is very rare.

Do not use HandleRef and its equally old friend HandleCollector classes.
they are described here to provide a concise view of the resource management
topics and give a little historical background that helps to understand the preferred
SafeHandle approach described later. even if you encounter those types usage in
existing code, do not follow such pattern. Safe handles introduced in .Net framework
2.0 are much better alternatives, described thoroughly in the next section.

 Critical Finalizers
Due to various problems with finalizers mentioned above, in .NET Framework a little

firmer counterpart was introduced in the form of critical finalizers. They are simply

regular finalizers with additional guarantees - designed for a situation where a finalizer

code must be executed with certainty, even in case of rude AppDomain or thread abort

cases. As MSDN says: “In classes derived from the CriticalFinalizerObject class,

the common language runtime (CLR) guarantees that all critical finalization code will

be given the opportunity to execute, provided the finalizer follows the rules for a CER

(Constrained Execution Region), even in situations where the CLR forcibly unloads an

application domain or aborts a thread.”

To define a critical finalizer, one must define a finalizer in the

CriticalFinalizerObject- derived class. The CriticalFinalizerObject itself is

abstract and has no implementation (see Listing 12-8). It is just yet another contract

between type system and the runtime. Runtime makes some precautions to make

executing critical finalizers possible in any circumstances. For example, it is JITting

critical finalizer code in advance, to avoid a situation when later on there is not enough

memory in an out-of-memory exception scenario.

Chapter 12 ObjeCt LIfetIme

757

Listing 12-8. Definition of CriticalFinalizerObject class (some attributes are

omitted for brevity)

public abstract class CriticalFinalizerObject

{

 [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]

 protected CriticalFinalizerObject()

 {

 }

 [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]

 ~CriticalFinalizerObject()

 {

 }

}

Because the undefined order of finalizers execution was sometimes problematic,

critical finalizers added some guarantees on that field also. As MSDN says: “the CLR

establishes a weak ordering among normal and critical finalizers: for objects reclaimed

by garbage collection at the same time, all the noncritical finalizers are called before any

of the critical finalizers. For example, a class such as FileStream, which holds data in

the SafeHandle class that is derived from CriticalFinalizerObject, can run a standard

finalizer to flush out existing buffered data.”

You will rarely need to define types derived directly from CriticalFinalizerObject.

More often, you use them via deriving from SafeHandle type (which derive from

them). However, because SafeHandle type is strictly related both with finalization and

Disposable pattern, it is described after both are presented later in this chapter.

 Finalization Internals
After learning about the meaning of finalizers, let’s now look at how they are currently

implemented in the runtime. So far, I put much effort to describe them mostly from

the semantic side - what they are designed for, what guarantees they provide, and

what limitations they introduce. However, it is also good to understand that their

implementation introduces yet another set of disadvantages. Getting to know them is the

main purpose of this section.

Chapter 12 ObjeCt LIfetIme

758

First of all, as already mentioned in Chapter 6, if a type has a finalizer, a slower

allocation path will be used - this is the first important overhead introduced just because

a type has Finalize method overridden.

If you would like to investigate slow-allocation path because of finalization in
CoreCLr source, start from jIt reaction on CEE_NEWOBJ opcode implemented in
jIt importer (importer.cpp:Compiler::impImportBlockCode).
It checks inside CEEInfo::getNewHelperStatic whether the type has
finalizer defined. If so, CORINFO_HELP_NEWFAST helper is chosen, which
is assigned at runtime start to the JIT_New function. Inside it, eventually
GCHeap::Alloc or GCHeap::AllocLHeap is called, which at the end contains
macro CHECK_ALLOC_AND_POSSIBLY_REGISTER_FOR_FINALIZATION. this
macro underneath calls CFinalize::RegisterForFinalization method -
responsible for the finalizable objects’ bookkeeping described afterward. as
mentioned earlier, although eCma-335 says that finalizers for boxed value types
will be called, it is no longer true. When jIt decides what function will represent
CORINFO_HELP_BOX helper, finalizer existence is not taken into consideration and
most often a fast, assembly-based JIT_BoxFastMP_InlineGetThread helper
is used that realizes a simple bump pointer allocation.

The GC must be aware of all finalizable objects, to call their finalizers when they

become unreachable. It records these objects on what’s called the finalization queue. In

other words, finalization queue at any moment contains a list of all finalizable objects

currently live. If there are many objects in the finalization queue, it does not necessarily

mean something bad happened - it means simply that currently there are many objects

with a finalizer defined.

During GC, at the end of Mark phase, GC checks the finalization queue to see if any of

the finalizable objects are dead. If they are some, they cannot be yet delete because their

finalizers will need to be executed. Hence, such object is moved to yet another queue called

fReachable queue. Its name comes from the fact that it represents finalization reachable (4)

objects - the ones that are now reachable only because of finalization. If there are any such

objects found, GC indicates to the dedicated finalizer thread there’s work to do.

4 Literature calls it “finalizer reachable,” but the mentioned name better aligns with the .NET naming.

Chapter 12 ObjeCt LIfetIme

759

Finalization thread is yet another thread created by the.NET runtime. It removes

objects from the fReachable queue one by one and calls their finalizers. This happens

after GC resumes managed threads because finalizer code may need to allocate objects.

Since the only root to this object is removed from the fReachable queue, the next GC that

condemns the generation this object is in will find it to be unreachable and reclaim it.

Please note, this introduces one of the biggest overhead related to the finalization: a

finalizable object by default survives for at least another GC. And if it gets promoted to

gen2, it means it would take a gen2 GC to reclaim it instead of a gen1 GC.

Moreover, fReachable queue is treated as a root considered during Mark phase (as

mentioned in Chapter 8) because the finalizer thread may not be fast enough to process

all objects from it between GCs. This exposes the finalizable objects more to a Mid-

life crisis - they may stay in fReachable queue for a while consuming generation 2 just

because of pending finalization.

To control such asynchronous nature of finalization processing, the GC.

WaitForPendingFinalizers method has been exposed. It does exactly what it sounds -

it blocks calling thread until all objects have been processed from fReachable queue

(that mean, all finalizers have been called). As a side effect, after its call all so-far

“finalization reachable” objects have become truly unreachable and thus, subsequent

GC will collect them.

This leads us to a very popular, common mantra of “the-ultimate-explicit-garbage-

collection” pattern (see Listing 12-9) - commonly used if we want to clean up memory

fairly accurately. Seemingly senseless at first glance, those calls have perfect sense:

• first explicit full-blocking GC discovers current set of fReachable

objects,

• the thread waits until the GC will process all fReachable objects,

making them really unreachable,

• second explicit full-blocking GC reclaims memory after them.

Listing 12-9. Common pattern of explicit GC, taking into account finalization

roots

GC.Collect();

GC.WaitForPendingFinalizers();

GC.Collect();

Chapter 12 ObjeCt LIfetIme

760

Obviously, if other threads are allocating finalizable objects during

WaitForPendingFinalizers method, at the moment of second GC.Collect call,

yet another set of fReachable objects may be discovered. This leads to a paradox -

seems we may never be able to fully reclaim memory (at least without aggressively

blocking all possibly-allocating threads in the process). This is perfectly visible in the

implementation of GC.GetTotalMemory method, returning the total number of bytes

currently in use by live objects (see Listing 12-10). If we want to get precise value, we

should pass true as its forceFullCollection argument. It then tries to get a true set of

currently live objects by triggering full GC and finalization waits multiple times - as long

as the result does not stabilize within a 5% change margin (with the maximum iterations

limit to not repeat this pattern indefinitely).

Listing 12-10. GC.GetTotalMemory implementation.

[System.Security.SecuritySafeCritical] // auto-generated

public static long GetTotalMemory(bool forceFullCollection) {

 long size = GetTotalMemory();

 if (!forceFullCollection)

 return size;

 // If we force a full collection, we will run the finalizers on all

 // existing objects and do a collection until the value stabilizes.

 // The value is "stable" when either the value is within 5% of the

 // previous call to GetTotalMemory, or if we have been sitting

 // here for more than x times (we don't want to loop forever here).

 int reps = 20; // Number of iterations

 long newSize = size;

 float diff;

 do {

 GC.WaitForPendingFinalizers();

 GC.Collect();

 size = newSize;

 newSize = GetTotalMemory();

 diff = ((float)(newSize - size)) / size;

 } while (reps-- > 0 && !(-.05 < diff && diff < .05));

 return newSize;

}

Chapter 12 ObjeCt LIfetIme

761

You can reuse such code from Listing 12-10 as “the-even-more-ultimate-explicit-

garbage-collection” pattern (or you may just call GC.GetTotalMemory(true) as long

as its implementation does not change). One may be even more aggressive, setting

 GCSettings.LargeObjectHeapCompactionMode to GCLargeObjectHeapCompactionMode.

CompactOnce before first or even each GC.Collect call.

It is thus worth remembering how costly GC.GetTotalMemory call can be in case of

forceFullCollection argument being true. In case of very dynamic memory usage

pattern, it may call full-blocking GC 20 times! Thus, in large and dynamic applications,

be prepared to wait even more than a second for this method result.

There is still one detail not explained so far - as previously said, during GC,

finalizable objects only from the condemned and younger generations are considered.

To explain it clearly - for example, when generation 1 GC is happening, only finalizable

objects from generations 0 and 1 will be considered in the finalization queue and moved

to fReachable queue if it becomes unreachable.

It requires a finalization queue to be generation aware - in which generation

does the currently considered object live? One could imagine checking each object

while finalization queue is being processed - in which generation address boundary

it lives within. But remember that generation 2 and LOH may live within multiple

segments, thus such check could be costly, consuming precious GC time. So instead,

the finalization queue is generational itself - it organizes objects addresses in separate

segments, one for each separate generation. Then, only given segments are considered

during a particular GC. And yes, it requires promotion or demotion of object addresses

between appropriate segments when corresponding objects are promoted or demoted!

Do you feel that, yet another one, additional overhead of finalization?

Both finalization and fReachable queues are currently implemented as a single, plain

array of object addresses (see Figure 12-1) - I will refer to it herein after as “finalization

array.” It is logically split into three areas:

• finalization part - further divided into four segments, for the three

generations and LOH,

• fReachable part - further divided into segments of object addresses

with critical and regular finalizers,

• free part - to be consumed by growing above segment.

Chapter 12 ObjeCt LIfetIme

762

Boundaries between segments are managed by yet another, short array of addresses

called fill pointers. Thus, browsing a finalization queue for a given generations is as easy

as accessing subsequent array elements within boundaries designated by appropriate

fill pointers. Promotion from finalization to fReachable queue means copying a given

address between segments (to the critical or normal part of fReachable area, depending

on the finalizer kind). The same as promotion or demotion means copying a given

address between source and target generation segments. And because the finalization

array is maintained without any gaps, such copying requires in fact shifting all addresses

between source and target array elements (and updating fill pointers accordingly).

As said before, a newly created object that contains the finalizer must be added to

the finalization queue - this is called registering for finalization. From an implementation

point of view, such object must be added to the gen0 segment inside finalization array

(and yes, this also requires shifting by one element all subsequent elements from Critical

and Normal fReachable segments). Because of that, there is a lock around finalization

queue access as multiple threads may modify it simultaneously (from its allocators).

Additionally, if the finalization array is full, a new 20% bigger copy will be created. This

all is obviously yet another overhead of finalization, directly impacting user threads by

possibly slowing down allocation - due to the lock usage and copying array elements.

Chapter 12 ObjeCt LIfetIme

763

There are two important finalization APIs exposed via GC class. Firstly, there is

GC.ReRegisterForFinalize(object) method that allows us to re-register for finalization

an object that has been already registered. We will see why it may be needed later in

this chapter. Underneath GC.ReRegisterForFinalize(object) method call exactly the

same runtime methods as used in regular registering for finalization during allocation -

thus calling it introduces some overhead similar to described above. However, it is most

commonly called from within a finalizer so its overhead is of less importance.

Secondly, in certain scenarios described later, it may be also useful to explicitly

disable executing finalizer of finalizable object - a process called suppressing finalization.

GC.SuppressFinalize(object) method exposes such functionality. Because it is

very often called from the user threads (as a part of Disposable pattern), it has been

highly optimized. It does not manipulate finalization array at all, as one could expect

(for example, by removing such address from it, that would require shifting a lot of

subsequent elements). By avoiding synchronized access to the finalization array, it is

Object*[]

Finalization queue fReachable queue

LOH gen2 gen1 gen0 Critical Normal

LOH segment SOH segment

gen2 gen1 gen0

segment limits
("fill pointers")

free

Figure 12-1. Finalization internals showing finalization and fReachable queues.
Only a few object references have been illustrated to not clutter this drawing too
much - in reality, all finalization array elements (except the free part) contain a
valid address of some object.

Chapter 12 ObjeCt LIfetIme

764

not exposed to the related overhead. Instead, such method sets a single bit in the object

header, which is obviously a very efficient operation. Afterward, Finalize method is just

not called by finalizer thread for objects with this bit set.

As previously explained, at the end of Mark phase, the GC checks objects for being

marked from the appropriate generation’s segments of finalization array. If an object is

not marked, its address is moved into Critical or Normal fReachable segment.

Later on, finalizer thread reads elements from those segments and updates their fill

pointers accordingly (so once read, object lies inside not further scanned “free part” and

becomes truly unreachable). With the current implementation, there is a single finalizer

thread, and there have been rumors about having multiple finalizer threads but they are

not confirmed by the CLR team. From an implementation point of view, it is perfectly

possible to have multiple finalizer threads reading and processing fReachable queue

items simultaneously.

If you would like to investigate source code of finalization in CoreCLr, start from
the CFinalize class that realizes the implementation described here. Instances
of this class are gc_heap::finalize_queue fields so in case of multiple
heaps (Server GC), there are in fact multiple finalization arrays (but still single
finalization thread). CFinalize keeps finalization array as m_Array field of
Object** type (array of Object pointers), while fill pointers are managed by
Object**[] m_FillPointers field (array of pointers to the finalization array
elements). at the beginning m_Array has 100 elements but is expanded by
CFinalize::GrowArray method (by creating a 20% bigger array and copying
all existing elements) as needed.

GC.SuppressFinalize method has very simple implementation, calling
GCHeap::SetFinalizationRun method that sets BIT_SBLK_FINALIZER_RUN
bit in the specified object header.

above-mentioned GCHeap::RegisterForFinalization method calls CFin
alize::RegisterForFinalization method that realizes described logic of
shifting appropriate elements (and calling GrowArray if needed) to store an object
address in the finalize queue.

Chapter 12 ObjeCt LIfetIme

765

During mark phase, CFinalize::GcScanRoots method is called that starts
marking from objects in both freachable segments (two last used m_Array
segments). at the end of mark phase, CFinalize::ScanForFinalization
method is called on proper segments (corresponding to condemned and younger
generations), that executes finalization promotion - by calling MoveItem with
appropriate parameters (depending on object having normal or critical finalizer). If
there are any freachable objects found, it signals hEventFinalizer event that
wakes up the finalizer thread processing. and eventually, at the end of the GC, CFi
nalize::UpdatePromotedGenerations method is called that checks current
generation of all objects in the finalization queue and moves them to proper
segment accordingly.

the finalizer thread main loop is implemented in FinalizerThread::Finaliz
erThreadWorker method. It indefinitely waits for hEventFinalizer event and
starts processing if signaled, by calling FinalizerThread::FinalizeAllOb
jects and FinalizerThread::DoOneFinalization (that calls Finalizer
method underneath, if BIT_SBLK_FINALIZER_RUN bit is not set).

Careful readers may ask - why are all those queues and dedicated thread used

instead of just calling finalizers from within the GC directly? This is a valid question.

Remember that finalizer is a user-defined code. Literally everything may be put there

by a programmer - including Thread.Sleep call for an hour. If the GC called finalizers

during its work, it would be blocked for an hour! Even worse, finalizer code could

introduce a deadlock and hence, the whole GC would become deadlocked. Executing

a user-defined code of finalizers from within the GC would make its pauses completely

unpredictable. It is thus much safer to process finalization asynchronously.

 Finalization Overhead

What order of magnitude is the finalization overhead? In a general case, it is not so

trivial to measure what is the cost of additional object promotion and overall finalization

queue handling during GC. We can, however, easily measure the overhead of the slower

path of allocation because of finalization handling. It can be done with the help of

BenchmarkDotNet simple benchmark of creating multiple finalizable or non-finalizable

objects (see Listing 12-11).

Chapter 12 ObjeCt LIfetIme

766

Listing 12-11. Simple benchmark to measure overhead of finalizable object

allocation

public class NonFinalizableClass

{

 public int Value1;

 public int Value2;

 public int Value3;

 public int Value4;

}

public class FinalizableClass

{

 public int Value1;

 public int Value2;

 public int Value3;

 public int Value4;

 ~FinalizableClass()

 {

 }

}

[Benchmark]

public void ConsumeNonFinalizableClass()

{

 for (int i = 0; i < N; ++i)

 {

 var obj = new NonFinalizableClass();

 obj.Value1 = Data;

 }

}

[Benchmark]

public void ConsumeFinalizableClass()

{

Chapter 12 ObjeCt LIfetIme

767

 for (int i = 0; i < N; ++i)

 {

 var obj = new FinalizableClass();

 obj.Value1 = Data;

 }

}

Results are eye opening (see Listing 12-12). Allocating the small finalizable object is

about 40 times slower than a regular one in such simple scenario (and indeed there are

gen1 GCs because of additional promotion)! Underlying JITed assembly code is identical

for both methods (with the exception of the allocator function called). This may not be

a problem if finalizable object is created rarely, but think twice before adding finalizer to

the object with high- allocation rate consumed in the performance-critical path of your

 application.

Listing 12-12. Results of BenchmarkDotNet benchmarks from Listing 12-11

(Gen 0 and Gen 1 columns show the average number of generation 0 and 1 GCs

per single test execution)

 Method | N | Mean | Gen 0 | Gen 1 | Allocated |

--------------------------- |----- |---------------:|-------:|-------:|----------:|

 ConsumeNonFinalizableClass | 1 | 2.777 ns | 0.0076 | - | 32 B |

 ConsumeFinalizableClass | 1 | 132.138 ns | 0.0074 | 0.0036 | 32 B |

 ConsumeNonFinalizableClass | 10 | 30.667 ns | 0.0762 | - | 320 B |

 ConsumeFinalizableClass | 10 | 1,342.092 ns | 0.0744 | 0.0362 | 320 B |

 ConsumeNonFinalizableClass | 100 | 316.633 ns | 0.7625 | - | 3200 B |

 ConsumeFinalizableClass | 100 | 13,607.436 ns | 0.7477 | 0.3662 | 3200 B |

 ConsumeNonFinalizableClass | 1000 | 3,244.837 ns | 7.6256 | - | 32000 B |

 ConsumeFinalizableClass | 1000 | 131,725.089 ns | 7.5684 | 3.6621 | 32000 B |

Knowing all the implementation details described so far, we can summarize

finalization as having the following disadvantages:

• it forces slower allocation by default, including the overhead of

manipulating finalization queue during allocation,

• it promotes finalizable object at least once by default, making Mid-

life crisis more likely,

Chapter 12 ObjeCt LIfetIme

768

• it introduces some overhead of finalizable objects handling even

while they are still alive - mostly keeping up-to-date generational

finalization list,

• may be dangerous if allocation rate of finalization objects is higher

than their finalization rate (see below scenario 12-1).

Scenario 12-1. Finalization Memory Leak
Description: Our application memory usage grows in time constantly. Both \.NET CLR

Memory\# Bytes in all Heaps and \.NET CLR Memory\Gen 2 heap size counters are

increasing. We would like to investigate such memory leak but nothing obvious is visible.

This scenario simulates a rather unusual but yet possible cause of the memory leak.

There is one subtle memory leak possibility. Because finalizers from fReachable

queue are executed sequential, it takes longer to process it when some finalizers are

slow to execute. If allocation rate of finalizable objects is higher than finalization rate,

the fReachable queue will grow, gathering all finalizable objects pending for finalization.

This is yet another one reason why finalization code should be as simple as possible.

Let’s re-create such an evil finalizers problem with the code from Listing 12- 13.

Sample application is creating finalizable objects much faster than finalizers are able

to run. Simulating a high-traffic scenario, when we already hitting the Mid-life crisis

problem, GC is happening very often.5

Listing 12-13. Experimental code showing memory leak because of finalization

public class LeakyApplication

{

 public void Run()

 {

 while (true)

 {

 Thread.Sleep(100);

 var obj = new EvilFinalizableClass(10, 10000);

 GC.KeepAlive(obj); // prevent optimizing out obj completely

5 For simplicity it happens on each iteration although we could call it, for example, periodically.
Such a little contrived example allows us to better illustrate some diagnostic problems.

Chapter 12 ObjeCt LIfetIme

769

 GC.Collect();

 }

 }

}

public class EvilFinalizableClass

{

 private readonly int finalizationDelay;

 public EvilFinalizableClass(int allocationDelay, int finalizationDelay)

 {

 this.finalizationDelay = finalizationDelay;

 Thread.Sleep(allocationDelay);

 }

 ~EvilFinalizableClass()

 {

 Thread.Sleep(finalizationDelay);

 }

We already know the reason of the leak but let’s see how it looks from the diagnostics

point of view. By the way, I hope we already know the solution also - just avoid finalizers and

when you really, really need them, take as much care as possible to make it fast and simple.

Analysis: Let’s start from the less intrusive and the easiest tool - performance counters.

When we look at such application behavior in time, indeed we will notice that generation

2 is growing constantly (see thin line in Figure 12-2). There are also two finalization-

related performance counters to look at:

• \.NET CLR Memory \Finalization Survivors - count of objects

surviving the last GC because of finalization (to be more precise - the

number of objects that were moved from finalization to fReachable

queue during last GC).

• \.NET CLR Memory\Promoted Finalization-Memory from Gen

0 - total size of objects surviving the last GC because of finalization

(so like above, total sum of objects that were moved from finalization

to fReachable queue). Please note an important fact - besides

the misleading name of this counter, it considers objects from all

collected generations, not only from generation 0.

Chapter 12 ObjeCt LIfetIme

770

remember that in the absence of performance counters, you can gain this
information from etW/LLtng events: GCHeapStats_V1 event contains
exactly the same values as FinalizationPromotedCount and
FinalizationPromotedSize fields accordingly.

But those two counters in Figure 12-2 are completely stable showing promotion of a

single object with a 24bytes size. It would not alarm us for sure during such application

monitoring. This is because GC happens after each object allocation, which means each

GC only promoted one finalizable object. Please note that those counters are related

to the allocation rate of finalization objects - the more such objects will be created, the

more will be promoted (because of finalization). Those counters do not depict what is

happening to those promoted objects.

Figure 12-2. Finalization-related Performance Counters

Chapter 12 ObjeCt LIfetIme

771

Unfortunately, there is no counter for finalization rate nor fReachable queue size.

Analyzing such problem as we have is very unpleasant because many tools do not

count fReachable queue into memory measurements at all - those objects were already

considered dead by user code and the fReachable queue is the only root. Some tools

will show EvilFinalizableClass instances as unreachable (if at all), which is not

alarming and typically we will not look for memory leak reasons there (after all, they are

unreachable so they could not be the cause of the problem, right?). Because of that, we

move directly into finalization problem analysis. However, a typical way of approaching

“gen2 size keeps increasing” problem would be to look to what’s holding onto objects in

gen2 (for example, by analyzing heap snapshot in PerfView or memory in WinDbg with

the help of SOS extension). We will look at such analyses soon also.

We can help ourselves in finalization monitoring with the finalization-related ETW

events from Microsoft-Windows-DotNETRuntime/GC group (recorded if standard .NET

option is used from PerfViews’s Collect dialog):

• FinalizersStart - emitted when finalizer thread wakes up after GC

to start finalization,

• FinalizeObject - emitted for each finalizable object processed by

finalization thread,

• FinalizersStop - emitted at the end of finalization current batch of

objects (when all objects from fReachable queue were processed).

Looking at those events in recorded PerfView session quickly reveals our problem

(see Figure 12-3). While there is a single and quick finalization run at the beginning of

the application, the subsequent one is clearly misbehaving - there is a 10second delay

between each finalizer execution! And until new EvilFinalizableClass instances will

be created, the finalization thread will never be able to catch up (thus, we won’t see

FinalizersStop event any more).

Chapter 12 ObjeCt LIfetIme

772

Obviously in a real-world application, such a problem will be more subtle. But

generally, long running finalization may be diagnosed in this way.

While observing the long finalization times is a useful clue, it would be much better

to observe the root cause - the growing fReachable queue. Unfortunately, currently

PerfView heap snapshots do not list fReachable queue roots,6 but only the finalization

queue (see Figure 12-4). Other tools, similarly, most often will list such objects simply as

unreachable, without the possibility to investigate fReachable queue directly.

6 There is an issue https://github.com/Microsoft/perfview/issues/722 created to fix that, so
you can track it whether it has been already fixed at the time of your reading.

Figure 12-3. Finalization-related ETW events

Figure 12-4. Roots in heap snapshots do not show fReachable queue.

Chapter 12 ObjeCt LIfetIme

https://github.com/Microsoft/perfview/issues/722

773

However, there is the possibility of a closer look at both the finalization queue

and fReachable queue using WinDbg. While during live debugging or memory dump

analysis, we may issue !finalizequeue SOS command (see Listing 12- 14), which will

provide very detailed information. As we can see, it informs both about “finalizable

objects” (with respect to generations as finalization queue is generational) and “ready for

finalization” objects that are nothing else than objects in fReachable queue. Clearly, we

see the problem - there are 5,175 fReachable objects in our case!

Listing 12-14. Using finalizequeue command from SOS to investigate

finalization queues

> !finalizequeue

SyncBlocks to be cleaned up: 0

Free-Threaded Interfaces to be released: 0

MTA Interfaces to be released: 0

STA Interfaces to be released: 0

generation 0 has 1 finalizable objects (000001751fe7e700->000001751fe7e708)

generation 1 has 0 finalizable objects (000001751fe7e700->000001751fe7e700)

generation 2 has 2 finalizable objects (000001751fe7e6f0->000001751fe7e700)

Ready for finalization 5175 objects (000001751fe7e708->000001751fe888c0)

Statistics for all finalizable objects (including all objects ready for

finalization):

 MT Count TotalSize Class Name

00007ffcee93c3e0 1 32 Microsoft.Win32.SafeHandles.

SafePEFileHandle

00007ffcee93d680 1 64 System.Threading.ReaderWriterLock

00007ffc93a35c98 5176 124224 CoreCLR.Finalization.

EvilFinalizableClass

Total 5178 objects

We may further investigate only fReachable queue by issuing command with an

additional -allReady parameter (see Listing 12-15). Now everything is clear and in line

with our expectations, there are 5,175 instances of EvilFinalizableClass. Having so

many fReachable objects is rather alarming. We could additionally confirm that as a

problem by taking further dumps and see whether this number is growing.

Chapter 12 ObjeCt LIfetIme

774

Listing 12-15. Using finalizequeue command from SOS to investigate only

fReachable queue

> !finalizequeue -allReady

SyncBlocks to be cleaned up: 0

Free-Threaded Interfaces to be released: 0

MTA Interfaces to be released: 0

STA Interfaces to be released: 0

generation 0 has 1 finalizable objects (000001751fe7e700->000001751fe7e708)

generation 1 has 0 finalizable objects (000001751fe7e700->000001751fe7e700)

generation 2 has 2 finalizable objects (000001751fe7e6f0->000001751fe7e700)

Finalizable but not rooted:

Ready for finalization 5175 objects (000001751fe7e708->000001751fe888c0)

Statistics for all finalizable objects that are no longer rooted:

 MT Count TotalSize Class Name

00007ffc93a35c98 5175 124200 CoreCLR.Finalization.EvilFinalizableClass

Total 5175 objects

Please also note address ranges of corresponding finalizable objects segments from

the underlying finalization array (given in parentheses). We can dump content of this

array within given ranges to get concrete finalizable object references (see Listing 12-16

showing the range of fReachable queue).

Listing 12-16. Seeing the content of fReachable queue

> dq 000001751fe7e708 000001751fe888c0

...

00000175`1fe88888 00000175`21850358 00000175`21850388

00000175`1fe88898 00000175`218503b8 00000175`218503e8

00000175`1fe888a8 00000175`21850418 00000175`21850448

00000175`1fe888b8 00000175`21850478 00000175`2182ae28

> !do 00000175`2182ae28

Name: CoreCLR.Finalization.EvilFinalizableClass

MethodTable: 00007ffc93a35c98

EEClass: 00007ffc93b41208

Size: 24(0x18) bytes

...

Chapter 12 ObjeCt LIfetIme

775

Similar analysis may be performed with the help of SOSEX extension, by issuing finq

and frq commands for investigation finalization and fReachable queues accordingly

(see Listing 12-17). I’m referring to it here because the output of those commands seems

to be a little nicer than from their SOS counterpart.

Listing 12-17. Using finq and frq commands from SOSEX to investigate both

finalization queues

> .load g:\Tools\Sosex\64bit\sosex.dll

> !finq -stat

Generation 0:

 Count Total Size Type

 1 24 CoreCLR.Finalization.EvilFinalizableClass

1 object, 24 bytes

Generation 1:

0 objects, 0 bytes

Generation 2:

 Count Total Size Type

 1 32 Microsoft.Win32.SafeHandles.SafePEFileHandle

 1 64 System.Threading.ReaderWriterLock

2 objects, 96 bytes

TOTAL: 3 objects, 120 bytes

> !frq -stat

Freachable Queue:

 Count Total Size Type

 5175 124200 CoreCLR.Finalization.EvilFinalizableClass

5,175 objects, 124,200 bytes

Currently the !mex.finalizable command in meX WinDbg extension seems to
be not listing freachable objects properly in case of .Net Core apps.

Chapter 12 ObjeCt LIfetIme

776

 Resurrection
There is one very interesting topic related to the finalization. As we already know, the

finalizer is called when the only object’s root is the fReachable queue. Finalizer thread is

calling Finalize method and afterward, its reference is removed from the queue. Thus, it

becomes unreachable and will be collected in the next GC that collects that generation.

But any user code is allowed in Finalize method, which is an instance method

(having access to this). Thus, nothing can stop us from assigning an object’s own

reference (this) to some globally accessible (like static) root - and of all a sudden our

object becomes reachable again (see Listing 12-18)! This is called resurrection and is

inherently related with the fact that finalizer is an uncontrolled user code.

Listing 12-18. Example of object resurrection (not fully correct)

class FinalizableObject

{

 ~FinalizableObject()

 {

 Program.GlobalFinalizableObject = this;

 }

}

Object that just was to be collected, becomes a normal reachable object again. Now

its global reference (like Program.GlobalFinalizableObject in our example) is the only

root, but of course it may further expand to other roots if we wish it to.

But what happens if the resurrected object becomes unreachable again? Will it

be collected or resurrected again? To answer that question, let’s recall that registering

for finalization happens during object allocation. After finalizer has been executed,

object reference disappears from the fReachable queue. Resurrection does not put it

again in finalization queue, so when FinalizableObject instance from Listing 12-18

becomes unreachable the second time, its finalizer will not be called - it is simply not in

a finalization queue to be discovered!

But when using resurrection, most commonly we would like to resurrect an object

always, not only once. Thus, already mentioned GC.ReRegisterForFinalize method

must be used to register an object for finalization once again (see Listing 12-19). After

doing so, we are creating an immortal object - it will never be garbage collected. Please

Chapter 12 ObjeCt LIfetIme

777

note this is not entirely true for the simplified example from Listing 12-19 because we

may create multiple instances of FinalizableObject class and there will be a race

condition - only the last finalized object will be re-registered for finalization and thus

properly resurrected!

Listing 12-19. Example of object resurrection (corrected Listing 12-18)

class FinalizableObject

{

 ~FinalizableObject()

 {

 Program.GlobalFinalizableObject = this;

 GC.ReRegisterForFinalize(this);

 }

}

Resurrection is not a very popular technique. It is rarely used even in Microsoft’s own

code. This is because it plays with an object’s lifetime in a hidden way. It is a finalization

on steroids - taking all its disadvantages and doubling them.

One could imagine an object pooling based on resurrection - finalizer may be

responsible for returning an object to some shared pool (resurrecting it), like in

Listing 12-20. But the EvilPool name and missing implementation details are

there not without a reason. There are much better ways how an object pool may be

implemented, based on explicit pool management (like in ArrayPool<T> showed in

Chapter 6). There is no special advantage of making such a pool management implicit.

Keeping in mind every caveat of implementing finalizers, not using them is often the

best solution (especially if simpler alternatives exist). Please feel invited, however, to

implement EvilPool on your own as an exercise, regardless of its practical usage - it is

a lot of learning fun!

Listing 12-20. Example of practical object resurrection

public class EvilPool<T> where T : class

{

 static private List<T> items = new List<T>();

 static public void ReturnToPool(T obj)

Chapter 12 ObjeCt LIfetIme

778

 {

 // ...

 // Add obj to items

 GC.ReRegisterForFinalize(obj);

 }

 static public T GetFromPool() { ... }

}

public class SomeClass

{

 ~SomeClass()

 {

 EvilPool<SomeClass>.ReturnToPool(this);

 }

}

Each object defining a finalizer is exposed to calls of GC.ReRegisterForFinalize

and GC.SuppressFinalize methods because they expect just a plain object argument

(internally checking whether indeed such object has finalizer defined). It means, we may

play with the object resource management, by having some control over how its finalizer

is being called. This may be undesirable for some objects. One good example is System.

Threading.Timer type, which provides a mechanism for period method execution on a

thread pool, at specified intervals. Finalization related to Timer that tells the thread pool

to cancel the timer. So, for example, by calling GC.SuppressFinalize on such object, we

are controlling the timer behavior in an unusual way - it would be never stopped. This

may be or may not be a poor design decision. But in most such scenarios, it is rather

unexpected that we control internal behavior of an object in such way.

If we really want to rely on finalization but do not want to expose our type to such

problems, we should exclude the possibility to temper with our finalizer. The first step is

making our class sealed, to not allow overriding Finalize in derived class. The second

step is to introduce some helper, or finalizable object, that is responsible for finalization

of our main object. Exactly such approach was chosen during System.Threading.Timer

type implementation. Simplified form of such approach is presented in Listing 12-21.

Internal, private class TimerHolder holds a reference to our main Timer object. When

Chapter 12 ObjeCt LIfetIme

779

Timer instance becomes unreachable, so timerHolder field does - triggering its finalizer

that is responsible for cleaning parent object (please note that part of Disposable pattern

is included in this example).

Listing 12-21. Simplified Timer class implementation (using nested finalizable

object)

public sealed class Timer : IDisposable

{

 private TimerHolder timerHolder;

 public Timer()

 {

 timerHolder = new TimerHolder(this);

 }

 private sealed class TimerHolder

 {

 internal Timer m_timer;

 public TimerHolder(Timer timer) => m_timer = timer;

 ~TimerHolder() => m_timer?.Close();

 public void Close()

 {

 m_timer.Close();

 GC.SuppressFinalize(this);

 }

 }

 public void Close()

 {

 Console.WriteLine("Finalizing Timer!");

 }

 public void Dispose()

 {

 timerHolder.Close();

 }

Chapter 12 ObjeCt LIfetIme

780

In that way we are introducing finalization without publicly exposing it - Timer is not

finalizable by itself! GC.SuppressFinalize and GC.ReRegisterForFinalize cannot be

called on it.

Does it make sense to call GC.ReRegisterForFinalize in resurrection
scenarios when resurrected object is not assigned to any root (for example, without
Program.GlobalFinalizableObject = this code in Listing 12-19)?
absolutely! What will happen then? re-registered object will land in finalization
queue to be processed in the next GC. and the whole cycle begins again - it will
be promoted to freachable queue and its finalizer will be eventually called... again
resurrecting such object. We may create that way an immortal object that will be
ever only referenced by the finalization queues. One example why it may be useful
is presented in the Listing 12-37 later in this chapter. however, more often such
re-registering for finalization is optional - that way we may trigger finalizer code
multiple times (if finalization logic is so complicated or crucial that it makes sense
to do it). but please remember - this is absolutely not a design pattern you should
follow. just be aware that this such possibility exists.

 Disposable Objects
So far a lot of words have been spoken about non-deterministic finalization. Let’s now

move to the preferred way of resources cleanup - deterministic, explicit finalization. It is

conceptually much simpler than non-deterministic finalization using finalizers - and it

makes it one of their strongest advantages. There are no so many finalization caveats and

disadvantages. In fact, conceptually there are just only two methods:

• one for initialization - used to create and store resources. In case of

.NET this is obviously runtime-supported constructor, called during

object allocation.

• one for cleanup - used to release resources. In case of .NET there is

no runtime-supported method for it. Your mileage may vary how to

name it.

Chapter 12 ObjeCt LIfetIme

781

Combing back to the simple FileWrapper class from Listing 12-1, getting rid of

finalization and introducing explicit cleanup, we will end in code similar to Listing 12-22.

Cleanup method is just a regular method to be called and it releases all relevant resources

inside. Additional UseMe method has been added, compared to Listing 12-1, for further

the purpose of examples.

Listing 12-22. Simple example of using explicit cleanup

class FileWrapper

{

 private IntPtr handle;

 public FileWrapper(string filename)

 {

 Unmanaged.OFSTRUCT s;

 handle = Unmanaged.OpenFile(filename, out s, 0x00000000);

 }

 // Cleanup

 public void Close()

 {

 if (handle != IntPtr.Zero)

 Unmanaged.CloseHandle(handle);

 }

 public int UseMe()

 {

 byte[] buffer = new byte[1];

 if (Unmanaged.ReadFile(this.handle, buffer, 1, out uint read,

IntPtr.Zero))

 {

 return buffer[0];

 }

 return -1;

 }

Chapter 12 ObjeCt LIfetIme

782

World is so simple when using explicit cleanup (see Listing 12-23). Everything is

executed in visible order so there are no surprises here. All object usage is enclosed by

its initialization (constructor) and cleanup methods so early root collection will not kick

us back here either. We perfectly know when an underlying resource is allocated and

released.

Listing 12-23. Usage of FileWrapper from Listing 12-22

var file = new FileWrapper(@"C:\temp.txt");

Console.WriteLine(file.UseMe());

file.Close();

If this approach is so ideal, why did someone even bother to invent an alternative?

Obviously, this approach has one huge disadvantage - programmer must remember to

call cleanup method. If it fails to do so, we will leak our (probably limited) resource.

To help with that, explicit cleanup has been standardized in C# by introducing

IDisposable interface. Its definition is more than trivial (see Listing 12- 24). It is a contract

that simply says, “I have something that should be cleaned up when I finish my work.”

Listing 12-24. IDisposable interface declaration

namespace System {

 public interface IDisposable {

 void Dispose();

 }

}

Thus, following this design, FileWrapper from Listing 12-24 should implement

IDisposable interface and its Dispose implementation should call Close method (or it

should replace it as in Listing 12-25).

Listing 12-25. Simple example of using explicit cleanup with IDisposable

interface

class FileWrapper : IDisposable

{

 private IntPtr handle;

 public FileWrapper(string filename)

Chapter 12 ObjeCt LIfetIme

783

 {

 Unmanaged.OFSTRUCT s;

 handle = Unmanaged.OpenFile(filename, out s, 0x00000000);

 }

 // Cleanup

 public void Dispose()

 {

 if (handle != IntPtr.Zero)

 Unmanaged.CloseHandle(handle);

 }

 public int UseMe()

 {

 byte[] buffer = new byte[1];

 if (Unmanaged.ReadFile(this.handle, buffer, 1, out uint read,

IntPtr.Zero))

 {

 return buffer[0];

 }

 return -1;

 }

Having such a well-established contract helps in various manual and automatic

code reviews. If someone creates instance of type implementing IDisposable interface

(hereinafter simply called disposable object) but never calls its Dispose method, it is a

great candidate to be banished. Especially various automatic tools may help here (like

ReSharper).

as said in IDisposable interface comment: “this interface could be theoretically
used as a marker by a compiler to ensure a disposable object has been cleaned
up along all code paths if it’s been allocated in that method, though in practice any
compiler that draconian may tick off any number of people.”

Chapter 12 ObjeCt LIfetIme

784

Because language relying on external tools does not sound impressive, C#

standardization of explicit cleanup went even further by introducing the using clause. It

is yet another simple construct that relieves us from the need to manually call Dispose

(see Listing 12-26).

Listing 12-26. Example of using clause

public static void Main()

{

 using (var file = new FileWrapper())

 {

 Console.WriteLine(file.UseMe());

 }

}

Using clause is translated by C# compiler into corresponding try-finally block, in

which Dispose method will be called inside finally block (see Listing 12-27). Note that it

also gives us confidence that early root collection will not collect an object instance too

early, because its Dispose method is called at the end.

Listing 12-27. Resulting code of using clause (from Listing 12-26)

public static void Main()

{

 FileWrapper fileWrapper = new FileWrapper();

 try

 {

 Console.WriteLine(file.UseMe());

 }

 finally

 {

 if (fileWrapper != null)

 {

 ((IDisposable)fileWrapper).Dispose();

 }

 }

}

Chapter 12 ObjeCt LIfetIme

785

However, even having using clause does not guarantee that programmers will be

using it. In other words, still nothing stops them from simply instantiating disposable

objects and forgetting to call its Dispose method. Using clause is just a good practice.

If from your resource management perspective cleanup code is crucial (and most

probably it is), you have namely two possible approaches:

• Be polite and ask your programmers to always call Dispose method

of disposable objects - although it sounds a little ridiculous, in

fact it is the preferred way. Already-mentioned tools can help you,

especially if the requirement is even stronger - that disposable object

is always used within using clause. It can be easily discovered and,

for example, a pull request may not be accepted if it contains such

misbehaving code.

• Create a safety net by utilizing finalizer to call Dispose - this is a

quite popular approach. If Dispose was not called explicitly, finalizer

will call it on our behalf. There is only one drawback - we are using

finalizers while generally it is good to avoid them. Such simple,

protecting finalizer code may be really simple so we can assume that

there are not so many finalizer-related implementation problems

related with it. But still, we are introducing a little overhead of slower

allocation and need to maintain one more object in finalization

queue. Be sure then that you are using such an approach for

something important.

When using the second approach, if the only finalizer’s responsibility is to clean up

resources by calling Dispose, it not need be called if the well- behaving programmer

already called Dispose explicitly. Exactly for that purpose an already-mentioned

GC.SuppressFinalize method was introduced - it disables calling finalizer of the object.

This leads to very popular pattern, where Dispose method calls GC.SuppressFinalize

as a finalizer is no longer needed. Very concise example of such approach may be found

inside System.Reflection library in the form of abstract CriticalDisposableObject

(see Listing 12-28). It implements critically a finalizable object that uses a finalizer as

such a safety net call.

Chapter 12 ObjeCt LIfetIme

786

Listing 12-28. System.Reflection internal type CriticalDisposableObject

namespace System.Reflection.Internal

{

 internal abstract class CriticalDisposableObject :

CriticalFinalizerObject, IDisposable

 {

 protected abstract void Release();

 public void Dispose()

 {

 Release();

 GC.SuppressFinalize(this);

 }

 ~CriticalDisposableObject()

 {

 Release();

 }

 }

}

Generally, using both explicit cleanup in the form of IDisposable and protecting,

implicit cleanup in the form finalization has developed into a form of so-called

Disposable pattern (or IDisposable pattern). It is a little more structured way of

combining those both approaches (see Listing 12-29). Disposable pattern may be seen

as almost standard in the .NET world. The main difference is the introduction of a

virtual Dispose method that is both used from finalizer (with its disposing argument

set to false) and from explicit Dispose method (with disposing parameter set to true).

Deriving classes are then able to add their own specific cleanup code, while still the

whole finalization logic stays. Additionally, a dedicated disposed field prevents multiple

disposal of such object. Each public method should check this flag and (typically) throw

ObjectDisposedException to inform that this instance should not be longer used.

Chapter 12 ObjeCt LIfetIme

787

Listing 12-29. Simple example of using both implicit and explicit cleanup with

IDisposable pattern

class FileWrapper : IDisposable

{

 private bool disposed = false;

 private IntPtr handle;

 public FileWrapper(string filename)

 {

 Unmanaged.OFSTRUCT s;

 handle = Unmanaged.OpenFile(filename, out s, 0x00000000);

 }

 // Cleanup

 protected virtual void Dispose(bool disposing)

 {

 if (!disposed)

 {

 if (disposing)

 {

 // Put here code required only in case of explicit Dispose call

 }

 // Common cleanup - including unmanaged resources

 if (handle != IntPtr.Zero)

 Unmanaged.CloseHandle(handle);

 disposed = true;

 }

 }

 ~FileWrapper()

 {

 Dispose(false);

 }

Chapter 12 ObjeCt LIfetIme

788

 public void Dispose()

 {

 Dispose(true);

 GC.SuppressFinalize(this);

 }

 public int UseMe()

 {

 if (this.disposed) throw new ObjectDisposedException("...");

 byte[] buffer = new byte[1];

 if (Unmanaged.ReadFile(this.handle, buffer, 1, out uint read,

IntPtr.Zero))

 {

 return buffer[0];

 }

 return -1;

 }

}

Disposable objects and using a clause may be also used to realize simple
reference counting techniques, like in the Listing 7-3 from Chapter 7. Dedicated
helper class is introduced, used within a using clause. Its constructor adds
a reference counter, while Dispose method decrements it. If it hits zero,
target object cleanup is triggered. Obviously, we may be double protected by
incorporating whole Disposable pattern to such class, making sure that the cleanup
will happen even if the reference counting logic misbehaved.

Generally, giving a voice to IDisposable interface comment from .NET sources,

implemented Dispose method should meet the following criteria:

• Be safely callable multiple times,

• Release any resources associated with the instance,

• Call the base class’s Dispose method, if necessary,

Chapter 12 ObjeCt LIfetIme

789

• Suppress finalization of this class to help the GC by reducing the

number of objects on the finalization queue,7

• Dispose shouldn’t generally throw exceptions, except for very serious

errors that are particularly unexpected. (i.e., OutOfMemoryException).

After all those words said about IDisposable, disposable objects and Disposable

patterns, please, remember - they have nothing directly in common with the GC!

Dispose method is not reclaiming object’s memory, it is not killing them, and so on,

so forth. If you were to remember only one thing from this part of the chapter, just

remember it. As you noticed, almost nothing about the runtime (besides mentioning

finalization) was mentioned here. Disposable objects are implemented purely on the

language level.

 Safe Handles
Implementing finalizers have many caveats. Most of the time, unmanaged resources

are represented simply by some handle or pointer - thus IntPtr type. Those two facts

lead to introducing a new type helping to deal with unmanaged resources. In .NET

Framework 2.0, together with critical finalizers, a SafeHandle object was introduced

built on top of it. They were introduced as a much better alternative to the previously

mentioned approaches of managing system resources (including finalizers, bare IntPtr,

and HandleRef). As said, it comes from the observation that almost all handles may be

represented as IntPtr, thus it wraps them with an additional default behavior and the

support from the runtime itself.

So instead of implementing a finalizer, the preferred and suggested alternative is

to create a type that derives from the abstract System.Runtime.InteropServices.

SafeHandle class (see Listing 12-30) and use it as handle wrapper. Having much of

the logic already implemented, we are less exposed to any problem we may introduce

implementing our own finalization logic. As we may see, SafeHandle is critically

finalizable and implements Disposable pattern. Both its Dispose and Finalize logic is in

fact internal (implemented in the runtime itself).

7 As explained earlier, suppressing finalization logic is trivial, based only on setting a single bit in
an object header. Thus, we should not be afraid of its overhead (for example, by calling it twice
on the same object both from the derived as well as from the base class).

Chapter 12 ObjeCt LIfetIme

790

Listing 12-30. Fragments of the SafeHandle class (a lot of code, including

members attributes, are omitted for brevity)

public abstract class SafeHandle : CriticalFinalizerObject, IDisposable

{

 protected IntPtr handle; // this must be protected so derived classes

can use out params.

 private int _state; // Combined ref count and closed/disposed flags

(so we can atomically modify them).

 ~SafeHandle()

 {

 Dispose(false);

 }

 public void Dispose() {

 Dispose(true);

 }

 protected virtual void Dispose(bool disposing)

 {

 if (disposing)

 InternalDispose();

 else

 InternalFinalize();

 }

 [MethodImplAttribute(MethodImplOptions.InternalCall)]

 extern void InternalFinalize();

 [MethodImplAttribute(MethodImplOptions.InternalCall)]

 private extern void InternalDispose();

 public abstract bool IsInvalid { get; }

 protected abstract bool ReleaseHandle();

}

Chapter 12 ObjeCt LIfetIme

791

InternalDispose and InternalFinalize methods are implemented by
SafeHandle::DisposeNative and SafeHandle::Finalize respectively in
CoreCLr code. both SafeHandle::DisposeNative and SafeHandle::Finalize
calls SafeHandle::Dispose that calls SafeHandle::Release - the main horse-
work method. It calls IsInvalidHandle managed method and if it is true, it calls
managed ReleaseHandle method (via SafeHandle::RunReleaseMethod).

Special treatment from the runtime gives SafeHandle more than just being a good

design practice. What is the most important, CLR treats instances of this class in special

way during P/Invoke calls - it is protected from being garbage collected (like HandleRef),

and for security reasons it implements reference counting semantics. It means each such

P/Invoke call has JITed logic to increment an internal reference counter and decrement

it at the end of the call. Only instances with a zeroed reference counter will release their

handle. And only for zeroed reference counter explicit cleanup will it indeed release the

resource. This prevents so-called malicious handle-recycling attack (see note below).

Handle-recycling attack.

there is a subtle security flaw possible with bare usage of system handles (like the
most popular IntPtr representation used so far in FileWrapper examples). In
case of Windows, system handles are reused (recycled) aggressively - because they
are treated as a very limited, system-wide resource. So-called handle-recycling
attack may be used inside a single .Net process to get an elevated privilege from
an untrusted thread (with limited security permissions) to the handle otherwise
accessible only from fully trusted thread. Such attack may be used when a
managed object holding a handle provides some explicit termination method, like
in popular Disposable pattern. attacking, untrusted thread may explicitly clean up
such resource (closing underlying handle, but still remembering handle value) while
it is being used by other threads. those other threads will most probably experience
some kind of state corruption errors because suddenly their handle was closed.
moreover, simultaneously, other full-trusted thread may have just opened a new
resource and received the same, recycled handle value. attacking thread has now
handle value pointing to a new resource, possibly not otherwise accessible to it.

Chapter 12 ObjeCt LIfetIme

792

Thus, using SafeHandles provides many advantages over their alternatives:

• They are critically finalizable, making them more reliable than

regular finalizers, without the necessity to write custom finalizers

code - which removes from the programmer the obligation to avoid

multiple finalization code dangers.

• They are minimal wrappers around unmanaged resource (handle) -

this eliminates the risk of creating large objects with numerous

dependencies that will be promoted due to finalization.

• Our object does not need to be finalizable at all - when an object

holding and using SafeHandle-derived object becomes unreachable,

such wrapper will become also unreachable. So eventually its

finalizer will be called, releasing the handle.

• Better lifetime management - special treatment from the GC during

P/Invoke calls keeps them alive, instead of GC.KeepAlive magic or

using HandleRef.

• Strongly typing instead of using pure IntPtr because there are

multiple SafeHandle-derived types for various resources - so P/

Invoke APIs are not cluttered with meaningless IntPtr handles. You

will not be able to pass file handle to Mutex API, and so on, so forth.

• Better security by preventing handle-recycling attack.

Unfortunately, besides long existence in .NET ecosystem, SafeHandles seem to

be still quite unpopular in regular code (while its usage in framework itself is quite

common). Most often people tend to use plain finalization logic, even when wrapping

around simple IntPtr handles.

If you are interested how jIt is handling special treatment of SafeHandle,
start from the ILSafeHandleMarshaler::ArgumentOverride method.
It underneath calls SafeHandle::AddRef and SafeHandle::Release
respectively around p/Invoke call.

Chapter 12 ObjeCt LIfetIme

793

Meanwhile, defining SafeHandle-based types is trivial. When you inherit from

SafeHandle, you must override only two members: IsInvalid and ReleaseHandle.

There are even two more specialized abstract classes created for convenience:8

SafeHandleMinusOneIsInvalid and SafeHandleZeroOrMinusOneIsInvalid that provide

trivial IsInvalid implementations (with checks suggested by their names).

In derived class we have access to the protected IntPtr handle, we can also set it

via SetHandle method. To improve FileWrapper, we first need to create our custom file

SafeHandle (see Listing 12-31). The core logic in SafeHandle- derived class lies in its

constructor (allocating handle) and implementation of ReleaseHandle method.

Listing 12-31. Example implementation of SafeHandle-derived class

class CustomFileSafeHandle : SafeHandleZeroOrMinusOneIsInvalid {

 // Called by P/Invoke when returning SafeHandles. Valid handle value

will be set afterwards.

 private CustomFileSafeHandle() : base(true)

 {

 }

 // If and only if you need to support user-supplied handles

 internal CustomFileSafeHandle (IntPtr preexistingHandle, bool

ownsHandle) : base(ownsHandle)

 {

 SetHandle(preexistingHandle);

 }

 internal CustomFileSafeHandle(string filename) : base(true)

 {

 Unmanaged.OFSTRUCT s;

 IntPtr handle = Unmanaged.OpenFile(filename, out s, 0x00000000);;

 SetHandle(handle);

 }

8 They are introduced to provide a standardized way of consuming handles as most often indeed
those values are treated as invalid handles.

Chapter 12 ObjeCt LIfetIme

794

 override protected bool ReleaseHandle()

 {

 return Unmanaged.CloseHandle(handle);

 }

Such handle may be then used as a field of our new, improved FileWrapper class

(see Listing 12-32). It still implements Disposable pattern like in Listing 12-29. But

because now it does not contain unmanaged resources (as unmanaged file handle is

hidden inside CustomFileSafeHandle field), finalizer is not necessary. Explicit cleanup

will dispose our handle, but in case of forgetting to do it, CustomFileSafeHandle finalizer

will do it instead of us.

Listing 12-32. Simple example of using SafeHandle-based resources

public class FileWrapper : IDisposable

{

 private bool disposed = false;

 private CustomFileSafeHandle handle;

 public FileWrapper(string filename)

 {

 Unmanaged.OFSTRUCT s;

 handle = Unmanaged.OpenFile(filename, out s, 0x00000000);

 }

 public void Dispose()

 {

 if (!disposed)

 {

 handle?.Dispose();

 disposed = true;

 }

 }

 public int UseMe()

 {

 byte[] buffer = new byte[1];

Chapter 12 ObjeCt LIfetIme

795

 if (Unmanaged.ReadFile(handle, buffer, 1, out uint read, IntPtr.Zero))

 {

 return buffer[0];

 }

 return -1;

 }

}

Please note that OpenFile and ReadFile P/Invoke calls visible in Listing 12-32

are returning and accepting CustomFileSafeHandle (see Listing 12-33). It is possible

because P/Invoke marshaling mechanism is able to treat SafeHandle- derived class

as IntPtr underneath. But it gives us above-mentioned type safety regarding using

handles.

Listing 12-33. P/Invoke methods consuming SafeHandle-based handles

public static class Unmanaged

{

 [DllImport("kernel32.dll", BestFitMapping = false, ThrowOnUnmappableChar

= true)]

 public static extern CustomFileSafeHandle OpenFile2([MarshalAs(Unmanaged

Type.LPStr)]string lpFileName,

 out OFSTRUCT lpReOpenBuff,

 long uStyle);

 [DllImport("kernel32.dll", SetLastError = true)]

 public static extern bool ReadFile(CustomFileSafeHandle hFile,

[Out] byte[] lpBuffer, uint nNumberOfBytesToRead, out uint

lpNumberOfBytesRead, IntPtr lpOverlapped);

 ...

}

In our example, we even do not need to define custom SafeHandle for file handles.

Various predefined safe handles are already implemented for typical resources:

• SafeFileHandle - safe handle for a file handles,

• SafeMemoryMappedFileHandle and SafeMemoryMappedViewHandle -

safe handle related to memory-mapped file handles,

Chapter 12 ObjeCt LIfetIme

796

• SafeNCryptKeyHandle, SafeNCryptProviderHandle, and

SafeNCryptSecretHandle - safe handles for cryptographic resources,

• SafePipeHandle - safe handle for named pipes handles,

• SafeProcessHandle - safe handle for process,

• SafeRegistryHandle - safe handles for registry keys,

• SafeWaitHandle - safe wait handle (used for synchronization).

If you are interested in intrinsic (runtime) part of SafeHandle implementation,
investigate CoreCLr .\src\vm\safehandle.cpp file.

If some part of your unmanaged-related code really needs to use IntPtr instead

of SafeHandle, you can get underlying raw handle by DangerousGetHandle method.

Please note however that it exposes it to the leakage as plain IntPtr is not tracked in any

way. Thus, you should guard using raw handle from SafeHandle by reference counting

approach - you inform SafeHandle about such usage by calling DangerousAddRef and

DangerousRelease method (implementing reference counting approach).

A large awareness of the existence of finalizers is in fact not so desirable. We should

rarely see and even more rarely need to write our custom finalizers. The most use cases

may be handled by SafeHandle approach.

 Weak References
There is one type of handle available but not-yet described that realizes a very interesting

type of root - so-called weak handle. Conceptually a weak handle is very simple - it

stores a reference to an object, but is not treated as a root (it does not make such object

reachable). In other words, during Mark phase the GC does not scan weak handles

to decide the lifetime of objects. Weak handles are “live” as long as target object is

reachable, but they are zeroed when it becomes unreachable.

Chapter 12 ObjeCt LIfetIme

797

There are in fact two types of weak handles:

• short weak handles - they are zeroed before finalizers run, when GC

decides the object is dead. For example, even if finalizer resurrects an

object, such handle will remain zeroed.

• long weak handles - their target still remains valid when the object is

promoted due to finalization. For example, if finalizer resurrects an

object, such handle will remain valid (pointing to the same object).

Thus, they are said to track resurrection.

Let’s create a very simple class used in the following examples, with an optional

resurrection implemented (see Listing 12-34).

Listing 12-34. A class-implementing resurrection in its finalizer

public class LargeClass

{

 private readonly bool ressurect;

 public LargeClass(bool ressurect) => this.ressurect = ressurect;

 ~LargeClass()

 {

 if (ressurect)

 {

 GC.ReRegisterForFinalize(this);

 }

 }

}

We create weak handles by using GCHandle.Alloc with GCHandleType.Weak or

GCHandleType.WeakTrackResurrection type (see Listings 12-35 and 12-36). Its Target

property points to the target object or is null if target was already collected (taking

resurrection into consideration or not).

Listing 12-35. Example of short weak handle usage

var obj = new LargeClass(ressurect: true);

GCHandle weakHandle = GCHandle.Alloc(obj, GCHandleType.Weak);

GC.Collect();

Chapter 12 ObjeCt LIfetIme

798

GC.WaitForPendingFinalizers();

GC.Collect();

Console.WriteLine(weakHandle.Target ?? "<null>"); // prints <null>

Listing 12-36. Example of long weak handle usage

var obj = new LargeClass(ressurect: true);

GCHandle weakHandle = GCHandle.Alloc(obj, GCHandleType.

WeakTrackResurrection);

GC.Collect();

GC.WaitForPendingFinalizers();

GC.Collect();

Console.WriteLine(weakHandle.Target ?? "<null>"); // prints CoreCLR.

Finalization.LargeClass

We may say that short weak handle is zeroed for the first time an object is to be

collected (although it may be resurrected), while long weak handle is zeroed when an

object is eventually truly collected.

But why would anyone need something as strange as weak reference? There are two

main general situations when they are useful:

• Various types of observers and listeners (like events) - you want to

keep reference to an object as long as it is used by someone else.

However, we do not want to affect the state of the object by such

observation.

• Caching - we may create cache that stores normal references but

after some time of no use, they are changed into weak references. So

instead of aggressively trimming cache, we will just keep them until

the next GC of a given generation (probably generation 2 as objects

cached for some time will eventually land there). By controlling

the time of such “weak cache eviction,” we control the compromise

between the memory usage (as we may keep items in cache longer)

and the object creation overhead (as they have to be re-created when

accessed after cleaning from cache).

There is a very interesting example of the “observer nature” of weak references in

the form of Gen2GcCallback class located in the core .NET library (see Listing 12-37).

As we should recognize after reading this chapter, it is a critically finalizable object

Chapter 12 ObjeCt LIfetIme

799

with an optional resurrection. It observes a given target object by holding short weak

reference to it. Given callback is executed on each finalization - thus on each GC of the

generation where the target object lives. After two GCs it will land in generation 2, thus

this is “mostly generation 2 callback” - executed on each gen2 collection and two first

ephemeral collections (see the opening comment from Listing 12-37 for possible fixes9).

Resurrection is terminated when the weak handle become zeroed - thus callbacks on

target object will be terminated after target object dies. Without weak reference it would

never happen because our callback object would keep the target object alive.

Gen2GcCallback is used inside PinnableBufferCache to TrimFreeListIfNeeded be

called on it with every gen 2 GC.

Listing 12-37. Example of interesting weak references and resurrection usage

from System library

/// <summary>

/// Schedules a callback roughly every gen 2 GC (you may see a Gen 0 an Gen

1 but only once)

/// (We can fix this by capturing the Gen 2 count at startup and testing,

but I mostly don't care)

/// </summary>

internal sealed class Gen2GcCallback : CriticalFinalizerObject

{

 private Gen2GcCallback()

 {

 }

 public static void Register(Func<object, bool> callback, object

targetObj)

 {

 // Create a unreachable object that remembers the callback function

and target object.

9 We are on thin ice here, depending on deep implementation details how objects get promoted.
For example, with the current implementation, if the target object is pinned (or becomes a
part of extended pinned plug), it may be demoted and we will be calling our callback again for
ephemeral GCs also.

Chapter 12 ObjeCt LIfetIme

800

 Gen2GcCallback gcCallback = new Gen2GcCallback();

 gcCallback.Setup(callback, targetObj);

 }

 private Func<object, bool> _callback;

 private GCHandle _weakTargetObj;

 private void Setup(Func<object, bool> callback, object targetObj)

 {

 _callback = callback;

 _weakTargetObj = GCHandle.Alloc(targetObj, GCHandleType.Weak);

 }

 ~Gen2GcCallback()

 {

 // Check to see if the target object is still alive.

 object targetObj = _weakTargetObj.Target;

 if (targetObj == null)

 {

 // The target object is dead, so this callback object is no longer

needed.

 _weakTargetObj.Free();

 return;

 }

 // Execute the callback method.

 try

 {

 if (!_callback(targetObj))

 {

 // If the callback returns false, this callback object is no

longer needed.

 return;

 }

 }

Chapter 12 ObjeCt LIfetIme

801

 catch

 {

 // Ensure that we still get a chance to resurrect this object,

even if the callback throws an exception.

 }

 // Resurrect ourselves by re-registering for finalization.

 if (!Environment.HasShutdownStarted)

 {

 GC.ReRegisterForFinalize(this);

 }

 }

Instead of manually creating weak GCHandle, dedicated WeakReference and

WeakReference<T> types were introduced (see Listings 12-38 and 12-39). They represent

exactly the same logic but as strongly typed representation of weak handles, it is a preferred

way to use them. Please note the naming change - as in general weak handles realize weak

reference semantics, such a name was chosen to hide its implementation detail (one may not

be interested in knowing that weak reference is represented by weak handle underneath).

WeakReference targets object type and provides three important members:

• IsAlive - to check whether target is still alive

• Target - to access target object reference

• TrackResurrection - to check whether weak reference should

remain resurrection

There is however a small issue with such API, illustrated in Listing 12-38. Between

weakReference.IsAlive and weakReference.Target calls, GC may happen that will

collect target object and make such condition check useless. Moreover, losing type

information (by keeping reference to plain object type) is far from good design practice

and requires further casting to use the target.

Listing 12-38. WeakReference type example usage

var obj = new LargeClass(ressurect: true);

WeakReference weakReference = new WeakReference(obj, trackResurrection: false);

if (weakReference.IsAlive)

 Console.WriteLine(weakReference.Target ?? "<null>"); // prints <null>

Chapter 12 ObjeCt LIfetIme

802

Thus, in .NET Framework 4.5 a new, generic version was introduced. Besides

being generic, its API was also revised. Now only one TryGetTarget exists that returns

information about target liveness atomically (see Listing 12-39).

Listing 12-39. WeakReference<T> type example usage

var obj = new LargeClass(ressurect: true);

WeakReference<LargeClass> weakReference = new

WeakReference<LargeClass>(obj, trackResurrection: false);

if (weakReference.TryGetTarget(out var target))

 Console.WriteLine(target);

Please note that we may easily convert a weak reference to a strong reference by

assigning its target to some reachable root. Exactly such approach is used in internal

System.StrongToWeakReference<T> class (see Listing 12- 40). It is a weak reference

that optionally keeps strong reference to the target object. Making such pair a weak

reference is as easy as setting strong reference to null. We may also try to revert it to a

strong reference if weak reference target is still alive. Obviously it may fail if target has

been already garbage collected (hence I would prefer to provide bool TryMakeStrong()

method instead of MakeStrong used in presented internal class).

Listing 12-40. StrongToWeakReference class as an example of conversion

between strong and weak references

internal sealed class StrongToWeakReference<T> : WeakReference where T :

class

{

 private T _strongRef;

 public StrongToWeakReference(T obj) : base(obj)

 {

 _strongRef = obj;

 }

 public void MakeWeak() => _strongRef = null;

Chapter 12 ObjeCt LIfetIme

803

 public void MakeStrong()

 {

 _strongRef = WeakTarget;

 }

 public new T Target => _strongRef ?? WeakTarget;

 private T WeakTarget => base.Target as T;

Let’s now see briefly the two most typical usages of weak references in the form of

caching and event listeners.

 Caching
When someone hears or reads about weak references, he will probably associate it with

caching immediately. It’s tempting to have objects in memory held by such a “weak

cache.” Objects are used normally but additional weak references exist so we may cache

objects without prolonging their life just because of the cache itself. During the time

when the target is live, weak reference in cache is also live - but because it is only a weak

reference, the object dies as usual, when it becomes unused by the application. In such

way we cache objects currently used by the application (for example, to not re-create

duplicates if other code needs them). This may be useful by itself.

Most often, however, cache works on a time basis, to keep recently used resources

for some time even after they become unused. This may not be achieved with the weak

references obviously. In such case, we would probably like to implement regular cache

that stores strong references for some absolute time or time related to their last usage.

After such threshold time exceeds, such references would be simply removed (evicted).

But instead, we may imagine something like weak eviction cache where after some

time-cached strong references are becoming weak references. This softens caching

policy - we certainly keep cached item for some specified amount of time and afterward

we keep it cached only if it is still used. In other words, in case of such cache expiration

while object is still live, cache is not trimmed prematurely - instead of forced removal

from cache after specified amount of time, item is kept there as long as it is used. In case

of regular cache, after specified amount of time the item from cache would be simply

removed unconditionally, because without weak references there is no way to check

whether object is still alive (assuming there is no API provided that informs cache that

object is still in use, which is unlikely in generic object cache discussed here).

Chapter 12 ObjeCt LIfetIme

804

Let’s assume a little extension of StrongToWeakReference class from Listing 12-40

that keeps track of the time when it had become strong (via StrongTime field). Having

such helper class, a very simplified design of the weak eviction cache is presented

in Listing 12-41. It simply stores a dictionary of cached items as our hybrid strong/

weak reference object. Items are saved as strong references at the beginning. At some

time, periodically DoWeakEviction method should be called that converts appropriate

references from strong to weak (and cleans already dead cache items).

Listing 12-41. Weak eviction cache using weak references after specified amount

of time

public class WeakEvictionCache<TKey, TValue> where TValue : class

{

 private readonly TimeSpan weakEvictionThreshold;

 private Dictionary<TKey, StrongToWeakReference<TValue>> items;

 WeakEvictionCache(TimeSpan weakEvictionThreshold)

 {

 this.weakEvictionThreshold = weakEvictionThreshold;

 this.items = new Dictionary<TKey, StrongToWeakReference<TValue>>();

 }

 public void Add(TKey key, TValue value)

 {

 items.Add(key, new StrongToWeakReference<TValue>(value));

 }

 public bool TryGet(TKey key, out TValue result)

 {

 result = null;

 if (items.TryGetValue(key, out var value))

 {

 result = value.Target;

 if (result != null)

 {

 // Item was used, try to make it strong again

 value.MakeStrong();

Chapter 12 ObjeCt LIfetIme

805

 return true;

 }

 }

 return false;

 }

 public void DoWeakEviction()

 {

 List<TKey> toRemove = new List<TKey>();

 foreach (var strongToWeakReference in items)

 {

 var reference = strongToWeakReference.Value;

 var target = reference.Target;

 if (target != null)

 {

 if (DateTime.Now.Subtract(reference.StrongTime)

 >= weakEvictionThreshold)

 {

 reference.MakeWeak();

 }

 }

 else

 {

 // Remove already zeroed weak references

 toRemove.Add(strongToWeakReference.Key);

 }

 }

 foreach (var key in toRemove)

 {

 items.Remove(key);

 }

 }

Please keep in mind that WeakEvictionCache class is trivial and would require a lot

of improvement before even thinking about real-world usage (including better API and

thread safety to name only two).

Chapter 12 ObjeCt LIfetIme

806

 Weak Event Pattern
Yet another most typical usage scenario related to weak references are weak events.

Using events in .NET is not hard but may introduce one of the most typical sources of the

memory leak. Let’s investigate it now in detail before moving forward to the solution in

form of the mentioned weak events.

Let’s first introduce two trivial classes simulating windows-based library (whether it

would be Windows Forms, WPF, or something else) shown in Listing 12-42. They present

overwhelmingly popular hierarchical approach of such libraries - almost every element

is in parent-child relationship with some other. It is also quite common to subscribe to

events between such elements. Thus, sample SettingsChanged event was prepared for our

experiments and RegisterEvents method in the other component that subscribes to it.

Listing 12-42. Two simple classes simulating UI library, used for further

experiments

public class MainWindow

{

 public delegate void SettingsChangedEventHandler(string message);

 public event SettingsChangedEventHandler SettingsChanged;

}

public class ChildWindow

{

 private MainWindow parent;

 public ChildWindow(MainWindow parent)

 {

 this.parent = parent;

 }

 public void RegisterEvents(MainWindow parent)

 {

 // ChildWindow - target, MainWindow - source

 parent.SettingsChanged += OnParentSettingsChanged;

 }

Chapter 12 ObjeCt LIfetIme

807

 private void OnParentSettingsChanged(string message)

 {

 Console.WriteLine(message);

 }

Sample code from Listing 12-43 consumes those types, simulating typical work of an

UI-based application - there is a single main window and occasionally created additional

child windows doing some work. Child windows subscribe to some of the parent window

events. In each iteration GC is triggered to clean up everything aggressively. Additionally,

for diagnostic purposes a list of weak references is maintained to track every created

child window (note how nicely WeakReference fits into such experimental purposes).

Listing 12-43. Experiment showing memory leak because of unsubscribed events

public void Run()

{

 List<WeakReference> observer = new List<WeakReference>();

 MainWindow mainWindow = new MainWindow();

 while (true)

 {

 Thread.Sleep(1000);

 ChildWindow childWindow = new ChildWindow(mainWindow);

 observer.Add(new WeakReference(childWindow));

 childWindow.RegisterEvents(mainWindow); // Leave this line

uncommented to leak child

windows

 childWindow.Show();

 GC.Collect();

 foreach (var weakReference in observer)

 {

 Console.Write(weakReference.IsAlive ? "1" : "0");

 }

 Console.WriteLine();

 }

Chapter 12 ObjeCt LIfetIme

808

Obviously, if RegisterEvents call is commented, child window instance becomes

unreachable before GC.Collect call, thanks to the early root collection technique. Thus,

the result is in line with expectations (see Listing 12-44). Each child window dies after

each iteration.

Listing 12-44. Result of the program from Listing 12-43 (in case of

RegisterEvents call is commented)

ChildWindows showed

0

ChildWindows showed

00

ChildWindows showed

000

ChildWindows showed

0000

ChildWindows showed

00000

However, registering to an event introduces clear memory leak (see Listing 12- 45).

There are more and more live child windows kept in memory.

Listing 12-45. Result of the program from Listing 12-43 (in case of

RegisterEvents call being made)

ChildWindows showed

1

ChildWindows showed

11

ChildWindows showed

111

ChildWindows showed

1111

ChildWindows showed

11111

Chapter 12 ObjeCt LIfetIme

809

Obviously, there is a very simple solution to that problem - at some time

UnregisterEvents counterpart should be called that uses -= operator underneath to

unsubscribe from the parent window events. This is simple but requires explicit cleanup

mindset of a programmer - it needs to remember to unsubscribe from each event

subscribed. We will return to that a little later. Let’s now dig in a little into the reason of

such memory leak.

Registering to an event is a moderately complicated process. When a corresponding

delegate is defined in a class, it is internally represented as nested class that derives

from System.MulticastDelegate type (see Listing 12-46). As we can see, its constructor

expects both an object and a method - because delegate needs to represent information

about what should be called (method) and on what target (object instance).

Listing 12-46. SettingsChangedEventHandler internal implementation

.class public auto ansi beforefieldinit CoreCLR.Finalization.MainWindow

 extends [System.Runtime]System.Object

{

 // Nested Types

 .class nested public auto ansi sealed SettingsChangedEventHandler

 extends [System.Runtime]System.MulticastDelegate

 {

 // Methods

 .method public hidebysig specialname rtspecialname

 instance void .ctor (

 object 'object',

 native int 'method'

) runtime managed

 {

 } // end of method SettingsChangedEventHandler::.ctor

 ...

 .method public hidebysig newslot virtual

 instance void Invoke (

 string message

) runtime managed

Chapter 12 ObjeCt LIfetIme

810

 {

 } // end of method SettingsChangedEventHandler::Invoke

 } // end of class SettingsChangedEventHandler

This is exactly what happens underneath RegisterEvents method (see Listing 12-47).

this field (ChildWindow reference) is passed to the SettingsChangedEventHandler

constructor and add_SettingsChanged method is called to combine such delegate into

current delegate invocation list (see Listing 12-48).

Listing 12-47. RegisterEvents representation in CIL

.method public hidebysig

 instance void RegisterEvents (

 class CoreCLR.Finalization.MainWindow parent

) cil managed

{

 .maxstack 8

 IL_0000: ldarg.1 // parent

 IL_0001: ldarg.0 // this

 IL_0002: ldftn instance void ChildWindow::OnParentSettingsChanged

(string)

 IL_0008: newobj instance void MainWindow/

SettingsChangedEventHandler::.ctor(object, native int)

 IL_000D: callvirt instance void MainWindow::add_SettingsChanged

(class CoreCLR.Finalization.MainWindow/

SettingsChangedEventHandler)

 IL_0012: ret

} // end of method ChildWindow::RegisterEvents

Listing 12-48. SettingsChanged event internal implementation (much

simplified for brevity, omitting thread safety)

public event MainWindow.SettingsChangedEventHandler SettingsChanged

{

 [CompilerGenerated]

 add

 {

Chapter 12 ObjeCt LIfetIme

811

 // value is of type SettingsChangedEventHandler (and contains

ChildWindows reference in our example)

 this.SettingsChanged = (MainWindow.SettingsChangedEventHandler)

Delegate.Combine(this.SettingsChanged, value);

 }

 remove

 {

 ...

 }

}

Thus, ChildWindow instances are gathering in the delegate invocation list

representing SettingsChanged event. In other words, the event becomes the only root

of them, keeping them alive even most probably they should be dead. And even more

probably those ChildWindows instances are no longer interested in the SettingsChanged

event in the first place. This is simply a bug leading to less or more severe memory leak -

depending on how much longer an event source outlives target instances. The worst-

case scenario is static events (or events in static classes and so on, and so forth). They

live as long as their AppDomain lives (typically, the whole application lifetime) so there

is plenty of time to gather a lot of leaked memory.

The longer source outlives targets and the heavier targets are (with respect to memory

usage), the more severe such memory leak becomes. I’ve seen very small objects leaking

because of unsubscribed static event in applications running for days, and I’ve seen also

quite large objects killing an application in few hours just because of the same reason.

please note that our example event is defined intentionally in a little nontypical
way. typically it would be defined with the first argument representing an event
source (most often named sender):

public delegate void SettingsChangedEventHandler(object
sender, string message);

this, however, does not change anything regarding memory leak because sender
is taken from the MulticastDelegate instance. I’m pointing this out just to
ensure your that it is not the presence of this argument that binds source and
target so strongly, resulting in a memory leak.

Chapter 12 ObjeCt LIfetIme

812

So what is the solution? Knowing about weak references, it should be obvious to you

already. The relationship between source and target should be weak reference - there is

no need to maintain former if the latter should die, and vice versa.

However, full and correct implementation of such “weak event” pattern is not trivial.

It would take too much space to describe it here thoroughly. Instead, let’s look briefly

how they are implemented in case of Windows Presentation Foundation, which allows to

define them explicitly.

Unfortunately, pretty and concise syntax of event handling in C# (represented

by += and -= operators) cannot be customized to provide equally pretty weak event

syntax. Thus, every weak event pattern implementation uses similar API based on

plain method calls. For example, if our dummy UI-based application was written in

WPF, we could subscribe a weak event in RegisterEvents method as in Listing 12-49.

There are various ways of doing that in WPF, this is however a little more preferred -

by using generic WeakEventManager static AddHandler method that ties everything

up - it defines that we are interested in SettingsChanged event in parent instance and

OnParentSettingsChanged handler should be called (target is taken from underneath

delegate implicitly).

Listing 12-49. Usage of weak event pattern in WPF

public void RegisterEvents(MainWindow parent)

{

 // ChildWindow - target

 // MainWindow - source

 WeakEventManager<MainWindow, string>.AddHandler(parent,

"SettingsChanged", OnParentSettingsChanged);

}

Studying the implementation of WeakEventManager can be very informative. Even

the opening comment of the WeakEventManager class contains great details (see

Listing 12-50).

Listing 12-50. Opening comment from WeakEventManager.cs source file

// Normally, A listens by adding an event handler to B's Foo event:

// B.Foo += new FooEventHandler(OnFoo);

// but the handler contains a strong reference to A, and thus B now

effectively has a strong reference to A. (...)

Chapter 12 ObjeCt LIfetIme

813

// The solution to this kind of leak is to introduce an intermediate

"proxy" object P with the following properties:

// 1. P does the actual listening to B.

// 2. P maintains a list of "real listeners" such as A, using weak

references.

// 3. When P receives an event, it forwards it to the real listeners that

are still alive.

// 4. P's lifetime is expected to be as long as the app (or Dispatcher).

If you want to practice weak references, I strongly encourage you to study weak
event pattern implementation in Wpf. One of the core WeakEventManager
parts is WeakEventTable. Look also at Listener struct that contains a weak
reference to the target and EventKey struct that contains a weak reference to the
source.

Why doesn’t the default implementation of events in .NET follow a weak event

pattern approach? Wouldn’t it be helpful and aligned with the spirit of automatic

memory management, to not require explicit cleanup of events? The main reason is the

ratio of introduced performance cost versus the gained convenience of the API. Using

weak events incurs using weak handles and those do not come without performance and

memory overhead. Events usage is unbounded - even if typically we expect only a dozen

of UI-based events, they have to be designed in a way handling hundreds of instances.

Thus, it is much safer to use regular instance member (because in essence, that’s what

events are) than introduce handles overhead.

In particular, all this would be done just to relieve a little lazy programmer that

does not want to think where she or he should unsubscribe an event. In most cases,

a desired moment when events should be unsubscribed is well-defined. MSDN says

about WPF’s weak events: “You typically use the weak event pattern when the event

source has an object lifetime that is independent of the event listeners. Using the central

event dispatching capability of a WeakEventManager allows the listener’s handlers to be

garbage collected even if the source object persists.” Such independent object lifetimes

between source and listeners are rather uncommon, thus using explicit cleanup by

default was a much better decision. Still, it would be nice to have opt-in possibility to use

concise events syntax in C#.

Chapter 12 ObjeCt LIfetIme

814

If you would like to investigate weak references CoreCLr source code a little,
start from WeakReferenceNative::Create method that creates handle of
type HNDTYPE_WEAK_LONG or HNDTYPE_WEAK_SHORT in the regular handle
store. During mark phase, GCScan::GcShortWeakPtrScan method nulls out
the target of short weak references that were not promoted. then, after scanning
of finalization roots it also nulls out the target of long weak references by calling
GCScan::GcWeakPtrScan.

 Scenario 9-2. Memory Leak Because of Events
Description: Our application memory usage grows in time. After double checking, for

example, with the help of performance counters, we are sure that it is the Managed

Heap that grows in time. More and more objects are gathering in generation 2, but its

fragmentation is stable in time (checked for example via PerfView sessions). Apparently

we are dealing with a memory leak, as some objects are continuously reachable because

of some not-yet identified root.

Let’s use code from Listing 9-43 as a simple simulation of such case. Of course, in this

case, we already know the cause of the problem. Let’s use it however as a nice and clean

playground to see how it could be diagnosed.

Analysis: During memory weak analysis we have always two basic approaches:

• Take a single memory dump when memory usage is huge. We can

count on the fact that the leaking objects will somehow stand out - by

quantity, total size, numerous presences in the queue of finalization

(if we are lucky and it happens that leaking objects are finalizable)

and so on, and so forth. This may be sometime the only available

approach - for example, if memory leak is extremely rare and we

had only a single chance to make a memory dump on production.

Analyzing such dumps is tedious though - mainly because memory

leak characteristic may be more complex than single leakage of big

objects. There may by a whole intricate graph of flyweight objects

related to each other kept by some elusive roots that simply hides in

the whole big spacious graph of all the objects. Thus, analysis of such

single memory shoots requires quite good intuition, at least some

level of knowledge about application internals (to quickly identify

expected object subgraphs), and a bit of luck also.

Chapter 12 ObjeCt LIfetIme

https://doi.org/10.1007/978-1-4842-4027-4_9#PC

815

• Take two or more successive memory dumps and analyze differences

(preferably, automatically). If it is only possible, we should prefer

this approach. Comparison of successive application states cleans

the analysis from unnecessary noise - the objects that leak should

actually stand out from the others, allocated and collected in a stable

manner. As already showed in this book, various tools may be used.

I prefer low-level analysis from within WinDbg but this requires

manual comparison. A much more preferred way is to compare heap

snapshots taken from PerfView - with low overhead introduced and

good difference analysis support. Of course, all commercial tools

support such approach as it is the best way to find a memory leak

source.

Let’s use the heap snapshots comparison approach from PerfView. While our

problematic application runs, we should take two successive heap snapshots (by using

Memory ➤ Take Heap Snapshot option), in the time between the process noticeably

grows (to have a chance to see leaked objects). I always prefer to take such snapshots

after some time the application is running, to give it a chance to warm up and reclaim

memory after regular initialization code that often happens at the beginning.

After opening both heap snapshots, compare them by using Diff ➤ With baseline...

option from the menu. Your mileage may vary how to analyze such comparison -

whether to start from ByName view (and sort by Inc or Exc columns), RefTree view, or

simply visually by Flame Graph view. Sometimes indeed looking at the Flame Graphs

provides enough of an informative view. In our test application case, it becomes

immediately visible that in the snapshots difference the most contributing type is

MainWindow, that holds SettingsChangedEventHandler, that then holds ChildWindows

instances (see Figure 12- 5). We have just identified a very serious suspect!

Chapter 12 ObjeCt LIfetIme

816

By looking at RefTree view, confirmation immediately stands out -

between our snapshots balance shows over three hundred ChildWindow and

SettingsChangedEventHandler instances created (see Figure 12-6).

Figure 12-5. Flame Graph view of two heap snapshots difference in PerfView

Figure 12-6. RefTree view of two heap snapshots difference in PerfView

Such analysis will send your directly to the problematic event handler in

your application hopefully. Please note also an additional Object[] array used by

SettingsChangedEventHandler objects. It is nothing else than the invocation list

mentioned earlier - because SettingsChangedEventHandler is a MulticastDelegate

(and yes, such kind of delegate holds and array of listening delegates internally, which

are delegates also. Look at MulticastDelegate .NET source code if you are interested in

details).

Chapter 12 ObjeCt LIfetIme

817

As an example of how such information is presented in commercial tools, let’s see

heap snapshots comparison is presented in .NET Memory Profiler (two successive

snapshots were taken during live session) in Figure 12-7. Clearly we see the same results,

with the same problematic event handlers leaking. We see also increase of GCHandles

hold by the weak references but this is expected as they are gathering in our observer list

(refer to Listing 12-43).

Figure 12-7. Overview of two heap snapshots difference in .NET Memory Profiler

As mentioned earlier, similar reports are available in every other commercial tool

available (to not be accused of promoting this particular tool at the moment).

 Summary
Finalization and disposable objects are strongly related to the unmanaged world

cooperation. They are more related to the resource management than to object lifetime

management. However, altogether with weak references, all those topics interleave each

other in more or less subtle way.

Disposable objects, introduced by standardization explicit cleanup of resources in

the form of IDisposable interface and supported by using clause in case of C#. This

way they tend to replace missing RAII (Resource Acquisition Is Initialization) approach

from unmanaged environment when a local variable within its lexical scope is the

owner of some resource - it acquires resource at creation (in constructor) and releases it

when leaving its scope (in destructor). While IDisposable was from the very beginning

thought as exactly for that purpose, it gained an additional popularity also in other use

cases. Logging, tracing, profiling - those are only a few examples of popular usages not

related to unmanaged resources at all. They become popular every time when explicit

region of control is required. Besides of this, explicit cleanup stays as a preferred way of

managing unmanaged resources.

Chapter 12 ObjeCt LIfetIme

818

On the other hand, finalization is quite still popular, especially in case of full

Disposable pattern implementation when it is treated as a safety net in case of explicit

cleanup omission. But one must be fully aware of all finalization-related caveats and

overhead it introduces. I hope all the implementation details, as long as presented

benchmarks and scenario 9-1 convinced you about that at least a little. General rule to

remember is to avoid finalization if possible.Don’t treat them as a fancy feature to add

logging or something else to make your code look smart!

Weak references are most probably the less popular type along described in this

chapter. Dedicated mostly to only few scenarios, most often you will not need to use them in

your code. However, it is good to know about them, especially with respect to popular weak

event design pattern. They are also really useful when doing some fancy code experiments,

as they provide the only easy way to check object reachability (if your experiments need so).

It must be said that this chapter concludes all the most relevant parts of the .NET

memory management internals. We have had a very long journey so far. The next two

chapters are much more practical biased, based on the knowledge gained so far. I

strongly encourage you to read them!

 Rule 25 - Avoid Finalizers
Applicability: General and popular. High performance code - important.

Justification: Finalizers were designed for a very specific purpose - provide implicit

cleanup of unmanaged resources, just in case that explicit one is not possible. However,

there are not so many cases I can imagine where explicit cleanup could be not possible.

By using finalizers. we expose ourselves to many problems. Even implementing a

good finalizer is not trivial if we take into consideration each possible edge case (like

reentrancy, multithreading, possibility to be executed only partially or not at all, to name

a few problems). Moreover, due to required implementation, there are many really

considerable overheads - mostly in terms of performance and memory usage.

How to apply: Just try to use some other possible alternatives, namely:

• SafeHandle - as a well-designed finalizable handle representation

with the runtime support,

• Disposable pattern - as most probably you may get rid of finalization

and manage your resource explicitly,

• Critical finalization - if releasing resource if crucial for you.

Chapter 12 ObjeCt LIfetIme

819

In cases when you really do not see a possibility to avoida finalizer, remember about

the following good practices:

Write only small wrappers encapsulating only unmanaged resources, without any

other managed references - to not promote too much because of finalization.

• Avoid allocating memory in finalizer and critical finalizer - throwing

OutOfMemoryException inside of it may be really problematic.

• Always check if you really own expected resources - typical scenario

includes throwing an exception from the constructor, which may lead

to executing finalizer in not fully initialized object state.

• Avoid any thread context dependency - simply do not assume

anything about the thread executing your finalizer. This imposes also

avoiding blocking execution by any synchronization techniques.

• Do not throw any exceptions from finalizers - and do not allow it to

be thrown by third-party code. Remember to always wrap finalizer

code by try-finally block!

• Avoid calling virtual members from finalizers - as they may introduce

all unwanted behavior lister above

Related scenarios: Scenario 12-1.

 Rule 26 - Prefer Explicit Cleanup
Applicability: General and popular. High performance code - important.

Justification: Deterministic cleanup is a preferred way of managing resources. Cleanup

time is well-defined and (if designed well) as early as possible - it helps in limited

resources management. Obviously, it is a little more demanding for programmers. They

cannot create resources on the fire-and-forget basis. They must take care about proper

releasing of all they initialized. Yes, we know. This is a little in opposite what managed

environments promise - including automatic memory management at the first place. But

unmanaged resources are... unmanaged. We should take a little effort to remember that.

How to apply: Stick to what .NET ecosystem proposes - IDisposable and disposable

objects. Most often, when you need to clean up your resources, probably always it is

possible to do it in Dispose, not in a dedicated, heavyweight finalizer. It will impose

additional care on programmers, but using clause in C# and tools like ReSharper or

Visual Studio rules are there to help them.

Chapter 12 ObjeCt LIfetIme

821
© Konrad Kokosa 2018
K. Kokosa, Pro .NET Memory Management, https://doi.org/10.1007/978-1-4842-4027-4_13

CHAPTER 13

Miscellaneous Topics
So far, all chapters have focused on how different aspects of memory-management

work in .NET (so the vast majority of how Garbage Collector in .NET works). At this

point in the book, we have gained most of the knowledge necessary for a profound

understanding of how most of this machinery works underneath. I say “most” because

of course there are still some more or less minor aspects that we have not touched

because of the limited size of the book. I hope, however, that you already feel quite

comfortable with the knowledge about partitioning (generations, segments), allocation

and deallocation, how garbage collection is proceeded, and so on, and so forth.

All this knowledge was intertwined with some practical tips and various scenarios

(usually diagnostic). However, for the sake of clarity and not the excessive growth of

individual chapters, not all more advanced practical aspects have been mentioned.

Exactly to such things, however, this and the next chapter are dedicated. Let’s treat them

as the “creme de la creme” of .NET memory management, purely practical (with some

internal knowledge still mentioned) and touching more advanced topics. This does not

mean that the topics discussed here are not useful in the daily work of the programmer.

Quite the opposite, we may see the bigger and bigger adoption of such techniques

as more and more performance-aware code is being written in .NET - this especially

includes using Span<T> and everything around it.

Due to such a general, complementary nature of this chapter, it a conspectus, and

individual subchapters are loosely connected. Choose what you are most interested in or

(what I strongly recommend), and read everything in a row!

 Dependent Handles
Besides already known kind of handles, there is yet still one more available not

mentioned so far - dependent handle, added in .NET Framework 4.0 (and available

in .NET Core). It allows us to couple the lifetime of two objects. A dependent handle

points to a target, just like what other GC handles do. And it behaves like a weak handle,

822

that is, it does not keep the target alive. This is the primary object for the dependent

handle. It also carries a secondary object. The behavior of a dependent handle is the

following:

• a “weak” handle both to primary and secondary objects (it does not

influence their lifetime by itself);

• a strong handle from primary object to secondary object (secondary

object will be kept alive as long as primary object is alive).

This makes them a very flexible tool that allows you to something like “adding” fields

to objects in a dynamic way. In fact, such “adding fields” usage is exactly the purpose of

it, as we will soon see.

Dependent handles are not available via GCHandle API as other types of handles.

In fact, they are not directly exposed by any public API. The only way to use it is with the

wrapper class ConditionalWeakTable. As its own source code comment says, it provides

“compiler support for runtime-generated “object fields,” and that it “lets DLR and other

language compilers expose the ability to attach arbitrary “properties” to instanced

managed objects at runtime.”

There is an intrinsic DependentHandle struct (in System.Runtime.
CompilerServices namespace) that directly wraps a dependent handle on
the runtime level. It has a simple constructor DependentHandle(object
primary, object secondary) and methods like GetPrimary and
GetPrimaryAndSecondary. But it is internal as it was decided to not
expose it directly. DependentHandle is consumed by the mentioned
ConditionalWeakTable class.

Additionally, interestingly enough, a dependent handle type is used internally by the
runtime to support adding fields during the Edit and Continue debugger features. Since
instances of modified type may already exist on the heap, such a feature can’t simply
change the runtime layout of the object to include the new field. Thus, a dependent
handle maintains a lifetime relationship between those two in such a scenario.

ChApTEr 13 MISCEllAnEouS TopICS

823

ConditionalWeakTable is organized as dictionary, with the key storing primary

object and the value storing added “property” (secondary object). Please note that

such dictionary keys are weak references and will not keep those objects alive

(unlike regular dictionary keys). Once the key dies, the dictionary automatically removes

the corresponding dictionary entry.

API of ConditionalWeakTable is intuitive and similar to the regular, generic

Dictionary<TKey, TValue> (see Listing 13-1). By using Add method we create a new

underlying dependent handle, “adding” a value instance to the key instance. Please

note that ConditionalWeakTable is generic, so strong typing is employed (to allow only

adding only specific type to other specific type). Because the key must be unique (keys

are compared with the help of Object.ReferenceEquals), this class supports attaching

only a single value per managed object (you would need to attach as a value yet another

dictionary-like object to simulate attaching multiple properties). You can try to get a

value represented by a given key using TryGetValue method, as shown in Listing 13-1.

Listing 13-1. Example of ConditionalWeakTable usage

class SomeClass

{

 public int Field;

}

class SomeData

{

 public int Data;

}

public static void SimpleConditionalWeakTableUsage()

{

 // Dependent handles between SomeClass (primary) and SomeData

(secondary)

 ConditionalWeakTable<SomeClass, SomeData> weakTable = new

ConditionalWeakTable<SomeClass, SomeData>();

 var obj1 = new SomeClass();

 var data1 = new SomeData();

ChApTEr 13 MISCEllAnEouS TopICS

824

 var obj1weakRef = new WeakReference(obj1);

 var data1weakRef = new WeakReference(data1);

 weakTable.Add(obj1, data1); // Throws an exception if key already added

 weakTable.AddOrUpdate(obj1, data1);

 GC.Collect();

 Console.WriteLine($"{obj1weakRef.IsAlive} {data1weakRef.IsAlive}");

// Prints True True

 if (weakTable.TryGetValue(obj1, out var value))

 {

 Console.WriteLine(value.Data);

 }

 GC.KeepAlive(obj1);

 GC.Collect();

 Console.WriteLine($"{obj1weakRef.IsAlive} {data1weakRef.IsAlive}");

// Prints False False

}

Without a GC.KeepAlive call in Listing 13-1, both obj1 and data1 instances

could be already dead after the first GC.Collect (if JIT compiler decided to use early

root collection, described in Chapter 8). If, on the other hand, we instead called GC.

KeepAlive(data1) to keep alive the secondary object (the value), not the primary object

(the key), first Console.WriteLine most probably would print: False True. At this

moment the key was collected because nothing holds its reference.

please note that ConditionalWeakTable is in fact a container maintaining a
collection of dependent handles, which are unmanaged resources (like GChandle-
allocated ones). We create them implicitly by using Add or AddOrUpdate,
but when they are released (freed) then? With the current implementation,
they are released implicitly by the finalizer of the internal container (thus, after
ConditionalWeakTable instance becomes unreachable). We can, however, do
an explicit cleanup by calling Clear method (which was added in .nET Core 2.0).
Even calling Remove method currently does not release underlying handles (due to
multithreading issues it could incur).

ChApTEr 13 MISCEllAnEouS TopICS

825

Of course, we may omit strong typing of the ConditionalWeakTable by using Object

type as its generic types (see Listing 13-2). In this way we will be able to add any object to

any other object.

Listing 13-2. Example of ConditionalWeakTable usage

ConditionalWeakTable<object, object> weakTable = new

ConditionalWeakTable<object, object>();

var obj1 = new SomeClass();

var data1 = new SomeData();

weakTable.Add(obj1, data1);

Moreover, keep in mind that the limitation of the single value per managed object

(key) comes from the ConditionalWeakTable, not from the dependent handles itself.

Thus, nothing can stop us from adding multiple “values” to the same object in that way,

by using multiple ConditionalWeakTable instances (see Listing 13-3).

Listing 13-3. Example of ConditionalWeakTable usage

var obj1 = new SomeClass();

var weakTable1 = new ConditionalWeakTable<object, object>();

var weakTable2 = new ConditionalWeakTable<object, object>();

var data1 = new SomeData();

var data2 = new SomeData();

weakTable1.Add(obj1, data1);

weakTable2.Add(obj1, data2);

Underlying weak references of dependent handle behave as long weak references,

so they are maintaining relation between primary and secondary objects even when

the primary one is being finalized (see Listing 13-4). It allows us to handle resurrection

scenarios properly.

ChApTEr 13 MISCEllAnEouS TopICS

826

Listing 13-4. Finalization behavior of dependent handles

class FinalizableClass : SomeClass

{

 ~FinalizableClass()

 {

 }

}

public static void FinalizationUsage()

{

 ConditionalWeakTable<SomeClass, SomeData> weakTable = new

ConditionalWeakTable<SomeClass, SomeData>();

 var obj1 = new FinalizableClass();

 var data1 = new SomeData();

 var obj1weakRef = new WeakReference(obj1, trackResurrection: true);

 var data1weakRef = new WeakReference(data1, trackResurrection: true);

 weakTable.Add(obj1, data1);

 GC.Collect();

 Console.WriteLine($"{obj1weakRef.IsAlive} {data1weakRef.IsAlive}");

// Prints True True

 GC.KeepAlive(obj1);

 GC.Collect();

 Console.WriteLine($"{obj1weakRef.IsAlive} {data1weakRef.IsAlive}");

// Prints True True

 GC.WaitForPendingFinalizers();

 GC.Collect();

 Console.WriteLine($"{obj1weakRef.IsAlive} {data1weakRef.IsAlive}");

// Prints False False

}

Dependent handles are treated in WinDbg as one of the handles type, so we can use

the regular !gchandles SOS command to investigate them (see Listing 13-5). Because

internal ConditionalWeakTable container is finalizable, we will also often see it in

finalization queues (see Listing 13-6).

ChApTEr 13 MISCEllAnEouS TopICS

827

Listing 13-5. Result of !gchandles SOS extension command (for code like from

Listing 13-3)

> !gchandles -stat

...

Handles:

 Strong Handles: 10

 Pinned Handles: 4

 Weak Long Handles: 1

 Weak Short Handles: 1

 Dependent Handles: 2

> !gchandles -type Dependent

 Handle Type Object Size Data

Type

00000292abfe1bf0 Dependent 00000292b034d188 24 00000292b034d448

CoreCLR.DependentHandles.SomeClass

00000292abfe1bf8 Dependent 00000292b034d188 24 00000292b034d430

CoreCLR.DependentHandles.SomeClass

Statistics:

 MT Count TotalSize Class Name

00007fff033166b8 2 48 CoreCLR.DependentHandles.SomeClass

Total 2 objects

Listing 13-6. Result of !finalizequeue SOS extension command (for code like

from Listing 13-3)

> !finalizequeue

...

Statistics for all finalizable objects (including all objects ready for

finalization):

 MT Count TotalSize Class Name

...

00007fff03429678 2 112

System.Runtime.CompilerServices.ConditionalWeakTable`2+Container[[System.

Object, System.Private.CoreLib],[System.Object, System.Private.CoreLib]]

Total 5 objects

ChApTEr 13 MISCEllAnEouS TopICS

828

ConditionalWeakTable is useful in implementing caching or weak event patterns.

In the former case, we may cache some data related to an object, as long as such

object lives. In the latter case, we may appropriately couple the handler (delegate)

lifetime with the target lifetime (see Chapter 12 for a wider weak event pattern

description). Listing 13-7 shows fragments of the WeakEventManager class used in

Windows Presentation Foundation. To couple delegate the lifetime with its target,

ConditionalWeakTable is used (represented here by _cwt field). In this way, a list of

delegates is alive as long as the target itself is alive.

Listing 13-7. ListenerList class methods (part of WeakEventManager class from

WPF)

public void AddHandler(Delegate handler)

{

 object target = handler.Target;

 ...

 // add a record to the main list

 _list.Add(new Listener(target, handler));

 AddHandlerToCWT(target, handler);

}

void AddHandlerToCWT(object target, Delegate handler)

{

 // add the handler to the CWT - this keeps the handler alive throughout

 // the lifetime of the target, without prolonging the lifetime of

 // the target

 object value;

 if (!_cwt.TryGetValue(target, out value))

 {

 // 99% case - the target only listens once

 _cwt.Add(target, handler);

 }

ChApTEr 13 MISCEllAnEouS TopICS

829

 else

 {

 // 1% case - the target listens multiple times

 // we store the delegates in a list

 List<Delegate> list = value as List<Delegate>;

 if (list == null)

 {

 // lazily allocate the list, and add the old handler

 Delegate oldHandler = value as Delegate;

 list = new List<Delegate>();

 list.Add(oldHandler);

 // install the list as the CWT value

 _cwt.Remove(target);

 _cwt.Add(target, list);

 }

 // add the new handler to the list

 list.Add(handler);

 }

}

During the Mark phase, dependent handles need to be scanned in a special way
because they may create complex dependencies and a single scan is simply just
not enough. Imagine three dependent handles saved in the handle table in the
following order: object C targets object A, B targets C, and A targets B. Assuming
that reachability of object A has been already determined (it is marked as
reachable), the first scan of such handles will only mark B as reachable. Second
scan will mark C as reachable (because now GC knows that B is reachable). Third
scan will change nothing (A is already marked) so the whole analysis will be
terminated. Such multiple scanning could theoretically introduce some overhead
with millions of dependent handles with complex dependencies between them;
however, it was assumed there is typically not so many of them.

ChApTEr 13 MISCEllAnEouS TopICS

830

If you would like to investigate this feature more in CoreClr code, start from
gc_heap::background_scan_dependent_handles and gc_heap::scan_
dependent_handles methods. Both are greatly documented, as well as methods
called by them: GcDhReScan and GcDhUnpromotedHandlesExist. At the
beginning of the Mark phase, GcDhInitialScan is called whose comments also
shed some light on dependent handles implementation.

 Thread Local Storage
Normal static variables may be seen as global variables within a single AppDomain.

Every thread in our application has access to it. Thus, typically it requires multithreading

synchronization techniques to make it thread-safe. However, there is another type of

“almost” global data, but which is unique to each thread - thread local storage (TLS).

In other words, it behaves like a global variable - every thread accesses it by the same

name or identifier - but data is stored separately for each thread. It reliefs us from

synchronization issues, as each data will be accessible only by its dedicated thread.

Currently in .NET there are three ways to use thread local storage:

• thread static fields - available as static fields, additionally marked with

ThreadStatic attribute,

• class helper that wraps thread static field - available as

ThreadLocal<T> type,

• thread data slots - available with the help of Thread.SetData and

Thread.GetData methods.

.NET documentation clearly states that thread static fields provide much better

performance than data slots and should be preferred whenever possible. We will look

into both techniques internals to understand the difference. Moreover, static fields are

strongly typed (they have type, as any other field in .NET) while data slots always operate

on an Object type and, in case of named data slots, string-based identifiers that both

may lead to problems hard to catch at compile time.

ChApTEr 13 MISCEllAnEouS TopICS

831

 Thread Static Fields
Using thread static fields is as easy as marking a regular static field with a ThreadStatic

attribute. Both value and reference types may be used as thread static fields (see Listing 13-8).

In our example, even the same instance of SomeClass is used by two different threads, and

its static fields values are separate for both of them. Thus, one thread will print Worker 1:1

while the other Worker 2:2. If both static fields were only regular statics, a multithreaded race

condition would occur in writing to them (and as a result, some undetermined combination

of 1 and 2 values would be stored).

Listing 13-8. Example of using thread static fields

class SomeData

{

 public int Field;

}

class SomeClass

{

 [ThreadStatic]

 private static int threadStaticValueData;

 [ThreadStatic]

 private static SomeData threadStaticReferenceData;

 public void Run(object param)

 {

 int arg = int.Parse(param.ToString());

 threadStaticValueData = arg;

 threadStaticReferenceData = new SomeData() { Field = arg };

 while (true)

 {

 Thread.Sleep(1000);

 Console.WriteLine($"Worker {threadStaticValueData}:{threadStatic

ReferenceData.Field}.");

 }

 }

}

ChApTEr 13 MISCEllAnEouS TopICS

832

static void Main(string[] args)

{

 SomeClass runner = new SomeClass();

 Thread t1 = new Thread(new ParameterizedThreadStart(runner.Run));

 t1.Start(1);

 Thread t2 = new Thread(new ParameterizedThreadStart(runner.Run));

 t2.Start(2);

 Console.ReadLine();

}

Plain thread statics have one surprising inconvenience - if a static field has an

initializer, it will be invoked only once, on the thread that executed the static constructor.

In other words, only the single thread that first used a given type will have a thread static

field properly initialized. Others will have such a field initialized to its default value (see

Listing 13-9). Quite surprisingly, SomeOtherClass.Run method will print Worker 100 and

Worker 0 lines because of such behavior.

Listing 13-9. Example of surprising thread static field initialization

class SomeOtherClass

{

 [ThreadStatic]

 private static int threadStaticValueData = 100;

 public void Run()

 {

 while (true)

 {

 Thread.Sleep(1000);

 Console.WriteLine($"Worker {threadStaticValueData}");

// Will print Worker 100 or Worker 0.

 }

 }

}

static void Main(string[] args)

{

 SomeOtherClass runner = new SomeOtherClass();

ChApTEr 13 MISCEllAnEouS TopICS

833

 Thread t1 = new Thread(runner.Run);

 t1.Start();

 Thread t2 = new Thread(runner.Run);

 t2.Start();

}

To overcome similar problems, ThreadLocal<T> class is available since .NET

Framework 4.0, which provides better, more deterministic initialization behavior. We can

provide to its constructor a value factory, which will lazily initialize such class instance

when first accessed via Value property (see Listing 13-10).

Listing 13-10. Example of ThreadLocal<T> usage

class SomeOtherClass

{

 private ThreadLocal<int> threadValueLocal = new ThreadLocal<int>(() =>

100, trackAllValues: true);

 public void Run()

 {

 while (true)

 {

 Thread.Sleep(1000);

 Console.WriteLine($"Worker {threadStaticValueData}:{threadValue

Local.Value}.");

 Console.WriteLine(threadValueLocal.Values.Count);

 }

 }

}

Additionally, ThreadLocal<T> provides functionality of tracking all initialized
values by passing true to its constructor’s trackAllValues argument. We can
later on use Values property to iterate all current values. Be careful, however, as
it is a straight road to problems - we may start to pass around reference instances
between threads that were supposed to be only thread local.

ChApTEr 13 MISCEllAnEouS TopICS

834

Underneath ThreadLocal<T> still is a thin wrapper around thread static field.

With all the additional handling of its internal structures, some performance hit may

be observed (see Listing 13-11). However, if performance is not your main concern,

ThreadLocal<T> is even more preferred than using plain thread static fields.

Listing 13-11. Results of DotNetBenchmark comparing access to primitive and

reference thread local storage - by thread statics and ThreadLocal<T>

 Method | Mean | Allocated |

---------------------- |----------:|----------:|

 PrimitiveThreadStatic | 4.072 ns | 0 B |

 ReferenceThreadStatic | 5.076 ns | 0 B |

 PrimitiveThreadLocal | 7.866 ns | 0 B |

 ReferenceThreadLocal | 11.762 ns | 0 B |

If you really need performance of a plain thread static field, while overcoming an

initialization problem, you can use a small trick to wrap around the thread static field

with lazy initialization via a regular static field (see Listing 13-12).

Listing 13-12. Solution to problems with thread static data initialization

[ThreadStatic]

private static int? threadStaticData;

public static int ThreadStaticData

{

 get

 {

 if (threadStaticData == null)

 threadStaticData = 44;

 return threadStaticData.Value;

 }

}

ChApTEr 13 MISCEllAnEouS TopICS

835

 Thread Data Slots
Using a thread data slot is simple and straightforward. There are two different kinds of

data slots available (see Listing 13-13):

• named thread data slot - they are accessible by string-based

name via Thread.GetNamedDataSlot. You can store and reuse

LocalDataStoreSlot instance returned by this method or you can

call it with an appropriate name whenever you need it.

• unnamed thread data slot - they are accessible only by

LocalDataStoreSlot instance returned from Thread.

AllocateDataSlot method.

Listing 13-13. Example of using thread data slots

public void UseDataSlots()

{

 // Named data slots

 Thread.SetData(Thread.GetNamedDataSlot("SlotName"), new SomeData());

 object data = Thread.GetData(Thread.GetNamedDataSlot("SlotName"));

 Console.WriteLine(data);

 Thread.FreeNamedDataSlot("SlotName");

 // Unnamed data slots

 LocalDataStoreSlot slot = Thread.AllocateDataSlot();

 Thread.SetData(slot, new SomeData());

 object data = Thread.GetData(slot);

 Console.WriteLine(data);

}

As mentioned later, we lose strong typing because of using thread data slots API -

both Thread.SetData and Thread.GetData expect and return Object type. What mostly

data slots give in return is flexibility - we may dynamically define thread statics identified

by the string. However, such flexibility is rarely required and indeed, thread statics or

ThreadLocal<T> should be a preferred approach.

A simple benchmark of accessing both primitive value (an integer) and an integer

field of reference type clearly shows a significant performance advantage of plain thread-

static variables (see Listing 13-14). I hope such benchmarks conclude why data slots

ChApTEr 13 MISCEllAnEouS TopICS

836

are unpopular - for example, we can find only single usage of it in all .NET-related, open

sourced libraries (including WPF and ASP.NET Core).

Listing 13-14. Results of DotNetBenchmark comparing access to primitive and

reference thread local storage - by thread statics and data slots

 Method | Mean | Allocated |

------------------------ |----------:|----------:|

 PrimitiveThreadStatic | 3.938 ns | 0 B |

 ReferenceThreadStatic | 5.061 ns | 0 B |

 PrimitiveThreadDataSlot | 51.843 ns | 0 B |

 ReferenceThreadDataSlot | 48.616 ns | 0 B |

To be clearer, you better forget about data slots once and for all.

 Thread Local Storage Internals
It is good to understand how thread local storage is implemented because it may be

tempting to treat it as some kind of magical, super-fast thread-affinity storage. Thread

affinity reminds us of the stack, and the stack is fast, right? So such special thread local

storage, kept in some secret thread-related space, probably is even faster, right? The truth

is much more complicated and knowing how thread local storage works underneath will

help you to remember the pros and cons of this technique.

First of all, indeed there is a special memory region dedicated for each thread’s own

purposes. It is called Thread Local Storage (TLS) in case of Windows, and Thread-specific

data in case of Linux. However, such a region is rather small, expressed rather in terms

of a single memory page. Such a region is organized in terms of single, pointer-sized,

so-called slots. For example, Windows guarantees only 64 such slots available in each

process and that the maximum number of slots will not exceed 1,088. Those are quite

tight requirements - guaranteed 64 slots makes only 512 bytes of memory in a 64-bit

process!

Thus, let us be careful in saying that such data are kept in TLS. The use of slots kept

in TLS means storing in them the address to normally allocated memory. It is a normal

technique, used not only in .NET but in any other compiler, including C and C++ ones.

ChApTEr 13 MISCEllAnEouS TopICS

837

Thread local storage is simply too limited to keep there the data itself. Even so, such

storage gives the following performance advantages:

• memory page with TLS is most probably kept in physical memory if

we use its data on regular basis,

• access to such page must not be synchronized because only single

thread sees it.

CLR uses the regular way of using thread local storage in C++. There is global,

thread-static variable defined of type ThreadLocalInfo struct (see Listing 13-15). Single

TLS slot is consumed by C++ compiler to store an address of such struct instance (and

each underlying system thread keeps an address of its own ThreadLocalInfo copy).

Listing 13-15. Thread local storage definition in CoreCLR

#ifndef __llvm__

EXTERN_C __declspec(thread) ThreadLocalInfo gCurrentThreadInfo;

#else // !__llvm__

EXTERN_C __thread ThreadLocalInfo gCurrentThreadInfo;

#endif // !__llvm__

ThreadLocalInfo keeps addresses of the three following CLR internal data:

• instance of unmanaged Thread class representing currently running

managed thread - this is the crucial part, used overwhelmingly in the

whole runtime (for example by GetThread method call);

• instance of AppDomain in which current thread’s code is being

executed - this is a shortcut for efficiency, as the same pointer could

be obtained from the Thread instance;

• instance of ClrTlsInfo structure - this is an array of addresses

to many internal, thread-related CLR structures (mostly used for

diagnostic and profiling).

So in fact, when we are using any thread local storage technique in .NET, only the

pointer to ThreadLocalInfo structure is stored in TLS. The whole other thing lives

both in the CLR private heap and on the GC heap, similarly how regular statics are

implemented (see Figure 13-1). Thread class instance organizes its thread local storage-

related data into two more classes:

ChApTEr 13 MISCEllAnEouS TopICS

838

H TMObject[]

statics blob

Thread Local Storage
(TLS)

Thread

ThreadLocalBlock

ThreadLocalModule

AppDomain ClrTlsInfo

ThreadLocalInfo

Module1 Module2 Module3

H TM

H TM

lo
ng

do
ub

le

in
t

in
t

in
t

in
t

per AppDomain

per Module

Thread 1

Private Heap

Managed Heap

other
data

ThreadStaticHandleTable

strong handle

Type1 Type2

Type1 Type2 Type3

padding

H TMObject[]

Thread Local Storage
(TLS)

Thread

ThreadLocalBlock

ThreadLocalModule

AppDomain ClrTlsInfo

ThreadLocalInfo

Module1 Module2 Module3

H TM

lo
ng

do
ub

le

in
t

in
t

in
t

in
t

Thread 2

other
data

Type1 Type2

Type1 Type2 Type3

SomeData SomeData

SomeData

Figure 13-1. Internals of thread local storage in .NET. Places where thread local
data are indeed stored are marked as gray.

• ThreadLocalBlock - it is created for each AppDomain in the

application (so there will be only single instance in case of .NET

Core apps). It additionally maintains ThreadStaticHandleTable,

which keeps a strong handle references to dedicated managed arrays,

storing references of thread-static field instances (references).

• ThreadLocalModule - it is created for each module in each

AppDomain. It consists of two crucial data:

ChApTEr 13 MISCEllAnEouS TopICS

839

• unmanaged statics blob - here all thread-static unmanaged1

values are stored. For efficient memory access, data in blobs are

using padding (to consider memory alignment).

• offset in the managed array where static references of this module

begin - here references are also grouped into types.

In other words, thread static data is stored in the following way:

• For fields being reference types - instances are normally heap-allocated

and references to them are stored in a dedicated Object[] array kept

alive by strong handles managed by ThreadStaticHandleTable. Please

note that it means in particular that:

• There may be multiple heap-allocated instances of the same type

(if those fields are initialized, not nulls) - each for every managed

thread running.

• There will be multiple heap-allocated Object[] arrays to

store references to the above - each for every AppDomain and

managed thread running.

• For fields being unmanaged types - those values are stored in static

blobs in unmanaged memory. Again, there will be multiple blobs -

each per Thread, per AppDomain, and per Module in it.

• For structs - they are stored on the managed heap in a boxed form

and treated the same as above-mentioned reference types.

As the number of types is known at compile time, both dedicated Object[] arrays

and static blobs have constant, pre-calculated size (we know how many managed and

unmanaged thread static fields are out there).

1 Meaning, primitive types or value types that does not contain references.

ChApTEr 13 MISCEllAnEouS TopICS

840

A careful reader may notice that creating a thread in .nET may incur quite many
allocations because of thread static fields. There can be many new Object[]
arrays created per each AppDomain (most probably in Soh as the number of
managed thread static fields is rather small in single AppDomain) as well as even
more ThreadLocalModules allocated in private Clr data (containing static blobs
for each module).

So, for example, in Figure 13-1, the viewpoint of one of the modules is presented -

even there would be probably more ThreadLocalModules, they are not shown for brevity.

In this module a few types are defined. Let’s concentrate on Type1, which could look like

that in Listing 13-16. It contains two primitive thread-static fields (of type long and int) so

its values are stored inside ThreadLocalModule statics blob. Additionally, it contains two

reference type thread-static fields of type SomeData. Like regular statics, such instances

are normally heap-allocated and their references are stored in a dedicated, regular object

array. In Figure 13-1 both such fields of Type1 are already initialized for Thread 1, but (for

illustrative purposes) only the first field is initialized for Thread 2.

Listing 13-16. Example of simple type showed in Figure 13-1

class Type1

{

 [ThreadStatic] private static int static1;

 [ThreadStatic] private static long static2;

 [ThreadStatic] private static SomeData static3;

 [ThreadStatic] private static SomeData static4;

 ...

}

Obviously, it may seem pretty uncomfortable at first glance that objects we think of

being “thread-only statics” are simply lying somewhere next to each other in a GC heap.

Please bear in mind, however, that unless something terrible happens, they are not

visible to each other from the managed threads perspective (thus, are still thread-safe).

On the other hand, we can unconsciously introduce False Sharing (refer to Chapter 2)

between such instances, as they may live inside single cache line boundary.

So again, it is good to keep in mind Figure 13-1 when thinking about TLS as “fast,

magic memory.” In fact, TLS here is used only as a functional, implementation detail of

thread affinity of corresponding data structures. It is not speeding up anything in general.

ChApTEr 13 MISCEllAnEouS TopICS

841

When code is being JITted, appropriate offsets are calculated for thread static fields -

in statics blob for unmanaged types and in references array for reference types. Those

offsets are stored in MethodTable-related regions so JIT compiler may use them to

generate addresses of data access. In fact, data access requires obtaining corresponding

ThreadLocalModule of the current thread. Accessing thread-static data introduces

additional and noticeable overhead (see Listings 13-17 and 13-18, with comments).

Listing 13-17. Assigning thread-static unmanaged variable (like

threadStaticValueData in Listing 13-8)

// Assume esi register contains value to store

// Pass info about module and class (type) index into rcx and edx registers

mov rcx,7FFD3E295690h

mov edx,2

// Accesses ThreadLocalModule inside (via TLS-stored pointer)

// As a result, rax contains ThreadLocalModule address

call CoreCLR!JIT_GetSharedNonGCThreadStaticBase

mov rdi,rax

// Store the value:

// 1Ch is an pre-calculated offset in the statics blob, esi contains value

to storemov dword ptr [rdi+1Ch],esi

Listing 13-18. Assigning thread-static referece variable (like

threadStaticReferenceData in Listing 13-8)

// Assume rbx contains value (reference) to store

// Pass info about module and class (type) index into rcx and edx registers

mov rcx,7FFD3E295690h

mov edx,2

// Accesses ThreadLocalModule inside (via TLS-stored pointer)

// As a result, rax contains reference to an array element where references

of that type begins

call CoreCLR!JIT_GetSharedGCThreadStaticBase

mov rcx,rax

// Store the reference (in rbx) under given array element (in rcx) by

calling write barrier

mov rdx,rbx

call CoreCLR!JIT_WriteBarrier (00007ffd`9d6c57d0)

ChApTEr 13 MISCEllAnEouS TopICS

842

On the other hand, without fields being statics (regular or thread ones), data access

is orders of magnitude faster as it does not require any runtime call (one or two simple

mov instructions would be enough in such case).

Both JIT_GetSharedNonGCThreadStaticBase and JIT_
GetSharedGCThreadStaticBase are great methods to start of CoreClr code
analysis related to thread local storage. Methods generated by JIT often contain
INLINE_GETTHREAD macro that gets gCurrentThreadInfo (thread static
ThreadLocalInfo instance) from TlS storage - for example, in case of Windows it
uses OFFSET__TEB__ThreadLocalStoragePointer to look for TlS address in
current Thread Environment Block. As listed before, ThreadLocalInfo contains a
pointer to unmanaged Thread instance. AppDomain pointer and m_EETlsData array
of pointers are irrelevant for our context. ThreadLocalModule, ThreadLocalBlock
and ThreadStatics types from .\src\vm\threadstatics.h file contain main
logic related of handling thread local storage.

regarding the calculation of fields offsets (both regular and thread-static),
Module::BuildStaticsOffsets method fills an additional, helper array of
all offsets within a module (see fields m_pRegularStaticOffsets and
m_pThreadStaticOffsets arrays) that is later on consumed by MethodTable
Bulder::PlaceRegularStaticFields and MethodTableBulder::Place
ThreadStaticFields.

One may wonder what about generic types containing thread static fields? It’s been

said that at compile time a number of thread static fields is known but obviously it is

not true in case of generic types - compiler does not know how many various generic

types instantiation will happen (and each may require brand new sets of thread static

variables). Solution is similar to the regular statics of generic types - ThreadLocalModule

maintains an additional, dynamic array of pointers to smaller structures similar to

ThreadLocalModule itself (see Figure 13-2 and corresponding Listing 13-19). Each such

structure is dedicated for a single generic type instantiation and contains the same

data - offset where its reference-type fields begins in ThreadStaticHandleTable (which

may be dynamically resized) and static blob fields.

ChApTEr 13 MISCEllAnEouS TopICS

843

H TMObject[]

statics blob

ThreadLocalModule

Module1

H TM

H TM

Private Heap

Managed Heap

other
data

Some<int>

Type1 Type2 Type3

SomeData

SomeData

in
t

lo
ng

DynamicClassInfo

fla
gs

fla
gs

fla
gs

DynamicEntry for
Some<int>

DynamicEntry for
Some<long>

Some<long>

DynamicEntry for
other types...

Figure 13-2. Internals of thread local storage of generic types

ChApTEr 13 MISCEllAnEouS TopICS

844

Listing 13-19. Simple Some<T> generic type illustrated in Figure 13-2

class Some<T>

{

 [ThreadStatic]

 private static T static1;

 [ThreadStatic]

 private static SomeData static2;

 [ThreadStatic]

 private static SomeData static3;

 ...

}

From a GC perspective, thread static data of reference type is a regular object
rooted by mentioned, dedicated Object[] arrays that are kept alive by strong
handles maintained by ThreadLocalBlock. Thus, they are alive as long as
corresponding Thread and AppDomain are alive.

Using data slots is even slower because its general- purpose mechanism is built

on internal, thread-static data store (see Listing 13-20). Thus, it obviously is slower

than using a plain thread-static field. It adds some additional bookkeeping of internal

dictionary-like structures (to maintain a key-value list of slots) and multithreading

synchronization. For unmanaged, primitive types, it also introduces boxing and

unboxing overhead. Feel free to investigate further types showed in Listing 13-20 to get a

grasp how much is done more than simple access to the static thread variable.

Listing 13-20. Thread data storage-related part of Thread class definition

public sealed class Thread : CriticalFinalizerObject, _Thread

{

 /*==

 ** Thread-local data store

 ===*/

 [ThreadStatic]

 static private LocalDataStoreHolder s_LocalDataStore; // stores

LocalDataStore

ChApTEr 13 MISCEllAnEouS TopICS

845

 sealed internal class LocalDataStore

 {

 private LocalDataStoreElement[] m_DataTable;

 private LocalDataStoreMgr m_Manager;

If you conceptually add to Figure 13-1 all managed data structures used by thread

data slots, you can probably imagine why data slots are so noticeably slower.

 Usage Scenarios
Although the above description of thread data storage clearly shows that it adds some

overhead, there is one main advantage of it from a performance perspective - getting rid

of multithreading synchronization. Obviously, thread affinity is another, and the main,

functional feature that distinguishes it from other data.

In general, thread local storage may be seen as useful in the following scenarios:

• It is required to store and manage thread-aware data - for example,

some unmanaged resources may require it to be acquired and

released by the same thread,

• It is possible to take advantage of single-thread affinity - for example:

• Logging or diagnostics - each thread may without

synchronization manipulate some local data used for diagnostic

purposes, without interfering others (System.Diagnostics.

Tracing being an example).

• Caching - it may be perfectly fine to provide some thread-

local cache, although we should be aware that there will be as

many possible cache duplicates as running managed threads.

StringBuilderCache class showed in Chapter 4 is a perfect

example of such approach - there is a cached instance of small

StringBuilder for each thread to access it efficiently without

thread synchronization from some sort of global pool. Another

example is TlsOverPerCoreLockedStacksArrayPool<T> from

System.Buffers namespace, an implementation of ArrayPool

using a tiered caching scheme, with a small per-thread cache for

each array size, followed by a cache per array size shared by all

ChApTEr 13 MISCEllAnEouS TopICS

846

threads (partitioned into multiple partitions, each with its own

lock, with the goal of minimizing contentions between multiple

CPU cores access) - which is by the way the one returned when

using ArrayPool<T>.Shared instance.2

using thread statics is obviously not eligible in async programming because
async method continuations are not guaranteed to be executed on the same
thread - we would lose thread local data after async method is continued. Thus,
complementary to ThreadLocal<T>, AsyncLocal<T> type is available that
keeps data across all async method execution. From the memory-management
point of view, this class is not so interesting though - it is a class, which instance is
being kept (altogether with the corresponding value) in the dictionary stored in the
execution context (ExecutionContext class).

 Managed Pointers
So far, the topic of managed pointers was slightly skipped for brevity (although a careful

reader may remember referring to them once or twice). Most of the time a regular

.NET developer uses object references and it is simply enough because this is how a

managed world is constructed - objects are referencing each other via object references.

As explained in Chapter 4, object reference is in fact a type-safe pointer (address) that

always points to an object MethodTable reference field (it is often said it points at the

beginning of an object). Thus, using them may be quite efficient. Having an object

reference, we simply have the whole object address. For example, the GC can quickly

access its header via constant offset. Addresses of fields are also easily computable due

to information stored in MethodTable.

2 This is true in .NET Core 2.1, while in .NET Core 2.0 it was only used for array pools of char and
byte.

ChApTEr 13 MISCEllAnEouS TopICS

847

There is, however, another pointer type in CLR - a managed pointer. It could be

defined as a more general type of pointer, which may point to other locations than just

the beginning of an object. ECMA-335 says that a managed pointer can point to:

• a local variable - whether it be reference to a heap-allocated object or

simply stack-allocated type,

• parameter - like above,

• field of a compound type - meaning a field of other type (whether it is

value or reference type),

• element of an array.

Despite this flexibility, managed pointers are still types. There is a managed pointer

type that points to System.Int32 objects, regardless of their localization, denoted as

System.Int32& in CIL. Or SomeNamespace.SomeClass& type pointing to our custom

SomeNamespace.SomeClass instances. Strong typing makes them safer than pure,

unmanaged pointers that may be used back and forth for literally everything. This is

also why managed pointers do not offer pointer arithmetic known from raw pointers -

it particularly does not make sense to “add” or “subtract” addresses they represent,

pointing to various places inside objects or to local variables.

However, flexibility does not come without a cost. It reveals itself as limitations of

a possible place where we can use managed pointers. As ECMA-335 says, managed

pointer types are only allowed for:

• local variables

• parameter signatures

It is directly said that “they cannot be used for field signatures, as the element type

of an array and boxing a value of managed pointer type is disallowed. Using a managed

pointer type for the return type of methods is not verifiable.”

Due to those limitations, managed pointers are not directly exposed into C#

language. However, they have long been present in the well-known form of ref

parameters. Passing parameter by reference is nothing else than using a managed

pointer underneath. Thus, managed pointers are also often referred to as byref types

(or byref simply). We have already seen examples of passing by reference in Listings 4-30

and 4-31 from Chapter 4.

ChApTEr 13 MISCEllAnEouS TopICS

848

Recently, since C# 7.0, managed pointers usage has been widened in the form of ref

locals and ref returns. Thus, the last sentence from the above ECMA citation about using

a managed pointer type as the return type has been relaxed.

 Ref Locals
You can see ref local as a local variable to store a managed pointer. Thus, it is a

convenient way of creating helper variables that may be later on used for direct access

to a given field, array element or other local variable (see Listing 13-21). Please note

that both the left and right side of assignment must be marked with the ref keyword to

denote operating on managed pointers.

Listing 13-21. Basic usage of ref locals

public static void UsingRefLocal(SomeClass data)

{

 ref int refLocal = ref data.Field;

 refLocal = 2;

}

A trivial example from Listing 13-21 make only illustrative sense - we are gaining

direct access to an int field so the performance gain will be neglectable. More

commonly you may want to use ref local to gain direct pointer to some heavyweight

instance to make sure copying will not happen (see Listing 13-22) and pass it by

reference somewhere or use locally. Ref locals are also commonly used to store the result

of ref return method (as we will soon see).

Listing 13-22. Possible usage of ref locals (example from MSDN)

ref VeryLargeStruct reflocal = ref veryLargeStruct;

// afterwards, using reflocal we use veryLargeStruct without copying

Ref local may be assigned to reference that itself is null (see Listing 13-23). At

first glance, it may look strange but makes perfect sense. You can think of ref local as a

variable storing an address to a reference, but it does not mean that the reference itself

points to anything.

ChApTEr 13 MISCEllAnEouS TopICS

849

Listing 13-23. Assigning null reference to a ref local

SomeClass local = null;

ref SomeClass localRef = ref local;

 Ref Returns
Ref return allows us to return a managed pointer from a method. Obviously, some

limitations must be introduced when using them. As MSDN says: “The return value

must have a lifetime that extends beyond the execution of the method. In other words,

it cannot be a local variable in the method that returns it. It can be an instance or static

field of a class, or it can be an argument passed to the method”. Attempting to return a

local variable generates compiler error CS8168, “Cannot return local ‘obj’ by reference

because it is not a ref local.”

An example of the mentioned local variable limitation is shown in Listing

13-24. Obviously, we cannot return a managed pointer to a stack-allocated

(or enregistered) localInt variable because it becomes invalid as soon as

ReturnByRefValueTypeInterior method ends.

Listing 13-24. An example of invalid code trying to ref return local variable

public static ref int ReturnByRefValueTypeInterior(int index)

{

 int localInt = 7;

 return ref localInt; // Compilation error: Cannot return local

'localInt' by reference because it is not a ref local

}

However, it is perfectly fine to ref return element of the method parameter because

from the method perspective, this argument lives longer that the method itself (see

Listing 13-25). In our example, GetArrayElementByRef method returns a managed

pointer to a given element of the array argument.

Listing 13-25. An example of ref return usage

public static ref int GetArrayElementByRef(int[] array, int index)

{

 return ref array[index];

}

ChApTEr 13 MISCEllAnEouS TopICS

850

Consuming ref returning method is easy but may be done in two ways (see

Listing 13-26):

• By consuming returned managed pointer - this is by far the most

typical way of using ref returning methods because we want to take

advantage of the fact that it returns byref. In such case we must call a

method with ref keyword and store the result in a local ref variable.

The first GetArrayElementByRef call in Listing 13-26 shows such

approach. Because we are returning a managed pointer to an array

element, we can modify its content directly (423 will be written to the

console).

• By consuming a value pointed by the returned managed pointer - it is

also possible to fall back to regular method call by omitting both ref

keywords (see second GetArrayElementByRef call in Listing 13-26).

In that way, the method will return a by value so modifying such

result does not modify the original content directly (still 423 will be

written to the console, ignoring our try to change first element to 5).

Listing 13-26. Consuming ref return method

int[] array = {1, 2, 3};

ref int arrElementRef = ref PassingByref.GetArrayElementByRef(array, 0);

arrElementRef = 4;

Console.WriteLine(string.Join("", array)); // Will write 423

int arrElementVal = PassingByref.GetArrayElementByRef(array, 0);

arrElementVal = 5;

Console.WriteLine(string.Join("", array)); // Will still write 423

Please note that like in ref locals, you may ref return a null referencing reference (see

Listing 13-27). This example, inspired by .NET samples, provides a very simple book

collection type. Its GetBookByTitle method returns by ref a book with the given title if it

exists. If it does not exist, it returns a predefined instance reference nobook that is null.

It is then perfectly fine to check if GetBookByTitle returns a reference that points to

something or not.

ChApTEr 13 MISCEllAnEouS TopICS

851

Listing 13-27. Ref returning null reference

public class BookCollection

{

 private Book[] books =

 {

 new Book { Title = "Call of the Wild, The", Author = "Jack London" },

 new Book { Title = "Tale of Two Cities, A", Author = "Charles

Dickens" }

 };

 private Book nobook = null;

 public ref Book GetBookByTitle(string title)

 {

 // Book nobook = null; // Would not work

 for (int ctr = 0; ctr < books.Length; ctr++)

 {

 if (title == books[ctr].Title)

 return ref books[ctr];

 }

 return ref nobook;

 }

}

static void Main(string[] args)

{

 var collection = new BookCollection();

 ref var book = ref collection.GetBookByTitle("<Not exists>");

 if (book != null)

 {

 Console.WriteLine(book.Author);

 }

}

Please note that we could not simply use local nobook variable (as in commented

line inside GetBookByTitle) because it is not possible to ref return local variable value

with the lifetime that does not extend beyond the execution of the method.

ChApTEr 13 MISCEllAnEouS TopICS

852

 Readonly Ref Variables and in Parameters
Ref types are quite powerful, because we may change its target. Thus, readonly refs

were introduced in C# 7.2 that controls the ability to mutate the storage of a ref variable.

Please note a subtle difference in such context between a managed pointer to a value

type versus a reference type:

• For value type target - it guarantees that the value will not be

modified. As the value here is the whole object (memory region), in

other words it guarantees that all fields will not be changed.

• For reference type target - it guarantees that the reference value will

not be changed. As the value here is the reference itself (pointing

to another object), it guarantees that we will not change it to point

to another object. But we can still modify the properties of the

referenced object.

Let’s modify an example from Listing 13-27 to return a readonly ref

(see Listing 13-28). The code is in fact identical, the only difference is a signature change

of GetBookByTitle method.

Listing 13-28. Example taken from dotnet docs examples

public class BookCollection

{

 private Book[] books =

 {

 new Book { Title = "Call of the Wild, The", Author = "Jack London" },

 new Book { Title = "Tale of Two Cities, A", Author = "Charles

Dickens" }

 };

 private Book nobook = null;

 public ref readonly Book GetBookByTitle(string title)

 {

 // Book nobook = null; // Would not work

 for (int ctr = 0; ctr < books.Length; ctr++)

 {

 if (title == books[ctr].Title)

ChApTEr 13 MISCEllAnEouS TopICS

853

 return ref books[ctr];

 }

 return ref nobook;

 }

}

static void Main(string[] args)

{

 var collection = new BookCollection();

 ref readonly var book = ref collection.GetBookByTitle("<Not exists>");

 if (book != null)

 {

 Console.WriteLine(book.Author);

 }

}

Our BookCollection may illustrate the difference between readonly reference in

case of both value type and reference type. If Book is a class, it is guaranteed that we will

not change the reference value, like trying to change it to a new object in commented

line in Listing 13-29. However, it is perfectly fine to modify fields of the target referenced

instance (like changing the author in Listing 13-29).

Listing 13-29. Using class from Listing 13-28 when Book is a class

static void Main(string[] args)

{

 var collection = new BookCollection();

 ref readonly var book = ref collection.GetBookByTitle("Call of the Wild,

The");

 // book = new Book(); // Not possible. Would be possible

without readonly

 book.Author = "Konrad Kokosa";

}

However, if Book is a struct, it is guaranteed that we will not be able to change its

value, like trying to change the author in Listing 13-30 (and for the same reason, it is not

possible to assign to it a new value in the one line above).

ChApTEr 13 MISCEllAnEouS TopICS

854

Listing 13-30. Using class from Listing 13-28 when Book is a struct

static void Main(string[] args)

{

 var collection = new BookCollection();

 ref readonly var book = ref collection.GetBookByTitle("Call of the Wild,

The");

 // book = new Book(); // Not possible. Would be possible

without readonly

 // book.Author = "Konrad Kokosa"; // Not possible. Would be possible

without readonly

}

These seemingly difficult nuances are easy to remember if we keep in mind what is a

protected value - the whole object (for value type) or reference (for reference type).

There is still one important aspect to be mentioned in this context. Let’s assume that

our Book struct has a method that modifies its field (see Listing 13-31). What happens if

we call it on a returned readonly ref? Even in such case it is guaranteed that the original

value will not be changed (see Listing 13-32). It is implemented by a defensive copy

approach - before executing ModifyAuthor method, a copy of the returned value type

(a Book struct in our case) is being made and its method is called on it. Compiler does

not analyze whether called method modifies state as it really difficult (assuming a lot of

possible conditions inside a method, maybe even depending on external data). Thus,

any method called on such struct will be treated that way.

So in fact, ModifyAuthor method is still executed but only on temporary instance

that becomes unused soon. Any changes applied to such a defensive copy obviously are

not performed for the original value.

Listing 13-31. Simple value type method modifying its state

public struct Book

{

 ...

 public void ModifyAuthor()

 {

 this.Author = "XXX";

 }

}

ChApTEr 13 MISCEllAnEouS TopICS

855

Listing 13-32. Using class from Listing 13-28 when Book is a struct

static void Main(string[] args)

{

 var collection = new BookCollection();

 ref readonly var book = ref collection.GetBookByTitle("Call of the Wild,

The");

 book.ModifyAuthor();

 Console.WriteLine(collection.GetBookByTitle("Call of the Wild, The")

.Author); // Prints Jack London

}

Such defensive copy may be both surprising and costly - one may expect the field to

be modified if ModifyAuthor method executed successfully. Creating a defensive copy of

a struct also is an obvious performance overhead.

please note in case of a Book being a class, the expected behavior remains -
ModifyAuthor would modify the object state even if readonly reference was
returned to it. remember, readonly reference disables reference mutation, not the
reference target values.

Please note that readonly refs do not have to be used only in the context of

collections. There is a good example of using readonly refs in MSDN to return static

value type representing some global, commonly used value (see Listing 13-33).

Without readonly ref returned the Origin value would be exposed to modification,

which is obviously unacceptable because Origin should be treat as a constant. Before

introducing ref returns, such value could be exposed as a regular value type, but it could

introduce copying of such structure many times.

ChApTEr 13 MISCEllAnEouS TopICS

856

Listing 13-33. An example of using readonly ref for public static value (based on

MSDN documentation example)

struct Point3D

{

 private static Point3D origin = new Point3D();

 public static ref readonly Point3D Origin => ref origin;

 ...

}

A form of readonly refs is also available in the form of in parameters. This is a small

yet very important addition to passing by reference feature added in C# 7.2. While

a passing by reference using ref parameter, the argument may be changed inside

such method - exposing the same problems as ref returning. Thus, the in modifier on

parameters was added, to specify that an argument is passed by reference but should not

be modified by the called method (see Listing 13-34).

Listing 13-34. An example of using in parameter

public class BookCollection

{

 ...

 public void CheckBook(in Book book)

 {

 book.Title = "XXX"; // Compilation error: Cannot assign to a

member of variable 'in Book' because it

is a readonly variable.

 }

}

Please note the same rules apply here as in readonly refs explained before: only a

value of the parameter is guaranteed to be not modified. So, in case of in parameter

being a reference type, only the reference value is not modifiable - the target reference

instance may be changed. So, in Listing 13-34 if Book was a class, it would compile

without a problem and Title would be changed. Only an assignment like book = new

Book() would not be possible.

ChApTEr 13 MISCEllAnEouS TopICS

857

Thus, the same defensive copy approach is used when a method is called on

in value type parameter (see Listing 13-35). Remember that to avoid such implicit

copying overhead that does not make sense in the first place (as any modifications are

discarded).

Listing 13-35. An example of using in parameter

public class BookCollection

{

 ...

 public void CheckBook(in Book book)

 {

 book.ModifyAuthor(); // Called on book defensive copy, original book

Title will not be changed.

 }

}

You may also avoid defensive copies by making such struct readonly (if it is

applicable) - they will be explained in the next subchapter. Because readonly structs

disable any possible modifications on its fields, the compiler may safely omit creating

defensive copy and call methods on passed value type arguments directly.

 Ref Types Internals
A careful reader may have raised a lot of interesting questions looking at listings from

13-21 to 13-33. For example, how does passing around all those managed pointers

cooperate with the GC? What code is generated underneath by the JIT compiler? What

are the real performance gains by using all this complicated machinery? If you are

interested in answers, read on. You may however feel free to omit this point and go

straight into the next one, describing practical usage of ref types in C#.

Let’s dig deeper into main use cases that managed pointer usage may be grouped

into. Understanding them will reveal reasons behind the mentioned limitations as well

as will help us to understand them better. In the following code examples, we will be

using two trivial types from Listing 13-36. All three ways how managed pointers appear

in C# are utilized in those examples - ref parameters, ref locals, and ref returns.

ChApTEr 13 MISCEllAnEouS TopICS

858

Listing 13-36. Two trivial types used in the following examples

public class SomeClass

{

 public int Field;

}

public struct SomeStruct

{

 public int Field;

}

We will start from looking at some details underneath the working of managed

pointers. Eventually it will lead us to practical usage considerations.

 Managed Pointer Into Stack-Allocated Object

A managed pointer can point to a method’s local variable or parameter. From an

implementation point of view, as we have seen in Chapter 8, a local variable or

parameter may be stack-allocated or enregistered into CPU register (if JIT compiler

decides so). How does a managed pointer work in such a case then? Simply put, it is

perfectly fine that the managed pointer points to a stack address! This is one of the

reasons why a managed pointer may not be the object’s field (and may not be boxed).

If it appears in this way on the Managed Heap, it could outlive the method within

which the indicated stack address is located. It would be very dangerous (pointed stack

address would contain undefined data, most probably other’s method stack frame). So

by limiting a managed pointer’s usage to local variables and parameters, their lifetime

is limited to the most restrictive lifetime of a possible target they can point to - data on

the stack.

What about enregistered local variables and parameters? Remember that such

an enregistered target is just an optimization detail; it has to provide at least the same

lifetime characteristics as a stack-allocated target. A lot depends on the JIT compiler

here. If some target was enregistered, it is even better! Such a register may be simply

used as a managed pointer. In other words, using a CPU register instead of a stack

address does not change much from the JIT compiler perspective.

ChApTEr 13 MISCEllAnEouS TopICS

859

But how are managed pointers (or more precisely, objects pointed by them) reported

to the GC? They must be, because otherwise GC may not detect reachability of the target

object; if it happens that managed pointer is the only root at the moment.

Let’s analyze a very simple passing by reference scenario, similar to Listing 4-34

from Chapter 4 (see Listing 13-37). To remove the effects of inlining and make things

clearer, NoInlining attribute was used that prevents inlining of Test method (inlined

version will be discussed also later on).

Listing 13-37. Simple pass by reference scenario (passing by reference whole

reference type object)

static void Main(string[] args)

{

 SomeClass someClass = new SomeClass();

 PassingByref.Test(ref someClass);

 Console.WriteLine(someClass.Field); // Prints "11"

}

public class PassingByref

{

 [MethodImpl(MethodImplOptions.NoInlining)]

 public static void Test(ref SomeClass data)

 {

 //data = new SomeClass();

 data.Field = 11; // at least to this line corresponding SomeClass

instance must be live (not garbage collected)

 }

}

What is interesting for us at the moment is to see how such code is represented

both on CIL and assembly level after JITting. Corresponding CIL code reveals usage of

strongly typed SomeClass& managed pointer (see Listing 13-38). In the Main method

ldloca instruction is used that loads the address of the local variable at a specific

ChApTEr 13 MISCEllAnEouS TopICS

860

index (and index 0 corresponds to our someClass variable) onto the evaluation stack,

which is then passed to Test method. Then Test method uses ldind.ref instruction to

dereference such address and push resulting object reference on the evaluation stack.

Listing 13-38. CIL code from Listing 13-37

.method private hidebysig static

 void Main (string[] args) cil managed

{

 .locals init (

 [0] class SomeClass

)

 IL_0000: newobj instance void SomeClass::.ctor()

 IL_0005: stloc.0

 IL_0006: ldloca.s 0

 IL_0008: call void PassingByref::Test(class SomeClass&)

 IL_000d: ret

}

.method public hidebysig static

 void Test (class SomeClass& data) cil managed noinlining

{

 IL_0000: ldarg.0

 IL_0001: ldind.ref

 IL_0002: ldc.i4.s 11

 IL_0004: stfld int32 SomeClass::Field

 IL_0009: ret

}

But while CIL code may be interesting, we already have seen examples that only

JITted code reveals the true nature what happens underneath. Looking at the assembly

code of both methods, we indeed see that Test method receives an address pointing to

the stack where reference to newly created SomeClass instance is stored (see Listing 13-39

with comments).

ChApTEr 13 MISCEllAnEouS TopICS

861

Listing 13-39. Assembly code of methods from Listing 13-38

Program.Main(System.String[])

 L0000: sub rsp, 0x28 // Growing stack frame

 L0004: xor eax, eax // Zeroing EAX register

 L0006: mov [rsp+0x20], rax // Zeroing the stack under rsp+0x20

address (where local variable is

stored)

 L000b: mov rcx, 0x7ffa69398840 // Moving MT of SomeClass into RCX

register

 L0015: call 0x7ffac3452520 // Calling allocator (as a result,

RAX will contain address of the

new object)

 L001a: mov [rsp+0x20], rax // Storing the address of new

object onto the stack

 L001f: lea rcx, [rsp+0x20] // Moving the local variable's stack

address into RCX register (which

is first Test method argument)

 L0024: call PassingByref.Test(SomeClass ByRef)

 L0029: nop

 L002a: add rsp, 0x28

 L002e: ret

PassingByref.Test(SomeClass ByRef)

 L0000: mov rax, [rcx] // Dereferencing the address in

RCX into RAX (As a result, RAX

contains object instance address)

 L0003: mov dword [rax+0x8], 0xb // Storing value 11 (0x0B) in the

proper field of an object

 L000a: ret

From a pure assembly code point of view, similar code as in Listing 13-39 would be

generated, for example, if using pointer to a pointer in C++. But how, while Test method

is executing, the GC knows that RCX register contains an object address? The answer is

interesting for us - Test method from Listing 13-39 contains an empty GCInfo. In other

words, Test method is so simple that GC will not interrupt its work. Thus, it does not

need to report anything.

ChApTEr 13 MISCEllAnEouS TopICS

862

In the example from listing 13-39, SomeClass instance is life because of the
Main method. GCInfo of the Main method would reveal that rsp+0x20 stack
address is reported to contain live root (Untracked: +sp+20 would be listed
by !u -gcinfo command). This, however, does not change anything regarding
further passing such instance by reference or not.

If Test method was more complex, it could be JITted into fully- or partially

interruptible method (see Chapter 8). For example, in the latter case, we could see

various safepoints, some of them listing some CPU registers (or stack addresses) as live

slots - see Listing 13-40 as an example, showing an excerpt of !u -gcinfo command

from SOS extension in WinDbg (already explained in Chapter 8).

Listing 13-40. Example of JITted code and corresponding GCInfo of more

complex Test method variation (its C# source code is not shown as irrelevant)

> !u -gcinfo 00007ffc86850d00

Normal JIT generated code

CoreCLR.Unsafe.PassingByref.Test(CoreCLR.Unsafe.SomeClass ByRef)

Begin 00007ffc86850d00, size 44

push rdi

push rsi

sub rsp,28h

mov rsi,rcx

...

call 00007ffc`86850938

00000029 is a safepoint:

00000028 +rsi(interior)

...

call 00007ffc`868508a0

00000033 is a safepoint:

00000032 +rsi(interior)

...

add rsp,28h

ChApTEr 13 MISCEllAnEouS TopICS

863

pop rsi

pop rdi

ret

Those life slots would be listed as so-called interior pointers because managed pointers

in general may point inside objects (it will be explained soon). Thus, managed pointers are

always reported as interior roots; besides that in our case they point in fact at the beginning

of the object. Interpretation of such pointers is on the GC side, explained later.

As mentioned before, our example was a little contrived by an explicit disabling
inlining possibility. If we commented out the NoInlining attribute in listing 13-37,
we would get after JITting the following code:

Program.Main(System.String[])

 L0000: sub rsp, 0x28

 L0004: mov rcx, 0x7ffa69398840 // Moving MT of SomeClass

into RCX register

 L000e: call 0x7ffac3452520 // Calling allocator (as a

result, RAX will contain

address of the new object)

 L0013: mov dword [rax+0x8], 0xb // Directly storing value 11

into proper field of an

object

 L001a: add rsp, 0x28

 L001e: ret

once again, the power of JIT compiler optimizations may be noticed. The whole
concept of managed pointers has been reduced into the simplest possible handling
of direct object addresses.

Very similar code would be generated in case of using struct instead of class (see

Listing 13-41, similar to Listing 4-33 from Chapter 4). What is more interesting, even

it is theoretically known that Test method from Listing 13-41 operates only on stack-

allocated data (local variable of SomeStruct value type), corresponding GCInfo will still

list live slots because of using a managed pointer. It is up to the GC just to ignore them.

ChApTEr 13 MISCEllAnEouS TopICS

864

Listing 13-41. Simple pass by reference scenario (passing by reference whole

value type object)

static void Main(string[] args)

{

 SomeStruct someStruct = new SomeStruct();

 PassingByref.Test(ref someStruct);

 Console.WriteLine(someStruct.Field);

}

[MethodImpl(MethodImplOptions.NoInlining)]

public static void Test(ref SomeStruct data)

{

 data.Field = 11;

}

 Managed Pointer Into Heap-Allocated Object

While stack-pointing managed pointers may seem to be interesting, those that are

pointing to objects on the Managed Heap are even more interesting. In contrast to the

object reference, a managed pointer can point to the inside of the object - field of a type

or element of an array as already cited ECMA standard says (see Figure 13-3). That is why

they are in fact “interior pointers,” as it is named in the literature. When you think about

it a little, it may seem very interesting - how interior pointers pointing inside managed

objects may be reported to the GC?

MT

MT

Header

reference

managed pointer (&)

fields

F1 F2 F3 F4 F5

(pointer to field F3)

Figure 13-3. Managed pointer (also known as interior pointer or byref) versus
regular object reference

ChApTEr 13 MISCEllAnEouS TopICS

865

Let’s modify a little code from Listing 13-37, to pass by reference only a field

of heap-allocated SomeClass instance (see Listing 13-42). The main method looks

straightforward. It instantiates SomeClass object, passes a reference to one of its field to

the Test method, and prints the result.

But our modified Test method expects now System.Int32& managed pointer.

During execution, Test method operates only on a managed pointer to int. But it is not

just a regular pointer to int - it is a field of a heap-allocated object! From where the GC

knows that it may not collect corresponding object, to which used managed pointer it

belongs? There is absolutely nothing said about from where int& pointer comes from,

though.

Listing 13-42. Simple pass by reference scenario (passing by reference

object’s field)

static void Main(string[] args)

{

 SomeClass someClass = new SomeClass();

 PassingByref.Test(ref someClass.Field);

 Console.WriteLine(someClass.Field); // Prints "11"

}

public class PassingByref

{

 [MethodImpl(MethodImplOptions.NoInlining)]

 public static void Test(ref int data)

 {

 data = 11; // this should keep containing object life!

 }

}

First of all, please note that our Test method contrived example will be JITted into

atomic (from the GC point of view) method that the GC will simply not interrupt at

all - similarly as in case of code from Listing 13-37 (see Listing 13-43). So the question of

proper root reporting is not needed at all for such a simple method.

ChApTEr 13 MISCEllAnEouS TopICS

866

Listing 13-43. Assembler code after JITting code from Listing 13-42

Program.Main(System.String[])

 L0000: sub rsp, 0x28

 L0004: mov rcx, 0x7ffa6d128840

 L000e: call 0x7ffac3452520

 L0013: lea rcx, [rax+0x8]

 L0017: call PassingByref.Test(Int32 ByRef)

 L001c: nop

 L001d: add rsp, 0x28

 L0021: ret

PassingByref.Test(Int32 ByRef)

 L0000: mov dword [rcx], 0xb

 L0006: ret

But let’s suppose Test method is complex enough to produce interruptible code.

Listing 13-44 shows an example of how corresponding JITted code could look then. RSI

register, which keeps the value of the integer field address passed as argument in RCX

register, is reported as an interior pointer.

Listing 13-44. Fragments of assembler code after JITting code that becomes fully

interruptible

> !u -gcinfo 00007ffc86fb0ce0

Normal JIT generated code

CoreCLR.Unsafe.PassingByref.Test(Int32 ByRef)

Begin 00007ffc86fb0ce0, size 41

push rdi

push rsi

sub rsp,28h

mov rsi,rcx

00000009 interruptible

00000009 +rsi(interior)

...

0000003a not interruptible

0000003a -rsi(interior)

add rsp,28h

ChApTEr 13 MISCEllAnEouS TopICS

867

pop rsi

pop rdi

ret

If GC happens and Test method is suspended when RSI contains such interior

pointer, GC must interpret it to find the corresponding object. This is in general not

trivial. One could think about simple algorithm that starts from such a pointer’s address

and then tries to find the beginning of the object by scanning memory to the left byte by

byte.3 This obviously is not efficient and has many drawbacks:

• Interior pointer may point to a distant field of big object (or distant

element of very large array) - so a lot of such naïve scans had to be

performed.

• It is not trivial to detect beginning of the object - it could be a check

if subsequent 8 bytes (or 4 in 32-bit case) forms valid MT address but

this only increases such algorithm complexity. One could imagine

some “marker” bytes that are allocated at the beginning of each

object but this adds unnecessary memory overhead just to support

theoretically rare interior pointer’s usage (and it would be really hard

to define mark bytes unique enough to identify object beginning

unambiguously).

• All managed pointers are reported as interior pointers - so they may

point to the stack and it makes no sense to find containing object in

the first place (as it may point, for example, inside stack-allocated

struct).

I hope you get the point that such algorithm is impractical. Some more intelligent

support is required to resolve interior pointers efficiently.

We in fact have already seen the mechanism used here. During GC, interior pointers

are translated into corresponding objects, thanks to the bricks and plug trees described

in Chapter 9. Given a specified address, a proper brick table entry is calculated and a

corresponding plug tree traversed to find the plug within which such an address lives

3 It must have been done with a single byte shift because it is not guaranteed in any way how
aligned are interior pointers with respect to the object’s beginning.

ChApTEr 13 MISCEllAnEouS TopICS

868

(see Figures 9-9 and 9-10 in Chapter 9). Then, such plug is being scanned object by

object to find the one that contains the considered address.4

Obviously, such algorithm has its costs also. Plug tree traversal and plug scanning

takes some time. Dereferencing interior pointer is not trivial then. This is the second

important reason why managed pointers are not allowed to live on the heap (especially

as the object’s fields) - creating complex graphs of objects referenced by interior pointers

would make traversing such a graph quite costly. Giving such flexibility is simply not

worth the quite significant overhead it introduces.

Please also note that with such implementation, dereferencing the interior pointer

is possible only during GC, after Plan phase. Only then plug and gaps are constructed,

altogether with the corresponding plug tree.

If you would like to investigate interior pointers on your own, start from the
CoreClr gc_heap::find_object(uint8_t* interior, ...) method -
plug scanning is done in the gc_heap::find_first_object(uint8_t*
start, uint8_t* first_object) method.

Interior pointer interpretation allows some magic things to happen, dangerous at

the first glance. For example, we are able to return a managed pointer to a locally created

class instance or an array (see Listing 13-45). This may seem to be counterintuitive - how

one could return from a method reference to single integer array element, while the

array object itself seems to become unreachable? Obviously, it is not, because after such

method ends, the returned interior pointer becomes the only root of the array.

Listing 13-45. Example of interior pointer becoming the only root

public static ref int ReturnByRefReferenceTypeInterior(int index)

{

 int[] localArray = new[] { 1, 2, 3 };

 return ref localArray[index];

}

static void Main(string[] args)

4 Plug scanning is possible because the plug starts with an object and then the following objects
are easily found because object sizes are known.

ChApTEr 13 MISCEllAnEouS TopICS

869

{

 ref int byRef = ref ReturnByRefReferenceTypeInterior(0);

 // Array created in above method is no longer accessible from code,

while still alive

 byRef = 4; // using by byRef to prevent eager root collection

}

The array itself is then still alive because of the interior pointer; however, we have

lost the array object reference (see Figure 13-4). Due to the limitation mentioned

previously (bricks and plug tree availability), such a pointer cannot be at runtime

“converted back” to the proper reference of the object it points to.

We may play a little with WeakReference type to observe interior pointer behavior

(for fun experiments or fancy unit tests). A little modified code in Listing 13-46 uses

a class ArrayWrapper instead of plain array, which will turn out to be useful for our

experiment soon. Byref is returned to the integer field of ArrayWrapper. Moreover,

ObservableReturnByRefReferenceTypeInterior method returns a WeakReference to

the created object, to make its liveness observable.

Listing 13-46. Example of interior pointer becoming the only root

public static ref int ObservableReturnByRefReferenceTypeInterior(int index,

out WeakReference wr)

{

 ArrayWrapper wrapper = new ArrayWrapper() { Array = new[] {1, 2, 3},

Field = 0 };

redaeH TM

managed pointer (byRef)

F1 F2 F3sizeint[]

Figure 13-4. Managed pointer being the only root of the array object (pointing to
one of its elements)

ChApTEr 13 MISCEllAnEouS TopICS

870

 wr = new WeakReference(wrapper);

 return ref wrapper.Field;

}

static void Main(string[] args)

{

 ref int byRef = ref ObservableReturnByRefReferenceTypeInterior(2, out

WeakReference wr);

 byRef = 4;

 for (int i = 0; i < 3; ++i)

 {

 GC.Collect();

 Console.WriteLine(byRef + " " + wr.IsAlive);

 }

 GC.Collect();

 Console.WriteLine(wr.IsAlive);

}

In that way we can observe it in Main method to confirm that ArrayWrapper instance

is live as long as the returned interior pointer, represented by local ref byRef variable, is

used (see Listing 13-47).

Listing 13-47. Results of code from Listing 13-4

4 True

4 True

4 True

False

If we took a memory dump inside for loop in Main method from Listing 13-46, with

the help of WinDbg we could find a root of ArrayWrapper instance to be an interior

pointer kept on the stack (see Listing 13-48).

ChApTEr 13 MISCEllAnEouS TopICS

871

Listing 13-48. Dumpheap and gcroot SOS commands in WinDbg - interior

pointer is stored on the stack (RBP is a stack-addressing register)

> !dumpheap -type ArrayWrapper

 Address MT Size

0000027b00023d20 00007ffdace07220 32

...

> !gcroot 0000027b00023d20

Thread 3f48:

 000000a65857de60 00007ffdacf60598 CoreCLR.Unsafe.Program.Main

(System.String[])

 rbp-50: 000000a65857dec0 (interior)

 -> 0000027b00023d20 CoreCLR.Unsafe.ArrayWrapper

Found 1 unique roots (run '!GCRoot -all' to see all roots).

Other tools, including PerfView, most often list such an object as regular local variable

roots ([local vars] root in case of PerfView). This may be sometimes misleading as from

code there is no direct connection between Main method and ArrayWrapper type (and such

relation could be even more hidden if the interior pointer would point to a more nested type).

What is more interesting, such interior pointer usage may lead to surprising (yet still

sensible) behaviors. Let’s change code from Listing 13-46 to return byref given element

of internal ArrayWrapper array, similarly like in Listing 13-45 (see Listing 13-49).

Listing 13-49. Example of interior pointer becoming the only root

public static ref int ObservableReturnByRefReferenceTypeInterior(int index,

out WeakReference wr)

{

 ArrayWrapper wrapper = new ArrayWrapper() {Array = new[] {1, 2, 3},

Field = 0};

 wr = new WeakReference(wrapper);

 return ref wrapper.Array[index];

}

After such a change, Main method produces different results (see Listing 13-50).

Apparently, the returned ArrayWrapper instance becomes unreachable (and thus

garbage collected) soon after ObservableReturnByRefReferenceTypeInterior method

ends. This may be surprising as underlying array is still kept live by byRef interior pointer!

ChApTEr 13 MISCEllAnEouS TopICS

872

Listing 13-50. Results of code from Listing 13-49

4 False

4 False

4 False

False

A careful reader probably already catches it. It is easy to explain what

happens by illustrating relevant relationships (see Figure 13-5). After

ObservableReturnByRefReferenceTypeInterior method ends but before first GC.

Collect call, the situation is as in Figure 13-5a - ArrayWrapper instance is still alive,

referencing int[] array through Array field. And there is byRef ref local that points into

the same array. When GC happens, int[] array is still held by interior pointer. But, in

fact, nothing points to the ArrayWrapper instance, as it is detected as unreachable and

garbage collected.

redaeH TM

ArrayWrapper

managed pointer (byRef)

F1 F2 F3

redaeH TM

size

Field

Array

int[]

(a)

redaeH TM

ArrayWrapper

managed pointer (byRef)

F1 F2 F3

redaeH TM

size

Field

Array

int[]

(b)

Figure 13-5. Illustration of objects relationships in Listing 13-49: (a) before the GC
run, (b) after the GC run

ChApTEr 13 MISCEllAnEouS TopICS

873

I hope you already notice the direction chosen by this description - avoid such ref

returns that return interior-only rooted objects. They are fun but may be misleading!

Interior pointers are, of course, also considered during relocation in compacting
GC. Their value (address) is accordingly changed according to a corresponding
plug offset, just as for regular references.

One may be quite surprised that code from Listing 13-45 is correctly handled by the

GC. Similarly, code from Listing 13-51 may be surprising although we should already

understand why it works. Even if the array of ints seems to be only temporary, due to the

interior pointer to the first element, it will be kept alive as long as such pointer is being

used.

Listing 13-51. Ref local with interior pointer to temporary (yet still alive)

managed array

ref var local = ref (new int[1])[0];

We can use such “magical” syntax to create a generic helper of creating interior

pointers (see Listing 13-52). Its usage should be limited only for testing and

benchmarking scenarios (at least I am not able to imagine any real-world usage of it).

Listing 13-52. Code that creates interior pointer to a given object

public class Helpers {

 public static ref T MakeInterior<T>(T obj) => ref (new T[] { obj })[0];

}

For flexibility, managed pointers may also point to unmanaged memory regions.
They are obviously ignored by the GC during the Mark or Compact phases.

ChApTEr 13 MISCEllAnEouS TopICS

874

 Managed Pointers in C# - ref Variables
As previously said, ref variables (ref parameters, ref locals, and ref return usage) are small

wrappers around managed pointers. They should not be treated as pointers obviously.

They are variables! Read great “ref returns are not pointers” article by Vladimir Sadov at

http://mustoverride.com/refs-not-ptrs/ for more details.

It is nice to experiment with all those bigger or smaller managed pointers and ref

variables usages, but why do we need them at all? Why are all those ref locals, ref returns,

and ref parameters were introduced in the first place? There is one single, very important

reason behind them:

to avoid copying data - especially when using large structs - in a

type safe manner!

Value types have many advantages and we have seen it already in this book -

avoiding heap allocations and better data locality can make code significantly faster.

Their value passing semantics (explained in detail in Chapter 4) makes them, however,

a little troublesome - JIT compiler is making its best to avoid copying small structures

but it is in fact an implementation detail behind our control. Every time we are passing a

value type (our custom struct most probably) as a parameter or return it from a method,

we should assume that undesired memory copying happens.

Ref variables were introduced to overcome this main disadvantage. They guarantee

passing value types by reference, combining the best of two worlds - avoiding heap

allocations while still making possible to use them in reference-like manner (because

they provide reference semantics).

Let’s look at a simple benchmark to let the numbers speak (see Listing 13-53). There

are methods defined that are passing value types (structs) both typically by value and

also by reference. To measure impact of the passed struct size, three various structs are

used - containing 8, 28, and 48 integers (thus, with the sizes of 32, 112, and 192 bytes

respectively). Only the smallest struct definition is shown for brevity. Additionally, there

is also a single method taking as an argument a similarly sized class.

ChApTEr 13 MISCEllAnEouS TopICS

http://mustoverride.com/refs-not-ptrs/

875

Listing 13-53. Benchmark to measure by value versus by reference passing

public unsafe class ByRef

{

 [GlobalSetup]

 public void Setup()

 {

 this.struct32B = new Struct32B();

 // ...

 }

 [Benchmark]

 public int StructAccess()

 {

 int result = 0;

 result = Helper1(struct32B);

 return result;

 }

 [Benchmark]

 public int ByRefStructAccess()

 {

 int result = 0;

 result = Helper1(ref struct32B);

 return result;

 }

 [Benchmark]

 public int ClassAccess()

 {

 int result = 0;

 result = Helper2(bigClass);

 return result;

 }

 [MethodImpl(MethodImplOptions.NoInlining)]

 private int Helper1(Struct32B data)

 {

ChApTEr 13 MISCEllAnEouS TopICS

876

 return data.Value1;

 }

 [MethodImpl(MethodImplOptions.NoInlining)]

 private int Helper1(ref Struct32B data)

 {

 return data.Value1;

 }

 [MethodImpl(MethodImplOptions.NoInlining)]

 private int Helper2(BigClass data)

 {

 return data.Value1;

 }

 public struct Struct32B

 {

 public int Value1;

 public int Value2;

 public int Value3;

 public int Value4;

 public int Value5;

 public int Value6;

 public int Value7;

 public int Value8;

 }

}

Results from DotNetBenchmark tool of such a simple benchmark are clearly showing

the advantage of passing by reference (see Listing 13-54). Passing by reference shows the

same performance regardless of the struct size (and similar to class reference passing,

regardless of its size). On the other hand, as regular by value passing (which involves

struct copying) becomes the more drastically slower, the bigger the struct size is. The

same would apply to the ref returning so a very similar benchmark is omitted for brevity.

ChApTEr 13 MISCEllAnEouS TopICS

877

Listing 13-54. Results from benchmark in Listing 10-52

 Method | Mean | Allocated |

--------------- |---------:|----------:|

 Struct32B | 1.560 ns | 0 B |

 Struct112B | 5.229 ns | 0 B |

 Struct192B | 7.457 ns | 0 B |

 ByRefStruc32tB | 1.332 ns | 0 B |

ByRefStruct112B | 1.343 ns | 0 B |

ByRefStruct192B | 1.329 ns | 0 B |

 ClassAccess | 1.098 ns | 0 B |

Introducing ref variables is thus especially important when using large value types.

Having them, we should be no longer afraid of struct-copying. Moreover, we can control

such data mutability with the help of already-mentioned readonly refs and readonly

structs that will be explained soon. All this was introduced to make value types more

usable in high-performance scenarios.

However, even in trivial cases ref variables may be useful. A good sample from .NET

documentation is shown in Listing 13-55. A method that is dedicated to find a value in

a given matrix is written in two ways - returning found element by value tuple and by

reference. There would be no significant performance difference between those two (as

returned value tuple would be rather enregistered and no struct copying would happen).

However, the second version allows for very fast modification of the returned value.

The first one returns only indexes within a matrix. Modification would require a second

matrix access to the element designated by those indexes. This is obviously a matter of

the API that we would like to expose to the users of such method. And while the resulting

performance difference might not be huge, it may sum up if such method would be

called very often.

Listing 13-55. Example of ref return to provide more flexible and faster

mutability

public static (int i, int j) FindValueReturn(int[,] matrix, Func<int, bool>

predicate)

{

 for (int i = 0; i < matrix.GetLength(0); i++)

 for (int j = 0; j < matrix.GetLength(1); j++)

ChApTEr 13 MISCEllAnEouS TopICS

878

 if (predicate(matrix[i, j]))

 return (i, j);

 return (-1, -1); // Not found

}

public static ref int FindRefReturn(int[,] matrix, Func<int, bool>

predicate)

{

 for (int i = 0; i < matrix.GetLength(0); i++)

 for (int j = 0; j < matrix.GetLength(1); j++)

 if (predicate(matrix[i, j]))

 return ref matrix[i, j];

 throw new InvalidOperationException("Not found");

}

ref structs will be explained soon; this does not change anything with respect to
the current context.

Because of ref variables, ref returning collections may gain more popularity. They may

be especially useful for collections storing big value types, as they allow them to access

their elements without copying. An example of such simple collection is presented in

Listing 13-56. It exposes an indexer that returns specified element by reference. This

allows direct access to the elements without copying as they would regular references

(see Main method in Listing 13-56).

Listing 13-56. Simple example of the custom ref returning collection

public class SomeStructRefList

{

 private SomeStruct[] items;

 public SomeStructRefList(int count)

 {

 this.items = new SomeStruct[count];

 }

ChApTEr 13 MISCEllAnEouS TopICS

879

 public ref SomeStruct this[int index] => ref items[index];

}

static void Main(string[] args)

{

 SomeStructRefList refList = new SomeStructRefList(3);

 for (var i = 0; i < 3; ++i)

 refList[i].Field = i;

 for (var i = 0; i < 3; ++i)

 Console.Write(refList[i].Field); // Prints 012

}

Obviously, sometimes one could expose API that does not allow us to modify

returned elements (to provide kind of read-only collection). This is perfectly possible

with the help of readonly refs explained before (see Listing 13-57). Bear in mind all

consequences though - especially about defensive copying of the value when a method

is being called on it (see Main method in Listing 13-57).

Listing 13-57. Simple example of the custom read-only ref returning collection

public struct SomeStruct

{

 public int Field;

 public void ModifyMe()

 {

 this.Field = 9;

 }

}

public class SomeStructReadOnlyRefList

{

 private SomeStruct[] items;

 public SomeStructReadOnlyRefList(int count)

 {

 this.items = new SomeStruct[count];

 }

ChApTEr 13 MISCEllAnEouS TopICS

880

 public ref readonly SomeStruct this[int index] => ref items[index];

}

static void Main(string[] args)

{

 SomeStructReadOnlyRefList readOnlyRefList = new

SomeStructReadOnlyRefList(3);

 for (var i = 0; i < 3; ++i)

 //readOnlyRefList[i].Field = i; // Error CS8332: Cannot assign to

a member of property 'SomeStructRefList.this[int]' because it is a

readonly variable

 readOnlyRefList[i].ModifyMe(); // Called on defensive copy! Does

not modify orignal value.

 for (var i = 0; i < 3; ++i)

 Console.WriteLine(readOnlyRefList[i].Field); // Prints 000 instead

of 999

}

If we compare relevant parts of the CIl code of Main method in listings 13-56 and
13-57, we will notice the mentioned defensive copying. ref return code just calls
ModifyMe method on the element returned by the indexer:

IL_0008: ldc.i4.0
IL_0009: callvirt instance valuetype SomeStruct&
SomeStructRefList::get_Item(int32)
IL_000e: call instance void SomeStruct::ModifyMe()

on the other hand, readonly ref value is being copied into an additional, temporary
local variable:

IL_0008: ldc.i4.0
IL_0009: callvirt instance valuetype SomeStruct&
modreq(InAttribute) SomeStructRefList2::get_Item(int32)
IL_000e: ldobj C/SomeStruct // Load object from the

returned address on the
evaluation stack

ChApTEr 13 MISCEllAnEouS TopICS

881

IL_0013: stloc.0 // Store the value from the evaluation

stack into local variable

IL_0014: ldloca.s 0 // Load the address of the local variable

IL_0016: call instance void C/SomeStruct::ModifyMe()

After introducing more flexible ref variables in C# 7.2, we may expect more and

more public API of common collections to include ref returning semantics. It has been

standardized to the method with the ItemRef name. Currently most of the immutable

collections from System.Collections.Immutable namespace (like ImmutableArray,

ImmutableList, ...) include such a change. Ref returning logic may be more complex

than single access to the underlying storage. For example, ImmutableSortedSet internal

storage is based on Nodes forming binary AVL three. Thus, its ItemRef implementation

is based on binary tree traversal (see Listing 13-58).

Listing 13-58. An example of more complex ref returning collection

implementation

public sealed partial class ImmutableSortedSet<T>

{

 internal sealed class Node : IBinaryTree<T>, IEnumerable<T>

 {

 ...

 internal ref readonly T ItemRef(int index)

 {

 if (index < _left._count)

 {

 return ref _left.ItemRef(index);

 }

 if (index > _left._count)

 {

 return ref _right.ItemRef(index - _left._count - 1);

 }

 return ref _key;

 }

ChApTEr 13 MISCEllAnEouS TopICS

882

 ...

 }

 ...

}

Implementing ref returning behavior is not always trivial because it exposes the

collection item. It is sometimes unwanted because such collection may:

• Require special treatment of its items, which is omitted by exposing

it via byref - for example, each modification of the collection item

should be logged or requires other handling (like versioning).

• Want to reorganize its internal storage, which invalidates returned

byref - for example, underlying storage may be based on array, which

needs to be recreated when collection growth is needed.

Exactly those two problems make introducing ItemRef to popular List<T> (or

Dictionary<TKey, TValue>) problematic:

• It uses internal _version counter (used for serialization).

• Tt may reorganize items due to internal array storage.

 More on Structs...
Structs were in .NET since the very beginning. It is hard to overlook that they were

not so popular since then. Only in the last year or two have we observed the growing

popularity and awareness of structs. The times requiring excellent performance pushes

more and more limits on the GC and memory usage in overall. Thus, returning to structs

is happening - not heap allocated if used carefully, they provide a great performance

gain releasing GC from its work. As a performance fan, I am more than happy to see this.

Many, many places where allocations were made carelessly are now changed into struct-

based types avoiding allocations (often, at all).

This is a great direction I would like to emphasize here. Along with the growing

awareness of structs inside .NET-related Microsoft teams, more and more features are

released in C# regarding them. Many were already mentioned - ref locals and returns

complement ref arguments to make using value types copy-free. Readonly refs and in

parameters make easier controlling mutability of used values. And there are two other

important new features added in C# 7.2 that need to be carefully described - readonly

ChApTEr 13 MISCEllAnEouS TopICS

883

structs and ref structs. I expect a noticeable growth of their popularity in upcoming years, at

least in the code with high-performance requirements. I do not expect that CRUD business

layers will all of a sudden be cluttered with all those struct-related features though.

 Readonly Structs
We have already seen readonly ref and in parameters that disable modification

of the argument in specified context. It may be very helpful in controlling that ref

variables used for value types will not allow the programmer to modify its value. One

may, however, go even further and create immutable struct - the one that cannot be

modified once created. I hope you already see possible C# compiler and JIT compiler

optimizations that comes from that fact - like the possibility to safely get rid of defensive

copies while methods are called.

We define a readonly struct by adding a readonly modifier to a struct declaration

(see Listing 13-59). C# compiler enforces that every field of such struct is also defined as

readonly.

Listing 13-59. An example of readonly struct declaration

public readonly struct ReadonlyBook

{

 public readonly string Title;

 public readonly string Author;

 public ReadonlyBook(string title, string author)

 {

 this.Title = title;

 this.Author = author;

 }

 public void ModifyAuthor()

 {

 //this.Author = "XXX"; // Compilation error: A readonly field

cannot be assigned to (except in a

constructor or a variable initializer)

 Console.WriteLine(this.Author);

 }

}

ChApTEr 13 MISCEllAnEouS TopICS

884

If your type is (or can be) immutable from business and/or logic requirements point

of view, it is always worth it to consider using a readonly struct passed by reference (with

the help of in keyword) in high-performance pieces of code.

As MSDN says: “You can use the in modifier at every location where a readonly

struct is an argument. In addition, you can return a readonly struct as a ref return

when you are returning an object whose lifetime extends beyond the scope of the

method returning the object.” Thus, using a readonly struct is a very convenient way of

manipulating immutable types both in safe and performance- aware manner.

For example, let’s modify BookCollection class from Listing 13-28 to contain

internally an array of readonly structs instead of regular structs (see Listing

13-60). It is fine that they will be heap allocated inside such an array, because

ReadOnlyBookCollection instances are heap-allocated reference types. However, all

immutability guarantees remains. Thus, the compiler will omit defensive copy creation

in the CheckBook method.

Listing 13-60. Modification of code from Listing 13-28 - storing readonly structs

public class ReadOnlyBookCollection

{

 private ReadonlyBook[] books = {

 new ReadonlyBook("Call of the Wild, The", "Jack London"),

 new ReadonlyBook("Tale of Two Cities, A", "Charles Dickens")

 };

 private ReadonlyBook nobook = default;

 public ref readonly ReadonlyBook GetBookByTitle(string title)

 {

 for (int ctr = 0; ctr < books.Length; ctr++)

 {

 if (title == books[ctr].Title)

 return ref books[ctr];

 }

 return ref nobook;

 }

ChApTEr 13 MISCEllAnEouS TopICS

885

 public void CheckBook(in ReadonlyBook book)

 {

 //book.Title = "XXX"; // Would generate compiler error.

 book.DoSomething(); // It is guaranteed that DoSomething does not

modify book's fields.

 }

}

public static void Main(string[] args)

{

 var coll = new ReadOnlyBookCollection();

 ref readonly var book = ref coll.GetBookByTitle("Call of the Wild,

The");

 book.Author = "XXX"; // Compiler error: A readonly field cannot be

assigned to (except in a constructor or a

variable initializer)

}

 Ref Structs (byref-like types)
As already explained a few times, managed pointers have their well-justified limitations -

especially in that they are not allowed to appear on the Managed Heap (as a field of

reference type or just by boxing). However, for some scenarios that will be explained

later, it would be really nice to have a type that contains a managed pointer. Such type

should have similar limitations as the managed pointer itself (to not break limitations of

the contained managed pointer). Thus, those kinds of types are commonly called byref-

like types (as the other name of managed pointer is simply byref).

Since C# 7.3 we can declare our custom byref-like types in the form of ref structs by

adding a ref modifier to the struct declaration (see Listing 13-61).

Listing 13-61. An example of ref struct declaration

public ref struct RefBook

{

 public string Title;

 public string Author;

}

ChApTEr 13 MISCEllAnEouS TopICS

886

C# compiler imposes many limitations on ref structs to make sure that they will only

be stack allocated:

• It cannot be declared as a field of a class or normal struct (because it

could be boxed).

• It cannot be declared as a static field for the same reasons.

• It cannot be boxed - so it is not possible to assign/cast it to object,

dynamic or any interface type. It is also not possible to use them as

array elements, as array stores boxed structs.

• It cannot be used as an iterator, generic argument and cannot

implement an interface (because it could become boxed then).

• It cannot be used as local variable in async method - as it could be

boxed as a part of async state machine.

• It cannot be captured by lambda expressions or local functions - as it

would be boxed by the corresponding closure class (see Chapter 6).

Trying to use ref struct in those situations will end with compilation error. Some

examples are shown in Listing 13-62.

Listing 13-62. An example of some of not possible ref struct usages

public class RefBookTest

{

 private RefBook book; // Compilation error: Field or auto-implemented

property cannot be of type 'RefBook' unless

it is an instance member of a ref struct

 public void Test()

 {

 RefBook localBook = new RefBook();

 object box = (object) localBook; // Compilation error: Cannot

convert type 'CoreCLR.Unsafe

Tests.RefBook' to 'object'

 RefBook[] array = new RefBook[4]; // Compilation error: Array

elements cannot be of type

'RefBook'

 }

}

ChApTEr 13 MISCEllAnEouS TopICS

887

Similar to managed pointers, ref structs can be used only as method parameters and

local variables. It is also possible to use ref struct as a field type of other ref structs (see

Listing 13-63).

Listing 13-63. An example of ref struct as a field of other ref struct

public ref struct RefBook

{

 public string Title;

 public string Author;

 public RefPublisher Publisher;

}

public ref struct RefPublisher

{

 public string Name;

}

Additionally, we can declare “readonly ref struct” to combine readonly and ref struct

features - to declare immutable struct that will exist only on the stack. It helps the C#

compiler and JIT compiler to make further optimizations when using them (like ignoring

defensive copy creation).

Although we already know what ref structs provide, one could really bother where

they can be useful, if anywhere at all? Obviously, if they were not, they would not be

introduced. They provide two very important features based on their limitations:

• They will never be heap allocated - this allows to use them in a

special way because their lifetime guarantees are quite strong. As

mentioned at the beginning of this section, the main advantage is

that they may contain a managed pointer as their field (although

currently in C#, this is not directly exposed feature, as we will

elaborate soon).

• They will be never accessed from multiple threads - as it is illegal to

pass stack addresses between threads, it is guaranteed that stack-

allocated ref struct is accessed only by its own thread. This eliminates

in a trivial way any troublesome synchronization issues without any

synchronization costs.

ChApTEr 13 MISCEllAnEouS TopICS

888

Those two features make ref struct quite interesting on their own. However, the

primary motivation of ref structs was Span<T> structure that will be explained in the next

chapter.

one could ask why not the stackonly keyword is used instead of ref keyword
when declaring “ref structs”? The reason behind that is the fact that “ref structs”
provide stronger limitations than a simple “stack-only allocation”: as listed above,
for example, they can’t be used as generic arguments and as pointer types. Thus,
naming them “stackonly” would be misleading.

 Fixed Size Buffers
When we define an array as a field of a struct, obviously only a reference to such heap-

allocated array is a part of such struct (see Listing 13-64 and Figure 13-6a). This may be

or may not be suitable for your needs.

Listing 13-64. An example of array as a field of struct

public struct StructWithArray

{

 public char[] Text;

 public int F2;

 // other fields...

}

static void Main(string[] args)

{

 StructWithArray data = new StructWithArray();

 data.Text = new char[128];

 ...

}

There is, however, s possibility to embed the whole array into the struct itself - it is

called fixed size buffer then. The only restriction is that the array must have a predefined

size and its type must be one of the primitive types only: bool, byte, char, short, int, long,

sbyte, ushort, uint, ulong, float, or double. Additionally, struct that uses fixed size buffer

ChApTEr 13 MISCEllAnEouS TopICS

889

must be marked as unsafe (see Listing 13-65 and Figure 13-6b). Fixed array buffers are

not allowed in classes. It is clear from Figure 13-6b that it is better to name them as

buffers instead of arrays because they are plain, sequential layouts of given elements

(without any type or size information).

Listing 13-65. An example of fixed size buffer in struct

public unsafe struct StructWithFixedBuffer

{

 public fixed char Text[128];

 public int F2;

 // other fields...

}

AredaeH TM 1 A2 A3sizechar[]

F2StructWithArray

A1 A2 A3 F2StructWithFixedArray

fixed size buffer
(a) (b)

Text

Figure 13-6. Difference between field of a struct in the form of: (a) typical heap-
allocated array, (b) fixed size buffer

Fixed size buffers are most commonly used in the P/Invoke context to define

Interop marshaling structures (see Listing 13-66), typically representing unmanaged

array structures of characters or integers (for example, to represent an array of system

handles).

Listing 13-66. Examples of fixed buffers from CoreFX repository

public unsafe ref partial struct FileSystemEntry

{

 private const int FileNameBufferSize = 256;

 ...

 private fixed char _fileNameBuffer[FileNameBufferSize];

internal unsafe struct WIN32_FIND_DATA

ChApTEr 13 MISCEllAnEouS TopICS

890

{

 internal uint dwFileAttributes;

 ...

 private fixed char _cFileName[MAX_PATH];

 private fixed char _cAlternateFileName[14];

 internal ReadOnlySpan<char> cFileName

 {

 get { fixed (char* c = _cFileName) return new ReadOnlySpan<char>

(c, MAX_PATH); }

 }

}

However, one could think about using them for general-purpose code as a

convenient way of defining more dense data structures. Even when such structs are heap

allocated as a part of generic collection, resulting code provides better data locality. As

an example, let’s illustrate it in case of generic List<T> usage (see Listing 13-67).

Listing 13-67. Using boxed structs as List<T> elements

List<StructWithArray> list = new List<StructWithArray>();

List<StructWithFixedBuffer> list = new List<StructWithFixedBuffer>();

The resulting data locality difference is clearly visible in Figure 13-7. In case of using

a regular heap-allocated array as a boxed struct field, there are many objects scattered

around the Managed Heap (with the obvious advantage that each struct element may have

an array of different size). On the other hand, with fixed size buffers, there is only single

array with all elements embedded (with the obvious disadvantage that each embedded

buffer has the same size). The latter approach provides a much denser data layout, which

may be beneficial in high-performance scenarios due to better CPU cache utilization.5

5 You can rightly see that this approach is no different from defining in struct many fields of the
same type. In this application, it is true, the difference lies in the more convenient (indexed)
access to such data.

ChApTEr 13 MISCEllAnEouS TopICS

891

In case of stack-allocated data, similar results can be gained by using stackalloc

operator. Thus, in such scenario it is more a matter of preference if one chooses

stackalloc-acted buffer or fixed size buffer of a custom struct (and optionally making it

ref struct to make sure it will not be boxed).

C# 7.3 added a feature named Indexing movable fixed buffers. A movable fixed buffer

is just a fixed size buffer that became part of a heap-allocated object (like in our boxing

example of generic List<T>). It is called “movable” because GC may move it while

relocating the whole object during Compact phase. Without this feature, in such case it was

required to pin the whole buffer before accessing its elements. Let’s explain this by using

an additional class that wraps around our StructWithFixedArray (see Listing 13-68).

Listing 13-68. Wrapper that boxes struct with fixed size buffer

public class StructWithFixedArrayWrapper

{

 public StructWithFixedArray Data = new StructWithFixedArray();

}

Accessing fixed size buffer by an index while struct is not boxed is obviously safe

because stack-allocated struct will not move, so pinning is not required at all (see first

block in Listing 13-69). However, trying to use indexed access to buffer in case of boxed

ezisredaeH TMStructWithArray[]

List<StructWithArray>

A1 A2 A3 F2

item1
internal array

redaeH TM

AredaeH TM 1 A2 A3sizechar[] AredaeH TM 1 A2sizechar[] AredaeH TM 1 A2 A3sizechar[]

List<StructWithFixedBuffer> redaeH TM

F2 F2 F2

redaeH TMStructWithFixedBuffer[]

internal array

A1 A2 A3 F2 A1 A2 A3 F2

item2 item3

item1 item2 item3

(a)

(b)

Figure 13-7. Difference in data locality in case of List<T> for boxed structs with:
(a) normal arrays, (b) fixed sized buffers

ChApTEr 13 MISCEllAnEouS TopICS

892

struct would result in compiler error: “You cannot use fixed size buffers contained in

unfixed expressions. Try using the fixed statement.” Thus, before C# 7.3, the whole buffer

needed to be pinned (see second block in Listing 13-69). You can rightly see that pinning

here is in fact strange and unnecessary - indexing is a relative operation, with respect to

the beginning of the corresponding field, and moving the whole object does not change

anything here. Thus, since C# 7.3 this small inconvenience has been removed (see the

third block in Listing 13-69).

Listing 13-69. Fixed size buffer indexing changes in C# 7.3

static void Main(string[] args)

{

 // Block 1 - accessing stack-allocated fixed buffer

 StructWithFixedBuffer s1 = new StructWithFixedBuffer();

 Console.WriteLine(s1.text[4]);

 // Block 2 - accessing movable buffer before C# 7.3

 StructWithArrayWrapper wrapper1 = new StructWithArrayWrapper();

 fixed (char* buffer = wrapper1.Data.Text)

 {

 Console.WriteLine(buffer[4]);

 }

 // Block 3 - accessing movable buffer after C# 7.3

 StructWithArrayWrapper wrapper2 = new StructWithArrayWrapper();

 Console.WriteLine(wrapper2.Data.text[4]);

}

It may be interesting to read the C# language Designer comment from the
discussion of this feature: “one reason why we require pinning of the target when
it is movable is the artifact of our code generation strategy - we always convert to
unmanaged pointer and thus force the user to pin via fixed statement. however,
conversion to unmanaged is unnecessary when doing indexing. The same unsafe
pointer math is equally applicable when we have the receiver in the form of
managed pointer. If we do that, then the intermediate ref is managed (GC-tracked)
and the pinning is unnecessary.”

ChApTEr 13 MISCEllAnEouS TopICS

893

As a last note regarding fixed size buffers usage, keep in mind we can combine them

with stackalloc to create stack-allocated arrays of elements that contain other “arrays”

(buffers). It would not be possible when using a regular heap-allocated array field, due to

limitations described in Chapter 6 (see Listing 13-70).

Listing 13-70. Combining stackalloc with fixed size buffers

var data = stackalloc StructWithArray[4]; // Not-possible with compilation

error: Cannot take the address of, get the size of, or declare a pointer to

a managed type ('StructWithArray')

var data = stackalloc StructWithFixedBuffer[4]; // Possible

 Object/Struct Layout
Did you ever bother to see how a memory layout of instances of classes or structs you

create looks? Probably not and this is a good thing. When working with managed code,

it should completely not bother you how fields are organized. CLR does a great job in

the appropriate layout of the type’s fields. Looking at them most probably would be

over-engineering things. However, there are always some exceptions when you do like to

know such layout or even want to control it. In overwhelmingly popular cases, it is when

you pass type instances to unmanaged code, which expect some explicit layout already

defined somewhere else (like in system API calls). On the other hand, there may be also

rare scenarios when you are so attached to the optimal use of memory and accessing it

efficiently, that reliance on automatic field’s layout may be not enough.

As this whole book, and this chapter in particular, is focused on such boundary

situations so much, let’s now dedicate a few words about objects layout in memory. And

besides, knowing how things work underneath, and not just that they work, is one of the

slogans of this book.

From what we have learned so far, we already know that for reference-type instances

there is always an object header and MethodTable reference at the beginning of each

instance. On the other hand, value type instances do not have them and contain only

their fields values (see Figures 4-17 and 4-18 from Chapter 4). What about fields then?

There is one golden rule of the efficient memory access and field layout relies on it

heavily - data alignment (already briefly mentioned in Chapter 2). Each primitive data

type (like integers, various floating points and so on, and so forth) has its own preferred

alignment - a multiple of what value should be the address (expressed in bytes) under

ChApTEr 13 MISCEllAnEouS TopICS

894

which it is stored. Most often such primitive type alignment is equal to its size. So a

4-byte int32 has 4-byte alignment (its address should be multiplication of 4), 8-byte

double has 8-byte alignment, and so on and so forth. The simplest are 1-byte char and

byte types because their alignment is 1 byte - they are aligned wherever are stored then.

Modern CPUs can use efficient code to access aligned data. Accessing unaligned data,

while still possible, requires more instructions and thus is simply slower.

Complex types, containing primitive type fields, should lay out those fields with their

alignment requirements in mind. This may introduce padding between fields - unused

bytes that are there just because the next field needs to be under a specific, aligned

address (we will see padding in the examples below). Complex type instances should be

aligned by itself also - to make sure that when being a part of other, more complex type

(or an array), their fields are still aligned.

All this leads to the following three rules defined by MSDN regarding objects’ layout:

• The alignment of the type is the size of its largest element (1, 2, 4, 8,

etc., bytes) or the specified packing size, whichever is smaller.6

• Each field must align with fields of its own size (1, 2, 4, 8, etc., bytes)

or the alignment of the type, whichever is smaller. Because the

default alignment of the type is the size of its largest element, which

is greater than or equal to all other field lengths, this usually means

that fields are aligned by their size. For example, even if the largest

field in a type is a 64- bit (8-byte) integer or the Pack field is set to 8,

Byte fields align on 1-byte boundaries, Int16 fields align on 2-byte

boundaries, and Int32 fields align on 4-byte boundaries.

• Padding is added between fields to satisfy the alignment

requirements.

6 Packing will be described a little further but is irrelevant for the current context of automatic
fields layout.

ChApTEr 13 MISCEllAnEouS TopICS

895

Keeping in mind alignment golden rule and resulting three rules presented above,

we should be also aware of design decisions regarding a field’s layout in both types

categories:

• structs - by default have sequential layout, so fields are stored in

memory in the same order as they are defined. This is mainly because

it is assumed they will be passed to unmanaged code and the fields

definition order is not accidental but by design. At the beginning

of .NET design, it was mostly expected that structs would be used

in Interop scenarios so such default behavior was reasonable. This

however is only true for “unmanaged types,” as defined already

in Chapter 6 (we will soon see it again in the context of a new

unmanaged constraint). Even fields order is explicitly defined, their

layout will still take into account alignment requirements. This may

introduce padding and grow the resulting struct size (as a cost of

efficient, aligned fields access).

• classes - by default have automatic layout, so fields may be reordered

freely. Because CLR is the sole owner of such data, it is up to it how

to lay out fields. Fields are reordered in the most efficient way both in

terms of CPU access time (considering alignment) and memory usage.

Nowadays, with the growing popularity of value types in regular, general-purpose

code, default sequential alignment of structs may be not the most optimal one and it is

good to know alternatives.

Let’s see all this in action. Having a simple struct from Listing 13-71, its field layout

will look like that in Figure 13-8a - all three fields are stored in memory in the order of

definition. However, because of alignment requirements, fields inside such struct start

from the following addresses:

• 0-byte offset - first field is a byte with 1-byte alignment so it can be

stored at any address.

• 8-byte offset - second field is a double with 8-byte alignment so it

must start at address being multiplication of 8. Unfortunately, it

introduces big padding of 7 bytes that are just waste of space.

• 16-byte offset - the last field is an integer with 4-byte alignment so it is

fine that it starts at address 16.

ChApTEr 13 MISCEllAnEouS TopICS

896

Additionally, the alignment of the whole struct must be the size of its largest

element - 8 bytes in our case. In other words, the whole struct size must be multiplication

of 8. It already occupies 20 bytes so it is rounded up to the 24-bytes size with additional

padding at the end.

The whole struct alignment ensures that instances of this struct will have their fields

always aligned, for example, in case of being array elements (see Figure 13-8b). If the

whole struct was not properly aligned (without additional padding at the end), such

scenarios would produce unaligned data (see Figure 13-8c).

(a) B D Ipadding padding

0B 8B 16B

B D Ipadding padding B D Ipadding padding

B D Ipadding B D Ipadding

(b)

(c)

24B

Figure 13-8. Default fields layout in struct: (a) layout of struct from Listing 13-71,
(b) example of using AlignedDouble struct as array element, (c) example of
inproper using AlignedDouble struct (if whole struct alignment was not correct)

As we can see, the sequential layout of struct fields introduced here has quite big

memory overhead - 11 bytes are unused, which is almost a half of the whole struct! It

most probably will not be a problem if such struct is used occasionally. On the other

hand, if your code heavily relies on value types and should process millions of them in

performant manner, such waste could make a difference.

Listing 13-71. Example of simple struct (to investigate field’s layout)

public struct AlignedDouble

{

 public byte B;

 public double D;

 public int I;

}

ChApTEr 13 MISCEllAnEouS TopICS

897

.NET provides a way of controlling a field’s layout. While again, it was mainly due to

the Interop scenarios, we can utilize this feature to control memory layout that better

suits our needs in a general case. Fields layout is controlled by StructLayout attribute,

that besides its name may be used both for classes and structs, and may take three

values:

• LayoutKind.Sequential - already described layout where proper

field’s alignment is guaranteed and fields are stored in the order of

definition. This is a default value for structs being unmanaged (as

explained in Chapter 6 and recalled soon).

• LayoutKind.Auto - layout where field’s alignment is guaranteed

but fields may be reordered (to utilize memory efficiently). This is a

default value for classes and struct not being unmanaged.

• LayoutKind.Explicit - layout where nothing is guaranteed because

we explicitly define the layout.

An example struct from Listing 13-71 (that by default uses LayoutKind.Sequential

layout) may easily be changed to use automatic layout (see Listing 13-72). As we can

see in Figure 13-9, this option indeed produces a much better layout because much less

padding of only three bytes was introduced (while still all fields are properly aligned).

gniddapID B

0B 8B 16B

Figure 13-9. Automatic fields layout in struct from Listing 13-72

Listing 13-72. Example of simple struct (to investigate automatic field’s layout)

[StructLayout(LayoutKind.Auto)]

public struct AlignedDoubleAuto

{

 public byte B;

 public double D;

 public int I;

}

ChApTEr 13 MISCEllAnEouS TopICS

898

The main drawback of automatic layout is the fact that we cannot use such struct

in Interop. However, I mostly imagine using it in high-performance general code where

we do not care at all about this limitation. So when you use value types because of their

memory-management advantages (stack allocation, data locality, less space occupancy),

you will most probably be interested in using automatic layout instead of the default one!

The more fields and the bigger differences in their sizes, the more unfortunate

sequential layout may be introduced. As an exercise, I suggest that you understand why

struct from Listing 13-73 will consume:

• 64 bytes bytes with LayoutKind.Sequential (where 28 bytes are

wasted because of padding)

• 40 bytes bytes with LayoutKind.Auto (where only 4 bytes are

wasted)

Listing 13-73. Example of struct where layout strongly influences its size

public struct ManyDoubles

{

 public byte B1;

 public double D1;

 public byte B2;

 public double D2;

 public byte B3;

 public double D3;

 public byte B4;

 public double D5;

}

So far presented structs were examples of unmanaged types. To recall – an

unmanaged type is a type that is not a reference type and does not contain reference-

type fields. However, we may obviously create structs that are not unmanaged - by

simply adding a single reference type field to them (see Listing 13-74). As stated before,

this changes the default layout to be automatic, like for reference types. As we can

see in Figure 13-10, AlignedDoubleWithReference fields are indeed reordered like in

LayoutKind.Auto mode.

ChApTEr 13 MISCEllAnEouS TopICS

899

Listing 13-74. Example of non-unmanaged struct

public struct AlignedDoubleWithReference

{

 public byte B;

 public double D;

 public int I;

 public object O;

}

Figure 13-10. Default fields layout in struct from Listing 13-74

The default behavior changes for non-unmanaged structs because they are not

allowed to be passed via P/Invoke. This is because they contain reference to a managed

object that may change during GC. As its unmanaged usage is blocked, it is safe to use

automatic layout for such structs.

please note that automatic layout prefers putting object references as first fields.
You should already guess why this is so. It is useful in the Mark phase for more
efficient object traversal because of better cache line utilization. Most object
references will fall in the same cache line as the already accessed MT field.

The default layout behavior will be changed to automatic also when the struct

contains the other struct with LayoutKind.Auto layout. Most of the commonly used built-

in structs (Decimal, Guid, Char, Boolean) are sequential so using them will not change the

layout behavior. However, surprisingly DateTime has automatic layout so when used as

another struct field, it changes its layout also to automatic (see Listing 13-75).

ChApTEr 13 MISCEllAnEouS TopICS

900

Listing 13-75. Different types of fields and their layout influence

public struct StructWithFields

{

 public byte B;

 public double D;

 public int I;

 //public SomeEnum E; // Still sequential

 //public SomeStruct AD; // Still sequential

 //public unsafe void* P; // Still sequential

 //public decimal DE; // Still sequential

 //public Guid G; // Still sequential

 //public char C; // Still sequential

 //public Boolean BL; // Still sequential

 //public object O; // Triggers automatic

 //public DateTime DT; // Triggers automatic because DateTime has

automatic layout

}

If you do really care about memory usage (and probably you do if you decided to use

structs), then awareness of its layout should bother you. Imagine those precious bytes

of stack space wasted because of padding in your stackallock-ated array! But space

utilization is not the only concern - sometimes we should do care about it because of

cache utilization (it will be discussed later in the data-oriented design section in the next

chapter).

please note that automatic layout for classes and unmanaged structs cannot be
changed - explicitly set LayoutKind.Sequential will be simply ignored.

A not-yet-described explicit layout is especially useful in P/Invoke scenarios as it gives

you full control over how the struct storage looks (see Listing 13-76). You may create a

layout corresponding to what unmanaged code expects with a 100% guarantee. Obviously,

you should remember that with such full control, meeting alignment requirements is

on your side so it is really easy to introduce unaligned fields (see Figure 13-11).

ChApTEr 13 MISCEllAnEouS TopICS

901

In P/Invoke scenarios it is rather irrelevant but be careful when explicitly designing

struct for dense, high- performance usage.7

Listing 13-76. Example of simple struct (to investigate explicit field’s layout)

[StructLayout(LayoutKind.Explicit)]

public struct UnalignedDouble

{

 [FieldOffset(0)]

 public byte B;

 [FieldOffset(1)]

 public double D;

 [FieldOffset(9)]

 public int I;

}

In particular, compiler does not require that fields in our explicit layout do not

overlap. Thus, we must be careful when specifying offsets, to not create fields that

interfere each other. This is even desirable in one scenario - creating so-called

discriminated unions. It is a type that is able to represent various set of data. By using

explicit layout and setting offsets of differently typed fields to the same value, we are

simply simulating such a discriminated union (see Listing 13-77).

7 To be honest, benchmarks conducted by me does not show significant performance change
when accessing a double field both from AlignedDouble and UnalignedDouble structs. It seems
that underlying Intel® Advanced Vector Extensions (Intel® AVX) instructions used in case of my
Intel CPU are really nicely handling unaligned double access. This is, however, implementation
detail and aligned memory is still the recommended design.

B D I padding

0B 8B 16B

Figure 13-11. Explicit fields layout in struct from Listing 13-76

ChApTEr 13 MISCEllAnEouS TopICS

902

Listing 13-77. Example of simple discriminated union

[StructLayout(LayoutKind.Explicit)]

public struct DiscriminatedUnion

{

 [FieldOffset(0)]

 public bool Bool;

 [FieldOffset(0)]

 public byte Byte;

 [FieldOffset(0)]

 public int Integer;

}

This, of course, requires discipline from the programmer, to read the same type

as it was written to, unless we want to use this technique to provide memory-based

conversion between types. One could think of using a fixed size buffer to access the same

memory with different granularity (see Listing 13-78).

Listing 13-78. Example of discriminated union using fixed buffers

[StructLayout(LayoutKind.Explicit)]

public struct DiscriminatedUnion

{

 [FieldOffset(0)]

 public bool Bool;

 [FieldOffset(0)]

 public byte Byte;

 [FieldOffset(0)]

 public int Integer;

 [FieldOffset(0)]

 Public fixed byte Buffer[8];

}

ChApTEr 13 MISCEllAnEouS TopICS

903

There is an additional control of object layout in the form of packing. The Pack
field of StructLayout attribute controls the alignment of a type's fields in
memory. For example, we can define Pack value to be 1 byte:

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public struct AlignedDouble

{

public byte B;

public double D;

public int I;

}

how will the resulting layout look then? let’s recall the first rule from MSDn
documentation presented above: “The alignment of the type is the size of its
largest element (1, 2, 4, 8, etc., bytes) or the specified packing size, whichever is
smaller.” So in our case, instead of 8-byte alignment (double size), type alignment
is just 1 byte. The second rule says: “Each field must align with fields of its own
size (1, 2, 4, 8, etc., bytes) or the alignment of the type, whichever is smaller.”
Thus, each field alignment is also just 1 byte. As a result, a very dense 13-byte
memory layout will be generated without any padding (but with fields inconsistent
with their optimal alignment requirements).

If you would like to investigate your type’s layout, there are several ways to do

that. There are two great free tools that can be used to do that. The first one is a great

ObjectLayoutInspector library (available on GitHub and as a NuGet package) written

by Sergey Teplyakov, solely dedicated for inspecting an object’s memory layout. It

provides a very convenient way of analyzing types with just a single method call (see

Listing 13-79). Results are presented then nicely in an ASCII way (see Listing 13-80).

ChApTEr 13 MISCEllAnEouS TopICS

904

Listing 13-79. Using ObjectLayoutInspector to print layout of structs from

Listings 13-71 and 13-74

static void Main(string[] args)

{

 TypeLayout.PrintLayout<AlignedDouble>();

 TypeLayout.PrintLayout<AlignedDoubleWithReference>();

}

Listing 13-80. Result of the console program from Listing 13-79

Type layout for 'AlignedDouble'

Size: 24 bytes. Paddings: 11 bytes (%45 of empty space)

|===========================|

| 0: Byte B (1 byte) |

|---------------------------|

| 1-7: padding (7 bytes) |

|---------------------------|

| 8-15: Double D (8 bytes) |

|---------------------------|

| 16-19: Int32 I (4 bytes) |

|---------------------------|

| 20-23: padding (4 bytes) |

|===========================|

Type layout for 'AlignedDoubleWithReference'

Size: 24 bytes. Paddings: 3 bytes (%12 of empty space)

|===========================|

| 0-7: Object O (8 bytes) |

|---------------------------|

| 8-15: Double D (8 bytes) |

|---------------------------|

| 16-19: Int32 I (4 bytes) |

|---------------------------|

| 20: Byte B (1 byte) |

|---------------------------|

| 21-23: padding (3 bytes) |

|===========================|

ChApTEr 13 MISCEllAnEouS TopICS

905

If you do not want to use Console application to print object’s layout out of the box,

you can manually consume an analyzed layout (see Listing 13-81).

Listing 13-81. Using ObjectLayoutInspector to manually analyze layout of

structs

static void Main(string[] args)

{

 TypeLayout layout = TypeLayout.GetLayout<AlignedDouble>();

 Console.WriteLine($"Total size {layout.FullSize}B with {layout.Paddings}

B padding.");

 foreach (var fieldBase in layout.Fields)

 {

 switch (fieldBase)

 {

 case FieldLayout field: Console.WriteLine($"{field.Offset}

{field.Size} {field.FieldInfo.Name}"); break;

 case Padding padding: Console.WriteLine($"{padding.Offset}

{padding.Size} Padding"); break;

 }

 }

}

Obviously, such a tool is more likely to be used during your custom-build step or just

offline, during development, than during runtime of your target application.

The second tool is the https://sharplab.io web page that provides great .NET code

analysis capabilities. It provides Inspect.Heap and Inspect.Stack static methods that

print the layouts of specified types (see Listing 13-82 and Figure 13-12).

Listing 13-82. Sample script used in Sharplab.io to inspect memory layout

using System;

using System.Runtime.InteropServices;

public class C {

 public static void Main() {

ChApTEr 13 MISCEllAnEouS TopICS

https://sharplab.io

906

 var o = new AlignedDouble();

 Inspect.Heap(new AlignedDouble());

 Inspect.Stack(in o);

 }

}

In the presence of those two great tools, I hope you will not need to use low-level

tools like WinDbg to inspect object manually. If you decide to do so, I would suggest

using SOS !dumpobject (for classes) and !dumpvc (for value types) commands (see

Listing 13-83).

Listing 13-83. Inspecting object layout with dumpvc SOS command in WinDbg

> !dumpvc 00007ffda2725e18 00007ffda2725e18

Name: CoreCLR.ObjectLayout.AlignedDouble

MethodTable: 00007ffda2725e18

EEClass: 00007ffda2872110

Size: 40(0x28) bytes

File: (...)\CoreCLR.ObjectLayout.dll

Fields:

 MT Field Offset Type VT Attr

Value Name

00007ffdfd6a8b60 4000001 0 System.Byte 1 instance

0 B

00007ffdfd6b0858 4000002 8 System.Double 1 instance

0.000000 D

00007ffdfd6c66d8 4000003 10 System.Int32 1 instance

-43316160 I

Figure 13-12. The result of script from Listing 13-82 in https://sharplab.io
online tool

ChApTEr 13 MISCEllAnEouS TopICS

https://sharplab.io

907

 Unmanaged Constraint
Unmanaged type was already mentioned in Chapter 6, in context of what type may be

used in stackalloc, and in this chapter, in context of unmanaged structs. From C# 7.3 a

new generic constraint has been introduced - unmanaged. It allows us to write generic

code that operates on unmanaged types and pointers to them.

Let’s recall its brief definition from MSDN: “An unmanaged type is a type that is

not a reference type and doesn’t contain reference type fields at any level of nesting.”

Stackalloc limitations already mentioned state it a little more precisely: “unmanaged

type may contain only primitive types, enum and pointer types and user defined structs

satisfying the same criteria.”8

Listing 13-84 shows an example of two structs, where only the first one meets

unmanaged type criteria. Remember that all levels of nesting are checked so if struct

A contains struct B, that contains other struct C, that contains struct D with reference

type - the whole struct A is treated as not being unmanaged.

Listing 13-84. Example of unmanaged and non-unmanaged type

public struct UnmanagedStruct

{

 public int Field;

}

public struct NonUnmanagedStruct

{

 public int Field;

 public object O;

}

With the help of the new unmanaged generic constraint, the compiler checks for

us unmanaged type criteria. If they are not met, appropriate compilation error will be

8 To be strict, the definition of unmanaged type is listed in ECMA-334 C# Language Specification
in paragraph 23.3 Pointer types.

ChApTEr 13 MISCEllAnEouS TopICS

908

generated. We can use it both for generic methods (see Listing 13-85) and generic struct

types (see Listing 13-86).

Listing 13-85. Example of unmanaged generic constraint usage in method

public static void UnamanagedContraint<T>(T arg) where T : unmanaged

{

}

static void Main(string[] args)

{

 UnamanagedContraint(new UnmanagedStruct());

 UnamanagedContraint(new NonUnmanagedStruct()); // Compilation error: The

type 'NonUnmanagedStruct' must be a non-nullable value type, along with all

fields at any level of nesting, in order to use it as parameter 'T' in the

generic type or method 'Constraints.UnamanagedContraint<T>(T)'

}

Listing 13-86. Example of unmanaged generic constraint usage in type

public struct UnmanagedStruct<T> where T : unmanaged

{

 ...

}

static void Main(string[] args)

{

 var obj = new UnmanagedGenericStruct<object>(); // Compilation error:

The type 'object' must be a non-nullable value type, along with all fields

at any level of nesting, in order to use it as parameter 'T' in the generic

type or method 'UnmanagedGenericStruct<T>'

}

ChApTEr 13 MISCEllAnEouS TopICS

909

What does an unmanaged constraint give us? With it the following things are possible:

• We may use pointer of T - if type T satisfies the unmanaged constraint

it can also be used as a T* pointer (conversion to void* is also

possible).

• We may use sizeof(T).

• We may use stackallock of T.

Without unmanaged constraint, each above operation was not allowed, resulting in

the compilation error, “Cannot take the address of, get the size of, or declare a pointer

to a managed type (‘T’)” even when T was constrained to struct. Obviously, those

operations require an unsafe context but this is not changed regardless of unmanaged

constraint (which by itself does not require unsafe code).

All operations listed above are, of course, quite low level and will be mostly useful in

low-level memory-management scenarios like fast serialization of data. Do not expect to

see unmanaged constraint in regular business code though!

Listing 13-87 shows an example of a method utilizing possible operations coming

from an unmanaged constraint. Please note an interesting fact - in Listing 13-87 we can

get the pointer of the argument without pinning. This is because unmanaged constraint

implies that T is a value type, thus passed by value. It is safe to take an address in such

case (because value is not heap allocated).

Listing 13-87. Simple example of unmanaged constraint usage

unsafe public static int UseUnmanagedConstraint<T>(T arg) where T :

unmanaged

{

 T* ptr = &arg; // Use T* pointer

 T* sa = stackalloc T[16]; // Use stackalloc

 return sizeof(T); // Use sizeof

}

Similar code would work without unmanaged constraint, for simple struct usage (see

Listing 13-88).

ChApTEr 13 MISCEllAnEouS TopICS

910

Listing 13-88. Regular struct usage similar to code from Listing 13-87

unsafe static public void UseUnmanagedConstraint2(SomeStruct obj)

{

 SomeStruct* p = &obj;

 ...

}

However, if we pass by reference an object with unmanaged constraint, we must

explicitly pin it because it may be heap allocated, for example, because of boxing (see

Listing 13-89).

Listing 13-89. Simple example of unmanaged constraint usage with object

passed by reference

unsafe public int UseUnmanagedRefConstraint<T>(ref T arg) where T :

unmanaged

{

 fixed (T* ptr = &arg)

 {

 Console.WriteLine((long) ptr);

 return sizeof(T);

 }

}

Because of the same reason, we must explicitly pin fields of the struct when used

from within struct instance methods (see Listing 13-90) because method may be called

on boxed struct instance.9

9 In the current state of C# 7.3, changing StructWithUnmanagedField into ref struct does not
change that behavior, although it could, as within Use method context field is guaranteed to be
stack allocated.

ChApTEr 13 MISCEllAnEouS TopICS

911

Listing 13-90. Example of unmanaged constraint usage within a struct method

public struct StructWithUnmanagedField<T> where T : unmanaged

{

 private T field;

 unsafe public void Use()

 {

 fixed (T* ptr = &field)

 {

 // ...

 }

 }

}

What are practical usage scenarios of unmanaged generic constraints? It is designed

to allow handling in generic way types, which otherwise would require many concrete

implementations. Perfect examples are various types of serialization. Thanks to

sizeof(T) availability, we may create, for example, a generic “to byte array” serialization

(see Listing 13-91).

Listing 13-91. Example of generic serialization (taken from MSDN

documentation)

unsafe public static byte[] ToByteArray<T>(this T argument) where T :

unmanaged

{

 var size = sizeof(T);

 var result = new Byte[size];

 Byte* p = (byte*)&argument;

 for (var i = 0; i < size; i++)

 result[i] = *p++;

 return result;

}

We can also think of a generic logging mechanism, where the passed argument is

consumed in a low-level manner as in Listing 13-92. Here the stackalloc helper structure

is a description of logged value (by providing its address and size) passed to some core

ChApTEr 13 MISCEllAnEouS TopICS

912

logging routine. To make such method useful, at least two or three overloads could be

necessary that take two and three arguments respectively (and stackalloc bigger arrays

respectively).

Listing 13-92. Example of generic, low-level logging (inspired by ETW logging

code from .NET code)

public unsafe void LogData<T>(T arg) where T : unmanaged

{

 if (IsEnabled())

 {

 EventData* data = stackalloc EventData[1];

 data[0].DataPointer = (IntPtr)(&arg);

 data[0].Size = sizeof(T);

 WriteEventCore(data);

 }

}

An unmanaged generic constraint may be also useful in creating types consuming

unmanaged memory (especially collections). A very simple example of such type is

presented in Listing 13-93. Without a generic constraint, it would not be possible to

create such generic type because sizeof would not be accessible (element size should

be provided in constructor likely). More importantly, thanks to unmanaged constraint,

we can freely use T* pointer - which makes indexing trivial and possible to use ref return

T (without constraint we would be forced to use void* and ugly pointer casting to

implement indexer’s getter and setter).

Listing 13-93. Example of type wrapping unmanaged memory

public unsafe class UnmanagedArray<T> : IDisposable

 where T : unmanaged

{

 private T* data;

 public UnmanagedArray(int length)

 {

 data = (T*)Marshal.AllocHGlobal(length * sizeof(T));

 }

ChApTEr 13 MISCEllAnEouS TopICS

913

 public ref T this[int index]

 {

 get { return ref data[index]; }

 }

 public void Dispose()

 {

 Marshal.FreeHGlobal((IntPtr)data);

 }

}

static void Main(string[] args)

{

 using (UnmanagedArray<int> array = new UnmanagedArray<int>(20))

 {

 array[10] = 10;

 for (int i = 0; i < 20; i++)

 Console.WriteLine(array[i]); // Will print garbage and only 10 for

10th element

 }

}

 Blittable Types
Besides unmanaged types, there are also so-called blittable types, defined as having an

identical presentation in memory for both managed and unmanaged code. Blittable

types are most often met in the context of Interop marshaling, as they do not require any

conversion when using P/Invoke.

Unmanaged and blittable types are almost the same but the latter are a little stricter

than the former. This is because some value types are only “sometimes blittable” as they

expected representation differs on managed and unmanaged side occasionally:

• decimal - its binary representation is not well-established so

unmanaged side format cannot be assumed,

• bool - typically consumes 1 byte on both sides but sometimes is

bigger on unmanaged side (for example, C language may use 4

bytes),

ChApTEr 13 MISCEllAnEouS TopICS

914

• char - typically consumes 2 bytes but sometimes is smaller or bigger

on unmanaged side (depending on encoding),

• DateTime - due to historical reasons, as we have seen, it is a struct

with automatic layout, which makes it non-blittable,

• Guid - its internal representation depends on machine endianness.

Thus, a struct that contains one of such a special value type field is a valid

unmanaged type (so it will meet unmanaged generic constraint) but is no blittable in the

Interop marshaling sense. There is a little confusion regarding naming though, as always

in computer science.

To make things even a little more complicated, only blittable types may be pinned

by GCHandle.Alloc call (as it is supposed that pinning is done because of subsequent

AddrOfPinnedObject call and passing the whole object address into unmanaged code).

Thus, an unmanaged generic constraint is not enough to guarantee that such pinning

will succeed (see Listing 13-94). WeirdStruct struct is non-blittable because it contains

fields of non-blittable types (in fact, all kind of them). It is however, still unmanaged

type (as it does not break an unmanaged type requirements). Thus, it can be used

with unmanaged constraint in UseUnmanagedConstraint method, while it will throw

appropriate ArgumentException when trying to be pinned with GCHandle.Alloc call.

Listing 13-94. Blittable vs. managed type difference when pinning with GCHandle

public struct WeirdStruct

{

 public decimal DE;

 public DateTime DT;

 public Guid G;

 public char C;

 public Boolean BL;

}

unsafe public static int UseUnmanagedConstraint<T>(T obj) where T : unmanaged

{

 var handle = GCHandle.Alloc(obj, GCHandleType.Pinned); // throws System.

ArgumentException: Object contains non-primitive or non-blittable data.

 ...

}

ChApTEr 13 MISCEllAnEouS TopICS

915

static void Main(string[] args)

{

 var s = new WeirdStruct();

 UseUnmanagedConstraint(s);

}

In summary, we can say that:

• Unmanaged types (along with unmanaged generic constraints) -

are used in general-purpose programming, for low-level memory

optimization of features like serialization and deserialization,

hashing, ... Because they are general purpose in this context, they

were more carefully described. As they operate on low-level memory,

most often they are used in unsafe context, while an unmanaged

constraint does not impose that.

• Blittable types - are used in Interop marshaling scenarios. Because

this book does not put a lot of attention on Interop, they were only

briefly mentioned here. The only aspect that may be important for us

is the blittable requirement of pinning via a GCHandle.

To make things even more fascinatingly complicated, decimal is a special
except - it is not blittable but structs containing it may be still pinned via
GCHandle.

 Summary
In this chapter we touched quite a lot of interesting and mostly low-level topics. Starting

from a deep explanation of thread static fields, we moved to the managed pointers - which

greatly help in understanding passing by reference mechanics in .NET. These are also

especially useful nowadays with all the topics related to growing struct usage popularity.

Indeed, a great part of this chapter is taken by everything related to value types - ref

structs, byref-like types, byref-like field types, and so on, and so forth. Comprehensive

descriptions of managed pointers were also introduced as quite a necessary foundation

of understanding all those things. Nowadays, by looking at performance with caution,

ChApTEr 13 MISCEllAnEouS TopICS

916

squeezing every not necessary heap allocation, those topics are gaining more and more

attention in the .NET ecosystem. Obviously, one most probably would not need to use

them in writing a regular business-driven application. But this chapter is in general not

dedicated to such types of programming so it should not be surprising so many words

were spoken about that.

Then, interesting information about managed layout has been presented, which is

not always so obvious as one could think. The chapter concludes with a description of

a generic unmanaged constraint added recently to C# (altogether with slightly related

topic of blittable types).

All those topics are useful by itself but also provide a good foundation of the topics

introduced in the next chapter - especially about Span<T> usage and implementation.

ChApTEr 13 MISCEllAnEouS TopICS

917
© Konrad Kokosa 2018
K. Kokosa, Pro .NET Memory Management, https://doi.org/10.1007/978-1-4842-4027-4_14

CHAPTER 14

Advanced Techniques
This chapter is somehow a continuation of the previous one, describing more advanced

techniques that are available in .NET. Thus, please note that the knowledge from the

previous chapter is really helpful to understand this one (especially regarding ref types,

ref returns, and ref structs).

This chapter is aligned with today’s trends in .NET programming (at least those

heavily performance-oriented) - squeezing all the possible CPU clock cycles and

memory usage to make managed frameworks and applications faster. I found it really

fascinating. More and more libraries and their APIs are being “spanified” and/or

“pipeliefied” by replacing their current code with the code based on efficient Span<T>

and/or pipelines usage. I hope that all the descriptions from this chapter will help you to

find yourself in this modern .NET world. Speaking of which, this chapter is closed by the

section about incoming .NET features that are not yet released (or released in preview).

 Span<T> and Memory<T>
We can allocate contiguous memory in a various way in C#, whether it is a regular heap-

allocated array, fixed buffer, stackalloc, or from unmanaged memory. It would be very

convenient to have a single way of representing all such cases, while still in an efficient

manner (similar to using plain array). Moreover, quite often such memory needs to be

“sliced” - to provide only some part of it to be processed by other methods. And all this

ideally should be done without the main enemy of high-performance .NET code - heap

allocations. Exactly because of all those dreams, Span<T> was born.

Please keep in mind that in the rest of this chapter, a little simplified stack- and
heap-allocation division is used. As we should remember from Chapter 4, whether
something is heap or stack allocated is rather an implementation detail, resulting

918

from the expected lifetime characteristics of given data. However, repeating all
the time in the following sections that stack or heap are in fact implementation
details would be both tedious and boring. Span<T> and Memory<T> are somehow
leaking underlying abstractions so it is even a little justified.

 Span<T>
A new generic Span<T> type was introduced in .NET Core 2.1. It is a value type (ref

struct), so it does not incur allocations by itself. It has ref returning indexer so it may be

consumed like an array. Moreover, it is designed to provide slicing capabilities so one

could use subranges efficiently - subrange is represented by other Span<T> ref struct so

yet again, it does not require any allocations.1

A few typical Span<T> usage scenarios are presented in Listing 14-1. No matter

which span instance we use at the end of UseSpan method (representing various types of

memory), it may be consumed in an array-like way by the Length and indexer members

exposed from Span<T>. Note that UseSpan is marked as unsafe because of pointer usage,

not because of the Span<T>.

Listing 14-1. Typical Span<T> usage scenarios

unsafe public static void UseSpan()

{

 var array = new int[64];

 Span<int> span1 = new Span<int>(array);

 Span<int> span2 = new Span<int>(array, start: 8, length: 4);

 Span<int> span3 = span1.Slice(0, 4);

 Span<int> span4 = stackalloc[] { 1, 2, 3, 4, 5 };

 Span<int> span5 = span4.Slice(0, 2);

 IntPtr memory = Marshal.AllocHGlobal(64);

 void* ptr = memory.ToPointer();

 Span<byte> span6 = new Span<byte>(ptr, 64);

 var span = span1; // or span2, span3, ...

1 Originally, this type was even supposed to be called Slice, not Span.

CHAPter 14 AdvAnCed teCHniques

919

 for (int i = 0; i < span.Length; i++)

 Console.WriteLine(span[i]);

 Marshal.FreeHGlobal(memory);

}

Obviously, not every memory should be modified. Thus, ReadOnlySpan<T>

counterpart is also available, which represent memory that cannot be written to. The

typical usage includes representing string data. Strings are immutable and exposing

them as Span<char> would break that. Instead, the AsSpan string extension method

returns ReadOnlySpan<char>. One could, of course, also be willing to represents regular

data (or normal Span<T>) as read-only by using this type (see Listing 14-2).

Listing 14-2. Typical ReadOnlySpan<T> usage scenarios

public static void UseReadOnlySpan()

{

 var array = new int[64];

 ReadOnlySpan<int> span1 = new ReadOnlySpan<int>(array);

 ReadOnlySpan<int> span2 = new Span<int>(array);

 string str = "Hello world";

 ReadOnlySpan<char> span3 = str.AsSpan();

 ReadOnlySpan<char> span4 = str.AsSpan(start: 6, length: 5);

}

Although it may not sound amazing at first glance, such type is in a way a game

changer in many applications. First of all, it can significantly simplify some APIs. Let’s

imagine an integer parsing routine, which may expect various types of memory (see

Listing 14-3). Such an API surface grows very fast to include any possible usage scenario.

On the other hand, it can be greatly simplified to a single method by using Span<char>

(see Listing 14-4).

Listing 14-3. Problematic int parsing API

int Parse(string input);

int Parse(string input, int startIndex, int length);

unsafe int Parse(char* input, int length);

unsafe int Parse(char* input, int startIndex, int length);

CHAPter 14 AdvAnCed teCHniques

920

Listing 14-4. Simplified int parsing API with the help of Span<T>

int Parse(Span<int> input);

Thanks to Span<T>, the possibility to represent various forms of contiguous collection

of values (like arrays, strings, pointers to unmanaged arrays, and so on, and so forth), it

may greatly simplify APIs operating on them without creating a bunch of overloads or

forcing users to create unnecessary copies (to adapt data to such API expectations).

Secondly, Span<T> greatly simplifies writing high-performance code, for example,

by safely using stackalloc like in Listing 14-1. Most important, however, are its slicing

abilities, which allow you to operate on smaller blocks of memory (e.g., when parsing)

passing them around in your code without overhead. We will soon see how it was

implemented to provide efficient slicing though. Moreover, most often all this may be

done in a generic way so convenient helper methods or classes are possible.

Compiler is also smart enough to consider the lifetime of data wrapped into Span<T>.

So it is perfectly fine to return from a method Span<T> wrapping managed array

(because it outlives the method, see method ReturnArrayAsSpan in Listing 14-5), but it

is not allowed to return local stack data (as it will be discarded after method ends, see

illegal ReturnStackallocAsSpan method in Listing 14-5). Be careful when wrapping

around unmanaged memory though, as one needs to remember to explicitly free it

afterwards (see ReturnNativeAsSpan method in Listing 14-5 where we’ve allocated

memory but never deallocated it).

Listing 14-5. Three examples of returning Span<T>

public Span<int> ReturnArrayAsSpan()

{

 var array = new int[64];

 return new Span<int>(array);

}

public unsafe Span<int> ReturnStackallocAsSpan()

{

 Span<int> span = stackalloc[] { 1, 2, 3, 4, 5 }; // Compilation Error

CS8352: Cannot use local 'span' in this context because it may expose

referenced variables outside of their declaration scope

 return span;

}

CHAPter 14 AdvAnCed teCHniques

921

public unsafe Span<int> ReturnNativeAsSpan()

{

 IntPtr memory = Marshal.AllocHGlobal(64);

 return new Span<int>(memory.ToPointer(), 8);

}

 Usage Examples

Let’s look at a few examples of Span<T> usage. Please be aware that at the time of writing

this book, Span<T> is a quite new beast in the .NET ecosystem so there are not so many

well-established design patterns related to it. However, a few nice examples are already

there, especially in open sourced .NET-related libraries.

Slicing capabilities of bigger data are nicely utilized in the Kestrel server, used to host

ASP.NET Core web applications. Appropriate fragments of HttpParser class from

KestrelHttpServer GitHub repository are presented in Listing 14-6. As we can see, line-by-

line parsing of an incoming HTTP request is done by using slices of Span<T>. First, each line

is passed as separate slice into the ParseRequestLine method. Then, each relevant part of

such line (like HTTP path or query) is also sliced into separate Span<T> and passed further to

OnStartLine method. This way no memory copying happens, like it would be in case of using

string.Substring call. As Span<T> is stack allocated, there are no heap allocations at all.

OnStartLine method further uses passed Span<T> to provide required logic.

Similarly, sliced HTTP headers are analyzed in the same HttpParser class.

Listing 14-6. Fragments of HttpParser class from KestrelHttpServer code

public unsafe bool ParseRequestLine(TRequestHandler handler, in

ReadOnlySequence<byte> buffer, out SequencePosition consumed, out

SequencePosition examined)

{

 var span = buffer.First.Span;

 var lineIndex = span.IndexOf(ByteLF);

 if (lineIndex >= 0)

 {

 consumed = buffer.GetPosition(lineIndex + 1, consumed);

 span = span.Slice(0, lineIndex + 1);

 }

 ...

CHAPter 14 AdvAnCed teCHniques

922

 // Fix and parse the span

 fixed (byte* data = &MemoryMarshal.GetReference(span))

 {

 ParseRequestLine(handler, data, span.Length);

 }

}

private unsafe void ParseRequestLine(TRequestHandler handler, byte* data,

int length)

{

 int offset;

 // Get Method and set the offset

 var method = HttpUtilities.GetKnownMethod(data, length, out offset);

 // Find pathStart index

 var pathBuffer = new Span<byte>(data + pathStart, offset - pathStart);

 ...

 // Find queryStart index

 var targetBuffer = new Span<byte>(data + pathStart, offset - pathStart);

 var query = new Span<byte>(data + queryStart, offset - queryStart);

 handler.OnStartLine(method, httpVersion, targetBuffer, pathBuffer,

query, customMethod, pathEncoded);

}

Another great example of using Span<T> is internal ValueStringBuilder ref struct

defined in .NET CoreFX library. As its name indicates, its value-typed StringBuilder

counterpart provides mutable string functionality.

As a ref struct, it is always stack allocated, getting rid of multithreading problems

(because it will be always accessed only from the current thread). As an internal storage

it uses Span<char>, which makes it storage agnostic (see Listing 14-7). It can be then

initially backed up by stackalloc, native, or heap-allocated array. Ref returning indexer

efficiently exposes individual characters.

Listing 14-7. Fragments of internal ValueStringBuilder class

internal ref struct ValueStringBuilder

{

 private char[] _arrayToReturnToPool;

CHAPter 14 AdvAnCed teCHniques

923

 private Span<char> _chars;

 private int _pos;

 public ValueStringBuilder(Span<char> initialBuffer)

 {

 _arrayToReturnToPool = null;

 _chars = initialBuffer;

 _pos = 0;

 }

 public ref char this[int index]

 {

 get

 {

 Debug.Assert(index < _pos);

 return ref _chars[index];

 }

 }

 ...

}

As we can see, private _pos field is a cursor indicating how many chars were already

consumed. It is then easy to return a current builder content via set of AsSpan methods

(see Listing 14-8) using slicing (thus, what is worth repeating yet once again, without any

allocations).

Listing 14-8. Fragments of internal ValueStringBuilder class (slicing

capability)

public ReadOnlySpan<char> AsSpan() => _chars.Slice(0, _pos);

public ReadOnlySpan<char> AsSpan(int start) => _chars.Slice(start, _pos -

start);

public ReadOnlySpan<char> AsSpan(int start, int length) => _chars.

Slice(start, length);

If you really do need string, there is heap-allocating appropriate ToString method

(see Listing 14-9). Please note that that it is then assumed that such instance has been

consumed so Dispose method is being called (explained later).

CHAPter 14 AdvAnCed teCHniques

924

Listing 14-9. Fragments of internal ValueStringBuilder class (string returning

capability)

public override string ToString()

{

 var s = new string(_chars.Slice(0, _pos));

 Dispose();

 return s;

}

Appending to such a builder is most often as easy as setting the proper character

under the current cursor position (or multiple characters in case of appending string)

as shown in Listing 14-10. Obviously, there may be a case when initially a used

Span<char> runs out of space and there is a need to grow it. In such scenario, an array

from ArrayPool<char> is being used to provide bigger storage (see Grow method in

Listing 14-10) but yet again, it may be simply assigned to the same internal Span<char>

due to its storage-agnostic nature.

Listing 14-10. Fragments of internal ValueStringBuilder class (appending logic)

 public void Append(char c)

 {

 int pos = _pos;

 if (pos < _chars.Length)

 {

 _chars[pos] = c;

 _pos = pos + 1;

 }

 else

 {

 GrowAndAppend(c);

 }

 }

 [MethodImpl(MethodImplOptions.NoInlining)]

 private void GrowAndAppend(char c)

CHAPter 14 AdvAnCed teCHniques

925

 {

 Grow(1);

 Append(c);

 }

 [MethodImpl(MethodImplOptions.NoInlining)]

 private void Grow(int requiredAdditionalCapacity)

 {

 Debug.Assert(requiredAdditionalCapacity > 0);

 char[] poolArray = ArrayPool<char>.Shared.Rent(Math.Max(_pos +

requiredAdditionalCapacity, _chars.Length * 2));

 _chars.CopyTo(poolArray);

 char[] toReturn = _arrayToReturnToPool;

 _chars = _arrayToReturnToPool = poolArray;

 if (toReturn != null)

 {

 ArrayPool<char>.Shared.Return(toReturn);

 }

 }

Obviously, an array acquired from the array pool should be returned to it. This is

handled in Dispose method (see Listing 14-11). Please note that while such method

is named Dispose, ValueStringBuilder does not implement IDisposable interface

because ref structs cannot implement interfaces! Thus, it is a sole programmer

responsibility to explicitly call Dispose on such a builder instance.

Listing 14-11. Fragments of internal ValueStringBuilder class (dispoe logic)

 [MethodImpl(MethodImplOptions.AggressiveInlining)]

 public void Dispose()

 {

 char[] toReturn = _arrayToReturnToPool;

 this = default; // for safety, to avoid using pooled array if this

instance is erroneously appended to again

 if (toReturn != null)

CHAPter 14 AdvAnCed teCHniques

926

 {

 ArrayPool<char>.Shared.Return(toReturn);

 }

 }

Using ValueStringBuilder is trivial. We just need some initial storage, small

stackalloc buffer used most often, and pass it to its constructor (see Listing 14-12).

Listing 14-12. Example usage of ValueStringBuilder

public string UseValueStringBuilder()

{

 Span<char> initialBuffer = stackalloc char[40];

 var builder = new ValueStringBuilder(initialBuffer);

 // Logic using builder.Append(...);

 string result = builder.ToString();

 builder.Dispose();

 return result;

}

ValueStringBuilder is a very nice example of a type where many various

modern techniques are used: ref structs, ref returns, Span<T>, ArrayPool<T>, and

(most often) stackalloc. Make sure you understand it well and you are guaranteed

that you understand these modern techniques well also. Please, feel invited to read

ValueStringBuilder source code in the CoreFX Github repository.

there is also a very similar ValueListBuilder struct in CoreFX code. i invite you
to read it also though!

Tempted by Span<T> flexibility, we could think of a concise solution to a small

local buffer acquiring as in Listing 14-13. Below some small-size threshold, we are

stackalloc-ating our buffer, while using ArrayPool for bigger ones. While it looks

nice, is valid and compiles, it has one serious drawback. We have no way to return

such an array to the pool (we cannot get back the original array from the Span<T>

instance)!

CHAPter 14 AdvAnCed teCHniques

927

Listing 14-13. Attempt to provide concise conditional local buffer acquiring

private const int StackAllocSafeThreshold = 128;

public void UseSpanNotWisely(int size)

{

 Span<int> span = size < StackAllocSafeThreshold ? stackalloc int[size] :

ArrayPool<int>.Shared.Rent(size);

 for (int i = 0; i < size; ++i)

 Console.WriteLine(span[i]);

 //ArrayPool<int>.Shared.Return(??);

}

If we think about it a little, ValueStringBuilder presented before is addressing a

similar problem as code from Listing 14-14 (with additional feature of making such a

local buffer growable).

If we insist in doing something similar as in Listing 14-13, we will hit some current

C# limitations (as far as in current C# 7.3 state). For example, it is not possible to assign

stackalloc result to an already defined variable (it may be assigned only in initializer).

So this approach requires some additional code and becomes far less concise and

pleasant (see Listing 14-14). We may encounter such code in the .NET base library

though, as it does what it is supposed to do (unfortunately requiring unsafe, as it uses

pointers).

Listing 14-14. Attempt to provide concise conditional local buffer acquiring

public unsafe void UseSpanWisely(int size)

{

 int* ptr = default;

 int[] array = null;

 if (size < StackAllocSafeThreshold)

 {

 int* localPtr = stackalloc int[size];

 ptr = localPtr;

 }

 else

 {

 array = ArrayPool<int>.Shared.Rent(size);

 }

CHAPter 14 AdvAnCed teCHniques

928

 Span<int> span = array ?? new Span<int>(ptr, size);

 for (int i = 0; i < size; ++i)

 Console.WriteLine(span[i]);

 if (array != null) ArrayPool<int>.Shared.Return(array);

}

One more typical usage of Span is a non-allocating substring by using "some
string".AsSpan().Slice(...) method calls. this is a great way of string
parsing not requiring costly string.Substring calls.

 Span<T> Internals

After being saturated with the examples for where you can use Span<T>, let’s go over to

discuss how it all works. Although maybe not visible at first glance, its implementation is

not trivial and reveals some interesting CLR internal issues. Thus, I dedicate quite a lot

of words to explain various design decisions behind Span<T> internal workings, step by

step. If you are really in a hurry, feel free to skip this section. Although, as always, I invite

you to read it thoroughly! Span<T> is really at the heart of current changes in the .NET

ecosystem so it is really nice to understand it well.

Knowing what Span<T> should provide, what design decisions come to our minds?

To start with:

• As it may represent stack-allocated memory (like stackalloc), it itself

should not appear on the heap (as it could outlive what it wraps) - so

we have to use stack-allocated struct and somehow ensure it will not

be boxed (first difficult challenge).

• Because of performance reasons, it would be nice to use struct

anyway (no heap allocations).

• As we need to represent the memory region, we need to

somehow represent two items of information: pointer (address)

and the size.

CHAPter 14 AdvAnCed teCHniques

929

• If our Span<T> contains both pointer and size, we are exposed to

multithreading issues if multiple threads are using it (so- called

struct tearing) - both fields should be changed atomically. But such

mandatory synchronization is very efficient in a type that we design

for high-performance code (second difficult challenge).

• Our Span<T> may represent a subregion of a managed array (for

example, because of slicing) so our pointer may point inside a

managed object - if it reminds you of an interior pointer, excellent!

In fact, ideally our pointer would be a managed pointer (which can

point into an object’s interior). But we may remember that managed

pointers are allowed only for local variables, arguments, and returns,

not fields. Even struct fields are disallowed because struct may be

boxed (third difficult challenge).

Those points conclude the most relevant design Span<T> considerations. Going

further, all three difficult challenges we are facing could be solved if:

• We had type that may be only stack allocated - then it will be safe to

store stack address there, and we get rid of threading issues as it is

single threaded by default.

• We had the possibility to use a managed pointer as a field of

Span<T> - then we can target any interesting memory type in a safe

manner.

For sure you have noticed it already. Indeed, we have stack-only types - ref structs!

Those byref-like types indeed suit our needs perfectly (to be honest - they were

introduced mainly because Span<T> needed them). Moreover, byref-like types do not

require runtime changes. Most of the work is done on the C# compiler side, and they

are back compatible on the CIL level with both current .NET Core and .NET Framework.

Thus, we may consider our first requirement fulfilled.

The second requirement is stronger. Having byref-like types, one could think of byref-

like instance fields - a managed pointer could be a part of byref-like type because their

limitations are related. In other words, a managed pointer may be safely a field of stack-

only ref struct because it is guaranteed it will not escape to the heap. Unfortunately,

currently both C# and CIL does not have support for such byref-like instance fields and

runtime changes are required. Specially for Span<T> type, a new intrinsic (implemented

CHAPter 14 AdvAnCed teCHniques

930

in runtime) type has been introduced to represent such byref-like instance field. Thus,

the second requirement is fulfilled only in runtimes supporting that change. Currently

this is only .NET Core 2.1 (and later ones).

Nothing is lost however. When the second requirement is not met, we can work

around it without runtime support (and we will soon see how). This leads to a situation

in which we have two versions of Span<T>, referred to as:

• “slow span” - it is a back-compatible version running on .NET

Framework and .NET Core prior to version 2.1, which does not

require runtime changes. Most probably .NET Framework will

never include those changes due to backward-compatibility risks

it brings.

• “fast span” - it is a version running with the support of byref-like

instance field added in .NET Core 2.1.

Do not put too much attention to “slow” or “fast” names - both are still quite fast!

Slow is simply a little slower than the second version. A corresponding benchmark from

Listing 14-15 and results from Listing 14-16 clearly shows that:

• “fast” Span<T> in .NET Core 2.1 achieves performance similar to

regular .NET array.

• “slow” Span<T> in .NET Framework is indeed slower by around 25%.

However, keep in mind that such a little contrived benchmark concentrates purely

on data access via an indexer. More real-world examples show performance differences

on the level of 12–15%.

Listing 14-15. Simple benchmark of access time with the help of Span (“slow”

for .NET Framework, “fast” for .NET Core) and regular array, for comparison

public class SpanBenchmark

{

 private byte[] array;

 [GlobalSetup]

 public void Setup()

CHAPter 14 AdvAnCed teCHniques

931

 {

 array = new byte[128];

 for (int i = 0; i < 128; ++i)

 array[i] = (byte)i;

 }

 [Benchmark]

 public int SpanAccess()

 {

 var span = new Span<byte>(this.array);

 int result = 0;

 for (int i = 0; i < 128; ++i)

 {

 result += span[i];

 }

 return result;

 }

 [Benchmark]

 public int ArrayAccess()

 {

 int result = 0;

 for (int i = 0; i < 128; ++i)

 {

 result += this.array[i];

 }

 return result;

 }

}

Listing 14-16. Results of BenchmarkDotNet benchmark from Listing 14-1

 Method | Job | Mean | Error | Allocated |

------------ |-------------- |---------:|----------:|----------:|

 SpanAccess | .NET 4.7.1 | 90.35 ns | 0.1085 ns | 0 B |

 ArrayAccess | .NET 4.7.1 | 66.86 ns | 0.7334 ns | 0 B |

 SpanAccess | .NET Core 2.1 | 65.81 ns | 0.7035 ns | 0 B |

 ArrayAccess | .NET Core 2.1 | 66.18 ns | 0.0603 ns | 0 B |

CHAPter 14 AdvAnCed teCHniques

932

Let’s now look how both versions are implemented in detail. We will look only at the

most interesting aspects - construction from both managed and unmanaged memory

and indexer implementation.

in further code listings, Unsafe class will be quite often used. this is a general-
purpose class providing low-level operations on memory and pointers. it is briefly
described later in this chapter. Unsafe usage presented here is quite self-
explanatory - it is used for casting and simple pointer arithmetic.

 “Slow Span”

“Slow Span” has to live without byref-like fields. To simulate an interior pointer as

a field, we have to remember both an object reference and offset inside of it (see

Listing 14-17). Keeping an object reference avoids creating GC hole - we need to

make an object reachable because of wrapping in Span<T>. Obviously, the length is

always required.

Listing 14-17. “Slow” Span<T> declaration in CoreFX repository

public readonly ref partial struct Span<T>

{

 private readonly Pinnable<T> _pinnable;

 private readonly IntPtr _byteOffset;

 private readonly int _length;

 ...

}

// This class exists solely so that arbitrary objects can be Unsafe-casted

to it to get a ref to the start of the user data.

[StructLayout(LayoutKind.Sequential)]

internal sealed class Pinnable<T>

{

 public T Data;

}

CHAPter 14 AdvAnCed teCHniques

933

So how does construction of Span<T> from both managed and unmanaged data look?

Wrapping around the managed array is straightforward (see Listing 14-18). We keep the

whole reference to an array (making it discoverable by the GC to avoid collecting it),

and we save the offset where the array data begins (this is what ArrayAdjustment really

returns), optionally properly shifted in case of array slicing.

Listing 14-18. “Slow” Span<T> construction from managed array

public Span(T[] array)

{

 ...

 _length = array.Length;

 _pinnable = Unsafe.As<Pinnable<T>>(array);

 _byteOffset = SpanHelpers.PerTypeValues<T>.ArrayAdjustment;

}

public Span(T[] array, int start, int length)

{

 ...

 _length = length;

 _pinnable = Unsafe.As<Pinnable<T>>(array);

 _byteOffset = SpanHelpers.PerTypeValues<T>.ArrayAdjustment.

Add<T>(start); // Add method realizes pointer arithmetic

}

Wrapping unmanaged memory is even simpler because there is no object reference

that we should be worried about (see Listing 14-19). We only save the length and the

address.

Listing 14-19. “Slow” Span<T> construction from unmanaged memory

public unsafe Span(void* pointer, int length)

{

 ...

 _length = length;

 _pinnable = null;

 _byteOffset = new IntPtr(pointer);

}

CHAPter 14 AdvAnCed teCHniques

934

The area from which the difference in performance between both Span<T> types

is mostly visible is access to the memory elements. Indexer of “slow Span” has to

perform more calculations - in case of a managed array, it adds to an object address

byte offset where data begins and byte offset of the element under a given index (see

Listing 14-20).

Listing 14-20. Indexer implementation in “slow” Span<T>

public ref T this[int index]

{

 get

 {

 if (_pinnable == null)

 unsafe { return ref Unsafe.Add<T>(ref Unsafe.AsRef<T>(_byteOffset.

ToPointer()), index); }

 else

 return ref Unsafe.Add<T>(ref Unsafe.AddByteOffset<T>

(ref _pinnable.Data, _byteOffset), index);

 }

}

if you would like to investigate “slow” Span<T> source code more, look at
.\corefx\src\System.Memory\src\System\Span.Portable.cs file.

 “Fast Span”

“Fast Span” has runtime support of byref-like fields. We could imagine it looks like in

Listing 14-21. But C# does not support any syntax to represent byref- like fields so until

they will be added (if ever), a dedicated type was introduced to represent such fields.

Listing 14-21. Hypothetical syntax of byref-like fields in “fast” Span<T> declaration

public readonly ref partial struct Span<T>

{

 internal readonly ref T _pointer;

CHAPter 14 AdvAnCed teCHniques

935

 private readonly int _length;

 ...

}

This type is named ByReference<T> so the true declaration of “fast” Span<T>

looks like in Listing 14-22. Internal ByReference<T> type is handled by runtime

specially to wrap around its managed pointer nature (and currently only Span<T> and

ReadOnlySpan<T> types are using it).

Listing 14-22. Fast Span declaration (including ByReference<T> type) in CoreFX

repository

// ByReference<T> is meant to be used to represent "ref T" fields. It is

// working around lack of first class support for byref fields in C# and IL.

// The JIT and type loader has special handling for it that turns it

// into a thin wrapper around ref T.

[NonVersionable]

internal ref struct ByReference<T>

{

 private IntPtr _value;

 ...

}

public readonly ref partial struct Span<T>

{

 /// <summary>A byref or a native ptr.</summary>

 internal readonly ByReference<T> _pointer;

 /// <summary>The number of elements this Span contains.</summary>

 private readonly int _length;

 ...

}

CHAPter 14 AdvAnCed teCHniques

936

Thanks to the byref-like field, this version of Span<T> has simpler implementation.

Both managed and unmanaged data is held by such a byref- like field (see Listing 14-23).

As managed (interior) pointer is considered by the GC, no risk exists that the relevant

managed object will be collected.

Listing 14-23. “Fast” Span<T> construction from both managed and unmanaged

memory

public Span(T[] array)

{

 _pointer = new ByReference<T>(ref Unsafe.As<byte, T>(ref array.

GetRawSzArrayData()));

 _length = array.Length;

}

public Span(T[] array, int start, int length)

{

 _pointer = new ByReference<T>(ref Unsafe.Add(ref Unsafe.As<byte, T>(ref

array.GetRawSzArrayData()), start));

 _length = length;

}

public unsafe Span(void* pointer, int length)

{

 _pointer = new ByReference<T>(ref Unsafe.As<byte, T>(ref *(byte*)

pointer));

 _length = length;

}

Moreover, access to the memory elements is trivial and requires only very fast

pointer arithmetic (see Listing 14-24) - which results in comparable performance to

regular arrays.

Listing 14-24. Indexer implementation in “fast” Span<T>f

public ref T this[int index]

{

 get

CHAPter 14 AdvAnCed teCHniques

937

 {

 return ref Unsafe.Add(ref _pointer.Value, index);

 }

}

The other component of the performance difference comes from JIT compiler

improvements in CoreCLR. In particular, it does better bounds check elimination

when for looping the “fast” span. Another difference is that “fast” span is simply

smaller and such a cheaper to pass by value, which shows in some code that passes

it a lot.

Interestingly, if you think about it, from the GC overhead point of view, “slow” and

“fast” Span<T> are a little opposite. “Slow” version contains direct object reference

(in case of wrapping managed object) so it will be faster to traverse. “Fast” version

will contain interior pointer, whose dereferencing is slower (requires plugs traversal

and scanning). However, this difference is negligible, and it is even hard to imagine

application with such a big number of simultaneously living Span<T> that any difference

may be noticed.

General byref-like fields? is there a chance that general-purpose byref fields will
be introduced to C#? it is unlikely it will be justified to allow them for classes
(which will in fact introduce heap-to-heap interior pointers). As already mentioned,
it gives too little compared to the difficulty of implementation.

But what about general-purpose byref-like fields to be allowed in byref-like (ref
struct) types? Will code like in Listing 14-21 ever be possible? there are ongoing
discussions, and maybe you already know the answer a year or two after reading
this book. Besides array slicing already exposed via Span<T>, one could think of
other usages of such fields: structs that are interconnected by pointers for faster
traversal, returning multiple byref results in a single byref-like struct and so on,
and so forth. However, as far as i know, CLr team has no plans to generalize this
feature.

CHAPter 14 AdvAnCed teCHniques

938

 Memory<T>
Span<T> is great and fast. But as we’ve seen, it has many limitations. Many of them are

especially painful when considering asynchronous code. For example, Span<T> can’t live

on the heap, which then means that it can’t be boxed so it can’t be a field on the async state

machine type that might itself be on the heap. Thus, a complementary type was introduced -

Memory<T>. It still represents a contiguous region of arbitrary memory similar to Span<T>,

but it is not a byref- like type and does not contain a byref-like instance field. So unlike

Span<T>, this type can exist on the heap (although it is still struct for performance reasons, it

is not ref struct). It can be a field of normal objects, it can be used in async states machines,

etc. It is disallowed to wrap stack data with Memory<T> (like returned from stackalloc).

Memory<T> may wrap around the following data (see Listing 14-25):

• array T[] - used as a preallocated buffer reused through asynchronous

calls or in APIs for which the limitation to use Span<T> is too strong,

• string - in such case it is represented as ReadOnlyMemory<char>,

• type that implements IMemoryOwner<T> - used in scenarios where

more control about Memory<T> instance’s lifetime is required (we will

look at such scenario soon).

Listing 14-25. Sample Memory<T> usages

byte[] array = new byte[] {1, 2, 3};

Memory<byte> memory1 = new Memory<byte>(array);

Memory<byte> memory2 = new Memory<byte>(array, start: 1, length: 2);

ReadOnlyMemory<char> memory3 = "Hello world".AsMemory();

You can imagine Memory<T> as a box that can be freely allocated and passed in and

out through methods. Mostly its storage is not directly accessible. To utilize it, you have

the following options:

• Span<T> may be generated from it for local, efficient use (hence

Memory<T> is often described as “Span factory”).

• in case of Memory<char> you may generate string from it by calling

ToString, in other cases ToArray may be used (remember that both

are allocating new reference type!).

• like Span<T>, it can be sliced via Slice methods.

CHAPter 14 AdvAnCed teCHniques

939

Both slicing and generating Span<T> are efficient operations that do not allocate

anything - it is just wrapping around a given memory range into a struct. And as we know

it, the whole operation may be sometimes enregistered so even no stack usage may be

required.

As mentioned, asynchronous code is the most common use of Memory<T>, as a

replacement for Span<T> (see Listing 14-26). Inside the asynchronous code payload of

the Memory<T> may be accessed in ways listed before (Listing 14-26 uses direct ToString

conversion).

Listing 14-26. Example of using ReadOnlyMemory<T> instead of Span<T> in

asynchronous code

public static async Task<string> FetchStringAsync(ReadOnlySpan<

char> requestUrl) // Error CS4012 Parameters or locals of type

'ReadOnlySpan<char>' cannot be declared in async methods or lambda

expressions.

{

 HttpClient client = new HttpClient();

 var task = client.GetStringAsync(requestUrl.ToString());

 return await task;

}

public static async Task<string> FetchStringAsync(ReadOnlyMemory<char>

requestUrl)

{

 HttpClient client = new HttpClient();

 var task = client.GetStringAsync(requestUrl.ToString());

 return await task;

}

Let’s look at a more complex example (see Listing 14-27). BufferedWriter class

implements buffered writing to a specified Stream2. It uses internally a small array of

bytes (writeBuffer) and keeps track of its current utilization by writeOffset field. The

only public WriteAsync method is asynchronous so it accepts ReadOnlyMemory<byte> as

2 Although specific Stream implementation may implement its buffering and flushing
mechanisms, this is used for example purposes. In fact, such design is used in classes like
FileStream where stream is replaced by native OS calls.

CHAPter 14 AdvAnCed teCHniques

940

a source. This makes it more generic and flexible than various overloads that accept an

array, a string, a native memory pointer, and so on, and so forth. Dependency only on

ReadOnlyMemory<T> allows us to write much more concise code, as long as the source is

compatible with ReadOnlyMemory<T>.

Inside asynchronous WriteAsync method, ReadOnlyMemory<T> is used to get the

appropriate span from it and pass it to private, synchronous method WriteToBuffer

that consumes it. Inside WriteToBuffer method another Span<T> wraps

writeBuffer to use the convenient CopyTo method. Additionally, slicing capabilities

help to write simple while loop in the WriteAsync method that consumes sources

in chunks. Please note also that BufferedWriter class does not allocate anything

besides writeBuffer.

Listing 14-27. Example of ReadOnlyMemory<T> and ReadOnlySpan<T>

cooperation

public class BufferedWriter : IDisposable

{

 private const int WriteBufferSize = 32;

 private readonly byte[] writeBuffer = new byte[WriteBufferSize];

 private readonly Stream stream;

 private int writeOffset = 0;

 public BufferedWriter(Stream stream)

 {

 this.stream = stream;

 }

 public async Task WriteAsync(ReadOnlyMemory<byte> source)

 {

 int remaining = writeBuffer.Length - writeOffset;

 if (source.Length <= remaining)

 {

 // Fits in current write buffer. Just copy and return.

 WriteToBuffer(source.Span);

 return;

 }

CHAPter 14 AdvAnCed teCHniques

941

 while (source.Length > 0)

 {

 // Fit what we can in the current write buffer and flush it.

 remaining = Math.Min(writeBuffer.Length - writeOffset, source.

Length);

 WriteToBuffer(source.Slice(0, remaining).Span);

 source = source.Slice(remaining);

 await FlushAsync().ConfigureAwait(false);

 }

 }

 private void WriteToBuffer(ReadOnlySpan<byte> source)

 {

 source.CopyTo(new Span<byte>(writeBuffer, writeOffset,

source.Length));

 writeOffset += source.Length;

 }

 private Task FlushAsync()

 {

 if (writeOffset > 0)

 {

 Task task = stream.WriteAsync(writeBuffer, 0, writeOffset);

 writeOffset = 0;

 return task;

 }

 return default;

 }

 public void Dispose()

 {

 stream?.Dispose();

 }

}

CHAPter 14 AdvAnCed teCHniques

942

 IMemoryOwner<T>
There is one issue with Memory<T> - lifetime control. In contrary, Span<T> has a very

restricted lifetime limited by the method lifetime so it was guaranteed that wrapped

memory will not outlive it3. Memory<T>, quite oppositely, has less strict lifetime

limitations (as it may wrap heap-allocated objects). In other words, the relation between

Memory<T> and the memory it wraps is not obvious.

One could think about making Memory<T> to use explicit resource management -

because underlying memory can be seen as resource. In .NET words - maybe it should

be disposable? However, Memory<T> instances are passed around between various

methods, including asynchronous ones. Who and when should be responsible for calling

Dispose on such instance would be problematic to determine. We could implement

the reference counting approach as the solution but it has its own problems - mostly it

imposes the need for multithreaded synchronization when building a general-purpose

solution.

Thus, another, more flexible solution was proposed - an additional level of control

in the form of ownership semantic. If there is a requirement for Memory<T> with a

controlled lifetime, we must provide its owner in the form of IMemoryOwner<T> interface

implementation (see Listing 14-28). Memory<T> instances are accessible from the owner

as the public Memory property. IMemoryOwner<T> implements IDisposable interface

so it is clear that the owner itself realizes explicit resource management and controls

ownership of the given Memory<T>.

Usage of IMemoryOwner instances is restricted by convention (like always in case of

IDisposable) - we have to remember to call Dispose, with the help, for example, of the

using clause. Or we may realize ownership semantics - there should be always only one

object (or method) that “owns” IMemoryOwner instance, and it is clear it is the one that

will have to call Dispose when the job is done.

Listing 14-28. IMemoryOwner<T> interface declaration

/// <summary>

/// Owner of Memory<typeparamref name="T"/> that is responsible for

disposing the underlying memory appropriately.

/// </summary>

3 Unless we have passed an unmanaged address, see ReturnNativeAsSpan method in Listing 14-5.

CHAPter 14 AdvAnCed teCHniques

943

public interface IMemoryOwner<T> : IDisposable

{

 Memory<T> Memory { get; }

}

IMemoryOwner<T> and ownership semantics are not necessary in cases such as
simple as in Listing 14-25. then, the GC becomes the only one, implicit “owner”
of the underlying memory. it will take care of collecting it when all Memory<T>
instances using it will be dead.

A typical example when explicit resource management is required is wrapping

around an object rented from a pool, like an array from ArrayPool<T> (see Listing

14- 29). If we rented an array from a pool and wrapped it in Memory<T>, when it should

be returned? Inside Consume method, in our example? Or maybe after await ends? But

what if Consume method stored somewhere reference to passed Memory<T> (it is possible

because it may be boxed)?

Listing 14-29. Problematic ownership of underlying Memory<T> memory

Memory<int> pooledMemory = new Memory<int>(ArrayPool<int>.Shared.

Rent(128));

await Consume(pooledMemory);

IMemoryOwner<T> interface helps to organize things a little - only the method or

class holding it should be worried about explicit cleanup of resources. IMemoryOwner<T>

instance should be very carefully passed - if some method or type’s constructor accepts

it, such method or type should be treated as the new owner of the underlying memory

(it should call Dispose afterwards or pass such instance further). It is assumed that such

owner, meaning a given method or a whole type, may safely consume the underlying

Memory property.

To see it in action, we can use MemoryPool<T> class already exposed in System.Memory

NuGet package that wraps around the array instance returned from ArrayPool<T>.

Shared instance. Listing 14-30 shows a simple usage example when ownership is

controlled by using a clause inside a single method and Listing 14-31 shows an example

when the entire type is the owner of underlying memory. In the latter case, such type

should also be disposable to make it clear it has some explicit cleanup to perform.

CHAPter 14 AdvAnCed teCHniques

944

Listing 14-30. An example of Memory<T> with explicit owner as a method

using (IMemoryOwner<int> owner = MemoryPool<int>.Shared.Rent(128))

{

 Memory<int> memory = owner.Memory;

 ConsumeMemory(span);

 ConsumeSpan(memory.Span);

}

Listing 14-31. An example of Memory<T> with explicit owner as a type

public class Worker : IDisposable

{

 private readonly IMemoryOwner<byte> memoryOwner;

 public Worker(IMemoryOwner<byte> memoryOwner)

 {

 this.memoryOwner = memoryOwner;

 }

 public UseMemory()

 {

 ConsumeMemory(memoryOwner.Memory);

 ConsumeSpan(memoryOwner.Memory.Span);

 }

 public void Dispose()

 {

 this.memoryOwner?.Dispose();

 }

}

MemoryPool<T>.Shared uses static ArrayMemoryPool<T> instance whose
Rent method returns new ArrayMemoryPoolBuffer<T> instance. it implements
IMemoryOwner<T> in a trivial way - its constructor rents a properly sized array
from ArrayPool<T>.Shared while Dispose method returns it to the pool.
ArrayMemoryPool<T>.Memory property just wraps around a rented array

CHAPter 14 AdvAnCed teCHniques

945

into a new Memory<T> instance. if you would like to investigate this code on
your own, read .\corefx\src\System.Memory\src\System\Buffers\
ArrayMemoryPool.cs and .\corefx\src\System.Memory\src\System\
Buffers\ArrayMemoryPool.ArrayMemoryPoolBuffer.cs files.

For example, we could make BufferedWriter from Listing 14-27 more flexible and

let it accept underlying buffer, instead of allocating its own (see Listing 14-32). This

allows us to populate it with a rented array or, for example, unmanaged memory.

Listing 14-32. Modification of BufferedWriter class from Listing 14-27 that uses

provided buffer

public class FlexibleBufferedWriter : IDisposable

{

 private const int WriteBufferSize = 32;

 private readonly IMemoryOwner<byte> memoryOwner;

 private readonly Stream stream;

 private int writeOffset = 0;

 public FlexibleBufferedWriter(Stream stream, IMemoryOwner<byte>

memoryOwner)

 {

 Debug.Assert(memoryOwner.Memory.Length > MinimumWriteBufferSize);

 this.stream = stream;

 this.memoryOwner = memoryOwner;

 }

 ...

 public void Dispose()

 {

 stream?.Dispose();

 memoryOwner?.Dispose();

 }

}

CHAPter 14 AdvAnCed teCHniques

946

Thanks to the possibility of getting Span<T> from Memory<T>, most implementation

of our changed FlexibleBufferedWriter is very similar to previous BufferedWriter.

For example, WriteToBuffer method uses now CopyTo method between source Span<T>

and Span<T> representing owned memory (see Listing 14-33). In WriteAsync method, all

calls to writeBuffer.Length may be safely replaced to memoryOwner.Memory.Length.

Listing 14-33. FlexibleBufferedWriter.WriteToBuffer method

implementation

private void WriteToBuffer(ReadOnlySpan<byte> source)

{

 source.CopyTo(memoryOwner.Memory.Span.Slice(writeOffset, source.

Length));

 writeOffset += source.Length;

}

Unfortunately, not all APIs will be always aligned to use Span/Memory classes

(although hopefully soon most BCL types will cover it). For example, before .NET

Core 2.1, Stream.WriteAsync method accepted only a byte array parameter. In such

a case, we have to convert it accordingly (see Listing 14-34). If we are lucky and the

underlying storage is an array, MemoryMarshal.TryGetArray will succeed (we will look

at MemoryMarshal later in this chapter) and we will get an underlying array instance

without copying. In other cases, we have to copy the data to a temporary array (so it is

better to rent it from the pool to at least avoid allocations). Note that we need now to

return optionally rented shared buffer to return the pool by the FlushAsync method

caller.

Be prepared for the need for this kind of solutions by writing a low-level code. And

although code from Listing 14-34 may not be necessary after adjusting Stream API, it

serves well as an interesting example of cooperation between various functionalities

described in this chapter.

Listing 14-34. FlexibleBufferedWriter.FlushAsync method implementation

private Task FlushAsync(out byte[] sharedBuffer)

{

 sharedBuffer = null;

 if (writeOffset > 0)

CHAPter 14 AdvAnCed teCHniques

947

 {

 Task result;

 if (MemoryMarshal.TryGetArray(memoryOwner.Memory, out

ArraySegment<byte> array))

 {

 result = stream.WriteAsync(array.Array, array.Offset,

writeOffset);

 }

 else

 {

 sharedBuffer = ArrayPool<byte>.Shared.Rent(writeOffset);

 memoryOwner.Memory.Span.Slice(0, writeOffset).CopyTo(sharedBuffer);

 result = stream.WriteAsync(sharedBuffer, 0, writeOffset);

 }

 writeOffset = 0;

 return result;

 }

 return default;

}

General-purpose classes that accept buffers are generally good design patterns that

should be followed by libraries creators (at least as opt-in possibility). Especially all kind

of serializers or other memory-intensive code is well-behaving if it allows us to specify

explicitly provided buffers or pooling mechanism. You can plug in your own machinery

then, instead of relying on the internal ones (or no buffering, allocating-all-the-way

machinery in the worst case).

Memory<T> may be used in P/invoke scenarios so it may be necessary to pin
underlying memory. For that purpose, Memory<T> exposes Pin method that
returns MemoryHandle struct instance (disposable object that represents pinned
memory). in case of wrapping string or array, it pins them via GCHandle. in case
of Memory<T> returned from IMemoryOwner<T>, it is expected that such owner
is an implementation of an abstract class MemoryManager<T>. such class

CHAPter 14 AdvAnCed teCHniques

948

additionally implements IPinnable interface with Pin and Unpin methods.
its Pin method is called from Memory<T>.Pin method and Unpin method is
called from MemoryHandle.Dispose method. in that way, the memory owner
is responsible for proper pinning and unpinning memory it owns. We will not look
thoroughly into Memory<T> pinning as it is mostly related to P/invoke, being not
our main interest.

 Memory<T> Internals
Unlike Span<T>, the implementation of Memory<T> is quite obvious and does not

contain any puzzles. Of course, this is due to current runtime limitations of managed

pointers. When designing Memory<T> we should take into account the following aspects:

• it should have reference type lifetime - although it may start as a

struct and only be boxed if needed.

• heap-allocated objects are represented only by reference - currently

interior pointers cannot live on heap so this is obvious. This simplifies

design as the only two types where “interior-like” behavior makes sense

are arrays and strings (because they are indexable and may be sliced).

• stack-allocated addresses do not need to be represented.

• unmanaged memory requires explicit resource management - thus

it may be backed up by an additional owner class, as explained

previously.

Those points lead to simple Memory<T> implementation. Listing 14- 35 shows an

excerpt from the current CoreFX source code. There is simply a managed reference kept

(be it an array or string), index and the length (used for slicing). Construction is also

mostly trivial.

Listing 14-35. Memory<T> declaration in CoreFX repository (including example

of one constructor)

public readonly struct Memory<T>

{

 private readonly object _object;

CHAPter 14 AdvAnCed teCHniques

949

 private readonly int _index;

 private readonly int _length;

 ...

}

public Memory(T[] array, int start, int length)

{

 ...

 _object = array;

 _index = start;

 _length = length;

}

But because of Memory<T> flexibility, it cannot expose a general- purpose indexer.

As previously said, memory may be accessed by slicing and converting to Span<T>.

Span property itself has simple implementation also (see Listing 14-36). In case of array

or string, appropriate sliced span is returned. If memory is owned, getting a span is

delegated to the owner (by calling GetSpan method).

Listing 14-36. Excerpt from Span property implementation in Memory<T>

public Span<T> Span

{

 get

 {

 if (_index < 0)

 {

 return ((MemoryManager<T>)_object).GetSpan().Slice(_index &

RemoveFlagsBitMask, _length);

 }

 else if (typeof(T) == typeof(char) && _object is string s)

 {

 // return string slice as a Span

 }

CHAPter 14 AdvAnCed teCHniques

950

 else if (_object != null)

 {

 return new Span<T>((T[])_object, _index, _length &

RemoveFlagsBitMask);

 }

 ...

 }

}

When analyzing Memory<T> code you will notice that both _index and _length
are sometimes manipulated by bit flags to indicate the type of memory wrapped.
this is due to tight memory usage requirements. While an additional field could
be added for that purpose (let’s say - an enum), this would obviously noticeably
increase the size of the object to store relevantly small information. thus, for
example, the highest order bit of _index is used to discern whether _object is
an array/string or an owned memory.

You may wonder how unmanaged memory may be represented by Memory<T> fields

shown in Listing 14-35. Because unmanaged memory requires explicit cleanup, in such

case _object field would represent appropriate MemoryManager<T> implementation that

is responsible for allocating and releasing underlying memory. A very brief outline of

such a manager is presented in Listing 14-37, inspired by internal NativeMemoryManager

class from System.Buffers namespace.

Listing 14-37. Example of native memory managed

class NativeMemoryManager : MemoryManager<byte>

{

 private readonly int _length;

 private IntPtr _ptr;

 public NativeMemoryManager(int length)

 {

 _length = length;

 _ptr = Marshal.AllocHGlobal(length);

 }

CHAPter 14 AdvAnCed teCHniques

951

 protected override void Dispose(bool disposing)

 {

 ...

 Marshal.FreeHGlobal(_ptr);

 ...

 }

 public override Memory<byte> Memory => CreateMemory(_length);

// Creates Memory<T> instance that sets this as wrapped object

 public override unsafe Span<byte> GetSpan() => new Span<byte>((void*)_

ptr, _length);

 Span<T> and Memory<T> Guidelines
After learning quite a lot about those types, the question arises when to use them and

which should be preferred? Please find the following rules regarding their usage:

• use Span<T> or Memory<T> in high-performance, general-purpose

code - most probably you do not need to clutter all your business

logic with it.

• prefer Span<T> over Memory<T> as a method argument if possible -

it is faster (with runtime support) and may represent more

memory types. In asynchronous code there is no choice other than

Memory<T> though.

• prefer read-only version over mutable ones - to express the intent

and make it safer. Do not use regular versions by default. Also, use

it because it’s more accepting, for example, if you expose a method

that accepts a Span<T>, a ReadOnlySpan<T> can’t be passed to that

method, but if you expose a method that accepts a ReadOnlySpan<T>,

then both a Span<T> and a ReadOnlySpan<T> can be passed to it.

• remember that IMemoryOwner<T> instance (or MemoryManager<T>)

is... ownership - at some point Dispose method must be called

on it. For safety, ideally only a single object at the moment should

keep such instance. Types that keep IMemoryOwner<T> (which is

a disposable object) should also be disposable (to manage this

resource appropriately).

CHAPter 14 AdvAnCed teCHniques

952

 Unsafe
System.Runtime.CompilerServices.Unsafe package provides generic, low-level

functionality for manipulating pointers in a safer way than using plain unsafe code

(based on pointers and fixed statements) and express some capabilities possible in

CIL but not in C# directly. However, what it allows is still really unsafe and dangerous!

Thanks to its flexibility, Unsafe class is widely used in modern .NET libraries code (many

types like Span<T>, Memory<T>, and others are relying on it underneath).

Describing all capabilities of Unsafe class is by far possible in this book because

it is like describing all capabilities of pointer arithmetic or pointer casting - you really

can do anything you want. Instead, a short brief of these class methods and a few

usage examples are presented to give you an overall grasp of what and how you can do

with it.

System.Runtime.CompilerServices.Unsafe provides a rich set of methods (see

Listing 14-38). They may be grouped into the following functional groups:

• casting and reinterpretation - you can convert between unmanaged

pointer and ref type back and forth. Additionally, you can convert

between any two ref types (yes, it is as dangerous as it sounds).

• pointer arithmetic - you can add or subtract ref type instances

like regular pointers (and if you remember the managed pointers

description, you already imagine all those boundary cases when it is

dangerous as hell).

• information - lets you get various information, like size or byte offset

between two ref type instances.

• memory access - you can write or read anything from everywhere.

Listing 14-38. Unsafe class API - some overloads removed for brevity, methods

are reordered into feature-like groups, comments are my own

public static partial class Unsafe

{

 // Casting/reinterpretation

 public unsafe static void* AsPointer<T>(ref T value)

 public unsafe static ref T AsRef<T>(void* source)

 public static ref TTo As<TFrom, TTo>(ref TFrom source)

CHAPter 14 AdvAnCed teCHniques

953

 // Pointer arithmetic

 public static ref T Add<T>(ref T source, int elementOffset)

 public static ref T Subtract<T>(ref T source, int elementOffset)

 // Informative methods

 public static int SizeOf<T>()

 public static System.IntPtr ByteOffset<T>(ref T origin, ref T target)

 public static bool IsAddressGreaterThan<T>(ref T left, ref T right)

 public static bool IsAddressLessThan<T>(ref T left, ref T right)

 public static bool AreSame<T>(ref T left, ref T right)

 // Memory access methods

 public unsafe static T Read<T>(void* source)

 public unsafe static void Write<T>(void* destination, T value)

 public unsafe static void Copy<T>(void* destination, ref T source)

 // Block-based memory access

 public static void CopyBlock(ref byte destination, ref byte source, uint

byteCount)

 public unsafe static void InitBlock(void* startAddress, byte value, uint

byteCount)

}

It is clear that Unsafe is not a general-purpose class. It can be used in only very

specific, well-controlled places where the programmer really knows what it wants to do

and considered all uncommon, boundary cases. Do not treat this class as a helper to

overcome strange type-safety problems, for example, to break a type hierarchy in object-

oriented programming!

Let’s look at few examples. First of all, we have already seen important Unsafe class

usage in Listings 14-18, 14-20, 14-23, and 14-24 where casting and pointer arithmetic

were used to implement Span<T>.

Casting is a powerful tool though. For example, we can cast one managed type to

another, completely unrelated type (see Listing 14-39). Memory of source instance is

reinterpreted with respect to the field’s layout of the target instance. In our simple example

we are just reinterpreting two successive integers as long, which may even make some

sense. Please note that even such low-level pointers operations are used, DangerousPlays

method is not marked as unsafe because Unsafe class wraps everything inside.

CHAPter 14 AdvAnCed teCHniques

954

Listing 14-39. Dangerous but working code - casting with Unsafe.As

public class SomeClass

{

 public int Field1;

 public int Field2;

}

public class SomeOtherClass

{

 public long Field;

}

public void DangerousPlays(SomeClass obj)

{

 ref SomeOtherClass target = ref Unsafe.As<SomeClass, SomeOtherClass>

(ref obj);

 Console.WriteLine(target.Field);

}

such powerful casting is used, for example, to break mutability rules and allows
them to cast between Memory<T> and ReadOnlyMemory<T> in both directions.
this of course requires that both types have the same memory layout.

Casting is, for example, intensively used in BitConverter static class to convert from

byte arrays back and forth to various types (see Listing 14-40).

Listing 14-40. Example of Unsafe usage in BitConverter class

public static byte[] GetBytes(double value)

{

 byte[] bytes = new byte[sizeof(double)];

 Unsafe.As<byte, double>(ref bytes[0]) = value;

 return bytes;

}

CHAPter 14 AdvAnCed teCHniques

955

While using all that memory reinterpretation, imagine primitive types

reinterpreted into references or the other way around! Obviously, this is extremely

dangerous and most probably will lead to the whole runtime crash. As an illustration,

see Listing 14-41 as an example of such careless casting. VeryDangerous method will

throw AccessViolationException (unless we are so unusual lucky that the value of

Long1 had the value of the valid string).

Listing 14-41. Very dangerous code - casting with Unsafe.As

public struct UnmanagedStruct

{

 public long Long1;

 public long Long2;

}

public struct ManagedStruct

{

 public string String;

 public long Long2;

}

public void VeryDangerous(ref UnmanagedStruct data)

{

 ref ManagedStruct target = ref Unsafe.As<UnmanagedStruct,

ManagedStruct>(ref data);

 Console.WriteLine(target.String); // Value of Long1 is now treated as

string reference!

}

Pointer arithmetic is the other popular usage of Unsafe. As a good example, consider

the may serve Array.Reverse static method implementation (see Listing 14-42). This is

nothing else than a reincarnation of regular C or C++-like code manipulating pointers to

reverse an array in place.

Listing 14-42. Example of Unsafe usage in Array.Reverse static method

public static void Reverse<T>(T[] array, int index, int length)

{

 ...

CHAPter 14 AdvAnCed teCHniques

956

 ref T first = ref Unsafe.Add(ref Unsafe.As<byte, T>(ref array.

GetRawSzArrayData()), index);

 ref T last = ref Unsafe.Add(ref Unsafe.Add(ref first, length), -1);

 do

 {

 T temp = first;

 first = last;

 last = temp;

 first = ref Unsafe.Add(ref first, 1);

 last = ref Unsafe.Add(ref last, -1);

 } while (Unsafe.IsAddressLessThan(ref first, ref last));

}

Because many Span<T>, Memory<T>, and Unsafe usages require the same patterns,

the MemoryMarshal helper class was introduced with many static methods. To name only

a few of them:

• AsBytes - converts any Span<T> of primitive type (struct) to

Span<byte>,

• Cast - converts between two Span<T> of primitive types (structs),

• TryGetArray, TryGetMemoryManager, TryGetString - tries to convert

from given Memory<T> (or ReadOnlyMemory<T>) to a specific type,

• GetReference - to ref return underlying Span<T> or ReadOnlySpan<T>

object.

With the MemoryMarshal class we can even more easily do “magic” things. For

example, we can take a part of some struct and reinterpret it as another struct, all

without any copying (see Listing 14-43).

Listing 14-43. Example of MemoryMarshal usage

public struct SmallStruct

{

 public byte B1;

 public byte B2;

 public byte B3;

 public byte B4;

CHAPter 14 AdvAnCed teCHniques

957

 public byte B5;

 public byte B6;

 public byte B7;

 public byte B8;

}

public unsafe void Reinterpretation(ref UnmanagedStruct data)

{

 var span = new Span<UnmanagedStruct>(Unsafe.AsPointer(ref data), 1);

 ref var part = ref MemoryMarshal

 // cast from Span<byte> to Span<SmallStruct>

 .Cast<byte, SmallStruct>(

 // cast from Span<UnmanagedStruct> to Span<byte>

 MemoryMarshal.AsBytes(span)

 // slice accordingly and access

first element

 .Slice(0, 8))[0];

 Console.WriteLine(part.B1); // Get the first byte

}

One may wonder where all that “magic” may be useful for him. Does a regular

.NET developer need Unsafe at all? To be honest, mostly not. I imagine Unsafe usage

only in low-level operating libraries code - serialization, binary logging, network

communication, and so on, so forth. For example, popular jemalloc.NET library uses it

to provide strong typing over underlying unmanaged memory (see Listing 14-44).

Listing 14-44. Example of Unsafe usage in jemalloc.NET - FixedBuffer.Read

method

[MethodImpl(MethodImplOptions.AggressiveInlining)]

public unsafe ref C Read<C>(int index) where C : struct

{

 return ref Unsafe.AsRef<C>(PtrTo(index));

}

CHAPter 14 AdvAnCed teCHniques

958

jemalloc.net is a great .net library written by Allister Beharry and hosted on
GitHub (https://github.com/allisterb/jemalloc.NET). As the author
says, it is a wrapper “over the jemalloc native memory allocator and provides
.net applications with efficient data structures backed by native memory for
large scale in-memory computation scenarios.” jemalloc is indeed a popular and
efficient malloc replacement. Feel free to read about its internal implementation
at http://jemalloc.net/ and also feel invited to experiment with jemalloc.
net. due to the book=size limitations, not without regret, i have to skip a
description of this library.

speaking of unmanaged memory wrappers, there is also ongoing work on the
Microsoft side - project snowflake. Currently its status is a little frozen but
expect open sourcing it sooner or later. You can read about it on https://www.
microsoft.com/en-us/research/publication/project- snowflake-
non-blocking-safe-manual-memory-management-net/ site.

 Unsafe Internals
In fact, what Unsafe class really does is wrap various IL-based possibilities that are

otherwise not possible to express in C# - because IL type control is less strict than that

incurred by C# compiler. CIL implementation of most Unsafe methods are really trivial

(see Listing 14-45).

Listing 14-45. Example of Unsafe method implementation (in Common

Intermediate Language)

.method public hidebysig static !!TTo& As<TFrom, TTo> (!!TFrom& source) cil

managed

{

 IL_0000: ldarg.0

 IL_0001: ret

}

.method public hidebysig static !!T& Add<T> (!!T& source, int32

elementOffset) cil managed

CHAPter 14 AdvAnCed teCHniques

https://github.com/allisterb/jemalloc.NET
http://jemalloc.net
https://www.microsoft.com/en-us/research/publication/project-snowflake-non-blocking-safe-manual-memory-management-net/
https://www.microsoft.com/en-us/research/publication/project-snowflake-non-blocking-safe-manual-memory-management-net/
https://www.microsoft.com/en-us/research/publication/project-snowflake-non-blocking-safe-manual-memory-management-net/

959

{

 IL_0000: ldarg.0

 IL_0001: ldarg.1

 IL_0002: sizeof !!T

 IL_0008: conv.i

 IL_0009: mul

 IL_000A: add

 IL_000B: ret

}

There is no magic underneath Unsafe though. What makes it really useful is exposing

all those operations, most often consumable even in safe code.

 Data-Oriented Design
The discrepancy between CPU performance and memory access times are constantly

growing. We have discussed it already in Chapter 2 quite comprehensively - how CPU

and memory cooperation are organized into hierarchical cache and how significantly

its organization into cache lines and memory internal implementation influences

performance of code we write, preferring sequential data access with strong temporal

and spatial locality.

Such a low-level view of memory access is not crucial during everyday development

of business-driven, regular web, or desktop applications. Those milliseconds of better

or worse performance aren’t simply noticeable in small volume of processed data,

processed HTTP requests, or handled UI interactions. Readability, extensibility, and

expressiveness of the source code, as well as the ability to write, deliver, and extend

software fast, are the most important factors when designing such applications. Object-

oriented programming, with all its design patterns and SOLID principles, are an exact

incarnation of such approach.

However, there is a narrow category of applications that can benefit from breaking

this universal convention. These are applications that have to process significant

amounts of data in the most efficient way and shortest possible time. Where every

millisecond counts. To name a few such examples:

• financial software - especially real-time trading and any analytical

decisions may require as fast-as-possible answer based on significant

amount of various data.

CHAPter 14 AdvAnCed teCHniques

960

• Big Data - although in general we may associate it more with batch,

slow processing, every millisecond per data processing operation

can sum up to a difference of hours or days of overall processing. And

still, there are applications where fast answer does really count - like

search engines.

• games - in a world where FPS (Frames per seconds) decides

on game reception and limits possible graphics quality, every

millisecond matters.

• machine learning - there is always not enough processing power to

execute various, complicated algorithms used in gaining popularity ML.

Please note that although, at first glance, many of those applications could

be CPU- bound (i.e., contains complex algorithms to be executed), because of

the above- mentioned discrepancy, it may be memory access that introduces a

performance bottleneck. Another, not-yet mentioned aspect is parallel processing

of the data, to benefit from multiple logical cores installed on our personal or server

computers.

This leads us to data-oriented design of software - concentrated around designing

data representation and architecture that lead to the most efficient memory access. It

almost certainly stays in contradiction to the object-oriented design, because techniques

like encapsulation or polymorphism are interfering with achieving effective memory

utilization.

What data-oriented design is trying to leverage is:

• designing types and data in a way that lead to a sequential memory

access wherever possible, taking into consideration cache-line limits

(to pack together most frequent used data) and hierarchical cache

nature (to keep as much in higher caches as possible).

• designing types and data, as well as algorithms using them, in a way

that leads to easy parallelization without costly synchronization.

I would further split data-oriented design into two more categories:

• tactical data-oriented design - concentrates on “local” data structures,

like most efficient field’s layout or accessing data in correct order.

Such design is local enough to be incorporated quite easily into

already existing object-oriented applications.

CHAPter 14 AdvAnCed teCHniques

961

• strategic data-oriented design - concentrates on high-level view of

the application, from architecture perspective. It mostly requires

mindset shift from object-oriented structures into more data-

oriented ones.

In the two subsequent sections we will look deeper at both mentioned aspects of

such design.

 Tactical Design
This book is basically steeped with the spirit of tactical data-oriented design since

Chapter 2, where we have learned how important cache utilization is - and summarized

in Rule 2 - Random access should be avoided and Rule 3 - Improve spatial and temporal

data locality.

Several patterns constitute such tactical design. Let’s summarize them here a little,

with appropriate references from the rest of the book and additional examples.

 Design Types to Fit as Much Relevant Data as Possible
in the First Cache Line

We have seen this rule in action when considering the automatic memory layout

of managed types - references all laid at the beginning of the object to make them

accessible for the GC within already accessed cache line containing MethodTable

pointer. This is optimization done by CLR but we should be aware of it.

Such automatic layout may be, or may not be, a desired one when considering

the most commonly accessed data. Imagine the class from Listing 14-46. Obviously,

the object-oriented programmer will be quite happy with such design4 - everything is

encapsulated within a single object and only behavior (calculating scoring) is publicly

exposed.

4 But taking Domain Driven Design into consideration, it would be probably even more complex,
with separate types to represent money or other data.

CHAPter 14 AdvAnCed teCHniques

962

Listing 14-46. Example class used to illustrate cache line utilization

class Customer

{

 private double Earnings;

 // ... some other fields ...

 private DateTime DateOfBirth;

 // ... some other fields ...

 private bool IsSmoking;

 // ... some other fields ...

 private double Scoring;

 // ... some other fields ...

 private HealthData Health;

 private AuxiliaryData Auxiliary;

 public void UpdateScoring()

 {

 this.Scoring = this.Earnings * (this.IsSmoking ? 0.8 : 1.0) *

 ProcessAge(this.DateOfBirth);

 }

 private double ProcessAge(DateTime dateOfBirth) => 1.0;

}

Such a programmer will not be completely interested in the resulting automatic

layout of the Customer object. On the other hand, imagine that we use Customer class

massively, mainly calling UpdateScoring on millions of such instances per second. As

UpdateScoring method uses Scoring, Earning, IsSmoking, and DateOfBirth fields,

they should be laid out within the range of the first cache line (the one accessed always

when Customer instance is used). LayoutKind.Automatic, default one for classes,

obviously doesn’t care about that. It will put, probably very rarely used, HealthData and

AuxiliaryData references at the beginning of the object while the rest will be laid out

according to alignment requirements (as explained in Object/struct layout section in the

previous chapter).

CHAPter 14 AdvAnCed teCHniques

963

The solution should be already known to us - we must change Customer into

unmanaged struct that may use sequential layout (see Listing 14-47). It may be

done by:

• changing HealthData and AuxiliaryData into value-type identifiers,

to get rid of references - this helps not only in changing such type into

unmanaged type, it will also relieve the GC from marking overhead

(as each Customer instance will not be a root of two additional

objects to be scanned).

• changing DateTime to other type as its automatic layout triggers

automatic layout of the whole struct, as described in Chapter 13.

Then we may use LayoutKind.Sequential, carefully designing the layout of the

fields on our own (considering padding introduced due to the alignment, but probably

we can sell some space in favor of the speed). Thus, the four most commonly used fields

should be placed at the beginning.

Listing 14-47. Struct with layout considering cache-line utilization

[StructLayout(LayoutKind.Sequential)]

struct CustomerValue

{

 public double Earnings;

 public double Scoring;

 public long DateOfBirthInTicks;

 public bool IsSmoking;

 // ... some other fields ...

 public int HealthDataId;

 public int AuxiliaryDataId;

}

However, not always, we must use sequential layout to achieve good spatial locality.

Sometimes it is just enough to make sure that data locality of primitive types is simply

taken care of (in other words, it is assured that commonly accessed fields are laid out

next to each other).

FrugalObjectList<T> and FrugalStructList<T> are an example of very interesting

internal collections used inside Windows Presentation Library. Their internal storage

is an instance of one of the following, specific collections: SingleItemList<T>,

CHAPter 14 AdvAnCed teCHniques

964

ThreeItemList<T>, SixItemList<T>, and ArrayItemList<T>. While adding or removing

elements, such storage is converted between those types (while the last one handles

storage of seven or more items). What does it give in return? A very concise, trivial,

and mostly switch-based implementations of methods like IndexOf, SetAt or EntryAt,

used by indexer, for scenarios with less than seven elements (see Listing 14-48, showing

fragments of ThreeItemList<T>). So while getting rid of generic array overhead (bounds

checking, to name one), such an approach still provides good spatial locality because of

three or six fields laid out next to each other.

Listing 14-48. Fragments of ThreeItemList<T> class (one of storages used by

FrugalObjectList<T> and FrugalStructList<T> types)

/// <summary>

/// A simple class to handle a list with 3 items. Perf analysis showed

/// that this yielded better memory locality and perf than an object and an

array.

/// </summary>

internal sealed class ThreeItemList<T> : FrugalListBase<T>

{

 public override T EntryAt(int index)

 {

 switch (index)

 {

 case 0:

 return _entry0;

 case 1:

 return _entry1;

 case 2:

 return _entry2;

 default:

 throw new ArgumentOutOfRangeException("index");

 }

 }

CHAPter 14 AdvAnCed teCHniques

965

 private T _entry0;

 private T _entry1;

 private T _entry2;

}

As those types comment says: “Performance measurements show that Avalon5

has many lists that contain a limited number of entries, and frequently zero or a single

entry. (...) Therefore these classes are structured to prefer a storage model that starts at

zero, and employs a conservative growth strategy to minimize the steady state memory

footprint. (...) The code is also structured to perform well from a CPU standpoint. Perf

analysis shows that the reduced number of processor cache misses makes FrugalList

faster than ArrayList or List<T>, especially for lists of 6 or fewer items.”

 Design Data to Fit into Higher Cache Levels

Overhead of various cache levels has been already illustrated in Listing 2-5 and

corresponding Figure 2-11 in Chapter 2. You should be always aware how big your data is

and how it relates to the typical CPU cache sizes.

 Design Data That Allows Easy Parallelization

Topic of parallel processing goes out of the scope of this book. However, good data layout

and algorithm design may allow some parts of the data to be processed in parallel -

whether it be multiple cores and/or SIMD instructions. Remember still about the false-

sharing caveat illustrated in Listing 2-6 and corresponding benchmark in Table 2-3.

 Avoid Non-sequential, Especially Random Memory Access

This rule has been explained in Chapter 2, starting from explaining how DRAM works

and why sequential access is preferred. A simple example of accessing a two-dimensional

array by rows versus by columns was shown in Listing 2-1 and corresponding benchmark

in Table 2-1, showing several times slower access due to a lot of cache miss.

Accessing the sequentially contiguous memory region of T[] is a preferred way over

other collections, especially if T is a struct (recall Figure 4-22 from the chapter comparing

data locality of arrays). We will make use of this design rule when describing strategic

patterns.

5 Avalon is a codename for WPF engine.

CHAPter 14 AdvAnCed teCHniques

https://doi.org/10.1007/978-1-4842-4027-4_2#Tab3
https://doi.org/10.1007/978-1-4842-4027-4_2#Tab1

966

 Strategic Design
Strategic design pushes forward data-oriented design, leaving far behind typical object-

oriented design practices. Code it produces may be surprising to developers used to

OOP but become more and more justified if you think about it deeply. Therefore, unlike

tactical design, strategic design requires a significant mind-shift of the programmer. Let’s

now look at some of the most popular techniques.

 Moving from Array-of-Structures to Structure-of-Arrays

In object-oriented programming, data is encapsulated. Objects and methods are

representing well-crafted, single responsibility behaviors. For example, we can

imagine that Customer instances from Listing 14-46 are kept by separate “container.” Its

UpdateScorings method enumerates all customer instances and ask them to update

their scoring (see Listing 14-49). This is a plain and simple code that every developer

using OOP would understand.

Listing 14-49. Repository of customers from Listing 14-46

class CustomerRepository

{

 List<Customer> customers = new List<Customer>();

 public void UpdateScorings()

 {

 foreach (var customer in customers)

 {

 customer.UpdateScoring();

 }

 }

}

Such code introduces a lot of cache-line misses - Customer instances may be

scattered all around the GC Heap as there is no guarantee that they are allocated next

to each other (see Figure 14-1). Although, as we know, compacting GC eventually may

lead to good data locality of objects allocated around the same time. Additionally, a

bump- a- pointer allocator may allocate them next to each other in the first place. But

CHAPter 14 AdvAnCed teCHniques

967

those are assumptions, not guarantees. For example, because filled allocation context

will be changed into a new one, possibly all around the ephemeral segment, even two

successive Customer allocations may land in two completely different places. As a result,

we must assume that in case of array of reference types, each cache line consists of only a

small part of interesting data and a lot of surrounding garbage.

We know that array of structs provides much better data locality so

CustomerRepository instead of Customer instances could store a list of boxed

CustomerValue instances, defined in Listing 14-47 (see Figure 14-2). Successive reading

of List’s underlying array utilizes cache lines much better as CPU’s prefetcher will

easily recognize such pattern and will prefetch data in advance. There is also much

less memory garbage read into each cache line - it consists only of other, currently not

needed fields of CustomerValue instance.

List<CustomerValue> redaeH TM

redaeH TMCustomerValue[]

internal array

A1 A2 A3 A4 A2 A3 A4 A1 A2 A3 A4A1

Figure 14-2. Much better data locality of value-type array leads to cache lines
reading a lot less of unnecessary data (necessary data is grayed)

ezisredaeH TMCustomer[]

List<Customer>

item1
internal array

redaeH TM

AredaeH TM 1 A2 A3Customer

item2 item3

AredaeH TM 1 A2 A3Customer

AredaeH TM 1 A2 A3Customer
A4

A4

A4

cache line

Figure 14-1. Poor data locality of reference type array leads to many cache lines
reading a lot of unnecessary data (necessary data is grayed)

CHAPter 14 AdvAnCed teCHniques

968

However, reading those unnecessary data (fields) may be still too costly in

performance- critical scenarios. At this moment it’s high time we left well-known OOP

paradigms and changed things all around. In data-oriented design, the most important

are not objects and behaviors they encapsulate, but the data itself. In our case the data

consist of a few important attributes of customer (both as input and output).

The first approach would be to split customer data into two separate arrays of value

types - one containing “hot data” used in scoring algorithm, the second with the rest, less

relevant fields.

But we may go even further. So instead of gathering code around the customer,

we may organize them around the data itself - by exposing each relevant data with a

separate array (see Listing 14-50). Such approach is one of the most popular in data-

oriented design, often referred to as changing the layout from AoS (array-of-structures) to

SoA (structure-of-arrays).

Listing 14-50. Structure-of-arrays data organization example

class CustomerRepository

{

 int NumberOfCustomers;

 double[] Scoring;

 double[] Earnings;

 DateTime[] DateOfBirth;

 bool[] IsSmoking;

 // ...

 public void UpdateScorings()

 {

 for (int i = 0; i < NumberOfCustomers; ++i)

 {

 Scoring[i] = Earnings[i] * (IsSmoking[i] ? 0.8 : 1.0) *

ProcessAge(DateOfBirth[i]);

 }

 }

 ...

}

CHAPter 14 AdvAnCed teCHniques

969

By directly exposing the data, there is in fact no “customer” entity in such

approach. “Customer” is just a bunch of data under a specific index in respective

arrays. Those arrays are densely packed with relevant data, accessed sequentially by

our hot-path algorithm. Cache-line utilization is optimal (see Figure 14-3). CPU can

detect multiple sequential reads simultaneously so prefetcher will be used in each

array access.

As an additional advantage, the struct-of-arrays approach provides nice flexibility. If

we introduce other high-performance algorithm use at other time, using different fields,

such data organization will be beneficial also.

In a similar way we may flatten hierarchical (tree) data. Typically, each node would

be storing a list of its children. Obviously, traversal of such tree may be quite costly due

to the cache misses while accessing heap-allocated node instances scattered all around

the GC Heap.

Let’s use a trivial tree example from Listing 14-51, which implements also simple,

exemplary algorithm - Process method changes value of each node into a sum of values

from its ancestors.6

6 Please note that triviality of presented processing is for brevity, but it does not change the overall
presented approach.

redaeH TMType1[] A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1A1

redaeH TMType1[] A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2A2

redaeH TMType1[] A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3A3

redaeH TMType1[] A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4A4

Figure 14-3. Optimal data locality in structure-of-arrays approach (necessary
data is grayed)

CHAPter 14 AdvAnCed teCHniques

970

Listing 14-51. Simple tree with nodes implementation

public class Node

{

 public int Value { get; set; }

 public List<Node> Children = new List<Node>();

 public Node(int value) => Value = value;

 public void AddChild(Node child) => Children.Add(child);

 public void Process()

 {

 InternalProcess(null);

 }

 private void InternalProcess(Node parent)

 {

 if (parent != null)

 this.Value = this.Value + parent.Value; // Imagine more complex

processing here

 foreach (var child in Children)

 {

 child.InternalProcess(this);

 }

 }

}

However, such tree may be described quite oppositely by a flat array of nodes -

each element being a node, storing a reference (or better, an index) of its parent. Such

approach most probably will require preprocessing of an initial, more natural, object-

oriented tree into such an array. Processing of such tree may be then linear, if it was

appropriately flattened (see Listing 14-52).

Listing 14-52. Example of flattened tree, represented as array of value- type

nodes

public class Tree

{

 public struct ValueNode

CHAPter 14 AdvAnCed teCHniques

971

 {

 public int Value;

 public int Parent;

 }

 private ValueNode[] nodes;

 private static Tree PrecalculateFromRoot(OOP.Node root)

 {

 // Flatten tree navigating it in pre-order depth-first

manner...

 }

 public void Process()

 {

 for (int i = 1; i < nodes.Length; ++i)

 {

 ref var node = ref nodes[i];

 node.Value = node.Value + nodes[node.Parent].Value;

 }

 }

}

Please be careful when designing tree flattening. the particular example from
Listing 14-52 works because the used processing algorithm (value adding inside
Process method) depends only on parent values so it is perfectly fine to use a
pre-order depth-first traversal. After, such flattening elements in the nodes array
are always located after the already processed parent. if our algorithm depended
on children (like a node value being a sum of all its descendants), post-order
depth-first traversal should be used, which guarantees that each element of the
flattened array is after all its children.

CHAPter 14 AdvAnCed teCHniques

972

 Entity Component System

In object-oriented programming, inheritance and encapsulation are one of the core

features. In complex applications, inheritance tree may be quite complicated, with many

objects sharing some part of possible behaviors. Games are perfect example of scenario

where there are dozens of various types of differently behaving entities - for example,

tanks being armored vehicles while trucks being vehicles not armored but they are

containers. Or a regular solider being only movable and having attributes like health,

but is not always armored. A sample inheritance tree to illustrate that is presented in

Figure 14-4.

In the broader context of software development, such inheritance tree may be

cumbersome because adding a new kind of entity that shares only part of possible

behaviors is not trivial - it must be added, overriding appropriate methods to include

new behavior, and so on, and so forth (like adding MagicTree class in Figure 4-4, which is

both “positionable” and is a living - but is not movable).

Figure 14-4. Example of inheritance tree representing some game objects

CHAPter 14 AdvAnCed teCHniques

973

In our data-oriented context, caveats of such approach should be immediately

visible - data is spread all around such tree hierarchy. It is perfectly OK in regular OOP,

where there are few business objects cooperating with each other. But it becomes

bottleneck if we have to process thousands or millions similar entities, let’s say - vehicles,

to update their position.

We could use the structure-of-arrays approach to keep separate list of structs

representing houses, vehicles, livings, and so on, so forth. This however is not very

practical, and still many algorithms may need to access various set of properties

contained in those lists (breaking good data locality benefits).

The solution to this problem is proposed into form of so-called Entity Component

System that, simply speaking, prefers composition over inheritance. As we will soon

see, one of its foundations is good data locality consistent with the idea of structure-

of-arrays.

In Entity Component System, there are no types representing house, vehicle, or

any other living. Entities are being composed by dynamically adding and removing

components, representing capabilities. Such entities are then processed by various

systems, representing required logic. In other words, the three main building blocks in

ECS are (see Figure 14-5):

• Entity - is a simple object with an identity but does not contain any

data or logic. By adding or removing specific Components to it, we

define capabilities of such Entity. So, for example, when we need

something like a vehicle in a game, we create an entity and assign

appropriate components to it (Position and Movable component in

our simplified example).

• Component - simple object only consisting of data but no logic.

Those data are needed to represent current state of the capability

represented by such component (so position in Position component

or speed in Movable component).

• System - is where the logic of specific capabilities or features lives.

Systems operate on filtered list of entities, one by one. For example,

Move System will filter all entities to those that have Position

and Movable components assigned (and its logic knows how to

transform/process properties of those components).

CHAPter 14 AdvAnCed teCHniques

974

In a main loop of a game, each system executes one after another. I hope it is

already visible where the power of such approach is lying. With such design, data of

each component are kept sequentially and separately, incorporating structure-of-arrays

approach. For example, when Display System iterates through entities, it in fact needs

to iterate over sequential collection of Position Component data. Obviously, it requires

a very efficient filtering technique of entities (or answering the question whether entity

has given component attached). Those are, however, implementation details we will

not touch here. Instead, let’s implement the simplest possible ECS we can imagine.

Hopefully it will allow us to illustrate the whole concept better.

First of all, Entity may be really simple type containing only identifier (see Listing 14-53).

It is a readonly struct - to keep it densely in the array of entities and to avoid defensive

copies when passing around as in arguments.

Listing 14-53. Entity definition

public readonly struct Entity

{

 public readonly long Id;

 public Entity(long id)

 {

 Id = id;

 }

}

Figure 14-5. Overview of Entity Component System

CHAPter 14 AdvAnCed teCHniques

975

Components are also only simple containers for data. Again, to make a dense

array of component data, they are structs (see Listing 14-54). They are mutable and

thanks to ref returns, we will be able to return them from the corresponding storage for

modification.

Listing 14-54. Sample components definitions

public struct PositionComponent

{

 public double X;

 public double Y;

}

public struct MovableComponent

{

 public double Speed;

 public double Direction;

}

public struct LivingComponent

{

 public double Fatigue;

}

To effectively store data of a given component in a data-oriented way, let’s introduce

ComponentManager<T> class (see Listing 14-55). Its main part is registeredComponents

array of a given component type. Registering is as easy as filling the next free slot

in the array (and for brevity I’ve skipped a problem of unregistering and resulting

fragmentation). Checking whether given entity (identified by its Id) has component

assigned is based on an additional dictionary - this is again by far the most efficient way

but it was used for brevity (as well as ignoring any multithreading issues). Its ref returns

an array element so no copying is involved.

Listing 14-55. ComponentManager<T> class managing component data

public class ComponentManager<T>

{

 private static T Nothing = default;

 private static int registeredComponentsCount = 0;

CHAPter 14 AdvAnCed teCHniques

976

 private static T[] registeredComponents = ArrayPool<T>.Shared.Rent(128);

 private static Dictionary<long, int> entityIdtoComponentIndex = new

Dictionary<long, int>();

 public static void Register(in Entity entity, in T initialValue)

 {

 registeredComponents[registeredComponentsCount] = initialValue;

 entityIdtoComponentIndex.Add(entity.Id, registeredComponentsCount);

 registeredComponentsCount++;

 }

 public static ref T TryGetRegistered(in Entity entity)

 {

 if (entityIdtoComponentIndex.TryGetValue(entity.Id, out int index))

 {

 //result = true;

 return ref registeredComponents[index];

 }

 //result = false;

 return ref Nothing;

 }

}

Them we need an abstract representation of the system (see Listing 14-56) and a

manager that ties all this together (see Listing 14-57).

Listing 14-56. Definition of simple abstract system base

public abstract class SystemBase

{

 public abstract void Update(List<Entity> entities);

}

Listing 14-57. Manager storing list of entities and systems

public class Manager

{

 private List<Entity> entities = new List<Entity>();

 private List<SystemBase> systems = new List<SystemBase>();

CHAPter 14 AdvAnCed teCHniques

977

 public void RegisterSystem(SystemBase system)

 {

 systems.Add(system);

 }

 public Entity CreateEntity()

 {

 var entity = new Entity(entities.Count);

 entities.Add(entity);

 return entity;

 }

 public void Update()

 {

 foreach (var system in systems)

 {

 system.Update(entities);

 }

 }

}

Having all those bricks in place, it’s high time to write an example system.

MoveSystem requires entities with both Position and Movable components, so its Update

methods filters them appropriately (see Listing 14-58). The requirement of very efficient

entities filtering is clearly visible here. However, if managed properly, data components

are accessed sequentially with a high probability, providing great data locality and

prefetching possibility.

Listing 14-58. An example of Moving system

public class MoveSystem : SystemBase

{

 public override void Update(List<Entity> entities)

 {

 foreach (var entity in entities)

 {

 bool hasPosition = false;

 bool isMovable = false;

CHAPter 14 AdvAnCed teCHniques

978

 ref var position = ref ComponentManager<PositionComponent>.

TryGetRegistered(in entity, out hasPosition);

 ref var movable = ref ComponentManager<MovableComponent>.

TryGetRegistered(in entity, out isMovable);

 if (hasPosition && isMovable)

 {

 position.X += CalculateDX(movable.Speed, movable.Direction);

 position.Y += CalculateDY(movable.Speed, movable.Direction);

 }

 }

 }

}

Please note that provided implementation is oversimplified in many places.
As mentioned, it does not include any thread synchronization, and proposed
entity-to-component management is also trivialized. Presenting here a full,
even closely real-world implementation is by far behind such book capacity.
in real-world libraries, like entitas (https://github.com/sschmid/
Entitas- CSharp by simon schmid) or recently rewritten entity Component
system in unity, those aspects are much better thought out and implemented.
For example, most often system does not filter entities on its own, but
receives dynamically managed, already filtered list of entities (appropriately
updated underneath when entities are adding or removing components).
the presented APi is also far from perfect. in addition, a mature eCs
implementation must support communication between the systems and the
relationships between them (supported by some kind of messaging system),
which is completely omitted here.

Entity Component System is overwhelmingly popular in game development, but I

believe it may be justified in high-performance scenarios where data-oriented design

makes sense. Having a lot of different “entities” with various characteristics, which need

to be processes in huge batches? Does not that sound like ECS?

CHAPter 14 AdvAnCed teCHniques

https://github.com/sschmid/Entitas-CSharp
https://github.com/sschmid/Entitas-CSharp

979

 More on Future...
This section contains a list of features that probably could be included in any other part

of this chapter (or previous one) because they are quite general. I decided to gather them

in a common “future” section because at the time of writing, they are planned for less or

more distant future releases of .NET. Probably at the time of your reading some or most of

them are already available or even yet already well-established in the .NET ecosystem. On

the other hand, seeing absorption of other newer types (like already available Span<T>), at

least a few years will pass before they settle in the widespread awareness of programmers.

 Nullable Reference Types
Nullable reference types may, but are not guaranteed, to be introduced in C# 8.0.

Although they are not directly related to memory management - their usage does not

incur better or worse performance or memory consumption - they are such important

change related to generally understood memory safety, that a book about memory in

.NET just cannot simply ignore it.

In the context of null, everyone must cite British computer scientist Tony Hoare who

invented a null reference while designing ALGOL language. In 2009 he apologized for

inventing it:

I call it my billion-dollar mistake. It was the invention of the null reference
in 1965. At that time, I was designing the first comprehensive type system
for references in an object oriented language (ALGOL W). My goal was to
ensure that all use of references should be absolutely safe, with checking
performed automatically by the compiler. But I couldn’t resist the tempta-
tion to put in a null reference, simply because it was so easy to implement.
This has led to innumerable errors, vulnerabilities, and system crashes,
which have probably caused a billion dollars of pain and damage in the
last forty years.

Is null billion-dollar really a mistake? Could you imagine a world, C# and .NET

world, without null and all those NullReferenceException occurrences in your life?

Generally, it is hard to imagine a language that does not have any notion of “nothing.”

Some values are optional because the domain they come from specifies them as such

(being middle name a canonical example). What really null complicates is a lack of

clear intent whether it makes sense in a specific context that such “nothing” is allowed

(because null is allowed always by default).

CHAPter 14 AdvAnCed teCHniques

980

Some languages, especially functional ones, replaced nullable types with option

types - a polymorphic type that represents an optional value (so it may represent

“nothing” or a value). For example, F# uses Option type defined as discriminated

union with two cases: Some (containing value) and None. Having such optional type

explicitly says that there is possibility a value may be “nothing.” Programmer need to use

appropriate checks before accessing such type value (or at least it may be checked by a

compiler if she does so).

Ideally, reference types in C# should contain such “optionally nullable” reference

types to get rid of current “always nullable” reference types. To have clear intent of

nullability, two new kinds of safe reference types are planned to be introduced:

• nullable reference type - they may have null assigned so dereferencing

them always require checking for null value (and such check may

be enforced by C# compiler). Please note they differ from current

reference types because while being always nullable, dereferencing

them now is not guarded by compiler checks. Such types are

representing optional value like Option in F#.

• non-nullable reference type - they will never have null value so it is

always safe to dereference them.

Of course, care should be taken to introduce them in a way that helps to find

bugs in existing code without a need to rewrite everything. To make existing code

benefit from them, current reference types must take one of these roles (instead of,

for example, introducing two new kinds of reference types besides the existing one).

It was decided that current, unannotated reference type will be treated as non-

nullable reference type. As Mads Torgersen says on behalf of the whole C# language

team, this is because:

• They believe reference types actually requiring null values are less

common that we may think.

• C# language already has ? syntax of nullable value types so it seems

natural to extend it for reference types.

• It seems right to explicitly express a need of nulls and opt-in for them,

rather than the other way around.

CHAPter 14 AdvAnCed teCHniques

981

So in other words, nullable reference types are going to be added in some future C#

version (with the ? syntax) while the behavior of already existing reference types will

be been changed into non-nullable reference types (see Listing 14-59). This is why this

feature is officially called nullable reference types, while we should remember that in fact

both new reference types behavior are new.

Listing 14-59. An example of a class with both non-nullable (by default) and

nullable (by explicitly stating) reference type fields

public class SomeClass

{

 public int Field;

 public OtherClass? NullableReference; // May be null

 public OtherClass NonNullableReference; // May not be null

}

public class OtherClass

{

 public int OtherField;

}

Obviously, such a change may generate a lot of errors while compiling existing,
pre-nullable reference types code. this is by design, however, as those types
are introduced to help us with finding null-related bugs in the first place. not to
paralyze the work, it has decided to treat such null-related issues as warnings,
instead of errors (while you may still opt-in to errors though).

With this feature, C# compiler does it best to check for nullability violations,

especially with respect to local variables and parameters access (see Listing 14-60).

When accessing nullable object instances without any checks (like in first line in

Listing 14-60), appropriate warnings are generated. The same happens when compiler

discovers null is being accessed (like in the last line in Listing 14-60). Program flow

control is considered (like conditions and loops) also, as we may see in Listing 14-60.

CHAPter 14 AdvAnCed teCHniques

982

Listing 14-60. Compiler behavior with nullable reference type argument

public static void UseNullableReference(SomeClass? obj)

{

 Console.WriteLine(obj.Field); // Warning CS8602: Possible dereference

of a null reference.

 Console.WriteLine(obj?.Field); // Ok, checked

 if (obj == null)

 return;

 Console.WriteLine(obj.Field); // Ok, checked above

 obj = null;

 Console.WriteLine(obj.Field); // Warning CS8602: Possible dereference

of a null reference.

}

However, there always will be a problem of how deep such a nullability violation

check should be. Currently method calls are ignored, as they may contain logic of

any complexity you can imagine. So even if ArgumentsValid method checks for null

internally (in Listing 14-61), a warning still will be generated.

Listing 14-61. Compiler behavior with nullable reference type argument

public static void UseChainedNullableReference(SomeClass? obj)

{

 if (!ArgumentsValid(obj))

 return;

 Console.WriteLine(obj.Reference.OtherField); // Warning or not,

depending on the

check used

}

On the other hand, accessing non-nullable reference types is much safer so the

compiler will generate many less errors (see Listing 14-62).

Listing 14-62. Compiler behavior with non-nullable reference type argument

public static void UseNonNullableReference(SomeClass obj)

{

 Console.WriteLine(obj.Field); // Ok

 Console.WriteLine(obj?.Field); // Ok, checked

CHAPter 14 AdvAnCed teCHniques

983

 if (obj == null)

 return;

 Console.WriteLine(obj.Field); // Ok, checked above

 obj = null; // Warning CS8600: Converting null

literal or possible null value to

non-nullable type.

 Console.WriteLine(obj.Field); // Warning CS8602: Possible dereference

of a null reference.

}

Warning CS8600 may be surprising though, as it seems we may still assign null

to a non-nullable reference type! This is because of many scenarios where it is still

necessary (and most of them generate an appropriate warning) - like explicitly

assigning null like in Listing 14-62 or assigning a nullable reference type to non-

nullable reference type. There is still one important exception decided to not

generate any warnings - an array creation (see Listing 14-63). In case of an array of

non-nullable types, the compiler should require initialization of all its elements but

this would break a lot of existing code. Array declarations like in Listing 14-63 are

overwhelmingly popular so even emitting a warning would flood our compilation with

an unmanageable number of messages.

Listing 14-63. Compiler behavior with the array of non-nullable reference type

SomeClass[] array = new SomeClass[4];

UseNonNullableReference(array[1]); // Ok, warning is not generated.

Please note that at the time of writing this book, nullable reference types are in the
pre-release version before official release (planned but not yet confirmed for C#
8.0). this section presents possible design and usage of this feature, to give you
an overall picture of why and what it does. Please update your knowledge with
official .net documentation regarding the current state of this feature at the time
of reading this book.

What is null by the way? In general, it is a representation of an address that

should never happen in normal code, to differentiate it from valid pointers (and

references in case of .NET). In all popular programming environments, it is an

CHAPter 14 AdvAnCed teCHniques

984

address of value 0 - because at least the first OS memory page is always kept free

(unused) so it is always an invalid address. Being a zero is also useful because

pointers and references are becoming null by default in zeroed memory regions (like

reference type fields in an object).

Any access to an invalid page (like mentioned on the first page) raises an exception

by the OS which is then handled by the CLR. The difference is that if the first page

was accessed (which is typically, first 64KB), such exception would be turned into a

well-known NullReferenceException. On the other hand, if any higher address was

accessed, AccessViolationException will be thrown. So for example, when in C# one

tries to access an unmanaged zero pointer, NullReferenceException will occur (see

Listing 14-64).

Listing 14-64. Example of unsafe code generating NullReferenceException

unsafe { int read = *((int*)IntPtr.Zero); }

On the other hand, if we try to access an address higher than the first 64 KB,

AccessViolationException will occur (Listing 14-65).

Listing 14-65. Example of unsafe code generating AccessViolationException

unsafe { int read = *((int*)0x1_0000 + 1); }

Most often NullReferenceException happens in regular C# code, when we try to

access a field of null reference (see Listing 14-66). This is however handled in the same

way because accessing an object’s field is just dereferencing a given address with a small

field’s offset (see Listing 14-67). In our example, if the reference argument passed in rcx

is 0, the corresponding field address will be calculated as 0x8 (assuming Field is the first

field in SomeClass). Trying to access 0x8 address still results in NullReferenceException

because it fits into the first page.

Listing 14-66. Example of managed code generating NullReferenceException

(assuming obj is null)

public static void Test(SomeClass obj)

{

 Console.WriteLine(obj.Field);

}

CHAPter 14 AdvAnCed teCHniques

985

Listing 14-67. Assembly code of Test method from Listing 14-66

C.Test(SomeClass)

 L0000: sub rsp, 0x28

 L0004: mov ecx, [rcx+0x8]

 L0007: call System.Console.WriteLine(Int32)

 L000c: nop

 L000d: add rsp, 0x28

 L0011: ret

Immediately we may wonder what if an object is bigger than the first page and

we are trying to access the end of it (via null reference)? Will it confusingly throw

AccessViolationException instead of NullReferenceException? The answer is, no.

Such scenarios are guarded by JIT that generates appropriate code. For example, in

case of passing an array, bound-checking code is injected anyway (accessing array’s

size field) so it will result in NullReferenceException even before trying to access

given element. And if we imagine an enormous object with thousands of fields (see

Listing 14-68), JIT will add null checking of the entire object before accessing a

specific field (see Listing 14-69). The second assembly instruction from Listing 14-69 is

generated only when higher fields of SomeClass instance are accessed (if rcx is zero, it

will trigger throwing NullReferenceException).

Listing 14-68. Example of managed code generating NullReferenceException

(assuming obj is null)

public class SomeClass

{

 public long Field0;

 public long Field1;

 public long Field2;

 ...

 public long Field8229;

 public long Field8230;

}

CHAPter 14 AdvAnCed teCHniques

986

public static void Test(SomeClass obj)

{

 Console.WriteLine(obj.Field8000);

}

Listing 14-69. Assembly code of Test method from Listing 14-68

C.Test(SomeClass)

 L0000: sub rsp, 0x28

 L0004: cmp [rcx], ecx

 L0006: mov rcx, [rcx+0xfa08]

 L000d: call System.Console.WriteLine(Int64)

 L0012: nop

 L0013: add rsp, 0x28

 L0017: ret

Please note that both 0 and the first page are used here in terms of virtual memory
of a given address. this means that physically “null page” is mapped to some
arbitrary physical page.

 Pipelines
Streams are as old as the entire .NET. They are great and do their job but are not well-

suited for high-performance code. They may allocate a lot, requiring copying memory

here and there. And they introduce overhead of required synchronization when used

in multithreading scenarios. For writing efficient code using buffers, like streams,

something new has to be invented. This is exactly how pipelines (initially called

channels) were invented, mostly with network streaming kept in mind, used in a new

Kestrel web hosting server. But even Kestrel was one of the main reasons behind them,

they will be exposed as a general-purpose library.

Upcoming versions of .NET, at the time of this writing, are expected to include

completely new API for pipelines, which may be seen as Stream-like buffers that

target a range of problems related to high-performance and high-scalable code. They

are designed in a producer-consumer manner, so there is a writer (sending data)

CHAPter 14 AdvAnCed teCHniques

987

and a receiver (reading those data). As its current documentation says: “A pipeline

is like a Stream that pushes data to you rather than having you pull. One chunk

of code feeds data into a pipeline, and another chunk of code awaits data to pull

from the pipeline.” As other techniques showed in this chapter, most probably only

low-level libraries creators will be interested in them - to be used in networking or

serialization code.

Because pipelines are from the ground up designed in high performance and

scalability requirements in mind, they have the following characteristics:

• Their memory usage is based on pooling of internal buffers - it allows

them to avoid heap allocations.

• They intensively use Span<T> and Memory<T> on API level - it allows

them to provide zero-copy usage of the data (data is being provided

by slicing internal buffers without a need for copying anything).

• They are asynchronous and thread-safe in an efficient manner.

Regardless of all the complicated machinery underneath, pipeline API is quite

straightforward. First of all, we must configure a pipeline instance providing a memory

pool that will be used by them (see Listing 14-70). There are other configuration options

that are not described in this book, especially related to pipe schedulers. This is because

my intent is to only briefly describe pipelines capabilities and usage, without going

any further with advanced topics. Although they are interesting, this book can’t cover

everything in detail.

Listing 14-70. Example of pipeline configuration

var pool = MemoryPool<byte>.Shared;

var options = new PipeOptions(pool);

var pipe = new Pipe(options);

An instantiated pipeline provides two crucial properties: Writer and Reader.

The basic usage of them is presented in Listing 14-71. Keep in mind that write and

read side from such example could be split into two different threads in a thread-safe

manner. As we may see, when using pipelines, we must explicitly flush the writer

buffers with the help of FlushAsyncs method (to make data visible for readers). And

the reader must explicitly update the reading position with the help of AdvanceTo

method (to inform pipeline that underlying data has been read so corresponding

buffers may be released).

CHAPter 14 AdvAnCed teCHniques

988

Listing 14-71. Basic usage of pipelines

static async Task AsynchronousBasicUsage(Pipe pipe)

{

 // Write data

 pipe.Writer.Write(new byte[] { 1, 2, 3 }.AsReadOnlySpan());

 await pipe.Writer.FlushAsync();

 // Read data

 var result = await pipe.Reader.ReadAsync();

 byte[] data = result.Buffer.ToArray();

 pipe.Reader.AdvanceTo(result.Buffer.End);

 data.Print();

}

However, while pipelines usage presented in Listing 14-71 is useful for introductory

purposes, it is quite an anti-pattern because:

• writer had to heap-allocate byte array before sending data,

• reader had to heap-allocate byte array where read data were copied.

Obviously, it stands in contradiction with the assumptions that were mentioned

at the beginning of this section. To make better use of pipelines features, we may get a

buffered memory straight from the pipeline itself.

Let’s start from improving the write side of our example (see Listing 14-72). As we

can see, we may get buffered Span<byte> or Memory<T> from the Writer directly, which

does not require any allocations (underneath a slice of required size is returned to use

from internal buffers). After accordingly modifying data in the acquired Span<T>, we

must explicitly update the writing position with the help of Advance method. It informs

the pipeline how many bytes are considered to be written and will be flushed by the

following FlushAsync method.

Listing 14-72. Usage of pipelines with buffered memory. Because of Span<byte>

usage, method is not async

static void SynchronousGetSpanUsage(Pipe pipe)

{

 Span<byte> span = pipe.Writer.GetSpan(minimumLength: 2);

 span[0] = 1;

CHAPter 14 AdvAnCed teCHniques

989

 span[1] = 2;

 pipe.Writer.Advance(2);

 pipe.Writer.FlushAsync().GetAwaiter().GetResult();

 var readResult = pipe.Reader.ReadAsync().GetAwaiter().GetResult();

 byte[] data = readResult.Buffer.ToArray();

 pipe.Reader.AdvanceTo(readResult.Buffer.End);

 data.Print();

 pipe.Reader.Complete();

}

We should conceptually treat data returned by GetSpan and GetMemory methods as

separate blocks that will be written into the pipeline. Those blocks have a configurable

minimum size, which is 2,048 bytes by default. So even if we ask for minimumLength of a

few bytes, we will receive 2 kB of memory (this is not a problem as it uses pool internally

so no heap allocations are required). Be aware that the returned memory block most

probably is reused and may already contain some previously written data. So it is

important that Advance method call will truly say how many bytes were indeed modified.

Listing 14-73 shows two successive writes of two acquired buffered blocks but more

bytes were “advanced” that really modified. As a result, some parts of read data may have

undefined values (0 is our example).

Listing 14-73. Usage of pipelines with buffered memory. Thanks to

Memory<byte> usage, method may be async.

static async Task AsynchronousGetMemoryUsage(Pipe pipe)

{

 Memory<byte> memory = pipe.Writer.GetMemory(minimumLength: 2);

 memory.Span[0] = 1;

 memory.Span[1] = 2;

 Console.WriteLine(memory.Length); // Prints 2048

 pipe.Writer.Advance(4);

 await pipe.Writer.FlushAsync();

 Memory<byte> memory2 = pipe.Writer.GetMemory(minimumLength: 2);

 memory2.Span[0] = 3;

 memory2.Span[1] = 4;

 pipe.Writer.Advance(4); // Prints 2048

CHAPter 14 AdvAnCed teCHniques

990

 await pipe.Writer.FlushAsync();

 //pipe.Writer.Complete(); close the pipeline from writer side (so reader

will not expect more data)

 var readResult = await pipe.Reader.ReadAsync();

 byte[] data = readResult.Buffer.ToArray();

 pipe.Reader.AdvanceTo(readResult.Buffer.End);

 data.Print(); // 1,2,0,0,3,4,0,0

 //pipe.Reader.Complete(); no more reads possible

}

Improving the read side of pipeline usage to use a zero-copy approach requires

a little more, yet still quite intuitive changes. Instead of aggressively reading all

readResult.Buffer data and copying it to a newly created array, we may investigate it

and access data without copying. Reader.Buffer is of type ReadOnlySequence<byte>

that provides the following features:

• such sequence (buffer) represents one or more segments received

from the producer,

• its IsSingleSegment property tells us whether sequence represents

only single segment,

• its First property is of ReadOnlyMemory<byte> type and returns the

first segment,

• it is enumerable, providing ReadOnlyMemory<byte> elements in case

of representing multiple segments.

This leads us to a common way of consuming a read buffer (see Listing 14-74). Please

note that no allocations happen in the presented code - read data is represented by

sliced ReadOnlyMemory<byte> and ReadOnlySpan<byte> structs.

Additionally, one more feature of a pipeline is presented in Listing 14-74 - reader’s

AdvanceTo method may update two different read positions separately:

• consumed position - to inform that memory until such position has

been already read (consumed) and we do not need it anymore. Such

data will not return to us after successive reader’s ReadAsync calls

(and may be released by underlying buffering mechanism).

CHAPter 14 AdvAnCed teCHniques

991

• examined position - to inform that although we read data until such

position (we’ve already seen them) but it was not enough for us –

so, for example, we have read only a part of incoming message and

we must wait for the rest. Data between consumed and examined

position will return to us after successive ReadAsync calls altogether

with a new data that arrives.

Listing 14-74. Example of zero-copy read side of pipeline

static async Task Process(Pipe pipe)

{

 PipeReader reader = pipe.Reader;

 var readResult = await pipe.Reader.ReadAsync();

 var readBuffer = readResult.Buffer;

 SequencePosition consumed;

 SequencePosition examined;

 try

 {

 ProcessBuffer(in readBuffer, out consumed, out examined);

 }

 finally

 {

 reader.AdvanceTo(consumed, examined);

 }

}

private static void ProcessBuffer(in ReadOnlySequence<byte> sequence, out

SequencePosition consumed, out SequencePosition examined)

{

 consumed = sequence.Start;

 examined = sequence.End;

 if (sequence.IsSingleSegment)

 {

 // Consume buffer as single span

 var span = sequence.First.Span;

 Consume(in span);

 }

CHAPter 14 AdvAnCed teCHniques

992

 else

 {

 // Consume buffer as collections of spans

 foreach (var segment in sequence)

 {

 var span = segment.Span;

 Consume(in span);

 }

 }

 // out consumed - to which position we have already consumed the data

(and do not need them anymore)

 // out examined - to which position we have already analyzed the data

(data between consumed and examined will be provided again when new

data arrives)

}

private static void Consume(in ReadOnlySpan<byte> span) // No defensive

copy as ReadOnlySpan is readonly struct

{

 //...

}

The way of zero-copy reading from pipelines presented in Listing 14-74 most

probably will become a common design pattern. For example, it is already used in

HttpParser class in KestrelHttpServer, already presented partially in Listing 14-6 (see

Listing 14-75). What such parser needs is to interpret incoming network data line by line.

So a design pattern presented in a ProcessBuffer method should be modified to read

incoming buffer data, seeking a newline character. If a new line end has been found, the

consumed position is set accordingly. But if not, data is mark only as examined so it will

be reinterpreted once again when new data comes.

Listing 14-75. Full code of ParseRequestLine from HttpParser class from

KestrelHttpServer

public unsafe bool ParseRequestLine(TRequestHandler handler, in

ReadOnlySequence<byte> buffer, out SequencePosition consumed, out

SequencePosition examined)

CHAPter 14 AdvAnCed teCHniques

993

{

 consumed = buffer.Start;

 examined = buffer.End;

 // Prepare the first span

 var span = buffer.First.Span;

 var lineIndex = span.IndexOf(ByteLF);

 if (lineIndex >= 0)

 {

 consumed = buffer.GetPosition(lineIndex + 1, consumed);

 span = span.Slice(0, lineIndex + 1);

 }

 else if (buffer.IsSingleSegment)

 {

 // No request line end

 return false;

 }

 else if (TryGetNewLine(buffer, out var found))

 {

 span = buffer.Slice(consumed, found).ToSpan();

 consumed = found;

 }

 else

 {

 // No request line end

 return false;

 }

 // Fix and parse the span

 fixed (byte* data = &MemoryMarshal.GetReference(span))

 {

 ParseRequestLine(handler, data, span.Length);

 }

 examined = consumed;

 return true;

}

CHAPter 14 AdvAnCed teCHniques

994

private static bool TryGetNewLine(in ReadOnlySequence<byte> buffer, out

SequencePosition found)

{

 var byteLfPosition = buffer.PositionOf(ByteLF);

 if (byteLfPosition != null)

 {

 // Move 1 byte past the \n

 found = buffer.GetPosition(1, byteLfPosition.Value);

 return true;

 }

 found = default;

 return false;

}

Interpretation of incoming segments from the read buffer is quite tedious. We need

to maintain the interpretation state and correctly handle the interpretation of successive

segments (as byte data we interpret most probably will be split into multiple segments).

For common scenarios of interpreting underlying segments as stream of bytes,

BufferReader helper class is also introduced (see Listing 14-76). Underneath it handles

interpreting successive segments while providing single and contiguous stream of bytes

accessible by Read method. Obviously, it still does not heap allocate anything as it is also

based on zero-copy approach internally.

Listing 14-76. An example of BufferReader helper class usage

private static void ProcessWithBufferReader(in ReadOnlySequence<byte>

sequence, out SequencePosition consumed, out SequencePosition examined)

{

 var byteReader = BufferReader.Create(sequence);

 while (!byteReader.End)

 {

 var ch = byteReader.Read();

 // Consume... read more, and so on, so forth.

CHAPter 14 AdvAnCed teCHniques

995

 // setting:

 consumed = byteReader.Position;

 examined = byteReader.Position; // or less if Peek was used

 // return if you are done with some part

 }

}

 Summary
We have covered quite a lot of various topics in this chapter. It is a kind of all-in-

one bag where seemingly unrelated techniques and types were discussed. In my

opinion, however, they have one important thing in common - they are advanced,

highly specialized things required mostly in even-more specialized code with high-

performance requirements. This is exactly why this chapter has a title “Advanced

Techniques,” right?

Many words were spoken here about types like Span<T> or Memory<T>, which allow

us to write very efficient, no heap-allocating code as was well as other possibilities, like

Unsafe class.

Eventually, we took a little insight into the future of C# and .NET. Of course,

predicting the future is always hard. So, I refrained from going too far into the future. Two

features that are most important from a memory management perspective were briefly

described - nullable reference types and pipelines (one should count here also UTF8

strings that are planned to be introduced).

There are no Rules defined in this chapter. If I were to mention a general one,

it would sound: do not over-engineer. I mean, most of the techniques described in

this chapter are relevant only on low-level code that should most probably belong to

something called Infrastructure Level - preferably generalized and sealed in library or

NuGet package. Do not clutter Business Layer with strictly technical types like Span<T>

or Memory<T>. They do not belong to the business domain for sure and expressiveness

of the domain is one of the most important factors during our application’s domain

modeling. Span<T> and Memory<T> are the best types for no- copy handling where

performance is critical for advanced scenarios.

CHAPter 14 AdvAnCed teCHniques

997
© Konrad Kokosa 2018
K. Kokosa, Pro .NET Memory Management, https://doi.org/10.1007/978-1-4842-4027-4_15

CHAPTER 15

Programmatical APIs
This is the last chapter of this book. We have seen, so far, many various topics related

to .NET memory management - including a comprehensive description of how, in fact,

Garbage Collector in .NET works. Other important topics were also described, including

resource management with the help of finalization and disposable objects, various types

of handles, usage of structs or many diagnostic scenarios, and practical advice related to

all of that. At this moment we should feel quite comfortable in the memory management

topic, although the amount of knowledge could be a little overwhelming so going back to

at least some parts of the book is fully understandable and advisable.

What’s left then? Not so much indeed. In this chapter I would like to describe a few

programmatical APIs related to the GC. They are available from code on different levels,

providing different levels of flexibility. I believe it is a good theme for the end of the

book. Already more or less understanding the operation of the GC, we can now look at

how it can be controlled and measured from code. We start from reviewing an already

well-known GC class, mainly for reference, as most of the available methods were already

used here and there throughout the book. Then, the CLR Hosting feature is described.

Eventually, two great libraries that provide deep diagnostic capabilities are shown -

ClrMD and EventTrace. As the crème de la crème, a few words are dedicated to the

possibility of changing the whole GC into our custom one.

 GC API
As said, a static GC class with its static methods has been quite intensively already used

in the previous chapters. Here, I want to briefly summarize its usage and show those

little possibilities not yet mentioned or described with insufficient details. I do not repeat

myself, so if examples of a specific method usage were already presented, I just refer

back to them. All methods were organized into some functional groups, presented as

subsections. Moreover, besides the GC class itself, a few other methods and types are

presented that perfectly suit the overall “Programmatical GC API” section.

998

 Collection Data and Statistics
The first group contains properties and methods that inform us about the GC status and

internal state of memory.

 GC.MaxGeneration

This informs about the number of maximum generations currently implemented in the

GC. It is mostly useful in a code that would like to iterate over all available generations

(to not hard-code its number) - like by successive calls of GC.CollectionCount

presented below. Or when you want to check with the help of GC.GetGeneration method

whether an object is already in the oldest generation (such usage is shown later as well).

Please note, this property currently has a value of 2 because the oldest generation 2 and

LOH are treated as one (collected together during full GC).

 GC.CollectionCount(Int32)

This informs about the number of GC occurrences of a specific generation since the

program’s beginning. The generation number we ask for should be not less than 0 and

not bigger than a value returned by GC.MaxGeneration. Remember that such count

is inclusive, so if generation 1 is condemned, both generations 0 and 1 counters are

increased. Thus, Listing 15-1 will produce results as shown in Listing 15-2 (each younger

generation collection counter includes collections of older generations).

Listing 15-1. Illustration of GC.CollectionCount method usage

GC.Collect(0);

Console.WriteLine($"{GC.CollectionCount(0)} {GC.CollectionCount(1)}

{GC.CollectionCount(2)}");

GC.Collect(1);

Console.WriteLine($"{GC.CollectionCount(0)} {GC.CollectionCount(1)}

{GC.CollectionCount(2)}");

GC.Collect(2);

Console.WriteLine($"{GC.CollectionCount(0)} {GC.CollectionCount(1)}

{GC.CollectionCount(2)}");

Chapter 15 programmatiCal apis

999

Listing 15-2. Results of code from Listing 15-1

1 0 0

2 1 0

3 2 1

We can use this method for diagnostic and logging from inside our application.

However, most popular usage is probably implementing a “smart” explicit GC call only if

it does not happen by itself (see Listing 15-3). In that way our code that wants to trigger

GC will be less aggressive. Recall Chapter 7’s elaboration about explicitly calling GC in

general. We could also use such code to periodically check each generation counter to

notice that the collection of a given generation has happened recently (thus, allowing

us to create a sort of “callback” that is executed after each GC, if checking granularity is

small enough).

Listing 15-3. Conditional explicit GC call if it didn’t happen by itself

if (lastGen2CollectionCount == GC.CollectionCount(2))

{

 GC.Collect(2);

}

lastGen2CollectionCount = GC.CollectionCount(2);

 GC.GetGeneration

This informs about the generation to which the given object belongs. For valid objects on

the Managed Heap, it returns value between 0 and GC.MaxGeneration.

It may be used, for example, to create some generation-aware caching policy.

Supposing we want to create a pool of objects that are being pinned, it would be good to

reuse only objects from the oldest generation, which are most probably living in gen2-

only segments. Assuming objects are pinned for a short period of time, pinning in gen2-

only segments is less severe because there is much less probability of full GC during that

time.

Thanks to the GC.GetGeneration method, we can create such a pool, maintaining

a list of already “aged” objects (preferred to be rented from the pool) and another list

of younger objects (with the expectation they will become aged at some time). A draft

of such pool is presented in Listing 15-4. If someone wants to rent an object from the

pool (by calling Rent method), already aged objects are first checked for availability.

Chapter 15 programmatiCal apis

1000

If there is none, a list of already maintained younger objects is checked in the

RentYoungObject method. If again, there is none currently, a new object is being created

via a provided factory method. When an object is being returned to the pool (by calling

Return method), its “age” is checked with the help of GC.GetGeneration method and

depending on the result, added to the appropriate collection for later reuse. Additionally,

Gen2GcCallback class (described in Chapter 12) is used to perform an action on every

full GC to maintain both lists - moving those objects that already landed in the oldest

generation from the young collection to the aged collection.

Listing 15-4. Draft of PinnableObjectPool<T> implementation, preferring to

provide objects from the oldest generation

public class PinnableObjectPool<T> where T : class

{

 private readonly Func<T> factory;

 private ConcurrentStack<T> agedObjects = new ConcurrentStack<T>();

 private ConcurrentStack<T> notAgedObjects = new ConcurrentStack<T>();

 public PinnableObjectPool(Func<T> factory)

 {

 this.factory = factory;

 Gen2GcCallback.Register(Gen2GcCallbackFunc, this);

 }

 public T Rent()

 {

 if (!agedObjects.TryPop(out T result))

 RentYoungObject(out result);

 return result;

 }

 public void Return(T obj)

 {

 if (GC.GetGeneration(obj) < GC.MaxGeneration)

 notAgedObjects.Push(obj);

 else

 agedObjects.Push(obj);

 }

Chapter 15 programmatiCal apis

1001

 private void RentYoungObject(out T result)

 {

 if (!notAgedObjects.TryPop(out result))

 {

 result = factory();

 }

 }

 private static bool Gen2GcCallbackFunc(object targetObj)

 {

 ((PinnableObjectPool<T>)(targetObj)).AgeObjects();

 return true;

 }

 private void AgeObjects()

 {

 List<T> notAgedList = new List<T>();

 foreach (var candidateObject in notAgedObjects)

 {

 if (GC.GetGeneration(candidateObject) == GC.MaxGeneration)

 {

 agedObjects.Push(candidateObject);

 }

 else

 {

 notAgedList.Add(candidateObject);

 }

 }

 notAgedObjects.Clear();

 foreach (var notAgedObject in notAgedList)

 {

 notAgedObjects.Push(notAgedObject);

 }

 }

}

Chapter 15 programmatiCal apis

1002

Obviously, PinnableObjectPool<T> presented here is simplified for brevity

and does not include such important aspects as cache trimming or multithreading

synchronization (especially in AgeObjects method).

there is already mentioned in Chapter 12, an internal PinnableBufferCache
class in .Net fundamental libraries (CoreFX) that is a real-world implementation
of a pool similar to that presented in listing 15-4. it includes cache trimming, a lot
of care about optimal multithreading access, and another optimization related to
managing both objects collections. i strongly recommend that you find a moment
to study the code of this class carefully. it is an excellent summary of many of the
aspects discussed in this book.

Please note that if we pass an invalid object to GetGeneration method, we should treat

its result as undefined (see Listing 15-5) - for example, current .NET Core implementation

will always return 2 in such a case because it assumes that if an object does not belong to

an ephemeral segment, it belongs to one of the LOH or gen2 segments.

Listing 15-5. Passing invalid, stack-allocated object to GC.GetGeneration

method

UnmanagedStruct us = new UnmanagedStruct { Long1 = 1, Long2 = 2 };

int gen = GC.GetGeneration(Unsafe.As<UnmanagedStruct, object>(ref us));

Console.WriteLine(gen);

Output:

2

 GC.GetTotalMemory

This returns the total number of bytes in use, excluding fragmentation, in all generations.

In other words, it is a total size of all managed objects on the Managed Heap. This

include the size of already unreachable, dead objects if we do not trigger explicit GC

before.1 As mentioned in Chapter 12, where this method implementation was presented

1 Strictly speaking, since there could be any number of things that happen between explicitly
triggering a GC and calling GetTotalMemory method, some objects could also have become
unreachable, unless there’s no other threads running.

Chapter 15 programmatiCal apis

1003

(see Listing 12-9), be aware that when passing true as its forceFullCollection

argument, this method may be very costly. In the worst scenario, it may trigger full-

blocking GC 20 times trying to get a stable result!

GetTotalMemory method may be used obviously for diagnostic and logging purposes.

Its usage in various unit tests and experiments is popular. However, for the purpose

of tracking allocations during the test, GC.GetAllocatedBytesForCurrentThread,

described later, is a better alternative.

Moreover, be cautious when using this method for memory-based limiting

processing, like web request throttling. Because of not counting fragmentation

and overall overhead of segments management (for example, committing some

segment’s pages in advance), such measure does not reflect precisely the overall

pressure of the memory. For such scenarios, it is better to use overall memory

measurements provided by the Process class (or at least relate GC.GetTotalMemory

result to them). The simple “Hello world” example in Listing 15-6 illustrates the

difference (see Listing 15-7 for results). Objects in the GC Heap are taking around

600 kB of memory. However, private memory usage of the overall process is around

9 MB (while Virtual Memory is obviously bigger, refer to Chapter 2 for memory

categorization in a process).

Listing 15-6. Using GC.GetTotalMemory and various Process memory-related

measurements

static void Main(string[] args)

{

 Console.WriteLine("Hello world!");

 var process = Process.GetCurrentProcess();

 Console.WriteLine($"{process.PrivateMemorySize64:N0}");

 Console.WriteLine($"{process.WorkingSet64:N0}");

 Console.WriteLine($"{process.VirtualMemorySize64:N0}");

 Console.WriteLine($"{GC.GetTotalMemory(true):N0}");

 Console.Readline();

}

Listing 15-7. Result of code from Listing 15-6

Hello world!

9,162,752

Chapter 15 programmatiCal apis

1004

146,680,064

2,199,553,761,280

620,496

Even the memory taken by the Managed Heap is noticeably bigger than the total

size of objects in it (see Figure 15-1). We can see that memory committed by the GC

segments take 1,772 kB while results from Listing 15-7 show only around 600 kB.

And yes, most of this difference lies in fragmentation not being counted in. We may

confirm that by using the heapstat command from WinDbg’s SOS extensions (see

Listing 15- 8), where total space taken by free space may be easily calculated.

Figure 15-1. VMMAP view of program from Listing 15-6 (stopped at the last line)

Listing 15-8. HeapStat SOS command result of program from Listing 15-6

> !heapstat -inclUnrooted

Heap Gen0 Gen1 Gen2 LOH

Heap0 8216 24 145280 701024

Free space: Percentage

Heap0 24 0 94576 131280 SOH: 61% LOH: 18%

Unrooted objects: Percentage

Heap0 40 0 184 0 SOH: 0% LOH: 0%

Chapter 15 programmatiCal apis

1005

Unfortunately, to get the most interesting Working set - private value, you would
need to use PerformanceCounter class and read performance Counters
data of your own process. there is also no way to get programmatically overall
managed heap size including fragmentation other than using ClrmD or etW-based
traceevent library presented later in this chapter. there is also an internal GC.
GetMemoryInfo method returning such information added in .Net Core 2.1, but
at the time of this writing, it was decided to not make it public.

 GC.GetAllocatedBytesForCurrentThread

This method returns the total number of bytes allocated so far by the current thread.

Please note it is a cumulative value and is always growing. It considers only the number

of allocations, and it does not matter for this measure how many objects/bytes were

afterwards garbage collected.

As it returns a value only for the current thread, it is not possible to ask about

allocations on the other thread. Thanks to that, its implementation is fast and

straightforward (see Listing 15-9): it sums the number of bytes so far allocated in the

previous allocation contexts plus the already consumed part of the current allocation

context (recall Chapter 5 where allocation context was described in detail).

Listing 15-9. Implementation of GC.GetAllocatedBytesForCurrentThread

method in CoreCLR.

FCIMPL0(INT64, GCInterface::GetAllocatedBytesForCurrentThread)

{

 ...

 INT64 currentAllocated = 0;

 Thread *pThread = GetThread();

 gc_alloc_context* ac = pThread->GetAllocContext();

 currentAllocated = ac->alloc_bytes + ac->alloc_bytes_loh -

(ac->alloc_limit - ac->alloc_ptr);

 return currentAllocated;

}

FCIMPLEND

Chapter 15 programmatiCal apis

1006

Because the allocation measurement is limited to the only current thread, the GC.

GetAllocatedBytesForCurrentThread method is much better suited to isolated unit

tests or experiments about allocations, instead of using GC.GetTotalMemory method

(see Listing 15-10). Please note that the latter provides a total memory usage for overall

process so other allocating threads will influence the result. On the other hand, thread

isolation in case of this method provides clean and reproducible results.

Listing 15-10. Example of using GC.GetAllocatedBytesForCurrentThread in

unit test

[Fact]

public void SampleTest()

{

 string input = "Hello world!";

 var startAllocations = GC.GetAllocatedBytesForCurrentThread();

 ReadOnlySpan<char> span = input.AsSpan().Slice(0, 5);

 var endAllocations = GC.GetAllocatedBytesForCurrentThread();

 Assert.Equal(startAllocations, endAllocations);

 Assert.Equal("Hello", span.ToString());

}

Please also note this method was added in .NET Core 2.1 and is not available yet

in .NET Framework. On the other hand, .NET Framework exposes yet another way of

programmatically measuring memory usage with the help of AppDomain class and its two

properties2:

• MonitoringTotalAllocatedMemorySize - it returns total number of

bytes allocated so far by an application domain. It is then similar to

the GC.GetAllocatedBytesForCurrentThread method, but it works

on the AppDomain, not thread level. Moreover, it is being updated at

every allocation context change (which may happen more often than

GC). Thus, it has allocation context granularity, which has a few kB

accuracies.

2 To use those properties, we have to enable Application Domain Resource Monitoring - refer to
MSDN for ways of doing that.

Chapter 15 programmatiCal apis

1007

• MonitoringSurvivedMemorySize - it returns total number of bytes

taken by objects that survived last GC. It is only guaranteed to be

accurate after a full GC, although it is updated more often but with

less accuracy.

The current mismatch of the methods of allocations measurements causes difficulty

when writing code compatible with .NET Standard and designed to be used both by

.NET Core and .NET Framework. For example, BenchmarkDotNet library solves this

problem using the best possible (most precise) in each case (see Listing 15-11).

Listing 15-11. Fragments of BenchmarkDotNet’s GcStats class used by

MemoryDiagnoser

public struct GcStats

{

 private static readonly Func<long>

GetAllocatedBytesForCurrentThreadDelegate =

GetAllocatedBytesForCurrentThread();

 private static Func<long> GetAllocatedBytesForCurrentThread()

 {

 // for some versions of .NET Core this method is internal,

 // for some public and for others public and exposed ;)

 var method = typeof(GC).GetTypeInfo().GetMethod("GetAllocatedBytesFor

CurrentThread",

 BindingFlags.Public | BindingFlags.Static)

 ?? typeof(GC).GetTypeInfo().GetMethod("GetAllocatedBytesForCu

rrentThread",

 BindingFlags.NonPublic | BindingFlags.Static);

 return () => (long)method.Invoke(null, null);

 }

Chapter 15 programmatiCal apis

1008

 private static long GetAllocatedBytes()

 {

 ...

 // "This instance Int64 property returns the number of bytes that

have been allocated by a specific

 // AppDomain. The number is accurate as of the last garbage

collection." - CLR via C#

 // so we enforce GC.Collect here just to make sure we get accurate

results

 GC.Collect();

#if CLASSIC

 return AppDomain.CurrentDomain.MonitoringTotalAllocatedMemorySize;

#elif NETSTANDARD2_0

 ...

 // https://apisof.net/catalog/System.GC.GetAllocatedBytesForCurrentT

hread() is not part of the .NET Standard, so we use reflection to

call it..

 return GetAllocatedBytesForCurrentThreadDelegate.Invoke();

#elif NETCOREAPP2_1

 // but CoreRT does not support the reflection yet, so only because of

that we have to target .NET Core 2.1

 // to be able to call this method without reflection and get

MemoryDiagnoser support for CoreRT ;)

 return System.GC.GetAllocatedBytesForCurrentThread();

#endif

 }

 ...

}

 GC.KeepAlive

GC.KeepAlive is a method that extends the liveness of a stack root, because it makes the

passed argument reachable at least to the line when this method is called (influencing

generated GC info). The use and significance of this method is discussed in Chapter 8

(see Listings 8-16 and 8-17). It was also used in several other examples throughout the

book.

Chapter 15 programmatiCal apis

1009

 GCSettings.LargeObjectHeapCompactionMode

By setting this property to GCLargeObjectHeapCompactionMode.CompactOnce value, we

may explicitly ask for compacting LOH when the first-blocking full-GC will occur. The

usage and performance impact of this settings was thoroughly described in Scenario

10-1- Large Object Heap Fragmentation in Chapter 10.

 GCSettings.LatencyMode

By setting this property, we control the latency mode of the GC, which allows us

to control GC’s concurrency and enables additional modes like LowLatency or

SustainedLowLatency. The usage of various latency modes and elaboration of which one

we should choose was presented in Chapter 11.

 GCSettings.IsServerGC

This indicates whether CLR was started with Workstation or Server GC mode (see

Chapter 11). Please note this is a read-only property as the GC mode cannot be changed

after runtime has been started. This field value is also not affected by any other settings,

like latency mode. Altogether with the pointer size (designating bitness of a process) and

the number of processors, it may provide quite comprehensive diagnostic data that you

may wish to log during application startup (see Listing 15-12).

Listing 15-12. Example of getting simple diagnostic data

Console.WriteLine("{0} on {1}-bit with {2} CPUs",

 (GCSettings.IsServerGC ? "Server" : "Workstation"),

 ((IntPtr.Size == 8) ? 64 : 32),

 Environment.ProcessorCount);

 GC Notifications
Part of the GC API are notifications, which allow us to be notified about the possibility

of full, blocking GC. Such need comes mainly from pre-.NET 4.5 times where the Server

GC had only the non- concurrent, blocking version. Because such GC could take a while,

having the possibility to react on it was quite useful. A typical example is to use such

notification to tell the load balancer to make this server instance unavailable for the

Chapter 15 programmatiCal apis

1010

duration of a full-blocking GC. Nowadays GC notifications have lost their importance

as most often web applications are running in Background GC mode, with much

less noticeable pause times. Moreover, only blocking garbage collections raises such

notifications. Thus, if the concurrent configuration is enabled, background garbage

collection will not be emitted.

Notifications API consists of the following methods:

• GC.RegisterForFullGCNotification(int

maxGenerationThreshold, int largeObjectHeapThreshold) -

registers GC notification that should be raised if conditions are met

to full-blocking GC make this happen. Those conditions are based

on generation 2 or LOH allocation budgets utilization It is then

important to remember that those notifications are not directly

related to the real GC. As MSDN says: “Note that the notification

does not guarantee that a full garbage collection will occur, only that

conditions have reached the threshold that are favorable for a full

garbage collection to occur.” If we specify too high of values, we will

get a lot of false positive notifications that do not come before real

GC. On the other hand, if we specify too low of values, we may miss

real GCs that happened.

• GC.CancelFullGCNotification - cancels the registration of GC

notification.

• GC.WaitForFullGCApproach - it is a blocking call that waits

indefinitely for GC notification (there is also method overload with a

parameter to specify a timeout value).

• GC.WaitForFullGCComplete - it is a blocking call that waits

indefinitely for full-GC being completed (and again, there is method

overload with a parameter to specify a timeout value).

A typical example of GC notifications usage is presented in Listing 15-13. One of

the dedicated threads is periodically waiting for GC notification and takes appropriate

action if it happens.

Chapter 15 programmatiCal apis

1011

Listing 15-13. Example of using GC notifications

GC.RegisterForFullGCNotification(10, 10);

Thread startpolling = new Thread(() =>

{

 while (true)

 {

 GCNotificationStatus s = GC.WaitForFullGCApproach(1000);

 if (s == GCNotificationStatus.Succeeded)

 {

 Console.WriteLine("GC is about to begin");

 }

 else if (s == GCNotificationStatus.Timeout)

 continue;

 // ...

 // react to full GC, for example call code disabling current server

from load balancer

 // ...

 s = GC.WaitForFullGCComplete(10_000);

 if (s == GCNotificationStatus.Succeeded)

 {

 Console.WriteLine("GC has ended");

 }

 else if (s == GCNotificationStatus.Timeout)

 Console.WriteLine("GC took alarming amount of time");

 }

});

startpolling.Start();

GC.CancelFullGCNotification();

Remember that this API isn’t exact by design because you are asking to predict the

future. Therefore, it requires experimentation with your workload to find appropriate

values of GC.RegisterForFullGCNotification arguments.

Chapter 15 programmatiCal apis

1012

one could complain about necessity of guessing thresholds provided to
RegisterForFullGCNotification, but there are no good alternatives in fact.
the situation changes all the time in a real-world process so if it does not happen
to be completely regular, it is hard to expect that we will predict future accurately.
Fine-tuning with the help of mentioned thresholds allows us at least to adapt to our
typical workload.

 Controlling Unmanaged Memory Pressure
By calling the following methods, we may inform GC that some managed objects are

holding (or releasing) some amount of unmanaged memory not directly visible to it:

• GC.AddMemoryPressure(Int64)

• GC.RemoveMemoryPressure(Int64)

If some threshold of such memory is exceeded, GC will be triggered. As mentioned

in Chapter 7, altogether with those methods’ usage in Scenario 7-3 - Analyzing the

Explicit GC Calls, currently this threshold starts at value of 100,000 bytes and is later

on dynamically tuned. Listing 12-3 in Chapter 12 is yet another typical example of this

method usage.

Note also that you could implement your own similar mechanism, if you want,
because the default implementation works poorly for you. although exposed by GC
class, this mechanism is not internal to the gC (while still implemented in runtime).

 Explicit Collection
The possibility of explicitly calling GC was thoroughly described already in Chapter 7.

Please refer to the “Explicit Trigger” section in Chapter 7 for more details, as well as

above-mentioned Scenario 7-3 - Analyzing the Explicit GC Calls.

Chapter 15 programmatiCal apis

1013

Just for completeness, please find the list of GC method overloads used to induce

such explicit collection:

• Collect()

• Collect(int generation)

• Collect(int generation, GCCollectionMode mode)

• Collect(int generation, GCCollectionMode mode, bool

blocking)

• Collect(int generation, GCCollectionMode mode, bool

blocking, bool compacting)

 No-GC Regions
Regions of code within which runtime tries to disallow GC may be created with the help

of the following methods:

• GC.TryStartNoGCRegion(long totalSize)

• GC.TryStartNoGCRegion(long totalSize, bool

disallowFullBlockingGC)

• GC.TryStartNoGCRegion(long totalSize, long)

• GC.TryStartNoGCRegion(long totalSize, long lohSize, bool

disallowFullBlockingGC)

• GC.EndNoGCRegion()

Further discussion, explanation, and examples of those methods’ usage were already

presented in the “No GC Region” section in Chapter 11.

 Finalization Management
Intimately explained in Chapter 12, the set of methods in GC API allow us to control

finalization behavior. Such API consists of three methods:

• GC.ReRegisterForFinalize(object obj)

• GC.SuppressFinalize(object obj)

• GC.WaitForPendingFinalizers()

Chapter 15 programmatiCal apis

1014

 Memory Usage
Handling OutOfMemoryException is cumbersome, especially if it happens in the

middle of important processing. To proactively avoid such situations, we may use

MemoryFailPoint class that tries to guarantee that there is enough memory available

before we start our processing of great importance. Remember that there’s no guarantee

that you will not get OutOfMemoryException with this API. It’s just a best effort to avoid it.

Usage of this class is plain and simple (see Listing 15-14). MemoryFailPoint

constructor will throw InsufficientMemoryException if there is less than the required

memory available. Due to internal bookkeeping required for multithreaded usage,

MemoryFailPoint is a disposable object so we should remember about calling its

Dispose method (or use using clause).

Listing 15-14. Simple example of MemoryFailPoint usage

try

{

 using (MemoryFailPoint failPoint = new MemoryFailPoint(sizeInMegabytes:

1024))

 {

 // Do calculations

 }

}

catch (InsufficientMemoryException e)

{

 Console.WriteLine(e);

 throw;

}

it is important to note that currently only Windows-based runtimes implement
this class functionality. in case of other systems, MemoryFailPoint constructor
always succeeds.

Chapter 15 programmatiCal apis

1015

In case of current Windows implementation MemoryFailPoint checks for the

possibility of allocating a specified amount of managed memory in the following steps:

• Whether there is enough virtual address space in general - this

should be always true in case of 64-bit huge address space, as well as

it is hard to imagine a need of allocating at once more memory than

32-bit virtual address space.

• It explicitly calls full, blocking, and compacting GC to give it an

opportunity to free unused segments and compact managed memory

usage as much as possible.

• It checks whether there is enough free virtual memory.

• It checks whether there is a need to grow the OS page file to

accommodate required memory size.

• It checks whether there is enough contiguous free virtual memory to

create a GC segment, if it is needed.

i strongly encourage you to read MemoryFailPoint class source if you are
interested in managing free memory space of a process. internally it uses Win32 api
calls to get currently available memory (in private CheckForAvailableMemory
method) and Virtual api’s VirtualQuery call to find a contiguous free virtual
address region (in private MemFreeAfterAddress method). it has also
a private and internal static method GetMemorySettings(out ulong
maxGCSegmentSize, out ulong topOfMemory) implemented in runtime that
returns the gC segment size and maximum available virtual address of a process.
relying on such implementation detail, we could even use it to gain information
about the segment’s size by the following reflection usage:

var args = new object[2];

var mi = typeof(MemoryFailPoint).GetMethod("GetMemorySettings",
BindingFlags.Static | BindingFlags.NonPublic); mi.Invoke(null,
args); // As a result, args[0] contains maxGCSegmentSize
value

Chapter 15 programmatiCal apis

1016

 Internal Calls in the GC Class
Just in case you are curious, static GC class is mainly a thin wrapper around intrinsic,

runtime method implementations. Most of its methods are marked as InternalCall

(see Listing 15-15), which are mapped to appropriate runtime methods in CoreCLR’s

.\src\vm\ecalllist.h file (see Listing 15-16).

Listing 15-15. Fragments of GC class implementation from CoreFX source code

public static class GC

{

 [MethodImplAttribute(MethodImplOptions.InternalCall)]

 public static extern int GetGeneration(Object obj);

 [MethodImplAttribute(MethodImplOptions.InternalCall)]

 internal static extern bool IsServerGC();

 ...

}

Listing 15-16. Fragments of GC class runtime interface from CoreCLR

source code

FCFuncStart(gGCInterfaceFuncs)

 FCFuncElement("IsServerGC", SystemNative::IsServerGC)

 FCFuncElement("GetGeneration", GCInterface::GetGeneration)

 ...

FCFuncEnd()

Static GCInterface methods are calling (mostly) methods defined in gc.cpp file (see

Listing 15-17).

Listing 15-17. Example runtime implementation of GC method

FCIMPL1(int, GCInterface::GetGeneration, Object* objUNSAFE)

{

 FCALL_CONTRACT;

 if (objUNSAFE == NULL)

 FCThrowArgumentNull(W("obj"));

Chapter 15 programmatiCal apis

1017

 int result = (INT32)GCHeapUtilities::GetGCHeap()->WhichGeneration

(objUNSAFE);

 FC_GC_POLL_RET();

 return result;

}

FCIMPLEND

 CLR Hosting
Whole CLR runtime may be seen as a set of libraries that are able to load and execute

CIL code from compatible .NET assembly. Indeed, every time we use .NET, such runtime

must be hosted in some process. In case of a regular .NET Framework, thanks to native

Windows support, such a host “bootstrap” is contained in the EXE file itself. In case

of .NET Core, there is also already a well- known dotnet host application. If we build

CoreCLR on our own, there will be also simplified for testing a CoreRun host available.

All those hosts have one thing in common - they load the appropriate CLR runtime

into process memory, configure it, and execute loaded assembly code (specified from

appropriate assembly file). Such host is also included, for example, in SQL Server

instance to allow managed code execution from inside it.

Hosting API is publicly exposed and everyone could write its own CLR hosting

process. We can imagine many various use cases, but there at least two common ones:

• Create an internal CLR runtime to be able to call managed code from

a native process - which is in fact a use case of SQL Server.

• Create customized CLR runtime to gain control over how the CLR

works, including the GC.

Because CLR hosting provides many configuration capabilities, we can somehow

craft our “own runtime,” suitable for our needs. This is obviously very rarely necessary,

so I will not create a full CLR hosting tutorial here. This functionality is pretty well

documented. Instead, let’s see a few examples for what it can be used for in the context

of memory management.

Chapter 15 programmatiCal apis

1018

When using CLR Hosting API, we are entering the C++ and COM world - full of well-

defined interfaces with well-specified functionality. Every object in CLR Hosting API is

represented by some specific interface. The main one, representing the runtime itself, is

called ICLRRuntimeHost (in .NET Framework) or ICLRRuntimeHost4 (in .NET Core).3

CLR Hosting API is slightly different in .NET Framework and .NET Core. Because

currently .NET Core version does not support many features interesting to us, only

full .NET Framework examples are shown here. Refer to MSDN documentation to see

the current status and API of .NET Core version. Currently .NET Core version of CLR

Hosting mainly supports loading runtime and executing code, without the possibility of

customizing it via the interfaces described below.

Before moving into examples, let’s briefly skim a list of CLR hosting interfaces related

to the memory management (including some general, always used ones) to see what is

possible in the field of memory management. Although all this information is available on

MSDN, I’ve decided to include here a brief summary because it takes a while to merge all

this information (including omitting already obsolete interfaces, and so on, and so forth).

Currently, from our perspective, the most interesting interfaces are as follows:

• ICLRControl - interface to get various managers, representing

specific functionality (like GC, Debugging, Assembly

management, and so on, so forth). With respect to .NET memory

management, two managers are interesting: ICLRGCManager2 and

ICLRAppDomainResourceMonitor.

• ICLRGCManager2 - interface representing some control over GC. More

specifically, it includes the following methods:

• Collect - triggers GC explicitly.

• GetStats - gets a set of current statistics about the garbage

collection - they are directly based on the same values as

represented by corresponding performance counters (thus, in

CoreCLR build those stats are not available).

• SetGCStartupLimitsEx - sets the size of GC segment and

the maximum size of the generation 0 used during runtime

initialization.

3 We should get used to numbering COM interfaces as it is a canonical way of taking care of
backward compatibility. Instead of modifying an existing interface, a new one is added with an
increased number.

Chapter 15 programmatiCal apis

1019

• ICLRAppDomainResourceMonitor - it provides

measurements about AppDomain, - the same values

as MonitoringTotalAllocatedMemorySize and

MonitoringSurvivedMemorySize properties of AppDomain object.

• IHostControl - interface allowing to inject various “host managers”

into hosted CLR. From a memory management perspective, there

are two interesting: IHostGCManager and IHostMemoryManager. If we

want to inject our own manager, we have to override GetHostManager

method appropriately, returning our custom implementation of

those interfaces.

• IHostGCManager - interface providing notifications about GC

suspensions, with the following methods that we have to implement:

• SuspensionStarting - fired when CLR started to suspend threads

because of GC.

• SuspensionEnding - fired when CLR resumed suspended threads

because GC of given generation has ended.

• ThreadIsBlockingForSuspension - fired from each running

thread before it is being suspended.

• IHostMemoryManager - interface providing a range of important

methods related to memory management. By implementing it, we

gain full control over how CLR is consuming system memory for

its purposes. We can, for example, change it completely from using

Window’s Virtual API to some other libraries (or modify how Virtual

API is used). The following methods have to be implemented:

• AcquiredVirtualAddressSpace - informs that CLR has acquired

the specified amount of memory from the operating system. It

will not be called if we create our custom memory manager if we

omit calling it explicitly.

• CreateMalloc - allows to get an IHostmalloc interface

implementation responsible for requesting heap memory

allocations from inside CLR. In this way we can completely

change how memory is being allocated for CLR’s internal

purposes - for example, replacing default malloc calls with

Chapter 15 programmatiCal apis

1020

jemalloc memory allocator (mentioned in Chapter 14). Please

note this is the internal runtime’s allocator used to allocate

memory for private CLR data. It does not replace the GC allocator

used to allocate managed objects on the Managed Heap.

• GetMemoryLoad - returns the amount of physical memory that is

currently being used.

• NeedsVirtualAddressSpace - informs the host that CLR will need

specified amount of memory.

• RegisterMemoryNotificationCallback - allows us to register

ICLRMemoryNotificationCallback interface implementation,

which is used to notify the CLR on the high memory utilization.

• ReleasedVirtualAddressSpace - informs the host that CLR will

no longer need specified amount of memory.

• VirtualAlloc - used to acquire virtual memory from the system.

Thanks to this method, we may replace or modify how CLR

utilizes Virtual API to get memory pages.

• VirtualFree - used to release virtual memory to the system.

• VirtualProtect - used to change protection of a given virtual

memory region.

• VirtualQuery - used to query information about given virtual

memory region.

• IHostMalloc

• Alloc - called by the runtime, asking the host to allocate the

requested amount of memory from the heap.

• DebugAlloc - like above but additionally is should track where the

memory was allocated.

• Free - called by the runtime to free memory that was allocated by

using the Alloc or DebugAlloc methods.

An overview of how all those relevant interfaces cooperate is presented in Figure 15-2.

Summarizing what is most relevant to us, in our custom CLR host we can override how

runtime acquires both memory pages and memory from an unmanaged heap.

Chapter 15 programmatiCal apis

1021

there are many other possibilities when using custom Clr hosting, but only the
most relevant to us were presented. For example, it is possible to take an action on
StackOverflowException via ICLROnEventManager. please also note that
.Net Framework before version 2.0 used another set of interfaces, starting from
ICorRuntimeHost representing runtime and IGCHost used to control gC. those
interfaces are not described here for brevity as they are rather ancient and no
longer used.

An example of loading CLR runtime and obtaining ICLRRuntimeHost and

ICLRControl interfaces is presented in Listing 15-184. Remember that presented

4 For brevity, only the most relevant parts of code are presented in the subsequent examples. Refer
to the accompanying GitHub repository to get full, working examples.

Figure 15-2. The most relevant memory-related interfaces in CLR Hosting API

Chapter 15 programmatiCal apis

1022

CLR Hosting examples are written in unmanaged C++ code (and the provided example

project is created as a regular Windows console application).

Listing 15-18. Initialization of CLR Hosting

ICLRRuntimeHost* runtimeHost;

ICLRMetaHost *pMetaHost = nullptr;

ICLRRuntimeInfo *pRuntimeInfo = nullptr;

hr = CLRCreateInstance(CLSID_CLRMetaHost, IID_ICLRMetaHost,

(LPVOID*)&pMetaHost);

hr = pMetaHost->GetRuntime(L"v4.0.30319", IID_PPV_ARGS(&pRuntimeInfo));

hr = pRuntimeInfo->GetInterface(CLSID_CLRRuntimeHost, IID_ICLRRuntimeHost,

(LPVOID*)&runtimeHost);

ICLRControl* clrControl;

hr = runtimeHost->GetCLRControl(&clrControl);

From now on, we could simply start the runtime and execute the specified method

from a given file (see Listing 15-19). However, it is the possible customization that

interests us the most, so let’s look at some further examples.

Listing 15-19. Executing code in CLR Hosting

DWORD dwReturn;

hr = runtimeHost->Start();

hr = runtimeHost->ExecuteInDefaultAppDomain(targetApp, L"HelloWorld.

Program", L"Test", L"", &dwReturn);

From a CLR memory management point of view, we can distinguish possibilities

presented by the CLR hosting into two or three groups:

• configuration - besides providing standard CLR flags (GC

workstation/server mode and concurrency), we can tune GC a little

by using ICLRGCManager2::SetGCStartupLimitsEx that allows us

to set default GC segment size and maximum generation 0 size (see

Listing 15-20).

• getting diagnostic measurements - thanks to

ICLRGCManager2::GetStats or ICLRAppDomainResourceMonitor

interface, we may observe memory utilization of hosted CLR

Chapter 15 programmatiCal apis

1023

instance (see Listing 15-21). This may be especially useful in high

environments hosting (like production) to observe if hosted managed

code does not violate given memory thresholds.

• customization - thanks to IHostControl interface, we may inject a

wide range of managers by providing our custom implementations

(see Listing 15-22). This is the most interesting part of this section so

let’s look at this possibility in detail.

Listing 15-20. Example of setting SetGCStartupLimitsEx in CLR Hosting

ICLRGCManager2* clrGCManager;

hr = clrControl->GetCLRManager(IID_ICLRGCManager2, (void**)&clrGCManager);

SIZE_T segmentSize = 4 * 1024 * 1024 * 1024;

SIZE_T maxGen0Size = 4 * 1024 * 1024 * 1024;

hr = clrGCManager->SetGCStartupLimitsEx(segmentSize, maxGen0Size);

Listing 15-21. Example of getting CLR memory usage data in CLR Hosting

_COR_GC_STATS gcStats;

gcStats.Flags = COR_GC_COUNTS | COR_GC_MEMORYUSAGE;

// Based on perf counters so does not work in CoreCLR

hr = clrGCManager->GetStats(&gcStats);

cout << gcStats.CommittedKBytes << endl

 << gcStats.Gen0HeapSizeKBytes << endl

 << gcStats.Gen1HeapSizeKBytes << endl

 << gcStats.Gen2HeapSizeKBytes << endl

 << gcStats.LargeObjectHeapSizeKBytes << endl

 << gcStats.ExplicitGCCount << endl

 << gcStats.GenCollectionsTaken[0] << endl

 << gcStats.GenCollectionsTaken[1] << endl

 << gcStats.GenCollectionsTaken[2] << endl;

Listing 15-22. Setting custom host controller in CLR Hosting

CustomHostControl customHostControl;

hr = runtimeHost->SetHostControl(&customHostControl);

Chapter 15 programmatiCal apis

1024

Custom IHostControl has to implement GetHostManager method called by CLR for

obtaining necessary managers (see Listing 15-23). If this method returns E_NOINTERFACE,

the default manager will be used. In our case we want to override IHostMemoryManager

implementation to return our CustomHostMemoryManager class. Please note that all COM

interfaces should implement also common IUnknown methods: AddRef, Release, and

QueryInterface. There are presented here but omitted for brevity in subsequent code

listings.

Listing 15-23. Example of custom IHostControl implementation

class CustomHostControl : public IHostControl

{

 ULONG referenceCounter;

public:

 CustomHostControl()

 {

 referenceCounter = 0;

 }

 // Inherited via IHostControl

 virtual HRESULT GetHostManager(REFIID riid, void ** ppObject) override

 {

 if (riid == IID_IHostMemoryManager)

 {

 IHostMemoryManager *pMemoryManager = new CustomHostMemory

Manager();

 *ppObject = pMemoryManager;

 return S_OK;

 }

 *ppObject = NULL;

 return E_NOINTERFACE;

 }

 virtual HRESULT QueryInterface(const IID &riid, void **ppvObject)

 {

 if (riid == IID_IUnknown)

 {

Chapter 15 programmatiCal apis

1025

 ppvObject = static_cast<IUnknown>(static_cast<IHostControl*>(

this));

 return S_OK;

 }

 if (riid == IID_IHostControl)

 {

 ppvObject = static_cast<IHostControl>(this);

 return S_OK;

 }

 *ppvObject = NULL;

 return E_NOINTERFACE;

 }

 virtual ULONG AddRef()

 {

 return referenceCounter++;

 }

 virtual ULONG Release()

 {

 return referenceCounter--;

 }

};

Custom HostMemoryManager has the powerful capability of replacing all virtual

memory management and heap-allocation handling. Remember that the whole GC (and

its internal allocators) is seen as a black box - memory pages will be obtained for it as for

any other necessary regions. There is, in fact, no way to distinguish VirtualAlloc call

acquiring pages for the Managed Heap from the other calls.

However, even on such a level of customization, we may implement interesting

things. For example, we can override VirtualAlloc method to lock all acquired pages in

physical memory, so they will not be ever paged to disk (with high probability). In such

cases, other methods we may leave as thin wrappers around regular a Virtual API (see

Listing 15-24). Aggressive page locking may improve such .NET application performance

as its memory most probably will always reside in the physical RAM.

Chapter 15 programmatiCal apis

1026

Listing 15-24. Example of custom host memory manager implementing

aggressive page locking in physical memory

class CustomHostMemoryManager : public IHostMemoryManager

{

 ULONG referenceCounter;

public:

 CustomHostMemoryManager() : referenceCounter(0) { }

 // Inherited via IHostMemoryManager

 virtual HRESULT CreateMalloc(DWORD dwMallocType, IHostMalloc **

ppMalloc) override

 {

 *ppMalloc = new CustomHostMalloc();

 return S_OK;

 }

 virtual HRESULT VirtualAlloc(void * pAddress, SIZE_T dwSize, DWORD

flAllocationType, DWORD flProtect, EMemoryCriticalLevel eCriticalLevel,

void ** ppMem) override

 {

 void* result = ::VirtualAlloc(pAddress, dwSize, flAllocationType,

flProtect);

 *ppMem = result;

 BOOL locked = false;

 if (flAllocationType & MEM_COMMIT)

 {

 locked = ::VirtualLock(*ppMem, dwSize);

 }

 cout << "VirtualAlloc " << *ppMem << " (" << dwSize << "),

flags: " << flAllocationType << " " << flProtect << " => "

<< pAddress << " " << locked << endl;

 return S_OK;

 }

 virtual HRESULT VirtualFree(LPVOID lpAddress, SIZE_T dwSize, DWORD

dwFreeType) override

 {

Chapter 15 programmatiCal apis

1027

 ::VirtualFree(lpAddress, dwSize, dwFreeType);

 return S_OK;

 }

 virtual HRESULT VirtualQuery(void * lpAddress, void * lpBuffer, SIZE_T

dwLength, SIZE_T * pResult) override

 {

 *pResult = ::VirtualQuery(lpAddress, (PMEMORY_BASIC_INFORMATION)

lpBuffer, dwLength);

 return S_OK;

 }

 virtual HRESULT VirtualProtect(void * lpAddress, SIZE_T dwSize, DWORD

flNewProtect, DWORD * pflOldProtect) override

 {

 ::VirtualProtect(lpAddress, dwSize, flNewProtect, pflOldProtect);

 return S_OK;

 }

 virtual HRESULT GetMemoryLoad(DWORD * pMemoryLoad, SIZE_T *

pAvailableBytes) override

 {

 // Simulate no problems

 *pMemoryLoad = 1;

 *pAvailableBytes = 1024 * 1024 * 1024;

 return S_OK;

 }

 virtual HRESULT RegisterMemoryNotificationCallback(ICLRMemoryNotificati

onCallback * pCallback) override

 {

 return S_OK;

 }

 virtual HRESULT NeedsVirtualAddressSpace(LPVOID startAddress, SIZE_T

size) override

 {

 return S_OK;

 }

Chapter 15 programmatiCal apis

1028

 virtual HRESULT AcquiredVirtualAddressSpace(LPVOID startAddress, SIZE_T

size) override

 {

 return S_OK;

 }

 virtual HRESULT ReleasedVirtualAddressSpace(LPVOID startAddress)

override

 {

 return S_OK;

 }

 // Inherited via IUnknown

 // ...

};

Presented custom IHostMemoryManager overrides also CreateMalloc method, which

returns our custom IHostMalloc implementation (see Listing 15-25). It is shown for

illustrative purposes, but we can imagine here a whole set of different implementations,

including using the already-mentioned jemalloc library instead of malloc and free

functions.

Listing 15-25. Example of custom heap-allocation implementation for

hosted CLR

class CustomHostMalloc : public IHostMalloc

{

 ULONG referenceCounter;

public:

 CustomHostMalloc() : referenceCounter(0) { }

 // Inherited via IHostMalloc

 virtual HRESULT Alloc(SIZE_T cbSize, EMemoryCriticalLevel

eCriticalLevel, void ** ppMem) override

 {

 *ppMem = ::malloc(cbSize);

 cout << " Alloc " << *ppMem << " (" << cbSize << ")" << endl;

 return S_OK;

 }

Chapter 15 programmatiCal apis

1029

 virtual HRESULT DebugAlloc(SIZE_T cbSize, EMemoryCriticalLevel

eCriticalLevel, char * pszFileName, int iLineNo, void ** ppMem)

override

 {

 *ppMem = ::malloc(cbSize);

 return S_OK;

 }

 virtual HRESULT Free(void * pMem) override

 {

 ::free(pMem);

 return S_OK;

 }

 // Inherited via IUnknown

 // ...

};

such a “non-paged Clr host” as presented here is obviously only a simple draft.
Full, much more well-thought-out implementation is already prepared by sasha
goldshtein and alon Fliess, currently available at https://archive.codeplex.
com/?p=nonpagedclrhost. i strongly recommend reading its source code. For
example, it takes into consideration limits of possible page locking. obviously,
too aggressive locking could negatively influence overall system performance
as other applications will have less physical memory available. as msDN says:
“the maximum number of pages that a process can lock is equal to the number
of pages in its minimum working set minus a small overhead.” thus, sasha
and alon’s implementation uses SetProcessWorkingSetSize Win32 call to
appropriately configure working set limits.

Chapter 15 programmatiCal apis

https://archive.codeplex.com/?p=nonpagedclrhost
https://archive.codeplex.com/?p=nonpagedclrhost

1030

 ClrMD
The Microsoft.Diagnostics.Runtime library, also known as ClrMD (or CLR MD) is a

set of managed APIs for introspecting managed processes and memory dumps. It is

rather designed to build diagnostic tools and small snippets, than to use it as self-

monitoring solution of a process (although such possibility also exists as we will soon

see). It provides similar capabilities as WinDBG’s SOS extensions but in a much more

convenient way available from C# code. Microsoft.Diagnostics.Runtime library is

available as a NuGet package and may be used both in .NET Framework and .NET Core

applications to analyze both .NET Framework and .NET Core targets. Moreover, full

source code of ClrMD is publicly available in GitHub so you can investigate how it is

implemented!

Please note that describing all possibilities of this library is not possible here due

to book space limitations. The following examples are presented to give you an overall

grasp of what is possible and how powerful this library is. Do not treat this section

neither as a ClrMD tutorial nor as a comprehensive use-case description. Refer to

ClrMD’s documentation and samples for further knowledge.

The root object required to work with ClrMD is DataTarget class instance, which

may be obtained by attaching to a running process or loading memory dump, with the

help of the following static methods:

• AttachToProcess - allows us to attach to existing process of given

PID (Process ID). It may be done in three different ways:

• Invasive - the process will be paused and we will be able to

control it like we attached from the regular debugger. This is a

preferred way in normal circumstances.

• NonInvasive - the process will be paused but we will not be able

to control the process. Because in general only a single debugger

may control any process, this method is useful if we want to

attach to a process with other debugger already attached.

• Passive - the process in not paused and no debugger is attached

to it in any mode. We should be aware that many queries about

dynamic data, like thread stacks or object references, may be

often inconsistent. The overall idea with this mode is that the

Chapter 15 programmatiCal apis

1031

program using ClrMD is responsible for doing all process control-

related work (like suspending the observed process). This gives

the developer complete flexibility in how the target process is

controlled.

• LoadCrashDump - allows us to load a file of already taken memory

dump (e.g., with the help of ProcDump).

please note that passive mode theoretically allows us to attach even to our own
process, to provide self-monitoring capabilities. this, however, makes many
problems if you think about it deeply - like how ClrmD would handle a dynamically
changing state of the process, inspecting a heap while gCs and allocations are
happening, and so on, and so forth. thus, the ClrmD maintainer didn’t specifically
disallow self-inspection, because it was something that could be useful in small
corner cases. however, doing this correctly is essentially rocket science, not for the
faint of heart, and if you run into issues, treat such a scenario as not supported by
the maintainer.

When DataTarget is initialized, we may start investigating underlying data,

looking for the runtimes that are (or were) used in it (see Listing 15-26). This includes

information about needed underlying DAC (Data Access Component), which is

responsible for understanding all of CLR’s internal data structures.

Listing 15-26. Example of simple ClrMD usage - attaching to already running

process

using (DataTarget target = DataTarget.AttachToProcess(pid, 5000,

AttachFlag.Invasive))

{

 foreach (ClrInfo clrInfo in target.ClrVersions)

 {

 Console.WriteLine("Found CLR Version:" + clrInfo.Version.ToString());

 // This is the data needed to request the dac from the symbol server:

 ModuleInfo dacInfo = clrInfo.DacInfo;

 Console.WriteLine($"Filesize: {dacInfo.FileSize:X}");

Chapter 15 programmatiCal apis

1032

 Console.WriteLine($"Timestamp: {dacInfo.TimeStamp:X}");

 Console.WriteLine($"Dac File: {dacInfo.FileName}");

 ClrRuntime runtime = clrInfo.CreateRuntime();

 ...

 }

}

Having properly the initialized ClrRuntime instance, we may do a lot of very

interesting things. Let’s look at only just a few examples. Please note that only a small

part of possible methods or attributes of used ClrMD objects is presented here. Refer to

documentation to see all of them.

We may inspect all running threads and print their current stacks (see Listing 15-27).

Listing 15-27. Example of ClrMD usage - listing all thread’s call stacks

foreach (ClrThread thread in runtime.Threads)

{

 if (!thread.IsAlive)

 continue;

 Console.WriteLine("Thread {0:X}:", thread.OSThreadId);

 foreach (ClrStackFrame frame in thread.StackTrace)

 Console.WriteLine("{0,12:X} {1,12:X} {2}", frame.StackPointer, frame.

InstructionPointer,

 frame.ToString());

 Console.WriteLine();

}

We may iterate through all AppDomains and modules loaded by the runtime, as well

as every managed type already used by them (see Listing 15-28).

Listing 15-28. Example of ClrMD usage - listing all AppDomains, modules and

types loaded

foreach (var domain in runtime.AppDomains)

{

 Console.WriteLine($"AppDomain {domain.Name} ({domain.Address:X})");

 foreach (var module in domain.Modules)

Chapter 15 programmatiCal apis

1033

 {

 Console.WriteLine($" Module {module.Name} ({(module.IsFile ?

module.FileName : "")})");

 foreach (var type in module.EnumerateTypes())

 {

 Console.WriteLine($"{type.Name} Fields: {type.Fields.Count}");

 }

 }

}

please note that ClrmD gives a view into how the runtime sees the process state
of the world, and not how things are defined in code. For example, let’s say there’s
a module loaded that defines a type Foo, and Foo is never used by the process.
in that case, EnumerateTypes may or may not return Foo… depending on
whether the runtime decided to load that type out of the module or not. having said
that, whether it does load Foo is an implementation detail that may change from
version to version, in the first place.)

However, from our perspective, the most interesting are obviously all memory-

related information. For example, we can investigate all memory regions used by CLR,

including the Managed Heap (see Listing 15-29 and sample result in Listing 15-30).

Listing 15-29. Example of ClrMD usage - listing all memory regions of a process

foreach (var region in runtime.EnumerateMemoryRegions().OrderBy(r =>

r.Address))

{

 Console.WriteLine($"0x{region.Address:X} (bytes: {region.Size:N0}) -

{region.Type} " +

 $"{(region.Type == ClrMemoryRegionType.GCSegment ?

"(" + region.GCSegmentType.ToString() + ")" : "")}");

}

Chapter 15 programmatiCal apis

1034

Listing 15-30. Example results of code from Listing 15-28

0x24198CC1000 (bytes: 4,096) - HandleTableChunk

0x24199541000 (bytes: 200,704) - GCSegment (Ephemeral)

0x24199572000 (bytes: 268,230,656) - ReservedGCSegment

0x241A9541000 (bytes: 69,632) - GCSegment (LargeObject)

0x241A9552000 (bytes: 134,144,000) - ReservedGCSegment

0x7FF9F5250000 (bytes: 12,288) - LowFrequencyLoaderHeap

0x7FF9F5250000 (bytes: 12,288) - LowFrequencyLoaderHeap

0x7FF9F5256000 (bytes: 28,672) - HighFrequencyLoaderHeap

0x7FF9F5256000 (bytes: 28,672) - HighFrequencyLoaderHeap

0x7FF9F525D000 (bytes: 12,288) - StubHeap

0x7FF9F525D000 (bytes: 12,288) - StubHeap

0x7FF9F5260000 (bytes: 12,288) - LowFrequencyLoaderHeap

0x7FF9F5263000 (bytes: 40,960) - HighFrequencyLoaderHeap

0x7FF9F5274000 (bytes: 28,672) - CacheEntryHeap

0x7FF9F527D000 (bytes: 192,512) - DispatchHeap

0x7FF9F52AC000 (bytes: 344,064) - ResolveHeap

0x7FF9F5300000 (bytes: 24,576) - IndcellHeap

0x7FF9F5300000 (bytes: 24,576) - IndcellHeap

0x7FF9F5306000 (bytes: 24,576) - CacheEntryHeap

0x7FF9F5306000 (bytes: 24,576) - CacheEntryHeap

0x7FF9F530C000 (bytes: 16,384) - LookupHeap

0x7FF9F530C000 (bytes: 16,384) - LookupHeap

0x7FF9F5310000 (bytes: 155,648) - DispatchHeap

0x7FF9F5310000 (bytes: 155,648) - DispatchHeap

0x7FF9F5336000 (bytes: 237,568) - ResolveHeap

0x7FF9F5336000 (bytes: 237,568) - ResolveHeap

0x7FF9F53B0000 (bytes: 65,536) - LowFrequencyLoaderHeap

The Managed Heap may be further investigated through ClrHeap class available as

ClrRuntime’s Heap property. It allows for iterating over all currently existing managed

objects, as well as traversing those object fields and references (see Listings 15-31 and

15-32 for the corresponding result).

Chapter 15 programmatiCal apis

1035

Listing 15-31. Example of ClrMD usage - listing references of some managed

type instances

ClrHeap heap = runtime.Heap;

foreach (var clrObject in heap.EnumerateObjects())

{

 if (clrObject.Type.Name.EndsWith("SampleClass"))

 ShowObject(heap, clrObject, string.Empty);

}

private static void ShowObject(ClrHeap heap, ClrObject clrObject, string

indent)

{

 Console.WriteLine($"{indent}{clrObject.Type.Name} ({clrObject.

HexAddress}) - gen{heap.GetGeneration(clrObject.Address)}");

 foreach (var reference in clrObject.EnumerateObjectReferences())

 {

 ShowObject(heap, reference, " ");

 }

}

Listing 15-32. Example results of code from Listing 15-31

CoreCLR.HelloWorld.SampleClass (24199564fa0) - gen0

 CoreCLR.HelloWorld.AnotherClass (24199564fc0) - gen0

 CoreCLR.HelloWorld.AnotherClass (24199564fd8) - gen0

 CoreCLR.HelloWorld.SomeOtherClass (24199564ff0) - gen0

Individual GC segments may be also investigated, thanks to ClrHeap’s Segments

property. Each such ClrSegment provides various interesting data, including its internal

structure, like generations it contains (see Listing 15-33 and sample result in Listing 15-34).

Listing 15-33. Example of ClrMD usage - listing all GC segments of a process

foreach (var segment in heap.Segments)

{

 Console.WriteLine($"{segment.Start:X16} - {segment.End:X16} ({segment.

CommittedEnd:X16}) Heap#: {segment.ProcessorAffinity}");

Chapter 15 programmatiCal apis

1036

 if (segment.IsEphemeral)

 {

 Console.WriteLine($" Gen0: {segment.Gen0Start:X16} ({segment.

Gen0Length})");

 Console.WriteLine($" Gen1: {segment.Gen1Start:X16} ({segment.

Gen1Length})");

 if (segment.Gen2Start >= segment.Start &&

 segment.Gen2Start < segment.CommittedEnd)

 {

 Console.WriteLine($" Gen2: {segment.Gen2Start:X16} ({segment.

Gen2Length})");

 }

 }

 else if (segment.IsLarge)

 {

 Console.WriteLine($" LOH: {segment.Start} ({segment.Length})");

 }

 else

 {

 Console.WriteLine($" Gen2: {segment.Gen2Start:X16} ({segment.

Gen2Length})");

 }

 foreach (var address in segment.EnumerateObjectAddresses())

 {

 var type = heap.GetObjectType(address);

 if (type == heap.Free)

 {

 Console.WriteLine($"{type.GetSize(address)}");

 }

 }

}

Chapter 15 programmatiCal apis

1037

Listing 15-34. Example results of code from Listing 15-32

000002551B871000 - 000002551B896730 (000002551B8A2000) Heap#: 0

 Gen0: 000002551B871030 (153344)

 Gen1: 000002551B871018 (24)

 Gen2: 000002551B871000 (24)

We already know that the gC implementation detail is that segments (representing
heaps) are linked to a CpU that handles allocation, marking, and so on.
Conceptually, however, ProcessorAffinity field is better thought of as which
heap# it lives in. essentially, it should have been probably named something like
HeapNumber instead of current ProcessorAffinity.

Filling this section with more and more examples seems to be rather redundant.

I believe you’ve already noticed the real power of ClrMD. I will just only mention here a

few other interesting possibilities:

• enumerating over all objects in fReachable queue with the help of

runtime.EnumerateFinalizerQueueObjectAddresses() method,

• enumerating over all handles with the help of runtime.

EnumerateHandles(),

• enumerating all current GC roots with the help of heap.

EnumerateRoots(),

• enumerating all current stack roots of a given thread,

• getting an address of JITted method’s code (so we may use some

disassembler to see its native code).

Quite popular approach to use ClrMD, especially for memory dump analysis, is to

use ClrMD from within LINQPad (https://www.linqpad.net) application. It provides

nice scripting capabilities so we can easily utilize ClrMD without a need of using Visual

Studio and creating dedicated projects.

Chapter 15 programmatiCal apis

https://www.linqpad.net

1038

even though it is so powerful, sometimes we may notice that still ClrmD does not
publicly expose some desired properties. one of the examples is investigating the
current thread’s allocation context. although such information is known to ClrmD,
relevant properties are not directly accessible. We can use reflection to get them
(but remember that there is no guarantee that used properties will not be changed
in future versions).

foreach (ClrThread thread in runtime.Threads)

{

 var mi = runtime.GetType().GetMethod("GetThread", BindingFlags.Instance

| BindingFlags.NonPublic);

 var threadData = mi.Invoke(runtime, new object[] {thread.Address});

 var pi = threadData.GetType().GetProperty("AllocPtr", BindingFlags.

Instance | BindingFlags.Public);

 ulong allocPtr = (ulong) pi.GetValue(threadData);

 pi = threadData.GetType().GetProperty("AllocLimit", BindingFlags.

Instance | BindingFlags.Public);

 ulong allocLimit = (ulong) pi.GetValue(threadData);

}

this is an example that digging into ClrmD source code may be beneficial!

If you are like me, you can see with your eyes all these great diagnostic tools that you

can write, thanks to such possibilities. And indeed, there are currently many smaller

or bigger initiatives (mostly open sourced) to create such tools, created for various

reasons. It is not possible to list them all here, but the two most important should be

named: Netext and SOSEX. Those WinDbg extensions are written as wrappers around

ClrMD. And yes, it is a little ironic that one of the best WinDbg extensions for .NET

diagnostics is written in .NET.

if you want to get a current list of tools based on ClrmD (or integrating with it in
some way), please look for tools built on top of ClrmD online list maintained by
matt Warren available at http://mattwarren.org/2018/06/15/Tools- for-
Exploring-.NET-Internals.

Chapter 15 programmatiCal apis

http://mattwarren.org/2018/06/15/Tools-for-Exploring-.NET-Internals
http://mattwarren.org/2018/06/15/Tools-for-Exploring-.NET-Internals

1039

 TraceEvent Library
Microsoft.Diagnostics.Tracing.TraceEvent is a .NET library providing collecting

and processing capabilities of ETW data. It is a relevant part of the main PerfView’s

machinery, exposed now as a separate Nuget package (but its source code is available

also as a part of the PerfView repository).

I would rather like to avoid repeating here basic examples of using TraceEvent to

not artificially lengthen the book. You can find comprehensive documentation and

examples under the address https://github.com/Microsoft/perfview/blob/master/

documentation/TraceEvent/TraceEventProgrammersGuide.md. Let’s just briefly

summarize it that TraceEvent library allows us to record ETW session to a file (regular

ETL file known from PerfView) and analyze such file afterwards, or just to create and

consume ETW session in real time. Every ETW provider may be enabled and its events

appropriately consumed.

For the convenience of using most common ETW providers, TraceEvent library

provides two strongly-typed parsers already built in into it: ClrTraceEventParser and

KernelTraceEventParser (represented by Clr and Kernel properties of Source property

of the session). As the former knows how to parse all the Common Language Runtime

events, it is very useful also in all GC-related scenarios. We are just consuming then

strongly-typed callbacks representing the reaction on events of our interest. Listing 15-35

shows an example of creating an ETW session that in real time reacts on the GC start and

stop events, printing also the GC statistics.

Listing 15-35. Example of TraceEvent usage - using built-in CLR provider parser

using (var session = new TraceEventSession("SampleETWSession"))

{

 Console.CancelKeyPress += (object sender, ConsoleCancelEventArgs

cancelArgs) =>

 {

 session.Dispose();

 cancelArgs.Cancel = true;

 };

 session.EnableProvider(ClrTraceEventParser.ProviderGuid,

TraceEventLevel.Verbose, (ulong)ClrTraceEventParser.Keywords.Default);

 session.Source.Clr.GCStart += ClrOnGcStart;

Chapter 15 programmatiCal apis

https://github.com/Microsoft/perfview/blob/master/documentation/TraceEvent/TraceEventProgrammersGuide.md
https://github.com/Microsoft/perfview/blob/master/documentation/TraceEvent/TraceEventProgrammersGuide.md

1040

 session.Source.Clr.GCStop += ClrOnGcStop;

 session.Source.Clr.GCHeapStats += ClrOnGcHeapStats;

 session.Source.Process();

}

private static void ClrOnGcStart(GCStartTraceData data)

{

 Console.WriteLine($"[{data.ProcessName}] GC gen{data.Depth} because

{data.Reason} started {data.Type}.");

}

private static void ClrOnGcStop(GCEndTraceData data)

{

 Console.WriteLine($"[{data.ProcessName}] GC ended.");

}

private static void ClrOnGcHeapStats(GCHeapStatsTraceData data)

{

 Console.WriteLine($"[{data.ProcessName}] Heapstats -

{data.GenerationSize0:N0}|{data.GenerationSize1:N0}|{data.

GenerationSize2:N0}|{data.GenerationSize3}");

}

Using CLR and kernel parsers with appropriate callbacks makes consuming ETW

data trivial and very pleasant. Obviously, we can observe events related to our own

process by filtering incoming events by the ProcessID field. It allows us to provide quite

deep self-monitoring insight into a process with very low overhead (assuming we will

carefully choose how many providers and keywords we enabled to not flood us with the

incoming events).

Additionally, with the help of TraceEvent, we can use the ETW ability to record the

event’s stack trace. To make it possible, a “higher-level” type of session interpreter must

be used, named TraceLog. If interesting events have stacks registration enabled, we may

use CallStack() method on received trace data to obtain a collection of stack frames.

Please refer to TraceEvent library code samples to see a working example. Remember

also that enabling stack trace capturing significantly increases the session overhead so it

should be used carefully.

Chapter 15 programmatiCal apis

1041

at this point, we have already described all the possibilities how we can monitor
the use of the memory of our application from within a process:

• we can observe allocations of each thread by calling
GC.GetAllocatedBytesForCurrentThread method (see listing 15-10
earlier in this chapter). obviously, we may build some process-wide statistics
built on top of that functionality, gathering data from each thread. please
remember this is only information about allocations and does not inform in any
way how much of allocated memory survives. thus, it does not say anything
about overall memory usage of a process. in case of .Net Framework, we can
also use appDomain’s MonitoringTotalAllocatedMemorySize property
for the same purpose (see listing 15-11 shown earlier).

• We can observe the total size occupied by managed objects (excluding
fragmentation) in all generations by calling GC.GetTotalMemory method
(see listing 15-6). as already explained, this is a very informative
measurement but without consideration of fragmentation and overall
memory taken by the managed heap, it does not relate greatly to the process
memory consumption as seen from the operating system point of view. it
is, however, a great way of noticing memory leak, when there are more and
more reachable objects on the managed heap. We can additionally observe
overall process memory usage by Process properties like WorkingSet64 or
PrivateMemorySize64, to support GC.GetTotalMemory measurement.

• We can observe .Net Clr memory performance Counters of our own process.
this provides great insights into a process (generation sizes, virtual memory
consumption, and so on, and so forth) provided with at most one-second
granularity, which is enough for many use cases. the main drawback is the fact
that performance Counters are supported only on Windows .Net Framework.

• We can observe the gC etW events with the traceevent library. it provides
even more precise and deeper insights into a process, because as we
have seen many times in this book, etW provides tremendous amounts of
information. the amount of overhead etW introduces is proportional to the
number of events captured. observing the not so common gC start/end/
gCheapstats events is a reasonable approach to get high-level memory info.

Chapter 15 programmatiCal apis

1042

• We can self-attach the ClrmD library to our own process in a passive way,
giving ourselves powerful insights into the managed heap (including memory
organization into segments, objects, and their references, roots, finalization
queues, and so on, and so forth). this is a nice diagnostic approach possibility
in Debug build, but i would recommend careful consideration before including
it in release builds on production. remember that self-attaching in passive
mode is not supported by the ClrmD maintainers so it is risky and may lead
you to strange problems.

 Custom GC
Starting from .NET Core 2.1, coupling between Garbage Collector and the Execution

Engine itself have been loosened a lot. Prior to this version, the Garbage Collector code

was pretty much tangled with the rest of the CoreCLR code. However, .NET Core 2.1

introduces a concept of Local GC, which means the runtime can use a GC in its own dll,

which means GC is now pluggable. We can plug in our custom GC by setting a single

environment variable (see Listing 15-36).

Listing 15-36. Setting proper environment variable to replace GC

implementation

set COMPlus_GCName=f:\GithubProjects\CoreCLR.ZeroGC\x64\Release\ZeroGC.dll

.NET Core, when initializing, notices such an environment variable and will try to

load GC code from the specified library instead of default, built-in GC. The custom GC

can contain a completely different implementation from the default GC. Concepts like

generations, segments, allocators, and finalization may not be available in a custom GC.

The simplest possible implementation of a Local GC is not very complex. It

requires including only a few files directly from CoreCLR code to have things compiled:

debugmacros.h, gcenv.base.h, and gcinterface.h. Please note that for brevity only

most illustrative parts of such code is presented here. Refer to the accompanying book’s

source repository for the whole, working example.

A custom GC library needs to define only two required exported functions, called by

the CoreCLR during initialization: GC_Initialize and GC_VersionInfo (see Listing 15-37).

The former should specify custom implementations of two crucial interfaces: IGCHeap

Chapter 15 programmatiCal apis

1043

and IGCHandleManager. The latter is used to manage backward compatibility, as you can

specify which version of runtime (its GC interface, more precisely) is required for our

custom GC.

Listing 15-37. Two required exported functions in Local GC library

extern "C" DLLEXPORT HRESULT

GC_Initialize(

 /* In */ IGCToCLR* clrToGC,

 /* Out */ IGCHeap** gcHeap,

 /* Out */ IGCHandleManager** gcHandleManager,

 /* Out */ GcDacVars* gcDacVars

)

{

 IGCHeap* heap = new ZeroGCHeap(clrToGC);

 IGCHandleManager* handleManager = new ZeroGCHandleManager();

 *gcHeap = heap;

 *gcHandleManager = handleManager;

 return S_OK;

}

extern "C" DLLEXPORT void

GC_VersionInfo(

 /* Out */ VersionInfo* result

)

{

 result->MajorVersion = GC_INTERFACE_MAJOR_VERSION;

 result->MinorVersion = GC_INTERFACE_MINOR_VERSION;

 result->BuildVersion = 0;

 result->Name = "Zero GC";

}

We should additionally store the provided IGCToCLR interface address, used to

communicate with CLR from inside our GC code. It contains a lot of methods and some

of the most interesting ones are:

• SuspendEE and RestartEE - asks the runtime to suspend and resume

managed threads, for a given reason (we can use it to implement not-

concurrent parts of our custom GC).

Chapter 15 programmatiCal apis

1044

• GcScanRoots - performs a stack walk of all managed threads and

invokes the given promote_func on all GC roots encountered

on the stack (we would need this in our custom Mark phase

implementation).

• GcStartWork and GcDone - inform the runtime that a GC has started

and completed.

Custom IGCHeap interface implementation is the main interface representing core

Garbage Collection functionality (see Listing 15-38). Implementing IGCHeap requires

implementing about 71 methods! Not all really need to have valid implementation

though, as they are declared in built-in current GC design in mind - so we will

provide some dummy implementations of methods like SetGcLatencyMode or

SetLOHCompactionMode as our custom GC may does not have the concept of latency

mode or LOH at all.

Listing 15-38. Fragment of custom IGCHeap implementation

class ZeroGCHeap : public IGCHeap

{

private:

 IGCToCLR* gcToCLR;

public:

 ZeroGCHeap(IGCToCLR* gcToCLR)

 {

 this->gcToCLR = gcToCLR;

 }

 // Inherited via IGCHeap

 ...

}

Among various IGCHeap methods, the top-level methods are for allocations

(IGCHeap::Alloc) and garbage collection (IGCHeap::GarbageCollect). The simplest

possible so- called Zero GC (only capable of allocating objects but never reclaiming

memory) could be implemented as in Listing 15-39. Please note that our custom GC

does not have to distinguish “small” or “large” objects (and thus, SOH and LOH). We

may allocate our objects as we wish regardless of its size - for example, by always using

Heap API with the regular calloc function call.

Chapter 15 programmatiCal apis

1045

Listing 15-39. Examples of the 2 top-level methods implementation of the

custom IGCHeap

class ObjHeader

{

private:

#ifdef _WIN64

 DWORD m_alignpad;

#endif // _WIN64

 DWORD m_SyncBlockValue;

};

Object * ZeroGCHeap::Alloc(gc_alloc_context * acontext, size_t size,

uint32_t flags)

{

 int sizeWithHeader = size + sizeof(ObjHeader);

 ObjHeader* address = (ObjHeader*)calloc(sizeWithHeader, sizeof(char*));

 return (Object*)(address + 1);

}

HRESULT ZeroGCHeap::GarbageCollect(int generation, bool low_memory_p, int

mode)

{

 return NOERROR;

}

It is really funny to see a single line of GarbageCollect method - the one that in

case of default .NET GC triggers executing several thousand lines of code, described in

hundreds of pages in this book. Here is where only our imagination is the limit. Feel free

to implement your own GC!

By writing our custom GC, we replace all default GC functionality. Hence, it is not

easy to just modify the default behavior “a little.” Although, if one takes the whole built-

in GC code and will publish it as a Standalone GC library, it will be much easier to

complete.

Chapter 15 programmatiCal apis

1046

as write barriers are simply specially handled functions written in assembly
code and injected by Jit, currently there is no api to replace them. as we may
remember from Chapter 5, write barriers are responsible for updating card tables
so they are expected to exist, even if our implementation does not need them.
look for ZeroGCHeap::Initialize method in the accompanying example to
see how IGCToCLR::StompWriteBarrier is configured to omit its usage by
manipulating the lowest and the highest ephemeral segment address. and even
if in custom gC, distinguishing between Workstation and server mode should not
make sense, because of write barriers, it still does matter: only in Workstation
mode write barrier checks’ ephemeral segment boundaries (as explained in
Chapter 5 in listing 5-8), so we can use it to omit card table updating. however,
server gC mode with our custom gC crashes the runtime because JIT_
WriteBarrier_SVR64 is being used, which requires unconditionally valid card
table address.

Please note that IGCHandleManager and IGCHandleStore dummy implementations

are omitted for brevity. I invite you to read the Zero GC implementation provided with

this book to see their code.

 Summary
This chapter described various ways of controlling and monitoring .NET memory

usage programmatically. Based on the knowledge acquired from previous chapters, we

should feel quite comfortable in writing code utilizing shown capabilities. As we might

notice, knowledge about CLR and GC internals is quite often helpful, if not necessary, to

properly configure and interpret data provided by libraries described in this chapter.

Firstly, comprehensive list of static GC class methods and properties was presented to

summarize its already shown possibilities altogether with things that were not described

well or not at all so far (like GC notifications). GC class usage was quite frequent

throughout the book, so you’ve probably already noticed how useful it may be in various

scenarios. From all the techniques described in this chapter, GC class (and a few auxiliary

classes) seem to be the most common ones in an everyday’s developer work.

Chapter 15 programmatiCal apis

1047

Then, CLR Hosting was presented with the most relevant interfaces on the field

of memory management, to show what may be achieved with it. I do not expect

big popularity of CLR hosting in your development, but I really wanted to present

it to widen your toolbox. Maybe your use cases include calling managed code from

unmanaged applications (like .NET scripting capabilities in SQL Server), so a possibility

to manipulate how hosted CLR uses memory may be beneficial for you (with some

monitoring capabilities available).

Presented ClrMD and EventTrace are two great libraries dedicated to deep

diagnostic and monitoring of your .NET processes (including your own process in

case of a self-monitoring scenario). Used together or alone, they allow us to get very

detailed information about .NET runtime and your application’s behavior. Even they

are overwhelmingly popular in implementing various diagnostic tools, you may also

consider using it in self-monitoring scenarios as they provide relatively small overhead

(a possibility especially tempting on pre-production environments).

Just in case you might be curious, the last section of this chapter presents a new

possibility currently implemented only in .NET Core 2.1, which allows for a complete

replacement of the GC implementation. I believe it greatly and ironically concludes

the whole book, dedicated solely to the description of the default, built-in GC that may

now be removed and replaced with something totally different. I strongly invite you to

experiment with the Zero GC included as a sample of such custom GC. With the whole

knowledge you’ve gained in this book, including theoretical introduction in the first

chapters, you should now have the solid basics to start writing your own, not-so-trivial

GC implementation!

Chapter 15 programmatiCal apis

1049
© Konrad Kokosa 2018
K. Kokosa, Pro .NET Memory Management, https://doi.org/10.1007/978-1-4842-4027-4

Index

A
AccessViolationException, 1
Accumulator, 5
Address lines, 73
Address windowing extensions

(AWE), 106
Allocation budget, 355

AllocSmall, 545
begin size, 537
byte[] array, 538, 542
changes, 543
C# program, 533–534
ephemeral generations, 544
ETW, 535
GC events table, 535–536, 538
GCStats report, 535
generation 0, 539–540
generation 1, 539–540
generation 2, 539–540
generation sizes, 540, 544–545
gen0 survival rate, 537
LOH budget, 539–540
new allocation values, 537, 542–543
non-concurrent full-GC, 536
OutOfSpaceSOH, 544–545
per generation GC events, 535
promotion size, 539, 541, 543
SOH allocations, 541, 544
static GC Data, 535

subsequent GCs, 545
survival ratios, 545
third GC, 541
Visual Studio, 534

Allocator, 39–40
Amdahl’s law, 141
AMD CodeAnalyst Performance

Analyzer, 207–209
Anscombe’s quartet, 135–136
API, GC

explicit collection, 1013
finalization management, 1013
InternalCall, 1016
MemoryFailPoint usage, 1014–1015
no GC region, 1013
notifications, 1009, 1011
properties and methods

GC.CollectionCount(Int32), 998–999
GC.GetAllocatedBytesFor

CurrentThread, 1005–1008
GC.GetGeneration, 999–1002
GC.GetTotalMemory, 1002–1004
GC.KeepAlive, 1008
GC.MaxGeneration, 998
GCSettings.IsServerGC, 1009
GCSettings.LargeObjectHeap

CompactionMode, 1009
GCSettings.LatencyMode, 1009

unmanaged memory pressure, 1012

https://doi.org/10.1007/978-1-4842-4027-4

1050

AppDynamics, 209
Application domains (AppDomains), 251

default domain, 252
dynamic domains, 252
.NET core, 251
Shared Domain, 252
System Domain, 252

Application Performance Management
(APM) tools, 209

Arithmetic and logic unit (ALU), 8
Assemblies, 250, 254

DLL/EXE file, 251
ORM, 253
plugins, 253
scripting, 252
serializers, 253

Assembly code, 10
Async pinned handle, 604
Automatic Computer Engine (ACE), 13
Automatic layout, classes, 895
Automatic Sequence Controlled

Calculator, 5

B
BenchmarkDotNet, 197–198
Big data, 960
Bimodal distribution, 138–139
Binary search tree (BST), 629–630
Blittable types, 913–914
Boxing, 315–320
Brick table, 632–633

C
Cache coherency, 92
Cache-coherency protocols, 92
Cache hit, 77

Cache lines, 79–80
Cache miss, 77
Caching, 72
Call tree, 131–132
Card bundles, 375
Card tables

barrier code implementations, 373
card word, 371
data structure, 369
JIT_WriteBarrier function, 371
JIT_WriteBarrier_PostGrow64

function, 373
older-to-younger cross-generational

references, 369–370
organization in .NET runtime, 371
set card, 369
trade-off, 370

Classic string concatenation, 302
Clojure, 59
CLR hosting

API, 1018
CLR memory usage data, 1023
configuration, 1022
configuration capabilities, 1017
customization, 1023, 1025
diagnostic measurements, 1022
executing code, 1022
heap-allocation implementation,

1028–1029
host controller, 1023
IHostControl implementation,

1024–1025
initialization, 1022
interfaces

ICLRAppDomainResource
Monitor, 1019

ICLRControl, 1018
ICLRGCManager2, 1018

Index

1051

IHostControl, 1019
IHostGCManager, 1019
IHostMalloc, 1020
IHostMemoryManager, 1019–1020

memory management, 1018, 1026–1027
memory-related interfaces, 1021
process, 1017
SetGCStartupLimitsEx, 1023
VirtualAlloc method, 1025

ClrMD API
AppDomains and modules, 1032
AttachToProcess, 1030
ClrRuntime instance, 1032
DataTarget class instance, 1030
documentation and samples, 1030
GC segments, process, 1035
internal data structures, 1031
LoadCrashDump, 1031
managed heap, 1034
managed processes and memory

dumps, 1030
managed type instances, 1035
memory regions, 1033
reflection, 1038
thread’s call stacks, 1032

Collector, 40–42
Commercial tools

Dynatrace and AppDynamics, 209
Intel VTune Amplifier and AMD

CodeAnalyst Performance
Analyzer, 207–209

JetBrains DotMemory, 203–205
RedGate tool, 206–207
Scitech .NET Memory Profiler, 201–203
Visual Studio, 199–201

Common Business Language (COBOL), 19
Common Intermediate Language

(CIL), 238, 428

Common Language Infrastructure
(CLI), 234

Common language runtime
(CLR), 238, 386

exception handling, 238
JIT compiler, 238
memory management, 238
type system, 238

Common Trace Format (CTF), 214
Compacting process, 623–624
Compaction, 656–657
Compact phase

LOH
compacting objects, 668
fragmentation (see LOH

fragmentation)
single loop scanning, 667

SOH
compacting objects, 664
copying objects, 664
ephemeral segment, 662
free-list items, 667
generation boundaries, 666
managed heap, 664
memcopy function, 665–666
overwrite, 665
plan phase, 662
plug info, 664
relocate references, 662–663
segments, 667
temporary buffer, 665

Compilation, 10
Compiler, 10
Computer architecture, 66–67
Condemned generation

allocation budget, 568
ephemeral generation, 570
ephemeral segment, 569

Index

1052

fragmentation limit, 571
fragmentation ratio, 571
fragmentation threshold, 571
fragmented ephemeral, 573
fragmented gen2, 573
GCStats report, 572
golden rule, 569
induced explicit GC calls, 573
internal tuning, 569
latency mode, 570
memory load, 570
OutOfMemoryException, 570
time-based tuning, 568
workstation GC mode, 568

ConditionalWeakTable
class, 823–824

Constrained execution region
(CER), 720

CoreCLR, Linux environment
LTTng, 211
mechanisms, 210
memory dumps, 227
monitoring and tracking

applications, 210
Perfcollect, 212–214
perf_events, 211
Trace Compass (see Eclipse Trace

Compass)
tracking mechanisms, Windows and

Linux, 211–212
Core dump (memory dump), 142
CPU groups, 122
CPU-Z, 72
Crash dump, 142
CreateMalloc method, 1028
Critical finalizers, 756–757
Cross-generational references, 362

D
Dangling pointer, 32
Data analysis, 184
Data collection, 182–184
Data-oriented design

designing types and data, 960
software, 960
strategic design

array of value-type nodes, 970
data-oriented design, 961
entity component system (see Entity

component system)
flattened tree, 970
reference type array, 967
repository of customers, 966
structure-of-arrays, 968–969
tree with nodes implementation, 970
value-type array, 967

tactical design, 961
DebugDiag tool, 192
Default Domain, 252
Demotion event, 648–653
Dependent handles

behavior, 822, 826
ConditionalWeakTable, 823–825, 828
!finalizequeue SOS extension

command, 827
GCHandle API, 822
!gchandles SOS extension

command, 827
TryGetValue method, 823
WeakEventManager class, 828

Direct Memory Access (DMA), 72
Disposable objects

approaches, 785
explicit cleanup, 781–782
FileWrapper, 781–782
GC.SuppressFinalize method, 785

Condemned generation (cont.)

Index

1053

IDisposable interface
declaration, 782–783, 817

IDisposable pattern, 786–789
methods, 780
System.Reflection library,

CriticalDisposableObject, 785–786
using clause, 784

Dynamic domains, 252
Dynamic memory allocation, 25
Dynamic Random Access Memory

(DRAM), 73–74
Dynatrace tool, 209

E
Eclipse Trace Compass

CoreCLR.GC.collections, 217–219
CoreCLR.GC.generations.

ranges, 223–225
CoreCLR.threads.state, 219, 221–223
CTF format, 214
final results, 226
opening file, 215–216

Entity component system
definitions

abstract system base, 976
components, 975
entity, 974

inheritance tree, 972
manager storing list, 976
moving system, 977
overview, 974

Escape analysis, 289
Event Tracing for Windows (ETW), 143, 152

application crash, 155
attributes, 159
building blocks, 155
consumer, 153

controller, 153
CPU-sampling, 156
events and data, 153, 165–166
event tracking, Windows

internals, 154
kernel and user events, 155
logman utility

CoreCLR, 158
.NET-related ETW providers,

156–157
manifest file, 161, 163–164
mechanism, 153
MSDN documentation, 161
.NET ETW providers, 159, 161
NT Kernel Logger session, 156, 166
PerfView (see PerfView tool)
provider, 153
session, 153–154
Windows Performance Toolkit

Windows Performance Analyzer
(see Windows Performance
Analyzer)

Windows Performance
Recorder, 167–169

Explicit allocations
ArrayPool

ArrayPool<T>.Shared instance, 460
buckets, 459
BufferAllocated event, 465
ETW events, 465
IArrayPool interface, 462
Json.NET library, 463–464
rent method, 460
results, 462, 464
reusage ratio, 465
structs, 460–461
System.Buffers.ArrayPoolEvent

Source, 464

Index

1054

object pool
memory zeroing, 469
ObjectPool class, 470–472

RecyclableMemoryStream
ETW events, 469
LOH allocations, 466
memory copying, 466
memory waste, 466
System.IO.Pipelines API, 469
XML serialization, 467
XmlWriter, 466

stackalloc
LINQ, 457
RuntimeHelpers.

EnsureSufficientExecutionStack()
methods, 459

StackOverflowException, 458
structs, 457–458

structs, 451
tuple

anonymous type, 454
deconstruction, 456
value tuple, 454–456

ValueTask
async keyword, 473
asynchronous

method, 472–473
AsyncTaskMethodBuilderstring

struct, 476–477
C# 7.0, 478
IValueTaskSource

interface, 479–480
PooledValueTaskSource, 480
ReadFileAsync method, 473–475
returning async method, 479
SetResult method, 476
struct, 474

task object, 477
trade-offs, 480–481

Expression stack, 19

F
Fibers, 39
Finalization, 746

avoid finalizers, 818–819
BenchmarkDotNet

benchmarks, 765, 767
caveats, 780
critical finalizers, 756–757
destructor, 746–747
disadvantages, 767, 780
eager root collection

HandleCollector class, 756
HandleRef struct, 755–756

fill pointers, 762, 764
finalizable/non-finalizable

objects, 765–767
finalization array, 761–763
finalizer thread, 758
fReachable queue, 758–759, 761,

763–764
GC.ReRegisterForFinalize(object)

method, 763
GC.SuppressFinalize(object)

method, 763
GC.WaitForPendingFinalizers

method, 759–760
lifetime logging example, 751
limitations, 749–750
memory leak

content of fReachable queue, 774
finalization-related ETW

events, 771–772
!finalizequeue-allReady, 773–774

Explicit allocations (cont.)

Index

1055

!finalizequeue SOS command, 773
finq and frq commands, SOSEX, 775
fReachable queue, 768, 771–772
performance counters, 769–770

memory pressure, 748–749
queue, 758, 761
registering for, 762
resurrection

example of, 776
Simplified Timer class, 778–779

safety nets, 750
scenarios, 751
slow-allocation path, 758
user-defined code, 765

Financial software, 959
FlushAsync method, 988
Fragmentation

threshold, 657
virtual memory, 103

Free Store, 25
Front side bus (FSB), 66
FrugalObjectList<T>, 963
FrugalStructList<T>, 963

G
Garbage collection, 364

allocation budget (see Allocation
budget)

collection triggers (see Triggers)
compact phase (see Compact phase)
concurrent mode, 508
dynamic data

allocation budget, 530–533
attributes, 529–530
current_generation_size

method, 532–533
generation 0, 531

new allocation attribute, 530
parameters limit, 531
survival rate, 531

EE suspension
analyzing time, 566–567
defined, 563
cooperative mode, 563
fully interruptible code, 564
execution engine, 565
GC info, 564
GC suspension mechanism, 567
partially interruptible code, 564
preemptive mode, 563
safe point, 563
stop the world technique, 563
SuspendThread function, 565
thread resuming, 565
thread suspension, 563

generation condemn (see Condemned
generation)

large object heap, 509
non-concurrent mode, 508
server GC modes, 508
small object heap, 509
static data

address limit, 528
attributes, 526
balanced mode, 527–528
CPU cache size, 527, 529
ephemeral segment size, 527, 529
GC latency level, 527
latency mode, 527
memory footprint mode, 527–528

mark phase (see Mark phase, garbage
collection)

sweep phase
CoreCLR code, 661
LOH, 661

Index

1056

plan phase, 659
SOH, 660

workstation GC modes, 508
Garbage Collector (GC), 40

analyzing usage
ETW events, 520
GC events, 523
GC rollup by generation, 522
GCStats report, 521–522
GC utilization, 521
Gen column, 524
generation sizes, 520
performance counters, 519
PerfView, 520
web application, 519

API (see API, GC)
condemned generation, 509
custom GC, 1042
ETW/LLTng events, 519
execution engine, 518
fragmentation, 514
full-GC, 510, 517
generation 0, 511

compact collection, 511
sweep collection, 511

generation 1, 512–513
generation 2, 510, 514, 515, 517
Managed Heap, 339
mark phase, 510
overhead, 518
performance counters, 519
SOH segment, 510
steps, 518

GC flavors
benchmarking GC modes

advantage, 733
application, 733

average response times, 738–739
background server GC, 734
CPU overhead, 734
GC configurations, 734
GC overhead, 732, 738
GC pauses, 737
HdrHistogram.NET library, 734
load test, 740
memory usage, 736
percentiles, 734, 737–738
response times, 739–740
testing, 733

choosing GC modes, 728
concurrent mode, 691
GC mode descriptions (see GC mode)
GC settings

etrace tool, 730
StartupFlags field, 729
StartupFlags enumeration, 731
StartupFlags value, 731

latency (see Latency mode)
modes configuration

application-centric path, 692
ASP.NET web applications, 693
configuration knobs, 694
GC-centric approach, 692
ICLRRuntimeHost interface, 692
.NET Core, 693–694
.NET Framework, 693
Visual Studio, 692

.NET, 687
non-concurrent mode, 691
pause and overhead

application side, 696
CPU cycles, 695
GC side, 695
.NET metrics, 696
operating modes, 695

Garbage collection (cont.)

Index

1057

pause times, 696–697
performance monitor tool, 697
relative GC time, 696

server mode, 689–690
workstation mode, 688

GC.GetAllocatedBytesForCurrentThread
method, 1005–1006

GC.GetGeneration method, 1002
GC heap, 342
GC.KeepAlive method, 1008
GC mode

background server
background full-GC, 717
characteristics, 716–717
CPU cores, 718
ephemeral collections, 717
full-GC, 717
usage scenarios, 718

background workstation GC
allocation limit, 702
background full-GC, 702
background GC code, 706
characteristics, 702–703
concurrent mark phase, 703
concurrent sweep phase, 704
ETW/LLTNg events, 704–705
full-GC, 702
phases, 703–704
stop the world phase, 703
usage, 706

concurrent mark phase
background GC phases, 710
concurrent marking, 709
final marking, 710
floating garbage, 708–711
lost object, 708–709
mark array, 707
phase, 710

revisit objects, 712
tracing collector, 706
write watch list, 711
WriteWatch mechanism, 709

concurrent sweep, 712–713
foreground GCs, 702
server non-concurrent

characteristics, 714–715
GCHeapCount, 715
managed heaps, 714–715
mark stealing technique, 714
threads, 715
usage scenarios, 716

workstation concurrent
characteristics, 700–701
concurrent full-GC, 700–701
full-GC, 700
usage scenarios, 701

workstation non-concurrent
characteristics, 698
ETW/LLTNg events, 699
full-blocking GC, 698
illustration, 699
usage scenarios, 699–700

GC profiling
cache mechanisms, 525
compact phase, 525
CPU stacks, 525
ETW CPU profiling, 524
ETW session, 525
PerfView, 525
plan phase, 524–525

Generational garbage
collection, 349–350, 355

Generation sizes in time
charts, ETW and performance

counters data, 360
ETW-based generation sizes, 359

Index

1058

load test execution, 356
measurements, 358
performance counters data, 359
performance monitor tool, 357–358
web application execution, 356

GetTotalMemory method, 1003
Gigabyte seconds (GB-s), 2

H
Hardware

central processing unit (CPU)
cache, 77
cache hit and miss, 77
cache implementation, 78
data alignment, 83–84
data locality, 78
hierarchical cache, 87–90
multicore hierarchical cache, 91
non-temporal access, 84–85
prefetching, 85–87

computer architecture, 66–68
DDR4 memory chip, 70
memory, 73
modern architecture, 71

Heap, 25
deallocation, 26
dynamic memory allocation, 25
fragmentation, 26
stack and, 27

Heap-allocated object
assembler code, 866
byRef interior pointer, 871
local ref byRef variable, 870
dumpheap and gcroot SOS

commands, 871
fragments of assembler code, 866

interior pointer, 868–869, 871, 873
managed pointer vs. regular object

reference, 864
objects relationships, 872
pass by reference scenario, 865
plug tree traversal and

scanning, 868
ref local with interior pointer, 873
WeakReference type, 869

Heap-allocation handling, 1025
Heap API, 107
Heap segments, 379
Hidden allocations

Azure functions, 502
boxing

constraint, 483
generic method, 483
sources, 483
value type method, 482, 484

closures
capturing state, 486–487
compiler optimizations, 486
lambda expressions, 484–486
local functions, 487–488

delegate, 481–482
LINQ anonymous types, 494–495
LINQ delegates, 493
LINQ enumerables

hidden iterator allocation, 496
immutability, 497
iterators, 496
string filtering method, 496

LINQ queries, 494–495
parameters array, 489–490
string concatenation, 490–492
system.generic collections, 492–493
yield return, 488–489

High Frequency Heap, 258–259

Generation sizes in time (cont.)

Index

1059

I
IGCHandleManager interface, 1046
IGCHandleStore interface, 1046
IGCHeap interface implementation, 1044
IHostMemoryManager

interface, 1028
IMemoryOwner<T>

BufferedWriter class, 945
FlexibleBufferedWriter.FlushAsync

method, 946
FlexibleBufferedWriter.WriteToBuffer

method, 946
interface declaration, 942
method, 944
problematic ownership, 943
type, 944

Immutable types, 275
Indexing movable fixed buffers, 891
Infant mortality, 350
Instruction pointer (IP), 9
Instruction set architecture (ISA), 76
Intelligent pointers, 45
Intel VTune Amplifier, 207–209
Interior pointer, 575
Interior pointer interpretation, 868
Intermediate Language (IL), 21
Internal memory cells, 69

J
Java Virtual Machine (JVM), 21
JetBrains DotMemory, 203–205
JIT_GetSharedGCThreadStaticBase

method, 842
JIT_GetSharedNonGCThreadStaticBase

method, 842
JIT_WriteBarrier function, 371
Just-in-time compiler (JIT compiler), 238

K
Kernel space, 104

L
LargeHeapHandleTable structure, 346–347
LargeObjectHeap, 406
Large object heap (LOH), 342, 344, 434, 661

array size, 437
arrays of double, 344–345
bump pointer technique, 434
free-list allocation, 434
gcAllowVeryLargeObjects

setting, 437–438
LargeHeapHandleTable structure

arrays, 348
CoreCLR, 346
Object[] arrays, 347, 349
RuntimeType, 349
SOS extension, 348
use, 346
WinDbg, 347–348

loh_try_fit method, 434, 436
OutOfMemoryException, 434
slow path, 434–435
sweeping GC, 434
zeroing memory, 437
layout of objects, 654–655
plug information, 655
result, 656

Last in, first out (LIFO), 12
Latency mode

batch mode, 719
CER, 720–721
configuration knobs, 718
enumeration, 719
interactive mode, 719
latency optimization goals, 726–727

Index

1060

low-latency, 720–721
no GC region

creation, 725
GC.EndNoGCRegion method, 725
GC.TryStartNoGCRegion

method, 724
sustained low latency, 721, 723

Latency to access memory, 88
Latency vs. throughput, 139–141
Lexical scope, 580

vs. live stack roots, 581–583
Lifetime partitioning

absolute time, 349
card bundles, 375
card tables (see Card tables)
definition, 349
generational GCs, 350
generations

copying GC, 352
logical boundaries, 354
sizes measurements, 355–356

relative time, 349
remembered sets

CIL code, 367
cross-generational

references, 362, 364
generational GC, 361
JIT_WriteBarrier function, 367–368
schematic pseudo-code, write

barrier, 365
write barriers in .NET, 366

strong generational hypothesis, 350
weak generational hypothesis, 350

Little’s Law, 140
Live debugging, 142
Live stack roots

eager root collection

calling method, 589
GC info, 583–584
GC.KeepAlive method, 590
memory usage, 584
null settings, 585
object behavior, 589
optimizations, 589
side effects, 586
threads, 585
Timer object, 586–587

vs. lexical scope, 581–583
Loader Heap, 259
Local variable roots

fullPath, 577
GC Info

calling methods, 595
fully interruptible code, 595–596
stack roots, 592
untracked root, 597
WinDbg, managed heap, 591

lexical scope, 580
live stack roots (see Live stack roots)
pinned local variables

CIL code, 598
fixed keyword, 597–598
fragments of method, 599
memory dumps, 600

stack roots, 579–580
stack root scanning, 601
storage, 578–579

LOH fragmentation
arrays, 669
arrays pooling, 679
blocking, 678
callers view, 671
!dumpheap command, 674–675
!eeheap command, 672–673
expected vs. observed size, 669

Latency mode (cont.)

Index

1061

!gcroot command, 673–674, 676
Gen 2 object deaths, 670–671
holes, 676
managed heap, 672
performance counters, 669
PerfView, 670
processing code, 668–669
server GC, 678
SOS extension, 672
strings, 669
System.Byte[], 671
WinDbg, 672
workstation GC, 678

Long weak handles, 797–798
Low Frequency Heap, 258

M
Machine learning (ML), 960
Managed pointers

C#-ref variables, 874
limitations, 847
object references, 846
readonly ref variables and in

parameters, 852
ref locals, 848–849
ref return

consuming ref returning method, 850
limitations, 849
local variable, 849
null referencing reference, 850

ref types internals
heap-allocated object (see Heap-

allocated object)
stack-allocated object, 858

return type of methods, 847
System.Int32 objects, 847
types, 847

Mark phase, garbage collection
finalization roots, 601
GC handle roots

asynchronous I/O operation, 604
!gchandles command, 611
instance of normal object, 610
managed objects, 605
normal object, 607
object with strong handle, 609
pinned handles, 604
pinned object, 608
simple code, 606–607
static object, 608
string literal, 609–610
strong handles, 604

GC internal roots, 602–603
local variable roots (see Local variable

roots)
memory leak (see Memory leak)
object traversal and marking, 575–577
popular roots

MarkWithType, 619–621
promoted sized, 621

Mark stack, 576
Memory allocation

Allocator.Allocate(amount) method, 411
avoiding allocations

garbage collection, 449
memory optimization, 449
premature optimization, 450
sources, 450
zeroing memory, 449

bump pointer
allocate method, 418
allocation context, 415–418
allocation limit, 415
allocation pointer, 412
allocation quantum, 415

Index

1062

ephemeral segment
structure, 419–420

fallback mechanism, 415–416
garbage collection, 420–422
infinite memory, 414
multiple allocation contexts, 419
sequential algorithm, 414
simple sequential allocator, 413
thread affinity, 418
TLS, 418
zeroing memory, 415

explicit allocations, reference types
(see Explicit allocations)

free-list
best-fit, 422
buckets, 423–425
first-fit, 422
free object, 423
memory zeroing, 426
unlinking, 426–427

GC Managed Heap, 412
Heap API, 412
heap balancing, 438–440, 442
hidden allocations (see Hidden

allocations)
LOH (see Large object heap (LOH))
object creation

allocation helpers, 428
CIL, 428
decision tree, 428
JIT compilation, 429

OutOfMemoryException
(see OutOfMemoryException)

SOH (see Small Object Heap (SOH))
stack allocation

localloc CIL instruction, 447
Span<T> type, 449

stackalloc operator, 446–447
StackOverflowException, 448
unmanaged_type, 448

Memory bus, 67
Memory dump, 227, 630–631
Memory leak

diagnostic, 614
GCStats view, 613
gen2 GCs, 613
investigation, 613
memory usage, 612
performance counters, 613
strings, 615

Memory management
automatic, 35

Allocator, 39–40
Collector, 40–42
garbage collection, 36–37
LISP, 35
memory handling, 35
Mutator, 37–39
reference counting, 42–48

manual, 28
ALGOL, 29
characteristics, 29
C program, 29–30
C++ program, 33
dangling pointer, 32
free function, 32
improvements, 34
problems, 31

.NET, 2
Memory modules, 70
Memory partitioning strategy, 340–341
MemoryPool<T> class, 943–944
Memory-related terms

address, 8
assembly code, 10

Memory allocation (cont.)

Index

1063

Automatic Sequence Controlled
Calculator, 5

binary code, 3
binary number, 3
bit, 3
byte, 4
control unit, 8
Harvard architecture, 6
heap, 25–28
pointer, 23–25
register, 8
register machine, 11–12
stack

activation frame, 16
ALGOL, 18–19
allocation, 10
BURY and UNBURY, 13
first compiler, 13
FORTRAN, 18
frame, 17
LIFO, 12
low-level mechanisms, 18
machine, 19–21
pop and push, 12
StackOverflowException, 17
Wheeler jump, 13

von Neumann architecture, 7
Williams tubes, 7
word, 9

Memory segments, 105
Memory<T>

BufferedWriter class, 939
explicit owner, 944
internals, 948
ReadOnlyMemory<T>, 939–941
ReadOnlySpan<T>, 940, 941
rules, 951

stack data, 938
usages, 938

Memory write watch mechanism, 120
MESI protocol, 92
Microarchitecture, processor, 76
Modified Harvard Architecture, 88
Mono, 237
Mutator, 37–39

N
Named thread data slot, 835
.NET memory dump, 630–631
.NET Compact Framework, 235
.NET Core, 236
.NET Framework 1.0-4.7.2, 234
.NET internals, 237

CLR, 238
exception handling, 239
Execution Engine, 239
GC, 239
Hello World application

C#, 242
execution, 248–249
JIT compiler, 249
JITted code, Main method, 248–249
logical locations, 247
CIL, Main method, 244–246
SOS extension, 248
WinDbg, 248

managed code, 239
memory-management

mechanisms, 239
misconceptions, 241
.NET runtime execution, 240
process, 240–241
responsibilities, 238, 239

Index

1064

.NET memory management
call tree, 131–132
core dump (memory dump), 142
description, 127
invasiveness, 130
latency vs. throughput, 139–141
Linux environment (see CoreCLR,

Linux environment)
live debugging, 142
measure early, 129
measuring GC parameters, 231
monitoring, 141
objects graphs, 133

dependency subgraph, 134
retained size, 135
retained subgraph, 134
shallow size, 134
shortest root path, 133
total size, 134

operating system, 128
overhead, 130
performance, 128
sampling, 131
statistics

Anscombe’s quartet, 135–136
bimodal distribution, 138–139
median, percentile and

histogram, 136–139
multimodal distribution, 139
normal distribution, 138

tools, 127
Linux, 230
Windows, 228–229

tracing, 130
Windows environment (see Windows

environment, .NET)
.NET Micro Framework, 236
.NET Native, 236

.NET versions
CLI, 234
Mono, 237
.NET Compact Framework, 235
.NET Core, 236
.NET Framework 1.0-4.7.2, 234
.NET Micro Framework, 236
.NET Native, 236
Shared Source CLI, 235
Silverlight, 235
Windows Phone 7.x, 8.x, and 10

Mobile, 236
WinRT, 236

Non-nullable reference type
array, compiler behavior, 983
class, 981
compiler behavior, 982

Non-uniform access memory, 8
Non-uniform memory architecture

(NUMA), 121–122
Non-unmanaged struct, 899
Nullable reference types

class, 981
compiler behavior, 982
managed code generation, 985
test method, 986
unsafe code generation, 984

Null Garbage Collector, 41
NullReferenceException, 979, 984–985

O
Object layout, 906
ObjectLayoutInspector library, 903
Object lifetime

description, 743
disposable patterns (see Disposable

objects)

Index

1065

explicit cleanup, 819
finalization (see Finalization)
mechanisms, 743
resource life cycle, 744–746
SafeHandle, 789–796
weak references (see Weak handles)

Object-oriented
programming, 959

Object-relational mapping
(ORM), 253

Objects’ layout, 894
Operating system (OS)

large pages, 102
Linux

memory layout, 118–120
memory management, 115–117

memory layout, 103–105
memory manager, 97
virtual memory, 96–101
virtual memory fragmentation, 103
Windows

memory layout, 112–115
memory management, 105

OutOfMemoryException
clrstack command, 445
DebugDiag rule, 444
GC, 442
LOH, 442
memory congestion, 446
memory dump, 444
objects allocation, 443
objects pooling, 443
physical backing store, 443
regedit tool, 444
virtual memory, 442
VM hoarding, 443
WinDbg, 445

P, Q
Passing by reference semantics

reference-type instance, 323
value-type instance, 321–322

Perfcollect script, 212–214
Performance counters, 143

advantage and disadvantage, 144
application pools, 151–152
architecture, 144–145
attributes, 145
counters, 146
CPU usage, 145
ETW data, 148
garbage collection, 147–148
instance process, 151
monitoring tools, 148
.NET CLR Memory category, 146
Performance Monitor

Add Counters context
option, 148–149

Add Counters dialog, 149
long-term analysis, 151
parameters, 150
short-term analysis, 150

sample data, 145
PerfView tool, 264–265, 267–268

configure symbol paths, 182
data analysis, 184

Any stacks view, 187–188
GCStats view, 186–187
Generic Events panel, 185
sample ETL file, 184–185

data collection, 182–184
description, 180
main actions, 181
memory snapshots, 188–192
options, 180

Index

1066

startup, 181
tabular view, 181

Physical partitioning
allocation patterns, 384
blocks and segments, 380
default segment sizes, 382
heap segments, 379
large object heap waste, 398–399
managed heaps, 379
segments and generations

information, WinDbg, 381
segments and heap anatomy, 400,

402–403
segments reuse, 403–406
segment types, 386
server mode, 379
single block, ASP.NET application, 383
workstation GC initial segments

configuration, 384
workstation mode, 379

Pipelines
AdvanceTo method, 990
API, 987
buffered memory, 988–989
characteristics, 987
configuration, 987
FlushAsync method, 988
GetSpan and GetMemory

methods, 989
KestrelHttpServer, 992, 994
ParseRequestLine, 992, 994
Reader.Buffer, 990
usage, 988–989
zero-copy read side, 991–992

Plan phase
LOH (see Large object heap (LOH))
SOH (see Small Object Heap (SOH))

Plugins, 253
Pointer, 22–25
Pointer arithmetic, 25
Post-mortem analysis, 142
ProcDump tool, 192
Process memory regions

dumpbin command-line program, 260
heap and private data, 256
images, 255
Managed Heaps, 257

domains heaps, 258–259
GC Heap, 258

mapped files, 255
measurements

private bytes, 261
private working set, 260
virtual bytes, 261

.NET runtime, 254
page tables, 257
Performance Monitor tool, 261–262
program’s memory usage

AssemblyLoad events, 271
commercial tools, 270
gigabytes of memory, 266
growth of private bytes, 266
Lookup Symbols, 264
Managed Heap size, 264
memory leak, 265
MSDN documentation,

XmlSerializer, 272
Net OS Heap Alloc Stacks, 264
Performance Counter, 269
Performance Monitor

tool, 263, 266, 270
PerfView tool, 264–265, 267–268
Task Manager, 269
VirtualAlloc call, 267–268
VMMap, 264, 266–267, 269–270

PerfView tool (cont.)

Index

1067

RAM, 260
shareable, 255
stacks, 256
unusable, 257
VMMap tool, 254–255, 262
Window’s Task Manager, 261

Processor groups, 122
Program counter (PC), 9

R
Random Access Memory (RAM), 8, 67
Reachability of object, 41–42
Read-only heap segments, 386
ReadOnlyMemory<T>, 940
Readonly struct, 883–884
RedGate ANTS Memory

Profiler, 206–207
Reference counting, 42–43

advantages, 48
circular references, 45
C++ program, 46
dangling pointer, 48
data.use_count() method, 47
disadvantages, 48
exception handling, 47
liveness of objects, 43
Mutators, 44
pseudo-code, 43–44
smart pointers, 45–46

Reference types
classes

definition, 290
heap allocated object, 293
memory layout, 292
method table reference, 291
object header, 291
sample code, 293

local variable sd, 293
entities, 288
escape analysis, 289
heap allocation possibilities, 289
object type, 288
pointer type, 288

Ref structs, 885–887
Register machine, 11
Remembered sets, 363
Resource Acquisition Is Initialization

(RAII), 47
Resource life cycle vs. object, 744–746
Roots, 42
Rotor, 235

S
SafeHandle object

advantages, 792
DangerousGetHandle method, 796
fragments of, 790
handle-recycling attack, 791
implementation, 793
IntPtr, 789, 792
IsInvalid and ReleaseHandle, 793
P/Invoke calls, 791, 795
resources, 794–795
System.Runtime.InteropServices.

SafeHandle class, 789
Sampling, 131
Scitech .NET Memory Profiler, 201–203
Segmentation fault error, 31
Serializers, 253
SGen Garbage Collector, 53
Shared Domain, 252
Shared Source CLI, 235
Short weak handles, 797
Silverlight, 235

Index

1068

Simultaneous multithreading mechanism
(SMT), 91

Size partitioning
LargeHeapHandleTable, 346–347
LOH (see Large object heap (LOH))
small object heap, 343

SmallObjectHeap, 406
Small Object Heap (SOH), 342–343,

429, 660
brick table, 632–634
demotion, 648–653
fastest allocation helper, 429–430
generation boundaries, 646–647
heavy-allocating library, 434
investigating pinning

ETW-based session, 641
local pinned variables, 641–644
pinned handles, 641, 644–645

memory dump, 630–631
OutOfMemoryException, 431
pinned object, 634
pinned plug

after gap, 635
implications, 640
before marked objects, 639–640
normal plug, 636–638
plug tree, 637
queue, 636

plugs and gaps
BST, 629–630
Managed Heap, 624–625
relocation offset, 626–628
size and offset information, 626

pointer technique, 429
slow path, 431–432
soh_try_fit() method, 431, 433

Smart pointers, 45
SOLID principles, 959

Span <T>
compiler, 920
Fast Span, 934–936
internals, 928
ReadOnlySpan<T>, 919
rules, 951
simplified int parsing API, 920
Slow Span, 932–934
usage, 918

concise conditional local buffer
acquiring, 927

OnStartLine method, 921
scenarios, 919
ValueStringBuilder, 922, 924–926

Spatial locality, 78, 124
Stack-allocated object, 858
Stack roots, 579–580
Static data

internals
implementation, 330
JIT-compiled code, 334
JIT compiler, 332
Object[] array, 331
primitive static field, 333
reference-type, 334
storage in .NET Core, 331
types, 332
user-defined value type, 334

static fields, 328–330
Static memory allocation, 10
Static Random Access Memory (SRAM), 73
Stored-program computers, 9
StringBuilderCache class, 301
StringBuilder instance caching, 302
StringFreezingAttribute class, 386
String interning

advantages, 309
code, 314

Index

1069

disadvantages, 310
duplication analysis, JetBrains

dotMemory tool, 312
internals, 308
JIT compilation, 309
manual, 306
optimization technique, repetitive

texts, 304
PerfView graph, allocation, 312
string duplication, 313
string.Intern method, 306, 309

String Literal Map, 307
Strings

benchmark results, 303
concatenation and hidden temporary

string creation, 298
Concat method, 298
design decisions, 303
FormatHelper method, 300
Greet method, 298
immutability, 298
interning (see String interning)
mutable string, 299
reference type, 296
StringBuilder, 302
StringBuilderCache, 301

StructLayout attribute, 903
Structs, 279

advantages, 280
arrays, 325
automatic field’s layout, 897
avoid allocation, 282
boxing, 281
default fields layout, 896, 899
definition, 281
discriminated union, 901
explicit field’s layout, 901
field layout, 895

fixed size buffer, 888–892
LayoutKind.Auto layout, 899
memory layout, 281
memory region, 281
ObjectLayoutInspector, 904–905
readonly, 883–884
ref structs (byref-like types), 885–887
sequential layout, 895, 896
Sharplab.io, memory layout, 905
storage

CIL code of Main method, 283–284
evaluation stack, 283
Helper method, 285–286
JIT compiler, 285
local variables, 286
locations, 284
sample code, 282
SomeData, 286–287

unmanaged type, 907
Stub Heap, 258
SuperBenchmarker, 170
Symmetric multiprocessing (SMP), 121
System Domain, 252

T
Tactical data-oriented design, 960
Tactical design

cache levels, 965
cache line utilization, 962–963
LayoutKind.Automatic, 962
parallel processing, 965
random memory access, 965
ThreeItemList<T> class, 964

Temporal locality, 78, 124
Thread affinity, 836
Thread data slots, 830, 835
ThreadLocalInfo structure, 837

Index

1070

ThreadLocalModule, 842
Thread local storage (TLS), 418

definition in CoreCLR, 837
internals

CLR internal data, 837
generic types, 843
Object[] arrays and static blobs, 839
structs, 839
thread affinity, 840
ThreadLocalBlock, 838
ThreadLocalInfo structure, 837
ThreadLocalModules, 838, 840
thread static data, 839, 844
ThreadStaticHandleTable, 839
type thread-static fields, 840

multithreading synchronization
techniques, 830

performance advantages, 837
thread data slots, 835
thread static fields (see Thread static

fields)
usage scenarios, 845–846

ThreadLocal<T> class, 833
Thread-specific data, 836
Thread static fields, 830

field initialization, 832
initialization, regular static field, 834
primitive and reference TLS, 834
SomeClass, 831
SomeOtherClass.Run method, 832
ThreadLocal<T> usage, 833
value and reference types, 831–832
Value property, 833

ThreadStaticHandleTable, 842
TraceEvent Library, 1039
Tracing GC, 49

Collect phase, 54
Compact, 56–57, 59

Sweep, 55–56
Mark phase, 50, 52

conservative garbage
collector, 52–54

marking process, 52
Precise GC, 54
states of object, 50
steps, 50–51

Triggers
allocation, 547–548
explicit

batch processing, 551
benchmarking, cleaning, 552
GC.AddMemoryPressure, 553
GC.Collect method call, 548–549
generation 0, 550
generation 1, 550
generation 2, 551
memory usage, 552
proactive cleaning, 552
WeakReference, 552

explicit GC calls
AddMemoryPressure method, 559
bitmaps, 558
dispose method, 558
events view, 555
IDisposable interface, 556
manual memory cleaning, 558
performance counter, 553–554
reason field, 555
SafeMILHandleMemoryPressure

class, 559–560
stack trace, 556, 558

internal triggers, 561–562
low memory level system, 560–561
memory usage, 546
self-tuning GC, 547

Types data locality, 324

Index

1071

Type storage, 275–277
Type system

identity, 275
immutable types, 275
implementation details, 273
lifetime, 274
memory-management, 272
MethodTable, 273
reference types (see Reference types)
sharing, 274
type storage, 275–277
value types (see Value types)

U
Unboxing, 320
Unmanaged constraint

blittable types, 913–914
generic constraint usage, 908
generic logging mechanism, 911
generic serialization, 911
object passed by reference, 910
regular struct usage, 910
struct method, 911
type wrapping unmanaged

memory, 912
usage, 909

Unmanaged type, 907
Unnamed thread data slot, 835
Unsafe internals

class API, 952–953
class usage

Array.Reverse static method, 955–956
BitConverter class, 954
casting, 953, 955
jemalloc.NET library, 957
MemoryMarshal helper class, 956
static methods, 956

MemoryMarshal usage, 956–957
method implementation, 958
methods, 952

User space, 104

V
ValueStringBuilder class, 926
Value types

definition, 277
enumerations, 277
storage

arguments of method, 278
evaluation stack, 279
instance field, 278
local memory pool, 279
local variables, 278
static field, 279
structs (see Structs)

Virtual address space, 105
Virtual API, 106
Virtual Call Stub, 259
Virtual memory, 96–101
Virtual stub dispatching (VSD), 259
Visual Studio, 199–201
VMMap tool, 143–144, 391

W, X, Y
Weak handles

caching, 798, 803–805
Gen2GcCallback class, 798–801
long weak handles, 797–798
object type and members, 801
observers and listeners, 798
short weak handles, 797
types, 797
weak events

Index

1072

child windows, 807, 811
WeakEventManager class, 812–813
Windows Presentation

Foundation, 812
WeakReference<T> type, 802

WinDbg, 193
commands, 195
extensions

NetExt, 195
SOS, 195
SOSEX, 195

installing, 193
main window, 194
msos tool, 196
.NET runtime, 193
operations, 194

Windows 10 Mobile, 236
Windows Driver Kit (WDK), 193
Windows environment, .NET

BenchmarkDotNet, 197–198
commercial tools (see Commercial

tools)
DebugDiag, 192
disassemblers and decompilers, 196
ETW (see Event Tracing for Windows

(ETW))

performance counters
(see Performance counters)

PerfView (see PerfView tool)
ProcDump, 192
VMMap, 143–144
Windows Performance Analyzer (see

Windows Performance Analyzer)
Windows Performance

Recorder, 167–169
Windows Performance Analyzer

custom graphs, 179–180
description, 169–170
flame charts, 178–179
generic events, 174–176
opening file and configuration, 170–174
profiles, 180
region of interests, 176–177
stack tags, 179
SuperBenchmarker, 170

Windows Performance Recorder, 167–169
Windows Phone 7.x, 236
Windows Phone 8.x, 236
WinRT, 236

Z
Zero Garbage Collector, 41

Weak handles (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: Basic Concepts
	Memory-Related Terms
	The Static Allocation
	The Register Machine
	The Stack
	The Stack Machine
	The Pointer
	The Heap

	Manual Memory Management
	Automatic Memory Management
	Allocator, Mutator, and Collector
	The Mutator
	The Allocator
	The Collector

	Reference Counting
	Tracking Collector
	Mark Phase
	Conservative Garbage Collector
	Precise Garbage Collector

	Collect Phase
	Sweep
	Compact

	Small History
	Summary
	Rule 1 - Educate Yourself

	Chapter 2: Low-Level Memory Management
	Hardware
	Memory
	CPU
	CPU Cache
	Cache Hit and Miss
	Data Locality
	Cache Implementation
	Data Alignment
	Non-temporal Access
	Prefetching
	Hierarchical Cache
	Multicore Hierarchical Cache

	Operating System
	Virtual Memory
	Large Pages
	Virtual Memory Fragmentation
	General Memory Layout
	Windows Memory Management
	Windows Memory Layout
	Linux Memory Management
	Linux Memory Layout
	Operating System Influence

	NUMA and CPU Groups
	Summary
	Rule 2 - Random Access Should Be Avoided, Sequential Access Should Be Encouraged
	Rule 3 - Improve Spatial and Temporal Data Locality
	Rule 4 - Consume More Advanced Possibilities

	Chapter 3: Memory Measurements
	Measure Early
	Overhead and Invasiveness
	Sampling vs. Tracing
	Call Tree
	Objects Graphs
	Statistics
	Latency vs. Throughput
	Memory Dumps, Tracing, Live Debugging

	Windows Environment
	Overview
	VMMap
	Performance Counters
	Event Tracing for Windows
	Windows Performance Toolkit
	Windows Performance Recorder
	Windows Performance Analyzer
	Opening File and Configur	ation
	Generic Events
	Region of Interests
	Flame Charts
	Stack Tags
	Custom Graphs
	Profiles

	PerfView
	Data Collection
	Data Analysis
	Memory Snapshots

	ProcDump, DebugDiag
	WinDbg
	Disassemblers and Decompilers
	BenchmarkDotNet
	Commercial Tools
	Visual Studio
	Scitech .NET Memory Profiler
	JetBrains DotMemory
	RedGate ANTS Memory Profiler
	Intel VTune Amplifier and AMD CodeAnalyst Performance Analyzer
	Dynatrace and AppDynamics

	Linux Environment
	Overview
	Perfcollect
	Trace Compass
	Opening File
	CoreCLR.GC.collections
	CoreCLR.threads.state
	CoreCLR.GC.generations.ranges
	The Final Results

	Memory Dumps

	Summary
	Rule 5 - Measure GC Early

	Chapter 4: .NET Fundamentals
	.NET Versions
	.NET Internals
	Sample Program in Depth

	Assemblies and Application Domains
	Collectible Assemblies

	Process Memory Regions
	Scenario 4-1. How Big Is My Program in Memory?
	Scenario 4-2. My Program’s Memory Usage Keeps Growing
	Scenario 4-3. My Program’s Memory Usage Keeps Growing
	Scenario 4-4. My Program’s Memory Usage Keeps Growing

	Type System
	Type Categories
	Type Storage
	Value Types
	Value Types Storage
	Structs
	Structs in General
	Structs Storage

	Reference Types
	Classes

	Strings
	String Interning
	Scenario 4-5. My Program’s Memory Usage Is Too Big

	Boxing and Unboxing
	Passing by Reference
	Pass-by-Reference Value-Type Instance
	Pass-by-Reference Reference-Type Instance

	Types Data Locality
	Static Data
	Static Fields
	Static Data Internals

	Summary
	Structs
	Classes
	Rule 6 - Measure Your Program
	Rule 7 - Do Not Assume There Is No Memory Leak
	Rule 8 - Consider Using Struct
	Rule 9 - Consider Using String Interning
	Rule 10 - Avoid Boxing

	Chapter 5: Memory Partitioning
	Partitioning Strategies
	Size Partitioning
	Small Object Heap
	Large Object Heap
	Large Object Heap - Arrays of Doubles
	Large Object Heap - Internal CLR Data
	LargeHeapHandleTable

	Lifetime Partitioning
	Scenario 5-1. Is My Program Healthy? Generation Sizes in Time
	Remembered Sets
	Card Tables
	Card Bundles

	Physical Partitioning
	Scenario 5-2. nopCommerce Memory Leak?
	Scenario 5-3. Large Object Heap Waste?
	Segments and Heap Anatomy
	Segments Reuse

	Summary
	Rule 11 - Monitor Generation Sizes
	Rule 12 - Avoid Unnecessary Heap References
	Rule 13 - Monitor Segments Usage

	Chapter 6: Memory Allocation
	Allocation Introduction
	Bump Pointer Allocation
	Free-List Allocation
	Creating New Object
	Small Object Heap Allocation
	Large Object Heap Allocation

	Heap Balancing
	OutOfMemoryException
	Scenario 6-1. Out of Memory

	Stack Allocation
	Avoiding Allocations
	Explicit Allocations of Reference Types
	General Case - Consider Using Struct
	Tuples - Use ValueTuple Instead
	Small Temporary Local Data - Consider Using stackalloc
	Creating Arrays - Use ArrayPool
	Creating Streams - Use RecyclableMemoryStream
	Creating a Lot of Objects - Use Object Pool
	Async Methods Returning Task - Use ValueTask

	Hidden Allocations
	Delegate Allocation
	Boxing
	Closures
	Yield Return
	Parameters Array
	String Concatenation

	Various Hidden Allocations Inside Libraries
	System.Generics Collections
	LINQ - Delegates
	LINQ - Anonymous Types Creation
	LINQ - Enumerables

	Scenario 6-2. Investigating Allocations
	Scenario 6-3. Azure Functions

	Summary
	Rule 14 - Avoid Allocations on the Heap in Performance Critical Code Paths
	Rule 15 - Avoid Excessive LOH Allocations
	Rule 16 - Promote Allocations on the Stack When Appropriate

	Chapter 7: Garbage Collection - Introduction
	High-Level View
	GC Process in Example
	GC Process Steps
	Scenario 7-1. Analyzing the GC Usage

	Profiling the GC
	Garbage Collection Performance Tuning Data
	Static Data
	Dynamic Data
	Scenario 7-2. Understanding the Allocation Budget

	Collection Triggers
	Allocation Trigger
	Explicit Trigger
	Scenario 7-3. Analyzing the Explicit GC Calls
	Low Memory Level System Trigger
	Various Internal Triggers

	EE Suspension
	Scenario 7-4. Analyzing GC Suspension Times

	Generation to Condemn
	Scenario 7-5. Condemned Generations Analysis

	Summary

	Chapter 8: Garbage Collection - Mark Phase
	Object Traversal and Marking
	Local Variable Roots
	Local Variables Storage
	Stack Roots
	Lexical Scope
	Live Stack Roots vs. Lexical Scope
	Live Stack Roots with Eager Root Collection
	GC Info
	Pinned Local Variables
	Stack Root Scanning

	Finalization Roots
	GC Internal Roots
	GC Handle Roots
	Handling Memory Leaks
	Scenario 8-1. nopCommerce Memory Leak?
	Scenario 8-2. Identifying the Most Popular Roots

	Summary

	Chapter 9: Garbage Collection - Plan Phase
	Small Object Heap
	Plugs and Gaps
	Scenario 9-1. Memory Dump with Invalid Structures
	Brick Table
	Pinning
	Scenario 9-2. Investigating Pinning
	Generation Boundaries
	Demotion

	Large Object Heap
	Plugs and Gaps

	Decide on Compaction
	Summary

	Chapter 10: Garbage Collection - Sweep and Compact
	Sweep Phase
	Small Object Heap
	Large Object Heap

	Compact Phase
	Small Object Heap
	Getting a New Ephemeral Segment if Necessary
	Relocate References
	Compact Objects
	Fix Generation Boundaries
	Delete/Decommit Segments if Necessary
	Creating Free-List Items
	Age roots

	Large Object Heap
	Scenario 10-1. Large Object Heap Fragmentation

	Summary
	Rule 17 - Watch Runtime Suspensions
	Rule 18 - Avoid Mid-Life Crisis
	Rule 19 - Avoid Old Generation and LOH Fragmentation
	Rule 20 - Avoid Explicit GC
	Rule 21 - Avoid Memory Leaks
	Rule 22 - Avoid Pinning

	Chapter 11: GC Flavors
	Modes Overview
	Workstation vs. Server Mode
	Workstation Mode
	Server Mode

	Non-Concurrent vs. Concurrent Mode
	Non-Concurrent Mode
	Concurrent Mode

	Modes Configuration
	.NET Framework
	.NET Core

	GC Pause and Overhead
	Modes Descriptions
	Workstation Non-Concurrent
	Workstation Concurrent (Before 4.0)
	Background Workstation
	Concurrent Mark
	Concurrent Sweep

	Server Non-Concurrent
	Background Server

	Latency Modes
	Batch Mode
	Interactive
	Low Latency
	Sustained Low Latency
	No GC Region
	Latency Optimization Goals

	Choosing GC Flavor
	Scenario 8-1. Checking GC Settings
	Scenario 8-2. Benchmarking Different GC Modes

	Summary
	Rule 23 - Choose GC Mode Consciously
	Rule 24 - Remember About Latency Modes

	Chapter 12: Object Lifetime
	Object vs. Resource Life Cycle
	Finalization
	Introduction
	Eager Root Collection Problem
	Critical Finalizers
	Finalization Internals
	Finalization Overhead

	Scenario 12-1. Finalization Memory Leak
	Resurrection

	Disposable Objects
	Safe Handles
	Weak References
	Caching
	Weak Event Pattern
	Scenario 9-2. Memory Leak Because of Events

	Summary
	Rule 25 - Avoid Finalizers
	Rule 26 - Prefer Explicit Cleanup

	Chapter 13: Miscellaneous Topics
	Dependent Handles
	Thread Local Storage
	Thread Static Fields
	Thread Data Slots
	Thread Local Storage Internals
	Usage Scenarios

	Managed Pointers
	Ref Locals
	Ref Returns
	Readonly Ref Variables and in Parameters
	Ref Types Internals
	Managed Pointer Into Stack-Allocated Object
	Managed Pointer Into Heap-Allocated Object

	Managed Pointers in C# - ref Variables

	More on Structs...
	Readonly Structs
	Ref Structs (byref-like types)
	Fixed Size Buffers

	Object/Struct Layout
	Unmanaged Constraint
	Blittable Types

	Summary

	Chapter 14: Advanced Techniques
	Span<T> and Memory<T>
	Span<T>
	Usage Examples
	Span<T> Internals
	“Slow Span”
	“Fast Span”

	Memory<T>
	IMemoryOwner<T>
	Memory<T> Internals
	Span<T> and Memory<T> Guidelines

	Unsafe
	Unsafe Internals

	Data-Oriented Design
	Tactical Design
	Design Types to Fit as Much Relevant Data as Possible in the First Cache Line
	Design Data to Fit into Higher Cache Levels
	Design Data That Allows Easy Parallelization
	Avoid Non-sequential, Especially Random Memory Access

	Strategic Design
	Moving from Array-of-Structures to Structure-of-Arrays
	Entity Component System

	More on Future...
	Nullable Reference Types
	Pipelines

	Summary

	Chapter 15: Programmatical APIs
	GC API
	Collection Data and Statistics
	GC.MaxGeneration
	GC.CollectionCount(Int32)
	GC.GetGeneration
	GC.GetTotalMemory
	GC.GetAllocatedBytesForCurrentThread
	GC.KeepAlive
	GCSettings.LargeObjectHeapCompactionMode
	GCSettings.LatencyMode
	GCSettings.IsServerGC

	GC Notifications
	Controlling Unmanaged Memory Pressure
	Explicit Collection
	No-GC Regions
	Finalization Management
	Memory Usage
	Internal Calls in the GC Class

	CLR Hosting
	ClrMD
	TraceEvent Library
	Custom GC
	Summary

	Index

