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Foreword

When I joined the Common Language Runtime (the runtime for .NET) team more than 

a decade ago, little did I know this component called the Garbage Collector was going to 

become something I would spend most of my waking moments thinking about later in 

my life. Among the first few people I worked with on the team was Patrick Dussud, who 

had been both the architect and dev for the CLR GC since its inception. After observing 

my work for months, he passed the torch, and I became the second dedicated GC dev  

for CLR.

And so my GC journey began. I soon discovered how fascinating the world of 

garbage collection was - I was amazed by the complex and extensive challenges in a GC 

and loved coming up with efficient solutions for them. As the CLR was used in more 

scenarios by more users, and memory being one of the most important performance 

aspects, new challenges in the memory management space kept coming up. When I 

first started, it was not common to see a GC heap that was even 200mb; today a 20GB 

heap is not uncommon at all. Some of the largest workloads in the world are running on 

CLR. How to handle memory better for them is no doubt an exciting problem.

In 2015 we open sourced CoreCLR. When this was announced, the community asked 

whether the GC source would be excluded in the CoreCLR repo - a fair question as our 

GC included many innovative mechanisms and policies. The answer was a resounding 

no, and it was the same GC code we used in CLR. This clearly attracted some curious 

minds. A year later I was delighted to learn that one of our customers was planning to 

write a book specifically about our GC. When a technology evangelist from our Polish 

office asked me if I would be available to review Konrad’s book, of course I said yes!

As I received chapters from Konrad, it was clear to me that he studied our GC code 

with great diligence. I was very impressed with the amount of detail covered. Sure, you 

can build CoreCLR and step through the GC code yourself. But this book will definitely 

make that easier for you. And since an important class of readers of this book is GC users, 

Konrad included a lot of material to better understand the GC behavior and coding 

patterns to use the GC more efficiently. There is also fundamental information on memory 

at the beginning of the book and discussions of memory usage in various libraries toward 

the end. I thought it was a perfect balance of GC introduction, internals, and usage.
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If you use .NET and care about memory performance, or if you are just curious about 

the .NET GC and want to understand its inner workings, this is the book to get. I hope 

you will have as much enjoyment reading it as I did reviewing it.

Maoni Stephens

July 2018

foreword
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Introduction

In computer science, memory has been always there - from the punch cards, through 

magnetic tapes to the nowadays, sophisticated DRAM chips. And it will be always there, 

probably in the form of sci-fi holographic chips or even much more amazing things that 

we are now not able to imagine. Of course, the memory was there not without a reason. 

It is well known that computer programs are said to be algorithms and data structures 

joined together. I like this sentence very much. Probably everyone has at least once 

heard about the Algorithms + Data Structures = Programs book written by Niklaus Wirth 

(Prentice Hall, 1976), where this great sentence was coined.

From the very beginning of the software engineering field, memory management was 

a topic known by its importance. From the first computer machines, engineers had to 

think about the storage of algorithms (program code) and data structures (program data). 

It was always important how and where those data are loaded and stored for later use.

In this aspect, software engineering and memory management have been always 

inherently related, as much as software engineering and algorithms are. And I believe 

it always will be like that. Memory is a limited resource, and it always will be. Hence, at 

some point or degree, memory will always be kept in the minds of future developers. 

If a resource is limited, there always can be some kind of bug or misuse that leads to 

starvation of this resource. Memory is not an exception here.

Having said that, there is for sure one thing that is constantly changing regarding 

memory management - the quantity. First developers, or we should name them 

engineers, were aware of every single bit of their programs. Then they had kilobytes 

of memory. From each and every decade, those numbers are growing and today we 

are living in times of gigabytes, while terabytes and petabytes are kindly knocking into 

the door waiting for their turn. As the memory size grows, the access times decrease, 

making it possible to process all this data in a satisfying time. But even though we can say 

memory is fast, simple memory-management algorithms that try to process all gigabytes 

of data without any optimizations and more sophisticated tunings would not be feasible. 

This is mostly because memory access times are improving slower than the processing 

power of CPUs utilizing them. Special care must be taken to not introduce bottlenecks of 

memory access, limiting the power of today’s CPUs.
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This makes memory management not only of crucial importance, but also a really 

fascinating part of computer science. Automatic memory management makes it even 

better. It is not as easy as saying “let the unused objects be freed.” What, how, and when - 

those simple aspects of memory management make it continuously an ongoing process 

of improving the old and inventing new algorithms. Countless scientific papers and PhD 

theses are considering how to automatically manage memory in the most optimal way. 

Events like the International Symposium on Memory Management (ISMM) shows every 

year how much is done in this field, regarding garbage collection; dynamic allocation; 

and interactions with runtimes, compilers, and operating systems. And then academic 

research slightly changes into commercialized and open sourced products we use in 

everyday work.

.NET is a perfect example of a managed environment where all such sophistication 

is hidden underneath, available to developers as a pleasant, ready-to-use platform. And 

indeed, we can use it without any awareness of the underlying complexity, which is a 

great .NET achievement in general. However, the more performance aware our program 

is, the less possible it is to avoid gaining any knowledge about how and why things work 

underneath. Moreover, personally I believe it is just fun to know how things we use every 

day work!

I’ve written this book in a way that I would have loved to read many years ago - when 

I started my journey into the .NET performance and diagnostic area. Thus, this book 

does not start from a typical introduction about the heap and the stack or description 

of multiple generations. Instead, I start from the very fundamentals behind memory 

management in general. In other words, I’ve tried to write this book in a way that will let 

you sense this very interesting topic, not only showing “here is a .NET Garbage Collector 

and it does this and that.” Providing information not only what, but also how, and more 

importantly - why - should truly help you understand what is behind the scene of .NET 

memory management. Hence, everything you will read in regard to this topic in the 

future should be more understandable to you. I try to enlighten you with knowledge 

a little more general than just related to .NET, especially in the first two chapters. This 

leads to deeper understanding of the topic, which quite often may be also applied 

to other software engineering tasks (thanks to an understanding of algorithms, data 

structures, and simply good engineering stuff).

I wanted to write this book in a manner pleasant for every .NET developer. No matter 

how experienced you are, you should find something interesting here. While we start 

from the basics, junior programmers quickly will have an opportunity to get deeper into 

InTroduCTIon
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.NET internals. More advanced programmers will find many implementation details 

more interesting. And above all, regardless of experience, everyone should be able to 

benefit from the presented practical examples of code and problem diagnoses.

Thus, knowledge from this book should help you to write better code - more 

performance and memory aware, utilizing related features without fear but with 

full understanding. This also leads to better performance and scalability of your 

applications - the more memory oriented your code is, the less exposed it is for resource 

bottlenecks and utilization of them not optimally. I hope you will find the “For Better 

Code, Performance, and Scalability” subtitle justified after reading this book.

I also hope all this makes this book more general and long lasting than just a simple 

description of the current state of the .NET framework and its internals. No matter how 

future .NET frameworks will evolve, I believe most of the knowledge in this book will 

be actually true for a long time. Even if some implementation details will change, you 

should be able to easily understand them because of the knowledge from this book. 

Just because underlying principles won’t change so fast. I wish you a pleasant journey 

through the huge and entertaining topic of automatic memory management!

Having said that, I would like also to emphasize a few things that are not particularly 

present in this book. The subject of memory management, although it seems very 

specialized and narrow at the first glance, is surprisingly wide. While I touch a lot of 

topics, they are sometimes presented not as detailed as I would like, for lack of space. 

Even with such limitations, the book is around 1104 pages long! Those omitted topics 

include, for example, comprehensive references to other managed environments (like 

Java, Python, or Ruby). I also apologize to F# fans for so few references to this language. 

There were not enough pages for a solid description simply, and I did not want to 

publish anything not being comprehensive. I would also have liked to put much more 

attention to the Linux environment, but this is so fresh and uncovered by the tools topic 

that at the time of writing, I only give you some proposals in Chapter 3 (and omitting the 

macOs world completely for the same reasons). Obviously, I’ve also omitted a large part 

of other, not directly memory-related part of performance in .NET - like multithreading 

topics.

Secondly, although I’ve done my best to present practical applications of the topics 

and techniques discussed, this is not always possible without doing so in a completely 

exhausting way. Practical applications are simply too many. I rather expect from a reader 

reading comprehensively, rethinking the topic, and applying the knowledge gained in 

their regular work. Understand how something works and you will be able to use it!
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This especially includes so-called scenarios. Please note that all scenarios included 

in this book are for illustrative purposes. Their code has been distilled to the bare 

minimum to easier show the root cause of one single problem. There may be various 

other reasons behind the observed misbehaving (like many ways how managed memory 

leaks may be noticed). Scenarios were prepared in a way to help illustrate such problems 

with a single example cause as it is obviously not possible to include all probable reasons 

in a single book. Moreover, in real-world scenarios, your investigation will be cluttered 

with a lot of noisy data and false investigation paths. There is often no single way of 

solving the described issues and yet many ways how you can find the root cause during 

problems analysis. This makes such troubleshooting a mix of a pure engineering task 

with a little of an art backed by your intuition. Please note also that scenarios sometimes 

reference to each other to not repeat themselves again and again with the same steps, 

figures, and descriptions.

I especially refrained from mentioning various technology-specific cases and sources 

of problems in this book. They are simply… too much technology specific. If I was writing 

this book 10 years ago, I would probably have had to list various typical scenarios of 

memory leaks in ASP.NET WebForms and WinForms. A few years ago? ASP.NET MVC, 

WPF, WCF, WF,… Now? ASP.NET Core, EF Core, Azure Functions, what else? I hope you 

get the point. Such knowledge is becoming obsolete too soon. The book stuffed with 

examples of WCF memory leaks would hardly interest anyone today. I am a huge fan of 

saying: “Give a man a fish; you have fed him for today. Teach a man to fish; and you have 

fed him for a lifetime.” Thus, all the knowledge in this book, all the scenarios, are teaching 

you how to fish. All problems, regardless of underlying specific technology, may be 

diagnosed in the same way, if enough knowledge and understanding are being applied.

All this also makes reading this book quite demanding, as it is sometimes full of 

details and maybe a little overwhelming amount of information. Despite everything, I 

encourage you to read in-depth and slow, resisting the temptation of only a skimming 

reading. For example, to take full advantage of this book, one should carefully study 

the code shown and presented figures (and not just look at them, stating that they are 

obvious, so they may be easily omitted).

We are living in a great time of open sourced CoreCLR runtime. This moves CLR 

runtime understanding possibilities to a whole new level. There is no guessing, no 

mysteries. Everything is in code, may be read, and understood. Thus, my investigations 

of how things work are heavily based on CoreCLR’s code of its GC (which is shared 

with .NET Framework as well). I’ve spent countless days and weeks analyzing this huge 

amount of good engineering work. I think it is great, and I believe there are people who 
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would also like to study famous gc.cpp file, with a size of several tens of thousands of 

lines of code. It has a very steep learning curve, however. To help you with that, I often 

leave some clues where to start CoreCLR code study with respect to described topics. 

Feel free to get an even deeper understanding from the gc.cpp points I suggest!

After reading this book you should be able to:

• Write performance and memory-aware code in .NET. While 

presented examples are in C#, I believe with the understanding and 

toolbox you gain here, you will be able to apply this also to F# or 

VB.NET.

• Diagnose typical problems related to .NET memory management. As 

most techniques are based on ETW/LLTng data and SOS extension, 

they are applicable both on Windows and Linux (with much more 

advanced tooling available on Windows).

• Understand how CLR works in the memory management area. I’ve 

put quite a lot of attention to explain not only how things work but 

also why.

• Read with the full understanding of many interesting C# and CLR 

runtime issues on GitHub and even participate with your own 

thoughts.

• Read the code of the GC in CoreCLR (especially gc.cpp) file with 

enough understanding to make further investigations and studies.

• Read with the full understanding of information about GCs and memory 

management in different environments like Java, Python, or Go.

As to the content of the book itself, it presents as follows. Chapter 1 is a very general 

theoretical introduction to memory management, without almost any reference to .NET 

in particular. Chapter 2 is similarly a general introduction to memory management on 

the hardware and operating system level. Both chapters may be treated as an important, 

yet optional introduction. They give a helpful, broader look at the topic, useful in the rest 

of the book. While I obviously and strongly encourage you to read them, you may omit 

them if you are in a hurry or interested only in the most practical, .NET-related topics. A 

note to advanced readers - even if you think topics from those two first chapters are well 

known to you, please read them. I’ve tried to include there not only obvious information, 

which you may find interesting.

InTroduCTIon



xxx

Chapter 3 is solely dedicated to measurements and various tools (among which 

some are very often used later in the book). It is a reading that contains mainly a list 

of tools and how to use them. If you are interested mostly in the theoretical part of the 

book, you may only skim through it briefly. On the other hand, if you plan to use the 

knowledge of this book intensively in the diagnosis of problems, you will probably come 

back to this chapter often.

Chapter 4 is the first one where we start talking about .NET intensively, while still in 

a general way allowing us to understand some relevant internals like .NET type system 

(including value type versus reference type), string interning, or static data. If you are 

really in a hurry, you may wish to start reading from there. Chapter 5 described the  

first truly memory-related topic - how memory is organized in .NET applications, 

introducing the concept of Small and Large Object Heap, as well as segments. Chapter 6  

is going further into memory-related internals, dedicated solely to allocating memory. 

Quite surprisingly, quite a big chapter may be dedicated to such a theoretically simple 

topic. An important and big part of this chapter is the description of various sources of 

allocations, in the context of avoiding them.

Chapters from 7 to 10 are core parts describing how the GC works in .NET, with 

practical examples and considerations resulting from such knowledge. To not overwhelm 

with too much information provided at the same time, those chapters are describing the 

simplest flavor of the GC - so-called Workstation Non-Concurrent one. On the other hand, 

Chapter 11 is dedicated to describing all other flavors with comprehensive considerations 

that one can choose. Chapter 12 concludes the GC part of the book, describing three 

important mechanisms: finalization, disposable objects, and weak references.

The three last chapters constitute the “advanced” part of the book, in the sense of 

explaining how things work beyond the core part of .NET memory management.  

Chapter 13 explains, for example, the topic of managed pointers and goes deeper into 

structs (including recently added ref structs). Chapter 14 puts a lot of attention to types 

and techniques gaining more and more popularity recently, like Span<T> and Memory<T> 

types. There is also a smart section dedicated to the not-so-well known topic of data-

oriented design and, few words about incoming C# features (like nullable reference types 

and pipelines). Chapter 15, the last one, describes various ways how we can control and 

monitor the GC from code, including GC class API, CLR Hosting, or ClrMD library.

Most of the listings from this book are available at the accompanying GitHub 

repository at https://github.com/Apress/pro-.net-memory. It is organized into 

chapters and most of them contain two solutions: one for conducted benchmarks and 
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one for other listings. Please note that while included projects contain listings, there is 

often more code for you to look at. If you want to use or experiment with a particular 

listing, the easiest way will be just to search for its number and play around with it and 

its usage. But I also encourage you to just look around in projects for particular topics for 

better understanding.

There are not so many important conventions I would like to mention here. The most 

relevant one is to differentiate two main concepts used throughout the rest of the book:

• Garbage collection (GC) - the generally understood process of 

reclaiming no-longer needed memory.

• The Garbage Collector (the GC) - the specific mechanism realizing 

garbage collection, most obviously in the context of the .NET GC.

This book is also pretty self-contained and does not refer to many other materials or 

books. Obviously, there is a lot of great knowledge out there, and I would need to refer to 

various sources many times. Instead, let me just list the suggested books and articles of 

my choice as a complementary source of knowledge:

• Pro .NET Performance book written by Sasha Goldshtein, Dima 

Zurbalev, and Ido Flatow (Apress, 2012.

• CLR via C# book written by Jeffrey Richter (Microsoft Press, 2012).

• Writing High-Performance .NET Code by Ben Watson (Ben Watson, 

2014).

• Advanced .NET Debugging by Mario Hewardt (Addison-Wesley 

Professional, 2009).

• .NET IL Assembler by Serge Lidin (Microsoft Press, 2012)

• Shared Source CLI Essentials by David Stutz (O’Reilly Media, 2003).

• “Book Of The Runtime” open source documentation developed 

in parallel to the runtime itself, available at https://github.com/

dotnet/coreclr/blob/master/Documentation/botr/README.md.

There is also a huge amount of knowledge from various online blogs and articles. 

But instead of flooding those pages with a list of them, let me just redirect you to a 

great https://github.com/adamsitnik/awesome-dot-net-performance repository 

maintained by Adam Sitnik.
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CHAPTER 1

Basic Concepts
Let’s start from a simple, yet very important question. When you should care about .NET 

memory management if it is all automated? Should you care at all? As you probably 

expect by the fact that I wrote such a book - I strongly encourage you to remember about 

memory in every developer’s situation. This is just a matter of our professionalism. A 

consequence of how we conduct our work. Are we trying to make our best or just make? 

If we take care of the quality of our work, we should worry not only about our piece of 

work to be just working. We should be worried about how is it working. Is it optimal in 

terms of CPU and memory usage? Is it maintainable, testable, opened for extension but 

closed for modification? Is our code SOLID? I believe all those questions distinguish 

beginners from more advanced, experienced programmers. The former are mainly 

interested in getting the job done and do not care much about the above-mentioned, 

nonfunctional aspects of their work. The latter are experienced enough to have enough 

“mental processing power” to consider the quality of their work. I believe everyone 

wants to be like that. But this is, of course, not a trivial thing. Writing an elegant code, 

without any bugs, with each possible nonfunctional requirement fulfilled is really hard.

But should such a desire for the mastery be the only prerequisite for gaining 

deeper knowledge about .NET memory management? Memory corruptions revealing 

as AccessViolationException are extremely rare.1 The uncontrolled increase in 

memory usage can also appear so. Do we have anything to be worried about then? As 

.NET runtime has a sophisticated Microsoft implementation, luckily we do not have 

to think about memory aspects a lot. But, on the other hand, when being involved in 

analyzing performance problems of big .NET-based applications, memory consumption 

problems were always high on the list of issues. Does it cause trouble in the long-term 

1 AccessViolationException or other heap corruption can often be triggered by the automatic 
memory management, not because it is the cause, but because it is the heaviest memory-related 
component in the environment. Thus, it has the biggest possibility to reveal any inconsistent 
memory states.
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view if we have a memory leak after days of continuous running? On the Internet we 

can find a funny meme about a memory leak that was not fixed in the software of some 

particular combat missile, because the memory was enough before the missile reached 

its destination. Is our system such a one-time missile? Do we realize whether automated 

memory management introduces a big overhead for our application or not? Maybe we 

could use only two servers instead of ten? And further, we are not memory free even in 

the times of server-less cloud computing. One of the examples can be Azure Functions, 

which are billed based on a measure called “gigabyte seconds” (GB-s). It is calculated 

by multiplying the average memory size in gigabytes by the time in seconds it takes to 

execute a particular function. Memory consumption directly translates into money we 

spent.

In each case, we begin to realize that we have no idea where to start looking for the 

real cause and valuable measurements. This is the place where we begin to understand 

that it is worthwhile to understand internal mechanisms of our applications and the 

underlying runtime.

In order to deeply understand memory management in .NET, it is best to start from 

scratch. No matter whether you are a novice programmer or very advanced one. I would 

recommend that together we went through the theoretical introduction in this chapter. 

This will establish a common level of knowledge and understanding of concepts, 

which will be used through the rest of the book. For this not to be simply boring theory, 

sometimes I refer to specific technologies. We will have a chance to get a little history 

of software development. It fits well in the development of concepts related to memory 

management. We will notice also some little interesting facts, which I hope will prove 

to be interesting for you also. Knowing history is always one of the best ways to get the 

broader perspective of the topic.

But do not be afraid. This is not a historical book. I will not describe biographies of 

all engineers involved in developing garbage collection algorithms since 1950. Ancient 

history background won’t be necessary either. But still, I hope you will find it interesting 

to know how this topic evolved and where we are now in the history timeline. This will 

also allow us to compare the .NET approach to the many other languages and runtimes 

you might hear about from time to time.
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 Memory-Related Terms
Before we begin, it is useful to take a look at some very important definitions, without 

which it is difficult to imagine discussing the topic of memory:

• bit - it is the smallest unit of information used in computer technology. 

It represents two possible states, usually meaning numerical values 

0 and 1 or logic values true and false. We briefly mention how 

modern computers store single bits in Chapter 2. To represent bigger 

numerical values, a combination of multiple bits needs to be used to 

encode it as a binary number explained below. When specifying the 

data size, bits are specified with the lowercase letter b.

• binary number - integer numerical value represented as a sequence 

of bits. Each successive bit determines the contribution of the 

successive power of 2 in the sum of the given value. For example, to 

represent the number 5 we can use three successive bits with values 

1, 0, and 1 because 1x1 + 0x2 + 1x4 equals 5. An n-bit binary number 

can represent a maximum value of 2^n - 1. There is also often an 

additional bit dedicated to represent the sign of the value to encode 

both positive and negative numbers. There are also other, more 

complex ways to encode numeric values in a binary form, especially 

for floating-point numbers.

• binary code - instead of numerical values, a sequence of bits can 

represent a specified set of different data - like characters of text. 

Each bits sequence is assigned to specific data. The most basic one 

and the most popular for many years was ASCII code, which uses 

7-bit binary code to represent text and other characters. There are 

other important binary codes like opcodes encoding instructions 

telling the computer what it should do.

• byte - historically it was a sequence of bits for encoding a single 

character of text using specified binary code. The most common 

byte size is 8-bit long, although it depends on the computer 

architecture and may vary between different ones. Because of this 

ambiguity, there is a more precise octet term, which means exactly 

an 8-bit long data unit. Nevertheless, it is the de facto standard to 
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understand the byte as an 8-bit length value, and as such it has 

become an unquestionable standard for defining data sizes. It is 

currently unlikely to meet anything different than the standard one 

architecture with 8-bit long bytes. Hence, when specifying the data 

size, bytes are specified with the uppercase letter B.

By specifying the size of the data, we use the most common multiples (prefixes) 

determining their order of magnitude. It is a cause of constant confusion and 

misunderstanding, which is worth it at this point to explain. Overwhelmingly popular 

terms such as kilo, mega, and giga mean multiplication of thousands. One kilo is 1000 

(and we denote it as lowercase letter k), one mega is 1 million (uppercase letter M), 

and so on. On the other hand, sometimes a popular approach is to express orders of 

magnitude in successive multiplications of 1024. In such cases, we talk about one kibi, 

which is 1024 (denoted as Ki), one mebi is 1024*1024 (denoted as Mi), one gibi (Gi) is 

1024*1024*1024, and so on. This introduces common ambiguity. When someone talks 

about 1 “gigabyte,” they may be thinking about 1 billion of bytes (1 GB) or 1024^3 of 

bytes (1 GiB) depending on the context. In practice, very few care about the precise 

use of those prefixes. It is absolutely common to specify the size of memory modules 

in computers nowadays as gigabytes (GB) when they are truly gibibytes (GiB) or 

the opposite in case of hard drives storage. Even JEDEC Standard 100B.01 “Terms, 

Definitions, and Letter Symbols for Microcomputers, Microprocessors, and Memory 

Integrated Circuits” refers to common usage of K, M, and G as multiplications of 1024 

without explicitly deprecating it. In such situations, we are just left to common sense in 

understanding those prefixes from the context.

Currently we are very used to the terms such as RAM or persistent storage installed 

in our computers. Even smart watches are now equipped with 8 GiB of RAM. We can 

easily forget that the first computers were not equipped with such luxuries. You could 

say that they were not equipped with anything. A look at the short history of computer 

development will allow us to look differently on the memory itself. Let’s start from the 

beginning.

We should bear in mind that it is very disputable which device can be named as 

“the very first computer.” Likewise, it is very hard to name the one and only “inventor of 

the computer.” This is just a matter of definition what “computer” really is. So instead of 

starting endless discussions what and who was first, let’s just look at some of the oldest 

machines and what they offered to programmers, although the word programmer was to 

be coined a lot of years later. At the beginning, they were called coders or operators.
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It should be emphasized that machines that may be defined as the first computers 

were not fully electronic, but electromechanical. For this reason, they were very slow 

and despite the impressive size offered very little. The first of these programmable 

electromechanical computers was designed in Germany by Konrad Zuse, named the 

Z3 computer. It weighed one ton! One addition took about one second and single 

multiplication took three seconds! Built from 2,000 electromechanical relays, it 

offered an arithmetical unit capable of add, subtract, multiply, divide, and square root 

operations only. Arithmetical units included also two 22-bit memory storages used 

for calculations. It offered also 64 general-purpose memory cells, each 22 bits long. 

Nowadays we could say it offered 176 bytes of internal memory for data!

The data was typed via a special keyboard, and the program was read during 

calculation from punched celluloid film. The possibility of storing a program into 

internal computer memory was to be implemented a few years later, and we will come 

back to it shortly, although Zuse was fully aware of this idea. In the context of the 

book you are reading, more important is the question of access to the Z3’s memory. 

Programming the Z3, we had at our disposal only nine instructions! One of them 

allow you to load the value of one of the 64 memory cells to the memory storage of the 

arithmetic unit. Another was to save the value back. And that’s all when it comes to 

“memory management” in this very first computer. Although Z3 was ahead of his time 

in many ways, for political reasons and the outbreak of World War II, its impact on the 

development of computers has become negligible. Zuse had been developing its line of 

computers for many years after the war, and its latest version of the Z22 computer was 

built in 1955.

During the war and shortly after, the main centers of development of computer 

science were the United States and the United Kingdom. One of the first computers built 

in the United States was the Harvard Mark I developed by IBM in collaboration with 

Harvard University called the Automatic Sequence Controlled Calculator. It was also 

electromechanical, like the Z3 mentioned before. It was enormous in size, measuring 

8 feet high, 51 feet long, and 3 feet deep. And it weighed 5 tons! It is called the biggest 

calculating machine ever. Built a few years, the first programs launched at the end of 

the Second World War, in 1944. It served the Navy, but also John von Neumann, during 

his work in the Manhattan Project, on the first atomic bomb. Regarding its size, it 

offered only 72 memory slots for 23-digit numbers with sign. Such a slot was called an 

accumulator - a dedicated small memory place where intermediate arithmetic and logic 

results are stored. Translated into measures today, we could say that this 5-ton machine 
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provided access to 72 memory slots each 78-bit long (we need 78 bits to represent quite 

a big 23-digit number); therefore, it offered memory of 702 bytes! The programs were 

then de facto a series of mathematical calculations operating on those 72 memory slots. 

Those were the first-generation programming languages   (denoted as 1GL) or machine 

languages where programs were stored on punched tape, which was physically fed 

into the machine as needed or operated by front panel switches. It could proceed with 

only three additions or subtractions per second. Single multiplication took 20 seconds 

and calculation of sin(x) took one minute! Just like in the Z3, memory management 

did not exist in this machine at all - you could only read or write the value to one of the 

mentioned memory cells.

What is interesting for us that from this computer the Harvard architecture term has 

originated (see Figure 1-1). In accordance with this architecture, the storage of program 

and storage of data are physically separated. Such data is being processed by some 

kind of electronic or electromechanical device (like Central Processing Unit). Such a 

device is often also responsible for controlling Input/Output devices like punch card 

readers, keyboards, or displaying devices. Although Z3 or Mark I computers used this 

architecture because of its simplicity, it is not completely forgotten nowadays. As we 

will see in Chapter 2, it is used today in almost every computer as the modified Harvard 

architecture. And we will even see its influence on programs that we write on a daily 

basis.

The much better-known computer ENIAC, completed in 1946, was already 

an electronic device based on vacuum tubes. It offered thousands of times better 

mathematical operations speed than the Mark I. However, in terms of memory it looked 

still very unattractive. It offered only 20 10-digits signed accumulators, and there was 

no internal memory to store programs. Simply put, due to World War II, the priority 

was to build machines as fast as possible, for military purposes, not to build something 

sophisticated.

CPU
data

program

I/O

memory

memory

Figure 1-1. Harvard architecture diagram
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But academics like Konrad Zuse, Alan Turing, and John von Neumann were 

investigating the idea of using an internal computer’s memory to store the program 

altogether with its data. This would allow a much easier programming (and especially, 

reprogramming) than coding via punched cards or mechanical switches. John von 

Neumann wrote in 1945 an influential paper named “First Draft of a Report on the 

EDVAC” in which he described architecture named the von Neumann architecture. It 

should be stated that it was not solely von Neumann’s concept as he was inspired by 

other academics of his time.

The von Neumann architecture showed in Figure 1-2 is a simplified Harvard 

architecture in which there is a single memory unit for storing both the data and the 

program. It for sure reminds you of a current computer and this is not without a reason. 

From a high-level point of view, this is exactly how modern computers are still being 

constructed where von Neumann and Harvard architecture meets in a modified Harvard 

architecture.

The Manchester Small-Scale Experimental Machine (SSEM, nicknamed “Baby”) 

built in 1948 and the Cambridge’s EDSAC built in 1949 were the world’s first computers 

that stored program instructions and data in the same space and hence incorporated 

the von Neumann architecture. “Baby” was much more modern and innovative because 

it was the first computer using a new kind of storage - the Williams tubes, based on 

cathode ray tubes (CRT). Williams tubes can be seen as the very first Random Access 

Memory (RAM) explained below. The SSEM had a memory of 32 memory cells, each 

32-bits long. So, we can say that the first computer with RAM had 128 bytes of it! This 

is the journey we are taking, from 128 bytes in 1949 to a typical 16 gibibytes in 2018. 

Nevertheless, Williams tubes become a standard at the turn of the 1940s and 1950s, 

when a lot of other computers where built.

CPU data

program

I/O
+

memory

Figure 1-2. Von Neumann architecture diagram
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This leads us historically to a perfect moment that we may explain all the basic 

concepts of computer architecture. All are gathered below and shown in Figure 1-3:

• memory - responsible for storing data and the program itself. The 

way in which memory is implemented has evolved over time in a 

significant way, starting from the above-mentioned punch cards, 

through magnetic types and cathode ray tubes, until currently 

used transistors. Memory can be further divided into two main 

subcategories:

• Random Access Memory (RAM) - allows us to read data at the 

same access time irrespective of the memory region we access. In 

practice, as we will see in Chapter 2, modern memory fulfills this 

condition only approximately for technological reasons.

• Non-uniform access memory - opposite of RAM, the time required 

to access memory depends on its location on physical storage. 

This obviously includes punch cards, magnetic types, classical 

hard disks, CDs and DVDs, and so on where storage media has to 

be positioned (for example, rotated) to the correct position before 

accessing.

• address - represents a specific location within the entire memory 

area. It is typically expressed in term of bytes as a single byte is the 

smallest possible, addressing granularity on many platforms.

• arithmetic and logic unit (ALU) - responsible for performing 

operations like addition and subtraction. This is the core of the 

computer, where most of the work is being done. Nowadays 

computers include more than one ALU, allowing for parallelization of 

computation.

• control unit - decodes program instructions (opcodes) read from 

memory. Based on the internal instruction’s description, it knows 

which arithmetical or logical operation should be performed and on 

which data.

• register - memory location quickly accessible from ALU and/or 

Control Unit (which we can collectively refer to as execution units), 

usually contained in it. Accumulators mentioned before are a special, 
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simplified kind of registers. Registers are extremely fast in terms 

of access time, and there is in fact no place for data closer to the 

execution units than them.

• word - fixed-size basic unit of data used in particular computer 

design. It is reflected in many design areas like the size of most 

registers, the maximum address, or the largest block of data 

transferred in a single operation. Most commonly it is being 

expressed in the number of bits (referred to as the word size or word 

length). Most computers today are 32-bit or 64-bit so they have 32-bit 

and 64-bit words length respectively, 32-bit or 64-bit long registers, 

and so on.

Von Neumann architecture incarnated in SSEM or EDSAC machines leads as to 

the term of stored-program computers that is obvious nowadays, but it was not at the 

beginning of the computer era. In such a design, program code to be executed is stored 

in the memory so it can be accessed like normal data - including such useful operations 

like modifying it and overwriting with a new program code.

A control unit stores an additional register, called instruction pointer (IP) or program 

counter (PC), to point to a currently executing instruction. Normal program execution 

is as simple as incrementing the address stored in PC to the succeeding instructions. 

Things like loops or jumps are as easy as changing the value of the instruction pointer to 

the other address, designating where we want to move the program execution.

CPU

data

instructions

memory

control unit

ALU

PC

registers

Figure 1-3. Stored-program computer diagram - memory + instruction pointer
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The first computers were programmed using a binary code that directly described 

the executed instructions. However, with the increasing complexity of programs, this 

solution has become increasingly burdensome. A new programming language (denoted 

as second-generation programming languages - 2GL) has been designed describing the 

code in a more accessible way by means of the so-called assembly code. This is a textual 

and very concise description of the individual instructions executed by the processor. 

However, it was much more convenient than direct binary encoding. Then even higher- 

level languages have been designed (3GL), such as well-known C, C ++, or Pascal.

What is interesting to us is that all these languages must be transformed from 

text to binary form and then put into the computer memory. The process of such a 

transformation is called a compilation, and the tool that runs it is called a compiler. In 

the case of assembly code, we are rather naming it assembling by the assembler tool. In 

the end, the result is a program in a binary code format that may be later executed - a 

sequence of opcodes and their arguments (operands).

Equipped with this basic knowledge, we can now begin our journey in the memory 

management topic.

 The Static Allocation
Most of the very first programming languages did allow only static memory allocation - 

the amount and the exact location of memory needed had to be known during 

compilation time, before even executing the program. With the fixed and predefined 

sizes, memory management was trivial. All major “ancient times” programming 

languages, starting from machine or assembly code to the first versions of FORTRAN 

and ALGOL had such limited possibilities. But they have many drawbacks also. Static 

memory allocations can easily lead to inefficient memory usage- not knowing in 

advance how many data will be processed, how do we know how much memory we 

should allocate? This makes programs limited and not flexible. In general, such a 

program should be compiled again to process bigger data volumes.

In the very first computers, all allocations were static because the memory cells 

used (accumulator, registers, or RAM memory cells) were determined during program 

encoding. So, defined “variables” lived over the whole lifetime of the program. Nowadays 

we still use static allocation in such a sense when creating static global variables and the 

like, stored in a special data segment of a program. We will see in later chapters where 

they are stored in the case of .NET programs.
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 The Register Machine
So far, we have seen examples of machines that were using registers (or accumulators 

as a special case) to operate on Arithmetic Logic Units (ALUs). Machine that constitute 

such a design is called the register machine. It is because while executing programs on 

such a computer, we are in fact making calculations on registers. If we want to add, 

divide, or do anything else, we must load proper data from memory into proper registers. 

Then we call specific instructions to invoke proper operations on them and then another 

one to store the result from one of the registers into memory.

Let’s suppose we want to write a program that calculates an expression s=x+(2*y)+z 

in a computer with two registers - named A and B. Let’s assume also that s, x, y, and z 

are addresses to memory with some values stored there. We assume also some low-level 

pseudo-assembly code with instructions like Load, Add, Multiply. Such a theoretical 

machine can be programmed with the following simple program (see Listing 1-1).

Listing 1-1. Pseudo-code of a sample program realizing s=x+(2*y)+z calculation 

on the simple, two-register register machine. Comments shows register’s state 

after executing each instruction.

Load      A, y        // A = y

Multiply  A, 2        // A = A * 2 = 2 * y

Load      B, x        // B = x

Add       A, B        // A = A + B = x + 2 * y

Load      B, z        // B = z

Add       A, B        // A = A + B = x + 2 * y + z

Store     s, A        // s = A

If this code reminds you of x86 or any other assembly code you have ever learned - 

this is not a coincidence! This is because most modern computers are kind of complex 

register machines. All Intel and AMD CPUs we use in our computers operate in such 

a way. When writing x86/x64-based assembly code, we operate on general-purpose 

registers like eax, ebx, ecx, etc. There are, of course, many more instructions, other 

specialized registers, etc. But the concept behind it is the same.
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Note Could one imagine a machine with an instruction set that allows us 
to execute an operation directly on memory, without a need to load data into 
registers? Following our pseudo-assembly language, it could look much more 
succinct and higher level, because there are no additional load/store instructions 
from memory to registers and their opposites:

Multiply        s, y, 2     // s = 2 * y

Add             s, x        // s = s + x = 2 * y + x

Add             s, z        // s = s + z = 2 * y + x + z

Yes, there were such machines like iBM system/360, but nowadays i am not aware 
of any production-used computer of such kind.

 The Stack
Conceptually, the stack is a data structure that can be simply described as “last in, first 

out” (LIFO) list. It allows two main operations: adding some data on the top of it (“push”) 

and returning some data from top of it (“pop”) illustrated in Figure 1-4.

Stack from the very beginning become inherently related with computer 

programming, mainly because of the concept of the subroutine. Today’s .NET heavily 

uses a “call stack” and “stack” concepts, so let’s look how it all started. The original 

meaning of the stack as a data structure is still valid (for example, there is a Stack<T> 

collection available in .NET), but let’s now look how it evolved into a more general 

meaning of the computer memory organization.

push 4 push 9 pop pop
(returns 9) (returns 4)

4 4

9

4

Figure 1-4. Pop and push stack operations. This is a conceptual drawing only, not 
related to any particular memory model and implementation.
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The very first computers we were talking about earlier allowed only sequential 

program execution, reading each instruction one after another from the punch card or 

film. But the idea to write some parts of programs (subroutines) that could be reused 

from different points of the whole program was obviously very tempting. The possibility 

to call different parts of the program required, of course, the code to be addressable as 

we need somehow to point to what other part of the program we want to call. The very 

first approach was used by the famous Grace Hooper in the A-0 system- called the first 

compiler. She encoded a set of different programs on the tape, giving each a succeeding 

number to allow the computer to find it. Then “a program” consists of a sequence 

of numbers (programs’ indexes) and its parameters. Although it is indeed calling 

subroutines, it is obviously a very limited way. A program could only call subroutines 

each after another, and no nested calls were allowed.

Nested calls require a little more complicated approach because computers must 

remember somehow where to continue with execution (where to return) after executing 

a specific subroutine. The return address stored in one of the accumulators was the very 

first approach invented by David Wheeler on the EDSAC machine (a method called 

“Wheeler jump”). But in his simplified approach, recursive calls were not possible, which 

means calling the same subroutine from itself.

A first mention of the stack concept as we know it today in the context of computer 

architecture was probably mentioned by Alan Turing in his report describing Automatic 

Computer Engine (ACE) written in the early 1940s. It described a concept of the von 

Neumann-like machine, which was in fact a stored-program computer. Besides a lot of 

many other implementation details, he described two instructions - BURY and UNBURY - 

operating on the main memory and accumulators:

• When calling a subroutine (BURY), the address of the currently 

executing instruction, incremented by one to point to the next 

(returning) instruction, was stored in the memory. And another 

temporary storage, serving as a stack pointer, was incremented by 1.

• When returning from the subroutine (UNBURY), the opposite action 

was taken.

This constituted the very first implementation of the stack in terms of the LIFO- 

organized place for the subroutines return addresses. This is a solution still used in 

modern computers, and besides that it has obviously evolved considerably since then, 

the foundations are still the same.
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The stack is a very important aspect of memory management because when 

programming in .NET, a lot of our data may be placed there. Let’s take a closer look at the 

stack and its use in function calls. We will use an example program from Listing 1-2  

written in C-like pseudo-code that calls two functions - main calls fun1 (passing two 

arguments a and b), which has two local variables x and y. Then function fun1 at some 

moment calls function fun2 (passing single argument n), which has a single local 

variable z.

Listing 1-2. Pseudo-code of a program calling function inside another function

void main()

{

   ...

   fun1(2, 3);

   ...

}

int fun1(int a, int b)

{

   int x, y;

   ...

   fun2(a+b);

}

int fun2(int n)

{

   int z;

   ...

}

At first, imagine a continuous memory area, designed to handle the stack, drawn in 

such a way that subsequent memory cells have addresses growing up (see left part of 

Figure 1-5a) and also a second memory region where your program code resides (see 

right part of Figure 1-5a) organized the same way. As a code of functions does not have to 
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lie next to each other, main, fun1, and fun2 code blocks have been drawn separated. The 

execution of the program from Listing 1-2 can be described in the following steps:

 1. Just before calling fun1 inside main (see Figure 1-5a). Obviously 

as the program is already running, some stack region is already 

created (grayed part of stack region at Figure 5a). Stack pointer 

(SP) keeps an address indicating the current boundary of the 

stack. Program counter (PC) points somewhere inside the 

main function (we marked this as address A1), just before the 

instruction to call fun1.

 2. After calling fun1 inside main (see Figure 1-5b). When function is 

called, stack is being extended by moving SP to contain necessary 

information. This additional space includes:

• Arguments - all function arguments can be saved on stack. In our 

sample, arguments a and b were stored there.

• Return address - to have a possibility to continue main function 

execution after executing fun1, the next instruction’s address just 

after the function call is saved on stack. In our case we denoted it 

as A1+1 address (pointing to the next instruction after instruction 

under A1 address).

Figure 1-5a. Stack and code memory regions - at the moment before calling 
function fun1 from Listing 1-2
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• Local variables - a place for all local variables, which can be saved 

also on stack. In our sample variables x and y were stored there.

Such a structure placed on stack when a subroutine is being called 

is named an activation frame. In a typical implementation the stack 

pointer is decremented by an appropriate offset to point to the place 

where a new activation frame can start. That is why it is often said 

that the stack grows downward.

 3. After calling fun2 inside fun1 (see Figure 1-5c). The same pattern 

of creating a new activation frame is being repeated. This time it 

contains a memory region for argument n, return address A2+1, 

and z local variable.

Figure 1-5b. Stack and code memory regions - at the moment after calling 
function fun1 from Listing 1-2
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An activation frame is also called more generally as stack frame, meaning any 

structured data saved on a stack for specific purposes.

As we see, subsequent nested subroutines’ calls just repeat this pattern adding a 

single activation frame per each call. The more nested the subroutine calls, the more 

activation frames on the stack will be. This of course makes calling infinite nested calls 

impossible as it would require a memory for an infinite number of activation frames.2 

If you ever encountered StackOverflowException, this is the case. You have called so 

many nested subroutines that the memory limit for the stack has been hit.

Bear in mind that mechanism presented here is merely exemplary and very general. 

Actual implementations may vary between architectures and operating systems. We will 

look closely how activation frames and stack is being used by .NET in the later chapters.

When a subroutine ends, its activation frame is being discarded just by incrementing 

stack pointer with the size of the current activation farm, while saved return address 

is used to accordingly set PC to continue execution of the calling function. In other 

words, what was inside stack frame (local variables, parameters) is no longer needed so 

incrementing stack pointer is just enough to “free” memory used so far. Those data will 

be simply overwritten in next stack usage (see Figure 1-6).

Figure 1-5c. Stack and code memory regions - at the moment after calling 
function fun2 from fun1
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2 There is one interesting exception called tail calls, not described here for its lack of brevity.

Chapter 1  BasiC ConCepts



18

Regarding implementation, both SP and PC are typically stored in the dedicated 

registers. At this point the size of the address itself, the observed memory areas and 

registers are not particularly important.

A stack in modern computers is supported both by the hardware (by providing 

dedicated registers for stack pointers) and by the software (by operating system 

abstraction of thread and its part of the memory designated as a stack).

It is worth noticing that one can imagine a lot of different stack implementations 

from the hardware architecture point of view. The stack can be stored on a dedicated 

memory block inside the CPU or on a dedicated chip. It can also reuse a general 

computer’s memory. The latter is exactly the case in most modern architectures, where a 

stack is just a fixed-size region of a process memory. There can even be implementations 

with multiple stacks architecture. In such an exemplary case, the stack for return 

addresses could be separated from the stack with data- parameters and local variables. 

This can be beneficial for performance reasons because it allows for simultaneous access 

to two separated stacks. It allows for additional tunings of CPU pipelining and other low- 

level mechanisms. Nevertheless, with the current personal computers, the stack is just a 

part of the main memory.

FORTRAN can be seen as the very first broadly used high-level, general-purpose 

programming language. But since 1954, when it was defined, only static allocation was 

possible. All arrays had to have sizes defined during compile time and all allocations 

were stack based. ALGOL was another very important language that more or less directly 
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Figure 1-6. Stack and code memory regions - after returning from function fun1 
both activation frames are discarded
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inspired a myriad of other languages (like C/C++, Pascal, Basic, and through Simula and 

Smalltalk - all modern object-oriented languages like Python or Ruby). ALGOL 60 had 

only stack allocation - together with dynamic arrays (with a size specified by variable). 

Alan Perlis, a notable member of the team that created ALGOL, said:

Algol 60 would have been impossible to adequately process in a reasonable 
way without the concept of stacks. Though we had stacks before, only in 
Algol 60 did stacks come to take a central place in the design of processors.

While the family of ALGOL and FORTRAN languages was mainly used by the 

scientific society, there was another stream of development for business-oriented 

programming languages starting from “A-0,” FLOW-MATIC, through COMTRANS to 

more widely known COBOL (Common Business Language). All of them were lacking 

explicit memory management, operating mainly on primitive data types like numbers 

and strings.

 The Stack Machine
Before we move on to other memory concepts, let’s stay for a while with a stack-related 

context - so-called stack machines. In contrast to the registry machine, in the stack 

machine all instructions are operating on the dedicated, expression stack (or evaluation 

stack). Please bear in mind that this stack does not have to be the same stack that 

we were talking about before. Hence, such a machine could have both an additional 

“expression stack” and a general-purpose stack. There can be no registers at all. In such 

a machine, by default, instructions are taking arguments from the top of the expression 

stack - as many as they require. The result is also stored on the top of the stack. In such 

cases, they are called pure stack machines, opposite to impure implementations when 

operations can access values not only from the top of the stack but also deeper.

How exactly does operation on the expression stack looks? For example, hypothetical 

Multiply instruction (without any argument) will pop two values from the top of the 

evaluation stack, multiply them, and put back the result on the evaluation stack (see 

Figure 1-7).
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Let’s back to the sample s=x+(2*y)+z expression from the register machine example 

and rewrite it in the stack machine manner (see Listing 1-3).

Listing 1-3. Pseudo-code of the simple stack machine realizing s=x+(2*y)+z 

calculation. Comments show evaluation stack state.

                    // empty stack

Push 2              // [2] - single stack element of value 2

Push y              // [2][y] - two stack elements of value 2 and y

Multiply            // [2*y]

Push x              // [2*y][x]

Add                 // [2*y+x]

Push z              // [2*y+x][z]

Add                 // [2*y+x+z]

Pop l               // [] (with side effect of writing a value under l)

This concept leads to very clear and understandable code. Main advantages can be 

described as follows:

• There is no problem regarding how and where to store temporary 

values - whether they should be registers, stack, or main memory. 

Conceptually this is easier than trying to manage all those possible 

targets optimally. Thus, it simplifies implementation.

• Opcodes can be shorter in terms of required memory as there 

are many no-operand or single-operand instructions. This allows 

efficient binary encoding of the instructions and hence produces 

dense binary code. So even the number of instructions can be bigger 

than in the registry-based approach because of more load/store 

operations; this is still beneficial.

Multiply

4

9

36

Figure 1-7. Hypothetical Multiply instruction in stack machine - pops two 
elements from the stack and pushes the result of multiplying them
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This was an important advantage in the early times of computers when memory was 

very expensive and limited. This can be also beneficial today in case of downloadable 

code for smartphones or web applications. Dense binary encoding of instructions 

implies also better CPU cache usage.

Despite its advantages, the stack machine concept was rarely implemented in the 

hardware itself. One notable exception was the Burroughs machines like B5000, which 

included hardware implementation of the stack. Nowadays there is probably no widely 

used machine that could be described as the stack machine. One notable exception is 

x87 floating-point unit (inside x86 compatible CPUs), which was designed as a stack 

machine, and because of backward compatibility it is still programmed as such even 

today.

So why mention these kind of machines at all? Because such architecture is a great 

way of designing platform-independent virtual machines or execution engines. Sun’s 

Java Virtual Machine and .NET runtime are perfect examples of stack machines. They are 

executed underneath by well-known register machines of x86 or ARM architecture, but 

it doesn’t change the fact they realize stack machine logic. We will see this clearly when 

describing .NET’s Intermediate Language (IL) in Chapter 4. Why have .NET runtime and 

JVM (Java Virtual Machine) been designed that way? As always, there is some mix of 

engineering and historical reasons. Stack machine code is of higher level and abstracts 

away actual underlying hardware better. Microsoft’s runtime or Sun’s JVM could be 

written as registry machine, but then, how many registers would be necessary? As they 

are only virtual, the best answer is - an infinite number of registers. Then we need a way 

of handling and reusing them. What would an optimal, abstract registry-based machine 

look like?

If we leave such problems away by letting something else (Java or .NET runtime, in 

this case) to make specific platform optimizations, it will translate either registry-based 

or stack-based mechanisms into specific registry-based architecture. But stack-based 

machines are conceptually simpler. Virtual stack machine (the one that is not executed 

by a real, hardware stack machine) can provide good platform independence while still 

producing high-performant code. Putting it together with the mentioned better code 

density makes a good choice for a platform to be run on a wide range of devices. That 

was probably the reason why Sun decided to choose that path when Java was invented 

for small devices like set-top boxes. Microsoft, while designing .NET, followed that path 

either. The stack machines concept is simply elegant, simple, and it just works. This 

makes implementing a virtual machine a nicer engineering task!
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On the other hand, registry-based virtual machines’ designs are much closer to 

the design of the real hardware they are running at. This is very helpful in terms of 

possible optimizations. Advocates of this approach say that much better performance 

can be achieved, especially in interpreted runtimes. The interpreter has much less 

time to proceed with any advanced optimizations so the more that the interpreted 

code is similar to the machine code, the better it is. Additionally, operating on the most 

frequently used set of registers provides a great cache locality of reference.3

As always, when making a decision, you need to make some compromises. The 

dispute between advocates of both approaches is long and unresolved. Nevertheless, 

the fact is that currently the .NET execution engine is implemented as a stack machine, 

although it is not completely pure - we will notice this in Chapter 4. We will see also how 

the evaluation stack is being mapped to the underlying hardware consisting of registers 

and memory.

Note are all virtual machines and execution engines stack machines? absolutely 
not! one notable exception is Dalvik, which was a virtual machine in Google’s 
android until the 4.4 version, which was a registry-based JVM implementation. it 
was an interpreter of intermediate “Dalvik bytecode.” But then Jit (Just in time 
compilation explained in Chapter 4) was introduced in Dalvik’s successor - android 
runtime (art). other examples include BeaM - a virtual machine for erlang/elixir, 
Chakra - Javascript execution engine in ie9, parrot (perl 6 virtual machine) and Lua 
VM (Lua virtual machine). no one can therefore say that this kind of machine is not 
popular.

 The Pointer
So far we have introduced only two memory concepts: static allocation and stack 

allocation (as a part of stack frame). The concept of a pointer is very general and could 

be spotted from the very beginning of the computing era - like previously shown concept 

3 Note: we will look at the importance of memory access patterns in the context of cache usage in 
Chapter 2.
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of instruction pointer (program counter) or stack pointer. Specific registers dedicated to 

memory addressing like index registers can be also seen as pointers.4

PL/I was a language proposed by IBM in about 1965, intended to be a general 

proposition for both scientific and business worlds. Although its goal was not quite 

achieved, it is an important element of history because it was the first language that 

introduced the concept of pointers and memory allocation. In fact, Harold Lawson, 

involved in PL/I language development, was awarded by IEEE in 2000 “for inventing 

the pointer variable and introducing this concept into PL/I, thus providing for the first 

time, the capability to flexibly treat linked lists in a general-purpose high level language.” 

That was exactly the need behind the pointer invention - to perform list processing and 

operate on other more or less complex data structures. The pointer concept was then 

used during the development of the C language, which evolved from the language B (and 

predecessors or BCPL and CPL). Only as late as the FORTRAN 90 version, a successor 

of FORTRAN 77, defined in 1991, introduced dynamic memory allocation (via allocate/

deallocate subroutines), POINTER attribute, pointer assignment, and the NULLIFY 

statement.

Pointers are variables in which we store the address of the position in memory. 

Simply put, it allows us to reference other places in memory by its address. Pointer size 

is related to word length mentioned before, and it results from the architecture of the 

computer. Thus nowadays, we typically deal with 32- or 64 bit-wide pointers. As it is 

just some small region of memory, it can be placed on the stack (for example, as a local 

variable or function argument) or CPU register. Figure 1-8 shows a typical situation 

where one of the local variables (stored within function activation frame) is a pointer to 

another memory region with the address Addr.

4 In the context of the memory addressing, an important enhancement was an index register 
introduced in the Manchester Mark 1 machine, the successor of “Baby.” An index register 
allowed us to reference memory indirectly, by adding its value to the other register. Hence, less 
instructions were required to operate on continuous memory regions like arrays.
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The simple idea of pointers allows us to build sophisticated data structures like 

linked lists or trees because data structures in memory can reference each other, creating 

more complex structures (see Figure 1-9). 
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Figure 1-8. Local variable of a function being a pointer ptr pointing to the 
memory under address Addr
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Figure 1-9. Pointers used to build double-linked list structure when each element 
points its previous and next elements
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Moreover, pointers can provide so-called pointer arithmetic. They can be added or 

subtracted to the reference relative part of memory. For example, the increment operator 

increases the value of the pointer by the value of the size of the pointed object, not by 

single byte as one could expect.

Pointers in high-level languages like Java or C# are often not available or must be 

explicitly enabled, and it makes such code unsafe. Why that is will be clearer when 

talking about manual memory management using pointers in the next subchapter.

 The Heap
Eventually, we reach the most important concept in the context of the .NET memory 

management. The heap (less known also as the Free Store) is an area of memory used for 

dynamically allocated objects. The free store is a better name because it does not suggest 

any internal structure but rather a purpose. In fact, one might rightly ask what is the 

relationship between the heap data structure and the heap itself. The truth is - there is 

none. While the stack is well organized (it is based on LIFO data structure concept), the 

heap is just more like a “black box” that can be asked for providing memory, no matter 

where it will come from. Hence “the pool” or mentioned “free store” would be probably 

a better name. The heap name was probably used from the beginning in a traditional 

English sense meaning “messy place” - especially the opposite of well-ordered, stack 

space. Historically ALGOL 68 introduced heap allocation but this standard was not 

widely adopted. But this is where this name probably come from. Fact is, the true 

historical origin of this name is now rather unclear.

The heap is a memory mechanism able to provide a continuous block of memory 

with a specified size. This operation is called dynamic memory allocation because both 

the size and the actual location of the memory need not be known at compile time. Since 

the location of the memory is not known at compile time, dynamically allocated memory 

must be referenced by a pointer. Hence pointer and heap concepts are inherently 

related.

An address returned by some “allocate me X bytes of memory” function should be 

obviously remembered in some pointer for future reference to a created memory block. 

It can be stored on a stack (see Figure 1-10), on the heap itself, or anywhere else.

               PTR ptr = allocate(10);
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The reverse operation of an allocation operation is called a deallocation, when the 

given block of memory is returned to the pool of memory for future use. How exactly 

heap is allocating a space with a given size is an implementation detail. There are many 

“allocators” possible, and we will learn about some of them soon.

By allocating and deallocating many blocks, we may end up with a situation where there 

is not enough free space for a given object, although in total there is enough free space on 

heap. Such situation is called heap fragmentation and may lead to significant inefficiency 

in memory usage. Figure 1-11 illustrates such problem, when there is not enough free 

continuous space for object X. There are many different strategies used by allocators to 

manage space as optimally as possible to avoid fragmentation (or make good use of it).
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Figure 1-10. Stack with pointer ptr and 10-bytes wide block on the heap
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Figure 1-11. Fragmentation - after deleting objects B and D, there is no enough 
space for new object X although in total there is enough free space for it
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Table 1-1. Comparison of the Stack and the Heap Features

Property The Stack The Heap

Lifetime scope of local variables (pushed on entry, 

popped on exit)

explicit (by allocate and optional 

free)

scope Local (thread5) Global (anyone who has a pointer)

access Local variable, function arguments pointer

access time Fast (probably cached memory region in the 

CpU)

slower (may be even temporarily 

saved to hard drive)

allocation Move stack pointer Different possible strategies

allocation 

time

Very fast (pushing stack pointer further) slower (depends on allocation 

strategy)

Freeing Move stack pointer Different possible strategies

Usage subroutine parameters, local variables, 

activation frames, not big compile-time size 

known data (arrays)

everything

Capacity Limited (typically few MB per thread) Unlimited (to extent of hard drive 

space)

Variable size no Yes6

Fragmentation no Likely

Main threats stack overflow Memory leak (forgetting to free 

allocated memory), fragmentation

It is also worth noting that whether there is a single heap or multiple heap instances 

within a single process is yet another implementation detail (we will see it when 

discussing .NET more deeply).

Let’s make a short summary of the stack and the heap differences in Table 1-1.

5 This is not entirely true as you can pass a pointer to the stack variable to other threads. However, 
it is definitely abnormal usage.

6 Due to the dynamic nature of the heap, there are functions allowing us to resize (reallocate) a 
given block of memory.
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Besides their differences, most commonly both the stack and heap are located at 

opposite ends of the process’s address space. We will return to a detailed stack and 

heap layout inside the process address space when considering low-level memory 

management in Chapter 2. Nevertheless, one should remember it is still just an 

implementation detail. By providing abstractions of value and reference types (which 

will be introduced in Chapter 4), we should not care where they are created.

Now let’s now move forward to the discussion over manual versus automatic 

memory management. As Ellis and Stroustrup write in The Annotated C++ Reference 

Manual:

C programmers think memory management is too important to be left to 
the computer. Lisp programmers think memory management is too impor-
tant to be left to the user.

 Manual Memory Management
Until now what we have been seeing was a “manual memory management.” What it 

means, in particular, is that a developer is responsible for explicitly allocating memory, 

and then when it is no longer needed, she should deallocate it. This is real manual 

work. It’s exactly like a manual gear in most European cars. I am from Europe and we 

are just used to manually changing the transition. We must think whether it is a good 

time to change it now, or we should wait a few seconds until the engine speed is high 

enough. This has one big advantage - we have complete, full control over the car. We 

are responsible whether an engine is used optimally or not. And as humans are still 

much more adaptive to changing conditions, good drivers can make it better than an 

automatic gear. Of course, there is one big disadvantage. Instead of thinking about our 

main goal - getting from place A to place B, we have to additionally think about changing 

gears - hundreds, thousands of times during a long trip. This is both time consuming and 

tiresome. I know some people will say that it is fun and giving control to the automatic 

gear is boring. I can even agree with them. But still, I quite like how this automotive 

metaphor relates the memory management.

When we are talking about explicit memory allocation and deallocation, it is exactly 

like having a manual gear. Instead of thinking about our main goal, which is probably 

some kind of a business goal of our code, we must think also about how to manage 

memory of our program. This moves us back from the main goal and takes our valuable 

attention. Instead of thinking about algorithms, business logic, and domains, we are 
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obliged to think also about when and how much memory I will need. For how long? And 

who will be responsible for freeing it? Does it sound like business logic? Of course not. 

The question whether it is good or is not another story.

The well-known C language was designed by Dennis Ritchie somewhere around 

the early 1970s and had become one of the most widely used programming languages 

in the world. The history how C evolved from ALGOL through intermediate languages 

CPL, BCPL, and B is interesting on its own, but in our context, it is important that 

altogether with Pascal (being a direct ancestor of ALGOL), they were the two most 

popular languages with explicit memory management at the time. Regarding C, without 

a doubt, I can say that a compiler of it has been written for any hardware architecture 

ever created. I will not be surprised if alien spaceships had their own C compiler on 

board (probably implementing TCP/IP stack as an example of another widely used 

standard). The relevance of this language on other programming languages is huge and 

not to imagine. Let’s pause for a moment and take a deeper look into it in the context of 

memory management. This will allow us to list some of the characteristics of the manual 

memory management.

Let’s look at simple example code written in C at Listing 1-4.

Listing 1-4. Sample C program showing manual memory management

#include <stdio.h>

void printReport(int* data)

{

    printf("Report: %d\n", *data);

}

int main(void) {

    int *ptr;

    ptr = (int*)malloc(sizeof(int));

    if (ptr == 0)

    {

        printf("ERROR: Out of memory\n");

        return 1;

    }
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    *ptr = 25;

    printReport(ptr);

    free(ptr);

    ptr = NULL;

    return 0;

}

This is, of course, a little exaggerated example but thanks to it we can illustrate the 

problem clearly. We can notice that this simple code has in fact only one simple business 

goal: printing “a report.” For simplicity, this report consists only of a single integer, but 

you can image it is a more complex structure containing pointers to other data structures 

and so on. This simple business goal looks over-helmed by a lot of “ceremony code” 

taking care of nothing more than memory. This is a manual memory management in its 

essence.

Summarizing the above piece of code, besides business writing logic, a developer 

must:

• allocate a proper amount of memory for the required data using 

malloc function.

• cast returned generic (void*) pointer to proper pointer type (int*) 

to indicate we are pointing to the numerical value (int type in  

case of C).

• remember the pointer to the allocated region of memory in local 

pointer variable ptr.

• check whether it succeeded in allocating such amount of memory 

(returned address will be 0 in case of failure).

• dereference the pointer (access memory under its address) to store 

some data (numerical value of 25).

• pass the pointer to other function printReport, that dereferences it 

for its own purpose.

• free allocated memory when it is no longer needed using free 

function.
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• to be assured we should mark the pointer with a special NULL value 

(which is a way of telling this pointer points to nothing and in fact 

corresponds to value of 07).

As we see, there are a lot of things to be kept in mind by us when we must manage 

memory manually. Moreover, each of the above steps can be mistakenly used or 

forgotten, which can lead to bunch of serious problems. Going through each of those 

steps, let’s see what bad things can happen:

• We should know exactly how much memory we need. It is as simple 

as sizeof(int) in our example, but what if we dealt with much more 

complex, nested data structures? One can easily imagine a situation 

in which we allocate too little memory because of some minor error 

in manual calculations of the required size. Later, when we want to 

write or read from such a memory region, we will probably end up 

with Segmentation Fault error - trying to access memory that has not 

been allocated by us or allocated for another purpose. On the other 

hand, by a similar mistake we can allocate way too much memory, 

which will lead us to memory inefficiency.

• Casting can be always error prone and can introduce really hard 

to diagnose bugs if we accidentally introduce a type mismatch. 

We would be trying to interpret a pointer of some type as it was 

a completely different type, which easily leads to danger access 

violations.

• Remembering the address is an easy thing. But what if we forget to do 

that? We will have a bunch of memory allocated and no way to free 

it - we’ve just forgotten its address! This is a direct path to the memory 

leak problem, as unfreeable memory can grow in time endlessly. 

Moreover, a pointer can be stored in something more complicated 

than a local variable. What if we forget a pointer to a complex graph 

of objects because we freed some structure containing it?

• A single check whether we were able to allocate the desired amount 

of memory is not cumbersome. But doing it a hundred times in each 

7 The implementation details of the NULL value in case of .NET will be explained in Chapter 10.
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and every function for sure will be. We are probably going to decide 

to omit those checks, but this may lead us to undefined behavior in 

many points of our application, trying to access memory that was not 

successfully allocated in the first place.

• Dereferencing pointers is always dangerous. No one ever knows 

what is at the address pointed by them. Is there still a valid object, 

or maybe it has been freed already? Is this pointer valid in the first 

place? Does it point to the proper user-memory address space? 

Full control over a pointer in languages like C leads to such worries. 

Manual control over pointers leads to serious security concerns - it 

is only the programmer who must take care about not exposing data 

beyond regions that should be available according to the current 

memory and type model.

• Passing the pointer between functions and threads only multiplicates 

worries from the previous points in the multithreaded environment.

• We must remember to free the allocated memory. If we omit this 

step, we get memory leak. In an example as simple as the one above, 

it is of course really hard to forget about calling free function. But it 

is much more problematic in more sophisticated code bases, when 

ownership of data structures is not so obvious and where pointers to 

those structures are passed here and there. There is also yet another 

risk - no one can stop us from freeing memory that has been already 

freed. Yet it is another occasion to undefined behavior and a likely 

cause of segmentation fault.

• Last but not least, we should mark our pointer as NULL (or 0 or 

whatever we can name it) to note that it no longer points to a valid 

object. Otherwise it is called a dangling pointer, which sooner or later 

will lead to Segmentation Fault or other undefined behavior because 

it can be dereferenced by someone who believes it represents still 

valid data.

As we can see from the developer perspective, explicit memory allocation and 

deallocation can become really cumbersome. It is a very powerful feature, which for 

sure has its perfect applications. Where extreme performance matters and the developer 

must be 100% sure what is going under the hood - this approach can be found useful. 
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But “with great power comes great responsibility” so this is a two-edged sword. And as 

software engineering evolved, so languages were becoming more and more advanced in 

terms of helping the developer to escape from all those worries.

Going further, the C language direct successor, C++, has not changed a lot in this 

field either. However, C++ is worth devoting a few moments to because is so popular and 

introduces other broadly used concepts. As we all know, it is the language with manual 

memory management. Translating the previous example into C ++, we get the code as in 

Listing 1-5.

Listing 1-5. Sample C++ program showing manual memory management

#include <iostream>

void printReport(int* data)

{

    std::cout << "Report: " << *data << "\n";

}

int main()

{

    try

    {

        int* ptr;

        ptr = new int();

        *ptr = 25;

        printReport(ptr);

        delete ptr;

        ptr = 0;

        return 0;

    }

    catch (std::bad_alloc& ba)

    {

        std::cout << "ERROR: Out of memory\n";

        return 1;

    }

}
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In the context of our considerations we can spot some significant improvements:

• The new operator takes care to allocate enough memory, knowing 

how much it needs, thanks to the support of the compiler (which 

suggests proper type size).

• We need not cast the obtained pointer to the appropriate type. This 

removes some type safety concerns we were considering previously.

• Error handling is also improved as we are not obliged to check 

allocation success manually, because an exception will be thrown in 

case of a problem.

Still, we do see a lot of ceremony code in this example. There is also a new concern 

introduced. What if printReport() function will throw an exception? Without proper 

error handling, we can easily omit delete operator and introduce a memory leak. Fixing 

our sample code is easy, but it can be not so obvious in more complex applications as 

ownership of the data (who and on which layer should delete such pointers) may be not 

trivial.

All problems we saw in this chapter are additionally exaggerated in multithreaded 

environments, when pointers can be shared between multiple units of execution. Careful 

synchronization must be considered to not allow mixing invalid data. For example, what 

if one threads check whether a given pointer is valid (not NULL), while the other, just after 

that, will free memory pointed by it? Such situations can lead to intermittent and very 

hard to diagnose problems. In explicit memory management world, it is a developer 

responsibility to provide a suitable synchronization mechanism to avoid such situations.

the C++ example presented in Listing 1-5 is on purpose not aligned with the 
current memory usage patterns in this language. it should use some sort of raii 
(resource acquisition is initialization) technique - where a resource (like memory) 
is represented by a local variable of type implementing some kind of memory 
ownership logic. an example of such will be presented later in Listing 1-10. 
although, as we will see, such patterns help to solve some of the problems, they 
do not change a lot in our general discussion about manual and automatic memory 
management. 
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 Automatic Memory Management
To overcome problems with manual memory management and provide the programmer 

a more pleasing way of handling it, different automatic memory management 

approaches have been proposed. It is interesting to know that as old as the second oldest 

high-level programming language - LISP - proposed about 1958 (just a few years after 

FORTRAN), have much to offer in this field. As in a mainly functional language heavily 

based on the processing of the lists - manual memory management would be very 

uncomfortable. A functional programming paradigm treats programs as an evaluation 

of combined functions and strongly avoids modification of data (mutation) and side 

effects. Allocating and deallocating memory is heavily mutable and has obvious side 

effects. Handling memory in such a way in functional code would clutter it a lot with 

imperative smell, while LISP was designed to be a highly declarative language. As 

LISP language creator said, “it was going to make everything absolutely ugly to have to 

explicitly erase lists.” Hence, something more sophisticated had to be developed. The 

very first versions of LISP had a built-in eralist (erase list) function, but it was removed 

after automatic memory management had been introduced.

In general, LISP was a very innovative language, and the design of it have helped to 

invent many important computer science ideas, and automatic memory management 

was one of them. In fact, John McCarthy, one of the co-founders of Artificial Intelligence 

and the inventor of LISP, is also a father of the first garbage collection algorithms. Many 

of the ideas thought then are still valid and used in languages today. One can certainly 

say that automatic memory management was born in LISP. The first paper written by 

McCarthy in 1958 introduced the Mark and Sweep algorithm that we will investigate in 

depth in later chapters because it is still used in the .NET environment and many other 

places.

LISP, thanks to its expressiveness and conciseness, represents our sample program in 

a simple form shown in Listing 1-6.
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Listing 1-6. Sample LISP program showing automated memory management

(defun printReport(data)

   (write-line (format nil "Report: ~a" data))

)

(prog

   ((ptr 25))

   (printReport ptr)

)

Thanks to automatic memory management, all the code clutter has gone, and we can 

clearly see the high-level description of the program business goal - printing “a report.”

An interesting anecdote is one by John McCarthy in the paper on LISP design, 

“Recursive Functions of Symbolic Expressions and Their Computation by Machine,  

Part I.” He described this mechanism succinctly but named it simply as “reclamation.” 

Later, he annotated this part:

We already called this process “garbage collection,” but I guess I chickened 
out of using it in the paper - or else the Research Laboratory of Electronics 
grammar ladies wouldn’t let me.

Besides its name, the idea was there and ready to implement. Currently the 

automatic memory management mechanism and garbage collection names are used 

interchangeably. We can define it as a mechanism that removes from the programmer 

the responsibility of manual memory management so that once created, objects are 

automatically destroyed (and the memory after them recovered) when no longer 

needed.

One of the main messages I would like to give in this book is the fact that even when 

memory management is fully automatic, it can cause problems. As a small confirmation, 

it is worth quoting a fun fact regarding first LISP’s implementation of garbage collection. 

As McCarthy recalls in the book History of Programming languages I, during the very first 

public demonstration of LISP in one of MIT’s Industrial Liaison Symposia, due to minor 

oversight, the Flexowriter (the electric typewriter of those times) started to print a lot of 

pages with an error message beginning with:

THE GARBAGE COLLECTOR HAS BEEN CALLED. SOME INTERESTING 
STATISTICS ARE AS FOLLOWS
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Due to this, the presentation had to be canceled while the audience was full of 

laughs. No one ever known it was due to garbage collector misuse, only John itself. And 

while it was rather a human than algorithmic error, still we can say garbage collectors 

make troubles from the very beginning!

 Allocator, Mutator, and Collector
Mutators and other concepts we are going to familiarize with in this chapter are 

important terms in the automatic memory management academic research. Thanks 

to clear definitions, we can distinguish them later in academic and technical papers 

without ambiguity. One can say about, for example, an “overhead on Mutator” of specific 

algorithms. When considering various garbage collection designs, there will often be a 

discussion about the impact of the Collector on the Mutator and vice versa. Let’s look 

closer at those terms.

 The Mutator

Among the few basic concepts related to memory management, the most basic one and 

the pretty important one at the same time is an abstraction called the Mutator. In its 

simplest version, we can define a Mutator as an entity that is responsible for executing 

application code. Its name comes from the fact that Mutator mutates (changes) the state 

of the memory - objects are being allocated or modified and references between them 

are being changed. In other words, Mutator is a driving machine of all the changes in 

the application with respect to the memory. This name was coined (among others, in 

the same paper) by Edger Dijkstra in 1978 in the paper, “On-the-Fly Garbage Collection: 

An Exercise in Cooperation,” where we can find detailed elaboration on this topic. An 

interesting side fact is that Dijkstra’s proposition from this quite old paper is still being 

used, for example, by the Go language in 2015 and with good results.

I like the Mutator abstraction as it provides a nice and clean categorization of things 

inside a specific framework or runtime. We can define the Mutator as everything that 

has the possibility to modify memory, either by modifying existing objects or by creating 

new ones. Although it is not strict, additionally, we can extend it to everything that can 

read memory (as reading is a crucial operation for program execution). This leads us to 
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an important observation. To be fully operable, Mutator needs to provide the running 

application three kind of operations:

• New(amount) - allocate a given amount of memory, which then will 

be used by a newly created object. Please note that at this abstraction 

level, we are not considering an object’s type information, which 

may be or not be available from runtime. We are just providing the 

required size of the memory to be allocated.

• Write(address, value) - write a specified value under a given 

address. Here we also abstract whether we are considering an object 

field (in object-oriented programming), global variable, or any other 

kind of data organization.

• Read(address) - read a value from the specified address.

In the simplest world, where none of the garbage collection algorithms exists, those 

three operations have trivial implementation (written in C-like pseudo- code at  

Listing 1-7).

Listing 1-7. Three main Mutator’s methods implementation without automated 

memory management

Mutator.New(amount)

{

   return Allocator.Allocate(amount);

}

Mutator.Write(address, value)

{

   *address = value;

}

Mutator.Read(address) : value

{

   return *address;

}
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But in the world of automated garbage collection, those three operations are 

places when Mutator cooperates with the garbage collector (Collector) and allocation 

mechanism (Allocator). How this cooperation looks and how much it disturbs the 

simplicity of the above implementations is one of the most important design concerns. 

The most common enhancement we will meet in this book is adding a so-called barrier - 

either it will be a read barrier or a write barrier. A barrier is a way of augmenting an 

additional operation before or after particular operations. Barriers let us synchronize 

(directly or indirectly, synchronously or asynchronously) with the garbage collector 

mechanism to inform about the execution of the program and the memory usage. Three 

methods from Listing 1-7 are the injection points that every garbage collector may 

wish to plug in. We will return to some of the most common possible variations in the 

following chapters when describing different garbage collection algorithms.

In the everyday reality of developers, the most often implementation of the Mutator 

abstraction is a well-known thread. It suits out the definition perfectly - it is a single 

unit that runs code and mutates objects and references graphs between objects. This is 

perfectly intuitive for us, because the vast majority of the most popular runtimes uses 

this implementation. Among a lot of other functionalities, threads, via some additional 

layer, communicates with the operating system to allow operations New, Write, and 

Read.

Mutators do not have to be implemented as threads in the terms of the operating 

system threads. The popular example can be Erlang ecosystem with its processes - they 

are managed as super lightweight co-routines living in the runtime itself. They can be 

seen as so-called “green threads,” but in the terms of Erlang VM it is better to call them 

“green processes” as the separation enforced by runtime is much stronger than between 

thread-like entities. This means they are entities managed on the runtime level, not the 

operating system level. Another common implementation of Mutator could be based on 

so-called fibers, lightweight units of execution implemented both in Linux and Windows.

 The Allocator

Mutator has to be able to consume New operation, which we discussed in the previous 

point. When it comes to internals of those methods, sooner or later another very 

important concept must be mentioned - the Allocator. By simple means, Allocator is 

an entity responsible for managing dynamic memory allocation and deallocation. As 

we mentioned before, in ancient languages like ALGOL or FORTRAN, there was no 

Allocator, as there was no dynamic memory allocation at all.
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Allocator must provide two main operations:

• Allocator.Allocate(amount) - allocates a specified amount of 

memory. This can be obviously extended by methods able to allocate 

memory for a specific type of object if type information is available 

for Allocator. As we have seen, this is internally used by Mutator.New 

operation.

• Allocator.Deallocate(address) - frees a memory under a given 

address to be available for future allocations. Please note that in 

case of automatic memory management, this method is internal 

and not exposed to the Mutator (and hence, no user code can call it 

explicitly).

The idea can appear to be really simple, not to say - trivial. But as we will see, it is 

not as easy as one would expect. There a lot of different aspects of Allocator design. And 

as always, in fact, all is about trade-offs, mainly between performance, implementation 

complexity (which leads directly to maintainability), and others. We will dig into the two 

most popular kinds of allocators: sequential and free-list. But as it is an implementation 

detail, it will be much better to learn about them in the specific context of the .NET in 

Chapter 4.

 The Collector

While we defined a Mutator as an entity that is responsible for executing application 

code, we can similarly define the Collector as an entity that runs garbage collection 

(automatic memory reclaiming) code. In other words, we can see a Collector as a piece 

of software (code) or thread executing it, or both. It depends on the context.

How does Collector know which objects are no longer needed and can be 

deallocated? This is an impossible problem because it should in fact guess the future - is 

a specific object going to be used anymore? It depends on the code that will be executed, 

and this may furthermore depend on independent factors such as user actions, external 

data, and so on. An ideal Collector would know the liveness of the object - live objects are 

those which will be needed. In opposite - dead (or garbage) objects are not going to be 

used and can be destroyed. Obviously, therefore commonly Collector is called Garbage 

Collector or GC in short.
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There is an interesting consequence of Mutator, Allocator, and Collector cooperation. 

Please note again that as there is no public Allocator.Deallocate method exposed, 

Mutator has no possibility to explicitly free memory obtained. Mutators can only ask to 

allocate more and more memory as there would be an infinite source of it. This indeed 

means that Garbage Collection mechanism is in fact a simulation of a computer with an 

infinite amount of memory. How this simulation works and how efficient it is become an 

implementation detail.

One can think of a special Garbage Collector that does not free allocated memory 

at all. It is being called Null or Zero Garbage Collector. It would work correctly only on 

computers with an infinite amount of memory, which unfortunately does not yet exist. 

But Null Garbage Collectors are not without any practical usage. It may be used for 

example for very short living programs where unbounded memory growth is acceptable. 

Maybe they will become more and more popular in the world of server-less, short- 

running single functions. An example draft of such Zero Garbage Collector for .NET is 

presented in Chapter 15.

Because knowing a liveness of an object is impossible,8 Collector is based on a 

less strict property of the object - whether it is reachable by any Mutator. Reachability 

of an object means that there is a sequence of references (starting from any Mutator’s 

accessible memory) between objects that eventually leads to that object (see Figure 1- 12).  

Reachability obviously does not mean liveness of an object but it is the best approximate 

we can have. If an object is not reachable from any Mutator, it cannot be used anymore, 

so it is dead (garbage) and can be safety reclaimed. The opposite is obviously not 

truth. The reachable object can stay reachable forever (kept by some complex graph of 

references) but because of the execution conditions may be never accessed and as such 

it is dead. In fact, it is between liveness and reachability where most managed memory 

leaks reside.

8 In Chapter 4 we will discuss escape analysis - a method for determining the true liveness of 
pointers for at least some special cases.
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Mutator’s starting points in terms of reachability are called roots. What they exactly 

are depends on specific Mutator implementation. But in most common cases, where a 

Mutator is simply a thread (represented by operating system-based native thread), roots 

can be:

• local variables and subroutine arguments - placed on stack or stored 

in registers.

• statically allocated objects (e.g., global variables) - placed on the 

heap.

• other internal data structures stored inside Collector itself.

Having knowledge about three major building blocks - Mutator, Allocator, and 

Collector - we could now move on to getting familiar with a plethora of different 

automatic memory management approaches. While it is tempting to provide a 

comprehensive list with detailed description of all of them, this is much more this book 

can cover. Instead, we will learn about some of the major, most popular approaches we 

can meet in today’s languages.

 Reference Counting
One of the two most popular methods of automatic memory management is called 

Reference Counting. The idea behind it is very simple. It is based on counting the 

number of references to an object. Every object has its own reference counter. When an 

object is being assigned to a variable or a field - the number of references to it is being 

Figure 1-12. Reachability - objects C amd F are not reachable because there is no 
path from roots (Mutator's locations) leading to them
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increased. At the same time, the reference counter of the object to which this variable 

was previously indicated decreases.

The liveness of objects in the reference counting approach is being tracked by 

the number of objects referencing a referent. If the counter drops to zero, no one is 

referencing an object and thus it can be deallocated. But what if the counter does not 

drop to zero? This says nothing about the liveness of an object - it says only that someone 

is keeping a reference to it, not that it will use it. Thus, reference counting is yet another 

less strict way of guessing liveness of an object.

Coming back to our trivial Mutator example from Listing 1-7, in case of reference 

counting, it could be described as shown at Listing 1-8.

Listing 1-8. Pseudo-code describing simple reference counting algorithm

Mutator.New(amount)

{

   obj = Allocator.Allocate(amount);

   obj.counter = 0;

   return obj;

}

Mutator.Write(address, value)

{

   if (address != NULL)

      ReferenceCountingCollector.DecreaseCounter(address);

   *address = value;

   if (value != NULL)

      value.counter++;

}

ReferenceCountingCollector.DecreaseCounter(address)

{

   *address.counter--;

   if (*address.counter == 0)

      Allocator.Deallocate(address)

}
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The reference counting behavior is illustrated by a simple program in Figure 1-13 

and Listing 1-9. Three simple lines of code are rewritten in terms of Mutators’ methods 

to show how references change.

Listing 1-9. Sample pseudo-code illustrating reference counting

o1 = new SomeObject();

o2 = new SomeObject();

o2 = o1;

// becomes:

addr1 = Mutator.New(SizeOf(SomeObject))    // addr1.counter = 0

Mutator.Write(&o1, addr1)                  // addr1.counter = 1

addr2 = Mutator.New(SizeOf(SomeObject))    // addr2.counter = 0

Mutator.Write(&o2, addr2)                  // addr2.counter = 1

Mutator.Write(&o2, &o1)                    //  addr1.counter = 0; addr2.

counter = 2

As we see at Listing 1-9, a big overhead has been added to the Mutator.Write 

operation. It must check and modify counter data and take a deallocation action if the 

counter drops to zero. This becomes much more complicated in a multithreaded (where 

multiple Mutators are working in parallel) environment. In such a case, those operations 

should be thread-safe so synchronization adds its own additional overhead. Mutator.

Write is a very common operation (introduced by any assignment), so an overhead in 

it introduces significant overhead for a whole program execution. Moreover, from an 

implementation point of view, it is not obvious where to store objects’ counters. This can 

be a dedicated space or some kind of header kept as close to the object itself as possible. 

In both cases, it does not change the fact that each assignment generates additional 

o1 addr1

counter=1

o2 addr2

counter=1

o1 addr1

counter=0

o2 addr2

counter=2

Mutator.Write(&o2, &o1)

Figure 1-13. Reference counting illustration of Listing 1-8
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value 1 next value 2 next

HEAD

Figure 1-14. Reference counting circular reference problem

memory writes, which are very undesirable. This may also lead to inefficient CPU cache 

usage, but this is a topic we will learn about more in the following chapter.

If we return to the reachability property mentioned before, one can say that reference 

counting is approximating liveness by local references and does not track a global state 

of an object graph of references. In particular, without any additional improvements, it 

can be mistaken by circular references. Such can be found in popular data structures like 

double-linked lists (see Figure 1-14). In such a case, the reference counter never drops 

to zero as the data structure with value1 and data structure with value2 points to each 

other.

However, creating circular references can be made difficult on the language level, 

which is a win situation. In this case, the reference count algorithm may be used without 

much concern for memory leaks resulting from this problem.

One very big advantage and source of reference counting popularity is the fact it does 

not require any runtime support. It can be implemented as an additional mechanism 

for some specific types in the form of external library. It means that we can leave original 

Mutator.New and Mutator.Write intact and just introduce higher-level counterparts 

of such logic like classes with properly overloaded operators and constructors. For 

example, this is exactly the case with the most popular C++ implementations.

So-called smart pointers (also known as intelligent pointers) were introduced, which 

in a more sophisticated way manage the lifetime of objects they point to. From an 

implementation point of view, smart pointers in C++ are in fact just template classes that 
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behave like normal pointers by appropriate operator overloading. In case of C++ we can 

use two kinds of them:

• unique_ptr that realizes unique ownership semantics (such as the 

pointer is a sole owner of an object that is going to be destroyed as 

soon as unique_ptr goes out of scope or another object is assigned  

to it).

• shared_ptr that realizes reference counting semantics.

Continuing with our sample code from Listing 1-5, using smart pointers we may 

result in the C++ code as presented in Listing 1-10.

Listing 1-10. Sample C++ program showing automated memory management 

with usage of smart pointers

#include <iostream>

#include <memory>

void printReport(std::shared_ptr<int> data)

{

    std::cout << "Report: " << *data << "\n";

}

int main()

{

    try

    {

        std::shared_ptr<int> ptr(new int());

        *ptr = 25;

        printReport(ptr);

        return 0;

    }

    catch (std::bad_alloc& ba)

    {

        std::cout << "ERROR: Out of memory\n";

        return 1;

    }

}
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If we called data.use_count() method inside the printReport function, it would 

result in the value 2 because inside this function two different shared pointers point to 

the same object. On the other hand, after going out from try block scope, the use count 

will be 0 because no more smart pointers are pointing to our object.

please note that code from Listing 1-10 is not aligned with C++ good practices. 
passing a smart pointer just to read underlying data should be rather done by 
a constant reference (const&) than by a value, but this would not increase a 
reference count; hence it is not useful for our explanatory purposes. 

We see big further improvement in such code because:

• We do not have to manually destroy an object using the delete 

operator.

• Exception handling is simplified because in case of any exception 

being thrown by a printReport() function, the smart pointer is just 

going out of the try region scope (and all enclosed scopes either) so 

it will be automatically destroyed. This is thanks to the RAII (Resource 

Acquisition Is Initialization) principle mentioned before, which takes 

care about the lifetime of the object based on the variable scope of 

the pointer it is represented by.

Shared and unique pointers can also be used as fields in the classes, which makes 

them quite powerful and useful tools.

The problem is smart pointers in C++ were introduced on the standard library level, 

not the language itself. Other libraries were introducing their own implementations, 

and it was sometimes problematic to make all them speaking with each other nicely. Qt 

has its QtSharedPointer, wxWidgets has wxSharedPtr<T> and so on. Without support of 

the compiler and the language it just must be like that. This is why automatic memory 

management is so crucial in the component-oriented9 programming like .NET. When 

.NET was born, moving responsibility about memory management from developer to 

the runtime itself was one of the major, crucial design decisions. A common platform of 

how objects are created, managed, and reclaimed means each component will reuse it in 

the same way, and there is no coupling between components other than runtime itself.

9 This consists of many smaller, interchangeable dependencies.
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Regarding C++ it is interesting to note that Bjorne allowed more sophisticated GC in 

the C++ standard - it is not prohibited, it is just not yet implemented. Moreover, thanks 

to flexibility of the C++, although with the Memory Pool System, or the Boehm–Demers–

Weiser collector, it is possible to use garbage collection as an extended library - we will 

introduce it shortly.

Other languages can incur smart pointers (incorporating reference counting) directly 

into their design and it is exactly the case with Rust - a modern, low-level programming 

language created by Mozilla. It enforces data safety on the compilation level by 

incorporating the concept of smart pointers (a few different kinds of them in fact) into 

the language. It strongly uses ownership semantics and the RAII principle, which allows 

to check at the compilation time whether there are no violations like dereferencing a 

dangling pointer. Another notable usage of reference counting is Automatic Reference 

Counting build into Swift language.

A brief summary of the drawbacks and advantages of reference counting is as follows:

Advantages:

• Deterministic deallocation moment - we know that deallocation will 

happen when an object’s reference counter will drop to zero. Therefore, 

as long as it is no longer needed, the memory will be reclaimed.

• Less memory constraint - as memory is reclaimed as fast as objects 

are no longer used, there is no overhead of memory consumed by the 

objects waiting to be collected.

• Can be implemented without any support from the runtime.

Disadvantages:

• Such a naive implementation as at Listing 1-8 introduces very big 

overhead on Mutator.

• Multithreading operations on reference counters require well- 

thought synchronization, which can introduce additional overhead.

• Without any additional enhancements, circular references cannot be 

reclaimed.

There are improvements to naive Reference Counting algorithms like Deferred 

Reference Counting or Coalesced Reference Counting, which eliminate some of these 

problems at the expense of some of the advantages (mainly immediate reclamation of 

memory). However, describing them here is far beyond the scope of this book.
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 Tracking Collector
Finding objects’ reachability is hard because it is an object’s global attribute (it depends 

on the whole object graph of the whole program), and the simple explicit call for freeing 

an object is very local. In this local context, we are not aware of the global context - are 

other objects using this object now? Reference Counting tries to overcome that by 

looking only at this local context with some additional information - the number of 

references to an object. But this obviously can lead to problems with circular references 

and has others drawbacks as we seen before.

Tracking Garbage Collector is based on knowledge of global context of an object’s 

lifetime and can make a better decision whether it is good time to delete an object 

(reclaim memory). It is, in fact, such a popular approach that almost certainly when 

someone says something about Garbage Collector, he probably means Tracking Garbage 

Collector. We can encounter it in runtimes like .NET, different JVM implementations, 

and so on.

The core concept is that Tracking Garbage Collector finds true reachability of an 

object by starting from the Mutator’s roots and recursively tracks the whole object’s 

graph of a program. This is obviously not a trivial task because process memory can 

take several GB and tracking all interobject references in such big volumes of data can 

be difficult, especially while Mutators are running and changing all those references all 

the time. The most typical approach of Tracing Garbage Collector consists of two main 

steps:

• Mark - during this step Collector determines which objects in 

memory can be collected by finding their reachability.

• Collect - during this step Collector reclaims memory of objects that 

were found to not be longer reachable.

Implementation of this simple two-phase logic can be extended as is exactly the case 

in .NET that can be described as Mark-Plan-Sweep-Compact. We will see those internal 

workings in detail in the next chapters. For now, let’s just look at the Mark and Collect 

steps in more general way as they also incur interesting issues.
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 Mark Phase
During the Mark step Collector determines which objects in memory should be 

collected by finding their reachability. Starting from Mutator’s roots, Collector travels 

through the whole objects graph and marks those which were visited. Those objects 

that are not marked at the end of Mark phase are not reachable. Thanks to an object’s 

marking, there is no problem with cyclic references. If during the graph’s traversing we 

will get back to a previously visited object, we break further traversing because the object 

is already marked.

A few starting steps of such an algorithm are presented on Figure 1-15. Starting from the 

roots, we travel inside object’s graph through interobjects references. It is an implementation 

detail whether we are visiting this graph in a depth-first or breadth-first manner. Figure 1-15 

shows a depth-first approach, showing three possible states of each object:

• Not yet visited object, marked as a white box.

• Object remembered to be visited, marked as light gray box.

• Object already visited (marked as reachable), marked as  

dark gray. box

The first steps illustrated in Figure 1-15 may be described as follows (with each step 

describing the corresponding subfigure):

 1. Initially all objects are not yet visited

 2. An object A is added to be visited, as the first root.

 3. As an object A has pointers (as fields) to objects B and D, they 

are added to be visited. Object A itself is at this stage marked as 

reachable.

 4. Next object from “to visit” set is being visited - an object B. As 

it does not have any outgoing references, it is simply marked as 

reachable.

 5. Next object from “to visit” set is being visited - an object D. It 

contains a single reference to object E so it is remembered to be 

visited. Object D itself is marked as reachable.

 6. Object’s E outgoing reference to object G is remembered to be 

visited. Object E is itself marked as reachable.
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 7. The last object from “to visit” set is being visited - an object G. It 

contains no references to it is simply marked as reachable. At this 

stage, there are no more objects to be visited so we have identified 

that objects C and F are not reachable (dead).

Figure 1-15. A few first steps of Mark phase
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Obviously traversing such a graph is hard during normal Mutator’s work as the 

graph is changing constantly due to normal program execution - creating new objects, 

variables, object’s field assignments, and so on. Therefore, in some Garbage Collector 

implementations all Mutators are simply stopped for the duration of Mark phase. This 

allows for a safe and consistent traverse of the graph. Of course, as soon as the threads 

resume operation, the knowledge that Collector holds based on the object graph 

becomes obsolete. But this is not a problem for non-reachable objects - if they were not 

reachable before, they never become reachable again. However, there are many Garbage 

Collector implementations where the Mark phase is done in a concurrent flavor, so 

the marking process can be run alongside with the Mutator’s code. This is the case for 

popular algorithms like CMS in JVM (Concurrent Mark Sweep), G1 in JVM, and in .NET 

itself. How exactly such concurrent marking is implemented in .NET will be described in 

detail in Chapter 11.

There is one not obvious problem with a Mark phase. To track reachability, Collector 

should be able to know the roots and know where on the heap are placed references to 

other objects. It is a trivial problem if runtime supports such an information. But it can 

be overcome also in a different way.

 Conservative Garbage Collector

This type of Collector can be seen as a poor man’s solution. It can be used when the 

runtime or compiler does not support collection directly by providing exact type 

information (object’s layout in memory) and Collector does not get Mutator’s support 

when operating on pointers. If the so-called Conservative Collector wants to find out 

what objects are reachable, it is scanning whole stack, static data areas and registers. 

As without any help it does not know what is a pointer or not, it simply tries to guess 

that. It does that by checking a several things (and all depends on specific Collector 

implementation), but the most important one check is whether interpreting a given 

word as an address (pointer) points to a valid, managed by Allocator heap region? If it 

does so, Collector conservatively (hence its name) assumes it is a pointer indeed. And 

it treats it as a reference to follow as in generic Mark phase graph traversing described 

above.

Obviously, Collector can be mistaken in guessing which will lead to some 

inaccuracy - random bits can look as a valid pointer with a proper address. This will 

lead to retain memory that is garbage. This is not a very common problem as most 

numerical values in memory are rather small (counters, financial data, indexes) so the 
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only problem can be with dense binary data like bitmaps, floating-point numbers or 

certain blocks of IP addresses.10 There are subtle algorithm’s improvements that help 

to overcome that issue but we will not touch it here. Moreover, conservative reporting 

means you are not able to move objects around in memory. This is because you must 

update pointers to moved objects, which is obviously not possible if you are not sure 

whether something looking as a pointer is a pointer indeed.

So who may need such a Collector in the first place? Its main advantage is it can work 

without support of the runtime - in fact it just scans memory and so runtime support 

(reference tracking) is not needed. This is therefore, for example, convenient approach 

when developing a new runtime when full type information for GC is not yet developed. 

Without blocking of the work, the development of the rest of the system may take place. 

When providing the right type information is already implemented, you can simply turn 

off conservative tracking. Microsoft has used such an approach when developing some 

versions of their runtime.11

However, Conservative Collector requires the support of Allocator to overcome 

problems of the not-known object’s memory layout. It can, for example, arrange the 

allocation of the objects in such a way that they are grouped into segments of equal 

size objects. Conservative scanning of such regions is possible because the object’s 

boundaries are defined as simple multiplication of a particular segment object size.

In many languages Allocator can be replaced on the language (library) level, which 

leads to popularity of Conservative Garbage Collection as library. One of the most 

commonly used API-agnostic implementations for C and C++ is Boehm–Demers–Weiser 

GC (shortnamed Boehm GC).

It was used, for example, in Mono (open source CLR implementation) until version 

2.8 (year 2010), which introduced the so-called SGen Garbage Collector - somehow 

mixed approach that still scans stack and registers conservatively but scanning the heap 

is being supported by the runtime type information.

10 Boehm GC and other conservative GC lets you allocate a block or region with special flag (like 
GC_MALLOC_ATOMIC in Boehm’s case) which indicates to the Collector that the block will not 
contain any pointers and should not be scanned. So we can use such block for storing dense 
binary data like bitmaps.

11 An interesting fact is that .NET already contains conservative collector implementation inside, 
which is disabled by default.
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Let’s briefly summarize the main points regarding Conservative Garbage Collection:

Advantages:

• Easier for environments without support for garbage collection 

from ground up - for example, early runtime stages or unmanaged 

languages.

Disadvantages:

• Inaccuracy - everything that randomly looks like a valid pointer 

blocks memory from being reclaimed - although this is not a 

common situation and can be overcome by an improvement of the 

algorithm and additional flags.

• In a simple approach, objects cannot be moved (compacted) - 

because Collector is not sure what is a pointer indeed (and it cannot 

just update a value that it only assumes to be a pointer).

 Precise Garbage Collector

In a so-called Precise Garbage Collector situation, this is much simpler because compiler 

and/or runtime provides a Collector full information about an object’s memory layout. 

It can also support stack crawling (enumerating all objects roots on the stack). In such 

a case, there is no point in guessing. Starting from the well-defined roots, it just scans 

the memory object by object. Given a memory address pointing at the beginning of the 

object (or so-called interior pointer pointing inside an object and knowledge proper 

to interpret such a reference), Collector simply knows where the outgoing references 

(pointers) are placed, so it can recursively follow them during graph traversing.

.NET uses Precise Garbage Collector so we will see a lot more of its internals in the 

following chapters. In fact, entire chapters from 7 to 10 are dedicated to that purpose.

 Collect Phase
After Tracking Garbage Collector has found reachable objects, it can reclaim memory 

from all the other dead objects. Collectors’ Collect phase can be designed in many 

different ways due to many different aspects. It is impossible to describe all the possible 

combinations and variants in one short paragraph. But two major approaches can and 

should be distinguished, which various implementations are focused around.
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 Sweep

In this approach, dead objects are simply marked as a free space that can be later reused. 

This can be a very fast operation because (in exemplary implementation) only a single bit 

mark of a memory block must be changed. Such a situation is being shown in Figure 1-16 

where no longer used objects C and F (following an example from Figure 1-15) become 

available space just by marking them as a free space.

Then, in naive implementation, during allocation the memory is being scanned for 

the gap size not less than the object’s size to be created.

But nontrivial implementations may need to build data structures storing 

information about free blocks of memory for faster retrieval, typically in a form of a so- 

called free-list (shown in Figure 1-17). Moreover, those free-lists must be smart enough 

to merge adjacent free blocks of memory. Further optimization may lead to storing a 

set of free-lists for memory gaps of ranging size. In terms of implementation details, 

there are also different ways of how such a list can be scanned. Two of the most popular 

approaches are best-fit and first-fit methods. In the first-fit method, we stop free-list scan 

as fast as any suitable free memory block has been found. In the best-fit approach, we 

always scan all free-list entries trying to find the best match of the required size. The 

former is faster but may lead to bigger fragmentation, and the latter is exactly opposite.

A B EC D F G

A B ED G

Figure 1-16. Sweep collection - naive implementation
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Although quite fast, the Sweep approach has one major drawback - it eventually 

leads to bigger or smaller memory fragmentation. As objects are being created and 

destroyed, more and more smaller or larger free gaps occur on the heap. This may lead 

to a situation when although there is enough free memory in total for a new object, as 

there is no single, continuous free space for it. We have seen such situation at Figure 1-11 

when describing heap allocation in general.

 Compact

In this approach, fragmentation is eliminated at the expense of lower performance 

because it requires moving around objects in memory. Objects are moved in a way that 

reduces the gap created after the deleted objects. Here two main different approaches 

can be further distinguished.

In a simpler way, from an implementation point of view, Copying Compacting all live 

(reachable) objects are copied to the different region of memory each time collections 

occurs (see Figure 1-18). Compacting is a simple consequence of copying each live 

object one after another, omitting those no longer needed. Obviously, this induces high 

memory traffic as all live objects have to be copied back and forth. It also puts a bigger 

memory overhead because we have to maintain twice more memory than normally 

would be needed.

A B EC D F G

A B ED G

free-list head

Figure 1-17. Sweep collection - free-list implementation
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Due to these weaknesses, it would seem that the algorithm has no practical 

application. However, it may be used effectively. We just must remember to use it only 

for certain, small memory regions and not for the whole process memory. This is exactly 

the case in some JVM’s implementation when copying compacting is being used for 

smaller memory regions.

In a more complex scenario, one can implement In-Place Compacting. The objects 

are moved toward each other so as to remove gaps between them (see Figure 1-19). This 

is the most intuitive solution and is exactly how we would move the Lego blocks. From 

an implementation point of view, it is not trivial but still doable. The main problem one 

can spot here is the question - how objects can be moved relative to each other without 

overwriting each other and without the use of any temporary buffer?

A B EC D F G

A B ED G

Figure 1-18. Compact collection - copying implementation

A B EC D F G

A B ED G

Figure 1-19. Compact collection - in-place implementation

As we will see in Chapter 9, .NET is using exactly this approach with a very clever 

data structure used for optimization, so we will find an answer to that question there.
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Comparing Garbage Collectors

one can ask a question: Which Garbage Collector is better? is it hotspot Java 
1.8 or .net 4.6? or maybe python or ruby has better GC? and what actually 
does “better GC” mean in the first place? the first and most important rule 
for comparing Garbage Collection algorithms is that every comparison is from 
ground up very ambiguous. this is because GC is extremely difficult to separate 
and compare between themselves as such. they are so fused with the runtime 
environment that it is virtually impossible to test them separately. thus, it is difficult 
for any truly objective comparison. if we would like to compare performance of 
the different GC - we can use measures like throughput, Latency, and pause 
time (we will see difference between those concepts in Chapter 3). But all those 
measures will be taken in the context of the whole runtime, not the sole GC only. a 
framework or runtime mechanism (for example, allocation patterns, internal object 
pooling, additional compilations, or any other hidden, internal mechanism) can 
be introduced so the noticeable overhead that the GC contribution to the overall 
performance will be negligible. Moreover, there are many fine-tunings in each and 
every GC that makes it performing better in a certain type of workloads. some can 
be optimized to respond quickly in an interactive environment, others to process 
huge data sets. others may try to dynamically change their characteristics to align 
with the current workload. Moreover, different GCs may behave differently because 
of the hardware configuration used (optimized for specific processor architectures, 
CpU core counts, or memory architecture).

of course, we can compare GC for the algorithms used and the functionality 
provided. there are many others ways how Garbage Collectors can be categorized. 
as we already saw, we define a CG to be Conservative (Mono till 2.8) or precise 
(.net) or even a mix of it (Mono 2.8+). one implements the sweep collection, 
the other Compact collection, and yet another both of them. another important 
distinction is how GC partitions the memory. We will see in detail how a heap can be 
divided into smaller parts in Chapter 5. it may use reference Counting in some parts 
or not at all completely. how is allocator is implemented? is it parallel or Concurrent 
GC? (Chapter 11). With so many possible functional differences, it is really hard to 
say which combination is “better” - simply there is not one perfect solution.
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A brief summary of the drawbacks and advantages of Tracking Garbage Collector is 

as follows:

Advantages:

• Complete transparency from the developer’s perspective - a memory 

is just abstracted as would be infinite, without having to worry about 

freeing memory of no longer needed objects.

• No problems with circular references.

• No big overhead on Mutators.

Disadvantages:

• More complicated implementation.

• Non-deterministic freeing objects - they will be released after some 

time not being reachable.

• Stop the world needed for Mark phase - but only in a non-concurrent 

flavor.

• Bigger memory constraint - as objects are not reclaimed as fast after 

not being needed, more memory pressure can be introduced (more 

garbage lives for some period of time).

Mainly because of the first advantage, tracking GC is so popular in different runtimes 

and environments.

 Small History
Having learned a solid dose of basic theoretical knowledge, let’s now take a brief look at 

the history of automatic memory management in the context of different programming 

languages.

LISP is one of the longest living languages, with many appearing and disappearing 

dialects with the two most popular - Common LISP and Scheme. Nevertheless, without 

a doubt, the most popular is now dialect known as Clojure that compiles, among others, 

to Java Virtual Machine, Common Language Runtime (.NET), and JavaScript. This makes 

it very flexible and powerful, and of course this is nowadays an incarnation when the 

garbage collection and the LISP meet.
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But not only functional language like LISP featured automated memory 

management at times when it was popular. Any language-related history should not 

ignore the influence of the other extremely influential language - Simula. Called the 

first fully object-oriented language, it introduced concepts of objects and classes, 

inheritance, polymorphism, and other fundamental pillars of OOP. All languages, 

beginning from Smalltalk, and then from C++, through Java and C#, to Python or Ruby, 

have been somehow inspired by this language. What is important, Simula 67 featured 

automatic memory management, which was first a combination of reference counting 

and tracking garbage collector but during the language development was replaced 

with the compacting garbage collector inspired by the LISP language. Altogether with 

its ancestor - Smalltalk - garbage collection had become a popular choice for language 

designers. The increasing complexity of the software pushed language designers to 

introduce more or less sophisticated ways to help the programmer with the memory 

management.

The popularity of the Web and the start of the Internet age in the 1990s has pushed 

software development to the need of higher-level programming. The times where C and 

C++ were the kings were passing by. Their low-level control over the system had no value 

in the context of web application programming and massive growth of the server-side 

applications. Along with the extremely rapid development of the Internet, it increased 

the complexity of web applications and the need to produce more code faster.

No one could tell the history of automatic memory management without a mention 

of the language and the Java platform. Planned by Sun Microsystem company as a 

“better C++,” garbage collection mechanisms were one of the first and fundamental 

assumptions that the new platform should meet. Beginning from the 1990s, where the 

project started as an internal Oak language, it contained Mark and Sweep mechanisms. 

The very first publicly available Java 1.0a had been announced in 1994. With the 

explosion of the popularity of Java, awareness of the existence of garbage collection 

mechanisms was constantly growing. From that time, automatic memory management 

has become almost a “no-brainer” for all high-level language designers.

When Java was born, two other mainstream languages were coined - Python and 

Ruby. Both languages were equipped with automatic memory management for the same 

reasons mentioned before. Python prior to version 2.0 had only reference counting but 

then incorporated also more complex ways of taking care about cyclic references. Ruby 

provides a simpler mechanism based on the Mark and Sweep approach.

In our short historical stories, we cannot ignore JavaScript, which appeared in the 

same years as Java. And although the similarity to the name Java was more a marketing 
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ploy than a real similarity, JavaScript has also been conceived as a high-level scripting 

language. There was no room for manual memory management. The aim was to allow 

operating an HTML content at a high level, without thinking over such aspects as 

memory usage. The JavaScript runtime environment was responsible for these tasks. 

In the context of more long-running usages of JavaScript - Single Page Applications 

and node.js back-end services - the importance of automatic garbage collections in 

JavaScript engines becomes more and more important. For example, a very popular V8 

JavaScript engine, used by node.js, is using the Mark, Sweep, and Compact approach 

with its own additional optimizations.

As can thus be noted, even languages with automatic memory management have 

existed for 50 years, the real growth of their popularity occurred in the 1990s. This is the 

place where we can pass into the history of the most important and most interesting 

environment for us - history of the .NET Framework.

What’s more important, Microsoft has developed at those times its own 

implementation of JavaScript called JScript. JScript is an important part of our story 

because it has created the foundation for solutions used to create the .NET. Of course, 

we are most interested in the topic of memory management. Actually, it all started with 

JScript written by four people over several weekends. One was Patrick Dussud, which we 

can undoubtedly name as the father of the garbage collector in .NET. He wrote a simple 

Conservative GC as a proof of concept.

Before starting work on the CLR, Patrick Dussud worked on the JVM. And yes, 

Microsoft at one point in time seriously considered its own implementation of the JVM, 

instead of creating something which we now know as the .NET runtime. So, inspired 

by the JVM and based on the already implemented JScript version he wrote another 

version, yet another Conservative GC. But the team, which in the future had partially 

formed a CLR, quickly found that JVM introduces uncomfortable limitations. First, 

the expectation for a newly created environment was strong support for the COM 

and unmanaged code. One of the objectives was to create an environment in which 

recompilation of the C++ program with a new flag of kind /CLR should make it possible 

to run it under a new environment. Moreover, a standardization was troublesome, and 

they were just probably scared of the resulting limitations. They even thought for a 

moment over the release of C ++ runtime with the garbage collection extension.

Afterward, after consulting with a friend (David Moon from the Symbolics company, 

dealing with generational garbage collectors) Patrick had made an educated decision to 

write “the best possible GC” from scratch and he implemented a prototype in Common 
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LISP. Why was this language chosen? It was the language he had been dealing with for 

many years and in which just worked well. In addition, he had experience in using “the 

best debugging tools” at that time for LISP. After writing the LISP version, he wrote a 

converter that transpiled12 the code to C ++. And that is how an experimental Garbage 

Collector for the experimental implementation of the JVM has been created. When 

work on the CLR had been started, part of this experimental code was used in a project 

written from scratch in C++. It is therefore only a legend that the CLR’s GC code has been 

completely converted from LISP.

Having already learned theoretical basics and some history, it is time to get to know 

the first of the many rules that will be introduced in this book.

 Summary
We have covered a very wide range of material in this chapter. One could easily devote 

several separate books to the mentioned topics. Beginning with such basic concepts as 

bits and bytes, we learned the main types of computer architectures - Harvard and von 

Neumann. We have learned the basics of building computers, including definitions such 

as registry, address, and word. Learning concepts such as static or dynamic allocation, 

pointer, stack, or heap, we went on to discuss the most important concepts - automatic 

memory management also referred to as garbage collection. By the way, we met also 

inconveniences of manual memory management and the reasons to automate it. 

Fundamental to .NET implementations concepts such as tracing garbage collection and 

its phases Mark, Sweep, and Compact are only briefly discussed. We will look at them 

more closely in the corresponding chapters of this book. Everything we talked about 

was also covered with a bit of history and a broader context that allowed us to look at the 

subject from a wider perspective.

In the end, the knowledge we have gained here will allow us to better understand 

subsequent chapters. From chapter to chapter, we will be getting closer to the practical 

implementation issues of the .NET environment. However, without understanding the 

broader context presented in this chapter, it would have been an incomplete look. I 

now invite you to Chapter 2, where we will move from the theoretical foundations to the 

fundamentals of low-level computer and memory design.

12 Transpilation is a source-to-source compilation.
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 Rule 1 - Educate Yourself
Applicability: As general as possible.

Justification: The most general rule in this book, it is applicable in a much broader 

scope than memory management alone. It means nothing less than that we should 

always set in expanding our knowledge to strive for being a professional. Knowledge 

does not come by itself. We have to earn it. It’s a tedious, time-consuming, and laborious 

process. That is why we have to constantly motivate ourselves. Does such an obvious truth 

deserve a separate rule? I think so. In everyday life, we can easily forget about it. It seems 

to us that everyday tasks can teach us something. And certainly, to some extent, they do. 

But it is obvious, to get out of comfort zone, we need to follow a few steps. Consciously. 

And that means reaching out for a book, watching a web tutorial, reading an article.  

The possibilities are plentiful and it makes no sense to mention them here all. However, 

it is so fundamental that it must be on the list of rules of every professional. If you are  

not convinced of my words, get interested in the concept of Software Craftmanship  

and manifest available at http://manifesto.softwarecraftsmanship.org. I’m also 

a big fan of the concept of Mechanical Sympathy, which came up with the rally driver 

Jackie Stewart:

You don’t have to be an engineer to be a racing driver, but you do have to 
have Mechanical Sympathy.

This concept was then introduced into the IT world by Martin Thompson. What 

does it mean? Obviously, you do not need to be a mechanic to be a racing driver. But 

without some deeper knowledge about how a car works, what are its mechanics, how an 

engine works, what forces are influencing it - it is really hard to be a good racing driver. 

She should just “feel the car,” to work with it in a harmony. She should feel Mechanical 

Sympathy. This is an exactly the case with us, programmers. Of course, we can just think 

about frameworks like .NET or JVM and stop there. But then we will be just like Sunday 

drivers, seeing a car from the perspective of a steering wheel and few pedals.

How to apply: In a such general rule, there is hardly one simple approach to take. You 

may read books about how a computer or your framework of choice works. You can 

use many online training services. You can watch or attend conferences and local user 

groups. You can start a blog and write about such topics because there is no better way to 

learn than to teach. There are so many possibilities, I will not even try to list them all. Just 

keep in mind the motto “educate yourself” and try to implement this rule in your life!
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CHAPTER 2

Low-Level Memory 
Management
To understand how memory management works, we need to acquire a broader context. 

In the previous chapter we learned the theoretical basis for this topic. We could now go 

directly to the details of automatic memory management, how the Garbage Collector 

works, and where memory leaks may occur. But if we really want to “feel” the topic, it is 

worthwhile to spend a few more moments on the basic reminder of yet another aspect 

of this topic. This will allow us to better understand the various design decisions that 

were made by Garbage Collector creators in .NET (as well as other managed runtime 

environments). The creators of such mechanisms do not live in a vacuum and have to 

adapt to the state of being - limitations and mechanisms that govern computer hardware 

and operating systems. That’s the aspect we’re going to touch on now.

So I invite you to a chapter in which we will learn about those mechanisms and 

limitations. Of course, those topics are in themselves powerful enough that they can be 

devoted to a few large, separate books. We will focus only on some basics, more or less 

loosely related with memory management. To be honest, it is not easy to present such 

comprehensive subjects in a way that is not overwhelming and does not involve too many 

insignificant issues. And at the same time, I wanted to present it detailed enough so that the 

resulting influence on memory management in .NET is actually visible. I invite you to read!

Getting to know all of these details, even briefly, gives you the power to take on the 

complexity of a topic that is managing memory. Even if in the day-to-day management 

of memory, we associate it only with the call of the new operator, it is useful to be aware 

of how many mechanisms exist and on how many levels. Hardware, operating system, 

compiler – all these affect how it works and how .NET was written, although it is not 

always obvious. This knowledge is very consistent with the spirit of the Mechanical 

Sympathy presented in the previous chapter. I hope you will find it also just fun to know 

some of the little facts mentioned here.
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Having said all that, please feel free to treat this chapter as the optional one.  

It provides a lot of theoretical information that, although helps a lot in the feeling memory 

management topic, is not necessary to understand the rest of the book. So if you are in 

a hurry or just want to move to more practical .NET internals and examples, feel free to 

skim this chapter or omit it completely (to return to it in a more relaxed time, hopefully).

 Hardware
How does a modern computer work? It seems that any programmer for better or 

worse will be able to answer this question. If we studied computer science, something 

about this may be remembered from lectures. If we are self-taught, we probably read 

something here and there. And probably we recite the facts from memory, such as: 

a computer consists of a processor, which is the main processing unit - it executes 

programs. It has access to RAM (which is fast) and hard disks (which are slow). There 

is also a graphics card that is very important for gamers (and different kind of graphic 

designers), which is responsible for generating the image displayed on the monitor. 

Such a ten thousand foot look at the topic is not sufficient for our purposes. We need to 

get into the subject deeper. For the purposes of our deliberations, let me introduce the 

architecture of a modern computer, as in the diagram below in Figure 2-1.

The modern personal computers market is being dominated by PCs and Macs. I’ve 
modeled a schematic, generic computer architecture diagram based on them. If 
needed, I will mention hereinafter some possible nuances, such as those involving 
ARM processors or more sophisticated server machines.

Such main components of typical computer architecture can be listed as:

• Processor (CPU, central processing unit) - main unit, responsible for 

executing instructions. We have already seen it in Chapter 1. Here are 

components located such as the Arithmetic and Logical Units (ALUs), 

Floating-Point Units (FPUs), registers, and instruction execution 

pipelines - responsible for efficiently executing instructions divided 

into a set of smaller operations and executed (if possible) in parallel.

• Front Side Bus (FSB) - data bus that connects CPU with Northbridge.
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• Northbridge - unit that contains mainly memory controller, responsible 

for controlling communication between memory and CPU.

• RAM (Random Access Memory) - main computer memory. It stores 

data and programs code as long as the power is on - hence it is also 

referred to as Dynamic RAM (DRAM) or volatile memory.

• Memory Bus - data bus that connects RAM with Northbridge.

• Southbridge - chip that handles all of a computer’s I/O functions, 

such as USB, audio, serial, the system BIOS, the ISA bus, the interrupt 

controller, and the IDE channels -mass storage controllers such as 

PATA and/or SATA.

• Storage I/O - non-volatile memory that stores data, including popular 

HDD or SDD disks.

CPU

Northbridge

PCI-E

Southbridge

USB

Front Side Bus

Memory Bus

SATA

RAM

HDD
SDD

PCI

eg. graphic
card

Figure 2-1. Computer architecture - CPU, RAM, Northbridge, Southbridge, 
and others. The width of the bus illustrates the proportion of the amount of data 
transferred (very roughly).
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It is worth mentioning that formerly the CPU, Northbridge and Southbridge were 

separate chips but now they are closely integrated. From Intel’s Nehalem and AMD’s 

Zen microarchitectures, they include Northbridge inside (which is in such case often 

referred to as uncore or System Agent). This evolution of the architecture has been shown 

in Figure 2-2.

CPU

PCI-E

Platform
Controller
Hub

USB

Front Side Bus

Memory Bus

SATA

RAM

HDD
SDD

PCI

eg. graphic
card

DMI

Figure 2-2. Modern hardware - CPU with Northbridge inside, RAM, Southbridge 
(renamed to Platform Controller Hub in case of Intel terminology), and others. The 
width of the bus illustrates the proportion of the amount of data transferred (very 
roughly).

Such integration helps because the memory controller (inside Northbridge), closely 

placed to the CPU’s execution units, reduces delays due to smaller physical distances 

and enhanced collaboration. But there are still processors on the market (of which most 

popular are AMD FX family) that have CPU, Northbridge, and Southbridge separated.

The main problem behind any memory management is a discrepancy between 

performance of today’s CPU with respect to the memory and mass storage subsystems. 

The processor is much faster than memory so every access to the memory introduces 

unwanted delays. When the CPU needs to wait for a data access to memory (either read 

or write), we call it a stall. The more stalls occur, the worse for the CPU utilization as its 

power is just being wasted for waiting.
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The typical current processor operates at a frequency of 3 GHz or above. Meanwhile, 

the memory works with an internal clock with frequencies of only 200–400 MHz. This 

makes the order of magnitude performance difference. It would be too expensive to 

build RAM chips working with a frequency of CPU. This is because of how modern RAMs 

are built - loading and unloading of internal capacitors takes time, which is very difficult 

to reduce.

You may be surprised to find that memory works with such low frequencies. In fact, 

in the computer stores we buy memory modules marked as having a popular clocking 

like 1600 or 2400 MHz, which are far closer to the CPU speed. Where do such numbers 

come from? As we will see, such specifications are only part of the more complex truth.

Memory module consist of internal memory cells (storing data) and additional 

buffers that help to overcome their low internal clock frequency limitations. Some 

additional tricks are used (see Figure 2-3). Most of them rely on multiplying the read of 

data:

• Sending data from the internal memory cell twice within a single 

clock cycle. To be accurate, it is both on the falling as well as the 

rising slope of the signal. Hence the name by far is the most popular 

memory of various generations - Double Data Rate (DDR). This 

technique is also referred to as double-pumping.

• Using internal buffering to make a few reads at once in one memory 

clock cycle. This allows you to multiply the amount of data provided 

seen outside compared to the amount that comes from the internal 

frequency. DDR2 memory interface doubles the external clock 

frequency while DDR3 and DDR4 quadruple it.

These techniques are currently used in DDR modules as opposed to the much 

simpler SDRAM (Synchronous DRAM) modules used in the past.
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Let’s look at the typical DDR4 memory chip like 16 GB 2400 MHz (described in 

specifications as DDR4-2400, PC4-19200). In such case the internal DRAM array clock 

works at 300 MHz. The memory bus clock is quadrupled to 1200 MHz thanks to the 

internal I/O buffer. Additionally, as with each clock cycle there are two transfers (both 

slopes of the clock signal), and it results in a 2400 MT/s data rate (mega transfers per 

seconds). This is where the 2400 MHz specification comes from. Simply put, due to the 

Memory
cells

SDRAM
I/O

buffer Memory bus

300 Mhz 300 Mhz 300 MT/s

1 transfer

Memory
cells

DDR
I/O

buffer Memory bus

300 Mhz 300 Mhz 600 MT/s

1 transfer

Memory
cells

DDR2
I/O

buffer
Memory bus

300 Mhz 600 Mhz 1200 MT/s

2 transfers

Memory
cells

DDR3
DDR4

I/O
buffer

Memory bus

300 Mhz 1200 Mhz 2400 MT/s

4 transfers

Figure 2-3. SDRAM, DDR, DDR2, DDR3, DDR4 internals. An example of memory 
modules with 300 MHz internal clock. MT/s means “Mega transfers per second.”
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nature of double-pumping in DDR memory, speed is typically specified as double of I/O 

clock frequency, which is then multiplication of the internal memory clock. Providing 

this value in MHz is just a marketing simplification. The second signature -  PC4- 

19200 - comes the maximum theoretical performance of such memory - it is 2400 MT/s 

multiplied by 8 bytes (a single word 64-bit long is being transferred) gives the result of 

19200 MB/s.

Let’s look at example of my desktop PC in the context of the whole architecture. It 

is equipped with CPU Intel Core i7-4770K (Haswell generation) running at 3.5 GHz. 

Front Side Bus frequency is only 100 MHz. DDR3-1600 Memory (PC3-12800) used has 

200 MHz internal memory clock, and due to the DDR3 mechanism the I/O bus clock 

is 800 MHz. This has been illustrated in Figure 2-4. We can confirm all of that using 

hardware diagnostic tools like CPU-Z (see Figure 2-5).

CPU

PCI-E

Platform
Controller
Hub

USB

Front Side Bus

Memory Bus

SATA

RAM

HDD
SDD

PCI

eg. graphic
card

3.5 GHz

100 MHz

200 MHz

800 MHz

DMI

Figure 2-4. Modern hardware architecture with sample clocking (Intel Core 
i7- 4770K and DDR3-1600)
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Regardless of all the DDR memory improvements described here, CPUs are still faster 

than the memory they use. To overcome this problem, a similar approach on different levels 

is applied - by bringing some part of the data closer to the component with more performant 

(and more expensive) memory units. Such an approach is being referred to as caching.

In case of mass storage memory like HDD, data is usually being cached in RAM - or 

in a faster but smaller dedicated storage like a small SDD inside hybrid HDD drives 

dedicated for most frequently used data. In case of RAM, data is being cached inside 

CPU cache and we will see it shortly.

Of course there are more generic RAM optimizations including better hardware 

design, better memory controllers. and optimizing DMA (Direct Memory Access) for 

devices. However, we do not touch DMA in this book as it is not directly related with the 

program data and those regions are not managed by Garbage Collector.

Figure 2-5. CPU-Z screenshot - Memory tab showing Northbridge (NB) 
and DRAM frequencies together with FSB:DRAM frequency ratio (which is 
unfortunatelly incorrect in the current version of the tool and should be 1:8)
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 Memory
A comprehensive book about memory should at least touch the topic of how memory 

is physically built nowadays. You may be surprised by some of the facts given in this 

section. They will, I hope, give you a better understanding of why modern computers 

have this and no other architecture.

There are currently two main types of memory found on personal computers, and 

they differ significantly both in terms of production and usage cost and performance:

• Static Random Access Memory (SRAM) - they provide very fast access 

but are quite complex, consisting of 4–6 transistors per cell (storing 

single bit). They hold data as long as power is on, and no refresh is 

needed. Because of high speed, they are used mainly in CPU caches.

• Dynamic Random Access Memory (DRAM) - very simple cell 

construction (much smaller than SRAM) consists of a single 

transistor and capacitor. Because of capacitor “leakage,” a cell 

requires a constant refresh (which takes precious milliseconds and 

stales memory reads). A signal read from the capacitor has to be 

amplified also, which complicates things more. Reads and writes 

also take time and are not linear because of capacitor delays (there is 

some time required to wait to get a proper read or successful write).

Let’s devote a few more words to DRAM technology because it is the basis of 

commonly used memory installed in our computers DIMM slots. As mentioned, a 

single DRAM cell consists of a transistor and a capacitor and stores a single bit of data. 

Such cells are grouped into DRAM arrays. The address to access a specific cell is being 

provided via so-called address lines.

It would be very complicated and costly to have each cell in the DRAM array have 

its own address. For example, in case of 32-bit addressing there would be 32-bit wide 

address lines decoder (component responsible for specific cell selection). The number 

of address lines influence overall cost of the system to a great extent - the more lines, the 

more pins and interconnections between the memory controller and memory (RAM) 

chips (modules). It would be too expensive and complicated, of course, even more so in 

the case of computers with 64-bit word. Because of that address lines are being reused as 

row and column lines (see Figure 2-6) and providing a full address is being split into two 

phases.
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Within a single array, the address (row) line selects the row and the column (data) 

line selects the column. A single bit from a particular cell is being read in the following 

process:

 1. The number of the row is put on the address lines.

 2. Interpretation is triggered by the Row Address Strobe (RAS) signal 

on a dedicated line.

 3. The number of the column is put on the address lines.

 4. Interpretation is triggered by the Column Address Strobe (CAS) 

signal.

 5. Retrieve data - single bit (particular DRAM cell has been 

addressed).

DRAM modules we install in our computers consist of many such DRAM arrays 

organized in a way allowing us to access multiple bits (single word) in a single clock 

cycle.

The transition times between individual steps of obtaining this single bit strongly 

affects memory performance. These times can be familiar to you because they are an 

important factor in the specification of memory modules, which greatly affect their price 

by the way. So you are probably aware of DIMM modules timings like DDR3 9-9-9-24 

DRAM cell

column decoder

ro
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 d
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eraddress

lines

data
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address
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address

latch

RAS
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DRAM array

Figure 2-6. DRAM chip example with DRAM array and the most important 
channels: address lines, RAS, and CAS
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numbers. All those timings are specified in clock cycles required to perform specific 

action. Subsequently they have the following meanings:

• tCL (CAS latency) - the time between a column address strobe (CAS) 

and beginning of the reply (receiving data).

• tRCD (RAS to CAS delay) - the minimal time between the row address 

strobe (RAS) and column address strobe (CAS) may occur.

• tRP (Row Precharge) - the time it takes to precharge a row before 

accessing it. The row cannot be used without prior preparation, 

which is calling precharging.

• tRAS (Row active delay) - minimum time the row has to be active to 

access information in it. This is typically at least the sum of the three 

above times.

Please note the importance of those times. If the row and column you are interested 

in have already been set, the readout is almost immediate. If you want to change the 

column, it will take tCL clock cycles. If we want to change the row, the situation is much 

worse. It must be first recharged (tRP cycles), followed by RAS and CAS delays (tCL and 

tRCD).

All these times are important for computer users expecting maximum performance. 

Players especially pay great attention to these parameters. What is enough for us to 

know is that while buying memory modules you should take care of the lowest possible 

timings you can afford if performance is a top priority for you.

However, we are interested in the impact of DRAM memory architecture and its 

timings on memory management. As you can see, the biggest is the cost of the row 

change - RAS signal timings and precharging. This is one of the many reasons why 

sequential memory access patterns are much faster than non-sequential ones. Reading 

data in a burst from a single row (changing column occasionally) is much faster than 

a need to change a row frequently. If the access pattern is completely random, most 

probably we will be hit by those row-changing timings on each and every memory 

access.

All of the information presented here has one goal - to make sure you have a deep 

reason to remember why non-sequential access to memory is so undesired. And as we 

will see, this is not the only reason why completely random access is the worst scenario.
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 CPU
Let’s now go to the central processing unit topic. The processor is compatible with 

the so-called Instruction Set Architecture (ISA) - it defines, among others, the set of 

operations that can be executed (instructions), registers and their meaning, how 

memory is addressed, and so on. In this sense, ISA is a contract (interface) established 

between the processor manufacturer and its users - programs written under a given 

contract. This is the layer we see in programming, for example, in the assembly language 

of a given architecture. ISA IA-32 (32-bit i386, Pentium 32-bit processors) and AMD64 

compliant (the vast majority of modern processors including Intel Core, AMD FX and 

Zen, etc.) are the most widely used in the world of the .NET ecosystem. Under ISA 

is the so-called microarchitecture of the processor that implements it. This allows us 

to improve microarchitecture without affecting the system and software, and so in a 

backwards compatible manner.

Note There is a lot of confusion with the names of the 64-bit architecture 
standards, and you will often encounter the x86-64, eMT64T, Intel 64, or AMD64 
interchangeably used. Despite the presence of producers’ names and sometimes 
minor differences, we can safely assume for the purpose of this book that these 
are unambiguous names and can be used safely interchangeably.

As stated in the previous chapter, a key role in the operation of the CPU occupies 

registers because currently all computers are implemented as registry machines. In the 

context of data manipulation, access to registers is immediate in the sense that it takes 

place within a single processor cycle and does not introduce any additional delays. There 

is no space for your data closer to the CPU than just the processor registers. Of course, 

registers store data needed for the current instructions so they cannot be considered as 

a general-purpose memory. In fact, in general, the processor has more registers than 

is apparent from its ISA. This allows for various types of optimizations (like so-called 

register renaming). However, these are implementation details of microarchitecture and 

does not affect the mechanisms of memory management.
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 CPU Cache

As we mentioned earlier, to mitigate the performance gap between CPU and RAM, an 

indirect component is used to store a copy of the most used and most needed data - CPU 

cache. In a very general way this is illustrated in Figure 2-7.

This cache is transparent from the ISA point of view. Neither the programmer (nor 

even the operating system) does not necessarily need to know about its existence. They 

do not have to manage it. In an ideal world, proper use and management of the cache 

should be the sole responsibility of the CPU.

Because as a cache we want to use as fast-as-possible memory, the previously 

mentioned SRAM chips are used. Due to the cost and the size (which takes up precious 

space in the processor) resulting from this technology, they obviously cannot have as 

large capacities as the main RAM. But depending on the assumed costs they can match 

the speed of the CPU or may be only one/two orders of magnitude slower.

 Cache Hit and Miss

The idea behind a cache is trivial. When the instruction executed by the processor 

needs access to memory (whether it is write or read), it first looks at the cache to check 

whether the data we need is there already. If so, fantastic! We have just gained a very fast 

memory access and such a situation is referred to as cache hit. If the data is not in the 

cache (so-called cache miss), then it is being stored there after reading from RAM, which 

is obviously a much slower operation. Cache hit ratio and cache miss ratio are the very 

important indicators telling us whether our code uses the cache efficiently.

CPU Memory Bus

Cache

RAM

Figure 2-7. CPU with cache and RAM relationship
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 Data Locality

But why is such a cache helpful in the first place? Cache idea is based on the very 

important concept - locality of data. We can distinguish two kinds of locality:

• temporal locality - if we access some memory region, we will most 

probably access it again in the near future. This makes using a 

cache perfectly valid - we read some data from memory and we will 

probably reuse it later a few more times. Why is there a temporal 

locality? This is quite intuitive. We rarely use data once. In general, 

we load some data structures into variables and use those variables 

repeatedly. These are all kinds of counters, temporary data read from 

files, and so on.

• spatial locality - if we access some memory region, we will most 

probably access data from the close neighborhood. This type of 

locality can become our ally if we cache a little more surrounding 

data than we currently need. For example, if we need a few bytes 

from memory, let’s read and cache them and a dozen or so more. 

This is also perfectly intuitive. We rarely use very isolated small areas 

of memory. We soon will find out the stack and heap are organized 

into segments so threads doing their job generally access similar 

areas of memory. Local variables or data structures are also generally 

placed close together.

Please note that the cache is beneficial if the above conditions actually apply. 

However, this is a double-edged weapon. If we write the program in a way that breaks 

data locality, the cache will become an unnecessary burden. We’ll see about that later in 

the chapter.

 Cache Implementation

In addition, as long as the compatibility with the ISA memory model is maintained, 

cache implementation details are theoretically unimportant. It should be just there to 

speed up memory access and that’s it. However, this is a perfect example of The Law of 

Leaky Abstractions coined by Joel Spolsky:

All non-trivial abstractions, to some degree, are leaky
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What it means is that an abstraction that theoretically should hide the 

implementation details, unfortunately under certain circumstances exposes them 

outside. And it usually does so in an unpredictable and/or undesired way. How it 

does in case of a cache should be clear soon, but let just now dig into a little more 

implementation detail.

The most important and most influential fact is that the data between the RAM and 

the cache is transferred in blocks called cache line. Cache line has a fixed size and in the 

vast majority of today computers it is 64 bytes. It is very important to remember - you 

cannot read or write less data from memory than the cache line size, so 64 bytes. Even if 

you would want to read one single bit from memory, the whole block of a 64-bytes wide 

cache line will be populated. Such a design is utilizing better sequential DRAM access 

(remember the precharging and RAS delays described earlier in this chapter?).

As stated before, DRAM access is 64-bit wide (8 bytes), so eight transfers are required 

from RAM to populate such cache line. This requires quite a lot of CPU cycles so there 

are various techniques to accommodate that. One of them is Critical Word First & Early 

Restart. It makes the cache line not read word by word but starts with the word that is 

most needed. Imagine that in the worst case, such an 8-byte word could be at the end of 

the cache line so you would have to wait for all the previous seven transfers to access it. 

This technique first reads the most important word. Instructions waiting for this data can 

continue execution and the rest of the cache line will be filled asynchronously.

Note how does a typical memory access pattern look? when someone wants 
to read data from memory, the corresponding cache line entry is created in the 
cache and 64 bytes of data are being read into it. when someone wants to write 
data in memory, the first step is exactly the same – the cache line is being filled 
in the cache if it is not there already. This cached data is modified in cache when 
someone writes data. now one of two strategies can occur:

— write-through - after writing to the cache line, the modified data is saved 
immediately to the main memory. This is a simple approach to implement but 
creates a big overhead on the memory bus.
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—  write-back - after writing to the cache line it is marked dirty. Then, when there 
is no space in cache for other data, this dirty block is written to memory (and the 
modified dirty cache entry is deleted). The processor may write these blocks from 
time to time, as it deems appropriate (e.g., during idle times).

There is yet another one optimization technique called write-combining. It ensures 
that a given cache line from a given memory area is written in its entirety (rather 
than writing its individual words), again utilizing the fact of faster sequential access 
to memory.

Because of cache lines, each data stored in memory is aligned to 64-bytes 

boundaries. So in the worst-case scenario to read two successive bytes, two cache 

lines have to be consumed with a total size of 128 bytes. It will land into the cache 

but if no more data from this memory region will be needed, it will be waste of time. 

This is illustrated in Figure 2-8 when we want to read only 2 bytes under address A. 

Unfortunately address A is just one byte before the end of cache line-rounded boundary 

so in fact two whole cache lines have to be read.

64 bytes aligned
address

64 bytes aligned
address

64 bytes 64 bytes

cache line

cache line

address A

Figure 2-8. Access to two successive bytes requires populating two cache lines 
because they were unfortunately located
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OK. Although it’s really the tip of the iceberg, you can ask why we have to know 

such hardware implementation details? Does it really matter in a comfortable world of 

managed code? Let’s continue our journey to find out.

A cost of non-sequential memory access patterns has been illustrated by sample 

code from Listing 2-1 and by results in Table 2-1. The sample program accesses the 

same two-dimensional array in two ways - row by row and column by column. Results 

are presented for three different environments: PC (Intel Core i7-4770K 3.5GHz), laptop 

(Intel Core i7-4712MQ 2.3GHz), and Raspberry Pi 2 board (ARM Cortex-A7 0.9GHz).

Listing 2-1. Column versus row indexing when accessing an array (5000x5000 

array of ints)

int[,] tab = new int[n, m];

for (int i = 0; i < n; ++i)

{

   for (int j = 0; j < m; ++j)

   {

      tab[i, j] = 1;

   }

}

int[,] tab = new int[n, m];

for (int i = 0; i < n; ++i)

{

   for (int j = 0; j < m; ++j)

   {

      tab[j, i] = 1;

   }

}

Table 2-1. Column versus Row Indexing results (n,m = 5000)

Pattern PC Laptop Raspberry Pi 2

By Rows 52 ms 127 ms 918 ms

By Columns 401 ms 413 ms 2001 ms

ChAPTeR 2  Low-LeveL MeMoRy MAnAgeMenT



82

This example shows how unfavorable the non-sequential retrieval of data can be for 

performance. The sample program in the second version reads the data column after 

the column. As a result, we need to change the active line of DRAM cells every now and 

then. What’s more, we use the cache very badly because we read only one byte of data 

by loading the entire cache line. And afterwards we immediately read under the other, 

distant address so another cache line must be populated. The difference in performance 

may be six times as you can see in Table 2-1! The CPU stalls very often to wait for 

memory access.

Figure 2-9 illustrates the difference between accessing elements by rows and by 

columns of some small array containing values from 1 to 40 (and illustration is assuming 

that four such values fit into a single cache line). Let’s assume also for illustrative 

purposes that array access from Figure 2-9 happens on the CPU with a buffer for only 

four cache lines.1 As we read memory row by row (left side of Figure 2-9), in fact we are 

reading successive integers within successive cache line-rounded memory regions:

• To read the first four elements (1,2,3,4), the first cache line is read and 

all those elements are used.

• To read the next four elements (5,6,7,8), the second cache line is read 

and again, all those elements are used.

• To read the next four elements (9,10,11,12), the third cache line is 

read. This access repeats through the entire array (and no cache line 

is needed to be read again).

The right side of Figure 2-9 show the second pattern, when we read only a single 

integer per each cache line and then move on to the another one:

• To read the first four elements, we read four cache lines but only one 

element from each of them is used (1 from first cache line, 9 from the 

second, and so on).

• To read the next element (33). one of the already cache lines must 

be purged because the buffer is already full. It most probably will be 

least accessed once (so containing 1,2,3,4 elements) and replaced 

with the new one (containing 33,34,35,36).

1 In a real CPU, the “buffer” for cache lines is the entire CPU cache so it typically fits hundreds or 
thousands of 64-byte wide cache line-sized entries.
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• To read the next element (2), again the least used data will be purged 

and the CPU will need to reload the first line (containing 1,2,3,4), 

unloaded just before.

• This access pattern repeats many times, requiring the cache line to be 

read four times.

Obviously, real CPUs have more than four cache-line buffers and the cache line 

fits more data than four integer values, so Figure 2-9 is a simplification for illustrative 

purposes. But exactly the same problem happens in the real-world scenarios and its 

results are clearly seen in Table 2-1.

As you can see, the entire .NET runtime environment and advanced memory 

management techniques used in it are not able to hide those CPU implementation 

details that are hitting us back. An unfavorable memory access pattern causes many 

times worse performance of our code. It will not be comforting that a similar test for Java 

and C/C ++ would produce very similarly unfavorable results.

 Data Alignment

There is yet one other very important aspect of accessing memory. Most CPU 

architectures are designed to access data that are properly aligned - meaning the starting 

address of such data is a multiplication of a given alignment specified in bytes. Each type 

has its own alignment and a data structure alignment depends on its field’s alignment. 

A lot of care must be taken to not access unaligned data that may be a few times slower 

than a proper way. This is a responsibility of the compiler and a developer designing 

data structures. In case of CLR data structures, layout is mostly managed by the runtime 

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

Figure 2-9. By row versus by column access pattern - arrows show access 
triggering cache line invalidation (when accessing first 10 elements)
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itself. This is why we can spot a lot of code related to proper alignment handling in the 

Garbage Collector code. We will see in Chapter 13 how object memory layout looks and 

how it may be controlled, taking into consideration data alignment.

 Non-temporal Access

What have been mentioned so far is the fact that in most common types of CPU 

architecture, there is no access to the memory other than via the cache. All memory 

read or written from DRAM by the CPU is being stored in cache. Let’s assume one wants 

to initialize a very big array but we know we will use it in a fairly distant point of time. 

From what we have learned so far, we know such array initialization will induce quite 

big memory traffic. An array will be written in blocks and each cache line one by one. 

Moreover, each such write operations include three steps - reading cache line into cache, 

modifying cache content. and then writing back the cache line into main memory. We 

will populate cache lines only to write data back to main memory. Not only this is not 

optimal by itself, it also takes away cache from other programs.

We can avoid such cache traffic by using a so-called non-temporal access set of 

assembler instructions - MOVNTI, MOVNTQ, MOVNTDQ, etc. They allow the programmer to 

prevent caching of the data during the write to memory. They are exposed through _mm_

stream_* set of C/C++ functions so no assembler is required to use them. For example, 

_mm_stream_si128 executes MOVNTDQ instruction, which writes to memory a single quad-

word (4 words of 4 bytes). An example of a fast array initialization using this technique is 

shown in Listing 2-2.

Listing 2-2. Example of low-level API in C++ to use non-temporal writes

#include <emmintrin.h>

void setbytes(char *p, int c)

{

  __m128i i = _mm_set_epi8(c, c, c, c, c, c, c, c, c, c, c, c, c, c, c, c); 

// sets 16 signed 8-bit integer values

  _mm_stream_si128((__m128i *)&p[0], i);

  _mm_stream_si128((__m128i *)&p[16], i);

  _mm_stream_si128((__m128i *)&p[32], i);

  _mm_stream_si128((__m128i *)&p[48], i);

}
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Why do we mention that at all? Currently there is no .NET support for non- temporal 

writes, although there are plans to use them in some parts of the runtime itself. And 

there are also some ideas to provide developers a way to hint the runtime to use non-

temporal writes in their code (see Listing 2-3 showing an example of how it could look).

Listing 2-3. A possible implementation of future feature - asking runtime to use 

non-temporal write while storing data

public int[] Sum ( int[] op1, int[] op2 )

{

   var result = new int[op1.Length];

   Contract.Assume( Performance.NonTemporal(result) );

   result[i] = op1[i] + op2[i]

}

Besides, before it will be implemented on the JIT level, somebody may decide to use 

proper P/Invokes of _mm_stream_si128 inside C# in a very critical code performance, 

after obviously seriously deep thinking about it.

Note There are also non-temporal access (nTA) load instructions MOVNTDQA 
exposed through _mm_stream_load_si128 functions.

 Prefetching

Data locality is a great feature used by the cache mechanism automatically, as long as the 

programmer has not specifically tried to disrupt it. There is one additional mechanism 

that seeks to improve the cache utilization. It is about populating the cache with data 

that are likely to be needed in the nearest future – so-called prefetching. It can work in 

two different modes:

• Hardware driven - when the CPU notices a few cache misses with 

some certain pattern. Most CPUs track from 8 to 16 memory access 

patterns (to compensate a typical, multithreaded/multiprocess way 

of work). Note: Although we do not cover so-called memory pages 

yet, please bear in mind that hardware prefetching is page limited. 
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If not, it would trigger page miss, which would be big unnecessary 

overhead if the guess was not correct.

• Software driven - by explicit call from our code by using PREFETCHT0 

instruction exposed through C/C++ _mm_prefetch () function.

Prefetch, like all other caching mechanisms, is a double-edged weapon. If we 

understand the memory access patterns in our code well, using prefetch can noticeably 

accelerate the performance of our program. On the other hand, it is very difficult to 

be sure that we really understand those memory access patterns, given the very broad 

context in which our code works - influenced by other threads in our program, other 

programs’ threads, and threads in the operating system itself. There is a PREFETCHT0 

instruction call contained in the .NET code but due to the fact that required PREFETCH 

identifier is not defined, prefetching is not used (see Listing 2-4).

Listing 2-4. Prefetching related parts of the .NET code shows it is disabled by 

default.

//#define PREFETCH

#ifdef PREFETCH

__declspec(naked) void __fastcall Prefetch(void* addr)

{

   __asm {

       PREFETCHT0 [ECX]

        ret

    };

}

#else //PREFETCH

inline void Prefetch (void* addr)

{

    UNREFERENCED_PARAMETER(addr);

}

#endif //PREFETCH

The prefetch call has been spread out through many places in CLR Garbage Collector 

code. But the use of PREFETCHT0 has been disabled in the .NET code probably for the 

reasons given earlier. Runtime is a very generic code, and it’s hard to imagine a code 
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snippet that can be found in it ensuring that, under all circumstances, the use of prefetch 

will be beneficial. This is therefore a safe-side selection.

Prefetching and cache-lined memory access obviously work against us if we won’t 

try to lay out data in memory in a proper way. An example would be, if we designed a 

garbage collection algorithm in such a way that some very small, 1-byte diagnostic data 

is scattered all the way through memory in random places, an operation to gather this 

information will be very costly in terms of caching. We will have to fill cache through 

cache lines just to read single byte. And as we said, prefetching can make things even 

worse - “if you are reading those 64 bytes, let read twice more because you might be 

probably interested in it.”

Algorithms that intensively operate on memory (and garbage collection is operating 

on memory in its essence) must be taking into consideration such CPU internals. 

Memory is just not a flat space where we can pick some single bytes or bits from here or 

there without penalty!

 Hierarchical Cache

Returning to our architecture, due to performance requirements on the one hand and 

cost optimization on the other, the CPU design evolved today into a more complex 

hierarchical cache. The idea is simple. Instead of a single cache, let’s create a few, with 

several different sizes and speeds. This allows you to create a very small and very fast 

first-level cache (called L1), then a bit bigger and a bit slower cache level 2 (L2), and 

finally the third-level cache (L3). This enumeration in modern architecture ends on three 

levels. Such hierarchical cache of modern computers is shown in Figure 2-10. It is true 

that sometimes we can spot processors equipped with L4 cache, but it is a little different 

kind of memory and is designed mainly for integrated graphics cards inside those CPUs.

CPU

C
a

ch
e Memory Bus

RAM

L1d

L2

L3

L1i

Figure 2-10. CPU with hierarchical cache - first-level cache split into instruction 
(L1i) and data (L1d) cache and second (L2) and third (L3) level cache. The CPU is 
connected to DRAM via Memory Bus.
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The first-level cache is divided into two separate blocks. One is for data (labeled L1d) 

and the other one for instructions (labeled L1i). The instructions read from the memory 

and executed by the processor are also in fact data but interpreted appropriately. Data 

and code instructions at levels higher than L1 are actually treated identically, which 

should remind us of the Von Neumann architecture mentioned in Chapter 1. However, 

practice has shown that it is preferable to treat data and instructions separately for 

the lowest cache level. It is therefore the approach of the Harvard architecture. For 

this reason, the architecture of today’s computers is referred to as Modified Harvard 

Architecture. This solution works well because of the strong independence of using 

memory regions for storing data and program code, but only at the lowest level.

Knowing that there are three main levels of cache, an obvious question arises - What 

are the typical differences in speed and size between them and the main memory? 

Memory at lower-cache levels can be fast enough that L1 and even L2 access may take up 

enough CPU cycles to be faster than the pipeline execution time (unless you have to wait 

for the exact address to be computed, which is also an expensive operation). So what do 

those timings look like?

At the moment, I am writing this chapter on a laptop with Intel Core i7-4712MQ CPU 

(Haswell generation) running at 2.30 GHz. Assuming one CPU cycle on my laptop takes 

approximately 0.4 ns (~1/2.30 GHz) and using Haswell i7 specification, the latency to 

access different memory levels can be seen as in Table 2-2.

Table 2-2. Latency to Access Different Parts of Memory

Operation Latency

L1 cache < 2.0 ns

L2 cache 4.8 ns

L3 cache 14.4 ns

Main memory 71.4 ns

hDD 150 000 ns

We can clearly see it is worth fighting for optimal cache usage. Latency can be as 

much as 5 times faster when the CPU has needed data available in an L3 cache rather 

than in RAM. With an L1 cache it is over 30 times better. That is why it is extremely 

important for the overall performance how the cache is utilized. How much data fits into 

the cache? It all depends on the specific CPU model but my i7-4770K specification pretty 
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well reflects market standards. L1 cache has 64 KiB of data (split into 32 KiB for code and 

32 KiB for data) while the L2 cache has 256 KiB. The L3 cache, always much bigger, is 

8 MiB big.

Do those timings influence developers live, especially in the managed world of 

.NET? Let’s look at the simple example showing the latency in accessing data depending 

on the amount of memory being processed. Using code from Listing 2-5, one can made 

a series of sequential readings (and therefore the most optimal). As the used structure 

has a 64 bytes size, the read is done with a 64-byte step and every time a new cache line 

needs to be loaded. Figure 2-11 shows average access times per single element of the tab 

array, depending how much memory this array took in total.

There is a clear deterioration of access time when the data size exceeds the cache 

size of each level. As benchmarks were performed on an Intel i7-4770K processor, the 

clearly visible performance degradation points are around 256 KiB and 8192 KiB, which 

correspond to L2 and L3 cache sizes. We can see that operating on small data sizes may 

be a few times faster than operating on data that does not fit the L3 cache.

Listing 2-5. Sequential read of succeeding cache lines

public struct OneLineStruct

{

    public long data1;

    public long data2;

    public long data3;

    public long data4;

    public long data5;

    public long data6;

    public long data7;

    public long data8;

}

public static long OneLineStructSequentialReadPattern(OneLineStruct[] tab)

{

    long sum = 0;

    int n = tab.Length;

    for (int i = 0; i < n; ++i)
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    {

        unchecked { sum += tab[i].data1; }

    }

    return sum;

}

Note There is one interesting yet not so important topic in the context of cache - 
the eviction strategies. It’s about how you get space for new data if it’s missing at a 
given level. There are two possible approaches, sometimes mixed on the different 
levels:

— Exclusive cache - data is only on one level of cache. This method is most 
commonly used in AMD processors.

— Inclusive cache - where each cache line in a higher level (for example, L1d) is 
also present in a lower level (for example, L2).

Although interesting, this does not affect our thoughts on memory management. 
It should be assumed that CPU manufacturers are doing their best to ensure the 
most effective implementation of these mechanisms.

Figure 2-11. Access time depending on the data size - Intel x86 architecture/
sequential read. Please note: both axes are logarithmic.
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 Multicore Hierarchical Cache

However, this is not the end of our journey through computer design. Contemporary 

CPUs have a majority of more than one core. In simplified terms, the core is what the 

individual, simplified processor is - it can execute code independently of other cores. 

In the past, each core performed exactly one thread. Thus, a quad-core processor 

could execute four threads simultaneously. At present, practically all processors have a 

simultaneous multithreading mechanism (SMT), allowing simultaneous execution of two 

threads within a single core. It is called Hyper-threading in case of Intel processors and 

full SMT support has been added into AMD Zen microarchitecture. The distribution of 

caches between individual cores in sample quad-code CPU is shown in Figure 2-12.

As we can see, each of the cores has its own first- and second-level cache. The 

third-level cache is shared between them. How cores and L3 cache are interconnected 

is in fact an implementation detail. For example, in most modern Intel CPUs there is 

a bidirectional, extremely fast 32-byte wide bus that further connects them with the 

integrated GPU and System Agent. Note that for SMT processors, two threads running on 

the same core share L1 and L2 caches, so their actual usage is split in half unless care is 

provided that both threads have the biggest range of shared data. This obviously requires 

operating system support to deliberately assign threads to the cores based on their 

memory access patterns.
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Figure 2-12. Multiple Core CPU - each core owns its first-level cache split into 
instruction (L1i) and data (L1d) cache and second-level cache (L2). Third (L3) 
level cache is shared among cores. CPU is connected to DRAM via Memory Bus.
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Because each thread can run on a separate processor and/or core, there is a 

consistency problem of cached data. Each core has its own version of the first- and 

second-level cache, and only the third level is being shared. This leads to the need 

to introduce an entire complex concept known as cache coherency. This mechanism 

describes how consistency of stored data is maintained, and it is being applied by cache- 

coherency protocol - a way of informing about data change between cores. One of the 

basic states is that the data in the local cache has been modified (maintained by some 

dirty or modification flag). Information about such change has to be broadcasted or 

updated as needed.

There are many extensions and advanced cache coherence protocols that are 

designed to provide efficient operations - in particular the very popular MESI protocol. 

Its name comes from the names of the four states in which the cache line can be found - 

modified, exclusive, shared, and invalid. Nevertheless, cache-coherency protocols can 

impose a big overhead on memory traffic and thus on overall program performance. 

Intuitively, the constant need for mutual updating of the cache between the cores can 

result in noticeable overhead. Code we write should try to minimize any access from 

different cores to the memory addresses under the same cache lines. This in particular 

means trying to avoid intra-thread communication at all or at least taking a lot of care 

about what data and how this data are being shared between threads.

Note As non-temporal instructions mentioned earlier omit normal cache- 
coherency rules, using them should be in a pair with special sfence assembler 
instruction in order to make their results visible to other cores.

But again, is this knowledge useful in such high-level environments as .NET? Does 

Garbage Collector with its all knowledge and internal mechanisms hide such deep 

hardware implementation details? The answer to this question can be found in the 

following example.

Listing 2-6 shows multithreaded code that can simultaneously run a threadsCount 

number of threads accessing the same sharedData array. Each of the thread just 

increments a single element array without (theoretically) influencing other threads. In 

our example, there are two important parameters indicating how those elements are 

laid out within a shared array - whether there is a starting gap and how distant they are 

from each other (offset). As we will run this code for threadsCount=4 on a four-core 

machine, most probably each thread will have its own physical core assigned.
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Listing 2-6. Possibility of False sharing between threads

const int offset = 1;

const int gap = 0;

public static int[] sharedData = new int[4 * offset + gap * offset];

public static long DoFalseSharingTest(int threadsCount, int size = 

100_000_000)

{

    Thread[] workers = new Thread[threadsCount];

    for (int i = 0; i < threadsCount; ++i)

    {

        workers[i] = new Thread(new ParameterizedThreadStart(idx =>

        {

            int index = (int)idx + gap;

            for (int j = 0; j < size; ++j)

            {

                sharedData[index * offset] = sharedData[index * offset] + 

1;

            }

        }));

    }

    for (int i = 0; i < threadsCount; ++i)

        workers[i].Start(i);

    for (int i = 0; i < threadsCount; ++i)

        workers[i].Join();

    return 0;

}

Table 2-3. Benchmark Results of Code from Listing 2-6 Showing False Sharing 

Influence on Processing Time

Version PC Laptop Raspberry Pi 2

#1 (offset=1, gap=0) 5.0s 6.7s 29.0s

#2 (offset=16, gap=0) 2.4s 2.6s 13.8s

#3 (offset=16, gap=16) 0.7s 0.8s 12.1s
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In Table 2-3 you can see significant differences in performance between various 

combinations of gap and offset. If we use an array in definitely the most intuitive and 

simple way, it means the gap is 0 and offset is 1. The layout and thread accesses are 

illustrated in Figure 2-13a. This unfortunately introduces a very big cache-coherency 

overhead. Each thread (core) has its own local copy of the same memory region (in its 

own cache line), so after each incrementation it has to invalidate the others’ local copies. 

This forces cores to constantly invalidate their caches.

The obvious solution for this problem is to spread elements accessed by each thread 

to different cache lines. The simplest way is to create a much bigger array and use only 

every 16th element (16 times 4 bytes of single Int32 makes 64 bytes). This is a version 

when offset is 16 and gap is still 0 (see Figure 2-13b). As we can see in Table 2-3, the 

performance is much better but we can still do more.

Figure 2-13a. Version #1 with 1 byte offset and no gap - each thread access 
modifies the same cache line

Figure 2-13b. Version #2 with 16 byte offset and no gap - each thread access and  
modifies its own cache line

There is still a single cache line constantly invalidated but it can be not so obvious 

at the first glance, leading to a problem referred to as False sharing - an unfortunate 

data access pattern in which theoretically not modified shared data is located within a 

cache line altered by some other thread, incurring its constant invalidation. As we will 
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learn in the next chapter, each type in .NET has some additional header attached to its 

beginning. This in particular relates also to arrays. In case of arrays there is important 

data at the beginning of the object - the length of the array. What’s more, when accessing 

array elements by an index operator, it internally checks whether it is not out of index. 

This means accessing the beginning of the array object to check the length of the array, 

every time we access any array element. Therefore, the first core is sharing the beginning 

of the object with other cores, constantly invalidating correspondent cache lines. To fix 

this we have to shift our elements by a single cache-line offset. This is a version when the 

offset is still 16 but the gap is also 16 (see Figure 2-13c).

In this case each core has its own local copy of the first cache line for read only 

purposes. And it modifies their own cache lines with data. No cache-coherency protocol 

overhead is added. From Table 2-3 we can see this makes such code running even 7 

times faster than with extensive false sharing!

other architectures sometimes abandon the sequential consistency present in x86, 
which simplifies their design but makes programming difficult (explicit memory 
barriers are required). An example of such an architecture is applied to the 2006 
PowerPC on Apple computers. 

So far we have spent a lot of time understanding the caching of data. However, few 

pages ago it was mentioned that there is also a cache for program instructions (L1i). We 

do not look at it here for a few reasons. First of all, it is much less problematic in itself. 

Compilers can take good care of properly prepared code, and CPUs also do quite well in 

guessing code access patterns. As a result, this cache works well - the compiler and the 

nature of the program execution cause a good temporal and spatial locality that the CPU 

Figure 2-13c. Version #3 with 16 bytes offset and 16 byte gap - each thread 
modifies its own cache line and reads shared cache line with the array header
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can use.2 Moreover, instruction cache management does not fall into the area of memory 

management in .NET because it narrows it down to data management. The only obvious 

indication in this regard is the desire to generate the smallest code. Because it is cached 

at levels higher than L1, it consumes these resources. However, in fact it is difficult today 

to put this advice into practice - everything is done by the great compiler optimization, 

and the length of the code is rather due to business needs.

 Operating System
We’ve spent quite a lot of time very close to the hardware so far. I initially also promised 

to look at the operating system. It is the best time now to do so. Actually, the designers of 

the operating system have to take very seriously all the previously presented facts, which 

have been presented only briefly. And as you will see shortly, it’s still just a fragment of a 

wider reality.

Due to both operating system and hardware architecture, physical memory limits 

vary from 2 GB to 24 TB. And typical commodity hardware nowadays is equipped with 

from 4 to 8 GB of memory. If a given program had to use physical memory directly, 

it would need to manage all memory regions it creates and deletes. Such memory 

management logic would be not only complex, but also repeated in each and every 

program. Moreover, from a low-level programming perspective, it would be also 

cumbersome to use memory in such an approach. Each program would have to 

remember which regions of memory it uses so that programs do not interfere with each 

other. Allocators would need to cooperate with such region management to properly 

manage created and deleted objects. This is also quite dangerous from a security 

perspective - without any intermediate layer, a program could access not only its own 

memory regions.

 Virtual Memory
Thus a very convenient abstraction has been introduced - a virtual memory. It moves 

memory management logic to the operating system, which provides a program a so- 

called virtual address space. In particular it means that each process thinks it is the only 

2 However, even in .NET we can still design method calls with L1i cache misses kept in mind. It 
mainly includes avoiding lot of virtual calls and favourites repetitive calls of the same method 
over a big set of data. We will see such example in Chapter 10.
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one running in the system and that the whole memory is for its own purposes. Even 

more. Because address space is virtual, it can be larger than the physical memory. This 

allows it to extend physical DRAM memory with secondary storage like mass storage 

hard drives.

Note Are there operating systems without virtual memory? For any commodity 
usage, no. But yes, there are some special purpose, mostly very small operating 
systems and frameworks targeted to embedded systems. one of the examples is 
(micro)Clinux kernel.

Here is where the operating system memory manager comes to play. It has two main 

responsibilities:

• Mapping virtual address space to physical memory - there is 32-bit- 

long virtual address on 32-bit machines and 64-bit long on 64-bit 

machines (although currently only lower 48 bits are used, which 

still allows an address of 128 TB of data; and both simplify the 

architecture and allows us to avoid unnecessary overhead).

• Moving some memory regions from DRAM memory to hard drives and 

back as they are requested or currently not needed. Obviously as the 

total used memory may be bigger than physical memory, sometimes 

some parts of it must be temporarily stored to slower media like 

HDD. A place where such data is stored is called page file or swap file.

The OS memory manager has also two main additional responsibilities: managing 

memory-mapped files and a copy-on-write memory mechanism. We do not touch them 

here, however, as they are irrelevant for our purposes.

The need to get rid of a piece of data from RAM and to save it on a temporary storage 

is obviously associated with a large decrease in performance. This process is defined in 

different systems as swapping or paging mainly for historical reasons. Windows has a 

dedicated file called a page file that stores data from memory, hence the term paging. 

For Linux, such data is stored on a dedicated partition, called swap partition. Hence the 

term swapping on Unix-like systems.

Virtual memory is implemented in CPU (with the help of Memory Management 

Unit - MMU) and used with cooperation with OS. Virtual memory management is 

organized in so-called pages. As it would be impractical to map virtual to physical space 
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byte by byte, instead whole pages (continuous blocks of memory) are mapped. A page 

is therefore the basic building block for managing memory from the operating system 

point of view. A schematic illustration of virtual memory and physical memory is shown 

in Figure 2-14.

There is also a page directory maintained by OS per each process that allows us to 

map a virtual address to a physical one. Simply put, page directory entries point to a 

page’s physical starting addresses and other metadata like privileges. In old times there 

was a simple, one-level mapping where an address consisted of a page selector and offset 

within a page, which is illustrated in Figure 2-15.

RAM
secondary

storage
process A

virtual memory

process B
virtual memory

single page

Figure 2-14. Virtual to physical pages mapping. Each process (A is light gray and 
B is dark gray) sees its own virtual address space but physically their pages are 
stored both in RAM (solid-filled pages) and paged (swapped) to disk (dash-filled 
pages).
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A one-level page directory has the main drawback of producing too big pages or too 

big of page directory size. A big page is a major problem because it would be a waste of 

resources – an operating system requires page alignment when allocating memory. So 

even for small data it would need to allocate a whole big page. On the other hand, too 

big of a page directory is also a problem as it is being stored in the main memory per 

each process so it would be a waste of memory. Let’s see simple calculations of page size 

versus page directory size on both 32- and 64-bit machines (see Table 2-4).

selector (S) offset (O)

page directory

page entry

page address

O

physical
memoryvirtual address

physical address

S

Figure 2-15. One-level page directory - virtual address consists of selector (S) that 
choose single page entry from page directory and offset (O) within the page

Table 2-4. Possible One-Level Page Directory Size on Different Machines

Page size Offset size
32 bit 64 bit (48-bit address)

Selector size Page directory size Selector size Page directory size

4 kB 12 b 20 b 4 MB 36 b 512 gB

4 MB 22 b 10 b 4 kB 26 b 512 MB

Notes: Offset size has to be big enough to cover whole page size. Then Selector size is the remainder 
of the whole address. Page Directory Size is 2^selector * address size.
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So enormously big page directories are impossible to implement in case of 64-bit 

machines. In the case of 4 kB pages, each process should store 512 GB dedicated for a 

page directory, which is obviously not possible. On the other hand, a 4 MB page size is 

a huge overhead. Even if a process needed a few kilobytes, it would need to get from the 

system an entire 4MB-wide big memory page. And a 512 MB page directory size is  

still a lot.

Moreover, processes do not consume the whole available virtual memory. They 

tend to group used memory in logical blocks (stack, heap, binaries, and so on) so such 

directories are rather sparse with big holes between them, and storing a whole directory 

is a waste of resources.

Nowadays a commonly used approach is to introduce multiple levels of indexes. 

This allows us to compact the storage of a sparse page directory data while maintaining 

a small page size. Currently on most architectures, a typical page size is 4 kB (including 

x86, x64 and ARM) and 4-level page directory (see Figure 2-16).

page entry

offset (O)

Level 3
directory

page entry

physical
memoryvirtual address

physical address

Level 2
directory

page entry

Level 1
directory

page entryentry

Level 4
directory

page entry

entry

page entrypage entryentry

Level 1
selector

Level 2
selector

Level 3
selector

Level 4
selector

O

Figure 2-16. Four-level page directory with 4kB page size - three level of pages 
selector allows it to represent much more sparse data
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When a virtual address is being translated into a physical address, it requires a page 

directory walk:

• Level 1 selector selects an entry within level 1 directory, which points 

to one of the level 2 directory entries.

• Level 2 selector selects an entry within specific level 2 directory entry, 

which points to one of the level 3 directory entries.

• Level 3 selector selects an entry within specific level 3 directory entry, 

which points to one of the level 4 directory entries.

• Eventually level 4 selector selects an entry within specific level 4 

directory entry, which points directly to some page in the physical 

memory.

• Offset points to specific address within selected page.

Such translation requires traversing a tree but as we said, a page directory is kept 

in the main memory as all other data. This means it could be also cached through L1/

L2/L3 caches. But still, it introduced an enormous overhead if each and every address 

translation (operation performed very often) would require access to those data (even 

using L1 cache). Thus, Translation Look-Aside Buffers (TLB) has been introduced, which 

cache the translation itself. The idea is simple - TLB works as a map where the selector is 

a key and the page’s physical address start is a value. TLBs are built to be extremely fast 

so they are small in terms of storage. They are also multilevel as was the case with page 

directory structure. The result of the TLB miss (no virtual-to-physical translation already 

cached) is performing a full-page directory walk, which is costly as we mentioned.

Interesting note As always with cache, TLB prefetching is tricky - if the CPU 
itself is to be the one who triggers prefetching (for example, because of branch 
prediction), it can induce unnecessary page directory walk (as the branch prediction 
could be invalid). Thus, rather software prefetching of TLBs is being used.

Are there any relevant to software development TLB optimizations? It can mainly 

mean one thing: reduce the number of pages in general to avoid many TLB misses. This 

will also allow us to keep page directory small, which is a way to increase chances it will 

stay in TLB for long time. However, we do not have influence on page management from 

the .NET perspective.
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Interesting note Typically, L1 operates on the virtual addresses because the 
cost of translation to the physical address would be much bigger than the fast 
cache access itself. This means when a page is being changed, all or some cache 
lines have to be invalidated. Thus, often page changes negatively impact cache 
performance also.

 Large Pages
As it can be seen from previous descriptions, a virtual address translation can be costly 

and it would be great to avoid it as often as possible. The main approach would be to use 

a big page size. This would require less address translations as many addresses would fit 

into the same page, with already a TLB-cached translation. But as we stated, big pages 

are a waste of resources. There is one solution - so-called large (or huge) pages. With 

hardware support they allow us to create a large, continuous physical memory block 

consisting of many sequentially laid-off normal pages. These pages are typically two/

three orders of magnitude bigger than a normal page. They can be useful in scenarios 

when a program requires random access throughout gigabytes of data. Database engines 

are examples of large pages consumers. A Windows operating system also maps its core 

kernel images and data with large pages. A large page is non-pageable (can’t be moved 

to page file) and is supported both on Windows and Linux. Unfortunately, it is quite hard 

to allocate a large page because of fragmentation, and there may not be an adequate 

continuous range of physical memory.

Large pages are not currently used by the .NET runtime because it actually wants the 

pages to be smaller for the large percentage of possible scenarios. However, using large 

pages is on the list of things for consideration for the .NET GC but no timeline has been 

given yet. We can also try to use large pages when designing our custom CLR host, as 

presented in Chapter 15.
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 Virtual Memory Fragmentation
As always, when it comes to allocating and deallocating memory, the threat may be 

the fragmentation. We mentioned it in Chapter 1 while discussing the heap concept. 

In case of virtual memory, it means the operating system will not be able to allocate 

a continuous block of memory of a given size because there is not a big enough gap 

between used memory, although the total size of all free gaps can significantly exceed 

the required size.

This problem can be severe for 32-bit applications where virtual space may be too 

small for today’s needs. Fragmentation can be particularly acute when the process 

allocates quite large segments of memory and works for quite a long time: exactly the 

kind of situation we may have, for example, to deal with in web-based .NET applications 

in a 32-bit version (hosted on IIS). To prevent fragmentation, it is the process who must 

properly manage memory (and for .NET process this process is the CLR itself). We will 

delve it into such details when describing garbage collection algorithms in Chapters 7-10 

as it requires a bit deeper understanding of .NET itself.

 General Memory Layout
Knowing the basic memory builder block, we can now go on to discuss memory at a 

higher level. The first question that arises is how a program looks in the memory. When 

describing a typical memory layout of a program, one can often spot a figure like the 

shown in Figure 2-17. It shows the structure of program memory written in C or C++ 

layout throughout all the virtual memory space. And that is why we are also interested 

in it. As we will see in the next chapters, CLR is written in C++, so managed programs 

perform in a similar environment.
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As can be easily seen, the virtual address space is divided into two areas:

• Kernel space - the upper range of addresses is occupied by the 

operating system itself. It is known as the kernel space, since it is the 

kernel that owns this area and only the kernel is allowed to operate 

on it.

• User space - the lower part of the address range is assigned to the 

process. This area is referred to as user space because it is the user 

process that has access to that area.
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high address

(0xFFFFFF...)

low address

(0x000000...)

stack

heap

text
(EXE)

unitialized data

kernel
data/binaries

Figure 2-17. Typical, generic process memory layout

ChAPTeR 2  Low-LeveL MeMoRy MAnAgeMenT



105

From our point of view, of course, the most interesting is user space, because this is 

the area of memory where a .NET program resides. Thanks to the existence of a virtual 

memory mechanism, each process sees the memory in that way -as if it were the only 

process in the system.

Regarding address space, when presenting schematic diagrams of a memory layout, 

the most common is a convention in which low addresses (starting at 0) are at the 

bottom and then are rising upward. Remember the stack and heap from Chapter 1? The 

usual convention is to draw a stack at high addresses and a heap underneath. The stack 

grows down, and the heap grows up. This may suggest that the stack could meet with 

the heap; but in reality, if only because of the imposed restrictions on the size, it never 

happens.

Here are the remaining memory segments description from Figure 2-17:

• The data segment includes both initialized and uninitialized global 

and static variables.

• The text segment containing the application binaries along with 

string literals. It is named as such for historical reasons because it 

contained, by definition, only read-only data.

Such a scheme is actually useful to realize the general layout of memory. But as 

soon as we see, reality is more complicated. And it is better described in the context of 

two major operating systems from the perspective of the .NET - Windows and Linux 

environments.

 Windows Memory Management
The Microsoft Windows operating system is without a doubt the most popular .NET 

platform environment. So when we want to look at memory management in the context 

of the operating system, the obvious choice is to start from Microsoft Windows.

Because of the system design, the virtual address space is limited depending on the 

version of the system. A summary of these limitations is provided in Table 2-5.
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Note There is a mechanism called Address windowing extensions (Awe) that 
allows us to allocate more physical memory than listed here and then map only 
parts of it into a virtual address space through an “Awe window.” This can be 
especially useful on a 32-bit environment to overcome a 2 or 3 gB limitation 
per process. however, this is not relevant for us because CLR does not use this 
mechanism.

Limitations of the size of virtual memory of a single process had become painful at 

the end of the reign of 32-bit systems. Limiting up to 2GB (or 3GB in extended mode) 

can be problematic in larger enterprise applications. The classic example is ASP.NET 

web application hosted on IIS at Windows Server 32-bit machines. If this limit was to be 

exhausted, there was no other choice than restarting the entire web application. This 

forced horizontal scaling across large web systems, creating multiple instances of servers 

that process less traffic, and consequently consuming less memory. Nowadays the world 

is dominated by 64-bit systems, and limiting virtual memory is no longer a problem. We 

have not yet seen the days when standard programs need tens of terabytes of RAM. But 

please note, however, that a 32-bit compiled program has a virtual memory limit of 4 GB 

even on 64-bit Windows Servers.

The memory management subsystem in Windows is exposed by two main layers:

• Virtual API - this is a low-level API that is operating on the 

page-granularity. You may have heard of the VirtualAlloc and 

VirtualFree functions that are examples of functions that belong to 

this layer.

Table 2-5. Virtual Address Space-Size Limitations on Windows (User/Kernel)

Process type Windows (32-bit) Windows 8/Server 2012 Windows 8.1+/Server 2012+

32-bit 2/2 gB 2/2 gB 2/2 gB

32-bit (*) 3/1 gB 4 gB/8 TB 4 gB/128 TB

64-bit - 8/8 TB 128/128 TB

*large address aware flag (also known as /3GB switch)
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• Heap API - higher-level API providing Allocator (recall it from 

Chapter 1) for allocations smaller than page size. This layer includes, 

among others, HeapAlloc and HeapFree functions.

Heap API (exposing Heap Manager) is being typically consumed by the C/C++ 

runtime implementation of memory management. You are probably familiar with 

the popular operators new and delete or malloc and free from C/C++. As CLR has its 

own Allocator implementation for creating .NET objects (which we will see in detail 

in Chapter 6), mostly Virtual API is being used by it. In a nutshell, the CLR asks the 

operating system for additional pages, and the appropriate allocation of objects within 

these pages is handled by itself. Heap API is also used by the CLR to create many smaller, 

internal data structures.

On Windows, it is important to understand the different memory categories 

associated with the process. It’s not as trivial as it might seem. At the same time, without 

this knowledge it will be hard for us to understand one of the most important issues - 

how much memory the process we observe actually consumes?

In order to answer this question, we need additional knowledge about managing 

pages in Windows. Page can be in the four different states listed below:

• Free - not assigned yet to any process nor system itself.

• Committed (private) - assigned to a process. They are also called 

private pages because they can be used only by this particular 

process. When a committed page is being accessed for the first time 

by the process, it is being zero-initialized. Committed pages can be 

paged to disk and back.

• Reserved - reserved to a process. Memory reservation means 

obtaining a continuous range of virtual addresses without actually 

allocating memory. This allows us to reserve some space in advance, 

and only then actually commit some parts of it as they are needed. 

This does not consume memory physically and is only lightweight 

preparation of some internal data structures. Programs can also 

reserve and commit memory at once, when they know how big a 

block of memory they need at the moment.

• Shareable - reserved for a process but may be shared with other 

processes. This typically means binary images and memory- mapped 

files of system-wide libraries (DLLs) and resources (fonts, translations).
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Moreover, private pages can be locked, which makes them remaining in physical 

memory (will not be moved to the page file) until explicitly unlocked or when the 

application ends. Locking can be beneficial for a performance-critical path in the 

program. We will see an example of utilizing page locking in a custom CLR host shown in 

Chapter 15.

Reserved and committed pages are managed by a process with the help of above- 

mentioned VirtualAlloc/VirtualFree and VirtualLock/VirtualUnlock method calls. 

It is also worth noticing that attempting to access free or reserved memory will result 

in an Access Violation Exception because this memory cannot be mapped to physical 

memory yet.

Note why did someone invent such a two-way process of obtaining memory? As 
mentioned earlier, a sequential memory access pattern is good for many reasons. 
A space consisting of a continuous sequence of pages prevents fragmentation 
and thus optimizes the use of TLBs and avoids page-directory walks. Continuous 
memory is, of course, also advantageous for cache utilization. It is therefore good 
to reserve some bigger space in advance, even if we do not need it now.

Armed with the knowledge of the page statuses, we can look at into what categories 

a Windows process memory is divided (Figure 2-18 graphically depicts the relationship 

between these indicators as overlapping sets):

• Working set - this is a part of virtual address space that currently 

resides in the physical memory. This means it can be further divided 

into:

• Private working set - consists of committed (private) pages in the 

physical memory.

• Shareable working set - consists of all shareable pages (no matter 

if they are actually shared or not).

• Shared working set - consists of shareable pages that are actually 

shared with other processes.
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physical storage

virtual address space

private bytes

virtual bytes
working set

shared

private 
working set

Figure 2-18. Relationship between different memory sets withing a process on 
Windows

• Private bytes - all committed (private) pages - both in the physical 

and paged memory.

• Virtual bytes - both committed (private) and reserved memory.

• Paged bytes - part of the virtual bytes that are stored in the page file.

Quite complicated, isn’t it? Perhaps now we realize that the answer to the question 

of “how much memory actually takes up our .NET process” is not so obvious. Which 

of these indicators are we asking for? It is assumed that the most important indicator 

is the private working set because it shows what is the actual impact of our process on 

the consumption of the most important physical RAM. You will find out how to monitor 

these indicators in the next chapter. We will understand also what de facto is being 

displayed by Task Manager as a Memory column of a process.

Due to its internal structures, when Windows reserves a memory region for a 

process, it takes into account the following restriction - both the region start and its 

size has to be a multiple of the system page size (usually 4kB) and so-called allocation 

granularity (usually 64kB). This in fact means that each reserved region starts with an 
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address being a multiplication of 64kB and has size being a multiplication of 64kB. If 

we want to allocate less, the reminder will be inaccessible (unusable). Thus proper 

alignment and size of the blocks are crucial in not wasting memory.

Let’s illustrate it by an example. The simple code used for it is shown at Listing 2-7.  

It allocates virtual memory pages starting at the provided baseAddress and with a 

specified blockSize (specified in bytes). VirtualAlloc function returns an address ptr 

of the page that has been eventually allocated.

Listing 2-7. Page allocation code via Virtual API, illustrated to show page and 

allocation granurality pitfalls

IntPtr ptr = DllImports.VirtualAlloc(new IntPtr(baseAddress),

                                       new IntPtr(blockSize),

                                       DllImports.AllocationType.Reserve,

                                        DllImports.MemoryProtection.

ReadWrite);

At Figure 2-19 we see a result of calling this code for a few different scenarios. At 

Figure 2-19a there is a single, not yet used page illustrated, which starts at address 

0x9B0000. Figure 2-19b shows a typical, intuitive situation - we reserve 64kB of memory 

(single-page size) at a specific, properly aligned address. As a result, we obtain these 

64kB of reserved memory under such address (ptr will be 0x9B0000). Figure 2-19c shows 

very similar situation. When 4kB was reserved with a proper base address, an entire 

allocation granularity block has been reserved but the rest of it (60 kB) is being marked 

as unusable. This memory has been wasted. There is no way to reuse it now. We can spot 

such situation in VMMap tool, which we will learn in the next chapter.

Figure 2-19d illustrates a situation when block size is not a multiplication of page 

size - it is being rounded up to the nearest multiplication. Thus even we wanted to 

allocate 6kB, 8kB is provided to us. The remaining 56kB are again unusable, obviously.

A similar situation illustrates Figure 2-19e where the base address is shifted by 17kB 

(0x9B4400) and we want to allocate 4kB. Hence, theoretically, only two pages are needed. 

But in such case VirtualAlloc still returns an allocation granularity-rounded start 

address of the entire block (0x9B0000), not the value that we provided as a base address

Taking all that into consideration, the worst case would be to reserve memory near 

the end of allocation granularity block, what was illustrated in Figure 2-19f. Here even we 

want to allocate only 8kB, a two 64 kB blocks are being consumed and almost half of this 

memory is unusable.
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0x9B0000 0x9C0000

unusable

private

64kB
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private

4kB at 0x9B0000

unusable

private

6kB at 0x9B0000
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4kB at 0x9B4400
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8kB at 0x9BF000

64kB at 0x9B0000
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Figure 2-19. From the top to bottom: (a) Free single page before any action, (b) 
Reserve 64 kB with base address 0x9B0000 (multiplication of 64kB), (c) Reserve 4 
kB (single page) with base address 0x9B0000 (multiplication of 64kB), (d) Reserve 
6 kB (over single page size) with base address 0x9B0000 (multiplication of 64kB), 
(e) Reserve 4 kB (single page) with base address unaligned by 2kB (0x9B0800), (f ) 
Reserve 8 kB (two pages) with base address very unaligned by 2kB (0x9AF000)

All this is to show us how important it is to care for correct page alignment. Although 

we do not manage memory at a Virtual API level on a daily basis, this knowledge can 

help us understand the concern for alignment in the CLR code. This knowledge will of 

course be necessary if we were to write such low-level code in the future.
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A careful reader may ask why allocation granularity is 64kB while page size is 
4kB? Raymond Chen, a Microsoft employee, responded to this question in 2003 
[why is address space allocation granularity 64K? - https://blogs.msdn.
microsoft.com/oldnewthing/20031008-00/?p=42223]. And as usual in 
such cases, the answer is very interesting. Such granularity of allocation is mainly 
due to historical reasons. The kernel of the entire family of today’s operating 
systems goes back to the roots of the early windows nT kernel. It had supported 
a number of platforms, including the DeC Alpha architecture. And it was precisely 
this need for adapting to it that such a restriction was introduced. And since it was 
found not to be a nuisance to other platforms, the advantage of a common kernel 
base code was over the disadvantage of customization to one of the platforms. 
Detailed reasons why such a value on this platform you will find in the mentioned 
article. 

Windows Memory Layout
Now let’s look deeper into the processes running on Windows and executing .NET 

application. A process contains one default process heap (mostly used by internal 

Windows functions) and any number of optional heaps (created via Heap API). One 

example of such an optional heap is a heap created by Microsoft C runtime, consumed 

by C/C++ operators as mentioned before. There are three main heap types:

• normal (NT) heap - used by normal (non-Universal Windows 

Platform - UWP) apps. It provides basic functionality of managing 

memory blocks.

• low-fragmentation heap - an additional layer above normal heap 

functionality that manages allocations in varied-sized predefined 

blocks. This prevents fragmentation for small data and additionally, 

due to the internal OS optimizations makes this access slightly faster.

• segment heap - used by Universal Windows Platform apps, which 

provides more sophisticated allocators (including low-fragmentation 

allocator similar to mentioned above).
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As mentioned in the case of general process memory layout, virtual address space 

is divided into two parts where upper addresses are occupied by the kernel and lower 

addresses are occupied by the user (program). This is shown in Figure 2-20 (32-bit on 

the left, 64-bit on the right). On 32-bit machines, depending on the large address flag, the 

user space is the lower 2 or 3 GB. On modern 64-bit CPUs that support 48-bit addressing, 

both user and kernel space have 128 TB of virtual memory available (8TB on previous 

versions - Windows 8 and Server 2012).

With some approximation, we can say that the typical user-space layout of the .NET 

program on Windows is as follows:

• Default heap mentioned earlier,

• Most images (exe, dlls) are located at high addresses,

• Thread stacks (referred to in the previous chapter) are mainly located 

at fairly low addresses but can be located anywhere. Each thread 

in the process has its own thread stack region. This includes CLR 

threads, which are using native system threads mechanism,

• GC heaps managed by the CLR to store .NET objects we create (they 

are regular pages in the Windows nomenclature, acquired by Virtual 

API),

• Various private CLR heaps managed by the CLR for its internal 

purposes. We will look at them in more detail in the following 

chapters,

• There is also of course quite a lot of free virtual address space, 

including huge blocks in the order of gigabytes and terabytes 

(depending on the architecture) somewhere in the middle of virtual 

address space.
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The initial thread stack size on Windows (both reserved and initially committed) 

is taken from the executable file (commonly known EXE file) header but can also 

be specified by methods like CreateThread when creating threads manually by 

Windows API.

How .NET runtime calculates the default size of the stack is quite complicated. The 

default value is 1 MB for typical 32-bit compilation and 4 MB for typical 64-bit compilation. 

Stack data are rather small and the call stack is typically rather shallow (hundreds of nested 

calls are rather uncommon). This makes 1 or 4 MB a good default value.
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Figure 2-20. x86/ARM (32bit) and x64 (64bit) virtual memory layout of process 
on Windows runing .NET managed code
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However, if you have ever encountered a StackOverflowException, you have just 

collided with this barrier. Even then, this is most probably due to our error of infinite 

recursion, which would obviously use an arbitrary large stack space. If we develop our 

program in a way that for some reason would like to store a lot of data on the stack, we 

can modify the header of the binary file. .NET executable is interpreted as a regular 

executable file, so this change will be reflected by the operating system. We will increase 

this stack size limit for such a purpose in Chapter 4.

Due to security reasons, Address space layout randomization (ASLR) mechanism 
was introduced, which makes all layouts shown at Figure 2-20 only schematic 
as all components (images, heaps, stacks) are placed randomly over the entire 
address space to not repeat any common pattern that could be used by the 
attacker. 

I hope that such a birds-eye view will allow us to better understand the place of the 

CLR’s memory in the context of the whole Windows ecosystem. We will refer to this 

knowledge once again when describing the CLR process layout in details.

 Linux Memory Management
Until not so long ago, a chapter devoted to Linux in a book about .NET would find 

at most as a reference on the occasion of the Mono project. But times are changing. 

With the advent of the .NET Core environment, it is no longer possible to separate 

this platform from non-Windows systems. Moreover, you can anticipate the growing 

popularity of running .NET on non-Windows machines. We will devote a lot of attention 

to the CoreCLR, the runtime implementation of .NET Core. However, because Linux will 

be an alternative with growing popularity, we also need to look a little at this system. 

Because Linux uses the same hardware technology, including pages, MMU and TLB, 

much of the knowledge is covered by the descriptions in the previous subsections. Here 

we will focus only on the differences we are interested in. As more and more people 

will have to understand this new .NET environment, I believe it is very beneficial to 

understand at least some Linux basics also.

The popular and most-used Linux operating system distributions also use the 

concept of virtual memory. Their limits per process are also very similar and are 

summarized in Table 2-6.
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Like Windows, the basic builder block in Linux is the page, and it is also typically 

4kB. The page can be in three different states listed below:

• free - not assigned yet to any process nor system itself.

• allocated - assigned to a process.

• shared - reserved for a process but may be shared with other 

processes. This typically means binary images and memory-mapped 

files of system-wide libraries and resources.

This makes a simpler and clearer view of the memory consumption by a process than 

in the case of the Windows operating system. As you can see, compared to Windows, 

the implicit page reservation stage is missing, while still it exists explicitly. Linux has 

built-in a lazy allocation mechanism that takes care of it. When one allocates memory 

on Linux, it is being treated as allocated but no physical resources are assigned (hence 

this is like a reservation on Windows). Actual resources assignment (consuming physical 

memory) will not take place until it is actually needed by accessing this particular 

region of memory. If you want to proactively prepare such pages in performance-critical 

scenarios, you can just “touch” them by memory access like reading at least one byte 

within them.

Knowing the possible page statuses, we can look at which categories a process 

memory on Linux is divided. There is quite a lot of confusion around this. Many 

Linux-based tools say slightly different things about this topic. Here is a most generic 

classification I was able to prepare. Process memory utilization can be measured with 

respect to the following terms:

• virtual (marked by some tools as vsz) - total size of the virtual 

address space reserved so far by the process. In popular “top” tool it 

is a VIRT column.

Table 2-6. Virtual Address Space-Size 

Limitations on Linux (User/Kernel)

Process type Linux 32-bit Linux 64-bit

32-bit process 3/1, 2/2, 1/3 gB -

64-bit process - 128/128 TB*

*canonical 48-bit addressing
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• resident (Resident Set Size, RSS) - space of pages that resides 

currently in the physical memory. Some resident pages can be 

shared among processes (those which are file backed or anonymous 

also). Therefore, this corresponds to “working set” measurement on 

Windows platform. In “top” tool this is referred to as a RES column. 

Further it can be split into:

• private resident pages - those are all anonymous resident pages 

reserved for this process (indicated by MM_ANONPAGES kernel 

counter). That somehow correspond to the “private working set” 

measurement from Windows.

• shared resident pages - those are both file backed (indicated by 

MM_FILEPAGES kernel counter) and anonymous resident pages of 

the process. Corresponding to “shared working set.” In “top” this 

is referred to as SHR memory.

• private - all private pages of the process. In the “top” tool this is a 

DATA column. Please note this is an indicator of reserved memory and 

does not say how much of it has been already accessed (“touched”) 

and thus has become resident. Corresponds to “private bytes” on 

Windows.

• swapped - part of the virtual memory that has been stored in the swap 

file.

Figure 2-21 graphically depicts the relationship between these indicators as 

overlapping sets.
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Pretty complicated. Just like with Windows, the answer to the question of what is 

consuming the memory of our .NET process is not trivial. The most sensible thing is to 

look at the “private resident pages” measurement because it shows the actual use of our 

valuable RAM resource by the process.

while on windows, allocation granularity is 64kB; on Linux it is just page size 
bounded, which is 4kB in most cases. 

 Linux Memory Layout
The memory layout of the Linux process is very similar to that presented for Windows. 

For a 32-bit version, the user’s space is 3GB and the kernel space is 1GB. This split point 

can be changed with the CONFIG_PAGE_OFFSET parameter configurable at kernel build 

time. For 64-bits, the split is made at a similar address like on Windows (see Figure 2-22).
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Figure 2-21. Relationship between different memory sets within a process on 
Linux

ChAPTeR 2  Low-LeveL MeMoRy MAnAgeMenT



119

Similar to Windows, the system provides an API for operating on memory pages. It 

contains:

• mmap - to directly manipulate pages (including file maps, shared and 

normal ones, and anonymous mapping that is not related to any file 

but being used to store program data).

• brk/sbrk - this is the closest equivalent of the VirtualAlloc method. 

It allows us to set/increase so-called “program break,” which in fact 

means increasing the heap size.
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The well-known C/C++ allocators are using mmap or brk depending on the allocation 

size. This threshold can be configured by mallopt and the M_MMAP_THRESHOLD setting. As 

we will see later on, CoreCLR goes with mmap way with anonymous private pages.

There is one significant difference in thread stack handling between Linux and 

Windows. Because there is no two-stage memory reservation, the stack is just expanded 

as needed. There is no prior reservation of the corresponding memory pages. And since 

the next pages are created as needed, the thread stack is not a continuous memory area.

 Operating System Influence
Are there any differences in memory management that were taken into consideration in 

the cross-platform version of Garbage Collector included in CoreCLR? In general, the GC 

code is very platform independent, but for obvious reasons, at some point it must reach 

system calls. A memory management subsystem in both systems works in a similar way - 

it is based on virtual memory, paging, and a similar way of allocating memory. Although, 

of course, called system APIs are different, conceptually there are no specific differences 

in code, except for two situations that I would like to describe now.

The first difference has already been mentioned. Linux does not have a two-step way 

to allocate memory. In Windows, we can use a system call to reserve a large memory 

block first. This will be the creation of appropriate system structures without actually 

seizing physical memory. Only if necessary, we make the second stage of committing 

memory range of our interest. Because Linux does not have this mechanism, memory 

can only be allocated without “reservation.” However, a system API was needed imitating 

such a two-step way of work. A popular trick was used for this purpose. On Linux, 

“reservation” is made by allocating memory with access mode PROT_NONE, which de 

facto means no access to this memory. However, in such a reserved area, we can then 

allocate again specific subregions with normal rights, thus simulating “committing” 

memory.

The second difference is the so-called memory write watch mechanism. As we will 

see in later chapters, the Garbage Collector needs to track which memory areas (pages) 

have been modified. For this purpose, Windows provides a convenient API. By allocating 

a page, we can set MEM_WRITE_WATCH flag. Then, using the GetWriteWatch system call, we 

can retrieve a list of modified pages. While working on CoreCLR, it turned out that there 

was no reliable mechanism in the Linux system with a similar API. For this reason, this 

logic had to be moved to a write barrier (mechanism explained in details in Chapter 5), 

which is supported in runtime without operating system support.
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 NUMA and CPU Groups
There is one more important piece of memory management jigsaw puzzle worth 

mentioning in the context of the hardware and operating system. Symmetric 

multiprocessing (SMP) means a computer with multiple, identical CPUs that are 

connected to a shared main memory. They are controlled by a single operating system 

that may or may not treat all processors equally. As we know, each CPU has its own 

set of L1 and L2. In other words, each CPU has some dedicated local memory that 

is accessible much faster than the other regions. Threads and programs running on 

different CPUs will probably share some data, and this is by far not an optimal case 

because sharing data through CPUs interconnections induces significant delays. Here 

is where non-uniform memory architecture (NUMA) comes to play. It means that not 

all shared memory is the same from a performance perspective. And software (mostly 

operating system but optionally a program itself ) should be NUMA-aware to prefer 

using those local memories over those more distant. Such a configuration is illustrated 

in Figure 2-23.
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Figure 2-23. Simple NUMA configuration consiting of eight processors grouped 
into two NUMA nodes
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Such additional overhead of accessing non-local memory is called NUMA factor. 

Because connecting each CPU peer to peer would be very expensive, CPU has typically 

connections to two or three other CPUs. In a bad scenario to access distant memory, a 

few hops between a processor has to be taken. The more CPUs, the NUMA factor is more 

relevant if not only local memory is being used. There are also systems with a somehow 

mixed approach where groups of processors have some shared memory and memory is 

non-uniform between those groups with a big NUMA factor between them. This is in fact 

the most common approach in a NUMA-aware system. CPUs are grouped into smaller 

systems called NUMA nodes. Each NUMA node has its own processors and memory 

with a small NUMA factor due to hardware organization. NUMA nodes are of course 

interconnected but transfers between them imply bigger overhead.

The main requirement of NUMA awareness of an operating system and program 

code is to stick with the process memory on DRAM local to the NUMA node containing 

the CPU executing it. But this may lead to an unbalanced state if some processes 

consume much more memory than others. In Linux it is possible to control NUMA- 

awareness behavior per process - whether it should stick with local memory only (good 

for small processes) or try to distribute it more evenly (big for huge processes). On 

Windows NUMA, awareness must be taken into account during program development.

The question arises, is .NET CLR NUMA-aware? The simple answer is yes, it is! 

NUMA awareness could be theoretically disabled by GCNumaAware settings within a 

runtime section configuration but currently it is not being exposed.

However, there are two other important application settings shown in Listing 2-8 

related to so-called processor groups. On Windows systems with more than 64 logical 

processors, they are being grouped into mentioned CPU groups.

We can enable awareness of CPU groups in Windows-based .NET runtimes (see 

Listing 2-8), which is obviously important in environments with more than 64 logical 

processors.

Listing 2-8. Configuration of processor groups awerness in .NET runtime

<configuration>

   <runtime>

      <Thread_UseAllCpuGroups enabled="true"/>

      <GCCpuGroup enabled="true"/>

      <gcServer enabled="true"/>

   </runtime>

</configuration>
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GCCpuGroup setting specifies whether Garbage Collector should support CPU groups 

by creating internal GC threads across all available groups and whether it takes all 

available cores into consideration when creating and managing heaps.

Thread_UseAllCpuGroups specify whether CLR should distribute normal managed 

threads (executing our code) across all CPU groups. Both options should be enabled 

simultaneously with the gcServer setting.

 Summary
We have come a long way in this chapter. We have briefly identified the most important 

hardware and system memory management mechanisms. I hope that this knowledge, 

together with the theoretical introduction from the previous chapter, has allowed you to 

give you a much broader context: the context in which we are when it comes to memory 

management in .NET. I also hope that if you did not have it yet, you have gained some 

respect for the complexity of this topic. Yes, all we’ve talked about is the foundation of 

Garbage Collector in .NET! With each subsequent chapter, we will be moving further 

away from general hardware and theoretical statements. And we’ll go deeper into the 

.NET environment.

 Rule 2 - Random Access Should Be Avoided, Sequential 
Access Should Be Encouraged
Applicability: Mostly low-level, performance-oriented code.

Justification: Due to internal mechanisms on many levels, including RAM and processor 

cache designs, sequential access is definitely more optimal. DRAM requires far more 

CPU cycles to reach remote memory than its cache. The processor loads data in 64-

byte blocks called cache lines. Each memory access less than 64 bytes is a waste of 

expensive resources. What’s more, random access patterns make it unlikely that the 

cache prefetching mechanism will work. The processor has no chance of discovering 

any predictable pattern with the random access to memory. What is important, by 

randomness we do not mean total randomness, but rather the fact that it is not an 

ordered access that is compatible with any detectable pattern.
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How to apply: Obviously, the opposite of random access is sequential access, so try 

always to use it. If you are operating on a large amount of data, you might want to 

consider packing them into arrays that are taking care of memory continuity. Iterating 

over double-linked lists can be an example of a typical, unstructured access. We will look 

closer at this aspect of memory access in Chapter 13 when describing so-called Data- 

oriented design.

 Rule 3 - Improve Spatial and Temporal Data Locality
Applicability: Mostly low-level, performance-oriented code.

Justification: Spatial and temporal locality are the pillars of the cache. If present, the 

cache is used effectively and helps to achieve better performance. On the contrary. If we 

interfere with the temporal and spatial locality, we will lead to a significant decrease in 

productivity.

How to apply: Design your used data structures in such a way as to take care of 

your data’s locality and to maximize their reusability in time. As we have seen in the 

examples given, distributed, random access to data is very unfavorable in terms of 

performance and can be several times slower. Sometimes, in very advanced and high-

performance parts of the program, this means applying such non-intuitive changes as 

will be presented in Design-oriented design in Chapter 13. Sometimes it only comes 

down to ensuring that our data structures are reasonably small, preallocated, and used 

repeatedly.

 Rule 4 - Consume More Advanced Possibilities
Applicability: Extremely low-level, performance-oriented code.

Justification: The .NET runtime environment is written in the most generic way. This 

is to ensure proper operation in a variety of possible scenarios. However, when writing 

our application, we know our needs perfectly. We may need to write extremely fast- 

performing fragments of memory-related code. If so, we may consider using some more 

advanced operating system-specific mechanisms. Such mechanisms will probably need 

about 0.0001% .NET developers in the world. If you are writing memory-related library 

like serializers, messaging buffers, or any kind of extremely fast event processor - maybe 

you can benefit by using some of the mentioned here low-level APIs of the system (like 

non-temporal memory access).
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How to apply: This will require writing a really hard code. This code will be a pain to 

manage and probably no one will want to maintain it. Except you. Because it will use 

the low-level API of the operating system, it may also cause problems after updating or 

changing operating system versions. It is also very unlikely that you need such low-level 

memory management at all, because it will require extreme caution in coding. And it’s 

very easy to make a mistake, which, instead of increasing performance, will drastically 

reduce it.

Read this book carefully. Then read carefully specific operating system books about 

its internals. And then try to use advanced mechanisms like large pages, non-temporal 

operations, and others mentioned in this chapter.
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CHAPTER 3

Memory Measurements
Perhaps it is surprising to have a chapter with such a title almost at the beginning of 

the book. We have not really said anything about .NET memory management yet, 

and we are already looking at the tools associated with it? It is a deeply thought-out 

decision. Firstly, using the tools described here, I will often illustrate the specific 

concepts discussed later. Secondly, even though I’m trying to make this book be well 

balanced, it has a very practical meaning. When discussing various topics, we will 

touch on real problems and examples. With the tools outlined in this chapter, you can 

see how these problems can be identified and diagnosed. So as long as we do not deal 

only with the academic discussion of the Garbage Collector construction, the tools are 

inseparable from the theory.

Without knowing what tools to use, we are quite clumsy. We do not know how to 

check if our process has memory problems. We do not know how to make sure that 

high CPU or memory consumption is associated with .NET memory management. 

We do not know what is the possible cause of observed unwanted behavior, as for the 

tools themselves. The truth is that there is no single, super universal Swiss Army knife. 

Sometimes it is better to check one, sometimes another tool. To fully feel comfortable in 

the topic of memory management, it is best to learn how to use each of them. At least if 

we want to feel like being an expert in this field.

The range of tools described here will find a wide range of sophistication. At one 

end, you can place such low-level tools as WinDbg. With its help we can proceed with 

really deep analyses. Knowledge of dozens of magic commands that should be used in 

the right order will allow us to investigate a lot. At the other end can be put commercial 

products flattering with a convenient user interface. Here everything is pleasant and 

easy, so we can get a lot of answers quickly. Even before asking. On the other hand, these 

tools only allow what was provided by their creators. and customization is sometimes 

very limited. Between these extremes, there are many other tools that are always a 

compromise between versatility and ease of use. In my experience, these - let’s call 
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them - high-level commercial programs are almost always enough. But this “almost” 

makes a big difference. From time to time. we encounter a problem that we will not solve 

easily within the analysis that those programs provide. In other words, if we deal with 

this topic seriously, sooner or later, your hands get dirty with grease from the engine.

You may be surprised by the lack of strong representation of static code analysis 

tools among those presented here. Almost all tools are based on runtime analysis. 

This is because it is not really that simple. The code can translate into many behaviors 

depending on the usage characteristics. Even the most inefficient memory management 

code fragment will not adversely affect the process if the operations associated with it are 

performed - like once per hour. Static code analysis can help, but it can also hurt. It can 

concentrate unnecessarily on irrelevant parts of the code.

Performance is more difficult than functionality or code quality, as we often do not 

know what “could” or “should” is. There are tools to help us show the violation of certain 

thresholds. But even then, without understanding the subject, we are not sure whether 

these thresholds apply in our application, in our specific circumstances. That is why 

although this chapter is extremely important, without the context of the entire book it 

would not be particularly practical.

The way we measure the behavior of .NET programs is radically different depending 

on the operating system we use. That is why the chapter is divided into two parts. Each 

one is dedicated to one of the two most popular solutions - Windows and Linux. Due to 

the very low popularity of using .Net on macOS, tools for this platform are not described 

in this book.

Importantly, this chapter is to present what are the different tools and the 

basics of how to use them. Their specific use and interpretation of the results will 

be provided later in the book. We do not yet have sufficient knowledge about the 

Garbage Collector to start using these tools to solve specific problems. Consider this 

chapter as a comprehensive list of tools that you can and should use. I encourage you 

to try them out while reading, at least a little. Thanks to this, you will gain a powerful 

dose of practical knowledge and familiarity with them. It will be useful in the next 

chapters. Obviously, there is a big chance that some or all of those tools are known to 

you. Feel free to skip their description, especially in the part showing basic steps in 

using them.

Please note also that this chapter suffers a little of the chicken and egg problem - 

it is impossible to show the practical side of many GC-related topics without 

using tools described here, while tools described here require often quite a good 
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understanding of those GC-related topics. To not clutter the whole book with those 

tool descriptions introduced here and there, some basic usage is presented now, 

even if it mentions GC-related concepts. Therefore, do not be afraid if you do not 

understand every detail described here. I expect you will occasionally return to this 

chapter when using these tools in your regular work, with the full understanding 

gained from this book.

 Measure Early
When we ask experts about performance optimization, frameworks developers, 

or simply professionals who have already seen many issues - what is the most 

important thing to take care of performance? – they all respond in the same way: 

measure early. Everyone probably heard the phrase that premature optimization 

is the root of all evil. First of all, it just does not pay off to spend hours or days 

optimizing code that will give us a really negligible return without compromising 

on either the economy or the hardware resources, or the shorter processing times of 

the application. And worse, it will surely translate into increased development costs. 

And probably unnecessarily complicated and thus unreadable code. The good rule 

is the opposite - instead of prematurely focusing on optimization, let’s first measure 

whether we have any need at all. And since it’s a book on memory management in 

.NET, it leads us to the next general rule - Measure GC Early - which I introduce at 

the end of this chapter.

Each measurement can be saddled with greater or lesser error. In addition, 

measuring may interfere with the observed process. We know these facts from 

physics and it’s no different in the case of process parameters’ measurements. 

Therefore, the answer to the question “how to measure” can be either very simple 

(if we do not go into details) or very complicated (if we take into consideration the 

precision). Different tools provide different precision and I will talk about it a little. 

However, the statistical discussions about the measurement errors are out of the 

scope of this book. Just be aware that certain inaccuracies can always happen as 

soon as we measure something.

Still, just because it is so important in the context of measurements, I want to 

highlight here a few major concepts and misconceptions. With these issues we will meet 

in the later part of this chapter as well as throughout the rest of the whole book. And 

most importantly, also in our daily work.
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 Overhead and Invasiveness
When it comes to different tools for measuring our application, it’s always important to 

keep in mind the two following, most important concepts:

• overhead - it is hard to find a tool whose usage to measure an 

application does not make it slower or consume more resources 

in some way. We are talking then about the overhead of this tool 

and we usually express it by percentage. Certain tools can cause 

barely noticeable overheads at a few-percent level. This means, 

for example, that web application response times will be a few 

percent longer. Or these percentages will decrease the fluency of 

the animation in the desktop application. Such low-overhead tools 

can be used even on production environments. On the other hand, 

there are tools that by attaching to our application slow it down 

by orders of magnitude. In general, they provide a great deal of 

detailed information in return. However, due to the overhead they 

bring, they are only suitable for use on development environments 

or only single-developer stations.

• invasiveness - this concept is similar and is about how much the tool 

affects the functioning of the application as such. Does using the tool 

require running this application again? Do you need any additional 

permissions or installed extensions? Ideally a non-invasive solution 

can be turned on and off during application running without any 

effect on it. On the other hand, a completely invasive solution would 

require recompiling our application and re-deploying it to a given 

environment.

 Sampling vs. Tracing
Another aspect of tool activity is how it collects diagnostic information. There are two 

main approaches:

• tracing - in this approach diagnostic data is collected on the occasion 

of specific, highlighted events (hence its other name - event-based). 

An example may be saving tracking data when opening or closing 
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a file, at the moment of clicking the mouse, or starting the process 

of garbage collection. The undoubted advantage of this solution 

is the precision of the data, because they come from the moment 

of occurrence of the event and we may write all events of a given 

kind. However, if such events were very frequent, this would cause 

a very big overhead. Therefore, this kind of mechanism is not used 

for such frequent and low-level events as entering or returning from 

functions. Unless we can afford a very big overhead, for example, at a 

local developer station.

• sampling - in this approach, we agree to the loss of data precision 

and we only collect diagnostic data from time to time (hence 

its other name - time-based). This way we only try to sample the 

application state and the less frequently we do it, the less accurate 

the results we get from our measurements. A typical example of 

this approach is a periodical-saving functions call stacks on all 

processors, for example, every 1 ms. This allows you to statistically 

find out which functions are executing the longest. Although of 

course we can unfortunately lose information about functions that 

always run faster than 1 ms.

 Call Tree
One of the most commonly used visualizations of application behavior is to build a 

call tree. In such a tree, each node represents one function. The children of such node 

represent other functions that this function has called. Each function has also some 

measurement attached, most likely total execution time. In fact, there is very often a pair 

of indicators related to each function (each element of a tree):

• exclusive - only measures the value of this particular function. In case 

of execution time, this will be the time spent only in this particular 

function.

• inclusive - measures the value of this particular function and the sum 

of all its descendants’ measurements. In case of execution time, this 

will be the time spent in this function, all other functions called by it, 

all functions called by them and so on, and so forth, recursively.
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In addition, the percentage of a given measure is often determined with 

respect to the entire range examined. This is known as inclusive % and exclusive 

% measurements. Let’s look at an example in Figure 3-1 showing results from a 

hypothetical profiler.

We see here that function main has spent 100% inclusive time of the program - which 

was 3 seconds. This is the main function calling all other functions so this is an expected 

behavior. But only 22% of this time was spent in the main function itself; the rest was 

spent in other functions called by it. For example, 78% of time was spent in  SomeClass.

Method1 function. Then, 66.7% of all time this function was devoted to calling another 

method called SomeClass.HelperMethod. Navigating through this call tree we will very 

quickly find out which application components are the slowest.

Please also note that such trees typically present aggregated data. In case of our 

example from Figure 3-1, it aggregates all mentioned method calls occurrences. So the 

main method was called only once, while the HelperMethod was called two thousand 

times (which explains why its aggregated inclusive time is so big). Therefore, analysis of 

such a tree involves searching for long-lasting methods or methods not necessarily slow 

but called many times.

main
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Method name
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Figure 3-1. Example of a call tree showing performance data

The same idea can be used to visualize memory usage, where each node 

represents one particular type of object. Its children are other types whose instances of 

that type this object contains or refers to. Believe me, when analyzing the performance 

or memory consumption of your application, you will often be using these types of 

visualizations.
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 Objects Graphs
In the context of memory, we often use a graph representing relationships between 

objects in memory called an object graph or reference graph. An example of such a 

graph was seen in Figure 1-12 in the first chapter and is illustrated in Figure 3-2. In our 

example, it shows a set of objects with some referencing the other and only a single root. 

In general, such graphs for normal program sizes can be very large so their visualization 

is not easy; thus typically we analyze only a smart part of it. You can use them to show 

both aggregated information (how many instances of a given type have references to 

other types) or information about a particular instance (to which other object instances 

given objects have references).

A B F

E

HGC

D

root

Figure 3-2. Example of objects’ graph. Retained subgraph of object B has been 
additionally marked.

With object graphs, there are three important concepts that appear in the different 

tools you will have the opportunity to use:

• shortest root path - determined for the selected object, this is the 

shortest path of references from a particular object to some root. As 

the object graph can be complex and there may be multiple paths 

between the root (or even multiple roots) and the object, there is 

also obviously the shortest one. For illustration 3-2, the shortest 

root path for object H is the path root-A-H. There are also longer 

paths: root-A-C-G-H and root-A-B-G-H. The shortest path to the 

root may be important because it most often indicates the main and 
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strongest relationships between objects and is a good indication 

what is the main reason that makes an object impossible to be 

considered unreachable (and thus removable). Other paths are 

most often created as a side effect of other complex dependencies. 

However, sometimes the shortest root path may be misleading as it 

is created by some (sometimes temporary) auxiliary references like 

caches. With such a situation we seem to be dealing in Figure 3-2  

where object A probably holds the reference to object H for 

convenience (like caching), while H business owner is located 

among objects B, C, or G.

• dependency subgraph - determined for the selected object, this 

is the subgraph that contains the object itself and all objects that 

have direct or indirect references to it. At Figure 3-2, for example, 

the dependency subgraph of object B contains B and objects D, E, 

F, G, and H.

• retained subgraph - determined for the selected object, this is the 

subgraph that would have been removed if you removed the given 

object itself. Because the dependency graph can be complex, deleting 

an object does not necessarily mean that all objects that depend on 

it are removed. References to them may still be kept by other objects. 

The retained subgraph of object B from Figure 3-2 contains object B 

and objects D, E, and F.

Along with these concepts there are also different interpretations of 

how the object size is indicated in the tools:

• shallow size - the size of the object itself (all its fields including 

the size of references to other objects). This is obviously easy to 

calculate.

• total size - the sum of the shallow size of the object and all shallow 

sizes of objects to which it has direct or indirect references. In other 

words, it is the total size of all objects in the dependency subgraph. 

This is also easy to calculate because we just need to find an object’s 

dependency subgraph and sum all the shallow sizes of included 

objects.
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• retained size - total sum of all objects in the retention graph. In other 

words, retention size is the amount of memory that can be released 

after deletion of a given object. The more objects are shared by 

different references in the object graph, the retention size is smaller 

than total size. It is the hardest to count because it requires complex 

analysis of the entire graph of objects.

Whenever the tool we are using is talking about the size of the object, 

it is worth asking yourself which of the mentioned “sizes” is taken 

into consideration.

 Statistics
Whenever we aggregate some measurements in different ways, we use statistical tools 

to a greater or lesser extent. If we do it unconsciously, this involves the risk of erroneous 

conclusions. For example, the most commonly used method of aggregating data is to 

calculate the average, which should give a sense of “typical value.” But the average has 

two main disadvantages: its results do not point to any specific sample (did anyone 

see 2.43 children of the average family?). And it easily hides the true nature of the data 

distribution (as will soon be illustrated). Similar to other simple measures such as 

variance, those problems are perfectly illustrated by the so-called Anscombe’s quartet 

(see Figure 3-3 taken from Wikipedia). Sometimes very different data sets may lead to 

statistically identical conclusions.
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The advantage and the cause for the popularity of the average is its intuitiveness and 

the fact that it can easily be calculated without storing individual samples - with each 

additional sample, we increase the sum and then divide it by the number of samples 

observed. Other aggregation methods require that all samples be kept up to date. This 

can create a lot of overhead for the tool.

What other methods of aggregation should you use? The most common include:

• median - the value separating the higher half and the lower half of the 

samples. It gives a better idea of the typical value because it is more 

resistant to very mismatched samples. Moreover, it indicates one of 

the real samples, not an artificially calculated one.

• percentile - the value below which a given percentage of samples 

fall. For example, the 95th percentile is the value below which 

95% of the samples may be found. This is a great indicator of 

Figure 3-3. Anscombe’s quartet - four datasets with the same average and 
variance of x and y data. Source: Wikipedia
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the data we are interested in, without taking into account very 

unusual measurements. I strongly encourage you to measure 

percentiles in the tools you use. Percentiles are also often 

business driven. For example, we want to make sure that 90% 

of response times of our application will not be slower than 1 

second and 99% will not be slower than 4 seconds. Measuring 

90th and 99th percentiles of response times will allow us to easily 

control this.

• histogram - graphical representation of the distribution of samples. 

It shows how many samples fall within specific ranges of values. 

It is the best possible measurement as it shows us the whole data 

distribution.

All those metrics are presented in Figure 3-4, showing an example histogram 

of the response time distribution - how many responses there were within each 

response time range (expressed in milliseconds). From the histogram we can clearly 

see that the most common response time is between 110 +/- 5 ms, and the more 

response time differs from this value, the less frequently it occurs. Moreover, we can 

say that:

• The average response time is 104.3 ms.

• 10% of all responses are shorter than 60 ms (10th Percentile).

• Median is 100 ms.

• 90% of all responses are shorter than 150 ms (90th Percentile).
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Distribution showed in Figure 3-4 is very similar to so-called normal distribution, 

often named also the bell curve, due to its characteristic shape. Many measurements will 

fall into this category, making interpretation of percentiles (and even an average) quite 

sensible.

However, be especially careful about the occurrence of so-called bimodal (and 

multimodal in general) distribution of data, which produces both the average and even 

the median and percentiles values that do not make a lot of sense (see Figure 3-5).  

Clearly, there are two types of responses measured (in fact, two different normal 

distributions), so making any aggregations on both of them is quite misleading. We 

would rather like to say that there are two categories of responses with medians around 

40 and 150 ms (and should probably investigate why such bimodal response time 

happens in the first place).
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Figure 3-4. Example of histogram with the values of median, 10th, and 90 
percentile shown - normal distribution of data
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Fortunately, multimodal distribution may be easily, visually detected on a 

histogram; thus it makes it so crucial to have such data available when measuring 

something (or at least have an automatic indication that multimodal distribution has 

been detected).

The more measurements other than the average the tool offers, the better. 

Unfortunately, the vast majority still use only the average (with a very few showing any 

histograms). You need to be very careful when drawing conclusions. And it is best to try 

to use a tool that will also show us the distribution of results by means of percentiles or a 

histogram.

 Latency vs. Throughput
Two title concepts are very important in the context of any performance analysis and 

optimization. Unfortunately, they are also sometimes misunderstood and mistakenly 

interpreted. Most often we think that one comes from the other and that they are 
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Figure 3-5. Example of histogram with the values of median, 10th, and 90 
percentile shown - bimodal distribution of data
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completely dependent on each other. Therefore, it is worth giving them a few words of 

explanation. Let’s start from their simple definitions:

• latency - time required to perform a given action. It is measured in 

some units of time - days, hours, milliseconds, and so on.

• throughput - number of actions executed per specific amount of time. 

It is measured in actions (or whatever a single specific item is) per 

some unit of time - like bytes per second, iterations per millisecond, 

or books per year.

A simple equation called Little’s Law designates the relationship between these 

indicators:

occupancy = latency * throughput

where occupancy means a number of actions in a period of time designated by 

the latency. What is important, this equation applies to a stable system, where there 

is no unnatural queuing or dynamic adaptation to load change (e.g., during startup or 

shutdown of the system).

These two concepts are most commonly encountered in the context of computer 

networks but for our purposes we will use a more useful context of web applications. 

The processing time of a single user request determines the latency. The number of user 

requests per unit of time determines the throughput. Occupancy will be the number of 

requests in our system during considered period of time.

Of course, lowering latency (for example, by using a more powerful CPU) makes us 

process more user requests per unit of time so it also raises throughput. On the other 

hand, we can increase throughput just by increasing the number of processed requests 

in parallel (for example, by using more CPU cores, etc.) without changing latency (see 

Figure 3-6). In general, in computer science it is easier to increase throughput (by any 

kind of parallelization) than to decrease latency (by introducing complexity in more 

sophisticated hardware or algorithm design).
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Of course, increasing throughput is not possible indefinitely. And often after some 

threshold, further increasing throughput also negatively impacts latency as actions are 

not completely independent. Additional synchronization costs impacting latency may 

swallow the gain from increased throughput.

There is also a popular Amdahl’s law derived from the fact that potential latency speedup 

is limited by the serial (not possible to parallelize) part of the program. So, for example, if 90% 

part of the program may be parallelized, there is still 10% that will run normally. Thus, the 

maximum potential speedup in such case is limited to at most 10 times.1

 Memory Dumps, Tracing, Live Debugging
In order to analyze the state of our application, we have several standard approaches 

that differ in invasiveness:

• monitoring - usually means non-invasive application monitoring 

and the use of diagnostic information that it generates (either with 

the help of tracking or sampling). Sometimes it takes a more invasive 

form (such as a reboot of an application) but still allows you to 

observe it in action, even in a production environment.

1 Please note that it extends to the whole application and underlying libraries, runtime, and other 
components, not only our code. So in case of an ASP.Net web application, even if all requests 
processing may be parallelized, there still may be some serial parts like session management, 
parts of the framework/hosting and, parts of the Garbage Collector executions.

(a)

(b)

(c)

X seconds

Figure 3-6. Throughput vs. latency relationship: (a) with some base latency we 
are able to process 5 requests per X seconds, (b) with shortened latency we are able 
to process 7 requests per X seconds, (c) by doubling parallelization we doubled 
throughput to 10 requests per X seconds without changing latency
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• core dump (memory dump) - means saving the memory state of a 

process at a given moment. Most of the time, the state of the entire 

memory is saved to a file, and only then, on another machine, is 

being analyzed by various tools. Such a memory dump can take up 

a few gigabytes, but using the right skills can provide very detailed 

information about the state of our application. On the other hand, 

it is just a glimpse of the snapshot of the process at a given moment, 

and without the context of the change in time it is sometimes 

difficult to come to concrete conclusions. Therefore, two or more 

memory dumps are often performed and compared to each other. 

Invasiveness of taking a memory dump differs. Most often it causes 

the process to temporarily pause for some time. An important 

application of memory dumps is their automatic execution after 

application failure, which allows for later investigation of its cause 

(called post-mortem analysis) - hence we can spot also a crash dump 

name as a special case of memory dump. In practice, the concept of 

crash dump and memory dump are used interchangeably in the tools 

you will encounter.

• live debugging - the most invasive approach is to connect the 

debugger to the process and analyze the application step by step. 

This is the least common approach since the two previous ones 

are generally sufficient. Live debugging stops application entirely 

so it is possible only on development environment, if it is needed 

at all. Thanks to extensive monitoring and diagnostic tools, live 

debugging is rather uncommon in case of memory management 

solving.

 Windows Environment
Let’s get started by getting to know the tools on the native platform where .NET was 

born. It has been present here for about 15 years. The power of choice and level of 

refinement of tools on Windows are very good. We will begin by learning the low-level 

tools, free and built into the system. We devote the most time to them just because they 

will be used frequently later in the book. But for completeness, we’ll finish with a review 

of commercial programs.
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 Overview
Windows monitoring and tracing infrastructure is quite mature, including context 

of the .NET environment. There are two main components available: metrics-driven 

performance counters providing time series of measurements and an event-driven 

mechanism called Event Tracing for Windows (ETW). Those two tools cover almost 

all the monitoring and diagnostic needs. There is also a Windows Management 

Instrumentation mechanism, but it is not being used for our purposes at all (as it is more 

dedicated to, as its name suggests, management and administration).

When developing .NET, the choices were obvious in the field of the diagnostic 

mechanism used. Both a mature .NET Framework and its multiplatform counterpart 

.NET Core support both performance counters and ETW as diagnostic platform. More 

precisely:

• .NET application - can use EventSource class (from System.

Diagnostics.Tracing namespace) to emit ETW events or obviously 

can use any other library to log directly into the files and many other 

possible targets.

• .NET framework - emits both Performance Counters and ETW data.

• Operating system API and kernel - also emits both Performance 

Counters and ETW data.

Now we will devote quite a lot of words to those two mechanisms and how to 

consume them in various tools.

 VMMap
This great tool, part of Microsoft’s Sysinternals tools suite, allows you to analyze process 

memory usage from the operating system point of view. It will be used by us in later 

chapters to see how .NET application consumes memory, with respect to organization 

described in Chapter 2 (pages that may be committed or reserved for various purposes).

It is a stand-alone tool not requiring any installation and may be downloaded from 

the a https://docs.microsoft.com/en-us/sysinternals/downloads/vmmap site. 

After unpacking and running it, we select process of our interest to immediately see 

its memory usage analysis (see Figure 3-7). VMMap detects pages used by the .NET 

Managed Heap as well as pages dedicated for stack or loaded binaries.
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 Performance Counters
One of the most commonly used tools for monitoring virtually every aspect of Windows 

is the so-called Performance Counters mechanism. This is a very lightweight mechanism 

that can be described in one sentence - processes can use it to share diagnostic data 

in a form of time series of numbers. The huge advantage of it is that it is a completely 

non-invasive mechanism and does not have a noticeable overhead. The disadvantage 

is precision - it is generating samples each single second, which may be not enough for 

specific purposes.

There are many different categories in which these data are published. Thanks to this 

we can get very comprehensive knowledge about the system. The general performance 

counters architecture is shown in Figure 3-8.

Figure 3-7. Sample VMMap view of simple .NET application (for example, 
Managed Heaps were properly detected)
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In general, each process can decide to publish data under some specific 

Performance Counter and there can be multiple processes doing it. This mechanism 

works in user space rather than kernel level.

Each performance counter has several important attributes:

• category - defines what general scope of a given topic is the counter 

about;

• name - uniquely identifies counter within a given category;

• instance name - there may be multiple instances of the same 

counter in the system. By far the most common instances represent 

individual processes.

The combination that uniquely identifies the performance counter is written as  

"\<Category>(<Instance>)\<Name>". For example, the counter that indicates the CPU 

usage by the notepad process (notepad.exe) will be referred to as "\Process(notepad.

exe)\% Processor Time".

What sample data can we get this way? I mention only a few of them to show the 

wealth of information provided:

• How the CPU usage spreads between the kernel and the programs 

(Processor/% Privileged Time, Processor/% User Time);

• To what extent the individual processes consume the CPU 

(Process/% Processor Time);

\CategoryA\Name1

Kernel

Reader

\CategoryX(Process A)\Name1

data

\CategoryX(Process B)\Name1\CategoryX(Process A)\Name1

\CategoryX(Process A)\Name2 \CategoryX(Process B)\Name2

\CategoryY(Process B)\Name1

Reader

Process A Process B

Performance Monitor ...

Figure 3-8. Performance counters architecture
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• To what extent and how the individual processes consume the 

memory (Process/Working Set, Process/Working Set - 

Private);

• How the hard drive is used (Process/IO Read Bytes/sec, Process/

IO Write Bytes/sec, Process/Page Faults/sec);

• Is write/read to disk queued (PhysicalDisk/Current Disk Queue 

Length);

• How many exceptions does the .NET application generate? (.NET 

CLR Exceptions/# of Exceps Thrown/sec).

Of course, we are most interested in the .NET CLR Memory category where we find the 

following counters (spelling and capitalization unchanged):

• # Bytes in all Heaps

• # GC Handles

• # Gen 0 Collections, # Gen 1 Collections, # Gen 2 Collections

• # Induced GC

• # of Pinned Objects

• # of Sink Blocks in use

• # Total committed Bytes, # Total reserved Bytes

• % Time in GC

• Allocated Bytes/sec

• Finalization Survivors

• Gen 0 heap size, Gen 1 heap size, Gen 2 heap size, Large 

Object Heap Size

• Gen 0 Promoted Bytes/Sec, Gen 1 Promoted Bytes/Sec

• Process ID

• Promoted Finalization-Memory from Gen 0

• Promoted Memory from Gen 0, Promoted Memory from Gen 1
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Note those performance counters names (as others in .net CLr categories) 
are translated into the language of the operating system, so in your computer 
or server you may find it under different names and categories. this can be 
Very annoying because in many translations, those names sound a bit odd. I 
suggest you switch to english for this and many other reasons as the default 
Windows language.

If the Garbage Collection topic is at least a little known to you, you probably guessed 

the meaning of most of the above counters. We will see them successively throughout 

the rest of the book. It is already enough to say that this is a complete set of data allowing 

for a very in-depth understanding of the state of our application.

Calculation of the counters is synchronized with the Garbage Collection life 

cycle. In particular, most measurements take place at the beginning or the end of 

the GC. In this sense, performance counters can provide very valuable and accurate 

information. However, there are some important remarks that should be mentioned 

in this context:

• The reading of the performance counter values is purely 

controlled by how often the tool we use samples it. If it samples 

often enough (like every second), the data will be completely 

accurate. However, if it samples rarely, the results may be very 

erroneous and misleading. For example, taking samples in such 

an unfortunate way that we will always hit full Garbage Collection 

(the one consuming the most resources), we will get false view 

about how much % time in GC is being spent. In other words, 

let’s pay close attention to the way we sample data when we use 

performance counters. The best rule is to simply sample the data 

as often as possible.
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• Performance counters data are only updated when specific events 

occur (mainly the mentioned GC start and end), and then their 

values remain unchanged. This may lead to misleading readings. 

Suppose, for example, that in our process full GC has recently 

occurred during which % Time in GC was at level of 50%. From this 

point on, the counter % Time in GC will indicate a high 50% value 

even if the observed process does not perform any work. As long as 

no new GC occurs, those values will not be updated. In other words, 

by observing counters, we should focus more on the changes than 

on current values. The observed value is just the last one that was 

sampled recently.

Microsoft, since .NET 4.0, prefers the use of ETW data (described in the following 

subchapter) instead of performance counters. However, the use of performance counters 

is much simpler than that of ETW and hence the high popularity of this mechanism. We 

will observe in detail the difference between measurements of performance counters 

and ETW in Chapter 5.

There may be many different consumers of data provided by performance counters. 

A lot of monitoring tools are using underneath performance counters because it is a very 

lightweight, no-waste way to get massive amounts of information. But one of the easiest 

tools, very often used, is the built-in Windows Performance Monitor. Run it with the 

perfmon.exe command or by searching on the Start menu.

Then select Performance ➤ Monitoring Tools ➤ Performance Monitor item on the 

left. In the graph that appears, in the context menu select Add Counters... option (see 

Figure 3-9).
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Figure 3-9. Performance Monitor - overall view with Add Counters context option

Figure 3-10. Performance Monitor - Add Counters dialog

Use the dialog box to select the category of interest (.NET CLR Memory in our case) 

and specific counters and instances (see Figure 3-10).
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After adding counters, we often need to take a moment to adapt the charts to our 

needs. It is primarily about:

• Scaling of each chart (Data tab, Scale parameter),

• Frequency and number of samples (General tab, Sample every 

parameters, and Duration),

• Graph vertical scale (Graph tab, Vertical scale Minimum, and 

Maximum parameters),

• How the graph is being scrolled (Graph tab, Scroll style parameter).

Properly selecting the above parameters (and possibly choosing the thickness and 

color of each data series), we can adjust the graph to short-term analysis or to observe 

daily trends. The following examples in Figures 3-11 and 3-12 illustrate this.

Figure 3-11. Performance Monitor - short period analysis (100 seconds) with GC 
generation sizes visible
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The performance counters mechanism has a certain annoying trait that we will 

have to learn to live with. As I mentioned, every process that publishes counters 

under the same name has a unique instance name. It corresponds to the name of 

the process. For example, a web application hosted on IIS will have a \.NET CLR 

Memory(w3wp)\# Bytes in all Heaps counter (because application pool process 

has name w3wp.exe). However, if there are several applications on the server hosted 

in different application pools, there will be several instances numbered sequentially, 

like w3wp, w3wp#1, w3wp#2, etc. How can we find out which instance corresponds to 

which application pool? Here will help us: .NET CLR Memory/Process ID counter. 

Thanks to it, we may find out what the PID of each instance process is. But be careful! 

The annoying part starts here – the assignment between a process and performance 

counter instance can change over time! If, for example, one of the application pools is 

stopped (due to inactivity or so), the remaining processes will override their instance 

assignment (see Table 3-1).

Figure 3-12. Performance Monitor - long-term analysis (50 minutes) with GC 
generation sizes visible
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It is very annoying, especially if you want to create, for example, an automatic 

mechanism to observe specific application pools. Then it is important to ensure that 

things like automatic stopping of the application pool do not take place at all. With a 

similar mechanism we are also dealing with if IIS has enabled the option to restart the 

application pool by means of overlapping. Then we have two instances of the same 

counter for a moment, so such an unfortunate instance of reassignment is certain.

Due to the above-mentioned nonobvious mapping, in the case of manually 

observing IIS hosted applications, the most common scenario is as follows: we check the 

current PID of the application pool we are interested in and look for a w3wp instance that 

has a corresponding .NET CLR Memory/Process ID counter. Then we add the counters 

of this particular instance.

It’s actually all about what you can say about Performance Monitor. There are many 

other programs that consume performance counters, but let’s just stop here. We will use 

Performance Monitor to illustrate Garbage Collection in action on Windows.

 Event Tracing for Windows
Among the various diagnostic tools available, undoubtedly one of the most powerful is 

the mechanism called Event Tracing for Windows (ETW). It seems to be, unfortunately, 

still a little underrated as per its capabilities. Perhaps this is due to the fact that this 

mechanism is developed gradually over the years and has yet to earn his rightful 

interest. It was present since Windows 2000 but with every new version of the system 

offers more and more. It has been extensively developed in Windows Vista and 

Windows Server 2003. In Windows 7, it introduces key logging capabilities of storing 

call stack per every event (see https://msdn.microsoft.com/en-us/library/

windows/desktop/dd392330).

Table 3-1. Problem with Application Pool Instances Dynamic Renaming

Before process with PID 11200 stops After process with PID 11200 stops

w3wp instance represents pID11200 w3wp instance represents pID 8710

w3wp#1instance has pID 8710 w3wp#1 instance represents pID 10410

w3wp#2instance has pID 10410
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The power of the ETW mechanism is to provide vast amounts of information with 

very low overhead, which typically is smaller than few percent. Thanks to that it can be 

used in production systems without problems. It can be turned on or off while running 

our applications, without having to restart them. Many tools benefit from the ETW in 

fact. We may not even be aware of how much. For example, the well-known Event Log 

and its browser (eventvwr.exe) and Resource Monitor (resmon.exe) are built on this 

mechanism. They simply visualize events logged via ETW. However, to dispel doubts, 

the performance counters mechanism described in the previous section is not based on 

Event Tracing for Windows.

Before we go into the description of specific tools, it is good to get acquainted with 

the overall architecture of this solution. The ETW mechanism can distinguish certain 

concepts, which knowledge is very useful when using it. These are:

• ETW event - a single event that can be logged in the system.

• ETW session - central part of the whole mechanism. Conceptually 

it means, as the name suggests, an ongoing tracing session. 

Technically, this is a collection of system resources, such as in- 

memory buffers and threads for writing to disk (see Figure 3-13).

• ETW provider - each user or kernel mode element that can deliver 

events. There are many built-in system providers, grouped by certain 

categories, such as network providers, processes, etc. This also 

includes .NET runtime and our code as well (if we wish to publish 

our custom ETW events). Providers are identified by a global unique 

identifier (GUID).

• ETW controller - the process that is responsible for creating a session 

and connecting it to selected providers.

• ETW consumer - any tool that somehow consumes events data, 

storing them into so-called Event Trace Log (ETL) file or presenting in 

real time.

ETW Session is designed for the lowest possible overhead (see Figure 3-13). From the 

point of view of the process, this is just a quick action involving a non-blocking write to 

the queue (in-memory buffer) maintained at the kernel level. And when the application 

continues normal operation, the dedicated kernel thread processes those queues and 

writes events to specific targets - usually to the file or to some another in-memory buffer 

(to conduct real-time analysis).
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Conceptually, the same provider can provide information to several sessions (see 

Figure 3-14). Conversely, a session can receive information from multiple providers. 

ETW’s characteristic feature is to operate on the level of the providers rather than 

processes. In order to gather information from one or more providers, with the help of 

controller we create a new session to which we attach them. Since the session starts, all 

processes in the system that implement that provider will log events to our session. So 

it can be said that it is gathering events for the whole machine, not a specific process. 

Filtering of data for the processes we are interested in is only at the analysis level, in the 

consumer program.

user mode kernel mode

in-memory buffer

FILE

process
(ETW Provider)

ETW Sessionlock-free
writes

kernel
thread

Figure 3-13. Event Tracking for Windows internals
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Holding events in buffers outside the application process also has another 

advantage - the application crash will not cause the loss of diagnostic data. Of 

course, when logging a large number of events, access to the disk can become the 

bottleneck and create overhead for the entire machine. However, we will encounter 

this situation only when we choose too many intensively used providers for our 

session. Another threat could be the exhaustion of disk space, but there is a solution. 

You can write data to a file in circular-buffer mode, where we do not have to worry 

about disk overflow. Data will be overwritten cyclically in a fixed size buffer. The 

most typical scenario is to run session storing data in a circular-buffer and wait for 

a specific scenario to happen. Only then we close the session and save data from 

buffer to the file.

From Windows 7 it is possible to collect a stack trace associated with kernel and 

user events. The payload of such special events (paired with the source events) are the 

hexadecimal addresses on the stack frames, which are decoded only after, at the analysis 

phase. This applies, however, to native code (that is, also the CLR code), but no managed 

code prior to Windows 8. The stack trace of dynamic code generated by the 64-bit JIT 

in this case will not be decoded (it will be, however, for 32-bit code). This problem was 

fixed in Windows 8, where the ETW framework in the kernel was changed to recognize 

64-bit JIT frames and traverse them without issues.

ETW Provider

Kernel Process B

ETW ConsumerETW Consumer
ETW Controller

ETW Provider ETW Provider

ETW SessionETW Session ETW Session

Process A

Process C
Process F Process E

Process B
Process C

ETV events

Event Viewer PerfView

File

Figure 3-14. Event Tracing for Windows (ETW) building blocks, illustrating 
various configuration possibilities. Please note that a process may have a role of 
multiple ETW providers; thus some processes are listed multiple times.
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A built-in CPU-sampling ETW event allows us, for example, to track problems with 

high CPU usage. At every sampling event (generated each 1 ms), the call stack of all 

threads is collected from all processes. Thanks to that, statistically, we can see the cause 

of the problem - in which functions CPU most often stayed. With the support from OS 

providers, you can also track sync issues (such as deadlocks). It is being used by the 

Concurrency Visualizer plugin for Visual Studio, for example.

By using various diagnostic tools in the Windows environment, we often need 
access to symbol files (pDB - program Database), which allows us to decode 
information about methods and functions from call stacks. the most convenient 
setting is an environment variable _NT_SYMBOL_PATH in which we specify the 
address of the public Microsoft symbol server:

srv*C:\Symbols*https://msdl.microsoft.com/download/symbols

this will allow us to obtain pDB files of the Windows operating system and CLr 
libraries. also, in the path, we set up a local folder where files will be cached once 
downloaded.

There is a special NT Kernel Logger session that can be used only with kernel-level 

providers and not with user mode. The base kernel group logs, for example, the start and 

end of the process. There is, for example, the Microsoft-Windows-TCPIP user provider, 

which logs its events from the tcpip.sys kernel-mode driver.

Most often, with the session using the user-mode providers, additionally the NT 

Kernel Logger session is started. It provides information about running / destroying 

processes and threads. The results are then combined together during the analysis 

phase.

The operating system provides a lot of interesting information, such as process and 

thread management, networking, I/O operations, etc. But what interests us the most 

is that CLR is also an ETW provider, and this mechanism allows us to learn a lot about 

runtime in the context of our application.

We can use build-in logman.exe utility to find all .NET-related providers in the 

system (see Listing 3-1).
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Listing 3-1. Using logman utility to list all .NET-related ETW providers

> logman query providers | findstr DotNET

Microsoft-Windows-DotNETRuntime           {E13C0D23-CCBC-4E12-931B-

D9CC2EEE27E4}

Microsoft-Windows-DotNETRuntimeRundown    {A669021C-C450-4609-A035-

5AF59AF4DF18}

We can also use it to find out what providers are available in the context of a 

particular process. For example, if we ask about the ASP.NET WebAPI hosted on 

IIS, we will get a list as in Listing 3-2 (the result presents only several of many listed 

providers).

Listing 3-2. Using logman utility to list all ETW providers of specified ASP.NET 

process

> logman query providers -pid 6228

Provider                                 GUID

---------------------------------------------------------------------------

.NET Common Language Runtime              {E13C0D23-CCBC-4E12-931B-

D9CC2EEE27E4}

ASP.NET Events                            {AFF081FE-0247-4275-9C4E-

021F3DC1DA35}

IIS: WWW Global                           {D55D3BC9-CBA9-44DF-827E-

132D3A4596C2}

IIS: WWW Isapi Extension                  {A1C2040E-8840-4C31-BA11-

9871031A19EA}

IIS: WWW Server                           {3A2A4E84-4C21-4981-AE10-

3FDA0D9B0F83}

Microsoft-Windows-Application             {C651F5F6-1C0D-492E-8AE1-

Server-Applications                      B4EFD7C9D503} 

Microsoft-Windows-Application-Experience  {EEF54E71-0661-422D-9A98-

82FD4940B820}

Microsoft-Windows-DotNETRuntimeRundown     {A669021C-C450-4609-A035-

5AF59AF4DF18}
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Microsoft-Windows-IIS                     {DE4649C9-15E8-4FEA-9D85-

1CDDA520C334}

Microsoft-Windows-IIS-Configuration       {DC0B8E51-4863-407A-BC3C-

1B479B2978AC}

...

If we ask about the console application running on CoreCLR then we will get a 

slightly different set of providers (see Listing 3-3).

Listing 3-3. Using logman utilit to list all ETW providers of console .NET Core 

process

> logman query providers -pid 8528

Provider                                 GUID

---------------------------------------------------------------------------

----

.NET Common Language Runtime              {E13C0D23-CCBC-4E12-931B-

D9CC2EEE27E4}

Microsoft-Windows-AsynchronousCausality   {19A4C69A-28EB-4D4B-8D94-

5F19055A1B5C}

Microsoft-Windows-COM-Perf                {B8D6861B-D20F-4EEC-BBAE-

87E0DD80602B}

Microsoft-Windows-Crypto-BCrypt           {C7E089AC-BA2A-11E0-9AF7-

68384824019B}

Microsoft-Windows-Crypto-RSAEnh           {152FDB2B-6E9D-4B60-B317-

815D5F174C4A}

Microsoft-Windows-DotNETRuntimeRundown    {A669021C-C450-4609-A035-

5AF59AF4DF18}

Microsoft-Windows-Networking-Correlation  {83ED54F0-4D48-4E45-B16E-

726FFD1FA4AF}

Microsoft-Windows-Shell-Core              {30336ED4-E327-447C-9DE0-

51B652C86108}

Microsoft-Windows-User-Diagnostic          {305FC87B-002A-5E26-D297-

60223012CA9C}

Microsoft-Windows-WinRT-Error             {A86F8471-C31D-4FBC-A035-

665D06047B03}

Chapter 3  MeMory MeasureMents



159

{012616AB-FF6D-4503-A6F0-EFFD0523ACE6}    {012616AB-FF6D-4503-A6F0-

EFFD0523ACE6}

{05F95EFE-7F75-49C7-A994-60A55CC09571}    {05F95EFE-7F75-49C7-A994-

60A55CC09571}

...

As we can see, apart from many different providers, we also find those .NET-related 

ones. They have the same GUID both for the WebAPI .NET Framework and console 

CoreCLR application. You will also note that there are two names for the same provider 

used interchangeably: Microsoft-Windows-DotNETRuntime is also being called .NET 

Common Language Runtime.

Each ETW event emitted within a given provider has several important attributes:

• Id - unique identifier of the event,

• Version - used for events versioning,

• Keyword - it can be used to assign an event to one or several meanings 

(keywords) because this field is actually a bit mask,

• Level - the logging level,

• Opcode - it means a specific action (stage) within a given event. The 

most commonly used built-in values are the Start and End opcodes,

• Task - it is used to group events within the provider into certain 

functionalities.

With the logman tool we can also learn the details of a particular provider. For the 

main .NET ETW provider, we will get information as in Listing 3-4.

Listing 3-4. Getting details about .NET ETW providers

> logman query providers ".NET Common Language Runtime"

Provider                                 GUID

---------------------------------------------------------------------------

.NET Common Language Runtime              {E13C0D23-CCBC-4E12-931B-

D9CC2EEE27E4}
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Value               Keyword              Description

---------------------------------------------------------------------------

0x0000000000000001  GCKeyword            GC

0x0000000000000002  GCHandleKeyword      GCHandle

0x0000000000000004  FusionKeyword        Binder

0x0000000000000008  LoaderKeyword        Loader

0x0000000000000010  JitKeyword           Jit

0x0000000000000020  NGenKeyword          NGen

0x0000000000000040  StartEnumerationKeyword StartEnumeration

0x0000000000000080  EndEnumerationKeyword StopEnumeration

0x0000000000000400  SecurityKeyword      Security

0x0000000000000800   AppDomainResourceManagementKeyword 

AppDomainResourceManagement

0x0000000000001000  JitTracingKeyword    JitTracing

0x0000000000002000  InteropKeyword       Interop

0x0000000000004000  ContentionKeyword    Contention

0x0000000000008000  ExceptionKeyword     Exception

0x0000000000010000  ThreadingKeyword     Threading

0x0000000000020000   JittedMethodILToNativeMapKeyword 

JittedMethodILToNativeMap

0x0000000000040000   OverrideAndSuppressNGenEventsKeyword 

OverrideAndSuppressNGenEvents

0x0000000000080000  TypeKeyword          Type

0x0000000000100000  GCHeapDumpKeyword    GCHeapDump

0x0000000000200000   GCSampledObjectAllocationHighKeyword 

GCSampledObjectAllocationHigh

0x0000000000400000   GCHeapSurvivalAndMovementKeyword 

GCHeapSurvivalAndMovement

0x0000000000800000  GCHeapCollectKeyword GCHeapCollect

0x0000000001000000  GCHeapAndTypeNamesKeyword GCHeapAndTypeNames

0x0000000002000000   GCSampledObjectAllocationLowKeyword 

GCSampledObjectAllocationLow

0x0000000020000000  PerfTrackKeyword     PerfTrack

0x0000000040000000  StackKeyword         Stack

0x0000000080000000  ThreadTransferKeyword ThreadTransfer
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0x0000000100000000  DebuggerKeyword      Debugger

0x0000000200000000  MonitoringKeyword    Monitoring

Value               Level                Description

---------------------------------------------------------------------------

0x00                win:LogAlways        Log Always

0x02                win:Error            Error

0x04                win:Informational    Information

0x05                win:Verbose          Verbose

...

For a list of events generated by .NET providers, for example, you can use the MSDN 

documentation at https://msdn.microsoft.com/en-us/library/dd264810(v=vs.110).

aspx. However, it is not always up to date. Therefore, it is best to reach the source, which 

means the manifest file of the given provider. The ETW manifest file defines strongly 

typed event information generated by the given provider. This allows the consumer to 

correctly interpret the recorded session data. The manifest files are different for each 

.NET runtime environment. And so you can find it under different locations:

• In case of CoreCLR under- .\coreclr\src\vm\ClrEtwAll.man;

• In case of .NET Framework 4.0 and further under c:\Windows\

Microsoft.NET\Framework64\v4.0.30319\CLR-ETW.man;

• In case of .NET Framework 2.0 and earlier, it is not available as the 

first versions did not support ETW.

When we look at this file, we will see complete information about Microsoft- 

Windows- DotNETRuntime and Microsoft-Windows-DotNETRuntimeRundown providers. 

Fragments of this file are presented in Listing 3-5.

Listing 3-5. Fragments of ETW manifest file of .NET ETW providers

<instrumentationManifest  xmlns="http://schemas.microsoft.com/win/2004/08/

events">

  <instrumentation xmlns:xs="http://www.w3.org/2001/XMLSchema" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:win="http://

manifests.microsoft.com/win/2004/08/windows/events">

    <events xmlns="http://schemas.microsoft.com/win/2004/08/events">

      <!--CLR Runtime Publisher-->

Chapter 3  MeMory MeasureMents

https://msdn.microsoft.com/en-us/library/dd264810(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/dd264810(v=vs.110).aspx


162

       <provider name="Microsoft-Windows-DotNETRuntime" guid="{e13c0d23- 

ccbc- 4e12-931b-d9cc2eee27e4}" symbol="MICROSOFT_WINDOWS_

DOTNETRUNTIME_PROVIDER" resourceFileName="%WINDIR%\Microsoft.NET\

Framework64\v4.0.30319\clretwrc.dll" messageFileName="%WINDIR%\

Microsoft.NET\Framework64\v4.0.30319\clretwrc.dll">

        <!--Keywords-->

        <keywords>

           <keyword name="GCKeyword" mask="0x1" message="$(string.

RuntimePublisher.GCKeywordMessage)" symbol="CLR_GC_KEYWORD"/>

           <keyword name="GCHandleKeyword" mask="0x2" message="$(string.

RuntimePublisher.GCHandleKeywordMessage)" symbol="CLR_GCHANDLE_

KEYWORD"/>

           ...

        </keywords>

        <!--Tasks-->

        <tasks>

           <task name="GarbageCollection" symbol="CLR_GC_

TASK" value="1" eventGUID="{044973cd-251f-4dff-a3e9-

9d6307286b05}" message="$(string.RuntimePublisher.

GarbageCollectionTaskMessage)">

            <opcodes>

               <!-- These opcode use to be 4 through 9 but we added 128 to 

them to avoid using the reserved range 0-10 -->

               <opcode name="GCRestartEEEnd" message="$(string.

RuntimePublisher.GCRestartEEEndOpcodeMessage)" symbol="CLR_

GC_RESTARTEEEND_OPCODE" value="132"> </opcode>

               <opcode name="GCHeapStats" message="$(string.

RuntimePublisher.GCHeapStatsOpcodeMessage)" symbol="CLR_GC_

HEAPSTATS_OPCODE" value="133"> </opcode>

              ...

            </opcodes>

          </task>

           <task name="WorkerThreadCreation" symbol="CLR_

WORKERTHREADCREATE_TASK" value="2" eventGUID="{cfc4ba53-fb42-

4757-8b70-5f5d51fee2f4}" message="$(string.RuntimePublisher.

WorkerThreadCreationTaskMessage)">
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            <opcodes>

            </opcodes>

          </task>

          ...

        </tasks>

        <!--Maps-->

        <maps>

          <!-- ValueMaps -->

          <valueMap name="GCSegmentTypeMap">

             <map value="0x0" message="$(string.RuntimePublisher.GCSegment.

SmallObjectHeapMapMessage)"/>

             <map value="0x1" message="$(string.RuntimePublisher.GCSegment.

LargeObjectHeapMapMessage)"/>

             <map value="0x2" message="$(string.RuntimePublisher.GCSegment.

ReadOnlyHeapMapMessage)"/>

          </valueMap>

          ...

        </maps>

        <!--Templates-->

        <templates>

          <template tid="GCStart">

             <data name="Count" inType="win:UInt32" 

outType="xs:unsignedInt"/>

            <data name="Reason" inType="win:UInt32" map="GCReasonMap"/>

            <UserData>

              <GCStart xmlns="myNs">

                <Count> %1 </Count>

                <Reason> %2 </Reason>

              </GCStart>

            </UserData>

          </template>

          ...

        </templates>

        <events>
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           <!-- CLR GC events, value reserved from 0 to 39 and 200 to 239 -->

           <!-- Note the opcode's for GC events do include 0 to 9 for 

backward compatibility, even though they don't mean what those 

predefined opcodes are supposed to mean -->

           <event value="1" version="0" level="win:Informational" 

template="GCStart" keywords="GCKeyword" opcode="win:Start" 

task="GarbageCollection" symbol="GCStart" message="$(string.

RuntimePublisher.GCStartEventMessage)"/>

           <event value="1" version="1" level="win:Informational" 

template="GCStart_V1" keywords="GCKeyword" opcode="win:Start" 

task="GarbageCollection" symbol="GCStart_V1" message="$(string.

RuntimePublisher.GCStart_V1EventMessage)"/>

          ...

        </events>

      </provider>

As you can see, this is a real mine of knowledge if we want to use the ETW in the 

context of .NET. Let’s take a brief look at the events generated by both providers. We will 

return to all of these events through the following chapters of this book so you will have 

a full understanding of each of them. Here, however, we will pay attention to the most 

interesting of them. This will allow you to see how rich is the information provided by the 

ETW mechanism.

Looking at the generated events alone can lead to some interesting questions. 
For example, what is the ReadOnlyHeapMapMessage segment of type 
GCSegmentTypeMap? We will answer to this question in Chapter 5. 

We are mostly interested in the Microsoft-Windows-DotNETRuntime provider, 

offering events grouped into 29 various Tasks (as in the ETW nomenclature,  

a Task’s event attribute corresponds to its functional category). To get an idea  

of the richness of the information provided, these include (in parentheses the  

number of events of a given Task is shown): AppDomainResourceManagement (5),  
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CLRAuthenticodeVerification CLRILStub (2), CLRLoader (18), CLRMethod 

(25), CLRPerfTrack (1), CLRRuntimeInformation (1), CLRStack (1), 

CLRStrongNameVerification (4), Contention (3), Exception (3), ExceptionCatch 

(2), ExceptionFilter (2), ExceptionFinally (2), GarbageCollection (58), 

IOThreadCreation (4), IOThreadRetirement (4), Thread (2), ThreadPool (5), 

ThreadPoolWorkerThread (3) and Type (1).

As we can see, the most numerous group is Garbage Collector’s task - it contains 

58 various events! Actually, there are 44 distinct ones, because some occur in several 

versions. What do we find there? Very interesting stuff! A few selected events along with 

the description and data that they contain, you will find in Table 3-2.

Table 3-2. Example ETW Events Related to the GC

Event Data

GCstart_V2 ClientSequenceNumber(win:uInt64), ClrInstanceID(win:uInt16), 

Count(win:uInt32), Depth(win:uInt32), Reason(GCreasonMap), 

Type(GCtypeMap)

Informs about beginning of the Garbage Collection, providing the reason 

and the generation triggering it (as Depth field).

GCend_V1 ClrInstanceID(win:uInt16), Count(win:uInt32), Depth(win:uInt32)

Informs about the end of the Garbage Collection.

GCCreatesegment_V1 Address(win:uInt64), ClrInstanceID(win:uInt16), Size(win:uInt64), 

Type(GCsegmenttypeMap)

Informs about creation of new memory segments, providing information 

about its size and type.

GCsuspendeeBegin_V1 ClrInstanceID(win:uInt16), Count(win:uInt32), 

Reason(GCsuspendeereasonMap)

Informs about beginning of the suspending runtime required by some 

parts of Garbage Collection.

GCsuspendeeend_V1 ClrInstanceID(win:uInt16)

Informs about the end of the runtime suspending process. From now 

most of the threads are suspended.

(continued)
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If we consider that each event has a precise timestamp and may contain a call stack, 

we are presented with a vision of the powerful diagnostics we can create on this basis. 

And that’s why it is used by many different tools. Some of them will be revealed in the 

following subsections.

Do not be afraid if you do not understand descriptions of ETW events given in 

Table 3-2. It is obvious that some knowledge about the GC is needed to properly 

understand them. We will come back to many ETW events (including those from 

Table 3-2) in the following chapters.

The NT Kernel Logger session also provides much valuable information, including 

events like: Windows Kernel\ProcessStart, Windows Kernel\ProcessEnd - when process 

start and ends, Windows Kernel\ImageLoad - when dynamic library is being loaded, 

Windows Kernel\TcpIpRecv - when TCP/IP packets are being received, Windows Kernel\

ThreadCSwitch - when a thread gets or loses access to the CPU. There are obviously many 

others, but listing only a small part of them here does not make any sense. Please refer to 

the NT Kernel Logger Trace Session documentation on MSDN for further details.

Table 3-2. (continued)

Event Data

GCallocationtick_V3 Address(win:pointer), AllocationAmount(win:uInt32), Alloc

ationAmount64(win:uInt64), AllocationKind(GCallocationK

indMap), ClrInstanceID(win:uInt16), HeapIndex(win:uInt32), 

TypeID(win:pointer), TypeName(win:unicodestring)

Very interesting periodic sampling event (emitted after each 100kB of 

allocations) informs about allocation statistics.

GCheapstats_V1 ClrInstanceID(win:uInt16), FinalizationPromotedCou

nt(win:uInt64), FinalizationPromotedSize(win:uInt64), 

GCHandleCount(win:uInt32), GenerationSize0(win:uInt64), 

GenerationSize1(win:uInt64), GenerationSize2(win:uInt64), 

GenerationSize3(win:uInt64), PinnedObjectCount(win:uInt32), 

SinkBlockCount(win:uInt32), TotalPromotedSize0(win:uInt64), 

TotalPromotedSize1(win:uInt64), TotalPromotedSize2(win:uI

nt64), TotalPromotedSize3(win:uInt64)

yet another one very interesting event provides rich information about 

the heap statistics in general, including generation sizes.

Chapter 3  MeMory MeasureMents



167

 Windows Performance Toolkit
The Windows Performance Toolkit is a set of diagnostic tools in a Windows environment. 

What we are most interested in is their ability for collecting and analyzing ETW data. 

Prior to Windows 8, the main tool for this purpose was the rather cumbersome xperf 

program. Moreover, it is still present in the files installed with the WPT. It was used to 

set up and run ETW sessions as well as to analyze them later. In the ETW nomenclature, 

therefore, it had the function of both the ETW controller and ETW consumer. We can 

often meet him in many older ETW-related articles and blog posts. Due to the fact 

that it is a very flexible tool, it is still occasionally used to manage ETW sessions from 

the command line. However, since Windows 8, the Windows Performance Toolkit has 

introduced two new tools:

• Windows Performance Recorder - being an ETW controller

• Windows Performance Analyzer - being an ETW consumer

And these two programs within the Windows Performance Toolkit are most 

commonly used today. We will take a brief look at the basics of using these programs.

Note Windows performance toolkit can be installed in two ways. Both rely 
on installing one of the two bigger packages - the Windows assessment and 
Deployment Kit or the Windows sDK.

 Windows Performance Recorder

Windows Performance Recorder from the point of view of the user is a simple dialog 

acting as ETW controller (see Figure 3-15). What events from which providers will be 

recorded is being configured by profiles. There are many built-in profiles visible in 

Figure 3-15, preinstalled with the tool.
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Two more important options are available:

• Level of detail of recorded data - we are most interested in the 

Verbose level. In addition to the time of occurrence of events, it also 

says to record additional diagnostic information.

• Logging mode - we most often use the Memory mode, which records 

events to a temporary cyclic buffer in memory. This ensures that we 

never exceed the size of buffer and will not severely impact the entire 

operating system and other applications by creating too huge of files 

or memory buffers.

What exactly is included in the profile is not visible from the user interface. But we 

can see it in command-line version of the program. A list of built-in profiles, visible in the 

GUI, can be obtained using the profiles command switch (see Listing 3-6).

Listing 3-6. Using wpr command line version to list all profiles names

> wpr -profiles

Then we can ask for details of an individual profile using the profiledetails 

command switch. Thanks to that we can see what providers and keywords are enabled 

for .NET Activity profile (see Listing 3-7).

Figure 3-15. Windows Performance Recorder dialog box
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Listing 3-7. Using wpr command-line version to list a given profile configuration 

(some providers listed only by Guid were removed from the output for brevity)

> wpr -profiledetails DotNet

System Keywords: CSwitch, DiskIO, DiskIOInit, HardFaults, Loader, 

MemoryInfo, MemoryInfoWS, NetworkTrace, ProcessCounter, ProcessThread, 

SampledProfile

System Stacks: CSwitch, DiskFlushInit, DiskReadInit, DiskWriteInit, 

FileCreate, FileRead, FileWrite, ImageLoad, ImageUnload, ProcessCreate, 

SampledProfile, ReadyThread

Providers

...

Microsoft-Windows-DotNETRuntime: 0x4007ccbd: 0x05

Microsoft-Windows-IIS: : 0xffI

In case of .NET runtime, the provider-selected keyword mask has a value of 

0x4007ccbd. We can use values from Listing 3-4 to decode it into a list of selected 

keywords. We can easily notice that in fact not all possible keywords have been selected 

(including several related to the Garbage Collector).

There are also built-in profiles for Windows Heap and VirtualAllocations. To 

have a full picture when doing CLR analysis, one can decide to select all those three 

profiles.

With the “Add profile” button, you can add manually defined profiles. This is the 

only way to connect to the only set of providers we are interested in and fine-tune used 

keywords. You can find the “Pro .NET Memory Management with stacks” sample profile 

at this book’s accompanying GitHub repository (NetMemoryManagement.wprp file), 

which enables all .NET events along with call stacks recording (but please be warned 

that in such configuration tracing overhead will slow down .NET applications, mainly 

due to the stack collection).

 Windows Performance Analyzer

Windows Performance Analyzer is a powerful ETW consumer. Very advanced analysis can 

be made there. At the same time, it is one of the main tools for the convenient visualization 

of ETW data. The first contact with this tool can be a bit overwhelming. The interface was 

designed in a very generic way. And it’s really up to the user how to adapt it. As a result, it 

is hard to get started, and it is hard at first glance to see the dormant power of this tool.
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The exact description of using Windows Performance Analyzer interface 

is beyond the scope of this book. Because it is so powerful, describing all its 

capabilities could take another small book. We will concentrate here on some of the 

most useful scenarios from our point of view. We will use the example of an open 

source, load test program called SuperBenchmarker written in .NET 4.5 available 

on GitHub at https://github.com/aliostad/SuperBenchmarker. During the load 

test, it generates a systematic load on a target web application, so it is well suited for 

experiments. The book is accompanied by a WPA-Tutorial.zip file containing an 

example of a recorded scenario WPA-Tutorial.ETL taken during load test with the 

following parameters:

.\sb.exe -u http://localhost/LeakWebApi/values/concatenated/100 -c 10 -n 

100000 -y 100

This means 10 concurrent calls being made with 100 milliseconds gap between 

them and total of 100,000 calls will be made. Our LeakWebApi is a very simple ASP.NET 

MVC Web API project hosted on IIS. Due to the nature of ETW, there are many others 

processes recorded obviously, but we will concentrate on two of them: sb.exe itself 

and w3wp.exe hosting mentioned Web API project. The file was created with Windows 

Performance Recorder using profiles: CPU usage, Heap usage, VirtualAlloc usage, and 

our custom “.NET Memory Management with stacks.” If you want to do the following 

exercises, unzip WPA-Tutorial.zip now to the folder of your choice.

Let’s now go through some of possible scenarios of using the Windows Performance 

Analyzer. Please remember about the great flexibility of this tool. Therefore, if you follow 

the exercises described below and some result looks different than on the presented 

screenshots, double-check your view configuration - in particular, the visibility and order 

of columns in tables.

Opening File and Configur ation

After launching the program, we will see an empty window with the Getting Started tab. 

Open the recording file by selecting File ➤ Open ... from the menu.
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When you open the file, on the left we will see a new Graph Explorer panel with 

several graph groups - depending on what data was recorded. In case of our WPA-

Tutorial.etl file there should be five groups of graphs:

• System Activity - broad data associated with the operation of the 

system, processes, and threads. Here is also a very important Generic 

Events chart, which we will look at in a moment.

• Computation – CPU-related data.

• Storage - data related to disks, including such precise data as used 

disk offsets.

• Memory - data related to memory.

• Power – power-related data, including CPU frequency and states.

Next to each group name is an expand button that allows you to navigate through the 

grouped graphs. Each of the visible graphs can be moved to the Analysis tab by dragging 

or double-clicking. You can add to it many different data, which will be placed one below 

the other. All the views added in the Analysis tab are synchronized (as well as the Graph 

Explorer itself). Therefore, for example, if you change the scale on the timeline on one of 

them, the change will be reflected on the others. This is similar to any kind of filtering or 

underlining of the currently investigated data.

Let’s now create a first view that will allow us to learn the basics of program 

navigation in practice. From the Graph Explorer, expand the System Activity group. 

Let’s drag to the workspace (or double-click) the Processes graph. It will appear in the 

Analysis tab. Then expand the Computation group and double-click the CPU Usage 

graph (Sampled). It should appear under the previously added. We should achieve the 

effect shown in Figure 3-16.
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Quickly we may find out that a lot of elements have tooltips containing additional 

information. In the Processes pane, there are processes showed running at the time of 

recording. It is easy to find a block corresponding to the sb.exe process. Click it with 

your left mouse button. The time range of this process will be automatically highlighted 

on all other graphs. This is very helpful for navigation and referencing data to each other.

Sometimes data is more convenient to be analyzed in graphical or tabular form. 

Hence, in the upper right corner of each panel three buttons are placed: show only the 

chart, show only the table, and show both information (by default Display graph and 

table option is selected). Now select the “Display graph only” option for both display 

panels.

From the Graph Explorer add the Stacks panel from the System Activity group and 

set it to “Display table only.” The stacks panel contains grouped information about all 

collected stack traces.

We can now take a closer look at the w3wp.exe process. First, from the graph, select 

the time range corresponding to the load test by right-clicking on the sb.exe block in 

the Processes panel and select Zoom. Having such a chosen time range, we can filter 

out data to only the web application process we are interested in. Thus, select the w3wp.

exe process from the list in Stacks panel and select the “Filter to selection” option in 

Figure 3-16. A sample view with Processes and CPU Usage panels
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its context menu. Next, expand (in Stacks panel) w3wp.exe in Process column, Thread: 

CSwitch in Event Name column, CLR in Stack Tag column and [Root] under Stack 

(Frame Tags) for JIT. After expanding several nodes starting with element [Root], we 

probably notice that there is a lack of information about the functions invoked (see 

Figure 3-17). Most of them are specified only with the name of the module and the 

question mark. This is due to missing symbols (PDBs). We will now take care of their 

configuration.

Figure 3-17. Missing symbols resulting in incomplete stack trace information

To configure the symbols used by the Windows Performance Analyzer, select Trace 

➤ Configure Symbol Paths. In this pane we configure the directories where the PDBs are 

searched for. It is best to have at least the two following sources set:

• If we set the environment variable _NT_SYMBOL_PATH in the previous 

section, it will be added here by default.

• The path to the symbol files of our application (also provided along 

with the WPA-Tutorial.etl file).

In the Symcache tab of the same window, you should also deliberately set up a 

directory where local copies of the prepared symbols will be stored. After completing 

the above configuration, we can close the Configure Symbols window. When you select 

Trace ➤ Load symbols from the menu, “Loading symbols” information will appear. 

Downloading and loading (even if they are already cached) all the needed symbols can 

take quite a few minutes so please be patient.

After that operation we will have complete stack trace information. We can see this 

by using the “Quick search” in the panel Stacks (visible as a small magnifier). Use it and 

type “LeakWebApi” to find calls from within our test application (see Figure 3-18).
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Generic Events

Quite a lot of events are interpreted in a special way in WPA, and in this way dedicated 

panels such as Processes or CPU Usage are created. However, it is not possible, of course, 

to prepare such views for any possible event recorded by ETW. For this purpose, a 

dedicated panel called Generic Events was created with a view of all registered events. 

Let’s add it to our view by selecting it from the System Activity group. By default we will 

see all events grouped by the process. We can filter out all except those coming from the 

sb.exe process by selecting “Filter to selection” from its context menu.2 By expanding 

Microsoft-Windows-DotNETRuntime in Provider Name column and then Garbage 

Collection task and win:Start opcode, we can create a view from Figure 3-19 (after 

appropriately zooming in an interesting time region). Please note that to get such view 

proper ordering of columns must be set, starting from Process, through Provider Name, 

Task Name, and Opcode Name.

2 If you do not see a Process column, please add it and place it as a second column in the Generic 
Events panel.

Figure 3-18. Complete stack trace information with symbols loaded
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We have set up a view in which we focus on the sb.exe process (second column), 

Microsoft-Windows-DotNETRuntime provider (third column) provider, and the 

GarbageCollection task (fourth column). We see, for example, that during almost 0.5 

seconds of the selected fragment, there are two GarbageCollection/Start events.

Moreover, we can see the data associated with each of these events. To do this  

we need to expand the group (in our case by expanding the last grouped item in 

column Id) and scroll the view accordingly to show columns behind the yellow 

marker. Example of such a prepared view for GCStart and GCEnd events is shown  

at Figure 3-20.

Figure 3-20. Garbage Collection start and stop events visible in Generic Events 
table view

Figure 3-19. Generic Events view for process sb.exe and Microsoft-Windows- 
DotNETRuntime-related events
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Adjusting the view by setting columns visibility and ordering altogether with desired 

grouping of items is the main task of which you will have to deal with in the Windows 

Performance Analyzer. Fortunately, it is really flexible in this aspect.

The Windows Performance Analyzer can be customized a little more in order to 

make analysis easier. This can be very helpful thanks to our own, custom regions of 

interest, stack tags, and profiles.

Region of Interests

They allow you to define areas that are for some reason interesting to us. The 

boundaries of these areas are determined by the specified events - opening and 

closing events. This is the ideal mechanism to illustrate the duration of Garbage 

Collection, for example, where the initial event is win:Start (with Id 1), and the 

final is win:Stop (with Id 2). Regions are defined in a separate file, which can then 

be loaded into the program from the menu Trace ➤ Trace Properties. In the tab that 

appears we load the regions files with the Add ... button in the Regions of Interest 

Definitions section. Afterwards, the Regions of Interests panel will become available in 

the Graph Explorer.

We need to create such files ourselves or search for interesting ones on the Internet. 

You can also use the ones that have been prepared for this book (located at the 

accompanying GitHub repository): roi_dotnetfinalization.xml and roi_dotnetgc.

xml. Such files consist of region definitions expressed in terms of a starting and stopping 

event (see Listing 3-8).

Listing 3-8. Example of region of interest file definition

<Region Guid="{4fbb5999-8f4e-4900-9482-000000000001}"

             Name="DotNETRuntime-GarbageCollection-GC"

             FriendlyName="Garbage Collection">

   <Start>

         <Event Provider="{E13C0D23-CCBC-4E12-931B-D9CC2EEE27E4}" Id="1" 

Version="2" />

   </Start>

   <Stop>

         <Event Provider="{E13C0D23-CCBC-4E12-931B-D9CC2EEE27E4}" Id="2" 

Version="1" />

   </Stop>
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   <Match>

        <Event TID="true" PID="true" >

        </Event>

        <Parent PID="true" />

   </Match>

   <Naming>

        <PayloadBased NameField="ClrInstanceID" />

   </Naming>

</Region>

As you can see, we need to have some knowledge to define regions: what events will 

be generated by the provider that we are interested in and how to pair them.

Based on Garbage Collector’s events, we can designate the following regions:

• Garbage Collection (events GCStart and GCEnd);

• Suspending runtime (events GCSuspendEEBegin and 

GCSuspendEEEnd);

• Restarting runtime (events GCRestartEEBegin and GCRestartEEEnd);

• Finalization (events GCFinalizersBegin and GCFinalizersEnd).

This allows you to visualize and collect statistics (number and duration of 

occurrences) as in Figure 3-21. Please note that the appropriate zoom was set to produce 

such a view, as well as proper ungrouping of items in the left list (named Series).

Figure 3-21. View at Garbage Collection cycle with help of custom Region of 
interest
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Flame Charts

Performance analysis is possible using the mechanisms already outlined - among others 

by grouping calls in the Stacks panel. There is another very convenient mechanism –  so- 

called flame charts. The “Flame by Process, Stack” view of CPU Usage (Sampled) panel is 

available in the Computation group. I encourage you to use it as part of our sample ETL 

file. By using the following steps, you should be able to get a view shown in Figure 3-22.

• While in the table part of the CPU Usage panel, use Find in Column… 

option from the context menu and try to find LeakWebApi text. If 

symbols are loaded, it should point you to the GetContatenated 

method of our WebAPI controller.

• Select its parent method (which should be lambda_method) and use 

Filter To Selection from its context menu. This should zoom in the 

view to a single method call.

The flame chart shows the piles of calls in a very visual way, but it requires a bit of 

assimilation. Each block visible on it represents calls of a single function. Blocks located 

on top of each other represent one function calling the other. In this way, the chart 

grows upward. The higher the function, the deeper the call stack. The width of a block is 

proportional to the total duration of a particular function call (and all its subcalls). This 

way we can quickly figure out which functions were associated with a long execution.

Figure 3-22. Flame charts example
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For example, in Figure 3-22, we see that the vast majority of the time spent 
by the WebapI method GetConcatened is because of System.String.
Concat calls, which then in the vast majority spends time in the SVR::gc_
heap::fire_etw_allocation_event calls. this is tangible proof that 
connecting an etW session to our application caused a lot of overhead. this 
is related to the option of writing a call stack at each CLr event - we can see 
that by going further into the method calls made by fire_etw_allocation_
event. a lot of time is spent in clr.dll!ETW::SamplingLog::GetCurre
ntThreadsCallStack method. this is because getting a call stack per each 
frequent allocation event is not necessarily a good idea. however, it is completely 
fine for our learning purposes.

Stack Tags

As we have seen, ETW events can be logged together with a stack trace at their 

occurrence. The Windows Performance Analyzer lets you view this information using 

the Stack column. However, for a broader analysis than from the stack trace alone, more 

valuable is the aggregated information. One such mechanism of aggregation is so-called 

Stack Tags. They allow you to group called methods with respect to the given patterns. 

This way all events with a stack trace matching the pattern will be marked with the 

provided Stack Tag.

Default Stack Tags are located in C:\Program Files (x86)\Windows Kits\10\

Windows Performance Toolkit\Catalog\default.stacktags file, including those 

related to the CLR and GC in particular. Thanks to that, when using Stack Tag column, 

we will see stacks grouped into CLR and GC nodes (instead of listing all methods 

inside).

Custom Graphs

From the Windows Performance Toolkit version for Windows 10, there is a way to draw 

your own graphs based on event loads. In other words, we can draw graphs where the 

Y-axis will come from one of the selected event fields. The X-axis will then automatically 

be the time of the event. The only requirement is that the selected field has an integer 

value.
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Unfortunately, this restriction is very unfavorable for us. The vast majority of events 

that are interesting from the Garbage Collector’s field are given in a hexadecimal format. 

This applies to various sizes, memory usage, and so on, and so forth. This makes the 

mechanism at this moment not very useful and we will simply not use it.

Profiles

Because configuration of all panels can be time consuming, the Windows Performance 

Analyzer provides the ability to save current views by using profiles. We can now save 

the current view using the Profiles ➤ Export... option. We load them with the Profiles 

➤ Apply option. In addition to configuring the views themselves (including the order 

and layout of the columns), the profile may also define, among others, the file defining 

Region of Interests.

 PerfView
The Windows Performance Toolkit was primarily designed for Windows and driver 

developers. Thanks to its high customizability, we can adapt it to the .NET environment, 

as we did in the previous subchapter. However, there is another ETW-based tool that 

was originally designed to help analyze .NET performance problems - PerfView. Its 

creator and patron is Vance Morrison, .NET Runtime Performance architect, and this 

tool is used by the .NET team to take care of the performance of the framework itself and 

managed code in general. So we obviously should be interested in it also. What’s more, 

all the performance and CLR internals geeks were pleased to hear recently that PerfView 

has become a fully open source product available on GitHub.

In terms of ETW nomenclature PerfView is both a controller and a consumer 

(providing an extensive analysing capabilities). It is written as a very non-intrusive tool. 

It does not require any installation. It consists of just a single executable file - perfview.

exe. This makes it easy to use on any computer, including production servers. So to start 

working with PerfView we have two options:

• The first one is to download the ZIP file from https://www.

microsoft.com/en-us/download/details.aspx?id=28567, extract it, 

and simply run wherever you want.

• The second one is to compile the program from sources available on 

GitHub: https://github.com/Microsoft/perfview.
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Just to notice, this tool can also be controlled from the command line and 

PowerShell, which enables automation and is especially useful in production analysis 

(prepared command line may be passed to a system administrator to be executed on 

restricted environment).

While the startup is simple, the first contact with this tool may scare you off. This 

program deserves the title of the most powerful, yet the most at first-glance overwhelming 

tool ever. The interface is not very intuitive and pretty, so it is not clear even where to start. 

Fortunately, it has very extensive help. Each option and GUI element have a link to the 

documentation. Below you can find some basic usage scenarios, but I encourage you to 

visit the help section frequently. You will find there an extension and broad explanation of 

the topics covered here. Believe me, this tool is worth every minute spent on learning it.

Note Much of the functionality in perfView’s etW-based analysis is based on a 
library TraceEvent. We’ll go back to it in Chapter 15 to briefly see its capabilities. 
While perfView is mainly based on etW, it has also a built-in the etWCLrprofiler 
(based on so-called CLr profiling apI) that allows perfView to intercept the .net 
method calls (enable .net Call in the Collect dialog to start using it).

as a lightweight tool for etW analysis, consider also using the etrace tool created 
by sasha Goldshtein and available at https://github.com/goldshtn/
etrace. It allows you to control etW sessions from the command line, with 
various filtering features available.

While the Windows Performance Analyzer is in a sense based on the concept of 

charts, Perfview focuses on the tabular view. Actually almost everything we can see in 

this program is put in tabular form. This can sometimes be misleading because, in the 

same way, the memory consumption, call stacks, and everything else is being analyzed.

After launching the program, we will see a window with extensive help. We can take 

three main actions at this time:

• Start collecting ETW data using the Collect ➤ Collect option.

• Begin the data analysis by typing the path to the directory into 

the text box below the menu and selecting the ETL file you are 

interested in.

• Perform a memory dump using the option Memory ➤ Take Heap 

Snapshot.
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As with other tools, it is necessary to configure symbol paths, which can be done 

from File ➤ Set Symbol Path menu. It is best to have three sources set:

• The public Microsoft symbol server, the same as in the _NT_

SYMBOL_PATH environment variable.

• Path to the subdirectory with the NGEN image symbols next to the 

opened ETL file although this is not strictly necessary as PerfView is 

able to automatically re-create them.

• The path to the symbol files of our application.

 Data Collection

Because PerfView is an ETW controller, it allows you to manage an ETW tracing session. 

After selecting the Collect option, we will see a new dialog box with a number of 

parameters (see Figure 3-23).

Figure 3-23. PerfView collection dialog with Advanced section expanded
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By looking at the possible selection options, we will encounter quite a lot related to 

.NET. It is worth taking a moment to explain them, although they are also described in 

the program help. The most interesting options from our point of view are located under 

Advanced Options:

• .NET - enables the default events from .NET providers.

• .NET Stress - enabled events from .NET providers related to stress 

testing runtime itself. Those are rare events used rather internally by 

the CLR team.

• GC Collect Only - disables all other providers and enables only 

.NET provider with events associated with the GC process. This is a 

very lightweight option that allows you to collect basic GC-related 

diagnostic information for a long time.

• GC Only - similar to the above but additionally stack for sampling of 

allocations on the GC heap are enabled (every time 100 kB of objects 

were allocated).

• .NET Alloc - enables event with stack every time an object is allocated 

on the GC heap. This is a very costly option and can slow down the 

program several times. And we have recently seen this overhead, in 

fact, in Figure 3-21.

• .NET SampAlloc - enables event generated every time 10KB of 

objects are allocated on the GC heap. This is not based on built-in 

ETW events but using CLR Profiler API by injecting ETWClrProfiler 

library into the processes.

• ETW .NET Alloc - this enables events for allocations sampling but 

instead of injecting a Profiler API-based library, it is based on the 

GCSampledObjectAllocationHigh keyword available from .NET 4.5.3.

• Finalizers - enables events related to finalization process inside GC.

• Additional providers - this fields allows you to provide any additional 

providers you need. It can also be used to fine-tune providers that 

would anyway be enabled. For example, to enable stack capturing 

for CLR exceptions we can type Microsoft-Windows-DotNETRuntime

:ExceptionKeyword:Always:@StacksEnabled=true. Extensive help 

about using this field is also provided.
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• CPU Ctrs - this counter allows you to enable low-level CPU-related 

counters like branch mispredictions or cache misses. Keep in mind 

you will have disable Hyper-V virtualization to have access to those 

events.

Note: Apart from the discussed options for .NET, there are some general settings to 

keep in mind:

• Zip - packaging the files into an archive so that it is easy to transfer 

the whole thing for later analysis on another computer.

• Merge - merging the files into a single one but without creating a 

separate ZIP file.

You can omit those two options if you do not plan to send your analysis to another. 

However, it is extremely important to check the Merge option if you plan to do your 

analysis on a different machine than on the one the data has been collected. The merge 

option includes symbol-resolving preparation so if you omit it, most of the gathered data 

will be useless on another computer.

a very popular way of triggering etW data collection is based on perfView’s 
command-line usage. this way, for example, you can ask the support team to 
easily gather data on the production environment, by providing them a single 
command to be executed. For example, the following command will trigger a 
lightweight session recording for GC-related events:perfview /GCCollectOnly 
/nogui /accepteula /NoV2Rundown /NoNGENRundown /NoRundown  
/merge:true /zip:true collectusing the command line we may also 
provide session stop triggers, like stopping session when GC happened longer than 
the specific number of milliseconds. please run perfview -? for more help on 
the command line.

 Data Analysis

Using the PerfView we can open files ETL recorded both by himself and every other ETW 

tool. After opening the sample ETL file, we will see the view as in Figure 3-24. On the left 

side, all the prepared analyses are available - depending on which providers and what 

events were selected during the session recording.
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One of the most basic views is a Generic Events panel, allowing you to view instances 

of all recorded events. When you open it and enter the GC in the Filter field, we will see 

all GC-related DotNetRuntime events (see Figure 3-25).

Figure 3-24. Sample ETL file opened in PerfView

Figure 3-25. PerfView - events related to GC shown in Events panel
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Aa you can see, in addition to the standard columns associated with the event, 

there is also a Rest column containing all the details of the event. You can also select 

particular data from events by clicking the Cols button. For example, filter out all 

events except Microsoft-Windows-DotNETRuntime/GC/HeapStats event by typing 

part of its name into the Filter field (like GC/HeapStats). Then, use the Cols button 

to select all the GenerationSize fields. In addition, fill in the Process Filter with a 

unique part of the process that we are interested in. We should have created a table 

of GC statistics (see Figure 3-26) that can be pasted to Excel and visualized, for 

example.

Figure 3-26. PerfView - customized view of events related to GC

However, viewing and analyzing individual ETW events are tedious. When it comes 

to the .NET memory analysis, undoubtedly the most important view is the GCStats view 

available in Memory Group from the main window. This view includes comprehensive 

aggregated information about GC behavior, including statistics of performed GCs (see 

Figure 3-27). We will return to this view quite often in this book.
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Additionally, as you could see in the Rest column in Figure 3-25, the selected events 

have the HasTrack = "True" attribute. If you want to see the stack trace of the event, 

select one of them and select Open Any Stacks from its context menu (but be careful, 

you must do it in the context of Time MSec column). This will open another very popular 

PerfView’s call-tree view (see Figure 3-28).

Figure 3-27. PerfView - GCStats view
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Remember, if the function name is not recognized, select Lookup Symbols from the 

context menu. It should trigger reading appropriate symbols.

There are also many other, extremely useful views. We will use them many times. 

But now I encourage you just to look around, including such views as CPU Stacks, 

mentioned GC Stats, or Asp.Net Stats.

 Memory Snapshots

When you select Take Heap Snapshot from the menu, we will see a Collecting Memory 

Data window. It is good to immediately use the Filter field to find the processes we are 

interested in. Once you have selected the process and clicked on the Dump GC Heap, 

you will need to wait a few or dozen seconds to get the results (see Figure 3-29).

Figure 3-28. PerfView - Any stacks view
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Note Memory snapshot is not a typical memory dump - it does not contain all 
the memory of the process. It is a view of the process state, storing a preprocessed 
objects graph but without an object’s content and ignoring all unmanaged memory 
regions.

The resulting window will show the table we already see, but this time it does 

not represent the call tree, but the reference tree in which nodes are object types or 

category of types. For example, initially visible “By Name” tab shows a summary of 

all the types found in the memory dump. We can further investigate a given entry by 

choosing Memory ➤ View Objects (or Alt + O) from the context menu. Let’s do this 

for “[static vars]” entry to see a list of all static variables in the memory dump (see 

Figure 3-30).

Figure 3-29. PerfView - Memory snapshot view
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We see here pairs of lines one by one - where the given static variable was declared 

and an object it is assigned to. If we expand this object, we can investigate it further by 

navigating through all its children (fields).

There is one more important memory snapshots function - comparing them. This 

allows us to keep track of trends in our program and, for example, to quickly identify 

the cause of memory leaks. To compare two snapshots (created exactly as before), open 

them both, and from the Diff menu choose the option to compare to the second file. We 

will see Diff Stacks, which will display data in a similar way to a single snapshot but with 

an important difference that columns values will indicate the difference between the two 

files (see Figure 3-31).

Figure 3-30. PerfView - Memory snapshot listing of all static variables
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please note that there is Freeze option disabled by default in the Collecting 
Memory Data dialog. It controls whether we want to stop the entire process for 
the time of making heap snapshot. Is it obviously very intrusive, but also very 
precise approach. on production environment you will most probably be interested 
in disabling Freeze option, which unfortunately may produce more or less 
inconsistent data (as the snapshot is being made during normal application work).

The real power of PerfView is its low overhead and the ability to analyze 

production environments. We can use it for continuous performance monitoring 

or production troubleshooting. It can provide us a tremendous amount of data, 

and most of the performance or memory-related problems should be possible to 

diagnose using this tool. The only drawback is quite a steep learning curve to get 

used with its user interface and all possibilities hidden here or there thorough all 

available options.

Figure 3-31. PerfView - Memory snapshot difference
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We should of course be cautious about the amount of information that we want to 

collect with this mechanism. Although the overhead of a tool is low, if you exaggerate with 

the amount of information collected, it will not be suitable for production use. Gathering 

information from several providers and several selected keywords should not be a problem. 

However, as we could see, gathering information about the call stack of each object 

allocation causes an unacceptable overhead. The simplest principle is always the best - 

before we run the desired set of data collected on a production environment, let’s test at the 

any lower, pre-production environment how it affects applications and the entire system.

 ProcDump, DebugDiag
When there is a need to analyze memory problems, often it occurs as late as on a 

production system. Then, one of the simplest possibilities is to take a memory dump 

of the problematic application and analyze it offline. Various tools for taking memory 

dump exists. I would like to mention two of them as they probably cover all the most 

standard needs. Both tools are installed as stand-alone tools, which may be downloaded 

from the following Microsoft sites:

• ProcDump - https://docs.microsoft.com/en-us/sysinternals/

downloads/procdump

• DebugDiag - https://blogs.msdn.microsoft.com/debugdiag/

ProcDump is a command-line tool that allows us to take a memory dump just by a 

single command ad hoc:

procdump -ma <process_pid>

However, there are numerous additional options, such as taking a memory dump 

when memory usage or a CPU exceeds a given threshold, as well as any other given 

performance counter value. There is also the possibility to take a few memory dumps 

periodically, etc. Look at ProcDump’s comprehensive command-line help for a list of all 

available options.

DebugDiag is a GUI-based tool that allows you to do similar things but in a more 

UI- oriented way. It has a slightly wider range of functionality, such as taking a dump 

when the response times of a given HTTP address exceeds the specified threshold. 

The DebugDiag Analysis tool is part of this software and is used to generate automatic 

reports of taken memory dumps. This allows you to quickly and easily view the report for 

the most obvious problems.
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you can also consider using a great Minidumper tool created by sasha Goldshtein 
and available at https://github.com/goldshtn/minidumper. It has a great 
capability of saving a minimal amount of memory necessary for .net memory analysis 
(so excluding a lot of overhead in the form of executable and DLL files, unmanaged 
memory regions, and so on, and so forth). such “mini dump” may be then analyzed 
as any other memory dump but may be even a few times smaller than a regular one. 
therefore, it may be especially useful in making memory dumps of huge processes.

 WinDbg
Among the various tools we know about in this chapter, WinDbg is undoubtedly 

the most low level. We can do almost everything in it: starting with debugging .NET 

applications, through native Windows applications, and debugging the kernel itself. 

Universality with a bit of rigidity is the power of this tool. It allows you to go down really 

deep and show things at the level of individual bits. The severity of this tool allows for a 

fairly quick analysis of some cases, for example, without the overhead of nice drawings 

presenting results of multiple analyses available in other tools. Thanks to that, from my 

practice, I sometimes prefer to use WinDbg rather than wait for more advanced tools to 

process the data in their own way.

Luckily there is a new, completely refreshed new version of WinDbg available since 

mid-2017. which makes the user interface slightly more pleasant and customizable.

Currently there are two ways of installing WinDbg - as a part of Windows Driver 

Kit (WDK) or Windows Software Development Kit (for older version) or from Windows 

Store (newest version). When installing SDK, you can simply deselect any components 

other than Debugging Tools for the Windows component, which includes WinDbg. 

After installation of the old edition, there will be two versions of this tool - one for 32-bit 

and one for 64-bit analysis. Which one we should use depends what we want to debug - 

whether it is a 32- or 64-bit process or memory dump. The newest edition installed from 

the Windows Store comes in a single, universal version (but at the time of this writing it 

is available only in preview version).

WinDbg can be a great tool for experiments helping to understand the .NET runtime. 

We can attach to our managed program and we can debug it (and the runtime itself) 

as we are used to from Visual Studio. But in the context of daily work, if we need to 

use WinDbg, we will probably use it to analyze a previously made memory dump. 

Hereinafter we will use the new WinDbg edition.
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Note WinDbg is in fact a quite simple wrapper about the Dbgeng library, 
which is responsible for the debugging platform on Windows. Its true power in 
the context of .net analysis lies within extensions made especially for .net, 
listed below.

When running WinDbg, we will see a window (see Figure 3-32) in which we can 

perform a few different operations:

• Use any of the recent activities again - which is particularly useful 

when attaching to or running the same process again and again;

• Launch or attach to the process - by selecting Attach to process 

option, a list of all running processes will be displayed;

• Opening dump file.

Figure 3-32. WinDbg main window
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There are other options available like using time debugging (currently not available 

for managed code) or remotely connecting to another debugger, etc.

By default, WinDbg works as a native debugger so it does not understand .NET-related 

structures and concepts. We have to use WinDbg extensions that will provide him with such 

knowledge. There are many possible extensions, among which the most popular ones are:

• SOS - this is a basic, yet very powerful extension that comes with the 

.NET runtime itself. The name is an abbreviation of Son of the Strike. 

This is due to the fact that it is the successor of the debugging tool 

called Strike used during the .NET framework development.

• SOSEX - this is an extension of SOS (hence its name), which can be 

freely downloaded from its author, Steve Johnson’s page: http://

www.stevestechspot.com/default.aspx. It adds more powerful 

functionality when it comes to debug managed code and memory 

dumps.

• NetExt (from Rodney Viana, available at https://github.com/

rodneyviana/netext) and MEX (Managed-code Debugging 

Extension, available at https://www.microsoft.com/en-us/

download/details.aspx?id=53304) - yet two other extensions that 

allow us to do more sophisticated things than the two above.

To load an extension, we should use .load <path to file> command., for 

example, .load g:\Tools\Sosex\64bit\sosex.dll. In case of .NET built in SOS, 

you can also manually type an sos.dll extension path like that. Or you can use the 

convenient .loadby method, which allows you to locate path according to the second 

argument location. This means you can load sos.dll from the same path where clr.dll 

(main .NET runtime library) is located:

> .loadby sos clr

You can check whether this command succeeded by issuing the !sos.help 

command that prints all commands available in SOS. Just as a quick look, you can also 

check the !threads command. To load another two extensions, just use !load <path to 

sosex.dll> and for netext or mex accordingly. Remember to use the x86 or x64 version 

depending on which version your target application or memory dump is using. Then you 

can view the available commands using the !sosex.help and !netext.help commands.
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There is yet another one helpful tool that can be used with WinDbg - command tree 

windows. As it is quite cumbersome to type all the commands again and again, you can 

create a file with a structured list of available commands. Then by using the .cmdtree 

<file> command, you can create dedicated windows with all those commands available 

just by simple clicking.

Note It is also possible to take the memory dump of an operating system kernel 
itself by connecting to a remote machine or by analyzing the system crash dump. We 
will not need that for our purposes, but just keep in mind how powerful WinDbg is.

Additionally, to WinDbg, you may consider using the msos tool created by Sasha 

Goldshtein and available at https://github.com/goldshtn/msos, described as a 

“command- line environment a-la WinDbg for executing SOS commands without 

having SOS available.” We can think of it as a command-line wrapper around SOS 

functionalities, without a need for installing WinDbg and searching for proper SOS 

extensions. Besides that, it adds some additional features like interpreting arbitrary 

dynamic queries over heap objects and classes.

 Disassemblers and Decompilers
Although not directly related to the topic of memory management, sometimes it may 

be useful to understand the fragment of not your application – the one we only have in 

the binary version. As we will soon see, .NET binary code is fairly transparent. There 

are tools that let you see the code of other programs in a convenient way. One of the 

best, which I will use, is the free and open source dnSpy tool created on GitHub by 

the 0xd4d user and available at https://github.com/0xd4d/dnSpy. It is not only a 

tool that allows us to see code but we can also debug it and modify it. We will use it to 

show both the .NET standard library code itself and the programs compiled for that 

framework.

There are others popular tools like ILSpy, JetBrains dotPeek, and Redgate .NET 

Reflector, but dnSpy will be particularly useful due to the editing capabilities and will be 

just enough for our purposes.
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 BenchmarkDotNet
We often need to measure the performance of certain pieces of code. This will be 

particularly useful in this book because we will compare the effects of different 

optimization techniques. It would be ideal if with the measurement of the performance 

of the code itself (its execution time), it was possible to measure also the amount of 

memory needed.

The BenchmarkDotNet library is exactly that and even more powerful. With it 

we can test the performance of each method. We can conveniently compare their 

performance with each other, for example, with respect to various parameters. We 

can test against various .NET versions, JIT and GC configurations, and so on, and so 

forth.

What’s more, this library takes care of avoiding any mistakes we might make 

ourselves, by writing similar micro-benchmarks. It has well-thought out stages of 

each test, such as warming up or cooling. Tests are carried out in many iterations. All 

measurements are processed statistically. Percentiles are calculated and multimodal 

distribution of data is also being detected (including visually presenting a simplified 

histogram). As a result, we get a powerful yet very easy-to-use tool.

The preparation of a simple test is illustrated in Listing 3-9. It really comes down to 

the attributes of the class and method we are interested in. As previously mentioned, we 

can also test with respect to some additional parameters provided (like N in our example 

benchmark).

Listing 3-9. Example of BenchmarkDotNet test

[BenchmarkDotNet.Attributes.Jobs.ShortRunJob]

[MemoryDiagnoser]

public class TailCallTest

{

   [Params(5, 10, 20)]

   public int N { get; set; }

   [Benchmark]

   public long FibonacciRecursive()

   {

      return FibonacciRecursiveHelper(N);

   }
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   private long FibonacciRecursiveHelper(long n)

   {

      if (n < 3)

         return 1;

       return FibonacciRecursiveHelper(n - 2) + FibonacciRecursiveHelper 

(n - 1);

   }

}

Execution of the test presented in Listing 3-9 is as simple as calling BenchmarkRunner.

Run<TailCallTest>() in our program. The result of this test (see Figure 3-33) shows the 

average execution time of each method for each parameter and for two different JIT (Just 

In Time) compilers, resulting in rich statistical data about the results.

Figure 3-33. Results of example BenchmarkDotNet test

You can also extend the library by additional loggers, analyzers, diagnosers, and 

so on. Two are especially interesting for us. GC and Memory Allocation Diagnoser 

(MemoryDiagnoser) analyze how many garbage collections occurred and how many 
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allocations have been made during the test. There is also the Hardware Counters 

Diagnoser (HardwareCounters), which is available only on Windows and can provide us 

deep insight into hardware-related statistics like CPU cache misses.

 Commercial Tools
The tools discussed so far are all free. Although they offer powerful capabilities, 

sometimes their use is quite cumbersome. On the other hand, commercial programs are 

from the very beginning written for a pleasant user interface in mind. Below you will find 

a short list of possible tools to use. I cannot assure you that this list is complete. From 

the time of writing a book to its publication, many things may change. The tools I’m 

referring to have simply been used while working on the book and my own many years 

of experience. 

Your mileage may vary when using those tools. I encourage you to try each of them 

during and after reading this book. You will decide which one suits you the most. They 

are very convenient to use, especially in the hands of an expert who understands the 

topic pretty well (which I hope you will become after reading this book).

There is no point in concentrating in this book for only one of those tools (which one 

should I choose then?). Instead, I put much more effort on free, open source alternatives.

 Visual Studio

It is hard to imagine a .NET developer who has never used Visual Studio. It really is a 

powerful and robust programming tool. In addition to commonly known functionalities, 

it also provides options for monitoring and memory analysis:

• Opening memory dump files and analyzing them for the use of 

objects (see Figure 3-34) including statistics, individual object 

instances, and references between them.

• Live profiling is also possible. We are of course interested in the 

Memory Usage tool, but there are also CPU Usage and GPU Usage 

tools (see Figure 3-35). While using it we get a preview of the current 

memory consumption and the occurrences of GC. At any time, we 

can also take a snapshot that will give us insight into the statistics of 

managed objects.
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Figure 3-34. Visual Studio snapshot view

Visual Studio does not have such extensive diagnostic options as other commercial 

programs listed here. However, its great advantage is undoubtedly the fact that with high 

probability, you already use this tool.
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Figure 3-35. Visual Studio live view

 Scitech .NET Memory Profiler

Scitech’s tool is one of the available dedicated tools for analyzing .NET. It provides very 

powerful options for viewing the status of objects, including a breakdown by the different 

generations, objects’ reachability, and so on. You can use it to display very complex 

reference graphs.

In each of the views, you can use a variety of filters, allowing you to greatly narrow 

down your research. As an example, we may find all interned strings (which we will 

know about in Chapter 4) in Generation 2 with only two clicks. The interface has been 

very well thought out and we will easily start working with the program. The application 

in many places prompts us (with the help of icons and tooltips) about possible problems 

and issues such as a large number of duplicate strings or a number of pinned instances. 

At the same time, the interface is not too simplistic, allowing for in-depth analysis of the 

situation with our chosen approach (see Figures 3-36 and 3-37).
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Figure 3-36. .NET Memory Profiler snapshot view with reference graphs
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With the program, we can use the .NET Memory Profiler API to study memory 

usage or detect memory leaks. The free command-line NmpCore program allows you to 

perform diagnostic sessions, including production environments. We can analyze them 

later in .NET Memory Profiler.

 JetBrains DotMemory

JetBrains is known by a lot of people from .NET world, thanks to their ReSharper tool. 

However, the company also has excellent products for CPU (dotTrace) and memory 

(dotMemory) profiling. Of course, we are interested in the second one. dotMemory is 

designed for both live application profiling and also offers the possibility of memory 

dumps analysis. It is possible to remotely profile applications on another machine, 

which can be useful in environments higher than development.

Compared to the .NET Memory Profiler, the dotMemory interface is clearly simplified 

(which may be an advantage, though). Many possible analyses are being suggested in the 

interface itself, giving the results even before we ask (see Figures 3-38 and 3-39).

Figure 3-37. .NET Memory Profiler snapshot live view
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Figure 3-38. JetBrains DotMemory snapshot view with reference graphs
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DotMemory provides some interesting visualizations, including heap fragmentation. 

We will also quickly learn what objects have the largest retained size.

It is also worth mentioning two neighboring tools. The dotMemory Unit allows 

you to perform unit tests that take into account memory consumption. It can be 

included in Visual Studio as a part of unit testing framework or into your Continuous 

Integration process. The second tool is a Heap Allocations Viewer extension to the 

above-mentioned ReSharper Visual Studio extension. It supports static analysis of 

our code with respect to unwanted hidden allocations (we will talk about them in 

Chapter 5).

Figure 3-39. JetBrains DotMemory live view
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 RedGate ANTS Memory Profiler

The RedGate tool is one I personally associate with one of the first products of this type 

I have come in contact with. As for the user experience, it is very similar to the JetBrains 

tool. It is easy to use, does not overwhelm with the options, and tries to get as many 

responses as possible to the user before asking them. At the time of this writing, it is only 

possible to do live code profiling, without the ability to load memory dumps (see Figures 

3-40 and 3-41).

Figure 3-40. ANTS Memory Profiler snapshot view
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 Intel VTune Amplifier and AMD CodeAnalyst  
Performance Analyzer

Beyond the typical code and memory profilers, there are tools dedicated for low-level 

hardware-based profiling of your code usually provided by the processor manufacturers. 

Two main options mentioned in the title are provided by AMD and Intel as commercial, 

paid tools. They offer a much deeper analysis beyond the classical profiling of the code 

that states which methods perform the longest. We can get information from hardware 

counters built into hardware (processor, graphics card) about its internal behavior - 

cache and memory utilization, pipeline stalls, and many more.

In the everyday work of the .NET developer we are rather not interested in going into 

such details. However, they may be very useful when fine-tuning your application, especially 

when we consider optimizing hot paths and tight loops executed millions of times.

Figure 3-41. ANTS Memory Profiler live view
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In fact, only such low-level tools can point us clearly to problems like False Sharing 

shown in Chapter 2. Let’s look at the results of the sample analysis for Listing 2-6 from 

Chapter 2 made in Intel VTune Amplifier (see Figure 3-42). It clearly states something 

wrong is going on - our code is highly memory bound and there are 100% Contested 

Accesses pointed out.

Because such tools track hardware counters on the lowest level, we can even figure 

out statistics per single line of program to find out the precise roots of the problems. In 

case of the program from Listing 2-6, such an analysis indeed points out to the source 

of contested access. Obviously, because underneath the .NET application, it is executed 

as native code (thanks to the JIT compiler explained in Chapter 4), VTune points us to 

concrete lines of JITted assembly code. With a good understanding of the JIT and Intel’s 

assembly code in general, we can match those lines to concrete lines of our .NET code. 

For example, in case of our results, there are two problematic lines in particular (see 

Figure 3-43):

Figure 3-42. Example results from Intel VTune Amplifier - summary view
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• Checking the size of the array (first highlighted line),

• Accessing old counter data (second highlighted line).

Therefore, obviously usage of such tools requires quite low-level knowledge about 

hardware used, the .NET runtime, and even the assembly language. It is also worth 

noticing that both tools are available for Windows and Linux.

 Dynatrace and AppDynamics

Beyond many tools dedicated solely to .NET memory management, there are a bunch 

of higher-level tools for application performance monitoring in general. They provide 

a great insight into the application and are particularly well suited for production or 

pre-production environments. Because memory management is an important aspect of 

.NET applications, the tools that support this platform also provide convenient insight 

into the application memory usage.

Such so-called Application Performance Management (APM) tools from the two 

leading vendors listed in the title are excellent examples of this approach. Continuous 

monitoring of applications for problems and its impact on the end user is even more 

Figure 3-43. Example results from Intel VTune Amplifier - assembly code view
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valuable than even the most sophisticated tools that work only on the local developer’s 

computer. There is simply no confrontation with the reality and real traffic generated 

by users.

 Linux Environment
Ideally, everything that was mentioned in the previous section should now be 

repeated in the context of the Linux operating system. However, the truth is that 

.NET on Linux is still very fresh in 2018. Initial production deployments are just 

beginning to emerge. Consequently, development on this platform is only beginning 

to show up. Because it is such a fresh field, there is a huge difference in knowledge 

and good practices establishment compared to the Windows environment. In 

Windows, many different tools are available, as we have seen: both free and 

commercial ones. In the case of Linux, the choice is virtually unremarkable. There 

are no standard procedures or even real experienced experts in the field. We are 

moving onto unspoiled terrain.

 Overview
Linux rises up and develops as an extraordinary creation of countless contributors from 

the open source community. It was not designed and implemented by one company 

from the very beginning, as is the case with the Windows operating system. It is not 

surprising that there is a lack of strict standardization in some fields. One such aspect 

is monitoring and tracking applications that we are particularly interested in. There are 

many mechanisms available; some of them are slowly losing popularity, and others are 

just beginning to gain it. In this context, monitoring infrastructure in Linux becomes less 

homogeneous than in a Windows environment.

There is no widely accepted diagnostic tracing standard used in all distributions 

and the kernel of the system. When moving CoreCLR to the Linux environment, 

decisions must be made what mechanism will be used. It is being well documented 

in CoreCLR documentation at https://github.com/dotnet/coreclr/blob/master/

Documentation/coding-guidelines/cross-platform-performance-and-eventing.md. 

For  example, there were other mechanisms considered like SystemTap, DTrace4Linux, 

FTrace, and Extended Berkeley Packet Filter (eBPF).
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Currently the following mechanisms are used on the different levels:

• .NET application - as in case of Windows, we can use EventSource 

library or obviously, any other library to log directly into the files and 

many other possible targets,

• .NET Core runtime - emits LTTng (“Linux Tracing Toolkit Next 

Generation”) events,

• Operating system API and kernel itself - emits so-called perf_events 

data.

In the end, to have a good overview of the CoreCLR process on Linux, a combination 

of two mechanisms should be used:

• perf_events - it provides various data based on both hardware and 

software (including OS libraries and the kernel itself ). This includes 

system-wide measurements like CPU sampling, context switches, 

memory usage.

• LTTng - event tracing on user mode side but with kernel-size 

modules and buffers. It provides strongly typed events and as such is 

very similar to the Event Tracing for Windows (ETW). Unfortunately, 

by default it does not support tracking stack traces (program has been 

recompiled to enable or disable them, which is not applicable for a 

general-purpose framework like CoreCLR). The same event names 

are used here as in the case of ETW events on Windows.

While perf_events is system-wide, the LTTng mechanism can be hooked up to 

individual processes.

Please find Table 3-3 that can help to understand the similarities and differences 

between the tracking mechanisms in Windows and Linux.
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The most noticeable difference is the lack of a dynamic tracing mechanism in 

Windows. By dynamic tracing, we mean that you can enable or disable single-function 

call tracking in an application while it is running.

 Perfcollect
The easiest way of getting tracing data is by using the official perfcollect bash script 

and then using Perfview on Windows to analyze this recorded data. This approach has 

some drawbacks. The main one is fairly limited analysis results available in PerfView - 

there is just a raw list of events available. The second, less burdensome one, is the need 

for Windows to... analyze Linux data.

To start monitoring your .NET Core application, follow official CoreCLR instructions 

at https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/

linux-performance-tracing.md. It is not complicated. You should get perfcollect 

script from CoreCLR Github repository at http://aka.ms/perfcollect. Then you only 

need to execute sudo ./perfcollect install, which will install perf_event and LLTng 

tools on your Linux machine. Then, to start a tracing session you need to export two 

environment variables (the first enables generation of so-called decoding maps, needed 

to decode symbols from recorded traces, which will be stored in /tmp/perf-PID.map) as 

shown in Listing 3-10.

Table 3-3. Tracking Mechanisms Comparison Between Linux and Windows

Aspect Windows Linux

static tracing

      Kernel-mode etW Kernel Logger perf_events, BCC

      user-mode etW providersperformance Counters Lttng

      Definition etW manifest Lttng tracepoint definition

      system-wide yes no

Dynamic tracing

not available perf_events

systemtrap

BCC
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Listing 3-10. Setting environment variables needed for CoreCLR monitoring

> export COMPlus_PerfMapEnabled=1

> export COMPlus_EnableEventLog=1

> sudo ./perfcollect collect sampleTrace [-pid <PID>] [-threadtime]

After stopping the session, it will result in a ZIP file containing registered data. What 

exactly does the perfcollect script do? In short, it manages sessions and prepares the 

resulting file:

• It configures the LTTng session:

• with the context consisting of procname, vpid (process ID), and 

vtid (thread ID)

• with by default all events added from the groups 

DotNetRuntime:* and DotNetRuntimePrivate:* (a detailed list 

and available settings we can see in the script itself )

• It starts the LTTng session

• It starts the perf session to take CPU samples each 1 ms  

(at 999 Hz frequency)

• It prepares result the ZIP file with all necessary data:

• lttngTrace subfolder contains recorded LTTng traces

• main folder contains:

 – all perf.map files created during session

 – all symbol files generated for native images (AOT/NGEN) with the 

help of crossgen tool

 – all perf data and related logs

• debuginfo subfolder - contains debuginfo (symbol files) for all 

other modules

After recording a session, we can also view it using the perfcollect script (see 

Listing 3-11).

Listing 3-11. Viewing perfcollect data

> sudo ./perfcollect view <tracefile>

> sudo ./perfcollect view <tracefile> -viewer lttng
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The first command displays perf data as a call tree, and the second is just a textual 

listing of all LTTng events without any interpretation.

You can, of course, manually manage LTTng session (so what is scripted in perfcollect), 

to have better control over a created session and recorded events (see Listing 3-12).

Listing 3-12. Manually managing LTTng session

> lltng create sample_trace

> lltng add-context --userspace --type procname    // or vpid, vtid

> lltng enable-event --userspace --tracepoint DotNetRuntime:Exception*

> lltng enable-event --userspace --tracepoint DotNetRuntime:GC*

> lltng start

> lltng stop

> lltng destroy

Similarly, you can manually manage perf_events to create perf session (see Listing 3-13).

Listing 3-13. Manually managing perf session

> perf record -g -F 999 --pid=<PID> -e cpu-clock

This will start a session with call-graph recording (-g option) and sample at 999 Hz 

frequency, which in fact means each 1 ms (-F 999 option).

 Trace Compass
As this tool main page says: “Eclipse Trace Compass is an open source application for 

viewing and analyzing any type of logs or traces. Its goal is to provide views, graphs, 

metrics, and more to help extract useful information from traces, in a way that is more 

user-friendly and informative than huge text dumps.”

Among the various supported formats, the most important for us is CTF format 

(Common Trace Format), in which events are generated by an LTTng mechanism used by 

CoreCLR. Trace Compass looks like a mix of PerfView and Windows Performance Analyzer 

tools - if you had contact with them, you might guess what I mean. It is powerful and 

allows us to make great things. But unfortunately, like the two mentioned programs, it has 

a very steep learning curve. Extensive configuration options make it hard to know where 

to start when you run it for the first time. If you are not interested in Linux diagnostics or if 

you just do not want to spend time to read a rather detailed description of Trace Compass 

adaptation to our needs, feel free to omit the rest of this subchapter for now.
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 Opening File

Assuming you get a perfcollect recording, please unzip it to some folder. The LTTng 

data we’re interested in are in the lttngTrace subfolder, more specifically in the path 

that follows the schema lttngTrace\auto-20170801-103533\ust\uid\1000\64-bit. 

To open it in Trace Compass, select File ➤ Open Trace... and select metadata file. The 

default view we will see (see Figure 3-44) includes two main views: a list of all events (a 

“64-bit” bookmark for a sample file), and a histogram of event instances over time.

Figure 3-44. Eclipse Trace Compass - The default view of LTTng trace

We can take a moment to look at the events tab, where as you can see, along with 

each event there are also accompanying fields (including the generic context._vpid 

and context._vtid, respectively the process ID and the thread ID from which the 

event was generated). You can search and filter that view by manipulating the first 

Chapter 3  MeMory MeasureMents



216

row. On the other hand, the histogram can only help us to figure out the number of 

events in time and in that sense is not very helpful. We can close it, like other tabs: 

Control, Control Flow, Resources, Properties, and Bookmarks. After that we should 

end up only with Project Explorer, Statistics, and tracing tabs. Such a view, however, 

is not particularly useful, and this is where the complex customization process 

begins.

For this moment we will just open a file containing the ready-made analyses 

prepared for this book, and then one by one I will explain how they were created and 

what they show. To do that it is best to close the current trace by selecting Clear from 

the  context menu under Tracing ➤ Traces in Project Explorer tab. Download coreclr_

analyses.xml file attached with this book and store it somewhere. Then select Manage 

XML analyses... from the same context menu. In the window that appears, select 

Import and point to the file you just downloaded. Then open the same trace once 

again. Three new views should be visible under Tracing ➤ Traces ➤ 64-bit ➤ Views 

item (see Figure 3-45).

By expanding any of the new custom views, you will see additional possible views. 

You can double-click any of them to add it to the main view.

All these views are based on the Trace Compass feature called Data driven 

analysis http://archive.eclipse.org/tracecompass/doc/stable/org.eclipse.

tracecompass.doc.user/Data-driven-analysis.html#Data_driven_analysis. It 

allows us to specify an interpretation of events sequences in a various way by providing 

dedicated XML files.

Figure 3-45. Eclipse Trace Compass - Three new custom views of LTTng trace
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 CoreCLR.GC.collections

Let’s start from the simplest custom view. It is based on a simple pattern, matching 

Garbage Collection start and end events. Each such pair of starting and closing events 

generates a so-called “segment” in Trace Compass nomenclature, which is understood 

simply as a time interval with a name and possible attributes. Such analysis in Trace 

Compass is carried out with Finite State Machine (FSM) describing transitions of our 

interest (reactions to subsequent events) and related actions. Listing 3-14 shows a brief 

structure of such analysis (for simplicity I’ve removed the part matching the start and 

end of the same GC).

Listing 3-14. Fragments of CoreCLR.GC.collections custom analysis for Trace 

Compass

    <pattern version="0" id="CoreCLR.GC.state">

        ...

        <patternHandler initial="gcsegments">

            <action id="gc_starting">

                <stateChange>

                     <stateAttribute type="constant" 

value="#CurrentScenario" />

                    <stateAttribute type="constant" value="Generation" />

                    <stateValue type="eventField" value="Depth"/>

                </stateChange>

            </action>

            <action id="gc_ending">

                <segment>

                    <segType>

                        <segName>

                            <stateValue type="query">

                                 <stateAttribute type="constant" 

value="#CurrentScenario" />

                                 <stateAttribute type="constant" 

value="Generation" />

                            </stateValue>

                        </segName>

                    </segType>
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                </segment>

            </action>

            <fsm id="gcsegments" initial="state_before_gc">

                <state id="state_before_gc">

                     <transition event="DotNETRuntime:GCStart_V2" 

target="state_during_gc" action="gc_starting" 

saveStoredFields="true" />

                </state>

                <state id="state_during_gc">

                     <transition event="DotNETRuntime:GCEnd_V1" 

target="state_after_gc" action="gc_ending" 

cond="count_condition" saveStoredFields="true" 

clearStoredFields="true" />

                </state>

                <final id="state_after_gc" />

            </fsm>

        </patternHandler>

    </pattern>

The name of each segment corresponds to the generation on which the GC was 

made (section segName in the above description). Therefore, views generated by this 

analysis include a list of all Garbage Collections per generation and their statistics (see 

Figures 3-46 and 3-47) - segment duration is being called latency.

Figure 3-46. Eclipse Trace Compass - Statistics of all GCs during recorded trace - 
level indicates generation
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It means that in our sample trace, there were, for example, six GC on 2 generations 

and they took almost 10 ms in average. Type and Reason are additional recorded fields 

that come from GCStart_V2 event (not yet documented but those fields are also present 

in GCStart_V1 event (see https://docs.microsoft.com/en-us/dotnet/framework/

performance/garbage-collection-etw-events#gcstartv1-event for details).

 CoreCLR.threads.state

This is by far the most complex custom view made by me so far. It utilizes yet another 

powerful Trace Compass feature to create Gantt-like diagrams of XML-based data-

driven analyses. You can open it by double-clicking CoreCLR.threads.state.view under 

CoreCLR.threads.state view. Just to show an overview of the underlying FSM, the 

beginning of its definition is presented in Listing 3-15.

Listing 3-15. Fragments of CoreCLR.threads.state custom analysis for Trace 

Compass.

<patternHandler initial="thread">

    <test id="thread_condition">

        <if>

Figure 3-47. Eclipse Trace Compass - List of all GCs during recorded trace - 
including additional parameters like Type and Reason
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            <condition>

                <stateValue type="eventField" value="context._vtid"/>

                <stateValue type="query">

                     <stateAttribute type="constant" 

value="#CurrentScenario" />

                    <stateAttribute type="constant" value="ThreadId" />

                </stateValue>

            </condition>

        </if>

    </test>

    ...

    <action id="on_thread_restarting_begin">

        <stateChange>

            <stateAttribute type="constant" value="#CurrentScenario" />

            <stateAttribute type="constant" value="Status" />

            <stateValue type="int" value="11"/>

        </stateChange>

    </action>

    ...

    <fsm id="thread" initial="state_before_thread" consuming="false">

        <state id="state_before_thread">

             <transition event="DotNETRuntime:ThreadCreated"  

target="state_normal_thread" action="on_thread_starting" />

        </state>

        <state id="state_normal_thread">

             <transition event="DotNETRuntime:ThreadTerminated" 

target="state_dead_thread" action="on_thread_ending" 

cond="thread_condition" />

             <transition event="DotNETRuntime:GCSuspendEEBegin_V1" 

target="state_suspending_thread" action="on_thread_suspending_

begin" />

             <transition event="DotNETRuntimePrivate:BGCBegin" 

target="state_during_bgc_nonconcurrent" action="on_bgc_

starting_nonconcurrent" cond="thread_condition" />

        </state>

        <state id="state_during_gc">
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             <transition event="DotNETRuntime:GCEnd_V1" target="state_normal_

thread" action="on_gc_ending" cond="gc_thread_condition" />

             <transition event="DotNETRuntimePrivate:BGCBegin" 

target="state_during_gc" action="on_bgc_starting_global"  />

        </state>

        ...

</patternHandler>

Such a fairly complex state machine responds to individual CoreCLR (mostly 

GC-related) events changing the state of one of the so-called “scenarios.” In this case, 

scenario corresponds to s single thread, thanks to the thread_condition condition. In 

other words, the event most often changes the state of only one selected thread, assigned 

to a given scenario. This is not the case for some events like GCSuspendEEBegin_V1, 

which are impacting all current managed threads. The actions associated with each of 

these events (reactions) primarily change the Status field of a given scenario, which is 

simply a numerical value. Interpreted later by the timeGraphView component, as shown 

below in Listing 3-16.

Listing 3-16. Definition of timeGraphView showing CoreCLR.threads.state 

analysis results

    <timeGraphView id="CoreCLR.threads.state.view">

        <head>

            <analysis id="CoreCLR.threads.state" />

            <label value="CoreCLR.threads.state.view" />

        </head>

        <definedValue name="USER THREAD" value="0" color="#CCCCCC"/>

        <definedValue name="GC THREAD" value="1" color="#D6F0FF"/>

        <definedValue name="FINALIZER THREAD" value="2" color="#118811"/>

        <definedValue name="THREADPOOL THREAD" value="4" color="#A0A0A0"/>

        <definedValue name="GCWORK" value="8" color="#0000FF"/>

        <definedValue name="SUSPENDING" value="9" color="#8C5656"/>

        <definedValue name="RESTARTING" value="11" color="#758C56"/>

        <definedValue name="GCPREPARE" value="12" color="#A38A8A"/>

         <definedValue name="BGCWORK NONCONCURRENT" value="16" 

color="#00A4FC"/>
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         <definedValue name="BGCWORK CONCURRENT" value="17" 

color="#000099"/>

        <entry path="scenarios/*">

            <display type="self" />

            <name type="self" />

            <entry path="*">

                <display type="constant" value="Status" />

                <name type="constant" value="ThreadId" />

            </entry>

        </entry>

    </timeGraphView>

This component visualizes each of the scenarios in a separate line, which gives us 

a separate line for each thread, colored according to the current state of the thread and 

name according to its ThreadID. This allows for a nice view of the application state (see 

Figure 3-48). And in particular, after zooming in, it shows us nice details of a single GC 

run (see Figure 3-49).

Figure 3-48. Eclipse Trace Compass - Threads overall view
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In the above examples, we see details of a single generation 2 garbage collection run 

that triggered creation of the GC thread for non-concurrent parts of background GC (all 

those details are thoroughly explained in Chapter 11).

 CoreCLR.GC.generations.ranges

The last option is to create so-called XY graphs (see http://archive.eclipse.org/

tracecompass/doc/stable/org.eclipse.tracecompass.doc.user/Data-driven- 

analysis.html#Defining_an_XML_XY_chart for details) based on data provided by 

events. Of course, it is especially tempting to visualize all kinds of measurable metrics 

such as size of generations and the like. There is one event especially useful here - 

GCGenerationRange, generated for each generation at the end of each GC run (see 

Figure 3-50).

Figure 3-49. Eclipse Trace Compass - Single background GC, creating concurrent 
GC thread
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We can consume its Generation, RangeUsedLength, and RangeReservedLength 

fields to visualize generations’ sizes. Such analysis is based on a simpler mechanism and 

does not require creating s separate FSM. It is just event handler reacting on a particular 

event (see Listing 3-17).

Listing 3-17. Definition of CoreCLR.GC.generations.ranges custom analysis for 

Trace Compass and its corresponding view

<stateProvider version="0" id="CoreCLR.GC.statistics">

   <head>

      <traceType id="org.eclipse.linuxtools.lttng2.ust.tracetype" />

      <label value="CoreCLR.GC.generations.ranges" />

   </head>

   <eventHandler eventName="DotNETRuntime:GCGenerationRange">

      <stateChange>

         <stateAttribute type="constant" value="Generations" />

         <stateAttribute type="eventField" value="Generation" />

Figure 3-50. Eclipse Trace Compass - DotNETRuntime:GCGenerationRange 
events emitted at the end of GC run

Chapter 3  MeMory MeasureMents



225

          <stateValue type="eventField" value="RangeUsedLength" 

forcedType="long"/>

      </stateChange>

   </eventHandler>

</stateProvider>

<xyView id="CoreCLR.GC.statistics.view">

   <head>

      <analysis id="CoreCLR.GC.statistics" />

      <label value="CoreCLR.GC.statistics.view" />

   </head>

   <entry path="Generations/*">

      <display type="self" />

   </entry>

</xyView>

We obtain graphical visualization of the size of generations over time, which can be 

very useful in analysis (see Figure 3-51).

Figure 3-51. Eclipse Trace Compass - XY visualization of generation sizes in time

Note there is yet another very interesting event DotNETRuntime: 
GCHeapStats_V1, but unfortunately, currently its payload is interpreted as a byte 
array so it is not possible to consume it.
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 The Final Results

All this allows us to customize the Trace Compass for a fairly convenient analysis of the 

collected traces (see Figure 3-52). Of course, there is still a lot to do, but such an analysis 

will make some preliminary conclusions: how frequently and why GC runs occur and 

how memory consumption changes over time. Reviewing the list of events may allow 

you to get an idea of the details.

Figure 3-52. Eclipse Trace Compass - CoreCLR analysis with all custom views 
altogether
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 Memory Dumps
Taking the .NET Core application memory dump conceptually is no different than taking 

it for any other program running on Linux. To make a dump, execute the command 

gcore, one of the gdb (The GNU Project Debugger) tools (see Listing 3-18).

Listing 3-18. Taking a memory dump of process

$ gcore <PID>

It is just like using the already described Procdump on Windows.

When it comes to dump analysis, it is currently mostly based on using an SOS 

debugging extension - already mentioned as a very powerful extension that comes 

with the .NET Core runtime itself. To proceed with dump analysis, you have to use lldb 

debugger to open the dump file, load the SOS plugin and, additionally, tell the debugger 

where the CoreCLR runtime is placed - with the help of the setclrpath command (see 

Listing 3-19).

Listing 3-19. Loading memory dump and appropriate configuration into lldb

> lldb --core ./path.to.coreListing 3-20.

(lldb) plugin load /usr/share/dotnet/shared/Microsoft.NETCore.App/2.0.0/

libsosplugin.soListing 3-21.

(lldb) setclrpath /usr/share/dotnet/shared/Microsoft.NETCore.App/2.0.0

From now on we should be able to use any SOS command like in WinDbg.

Note lldb is based on llvm and can be seen as just a completely new debugging 
environment not related to gdb at all.

 Summary
In this extensive chapter we reviewed various tools that are useful in the context of .NET 

memory management analysis – both from the diagnostic side and from its monitoring 

side. Inevitably, it was only a brief review without going into the details of each service 

tool. Despite this, the chapter has grown to a substantial size. There are a lot of tools 
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running on the Windows operating system and a little less operating on Linux. Most 

often these are not simple programs, and their manuals are the subject of separate, 

dedicated books. I highly recommend using these tools in your daily work and treating 

the list contained in this chapter as a starting point for further exploration. Download 

them and try them. Certainly, you will like some more than others.

Just as a little help, please find a brief summary of tools mentioned so far in 

Tables 3-4 and 3-5.

Table 3-4. Summary of the .NET-Related Tools for Windows.

Tool Purpose Pros and cons

performance monitor performance counters viewer.  

records and visualizes performance 

counter data.

+ easy to use

+ low overhead

- may be sometimes 

misleading

Windows performance 

toolkit

record and visually analyze etW data. 

Focused mainly on Windows/drivers 

analysis.

+ very powerful

+ low overhead possible

- steep learning curve

perfview record and analyze etW data with  

the help of many predefined views. 

Focused mainly on .net related analysis.

+ very powerful for .net

+ low overhead possible

- steep learning curve

procDump, DebugDiag taking memory dump of a process. either 

ad hoc or based on various metrics.

+ easy to use

WinDbg Debugging both managed and native 

code. With the help of powerful extensions 

provides extensive analysis possibilities.

+ very low-level insight 

into process possible

- very steep learning curve

- may be too low level for 

many everyday purposes

dnspy editing and debugging .net assemblies 

even if source code is not available.

(continued)
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Table 3-4. (continued)

Tool Purpose Pros and cons

BenchmarkDotnet Benchmarking library allowing us to 

benchmark .net code with respect to 

execution time and resource utilization.

Visual studio 

(commercial)

Well-known, general purpose IDe. Includes 

debugging, profiling, and memory dump 

analysis capabilities.

+ well-known to .net 

developers

- profiling and dump 

analysis slightly limited 

in comparison to other 

dedicated, commercial 

tools

scitech .net Memory 

profiler (commercial)

JetBrains DotMemory 

(commercial)

redGate ants Memory 

profiler (commercial)

tools dedicated to .net memory analysis. + easy-to-use user 

interface

+ many predefined 

analyses

- paid tools

Intel Vtune amplifier 

and aMD Codeanalyst 

performance analyzer

hardware-level profiling of both native 

and managed code, including insight into 

cache utilization, Cpu pipeline utilization, 

and much more.

+ very deep insight into 

hardware performance

- may be too detailed for 

many typical scenarios

- requires at least some 

basic hardware knowledge

Dynatrace & 

appdynamics 

(commercial)

Continuous monitoring tools including 

collecting .net-related data (depends on 

the tool).

+ deep insight into running 

applications

- paid tools
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Some of the tools presented in this chapter will be used later in this book to show 

you the topics discussed. That is why it was so important for them to be presented before 

we could actually use them. We will have an opportunity to practice them in different 

circumstances later on. Since we have not introduced any details about GC in .NET yet, 

it was too early to address specific diagnostic issues in this chapter. There will be also 

some other small tools used later not mentioned here. It would be just too expansive to 

mention them all here.

The first three chapters you have just read are a general introduction to memory 

management. In Chapter 1 we learned about many theoretical concepts on this subject. 

In Chapter 2 we learned the hardware and system details of it. And now we are closing 

this extensive introduction by the third chapter about tools that can be used. And we’re 

going to the right part, describing .NET itself, its internals, and common best practices.  

I invite you to read!

Table 3-5. Summary of the .NET-Related Tools for Linux

Tool Purpose Pros and cons

perfcollect script for collecting and simple 

viewing LLtng and perf data.

+ helps with configuring LLtng 

and perf sessions

- very limited analysis

trace Compass record and visually analyze LLtng 

data. Created for general purpose 

analysis, and can be tuned for .net-

related events.

+ quite powerful visualizations

- a lot of customization required

- steep learning curve

lldb native debugger with managed 

code debugging capabilities via sos 

extension.

+ very low-level insight into 

process possible

- step learning curve

Intel Vtune amplifier 

and aMD Codeanalyst 

performance analyzer

refer to the Windows counterparts 

description.
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 Rule 5 - Measure GC Early
Justification: Continuous monitoring of different metrics allows to answer to the 

question “whether we have a memory problem?” from the very beginning of our 

application existence. What’s more, we can observe trends that will reveal the 

degradation of the performance of our process. Of course, this principle is general 

enough to apply not only in the GC context. Similarly, we should measure overall 

performance (e.g. response times) or synchronization problems (like number of context 

switches), etc.

How to apply: It is important to develop the habit of measuring GC parameters 

as early as possible, from first deployments in lower environments to continuous 

monitoring of production environments. Because it is more conceptual than 

practical advice, the answer to how to use it can be very broad. Undoubtedly, 

the goal should be, preferably automatic process of continuous monitoring of 

applications for memory usage and GC operation. The other rules listed in this 

book should be the starting point for creating this process. Thanks to them we 

will know what to measure and how to interpret the results. How this process will 

look to a large extent depends on what tools we use. In the case of Windows, most 

often measurements will be based, one way or another, on readings of relevant 

performance counters (section 3.2) or cyclic ETW event analysis (section 3.3). In 

the case of Linux, it will automate the analysis of the perf_events and LTTng data. 

Such automated checks can be integrated into our Continuous Integration and 

Delivery processes, such as after every build of a new product release. Absolutely the 

minimum approach should be to manually monitor the metrics selected after each 

production deployment and compare them with behavior against previous versions. 

What should we measure? Your mileage may vary. It all depends on the severity of 

our monitoring process. But I cannot imagine a well thought-out system that does 

not measure the following features of our applications:

• How much memory is in our process and does not grow out of 

control it in time;

• How often and how long the Garbage Collector is called and whether 

there is a noticeable overhead for the whole process.
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CHAPTER 4

.NET Fundamentals
Although we are only in the fourth chapter, we have gone through quite a long journey 

about various aspects of memory management. They were discussed in general to make 

a more theoretical introduction to this topic. There were quite rare, specific references 

to .NET, which after all is what this book about. It’s time to change that frequency. From 

this chapter to the end of the book, .NET will accompany us constantly. In this chapter 

we will look at it with a slightly broader perspective, we will learn some mechanisms 

behind it, and we will begin to delve into the topics related to how it manages memory. 

I strongly encourage you to acquire knowledge from the previous three chapters before 

continuing reading this one, but treat it as an optional approach. From now on, I will also 

assume some basic knowledge about assembly language for x86/x64 platforms as we are 

going into the .NET deeper and deeper. If you need some knowledge refresh, read, for 

example, an excellent book, Modern X86 Assembly Language Programming, by Daniel 

Kusswurm (Apress, 2014).

If the .NET Framework was a man, he would have gone to junior high school now, 

and in a few years slowly began preparing for the matriculation exam. In other words, 

it is a product developed and used for about 15 years now. During this period, both the 

rich collection of accompanying libraries and the runtime environment itself evolved 

significantly. All .NET developers have to know well the basic subjects - knowledge of 

the standard library and syntax of C# - the main programming language used in .NET 

environment (or others, like VB.NET constantly losing popularity and F# constantly 

gaining it). This is our “everyday bread.” However, with the age, or as you like, with the 

experience, often comes the reflection that it is worth knowing more. So let’s learn  

more a little!
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Be aware that this book concentrates on memory management, only briefly 
mentioning other .NET-related topics. Thus, for example, do not expect detailed 
description of C# language features or approaching multithreading issues. There 
are many other great books and online materials dedicated solely to them.

 .NET Versions
The .NET environment is not as homogeneous as it may seem at a first glance. It is most 

commonly associated with the most popular version of the .NET Framework, which runs 

from version 1.0, through versions like 2.0, 3.5, or 4.0, up to the current version 4.7.2. 

But when we talk about the .NET environment, you can really now have in mind a lot of 

the richness of its versions and implementations. An important approach that allowed 

such richness was standardization. From the very beginning, the whole .NET concept 

was based on the specification called Common Language Infrastructure (CLI). This 

fundamental technical standard (standardized as ECMA 335 and ISO/IEC 23271 in 2003) 

describes the concept of a code and runtime environment that allows it to be used on 

different machines without being recompiled. I will refer to it many times in this chapter 

as there is no better source of truth than that.

Describing all components of CLI, including all implementation variations and 

differences between them, is very tempting. However, we will mainly focus on how they 

affect the topic about which we are concerned. Now just let’s take a look at the various 

.NET variations in the context of memory management and Garbage Collection:

• .NET Framework 1.0 - 4.7.2 - Developed since 2002, the commercial 

and most mature product known to us all. It has been here for 

years so that the core of Garbage Collector has been developed and 

improved from version to version. Over the years, the subject was 

treated as a black box, described more or less casually on the occasion 

of releasing the new .NET version. Because the .NET Framework’s 

commercial runtime code is closed, how exactly these mechanisms 

work, we could mainly learn from the information provided by 

Microsoft itself. The information was quite detailed, allowing us to 

understand and diagnose memory problems in applications. But still 

developers remained a little unsatisfied, especially if you confront it 

with the openness of sources, for example, of Java.
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• Shared Source CLI (also known as Rotor) - Released in 2002 (version 

1.0) and 2006 (version 2.0) runtime implementation for educational 

and academic purposes. It has never been intended to run a 

production code. It let you know the numerous implementation 

details of the CLR. There is even a great book, Shared Source CLI 

Essentials, by David Stutz, Ted Neward, and Geoff Shilling (O’Reilly 

Media, 2003), which describes this version in detail. However, first 

of all, it did not fully implement a “mature” .NET 2.0 Framework. 

Secondly, the implementation of it was sometimes very different 

from the proper CLR, unfortunately, especially in the memory 

management area. Only a very simplified Garbage Collector has been 

implemented there.

• .NET Compact Framework - The “mobile” version of .NET since 

Windows CE/Mobile and Xbox 360 times. Its Garbage Collector was 

significantly different from the main version and much simplified, for 

example, it does not include the generation concept (which we will 

learn about in the next chapter). However, it is already a historical 

system and probably we do not have to worry about it anymore. 

But a lot of lessons have been learned during development of this 

framework, especially because of porting for platforms like various 

processors running Windows CE devices. Here is where the CoreCLR 

we know all started conceptually.

• Silverlight - A web browser plugin that allows you to run applications 

like normal window applications. Since Microsoft started building it 

in times of .NET 2.0, it was based on a runtime copy of that period. 

If you still use it, lots of information about the current .NET will also 

apply here. Except that this would have to be information about an 

older runtime version of .NET 2.0. This was a runtime ported to the 

OSX platform, which provided code base for the current CoreCLR 

(.NET Core) runtime.
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• .NET Core (with its runtime called the CoreCLR) - The appearance 

of the open source version of. NET has changed a lot. From now on, 

there is a production-ready runtime code that we can study ourselves 

in depth. More importantly, the Garbage Collector code has been 

practically copied here from the commercial runtime code. It seems 

that .NET Core can slowly begin to overtake the functionality of the 

.NET Framework, whose changes will be successively “merged” back. 

.NET Core is also an officially supported cross-platform solution. It 

works on Windows as well as on Linux and MacOS.

• Windows Phone 7.x, Windows Phone 8.x, and Windows 10 

Mobile - The older versions of the system were based on simple 

memory management known from the .NET Compact Framework 

3.7. Windows Phone 8.x introduced significant enhancements of 

the internal .NET runtime, which was based on the mature .NET 

Framework 4.5 version, inheriting its Garbage Collector.

• .NET Native - A technology that allows CIL code to be compiled 

directly into machine code. It is based on a lightweight runtime called 

CoreRT (formerly MRT). They share the Garbage Collector code with 

.NET Core.

• .NET Micro Framework - A separate implementation for small 

devices, with open source code. The most popular application is the 

.NET Gadgeeter that contains its own, simplified version of Garbage 

Collector. Due to the niche and the hobby nature of this solution, we 

will not deal with it in this book.

• WinRT - A new way to expose the OS functionality to developers that 

is set up of APIs used to build Metro style apps available in JavaScript, 

C++, C#, and VB.NET languages and is to replace Win32. It is written 

in C++ and it is in fact not .NET implementation at all. But it is object 

oriented and it is based on .NET metadata format so it may look like a 

normal .NET library (especially when using from within .NET).
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• Mono - A completely separate, cross-platform implementation of 

the CLI, with its own memory management. Getting to know it does 

not do much to understand the main theme of .NET. However, there 

are at least two very popular solutions based on this technology - 

Xamarin, the framework for writing mobile applications; and 

Unity3D, a popular game engine. Due to the popularity of those 

projects, we will sometimes look at Unity by the comparison.

A pretty positive picture emerges from the above list - the memory-management 

mechanism is very similar (not to say - almost identical) to all the major .NET platforms 

currently in use - the .NET Framework, the .NET Core, and the one used in .NET Native.

This book is full of explanations about the internal mechanisms of the Garbage 
Collector in .NET, based on the .NET Core 2.1 source code. as we mentioned, there 
is a great convergence of this implementation with the main variant of the .NET 
Framework and the mobile variation. as a result, relying on the source code for 
.NET Core is a very valuable and comprehensive form of information acquisition. 
hereinafter, when showing .NET source code examples, I mean by default the 
.NET Core 2.1 source code, unless otherwise noted. I also refer to so-called “Book 
of the runtime” open source documentation developed in parallel to the runtime 
itself, available at https://github.com/dotnet/coreclr/blob/master/
Documentation/botr/README.md. It contains much valuable information about 
the runtime implementation.

We should know some .NET internals to fully understand the memory-management 

topic. We will look at them now, however, by omitting much information that is not 

needed in this context. There are many other valuable sources in which you will find 

more information including the great CLR via C# book written by Jeffrey Richter 

(Microsoft Press, 2012); Pro .NET Performance written by Sasha Goldshtein (Apress, 

2012); or Writing High- Performance .NET Code by Ben Watson (Ben Watson, 2014).
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 .NET Internals
When writing a program in C or C++, the compiler compiles it into an executable file. It 

can then be directly executed on the target machine, because apart from libraries that 

cooperate with the operating system, it contains a binary code directly executed by the 

processor.

On the other hand, the .NET runtime environment has a lot of important 

responsibilities, which, together, make the whole thing doing what it is supposed to 

do - executing application written by us. Unlike programs written in C or C++, when you 

write a program in C#, F#, or any other .NET-compatible language, it is compiled into the 

so-called CIL (Common Intermediate Language). This code is then used by the Common 

Language Runtime (CLR). CLR is the place when all the managed magic happens. Above 

the CLR, there is a more general concept of the whole .NET framework - including all 

standard libraries and the tooling (so we have various .NET framework versions that may 

or may not include runtime changes). CLR has several responsibilities, among which we 

can mainly distinguish:

• Just-in-time compiler (JIT compiler)- Its function is to transform the 

CIL code into machine code. This way of executing managed code 

is really a clever encapsulation of native-system mechanisms - like 

memory management includes the stack for threads and the heap 

and so on and so forth.

• type system - takes care of the type control and compatibility 

mechanisms. It consists of, among others, Common Type System 

(CTS) and Metadata (used by the Reflection mechanism).

• exception handling - It takes care of exception handling, both at 

the user-program level and the runtime itself. Also, both native 

mechanisms built into Windows SEH (Structured Exceptions 

Handling) mechanism and C++ exceptions are used here.

• memory management (commonly referred to as Garbage 

Collector) - this is a whole part of runtime that manages memory 

used by the runtime and our application. Obviously one of its main 

responsibilities is taking care of the automatic release of no longer 

needed objects.
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We often split those responsibilities into two main units:

• Execution Engine - is taking care of most of the runtime 

responsibilities included above, like JIT compilation and exception 

handling. It is named in ECMA-335 as Virtual Execution System (VES) 

and described as “responsible for loading and running programs 

written for the CLI. It provides the services needed to execute managed 

code and data using the metadata to connect separately generated 

modules together at runtime.”

• Garbage Collector - is taking care of memory management, objects 

allocation, and reclaiming no longer used memory regions. 

ECMA- 335 describes it as “the process by which memory for managed 

data is allocated and released.”

All these elements work together as in a well-folded machine full of large and 

small chunks. It is difficult to remove one of them and expect that the whole machine 

continues to work. And so it is with memory management. We can talk about memory- 

management mechanisms, but it is good to realize that other components work closely 

with it. The JIT compiler, for example, produces the lifetime information of variables 

that are then used by the Garbage Collector. Type systems provide the information 

necessary to make key decisions - for example, whether the type has a so-called finalizer. 

Exception handling must be written in a manner that is aware of the memory-reclaiming 

mechanisms - for example, to be stopped when the garbage collection takes place. 

A number of such functionalities of the various components within the CLR are very 

interesting, little facts.

We may often hear about managed code in the context of .NET. What it particularly 

means is that code executed by the runtime should be able to cooperate with it to 

provide responsibilities mentioned above. As ECMA-335 standard says:

managed code: Code that contains enough information to allow the CLI to 
provide a set of core services. For example, given an address for a method 
inside the code, the CLI must be able to locate the metadata describing that 
method. It must also be able to walk the stack, handle exceptions, and store 
and retrieve security information.
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To summarize, let’s look at the bird’s-eye view of the .NET runtime executing our 

application (see Figure 4-1).

We can describe such process as consisting of the following steps:

• We write our code in the editor of our choice - Visual Studio, Visual 

Studio Code, or whatever else. As a result, we get a project containing 

a set of source files. Those are, simply put, text files with the source 

of our program written in C#, VB.NET, F#, or any other supported 

language.

• We compile our project with the help of a proper compiler - whether 

it is the Visual Studio built-in compiler (for .NET Framework 

projects) or .NET Core compiler. As a result, we get a set of files 

(assemblies) containing our code in the form of binary code 

representing instructions in Common Intermediate Language. 

This code represents our program as a set of low-level instruction 

operating on a “virtual” stack machine (see Chapter 1). There may be 

other assemblies containing libraries we use in our program. Such set 

of assemblies can be now distributed to other users as a ZIP package 

or via installer.

C# CIL asm

.cs .dll/.exe in-memory
EE GC

Figure 4-1. Source code (text files) are being compiled into Common Intermediate 
Language (binary files). Then on a target machine with .NET runtime installed, 
it is being run by the runtime itself. It consist of two main units: Execution Engine 
(EE) and Garbage Collection (GC). EE is taking CIL from the binary files and 
transforms it in memory to the machine code.
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• We run application - this is obviously the most important part and 

can be subsequently split into the following steps:

• for .NET Framework - executable file contains a bootstrap code 

that is loading the proper version of the .NET Runtime with the 

support of the Windows operating system.

• for .NET Core - multiplatform solution does not depend on 

Windows cooperation. If we want to run managed assembly, we 

have to explicitly use a proper command like dotnet run in the 

catalog containing our program. This will bootstrap the runtime.

• .NET runtime will load the currently needed part of the assembly 

CIL code from the file and pass it to the JIT compiler.

• JIT compiler will compile CIL code to the machine code, 

optimized for the platform it is running at. It will additionally 

inject different calls to the Execution Engine providing 

cooperation between your code and .NET runtime.

• From now on, your code is being executed like normal 

unmanaged code. The difference is that there is cooperation with 

the runtime mentioned above.

It is now probably a good time to explain some common misconceptions we may 

encounter related to the .NET environment:

• .NET is not a virtual machine in a common sense - .NET runtime 

does not create any isolated environment and is not simulating 

any particular architecture or machine. In fact, .NET runtime 

is reusing built-in system resources like the operating system 

memory management, including the heap and the stack, processes 

and threads, and so on and so forth. It is then building just some 

additional functionality on top of them (automated memory 

management and so on).
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• There is no single .NET Runtime running on a machine - there is 

one binary distribution, but it is loaded and executed per each .NET 

application running. For example, garbage collection from process 

A does not influence directly garbage collection from process B. 

Obviously there is some sharing of resources on the hardware and 

operating system level, but in general each .NET runtime is not aware 

of any other managed application running their own .NET runtime 

instances. In fact, we can host a .NET runtime inside an unmanaged 

application (what is the case of SQL Server CLR capabilities). Even 

more, we can host multiple .NET runtimes in a single process, 

although there is a little practical usage of such behavior.

 Sample Program in Depth
Let’s now follow a step-by-step process of compiling and running a simple Hello world 

application (see Listing 4-1) to better understand some .NET internals. This will allow us 

to familiarize with some basic concepts needed later. Everyone ever learning C# probably 

recognizes this example whose only purpose is to display a short text on the console. We 

will use it as our playground run under .NET Core 2.1 runtime on Windows. Obviously, 

we are not going too deep here as we are mostly interested in memory-management 

stuff. If you are really interested in how .NET runtime loads itself, manage its types and 

similar topics, yet once again I recommend the great books introduced earlier.

Listing 4-1. Sample Hello World program written in C#

using System;

namespace HelloWorld

{

    class Program

    {

        static void Main(string[] args)

        {

            Console.WriteLine("Hello world!");

        }

    }

}
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Sample code from Listing 4-1, when compiled by C# compiler (Roslyn in case of 

used here Visual Studio 2017), will produce a single DLL file, which in my case is called 

CoreCLR.HelloWorld.dll. This file contains all the data required to run such a program. 

We can see it in details, for example, by opening it in dnSpy tool. After doing that we are 

able to navigate through various decoded sections of the file (see Figure 4-2):

• metadata describing itself (in terms of a Windows or Linux binary file 

description) - called DOS and PE header in case of Windows binary 

file visible in Figure 4-2;

• metadata describing its .NET-related content - including all types 

declared in our assembly, their methods, and other properties 

(visible as Storage Stream #0 named #~);

• list of references to the other required files;

• binary stream of the declared types and their methods encoded as 

bytes representing Common Intermediate Language.
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Figure 4-2. Content of the CoreCLR.HelloWorld.dll binary file - the result of 
compiling the program from Listing 4-1

Each method or type has its unique identifier called a token, and its location is 

identifiable within the file because of metadata streams mentioned above. Thanks to 

that, we can identify file regions containing each method body. For example, to see the 

Main method body, select it from the Assembly Explorer and use Show Method Body in 

Hex Editor option from its context menu (see Figure 4-3).

ChapTEr 4  .NET FuNdamENTals



245

Of course, looking at raw bytes, it is really hard to understand their meaning. But 

we can decode CIL of each method into a more readable form thanks to decompilation 

mentioned in Chapter 3. To do that, just select Main method in Assembly Explorer and 

select IL as the decompilation language from the dnSpy menu.

The result of the decompilation of Program type from CoreCLR.HelloWorld.dll is 

shown at Listing 4-2 (constructor has been removed for clarity). In comments we can 

see original bytecode for given instructions (for example, byte 2A represents ret CIL 

instruction) so now we can fully understand 7201000070280C00000A2A bytes highlighted 

in Figure 4-3.

If we look at the simple CIL code of the Main method (see Listing 4-2), we will see 

how it has been compiled into the stack machine code:

• ldstr "Hello World!" - reference to string literal is being pushed 

onto the evaluation stack;

• call System.Console::WriteLine - static method is called, taking 

first argument from the evaluation stack;

• ret - method returns (without a return value as there is nothing on 

evaluation stack).

Figure 4-3. A few bytes containing Common Intermediate Language instructions 
for the Program.Main method (arrow was added for clarity)
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Listing 4-2. Sample program from Listing 4-1 transpiled into Common 

Intermediate Language. Output comes from dnSpy tool.

// Token: 0x02000002

.class private auto ansi beforefieldinit CoreCLR.HelloWorld.Program

      extends [System.Runtime]System.Object

{

   // Token: 0x06000001

   .method private hidebysig static

      void Main (

         string[] args

      ) cil managed

   {

      // Header Size: 1 byte

      // Code Size: 11 (0xB) bytes

      .maxstack 8

      .entrypoint

      /* 7201000070   */ IL_0000: ldstr     "Hello World!"

      /* 280C00000A   */ IL_0005: call       void [System.Console]System.

Console::WriteLine(string)

      /* 2A           */ IL_000A: ret

   } // end of method Program::Main

} // end of class CoreCLR.HelloWorld.Program

If you look closely at listing 4-2 code, you can see a .maxstack 8 instruction, 
which seems to be related with the program execution. This is, however, not CIl 
instruction. such a metadata description can be consumed by various tools to 
validate code safety. maxstack tells how many maximum bytes can be allocated 
on the evaluation stack due to method execution. In case of Main method, eight 
bytes are required for the string literal reference. a tool like pEVerfiy can use this 
information to confront it with what method’s CIl code wants to do. This makes 
.NET code verifiable and secure as many kinds of buffer overruns are the most 
dangerous threats in computer environments.
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When considering a .NET stack machine, we should mention an important concept 

of locations. When considering storage of various values required for program execution, 

a few logical locations exists:

• local variables in a method;

• arguments of a method;

• instance field of another value;

• static field (inside class, interface or module);

• local memory pool;

• temporarily on the evaluation stack.

How each location is mapped into a particular computer architecture is the sole JIT 

compiler responsibility and we will dive into that a little while.

Note There are few JIT compilation engines currently available in .NET’s 
ecosystem:

-  legacy x86 JIT used by the .NET runtime (till version 4.5.2) and .NET 
Core 1.0/1.1 for x86 architecture (32-bit versions)

-  legacy x64 JIT used by the .NET runtime till version 4.5.2

-  new ryuJIT used by the .NET Core 2.0 (and later) and .NET Framework 
4.6 (and later) for both 32- and 64-bit compilations

- mono JIT for x86 and x64 platforms

as replacing legacy ones is an ongoing work, I am concentrating here only on the 
new ryuJIT engine.

Now, we may use WinDbg if we want to see how our program has been translated 

into machine code by JIT in case of 64-bit Windows. Obviously, we need to run our 

application as it triggers bootstrapping the runtime and JIT compilation of the necessary 

methods.

ChapTEr 4  .NET FuNdamENTals



248

Assuming we are using the newest WinDbg distributed as Universal Windows App, 

we may choose Launch executable (advanced) from the File panel and provide the 

following parameters (assuming our solution is located in C:\Projects):

• Executable: C:\Program Files\dotnet\dotnet.exe

• Arguments: \CoreCLR.HelloWorld.dll

• Start directory: C:\Projects\CoreCLR.HelloWorld\bin\Release\

netcoreapp2.1

many people prefer to launch Windbg from the command line to debug programs. In 
our case, to start a debugging session, you can use this command: windbgx C:\
Program Files\dotnet\dotnet.exe C:\Projects\CoreCLR.HelloWorld\
bin\x64\Release\netcoreapp2.1\CoreCLR.HelloWorld.dll

After clicking OK, the Hello world application will start and its execution will 

immediately break. We now need to set a breakpoint that will stop the program just 

before terminating (after printing the Hello World! message). We may specify the 

following command:

bp coreclr!EEShutDown

Now hit Go and wait a moment until this breakpoint will be hit. After that we should 

load an SOS extension (mentioned in Chapter 3) and look for the Main method by using 

commands:

.loadby sos coreclr

!name2ee *!CoreCLR.HelloWorld.Program.Main

The second one should produce the following output - saying that JITted code for the 

Main method is located under address 00007ffbca3e06b0:

Module:      00007ffbca284d78

Assembly:    CoreCLR.HelloWorld.dll

Token:       0000000006000001

MethodDesc:  00007ffbca285d30

Name:        CoreCLR.HelloWorld.Program.Main(System.String[])

JITTED Code Address: 00007ffbca3e06b0
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We can use the !U 00007ffbca3b0480 command to see emitted assembly code and 

the results are presented at Listing 4-3. We see there the following steps of execution:

• sub rsp,28h - move stack pointer by 40 bytes;

• mov rcx,24D6CCA3068h - store address 24D6CCA3068h into rcx 

register (this is a handle to our "Hello World!" string literal, which is 

used here because of a string-interning mechanism explained later);

• mov rcx,qword ptr [rcx] - dereference the address stored in rcx 

register which points to a string with our string literal value;

• call 00007ffb`ca3b0330 - call static Console.WriteLine method 

passing text to be displayed in rcx register;

• nop, add rsp,28h and ret - end function call.

Listing 4-3. Machine code produced by JITting code from Listing 4-2

Normal JIT generated code

CoreCLR.HelloWorld.Program.Main(System.String[])

Begin 00007ffbca3b0480, size 1c

00007ffb`ca3b0480 4883ec28        sub     rsp,28h

00007ffb`ca3b0484 48b96830ca6c4d020000 mov rcx,24D6CCA3068h

00007ffb`ca3b048e 488b09          mov     rcx,qword ptr [rcx]

00007ffb`ca3b0491 e89afeffff      call    00007ffb`ca3b0330 (System.

Console.WriteLine(System.String), mdToken: 0000000006000083)

00007ffb`ca3b0496 90              nop

00007ffb`ca3b0497 4883c428        add     rsp,28h

00007ffb`ca3b049b c3              ret

This is how our simple C# program has been translated through CIL into executable 

code. The evaluation stack location used by ldstr and call CIL instructions has been 

consumed by the JIT compiler as a CPU register rcx. There is no the stack or the heap 

allocation from inside the Main method - but please keep in mind that there are already 

some allocations made from the runtime itself and the framework assemblies.
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as there are many possible ways of utilizing registers and memory during functions 
calls, standardized ways of doing it exists called a calling convention. They define 
how to pass arguments and manage the stack during a method call and how they 
return a value. When illustrating assembly code in this book, I assume a Microsoft 
x64 calling convention. simplified for our purposes, the set of rules states that:

-  first four integer and pointer arguments are passed into registers rCX, 
rdX, r8 and r9;

-  first four floating-point arguments are passed in Xmm0 through Xmm3 
registers;

- additional arguments are pushed onto the stack;

- integer return values are returned in raX if 64 bits or less.

please note the linux x64 calling conventions are different so please feel free to 
read about this if you need to.

I hope that this very short, yet possible, and slightly overwhelming journey shows 

you what .NET runtime is. In the end, all methods are JIT compiled into regular assembly 

code, utilizing optionally some “managed” parts of the runtime.

 Assemblies and Application Domains
A basic unit of functionality in the .NET environment is called assembly.1 It can be seen 

as a bunch of stored CIL code that may be executed by the .NET runtime. A program 

consists of at least one or more assemblies. For example, when we compiled code from 

Listing 4-1, we have produced a single assembly represented by CoreCLR.HelloWorld.dll 

file. Such program also uses various other assemblies, starting from a Basic Class Library 

(called mscorlib, including so important namespaces like System.IO, System.Collections.

Generic) and so on and so forth. A complex .NET application may consist of many 

1 Please do not confuse it with assembly (machine) code. Those are two completely separate 
concepts just having the same name.
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different assemblies containing our code. In terms of source project management, there 

is simple correspondence - one project in our solution is built into a single assembly. 

There is also a possibility to create dynamic assembly during program execution 

(often used to emit dynamically created code into such dynamic assembly), which is a 

functionality often used by various serializers.

In other words, an assembly may be seen as the unit of deployment for managed 

code, which typically corresponds one to one with some DLL or EXE file (such file is 

referred to as a module).

The .NET Framework provides a possibility to isolate different parts of the managed 

application code (assemblies) separating them into so-called application domains 

(commonly abbreviates as AppDomains from its BCL type name). Such separation may 

be desired because of security, reliability, or versioning needs. To execute code from 

assembly, we must load it to some application domain (the same applies to dynamically 

created assemblies).

There is a quite complicated yet well-documented relation between assemblies 
and appdomains. please refer to this great .NET Framework documentation: 
https://docs.microsoft.com/en-us/dotnet/framework/app-
domains/application-domains for the details.

Keeping .NET Core small required cutting out some features and AppDomains were 

one of them. They were just too heavy for the functionality they provided and for the 

functionality they needed. Hence no AppDomain API has been exposed in .NET Core 

related to the application domain handling. However, the piece of code responsible 

for them is still available in CoreCLR as the runtime itself is using them internally. For 

developers, Microsoft suggests using plain old processes or shiny new containers for 

isolation of .NET Core applications. As for dynamic loading of assemblies, there is a new 

AssemblyLoadContext class you can look at.
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AppDomains are in our interest because they affect the memory structure of the 

.NET process. In general, runtime can create a few different application domains:

• Shared Domain - all code shared between domains is loaded 

here. It includes Basic Class Library assemblies, types from System 

namespace, and so forth.

• System Domain - it used to be responsible for creating and 

initializing other domains as core runtime components are loaded 

here. It also keeps process-wide interned string literals (we will talk 

about interning later in this chapter).

• Default Domain (for example, called Domain 1) - user code is loaded 

to such a default domain.

• Dynamic domains - with the help of the runtime, .NET Framework 

application can create (and delete afterwards) as many additional 

AppDomains as it wishes. For example, via AppDomain.CreateDomain 

method (but as mentioned, .NET core is missing that functionality by 

design and it is unlikely it will be ever provided).

In case of a .NET Core there are no dynamically created domains obviously. There 

is Shared Domain responsibility for all shared code. And there is a single default 

AppDomain for all user code. System Domain is not physically visible in the process 

memory but its structures and logic are also included.

 Collectible Assemblies
Assemblies we load contain a manifest describing what other assemblies they require. 

Standard CLR behavior consists of loading all required assemblies into the main 

application domain - the one that will live for the entire program execution. This is fine 

for most cases, but there are some in which we would like to have some more control 

about an assembly’s lifetime:

• Scripting - if we allow it to execute user-defined scripts in our 

application (for example, compiled with the help of Roslyn API), it 

would be ideal to compile such script into some temporary assembly 

and delete it as soon as the script is no longer needed.
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• Object-relational mapping (ORM) - we may wish to map some 

database data to .NET objects but do not necessarily need this for the 

entire application lifetime - especially if our application is specific 

enough to temporarily connect to a lot of different sources. Cleaning 

up created ORM data (separated into assemblies) would be a nice 

feature.

• Serializers - like above, we may need to serialize/deserialize many 

various entities (be it files or HTTP requests), so if we have done it a 

lot of times, it would be nice to clean created temporary assemblies 

no longer needed. Such assemblies are created by serializers for 

performance reasons - types dedicated for serialization of concrete 

data are created to omit any unnecessary “generic” way of handling it.

• Plugins - our application may provide extensibility capabilities by 

loading user-provided plugins. It would be obviously great to load 

them and unload as necessary.

In case of the .NET Framework, the unloading assembly is possible indirectly 

by unloading an entire application domain where it is loaded to. So, for example, a 

typical scenario of handling user-defined scripts would consist of creating a dynamic 

application domain, emitting an assembly with the compiled script, loading it into 

our temporary application domain, executing code, and eventually - unloading such 

application domain. In case of .NET Core, due to AppDomain’s API unavailability, such 

scenarios are currently not available (at the time of this writing, with .NET Core 2.1).

While in the .NET Framework case, it is a perfectly working solution, it has its own 

caveats - especially the cost of the remoting communication between application 

domains.

Exactly because of mentioned overhead, most often, even in the need of creating 
dynamic assembly, they are simply loaded into the main application domain - even 
if it means they cannot be unloaded afterward (as it would require unloading the 
application itself). This is the case of popular XmlSerializer we can meet in .NET, 
which may lead to a memory leak described later in this chapter in scenario 4-4.
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Thus, an idea of more lightweight, collectible assemblies is present. A Collectible 

assembly is a dynamic assembly that can be unloaded, without unloading the application 

domain in which it lives. It makes perfect sense in all the above-mentioned scenarios. 

However, they are currently not available in both Microsoft .NET runtimes. Stay tuned to 

.NET Core announcements because a work about unloadable AssemblyLoadContext is 

ongoing.

In .NET Framework, collectible assemblies are implemented but only partially, in 
case of emitting code manually with the help of Reflection.Emit. as msdN 
documentation says: “reflection emit is the only mechanism that is supported for 
loading collectible assemblies. assemblies that are loaded by any other form of 
assembly loading cannot be unloaded.”

 Process Memory Regions
As mentioned in Chapter 2 and shown in Figure 2-20, .NET runtime inside a process 

manages multiple memory regions. When we consider memory usage of the .NET 

process, we should take into consideration each of them. Let’s look at these areas one 

by one to understand the anatomy of the .NET process. We will be using the excellent 

VMMap tool that shows us memory regions used in a process we are attached to. 

Memory regions shown hereinafter are from the moment just before exiting the 

application from Listing 4-1.

When we look inside the Hello World application, we will see memory regions 

as listed in Figure 4-4. To interpret such VMMap output, it is worth it to recall the 

description of virtual memory regions presented in Chapter 2. As we can see, the process 

has nearly 128 TB of free memory (which corresponds to 128 TB of virtual address space 

on 64-bit platform).
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Let’s look at all of these items along with a brief description and meaning from the 

.NET perspective:

• Shareable (around 2 GiB) - shareable memory that we are not 

particularly interested in - only 32 MiB has been committed and only 

20 KiB resides in the physical memory. Those regions are dedicated 

for system management purposes not related to .NET at all.

• Mapped files (around 4 MiB) - as mentioned in Chapter 2, those 

regions contain mapped files for things like fonts and localization 

files. Although they are consumed by the .NET runtime, consuming 

various localization APIs, those regions should not cause any 

problems in our applications.

 

• Images (around 37 MiB) - binary images containing images of various 

binary files including .NET runtime itself and a library with our .NET 

assembly. Please note most of this space is shared and only 772 KiB 

are a private working set. Those are files read from the disk during 

application startup.

Figure 4-4. Memory regions shown in VMMap tool for the running application 
from Listing  1.64-bit .NET Core 2.0 runtime
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• Stacks (around 4.5 MiB) - there are three threads in our Hello World 

application so there are three stack regions dedicated for them.

 

• Heap and Private Data (around 9 MiB) - those are various native 

memory regions managed by the .NET runtime for its internal 

purposes. They mostly store things not relevant to us (and even not 

known without deep CoreCLR sources analysis). However, we may 

note that there are some fundamental data structures stored here 

used by Execution Engine and Garbage Collector like:

• Mark list and card tables, which we will get familiar with in 

Chapters 5, 8, and 11.

• String interning enrollment lives in those regions.

• Please note also the two last memory regions are marked with 

Execute/Read/Write protection flags. Those are regions where 

the JIT compiler emits machine code when compiling CIL code. 

That’s why they are marked with Execute flag as they have to 

be normally callable as any other program code. Those regions 

constitute in fact the core of our application executing code 

we wrote in C# or other .NET-compatible language. If by some 

reason our application is JITting a lot, we may observe constant 

growth of such Execute/Read/Write private memory regions.
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• Various temporary memory regions needed during JIT 

compilation also will be visible here.

 

• Managed Heaps (around 384 MiB) - the core part of the .NET 

memory management is the Managed Heap maintained by the 

Garbage Collector and other heaps used by the runtime. Since this 

is definitely the most important memory area for us, we look at it 

separately in a moment.

 

• Page Tables (small 36 KiB region) - page table directory structures 

described in Chapter 2 lives there.

• Unusable (almost 2 MiB) - due to page allocation granularity 

also described in Chapter 2, some parts of memory have become 

unusable.
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We can split a group denoted above as Managed Heaps further into the following 

categories:

• GC Heap - by far the most important heap for us, managed by the 

Garbage Collector. Most of the types our application creates go there 

and hence it is the most important place we should understand 

and the most probable source of any problems. All chapters from 

Chapter 5 to the end of the book will be describing how GC manages 

this heap. In terms of what we have learned so far, this is a Free Store 

managed by the Garbage Collector mechanism and its Allocator. 

Please note, however, how many interesting facts we have seen so far 

until we even reached this memory region! And many chapters will 

be dedicated to describing it in detail.

• Other domains heaps - each AppDomain has its own set of heaps 

so there can be heaps for Shared Domain, System Domain, Default 

Domain, and any other dynamically loaded domains. Each may have 

multiple subregions:

• High Frequency Heap - used to store any data frequently accessed 

by the AppDomain for its internal purposes. As comments 

from CoreCLR states, those are “Heaps for allocating data 

that persists for the life of the AppDomain. Objects that are 

allocated frequently should be allocated into the HighFreq heap 

for better page management.” Because of that, for example, a 

High Frequency Heap of Shared Domain contains the most 

frequently used type-related data like detailed methods and fields 

descriptions. Here is also where primitive static data lives.

• Low Frequency Heap - contains less frequently used type-related 

data. In case of a type system they are, among others, EEClass 

and other data required for JITting, Reflection, and type-loading 

mechanism.

• Stub Heap - As the documentations says, it “hosts stubs that 

facilitate code access security (CAS), COM wrapper calls,  

and P/Invoke.”
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• Virtual Call Stub - contains data structures and code used by a 

virtual stub dispatching (VSD) technique (using stubs for virtual 

method invocations instead of the traditional virtual method 

table) used for interface dispatch. They are subsequently divided 

into heaps of types Cache Entry Heap, Dispatch Heap, Indcell 

Heap, Lookup Heap, and Resolve Heap. All those include just 

various types of data required for VSD. Those heaps are pretty 

small (hundreds of kibibytes) even for thousands of interfaces in 

our applications.

• High Frequency Heap, Low Frequency Heap, Stub Hub, and 

various Virtual Call Stub Heaps are altogether called Loader 

Heap type because they are responsible for storing data required 

by a type system (and hence loading types). In contrary to what 

we may hear sometimes, there is no such thing as Loader Heap 

created as a memory region. It is just a concept of grouping 

mentioned regions altogether.

Note Those heaps are by default really small, in the order of magnitude of a 
single page - typically about 64 KiB. We can see this in the CoreClr default sizes 
definitions:

#define LOW_FREQUENCY_HEAP_RESERVE_SIZE        (3 * GetOsPageSize())

#define LOW_FREQUENCY_HEAP_COMMIT_SIZE         (1 * GetOsPageSize())

#define HIGH_FREQUENCY_HEAP_RESERVE_SIZE       (10 * GetOsPageSize())

#define HIGH_FREQUENCY_HEAP_COMMIT_SIZE        (1 * GetOsPageSize())

#define STUB_HEAP_RESERVE_SIZE                 (3 * GetOsPageSize())

#define STUB_HEAP_COMMIT_SIZE                  (1 * GetOsPageSize())

remember that any type once loaded to a loader heap region will not be unloaded 
until the whole corresponding appdomain is unloaded. If we constantly load a lot 
of types (for example, dynamically loading or generating assemblies), we can end 
up with big memory usage. moreover, the default appdomain will not be unloaded 
ever until the program stops.
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As mentioned in Chapter 2, there is a possibility to change the default stack size of 

the program’s threads. It is possible with the help of a dumpbin command-line program 

distributed with the Visual Studio. By issuing the following command, it appropriately 

edits the binary header of the provided executable file:

editbin DotNet.HelloWorld.exe /stack:8000000

In case of a .NET Framework-based executable (as above), it currently works but 

should be treated as an unsupported approach - there is no guarantee that in the future, 

.NET Framework will not ignore those values while creating threads. In case of .NET 

Core based builds, the executable is a runtime launcher itself, located most commonly 

at C:\Program Files\dotnet\dotnet.exe. We would need to edit this file with the help 

of editbin to change stack size of threads in .NET Core applications, which is obviously 

unacceptable in most cases. Thus, although manipulating stack size in the described way 

is possible, we should rather not rely on it at all.

Let’s now move to one of the important parts of this book- our first scenario. As it 

always will be, it consists of some situation description, altogether with the description 

of how to approach analyzing and solving it.

 Scenario 4-1. How Big Is My Program in Memory?
Problem: The customer for whom we are writing a .NET application asked us how much 

RAM it requires and what is its typical memory usage because she suspects it consumes 

too much. This caused consternation in the team because suddenly it turned out that no 

one knows the answer and even does not know how to properly measure it. Everybody 

suggests another tool and different way to interpret it. Let’s assume we are Paint.NET 

(https://www.getpaint.net/) developers!

Answer: To properly answer our customer’s question, we should understand how 

the operating system sees our process memory usage. It has been described briefly in 

Chapter 2 and you may probably notice there is no great consistency between various 

tools showing it. From the high-level point of view, we should concentrate on the 

following measurements:

• private working set - the most important measurement that indicates 

the amount of physical RAM memory occupied by the process. This 

obviously may be the main bottleneck so we should look here at first.
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Figure 4-5. Window's Task Manager showing basic memory usage data

• private bytes (aka commit size) - indicates the amount of memory 

both in the physical RAM and paged to disk. We do not want 

excessive paging so if this size is much bigger than the private 

working set, we should start to be suspicious. Indefinite growth of the 

paging file is also dangerous as our hard drives do not have infinite 

storage obviously.

• virtual bytes - indicates all virtual bytes, both committed (private) 

and only reserved, regardless of its location. This measurement is 

the most abstract one because it does not incur a big consumption 

of physical resources except page tables directories (see Chapter 2). 

However, the size of the hundreds of gigabytes or simply constantly 

growing can arouse our anxiety.

On Windows, to measure those sizes we can simply use the Task Manager’s Details 

tab, which shows them as Memory (private working set) and Commit size columns 

respectively (virtual bytes are not shown there) - see Figure 4-5.

We may also use Performance Monitor tool (see Figure 4-6) to record them in time 

by adding \Process(processname)\Working Set - Private, \Process(processname)\

Private Bytes and \Process(processname)\Virtual Bytes counters respectively. 

Apart from absolute sizes, trends are of course equally important. On Linux you can use 

the top tool and corresponding columns described in Chapter 2.
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You may also consider analyzing what is included in the measured process size by 

using VMMap tool on Windows (see Figure 4-4 where it was already presented). You will 

notice there what counts in into corresponding to the above measurement columns: 

Private WS, Private, and Size. Regarding memory types, of course, it is important to look 

at Managed Heap first. However, knowing what are parts of the .NET process, it is also 

worth looking at the other memory types. If you suspect a memory leak - observe all 

memory types’ sizes in time and try to discover what is constantly growing. There may be 

memory leak both in your managed code or some unmanaged component used by you 

(even implicitly while you are not aware of it).

Figure 4-6. Performance counters showing basic memory usage data
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Figure 4-7. Performance counters for Scenario 4-2 show stable managed heap 
size, but the private working set is constantly growing

 Scenario 4-2. My Program’s Memory Usage Keeps Growing
Description: Our customer reports an OutOfMemory exception after a few days of 

continuous work with our Windows Service written in .NET. We have to investigate the 

reason and, of course, we have to do it quickly.

Answer: Given that we are not provided with the full memory dump of a process, we may 

start our investigation from observing a program’s memory usage in time. We may start 

from using the Performance Monitor tool to watch a few most important counters (see 

Figure 4-7):

• \Process(processname)\Working Set - Private

• \Process(processname)\Private Bytes

• \Process(processname)\Virtual Bytes

• \.NET CLR Memory(processname)\# Total committed Bytes - 

counter to observe Managed Heap usage
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From what we see it is clear there is a memory leak - the process memory usage 

constantly grows. However, the Managed Heap size is very stable so this is probably an 

unmanaged memory leak not related to our .NET code (however, still it might be as we 

will see in scenario 4-3!). Knowing that, it is worth it to look inside a process with the 

help of a VMMap tool. As we may notice during short observation, the Heap memory 

type Private size is constantly growing. Our program slowly produces more and more 

around 16 MiB Heap memory regions (see Figure 4-8).

Figure 4-8. VMMap view of Heap memory regions for Scenario 4-2. There are 
constantly growing and occasionally created Heap (Private Data) memory regions.

This is a first clue in our investigation - Heap regions are most probably growing 

because of extensive usage of Heap API (like calling malloc in C or new operator in 

C++). Now we should find out what code is calling it. Doing that with the help of a 

memory dump of the process may be tedious because unmanaged memory analysis is 

very difficult (especially for .NET-based people not used to unmanaged world at all). 

Fortunately, there is a much simpler way to investigate it using the PerfView tool. Within 

its Collect dialog box, type the executable name into the OS Heap Exe field or process 

ID into the OS Heap Process field (keep in mind that only in the second case you may 

attach to already running process). Providing one of the OS Heap options enables ETW 

tracking of the Heap API usage. Start collection and wait the appropriate amount of time 

depending how fast your process is growing.

After stopping collection and all processing is ended, you should open Net OS Heap 

Alloc Stacks from the Memory Group folder. Gradually expand the individual elements 

of the tree, descending more and more into the most allocating part of the code (with the 

highest value in Inc % column). You may need for some nodes to load symbols with the 

help of Lookup Symbols from the context menu. It is also worth it to disable grouping of 

our modules by using the Ungroup Module option from the same context menu. Soon 

you should be able to clearly see the reason of over 90% of allocations (see Figure 4-9). 

This is the power of ETW in our hand!
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We see that the reason behind most of allocations is the new operator used inside  

CUnmanagedLibrary::CalculateSomething method, which is called by other components 

of our .NET application. This is indeed the root cause of the problem, as the mentioned 

method has a specially prepared, indeed silly implementation (see Listing 4-4).

Listing 4-4. The reason behind memory leak in Scenario 1-2

int CUnmanagedLibrary::CalculateSomething(int size)

{

    int* buffer = new int[size];

    return 2 * size;

}

In real-world scenarios, there may be many other allocations sources so you will 

have to investigate them a little and make an educated guess, which may be the real 

trouble. Please note also that if we do not have symbol files for the unmanaged libraries 

consumed by our application, we will not see specific method and function names in 

Net Virtual Alloc Stacks view. It will however still point us to what component is making 

trouble so we may contact its producer or search for the solution online. It is also worth 

it to remember that ETW tracing for Heap API may introduce quite big overhead, so be 

cautious when enabling it, especially in production environments.

Figure 4-9. PerfView analysis for Scenario 4-2. We see the aggregated call stack for 
operator new.
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 Scenario 4-3. My Program’s Memory Usage Keeps 
Growing
Description: Something strange is going on with our application on a client’s machines. 

Its memory usage seems to grow infinitely although it seems to not have any negative 

impact and the program executes properly. The client reports “gigabytes of memory” is 

being consumed while we have never observed such behavior in our environments. No 

one knows whether we should be afraid or not.

Analysis: We should again start our investigation from observing the program’s memory 

usage in time. We may start from using the Performance Monitor tool to watch:

• \Process(processname)\Working Set - Private

• \Process(processname)\Private Bytes

• \Process(processname)\Virtual Bytes

• \.NET CLR Memory(processname)\# Total committed Bytes

We may soon notice that both managed heap usage and private working set sizes 

are stable. However, there is constant growth of private bytes - probably most of the 

allocated memory does not reside in physical RAM. Virtual bytes are also constantly 

growing indicating gigabytes of virtual memory “consumed”! When looking into the 

process with the help of a VMMap, we will see the reason behind it (see Figure 4-10). 

There is over 40 GB of virtual memory indeed. However, around 37 GB of it is marked as 

unusable! This indicates someone is allocating pages very inefficiently (recall  

Chapter 2). We can see it by looking at the memory regions list (see Figure 4-11) where 

there are many, many pages with unusable data.

Figure 4-10. VMMap view of a process for Scenario 4-3. There is a huge amout of 
virtual memory (Size) but most of it is Unusable.
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Now we need to understand what part of our program is using pages in such an 

improper way. Again, we may use the PerfView tool. This time we are interested in 

the Virtual API (like calling VirtualAlloc) because Private Data memory type is used 

(not Heap type). Again, we may use the PerfView tool to investigate related ETW data. 

This time we should check the VirtAlloc option within the Collect dialog box and start 

collection while our problematic applications are running. Enabling this provider 

introduces smaller overhead than the Heap API used in Scenario 4-2.

After stopping collection and all processing ended, you should open the Net Virtual 

Alloc Stacks from the Memory Group folder. If the memory leak is significant you will 

probably find the root cause on the top of the presented list - in our case 94.1% of all 

allocations were done through VirtualAlloc call (see Figure 4-12)!

Figure 4-11. VMMap view of a Unusable regions for Scenario 4-3. There are 
many, many such regions interleaved with single page-sized Private Data.

Figure 4-12. PerfView analysis for Scenario 4-3 show there is a lot of  
VirtualAlloc calls
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If we double-click on it, a call tree will be presented. Expand nodes with the biggest 

allocation contribution. Optionally use symbol loading and grouping disabling through 

Lookup Symbols and Ungroup Module options from the context menu. In that way we 

should be able to find the most allocating source of the program. It is a  MemoryLeaks.

Leaks.UnusableLeak.Run() method from MemoryLeaks module in our case (see 

Figure 4-13).

Figure 4-13. PerfView analysis for Scenario 4-3 shows the aggregated call stack for 
VirtualAlloc

And indeed, this method contains the VirtualAlloc interop call, which allocates 

only a single page (typically 4 KiB) while as we know, allocation granularity on Windows 

is 64 KiB (see Listing 4-5). Hence unusable 60 KiB of memory is wasted per each 

VirtualAlloc call.

Listing 4-5. Fragment of problematic code for Scenario 4-3

ulong block = (ulong)DllImports.VirtualAlloc(IntPtr.Zero, new 

IntPtr(pageSize),

      DllImports.AllocationType.Commit,

      DllImports.MemoryProtection.ReadWrite);

In a real-world scenario some unmanaged library used by us my use VirtualAlloc 

in such inefficient way. By using ETW data for Virtual API we’ve managed to track down 

the source of it to the single method call.
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 Scenario 4-4. My Program’s Memory Usage Keeps 
Growing
Description: Our customer is complaining about big memory usage of our application. 

It is constantly growing up to gigabytes and then crashes due to an OutOfMemory 

exception. We are sure we do not use any unmanaged components so we are convinced 

that the memory leak happens in C# code (although always keep in mind that libraries 

we use may internally use some unmanaged code so… always be cautious and 

remember about previously presented scenarios). The customer has sent us a couple 

of Task Manager screenshots showing that, indeed, all memory sizes are constantly 

growing.

Analysis: We start our analysis by typical Performance Counter monitoring of the 

process. We monitor for few hours the following counters:

• \Process(processname)\Working Set - Private

• \Process(processname)\Private Bytes

• \Process(processname)\Virtual Bytes

• \.NET CLR Memory(processname)\# Total committed Bytes

We are very surprised because it turns out that the managed heap size is stable. But 

indeed, all other observed sizes are actually growing, including the most problematic 

private working set. Instinctively we look inside the interior of the process using VMMap. 

We see after a few minutes of observation that Managed Heap’s private working set is 

constantly growing so apparently our memory leak is related to .NET somehow. But why 

is it not reflected by used performance counters? Looking at the Managed Heap type list 

in VMMap, we notice something unusual (see Figure 4-14). The Managed Heap region 

marked as GC (the part which stores objects allocated by our application) grows very 

slowly. On the other hand, there are dozens of Domain 1, Domain 1 Low Frequency 

Heap, and Domain 1 High Frequency Heap memory regions! This means a lot of 

additional assemblies are being created, most probably because of dynamic assembly 

loading.
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We confirm that by coming back to the Performance Monitor and adding the 

following additional counters:

• \.NET CLR Loading(processname)\Bytes in Loader Heap

• \.NET CLR Loading(processname)\Current Classes Loaded

• \.NET CLR Loading(processname)\Current Assemblies

• \.NET CLR Loading(processname)\Current appdomains

The first three counters are constantly growing, so apparently we’ve just found the 

root cause of the memory leak. Some part of our code is loading dozens of dynamic 

assemblies. Unfortunately, we will not be able to deeply analyze such kind of memory 

leak with the help of commercial tools like JetBrains dotMemory or .NET Memory 

Profiler (at least at the moment of the book writing). Even though such a leak is related to 

the .NET runtime, such memory growth is often seen under those tools as “unidentified” 

memory without the possibility to dig further into details. Again, ETW and PerfView 

comes to the rescue! This time we are interested in events related to assembly loading. 

We can enable tracking them by using an Additional Providers field from within the 

Collect dialog box. Type there Microsoft- Windows- DotNETRuntime:LoaderKeyword:

Always:@StacksEnabled=true that means we are interested in loader-related events 

and we want to register stack calls during the event’s occurrence. Start the collection 

Figure 4-14. VMMap view of managed heaps for Scenario 4-4
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and wait the appropriate amount of time (for example, during which loading of few new 

assemblies will be visible under Current Assemblies performance counter).

After stopping collection and all processing ended, you should open the Events list 

and find Microsoft-Windows-DotNETRuntime/Loader/AssemblyLoad events for our 

process (see Figure 4-15) .

Select one of them and select the Open Any Stacks context menu option for 

Time MSec column (stack will not be displayed if cell in any other column has been 

right-clicked). The stack trace of the event occurrence will be displayed. By grouping 

modules of not our interest (like clr, mscoree, or mscoreei .NET runtime modules) 

and ungrouping our own modules, we will clearly identify the source of dynamic 

assembly creation (see Figure 4-16). It is a XmlSerializer constructor called in our 

XmlSerializerLeak.Run() method.

Figure 4-15. PerfView event's view for Scenario 4-4. We see lot of AssemblyLoad 
events.

Figure 4-16. PerfView stack trace view for a single AssemblyLoad events points to 
XmlSerializer constructor
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We have just found the problem! Indeed, MSDN documentation for XmlSerializer 

states that:

To increase performance, the XML serialization infrastructure dynamically 
generates assemblies to serialize and deserialize specified types. The infra-
structure finds and reuses those assemblies. This behavior occurs only when 
using the following constructors:

* XmlSerializer.XmlSerializer(Type)

* XmlSerializer.XmlSerializer(Type, String)

If you use any of the other constructors, multiple versions of the same assem-
bly are generated and never unloaded, which results in a memory leak and 
poor performance. The easiest solution is to use one of the previously men-
tioned two constructors. Otherwise, you must cache the assemblies in a 
Hashtable, as shown in the following example.

In our case, as it may be visible in Figure 4-16, one of the other, unfortunate 

constructors is being used that does not reuse generated assembly, hence the observed 

memory leak.

Note The cause of the problem may be similarly addressed in other situations 
related to dynamic assembly creation like calling AppDomain.CreateDomain 
without unloading it or by various script engines creating assemblies for compiled 
scripts.

 Type System
A type is a fundamental concept in CLI, defined in ECMA 335 to “describe values and 

specify a contract that all values of that type shall support.” A lot of words could be 

spoken about Common Type System itself. For our memory-management purposes it 

will be enough, however, to stay with the intuitive type definition we all have from the 

everyday work with C# or other language code. We will however later learn in depth 

about various type categories existing in .NET.
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Each type in .NET is described by a data structure called a MethodTable. It contains a 

lot of information about the type, among which the most important in our perspective are:

• GCInfo - data structure for Garbage Collector purposes (and we will 

investigate it in next chapters obviously);

• flags - describing various type properties;

• basic instance size - indicates the size of the object;

• EEClass reference - stores “cold” data that are typically only needed 

by type loading, JITing or Reflection, including description of all 

methods, fields, and interfaces;

• description of all methods (including inherited ones) required to call 

them;

• static fields-related data - they include data related to primitive static 

fields (we will delve into static fields details later in this chapter).

Runtime uses address to the MethodTable (denoted as TypeHandle) whenever it has 

to gain information about the loaded type through it. We will see them a lot in the rest 

of the book as MethodTable is one of the fundamental building blocks of cooperation 

between the Execution Engine and the Garbage Collector.

 Type Categories
Almost every article about .NET memory tells the same story - “there are value types 

allocated on the stack and reference types allocated on the heap.” And “classes are 

reference types while structs are value types.” They are so many popular job interview 

questions for .NET developers touching this topic. But this is by far not the most 

appropriate way of seeing a difference between value types and reference types. Why it 

is not quite correct? Because it describes the concept from the implementation point of 

view, not from the point that explains the true difference behind those two categories of 

types.

We will delve into implementation details later, but it is worth it to note that they 

are still only implementation details. And as all implementations behind some kind 

of abstractions, they are subject to change. What really matters is the abstraction 

they provide to the developer. So instead of taking the same implementation-driven 

approach, I would like you to present a rationale behind it. And only then we can reach 
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the point when understanding the current implementation will be possible (and will be 

sensible also).

Let’s start from the beginning, which is an ECMA 335 standard. Unfortunately, 

the definitions we need are a little blurry, and you can get lost in different meanings 

of words like type, value, value type, value of type, and so on, so forth. In general, 

it is worth remembering that this standard defines that “any value described by a 

type is called an instance of that type.” In other words, we can say about value (or 

instance, interchangeably) of value type or reference type. Going further, those are 

defined as:

type, value: A type such that an instance of it directly contains all its data. 
(...) The values described by a value type are self-contained.

type, reference: A type such that an instance of it contains a reference to its 
data. (...) A value described by a reference type denotes the location of 
another value.

We can spot here the true difference in abstraction that those two kinds of types 

provide: instances (values) of value types contain all its data in place (they are, in fact, 

values itself), while reference types values only point to data located “somewhere” 

(they reference something). But this data-location abstraction implies a very significant 

consequence that relates to some fundamental topics:

Lifetime:

• Values of value types contain all its data - we can see it as a single, 

self-contained being. The data lives as long as the instance of the 

value type itself.

• Values of reference types denote the location of another value whose 

lifetime is not defined by the definition itself.

Sharing:

• Value type’s value cannot be shared - if we would like to use it 

in other place (for example, although we are passing a bit of 

implementation details here, method argument, or another local 

variable), it will be copied byte by byte by default. We say then about 

passing-by-value semantics. And as a copy of the value is passed to 

another place, the lifetime of the original value does not change.
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• Reference type’s value can be shared - if we would like to use it in 

other place, passing-by-reference semantics will be used by default. 

Hence, after that, one more reference type instance denotes the  

same value location. We have to track somehow all references to 

know the value lifetime as discussed in Chapter 1.

Identity:

• Value types does not have an identity. Value types are identical if and 

only if the bit sequences of their data are the same.

• Reference types are identical if and only if their locations are the 

same.

Again, there is no single mention about heap or stack in this context at all. Keeping 

in mind those differences and definitions should clarify things a little, although you may 

need a while to get used to them. Next time when asked during job interview about where 

value types are stored, you may start from such an alternative, extended elaboration.

There is yet another type category we should know - immutable types. Immutable 

type is a type whose value cannot be changed after creation. No more and no less. They 

do say nothing about their value or reference semantics. In other words, both value type 

and reference type can be immutable. We can enforce immutability in object-oriented 

programming by simply not exposing any methods and properties that would lead to 

changing an object’s value.

 Type Storage
But one could insist on asking where is the place here that implies using stack or heap for 

those two, basic kinds of types? The answer is - there is none! This is an implementation 

detail taken during design of Microsoft .NET Framework CLI standard. Because it was 

for years overwhelmingly the most popular one, the “value types allocated on the stack 

and reference types allocated on the heap” story have been repeated again and again 

like a mantra without deep reflection. And since it is a very good design decision, it was 

repeated in different CLI implementations we have discussed earlier. Keep in mind, this 

sentence is not entirely true in the first place. As we will see in the following sections, 

there are exceptions to that rule. Different locations can be treated differently as to how 

to store the value. And this is exactly the case with CLI as we will soon see.
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Nevertheless, we only can think about the storage of the value types and reference 

types when designing CLI implementation for a specific platform. We simply just need 

to know whether we have stack or heap available at all on that particular platform. As the 

vast majority of today’s computers have both, the decision is simple. But then probably 

we have also CPU registers and no one is mentioning them in the “value types allocated 

on the...” mantra although it is the same level of implementation detail like using  

stack or heap.

The truth is that the storage implementation of one or another type may be located 

mostly in the JIT compiler design. This is a component that is designed for a specific 

platform on which it is running so we know what resources will be available there. x86/

x64-based JIT has obviously both stack, heap, and registers at its disposal. However, such 

a decision on where to save a given type value can be left not only at the JIT compiler 

level. We can allow the compiler to influence this decision based on the analysis that 

it performs. And we can even expose somehow such a decision to the developer at the 

language level (exactly like in C++ where you can allocate objects both on the stack or  

on the heap).

There is an even simpler approach taken by Java, where there are no user-defined 

value types at all, hence no problem exists where to store them! A few built-in primitives 

(integers and so forth) are said to be value types there, but everything else is being 

allocated on the heap (not taking into consideration escape analysis described later). In 

case of .NET design, we could also decide to allocate all types instances on the heap, and 

it would be perfectly fine as long as the value type and reference type semantic would 

not be violated. When talking about memory location, the ECMA-335 standard gives 

complete freedom:

The four areas of the method state - incoming arguments array, local vari-
ables array, local memory pool and evaluation stack - are specified as if 
logically distinct areas. A conforming implementation of the CLI can map 
these areas into one contiguous array of memory, held as a conventional 
stack frame on the underlying target architecture, or use any other equiva-
lent representation technique.

Why these and no other implementation decisions were taken will be more  

practical to explain in the following sections, discussing separately the value and the 

reference types.
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There is only single important remark left. When we know now that talking about 

stack and heap is an implementation detail, it can still be reasonable to do that. 

Unfortunately, there is a place where “as it should be” odds with the “as is practical.” And 

this place is a performance and memory usage optimization. If we are writing our code in 

C# targeting x86/x64 or ARM computers, we know perfectly that heap, stack, and registers 

will be used by those types in certain scenarios. So as The Law of Leaky Abstractions 

mentioned in Chapter 2 says, value or reference type abstraction can leak here. And if we 

want, we can take advantage of it for performance reasons (what will be especially visible 

in Chapter 14, describing various more advanced optimization techniques).

 Value Types
As previously said, value type “directly contains all its data”. ECMA 335 defines value as:

A simple bit pattern for something like an integer or a float. Each value has 
a type that describes both the storage that it occupies and the meanings of 
the bits in its representation, and also the operations that can be performed 
on that representation. Values are intended for representing the simple 
types and non-objects in programming languages.

We have two categories of value types in the Common Language Specification:

• structs - there are many built-in integral types (char, byte, integer, and 

so forth), floating-point types, and bool. And, of course, the user can 

define its own structs.

• enumerations - they are basically an extension of integral types, 

becoming a type that consists of a set of named constants. From the 

memory-management point of view, they are just integral types so we 

won’t deal with them in this book at all as they are in fact structs also 

internally.

 Value Types Storage

So what about “value types are stored on stack” part of the story? Regarding 

implementation, there is nothing stopping from storing all value types on the heap, 

irrespective of the location used. Except the fact that there is a better solution - using 

the stack or CPU register. As described in Chapter 1, the stack is quite a lightweight 

mechanism. We can “allocate” and “deallocate” objects there by simply creating a 
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properly sized activation frame and dismissing it when no longer needed. As the stack 

seems to be so fast, we should use it all the time, right? The problem is it is not always 

possible, mainly because of the lifetime of the stack data versus desired lifetime of the 

value itself. It is the life span and value sharing that determines which mechanism we 

can use to store value type data.

Let’s now consider each possible location of value type and what storage we can use 

there:

• local variables in a method - they have a very strict and well-defined 

lifetime, which is a lifetime of a method call (and all its subcalls). We 

could allocate all value-type local variables on the heap and then just 

deallocate them when the method ends. But we could also use stack 

here because we know there is only a single instance of the value 

(there is no sharing of it). So there is no risk that someone will try to 

use this value after the method ends or concurrently from another 

thread. It is then just perfectly fine to use a stack inside an activation 

frame as a storage for local value types. Additionally, CLI clearly 

says that “a managed pointer which references a local or parameter 

variable may cause the reference to outlive the variable, hence it is 

not verifiable.” (we will return to managed pointers in Chapter 14).

• arguments of a method - they can be treated exactly as local variables 

here so again, we can use stack instead of a heap.

• instance field of reference type - their lifetime depends on the 

lifetime of the containing value. For sure it may live longer than 

the current or any other activation frame so a stack is not the right 

place for it. Hence, value types that are fields of reference types (like 

classes) will be allocated on the heap along with them.

• instance field of another value-type - here the situation is slightly 

complicated. If the containing value is on the stack, we would also 

use it. If it is on the heap already, we will use the heap for the field’s 

value also.
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• static field (inside class, interface or module) - here the situation is 

similar to using an instance field of reference type. The static field has 

a lifetime of the type in which it is defined. This means we could not 

use stack as a storage, as an activation frame may live much shorter.

• local memory pool - its lifetime is strictly related to the method’s 

lifetime (ECMA says “the local memory pool is reclaimed on method 

exit”). This means we can without a problem use stack and that’s why 

local memory pool is implemented as growth of the activation frame.

• temporarily on the evaluation stack - value on the evaluation 

stack has a lifetime strictly controlled by JIT. It perfectly knows 

why this value is needed and when it will be consumed. Hence, it 

has complete freedom whether it would like to use heap, stack, or 

register. From performance reasons it will obviously try to use CPU 

registers and the stack.

So that is how we come to the first part - “value types are stored on stack.” As we see, 

the truer is the statement - “value types are stored on the stack when the value is a local 

variable or lives inside local memory pool. But are stored on the heap when they are 

a part of other objects on the heap, or are a static field. And they always can be stored 

inside CPU register as a part of evaluation stack processing.” Slightly more complicated, 

isn’t? And this is not still the whole truth because as we will see so-called closures capture 

local variables into a reference type context promoting it to being the heap allocated.

 Structs

Structures are probably one of the most overlooked and underestimated elements of C#, 

existing from the very beginning of .NET at the same time. This seems to be due to the 

following reasons:

• It is difficult to understand the meaning of the existence of structures 

if we reduce them to formula “value types are stored on the stack.”

• They introduce many limitations (no possibility to define a 

parameterless constructor, no inheritance is possible).

• Using only classes works very well enough and we do not feel the 

need to change anything in this regard.
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• Knowing that they are realizing the copy-by-value semantics, we 

know that passing them as parameters to methods or assigning them 

between variables results in a poor performance of data copying 

(which is in general not true, as we will soon see).

• Their behavior is not always obvious, and in the absence of visible 

need for their use, it effectively discourages their use at all.

So why may we may need structs in our code? Here are the main advantages of using 

structs:

• They may be allocated on stack instead of the heap - and yes, this 

is where an implementation detail leaks and where we can benefit 

from a performance point of view. Allocation on the stack simply 

avoids overhead of managing such a type instance by the GC, which 

is always good.

• They are smaller - as structs stores only its data and not any 

additional kind of metadata, they need less memory than classes. 

And although memory is cheap, it may be beneficial when 

considering really large data volumes.

• They provide us better data locality - as structs are smaller, we can 

pack our data more densely in collections (as will be illustrated later). 

And this, as we’ve seen in Chapter 2, is always good from a cache 

utilization point of view.

• Access to them is faster - they contain data directly so no additional 

dereferencing is needed.

• They provide pass-by-value semantic out of the box - we may wish to 

create a type that is immutable and hence struct is a good candidate. But 

we may also use pass-by-reference semantic with them (as explained 

soon), combining advantages of both value and reference- type worlds.

We will look through those advantages in detail in the rest of the book, as using 

structs is one of the most common and effective memory and performance optimizations 

available. We will pay especially big attention to them in Chapters 13 and 14, when 

describing passing by reference with the help of in, out, and ref keywords (especially  

in the context of types like Span<T>). Before that we just need to continue our short, 

general introduction.
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 Structs in General

Struct can be seen just as a type describing a layout of a memory region together with 

methods we can invoke on its instances. Struct instances contain only its data (being 

aligned with value-type definition) so when we define a sample struct from Listing 4-6, 

it will have memory representation visible at Figure 4-17 (both for 32-bit and 64-bit 

architecture). It needs a place for four integers so it will occupy 16 bytes.

For 32-bit systems, the de facto standard is called ILP32 - that is, int, long and 
pointer are all 32-bit wide long. For 64-bit systems there is a slight difference 
between Windows and linux. The primary unix standard is LP64 - long and 
pointer are 64-bit (but int is still 32-bit). The Windows 64-bit standard is LLP64 - 
specially defined “double-long” (long long) and pointer are 64-bit (but long and 
int are both 32-bit). 

Listing 4-6. Sample struct definition

public struct SomeStruct

{

  public int Value1;

  public int Value2;

  public int Value3;

  public int Value4;

}

4B 4B

Value1

4B 4B

Value2 Value3 Value4

Figure 4-17. Memory layout of struct from Listing 4-6

Depending of the location used (and particular implementation), such a memory 

region could be used on the stack or the heap (or even just CPU register, as we will see). 

Current CLR implementations however do not allow us to use such memory layout 

directly on the managed heap. Objects on the managed heap must be self-descriptive 

reference types. Hence, when there is a need to store struct on the heap, so-called boxing 
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happens. We will elaborate on boxing more in the section about it later in this chapter. 

We will also talk a little about how memory layout depends on the fields of a given type 

here and in Chapter 13 because it touches both structs and classes.

What is interesting for us now is using structs from the memory-management point 

of view. If a struct becomes boxed (its copy allocated on the heap), it is probably too 

late to take benefits from it. The real power of structs reveals when we are utilizing their 

non-boxed versions. In other words, we want to benefit from the fact that they are not 

heap allocated. As one of the core rules states, “Avoid allocation,” structs are one of the 

mechanisms that can help us to achieve this. Moreover, due to many limitations structs 

have, like no inheritance, compiler and/or JIT compiler are able to infer a lot about how 

they are used. Inheritance, on the other hand, implies virtual calls and polymorphism 

and so it is much harder to infer the final look of the data usage.2

 Structs Storage

Let’s consider a sample class from Listing 4-7, which uses a struct defined in Listing 4-6.  

We see there a method Main that has one local variable sd storing an instance of a 

struct type SomeStruct. So here is what we can say about this structure based on the 

information you heard so far:

• sd instance is passed to Helper method by value, which probably 

means copying its data. Helper operates on its own copy of the data 

so modifying it would not change the original sd value.

• sd is a local value-type variable so it will be (most probably) allocated 

on the stack, not on the heap.

Listing 4-7. Sample code with method using struct from Listing 4-6

public class ExampleClass

{

  public int Main(int data)

  {

       SomeStruct sd = new SomeStruct();

2 Although so-called devirtualization, meaning a way to discover during compilation which 
particular method will be called, is slowly being planned to be added to .NET at the time of this 
writing.
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       sd.Value1 = data;

       return Helper(sd);

  }

  private int Helper(SomeStruct arg)

  {

       return arg.Value1;

  }

}

If we look at the CIL code of the Main method, for example, by using dnSpy as 

previously (see Listing 4-8), we will see how it has been compiled into the stack machine 

operating on the evaluation stack and what steps are executed step by step:

• ldloca.s 0 - address of the first local variable (with index 0) is 

pushed onto the evaluation stack.

• initobj Samples.SomeStruct - memory region under address taken 

(and removed) from the evaluation stack is initialized as SomeStruct 

(as MSDN states, initobj “initializes each field of the value type 

at a specified address to a null reference or a 0 of the appropriate 

primitive type”).

• ldloca.s 0 - address of first local variable is pushed again onto the 

evaluation stack.

• ldarg.1 - second method’s argument is pushed onto the evaluation 

stack (which is int data, the first argument is the class instance by 

default).

• stfld int32 Samples.SomeStruct::Value1 - store the value from the 

first element on the evaluation stack into SomeStruct.Value1 field 

at address under the second element on the evaluation stack. Both 

elements are removed from the evaluation stack.

• ldarg.0 - first method’s argument (the class instance itself, known as 

this keyword in C#) is pushed onto the evaluation stack.
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• ldloc.0 - value of the first local variable is pushed onto the 

evaluation stack - here is the place where we can assume a whole 

16-bytes of SomeStruct data are being copied and then accessed 

inside Helper method.

• call instance int32 Samples.ExampleClass::Helper(valuetype 

Samples.SomeStruct) - call Helper method, push the result onto the 

evaluation stack.

• ret - return from the method to the caller.

Listing 4-8. Method Main from Listing 4-7 compiled into Common Intermediate 

Language

.method public hidebysig instance int32 Main (int32 data) cil managed

{

      // Method begins at RVA 0x2048

      // Code size 24 (0x18)

      .maxstack 2

      .locals init (

            [0] valuetype Samples.SomeStruct

      )

      IL_0000: ldloca.s 0

      IL_0002: initobj Samples.SomeStruct

      IL_0008: ldloca.s 0

      IL_000a: ldarg.1

      IL_000b: stfld int32 Samples.SomeStruct::Value1

      IL_0010: ldarg.0

      IL_0011: ldloc.0

      IL_0012:  call instance int32 Samples.ExampleClass::Helper(valuetype 

Samples.SomeStruct) 

      IL_0017: ret

} // end of method ExampleClass::Main

Three different locations are used in code from Listing 4-8 - local variable, method 

arguments, and evaluation stack itself. What we can clearly see is that there is no heap 

allocation indeed (which uses newobj instruction as we will see in the counterpart 
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example for class in Listing 4-13)! This is the optimization we desired. We can expect 

that there will be SomeStruct allocated on the stack and copied over into the Helper 

activation frame when calling it. This obviously implies that we should think deeply 

whether using struct is beneficial (but see below Note).

Copying struct data because of pass-by-value can outweigh performance 
improvement we gained by avoiding heap allocation. however, there are two 
aspects that still makes using structs seriously considerable when writing high-
performance code:

-  often small struct data may be nicely optimized by the JIT compiler to use only 
Cpu registers and no stack at all (as is illustrated in the next paragraphs).

-  popular workaround is based on passing struct data by reference, which is 
also possible (with the help of already mentioned ref, in and out keywords, 
explained in detail in this book also).

This all makes perfect sense and we could stop just here. However, it is really worth 

taking a moment to see how the code operating on such an abstract stack machine is 

transformed by the JIT compiler into the proper machine code. How are those three 

locations mapped into the heap, the stack, and CPU registers? This obviously depends 

on what JIT compiler we are talking about but let’s just stick to the most popular 

combination of RyuJIT in .NET Framework on x64 platform. The result we see at Listing 4-9  

is overwhelmingly positive. JIT was able to optimize the whole evaluation stack 

processing and noticed that single mov instruction is enough! What just this code does is:

• mov eax, edx - it moves second argument data (stored in edx register 

according to Microsoft x64 calling convention) to the register eax, 

which should contain the result at the method exit

• ret - return from the method

There is no call to the Helper method (it has been inlined), there is no struct data 

copying, and in fact there is no struct at all!
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Listing 4-9. Method Main from Listing 4-7 after Just-In-Time compilation by 

RyuJIT x64

Samples.ExampleClass.Main(Int32)

0x00007FFA`5178BA40:    L0000: mov eax, edx

0x00007FFA`5178BA42:    L0002: ret

One could say that this is because the Helper method is so trivial. But the truth is 

the SomeStruct would not be probably stack allocated even if we made more complex 

processing inside the Helper method and using all its fields. This is just the level of 

sophistication that nowadays’ JIT algorithms provide.

What I would like to provide to you is the conviction that the structures are efficient 

data containers, which due to their simplicity allow for far-reaching code optimizations. 

There is a lot of truth in the “local variables of structs are allocated on the stack” but as 

we see, things can be even better. Local variables can be just optimized to be handled by 

CPU registers without the need to touch the stack at all. Even if we expect that passing  

by value a struct data will incur memory copying, the JIT compiler may optimize it to 

simply CPU registers usage.

Optimizations seen in listing 4-9 happen when we compile in the release mode 
because then all possible optimizations are enabled. If we compiled a sample 
from listing 4-7 in debug mode, Main method would be JITted into a 41-line long 
assembly code containing stack copying of SomeStruct and the Helper method 
would not be inlined either (and it would take additional 25 lines of assembly 
code). so instead of 2 lines of assembly code in release, we would get 66 lines in 
debug mode!

There is still one very important remark to be mentioned. .NET runtime may treat 

and optimize structs differently depending on their size. For example, if we added yet 

another integer field to the SomeStruct from Listing 4-6, JIT would not optimize the Main 

method. Stack allocation and memory copying would indeed happed. This boundary 

of different struct treatment is yet another deep implementation detail but we can spot 

it around 24 bytes. It is then said to quite safely assume such optimizations are done for 

structs no bigger than 16 bytes although I believe 24 bytes will be still fine.
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memory copying in such cases is also optimized to its extent and tries to utilize 
processor capabilities as much as possible. For example, data on my Intel 4th 
generation haswell processor is being copied with the help of the vmovdqu 
instruction. This AVX (Advanced Vector Extensions) assembly instruction moves 
values from an integer vector to an unaligned memory location back and forth. 
still, if we care about high performance, care should be taken to avoid copying 
wherever possible.

Funny interesting fact. Maybe you already know it, but it is possible to assign new 

value to this field inside a struct’s method. Although it may sound like curiosity from a 

language point of view, there is nothing unusual about memory management in such an 

example:

public struct SomeData

{

     public int Value1;

     public int Value2;

     public int Value3;

     public int Value4;

     public void Bizzarre()

     {

         this = new SomeData();

     }

}

As value types store their data in place, we can just treat such reassignment as a re- 

initialization of the struct’s fields.
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When you define your struct, it is most probably better to make it behave as 
immutable. When passing around your object between method calls and fields 
assignments, one may have the impression that modifying it will modify its original 
value. This, as we know, is not true with pass-by-value semantics realized by 
value types. It is better than to explicitly state that object should not be modified by 
making it immutable - for example, by making all its fields to have only getters and 
its methods not modifying data. It may help in avoiding unexpected behavior.

 Reference Types
As we said, reference types are such that an instance of them contains a reference 

to its data. We have two main categories of reference types in Common Language 

Specification:

• object type - as ECMA 335 says, object is a “reference type of 

self-describing value” and “its type is explicitly stored in its 

representation.” They include well-known classes and delegates. 

There are some built-in reference types, among which by far the most 

known is Object type.

• pointer type - it is a plain machine-specific address of a memory location 

(see Chapter 1). Pointers can be managed or unmanaged. Managed 

pointers will be thoroughly explained in Chapter 13 as they play an 

important part in implementing passing-by-reference semantics.

When talking about reference types, it is convenient to consider them as consisting 

of two entities (see Figure 4-18):

• reference - a value of the refence type is a reference to its data. This 

reference means in particular an address of data stored elsewhere. 

A reference itself can be seen as a value type because internally it 

is just a 32- or 64-bit wide address. References have copy-by-value 

semantics so when passed between locations, they are just copied.

• reference type’s data - this is a memory region denoted by the 

reference. Standard does not define where this data should be stored. 

It is just stored elsewhere.
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This reassembles Figure 1-10 from Chapter 1 describing pointers and the data they 

refer to. This is because references can be seen as a kind of pointers with additional 

safety provided by the runtime.

Considering possible storage for each location of reference type is simpler than for 

value types. As mentioned, because references can share data, the lifetime of them is 

not well-defined. In general cases, it is impossible to store reference types on the stack 

because their lifetime is probably much longer than an activation frame life (method call 

duration). Hence it is quite an obvious implementation decision where to store them 

and that is how we come to “reference types are stored on the heap” part of the story. 

Of course, the .NET runtime has a few heaps available at its own disposal so even this 

simple sentence is not entirely true.

Regarding the heap allocation possibilities for reference types - there is one 

exception. If we could know that a reference type instance has the same characteristic 

as a local value-type variable, we could allocate it on the stack as usually used for value 

types. This particularly means we should know whether a reference does not escape 

from its local scope (does not escape the stack or thread) and start to be shared among 

other references. A way of checking this is called Escape Analysis (see Listing 4-10). It 

has been successfully implemented in Java where it's especially beneficial because of 

their approach of allocating almost everything on the heap by default. At the time of this 

writing, .NET environment does not support Escape Analysis.3

3 However, this feature is being developed as a and is likely to be included (at least, optionally) in 
.NET Core 3.0.

MethodTable

header field's values

reference

Figure 4-18. Reference type shown schematically
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Listing 4-10. Escape Analysis for a method Helper may notice that local variable 

c does not “escape” method and thus could be safely allocated on the stack. 

Currently this is not implemented in any of the .NET runtimes.

private int Helper(SomeData data)

{

      SomeClass c = new SomeClass();

      c.Calculate(data);

      return c.Result;

}

 Classes

Everyone using .NET-compatible language is using and declaring its own classes. Class is 

a user-defined reference type. They are full first-class citizens in CTS and a cornerstone 

of every C# application. They can contain fields, properties, methods, static fields and 

static methods, and so on so forth. Let’s define a struct’s counterpart from Listing 4-6 as a 

class to notice the difference between structs and classes (see Listing 4-11).

Listing 4-11. Sample class definition (a counterpart to the struct from  

Listing 4-6)

public class SomeClass

{

  public int Value1;

  public int Value2;

  public int Value3;

  public int Value4;

}
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Because of how .NET memory management has been designed, each object on the 

heap has a strict memory layout consisting of the following parts (sizes vary depending 

on whether we are talking about a 32- or 64-bit runtime; see Figure 4-19):

• object header - place for “any addition information that we might 

need to attach to arbitrary objects” as the CoreCLR source says. This 

is often just zero but the most typical usage includes: information 

about lock taken on the object or cached value of the GetHashCode 

result. This field is used on a first-come, first-served basis. If the 

runtime will need it for lock-related information, the hash code will 

not be cached there and so on and so forth. This is also an important 

place used by the Garbage Collector during its internal workings.

• method table reference - as previously said, object’s “type is explicitly 

stored in its representation,” and this is exactly the MethodTable 

from an implementation point of view. This is also the place where 

all outgoing references to an object points - in other words, if a given 

object has some references to it, they will point to an address of its 

method table reference. That’s why it is said that object header is 

located at a “negative index.” The MethodTable reference entry is 

itself a pointer denoting a proper entry in the type’s description data 

structures (from a High Frequency Heap of a domain containing this 

type).

• optional data placeholder if type has no fields- current Garbage 

Collector’s design requires that each object has room for one more 

additional pointer-wide field. This field is reused for many purposes 

like the first field in the case of normal objects (like illustrated in 

Figure 4-19 by Value1 field) or the collection length in case of arrays. 

And it is also very important for GC as stated before and as we will 

see in Chapter 7.
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As a result, there is no possibility of an object’s existence on the heap smaller than 

one that could accommodate these three fields (see Listing 4-12 from CoreCLR source). 

It means the smallest object (without no fields) on the heap will be 12 bytes in case of a 

32-bit runtime:

• 4 bytes for an object header

• 4 bytes (pointer size) for method table reference

• 4 bytes (pointer size) for internal data placeholder

and 24 bytes in case of a 64-bit runtime:

• 8 bytes for an object header - within which in fact only 4 bytes 

are used and remaining 4 are just zero-filled alignment (because 

memory layout with 8-byte alignment is desired in 64-bit 

architecture)

• 8 bytes (pointer size) for method table reference

• 8 bytes (pointer size) for internal data placeholder

4B 4B 4B 4B32 bit

MethodTableObjHeader

Value1

4B 8B 4B 4B64 bit

MethodTableObjHeader

4B

AlignPad (zeros)

4B 4B

4B 4B

Value2 Value3 Value4

Value1 Value2 Value3 Value4

Figure 4-19. Memory layout of class from Listing 4-11
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Listing 4-12. The minium size of the heap allocated object

// The generational GC requires that every object be at least 12 bytes in 

size.

#define MIN_OBJECT_SIZE     (2*sizeof(BYTE*) + sizeof(ObjHeader))

We will benchmark this difference in section Types data locality, but the memory 

overhead is clear. A struct containing a single byte allocated on the stack will occupy only 

this single byte.4 The class containing a single byte allocated on the heap will occupy 24 

bytes of memory in case of a 64-bit runtime.

Let’s consider now a sample class from Listing 4-13, which uses a class defined in 

Listing 4-11 as we did for the struct example. We see there a method Main, which has 

one local variable sd of class type SomeClass. So here’s what we can say about this, based 

on the information you heard so far:

• Data referenced by sd local variable is passed to Helper method by 

reference, which means no data copying. The reference itself is being 

copied as it is just a single memory address. Helper operates on this 

shared reference. Modifying the underlying value would change the 

original sd value.

• Data represented by sd is a local reference-type variable so it 

will be allocated on the heap as long as no Escape Analysis will be 

introduced to .NET, which would notice it could be allocated on the 

stack safely.

Listing 4-13. Sample code with method using class from Listing 4-11

public class ExampleClass

{

    public int Main(int data)

    {

      SomeClass sd = new SomeClass();

      sd.Value1 = data;

      return Helper(sd);

    }

4 Although memory alignment requirements may add some overhead. In Chapter 10 an object’s 
memory layout is explained in detail, including alignment influence.
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    private int Helper(SomeClass arg)

    {

       return arg.Value1;

    }

}

Let’s look now at the CIL code of the Main method (see Listing 4-14) generated from 

such code. The stack machine operating on the evaluation stack executes step by step 

the following instructions:

• newobj instance void Samples.SomeClass::.ctor() - Allocator 

is being called creating a new instance of SomeClass object and the 

reference to it is pushed onto the evaluation stack. We will go deeply 

what happens here inside Chapter 6.

• stloc.0 - reference from the top of the evaluation stack is removed 

and stored into the first local variable location.

• ldloc.0 - the value from the first local variable location is pushed 

onto the evaluation stack.

• ldarg.1 - the value of the second argument (as always, remember 

that the first argument is this reference) is pushed onto the 

evaluation stack.

• stfld int32 Samples.SomeClass::Value1 - the first element on the 

evaluation stack is stored under the field Value1 of object referenced 

by the second element on the evaluation stack (and both elements 

are removed from the evaluation stack afterward).

• ldarg.0 - the value of the first argument (this reference) is again 

pushed onto the evaluation stack.

• ldloc.0 - the value from the first local variable location (reference to 

the newly created SomeClass instance) is pushed onto the evaluation 

stack.

• call instance int32 Samples.ExampleClass::Helper(class 

Samples.SomeClass) - a method is called, and it takes two arguments 

from the evaluation stack (which we know by its definition).

• ret - return from the method.
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Listing 4-14. Method Main from Listing 4-13 compiled into Common 

Intermediate Language

.method public hidebysig instance int32 Main (int32 message) cil managed

{

      .locals init ([0] class Samples.SomeClass)

      IL_0000: newobj instance void Samples.SomeClass::.ctor()

      IL_0005: stloc.0

      IL_0006: ldloc.0

      IL_0007: ldarg.1

      IL_0008: stfld int32 Samples.SomeClass::Value1

      IL_000d: ldarg.0

      IL_000e: ldloc.0

       IL_000f: call instance int32 Samples.ExampleClass::Helper(class 

Samples.SomeClass)

      IL_0014: ret

} // end of method ExampleClass::Main

We may see a little redundancy here in calling stloc.0 and then calling the ldloc.0 

instruction immediately. Obviously, the compiler has to be written in a generalized way 

so we may sometimes meet such code that seems to be obviously optimizable.

Nevertheless, assembly code generated by the x64 .NET Framework JIT is very 

simple and well-optimized (see Listing 4-15). It mainly calls the internal Allocator 

function JIT_TrialAllocSFastMP_InlineGetThread inside .NET runtime. Still it is 

much more complicated than the two-line assembly generated for the struct usage 

from Listing 4-9!

Listing 4-15. Method Main from Listing 4-13 after Just-In-Time compilation in 

RyuJIT x64

Samples.ExampleClass.Main(Int32)

0x00007FFA`5176E5A0:    L0000: push rsi

0x00007FFA`5176E5A1:    L0001: sub rsp, 0x20

0x00007FFA`5176E5A5:    L0005: mov esi, edx
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0x00007FFA`5176E5A7:    L0007: mov rcx, 0x7ffa5192f838

0x00007FFA`5176E5B1:    L0011: call clr.dll!JIT_TrialAllocSFastMP_

InlineGetThread+0x0

0x00007FFA`5176E5B6:    L0016: mov [rax+0x8], esi

0x00007FFA`5176E5B9:    L0019: mov eax, [rax+0x8]

0x00007FFA`5176E5BC:    L001c: add rsp, 0x20

0x00007FFA`5176E5C0:    L0020: pop rsi

0x00007FFA`5176E5C1:    L0021: ret

How does this difference translate into performance? We can run a simple 

benchmark comparing the Main method performance from Listings 4-7 and 4-13 (see 

Table 4-1). Because of object allocation, a method using a class is over four times slower 

and, obviously, allocates memory while the struct version does not.

Table 4-1. Benchmark Results of Main Method Performance from  

Listings 4-7 and 4-13. BenchmarkDotNet Was Used on .NET Framework 4.7

Method Mean Gen 0 Allocated

ConsumeStruct 0.6864 ns - 0 B

ConsumeClass 3.3206 ns 0.0076 32 B

In C++ a syntax of class instantiation allows us to allocate on the stack (MyClass c)  
or on the heap (MyClass* c = new MyClass()). however, in the C++/ClI 
language when you create an instance of a reference type using stack semantics, 
the compiler does internally create the instance on the heap (using gcnew).

 Strings
String is a well-known reference type that represents a sequence of characters. In other 

words, they represent some text. They are by far one of the most popular data types in a 

usual .NET program, even if we are not aware of it. That is because most of our programs 

nowadays, in fact, more or less, depend on text processing. Whether it will be data from 

database, REST, or SOAP web requests or XML files read from disk - we have to get it, 
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make some processing, and emit results in, most probably, textual form. That is why 

when analyzing memory dumps of typical .NET applications (especially web based), 

strings will always be high on the list of existing object types.

string popularity is very typical, so by analyzing the memory consumption of the 
program and seeing a lot of strings there, do not assume right away that they are 
root of the problem. They may be but not necessarily. Only a thorough analysis of 
the relationship and comparison of memory dumps taken by some time interval 
can provide an answer.

Strings have special treatment in the .NET environment as they are immutable 

by default. Unlike in unmanaged languages like C or C++, we cannot change a string 

value once it has been created. That’s why code from Listing 4-16 will end up with a 

compilation error Property or indexer 'string.this[int]' cannot be assigned 

to -- it is read only.

Listing 4-16. String immutability example

string s = "Hello world!";

s[6] = 'W';

Keep in mind that “strings are immutable so cannot be changed once created” 
sentence is not entirely truth. It is only Basic Class library not exposing apI that 
would allow us to modify a string’s value (even via reflection apI). Immutability is 
however not enforced on the runtime level. string’s content is just a continuous 
block of bytes interpreted as characters in provided encoding. Nothing could stop 
us to get a pointer to some of those bytes in unsafe mode and change them in 
place. This is however strictly not supported behavior, so you will be on your own 
analyzing any issues happening with such an approach taken.
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Strings immutability introduces a lot of confusion in the first contact with the 

C# language. It is often illustrated by examples like in Listing 4-17. Greet method is 

creating a new string joining some string literals and method parameters. A beginner 

C# programmer may expect that using operator += she step-by-step modifies the result 

variable (like she is incrementing an integer value by using the same operator).

Listing 4-17. String concatenation and hidden temporary string creation example

public string Greet(string firstName, string secondName)

{

      string result = "Hello ";

      result += firstName;

      result += " ";

      result += secondName;

      result += "!";

      return result;

}

Sooner or later she learns that it is impossible because strings are immutable and 

code from Listing 4-17 creates a temporary strings line by line (see Listing 4-18). Thus, 

unintentionally we've created four temporary strings. Each of them has a very short 

lifetime because it will be consumed only as soon as by the following Concat call. And 

as we will see in later chapters, avoiding allocations is one of the most common ways of 

improving our code.

Listing 4-18. CIL version of method from Listing 4-17. We see here that  

each += operator has been changed into String::Concat method call which 

concats two strings from the top of evaluation stack and pushes the result on 

the evaluation stack.

.method public hidebysig instance string Write (string firstName, string 

secondName) cil managed

{

      IL_0000: ldstr "Hello "

      IL_0005: ldarg.1
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      IL_0006: call string [mscorlib]System.String::Concat(string, string)

      IL_000b: ldstr " "

      IL_0010: call string [mscorlib]System.String::Concat(string, string)

      IL_0015: ldarg.2

      IL_0016: call string [mscorlib]System.String::Concat(string, string)

      IL_001b: ldstr "!"

      IL_0020: call string [mscorlib]System.String::Concat(string, string)

      IL_0025: ret

}

What can be done to improve such code? A common solution is to use a 

StringBuilder type that provides mutable string behavior (see Listing 4-19). Internally 

StringBuilder stores text as a linked list of characters blocks (called chunks; see 

Figure 4-20). We can see StringBuilder as an entry point to the chain of internal buffers. 

The number and size of chunks will be dynamically adjusted while our text will grow. 

When we need a regular string at some time, we can call the ToString, which allocates a 

new string and copies data into it chunk by chunk.

Listing 4-19. String creation using “mutable string” type StringBuilder instead 

of string concatenation from Listing 4-17

public string Greet(string firstName, string secondName)

{

      StringBuilder sb = new StringBuilder();

      sb.Append("Hello ");

      sb.Append(firstName);

      sb.Append(" ");

      sb.Append(secondName);

      sb.Append("!");

      return sb.ToString();

}
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We should always consider using StringBuilder when we need complex string 

creation: for example, when aggregating data from collections.

please note that for such simple cases like formatting a message with a few 
arguments, the most efficient way will be to just use string.Format or string 
interpolation built on top of it: public string Greet(string firstName, 
string secondName) => $"Hello {firstName} {secondName}!";

Popular helper methods like string.Format or string.Join internally use 

StringBuilder. They even go further and try to optimize more by using cached 

StringBuilder instances wrapped by a StringBuilderCache class (see Listing 4-20).

Listing 4-20. Example of StringBuilder usage inside FormatHelper method 

used by various string.Format overrides

private static String FormatHelper(IFormatProvider provider, String format, 

ParamsArray args) {

      ...

      return StringBuilderCache.GetStringAndRelease(

            StringBuilderCache

                  .Acquire(format.Length + args.Length * 8)

                  .AppendFormatHelper(provider, format, args));

}

StringBuilder's reference

StringBuilder instance

char[] m_ChunkChars

StringBuilder m_ChunkPrevious

StringBuilder instance

char[] m_ChunkChars

StringBuilder m_ChunkPrevious

StringBuilder instance

char[] m_ChunkChars

StringBuilder m_ChunkPrevious

null

Figure 4-20. StringBuilder internal data structure
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StringBuilderCache stores internally the ThreadStatic static StringBuilder 

instance (see Listing 4-21). Thus it can be safely reused without multithreading issues 

because its value is unique for each thread (thread static storage is explained in detail in 

Chapter 13).

Listing 4-21. Beginning of the StringBuilderCache class showing its internal 

structure

internal static class StringBuilderCache

{

    // The value 360 was chosen in discussion with performance experts as a 

compromise between using as litle memory (per thread) as possible and 

still covering a large part of short-lived StringBuilder creations on 

the startup path of VS designers.

   private const int MAX_BUILDER_SIZE = 360;

   [ThreadStatic]

   private static StringBuilder CachedInstance;

   ...

}

As there will be probably as many cached StringBuilder instances as threads in our 

application, the capacity of it has been balanced between usefulness versus memory 

overhead. Nevertheless, it shows us that it is always worth it to think about memory 

overhead when designing such commonly used APIs like string formatting.

The performance difference can be significant when using mutable StringBuilder 

versus concatenation of immutable strings. Table 4-2 shows benchmark results for three 

methods from Listing 4-22. It is comparing two mentioned approaches. Additionally, 

the third version uses StringBuilderCache, which although is not public, can be easily 

copy-pasted from the .NET Framework sources (https://referencesource.microsoft.

com/#mscorlib/system/text/stringbuildercache.cs).
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Listing 4-22. Three approaches to building complex string. First uses classic 

string concatenation, producing many temporary short-lived strings. Second 

uses StringBuilder and the third utilizes StringBuilder instance caching 

(acquiring cached instance big enough to contain produced text).

[Benchmark]

public static string StringConcatenation()

{

      string result = string.Empty;

      foreach (var num in Enumerable.Range(0, 64))

            result += string.Format("{0:D4}", num);

      return result;

}

[Benchmark]

public static string StringBuilder()

{

      StringBuilder sb = new StringBuilder();

      foreach (var num in Enumerable.Range(0, 64))

            sb.AppendFormat("{0:D4}", num);

      return sb.ToString();

}

[Benchmark]

public static string StringBuilderCached()

{

      StringBuilder sb = StringBuilderCache.Acquire(2 * 4 * 64);

      foreach (var num in Enumerable.Range(0, 64))

            sb.AppendFormat("{0:D4}", num);

      return StringBuilderCache.GetStringAndRelease(sb);

}
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As we can clearly see from the results in Table 4-2, the memory consumption may 

be four times bigger if we are not aware of string concatenation caveats. It introduces a 

four-time bigger GC overhead also. This may be trivial in our test case but for large web 

application processing thousands of requests, it may make a real difference.

Two questions may arise when considering string design decisions:

• Why strings are immutable - if immutability introduces 

counterintuitive behavior and hidden allocations problems, why 

make a string immutable at all? The answer is quite simple - the use 

of immutability for such an overwhelmingly popular type is very 

beneficial because of the many advantages it gives us, at the expense 

of the few defects that it introduces. On the benefits side of this 

decision we can list:

• Safety - strings are widely used as important elements of other 

data structures. Possibility to change them “in place” might lead 

to many errors. Image things like keys in various dictionary-

like structures. If one could change such a key’s value, it would 

probably invalidate the internal representation of such a structure 

(often built upon different kinds of balancing trees). Strings are 

also passed to various APIs to specify credentials, file names and 

path, and so on and so forth. The possibility to change string 

content after it has been checked would be very dangerous.

• Concurrency - data are not going to change so there is no risk in 

sharing it between multiple threads. No need of locking, no risk 

of False Sharing.

Table 4-2. Benchmark Results of Three String Building Methods from 

Listing 4-22. BenchmarkDotNet Was Used on .NET Core 2.1.0.

Method Mean Gen 0 Allocated

StringConcatenation 12.420 us 6.3477 26.75 KB

StringBuilder 7.708 us 1.7090 7.64 KB

StringBuilderCached 7.630 us 1.4648 6.57 KB
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• A main disadvantage includes:

• Modifying operations will introduce additional instances of the 

string (like Concat seen above). This may be particularly painful 

for big text data. Image a few megabyte-long text stored in string 

and a single Replace('a', 'b') call on it. It will create a few new 

megabytes big string with possibly only a few characters changed.

• All this makes a perfectly good decision to treat string immutability as 

an opt-in option. If you really need to make some mutable operation 

on string, use StringBuilder. This forces the developer to expect that 

he/she will consider which approach he/she should use.

• If string is immutable, why is string not a struct? Value types are 

perfect candidates for being immutable - they store all their data 

in place and realize pass-by-value semantics so making them 

immutable seems natural. So why not make a string a struct? But 

think for a minute. Although value type may be a good immutable 

type, the opposite does not necessarily have to be true. Copying 

by value large strings would introduce quite big overhead, and it is 

much more efficient to pass them by reference.

Going further, if immutability is so good, why not make everything immutable by 
default?! This is in fact what most functional languages are doing. and F# in not 
an exception here. In F#, the type’s mutability is an opt-out solution so it has to be 
explicitly declared (like by using mutable keyword).

 String Interning
There is a mechanism inside the .NET runtime called string interning, which sometimes 

makes more confusion than it deserves. This is yet another one of those topics willingly 

repeated as a question during the job interview. String interning is an optimization 

technique for effective use of memory for repetitive texts. The same text is not repeatedly 

copied, but only one copy is kept in memory. But the issue is that this mechanism by 

default applies only to string literals and not to strings dynamically created during a 
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normal application execution. As ECMA 335 says, “by default, the CLI guarantees that 

the result of two ldstr instructions referring to two metadata tokens that have the same 

sequence of characters, return precisely the same string object (a process known as string 

interning).” And we have seen already usage of ldstr instruction to load a string literal in 

Listing 4-18.

String interning is often illustrated by examples like in Listing 4-23. We see there two 

"Hello world!" string literals in different contexts but with the same value. Line 4 from 

the Main method would print True because runtime has interned "Hello world!" literal 

and both s1 and Global are referencing the same string instance.

String interning used by default only for string literals makes this mechanism 

not especially interesting for developers. It is rather an implementation detail of the 

runtime-optimizing memory usage for an obvious thing - to not duplicate the same 

hard-coded text again and again. It should be stressed once again - by default only string 

literals are interned. This case is also shown in Listing 4-23. Although string s3 has the 

same "Hello world!" value, line 5 shows that this is a different instance than the interned 

one. Thus, string s3 created dynamically is not interned (although both "Hello " and 

"world!" literals are).

Listing 4-23. String interning example with comments describing output

private static string Global = "Hello world!";

static void Main(string[] args)

{

      string s1 = "Hello world!";

      string s2 = "Hello ";

      string s3 = s2 + "world!";

      Console.WriteLine(string.ReferenceEquals(s1, Global));      // True

      Console.WriteLine(string.ReferenceEquals(s1, s3));          // False

      ...

Why are dynamically created strings not interned by default? Because it might 

introduce significant overhead. When trying to create a new string, the runtime should 

check whether it is not already interned. But such a check can be a noticeable cost if 

there is already a huge amount of interned strings. Such checks could possibly outweigh 

the benefit of not creating a new string in the first place.
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However, we have the possibility to explicitly manage string interning, the static 

method string.IsInterned returns null if there is no interned string with a given 

value and interned string reference otherwise. Listing 4-24 shows the continuation 

of the Main method from Listing 4-23. In line 1, if we check using string.IsInterned 

method whether there is a string interned with the value of s3 variable (which is "Hello 

world!"), we get the interned reference - because indeed there is an interned “Hello 

world!” string literal. This allows us to use the interned string version if it exists and the 

original s3 instance would be eventually garbage collected as probably we will not be 

using it anymore.

We can even explicitly intern string by using string.Intern method (see line 

8 in Listing 4-24). It will return us an interned string reference. In case in which there 

was no such value interned before, it will intern such reference and will return it to 

us as a string.Intern result. In other words, interning dynamically created string 

implies nothing more than just remembering it in some internal data structures. In 

our example, string.Intern call interns a reference message, so s6 and message 

references are equal.

Listing 4-24. Manual string interning example

string s4 = string.IsInterned(s3);

Console.WriteLine(s4);    // Hello world!

Console.WriteLine(string.ReferenceEquals(s4, Global)); // True

string message = args[0];

string s5 = string.IsInterned(message);

Console.WriteLine(s5);    // null

string s6 = string.Intern(message);

Console.WriteLine(string.ReferenceEquals(s6, message)); // True

This brings us gently to the next issue. There is quite a lot of confusion regarding  

the location of the interned strings. If the dynamically created message string from 

Listing 4-24 has been interned, where it is being stored? We can often read that interned 

strings are stored in a so-called String Intern Pool that resides in a Large Object Heap 

(LOH; we will learn about it in Chapter 5), a part of the Managed Heap. The problem is 
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that LOH is designated for objects bigger than 85,000 bytes as we will soon learn. Our 

string is obviously smaller. Does it mean it is being moved there during interning to some 

kind of bigger buffer? We can also sometimes hear that interned strings are stored inside 

an executable file, but this is unlikely for our dynamically created message string, isn’t it? 

The truth is slightly more complicated.

There are a few places in memory related to the string interning (illustrated in 

Figure 4-21). The core part is an internal String Literal Map that resides in a .NET 

framework itself (within a private unmanaged heap). It manages a hash table of 

strings grouped into buckets. Every interned string has its own entry there, and 

it contains a calculated hash and an address to an entry in the other structure - 

LargeHeapHandleTable. This handle table, which in fact resides in the Large Object 

Heap, contains nothing more than references to the string instances. But those string 

instances are “normal” strings living in the Managed Heap. Thus, we cannot say that 

interned strings live in some special String Intern Pool data structure. They are simply 

registered and maintained by string literal and handle table structures. The important 

difference is that those structures live as long as the.NET application so interned strings 

will be always referenced by them once registered. In GC terms, they will be always 

reachable and thus never garbage collected! As interned strings live in Managed Heap 

as any other objects - in Small Object Heap (SOH, if they are smaller than 85000 bytes) 

or LOH (if they are bigger than 85,000 bytes), they eventually will be promoted to 

generation 2 and stay there forever.
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header string content

StringLiteralMap

Small Object Heap Large Object Heap

header string content

header string content

header string content

LargeHeapHandleTable
(aka String Intern Pool)

Private Heap (unmanaged)

buckets object*
Hash
...

Figure 4-21. String interning internals. All interned strings are in fact normal 
strings instances - kept in Small Object Heap or Large Object Heap depending on 
their size. References to them are being held by LargeHeapHandleTable located in 
Large Object Heap while information about those handles are stored in internal 
.NET runtime data structures.

But what about string literals? Interestingly, their behavior is essentially the same. 

Let’s assume we are using simple code like:

string s = "Hello world!";

When our source code is being compiled, all string literals (including "Hello 

world!") are stored into executable file in a so-called #US storage stream (the name 

comes from user strings abbreviation). The above line is being translated into one 

already known to us CIL instruction with an argument describing that it refers to #US 
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stream (0x70000000) value under index 1 (0x00000001) - let’s assume it is our “Hello 

world!” text there:

ldstr        0x70000001

During JIT compilation such instruction, following sequence of steps happens:

• String data are being read from #US stream under a given index.

• String Literal Map is being checked for such data. If it exists already, 

a proper handle address will be returned. If no entry exists for such 

data:

• A new string is being allocated - as a normal string so it will be 

created in Generation 0 (or LOH if it is large enough)!

• Data will be copied into that string from the stream.

• A new handle in LargeHeapHandleTable will be created, pointing 

to the newly created string.

• A new entry in String Literal Map will be created.

String interning has been exposed to the developer via the string.Intern method 

making it an opt-in setting. We can explicitly intern any string, including those 

dynamically created. This is the cause of most confusion. Why and when we can benefit 

from manual string interning? Let’s consider string interning pros and cons.

String interning advantages:

• String deduplication - the obvious advantage and the rationale 

behind string interning is deduplication of the strings and thus 

avoiding unnecessary memory overhead. This makes perfect sense 

for strings literals as the runtime is taking care of it during JIT. When 

considering string deduplication for dynamically generated strings, 

things are not so obvious. We should analyze how many strings in our 

application are duplicated and what memory overhead it produces. It 

may just be not worth it to take into consideration the disadvantages 

mentioned below.
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• Equality performance - string equality comparison may require 

comparing both strings byte by byte and thus can be quite slow, 

especially for bigger strings. However, string equality operators 

contain fast-path answers when the same reference is being 

compared (see Listing 4-25). Thus, if our code is based on comparing 

tons of often duplicated strings, we may benefit by such optimization.

String interning disadvantages:

• Immortality - as mentioned before, interned strings stay reachable 

until the runtime termination. Most probably the string we are 

interning will become soon unreachable and thus garbage collected. 

But by interning it we are just making it immortal and we should 

think twice if it is worth it. Instead of better memory usage, we may 

do just the opposite. It is like continuously keeping all strings we have 

ever seen in our application. All depends on their uniqueness.

• Creation of temporary string - we can only intern string already 

created. So for a short time, a non-interned string will exist, even if 

only for checking if there is no interned version available.

Listing 4-25. Beginning of the string equality comparison. If both strings 

represent the same reference, a very fast path is chosen.

public static bool Equals(String a, String b)

{

      if ((Object)a==(Object)b) {

            return true;

      }

      ...

If we are reading data from file, web request, and so forth, we are receiving strings 

instances. Those instances are not interned and if they are very often duplicated (like, 

for example, XML tags and attributes names), we may be tempted to intern them. But 

the question is - what is the lifetime of those strings? If they are just temporarily read into 

memory when doing input processing, they will be soon garbage collected. If we intern 

them, they will reside in memory forever while the same temporarily created string 
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still will be generated by an underlying library most probably.5 And as they are normal 

strings eventually promoted to generation 2, they will put additional pressure on garbage 

collection also.

Here we can come to the final conclusion - we may benefit by string interning mainly 

when considering a scenario in which we keep in memory for a long time a lot of duplicated 

strings. This is rather uncommon as most applications just process some burst of textual 

data and forget about them. Moreover, if we rely on comparing those overwhelmingly 

duplicated strings, it is an additional reason behind considering string interning.

please note that when having good control over how your strings are instantiated, 
you have an option to implement string deduplication on your own. It requires 
you to have a convenient place that allows it, like a place where you receive byte 
stream data and want to deserialize it into a string. In such cases, we may write our 
custom deduplication in a way not creating temporary strings. still, it will be mostly 
beneficial if there are big amounts of duplicated strings living in our application.

All this balance between pros and cons is illustrated in the following scenario.

 Scenario 4-5. My Program’s Memory Usage Is Too Big
Description: During application development, testers noticed that after a few hours of 

continuous work, the process is consuming gigabytes of memory. They let you know 

and you indeed easily reproduced this behavior on your local machine by using test 

automation tools.

Analysis: You have full control over the used environment so there are many possibilities 

to attack this problem. By looking at performance counters or VMMap output, you will 

easily confirm that the managed heap grows to gigabytes. In a development environment 

without a problem, we can attach to the process or analyze a memory dump with the 

help of various tools. Commercial tools will show us some predefined issues analysis 

pointing out that there is a huge amount of memory wasted because of duplicated 

strings (see Figure 4-22 from JetBrains dotMemory as an example).

5 Because of not-so-obvious string interning benefits, even System libraries like XML or HTTP 
handling are not using interning by default.
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Figure 4-22. String duplication analysis shown in JetBrains dotMemory tool for 
Scenario 4-5

We can come to a similar conclusion with the help of PerfView tool. Within the 

Collect dialog box, we should check the .NET Alloc check box. This is a really expensive 

tracking operation and it is unlikely you should enable it on the production environment. 

However, we may agree to such overhead in the case of our local tests. Please not that 

in case of a .NET Alloc option, you should start the profiled application after collection 

starts. After stopping collection, open GC Heap Net Mem analysis from Memory 

Group. A list of mostly allocated types will be presented. In our example scenario, the 

string would be at the top of the list. If we double-click it, the aggregated stack of string 

allocations will be presented (see Figure 4-23). As we see in our simplified case, there is 

one main source of it - - System.IO.ReadLinesIterator.MoveNext() method.

Figure 4-23. PerfView graph for string allocation - used in Scenario 1-5
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If .NET alloc introduces too much overhead, you can still track allocations by 
sampling with the help of .NET sampalloc or even GC only option, which can often 
be sufficient (if problematic allocations stand out from the other allocations in our 
application).

If we look at the code indicated by the analysis - System.IO.ReadLinesIterator.

MoveNext() (see Listing 4-26), we will see very simple file-parsing functionality that 

counts each unique line occurrence and stores all lines in a dictionary altogether with 

the occurrence timestamp. Obviously if there are many duplicated lines, there will be 

many duplicated strings in memory.

Listing 4-26. Very simple line-counting C# code used to illustrate possible string 

duplication

foreach (var line in File.ReadLines(file))

{

    bool counted = false;

    foreach (var key in counter.Keys)

    {

      if (key == line)

      {

          counter[key]++;

          counted = true;

          break;

      }

    }

    if (!counted)

    {

      counter.Add(line, 0);

    }

    list.Add(new Tuple<string, DateTime>(line, DateTime.Now));

}
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We can change this code to use string interning. Just after a line has been read from file 

into string line, we may intern it (see Listing 4-27). New strings will be allocated for each 

line read from file, but their lifetime will be very short. We will add only interned strings to 

the dictionary. Those interned strings are stored for the whole application’s lifetime so we 

will benefit from string deduplication. We may even gain an additional performance boost 

because now string comparison may use reference equality underneath for similar strings.

Listing 4-27. Code from Listing 4-26 changed to use explicit string interning

foreach (var line in File.ReadLines(file))

{

    var line2 = string.Intern(line);    //  line lifetime ends here (except 

first occurence when it will be 

interned)

    bool counted = false;

    foreach (var key in counter.Keys)

    {

      if (key == line2) //  should often use ReferenceEquals because of 

comparing two interned string

      {

          counter[key]++;

          counted = true;

             break;

       }

    }

    if (!counted)

    {

      counter.Add(line2, 0); // adding interned string

    }

    list.Add(new Tuple<string, DateTime>(line2, DateTime.Now));

}

Such code will produce real benefits only if there are not so many unique strings that 

otherwise would be duplicated many times for a long time. If any of those conditions 

are not met, string interning will probably cause performance degradation instead of 

improvement.
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 Boxing and Unboxing
In .NET, conversion exists between value type and a reference type. As ECMA-335 says:

For every value type, the CTS defines a corresponding reference type called 
the boxed type. The reverse is not true: In general, reference types do not 
have a corresponding value type. The representation of a value of a boxed 
type (a boxed value) is a location where a value of the value type can be 
stored. A boxed type is an object type and a boxed value is an object.

(...)

All value types have an operation called box. Boxing a value of any value 
type produces its boxed value; i.e., a value of the corresponding boxed type 
containing a bitwise copy of the original value.

As value type and reference type definitions do not mention the stack and the heap 

at all, so a boxing definition does not either. We can see boxing as a process of converting 

a value type instance into a reference type instance, hence converting those value’s 

semantics.

Obviously, when we come to the implementation details, I’ve mentioned a few times 

already that in certain scenarios value-type instances (like struct) need to be allocated 

on the heap. And as we said, all objects on the managed heap need to have some 

additional corresponding data like the object header and MethodTable reference. Thus, 

when we want to allocate a value type on the heap, we need to wrap its value with those 

additional data. In other words, boxing is a two-step operation:

• allocates on the heap boxed type for the corresponding value type  

(a new reference type instance)

• copies data from value type instance to newly created reference type 

instance

We probably already have intuition that this is a not-so-efficient operation. We need 

to allocate an object and copy its data, which takes some precious clock cycles. What is 

worse, a boxed-type instance at some time will have to be garbage collected, which puts 

pressure on the GC.
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Let’s look at the typical boxing example from Listing 4-28. We see there that the 

value-type integer is being assigned to a reference object type. In such a case it must be 

boxed.

Listing 4-28. Implicit boxing example.

int i = 123;

object o = i;  // implicit boxing

A Common Intermediate Language code shown at Listing 4-29 illustrates how 

boxing looks from the perspective of the underlying stack machine. Box instruction 

is taking a value and pushes on the evaluation stack the result of boxing (which is a 

reference to a newly created reference-type instance).

Listing 4-29. CIL code generated for C# code from Listing 4-28

IL_0000: ldc.i4.s 123

IL_0002: box System.Int32

IL_0007: ret

This directly translates to the two-step operation mentioned above (see Listing 4-30).  

First, a boxed-type System.Int32 is allocated and then a value (in this case, single 

integer with value 123 so 0x7b in hexadecimal notation) is being copied into it.

Listing 4-30. Assembly mode generated from CIL code from Listing 4-29  

(in Release x64 mode)

Samples.Echoer.Write(System.String)

0x00007FFB`7BE56180:    L0000: sub rsp, 0x28

0x00007FFB`7BE56184:    L0004: mov rcx, 0x7ffbd85e9288 ; (MT: System.Int32)

0x00007FFB`7BE5618E:    L000e:  call clr!JIT_TrialAllocSFastMP_

InlineGetThread

0x00007FFB`7BE56193:    L0013: mov dword [rax+0x8], 0x7b

0x00007FFB`7BE5619A:    L001a: add rsp, 0x28

0x00007FFB`7BE5619E:    L001e: ret
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One of the main memory-related rules in .NET world is - avoid boxing. A massive 

boxing code could indeed cause us performance problems. Unfortunately, most boxing 

is done implicitly so we may be even not aware of it. Thus, it is worth it to remember 

common places when such implicit boxing can occur:

• Value type is used where object (reference type) is expected - thus it 

needs to be boxed. Besides a little artificial example from Listing 4-28, 

we most often encounter this situation in the arguments of methods 

that accept a type object like various string.Format, string.Concat, 

and similar overrides:

int i = 123;

return string.Format("{0}", i);

We see in generated CIL code that boxing to System.Int32 occurs:

IL_0003: ldstr "{0}"

IL_0000: ldc.i4.s 123

IL_0009: box [mscorlib]System.Int32

IL_000e: call string [mscorlib]System.String::Format(string, 

object)

Unfortunately, there is nothing we can do here to avoid boxing. 

Even using more advanced syntax like string interpolation (return 

$"{i}" in our example) will introduce boxing as it uses string.

Format underneath. We can call ToString on a value type during 

method call (string.Format("{0}", i.ToString())) to avoid 

boxing, but it will allocate a new string so the result will be in fact 

the same in terms of memory pressure. As a general rule, it is good 

to avoid methods taking objects as parameters, if possible. Before 

generics were introduced in .NET Framework 2.0, all collections 

types were storing its data as object references because they 

had to be flexible enough to store any possible data. Thus, many 

methods existed like ArrayList.Add(Object value) and so on, 

and so forth with much possible boxing to happen. Thanks to 

generic types, this problem no longer exists as a generic type or 

method will be compiled for a specific value type (like List<T> 

will become List<int>) and no boxing may be necessary.
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• Value type instance is used as any interface type implemented by this 

value type. As the interface is a reference type, we also need boxing 

here. Assuming SomeStruct implements ISomeInterface interface 

with method GetMessage:

public string Main(string args)

{

  SomeStruct some;

  var message = Helper(some);

  return message;

}

  string Helper(ISomeInterface data)

{

  return data.GetMessage();

}

Again, implicit boxing is visible in the generated CIL code:

  IL_0000: ldarg.0

  IL_0001: ldloc.0

  IL_0002: box Samples.SomeStruct

   IL_0007: call instance string Samples.Program::Helper(class 

Samples.ISomeInterface)

We can avoid boxing in such cases by introducing a generic method 

that will expect a desired interface as a generic type parameter:

string Helper<T>(T data) where T : ISomeInterface

{

    return data.GetMessage();

}

Generic method will be compiled for this specific value type as an 

argument, hence no boxing will be required:

IL_0000: ldarg.0

IL_0001: ldloc.0

 IL_0002: call instance string Samples.Program::Helper<valuetype 

Samples.SomeStruct>(!!0)
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Let’s look at the one of the most common sources of boxing, which comes from the 

fact of a value type being used as an interface - foreach instruction on IEnumerable<T> 

(see Listing 4-31). In such a case we are passing List<int> instance as an 

IEnumerable<int> to Print method. The foreach instruction underneath is operating 

on an enumerator concept - it is making GetEnumerator() call on the passed collection 

and then it calls Current() and MoveNext() on it sequentially. In the Print method, 

list collection is seen as IEnumerable<int> so IEnumerable<int>.GetEnumerator() 

will be called, which is expected to return IEnumerator<int>. List<T> implements 

IEnumerable<int> obviously but the important fact is that GetEnumerator() returns 

Enumerator, which is... struct. As this struct is being used as IEnumerator<int>, boxing 

happened once at the beginning of the foreach loop.

Listing 4-31. Hidden allocation because of boxing when using foreach 

statement

public int Main(string args)

{

      List<int> list = new List<int>() {1, 2, 3};

      Print(list);

      return list.Count;

}

public void Print(IEnumerable<int> list)

{

      foreach (var x in list)

      {

         Console.WriteLine(x);

      }

}

This obviously does not incur much overhead as a single boxing of Enumerator will 

be most probably outweighed by the operations made inside the foreach loop. As always 

in such problems, it can only hit us back if we are making tons of such foreach loops 

on the hot path executed. And as always, Measure Early whether it a problem in your 

application or not by investigating the number of Enumerator allocations. If you would 

like to avoid boxing, you may simply pass list as List<int> to Print method (making it 

public void Print(List<int> list)). In such a case, when foreach calls underneath 
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List<int>.GetEnumerator(), List<int>.Enumerator, a struct is expected and such 

local variable will be created for it. No need of boxing to happen. This is a place where 

good programming practices may conflict with code optimization. In general, it is good 

to design Print method to accept any IEnumerable<T> and do not tie it with concrete 

List<T> implementation. But this will incur boxing on the other hand so we have to 

choose between possible performance implications and good code practices.

The obvious questions may arise why common collections like List<T> have 

enumerators implemented as a struct in the first place if this implies such hidden boxing 

overhead? The answer is simple, and you may already guess it after all that has been said 

so far. The overwhelming majority of use cases is to use enumerators as local variables, 

so being value types, they can be cheaply and quickly allocated on the stack. This by far 

outweighs possible problems with boxing.

Boxing has its complementary operation called unboxing, which means converting a 

back-boxed reference-type value into a value type instance. This operation draws much 

less attention because it does not cause such significant memory overhead. First of all, 

we should do boxing first so if we do not do boxing, unboxing will not happen. Secondly, 

unboxing does not incur heap allocation. The value will be copied from the heap back 

to the stack so there is memory copying overhead. But as we already know, we are much 

less afraid of performance impact of the stack allocations so we are much less afraid of 

unboxing also.

There is a small, not-so-obvious caveat related to unboxing. as ECma-335 says: 
“All boxed types have an operation called unbox, which results in a managed 
pointer to the bit representation of the value.” and in fact, there is a CIl unbox 
instruction that does exactly that - it pushes onto the evaluation stack the 
managed pointer to the data in the boxed instance. We can then say that unboxing 
in its pure form is neither copying nor allocating any data. But then such a pointer 
has to be used to obtain the actual value. This is what ldobj instruction is doing, it 
“copies the value stored at address src to the stack.” When the C# compiler wants 
to do unboxing, it emits unbox.any CIl instruction, which is equivalent to unbox 
followed by ldobj instructions.
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There are many possible places where implicit boxing may occur and it is really hard 

to be aware of all of them all the time. What can we do to cope with this problem? For 

sure we can learn the most basic and common cases. But there are tools that can help 

us. There is a Heap Allocations Viewer extension for Visual Studio and Roslyn C# Heap 

Allocation Analyzer plugin for ReSharper that do exactly that. They show us any hidden 

allocations, including those coming from implicit boxing. I strongly encourage you to try 

these tools during everyday work. More examples of possible hidden allocation sources 

(including boxing) are also presented in Chapter 6, along with yet more scenarios of 

investigating them.

 Passing by Reference
We have learned already, briefly, valuable types and reference types and passing-by 

value and passing-by reference semantics associated with them. There is yet another 

level of control above that. As mentioned already a few times, we can pass by reference 

any value, irrespective of whether it is a value type instance or reference-type instance.

Thus, let’s take a look about those two respective contexts.

 Pass-by-Reference Value-Type Instance
As pointed out many times, value types have pass-by-value semantics, so whenever we 

are assigning instances of value types, we are creating bitwise copy of its value. This is 

very often illustrated by an example similar to the one shown at Listing 4-32. We are 

using here the struct definition from Listing 4-6 defined earlier in this chapter. Helper 

method has a single value type argument. When we pass SomeStruct instance into it, a 

local copy inside Helper method is being created. Thus, modifying data.Value1 does 

not make sense - it will modify only this local copy and leave the original ss instance 

untouched. Main method will return 10.

Listing 4-32. Example of C# code passing struct by value

public int Main(int data)

{

      SomeStruct ss = new SomeStruct();

      ss.Value1 = 10;

      Helper(ss);
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      return ss.Value1;

}

private void Helper(SomeStruct data)

{

      data.Value1 = 11;

}

We can change this behavior by passing the data instance by reference with the help 

of ref keyword (see Listing 4-33). In such a case we are using reference to the original 

value instance on the stack. Any modifications of it inside Helper method will be 

reflected in the original ss instance. Thus, Main method will return 11.

Listing 4-33. Example of C# code passing struct by reference

public int Main(int data)

{

      SomeStruct ss = new SomeStruct();

      ss.Value1 = 10;

      Helper(ref ss);

      return ss.Value1;

}

private void Helper(ref SomeStruct data)

{

      data.Value1 = 11;

}

Using structs (value types) as local variables and passing them by reference is a great 

optimization trick - not only that we cause no heap allocation, we also eliminate the 

overhead of possible data copying regardless of struct size.

please remember the JIT compiler is so great in code optimization. In the case of 
release build of program from listing 4-33, the JIT compiler will notice that there 
is no need for struct even on the stack at all (as we have previously seen at  
listing 4-9). Therefore, Main method in our example will be JITted to mov eax, 
0xb and ret instructions!
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 Pass-by-Reference Reference-Type Instance
Here we may get a little bit lost as we are talking about passing by reference a reference- 

to- reference type. If you are familiar with C/C++ world, this would be something like 

using a pointer to the pointer.

Using the class definition from Listing 4-11 we can illustrate it by Listing 4-34. Here 

by reference is passed a reference to SomeClass reference-type instance. We can access 

it as usual inside Helper class (which however would be a little slower than by accessing 

normal reference as an additional pointer dereference is required here). But by having 

reference to the reference type, we can modify it and change it to point another reference 

type instance. In our sample Main method will return 11. If SomeClass was passed simply 

by reference, Helper code would overwrite locally passed reference by locally creating a 

new instance. But those changes would not be visible outside this method. You probably 

need a moment or two to get your head around it.

Listing 4-34. Example of C# code passing reference type by reference

public int Main(int data)

{

    SomeClass sc = new SomeClass();

    sc.Value1 = 10;

    Helper(ref sc);

    return sc.Value1;

}

private void Helper(ref SomeClass data)

{

    data = new SomeClass();

    data.Value1 = 11;

}

We will put quite a lot of attention to the passing-by reference in this book, in 

Chapter 14. This is a great and very interesting topic. It is also one of the most powerful 

optimization tricks used for performance tuning. If your job is to write a super-efficient 

library with the best possible performance, you should definitely focus on this kind 

of optimization. This is how commonly used solutions with the highest expected 

performance, such as the Roslyn compiler or the Kestrel server, are being optimized.  
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For now, let’s just remember this mechanism as a great way of improving struct and class 

usage performance and hence a perfect tool for avoiding allocations in our code.

passing-by reference is so important in terms of optimizing common code base of 
different libraries that it constantly gains more and more attention from creators 
of .NET and C# language. From C# 7.0 local reference variables and returning-
by-reference capabilities have been added. From C# 7.1 and 7.2 there is the 
possibility to pass by read-only reference (by using in keyword instead of ref) 
to explicitly say that a reference is passed only for accessing data, without a 
possibility to modify it. We will look at all those possibilities in Chapter 14.

 Types Data Locality
Due to no overhead from any additional data, structs are very compact. This is desirable 

for two reasons:

• It is always good to process less data - this obvious reason does not 

need any special comment. Even in the times when the memory is 

cheap, we can benefit from processing less - the time.

• It is always good to utilize cache to its extent - when we can load 

more objects into single cache line because they are smaller, we may 

gain a significant performance boost. As we saw in Chapter 2, it pays 

off if we lay out data in a way that helps to have as much as possible 

usable data into cache line. This is exactly where structs can help us.

Data structures build from structs provide more dense memory utilization because 

there is no overhead related with the reference types. What is even more important, 

arrays of structs constitute continuous regions of memory filled with its data, whereas in 

case of reference types, only references are laid out sequentially. Value they are referring 

to may be scattered through all the managed heaps, and we do not have control about it 

(see Figure 4-24).
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Figure 4-24. Arrays of structs (at the top) constitute continuous regions of memory 
because value types store their data in place. Arrays of classes (at the bottom) are 
in fact only continuous arrays of references pointing to objects on the heap with 
undefined locations.

Performance differences of such different data localities are presented with the help 

of a program from Listing 4-35. This program simply calculates the total sum off the first 

field in all array elements: once for arrays of structs and once for array of classes.

Listing 4-35. Benchmark showing performance difference in accessing array of 

structs versus array of classes

public struct SmallStruct

{

      public int Value1;

      public int Value2;

}

public class SmallClass

{

      public int Value1;

      public int Value2;

}
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// both arrays are initialized with one million elements

private SmallClass[] classes;

private SmallStruct[] structs;

[Benchmark]

public int StructArrayAccess()

{

      int result = 0;

      for (int i = 0; i < items; i++)

            result += Helper1(structs, i);

      return result;

}

[Benchmark]

public int ClassArrayAccess()

{

      int result = 0;

      for (int i = 0; i < items; i++)

            result += Helper2(classes, i);

      return result;

}

public int Helper1(SmallStruct [] data, int index)

{

      return data[index].Value1;

}

public int Helper2(SmallClass [] data, int index)

{

      return data[index].Value1;

}

What may be interesting is that the only difference between those two approaches 

lies in the JIT-compiled code generated for each of the helper methods (see Listing 4-36). 

The difference is that struct's array access in Helper1 uses a single address dereference - 

it calculates the address in an array by multiplication by index times struct size. Then 

it stores value under this address in the result register. Helper2 has to dereference the 
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address twice - first to get the reference to an object under a given index and second to 

get the value under this reference.

Listing 4-36. Fragments of assembly code generated after JITting Helper 

methods from Listing 4-35. In this case rdx register contains address of an array 

object and rax contains an index in this array.

Helper1(Samples.SomeStruct[], Int32)

...

0x00007FFA`526A0E8D:    L000d: mov eax, [rdx+rax*8+0x10]

...

Helper2(Samples.SomeClass[], Int32)

...

0x00007FFA`526A0E4D:    L000d: mov rax, [rdx+rax*8+0x10]

0x00007FFA`526A0E52:    L0012: mov eax, [rax+0x8]

...

Note The code for helper methods will be in fact inlined into benchmarked 
methods, but they were presented in original form for clarity.

The result of both approaches is presented in Table 4-3. We can notice really big 

differences that obviously cannot be explained only by executing one more address 

dereference. The additional overhead comes from the fact of much worse data locality as 

class instances are not guaranteed to lie next to each other. Hence, more cache lines have 

to be loaded during such calculations.

Table 4-3. Benchmark Results of Struct versus Class Array Access 

from Listing L1. BenchmarkDotNet Was Used on .NET Core 2.0.0.

Method Mean Allocated

StructArrayAccess 618.7 us 0 B

ClassArrayAccess 1,816.5 us 0 B
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 Static Data
Static data may be seen as a kind of global variable in our program. And while global 

variables are not so welcome in good design practices, they still may be found useful. 

In case of C#, there is only one type of static data available - static fields. While VB.NET 

allows us to declare static variables in functions, they are simply a syntactic sugar 

around a regular static field (in case of usage in Shared function). Let’s dig into static 

fields a little then.

 Static Fields
Everyone programming in .NET perfectly understands static fields - their value is shared 

among all instances of a given type. We access them by using a type’s name, globally 

from everywhere such type is accessible (see Listing 4-37). It makes perfect sense and 

probably does not need any more explanation.

Listing 4-37. Example of static field usage

public class C {

   public void Method1()

   {

      S.Value = 10;

   }

   public void Method2() {

      Console.WriteLine(S.Value);

   }

}

public class S

{

   public static int Value;

}
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However, from a memory-management perspective, a few additional remarks should 

be added:

• Static data have per AppDomain scope - if we load the same 

assembly into multiple application domains, there will be multiple, 

same static data instances.

• Static data of types defined in an assembly lives as long as the 

AppDomain lives, where such assembly was loaded - thus, until 

assembly is unloaded, all static data and objects referenced by them 

will stay reachable (thus, not garbage collected).

• While they are implementation details, one may wish to be aware 

that:

• Static primitive data (like numbers) are stored in a High 

Frequency Heap of the corresponding application domain (part 

of its Loader Heap).

• Static reference type instances (objects) are living on the regular 

GC Heap - the difference to normal objects is that they are 

additionally referenced by the internal “statics table.” Because 

such objects will obviously live long, they will eventually land in 

generation 2 and stay there.6

• Static user-defined value type instances (structs) are also living 

inside the regular GC Heap in a boxed form.

6 Unless it is large object, which will from the beginning live on a Large Object Heap.
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Having said that, if you are interested how exactly statics are implemented in .NET, 

read the following section about its internals.

 Static Data Internals
Each application domain in a .NET application is represented by a set of internal 

data structures (see Figure 4-25). For each module existing in loaded assemblies, the 

DomainLocalModule data structure is maintained. It contains two crucial regions from 

the internal static data point-of-view implementation:

• For fields of reference type and structs (in boxed form) - a reference 

pointing inside Object[] table where static references of a given 

module begins (m_pGCstatics in Figure 4-25). Such Object[] table 

is shared between all modules and assemblies loaded into the 

application domain.

• For fields of primitive types - its values, grouped by types where 

they are defined, including necessary padding because of memory 

alignment requirements (statics blob in Figure 4-25).
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The above-mentioned shared Object[] array is maintained by the internal 

LargeHeapHandleTable data structure (already mentioned in section about string 

interning, where it is also used) and it is allocated in a Large Object Heap (being also 

pinned, to make it safe to store addresses pointing into it). Such a handle table maintains 

arrays in buckets, so when the currently used array is filled, a new bucket and new 

corresponding array will be created (which may happen, for example, if a new generic 

type with static fields needs to be constructed).
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Figure 4-25. Internals of static fields storage in .NET Core (from the perspective of 
single-application domain and two assemblies loaded into it). Places where static 
data is indeed stored are marked as gray (while every other visible structure may 
be seen as a supporting, auxiliary data). In case of .NET Framework, static blob is 
stored next to given type's MethodTable.
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please note that all data structures in Figure 4-25 will be eventually deleted 
if the corresponding application domain is deleted (including all static data in 
loaded assemblies). In case of collectible assemblies mentioned earlier in this 
chapter, only corresponding the DomainLocalModule would be deleted, and 
corresponding entries in the shared handle table removed. anyway, it would 
result in making all static reference-type instances unreachable (and all objects 
referenced by them) so they would be eventually garbage collected.

Additionally, when building static-related data, offsets of all static fields are 

calculated and stored in corresponding a MethodTable's field description. When the JIT 

compiler is emitting code that is accessing the static field, it is consuming this data in the 

following way:

• For primitive data static field - knowing address of the proper 

DomainLocalModule and the offset of accessed field within its statics 

blob, the absolute address of the data is calculated.

• For reference data static field (including structs, which are 

heap allocated in a boxed form) - knowing address (via 

LargeHeapHandleTable and its buckets) of the corresponding 

Object[] array and the offset of accessed field within it, the absolute 

address of the proper element of such array is calculated (which is a 

reference, pointing to the appropriate object).

Using as an example a few simple types defined in Listing 4-38, we can see in action 

using data structures shown in Figure 4-23.

Listing 4-38. Simple types used in the next code examples

public class ExampleClass

{

   public static int StaticPrimitive;

   public static S StaticStruct;

   public static R StaticObject = new R();

}
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public class R

{

   public int Value;

}

public struct S

{

   public int Value;

}

When accessing a primitive static field (see Listing 4-39), assembly code emitted 

by the JIT compiler is indeed very simple (see Listing 4-40) - it consists only of reading 

a given value from the proper statics blob region. Thus, accessing primitive static data 

can be seen as a very fast operation without additional overhead (at least until we won't 

guard it with some thread safety like using locks).

Listing 4-39. Trivial example of accessing primitive static field

[MethodImpl(MethodImplOptions.NoInlining)]

public void Method1()

{

   Console.WriteLine(ExampleClass.StaticPrimitive);

}

Listing 4-40. JIT-compiled code from Listing 4-39 (only relevant part)

...

mov   ecx,dword ptr [00007ff9`3c8a4bd8] ; address in High Frequency Heap 

(inside statics blob)

call  00007ff9`3c9c1380 (System.Console.WriteLine(Int32), mdToken: 

000000000600007e)

...

Structs that are static fields are becoming heap allocated in a boxed form; thus they 

are treated as any other object. When accessing such a static field data (see Listing 4-41), 

assembly code emitted by the JIT is accessing the handle table to get an address of the 

heap-allocated struct instance on the GC Heap (see Listing 4-42). We should be aware of 

this additional overhead of handle dereference, because we could think that structs are 

stored in statics blob as primitive value types described above.
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Listing 4-41. Trivial example of accessing user-defined value type static field data

[MethodImpl(MethodImplOptions.NoInlining)]

public void Method2()

{

   Console.WriteLine(ExampleClass.StaticStruct.Value);

}

Listing 4-42. JIT-compiled code from Listing 4-41

...

mov   rcx,19510002938h       ; addres in LOH (inside handle table)

mov   rcx,qword ptr [rcx]    ; dereference handle (rcx contains boxed 

struct address)

mov   ecx,dword ptr [rcx+8]  ; access the first field of a boxed struct

call  00007ff9`3c9c2b60 (System.Console.WriteLine(Int32), mdToken: 

000000000600007e)

...

Accessing the reference type static field data (see Listing 4-43) generates exactly the 

same code as seen previously: to access the handle table to get an address of the object 

(see Listing 4-44). Again, handle dereferencing overhead exists, but in case of reference 

data it is more expected.

Listing 4-43. Trivial example of accessing reference-type static field data

[MethodImpl(MethodImplOptions.NoInlining)]

public void Method3()

{

   Console.WriteLine(ExampleClass.StaticObject.Value);

}

Listing 4-44. JIT-compiled code from Listing 4-43

mov   rcx,19510002940h      ; addres in LOH (inside handle table)

mov   rcx,qword ptr [rcx]   ; dereference handle (rcx contains object address)

mov   ecx,dword ptr [rcx+8] ; access the first field of an object

call    00007ff9`3c9c2b60 (System.Console.WriteLine(Int32), mdToken: 

000000000600007e)
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Exactly the same code (with slightly different addresses, obviously) would be 
generated if  ExampleClass was a struct. This is because the static field type is 
important, not the type in which such field is defined.

 Summary
The first three chapters were merely .NET-related. We have learned some algorithmic 

and computer architecture basics. However, this chapter is a game changer. We started 

looking at .NET much more intensively. After starting with some basic historical 

background, we took a deep dive into .NET internals. We have devoted a few pages to 

learning the different areas of memory that are part of the .NET process. We have looked 

deeper at some of these areas, for example, having the opportunity to diagnose the 

problems related with them. This happened with the help of a new kind of information 

also introduced in this chapter - scenarios. They are intended to show you various 

problems and possible ways to analyze them. I hope this makes you feel that learning is 

not only theory but also very practical aspects of .NET memory management.

We’ve seen quite a lot of this topic already and have not even touched on Garbage 

Collector by itself. Some aspects mentioned in this chapter will even return to us from 

time to time in the rest of the book. However, it is not hard to notice that most of this 

chapter is dedicated to the type system and various aspects of different type categories in 

.NET. After learning about structs and classes quite a lot in this chapter, it is worth ending 

with a brief summary of their strengths and weaknesses summarized below.

 Structs
• better data locality - they contain all its data in place and are stored 

without any additional overhead so cache utilization is much better

• may be allocated on stack - in certain scenarios, structs being local 

variables are allocated on the stack, which is much more lightweight 

and does not incur future GC- related overhead.

• may be overwhelmingly optimized - as we have seen in some scenarios, 

the struct concept just disappears from the generated machine code 

completely and whole processing is done via CPU registers.
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• risk of unintentional boxing - when used carelessly, structs may be a 

source of boxing, which incurs hidden allocations.

• harder to understand - pass-by-value semantics and a few other various 

caveats may sometimes be less intuitive than well-known classes.

• most of the performance benefits are strongly implementation 

dependent - now they work but it is not guaranteed that in future the 

implementation details won’t change.

 Classes
• “just works” - classes are the basic building blocks and code we write 

using them just works. We are used to them very much and using 

them is an obvious choice.

• overhead of GC - allocating class instances incur heap allocations 

and those give GC additional work.

It is also high time we introduced some new Rules related to the material from 

this chapter. There are a few as the topics we touch are becoming more and more 

practical. Please note that the rule Avoid Hidden Allocation is highly related to string 

concatenation shown in this chapter, will be presented in Chapter 5.

 Rule 6 - Measure Your Program

Justification: It is really hard to know whether your program consumes a lot of memory or 

not if you do not know how to measure it. The answer to the question - how big my program 

is - may be quite difficult. There are various metrics we can look at and without deeper 

understanding of them, we may simply get lost. We do not know how to compare different 

programs in terms of size. And we do not know how to ask our customer to check it.

How to apply: Using the knowledge gained in the second and fourth chapters, we can 

understand quite precisely what each program size means. When analyzing different 

memory-related issues, we should always start to investigate its size and how it changes 

in time. We should always start to look at the most troublesome size - the one that 

indicates how much physical RAM is being consumed. We should look at whole private 

and virtual also. Only knowing those measurements gives us context wide enough to 

proceed with further analysis.

Related scenarios: Scenario 4-1.
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 Rule 7 - Do Not Assume There Is No Memory Leak

Justification: It is tempting to assume that in a managed .NET environment there is 

no chance that memory leaks will occur. Memory is automatically reclaimed so why 

should we care? This is almost always true and it is a great engineering achievement of 

.NET runtime creators. However, there still exists many scenarios that may hit us back 

in the less-appropriate moment. And most probably they reveal some of the customer’s 

production environment.

How to apply: Just don’t do that. Measure You Program (Rule 6) and Measure GC Early 

(Rule 5). Keep your eyes open to suspicious trends, especially when one of the observed 

sizes start to grow infinitely.

Related scenarios: Scenarios 4-2, 4-3, and 4-4.

 Rule 8 - Consider Using Struct

Justification: Using classes in object-oriented programming in C# is so popular that 

it is used by default and without any thinking. Classes “just work” so why should we 

care? However, structs were not invented without a reason. Add structs to your everyday 

developer’s life toolbox. You do not need to start using them everywhere for now. Just try 

to consider them after knowledge you gained in Chapter 4 of this book.

How to apply: Read about structures. Learn their strengths and weaknesses. Understand 

pass-by-value and pass-by-reference semantics. Measure Early to find out whether 

it makes sense to put effort in optimizing this part of code you are looking at. If so, 

try to make use of some leaky implementation details of struct - the stack allocation, 

JIT optimization, and so on and so forth. And if you decide to use struct in your code, 

remember the possibility of passing them by reference - consider using ref parameters, 

local ref and ref return values. This can help you gain even more performance. Also, 

always remember a stack is precious resource - do not expect that you will be able to put 

a huge amount of data there.

 Rule 9 - Consider Using String Interning

Justification: Strings are almost always one of the most common types in our program’s 

memory. And storing in memory a lot of duplicated string is obviously inefficient. .NET 

runtimes take care of it in case of string literals. If we want to take care of it in case of 
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dynamically generated strings (for example, loaded or received from external source like 

file or HTTP request), we may use string interning manually.

How to apply: Measure whether you indeed have a lot of duplicated strings. Consider 

their lifespan and uniqueness. Do you have a lot of duplicated strings living for minutes 

or hours inside your process? Or do you have only big bursts of temporary string during 

some input processing. String interning has its own drawback and it may be beneficial 

only in the first scenario. Remember that string once interned will live till the runtime 

termination. Thus, interning a string is a very risky decision and must be well-thought out.

Related scenarios: Scenario 4-5.

 Rule 10 - Avoid Boxing

Justification: Boxing operation converts value type into a corresponding reference type. 

This introduces hidden allocation as the reference type will be allocated on the heap. 

Avoid Allocation (Rule 14) is one of the most important optimization approaches so 

we should avoid boxing whenever possible, especially since most happen without our 

knowledge as implicit boxing.

How to apply: Learn about typical implicit boxing scenarios and just try to avoid them. 

You can Measure GC Early (Rule 5) whether your program allocates a lot and boxing 

can turn out to be one of the reasons. You can help yourself in spotting implicit boxing 

by using the Heap Allocations Viewer extension for Visual Studio and Roslyn C# Heap 

Allocation Analyzer plugin for ReSharper.
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CHAPTER 5

Memory Partitioning
We have already learned some basic memory-related facts about .NET internals in the 

previous chapter. We’ve looked inside process memory running managed code. As we have 

seen, there are many various memory segments inside it. Some of them are used internally 

by the .NET framework itself. Some of them are part of operating system cooperation. 

But there are also more important heaps for us denoted as the Managed Heap.

As it was explained in Chapter 4, some of them contain various data required for the 

Execution Engine, like types description. Those are Domain heaps, Low Frequency heaps, 

and High Frequency heaps. But among all those different heaps, there is yet the most 

important one that is for the sole Garbage Collector purposes (see Figure 5-1). Those are 

the memory segments that contain the Heap (or the Free Store) as defined in Chapter 1 

from the CLI perspective. Let’s agree that these memory areas will be called the Garbage 

Collector’s Managed Heap (the GC Managed Heap or the GC Heap in short).

Figure 5-1. Among various heaps existing inside a process running .NET 
application, there is one type that is the most interesting for us - GC Heap 
containing all objects allocated by our program

When our application is running, the .NET runtime Allocator is allocating objects 

inside the GC Heap. The Collector implemented in .NET runtime tracks the reachability 

of objects located in the GC Heap to reclaim memory of those which are no longer 

reachable.
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As we have seen in the previous chapter, the misbehaving of any of those different 

heaps can indicate some problem. Nevertheless, from the .NET developer’s point of 

view, the GC Heap is the place of the most interest. Thus, we can freely say that the rest of 

this book will focus on this area of memory.

 Partitioning Strategies
GC Heap can grow to the size of many gigabytes. It might not be a problem from the 

Allocator perspective. But taking such possible big sizes into account, it is difficult to 

imagine that the Collector is able to treat so much data uniformly. It’s difficult to handle 

gigabytes of data in a timely manner. When designing Garbage Collector as a whole, one 

of the most important parameters is the overhead it introduces. Among other things, for 

example, for how long it stops thread activity due to garbage collection. Or how much CPU 

it consumes. One would like to achieve less than millisecond pauses. However, due to 

the memory access latencies listed in Chapter 2, in the time of milliseconds we may read 

megabytes, not gigabytes of data. This is why one of the most important design decisions 

behind every Garbage Collector implementation is the memory partitioning strategy.

Simply put, we want to split the whole GC Heap into smaller parts to have the 

possibility to operate on them independently. If done wisely, it can tremendously speed 

up the Garbage Collector work because, as it turns out, there is in fact no need to treat all 

the data equally during program execution.

There are many different partitioning strategies possible. They are usually based on 

one of the properties of the existing object:

• Size - we can split GC Heap into parts of various object’s sizes. 

For example, you may want to treat differently small objects from 

those really big ones. This may be especially important when the 

compacting collection is used. Copying big objects may introduce 

significant memory overhead, so we may decide to compact only 

areas of small objects and use sweep collection for larger ones.

• Lifetime - the life of the object is pretty important. Intuitively, it is 

worth treating objects that live very short differently from those that 

live most of the entire application lifetime. Obviously we do not 

know the future, but at least we can differentiate objects living long 
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from those recently created. Memory areas for objects with different 

lifetimes are generally referred to as generations and called “young”  

/ “old” or by consecutive numbers.

• Mutability - one of the most important properties of an object  

is its mutability. If an object cannot be changed once created  

(it is immutable), it may we worth it to treat it differently than 

mutable ones.

• Type - one may decide to treat differently some specific type of 

objects. Do we want to maintain a separate heap for strings, integers 

or any other special classes, interface implementations, or attributes? 

Your mileage may vary.

• Kind - objects can be classified in many different ways and 

partitioned in this respect. For example, does an object contain  

any pointers (outgoing references)? If not, we do not have to  

worry about them when compaction of other objects happened.  

Has an object been pinned (pinning will be described in detail 

in Chapter 7) so it will not be moved even during compacting 

collection? If yes, maybe it is worth it to move it to yet another 

memory partition to not introduce all overhead related to moving 

objects around those pinned instances.1

In case of both Microsoft’s .NET implementation and Mono implementation, only 

the first two of these strategies were chosen. Their GCs do not particularly care about the 

type or mutability of an object, they simply manage the appropriate number of required 

bytes (like “give me N bytes for the new object”). However, as GC design is constantly 

evolving, no one knows if in the future, one of the additional strategies will not be 

implemented in either .NET’s or Mono’s GC.

Now just let’s look in detail at both of these partitioning strategies. As always, most 

details will be related to Microsoft’s implementation with only side notes related to 

Mono or any other runtime.

1 This is, however, much more complex that it sounds. For example, objects in .NET are not 
created pinned - we can decide to pin and unpin them at any time afterward. Thus, such a 
separate region of currently pinned objects in case of CLR could be counterproductive, requiring 
copying the object back and forth during pin/unpin.
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 Size Partitioning
The first strategy is to treat differently objects of various sizes. As mentioned above, the 

main reason behind it is the memory copying overhead in case of compacting collection. 

Since there is no particular justification for dividing into several size ranges, a single 

threshold value was selected that defines the boundary between a small and a large 

object. GC Heap is then divided into two physically separated memory regions:

• Small Object Heap (SOH) - all objects smaller than 85,000 bytes are 

created here.

• Large Object Heap (LOH) - all objects equal or larger than 85,000 

bytes are created here.

Most of the logic and code are shared between them, but obviously there are 

important differences. Please note this threshold is 85,000 bytes but people tend to 

understand it incorrectly as 85 times 1024 bytes as it would be 85 KiB (or 85 kB in 

common sense).

Because we separated in that way “small” and “large” objects, we can treat both 

heaps differently:

• Compacting collections may be used for SOH because for small 

objects, we are not so afraid of memory copying. As we will see in 

Chapter 7, both sweep and in-place compacting collection have 

been implemented in case of Microsoft’s Small Object Heap. During 

the additional Plan phase, it is decided which one of them will be 

executed.

• Only a sweep collection is used in LOH because of the compacting 

(copying) cost of large objects (although a user may trigger LOH 

compaction explicitly).

Currently for Mono 5.4, the single threshold value is 8,000 bytes. all bigger objects 
are allocated in a region named in Mono as Large object Store (LoS) and smaller 
objects are allocated in nursery. Similar to Microsoft’s .net, small objects’ space 
may be compacted while LoS is cleaned only by sweeping.
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We may wonder why a threshold value of 85,000 bytes and not another has been 

selected. As we’ve seen it already a few times in this book and we will see many times 

in other places, there is often a mix of engineering and historical reasons. The simplest 

answer is that this value has been selected experimentally based on numerous tests 

conducted at the very beginning of .NET. There is a rumor that these tests were 

conducted mainly in the context of a SharePoint product, but this is completely 

unconfirmed. A bunch of various scenarios were selected including internal and external 

teams. Since then, there is simply no evidence that changing this value would provide 

any benefits.

you may also wonder what size 85,000 bytes threshold applies to. obviously it 
considers the shallow size of an object - references are counted as references, 
not the size of the objects they refer to. For this reason, in Loh most often we may 
find… arrays. it is hard to imagine an object having so many large fields that its 
shallow size exceeds 85,000 bytes. please also note that an object having a large 
array as a field is not large itself - this field is only a small reference to the array.

There is one notable implementation detail worth mentioning. SOH has different 

memory alignments on various platforms. In case of a 32-bit runtime, the alignment 

is 4 bytes. It means that all allocated objects are arranged in the way that their starting 

addresses are a multiplication of 4. In that way no unaligned memory access happens, 

which would always come with noticeable performance cost. In case of a 64-bit platform, 

the alignment in SOH is 8 bytes. LOH is different because the memory alignment there is 

always 8 bytes, regardless of the bitness of the framework. For a 64-bit platform it seems 

to be natural. However, why 8 bytes alignment in case of a 32-bit runtime, in opposite to 

4-bytes alignment of SOH? It was mainly for arrays of doubles so their access is aligned 

(as will be explained soon). And since 8 bytes is very small compared to how big a large 

object is, LOH was 8-byte aligned without no worries.

 Small Object Heap
A Small Object Heap is by far the most popular memory region because most of the 

objects we create are smaller than 85,000 bytes. Thus, typically the number of the 

objects allocated in SOH outnumbers the number of LOH-located objects in orders 

of magnitude. Since a large number of objects can cause problems (like traversing 
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a large graph during the Mark phase), it is worth considering dividing this area into 

even smaller, separated pieces. Such a decision was made in the majority of known 

environments with automatically managed memory for separating objects in terms of 

their lifetime.

Because Small Object Heap organization is strictly related to lifetime partitioning, 

any further details of it are provided in the next point.

 Large Object Heap
A Large Object Heap is sometimes called 3-th generation or is referenced by 3rd index 

(after 0, 1, and 2 for three generations residing in SOH as we will soon see). Although the 

idea behind is simple - store all objects equal or larger than 85,000 bytes

From the Collector point of view, large objects in Loh belong logically to  
generation 2 because they are collected only when generation 2 is being collected.

There is an assumption that large object allocations are rather infrequent because 

most programs do not need so many big data structures. This may be not true in some 

cases and may lead to performance degradation (see Rule 15 Avoid Excessive LOH 

Allocations in Chapter 6). In general, it is true that only objects bigger than 85,000 bytes 

are allocated inside a Large Object Heap. However, there are some little exceptions as to 

what is being placed there.

 Large Object Heap - Arrays of Doubles

The most noteworthy exception of what we can find inside LOH applies to arrays 

of doubles in case of a 32-bit runtime environment (even when executed on 64-bit 

machine). Arrays of double are treated as “large objects” and thus allocated in LOH 

when they have equal or more than 1,000 elements (see Listing 5-1). As double is always 

8-bytes long, it means that LOH contains around at least 8,000-byte big arrays, breaking 

the rule of containing only objects bigger than 85,000 bytes.
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Listing 5-1. In case of 32-bit .NET runtime, arrays of doubles with equal or more 

than 1,000 elements are allocated in LOH so this sample program will print “0” 

and “3” respectively.

double[] array1 = new double[999];

Console.WriteLine(GC.GetGeneration(array1));      // prints 0

double[] array2 = new double[1000];

Console.WriteLine(GC.GetGeneration(array2));      // prints 3

Why has such a strange and quite specific exception been made? As mentioned 

before, in this case the reason is related to memory alignment, not to memory copying 

overhead. Double is 8-byted long. Unaligned access to double is very expensive  

(far more than for integral types). This is not a problem for a 64-bit environment,  

which always uses 8-byte alignment for both SOH and LOH. But it may be problematic 

for a 32- bit SOH with a 4-byte alignment.

Thus it is worth it to use LOH, which, as mentioned, always uses an 8-byte 

alignment. In this way, we avoid a large cost of unaligned access for bigger arrays. But 

why not always allocate arrays of doubles in LOH for 32-bit runtime then? Allocating 

in LOH has its own drawbacks - as it is not being compacted, a lot of smaller structures 

may introduce unwanted fragmentation. Choosing to allocate there only arrays above a 

certain size is in fact a compromise balancing between costs of unaligned access versus 

fragmentation. And again, a threshold of 1,000 was chosen experimentally.

We should still be aware of fragmentation caused by arrays of doubles when using 
a 32-bit framework. a lot of continuously created and reclaimed arrays of doubles 
bigger than one thousand elements may be, for example, created during some kind 
of signal processing. in such a situation, we should create a reusable buffer (pool) of 
arrays instead of constantly creating new ones. See Scenario 6-1 for further details.

 Large Object Heap - Internal CLR Data

There are no other exceptions to Large Object Heap allocations of objects we allocate in 

our code and not being bigger than the given size threshold. However, LOH is also used 

by the .NET Framework internally to store some additional data. We have mentioned 
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them twice in the previous Chapter 4, in the context of string interning and static fields. 

We refer here to the LargeHeapHandleTable structure. Let’s now dedicate a few words  

to it.

LargeHeapHandleTable

LargeHeapHandleTable is a data structure maintained by the .NET runtime, which 

manages objects’ arrays allocated in Large Object Heap for its internal purposes. 

Internally it is organized into buckets (see Figure 5-2 for an illustration of those data 

structured in CoreCLR). Each bucket represents a single Object[] array allocated in 

LOH. Those arrays are pinned so they will not be ever moved by the Garbage Collector. 

This is because various unmanaged parts of CLR may store pointers to the array’s 

elements, so moving them would require a lot of work by updating those pointers.

Each bucket stores a pinned handle to the corresponding array. It also stores (for 

convenience) a direct pointer to the beginning of the array’s data (m_pArrayDataPtr) 

and the current index of the not-yet-used array element (m_currentPos, as these arrays 

are created with some spare space in advance). If all array elements have been used, a 

new bucket will be created (which incurs creating a new Object[] array in Large Object 

Heap). Buckets inside a LargeHeapHandleTable are chained into a single-linked list 

(each bucket stores m_pNext pointer that points to the next bucket or null in case of being 

the last element).

As mentioned earlier, there are two main usages of LargeHeapHandleTable structure. 

As CoreCLR source code states:

// There are two locations you can find a LargeHeapHandleTable

// 1)  there is one in every BaseDomain, it is used to keep track of the 

static members in that domain

// 2)  there is one in the System Domain that is used for the 

GlobalStringLiteralMap

Those have been also illustrated in Figure 5-2. In other words, inside LOH there will be:

• one or more Object[] for global string literal map (aka String Intern 

pool) - managed by single LargeHeapHandleTable as it consists of at 

least a single bucket;

• one or more Object[] for each domain used for statics - managed 

by LargeHeapHandleTable in BaseDomain, as it consists of at least a 

single bucket.
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even that SystemDomain is a domain in general, and it derives from BaseDomain 
so it contains m_pLargeHeapHandleTable, it is not being used by it - System 
Domain does not contain any managed module so there is no need for static 
members in it.

We can see handle table arrays by using WinDbg, for example. After attaching to 

the .NET process, we should load an SOS extension and list all GC-related memory 

regions by the eeheap command (see Listing 5-2). After learning the address range 

corresponding to LOH, use the dumpheap command to list all objects inside it. Results 

for the simple “Hello world” console program are also listed in Listing 5-2. As we can 

see, in such a pure program, there are only three Object[] arrays (column with value 

00007ffb8f34a5b8 corresponds to MethodTable of Object[]).

m_pGlobalStringLiteralMap

Large Object Heap

LargeHeapHandleTable

Private Heap (unmanaged)

LargeHeapHandleBucket

BaseDomain

Object[] H MT n

LargeHeapHandleBucket

Object[] H MT n Object[] H MT nObject[] H MT m

LargeHeapHandleTable

LargeHeapHandleBucket

SystemDomain

(null)

pinning handles

m_pNextm_pNext

m_ArraySize
m_CurrentPos

m_pArrayDataPtr

m_hndHandleArray

n = m_ArraySize

m_pLargeHeapHandleTable

Figure 5-2. LargeHeapHandleTable structure
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Listing 5-2. Using WinDbg and SOS extension to list handle tables inside Large 

Object Heap

> .loadby sos clr

> !eeheap

...

Large object heap starts at 0x000001e5ad231000

         segment             begin         allocated              size

000001e5ad230000  000001e5ad231000  000001e5ad235480  0x4480(17536)

> !dumpheap 000001e5ad231000  000001e5ad235480

         Address               MT     Size

000001e5ad231000 000001e59afc2ff0       24 Free

000001e5ad231018 000001e59afc2ff0       30 Free

000001e5ad231038 00007ffb8f34a5b8     8184

000001e5ad233030 000001e59afc2ff0       30 Free

000001e5ad233050 00007ffb8f34a5b8     1048

000001e5ad233468 000001e59afc2ff0       30 Free

000001e5ad233488 00007ffb8f34a5b8     8184

Those three arrays are:

• under 000001e5ad231038 address - handle table for Domain 1 (that 

contains most libraries and modules with our program itself),

• under 000001e5ad233050 address - string intern pool,

• under 000001e5ad233488 address - handle table for Shared Domain 

(which in case of simple console application may only contain 

System.Private.CoreLib.dll module).

if you wonder why there are also very small Free spaces visible at Listing 5-1, the 
answer is in Chapter 6 in the Large object heap allocation section.

Unfortunately, currently there is no single way of knowing which array corresponds 

to which usage - we can investigate it mainly by looking at the content of each of them 

(by issuing dumparray command on each address).

Obviously a string intern pool will contain references to interned strings. The other 

two will contain mainly various static members of the used libraries and our code.  
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They will also contain strings that are created during resolving string literals of NGENed 

assemblies (and not using string interning due to NoStringIntern option).

There is yet one more usage of table handles - runtime uses them to store various 

Reflection- related data. If GetType, typeof, or any other Reflection API is used - 

underlying RuntimeType and other information is also saved via a handle in table handles. 

Thus we may also spot quite a lot of type-related objects referenced by those arrays.

It is rather unlikely that LargeHeapHandleTable will be a problem in our application. 

It would require creating a lot of static members (dynamically) or loading many dynamic 

AppDomains in general. Another possible reason would be interning a lot of strings. 

If you see a lot of big Object arrays in a Large Object Heap whose only root is a pinned 

handle - it may indicate you have just ended with one of such rare situations. However, 

as those arrays store only references, you will probably first notice a lot of those objects 

elsewhere in the first place.

 Lifetime Partitioning
As mentioned earlier, due to the possible huge amounts of objects inside Small Object 

Heap, the decision was made to separate it into pieces regarding an object’s lifetime. 

This concept is called Generational Garbage Collection because objects are divided into 

generations - with similar lifetimes defined in some specific manner. We can define 

lifetime in many possible ways, but let’s stay with the two most obvious ones:

• absolute time - we can somehow relate object lifetime to real time. 

The simplest way would be to use the number of CPU clock ticks at the 

moment when the object has been created. This approach, however, 

comes with some drawbacks. How long should a “long life” last? And 

how about short? Is a second a long or short life? It is almost impossible 

to provide a generic answer because it depends on the specific program 

characteristics - how many objects it allocates, how often they should be 

garbage collected, and so on and so forth. We could create a self-learning 

mechanism to calculate thresholds between short- and long-living 

objects but it would be probably overcomplicated.

• relative time - instead of real time, we can relate an object’s lifetime 

to some specific event, like garbage collection itself. In this way we 

are counting how many garbage collections the object has survived. 
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We may manage some internal counter that counts those survivals 

for each object. If it exceeds some given (or calculated) threshold, we 

treat such object as being “older.”

We could even imagine less obvious ways of indicating an object’s lifetime. For 
example, if Collector and allocator are designed in a way that objects are never 
pushed back to the lower addresses, we can calculate the age of the object as the 
difference of its address in relation to another place in the memory.

It is interesting to note that many Garbage Collection descriptions almost always 

start from the fact that .NET has a Generational GC. But as we see, there is much more 

before we came to this implementation detail.

But why are Generational Garbage Collections applicable at all? Why does splitting 

and different treatment of objects due to their age make sense? This comes mainly from 

an observation called generational hypothesis. In fact, there are weaker (less general) 

and stronger (more general) versions of it, which put together are foundations of 

Generational GCs. They are kind of against intuition about human life:

• weak generational hypothesis (also known as infant mortality) - 

observation that most young objects live short. In other words, most 

of the objects that a program allocates become unused quickly. Those 

are all temporary objects represented by local variables, temporary 

(hidden) allocations, and all short-lived processing. This hypothesis is 

quite broadly confirmed by various computer science studies.

• strong generational hypothesis - observation that the longer an 

object lives, it most probably will live even longer. This would be 

various long-living objects like long caches, “managers,” “helpers,” 

object’s pools, business workflows, and so forth. However, studies 

do not confirm this hypothesis completely as an object’s lifetime 

characteristics seem to be much more complex that such a single 

sentence. There is even no universal definition of this hypothesis. 

We can benefit knowing such distribution of objects regarding its age (see Figure 5-3). 

It is worth it to reclaim memory for young objects as fast as possible (by separating them 

into a “young” generation) if most of them die fast. And it is worth it to much less frequently 
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reclaim memory for old objects (by separating them into an “old” generation) if they die 

rarely. We can, of course, also decide to create any number of “temporary,” intermediate 

generations between them.

Having objects grouped into various generations, we can treat them separately. We 

can, for example, do garbage collection only on the youngest generation or only on the 

oldest one. We may also decide to collect all generations, which is typically referred to as 

a full garbage collection.

When an object reaches a certain lifetime threshold, it said to be promoted to the 

next generation. In other words, after promotion, we treat an object as belonging to the 

successive, older generation. What does exactly such a promotion mean and why does it 

vary significantly between various GC implementations?

One of the possibilities includes copying to some other region of memory. In such 

case it realizes copying of GC mentioned in Chapter 1 (Figure 1-18). Imagine generations’ 

organization as in Figure 5-4 where we have three separate regions of memory for 

generations named 0, 1, and 2. The following example steps might be as follows:

• After a while of program execution, we have created objects A, B, and 

C - they are allocated in the youngest generation “0” (Figure 5-4a).

• After some time, GC happened - let’s assume that object A turned 

out to be unreachable. Thus, only objects B and C are copied to 

generation “1” (Figure 5-4b).

• After some time, we have created object D - it has been allocated in 

generation “0” (Figure 5-4c).
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generation

"temporary"
generation
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Figure 5-3. Weak and strong generational hypothesis illustrated as a number of 
life (or reachable less precisely) objects regarding their age
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• After some time, GC happened again - let’s assume now B is no 

longer reachable. So, objects C and D have been copied to older 

generations (Figure 5-4d).

• After some time, we have created object E - it has been allocated in 

generation “0” (Figure 5-4e).

A B C

B C

D CE

0 1 2

(a)

(b)

(e)

B CD(c)

D C(d)

Figure 5-4. Generations in case of copying GC, as separated memory regions. 
Promotion means copying an object to a different region.

We can sometimes meet the claims that generations in Microsoft .NET work in such 

a rather intuitive way. It is very important to remember that this is not true. Microsoft’s 

implementation of CLR has slightly different, more complex, yet a more efficient 

approach, thoroughly explained in Chapter 7.

In another approach, generations can be defined logically by addresses’ boundaries. 

Promotion will be then just moving those boundaries, not the objects themselves 

(see Figure 5-5). This is a much faster approach than copying as moving such logical 

boundaries takes almost no time. Additionally, we may or may not compact survived 

objects (although it will be a lot more complex if we do). Imagine generations’ 

organization as in Figure 5-5 where we have one continuous block of memory. The 

following example steps might be as follows:
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• After a while of program execution, we have created objects A, B, 

and C - there is only a single, youngest generation “0” (Figure 5-5a). 

Boundaries of generations 1 and 2 are degraded to zero or very small 

sizes (it depends on specific implementation details).

• After some time GC happened - let’s assume again object A turned 

out to be unreachable. Let’s assume also that we are doing a simple 

sweep collection. Memory of object A has been reclaimed. And 

because now objects B and C should belong to older generation “1” 

we are moving its boundary after object C (Figure 5-5b), adjusting the 

boundary of generation “0” as well. No memory copying was needed.

• After some time we have created object D - it has been allocated in 

generation “0” (Figure 5-5c). But this has no drawbacks at all.

• After some time, sweeping GC happened again - let’s assume again 

that B is no longer reachable so the memory of it has been reclaimed. 

We have to adjust generations’ boundaries again. Object D now 

belongs to generation “1” and C to generation “2” (Figure 5-5d). 

Generation 0 boundary is also appropriately adjusted.

• After some time we have created object E - it has been allocated in 

generation “0” (Figure 5-5e).
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This is exactly how generations are handled in the case of Microsoft .NET runtimes. 

The decision has been made to create three generations named just after successive 

numbers, like in our previous examples. Hence, we have generation 0 (“young”), 

generation 1 (“temporary”), and generation 2 (“old”). The other decision is how lifetime 

boundaries between generations are being calculated. In case of Microsoft .NET 

runtimes, it is very simple - in general, an object is promoted into its older generation if it 

survives garbage collection.

there are exceptions to such a rule and we are calling it demotion (or simply not 
promoting). Why this may happen will be described in the next chapters as it is 
strongly related to various Collector and allocator mechanisms.
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(b)
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E
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(e)

2

2 and 1

2

Figure 5-5. Generation as logical boundaries inside single, continuous memory 
regions. Promotion is only a fact of belonging to a different generation due to the 
change of generations’ boundaries.

Chapter 5  MeMory partitioning



355

In other words, when an object survives generation N, it is now belonging to 

generation N+1 (we say it has been promoted to generation N+1). It also means that 

just after two successive GCs, it may land in generation 2 and stay there until it won’t be 

needed any longer.

Mono, as the main alternative to Microsoft .net, has similar organization for small 
objects (smaller than 8,000 bytes as mentioned in Loh description above). it 
distinguishes only two generations - “young” is called nursery and the “old” is 
called old space or just major heap. it also uses a simpler copying mechanism 
of promotion described above - when an object in nursery survives garbage 
collection, it is copied to the old generation.

Generational garbage collection has one quite notable drawback, however. As 

generational hypotheses underlie its construction, failure to comply with them in our 

application can cause severe disadvantageous behavior. This leads to an important 

conclusion - in a healthy system consistent with the generational hypotheses, the older 

the generation is, the less often it should be garbage collected. We should strongly follow 

Rule 18 - Avoid Mid-Life Crisis described in Chapter 7.

However, we may be also very interested in the sizes of the generations. This is how 

in fact we can most easily confirm whether we have a memory leak in our application 

or not. The easiest way to observe generation sizes is by using Performance Counters 

or ETW mechanisms (see Table 5-1). They both measure the state of the heap just after 

garbage collection has happened. There are just two small caveats:

• Due to legacy reasons \.NET CLR Memory(processname)\Gen 0 heap 

size counter does not show true generation 0 size but something 

called its allocation budget (in simplest words - number of bytes 

to be allocated into a generation before a GC is triggered on that 

generation). Thus, looking at this counter may be misleading.

• We should remember that the highest possible sampling in the 

Performance Monitor is one second regardless of the fact that 

underlying data is refreshed more often. Therefore, if garbage 

collection takes place more than once per second, we will lose some 

measurements.
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However, those caveats are not very annoying because the most often garbage 

collected generations 0 and 1 are generally quite small and do not cause any problems.

 Scenario 5-1. Is My Program Healthy? Generation  
Sizes in Time
Description: We want to observe generations’ sizes during web application execution. 

Ideally we would like to do it in a non-invasive way during load tests performed on 

our pre-production environment. This would give us some confidence that there are 

no memory leaks in our code. The application under test is plain nopCommerce 4.0 

installation - a universal open source e-commerce platform written in ASP.NET (you may 

wish also to see Scenario 5-2 in which a similar test is performed under slightly different 

conditions).

Analysis: Let’s skip the technical part of the load test preparation, assuming that the 

appropriate procedures and tools are just in place. Load test execution will be executing 

around 7 requests per second and last 170 minutes to create the opportunity to notice a 

memory leak if any exists. nopCommerce is being hosted on IIS via .NET Core Windows 

Server Hosting. It means although there is w3wp.exe process representing application 

pool, it only passes a request to the self-hosted .NET Core web application. In our case 

this process is named Nop.Web.exe.

First of all, we may wish to check overall memory usage of the application according 

to Scenario 4-1 from Chapter 4. This includes observing Working Set - Private, 

Private Bytes, and Virtual Bytes from Process(Nop.Web) counters altogether with 

\.NET CLR Memory(Nop.Web)\# Total committed Bytes counter.

Table 5-1. Basic Generation Sizes Measurements (Where Processname  

Is Obviously an Instance Name Corresponding to Your Process)

Generation ETW (GCHeapStats_V1 
event)

Performance Counter (\.NET CLR 
Memory(processname))

0 generationSize0 gen 0 heap size (“allocation budget”)

1 generationSize1 gen 1 heap size

2 generationSize2 gen 1 heap size

3 (LOH) generationSize2 Large object heap size
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Secondly, the easiest observation is to use the Performance Monitor tool to observe 

counters listed in Table 5-1. The results are showed in Figure 5-6 and a simple numerical 

summary is provided in Table 5-2. Please note that generations are drawn with different 

scales to visualize them clearly. As we may notice:

• generation 0 size (thin solid line) changes continuously between 

two values of 4,194,300 and 6,291,456 bytes. As mentioned earlier, 

those are not the real generation sizes but its allocation budgets. And 

although they are not real values, we can interpret them as a sign of a 

healthy state. The size of the generation is stable. If it grew with time, 

the illustrated counter would also grow (even it does show only size- 

related value).

• generation 1 size (dashed line) changes a lot due to its intermediate 

nature. As there is no upward trend visible, here also the 

measurement confirms the healthy state of an application.

• generation 2 size (thick solid line) shows a typical triangle pattern - 

objects are gathering in the oldest generation and from time to time 

they are garbage collected. It is typical to postpone full garbage 

collection until really needed so periodical gathering of oldest data 

is quite typical. In the case of web applications, the reachability of a 

large part of the objects is related to the lifetime of the user session 

and possible data caching. Thus, such a triangular pattern may be 

just normal. However, it is a small indication of possible problems, 

and we should treat it as a warning triggering further investigation. 

The next step should be observing this pattern in an even longer 

period in time and validate whether there is an increasing trend 

in the maximum generation 2 size. We should also observe \.NET 

CLR Memory(Nop.Web)\% Time in GC counter (see Scenario 7-1 for 

details) to check GC overhead on the whole process.

Please also note that both generations 0 and 1 in total are quite small so any changes 

here should not worry us much. This is a typical scenario as any memory leaks will 

be visible by a constant increase of the oldest generation (more and more long-living 

objects will be held).
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It is also interesting to compare ETW data to those collected by performance 

counters. As previously said, the latter are sampled only every second while the former 

allows us to record each and every sample (GCHeapStats_V1 event emitted at the end  

of GC). Figures 5-7a, b, and c illustrate this difference in case of much smaller 20-second 

Table 5-2. Summary of Measurements Illustrated in Figure 5-6

Generation Min Max

0 4,194,300 6,291,456

1 ~18,268 7,384,704

2 52,654,336 447,385,748

LOH 0 38,826,368

Figure 5-6. Performance Monitor view of generation sizes during near 3-hour 
long load test of ASP.NET application
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time spans (to make it more visible). ETW-based generation sizes were recorded by 

Perfview with a low-overhead GC Collect Only option selected. Data from GCHeapStats_V1 

events was exported then to the CSV file. Performance counters data were collected by a 

Data Collector Set mechanism available in Performance Monitor, which allows to record 

a session to a file (including CSV text file format) instead of drawing it in real time. As we 

can see:

• Performance counter data are indeed sampled every second. 

Because the web site was heavy loaded during the test, garbage 

collections happen much more frequently. Therefore, there are many 

more ETW samples available.

• For generation 0 the difference between both data is huge (see 

Figure 5-7a). This is due to mentioned legacy reasons. If we really 

need to track generation 0 size in time, we should use ETW.

• For generation 1 it is clear that some performance counter samples 

correspond to ETW data (see Figure 5-7b). However, there is again 

much more happening in between. It is clearly seen how dynamic are 

changes of generation 1 size. This is, of course, knowledge that we do 

not necessarily need. One second-based sampling of performance 

counters may be just fine. In most applications GC will not occur 

so frequently so the difference may be even completely eliminated 

(if GC mostly occurs less often than every second). However, it is 

certainly worth being aware of this difference.

• For generation 2 we see almost complete adequacy of the data  

(see Figure 5-7c). This is because of much less frequent full garbage 

collections so almost no samples are lost in the case of performance 

counters.
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Figure 5-7. Generation size charts created from CSV data exported from ETW and 
performance counters data
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The general verdict is positive. We can consider the application to be healthy. 

Long- running observation of appropriate performance counters did not show anything 

especially alarming. In the scenario, only a small region of ETW data was shown to 

visualize the difference in measurements between ETW and performance counters. 

Analysis of the whole ETW data also would not show anything alarming. However, 

further steps should be taken to measure overall GC overhead (see Scenario 7-1 from 

Chapter 7).

 Remembered Sets
We have learned that objects in SOH are separated into generations, and thanks to that 

we may treat each of them separately. In particular it means we should be able to run 

garbage collection on each of the generations separately. We could garbage collect 

objects in the “young” generation only. Or in the “old” generation only. This is, however, 

an oversimplified point of view.

If we remember the general garbage collection mechanism described in Chapter 1,  

we may recall the Mark phase used by the Collector. Its responsibility is to find out 

reachability of the objects - starting from the roots and by a traversing objects graph. 

During this process GC is following outgoing references contained in visited objects. 

This works perfectly if we are visiting a whole objects graph, containing all objects in our 

application. But what if we want to garbage collect only a subset of it - like collecting only 

“young” generation? Let’s imagine a situation illustrated in Figure 5-8. It shows a  

three- generational Garbage Collector in some moment in time:

• generation 0 contains objects A, B, C, and D. A is directly rooted 

(most probably it held by a local variable hold on stack) and it has 

a field referencing object B. C is only refenced by an object from an 

older generation. Object D has no references pointing to it (it is thus 

truly unreachable).

• generation 1 contains objects E, F, and G. E is directly rooted and 

it has a field referencing object C (from a younger generation). 

Object F has no references pointing to it (so this is yet another truly 

unreachable object). Object G has a reference from object D in the 

younger generation.
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• generation 2 contains no objects to not clutter our explanation here - 

the mechanism remains the same, no matter if an “older” generation 

means generation 1 or 2.

Generation 0

roots
(like stack) H MTH MT H MT

H MTH MT H MT

Generation 1

A

E F

B C H MTH MT H MTH MTD

H MTH MTG

Generation 2

Figure 5-8. Cross-generational references illustrated in a sample scenario with 
two generations

Figure 5-8 shows us the most typical possible references that may occur in our 

applications. Cross-generational references showed there are perfectly valid:

• younger to older - recently created object may be created with a 

reference to already existing older object (like objects D and G).

• older to younger - object created some time before may be set to 

contain newly created object’s reference (like objects E and C).

From the Mark phase perspective such cross-generational references need to be 

handled. We could of course traverse the whole objects graph to find the reachability 

of objects A, B, C, D, E, F, and G. But traversing the whole graph would obviously defeat 

the purpose of splitting objects into generations. So let’s take a naive approach of 

marking only the “young” generation - which means traversing only objects in the young 

generation. To be more precise, we start from the roots and continue traversing until 

we meet objects from the generation other than the “young” generation. This obviously 

leads to wrong results.
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Starting from the roots, we will mark as reachable only objects A and B. Object E, 

even it is rooted, will be ignored as it is located in an “old” generation. We will not visit 

object C as none of roots or other “young” objects are referencing it. We will simply not 

notice that object C is referenced by E. As a result, we will treat objects C and D as not 

reachable. Object D is indeed unreachable and may be removed. But object C would 

be garbage collected even it is still used by object E; we simply didn’t notice that! This 

clearly shows that older to younger cross-generational references must be somehow 

handled. We must include them while considering objects’ reachability in the younger 

generations if we want only young-generation collection.

To handle older to younger cross-generational references, a technique called 

remembered sets has been introduced. In general, a remembered set is a separately 

managed collection of references between separate sets of objects. In our case, it is a 

set of cross- generational collections remembering references from an older-to-younger 

generation. They are then simply investigated during the Mark phase.

In our sample scenario during young-generation garbage collection, we will traverse 

objects starting both from roots and from references stored in the remembered set - 

which includes E-to-C reference. This leads to desired proper results.

Please note that younger-to-older cross-generational references could be 

problematic only in case of collecting only old generation (without collecting younger 

ones at the same time). On the other hand, if we do only young-generation collection 

in our sample scenario, we may correctly garbage collect object D, even it is referencing 

something. We will just leave object G temporarily unreferenced. It will be marked as 

unreachable when doing older-generation garbage collection later. So both objects D 

and G will be eventually collected.

However, when trying to do old generation-only garbage collection, we encounter 

the same problem. We would not notice that G is being referenced by D. We should 

create another remembered set for young-to-old cross-generational references. As we 

will soon see, implementing remembered sets is not trivial so a simpler decision was 

made instead. As Microsoft’s documentation says: “Collecting a generation means 
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collecting objects in that generation and all its younger generations.” This leads to some 

of the most important information regarding .NET memory management. Garbage 

collection in .NET may occur:

• for generation 0 only,

• for generations 0 and 1,

• for all generations 0, 1, and 2 and Large Object Heap (full garbage 

collection).

But how can a remembered set may be maintained? When we add or remove 

references to it? The common solution is to remember it when such reference is being 

created, which happens mainly during field assignment (see Listing 5-3). It may be 

triggered directly (in case of not private fields) or indirectly by property assignment or 

constructor and method calls.

Listing 5-3. Public field assignment as an example of creating older-to- younger 

cross-generational reference (assuming object e lives in older generation than 

object c)

E e = new E();

...

C c = new C();

e.SomeField = c;

The last line from Listing 5-3 would be a perfect place to remember a newly created 

reference in a remembered set. However, we should look at the problem in a more 

general way. Fields as defined in C# may be only one of the possible ways to hold 

references, resulting from the C# specification. However, we should not associate the 

remembered sets mechanism with one specific language. There may be other ways to 

store references in the future - be it in C# or in a new, not yet existing language.

Therefore, to implement this mechanism we should take advantage of a more  

low- level technique on the runtime level - the write barrier concept mentioned the 

Chapter 1. We may add appropriate write barrier code to the Mutator.Write operation 

(look at Listing 1-7 in Chapter 1). This operation is executed by a Mutator always when 

we want to store some value under a given address. Obviously this is a tremendously 
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common operation so adding anything to it may introduce enormous overhead. When 

designing such a write barrier one must be extremely careful. It is beneficial for us 

that we need only to augment a Write operation by such a write barrier under certain 

conditions (representing storing a reference):

• value is a reference to a managed object,

• address is located in the Managed Heap and it represents some valid 

object’s field,

• address is located inside generation older than generation where 

object referenced by value lives in.

As a result we may end up with a schematic implementation shown in Listing 5-4 

that checks the above conditions and remembers the reference if it is appropriate. When 

executing the Mark phase, we should then include references stored in the RememberedSet 

along with the other roots.

Listing 5-4. A very simple, schematic pseudo-code of write barrier supporting 

remembered sets

Mutator.Write(address, value)

{

   *address = value;

   if (AreWriteBarrierConditionMeet(address, value))

   {

      RememberedSet.AddOrUpdate(address, value);

   }

}

This is a general concept illustrated how the .NET runtime could implement it. 

Obviously checking all those conditions every time would introduce tremendous 

overhead. If we think carefully about them, we may notice a lot of possible optimizations. 

Most of them come from the fact that these conditions can be checked in advance during 

Just-In- Time compilation. The JIT compiler perfectly knows from IL code whether 

we are storing a reference to a managed object into another managed object’s field. 

During assembly code emitting, JIT can emit the proper version of the Mutator.Write, 
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depending on whether the write barrier is needed or not. This is exactly an approach 

used by the .NET runtime.

if you are interested in getting more details, you may start by looking at CoreCLr 
code of method CodeGen::genCodeForTreeNode in case of GT_STOREIND 
operand. it calls CodeGen::genCodeForStoreInd that inside decides (by calling 
gcIsWriteBarrierCandidate) whether a write barrier is required or not. if the 
decision is positive, CodeGen::genGCWriteBarrier method is being called. 
this method emits assembly code of one of two helpers called CORINFO_HELP_
ASSIGN_REF or CORINFO_HELP_CHECKED_ASSIGN_REF (the former is 
used when JIT compiler knows that it can optimize out checking 
whether target lives inside the Managed Heap; the former is used  
otherwise). those two helpers correspond to the assembly code of functions 
JIT_WriteBarrier and JIT_CheckedWriteBarrier that you can find in 
.\src\vm\amd64\JitHelpers_Fast.asm file. please note all this happens 
during Jit compilation and at runtime only JIT_WriteBarrier or JIT_
CheckedWriteBarrier functions are being called (corresponding to two helpers 
mentioned above). please also note this is a description in case of x64 runtime 
only. x86 handling of write barriers is similar but goes a different path, which is not 
described here for brevity.

Let’s look deeper how a write barrier can be seen in our .NET applications. Let’s start 

from the very simple lines of C# from Listing 5-5. It creates two objects and assigns the 

latter as a field of the former.

Listing 5-5. Sample code to illustrate write barriers in .NET

ClassA someClass = new ClassA();

ClassB otherClass = new ClassB();

someClass.FieldB = otherClass;
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Code from Listing 5-5 may be compiled into CIL code shown at Listing 5-6 (it is 

slightly simplified without losing important details). We see there creating objects of type 

ClassA and ClassB. Both those instances are kept onto the evaluation stack. Then stfld 

instruction is being called, which stores a first value from the evaluation stack into a field 

(described by a token) of an object (second value from the evaluation stack).

Listing 5-6. Sample code from Listing 5-5 compiled into CIL

newobj CoreCLR.WriteBarrier.ClassA::.ctor

newobj CoreCLR.WriteBarrier.ClassB::.ctor

stfld CoreCLR.WriteBarrier.ClassA::FieldB

When doing JIT compilation, such code may be translated into an assembly code 

from Listing 5-7. We cannot say with certainty that it will look like this because we are 

already going down to a very low implementation level. How exactly this code will look 

depends on many factors, including runtime versions and so on, and so forth. However, 

it is general enough to help illustrate the issue. As you can see, stfld instruction has 

been translated into JIT_WriteBarrier function call (checked version is not used as JIT 

compiler knows that it is a managed object accessed here).

Listing 5-7. CIL code from Listing 5-6 after JIT compilation on x64 machine

; Those lines correspond to allocating memory for ClassA object and calling 

its constructor

mov rcx,7FFCC4BA6600h (MT: CoreCLR.WriteBarrier.ClassA)

call    CoreCLR!JIT_TrialAllocSFastMP_InlineGetThread (00007ffd`241d2130)

mov     rdi,rax    ; rdi contains ClassA reference

mov     rcx,rdi

call    System_Private_CoreLib+0xc04060 (00007ffd`22e44060) (System.

Object..ctor(), mdToken: 0000000006000103)

; Those lines correspond to allocating memory for ClassB object and calling 

its constructor

mov rcx,7FFCC4BA67B8h (MT: CoreCLR.WriteBarrier.ClassB)

call    CoreCLR!JIT_TrialAllocSFastMP_InlineGetThread (00007ffd`241d2130)

mov     rsi,rax    ; rsi contains ClassB reference

mov     rcx,rsi

Chapter 5  MeMory partitioning



368

call    System_Private_CoreLib+0xc04060 (00007ffd`22e44060) (System.

Object..ctor(), mdToken: 0000000006000103)

; Those lines are calling WriteBarrier, storing reference and using 

remembered sets inside

lea     rcx,[rdi+8]    ; rcx contains address of FieldB field in ClassA 

object

mov     rdx,rsi        ; rdx contains ClassB reference

call    CoreCLR!JIT_WriteBarrier (00007ffd`2403fae0)

We will look inside JIT_WriteBarrier function, but before that we have to learn 

about yet another important technique called card tables.

 Card Tables
You may notice a serious caveat in an approach of storing every single reference in 

a remembered set. A remembered set is small in a such simple scenario like that 

illustrated in Figure 5-8 (in fact it contains only a single reference). But what about real- 

world applications with hundreds or thousands or even millions of objects referencing 

each other? Even worse, .NET has three generations so the number of possible cross- 

generational references is bigger. Additionally, changing references between objects 

is quite a common operation. Managing a remembered set as a naive collection of 

each and every single cross-generational reference would simply introduce too big of 

overhead.

As it often happens, in order to solve this problem, we must decide on some 

compromise. To reduce the overhead of collections management, individual references 

are not tracked so we lose accuracy. Instead, certain predefined areas of memory are 

tracked. They are managed by a technique called card tables.

To explain them let’s go back in time a little bit from the moment in Figure 5-8 (see 

Figure 5-9a). We see there a moment before object E starts to hold cross-generational 

reference to object C. The idea behind card tables is quite simple - we split the older 

 generation in constant-size regions (continuous regions of memory with a given number 

of bytes). In our exemplary case in Figure 5-9a, we see four such regions and a part of 

five. The first region happens to not contain any objects. The second region contains 

only a single object. The third region contains only part of some object (as it may happen 

that an object will live on the boundary of regions). The fourth region contains the 
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remaining part of the same object and yet another part of other region, and so on,  

and so forth.

Each such region is represented by a single card entry in a card table data structure. 

At the beginning all cards are clean so the corresponding card entries have a flag set to 

“clean” (which may be indicated by a single bit value of 0). Clean card means there are 

no older-to-younger cross-generational references inside the corresponding memory 

region.

Generation "young"

roots
(like stack) H MTH MT H MT

H MT

Generation "old"

H MTH MT

A

E F

B C H MTH MT H MTH MTD

H MTH MTG

card: clean card: clean card: clean card: clean card: ...

Card table {

single bit

0 0 0 0 0

Figure 5-9a. Card tables manage older-to-younger cross-generational references. 
A moment just before situation from Figure 5-8 has been illustrated. All cards are 
clean (no such reference exists).

When somewhere in an application code we assign object C to the object’s E field, 

we end up with situation illustrated in Figure 5-9b. We calculate the card for object E 

and mark the whole card as “dirty,” commonly referred to as set card (like just by setting 

binary value to 1).
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From now on, all objects inside such a set card are treated as possible, additional 

roots. In other words, when young-generation garbage collection happens, we will start 

traversing an objects graph both from the roots and from all objects inside set cards (in 

this way we will find out that C is reachable in our sample because E is being considered 

from set card).

the careful reader may ask, what if we were to change the last field of object F, 
which is in the fourth card, while object F starts within the third card? What card 
do we actually set then? Because the write barrier has to be as lightweight as 
possible, we simply set the fourth card (as it corresponds to the changed address). 
Later on, during the Mark phase, the object containing the starting address of the 
card (which is F in our case) will be found, thanks to the brick tables technique, 
described in Chapter 9.

This obviously comes with overhead. Even because of a single older-to-younger 

reference, we must visit all objects inside a card and follow their references. It is a  

trade- off between performance and accuracy. We may balance this trade-off by choosing 

s smaller or larger card size. If a card was so small that at most it contained only a single 

object, we would end up with a typical remembered set approach (each single reference 

Generation "young"

roots
(like stack) H MTH MT H MT

H MT

Generation "old"

H MTH MT

A

E F

B C H MTH MT H MTH MTD

H MTH MTG

card: clean card: dirty card: clean card: clean card: ...

Card table {
single bit

0 1 0 0 0

Figure 5-9b. Card table manages older-to-younger cross-generational references. 
After assignment of object C to object’s E,corresponding card in card table has been 
set (marked as “dirty”).
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would be tracked). If a card was so big that it covered a whole generation, we would end 

up with the approach of traversing the whole objects graph.

In case of .NET runtime, a single card corresponds to 256 bytes (on 64-bit) or 128 

bytes (on 32-bit). Each such card is represented by a single bit flag. If any part of such 

128- or 256-byte long region has a reference written to, it will be set. Those bits are 

grouped obviously into bytes so a single byte represents 8 times 256 bytes (2,048 bytes) 

memory region. Cards are grouped into 32 elements called a card word. This means 

the card word is a 4-byte-wide type DWORD (unsigned long). Thus, a single card word 

represents 8,192 bytes. This is being illustrated in Figure 5-10 (case for 64-bit platform).

Card table

256B

card word
(4 bytes)

single bit

2048B
8192B

card
region

{

Figure 5-10. Card tables organization in .NET runtime (64-bit version). Each 
single bit in card table represents 256 bytes of memory. Those bits are grouped into 
bytes (so each byte represents 2,048 bytes memory region). Bytes are grouped into 
card words representing 4 times bigger memory regions.

With such knowledge we can now jump into the above-mentioned  

JIT_WriteBarrier function. What is interesting is that the memory region for  

JIT_WriteBarrier function is treated only as a placeholder for one of its more specific 

implementations. Those barriers may be changed at runtime, by copying over specific 

implementation into it (obviously it happens while program execution is suspended). 

This placeholder size is equal to the largest function implementation so any other can fit 

into it. We will look at the simplest version (see Listing 5-8), but they all differ very little 

so looking at one is completely sufficient (read below note for more details).
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Different JIT_WriteBarrier implementations can be found in .\src\vm\
amd64\JitHelpers_FastWriteBarriers.asm file of CoreCLr source (in case 
of amd64 implementations). it contains the following versions:

•  JIT_WriteBarrier_PreGrow64 and JIT_WriteBarrier_PostGrow64 - 
those are used in workstation gC mode. the first is used when generations 0 
and 1 are located in their default locations. after some time, runtime may decide 
to move it to another place and then PostGrow version will be injected.

•  JIT_WriteBarrier_SVR64 - used in server gC mode where there are 
multiple heaps so also multiple generations 0 and 1, so checking whether value 
belongs to them would be too slow, therefore the cards are unconditionally set.

•  JIT_WriteBarrier_WriteWatch_PreGrow64, JIT_WriteBarrier_
WriteWatch_PostGrow64 and JIT_WriteBarrier_WriteWatch_SVR64 - 
corresponding version of previous functions using CLr implemented Write 
Watch technique described soon (when oS implementation is not available).

When runtime decides to change the write barrier, it calls the following 
method:int WriteBarrierManager::ChangeWriteBarrierTo(Write 
BarrierType newWriteBarrier, bool isRuntimeSuspended)
{ 

      ... 

       memcpy((PVOID)JIT_WriteBarrier,  

(LPVOID)GetCurrentWriteBarrierCode(), GetCurrentWriteBarrierSize()); 

...

}

Look at StompWriteBarrierResize and StompWriteBarrierEphemeral 
methods in .\src\vm\amd64\JITInterfaceAMD64.cpp for more details.
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As we can see at Listing 5-8, the write barrier code is in fact very simple:

• Argument stored in register rcx contains a destination address 

(address in our Mutator.Write sample) while register rdx contains a 

source reference (value in Mutator.Write sample).

• Line 3 is doing the main job of writing a memory under given address 

with a given value. We want to manipulate card table (set card) only 

if rdx does belong to young generation because runtime is interested 

only in older-to-younger cross-generational references (and it treats 

generations 0 and 1 as young, while generation 2 as old).

• Thus, lines from 6 to 14 are checking whether source reference belong 

to so-called ephemeral region (meaning both generations 0 and 1). If 

no, function ends. If yes, card table is being checked if it is not already 

set. Those are the most important lines for our considerations.

• Line 16 is storing an address to the card table (strange 

0F0F0F0F0F0F0F0F0h constant is being replaced at runtime with 

proper value) into rax register.

• Line 17 is dividing a destination address (stored it rcx) by value of 

2048.2

• Lines from 18 to 22 compare a byte inside card table to the value FFh 

and store it if not already set.

Listing 5-8. Implementation of the JIT_WriteBarrier_PostGrow64 function, with 

some original comments removed while others added

01. LEAF_ENTRY JIT_WriteBarrier_PostGrow64, _TEXT

02.         align 8

03.          mov     [rcx], rdx          ; store value from register rdx 

under address rcx

04.         NOP_3_BYTE                  ; padding for alignment of constant

05. PATCH_LABEL JIT_WriteBarrier_PostGrow64_Patch_Label_Lower

06.          mov     rax, 0F0F0F0F0F0F0F0F0h ; 0F0F0F0F0F0F0F0F0h will be 

patched at runtime with proper address

2 shr rcx, 0Bh instruction shifts value in rcx by 0Bh bits - which means 11 bits. Shifting by n bits 
is equal to dividing by 2^n. 2^11 is equal to 2048
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07.          cmp     rdx, rax            ; Check the lower ephemeral region 

bound (if rdx <             ;  rax, jump to Exit)

08.         jb      Exit

09.          nop                             ; padding for alignment of constant

10. PATCH_LABEL JIT_WriteBarrier_PostGrow64_Patch_Label_Upper

11.          mov     r8, 0F0F0F0F0F0F0F0F0h  ;  0F0F0F0F0F0F0F0F0h will be 

patched at runtime with 

proper address

12.          cmp     rdx, r8                 ;  Check the upper ephemeral 

region bound (if rdx >= r8, 

jump to Exit)

13.         jae     Exit

14.          nop                             ;  padding for alignment of 

constant

15. PATCH_LABEL JIT_WriteBarrier_PostGrow64_Patch_Label_CardTable

16.          mov     rax, 0F0F0F0F0F0F0F0F0h ;  0F0F0F0F0F0F0F0F0h will be 

patched at runtime with 

proper card table address

17.         s hr     rcx, 0Bh                ;  Touch the card table entry, 

if not already dirty.

18.         cmp     byte ptr [rcx + rax], 0FFh

19.         jne     UpdateCardTable

20.         REPRET

21.     UpdateCardTable:

22.         mov     byte ptr [rcx + rax], 0FFh

23.         ret

24.     align 16

25.     Exit:

26.         REPRET

27. LEAF_END_MARKED JIT_WriteBarrier_PostGrow64, _TEXT

What is important is the fact that the whole byte representing eight cards is being 

set while we could set only a single bit in it. This is because of performance reasons. It 

is much more efficient to compare and store a whole byte (which is possible with single 

instruction, as we can see) than proceed with bit manipulation (which would require 

preparing and operating on appropriate bit masks).
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Of course, this introduces some overhead. Instead of setting only a single card (256 

byte-wide memory region), we are setting a byte that correspond to 2,048 bytes. This is 

yet another one example of compromise taken as a design decision.

please note that current write barrier implementations, including the example from 
Listing 5-8, are only checking whether the source reference does belong to the 
young generation. it does not check whether the target address does belong to an 
older reference. thus, the card table will be marked dirty also for young-to-young 
references. this is however acceptable because:

•  during Mark phase, the card table may be checked only for the addresses 
belonging to older generations. those related to young-to-young references will 
just be ignored.

•  during runtime checking inside WriteBarrier whether rcx belongs to older 
generation would be too complicated. it is just faster to mark the card dirty than 
proceed with all required checks.

 Card Bundles
The card tables technique optimizes remembered sets usage. Instead of tracking each 

and every cross-generational reference, we are tracking groups of them. As we have seen, 

in case of a .NET 64-bit framework, memory regions that are 256-bytes long are observed 

to be covered by a card. If any of the objects inside such a block has been modified to 

contain reference to the young generation, we should consider a whole block as dirty by 

setting a corresponding bit. Even more, due to low-level optimizations, we are marking 

the whole byte that corresponds to a 2,048-byte-long memory region. But there is still an 

optimization possibility.

Let’s imagine we are running a typical web application on a server. Its memory 

usage may be around a few gigabytes. Let’s assume that the older generation is 2GB 

big. Every byte in the card table is representing 2kB. Thus, we need a 1MB card table to 

cover the whole old generation. This may seem not so much at first glance. However, 

these bytes will have to be scanned at every collection of the younger generations (to 

find all possible older-to-younger references). Younger generation’s collection should 

be extremely fast and it would be too much overhead to scan such a large card table - 
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even though it might take a few milliseconds. Those should be consumed by the whole 

garbage collection process, not only by scanning a card table. Moreover, the card table 

may be quite sparse - there are many non-set cards interleaved by set cards occasionally.

This is why one more level of observation has been added called card bundles. While 

a single card word was grouping multiple cards, a single card bundle word is grouping 

multiple card words. They have been designed to be much denser, to cover much bigger 

memory regions (see Figure 5-11). A single bit in a card bundle word represents 32 card 

words (they cover 256kB region). Thus, each byte represents 2MB, while whole a card 

bundle word consisting of four bytes covers 8 MB.

Card bundle
table

256kB

card bundle word
(4 bytes)

single bit

32 card
words

{
8192kB

{

Figure 5.11. Card bundle table organization in .NET runtime (64-bit version). 
Each single bit in card bundle table represents 32 card words (256 kB). Those bits 
are grouped into bytes (so each byte represents 2,048 kilobytes memory region). 
Bytes are grouped into card bundle words representing 4 times bigger memory 
regions (8MB).

This allows a very fast (probably cached) scan of set cards. First, the card bundle 

table is being scanned to find dirty big regions and only inside them more precise 

scanning of the card table is being made. In our sample scenario with 2GB old 

generation, we would need only 1,024 bytes in the card bundle table to represent them. 

If any bit inside it is set, the corresponding 32 card words from the card table will be 

scanned to find set cards.

But what is making card bundles set (“dirty”)? We have not seen any code in write 

barriers responsible for that. The underlying mechanism varies depending on the 

operating system.
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In case of Windows, the operating system write-watching mechanism is being used 

mentioned in Chapter 1. When pages are being reserved by the Virtual API for the card 

table region, they are reserved with the special MEM_WRITE_WATCH flag. In such a case, 

when later a page is being modified (because write barrier set some card), it is being 

marked as dirty in a special Windows operating system structure. We can then ask for a 

list of such dirty pages by a WinAPI GetWriteWatch function. This function is called by 

.NET runtime at the beginning of the Mark phase inside gc_heap::update_card_table_

bundle() method. This method gets a list of all those dirty pages from the system and 

sets corresponding bits in the card bundle table.

In case of Linux, the .NET Core team could not find a reliable equivalent of operating 

system-based write watch mechanism. However, the advantages of a higher level of 

cards management are so important that it was decided to manually implement a 

replacement for this mechanism. This is why the write watch mechanism has been 

implemented in a write barrier in case of Linux. We can see it in write barriers code in  

.\src\amd64\jithelpers_fastwritebarriers.S file (see Listing Listing 5-9, which 

shows a significant part of one of the functions).

Listing 5-9. Part of the write barrier assembly code for Linux version of .NET 

runtime. It shows manual implementation of write watch mechanism managing 

card bundles.

#ifdef FEATURE_MANUALLY_MANAGED_CARD_BUNDLES

        NOP_6_BYTE // padding for alignment of constant

PATCH_LABEL JIT_WriteBarrier_PreGrow64_Patch_Label_CardBundleTable

        movabs  rax, 0xF0F0F0F0F0F0F0F0

        // Touch the card bundle, if not already dirty.

        // rdi is already shifted by 0xB, so shift by 0xA more

        shr     rdi, 0x0A

        cmp     byte ptr [rdi + rax], 0FFh

        .byte 0x75, 0x02

        // jne     UpdateCardBundle_PreGrow64

        REPRET

    UpdateCardBundle_PreGrow64:

        mov     byte ptr [rdi + rax], 0FFh

#endif
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As we can see here also, the whole byte is being marked as dirty so card tables in the 

Linux-based .NET Core operate on 2MB granularity.

there is one more interesting topic to be discussed - handling of arrays by card 
tables. imagine a large table of objects that resides in the older generation. this 
array is large enough to span over many cards and even card bundles. Let’s also 
imagine that we assign a newly created object to one of the elements of this table. 
What will happen? only a single corresponding byte in a card word will be made 
dirty as well as a corresponding bit in a card bundle word. however, how will this 
information be later consumed by a Mark process? Which elements of a table will 
be scanned? only part of the corresponding card or maybe a whole array? the 
answer is simple - only the parts of the array that have set cards will be scanned.

We have learned a lot about remembered sets, card tables, and card bundles in 

.NET runtime. A lot of space has been devoted to this topic because it is one of the 

key mechanisms that allows GC to operate in .NET. On the other hand, this is one of 

the mechanisms described in less detail so far in the literature. One of the reasons for 

this is probably the fact that it is a deeply hidden implementation detail. It is highly 

optimized, which means it does not cause problems and does not have to be known in 

the general consciousness. However, I believe that there is no better place to explain and 

give you a chance to understand this topic than in the book on memory management in 

.NET. Knowing all that we have learned so far, we can also address the rule introduced at 

the end of the chapter - Avoid Unnecessary Heap References.

 Physical Partitioning
We know already that managed memory is divided into two separate memory regions. 

Large Object Heap is a memory region for objects bigger than 85,000 bytes (and some 

additional exceptions). Small Object Heap contains smaller objects and is further 

divided into generations. We know also that all this lives in a memory region denoted as 

heap from an operating system perspective (as seen in Figure 5-1 at the beginning of this 

chapter). What is missing is how exactly GC Managed Heap is organized to contain both 

LOH and SOH with its generations. We will look at the physical organization of GC Heap 

at this point, putting all together what we have learned so far.
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Physically, Managed Heap consists of a set of heap segments. A segment either 

belongs to the LOH or the SOH. And for SOH segments, if there are multiple of them, 

every segment is a generation 2 segment except one, which we call the ephemeral 

segment that holds objects from generations 0 and 1 (and optionally from generation 2). 

It is important to note also that Garbage Collector in Microsoft’s implementation may be 

working in two significantly different modes:

• Workstation mode - it contains a single Managed Heap (so there will 

be a single SOH and LOH).

• Server mode - it contains multiple Managed Heaps (so there will 

be multiple SOHs and LOHs). By default, there are as many of 

them as the number of logical cores on the machine running .NET 

application.

We will go deep into many other differences between those two modes in the 

following chapters. For now, it is enough to note the difference regarding the number of 

managed heaps.

All these concepts are probably best explained by the example of creating individual 

elements during the start of .NET runtime. Figure 5-12 shows three stages of creating a 

managed heap in case of the simplest possible scenario (running in Workstation mode). 

More complex scenarios are described later.

In such a simple scenario the following steps happen:

• .NET runtime tries to allocate (reserve) a single, continuous block 

of memory (see Figure 5-12a) for the initial segments; it does this as 

an optimization so all the segments stay together. If there’s no such 

virtual address space available, the segments will be discontinuous.

• It then needs to create two separate segments for SOH and LOH. They 

are created inside a newly reserved block by logically separating it 

into two pieces (see Figure 5-12b).

• Generations 0, 1, and 2 will be created inside the SOH segment by 

committing some specified amount of memory and LOH also will 

have some amount of memory committed (see Figure 5-12c).
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Segments are represented by heap_segment objects in .net runtime, which we 
will look at more closely in the next and subsequent chapters. they are tracking 
information about memory addresses, how much memory has been already 
reserved and committed, and so on, so forth. as we will see in the next chapter, 
a heap segment is consumed from the lower address to the higher address. the 
more objects we allocate, the more memory must be committed inside a segment.

LOH segmentSOH segment

{
(a)

generations: 0,1 and 2

block

(b)

(c)

{
generation 3 (LOH)

reserved

reserved reserved

reserved reserved

committed committed

lower address higher address

Figure 5-12. Blocks and segments explained by an example of the simplest 
scenario - single block contains both SOH and LOH segments
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We can easily see the situation from Figure 5-12 in the real world by using the 

VMMap tool for a simple console application. If we expand GC Managed Heap block 

visible at Figure 5-1, we will notice the layout (see Figure 5-13) consistent with the one 

described above and illustrated in Figure 5-12c. We see there the following memory 

regions:

• around 260 KB dedicated for Gen0 (259 KB), Gen1 (24 bytes), and 

Gen2 (24 bytes),

• almost 256 MB reserved memory for the rest of SOH segment,

• 72 KB dedicated for Large Object Heap,

• almost 128 MB reserved for the rest of LOH segment.

Figure 5-13. A single block inside simple console .NET application contains two 
segements (SOH and LOH) as visible in VMMap tool

As already mentioned, the segment that contains generations 0 and 1 is called an 

ephemeral segment. This is an important distinction that appears in the implementation 

of GC in many places. Therefore, we will also come back to it many times in this book.

We can list all segments and generations information in WinDbg using an SOS 

extension by issuing an eeheap command (see Listing 5-10). Information about two 

separate segments is listed there corresponding to what we have seen at Figure 5-13. 

You may rightly notice that, in fact, generation starts at 0x1000 offset from the segment 

beginning. Why is that will be explained in subsequent Segments and heap anatomy 

section.
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Listing 5-10. Segments and generations listed by eeheap command from 

WinDbg SOS extension. It shows the state of the same process as at Figure 5-13.

> !eeheap

Number of GC Heaps: 1

generation 0 starts at 0x0000026700001030

generation 1 starts at 0x0000026700001018

generation 2 starts at 0x0000026700001000

ephemeral segment allocation context: none

         segment             begin         allocated              size

0000026700000000  0000026700001000  0000026700033b18  0x32b18(207640)

Large object heap starts at 0x0000026710001000

         segment             begin         allocated              size

0000026710000000  0000026710001000  0000026710005480  0x4480(17536)

Total Size:              Size: 0x36f98 (225176) bytes.

------------------------------

GC Heap Size:            Size: 0x36f98 (225176) bytes.

The default segment sizes depend on several factors. One of the most important is the GC 

mode of operation. The second is the bitness of the runtime environment. This is summarized 

in Table 5-3. For example, the console application showed in Figures 5-9 and 5-10 was 

executed on a 64-bit runtime working in Workstation mode. Thus, SOH segment was 256 MB 

big while LOH was 128 MB. As we can also see, in case of Server mode, default SOH segments 

sizes depend on the number of logical cores (the more cores, the smaller segment).

Table 5-3. Default Segment Sizes for Various Conditions

Workstation Server

32-bit 64-bit 32-bit 64-bit

SOH 16 MB 256 MB 64 MB (#CpU<=4)

32 MB (#CpU<=8)

16 MB (#CpU>8)

4 gB (#CpU<=4)

2 gB (#CpU<=8)

1 gB (#CpU>8)

LOH 16 MB 128 MB 32 MB 256 MB

Segments in Server mode are illustrated at Figure 5-14 by the VMMap view of the 

ASP.NET 4.5 application hosted on 8-core machine and 64-bit .NET runtime with Server 

mode enabled. As we can see, one single, huge, and continuous block has been reserved. 
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It contains eight SOH segments followed by eight LOH segments. Segments sizes 

correspond to the default sizes listed in Table 5-3 (2 GB for SOH and 256 MB for LOH).

We can now see why it is so important to know the difference between reserved 

and committed memory as described in Chapter 2. Although a managed heap in a 

web application from Figure 5-14 seems to consume huge 18 GB (reserved memory), 

obviously the real usage is only at the level of 8 MB (committed memory).

Figure 5-14. A huge, single block inside ASP.NET application contains eight 
segments (both SOH and LOH) as visible in VMMap tool. Application was hosted 
on a machine with eight logical cores (four physical cores and Hyper-Threading 
enabled) on a 64-bit runtime working in Server mode
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Both scenarios shown so far have common property - all segments have been created 

inside a single continuous block. This is the most common initial scenario named an 

all-at-once allocation pattern (illustrated at Figures 5-15a and 5-16a). However, there are 

two other possible allocation patterns:

• two-stage - there are two separate blocks: for SOH and LOH segments 

separately (see Figures 5-15b and 5-16b);

• each-block - there is a separate block for each segment  

(see Figure 5- 16c).

They may happen, for example, when .NET runtime was unable to reserve a single 

continuous block of virtual memory. If it happens, a two-stage pattern will be tried. If it 

fails, an even more granular each-block pattern will be chosen in case of Server mode.

(a) SOH LOH

SOH

LOH

(b)

Figure 5-15. Possible Workstation GC initial segments configuration: (a) all- 
at- once configuration, (b) two-stage configuration (the same as each-block 
configuration)
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When our application is running and allocating a lot of objects, the ephemeral 

segment or LOH may become full. In such case an additional segment may be allocated. 

We will see some typical ways of handling such situations in Chapter 6. Please also note 

that the segments configurations described here are the same for the Windows and 

Linux version of .NET Core.

in Mono (as the current 5.4 version state), physical organization of generations is 
slightly different: 
-  small objects are stored into two kinds of memory regions. a nursery (representing 

young generation) is a continuous block of memory in the size of 4 MB. it does not 
change dynamically but may be set by configuration when Mono starts. Fast bump-
pointer technique of allocation is used here. old generation is organized into 16 kB 
blocks (but they are allocated in larger chunks to avoid fragmentation).

-  large objects in Large object Store are organized into 1 MB sections, while larger  
objects than that are directly allocated by a Virtual api and they are remembered 
as a single-linked list.

(a)

SOH1 LOH1

(b)

SOH2 SOH3 SOH4 LOH2 LOH3LOH4

LOH1LOH2 LOH3LOH4

SOH1 SOH2 SOH3 SOH4

LOH1 LOH2 LOH3 LOH4

SOH1 SOH2 SOH3 SOH4

(c)

Figure 5-16. Possible Server GC initial segments configuration (example of 
4-core machine): (a) all-at-once configuration, (b) two-stage configuration,  
(c) each- block configuration
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A segment may be of three types:

• Small Object Heap,

• Large Object Heap,

• Read-Only Heap.

The third option is deprecated in .NET Framework since version 3.5 and in 

.NET Core. However, other frameworks may still be using it (currently it is only .NET 

Native) so we may find references to it in various places - including CoreCLR source 

code, ETW events, and documentation (we even already noticed it in Chapter 3 as 

ReadOnlyHeapMapMessage enumeration value of GCSegmentType when looking at ETW 

events data). Read-only heap segments are used by the object freezing functionality, 

which may be enabled by marking an assembly with StringFreezingAttribute.

When such an assembly will be serialized into a native image with the help of Native 

Image Generator (Ngen.exe), all string literals will become pre-compiled (in managed 

form) into a generated image. The memory region within this image with such strings (or 

objects in general, although there is no API for handling them) may then be registered 

as a read-only segment and become usable immediately (as object is there already in a 

managed, allocated form).

Note the difference to string interning (described in Chapter 4), which requires 

regular string allocation at runtime. Additionally, as MSDN states: “Note that the 

common language runtime (CLR) cannot unload any native image that has a frozen 

string because any object in the heap might refer to the frozen string. Therefore, you 

should use the StringFreezingAttribute class only in cases where the native image 

that contains the frozen string is shared heavily.”

 Scenario 5-2. nopCommerce Memory Leak?
Description: We have just downloaded a plain installation of nopCommerce – open 

source e-commerce platform written in ASP.NET. As documentation states about 

hosted ZIP file: “download this package if you want to deploy a live site to a web server 

with the minimum required files.” Installation is easy: “to use IIS, copy the contents 

of the extracted nopCommerce folder to an IIS virtual directory (or site root).” We 

want to validate nopCommerce performance, including memory usage patterns. We 

have prepared a simple load test scenario for JMeter 3.2 – a popular open source load 

testing tool. It executes three steps in a loop - visiting home page, one of the categories 
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(“Computers”), and one of tags (“awesome”). We have added think times (pauses) 

between each request to simulate real users. Test will be performed for one hour.

Note: this scenario is quite long as it includes a few approaches to show you different 

ways you can take. Additionally, nopCommerce was chosen as a stable and well-proven 

technology. Certain mistakes have been made specifically to illustrate how to solve 

various problems. They should not be used to evaluate nopCommerce as a product.

Analysis: This scenario is similar to scenario 5-1 so we can start analysis in the same 

way. Therefore, we start from observing the following performance counters with the 

help of Performance Monitor (either in real time or via Data Collector Set):

• \Process(Nop.Web)\Working Set - Private

• \Process(Nop.Web)\Private Bytes

• \Process(Nop.Web)\Virtual Bytes

• \.NET CLR Memory(Nop.Web)\# Total committed Bytes

• \.NET CLR Memory(Nop.Web)\Gen 0 heap size

• \.NET CLR Memory(Nop.Web)\Gen 1 heap size

• \.NET CLR Memory(Nop.Web)\Gen 2 heap size

• \.NET CLR Memory(Nop.Web)\Large Object Heap size

We may quickly notice that the managed # Total committed Bytes are fast growing 

during the first 20 minutes of the test. Then suddenly the memory drops just to grow 

again very quickly. This pattern repeats again and again. Generation sizes recorded via 

Performance Monitor look as follows (see Figure 5-17):

• generation 0 size (long-dashed line) varies between 4,194,300 

and 6,291,456 in a stable way. As we already know, this is not a 

real generation 0 size. However, “allocation budget” denoted by 

this measure is stable so we may assume there is no problem with 

generation 0.

• generation 1 size (short-dashed line) changes dynamically but is also 

stable. No growing trend can be spotted there so we can assume there 

are no problems either.
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• generation 2 size (thin solid line) obviously stands out. It is 

responsible for a strange triangle pattern of memory consumption. 

This seems to be problematic as it reaches 1,314,381,592 bytes at 

maximum. We will have to dig deeper into it to find the root cause of 

the problem.

• Large Object Heap size (thick solid line) is growing very slowly. This 

may indicate the same problem but is unlikely the root cause of it. 

Please note this “memory leak” is not very burdensome. LOH grows 

up to around 38 MB (with small 46 MB peaks) after one hour of 

intensive work. This is hardly a problem compared to over 1 GB of 

generation 2 memory.

Figure 5-17. Performance Monitor view of generation sizes during one-hour long 
load test of ASP.NET Core application
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If during the test we look at the state of the Nop.Web.exe process by VMMap tool, we 

come across the first clue. There are tons of Domain 1 Low and High Frequency heaps 

(see Figure 5-18a illustrating only a small part of them). As there are so many of them, 

it may indicate creating a lot of dynamic types, for example, via Reflection or by loading 

many assemblies. We may recall Scenario 4-4, which illustrated exactly such a problem 

with XmlSerializer.

Figure 5-18a. Small part of VMMap view of the Nop.Web.exe process during test, 
showing a lot of Domain 1 Low and High Frequency heaps

However, let us not jump to conclusions. As done in Scenario 4-4, we should confirm 

our suspicions by adding the following counters to our observation:

• \.NET CLR Loading(Nop.Web)\Bytes in Loader Heap

• \.NET CLR Loading(Nop.Web)\Current Classes Loaded

• \.NET CLR Loading(Nop.Web)\Current Assemblies

• \.NET CLR Loading(Nop.Web)\Current appdomains

We may be surprised that these counters do not change their value even within a 

few hours of testing. Our clue turned out to be false. In fact, even a large amount of Low 

and High Frequency heaps does not mean problems. If we look at them from time to 

time via VMMap, we will notice that their number does not change. We let ourselves 

be fooled. They are so many probably because of a lot of dynamically created types in a 

nopCommerce framework. Investigating it however does not make sense at this step.

Abandoning this trail, let’s look at our main suspect - generation 2. Looking again at 

VMMap, we can sort Managed Heap regions by Details to have all GC Managed Heaps 

next to each other (see Figure 5-18b). Looking through them, we quickly see many 
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segments containing only the second generation. What’s more, we could pay attention to 

three more things:

• Addresses are short (the first half of them are zeroes) - so the process 

is using 32-bit .NET runtime, but we should know it from our 

deployment process.

• There is only a single segment with generation 0 and 1 (ephemeral 

segment) - this indicates most probably GC is running in Workstation 

mode.

• Segments containing generation 2 have size of 16 MB - according 

to Table 5-3 it may happen only on 32-bit Workstation GC, which 

confirms the two facts above.

The web application configured as running on 32-bit .NET runtime with Workstation 

GC mode may not be the most optimal setting. Even if it is quite an important finding we 

were not aware of so far, and it does not necessarily explain the observed memory leak. 

We should continue our investigation.3

3 And by the way, there are other and better ways of checking GC’s configuration of the running 
application. They are described in Chapter 8 (especially in dedicated Scenario 8-1).

Figure 5-18b. Small part of VMMap view of the Nop.Web.exe process during test, 
showing a lot of GC Managed Heaps containing generation 2
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VMMap tool usage is included in this scenario mainly to show the physical structure 

of the .NET application, to be aligned with the knowledge presented in this chapter. 

Additionally, it shows possible caveats if one decides to use it (like treating many high 

frequency heaps as a problem). It is good to have VMMap in your toolbox when solving 

problems. However, using VMMap is not a typical way that people would start an 

investigation for a problem like this. We should probably jump straight into WinDbg or 

PerfView after seeing presented performance counters.

At this point, we have to reach for other tools. The first choice may be WinDbg 

with SOS extension. A full memory dump of the Nop.Web.exe was taken by ProcDump 

tool. After loading it into WinDbg, we should load SOS by issuing .loadby sos clr 

command. Then we may issue two more commands: eeversion (prints .NET runtime 

information) and lmf (lists all loaded modules) - see Listing 5-11. As we can see, the 

process is using .NET Framework 4.7 and Workstation GC mode. It has loaded a 32-bit 

version of clr.dll (64-bit version is located under directory C:\Windows\Microsoft.

NET\Framework64). This is the final confirmation of our previous findings.

Listing 5-11. Inside WinDbg with SOS loaded, commands eeversion, and lmf 

reveals that process is using 32-bit .NET Framework with Workstation GC mode

> !eeversion

4.7.2117.0 retail

Workstation mode

SOS Version: 4.7.2117.0 retail build

> lmf

...

72f70000 73656000   clr       C:\Windows\Microsoft.NET\Framework\v4.0.30319\

clr.dll

...

To start investigation of generation 2, we issue commands heapstat and eeheap (see 

Listing 5-12). As we may see, indeed generation 2 is huge (1,217,024,356 bytes) and it 

contains not so much free space (10,981,728 bytes). Fragmentation of it is probably not 

an issue. eeheap commands list a lot of segments details that we have seen previously in 

the VMMap tool.
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Listing 5-12. Inside WinDbg with SOS loaded, commands heapstat, and eeheap 

reveals details about GC Managed Heap. eeheap command output has been 

stripped to show only a few relevant lines.

> !heapstat

Heap             Gen0         Gen1         Gen2          LOH

Heap0         9719400       280232   1217024356     38826368

Free space:                                                 Percentage

Heap0         7042304         1152     10981728     12587408SOH:  1% LOH: 32%

> !eeheap

 segment     begin  allocated      size

024c0000  024c1000  034bffe4  0xffefe4(16773092)

0a070000  0a071000  0b06ffe0  0xffefe0(16773088)

0fb20000  0fb21000  10b1ffdc  0xffefdc(16773084)

122b0000  122b1000  132affe0  0xffefe0(16773088)

142f0000  142f1000  152effe0  0xffefe0(16773088)

...

41820000  41821000  4281ffec  0xffefec(16773100)

43820000  43821000  4410ea14  0x8eda14(9361940)

42820000  42821000  431aa510  0x989510(9999632)

Knowing the address range of segments, we may investigate its contents by the 

dumpheap command. Because the memory leak seems to be huge and objects live for a 

long time, let’s investigate the content of one of the first segments (which most probably 

means one of the oldest ones). Listing 5-13 shows the result of the dumpheap command 

for statistical objects data in the fourth segment. A lot of the lines have been stripped 

for clarity and only a few last ones are shown. As we can see there is a huge number 

of objects from namespace Microsoft.Extensions.Caching.Memory. A particularly 

interesting class CacheEntry seems to indicate problems with caching.
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Listing 5-13. Inside WinDbg with SOS loaded, dumpheap command shows 

statistical data of objects inside one of the segments (a lot of output’s lines have 

been stripped for clarity)

> !dumpheap -stat 122b1000 132affe0

      MT    Count    TotalSize Class Name

...

04aa58e4    33795       946260 Microsoft.Extensions.Primitives.IChangeToken[]

0b542680    33808       946624 Microsoft.Extensions.Caching.Memory.

PostEvictionCallbackRegistration[]

089f26fc    33818      1082176 Microsoft.Extensions.Caching.Memory.

PostEvictionDelegate

71f91d64    34858      4327314 System.String

089e2b70    33786      4459752 Microsoft.Extensions.Caching.Memory.CacheEntry

Total 431540 objects

Now we can start a rather tedious process of investigating different instances of the 

CacheEntry object. Its MethodTable has an address 089e2b70 so we can modify dumpheap 

command to list only Microsoft.Extensions.Caching.Memory.CacheEntry instances 

inside the fourth segment (see Listing 5-14). The output will be a huge list of 33,786 

instances, so only a few of the last lines are presented.

Listing 5-14. Inside WinDbg with SOS loaded, dumpheap command lists all 

objects inside specified segment with a given MethodTable

> !dumpheap -mt 089e2b70 122b1000 132affe0

 Address       MT     Size

...

132af460 089e2b70      132

132af64c 089e2b70      132

132af98c 089e2b70      132

132afd08 089e2b70      132
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Statistics:

      MT    Count    TotalSize Class Name

089e2b70    33786      4459752 Microsoft.Extensions.Caching.Memory.CacheEntry

Total 33786 objects

We can investigate each instance with the help of DumpObj command, providing its 

address (see Listing 5-15). One of its fields has a name <Key>k__BackingField, which 

suggests we can inspect what is the key of the cache entry (see also Listing 5-15). It turns 

out to be Nop.pres.widget- 79740- 1-left_side_column_after_category_navigation-

DefaultClean, which seems to be a data cached for some widget on a page.

Listing 5-15. Inside WinDbg with SOS loaded, DumpObj commands shows 

details of one of the instances listed in Listing 5-13

> !DumpObj 132afd08

Name:        Microsoft.Extensions.Caching.Memory.CacheEntry

MethodTable: 089e2b70

EEClass:     089c4f2c

Size:        132(0x84) bytes

File:        F:\IIS\nopCommerce\Microsoft.Extensions.Caching.Memory.dll

Fields:

...

71f81404  400000b       34 ...ffset, mscorlib]]  1 instance 132afd3c _

absoluteExpiration

...

71f92104  4000012       20        System.Object  0 instance 132afc18 

<Key>k__BackingField

...

> !DumpObj 132afc18

Name:        System.String

...

String:      Nop.pres.widget-79740-1- left_side_column_after_category_

navigation-DefaultClean

Looking through all CacheEntry instances inside a segment in that way would  

be very tiresome and time consuming. Fortunately, we can use for this purpose the 

netext extension, mentioned in Chapter 3. Its wfrom command lets us write SQL-like 
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(or LINQ- like, if you wish) queries over objects. We can ask to list only _Key_k__

BackingField of objects with specified MethodTable, filtering them with respect to the 

address of the segment we are interested in (see Listing 5-16).

Note netext slightly differently lists field’s names so _Key_k__BackingField 
is used instead of <Key>k__BackingField.

Listing 5-16. Inside WinDbg with netext loaded. Part of the wfrom command’s 

output is presented that selects _Key_k__BackingField from objects with 

089e2b70 MethodTable and within a specified address range.

> !wfrom -mt 089e2b70 where (($addr() > 122b1000) && ($addr() < 132affe0)) 

select _Key_k__BackingField

...

_Key_k__BackingField:  Nop.pres.widget-74954-1-mob_header_menu_after-

DefaultClean

_Key_k__BackingField: Nop.pres.widget-76130-1-header_menu_before-

DefaultClean

_Key_k__BackingField: Nop.pres.widget-75965-1-body_start_html_tag_after-

DefaultClean

_Key_k__BackingField: Nop.pres.widget-75369-1- searchbox_before_search_

button-DefaultClean

_Key_k__BackingField: Nop.pres.widget-75965-1- searchbox_before_search_

button-DefaultClean

_Key_k__BackingField: Nop.pres.widget-75867-1-header_selectors-DefaultClean

_Key_k__BackingField: Nop.pres.widget-75965-1-header_menu_before-

DefaultClean

_Key_k__BackingField: Nop.pres.widget-75573-1-body_start_html_tag_after-

DefaultClean

_Key_k__BackingField: Nop.pres.widget-75680-1-mob_header_menu_after-

DefaultClean

...
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In the results, we will quickly see the obvious pattern. Actually almost all names 

start with Nop.pres.widget, followed by some numbers and (probably) the name of 

the  widget. We should now be confident that the widget’s data caching is somehow 

problematic. The question arises why there are so many cached similar entries. Why are 

there almost identical entries with only a first number difference? Immediately we may 

come to the question whether they are not cached for every request?

By looking at a few reference graphs with the help of the gcroot command, we may 

notice those entries are held by MemoryCacheManager inside ProductTagService or 

similar ones (see Listing 5-17).

Listing 5-17. Inside WinDbg with SOS loaded, gcroot command shows a 

references path of a sample CacheEntry instance. As this path is quite long, only a 

few relevant nodes are presented.

> !gcroot 132afd08

Thread 6d5c:

    0bc8f128 71ec99fa System.Threading.ExecutionContext.RunInternal(System.

Threading.ExecutionContext, System.Threading.ContextCallback, System.

Object, Boolean)

        ebp+4c: 0bc8f13c

            ->  0348777c System.Threading.Thread

            ->  025416d8 System.Runtime.Remoting.Contexts.Context

            ->  024c12e0 System.AppDomain

                  ...

            ->  0ac5df50 Nop.Services.Catalog.ProductTagService

            ->  033dbacc Nop.Core.Caching.MemoryCacheManager

            ->  033db504 Microsoft.Extensions.Caching.Memory.MemoryCache

                  ...

                  ->  132afd08 Microsoft.Extensions.Caching.Memory.CacheEntry

This is the most difficult part of the puzzle to answer without access to the source 

code. Fortunately, most often we will analyze our own application so we will have access 

to its code that is well-known to us. In case of our scenario, it would turn out that the 

cache key includes a customer identifier that is taken from the cookie for anonymous 

users. But our test scenario in JMeter does not include HTTP Cookie Manager elements 
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that manage cookies! In other words, each and every HTTP request was treated as issued 

by a new customer without a cookie set. There is certainly not a desired scenario that 

results from our error in the preparation of the load test script.

nopCommerce is open sourced so we may also quickly find the root cause of the 

problem:

• By searching for example name from a cache entry key (like mob_

header_menu_after identifier), we will find the following line in ./

src/Presentation/Nop.Web/Views/Shared/Components/TopMenu/

Default.cshtml file:

@await Component.InvokeAsync("Widget", new { widgetZone = "mob_

header_menu_after" })

• Widget component defined a file ./src/Presentation/Nop.Web/

Components/Widget.cs contains simple Invoke method calling 

widget factory:

var model = _widgetModelFactory.PrepareRenderWidgetModel(widgetZo

ne, additionalData);

• WidgetModelFactory method PrepareRenderWidgetModel is building 

cacheKey in the following way:

var cacheKey = string.Format(ModelCacheEventConsumer.WIDGET_MODEL_KEY,

        _workContext.CurrentCustomer.Id,

        _storeContext.CurrentStore.Id,

        widgetZone,

        _themeContext.WorkingThemeName);

As we can see, widgets are using CurrentCustomer.Id, which is managed by a 

cookie in case of no logged users. If a cookie does not exist, a new integer value is used.

This scenario was to show that by understanding the concepts of generations 

and segments, we can notice a problem and use the low-level tools to find its cause. 

Of course, in situations you will encounter that causes of the problems can be very 
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diverse. The mistakes made when configuring the load test will probably be one of 

the rarest. However, the exercise was not meant to show this one particular problem 

and its solution, but rather how to approach it. We could also use more pleasant tools 

like PerfView or any other commercial tool to analyze such a memory leak. Such an 

approach will be taken in later scenarios.

 Scenario 5-3. Large Object Heap Waste?
Description: In our 64-bit workstation application, we are processing huge lists of 

objects - let it be some kind of “big data” process. But unfortunately, after some period 

of time, we are getting OutOfMemoryException and are unable to process all the data. 

Our process starts with a pre-processing stage - we are creating a list of large arrays of 

pre-processed objects. Each such block contains 10,000,000 references to objects located 

elsewhere. OutOfMemoryException occurs during allocating those arrays. We want to 

make processing possible so we start our investigation.

Analysis: It’s worth starting by looking at the process by VMMap tool at the time just 

before when OutOfMemoryException occurs (see Figure 5-19). We see there indeed a 

huge amount of memory being consumed. Private Working Set of a process takes around 

15 GB, which is almost all available physical memory (machine was equipped with 

16 GB of RAM). Moreover, if we looked at the page file of the system, we would see that 

pagefile.sys takes almost 32 GB - the maximum possible value that has been set by the 

system administrator. This means there was no free memory left for more arrays and we 

just can do nothing about it (except changing system configuration by adding more RAM 

and/or extending maximum page file size).

However, one can notice alarming segments consumption. There is a huge amount 

of LOH segments and each and every one holds only around half of a size-committed 

region while the rest is only reserved. Why does this happen? If we look at Table 5-3, we 

recall that in the case of a 64-bit Workstation GC, LOH segments are 128 MB big. For our 

processing purposes we are creating arrays of 10,000,000 references. Each reference is 

8-bytes long so a whole array requires around 76 MB of data. When a new array is being 

allocated, an existing LOH segment does not fit it as only around 52 MB is left in it. Thus, 

a new segment must be created for each and every new array we create. This results 

in “wasting” those 52 MB in each LOH segment (assuming our application does not 

intensively create smaller objects in LOH whose would fit in this additional space).
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But a careful reader can see a certain mistake in our thinking. Remembering what 

has been said in Chapter 2, reserved virtual memory does not consume physical 

memory directly (only small reservation descriptors have to be remembered). If we look 

at Figure 5-19 carefully, we will notice that Reserved parts of LOH segments do not count 

into Committed nor Private bytes. It is hardly “wasting” a memory. Let’s not be fooled 

by these measurements. In fact, we are really consuming all available memory and we 

cannot do anything about it (nothing else than allocating less arrays at once).

However, such memory waste due to unusable reserved space within LOH segments 

is not a problem only in case of 64-bit configuration because we have plenty of virtual 

address space. It could be a severe problem on 32-bit .NET Runtime, where virtual 

address space is much more limited. If this is your case, you should consider splitting 

processed data into smaller arrays to better utilize single LOH segments and avoid 

fragmentation.

Figure 5-19. Part of VMMap view of the process a few moments before 
OutOfMemoryException happens
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 Segments and Heap Anatomy
As it will be explained later, a segment is the physical representation of a Managed Heap. 

Its internal structure is simple but it is worth it to get to know it (see Figure 5-20). As 

we have seen at Listing 5-10, the example program had an ephemeral segment with an 

address 0x0000026700000000 but it “begins” at address 0x0000026700001000. Those 

starting 4,096 bytes (0x1000 in hexadecimal) are dedicated to store segment information 

managed by the runtime. Objects are created in a subsequent address. Each SOH and 

LOH segment has the following structure:

• At the beginning segment information is stored (an instance of heap_

segment class). Although this class is only a dozen of bytes big, in 

most cases the whole page is being committed for this purpose. This 

is a performance optimization used in case of a runtime version that 

supports a popular background GC (explained in Chapter 11), which 

includes all publicly available runtimes at the time of this writing. 

The beginning of this structure (and whole segment itself) is listed as 

a segment address in previously seen eeheap command output.

• Objects are being allocated from the address named mem (in .NET source 

code). However, this address is listed as begin in case of an eeheap 

command. As we will see in Chapter 6, reserved memory of the segment 

is being committed in advance (not only for a single object), so there will 

be slightly more committed memory than required for current objects.

• Address where currently allocated objects end is named allocated.

segment_info

{

OS_PAGE_SIZE (4kB)

objects

{

commited

reserved

begin
(mem)

allocatedsegment

Figure 5-20. Internal structure of heap segment
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Although it is not so useful for everyday work in .NET, when trying to analyze .NET 

Core code, it is worth knowing the relationship between several fundamental classes 

representing the entities described here. It will make it easier for you to start your own 

journey through the CoreCLR source code if you ever feel like it.

There are the following important classes representing core Garbage Collection 

functionality (see Figure 5-21):

• GCHeap - there is always one instance of this high-level API - it is used 

as an interface between Garbage Collector and Execution Engine 

(they both keep global instances g_pGCHeap and g_theGCHeap). It 

contains methods like Alloc and GarbageCollect. Additionally, in 

Server mode each Managed Heap is represented by an additional 

GCHeap instance. Thus, there will be one instance in Workstation 

mode and one plus number of cores instances in Server mode.

• gc_heap - low-level API of a single Managed Heap, used by GCHeap. It 

contains all the heavy work of GC, including methods like allocate, 

garbage_collect, make_gc_heap, make_heap_segment, and so on 

and so forth. In Server mode GCHeap instance operates on the 

corresponding gc_heap instance. In case of Workstation mode, 

all relevant gc_heap methods are static so there is no need for any 

instance at all. Thus, there will be no instances in Workstation mode 

or number of cores instances in Server mode.

• generation - represents single generation. It contains information 

about segments containing those generations, many allocation- 

related information, and other relevant data.

• heap_segment - represents single segment information as described 

before. All segments are chained into single-linked list so each 

segment may contain a pointer to the next segment.

Chapter 5  MeMory partitioning



402

Knowing all the above, we may now understand, for example, the implementation of 

GC.GetGeneration method used earlier (see Listing 5-18).

Listing 5-18. Method in gc_heap class that is called when GC.GetGeneration 

method is executed

// return the generation number of an object.

// It is assumed that the object is valid.

// Note that this will return max_generation for a LOH object

int gc_heap::object_gennum (uint8_t* o)

rest of the segment

GCHeap

gc_heap

generation

generation

generation

generation

heap_segment

heap_segment

heap_segment

Alloc()
GarbageCollect()

make_gc_heap()
make_heap_segment()
make_large_segment()
allocate()
allocate_large_object()
garbage_collect()
...

ge
ne

ra
tio

n_
ta

bl
e

[0]

[1]

[2]

[3]

(vm_heap)

(gGenGCHeap)

start_segment

start_segment
next

heap_segmentstart_segment

rest of the segment

rest of the segment

rest of the segment

GC Managed Heap

next

next

start_segment

Figure 5-21. Relationship between fundamental GC-related classes in .NET 
source code (based on .NET Core code). heap_segment instances are living in the 
managed heap, at the beginning of segments as explained earlier. All other data 
lives inside private heaps of the runtime.
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{

    if (in_range_for_segment (o, ephemeral_heap_segment) &&

         (o >= generation_allocation_start (generation_of (max_

generation- 1))))

    {

        // in an ephemeral generation.

        for ( int i = 0; i < max_generation-1; i++)

        {

            if ((o >= generation_allocation_start (generation_of (i))))

                return i;

        }

        return max_generation-1;

    }

    else

    {

        return max_generation;

    }

}

 Segments Reuse
During program execution, there may be more and more segments created to contain all 

allocated objects. The question arises whether segments are ever removed? The answer is 

positive. However, as often happens, the answer is more complicated than the simple “yes.”

First of all, let’s start by looking at the situations in which .NET runtime can decide 

to remove a segment. In fact, there is only one reason for that - the segment has become 

empty after garbage collection (it contains no objects at all). We will see when it happens 

when learning about garbage collection in detail.
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Secondly, what does “remove a segment” mean at all? In the simplest manner it 

means calling VirtualFree (or Linux counterpart) on the whole reserved memory region 

of a segment. In that way we simply reclaim that memory and return it to the operating 

system. Let’s imagine a situation as illustrated in Figure 5-22a. Our program has four 

segments. Generation 2 is quite big so it consumes two segments. As stated before, there 

is more memory committed (white regions) than needed for current objects (dashed 

regions) because memory is prepared in advance. After some time, compacting garbage 

collection may occur in which many objects in generation 2 have been removed (see 

Figure 5-22b). In fact, so much space has been reclaimed that one of the segments 

containing generation 2 has become empty (contains no objects). But the whole memory 

is still being committed at this moment. The simplest scenario is now just to free such 

memory (see Figure 5-22c).

Although it seems a perfectly sensible approach, it has an important disadvantage. 

Continual creating and removing segments may introduce a fragmentation problem. It 

may be especially severe in 32-bit applications where virtual memory space was not so 

big and particularly in case of long-running web applications. Those were the times of 

.NET 2.0 and ASP.NET 2.0 and that’s why more intelligent handling of segments has been 

introduced called VM Hoarding. The idea behind it is quite simple. Instead of freeing an 

empty segment completely, we may store it (hoard) for later reuse (see Figure 5-22d).  

In such a case:

• whole segment’s memory stays reserved;

• most of the segment’s memory is decommitted (does not consume 

physical memory) - only small amount of the beginning memory 

stays committed, including segment info itself;

• segment is remembered in a list of reusable segments (segment_

standby_list in case of CoreCLR) - when a new segment will be 

needed, this list will be first checked for reusage possibility. One of 

such segments may be then initialized as a new, valid segment.
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(a)

SOH LOH

SOH

SOH (ephemeral)

Gen 2

Gen 2

Gen 0/1

objects

{

(b)

SOH LOH

SOH

SOH (ephemeral)

Gen 2

Gen 2 (empty)

Gen 0/1

(c)

SOH LOH

SOH (ephemeral)

Gen 2

removed

Gen 0/1

(d)

SOH LOH

segment_standby_list

SOH (ephemeral)

Gen 2

Gen 0/1

Figure 5-22. Possible segments’ reusability strategies illustrated
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Hoarding is less important in the case of 64-bit executions engines because of much 

bigger virtual address space. On the other hand, in very dynamic scenarios when there 

are many segments created and destroyed, it is still faster to reuse already reserved 

memory than ask the system to create a new one. Thus, even in a 64-bit scenario it may 

be worth it to use it.

However, segments hoarding is disabled by default because .NET runtime does 

not want to hold onto the virtual memory it doesn’t use (even if it is only reserved). If 

you run a plain desktop or console .NET application (not hosted in external process), 

most probably VM hoarding is simply disabled. This behavior may be overridden by the 

GCRetainVM setting configured as an environment variable or in the registry (in case of 

Windows). Additionally, process hosting .NET runtime may use System.GC.RetainVM 

configuration to enable it. This is what happens in case of ASP.NET web applications 

hosted in IIS, which enables it by default. We can also enable it manually, if we are 

hosting .NET runtime inside our application via Hosting API (see Chapter 15 for details).

If you wish to track what, when, and why segments are created or destroyed in your 

application, the easiest way is to use ETW events (with stack trace enabled):

• GCCreateSegment_V1 - shows an Address, Size, ClrInstanceID and 

Type

• GCFreeSegment_V1 - shows an Address and ClrInstanceID

The Type listed above will contain two possible values: SmallObjectHeap or 

LargeObjectHeap. It could also contain ReadOnlyHeap value mentioned before, but this 

should not happen both in .NET Runtime and .NET Core as read-only segments are 

disabled there.

 Summary
This chapter covers many topics that bring us closer to a better understanding of how 

memory management works in .NET. It describes how the memory managed by Garbage 

Collector has been physically and logically organized. Based on the knowledge from 

previous chapters, it describes not only how something was done but also tries to explain 

why. I hope that this allows you to better understand where the division into generations, 

Small Object Heap and Large Object Heap, is derived from.
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This chapter describes in some detail the various aspects related to the organization 

of memory within Managed Heap. Some of those aspects are fundamental, and it is hard 

to understand .NET without being aware of them. Those include especially the concept 

of Generational Garbage Collection. Generations are a key concept that almost always 

appear in the context of memory management in .NET programs. Therefore, these topics 

should be considered very practical. On the other hand, topics with much less practical 

use are also described because it allows us to go much deeper into CLR internals and 

understand how some particular aspects of GC design have been implemented.

The chapter also contains three example scenarios for solving problems related to 

the topics discussed here. They allow you to look at the topic of generation or segments 

from a more practical side.

 Rule 11 - Monitor Generation Sizes
Justification: Weak generational hypotheses are the foundation of Generation Garbage 

Collector implemented in .NET Runtime. A program, which due to uncommon (or 

erroneous) object creation patterns violates it, may incur serious problems to the GC 

performance.

How to apply: According to Rules 5 and 6 we should measure our program to  

check memory management behavior. One of the most important measures include how 

generations change their size in time. We should be aware (if not monitor continuously) 

how big are generations 0, 1, 2, and LOH. Two common misbehaviors should arouse our 

attention:

• One or more generations are constantly growing (even if it is spread 

over time and happens after a lot of memory garbage collections) - 

this may indicate a bigger or smaller memory leak.

• One or more generation changes in time very frequently - this may 

indicate a big memory traffic that triggers a costly GC process.

Obviously, generation sizes by themselves are not the only important measurement. 

One can imagine a generation 2 size that is stable but there is a lot of churn to it 

 (meaning we are replacing a log of objects in it very often), so we are spending a lot of 

time spending generation 2 GCs. Thus, measuring CPU overhead (like % Time in GC 

counter) is at least as important as monitoring generation sizes.

Related scenarios: Scenarios 5-1, 5-2.
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 Rule 12 - Avoid Unnecessary Heap References
Justification: In Generational Garbage Collection, a special technique exists to track 

references between generations. This is called a Remembered Set technique in general. 

.NET runtime uses write barriers and card tables to realize such a technique. As 

described in this chapter, it has quite a sophisticated implementation, doing its best to 

provide as small of overhead as possible. However, the best intragenerational reference 

is a nonexisting one. We can help GC in reducing overhead by taking care of not 

introducing too many, sometimes unnecessary references.

How to apply: When constructing any long-running buffers or caches, a quite 

typical situation is to assign to them newly created objects. This may incur creating 

intrageneration reference (triggering card table mechanism). However, there may be 

cases when such a reference may be avoided: for example, when designing binary tree, 

instead of holding references to nodes:

class Node

{

    Data d;

    Node left;

    Node right;

};

You may store just an index to them and store nodes in an array:

class Node

{

    Data d;

    uint left_index;

    uint right_index;

};

Please bear in mind, however, that such a change incurs much more changes than 

just relieving a card table mechanism. For example, how will such arrays of nodes be 

allocated? How will such a change influence performance of traversing a graph, which 

now requires an additional array lookup per node? Only solid benchmarking can give as 

an answer whether applying this rule is beneficial or quite the opposite.
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 Rule 13 - Monitor Segments Usage
Justification: Segments are implementation details of how a Managed Garbage Collector 

heap is being organized. In most cases it is perfectly hidden so we should not be aware of 

it at all. However, as always, there are some exceptions. Segments itself and their layout 

may provide us some diagnostic clues when analyzing memory usage problems. They 

can even cause such problems rarely, especially in a tight 32-bit environment.

How to apply: It is sometimes good to look at our process under investigation with the 

help of appropriate WinDbg commands (or tools like VMMap). By analysis of segments 

created by the GC, we may gain some clues regarding possible issues. Knowing how 

generations are located in segments may be especially useful when doing low-level 

analysis in tools like WinDbg.

Related scenarios: Scenarios 5-2, 5-3.
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CHAPTER 6

Memory Allocation
We have learned so far quite broad theoretical introduction about memory in general 

and low-level aspects of it in the first chapters. Starting from Chapter 4 we are learning 

more and more about the implementation of memory management in .NET. So far, 

we have learned mostly about some .NET internals (in Chapter 4) and how memory is 

being organized structurally (in Chapter 5). Based on the knowledge gained so far, in 

this chapter it is time to go to the most important topics in this book - the principles of 

operation and usage of Garbage Collector in .NET. As we are getting closer to the core 

topics, beside implementation details, expect also more and more practical knowledge 

both from diagnostics and from a code point of view.

We start with a mechanism without which the operation of any program would be 

impossible - allocating memory. This mechanism provides memory for objects that we 

create in our applications. And our programs need to create objects, no matter how hard 

we try. Simply running the simplest console application creates a lot of auxiliary objects 

even before the first line of our code is executed. Because of its crucial importance and 

heavy usage, as we shall see in this chapter, every effort has been made to make allocator 

in .NET as efficient as possible.

You may remember a brief mention of the concept of Allocator presented in Chapter 1  

as “an entity responsible for managing dynamic memory allocation and deallocation.” 

Method Allocator.Allocate(amount) has been defined there, which is responsible 

for providing a specified amount of memory. It is true that on this level of abstraction, 

Allocator especially does not care about the type of object, it just provides the right 

number of bytes (which will be then filled by runtime in a proper way).

 Allocation Introduction
Obviously our abstract Allocator.Allocate(amount) is only the tip of the iceberg. This 

whole chapter is devoted to the details of the implementation of this single method and 

the practical tips resulting from it.
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If we recall from Chapter 2, an operating system provides its own allocation 

mechanisms. Unmanaged environments like C/C++ are relying on them directly to 

acquire required memory. It is called Heap API (in case of Windows) or a combination 

of mmap/sbrk calls (in case of Linux). However, the .NET environment may benefit by 

introducing an additional layer between the operating system and executed program - 

which is .NET runtime. Most often managed environments like .NET preallocate 

continuous blocks of memory and implement their own allocation mechanism inside. 

This may be much faster than asking an operating system for more memory each time 

a new object is being created. Operating system calls may be costly and as we will see, 

much simpler mechanisms may be used.

As we know from the previous chapter, the GC Managed Heap consists of segments. 

This is exactly the place where the allocation of objects described in this chapter takes 

place. Although it was not clearly enough stated so far, you could probably notice it 

already - allocation of objects takes place:

• in generation 0 in case of Small Object Heap. It was illustrated by 

Figures 5-4 and 5-5 in the previous chapter. This happens physically 

is an ephemeral segment (containing generations 0 and 1).

• in Large Object Heap directly as it is not further partitioned into 

generations. This happens physically in one of the segments 

containing LOH.

As the Book Of The Runtime summarizes this: “Each time a large object is allocated, 

the whole large object heap is considered. Small object allocations only consider the 

ephemeral segment.”

There are two popular ways how an allocator may be implemented. Both are used 

in .NET. They were already mentioned in Chapter 1 - sequential allocation and free-list 

allocation. Let’s now dig into them one by one in the context of .NET implementation.

 Bump Pointer Allocation
The allocator has segments at his disposal. The simplest and fastest way of allocating 

memory inside it is just to move some pointer indicating when the current memory 

“ends.” This pointer is called an allocation pointer. If we moved it with a number of bytes 

corresponding to the size of the object we want to create - congratulations, we’ve just 
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allocated memory for a given object! The idea is illustrated in Figure 6-1. Let’s assume 

there are already some objects created (see Figure 6-1a). The allocation pointer points 

where those objects end. This is a place where a newly created object will be placed. 

When some memory for new object A is being requested, the pointer value becomes 

an address of this object. Then allocator just moves this pointer further by a specified 

number of bytes (see Figure 6-1b).

Pseudo-code from Listing 6-1 illustrates this simple yet efficient technique. As we 

will later see, such implementation is one of the allocation possibilities inside CLR. Such 

a simple function can be written in an assembly code with just a few instructions, 

making it extremely efficient.

Listing 6-1. Simple bump pointer allocator implementation

Allocator.Allocate(amount)

{

     PTR result = alloc_ptr;

     alloc_ptr += amount;

     return result;

}

objects

allocation
pointer

allocation
pointer

A

(a)

(b)

object A
address

objects

Figure 6-1. Simple sequential allocator implementation
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One may meet this kind of allocation also under the name bump pointer allocation 

as what it does is provide memory by “bumping” the allocation pointer from time to 

time. We can see two main properties of such an approach:

• Firstly, as its name states, this is a sequential algorithm - we just 

move always in one direction when allocating memory. This may 

lead to good data locality. If we create a bunch of objects in our 

program at once, they may represent some consistent and self-

dependent data structures, so it is good that they will be laid near 

each other. In other words, data created in a similar period of 

time probably will later be used simultaneously (and as we may 

remember from Chapter 2, CPU architecture is making the best 

from temporal and spatial locality).

• Secondly, this model assumes an infinite memory availability. 

Needless to say, this is overoptimistic. I would like to have an infinite 

RAM in my PC, but unfortunately, I have only 16 GB. Does it make 

sequential allocation nonsense? Of course not, as we can do something 

with the left side of the pointer. For example, remove unused objects 

and compact holes left by them. This is where Garbage Collection 

comes into play obviously. Occasionally we may “rewind” the 

allocation pointer back after unused objects have been collected.

One can wonder what happens to the memory contents in the place where the object 

A is located. For the new object to be in a clean state, this memory must of course be 

zeroed (some individual fields of the object will be set by its constructor, but this is the 

role of the Execution Engine and not the Garbage Collector). This would require adding 

such a cleaning call to the Allocate method from Listing 6-1 (see Listing 6-2).

Listing 6-2. Simple sequential allocator implementation (with memory zeroing)

Allocator.Allocate(amount)

{

     PTR result = alloc_ptr;

     ZeroMemory(alloc_ptr, amount);

     alloc_ptr += amount;

     return result;

}
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Zeroing memory introduces overhead though, which is not negligible in such 

an extremely important and common operation as creating new objects. Thus, to 

make allocation as fast as possible, it is worth it to prepare some amount of zeroed 

memory in advance. This would allow us to use code from Listing 6-1 as a fast path, 

falling back to zeroing memory from Listing 6-2 only as needed. Zeroing memory 

in advance makes also CPU cache usage more efficient because accessing it will 

“warm” the cache.

An additional pointer is introduced in a called allocation limit, which points 

where zeroed memory region ends. Such region is called an allocation context (see 

Figure 6-2). Allocation context is a place where fast, optimistic allocation happens by 

pointer bumping.

If there is not enough space in the allocation context for a required number of bytes, 

a fallback mechanism is being triggered (see Listing 6-3). This fallback mechanism may 

contain any level of sophistication. In case of CLR it contains quite a complicated state 

machine of possible actions as we will see in subchapters describing in detail allocation 

in Small and Large Object Heaps separately. One of the obvious possibilities is to grow 

the allocation context or get a new one to fit the required space. A typical amount of such 

growth is called allocation quantum. In other words, in a typical scenario, when there is 

no room in the allocation context, it will be enlarged by at least an allocation quantum 

(or more if more memory was requested).

objects

allocation
pointer

allocation
limit

zeroed

allocation
context

Figure 6-2. Allocation context spans between allocation pointer and allocation 
limit. It contains ready-to-use zeroed memory.
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Listing 6-3. More realistic bump pointer allocator with allocation context buffer 

containing already zeroed memory

Allocator.Allocate(amount)

{

   if (alloc_ptr + amount <= alloc_limit)

   {

      // This is the fast path - we have enough memory to bump the pointer

      PTR result = alloc_ptr;

      alloc_ptr += amount;

      return result;

   }

   else

   {

      //  This is the slow path - allocation context will be changed to fit 

the amount (i.e. grow by at least allocation quantum bytes)

      if (!try_allocate_more_space())

      {

         throw OutOfMemoryException;

      }

      PTR result = alloc_ptr;

      alloc_ptr += amount;

      return result;

   }

}

As we remember from the previous chapter, GC already has one mechanism of 

memory preparation - two-stage building of segments. First, a large block of memory is 

reserved, and then, if necessary, subsequent pages are committed as needed. But when 

segments grow by committing more pages, not necessarily all those pages are instantly 

zeroed. In other words, allocation context may not consume all committed memory to 

its end (see Figure 6-3). It is a compromise between the profit from the preparation of 

memory and the cost of zeroing it. For example, in case of Small Object Heap, a default 

allocation quantum is 8 kB while the segment is grown by committing 16 pages at once 

(which is typically 64 kB).
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While default allocation quantum size is 8 kB, it may be dynamically changed 
under certain circumstances. the current Clr implementation can set a value 
between 1,024 and 8,096 bytes depending on allocation’s intensiveness and 
number of active contexts.

In this way an operating system is asked for committing pages much less frequently 

and only the allocation context is being grown. As we can see, there is quite a well-

thought way of acquiring memory than just simple object by object allocation, which 

would be not effective at all.

Allocation context can be also placed in other places than just at the end of the 

segment. It may be spanned inside free space between existing objects (see Figure 6-4). 

In such a case, it will start with an allocation pointer set to the beginning of the free space 

and allocation limit pointing to its end.

segment_info objects

commited

reserved

begin
(mem)

allocation
pointer

segment

allocation
limit

zeroed

allocation
context

Figure 6-3. Allocation contex within segment - created at the end of current 
allocations
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One of the most important facts is that allocation context has a thread affinity. It 

means that each managed thread (executing .NET code) in our application has its own 

allocation context. As Book Of The Runtime states: “The thread affinity of allocation 

contexts and quantums guarantee that there is only ever a single thread writing to a 

given allocation quantum. As a result, there is no need to lock for object allocations, as 

long as the current allocation context is not exhausted.”

This is extremely important from a performance perspective. If allocation context 

was shared between threads, the Allocate method would introduce synchronization 

overhead. But as each thread has dedicated its own context, a simple bump pointer 

technique can be used without a worry that something else will modify the allocation 

pointer or limit inside it. This mechanism is based on Thread-local storage (TLS) to store 

allocation context per thread. And in general, we can meet this technique under the 

name Thread Local Allocation Buffer.

Note on a machine with a single logic processor there will be only a single 
allocation context. thus, access to it in such a case must be synchronized 
because different threads may access such a single, global allocation context. 
however, in such a case, synchronization is very cheap as only one thread can run 
at any given time.

commited

reserved

free itemsobjects

allocation
context

ze
ro

edsegment
info

allocation
pointer

allocation
limit

Figure 6-4. Allocation contex within segment - created inside free space
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Having multiple allocation contexts complicates our Figures 6-3 and 6-4 a little. 

There is no single context at the end of segment as it has been drawn in simplified form 

before. There are many managed threads in our application so a more typical scenario 

is when multiple allocation contexts live within a single segment (see Figure 6-5). As the 

program runs, some of them will be located at the end of segment and some will reuse 

free space between objects.

Allocation context lives within an ephemeral segment - the one which contains 

generation 0 and 1. Thus, Figure 6-5 shows ephemeral segment structure where 

“objects” part will be split into generations 1 and 0 (and 2 if it is small, for example, at the 

beginning of the program execution).

As we at this point pretty well touched .NET memory organization, it has been once 

again summarized in Figure 6-6. Remember - generations are just logical and moving 

boundaries inside a segment.

commited

reserved

zeroed

allocation
context 2

free itemsobjects

zeroed

allocation
context 3

allocation
context 1

ze
ro

edsegment
info

Figure 6-5. Multiple allocation contexts within segment - each for one thread
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commited

reserved

zeroed

allocation
context 2

zeroed

allocation
context 3

allocation
context 1

ze
ro

edsegment
info

gen2 gen1 gen0

Figure 6-6. Ephemeral segment organization summary

Bump pointer allocation in its original form has one drawback. If we run sweeping 

garbage collection on already allocated objects, we will obviously end up with 

fragmentation. Many holes of free memory will exist to the left of the allocation pointer 

(see Figure 6-7a). A very naïve bump pointer technique (not one used in .NET) is not 

aware of them. It can only consume more and more memory. Obviously, no one would 

create a serious GC that sweeps the heap yet doesn’t try to use the resulting free space 

to allocate something in. The simplest solution is that we can run compacting garbage 

collection so survived objects will be laid next to each other and whole allocation context 

will be pushed back (see Figure 6-7b). There is a much better solution than relying on 

compaction.
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Fortunately, .NET implementation uses a smart combination of sequential allocation 

within allocation context but as we see in Figures 6-4 and 6-5, it may create allocation 

context inside free space (using fragmentation as a good thing). Once in a while GC may 

decide to compact and then allocation contexts will be reorganized in a natural way at 

the end of the segment (see Figure 6-8).

commited

reserved

zeroed

allocation
context

objects zeroed

(a)

(b)

unused free space

pushed back allocation context

objects

Figure 6-7. Bump pointer allocation and fragmentation problem: (a) Sweeping 
Garbage Collection produces fragmentation and allocation context is not aware of 
free memory, (b) Compact Garbage Collection reclaims memory by pushing back 
allocation context but requires a lot of memory copying
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 Free-List Allocation
The idea behind free-list allocation is trivial. When runtime asks GC to allocate a given 

number of bytes, it searches through a free list to find a free gap big enough to fit the 

specified number of bytes. As mentioned already in Chapter 1, two main strategies of 

free-list scanning may be taken:

• best-fit - to find free memory gap best suiting required space (which 

would be the smallest block bigger or equal than required size) to 

leave as small leftovers as possible. Naïve approach would require 

scanning the whole list of free items although a typical approach is 

based on buckets, as explained below.

• first-fit - scanning ends as fast as first suitable free memory gap has 

been found. This is fast in terms of required time but produces far 

than optimal results in terms of fragmentation.

commited

reserved

zeroed

allocation
context 2

objects

(a)

(b)

free itemsobjects

zeroed

allocation
context 3

allocation
context 1

ze
ro

ed

ze
ro

ed

allocation
context 1

zeroed zeroed

allocation
context 3

allocation
context 2

segment
info

segment
info

Figure 6-8. Compacting Garbage Collector may reorganize all allocation contexts 
after its work – (a) initial situation with three allocation contexts scattered around 
the segment, (b) after compacting GC allocation segments will be reorganized 
optimally
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Microsoft .NET implementation uses buckets to manage a set of free lists for 

various free gap sizes. In this way a fast scan may be used without compromising 

fragmentation optimization too much. By controlling the number of buckets 

(number of various size ranges of free gaps), a balance between performance and 

fragmentation reduction may be set. If there was a single bucket (all gaps regarding 

their size will land there), it would mean naïve first-fit approach. On the other 

hand, if there was a lot of buckets (with very detailed gap sizes granularity), it would 

mean a best-fit approach. As we will see, the number of baskets varies for each 

generation.

Free lists are maintained partially directly on the GC Heap due to the way free 

space is being represented. A free space between used objects is represented as it was 

an (almost) regular array. Thus, it has structure very similar to a normal object (see 

Figure 6-9). There is a special MethodTable representing such “free object.” A number 

of the free space “elements” is stored after MethodTable pointer, as in the typical array. 

“Free object” array assumes one-byte element size so the number of elements simply 

becomes the size of the free space expressed in bytes. Additionally, instead of regular 

object header (which is unnecessary for “free object”), there is an element called 

“undo.” It temporarily keeps an address of other free list items during list processing as 

we will see.

unused data

"free object"
MethodTable

size

size

undo

undo

MT

MT

next "free object"

next "free object""free object"
MethodTable

Figure 6-9. “Free object” structure representing free space on GC Heap
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Note if you are interested in CoreClr code related to “free object,” start 
from gc_heap::make_unused_array method, which prepares it. as you 
will see it uses static global pointer to g_pFreeObjectMethodTable as 
a new Mt. then it adds such gap to the free list by calling generation_
allocator(gen)->thread_item (gap_start, size). however, 
threading is done only for gaps larger than the double size of the minimum 
object size. this helps to ignore the list management overhead for such small 
items.

An allocator for each generation maintains a list of buckets (see Figure 6-10). The 

first bucket represents a free list of items with sizes lower than first_bucket_size. 

Each next bucket doubles this size and the last bucket is for largest sizes with no limit. 

Each bucket maintains a description of the corresponding free-item list, especially 

its head. However, as we see in Figure 6-10, the list itself is implemented as single-

linked list between “free objects” on the GC Heap. This allows for fast traversal during 

list manipulation as at least some part of the heap is in cache already. Maintaining a 

separate list would be unnecessary here.

allocator

buckets

head tail
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zeobjects

alloc_list alloc_list alloc_list

free space free space free space
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num_buckets

un
do

un
do

un
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Figure 6-10. Free-list implementation in CLR based on buckets
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you may be surprised by the fact that each generation has its own allocator 
because it was clearly stated that allocation of objects takes place either in 
Soh’s generation 0 or in loh. it is true, user allocations only happen in gen0 and 
loh. But when GC promotes the survivors from one generation to the next one, it’s 
also allocating into the next generation.

Each generation has its own configuration of the number and size of buckets. It 

has been summarized in Table 6-1. As we can see, both ephemeral generations are 

maintaining only a single bucket for all sizes. Generation 2 configuration varies between 

32- and 64-bit runtimes. For example, in 64-bit runtime GC will maintain buckets for 

sizes smaller than 256 B, 512 B, 1 kB, 2 kB, 4 kB, 8 kB, and last one for bigger than 8 kB.

Table 6-1. Free-List Buckets Configuration per Generation

Region First bucket size Number of buckets

Generation 0 int.Max 1

Generation 1 int.Max 1

Generation 2 256 B (64-bit)

128 B (32-bit)

12

12

LOH 64 kB 7

Allocation based on bucketed free lists is quite simple (see Listing 6-4). We have 

to start from the first appropriate bucket and try to find first the matching free item in 

the corresponding free-list. After allocating the needed amount of memory from the 

free item, a certain amount of free memory may still remain. If it is larger than the two 

minimum object sizes (that is, 48 bytes for the 64-bit platform), a new free item will be 

created from them and included in the list. If not, this small free memory region will be 

counted as unusable fragmentation.

Listing 6-4. Implementation of free-list allocation in pseudo-code

Allocator.Allocate(amount)

{

   foreach (bucket in buckets)

   {
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       if (amount < bucket.BucketSize) //  this will skip buckets with too 

small items

      {

         foreach (freeItem in bucket.FreeItemList)

         {

            if (size < freeItem.Size)

            {

               UnlinkItem(freeItem);

               ZeroMemory(freeItem.Start, amount);

               if (RemainingFreeSpaceBigEnough())

                  ThreadRemainingFreeSpace(freeItem, amount);

               return freeItem.Start;

            }

         }

      }

   }

}

please note that memory zeroing used in listing 6-4 is needed only in case of 
user- allocated items (as they have to be created in a fresh, new state) but may be 
omitted in case of allocating in older generations during promotion (as it will be 
overwritten by the promoted object content). this is exactly how .net implements it. 
additionally, in case of generation 0 and 1, a free item is being discarded (becomes 
unusable fragmentation) if it fails to fit the required size. this means that in those two 
generations each free item will be checked only once. this is yet another compromise 
between the cost of maintaining a free list and the cost of allowing fragmentation. 
two youngest generations are compacted often so the free list is built up often.

Undo element of “free object” mentioned earlier is used by Garbage Collector during 

the Plan phase when it decides to use one of the free items for allocation. To be precise, it 

is allocation in an older generation, used to find a place for a promoted object in an older 

generation if the GC wants to use a free item for this. In such case the GC “unlinks” the 

used free item from the free list by typical pointers manipulation as in single-linked lists 

(see Figure 6-11):
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• The removed item address is stored in the previous item’s “undo” (if 

there is previous item).

• The previous item “next” pointer is changed to the next available free 

item (the one that removed item pointed at).
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Figure 6-11. Free-list item unlinking

However, as it was said, this is done during the planning phase and later the GC 

may decide to do sweeping. Used free-list items have to be undone (because in case 

of sweeping older generation is left untouched so previously mentioned planned 

allocations need to be reversed). By using a free item’s address stored in “undo,” the 

original list can be restored. But we will learn about the planning, compacting, and 

sweeping stages relationship in much more detail in Chapter 7.

 Creating New Object
Knowing two basic techniques of allocating memory for objects, we can now move 

on to the description how they are used together in case of .NET allocation. There 

are important differences between Small and Large Object Heap allocation so the 

description is divided into both areas.

When we create a new reference-type object (for example, by using new operator 

in C# - see Listing 6-5) it will be translated into CIL instruction newobj (see Listing 6-6).

Listing 6-5. Object creation example in C#

var obj = new SomeClass();
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Listing 6-6. Object creation example in Common Intermediate Language

newobj instance void SomeClass::.ctor()

JIT compiler will emit the proper function call for newobj instruction depending on 

various conditions. The most typical case is to use one of the allocation helpers. The decision 

tree is presented in Figure 6-12. All decisions are based on conditions known during JIT 

compilation or even before, during runtime startup. We can spot there two main possibilities:

• If an object exceeds large size threshold (it will be created in LOH) or 

it has a finalizer (a special method explained in details in Chapter 12) - 

generic and slightly slower JIT_New helper will be used.

• Otherwise faster helper will be used - what specific version will be 

chosen depends on the platform and the GC mode.

getNewHelperStatic

Size > 
LargeObjectSize 

||
HasFinalizer

Platform

Use allocation 
context

JIT_New

True False

JIT_NewS_MP_FastPortable

JIT_TrialAllocSFastMP_InlineGetThread

non-Windows Windows

JIT_TrialAllocSFastMP

True False

True in case of 
Server GC or 

multiple logical 
processors

Figure 6-12. Decision tree about choosing allocation helper during JIT 
compilation (function names comes from CoreCLR code)
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It is important to remember that this decision tree is being used during JIT 

compilation and the proper allocation helper will be emitted as a result. Thus, no 

overhead comes from it during normal program execution. One of the listed helpers will 

be just called later on.

Note in case of creating arrays newarr Cil instruction will be emitted, which 
has its own various versions: for example, optimized for creating one- dimensional 
object arrays or one-dimensional value type arrays. however, as the allocation 
implementation underneath them is essentially the same, it was omitted here for 
brevity.

if you would like to dig more into the details of allocation in CoreClr code, 
start from Jit compiler reaction on CEE_NEWOBJ opcode implemented in Jit 
importer (importer.cpp:Compiler::impImportBlockCode). it decides 
what to do - whether it is about creating an array, a string, a value type, or 
a reference type. For reference types other than strings and arrays, it calls 
CEEInfo::getNewHelper, which runs part of the decision tree from Figure 6-12.  
Slower and more generic helper is represented by CORINFO_HELP_NEWFAST 
constant and faster by CORINFO_HELP_NEWSFAST. What functions implement 
those helpers are decided during runtime startup in InitJITHelpers1 method. 
it realizes the other part of the decision tree from Figure 6-12.

 Small Object Heap Allocation
Allocation of small objects that land in a Small Object Heap is based mainly on bump 

pointer allocation. The goal is to allocate most of the objects with a bump pointer 

technique inside the allocation context as described earlier in this chapter. Only if it fails, 

would a slower path of allocation be executed (described later).

The fastest allocation helper in case of SOH realizes an allocation helper from 

Listing 6-3 in just a few lines of assembly code (see Listing 6-7). It will be used to 

allocate all objects in SOH that do not have a finalizer (based on the decision tree 

from Figure 6-12) in case of Server GC mode or in general, on a machine with multiple 

logical processors.
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a version for running on a single-processor machine is named JIT_
TrialAllocSFastSP and contains a locking mechanism to allow safe access to 
a global, single synchronization context.

This is indeed very efficient code consisting of only a few assembly instructions 

doing comparison and addition. This is the reason why it is common to say that 

“allocations are cheap in .NET”. As we see (with the help of comments), in a fast-path 

optimistic scenario it is indeed really fast to “allocate” a memory for an object - we are 

just increasing a value of an allocation pointer inside the already zeroed memory inside 

allocation context (of already Committed memory).

Listing 6-7. The fastest allocation helper

; As input, rcx contains MethodTable pointer

; As result, rax contains new object address

LEAF_ENTRY JIT_TrialAllocSFastMP_InlineGetThread, _TEXT

    ; Read object size into edx

    mov     edx, [rcx + OFFSET__MethodTable__m_BaseSize]

    ; m_BaseSize is guaranteed to be a multiple of 8.

    ; Read Thread Local Storage address into r11

    INLINE_GETTHREAD r11

    ; Read alloc_limit into r10

    mov     r10, [r11 + OFFSET__Thread__m_alloc_context__alloc_limit]

    ; Read alloct_ptr into rax

    mov     rax, [r11 + OFFSET__Thread__m_alloc_context__alloc_ptr]

    add     rdx, rax          ; rdx = alloc_ptr + size

    cmp     rdx, r10          ; is rdx smaller than alloc_limit

    ja      AllocFailed

    ; Update alloc_ptr in TLS

    mov     [r11 + OFFSET__Thread__m_alloc_context__alloc_ptr], rdx

    ; Store MT under alloc_ptr address (constituting new object)

    mov     [rax], rcx

    ret
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AllocFailed:

    jmp     JIT_NEW           ; fast-path failed, jump to slow-path

LEAF_END JIT_TrialAllocSFastMP_InlineGetThread, _TEXT

If the current allocation context does not fit the required size, the fastest assembly- 

based allocator falls back to calling a more generic JIT_NEW helper (the same as used for 

objects with finalizer or in LOH). This more generic helper contains inside the slow-path 

allocation. It is the necessity of abandoning this fast path that makes the “allocation is 

cheap” phrase not always true. Slow path is realized as a quite complex state machine 

that tries to find a place with the required size.

How complex is the slow path? Figure 6-13 illustrates a state machine realizing it. It 

starts with a_state_start state when the fast allocation described above fails. This state 

unconditionally changes into a_state_try_fit, which calls gc_heap::soh_try_fit() 

method (see Figure 6-14). And so the whole story begins. There are many possible 

decisions, to name a few here are the most important:

• Slow-path starts from trying to use existing, unused space in 

ephemeral segment (see Figure 6-14 describing soh_try_fit 

method). It will:

• Try to use free list to find a suitable free gap for a new allocation 

context (recall Figure 6-4).

• Try to adjust allocation limit inside already Commited memory.

• Try to Commit more memory from Reserved memory and adjust 

allocation limit inside.

• If all above fails, garbage collection will be triggered. Depending on 

conditions it may be called multiple times.

• If all above fails, allocator is not able to allocate requested memory, 

which is a critical situation so handling of OutOfMemoryException starts.
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Figure 6-13. Complex state machine of Small Object Heap slow-path allocation
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in case of Small object heap allocation, we may find slow-path code in CoreClr’s 
gc_heap::allocate_small method, with logic illustrated in Figure 6-13.

triggering GC because of Soh allocation (thus, the most common one) is often 
referred to as allocSmall reason in etW data.

a_fit_free_list_p

free list item found?

soh_try_fit

can_use_existing = True

True

size fits in Commited?

a_fit_segment_end_p

adjust limit &
zero memory

size fits in Reserved?

False

True

False

try to Commit more 
pages

can_use_existing = False

True

False

pages commited?

True

False

Figure 6-14. Decision tree for soh_try_fit method

Describing the whole state machine from Figure 6-13 is not particularly useful. Those 

are quite deep implementation details and may change until this book’s publication 

(but I still encourage you to take a moment to analyze it on your own). However, it 

is good to note how complex a slow path may become comparing it to the fast-path 

allocation (like trying to fit in a free list item, triggering one or even multiple GCs). We 
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should keep in mind though that the “allocation is cheap” sentence is true only to some 

extent. We should understand what allocations involve and use it carefully so we don’t 

go and allocate objects unnecessarily or blindly use a heavy-allocating library without 

understanding what it does. As we see, even without triggering GC, slow path may be 

expensive. In absolutely performance-critical code the best rule about allocations is just 

to avoid them at all (which leads us to performance-related Rule 14 - Avoid Allocations).

Please also bear in mind that objects with finalizers are using more generic 

allocation helpers by default. And there is an additional overhead related to the 

finalization mechanism described in Chapter 12. This makes Rule 25- Avoid Finalizers - 

described there valid.

 Large Object Heap Allocation
Allocation of large objects that land in Large Object Heap is based on free-list allocation, 

as well as a simplified bump pointer technique at the end of segment space (without using 

allocation context). Allocation context and related optimizations are not so important 

because the cost of clearing a large object is so dominant. Thus, it does not make sense to 

invest a lot of effort in optimizing things that are not going to make a noticeable difference. 

Instead, it better take care of possible fragmentation resulting from the fact that in LOH 

only Sweeping Garbage Collector is used (until we ask to compact it explicitly).

Therefore, there is no differentiation into a fast and slow path in the LOH allocator. It 

always takes the same path very similar to the SOH slow path (see Figure 6-15):

• It starts from trying to use existing, unused space (see Figure 6-16 

describing loh_try_fit method). It will:

• try to use free list to find a suitable free gap for an object

In each segment containing LOH:

• try to adjust allocation limit inside already Committed memory,

• try to Commit more memory from Reserved memory and 

adjust allocation limit inside.

• If all above fails, garbage collection will be triggered. Depending on 

conditions it may be called multiple times.

• If all above fails, allocator is not able to allocate requested memory, 

which is a critical situation so handling of OutOfMemoryException starts.
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Figure 6-15. Complex state machine of Large Object Heap allocation
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in case of large object heap allocation, we may find slow-path code in CoreClr’s 
gc_heap::allocate_large method, with logic illustrated in Figure 6-16.

a_fit_free_list_large_p

free list item found?

loh_try_fit

can_use_existing = True

True

size fits in Commited?

a_fit_segment_end_p(seg)

adjust limit &
zero memory

size fits in Reserved?

True

False

try to Commit more
pages

can_use_existing = False

True

pages commited?

True

False

loh_a_fit_segment_end_pFalse

seg = generation_allocation_segment()
while (seg)
{
a_fit_segment_end_p(seg)
seg = heap_segment_next_rw(seg)
}

False

Figure 6-16. Decision tree for loh_try_fit method
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As you can see, the state machine for LOH is even more complicated here than 

the one shown in Figure 6-13. As in that case, it is not particularly useful to describe 

exactly all possible transitions and behaviors here. Please note, however, that in LOH 

there is no allocation context used. However, Allocator still has to guarantee a clear 

object state after its creation so a memory for it must be zeroed. The cost of zeroing 

memory of large objects may be quite significant. Taking into account the latencies 

of memory access presented in Chapter 4 (Table 4-2), zeroing an object with a size of 

several megabytes can take tens of milliseconds. This can be a very long time for our 

application.

It is then important to remember that allocating objects in LOH is even more 

expensive than in SOH. And that even more we should avoid it, which leads us to  

Rule 15 - Avoid Excessive LOH Allocations. Creating a pool of reusable objects is the 

simplest solution to this problem.

Note .net GC is being constantly improved and often a new version of runtime 
introduces important improvements. For example, since .net 4.5 (and hence since 
.net Core 1.0), loh allocator has been significantly improved to better utilize a 
free list with the help of described bucketed approach.

An interesting question may arise. What largest object can we create in .NET? What 

is the maximum object’s size? From the very beginning of .NET it was 2 GB. Although 

we are rather not used to creating such big single objects, there may be scenarios where 

a bigger array is needed. Until .NET 4.5 there were no way to omit this limitation. Since 

version 4.5 a new gcAllowVeryLargeObjects setting was added (see Listing 6-8), which 

allows us to create objects with size fitting 64-bit signed long value (reduced by small yet 

not important value). While it enables arrays that are larger than 2 GB in size, it does not 

change other limits on object size or array size:

• The maximum number of elements in an array is UInt32.MaxValue 

(which is 2,147,483,591).

• The maximum index in any single dimension is 2,147,483,591 

(0x7FFFFFC7) for byte arrays and arrays of single-byte structures, and 

2,146,435,071 (0X7FEFFFFF) for other types.

• The maximum size for strings and other non-array objects is 

unchanged.
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Listing 6-8. Configuration to enable gcAllowVeryLargeObjects settings (disabled 

by default)

<configuration>

  <runtime>

    <gcAllowVeryLargeObjects enabled="true" />

  </runtime>

</configuration>

Where will such a huge object be created? Certainly it will be allocated in one of the 

LOH segments as it is bigger than a large object size threshold. Most probably a whole 

new segment will be created for this purpose because it is unlikely there is one big 

enough already to fit our unimaginable big object. And remember - allocation of such a 

big object may take a few seconds due to memory access latency!

 Heap Balancing
As mentioned a few times already, GC in Server Mode manages multiple heaps - one 

per each logical processor available to the runtime. As there are multiple managed 

heaps, it means that there are multiple ephemeral segments and multiple Large 

Object Heap segments. On the other hand, there are multiple managed threads 

running in our application. How do those two relate to each other? How is a heap 

assigned to the thread?

This requires an earlier answer to yet another question - how are heaps assigned 

to logical processors? In the discussion of this subject, we will need the knowledge 

from Chapter 4 on CPU cooperation with memory. Obviously, CLR wants to keep the 

managed heap as “close” to specific logical CPU (core) as possible (in terms of possible 

access times). And it obviously would like to avoid any synchronization overhead 

between them. As a consequence, the following design decisions were made:

• In case of OS supporting information about on which core current 

thread is being executed (which is true for Windows and probably 

most Linux and macOS versions) - each logical CPU is assigned to 

a subsequent managed heap and this assignment is never changed. 

This allows us to populate CPU caches accordingly during program 
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execution and do not destroy it too often. On the other hand, 

managed heap is never shared between multiple cores to avoid cache 

coherency protocols overhead.1

• In case of OS not supporting such information - micro-benchmark 

is executed to empirically examine which heap has the best access 

times for a particular core.

• If machine uses NUMA groups (mentioned in Chapter 2), heaps 

assignment will stay inside single group.

if you are interested in how such a micro-benchmark is being executed, start from 
heap_select::access_time method.

When a managed thread starts to allocate, a heap is assigned to it - this one, 

which is assigned to the processor on which such thread is being executed. A typical 

situation between GC Managed Heaps, threads, and logical cores has been illustrated 

in Figure 6-17. Two logical processors are consuming managed memory built with 

an all-at-once strategy described in the previous chapter. First CPU has SOH1 and 

LOH1 segments assigned. Second CPU has SOH2 and LOH2 segments assigned (so no 

segments are shared between them). Note that processors simply use certain memory 

regions (isolated thanks to segment concept), but there is no magical mechanism in 

memory separating each of them by any kind of OS or hardware support. However, 

such isolation allows good cache utilization as each CPU operates on those segments 

often and exclusively.

Threads running on CPU #1 (marked as T1 and T2) have their allocation context inside 

SOH1. Threads on second CPU (here single one, marked as T3) utilize second heap and so 

on, so forth. In LOH allocation context does not exists so it was not illustrated.

1 Sharing heaps between cores may happen, however, if for some reason we configured GC to have 
less managed heaps than logical processors.
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When a thread is created, the operating system decides on which logical processor 

will be executed. This is okay until all managed threads in our application allocate more 

or less the same amount of memory. However, there may be situations in which one 

or several threads start to allocate much more than others. This can lead to a state of 

unbalanced heaps illustrated in Figure 6-18. Thread 3 or 4 allocates much more memory 

than threads 1 and 2 (so there is much less space in SOH2). This is an unwanted situation 

for two main reasons:

• There will be soon memory shortage in second SOH probably. It will 

trigger GC and eventually maybe new SOH segment will have to be 

created.

• CPU cache utilization is unbalanced.

SOH1 SOH2

T1 T2 T3

CPU #1

T1 T2

CPU #2

T3

LOH1 LOH2

allocation context
for denoted thread

objects free space

Figure 6-17. Illustration of assigment between logical processors, threads, and GC 
Managed Heaps

Chapter 6  MeMory alloCation



441

GC periodically (when allocating) performs a heap balance check. If it will notice 

a heap unbalance, it will reassign a heap for most allocating thread. It means that its 

allocation context will be moved to the other heap. This obviously would violate the 

above- mentioned design patterns as thread executing on one logical core would use 

a heap assigned to another logical core. That’s why GC will immediately ask operating 

system to move execution of such thread to the corresponding logical CPU. Currently, 

such behavior is supported only on Windows via SetThreadIdealProcessor function 

call (as other operating systems sometimes simply don’t provide equivalent API). 

Thanks to that situation from Figure 6-18, it may be balanced into the situation shown 

in Figure 6-19.

SOH1 SOH2

T1 T2 T3

CPU #1

T1 T2

CPU #2

T3

LOH1 LOH2

T4

T4

Figure 6-18. Unbalanced heaps when several threads allocate much more than 
others

Figure 6-19. Heap balancing situation from Figure 6-17
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Since .NET 4.5 LOH heaps are balanced, which introduced substantial 

improvements of allocation performance. The LOH heaps balance technique is the same 

as for SOH so it has been omitted here for brevity.

 OutOfMemoryException
As we have seen in the allocator decision trees, sometimes a situation occurs when 

the final decision is the lack of possibility to allocate the desired amount of memory. 

It is good to stop at this topic for a moment to discuss the related, often repeated 

misunderstandings.

First of all, when can OutOfMemoryException happen? As it happens as a very last 

decision on the allocation paths described in Figures from 6-12 to 6-15, it means:

• The Garbage Collector has been already triggered. Maybe even more 

than once, including full compacting GC, so SOH  fragmentation 

should not be a problem. There is a very little chance that your 

problem is so intermittent and volatile that triggering GC once more 

(adding to the GCs induced by allocator) could really help. For sure 

OutOfMemoryException does not happen because .NET runtime 

has forgotten to call GC to reclaim memory. On the other hand, if 

OutOfMemoryException happened during LOH allocation, you may 

consider explicitly triggering LOH compaction (as described in 

Chapter 7) and trigger GC once more time.

• Allocator failed to prepare memory region with a given size. This may 

happen because of two reasons:

• Virtual memory is exhausted so allocator can’t reserve 

large enough memory region (for example, to create a 

new segment). This may happen mainly because of virtual 

memory fragmentation, especially on 32-bit runtimes. 

Memory fragmentation confuses real memory usage so if 

OutOfMemoryException happens in such a scenario, there still 

may be quite a lot of free RAM visible in the system. Remember 

the tight virtual address space size limits shown in Table 2-5. A 

32-bit runtime has only 2 or 3 GB virtual address space on its own 

disposal even on 64-bit systems with plenty of RAM installed!
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• Physical backing store (meaning both RAM and page/swap file) 

is exhausted so allocator can’t commit enough memory (for 

example, to grow already existing segment). Please note that 

operating system manages memory taking into consideration all 

processes in the system, not only your application. It may be a 

perfectly valid situation when there is still some free RAM visible, 

but your application’s total memory consumption (both in RAM 

and on disk) is pushing the system to its limits so it declines the 

runtime to commit more memory.

I would like to highlight two important conclusions arising from the above facts:

• Triggering GC manually unlikely helps if you hit 

OutOfMemoryException (unless it happens while allocating 

a large object, when you may consider explicitly trigger LOH 

compaction).

• It is normal that you will notice some free RAM while 

OutOfMemoryException happens.

How will your application may be improved if you experience 

OutOfMemoryException? Consider taking one or more of the following steps:

• Allocate less objects - investigate your memory usage to cut off 

unnecessary allocations. As we will see later in this chapter, there are 

many sources of allocations and you may be even not aware of some 

of them.

• Use objects pooling - one of the solutions to allocate less objects is to 

reuse some pool of them. As we will see, there are ready-to-use pools 

you can utilize (and you can always write your own).

• Use VM Hoarding - as described in Chapter 5 (especially in case of 

32-bit runtimes).

• Recompile to 64-bit - it may be as simple as that because most 

probably it will provide big enough virtual address space.
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 Scenario 6-1. Out of Memory
Description: One of the .NET Core processes intermittently crashes on the production 

environment with OutOfMemoryException exception. We are not able to reproduce 

this problem on other environments. It also happens so rarely that it is impossible to 

attach a more sophisticated monitoring tool. We would like to capture a full memory 

dump to analyze memory consumption, but it is impossible to predict when the 

OutOfMemoryException exception will come.

Analysis: The good news it is possible to automatically take a full memory dump when 

OutOfMemoryException occurs! This method works both on Windows in case of .NET 

Framework and .NET Core. The following steps must be taken:

• By using regedit tool - inside HKEY_LOCAL_MACHINE\SOFTWARE\

Microsoft\.NETFramework key, add (or set if exist already) a 

value with name GCBreakOnOOM, type REG_DWORD and value 0x2. 

This setting configures emitting Breakpoint Exception when 

OutOfMemoryException occurs. Such exception may be then 

consumed by DebugDiag.

• Configure DebugDiag rule accordingly:

• add a new rule, select a Crash type rule.

• select “A specific process” and select process of your interest.

• under Advanced Settings, click on Exceptions, then select Add 

Exception.

• from the list of exceptions select: 80000003 Breakpoint Exception.

• from the Action Type list select: Full userdump and Action limit 

to 1.

• click Save & Close button.

• provide a name for the rule and location where the dump files 

will be saved.

• choose Activate the rule now and click Finish.

• From now on your process is monitored and a full dump will be taken 

when OutOfMemoryException occurs.
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• If this eventually happens, you have a set of possibilities how to 

analyze such a dump. You can start by opening it from within 

WinDbg. Start from loading the proper SOS extension. Then you may 

use analyzeoom command, which will print detailed information 

about OutOfMemoryException (see Listing 6-9).

Listing 6-9. Analyzing full memory dump with WinDbg - 

OutOfMemoryException information

> .loadby sos coreclr

> !analyzeoom

Managed OOM occurred after GC #4 (Requested to allocate 0 bytes)

Reason: Didn't have enough memory to allocate an LOH segment

Detail: LOH: Failed to reserve memory (50331648 bytes)

You may additionally investigate threads at the time of the dump to find one which 

triggered OOM - by using threads command followed by clrstack command (see 

Listing 6-10). This will point you directly to the problematic place in your code.

Listing 6-10. Analyzing full memory dump with WinDbg - threads

> !threads

ThreadCount:      3

UnstartedThread:  0

BackgroundThread: 2

PendingThread:    0

DeadThread:       0

Hosted Runtime:   no

                                                                       Lock

     ID  OSID  ThreadOBJ    State  GC Mode     GC Alloc Context   Domain   

           Count  Apt  Exception

   0  1  3a5c  00a09c60     20020  Preemptive  0715D9C8:00000000  00a0c2e0   

           0      Ukn  System.OutOfMemoryException 0715d954

   2  2  512c  00a9ba78     21220  Preemptive  00000000:00000000  00a0c2e0   

           0      Ukn  (Finalizer)

   4  3  5660  00aa7758     21220  Preemptive  00000000:00000000  00a0c2e0   

           0      Ukn
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> ~0s

> !clrstack

OS Thread Id: 0x3a5c (0)

Child SP       IP Call Site

0097ead8 73e008b2 [HelperMethodFrame: 0097ead8]

0097eb5c 06b404bf CoreCLR.LOHWaste.Program.Main(System.String[])

0097ecf0 0f8b926f [GCFrame: 0097ecf0]

0097f004 0f8b926f [GCFrame: 0097f004]

We can proceed with any other memory dump-based analysis mentioned in this 

book, including investigating segments and heaps. Bear in mind that code triggering 

OutOfMemoryException may not be a direct cause of the problem. It might just be only 

one of the threads that could unfortunately hit the moment when the allocator could 

not find a good place for a new object. However, the source of the memory congestion 

may be somewhere else. Therefore, it is worth taking a close look at the recorded 

memory dump for the most numerous objects, the largest objects, their distribution in 

generations, and so on and so forth.

 Stack Allocation
So far, we have only touched on allocation of objects on the GC Managed Heap. This is 

obviously by far the most popular and commonly used approach. We have seen here 

how big an effort was put to make allocation on the heap as fast as possible. However, the 

allocation and deallocation on the stack is much faster by default as we remember from 

previous chapters. It is just only moving around stack pointer and it does not cause any 

overhead on the GC.

As said, value types may be allocated on the stack in certain circumstances. It is good 

news though that we may explicitly ask to allocate on the stack. Considering Rule 14 - Avoid 

Allocations on the Heap, it can be a very useful option.

To allocate on the stack explicitly in C# one should use stackalloc operator  

(see Listing 6-11). It returns a pointer to a requested memory region that will be 

located on the stack. Because a pointer type is used, such code must be used in 

unsafe code context (unless we use Span<T> type as showed later). The content of 

the newly allocated memory is undefined so we should not assume anything about it 

(like, for example, being zeroed).
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Listing 6-11. Using stackalloc to allocate on the stack explicitly

static unsafe void Test(int t)

{

      SomeStruct* array = stackalloc SomeStruct[20];

}

stackalloc is a very rare creature in the C# code. This is mainly due to the 

unconsciousness and misunderstanding of programmers. We can use it, for example, if 

we want very high data processing efficiency and we do not want to allocate large tables 

on the heap. Profit of such a solution is twofold:

• As previously said, the deallocation of object thus created is as fast 

as the deallocation of any other object on the stack - there is no heap 

allocation helper, no slow-path possibility, no GC involved at all.

• Address of such object is implicitly pinned (will not move) because 

stack frames are never moved - we can safely pass the pointer to such 

data to the unmanaged code without introducing pinning overhead.

stackalloc operator is being translated into localloc CIL instruction (see 

Listing 6-12). Its description in ECMA standard says (with some parts stripped) that it 

“allocates size bytes from the local dynamic memory pool. When the current method 

returns, the local memory pool is available for reuse.” Please note it does not say 

anything about the stack explicitly but more general “local memory pool” concept is 

used (mentioned already in Chapter 4). And as we have already seen in the Chapter 4, 

the ECMA standard tries to be technology agnostic and nowhere directly uses concepts 

of the stack or the heap.

Listing 6-12. Part of CIL code generated from Listing 6-11 shows how 

stackalloc operator has been translated into localloc instruction call

IL_0000: ldc.i4.s 10

IL_0002: conv.u

IL_0003: sizeof SomeStruct

IL_0009: mul.ovf.un

IL_000a: localloc
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But what can be allocated on the stack that way? ECMA standard does not say 

anything about it regarding localloc instruction and promises only allocation of a 

specified number of bytes. As only what CIL guaranties is a block of memory, CLR is 

currently not able to use it in other way than just a container for simple data types. 

stackalloc operator definition from C# Language Specification describes those 

constraints in more details. It says that only an array of “unmanaged_type” may be used. 

An unmanaged_type is one of the following:

• primitive types - sbyte, byte, short, ushort, int, uint, long, ulong, 

char, float, double, decimal, or bool;

• any enum type;

• any pointer type;

• any user-defined struct that is not a constructed type 2 and contains 

fields of unmanaged_types only.

We should remember that there is no way to explicitly free memory allocated using 

stackalloc. It will be implicitly released when the method ends. We should remember 

about that when intensely using the stack because a large set of long-running methods 

may end with StackOverflowException.

localloc instruction is translated by Jit into a series of assembly push and 
sub rsp, [size] instructions to grow the stack frame accordingly. this growth 
is rounded to 8 and 16 bytes in case of 32 and 64-bit frameworks respectively. 
thus, even if you stackalloc array of two integers, which normally may take 8 
bytes, the stack frame will be expanded by 16 bytes (for 64-bit framework). this 
is because on x64 architecture stack need to be aligned on 16 bytes. if you are 
interested in more details, refer for example to documentation at https://docs.
microsoft.com/en-us/cpp/build/stack-allocation

As mentioned before, we are not pushed to use unsafe code when working with 

stackalloc. Since C# 7.2 and .NET Core 2.1 there is a Span<T> type (very solicitously 

explained in Chapter 15) with support added to it so we can safely write code as from 

Listing 6-11.

2 A generic type that includes type arguments.
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Listing 6-13. Using stackalloc to allocate on the stack explicitly within safe 

code thanks to Span<T> support.

static void Test(int t)

{

      Span<SomeStruct> array = stackalloc SomeStruct[20];

}

 Avoiding Allocations
Quite a lot has been said so far about allocations and their underlying mechanism. We 

are now fully aware that “allocations are cheap” in .NET is sometimes true, thanks to a 

bump pointer technique inside allocation contexts. But, there are a few remarks to this 

simple rule:

• Allocations are cheap as far as fast path is used. In some cases, in 

indeterministic points from the code perspective, allocation context 

has to be changed, which will trigger more complex (and thus, 

slower) allocation paths.

• Those more complex allocation paths from time to time will trigger 

Garbage Collection.

• Allocations of big objects in LOH is slower because it may be mainly 

dominated by zeroing memory costs.

• Allocating a lot of objects makes more work for Garbage Collection - 

this may be obvious but of great importance. If we allocate a lot of 

temporary objects, they will have to be cleaned. The more objects we 

create, there is also more chance we break a generational hypothesis 

about an object’s lifetime.

Due to the above, one of the most effective methods of memory optimization in 

.NET is to avoid allocations or at least be aware of them. Little allocations mean little 

memory pressure put on GC, less costly memory accesses, less communication with the 

operating system. Thus, one of the main pieces of knowledge that a performance-aware 

.NET developer should gain is to know what are the sources of allocations and how they 

can be removed or minimized.
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This section lists the most common sources of allocations and ways to overcome 

them. Please bear in mind, however, a very important remark - we should treat with 

full responsibility and awareness the topic of minimizing the allocations. There is such 

a popular and sometimes even overused sentence that “premature optimization is the 

root of all evil.” Certainly, analyzing every line of the code in terms of the amount of 

allocations in each and every place of our program is unnecessary. It can paralyze our 

work without giving much in return. Does it matter that a line of code executed once 

per minute will allocate 200 bytes instead of 800 bytes? Probably not. It all depends 

on requirements put on your code. Thus, analyzing the allocations you do in the most 

performance-critical code paths is always a good place to start because reducing those 

will cause the most effect.

First of all, you should learn the most common sources of allocation to avoid obvious 

mistakes. Or at least be aware of how “heavy” for the memory is the code we are just 

writing. Knowing the context of the entire application and the requirements for this 

particular part, we will know if it is okay or not. Secondly, knowledge of the sources of 

the allocation will be useful when we implement (and we should!) Rule 2 - Measure 

GC Early. Only by the measurements we can avoid premature optimization of the 

wrong places of our code. Only by the measurements we will find out if there is a need 

to minimize the allocations at all. And we will be able to find out where in our code to 

concentrate our forces for this purpose.

Please find below a list of the most common sources of allocations. Some of them are 

obvious, some not so much. Along with information about their occurrence, information 

on whether and how to avoid them is given.

When showing certain mechanisms used by the C# compiler later in this chapter, 
it is good to see how it has transformed our original code. this allows us to better 
understand what is going underneath and to check if we are unsure. For this 
purpose, an excellent dnSpy tool was used again. i encourage you to experiment 
with it to better understand the topics described below. play with the code, 
change it, decompile - see how it influences code that will be eventually executed 
by the runtime.
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 Explicit Allocations of Reference Types
Most cases of allocations are obvious - we are creating objects explicitly. This does not 

mean, however, that we should trivialize this source. We can consider whether in a given 

case we really need a reference type object that will be created on the heap. You can find 

below a set of different scenarios and solutions to them.

 General Case - Consider Using Struct

We may tend to use classes just because we do not even think about alternatives. Most 

typical scenarios when instead we may use structs passing around small amounts of data 

via methods arguments and returns. Listing 4-7 from Chapter 4 illustrated such case and 

clearly showed how optimal code could be generated (see Listings 4-8 and 4-9) instead 

of just creating a small object on the heap. A benchmark from Table 4-1 presented big 

performance difference between those two approaches.

Thus, you may strongly consider using structs when passing around small data from 

and to methods if this data is local to those methods (is not stored inside any heap-based 

data). In fact, quite a lot of business logic meets these requirements - we get some data, 

process it locally, and return some result. Imagine example from Listing 6-14, which 

should return full names of all people employed with a given distance from a specified 

location. It shows typical usage of collection returned by external service (or repository). 

However, quite a lot of objects are created explicitly in this way:

• a list of PersonDataClass objects and PersonDataClass objects 

themselves

• employee object returned from external service

Listing 6-14. Example of simple business logic based solely on classes

 [Benchmark]

public List<string> PeopleEmployeedWithinLocation_Classes(int amount, 

LocationClass location)

{

    List<string> result = new List<string>();

    List<PersonDataClass> input = service.GetPersonsInBatchClasses(amount);

    DateTime now = DateTime.Now;

    for (int i = 0; i < input.Count; ++i)
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    {

        PersonDataClass item = input[i];

        if (now.Subtract(item.BirthDate).TotalDays > 18 * 365)

        {

            var employee = service.GetEmployeeClass(item.EmployeeId);

             if (locationService.DistanceWithClass(location, employee.

Address) < 10.0)

            {

                 string name = string.Format("{0} {1}", item.Firstname, 

item.Lastname);

                result.Add(name);

            }

        }

    }

    return result;

}

internal List<PersonDataClass> GetPersonsInBatchClasses(int amount)

{

    List<PersonDataClass> result = new List<PersonDataClass>(amount);

    // Populate list from external source

    return result;

}

What if code from Listing 6-14 was rewritten to use structs where possible? In fact, 

data about persons and employees do not leak the PeopleEmployeedWithinLocation_

Classes method so it is safe to store them on stack using structs (see Listing 6-15). 

GetPersonsInBatch method may return an array of structs that produces better data 

locality and smaller overhead (as mentioned in Chapter 4). External services like 

GetEmployeeStruct method may return small structs instead of objects. They may also 

take value type arguments by reference(like DistanceWithStruct method) to explicitly 

avoid copying.

Listing 6-15. Example of simple business logic based on structs where possible

 [Benchmark]

public List<string> PeopleEmployeedWithinLocation_Structs(int amount, 

LocationStruct location)
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{

    List<string> result = new List<string>();

    PersonDataStruct[] input = service.GetPersonsInBatchStructs(amount);

    DateTime now = DateTime.Now;

    for (int i = 0; i < input.Length; ++i)

    {

        ref PersonDataStruct item = ref input[i];

        if (now.Subtract(item.BirthDate).TotalDays > 18 * 365)

        {

            var employee = service.GetEmployeeStruct(item.EmployeeId);

             if (locationService.DistanceWithStruct(ref location, employee.

Address) < 10.0)

            {

                 string name = string.Format("{0} {1}", item.Firstname, 

item.Lastname);

                result.Add(name);

            }

        }

    }

    return result;

}

internal PersonDataStruct[] GetPersonsInBatchStructs(int amount)

{

    PersonDataStruct[] result = new PersonDataStruct[amount];

    // Populate list from external source

    return result;

}

Is code from Listing 6-15 a little “uglier” than from Listing 6-14? Probably a little, 

because of passing by reference (and ref local usage, explained in Chapter 14). However, 

this may be a matter of personal preference. Code from Listing 6-15 is still readable and 

self-descriptive. What we gain is a measurable difference in the number of allocated 

memory and thus, triggered GCs (see Table 6-2). The code based on structures allocates 

about half of what the code is based on objects. It can be a very significant difference if 

we call it very often!
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 Tuples - Use ValueTuple Instead

Quite often there is a need to return or pass as an argument a very simple data structure 

with only a few fields. If this type is used only once, we may be tempted to use a tuple 

or anonymous type instead of defining a class (see Listing 6-16). It is worth it to note 

however that both Tuple and anonymous types are reference types and thus, always 

created on the heap.

Listing 6-16. Tuples and anonymous types created for data used only once

var tuple1 = new Tuple<int, double>(0, 0.0);

var tuple2 = Tuple.Create(0, 0.0);

var tuple3 = new {A = 1, B = 0.0};

According to the previous point, we should consider using user-defined structs 

in such case. However, since C# 7.0, a new value type, has been introduced called a 

value tuple represented by ValueTuple structure (see Listing 6-17). This can be a great 

replacement for the previously used classes and in some scenarios, it relieves us of the 

need to create our own structures.

Listing 6-17. Value tuples introduced in C# 7.0

var tuple4 = (0, 0.0);

var tuple5 = (A: 0, B: 0.0);

tuple5.A = 3;

Typical use case includes returning multiple values from a method. Commonly we 

would use a Tuple (or custom class) to contain all results (see ProcessData1 method 

from Listing 6-18). However, we may use a perfectly valid value tuple struct containing 

just other structs (see ProcessData2 method from Listing 6-18).

Table 6-2. DotNetBenchmark Results for Code from Listings 6-14 and 6-15 

Assuming Amount of Value 1,000 (One Thousand Objects or Structures are 

Processed)

Method Mean Gen 0 Allocated

PeopleEmployeedWithinLocation_Classes 348.8 us 15.1367 62.60 KB

PeopleEmployeedWithinLocation_Structs 344.7 us 9.2773 39.13 KB
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Listing 6-18. Value tuples versus Tuple used to return multiple values from a 

method

public static Tuple<ResultDesc, ResultData> ProcessData1(IEnumerable< 

SomeClass> data)

{

   // Do some processing

    return new Tuple<ResultDesc, ResultData >(new ResultDesc() { ... }, new 

ResultData() { ... });

   // Or use:

    // return Tuple.Create(new ResultDesc() { ... }, new ResultData() { 

Average = 0.0, Sum = 10.0 });

}

public static (ResultDescStruct, ResultDataStruct) ProcessData2(IEnumerable

<SomeClass> data)

{

   // Do some processing

   return (new ResultDescStruct() { ... }, new ResultDataStruct() { ... });

}

public class ResultDesc

{

   public int Count;

}

public class ResultData

{

   public double Sum;

   public double Average;

}

public struct ResultDescStruct

{

   public int Count;

}
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public struct ResultDataStruct

{

   public double Sum;

   public double Average;

}

This may significantly reduce overhead of returning multiple values from a method 

(see Table 6-3). Due to only structs usage, there are no allocations at all in case of 

ProcessData2! And the whole function becomes twice faster.

There is also a nice feature of value tuples called deconstruction that allows us 

to assign tuples returned from methods to tuples in place. It is also possible to use 

discarding of tuples elements to explicitly point out that some elements of the tuple do 

not interest us (see Figure 6-15). This may be useful in some scenarios as the compiler 

and JIT may use such information to further optimize underlying structure usage.

Listing 6-19. Deconstructing tuple with discarding

(ResultDescStruct desc, _) = ProcessData2(list);

there are planned and possible upcoming changes in orMs to allow materializing 
database query results into value tuples and structs. this will make using them much 
more practical. Stay tuned to orMs you use or vote for such changes on your own!

 Small Temporary Local Data - Consider Using stackalloc

It has already been shown that the use of structures instead of objects can bring tangible 

benefits for local, temporary data. Instead of creating a list of objects, we can use an array 

of structures. However, remember that the array of structs is still allocated on the heap - 

the only thing we gain is a denser data packing. But we can go further and get rid of any 

heap allocations by using stackalloc.

Table 6-3. DotNetBenchmark Results for Code from Listing 6-18

Method Mean Allocated

ProcessData1 11.326 ns 88 B

ProcessData2 5.207 ns 0 B
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Imagine a simple method that takes a list of objects, transforms it into some 

temporary list, and processes such list to calculate some statistics. The  typical LINQ-

based approach is presented in Listing 6-20 but hopefully you can extrapolate it to more 

complex cases. Such method allocates a lot – a list of many temporary objects.

Listing 6-20. Example of simple list processing based solely on classes

public double ProcessEnumerable(List<BigData> list)

{

   double avg = ProcessData1(list.Select(x => new DataClass()

      {

         Age = x.Age,

         Sex = Helper(x.Description) ? Sex.Female : Sex.Male

      }));

   _logger.Debug("Result: {0}", avg / _items);

   return avg;

}

public double ProcessData1(IEnumerable<DataClass> list)

{

   // Do some processing on list items

   return result;

}

public class BigData

{

   public string Description;

   public double Age;

}

We could use array of structs here as in the previous examples. Let’s however use 

stackalloc instead together with Span<T> to avoid making code unsafe (see Listing 6-21).

Listing 6-21. Example of simple list processing based solely on structs and 

stackalloc

public double ProcessStackalloc(List<BigData> list)

{

   // Dangerous!
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   Span<DataStruct> data = stackalloc DataStruct[list.Count];

   for (int i = 0; i < list.Count; ++i)

   {

      data[i].Age = list[i].Age;

      data[i].Sex = Helper(list[i].Description) ? Sex.Female : Sex.Male;

   }

   double result = ProcessData2(new ReadOnlySpan<DataStruct>(data));

   return result;

}

// Pass Span as read-only to explictly say it should not be modified

public double ProcessData2(ReadOnlySpan<DataStruct> list)

{

   // Do some processing on list[i] items

   return result;

}

New code version makes a huge difference (see Table 6-4). In fact, the improved 

version does not allocate at all and is about four times faster! This is for sure worth 

considering if such code was on our hot path.

Table 6-4. DotNetBenchmark Results for Code 

from Listings 6-20 and 6-21 - Processing 100 

Elements

Method Mean Allocated

ProcessEnumerable 2,208.6 ns 3272 B

ProcessStackalloc 542.9 ns 0 B

However, please bear in mind that stackalloc should be rather used for small 

buffers (like not exceeding 1 kB). The main risk when using stackalloc approach 

is StackOverflowException, which may happen if there is not enough stack space 

left. StackOverflowException is one of those uncatchable exceptions that will kill 

your entire application without the possibility to mitigate it. Thus, it is risky to use 

too big of buffers. That’s why the stack-allocating line in Listing 6-21 is commented as 

dangerous.
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Allocating large data on the stack is even not so good from a performance 

perspective because populating a big memory region on a thread’s stack will bring a lot 

of its memory pages into working set (incurring page faults). But those pages are not 

shared between other threads so it may be a wasteful approach.

If you decide to use stackalloc and want to be 100% sure that 

StackOverflowException will not happen, you may be tempted to use 

RuntimeHelpers.TryEnsureSufficientExecutionStack() or RuntimeHelpers.

EnsureSufficientExecutionStack() methods. As documentation says, each of 

this method: “ensures that the remaining stack space is large enough to execute 

the average .NET Framework function.” The current value is 128 kB and 64 kB for 

64- and 32-bit environments respectively. In other words, if RuntimeHelpers.

TryEnsureSufficientExecutionStack() returns true, it is probably safe to 

stackalloc buffer with size below 128 kB. I mean probably, because those values 

are implementation details and are not guaranteed - only space for “average .NET 

Framework function” is ensured, which probably does not include a large stackalloc. 

In other words, it is only safe to stackalloc really small buffers (mentioned before 1 kB 

size seems to be a good value).

 Creating Arrays - Use ArrayPool

We have already seen in Table 6-2 is that operating on temporary arrays of structs 

instead of object’s collections may be substantially beneficial. However, allocating 

array of structs each time as it is needed provides overhead - both in terms of 

performance and introduced memory traffic. It may be especially noticeable for 

large buffers. For such scenarios the best solution is to utilize objects pooling - reuse 

objects from pool of preallocated objects. For exactly that purpose an ArrayPool has 

been introduced (available in System.Buffers package) - a pool of reusable managed 

arrays.

It manages set of various-sized arrays of a given type, grouped into buckets. Those 

may be both reference and value types. Pooling arrays of a value typed object seems to 

be more efficient as we are pooling both the array and all their objects.

Each of 17 buckets in the default ArrayPool contains arrays twice as large as the 

previous ones, starting with the first containing 16-element arrays so it contains the 

following lengths: 16, 32, 64, 128, 256, 512, 1,024, 2,048, 4,096, 8,192, 16,384, 3,2768, 

65,536, 131,072, 262,144, 524,288 and 1,04,8576. Please not that all those arrays are 

created on demand so there is no overzealous and rash allocation of so many arrays.
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Such default pool of arrays is accessible as static ArrayPool<T>.Shared instance. 

When we need an array, we call Rent on it. And when it is no longer needed, we call 

Return to return it to the pool (see Listing 6-22).

Listing 6-22. Sample ArrayPool usage

var pool = ArrayPool<int>.Shared;

int[] buffer = pool.Rent(minLength);

try

{

      Consume(buffer);

}

finally

{

      pool.Return(buffer);

}

Please note that Rent method ensures returning an array with at least the specified 

length. Most probably it will be bigger because it will be rounded up to the nearest 

bucket size, not smaller than the requested size.

ArrayPool<T>.Shared returns an instance of TlsOverPerCoreLockedStack
sArrayPool<T> class, which uses quite sophisticated caching techniques - there 
is a small per-thread cache of each array size and shared by all threads cache 
split into per-core stacks (hence its name). We will return to it for a minute when 
describing thread local Storage (tlS) in Chapter 13.

Let’s now use ArrayPool by slightly changing PeopleEmployeedWithinLocation_

Structs example from Listing 6-15. This time, instead of creating plain array each time, 

we are consuming a pooled array from default ArrayPool instance (see Listing 6-23).

Listing 6-23. Example of simple business logic based on structs and ArrayPool.

public List<string> PeopleEmployeedWithinLocation_ArrayPoolStructs(int 

amount, LocationStruct location)

{
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   List<string> result = new List<string>();

   PersonDataStruct[] input = service.GetDataArrayPoolStructs(amount);

   DateTime now = DateTime.Now;

   for (int i = 0; i < amount; ++i)

   {

      ref PersonDataStruct item = ref input[i];

      if (now.Subtract(item.BirthDate).TotalDays > Constants.MaturityDays)

      {

         var employee = service.GetEmployeeStruct(item.EmployeeId);

          if (locationService.DistanceWithStruct(ref location, employee.

Address) < Constants.DistanceOfInterest)

         {

             string name = string.Format("{0} {1}", item.Firstname, item.

Lastname);

            result.Add(name);

         }

      }

   }

      ArrayPool<InputDataStruct>.Shared.Return(input);

      return result;

}

internal PersonDataStruct[] GetDataArrayPoolStructs(int amount)

{

    PersonDataStruct[] result = ArrayPool<PersonDataStruct>.Shared.

Rent(amount);

   // Populate array from external source

   return result;

}

Comparing code from Listing 6-23 to code from Listings 6-14 (using collection of 

objects) and 6-15 (using allocated array of structs) reveals how much we can gain from 

using ArrayPool (see Table 6-5). New code allocates only around 3.5% of what the 

standard code based on arrays (and triggers no GC during benchmark). This may be of 

great value when memory consumption is subject to strict restrictions. Remember that all 

those kilobytes that make this difference would need to be reclaimed by Garbage Collector!
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Such results as presented in table 6-5 are interesting. But we should be aware 
that they can also be misleading - such synthetic benchmarks may not reflect 
well real-world behavior. For example, if you had hundreds of these operations 
in flight concurrently, only a small portion of them are going to actually succeed 
in getting an array from the pool; the rest will pay the cost of a pool lookup 
but end up still having to fall back to allocating the array, anyway. We should 
assume results from table 6-5 as the best-case scenario, while not necessarily 
expecting such great memory usage improvement in a real-world, multithreaded 
application.

ArrayPool may be a default choice when your code needs to operate on large 

buffers frequently. Instead of allocating them over and over again, reuse them with 

the help of this class. More and more libraries are starting to support ArrayPool (and 

as mentioned already, .NET standard library also uses it extensively). As an example 

might serve the extremely popular Json.NET library. We can use it in a standard way by 

utilizing JsonTextReader or JsonTextWriter (see Listing 6-24). But since 8.0 version 

Json.NET supports using array pools for its internal working (see Listing 6-25), we can 

specify implementation of its IArrayPool interface, which is based on ArrayPool (see 

JsonArrayPool in Listing 6-25).

Table 6-5. DotNetBenchmark Results for Code from Listings 6-14 and 6-15 and 6-23 

Assuming Amount of Value 1000 (One Thousand Objects or Structures Are Processed)

Method Mean Gen 0 Allocated

PeopleEmployeedWithinLocation_Classes 348.8 us 15.1367 62.66 KB

PeopleEmployeedWithinLocation_Structs 344.7 us 9.2773 39.13 KB

PeopleEmployeedWithinLocation_
ArrayPoolStructs

343.4 us - 1.35 KB
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Listing 6-24. Example of standard usage of Json.NET library

public IList<int> ReadPlain()

{

   IList<int> value;

   JsonSerializer serializer = new JsonSerializer();

    using (JsonTextReader reader = new JsonTextReader(new 

StringReader(Input)))

   {

      value = serializer.Deserialize<IList<int>>(reader);

      return value;

   }

}

Listing 6-25. Example of ArrayPool usage in Json.NET library

public int[] ReadWithArrayPool()

{

   JsonSerializer serializer = new JsonSerializer();7

    using (JsonTextReader reader = new JsonTextReader(new 

StringReader(Input)))

   {

      // reader will get buffer from array pool

      reader.ArrayPool = JsonArrayPool.Instance;

      var value = serializer.Deserialize<int[]>(reader);

      return value;

   }

}

public class JsonArrayPool : IArrayPool<char>

{

   public static readonly JsonArrayPool Instance = new JsonArrayPool();

   public char[] Rent(int minimumLength)

   {

      // get char array from System.Buffers shared pool

      return ArrayPool<char>.Shared.Rent(minimumLength);

   }
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   public void Return(char[] array)

   {

      // return char array to System.Buffers shared pool

      ArrayPool<char>.Shared.Return(array);

   }

}

By providing ArrayPool to the Json.NET serializer, memory allocations may be 

significantly reduced (see Table 6-6). Please note this buffer is used internally by Json.

NET to store an array of chars. Currently it is not possible to deserialize into buffered 

array (int[] in our example), which also would be very a desirable possibility.

Table 6-6. DotNetBenchmark Results for Code 

from Listings 6-24 and 6-25

Method Mean Allocated

ReadPlain 14.58 us 6.10 KB

ReadWithArrayPool 13.37 us 4.42 KB

One important remark. There is yet another ArrayPool<T> implementation that 

may be created with the help of ArrayPool<T>.Create(int maxArrayLength, int 

maxArraysPerBucket) method - called ConfigurableArrayPool<T>. It has a little 

simpler implementation based on buckets also, without usage of thread local storage. 

But, as you can see in Create method’s signature, you can configure it to have a specified 

number of arrays in each bucket and the maximum cached array size (incurring number 

of buckets). The default maximum length of array in such pool is 1024*1024 (1 048 576) 

elements and by default there are 50 arrays in a bucket.

When using ArrayPool (whenever shared or created) it is worth it to monitor its 

usage with custom ETW provider named System.Buffers.ArrayPoolEventSource. For 

example, we can collect its data with the help of PerfView. When defining collection 

properties in the Collect dialog box type in Additional Providers field:

• *System.Buffers.ArrayPoolEventSource - if you want to collect 

only event’s data

• *System.Buffers.ArrayPoolEventSource:::@StacksEnabled=true -  

if you want also to record stack traces of the events

Chapter 6  MeMory alloCation



465

In that way we will be able to see all array renting and allocations (see Figure 6-20). 

We should be particularly interested in the event BufferAllocated with the reason for 

OverMaximumSize and PoolExhausted. If they occur frequently, the current ArrayPool 

configuration probably does not suit your needs. In case of frequent OverMaximumSize 

probably our pool has too small of a maximum pool size set. In case of PoolExhausted 

maybe it is worth it to increase the number of arrays in a bucket. There is also Pooled 

reason for BufferAllocated event, used currently only by ConfigurableArrayPool , 

when a new array had to be allocated inside a bucket.

There is one caveat when using ArrayPool. Remember that pooled arrays will live 

forever - there is no “timing out” mechanism. This is ok if your arrays usage is quite 

constant and spread over time. If you, however, need only a single burst of allocations, 

you may grow your working set forever without much benefit. Please take into account 

such “reusage ratio” of your buffers when considering usage of ArrayPool.

please note that ArrayPool is one of the mainstream improvements in .net Core 
development (for example, it was significantly improved between .net Core 2.0  
and 2.1). While the overall description presented here will not change, implementation 
details may change in the next releases. one of the examples include the above-
mentioned trimming mechanism, which may be include some day.

Figure 6-20. ETW events generated by ArrayPool as seen by PerfView tool
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 Creating Streams - Use RecyclableMemoryStream

If we use the System.IO.MemoryStream class extensively in our application, you 

should consider using the pool of these objects. Pooling for .NET MemoryStream 

objects has been implemented in Microsoft.IO.RecyclableMemoryStream package 

by RecyclableMemoryStream and RecylableMemoryStreamManager classes. As the 

comments in the code of these classes perfectly explain, intense use of MemoryStream is 

associated with the following undesirable effects:

• LOH allocations - since MemoryStream's internal buffers tend to be 

large, they will be allocated in LOH, which is costly both in terms of 

allocation and memory reclamation.

• Memory waste - MemoryStream internal buffer doubles its size when 

it becomes too small. This leads to continuous memory growth and 

allocating bigger and bigger arrays all over again.

• Memory copying - each time a MemoryStream grows, all the bytes 

are copied into new buffers, which introduces quite large memory 

traffic.

• All these constant internal buffers’ re-creation may lead to 

fragmentation.

RecyclableMemoryStream was designed to overcome all those problems. It is worth 

citing here a good description in the comments to the class RecyclableMemoryStream: 

“The stream is implemented on top of a series of uniformly-sized blocks. As the stream’s 

length grows, additional blocks are retrieved from the memory manager. It is these 

blocks that are pooled, not the stream object itself.

The biggest wrinkle in this implementation is when GetBuffer() is called. This 

requires a single contiguous buffer. If only a single block is in use, then that block is 

returned. If multiple blocks are in use, we retrieve a larger buffer from the memory 

manager. These large buffers are also pooled, split by size--they are multiples of a chunk 

size (1 MB by default).”

Example usage of standard MemoryStream to serialize an object has 

been presented in Listing 6-26. In addition to creating XmlWriter and 

DataContractSerializer (which should be cached), it also creates a new 

MemoryStream. It may lead to the above-mentioned problems if serialized objects are 

big and serialization happens often.
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Listing 6-26. Example of XML serialization by using DataContractSerializer and 

MemoryStream

public string SerializeXmlWithMemoryStream(object obj)

{

   using (var ms = new MemoryStream())

   {

      using (var xw = XmlWriter.Create(ms, XmlWriterSettings))

      {

          var serializer = new DataContractSerializer(obj.GetType());  

// could be cached!

         serializer.WriteObject(xw, obj);

         xw.Flush();

         ms.Seek(0, SeekOrigin.Begin);

         var reader = new StreamReader(ms);

         return reader.ReadToEnd();

      }

   }

}

In case of high stream utilization RecyclableMemoryStream should be considered 

(see Listing 6-27). A RecyclableMemoryStreamManager needs to be created that can then 

provide pooled stream from its GetStream method. Such stream implements IDisposable 

in a way that memory used by it will be returned to the pool while disposing. A set of 

parameters may be passed when manager is created (Listing 6-27 shows default values):

• blockSize - size of each block that is pooled

• largeBufferMultiple - each large buffer will be a multiple of this value

• maximumBufferSize - buffers larger than this will not be pooled

Listing 6-27. Example of XML serialization by using DataContractSerializer and 

RecyclableMemoryStream

static RecyclableMemoryStreamManager manager =

       new RecyclableMemoryStreamManager(blockSize: 128 * 1024,

                                 largeBufferMultiple: 1024 * 1024,

                                 maximumBufferSize: 128 * 1024 * 1024);
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public string SerializeXmlWithRecyclableMemoryStream<T>(T obj)

{

   using (var ms = manager.GetStream())

   {

      using (var xw = XmlWriter.Create(ms, XmlWriterSettings))

      {

          var serializer = new DataContractSerializer(obj.GetType()); // 

could be cached!

         serializer.WriteObject(xw, obj);

         xw.Flush();

         ms.Seek(0, SeekOrigin.Begin);

         var reader = new StreamReader(ms);

         return reader.ReadToEnd();

      }

   }

}

When using RecyclableMemoryStream it is worth it to monitor its usage with custom 

ETW provider named Microsoft-IO-RecyclableMemoryStream. We can collect its data 

with the help of PerfView. When defining collection properties in the Collect dialog box 

type in Additional Providers field:

• *Microsoft-IO-RecyclableMemoryStream - if you want to collect 

only event’s data

• *Microsoft-IO-RecyclableMemoryStream::: 

@StacksEnabled=true - if you want also to record stack traces of the 

events

Note During my experiments with RecyclableMemoryStream enabling etW 
provider by its name was not working properly. i needed to refer to it by its Guide. 
thus, you may also need to type B80CD4E4-890E-468D-9CBA-90EB7C82DFC7 
instead of *Microsoft-IO-RecyclableMemoryStream as an additional 
provider.
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RecyclableMemoryStream may provide quite detailed insight into its pool usage (see 

Figure 6-21). You may be especially interested in MemoryStreamOverCapacity event that 

informs about requesting a buffer larger than the provided maximum buffer size.

Note When using Streams intensively, you should also consider using System.
IO.Pipelines api. it provides much more efficient and less allocating 
substitution of Streams. it is described in more detail in Chapter 14.

 Creating a Lot of Objects - Use Object Pool

Like it is with collections, when using some type of object very extensively, you may 

consider using that object’s pool. Please bear in mind however that if you allocate a lot of 

objects just to throw them away shortly, it still holds generational hypothesis. Hence, it 

might be just ok. Garbage Collector will clean them in generation 0 quickly. You should 

mainly consider object’s pooling in one of the following scenarios:

• Objects are allocated on so an important and hot path, which 

each single CPU cycle counts - in this case avoiding object 

allocations (especially its slow path) by providing more stable 

mechanism may be beneficial. Properly written object pool 

should utilize CPU cache nicely so operating on pooled objects 

may be really fast.

• Objects are big enough to be worried about its allocation cost - in this 

case we may avoid memory zeroing overhead (especially for LOH 

objects). Additionally, to the allocation cost itself, we may be worried 

about object’s initialization cost - if it’s very complicated to initialize 

Figure 6-21. ETW events generated by RecyclableMemoryStream as seen by 
PerfView tool
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fields of an object, we would not want to create new ones again and 

again. Thus, we can benefit from reusing already initialized object (if 

it is appropriate).

Writing a good object pool is not trivial though. It could be so if we considered only 

a single-threaded environment. But making an object pool thread safe without overhead 

of synchronization mechanisms is not so easy. Many trivial implementations may hurt 

our performance more than original objects’ allocations. Listing 6-28 provides a well-

tested sample implementation solely based on the great ObjectPool class from Roslyn 

C# compiler (with original comments explaining performance-driven details).

Listing 6-28. ObjectPool implementation based on ObjectPool class from Roslyn 

compiler

public class ObjectPool<T> where T : class

{

    private T firstItem;

    private readonly T[] items;

    private readonly Func<T> generator;

    public ObjectPool(Func<T> generator, int size)

    {

         this.generator = generator ?? throw new ArgumentNullException 

("generator");

        this.items = new T[size - 1];

    }

    public T Rent()

    {

        //  PERF: Examine the first element. If that fails, RentSlow will 

look at the remaining elements.

        //  Note that the initial read is optimistically not synchronized. 

That is intentional.

        //  We will interlock only when we have a candidate. in a worst case 

we may miss some recently returned objects. Not a big deal.

        T inst = firstItem;

         if (inst == null || inst != Interlocked.CompareExchange 

(ref firstItem, null, inst))
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        {

            inst = RentSlow();

        }

        return inst;

    }

    public void Return(T item)

    {

        if (firstItem == null)

        {

            // Intentionally not using interlocked here.

            //  In a worst case scenario two objects may be stored into same 

slot.

            //  It is very unlikely to happen and will only mean that one of 

the objects will get collected.

            firstItem = item;

        }

        else

        {

            ReturnSlow(item);

        }

    }

    private T RentSlow()

    {

        for (int i = 0; i < items.Length; i++)

        {

            //  Note that the initial read is optimistically not 

synchronized. That is intentional.

            //  We will interlock only when we have a candidate. in a worst 

case we may miss some recently returned objects. Not a big 

deal.

            T inst = items[i];

            if (inst != null)

            {

                 if (inst == Interlocked.CompareExchange(ref items[i],  

null, inst))
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                {

                    return inst;

                }

            }

        }

        return generator();

    }

    private void ReturnSlow(T obj)

    {

        for (int i = 0; i < items.Length; i++)

        {

            if (items[i] == null)

            {

                // Intentionally not using interlocked here.

                //  In a worst case scenario two objects may be stored into 

same slot.

                //  It is very unlikely to happen and will only mean that 

one of the objects will get collected.

                items[i] = obj;

                break;

            }

        }

       }

}

 Async Methods Returning Task - Use ValueTask

Since async was introduced in the C# 5.0, it has become almost a canonical way of 

programming. Actually, everywhere we see an asynchronous code. It is worth knowing 

how its use corresponds to the memory consumption. Take, for example, a simple 

asynchronous code for reading the entire contents of a file (see Listing 6-29). It first 

checks synchronously whether file exists and only if yes, it asynchronously awaits for the 

file operation to end.
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Listing 6-29. An example of asynchronous method

public async Task<string> ReadFileAsync(string filename)

{

   if (!File.Exists(filename))

      return string.Empty;

   return await File.ReadAllTextAsync(filename);

}

Probably the majority of .NET programmers are already aware that applying the 

keyword async turns the method into a rather complicated state machine. This state 

machine is responsible for the proper processing of planned steps when subsequent 

asynchronous actions are completed. If we look at the code generated by the 

compiler on the basis of the ReadFileAsync method from Listing 6-29, we will see 

the code from Listing 6-30. The method has been transformed into a code starting 

the state machine represented by the enigmatically named object Program.<ReadFil

eAsync>d__14. There are many good descriptions of this mechanism, so let us skip it 

here for brevity.

Listing 6-30. Method ReadFileAsync from Listing 6-29 after transformation 

made by the compiler

[AsyncStateMachine(typeof(Program.<ReadFileAsync>d__14))]

public Task<string> ReadFileAsync(string filename)

{

   Program.<ReadFileAsync>d__14 <ReadFileAsync>d__;

   <ReadFileAsync>d__.filename = filename;

    <ReadFileAsync>d__.<>t__builder = AsyncTaskMethodBuilder<string>.

Create();

   <ReadFileAsync>d__.<>1__state = -1;

    AsyncTaskMethodBuilder<string> <>t__builder = <ReadFileAsync>d__.<>t__

builder;

    <>t__builder.Start<Program.<ReadFileAsync>d__14>(ref <ReadFileAsync>d__);

   return <ReadFileAsync>d__.<>t__builder.Task;

}
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From our point of view, the following facts are important (supported by the code 

from Listing 6-31):

• In compiler-generated code from Listing 6-30 all is a struct (including 

Program.<ReadFileAsync>d__14 and AsyncTaskMethodBuilder<str

ing>) - this is a great example of conscious use of structures where it 

would be tempting to use classes without thinking.

• <ReadFileAsync>d__14 - compiler-generated structure representing 

state machine - will be boxed if asynchronous operation does not end 

instantly (which happens inside AwaitUnsafeOnCompleted visible 

in Listing 6-31)3 - in such case “state” must escape current method 

because asynchronous operation may continue on different thread 

that it was initially started. Thus, it must land on the heap rather than 

stay on the stack. However, making <ReadFileAsync>d__14 struct still 

makes sense because there may be common paths where such boxing 

will not occur (see case of File.Exists returning false in Listing 6-31).

• Compiler-generated structure representing state machine 

remembers (captures) all necessary local variables of the method 

(filename in our example) - we should be aware of this because 

in that way we may prolong their life significantly if state machine 

(<ReadFileAsync>d__14) gets heap allocated.

Listing 6-31. Struct representing a state machine for ReadFileAsync method 

from Listing 6-30

[CompilerGenerated]

[StructLayout(LayoutKind.Auto)]

private struct <ReadFileAsync>d__14 : IAsyncStateMachine

{

   void IAsyncStateMachine.MoveNext()

   {

      int num = this.<>1__state;

      string result;

      try

3 This works differently starting in .NET Core 2.1. It’s still moved to the heap, but as a strongly 
typed field on a class rather than being boxed
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      {

         TaskAwaiter<string> awaiter;

         if (num != 0)

         {

            if (!File.Exists(this.filename))

            {

               result = string.Empty;

               goto IL_A4;

            }

             awaiter = File.ReadAllTextAsync(this.filename, 

default(CancellationToken)).GetAwaiter();

            if (!awaiter.get_IsCompleted())

            {

               this.<>1__state = 0;

               this.<>u__1 = awaiter;

                this.<>t__builder.AwaitUnsafeOnCompleted<TaskAwaiter 

<string>, Program.<ReadFileAsync>d__14>(ref awaiter, ref 

this);

               return;

            }

         }

         else

         {

            awaiter = this.<>u__1;

            this.<>u__1 = default(TaskAwaiter<string>);

            this.<>1__state = -1;

         }

         result = awaiter.GetResult();

      }

      catch (Exception exception)

      {

         this.<>1__state = -2;

         this.<>t__builder.SetException(exception);

         return;

      }
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      IL_A4:

      this.<>1__state = -2;

      this.<>t__builder.SetResult(result);

   }

}

In addition to the possible overhead resulting from a heap-allocating state machine, 

there is yet another caveat related to the async method. If we trace exactly what is 

happening in the code from Listing 6-31 for the case when the file does not exist, we see 

that after goto statement a SetResult is called on AsyncTaskMethodBuilder<string> 

struct. This is theoretically a very fast synchronous path without any asynchronous waiting 

overhead. However, mentioned SetResult method introduces allocation of the Task 

object to contain a result of the method (see Listing 6-32).

Listing 6-32. AsyncTaskMethodBuilder struct

public struct AsyncTaskMethodBuilder<TResult>

{

   public static AsyncTaskMethodBuilder<TResult> Create()

   {

      return default(AsyncTaskMethodBuilder<TResult>);

   }

    public void Start<TStateMachine>(ref TStateMachine stateMachine) where 

TStateMachine : IAsyncStateMachine

   {

      // ...

      stateMachine.MoveNext();

   }

   // ...

   public void SetResult(TResult result)

   {

      Task<TResult> task = this.m_task;

      if (task == null)
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      {

         this.m_task = this.GetTaskForResult(result);

         return;

      }

      // ...

   }

   public Task<TResult> Task

   {

      get

      {

         Task<TResult> task = this.m_task;

         if (task == null)

         {

            task = (this.m_task = new Task<TResult>());

         }

         return task;

      }

   }

}

GetTaskForResult called inside SetResult will most probably allocate a new 

Task wrapping provided result, but with some exceptions made for performance 

reasons:

• for Task<bool> it returns one of the two cached objects (for true and 

false values),

• for Task<int> it returns cached object for values from -1 to 9 but will 

create a new Task for other values,

• for many numerical Task<T> it returns cached object for value 0,

• for reference types it returns cached task for value null,

• for other cases it creates a new Task.

It is not very efficient to allocate a Task object just to use it to pass the result value. If 

our async method is called very often and such a synchronous fast answer is common, 

we are introducing a lot of unnecessary allocations of the Task object. Exactly for that 
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purposes, a lightweight version of Task has been introduced called ValueTask. It is in 

fact a struct made as a discriminated union - a type that may take one of three possible 

values (see Listing 6-33):

• Ready-to-use result (if the operation completed successfully 

 synchronously).

• A normal Task that may be awaited on

• It can also wrap an IValueTaskSource<T>, which can be 

implemented by arbitrary objects to be represented by ValueTask<T> 

(currently available only in .NET Core 2.1). These objects can then be 

pooled and reused to minimize allocation.

Listing 6-33. ValueTask introduced in C# 7.0 (version as in .NET Core 2.1)

public struct ValueTask<TResult>

{

    // null if _result has the result, otherwise a Task<TResult> or a 

IValueTaskSource<TResult>

   internal readonly object _obj;

   internal readonly TResult _result;

}

The corresponding AsyncValueTaskMethodBuilder<TResult> in its SetResult 

method sets the result (if it is already available) or just creates a Task in a normal 

way described above (if regular asynchronous path is to be taken). In that way we 

may avoid allocation completely in case of a synchronous answer of async method. 

This, in fact, requires nothing more than changing return type from Task<T> to 

ValueTask<T> (see Listing 6-34). The compiler will take care of the rest by using 

AsyncValueTaskMethodBuilder instead of AsyncTaskMethodBuilder.

Listing 6-34. An example of ValueTask usage

public async ValueTask<string> ReadFileAsync2(string filename)

{

   if (!File.Exists(filename))

      return string.Empty;

   return await File.ReadAllTextAsync(filename);

}
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When consuming ValueTask-returning async methods, we may simply await it 

as any other regular async method. Only in the tightest of tight loops, on absolutely 

critical performance paths, we may additionally check whether it is already completed 

and use Result if so (see Listing 6-35). This will be solely based on structs so no 

allocation occurs. If task has not completed, then normal Task-driven path should be 

started.

Listing 6-35. Usage of an async method returning ValueTask

var valueTask = ReadFileAsync2();

if(valueTask.IsCompleted)

{

   return valueTask.Result;

}

else

{

   return await valueTask.AsTask();

}

There is yet another optimization possible. As already stated, in case of 

asynchronous path, Task must be still allocated. But if it is really frequently called on 

our performance-critical path, it would be great to remove this allocation also. For this 

reason, above-mentioned IValueTaskSource has been introduced. Since then we can 

create ValueTask that is wrapping instance of such interface implementation - which is 

beneficial if such instance is cached or pooled. In other words, asynchronous operation 

is then represented by such cached or pooled instance (see Listing 6-36). Therefore, 

there is no need for Task allocations at all.

Listing 6-36. An example of ValueTask usage backed by IValueTaskSource 

implementation

public ValueTask<string> ReadFileAsync3(string filename)

{

   if (!File.Exists(filename))

      return new ValueTask<string>("!");

   var cachedOp = pool.Rent();

   return cachedOp.RunAsync(filename, pool);

}
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private ObjectPool<PooledValueTaskSource> pool =

     new ObjectPool<PooledValueTaskSource>(() => new 

PooledValueTaskSource (), 10);

When implementing IValueTaskSource interface, we must implement three 

following methods:

• GetResult - called only once, when the async state machine needs to 

obtain the result of the operation;

• GetStatus - called by the async state machine to check the status of 

the operation;

• OnCompleted - called by the async state machine when wrapping 

ValueTask has been awaited. We should remember here the 

continuation to be called when the operation completes (but if 

it already has been completed, we should call the continuation 

immediately);

Additionally, for convenience, such type should provide a method to start the 

operation and a method to react on the operation completion.

having said that, we should be aware that implementing fully working, functional, 
and thread-safe IValueTaskSource is by far trivial. including here whole 
PooledValueTaskSource implementation (used in listing 6-36) altogether 
with all appropriate explanations is much more than this book can hold. it is 
also expected that only a few developers will in fact need to implement it. 
however, please refer to the accompanied source on Github to see the whole 
PooledValueTaskSource implementation (with extensive comments) and a 
dedicated blog post at http://tooslowexception.com/implementing-
custom-ivaluetasksource-async-without-allocations/.

Please note we should not treat ValueTask as a default replacement of Task wherever 

we used it so far. Most often it is not worth the performance difference we could gain. 

However, such difference may pay off in very intensively used code when our async 

method often ends synchronously. There are also trade-offs to using a ValueTask instead 

of Task, greatly explained in the ValueTask’s API:
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• “while a ValueTask<TResult> can help avoid an allocation in the 

case where the successful result is available synchronously, it also 

contains two fields whereas a Task<TResult> as a reference type is 

a single field. This means that a method call ends up returning two 

fields worth of data instead of one, which is more data to copy. It also 

means that if a method that returns one of these is awaited within an 

async method, the state machine for that async method will be larger 

due to needing to store the struct that’s two fields instead of a single 

reference.”

• “Further, for uses other than consuming the result of an 

asynchronous operation via await, ValueTask<TResult> can 

lead to a more convoluted programming model, which can in 

turn actually lead to more allocations. For example, consider 

a method that could return either a Task<TResult> with a 

cached task as a common result or a ValueTask<TResult>. If the 

consumer of the result wants to use it as a Task<TResult>, such 

as to use with in methods like Task.WhenAll and Task.WhenAny, 

the ValueTask<TResult> would first need to be converted into a 

Task<TResult> using AsTask, which leads to an allocation that 

would have been avoided if a cached Task<TResult> had been 

used in the first place.”

 Hidden Allocations
Besides being creating explicitly, many times objects are created implicitly by certain 

operations. This is often referred to as hidden allocations and a lot of effort is put into 

avoiding them. Of course, they are less pleasant in that sense; they do not stand out from 

our code directly until we know about them.

 Delegate Allocation

Every time we create a new delegate (including popular Func and Action delegate), most 

probably we are incurring a hidden allocation. It may happen both in case of a delegate 

created from so-called method group (method referenced by name, see Listing 6-37) 

and created from a lambda expression (in this case lambda expression is turned into 

compiler-generated method; see Listing 6-38).
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Listing 6-37. Delegate allocation from method group

Func<double> action = ProcessWithLogging; // hidden

Func<double> action = new Func<double>(this.ProcessWithLogging);  

// explicit

Listing 6-38. Delegate allocation from lambda - hidden allocation

Func<double> action = () => ProcessWithLogging(); // hidden

Func<double> action = new Func<double>(this.<SomeMethod>b__31_0)();  

//explicit

There is no way to avoid such allocations, but being aware of them we may more 

consciously write our code (for example, avoiding repeating delegate creation inside 

a loop).

there is an important optimization regarding lambda expressions. if they do not 
close (capture) any data - most likely C# compiler will generate code to cache such a 
delegate instance as a static field (so it will be allocated only once, at the first usage).

 Boxing

Boxing has been described in Chapter 4. There are the two most-common sources of 

boxing mentioned there, so let just repeat them here shortly:

• A value type is used where object (reference type) is expected (see 

Listing 6-39) - this includes many obvious implicit conversions.

• Value type instance is used as an interface type implemented by this 

value type (see Listing 6-40).

Listing 6-39. Typical sources of boxing - common conversions

object obj = 0;    // Int32 struct boxed

FooBar(0); // 0 will be boxed

static void FooBar(object obj)

{

}
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Listing 6-40. Typical sources of boxing - passing as an interface

// ValueTuple to ITuple

FooBar(new ValueTuple() {A = 1});

static void FooBar(ITuple tuple)

{

    // ValueTuple will be boxed

}

The first source of allocation may not always be avoidable. However, when an object 

is used as a way of telling that any object may be passed to a method (like FooBar in 

Listing 6-39), it is better to use generics instead (see Listing 6-41).

Listing 6-41. Avoiding boxing by using generic method

void FooBar<T>(T obj)

{

    // FooBar<Int32> will be called without boxing

}

The second source of allocation may be overcome by using generic method with 

generic constraint imposed (see Listing 6-42).

Listing 6-42. Avoiding boxing by using generic method with a constraint

void FooBar<T>(T tuple) where T : ITuple

{

      // ValueTuple will not be boxed

      Console.WriteLine($"# of elements: {tuple.Length}");

       Console.WriteLine($"Second to last element: {tuple[tuple.Length - 2]}");

}

There are three other less-known sources of boxing for value types:

• valueType.GetHashCode() and valueType.ToString() call when 

those virtual methods are not overridden in valueType,

• valueType.GetType() always boxes valueType,

• when creating a delegate from value type method, it will be boxed 

(see Listings 6-43 and 6-44).
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Listing 6-43. Delegate allocation from value type method group

SomeStruct valueType;

Func<double> action2 = valueType.SomeMethod;

Listing 6-44. IL code from Listing 6-39

ldarg.1

box       CoreCLR.Program.SomeStruct

ldftn     instance float64 CoreCLR.Program.SomeStruct::SomeMethod()

newobj     instance void class [System.Runtime]System.Func`1<float64>:: 

.ctor(object, native int)

callvirt   instance !0 class [System.Runtime]System.Func`1<float64>::Invoke()

 Closures

Closures are mechanisms for managing the state of the calculations - “a function 

together with a referencing environment for the non-local variables of that function” 

(Wikipedia). To better understand them, let’s use as an example a simple LINQ-based 

method using lambda expressions to filter and select values from a list (see Listing 6-45). 

If you are reading this chapter one by one, you probably already noticed two possible 

sources of allocations in the  Closures method: two delegates may be created from 

lambda expressions as both Where and Select are expecting Func<> as parameters.4

Listing 6-45. An example of code using lambda expressions

private IEnumerable<string> Closures(int value)

{

   var filteredList = _list.Where(x => x > value);

   var result = filteredList.Select(x => x.ToString());

   return result;

}

4 However, due to closures optimization mentioned before, most probably only a single delegate 
will be allocated per Closures method call, the one passed to Where. Lambda passed to Select 
doesn’t close over any state, so the C# compiler generates code to cache such delegate. We can 
see it in Listing 6-46 as arg_43_1 field.
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However, there is yet another important source of allocation. Code from  

Listing 6-45 will be translated into a more complex construct utilizing an additional 

<>c__DisplayClass1_0 class (see Listing 6-46). This class implements mentioned 

closure. It contains both a function to be executed (under some internal name 

<Closures>b__0) and all variables required for execution (value in our case). Please 

note the following facts:

• Closure is implemented as a class so it incurs allocation - in our 

example Program.<>c__DisplayClass1_0 will be allocated each time 

Closures method is executed.

• Local variables that are stored (captured) inside a closure are 

counting into the size of this closure on the heap - in our case, 

the value integer is captured. The more such variables, the bigger 

“closure class” becomes.

Listing 6-46. An example of code using lambda expressions after compiler 

transformation

private IEnumerable<string> Closures(int value)

{

    Program.<>c__DisplayClass1_0 <>c__DisplayClass1_ = new Program.<> 

c__DisplayClass1_0();

   <>c__DisplayClass1_.value = value;

    IEnumerable<int> arg_43_0 = this._list.Where(new Func<int, bool>(<> 

c__DisplayClass1_.<Closures>b__0));

   Func<int, string> arg_43_1;

   if ((arg_43_1 = Program.<>c.<>9__1_1) == null)

   {

       arg_43_1 = (Program.<>c.<>9__1_1 = new Func<int, string>(Program.<> 

c.<>9.<Closures>b__1_1));

   }

   return arg_43_0.Select(arg_43_1);

}

[CompilerGenerated]

private sealed class <>c__DisplayClass1_0

{
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   public <>c__DisplayClass1_0()

   {

   }

   internal bool <Closures>b__0(int x)

   {

      return x > this.value;

   }

   public int value;

}

We should be aware of closure allocations when trying to write low memory usage 

code - the less variables closure captures, the better. We can always check it, for example, 

by using dnSpy tool and looking at our decompiled code.

Listing 6-47 shows some additional insights about what and when is being 

captured. Be warned, however, that it is due to extensive compiler optimizations. 

There are so many rules and exceptions that sometimes all investigations about 

what and when are captured end with a conclusion - it’s a magic (or more seriously, 

deep implementation detail of currently used  optimizations). Please note that all 

examples from Listing 6-47 may contain hidden allocation of a delegate from a lambda 

expression.

Listing 6-47. Examples of different situations of closures capturing state

//  There is no closure because nothing to be captured (this is not 

captured):

Func<double> action1 = () => InstanceMethodNotUsingThis();

//  There is no closure because nothing to be captured (this still is not 

captured)

Func<double> action2 = () => InstanceMethodUsingThis();

// There is nothing to be captured

Func<double> action3 = () => StaticMethod();

// Captures ss

Func<double> action3 = () => StaticMethodUsingLocalVariable(ss);

// Closure captures ss and this (to call this.<>4__this.

ProcessSomeStruct(this.ss); inside)

Chapter 6  MeMory alloCation



487

// if ss argument was missing, nothing would be captured (this would not be 

capture solely)

Func<double> action6 = () => InstanceMethodUsingLocalVariable(ss);

If we want to get rid of closures, we should produce code with lambda expressions 

not capturing any variables or without lambda expressions at all. Listing 6-48 shows an 

example of how the method from Listing 6-45 could be rewritten. Please note however 

this method now needs to allocate a list for results, which may be even less efficient than 

allocations made by the closure itself.

Listing 6-48. An example of code avoiding lambda expressions and closures

private IEnumerable<string> WithoutClosures(int value)

{

   List<string> result = new List<string>();

   foreach (int x in _list)

      if (x > value)

         result.Add(x.ToString());

   return result;

}

Local functions introduced in C# 7.0 are in fact similar to lambda expressions and 

may incur a need to allocate a closure. Rewriting code from Listing 6-45 into code using 

local functions, we get code with two local functions (see Listing 6-49). In this way, 

however, we do not avoid capturing a value variable.

Listing 6-49. Code from Listing 6-45 rewritten to use local functions

private IEnumerable<string> ClosuresWithLocalFunction(int value)

{

   bool WhereCondition(int x) => x > value;

   string SelectAction(int x) => x.ToString();

   var filteredList = _list.Where(WhereCondition);

   var result = filteredList.Select(SelectAction);

   return result;

}
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Code generated by the compiler (see Listing 6-50) still contains a closure capturing it.

Listing 6-50. An example of code using local functions after compiler 

transformation

private IEnumerable<string> ClosuresWithLocalFunction(int value)

{

    Program.<>c__DisplayClass26_0 <>c__DisplayClass26_ = new Program.<> 

c__DisplayClass26_0();

   <>c__DisplayClass26_.value = value;

    return this._list.Where(new Func<int,  bool>(<>c__DisplayClass26_.<Closur

esWithLocalFunction>g__WhereCondition0)).Select(new Func<int, string> 

(Program.<>c.<>9.<ClosuresWithLocalFunction>g__SelectAction26_1));

}

 Yield Return

In addition to async methods and closures, there is yet another mechanism that 

causes hidden allocations of auxiliary classes generated by the compiler - yield return 

mechanism. It is used for quick and convenient creation of iterator methods. All the 

heavy work of creating an iterator class that will hold iteration state is on the compiler 

side. For example, rewriting the method from Listing 6-45 using yield operator, we may 

easily get rid of lambda expressions (see Listing 6-51).

Listing 6-51. An example of code using yield operator

private IEnumerable<string> WithoutClosures(int value)

{

   foreach (int x in _list)

      if (x > value)

         yield return x.ToString();

}

However, it does not allow us to get rid of the allocation of a temporary object 

completely. It is created to represent the state of the iterator (Listing 6-52). As we can 

see, it also captures value variable and additionally, this reference. But taking into 

consideration that besides closures, code from Listing 6-45 allocates also enumerables 

used by Where and Select methods; this is still a less-allocating alternative.
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Listing 6-52. An example of code using yield operator after compiler 

transformation

[IteratorStateMachine(typeof(Program.<WithoutClosures>d__26))]

private IEnumerable<string> WithoutClosures(int value)

{

       Program.<WithoutClosures>d__26 expr_07 = new Program.<WithoutClosures

>d__26(-2);

      expr_07.<>4__this = this;

      expr_07.<>3__value = value;

      return expr_07;

}

 Parameters Array

Since the old times of C# 2.0 it is possible to create a method with a variable number of 

parameters with the help of params keyword (see Listing 6-53). One should know that it 

is only syntactic sugar for a compiler. Underneath it is just an array of objects that is the 

last argument of a method.

Listing 6-53. An example of method taking variable number of parameters

public void MethodWithParams(string str, params object[] args)

{

      Console.WriteLine(str, args);

}

Thus, when passing arguments to a method with params, new object[] array is 

being allocated. There is a simple optimization in case of no parameters were passed 

(see Listing 6-54).

Listing 6-54. Usage of method with params

SomeClass sc;

MethodWithParams("Log {0}", sc); //  Allocates new object[] with single 

element sc

int counter;
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MethodWithParams("Counter {0}", counter); //  Boxes integer and allocates 

new object[] with single 

element counter

p.MethodWithParams("Hello!");  //  No allocation, uses static  Array.

Empty<object>()

To overcome this source of hidden allocations, many methods that expect various 

number of parameters provide overloads for typical, few parameters usage - in form of 

objects or generic method (see Listing 6-55).

Listing 6-55. An example of method’s overload taking variable number of 

parameters

public void MethodWithParams(string str, object arg1)

{

      Console.WriteLine(str, arg1);

}

public void MethodWithParams(string str, object arg1, object arg2)

{

      Console.WriteLine(str, arg1, arg2);

}

public void GenericMethodWithParams<T1>(string str, T1 arg1)

{

      Console.WriteLine(str, arg1);

}

public void GenericMethodWithParams<T1,T2>(string str, T1 arg1, T2 arg2)

{

      Console.WriteLine(str, arg1, arg2);

}

 String Concatenation

String concatenation and design decisions behind making a string class immutable 

were described in Chapter 4. Let’s just remind for the completeness of typical examples 

causing the allocation of temporary strings (see Listing 6-56).
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Listing 6-56. Example of most common string manipulations

// This will produce a temporary string "Hello " + otherString

string str = "Hello " + otherString + "!";

// This allocates str + "you are welcome" (previous str will become 

garbage)

str += " you are welcome";

As mentioned in Chapter 4, for middle-sized string manipulations, it is better to use 

String.Format overrides as they use cached StringBuilder inside. For creating bigger 

texts by appending smaller strings, StringBuilder would be the best choice. But for the 

simplest scenarios when only two or three parts are concatenated, it is best to use simply 

the plus operator (as in the first line in Listing 6-56), which underneath uses an efficient 

string.Concat implementations (see Listing 6-57) directly manipulating string data (or 

use such Concat explicitly).

Listing 6-57. Efficient string.Concat implementation (FillStringChecked 

directly manipulates internal string data)

public static String Concat(String str0, String str1)

{

   if (IsNullOrEmpty(str0)) {

      if (IsNullOrEmpty(str1)) {

         return String.Empty;

      }

      return str1;

   }

   if (IsNullOrEmpty(str1)) {

      return str0;

   }

   int str0Length = str0.Length;

   String result = FastAllocateString(str0Length + str1.Length);

   FillStringChecked(result, 0,        str0);

   FillStringChecked(result, str0Length, str1);

   return result;

}
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if your code formatting strings is on a hot path and you really want to avoid any 
allocations, consider using an external library like StringFormatter (https://
github.com/MikePopoloski/StringFormatter). it is an allocation- free 
library with api very similar to string.Format. there are even more high- level 
libraries built on top of it like allocation-free logging library Zerolog (https://
github.com/Abc-Arbitrage/ZeroLog). Since .net Core 2.1 you may also 
wish to use all the new Span<T>-related apis for string manipulation (mentioned 
in Chapter 14).

 Various Hidden Allocations Inside Libraries
Due to the many allocation sources (both explicit and hidden) that may occur, obviously 

using other libraries puts as a risk of allocations we are not aware of. It is impossible to 

describe here all possibilities as it would require an extremely extensive description of 

the most popular libraries we can use. For this reason, we will only look at the most- 

popular sources of this type of allocations.

 System.Generics Collections

Some commonly used collections from System.Generic namespace may be seen as 

wrappers around an array. Let’s take as an example overwhelmingly popular List<T> 

class (see Listing 6-58). Inside it just stores an array of elements with some predefined 

size (if no capacity was specified in its constructor). When List grows (for example by 

using Add method), this array may become too small - a new one will be created and all 

existing items copied.

Listing 6-58. Beginning of the List<T> implementation (from .NET Reference 

Source code)

public class List<T> : IList<T>, System.Collections.IList, IReadOnlyList<T>

{

   private const int _defaultCapacity = 4;

   private T[] _items;

   ...
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Thus, a List<T> and collections like Stack<T>, SortedList<T>, or Queue<T> 

may need to resize underlying arrays multiple times while being populated. If you 

approximately know the resulting size in advance, it is always better to use construction 

overload with the capacity provided. In general, it is always a good practice to 

specify expected capacity if possible without worrying how it will be consumed by 

the collections - let’s leave it to its operation, trusting that it will use this information 

optimally.

 LINQ - Delegates

Using LINQ is elegant and pleasant. We may write complex data manipulations 

succinctly in a just few lines of code. However, LINQ is one of the most allocation-like 

mechanisms in C#. When using LINQ, there are many hidden sources of allocations (like 

already described in Closure section). One of the most common was already described - 

allocations of delegates. As LINQ methods are based on delegates, we create a lot of 

them when using it (see Listing 6-59).

Listing 6-59. An example of delegate allocation in LINQ query

// Alocates delegates for lambda

var linq = list.Where(x => x.X > 0);

However, as explained previously, when executed function does not need to capture 

anything, such delegates are cached internally. Thus, they will be allocated only once 

(see Listing 6-60), which is a nice compiler optimization.

Listing 6-60. An example of delegate allocation in LINQ query from Listing 6-59 

after compiler transformation

Func<SomeClass, bool> arg_152_1;

if ((arg_152_1 = Program.<>c.<>9__0_0) == null)

{

       arg_152_1 = (Program.<>c.<>9__0_0 = new Func<SomeClass, bool> 

(Program.<>c.<>9.<Main>b__0_0));

}

arg_152_0.Where(arg_152_1);
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 LINQ - Anonymous Types Creation

When writing LINQ queries, there is a temptation to create temporary anonymous types 

that additionally adds to the already expensive bill of allocations. A contrived example 

from Listing 6-61 shows a simple LINQ query written in such way with an SQL-like 

query syntax.

Listing 6-61. An example of sinple LINQ query - with query syntax

public IEnumerable<Double> Main(List<SomeClass> list) {

   var linq = from x in list

      let s = x.X + x.Y

      select s;

   return linq;

We should be aware that the let statement is nothing else than creating an anonymous 

temporary object (see compiler-generated <Main>b__0_0 method Listing 6-62).

Listing 6-62. An example of simple LINQ query after compiler transformation

[CompilerGenerated]

private sealed class <>c

{

    internal <>f__AnonymousType0<SomeClass, double> <Main>b__0_0 

(SomeClass x)

   {

      return new <>f__AnonymousType0<SomeClass, double>(x, x.X + x.Y);

   }

   ...

}

public IEnumerable<double> Main(List<SomeClass> list)

{

    return list.Select( <>c.<>9__0_0 ?? (<>c.<>9__0_0 = <>c.<>9.<Main

>b__0_0))

              .Select( <>c.<>9__0_1 ?? (<>c.<>9__0_1 = <>c.<>9.<Main

>b__0_1));

}
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We need those temporary types sometimes to write elegant LINQ queries. But 

we should always think about whether you really need them or whether we use them 

because it is just comfortable and looks nice. In our example, it is obviously redundant as 

we could return a sum directly (see Listing 6-63), which generates much simpler, non-

allocating code (see Listing 6-64).

Listing 6-63. An example of sinple LINQ query - with method syntax

public IEnumerable<Double> Main(List<SomeClass> list) {

   var linq = list.Select(x => x.X + x.Y);

   return linq;

}

Listing 6-64. An example of LINQ query from Listing 6-63 after compiler 

transformation

[CompilerGenerated]

private sealed class <>c

{

   internal double <Main>b__0_0(SomeClass x)

   {

      return x.X + x.Y;

   }

   ...

}

public IEnumerable<double> Main(List<SomeClass> list)

{

   return list.Select( <>c.<>9__0_0 ?? (<>c.<>9__0_0 = <>c.<>9.<Main

>b__0_0));

}   

 LINQ - Enumerables

We may be not aware that LINQ methods are in fact building a chain of enumerables - 

a type responsible for enumerating collection’s elements. Those enumerables must 

be  obviously allocated. Even the simplest methods like static Enumerable.Range does 

that - allocating an iterator, one of the specific ways of implementing an enumerable 

(see Listing 6-65).
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Listing 6-65. A simple example of hidden iterator allocation

// Allocates System.Linq.Enumerable/'<RangeIterator>d__111'

var range = Enumerable.Range(0, 100);

Popular methods like Where or Select are also allocating their iterators. For example, 

the Where method may allocate one of the following iterators:

• WhereArrayIterator - if it is called on an array

• WhereListIterator - if it is called on a List

• WhereEnumerableIterator - in other generic cases

Those iterators are around 48 bytes big because they contain data like a reference to 

the source collection, delegate for selection, thread ID, and so on and so forth. Allocating 

48 bytes a few times inside a single method just because of LINQ usage may be, or may 

not be, a performance problem. As always, it depends on your performance criteria.

There are additional optimizations inside LINQ to combine iterators when 

possible, but unfortunately it does not help to avoid allocations. For example, when 

using popular Where and Select pair, a combined WhereSelectArrayIterator (or 

WhereSelectListIterator or WhereSelectEnumerableIterator) will be used but 

intermediate WhereArrayIterator (or corresponding ones) also will be created.

Let’s take a sample of a trivial string filtering method (see Listing 6-66). It will allocate 

two different iterators:

• WhereArrayIterator - which is 48 bytes big, with very short lifetime 

as it will be soon replaced by the following one

• WhereSelectArrayIterator - which is 56 bytes big

Listing 6-66. A simple example of hidden iterator allocation

string[] FilterStrings(string[] inputs, int min, int max, int charIndex)

{

      var results = inputs.Where(x => x.Length >= min && x.Length <= max)

                      .Select(x => x.ToLower());

      return results.ToArray();

}

Additionally, it will allocate a delegate and the closure, which captures two integers 

(min and max).
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you may have your cake and eat it, too, by using one of the libraries that take 
care of automatic rewriting linQ queries into more procedural code. two most 
popular ones are roslyn-linq-rewrite (https://github.com/antiufo/
roslyn-linq-rewrite) and linqoptimizer (http://nessos.github.io/
LinqOptimizer).

Note nowadays, functional programming is becoming increasingly popular 
in the .net environment, mainly due to the growing popularity of the F# 
language and a general return to interest in functional languages. one of the 
core principles of functional programming languages is the immutability of 
data. Functional languages such as F# rely on executing subsequent functions 
in such a way that they do not modify existing data but return new ones. this 
may of course raise some concerns about the performance. From C# world 
we know well that the immutability of string can create a series of temporary, 
unwanted objects. We see through the eyes of the imagination a lot of created 
objects and data copied between them. one could imagine that operating 
on data in F# is similar. in general, it requires to change a mindset quite 
significantly when working with immutable types and functional programming. 
When comparing its performance in typical mutating scenarios, immutable types 
may be much slower indeed. a typical example would be to benchmark how 
fast myriad objects may be added to a mutable List<T> and its immutable 
counterpart. obviously, as immutable collections will most probably all over and 
over again create its own copy with new content added, it will be much slower 
operation (and by the way, functional language designers probably put a lot 
of effort to make such operations smarter than such dummy implementation, 
like reusing common part of data collections). this is however not how such 
collections should be compared. immutability gives very important advantages, 
especially in the increasingly popular multithreaded world. Safe, lock-free 
access to the read-only data may be much more beneficial in highly contented 
scenarios (when a lot of threads are competing to access shared resource) 
than overhead produced by immutability itself. this makes immutable types a 
great choice for multithreaded and/or parallel processing. Due to its unchanging 
nature, immutable types may also greatly utilize CpU cache without cache 
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coherency overhead. the same consideration applies to set of immutable 
collections available in C# in System.Collections.Immutable (like 
ImmutableArray<T>, ImmutableList<T> and so on so forth). this is thus 
a matter of choosing a right tool for your problem. please only do not apply too 
much importance to benchmarks showing that overwhelming changes to the 
state of immutable collections are actually slow. of course, it is, because they 
are not doing what they were designed for!

 Scenario 6-2. Investigating Allocations
Description: After new version deployment of our ASP.NET Core web application, we 

noticed quite a big memory usage growth by observing Working Set - Private, Private 

Bytes and Virtual Bytes from Process(dotnet) counters altogether with \.NET CLR 

Memory(dotnet)\# Total committed Bytes. Developers can’t point to a suspicious place 

in the changed code, which may be the source of the increased number of allocations. We 

want to help them by providing analysis of the newly deployed application.

Analysis: One of the best methods to investigate allocation is to use PerfView tool. 

You can choose between three different allocation sampling methods as described 

in Chapter 4. For the most accurate results you should try to use .NET Alloc method 

whenever possible. It utilizes .NET Profiling API injecting EtwCorProfiler library into a 

sampled process. Each and every allocation will be registered in that way. Obviously, 

this introduces a big overhead so should be used only on local or strictly controlled 

development environment. If it is not possible, consider using .NET SampAlloc, which 

uses the same technique but with less granularity. On the other hand, ETW-based 

ETW .NET Alloc should introduce quite low overhead so it may be safe to use it even on 

production environment. Please bear in mind, however, that those two last methods are 

sampling so only coarse results will be available.

perfView .net alloc and .net Sampalloc use Clr profiling api to track allocation 
in the application. it uses ICorProfilerCallback3::ObjectAllocated 
callback called by runtime each time a new object is being allocated. to make it 
possible, Jit will disable fast-path allocation based on assembly code. thus, only 
by this fact will the program under investigation be slightly slower.
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Let’s investigate memory allocations with the help of .NET Alloc method:

• Run PerfView.

• Use Collect with .NET Alloc option selected.

• Run web application you want to investigate - it is very important to 

do that after collection with .NET Alloc (or .NET SampAlloc) has been 

started.

• Navigate through the web site - most probably you will want to use 

those areas whose were influenced by the latest changes.

• Stop collection.

• In PerfView, select GC Heap Net Mem Stacks from Memory Group.

• Select dotnet.exe application.

We can choose between two main investigation paths from this point:

 1. To gain high-level view of allocations:

• On By Name tab, use sorting by declining Exc column - it 

will quickly show what are the most impactful sources of 

allocations (see Figure 6-22). Please note that many times Type 

<Unknown> will be one of the main contributors. Unfortunately, 

ETWClrProfiler is not always able to get type information from 

the runtime. In such cases it marks a type as <Unknown>.

Figure 6-22. High-level view of allocations inside ASP.NET Core web 
application
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The type itself, however, is not the only information because 

the aggregated sources (stack traces) of allocations may be 

equally useful. For example, to investigate sources of allocating 

those <Unknown> types, select Goto ➤ Goto Item in Callers 

from the found item context menu. Remember that during 

investigation:

• You can always try to load symbols for unnamed modules (ending 

with ?! like <<microsoft.codeanalysis.csharp!?>>) by using 

Lookup Symbols from context menu.

• You can group modules by using Grouping ➤ Group Module from 

context menu.

• By doing so we could, for example, group most allocating modules of 

<Unknown> type (see Figure 6-23).

Figure 6-23. Most common sources of <Unknown> type allocations

We should carry out a thorough analysis of frequently created 

objects. Unfortunately, this is quite a tedious task. To locate 

suspicious areas worth analysis, we can help ourselves by 

comparing heap snapshots taken by PerfView to identify the 

objects incurring the most memory traffic.

 2. To investigate allocations made by a particular method:

• On By Name tab, select [No grouping] in GroupPats - to ungroup 

everything for more details.
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• In Find type the name of your function - let it be 

HomeController.Contact.

• Click Goto ➤ Goto Item in Callees from the found item’s context 

menu - you should see all allocations made by this method and 

all its callees (see Figure 6-24).

Figure 6-24. Allocations made by single method and all dependent method calls

We can see that HomeController.Contact method allocates two arrays inside 

System.Collections.Generic.Dictionary<>.Initialize method. Indeed Contact 

method is trivial in our example as it only sets one item in ViewData dictionary (see 

Listing 6-67). If we looked at Dictionary<TKey,TValue>.Initialize, we would see 

that in fact it allocates two arrays - for buckets and entries. This is obviously only an 

example of how detailed information we can get. During your investigations you will 

be interested in allocations made by your code so it may be wise to group any other, 

external modules.

Listing 6-67. HomeController.Contact method

public IActionResult Contact()

{

      ViewData["Message"] = "Your contact page.";

      return View();

}

Please note that in the case of Linux, diagnosis of allocations is not so easy and 

pleasant. PerfView with its profiler will not help here. .NET Profiling API for Linux 

is not so mature so there are no well-tested tools based on them. You can utilize 

GCAllocationTick LTTng event to sample allocations - you will be able to get statistical 

information about mostly allocated types of objects. Due to the LTTng mechanism you 

will not get stack traces of the allocations in this way. They can be gotten by perf by 
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probing for the event-emitting function EventXplatGCEnabledAllocationTick inside 

libcoreclr.so. In that way, however, we achieve opposite - we may analyze stack traces 

but type information is missing. Currently there is no mechanism to join both pieces of 

that information together. There is also no good support for commercial programs at the 

moment for such diagnostics.

 Scenario 6-3. Azure Functions
Description: Azure Functions are billed based on per-second resource consumption 

measured in Gigabyte-Seconds (GB-s) and number of executions. Functions pricing 

from Microsoft site says: “Memory used by a function is measured by rounding up 

to the nearest 128 MB, up to the maximum memory size of 1,536 MB, with execution 

time calculated by rounding up to the nearest 1 ms. The minimum execution time and 

memory for a single function execution is 100 ms and 128 MB respectively.” It means 

each single function call will consume at least 0.0125 GB-s (100 ms times 128 MB which 

is 0.1 s times * 0.125 GB). Additionally, there is a free grant of 400,000 GB-s and 1 million 

of executions per month.

Taking such pricing into consideration, it seems clear that it is worth it to 

minimize memory usage as far as possible. If our Azure Function consumes memory 

inefficiently, we may exceed the free grant limit. We multiply the cost each time  

the memory usage exceeds another 128 MB. It is difficult currently to find a place in 

the .NET world where the use of memory so directly translates into the money spent 

by us.

Analysis: Azure through Application Insights provides a way of monitoring Azure 

Functions resource consumption. We can track their so-called Function Execution 

Units. They are measured in MB-ms (Megabyte-Milliseconds) currently so we need 

to scale them to get GB-s. By tracking Function Execution Units, we can monitor our 

costs, but unfortunately, they do not provide any deeper insight into functions memory 

usage. Thus, to analyze and optimize memory usage of our function, it is best to do it on 

development environment. Thanks to Azure Functions Core Tools, we can run Functions 

locally so the allocations investigation scenario would be as easy as in scenario 6-2. You 

only need to profile func.exe process (it is the name of Azure Function CLI executable 

hosting our functions).
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Note if you would like to track the intensity of the allocation within  
your program, one of the simplest solutions is to use the GC.GetAllocated 
BytesForCurrentThreadstatic method. in that way you get accurate 
information about how many bytes were allocated since the beginning of a 
current thread’s lifetime.

 Summary
This chapter covered in depth how objects are being created in .NET. We should be now 

fully aware that allocating an object may be really fast - but it may also trigger quite a 

complex logic of finding a place for it, including triggering Garbage Collector.

In the first part of the chapter, implementation details about allocator in .NET 

were presented. They reveal a big level of sophistication in making it as fast as 

possible. A lot of effort was made so that creating new objects was really fast so 

getting to know these details is very interesting and developing. It also allows us, 

in some respects, to look at how complicated is the topic in general and how well-

implemented it is in .NET CLR.

The second part of this chapter is dominated by a practical review of one of the most 

important issues from the point of view of efficient memory management - avoiding 

allocation. Avoiding allocation is the obvious avoidance of its cost and the GC overhead. 

Therefore, one of the main performance optimizations in the .NET world is this topic. 

The presented list contains a rather extensive (though certainly not exhaustive) list of 

possible sources of allocation and (where possible) potential ways to avoid them.

The chapter also contains three example scenarios for solving problems related to 

the memory allocations. Besides the sections about avoiding allocations, they allow you 

to look at the topic of creating new objects from a more practical, diagnostic side.

 Rule 14 - Avoid Allocations on the Heap in Performance 
Critical Code Paths
Justification: It is said - allocations are cheap in .NET. However, this chapter shows 

that it is not always entirely true. You should be aware of possible costs of allocations. 

Your performance context dictates whether they introduce significant cost or not. 
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Just  remember that allocation means introducing possible memory traffic and 

communication with the operating system or triggering garbage collections. The more 

objects we allocate, the more work we put on GC. Thus, in very performance parts of 

code the best optimization solution is to avoid allocations.

How to apply: There are as many solutions how to avoid allocations as scenarios 

where allocations may happen. They have been thoroughly described in the section 

“Avoiding Allocations” in this chapter. Some allocations are explicit - we are fully 

aware of them. But still we may want to get rid of them by using object’s pools or 

value types. Some allocations are hidden - various libraries and techniques may 

introduce them without our knowledge. To avoid them we obviously need to identify 

them. We may learn some of the most popular sources of hidden allocations so we 

will be able to quickly spot them in our code. Non-trivial ones should be traced via 

diagnostic tools.

Related scenarios: Scenarios 6-2, 6-3.

 Rule 15 - Avoid Excessive LOH Allocations
Justification: While allocations are not always cheap in .NET, allocation of objects in 

Large Object Heap is even more often not cheap. Assumption that allocations in LOH 

are infrequent and the fact that they are big drives design decision to not preallocate 

space for them in advance. Thus, allocation of object in LOH may be dominated by 

the cost of zeroing its memory. If we are using really big objects frequently, it may be 

a good idea to manage some pool of reusable objects. It will introduce more stable 

memory usage and not only help with the allocation costs but also will relieve a little 

GC in its work.

How to apply: If we allocate big objects frequently, it is probably not possible to take 

a trivial optimization of not doing this at all. Using value types for this purpose is also 

rather not possible because of the stack space limits. The best solution here is to use one 

of the pooling mechanisms - see relevant parts of the “Avoiding Allocations” section in 

this chapter.
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 Rule 16 - Promote Allocations on the Stack When 
Appropriate
Justification: Classes are the fundamental data types in .NET. When we learn C#, 

classes accompany us from the very beginning. When we think - data structure - we 

immediately think - class. It is our default decision during development to create and use 

classes. On the other hand, structs are usually only some exotic thingy about which we 

learn at the beginning and then forget. They seem strange and incomprehensible to us. 

However, this does not have to be because they can provide really valuable features - like 

better memory locality, avoiding heap allocations at all, and great possible optimizations 

taken by the compiler and JIT.

How to apply: We should just learn about structs a little and try to add them to our 

everyday toolbox. When implementing a new feature, does our method need to utilize 

a class or maybe a simple structure will be just fine? Do we need a collection of objects? 

Maybe a small array of structures will be enough? Do not be afraid of struct copying - 

utilize more and more powerful C# possibilities to pass them by reference in various 

ways. Obviously, do not overengineer simple things. Do that only in a performance-

driven parts of your code, executed often, and with a great impact on the perceived 

performance or resource utilization.
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CHAPTER 7

Garbage  
Collection - Introduction
Welcome to the most important part of this book. Previous chapters have described 

quite broadly the subject of memory management. We have experienced some 

theoretical and hardware introduction. We also got to know a lot of details about the 

organization of memory in the .NET environment - how it is divided into segments and 

generations and how all this infrastructure works with the operating system. Much of this 

knowledge is valuable in itself, allowing us, for example, to diagnose problems with too 

many allocations or how to use different methods to avoid them.

However, it cannot be denied that when it comes to memory management, the .NET  

world is inherently related to its automatic memory reclamation. We have learned 

already about Allocator so we know how objects are being created. Now it’s high time 

we learned how and when objects are being deleted and memory reclaimed after them, 

when no longer needed.

This and the following three chapters constitute a long story about how GC works 

in .NET. It has been split into four chapters to not overwhelm the reader with all that 

knowledge given at once. However, all four are inherently related to each other and to 

gain comprehensive knowledge should all be read.

Moreover, those chapters are based on knowledge from previous chapters. 

Therefore, if you do not read the book one by one, I still strongly recommend at least 

skimming previous chapters before reading this one (especially Chapters 5 and 6).

In this chapter we will find out in which situations GC can take place. We will find 

out exactly what stages are executed and delve into details of first steps. All this will be 

provided with comments and examples that allow you, besides the satisfaction of having 

such knowledge, to apply it also in practice.
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 High-Level View
Before going further, it is good to gain a 10,000-foot view of Garbage Collector 

implemented in Microsoft .NET runtime. The most important is the fact already 

mentioned in previous chapters: GC can operate in two main modes of operation:

• Workstation - it is designed to minimize delays introduced by the GC 

as seen from the managed threads perspective. In general, it can be 

summarized by a strategy that GC will happen more frequently so 

it will have less work to do, so perceived pauses will be shorter. This 

mode is especially useful for a desktop application where perceived 

latency is important for user experience - we would not like to freeze 

the whole application because a long-running GC happened.

• Server - it is designed to maximize application throughput. The strategy 

is that GC will be executed less frequently so it introduces longer 

pauses when it eventually happens. This also means that memory 

consumption will be higher - GC will allow memory to grow to higher 

values by rare collections. However, pauses and memory usage are not 

so important in favor of statistical resulting throughput - how many 

data were processed in a given amount of time.

There are important design differences between Workstation and Server GC modes. 

One of the most important ones is how many Managed Heaps exist. As mentioned in 

Chapter 5, in Workstation mode there is only a single Managed Heap while in Server 

mode, there may be many logical cores on the machine.

Additionally, each of the above modes may work in one of the sub-modes:

• Non-concurrent - in this mode GC is executed while all managed 

threads of our application are suspended.

• Concurrent - in this mode some parts of the GC are done while 

managed threads are working.

These two types of work modes give a total of four options of how GC  

can be configured in our application. Those combinations are described in detail in 

Chapter 11, altogether with the discussion when and where using each of them is most 

appropriate. For the simplicity of learning, in Chapters 7 to 10 only the simplest case is 

discussed - Non-concurrent Workstation mode. This allows us to understand the vast 

majority of GC aspects without going into cluttering details. In fact, other modes differ 
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only in details so knowledge from this and the following three chapters is perfectly valid 

for all the others.

It is also worth recalling an important fact about the behavior of two areas of the 

Managed Heap:

• Small Object Heap may use Sweep or Compact collection - it’s mainly 

an autonomous GC decision. We may ask the GC to select one if we 

wish to call GC manually.

• Large Object Heap uses only Sweep Collection by default - but we 

may ask for a single Compacting collection explicitly.

hereinafter various CoreClr source code internals will be presented for those who 
wish to investigate described topics on their own. When garbage collection starts in 
CoreClr, several flags are representing selected options. one of the most important 
is collection_mode enumeration, which may have the following flags set:

•  collection_non_blocking - non-blocking (concurrent) GC

•  collection_blocking - blocking (“stop the world”) GC

•  collection_optimized - will proceed with GC only if it is needed (so-called 
allocation budget of specified generation is running out)

•  collection_compacting - collection with Small object heap compaction

•  collection_gcstress - internal Clr’s stress testing mode

All those manual tunings and variations will be described later; let’s now concentrate 

on the simplest Non-concurrent Workstation GC in detail.

 GC Process in Example
I think it is at this point worth it to explicitly denounce certain facts that have so far been 

mentioned here and there. This will allow us to visualize a high-level view of the GC activity.

First of all, garbage collection happens in the context of a specific generation - which is 

commonly referred to as the condemned generation. A whole-generational GC technique 

benefits from the fact that we may decide to collect objects just from a single generation. 

As explained in Chapter 5, the decision was made to collect also all generations younger 
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than the currently condemned generation. Additionally, objects in Large Object Heap 

are treated as being in generation 2. This leads to the following possible scenarios:

• generation 0 is condemned - only generation 0 is being collected,

• generation 1 is condemned - only generations 0 and 1 are being, 

collected,

• generation 2 is condemned - all three generations 0, 1, and 2 plus 

Large Object Heap are being collected. Such a situation is commonly 

named a Full Garbage Collection (hereinafter most of the time it will 

be referred to as the full-GC).

During its work the GC will check the reachability of objects (by marking) only 

in condemned and younger generations. Knowing this, each time GC has to decide 

whether it wants to carry out Sweep or Compact collection.

Let’s now visualize all those possible cases in an illustration similar to Figure  5-5 

from Chapter 5. Please, take some time to thoroughly understand the described example 

scenarios because they really form the very core of how GC works in .NET.

First of all, let’s imagine an example situation that at some point in time .NET 

memory in our program looks as in Figure 7-1. Based on the knowledge from  

Chapter 5, we can recognize such typical layout - there is a single block of memory that 

contains SOH (ephemeral) and LOH segments. The SOH segment is further divided 

into generations 0, 1, and 2. All generations contain some objects and boundaries of 

generations have also been marked.

1 02 LOH

objects

Figure 7-1. Initial memory state used in the three following figures. Objects have 
been marked by dashed filling. Generation 0 has some free space at the end. SOH 
segment as well is not fully consumed by generations.

Let’s now consider an example when generation 0 is condemned (see Figure 7-2).  

In such case, Mark phase will only analyze reachability of objects in generation 0.  

Let’s suppose only one object in generation 0 has been marked as reachable  
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(see Figure 7-2a; marked objects are filled by dark gray). Now the GC must decide which 

collection technique to choose:

• Sweep Collection (see Figure 7-2b) - in such case all unreachable 

objects from generation 0 are considered as free space. Generation 

1 boundary has been moved accordingly to contain promoted, 

reachable object (our single marked object has been promoted to 

generation 1). As is often the case with the Sweep Collection, note 

that this significantly increased fragmentation in generation 1 - there 

is now a large hole of the empty space in it.1

• Compact Collection (see Figure 7-2c) - in such case reachable objects 

in generation 0 are compacted and included by accordingly grown 

generation 1. There is no fragmentation obviously but the whole 

operation is more complex (requiring memory copying and updating 

references to moved objects).

1 02 LOH

1 02 LOH

1 02 LOH

(a)

(b)

(c)

Figure 7-2. Garbage Collection with generation 0 condemned –(a) objects 
marked as reachable, (b) Sweep Collection, (c) Compact Collection

1 As we know from a previous chapter, this free space is not unusable - it is being managed by 
a free-list allocator. But for generations 0 and 1 free-list items are checked only once and then 
discarded so this free space may quite fast become unusable; however, keep in mind gen0/1 
collections also happen quite often so they get rebuilt often.
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To summarize, after garbage collection with generation 0 being condemned:

• Only objects in generation 0 have been checked for reachability 

(marked).

• Generation 0 has become empty (with only really small space 

intentionally left) - this is the default behavior. All objects from the 

youngest generation are either collected or promoted to an older 

generation. As we will see later in this chapter, some exceptions may 

occur. For now, however, let’s assume this simplest scenario.

• Reachable objects from generation 0 have been promoted to 

generation 1.

• Generation 1 has grown - both in case of Sweep (larger growth 

because of fragmentation) and Compact (smaller growth).

• Generation 2 and LOH have not changed. It was however analyzed to 

mark what they point to in generation 0 (using card tables described 

in Chapter 5).

Let’s now consider an example when generation 1 is condemned (see Figure 7-3). In 

such case, the Mark phase will analyze the reachability of objects in generations 0 and 1. 

Again, suppose the same single object in generation 0 and two additional in generation 1 

have been marked as reachable (see Figure 7-3a). Now the GC must choose between two 

techniques:

• Sweep Collection (see Figure 7-3b) - in such case all unreachable 

objects from generations 0 and 1 are considered as free space. 

Generations 2 and 1 boundaries were moved accordingly to 

contain promoted reachable objects. Again, this introduced big 

fragmentation (in our case in generation 1, but generation 2 could 

become fragmented too).

• Compact Collection (see Figure 7-3c) - in such case reachable objects 

in generations 0 and 1 are compacted and included by accordingly 

changed boundaries of generations 2 and 1.
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To summarize, after garbage collection with generation 1 being condemned:

• Only objects in generations 0 and 1 have been checked for 

reachability (marked).

• Generation 0 has become empty.

• Reachable objects from generation 0 have been promoted to 

generation 1.

• Reachable objects from generation 1 have been promoted to 

generation 2.

• Generation 1 may grow or shrink - depending on which collection 

technique has been chosen. This is interesting as theoretically 

generation 1 may grow when... generation 1 is being collected. This 

is of course due to fragmentation so GC is unlikely to decide to use 

Sweep in our example scenario. But still, this is theoretically and 

technically possible.

• Generation 2 has grown.

• LOH has not changed but it has been analyzed to mark what they 

point to in generations 0 and 1 (as well as generation 2).

2 LOH

2 LOH

2 LOH

1 0

1 0

1 0

(a)

(b)

(c)

Figure 7-3. Garbage Collection with generation 1 condemned -(a) objects marked 
as reachable, (b) Sweep Collection, (c) Compact Collection
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• Collection with generation 1 condemned differs slightly to collection 

with generation 0 condemned in terms of performance - obviously 

more objects will become analyzed and possibly moved/touched. 

However, in both cases GC operates inside a single ephemeral 

segment (most probably at least partially already CPU-cached) so the 

observed difference should not be huge.

in case of generation 0 or 1 being condemned, yet another technique of promotion 
exists. besides simply extending the older one generation to properly include 
promoted objects from the condemned generation, the GC may decide to “allocate 
them in the older generation” by using free space (managed by free list) in the 
older generation. this allows us to make use of fragmentation (reducing it at the 
same time) instead of blindly extending the generation region.

in case of an example similar to Figure 7-3, one of the objects could be allocated in 
the available free space:

 

this technique obviously makes sense only in case of a compacting GC. in case 
of sweep collection, objects are not being moved so there is no possibility to place 
them into existing free space.

Let’s now consider a last example, when generation 2 is condemned (see Figure 7-4). 

Such Full Collection incurs analyzing many more objects than the two previous ones. 

This is why care should be taken to not introduce too many unnecessary Full Collections 
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as we will discuss later. In case of Full Collections, the Mark phase will analyze the whole 

Managed Heap - generations 0, 1, 2, and LOH. Certain objects have been marked for the 

example (see Figure 7-4a). The GC must choose now between two techniques:

• Sweep Collection (see Figure 7-4b) - all unreachable objects from 

all generations (including LOH) are considered as free space. All 

generation boundaries have been moved accordingly. Please note we 

introduced quite large fragmentation in generation 2, generation 1, 

and LOH.

• Compact Collection (see Figure 7-4c) - all objects inside SOH have 

been compacted (remember that LOH is not being compacted 

automatically). This is an optimal solution in terms of memory usage 

but obviously required the most work of copying many objects.

1 02 LOH

2 LOH1 0

(a)

(b)

(c)

1 02 LOH

Figure 7-4. Garbage Collection with generation 2 condemned (aka Full 
Collection) – (a) objects marked as reachable, (b) Sweep Collection, (c) Compact 
Collection

To summarize, after garbage collection with generation 2 being condemned (aka 

Full-GC):

• All objects’ reachability have been checked from all generations and 

the LOH.

• Generation 0 has become empty.

• Reachable objects from generation 0 and 1 have been promoted to 

generation 1 and 2 accordingly.
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• Reachable objects in generation 2 stayed in generation 2.

• LOH has been also collected without compacting - we’ve introduced 

fragmentation, but this free space would be reused by free-list LOH’s 

allocator.

A careful reader may notice that after each GC with generation 1 or 2 being 

condemned, generation 2 may grow inside our segment (if there are many long-living, 

non-reclaimable objects). Eventually there may be a moment when it is so big that 

generations 0 or 1 do not have enough room (see Figure 7-5a). In such case a simple 

Sweep or Compact collection is probably not enough. GC most probably will decide to 

use the Compact method with the following steps (see Figure 7-5b):

• Current ephemeral segments are changed into gen2-only  

segments - all reachable objects from generations 1 and 2 are being 

compacted there.

• A new ephemeral segment is created - all reachable objects from 

generation 0 are being compacted there (as generation 1 objects).

• LOH is treated with the Sweep collection as usual.

(a)

(b)

2 LOH1 0

2 LOH 1 0

Figure 7-5. Garbage Collection with generation 2 condemned (aka Full 
Collection) with big generation 2 – (a) objects marked as reachable, (b) Compact 
Collection with a new ephemeral segment created

In this way generation 2 may grow “endlessly.” If the same situation repeats in a 

new ephemeral segment, it will be turned into a gen2-only segment and three different 

scenarios may happen:

• A new ephemeral segment may be created by committing and 

reserving memory for a new segment - as in the case just described 

and illustrated in Figure 7-5.

Chapter 7  GarbaGe ColleCtion - introduCtion 



517

• A new ephemeral segment may be created from the segment on the 

segment’s standby list if any segments are on that list - we have seen  

a situation of building a segments standby list in Figure 5-22  

(in Chapter 5) where segments’ reusage was discussed. This requires 

VM hoarding to be enabled, which is not always the case.

• An already existing gen2-only segment with small gen2 may be 

reused as a new ephemeral segment (see Figure 7-6) - in this way 

even when VM hoarding is not enabled, a new segment does not 

need to be created. The old ephemeral segment will become s  

gen2-only segment in such s situation.

gen2gen2-only

ephemeral

gen2

gen2

gen1 gen0

gen2

gen2

gen2 gen1

gen2

new 
ephemeral

gen2-only

gen2-only gen0

before GC after GC

Figure 7-6. Garbage Collection with generation 2 condemned (aka Full 
Collection) - Compact Collection with gen2-only segment reused as a new 
ephemeral segment

please note that turning the current ephemeral segment into a gen2-only segment 
(and making a new ephemeral segment by reusing some existing one or creating a 
completely new one) may be caused by extensive pinning - a lot of pinned objects 
living in ephemeral segments may make it hard to use (i.e., by fragmentation-
hindering creation of allocation contexts) so the whole segment will be promoted 
to gen2. this is perfectly fine from the pinning requirements perspective, as 
addresses of pinned objects are not changed by that - only logically such region 
starts to represent generation 2.

It is worth reemphasizing this multiple times. A Full-GC includes marking all 

objects through all generations and LOH. They might span multiple segments and 

if a large amount of memory survives, this may be very costly. Moreover, during this 

process a gen2 segment may be reused or a new segment may be created. Thus, Full-GC 
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performance overhead may be much, much bigger compared to the GC with generation 

0 or 1 condemned that included operating only on a single, ephemeral segment most 

probably cached at some parts inside the CPU. Thus, the overhead difference between 

Full-GC and ephemeral GC (with generations 0 or 1 condemned) may be of orders of 

magnitude. A full-GC should be avoided as much as possible!

 GC Process Steps
After the general introduction of what the effects of Garbage Collector work look like, 

let’s look at what steps make up this process. From a high-level point of view, we can 

distinguish the following steps related to the GC work:

 1. Trigger garbage collection - something triggers a need for the GC.

 2. Suspend managed threads - Execution Engine is asked to suspend 

all threads executing managed code (in case of the Non-concurrent 

GC for the whole time when garbage collection will happen).

 3. User thread starts the GC code - a thread that triggered GC starts 

to execute the Garbage Collector code.

 4. Select generation to condemn - as the first step, the GC decides 

which generation should be condemned based on the various 

conditions.

 5. Mark - the marking of reachable objects in the condemned and its 

younger generations are carried out.

 6. Plan - the GC decides whether compacting is worth doing or 

maybe sweeping is just enough. Although this may not seem so 

at first glance, this step contains most of the calculations that are 

needed to complete the entire GC.

 7. Sweep or compact - after a decision has been made, either a 

Sweep or Compact technique is used with the help of information 

gathered during Plan phase. If compaction was chosen, an 

additional relocate phase must be executed before, to update all 

addresses to the new ones.

 8. Resume managed threads - Execution Engine is asked to resume 

all threads executing managed code.
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Because mentioned GC steps really make up all the work it does, the rest of this 

chapter and Chapters 8 to 10 describe each of them thoroughly. You can treat them as a 

map that will carry us up to the end of them.

During those steps various diagnostic data are emitted immediately and some 

collected and emitted at the end of the process - using the well-known mechanisms of 

Performance Counters and ETW/LLTng events. Some of the data is available internally 

by SOS commands so we need to use WinDbg to access them. We will utilize those data 

and SOS commands in various scenarios in this chapter.

 Scenario 7-1. Analyzing the GC Usage
Description: We want to observe usage of the GC during web application execution. 

We would like to do it in a non-invasive way during load tests performed on our 

pre-production environment. The application under test is plain nopCommerce 4.0 

installation - a universal open source e-commerce platform written in ASP.NET  

Core - this is a continuation of scenario 5-1 from Chapter 5.

Analysis: Let’s skip the technical part of the load test preparation, assuming that the 

appropriate procedures and tools are just in place. The load test was prepared and 

executed with the JMeter tool. It executes around 7 requests per second with a simple 

scenario (visiting home page, single product page, and single tag page). It is exactly 

the same JMeter test as used in scenario 5-1. However, this time only a 2-minute long 

analysis will be performed to quickly recognize the GC utilization. Self-hosted .NET web 

application will be monitored (process is named Nop.Web.exe).

First of all, we may wish to check the overall .NET memory and the GC usage of the 

application. This includes observing the following performance counters:

• \.NET CLR Memory(Nop.Web)\Gen 0 heap size (which actually is 

generation 0 allocation budget as explained in previous chapters)

• \.NET CLR Memory(Nop.Web)\Gen 1 heap size

• \.NET CLR Memory(Nop.Web)\Gen 2 heap size

• \.NET CLR Memory(Nop.Web)\Large Object Heap size

• \.NET CLR Memory(Nop.Web)\% Time in GC
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The results of the first two minutes of the application run are shown in Figures 7-7 

and 7-8. We can see quite stable generation sizes - the ephemeral ones are changing 

rapidly but not growing in time. The oldest one has stabilized at the value of 89,520,308 

bytes. However, % time spent in GC is alarming. An average value of around 24% 

(clearly visible in Figure 7-8) means one-fourth of the process time is spent on garbage 

collection. This starts to be a significant overhead.

We can continue further analysis of this situation by analyzing ETW events in the 

PerfView. By selecting GC Collect Only option in the Collect dialog during our load 

test, GC keyword events from Microsoft-Windows-DotNETRuntime providers will be 

registered. After collection stops and processing ends, we will be able to investigate the 

GC usage thanks to the GCStats report available in the Memory Group folder.

Figure 7-7. Performance Monitor view of generation sizes during near 2-minute-
long load test of ASP.NET Core application
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Figure 7-8. Performance Monitor view of the GC utilization during near 
2-minute- long load test of ASP.NET Core application

GCStats report shows a comprehensive summary of GC-related events for all .NET 

runtime providers during session recording. At the beginning of the report all such 

providers are listed so we select Nop.Web process. At the beginning of such report, 

various diagnostic data are presented (see Figure 7-9). For example, CLR Startup Flags 

listed as None means used GC was a simple non- concurrent workstation GC.
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More interesting to us may be the next table summary - GC Rollup by Generation 

(see Figure 7-10). It shows a summary of all GCs that happened in a given process 

duringww an ETW session time lasting 2 minutes. As we can see, there were a total of 

3,016 garbage collections during that time (which makes about 25 GCs per second). Total 

pause time caused by GCs is over 12 seconds. For a 2minute-long test this makes around 

10% of the time spent in the GC, while typical usage should not exceed a few percent at 

maximum. Please also note significantly slower gen2 GCs compared to the lower ones 

(Mean Pause column in Figure 7-10).

Figure 7-9. The beginning of the GCStats report for Nop.Web process

Figure 7-10. GC Rollup by Generation table from the GCStats report for  
Nop.Web process
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What we can pay attention to is a very large number of indicated allocations. There is 

a total of over 12 GB of objects allocated! While, as we have seen in Figure 7-7, generation 

sizes remain quite stable, this obviously indicates allocating a huge amount of short-

living, temporary data that fast becomes garbage.

Further analysis can be done with the help of great GC Events by a Time table from 

the same GCStats report (see Figure 7-11). It lists all GCs during the recorded session 

with various, extremely useful data. In case of a long session, the table is truncated  

(as in the figure presented), but you can always get the raw CSV data and see it, for 

example, in Excel.

Figure 7-11. GC Events by Time table from GCStats report for Nop.Web process

In the presented table fragment (as from the entire table, not presented here for 

obvious reasons), we can see some interesting facts:

• All GCs were triggered because of AllocSmall reason - that means 

GCs were triggered due to SOH allocation.

• Many GCs were triggered in a single second (see changes in Pause 

Start column) and allocations are quite big (see Gen0 Alloc MB 

column) - this confirms our suspicions stated before about  

allocating a lot.

At this stage we should investigate what is being allocated so often like in scenario 

6-2 from Chapter 6.

We will come back to different columns from GC Events by Time table in this chapter 

in further scenarios. With the subsequent sections of this chapter, an increasing part of 

the GCStats report will became understandable. Ultimately, it should allow you to read it 

with full understanding.
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please note interesting information in the Gen column, which describes not only 
condemned generation but also the type of the GC:

- n - non-concurrent GC (blocking)

- b - background GC

- F -  Foreground GC (blocking collection of an ephemeral generations during 
background GC)

- i - induced (manually triggered) blocking GC

- i - induced non-blocking GC

 Profiling the GC
To roughly imagine the relative cost between these individual steps, look at  

Figure 7-12 with profiling data gathered, thanks to the ETW CPU profiling during a 

simple load test (the other one that presented in above scenario). Inc column shows 

a total time (in milliseconds) spent in each listed method (and all its callees). The 

application under the test was using Workstation GC. During the test, 627 garbage 

collections occurred (as noted from ETW report not shown here) that gives us an average 

pause time of 4.33 milliseconds per GC.

Figure 7-12. Profiling data for the GC phases taken for an application with 
Workstation GC

The mark and plan steps have a relatively similar cost. The plan phase, due to the 

GC code structure, contains both compact and relocate phases. It may be surprising 

that relocation (updating addresses) takes more time than compaction itself (moving 

objects).
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Do not pay too much attention to those numbers though. They can vary significantly 

depending on various conditions like ratio of survived objects, number of references 

between objects, or number of objects in total. If you are really interested, investigate 

them on your own, for your own specific scenario. This is as simple as using PerfView for 

the following two, simple steps:

• Collecting ETW session with CPU profiling enabled - by enabling CPU 

Samples option. You may also wish to change the sampling interval in 

CPU Sample Interval MSec from 1 to a lower value to get more precise 

results.

• Analyzing collected data from CPU Stacks view - you will most 

probably need to carry out the following simple changes (again clear 

all GroupPats and Folding):

• locate clr?! or coreclr?! row (in case of full .NET or .NET Core 

respectively) and issue Lookup Symbols command on them.

• find garbage_collect method and start investigation by issuing 

Goto Item in Callees command.

You can think about a few questions related to the nature of the GC activities - 

particularly, how the following conditions influence the overall GC cost (in terms of CPU 

usage and processing time):

• Big number of objects in general - the more objects, the more work 

the Plan phase has to do. It consists of scanning the whole Managed 

Heap object by object so it is natural that a large number of objects 

will affect the longer execution time of the Plan phase. The advantage 

is, however, strictly linear access to memory (object after object), so 

the overall cost is mitigated by cache mechanisms.

• Big number of survived objects - the more live objects, the more work 

the Mark phase has to do. It induces a lot of Managed Heap traversing, in 

unstructured (not especially cacheable) way. This overhead will be higher 

the more references between objects exist. Additionally, a big number 

of live objects, if the Compact phase is executed, means a lot of memory 

traffic and a costly need of updating many references. Plan phase is less 

sensitive to the number of live objects - it operates on “plugs” (explained 

thoroughly later in Chapter 9) of many live objects so the cost is alleviated.
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The applications are simple and rather intuitive - the fewer objects we create the 

better. For example, it is better to create one large array in LOH and reuse its fragments 

(e.g., by using Span<T>) than create many smaller arrays.

 Garbage Collection Performance Tuning Data
Before we start the journey through the subsequent stages of GC work, it is worth paying 

attention to the data that it manages. We often may hear about various “heuristics” or 

“internal tunings” used by GC for its internal work. This is exactly what we will look at in 

this section.

Data managed by GC may be split into two main groups: static and dynamic 

data. Both play very important roles in what and how GC is doing. Describing them 

in too much detail is not particularly sensible because they are a deeply hidden 

implementation detail. It is not guaranteed in any way that these data with such values 

will not be changed in subsequent versions of the framework.

On the other hand, those data are so important and so strongly affect the way GC 

operates, that it is impossible to omit them completely in the description of the entire 

process. It is also difficult to expect major changes in the functioning of at least the most 

important indicators in the near future. And we will focus on them in this section.

 Static Data
Static data represents a configuration that is set at the beginning of the runtime start and 

it never changes later. It contains the following attributes for each generation:

• minimum size - minimum so-called allocation budget (a term 

explained thoroughly just a few paragraphs later),

• maximum size - maximum allocation budget,

• fragmentation limit and fragmentation ratio limit - used when 

deciding whether we should compact,

• limit and max limit - used to calculate growth of the generation 

allocation budget,

• time limit - time after which to collect generation (in some 

scenarios),
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• time_clock - time after which to collect generation, in performance 

counts (see QueryPerformanceCounter),

• gc_clock - number of GCs after which to collect generation.

in case of CoreClr, static data described here is represented by static_data 
struct defined in .\src\gc\gcpriv.h file. a static table static_data_table 
is then initialized in .\src\gc\gc.cpp file for two different latency modes. Some 
of the values are calculated at the runtime start in the gc_heap::init_static_
data method.

Static data are tuned in respect to the GC latency level configuration (discussed in 

Chapter 11). Currently there are two modes that with respect to the static data differ 

mainly in terms of generation sizes:

• balanced - pauses are more predictable and more frequent, 

optimized for a balance between latency and memory footprint. This 

is a default setting.

• memory footprint - optimized for minimum memory footprint; 

pauses can be long and more frequent.

Static data values for both latency modes are presented in Tables 7-1 and 7-2 (with 

the assumption of running on a computer with 8 MB L3 cache). We can find interesting 

information there, for example:

• Generation 0 minimum allocation budget is strictly related to the 

CPU cache size - if we remember from Chapter 2 the importance 

of CPU cache utilization, this makes perfect sense. These settings 

ensure that the most commonly used generation 0 will consume a 

reasonable part of the CPU cache.

• Both ephemeral generations maximum allocation budgets are strictly 

related to the ephemeral segment size - if we remember physical 

memory organization from Chapter 5, this also makes perfect sense. 

These settings are especially important in Workstation and 32-bit 

Server mode because segments there are relatively small (refer to 

Table 5-3).
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• Maximum allocation budget of generation 2 and Large Object Heap 

are limited only by the maximum address limit (SSIZE_T_MAX is half 

the size of word) - this also makes a perfect sense as all long-living 

objects are gathering in those two. Such space must be logically 

“unlimited” to handle any memory usage scenario. Obviously, 

those sizes are limited by physical resources (RAM and paging files, 

addressing limits).

Table 7-2. Static GC data - “Memory Footprint” Mode (Assuming 8 MB LLC Cache)

Min  
alloc  
budget

max  
alloc  
budget

fragmentation 
limit

fragmentation  
burdenlimit

limit max_limit time_
clock

gc_
clock

Gen0 1) 4/15 

Mb

2) 6-200 

Mb

40000 0.5 4) 

9.0/20.0

4) 

20.0/40.0

1,000 ms 1

Gen1 288 kb 3) at least 

6 Mb

80000 0.5 2.0 7.0 10,000 

ms

10

Gen2 256 kb SSiZe_t_

MaX

200000 0.25 1.2 1.8 100,000 

ms

100

LOH 3Mb SSiZe_t_

MaX

0 0.0 1.25 4.5 0 ms 0

Table 7-1. Static GC Data - “Balanced” Mode (Assuming 8 MB LLC Cache)

Min alloc 
budget

max alloc 
budget

fragmentation 
limit

fragmentation 
burdenlimit

limit max_
limit

time_
clock

gc_
clock

Gen0 1) 4/15 Mb 2) 6-200 

Mb

40000 0.5 9.0 20.0 1,000 

ms

1

Gen1 160 kb 3) at least 

6 Mb

80000 0.5 2.0 7.0 10,000 

ms

10

Gen2 256 kb SSiZe_t_

MaX

200000 0.25 1.2 1.8 100,000 

ms

100

LOH 3Mb SSiZe_t_

MaX

0 0.0 1.25 4.5 0 ms 0
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 1. Minimum allocation budget is related to the CPU cache size (here 

assuming 8 MB), differently calculated for different chips (done 

by the hardware vendors). In general, a little smaller in case of 

Workstation mode (first number) than in Server mode (second 

number).

 2. For Workstation GC with Concurrent version - 6 MB. For Server 

GC and Workstation GC with Non-concurrent version - half of the 

ephemeral segment size (refer to Table 5-3) but not less than 6 MB 

and no more than 200 MB.

 3. For Workstation GC with Concurrent version - 6 MB. For Server 

GC and Workstation GC with Non-concurrent version - half of 

the ephemeral segment size (refer to Table 5-3) but not less than 

6 MB.

 4. Values for Workstation and Server GC respectively.

Those various limits, especially the minimum and maximum size of each generation, 

will be explained later in the chapter.

Garbage Collector during its work uses those data to make various decisions. We will 

return to them occasionally henceforth.

 Dynamic Data
Dynamic data are representing the current state of the Managed Heap from a 

generation’s perspective. They are updated during GCs to calculate data required for 

various decisions (including whether it should be compacting GC or not, whether 

generation is “full” and GC should be triggered, and so on, and so forth). Dynamic data 

contains a number of different attributes for each generation, the most important of 

which are:

• allocation budget (also referred to as “desired allocation”) - the size 

the GC would like to spend on new allocations until the next GC,

• new allocation - the size of how much space is left for allocations 

until the next GC under the current allocation budget,

• fragmentation - total size consumed by free objects in that 

generation,
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• survived size - total size taken by survived objects,

• survived pinned size - total size taken by survived pinned plugs 

(described in detail later in this chapter),

• survived rate - the ratio of the number of survived bytes divided by 

the total bytes,

• current size - total size of all objects after the GC happens (it doesn’t 

include memory due to fragmentation),

• GC “clock” - the number of GCs that collected this generation,

• time “clock” - the time when the last GC collecting this generation 

started.

The new allocation attribute is essential for Allocator and the GC cooperation. It 

tracks how many allocations inside a generation have been made relative to its allocation 

budget - if it becomes negative, it means that the allocation budget has been exceeded 

and garbage collection will be triggered for that generation

This leads us to one of the most important attributes - the allocation budget. 

It represents a total size the GC would like to allow to be spent on allocations in a 

particular generation. As we remember from Chapter 6, user-code triggered allocations 

happen only in the generations 0 and LOH. However, the allocation budget is tracked 

for each generation. This apparent inconsistency is easy to explain if we realize that 

the promotion of objects between generations is regarded as their allocation in the 

older generation. As we will see in the Plan phase description, the GC uses internal 

allocator to find “places” for promoted objects (and we will also see that this sentence is 

a simplification used for brevity here). Both types of allocations consume the allocation 

budget.

The allocation budget is changed dynamically on each GC that collects that 

generation. Its new value is mostly based on the survival rate of that generation. If 

the survival rate is high (a lot of objects survived GC), the allocation budget is more 

aggressively increased with the expectation that there will be a better ratio of dead to live 

objects next time there is a GC for that generation. At the end of the GC it is recalculated 

on the basis of survival rate- the size of the survived object in respect to the total object 

size at GC beginning (i.e., not including fragmentation). Above a certain ratio threshold, 

the new allocation budget is always simply the maximum budget. And it may be set 

near to a minimum budget if the survival rate is low enough. The calculated value is 
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sometimes additionally refined with a linear model that for boundary survival ratios 

mixes the current and previous allocation budget proportionally.

A general illustration of a function describing the new allocation budget in terms of 

the survival rate is illustrated in Figure 7-13. Steepness of the slope, the threshold from 

which the maximum size of the generation starts, and less important properties of such 

functions depend on the static parameters limit and max_limit presented in Tables 7-1 

and 7-2. The smaller the values of these limits, the steeper the slope and the faster the 

maximum value is set.

GenSize min

GenSize max

0.0 1.0

new allocation
budget

survival
rate

Figure 7-13. An illustration of typical function describing relation between the 
survival rate and the resulting, new allocation budget

For us, looking at values from Tables 7-1 and 7-2, it means that the younger 

generations respond much more dynamically to the survival rate than the older ones. 

Especially generation 0 “reacts” to it so sensitively that most often the new allocation 

budget becomes one of the boundary cases - the minimum or maximum generation size.
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this is why when using “.net Memory/Gen 0 heap size” performance counter, 
which is due to historical reasons, shows a generation 0 allocation budget and 
quite often stays in one of two possible values during the entire lifetime of the 
application. this is perfectly visible in Figures 5-6 and 5-7 from Chapter 5 or 
Figure 7-7, where “Gen 0 heap size” changes constantly between values of 4 Mb 
and 6 Mb. this in turn means that according to tables 7-1 and 7-2, the GC was in 
Workstation GC with Concurrent version mode.

During runtime initialization, the allocation budget of each generation is set 

to the minimum budget from its static data (see Tables 7-1 and 7-2). How do the 

generation size and allocation budget relate to each other? The key is to understand 

that the allocation budget is a logical value. It represents the allocation limit in a given 

generation, which may be exhausted but may also change in the future due to changing 

conditions. Allocations in a given generation strive for the limit to be exhausted, but the 

limit itself may change. It may be seen that allocation budgets dynamically react to the 

survival ratios and as a result, generation sizes change dynamically in a way trying to be 

optimal.

please note that in fact a popular question about “default generation sizes” is 
pretty unjustified. Generations are simply created empty; there is nothing like 
their default size. as objects are being allocated and promoted, they grow in size 
according to allocation budgets.

The relation between new allocations, the allocation budget, and generation size 

may be described in the simplest way by the current_generation_size method from 

CoreCLR sources (see Listing 7-1). At any time, the approximate generation data size 

(not including fragmentation) is its current data size plus the difference between the 

allocation budget and new allocation. At the end of GC the new allocation is set to the 

value of the allocation budget. While objects are allocated in generation 0 or LOH, 

new allocations of those generations are decreased accordingly. Hence, the allocation 

amount since the last GC is expressed in the difference of these two values.
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Listing 7-1. Method to calculate current generation size (CoreCLR source code)

size_t gc_heap::current_generation_size (int gen_number)

{

    dynamic_data* dd = dynamic_data_of (gen_number);

    size_t gen_size = (dd_current_size (dd) + dd_desired_allocation (dd)

                        - dd_new_allocation (dd));

    return gen_size;

}

A careful reader may wonder how it is possible that a new allocation is updated 

with every object allocation. It was not mentioned in Chapter 6 at all. It is also difficult 

to expect that this would actually happen on the fast track of the allocation presented in 

Listing 6-7 or somewhere along the way. This is a fully justified suspicion. In fact, a new 

allocation is reduced only by the creation or growth of allocation contexts that are the 

units of memory that GC gives out.

If you are interested in understanding better how an allocation budget influences 

GC work, and how it relates to the generation size, please you are strongly invited to read 

comprehensive scenario 7-2 showing the first five GCs of a sample process.

 Scenario 7-2. Understanding the Allocation Budget
Description: One wants to better understand the allocation budget concept, especially 

in terms of its relation to the generation size and overall influence on the GC job. This is 

not only useful during learning. Such a thorough analysis may be used when trying to 

understand what exactly triggers GC in your process.

Analysis: There is no better solution than a thorough debugging session analysis. A 

simple C# program from Listing 7-2 has been prepared. It allocates one million byte 

arrays in a loop and stores their references in an additional array, so everything is 

reachable (will survive the GC) during the entire lifetime of the application. Each 

individual byte array has a size of 25,024 bytes (25,000 bytes of the data plus 8 bytes for 

array length and 16 bytes for object metadata).
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Listing 7-2. Sample program used in this scenario

1 static void Main(string[] args)

2 {

3     Console.ReadLine();

4     Console.WriteLine("Hello, Windows");

5     Console.WriteLine("Love from CoreCLR.");

6     GC.Collect();

7     Console.ReadLine();

8     const int LEN = 1_000_000;

9     byte[][] list = new byte[LEN][];

10    for (int i = 0; i < LEN; ++i)

11    {

12        list[i] = new byte[25000];

13        if (i % 100 == 0)

14        {

15            Console.WriteLine("Allocated 100 arrays");

16        }

17    }

18 }

Thanks to detailed debugging in Visual Studio and ETW logging, the first five garbage 

collections are comprehensively described in terms of the allocation budget, which 

allows us to better understand it.

The experiment focuses on the simplest variant of GC operation - Non-concurrent 

Workstation GC with “memory footprint” mode. The values of static data running on the 

author’s machine are presented in Table 7-3 (calculated from Table 7-2). The maximum 

ephemeral generation sizes are 128 MB because in this configuration the size of the 

ephemeral segment is 256 MB (refer to Table 5-3 from Chapter 5).
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Table 7-3. Example Static GC Data - Non-concurrent Workstation GC in 64-bit, 

“Memory Footprint” Mode (Assuming 8 MB LLC Cache)

min_size max_size limit max_limit

Gen0 4 Mb 128 Mb 9.0 20.0

Gen1 288 kb 128 Mb 2.0 7.0

Gen2 256 kb SSiZe_t_MaX 1.2 1.8

LOH 3 Mb SSiZe_t_MaX 1.25 4.5

To have full information provided in this scenario, a set of breakpoints were set 

during CoreCLR runtime debugging to print “new allocation” values for each generation. 

This step is obviously not required during normal problem analysis (which could be 

based only on ETW data described below).

The following information can be obtained from an ETW-based session analysis 

in PerfView by exporting data from GCStats report by Per Generation GC Events in the 

Excel option:

• generation sizes at the beginning of a GC (Begin size) - from columns 

Before0/1/2/3.

• allocation budgets (Allocation budget) - from columns 

Budget0/1/2/3. Additionally, the generation 0 budget is listed as 

FinalYoungestDesired field in Microsoft-Windows- DotNETRuntime/

GC/GlobalHeapHistory event and, as stated before, as .NET Memory/

Gen 0 heap size Performance Counter.

• promoted objects sizes (Promoted size) - from columns Surv0/1/2/3. 

Additionally, they may be read from Microsoft-Windows-

DotNETRuntime/GC/HeapStats event.

• generation sizes at the end of a GC (Final size) - from columns 

After0/1/2/3.

Per Generation GC Events additionally list data about the GC start and stop, 

condemned generation, and fragmentation.

The following points provide a detailed description of internal GC workings during 

such experiment. Please note that in this scenario we are also using All GC Events table 

from the GCStats report in the PerfView, already presented in scenario 7-1.
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Before GC
At the beginning of the application - before any object has been created - allocation 

budgets are set to the minimum budget (see Table 7-3). Thus, initial values are as follows 

(expressed in bytes):

Gen0 Gen1 Gen2 LOH

Allocation budget: 4,194,304 294,912 262,144 3,145,728

New allocation: 4,194,304 294,912 262,144 3,145,728

Begin size: 24 24 24 24

As noted, new allocation values for each generation are also set to those values to reflect 

available space for allocations. Generations physically start empty at the beginning of the 

process; the size simply indicates an object of minimal size as the start of a generation

GC #1 - triggered by explicit GC.Collect() call
The first Garbage Collection in a sample program is explicitly triggered (see line 6 

at Listing 7-2). The corresponding excerpt of the All GC Events table from the GCStats 

report in the PerfView looks as follows:

GCIndex Trigger 

Reason

Gen Gen0  

Alloc [MB]

Promoted 

[MB]

Gen0 

Survival 

Rate [%]

Gen1 

[MB]

Gen1  

Survival 

Rate [%]

LOH 

[MB]

LOH  

Survival 

Rate [%]

1 induced 2ni 0.213 0.082 33 0.192 0 0.018 99

It confirms that induced a non-concurrent full-GC (2NI) has been triggered. Since 

the program start, 0.213 MB has been allocated in SOH and 0.018 MB in LOH. This in fact 

is reflected by the values of Begin size and New allocation at the beginning of GC:2

• New allocation of gen0 and LOH have been accordingly decreased, 

while gen1 and gen2 are left untouched.

2 Note that those values are expressed in terms of allocation context changes, which are units 
of memory that GC gives out. Additionally, there may be little discrepancies between New 
allocation value (read at breakpoint in Visual Studio) and values from various ETW events - 
explained by rounding that appears in both sources.
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• Begin size of gen0 and LOH have increased, while gen1 and gen2 are 

left untouched.

Gen0 Gen1 Gen2 LOH

New allocation: 3,995,024 294,912 262,144 3,128,216

Begin size: 192,256 24 24 17,512

Each generation promotion size shows the following values:

Gen0 Gen1 Gen2 LOH

Promoted size 64,088 0 0 17,440

It means that in generation 0, from a total 192,256 allocated, 64,088 bytes are 

reachable and will be promoted to generation 1 (around 33% survival rate, visible as 

Gen0 Survival Rate % in All GC Events table). Additionally, most of the LOH allocated 

objects will survive (17,440 from total 17,512 bytes, resulting in 99% survival rate).

At this stage, new allocation budgets will be calculated for the collected and all 

younger generations (that means for all generations in case of our full-GC) - mainly 

based on above-mentioned survival ratio. Because those ratios were zero for generations 

1 and 2, those generations allocation budgets are set again to the minimum budgets. 

The generation 0 survival rate is high because it is common for the startup stage of the 

process - normally the CC tries to tune for a few percent or less survival ratio in the 

youngest generation. As a result, the new allocation budgets are as follows:

Gen0 Gen1 Gen2 LOH

Allocation budget 4,194,304 294,912 262,144 3,145,728

New allocation values for each generation will be also set to be the same as the 

allocation budget.

Chapter 7  GarbaGe ColleCtion - introduCtion 



538

And eventually, final generation sizes depend on objects physically promoted:

Gen0 Gen1 Gen2 LOH

Final size 24 192,3043 24 17,536

GC #2 - triggered by allocation
Second and subsequent Garbage Collections happen because of a cyclic allocation 

of byte[] array. The corresponding excerpt of All GC Events table is as follows:

GCIndex Trigger 
Reason

Gen Gen0 
Alloc 
[MB]

Promoted 
[MB]

Gen0 
Survival 
Rate [%]

Gen1 
[MB]

Gen1 
Survival 
Rate [%]

LOH 
[MB]

LOH 
Survival 
Rate [%]

2 allocSmall 2n 4.204 12.286 99 4.204 100 8.018 99

We see that since the last GC:

• 4.204 MB were allocated in generation 0 - because of allocating many 

byte arrays itself,

• around 8 MB in Large Object Heap - because of allocating 

byte[1_000_000][] array at Line 9, which is an array of one million 

8-byte long references.

After such allocations happened, we may expect that:

• by allocating 4.204 MB, clearly generation 0 allocation budget should 

be exceeded (which was set to 4,194,304 bytes),

• 8 MB of LOH allocations also exceeds LOH allocation budget (which 

was set to 3 MB).

3 Generation 1 is bigger than expected. It has size of 192,304 bytes while only 64,088 bytes are 
promoted from generation 0. This is due to the big fragmentation introduced after this GC. It 
could be noticed by the big Gen1 Frag % value of 66.69% in GC Events in Time table from the 
GCStats report in the PerfView. This obviously indicates that only Sweep collection was done, 
without compacting.
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We can confirm that by looking at new, negative allocation values of gen0 and LOH 

at the beginning of GC:

Gen0 Gen1 Gen2 LOH

New allocation: -21,952 294,912 262,144 -4,854,328

Begin size: 4,204,064 64,040 0 8,017,472

The LOH budget was exceeded, elevating this GC to full-GC, even initially only 

generation 0 could be collected (thus, 2N generation value in events table above).

Each generation promotion size shows the following values:

Gen0 Gen1 Gen2 LOH

Promoted size 4,204,032 64,088 0 8,017,464

This leads to the following observations:

• generation 0 is fully promoted because all created byte arrays are 

reachable (references are kept by byte[][] array),

• generation 1 promotes data promoted to it in the previous step.

Regarding the allocation budget, we may notice the following changes:

Gen0 Gen1 Gen2 LOH

Allocation budget 84,080,640 448,616 262,144 28,061,128

Current budget values may be explained as follows:

• generation 0 survival rate is now very close to 100%, hence generation 

allocation budget is increased significantly,

• generation 1 survival rate is also 100% (see Gen1 Survival Rate % in 

the events table), hence its budget is also increased,

• generation 2 allocation budget has not been changed because its 

initial data size is 0,
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• LOH allocation budget has been increased by a factor of 3.5 (such 

multiplication factor is calculated by function similar to that Figure 7-13).

Eventually, final generation sizes depend on objects physically promoted:

Gen0 Gen1 Gen2 LOH

Final size 24 4,204,088 192,328 8,017,592

It is good to stop and look around now for a while. After two successive GCs 

described so far, we ended up in the situation where:

• generation 0 allocation budget has grown to around 80MB because of 

a high survival rate - many objects survived collection of the youngest 

generation, so probably there may be even more and it is worth to 

extend it. Based on the new budget, we may expect the next GC after 

around 80MB of SOH allocations.

• generation 1 allocation budget is smaller than the actual generation 

size - this may happen as GC has not yet been able to accommodate a 

big rate of allocations/promotions. Further GCs will refine that either 

by stabilizing the allocation budget (in case if it was a single memory 

churn) or growing it constantly (in case if it was stable memory 

growth). This clearly shows the logic nature of allocation budgets 

and its good counterpart name - the desired allocation. It does not 

represent an actual generation size.

• generation 2 allocation budget has not been changed but big 

fragmentation has been “promoted” along with objects. It could be 

noticed by the big Gen2 Frag % value of 66.69% in GC Events in Time 

table.

• LOH allocation budget was increased to accommodate new large 

object allocations.
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GC #3 - triggered by allocation
The third Garbage Collection happens because of further allocations of byte[] 

arrays. The excerpt of All GC Events table is as follows:

GCIndex Trigger 
Reason

Gen Gen0  
Alloc [MB]

Promoted 
[MB]

Gen0 
Survival 
Rate [%]

Gen1 
[MB]

Gen1 
Survival 
Rate [%]

LOH 
[MB]

LOH 
Survival 
Rate [%]

3 allocSmall 0n 84.081 84.081 99 88.285 - 8.018 -

We see that since the last GC, as expected, around 84 MB were allocated in 

generation 0. That should consume its allocation budget. Only generation 0 is being 

collected (0N value in Gen column), which makes this the most typical, youngest-only 

GC triggered by SOH allocations.

We can confirm that by looking at a new, negative allocation value of gen0 at the 

beginning of GC:

Gen0 Gen1 Gen2 LOH

New allocation: -5,496 448,616 262,144 28,061,128

Begin size: 84,080,640 - - -

Each generation promotion size shows the following values:

Gen0 Gen1 Gen2 LOH

Promoted size 84,080,640 - - -

It leads to an interesting situation in calculating new allocation budgets:

Gen0 Gen1 Gen2 LOH

Allocation budget 134,217,728 -83,632,024 262,144 28,061,128
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As we can see, the following changes has been made:

• According to the high survival rate, the new generation 0 allocation 

budget has been set to the maximum generation size (128 MB),

• Allocation budget of generation 1 has been decreased by the size of 

objects promoted from generation 0 - this makes its allocation budget 

exceeded, hence it is expected to be considered during the next GC.

Remember that the new allocation values for each generation will be also 

dynamically recomputed accordingly.

Eventually, final generation sizes present intuitive values according to the previous 

and promotion sizes - only gen0 and gen1 sizes have been changed:

Gen0 Gen1 Gen2 LOH

Final size 24 88,284,752 192,328 8,017,592

GC #4 - triggered by allocation
The fourth GC happens also because of further allocations of byte[] arrays and 

exceeding generation 0 budget. The excerpt of All GC Events table is as follows:

GCIndex Trigger 
Reason

Gen Gen0 
Alloc 
[MB]

Promoted 
[MB]

Gen0 
Survival 
Rate [%]

Gen1 [MB] Gen1 
Survival 
Rate [%]

LOH 
[MB]

LOH 
Survival 
Rate [%]

4 allocSmall 1n 134.229 222.513 99 134.229 99 8.018 -

We see that indeed 134.229 MB were allocated that should exceed the previously set 

gen0 allocation budget. However, as we remember, also generation 1 allocation budget 

should be exceeded due to promoted allocations from the previous GC. Thus, GC is 

elevated to generation 1 so instead of collecting only generation 0, also generation 1 will 

be included (see value 1N in Gen column).
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We can confirm that by looking at negative new allocation values of both gen0 and 

gen1 at the beginning of GC (where gen1 value has been set in the previous GC):

Gen0 Gen1 Gen2 LOH

New allocation: -14,504 -83,632,024 262,144 28,061,128

Begin size: 134,228,736 88,284,672 - -

Each generation promotion size shows the following values:

Gen0 Gen1 Gen2 LOH

Promoted size 134,228,736 88,284,672 - -

Because both generations 0 and 1 are collected, and they contain only reachable 

byte arrays, everything from them is being promoted (high 99% Gen0 and Gen1 Survival 

Rate).

Regarding the new allocation budgets, we may notice the following changes:

Gen0 Gen1 Gen2 LOH

Allocation budget 134,217,728 134,217,728 -88,022,528 28,061,128

The following changes have been made to allocation budgets:

• The generation 0 allocation budget remains the same - despite the 

high survival rate, it cannot be changed to a higher value as it already 

hit maximum generation size.

• The generation 1 allocation budget has increased to the maximum 

generation size - this is a reaction to a high survival rate and big 

amount of promoted size.

• Allocation budget of generation 2 has been decreased by the size of 

objects promoted from generation 1 - this means the gen2 allocation 

budget is exceeded so it’s expected to be considered for collection 

during the next GCs.
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Final generation sizes present intuitive values according to the previous and 

promotion sizes - all SOH generation sizes have been changed:

Gen0 Gen1 Gen2 LOH

Final size 24 134,228,760 88,477,048 8,017,592

GC #5 - triggered by allocation
A careful reader could expect now the GC triggered by SOH allocations exceeding 

the gen0 allocation budget, as usual. However, before that, another condition triggers 

GC. The excerpt of the All GC Events table is as follows:

GCIndex Trigger  
Reason

Gen Gen0 
Alloc 
[MB]

Promoted 
[MB]

Gen0 
Survival 
Rate [%]

Gen1 
[MB]

Gen1 
Survival 
Rate [%]

LOH 
[MB]

LOH 
Survival 
Rate [%]

5 outofSpaceSoh 2n 134.179 364.774 99 134.179 99 8.018 -

We can see there a new OutOfSpaceSOH reason that triggered the full-GC (2N Gen 

value). It could be easily explained when looking at internal GC data:

Gen0 Gen1 Gen2 LOH

New allocation: 35,592 134,217,728 -88,022,528 28,061,128

Begin size: 134,178,688 134,228,736 88,348,760 8,017,440

Allocation budget is only exceeded for the generation 2 (due to promotions in the 

previous GC), but it is not the reason of triggering this GC. The true reason is the total 

size of both ephemeral generations (begin size) that exceeds the maximum ephemeral 

segment size (256 MB). In such a case GC is being triggered to collect at least ephemeral 

generations. And because of the generation 2 budget being exceeded, this GC is elevated 

to the full-GC one additionally.

Each generation promotion size shows the following values:

Gen0 Gen1 Gen2 LOH

Promoted size 134,178,688 134,228,736 88,348,760 -
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Because of high survival ratios, gen0 and gen1 allocation budgets remain at their 

maximums:

Gen0 Gen1 Gen2 LOH

Allocation budget 134,217,728 134,217,728 178,062,152 28,061,128

Generation 2 allocation budget has been increased by a factor of 2 (such 

multiplication factor is calculated by function similar to that Figure 7-13) to align with its 

high survival rate.

At the end, generation sizes present as follows:

Gen0 Gen1 Gen2 LOH

Final size 24 134,178,712 222,705,808 8,017,592

Those sizes are as expected. Generation 0 is empty, intermediate generation 1 is 

maximized, while generation 2 gathers all other SOH objects.

Subsequent GCs
Because memory usage of the sample program is constant, next GCs would repeat 

the pattern presented here. GCs would be called alternately for two reasons: AllocSmall 

(exceeding generation 0 budget) and OutOfSpaceSOH (exceeding total ephemeral 

segment size). The size of generation 2 would gradually increase, while the remaining 

ones would be at the same level.

Static data together with regularly updated dynamic data control the work of the 

GC. They control when the GC is triggered, what generation is condemned, and whether 

compaction or sweeping should be executed. It’s good to have a general idea of what 

they are and how they affect the process.

Hopefully, the detailed description from scenario 7-2 illustrated the relation between 

those static and dynamic data, altogether with the influence of allocations. Generation 

sizes may be seen as dynamic values driven by the allocation budgets of corresponding 

generations, calculated from their survival rate. As a result, GC is constantly tuning 

generation sizes to accommodate current allocation and survival patterns, with respect 

to static data from Tables 7-1 and 7-2 (especially, influencing the look of the important 

function from Figure 7-13).

Remember that these are deep implementation details. It is not guaranteed that over 

the years these parameters will influence GC’s work in an exactly way. In my opinion it is 

unlikely, however, that the concept of allocation budget will be changed dramatically.
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in case of CoreClr code, dynamic data described here is represented by 
dynamic_data class defined in .\src\gc\gcpriv.h file. You can easily 
map each attribute listed above to the corresponding fields of that class. among 
others, the most important one is the allocation budget represented by desired_
allocation field. at the end of GC it is calculated in gc_heap::desired_
new_allocation method using various heuristics (mainly survivors rate-related 
like in Figure 7-13 and corrected by gc_heap::linear_allocation_model 
method - a linear correction between the previous and new value based on the 
generation's fullness). You may start further investigation on that field from gc_
heap::compute_new_dynamic_data called at the end of GC.

 Collection Triggers
The first question about the GC we may ask is - when can it actually occur? What triggers 

it? Before a concrete answer, it is worth it to understand the design decisions that were 

behind the implementation of GC - they have been very accessibly written in the Book 

Of The Runtime:

• GCs should occur often enough to avoid the Managed Heap 

containing a significant amount (by ratio or absolute count) of 

unused but allocated objects (garbage), and therefore use memory 

unnecessarily.

• GCs should happen as infrequently as possible to avoid using 

otherwise useful CPU time, even though frequent GCs would result in 

lower memory usage.

• A GC should be productive. If GC reclaims a small amount of 

memory, then the GC (including the associated CPU cycles) was 

wasted.

• Each GC should be fast. Many workloads have low-latency 

requirements.

• Managed code developers shouldn’t need to know much about the 

GC to achieve good memory utilization (relative to their workload) – 

The GC should tune itself to satisfy different memory usage patterns.
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Having those design decisions in mind, the answer sounds like this: GC should 

be called as rarely as possible, giving the best possible results. Of course, given the 

innumerable use cases and rapidly changing conditions, designing such a self-tuning 

GC is an extremely difficult challenge. However, realizing the above challenges posed by 

GC, it is quite easy to reject the idea of its cyclic call. However, it could be one of the first 

thoughts of an inexperienced .NET developer - maybe GC is called periodically, such as 

after a certain number of milliseconds? The answer is short - no, it isn’t. It would not be 

productive just to call it and “see what happens next.”

There are various reasons why a garbage collection may be started. The rest of 

this section we will look at them, grouped according to the main reasons behind these 

causes.

Various GC reasons are represented by an internal CoreClr gc_reason 
enumeration. Start there if you want to investigate this topic on your own.

 Allocation Trigger
As we have seen in Chapter 6, both Small and Large Object Heap Allocators may trigger 

Garbage Collection if it is unable to find a suitable space for an object being created. 

Depending on the conditions one or even two ephemeral GCs (with generation 0 or 1 

condemned) as well as Full-GC may be triggered.

This is by far the most common reason of GC occurrence in our applications. There 

are four main reasons of this kind (names in parentheses denote names used in PerfView 

reports, as already seen):

• small object allocation (AllocSmall) - running out of budget on 

generation 0 during object allocation. This is the most common case, 

triggered in case of generation 0 allocation budget exceeding (as 

mentioned in Chapter 6).

• large object allocation (AllocLarge) - running out of budget on LOH 

during large object allocation.
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• small object allocation on slow-path (OutOfSpaceSOH) - allocator 

is running out of space during the “slow-path” object allocation in 

SOH, even after some segment reorganizations and maybe even GCs 

already run, there is still no required free space. In 64-bit runtimes 

with large virtual memory space, it should be a rather uncommon 

reason. However, even on 64-bit runtime they may happen in the 

case of Workstation GC, as shown in scenario 7-2.

• large object allocation on slow-path (OutOfSpaceLOH) - allocator 

is running out of space during the “slow-path” object allocation in 

LOH. Similar to the OutOfSpaceSOH, it should be uncommon.

Of course, good memory management usually boils down to creating the smallest 

number of objects. That is why an allocation trigger is the most optimized source of GC - 

if there is no allocation, this type of trigger does not occur. There is no allocation, so there 

is no GC at all!

 Explicit Trigger
In certain circumstances one may wish to ask for GC explicitly. Such Garbage Collections 

are often referred to as induced. They may be done in a few ways, thanks to the exposed 

API. The most common one is an explicit call to trigger GC via GC.Collect method call. 

It has several overrides with different level of control:

• GC.Collect() - ask for triggering full-GC, blocking but without 

forcing compaction;

• GC.Collect(int generation) - ask for triggering GC of specified 

generation, blocking but without forcing compaction;

• GC.Collect(int generation, System.GCCollectionMode mode) - 

ask for triggering blocking GC of specified generation and mode 

specifying whether it should be: Forced or Optimized (leaving 

decision to the GC itself);
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• GC.Collect(int generation, System.GCCollectionMode mode, 

bool blocking) - ask for triggering GC of specified generation, 

explicitly blocking or not, and with mode specifying whether it 

should be: Forced or Optimized (leaving decision to GC);

• GC.Collect(int generation, System.GCCollectionMode mode, 

bool blocking, bool compacting) - ask for GC with all options 

specified explicitly.

As it will be later explained, GC contains a step to check a number of conditions 

to see which generation collection is the most productive. Hence, even if we provide a 

specific generation to GC.Collect call, while it is guaranteed that such generation will 

be indeed garbage collected (and all younger ones), even an older generation may be 

condemned - if current conditions incur that, for example, the older generation has 

exceeded its budget.

it may seem strange to call GC.Collect(2, GCCollectionMode.Forced, 
blocking: false, compacting: true) as we will learn in Chapter 11, 
non-blocking (concurrent) full-GCs are non-compacting, so such arguments seem 
to be contradicting. in such a case, indeed a triggered GC will be non-blocking and 
not-compacting or blocking and compacting (the decision is left to the GC).

Calling GC.Collect is rarely justified. This whole book is dedicated to the fact that 

the .NET GC is a complex and well-optimized thing. It keeps various statistics that 

support heuristic decisions on whether to make a garbage collection and if so, which 

generation will be the most productive to collect. By explicit calls to GC.Collect we 

disturb those heuristics.

Moreover, it is really difficult to find a justification for using this method. As we 

will see in Chapters 8 to 10, CLR makes its best to collect objects as fast as possible. 

Determining which objects are eligible for collections is based on marking. If an object 

is not garbage collected, it is because something still holds reference to it. Calling GC.

Collect will not help here. Calling this also will not help in the situation like “probably 

CLR forgot to call the GC so I will remind him about it.” GC is not being called if it is not 

productive. Thus, explicit GC.Collect call will also be non-productive. When you will see 

Chapter 7  GarbaGe ColleCtion - introduCtion 



550

next time in someone’s else code a GC.Collect call, it can mean two things: either the 

author of such code was unaware of the aforementioned remarks, or she is a smart one 

who has consciously used this method in this tiny fraction of the situations when it really 

gives something.

Let’s consider the situations in which we would like to collect a memory of each 

generation:

• generation 0 - you believe there are many dead objects in the 

youngest generation and want to force collecting them. However, 

if you allocate some objects in your application, this generation is 

collected quite often anyway. And according to the CLR’s settings 

(see Table 7-1), generation 0 would not grow to big sizes in the first 

place. Thus, most probably it is best just to leave GC to do its job. Due 

to self-tuning based on allocation and survivors’ rate, it will collect 

generation 0 with optimized frequency. By explicit call we may only 

ruin those self-tunings.

• generation 1 - this generation is an intermediate one. It is hard to 

reason what, when, and for how long objects land there because 

it heavily depends on dynamic conditions of your application. 

Generation 1 is there to not promote young objects directly into 

ever-old generation 2 objects. It is there to give objects a chance 

to be collected before landing into generation 2. Allocation and 

survival rates tracked by GC are helping with that. By explicit 

call to collect generation 1, you are just throwing it all away. All 

still reachable objects will be promoted into generation 2, some 

of them probably prematurely and unnecessarily. And avoiding 

promotion to the oldest generation is one of the things we should 

consider really important. Explicitly triggering an ephemeral 

collection may be tempting though because it is quite fast and is 

the last resort before calling the full-blown full- GC. But I invite 

you to rethink your data structures in terms of shortening their 

lives instead.
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• generation 2 - full-GC is much more expensive that others but it 

does its job - everything that could be collected will be collected. 

You may want to call it explicitly because you’ve noticed generation 

2 is “big” or “constantly growing.” Most probably it happens 

because of some roots that we are not aware of, not because the 

GC forget to do its job. In fact, the GC probably is already doing 

full garbage collections due to the memory pressure. Adding your 

own explicit calls does nothing more that adds additional overhead 

without possible positive effects. Instead of triggering GC, redesign 

your application to not generate so long-living objects end up in the 

oldest generation. Holding too big state, too long cached objects, or 

unnecessarily large database data are tunings you may consider as 

starting points of your optimizations.

And let’s not forget that regardless of which generation we give as the argument of 

the GC.Collect call, it can end with full-GC anyway!

Having said that, what are the very few situations that may justify the use of GC.

Collect? There are some that may be grouped into the following use cases:

• You know the nature of some intermittent behavior of your 

application that GC is unlikely to understand (but you will 

understand your application data life cycle) - like occasional batch 

processing that caused a large amount of allocations that ended 

up in generation 2. If such allocation churns are rare, later on GC 

may not decide to collect generation 2 for a long time. Thus, all that 

garbage created during batch processing will stay there, increasing 

total memory usage. It is not so bad (it does not incur GC overhead) 

but it makes your process staying big while you know that it could 

be not. Another example would be cleaning up memory before an 

expected huge allocation churn - like occasional batch processing 

mentioned before, loading a new level in a game and so on, and 

so forth. It may be also useful before turning an application into 

low-latency mode requiring as low GC (and runtime in general) 

overhead as possible.
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All those scenarios are exactly the opposite of, for example, the 

steadily running web application that processes a stable number 

of requests. The GC then has good insight into the allocation and 

survival characteristics that will allow it to make better decisions 

than we would be able to.

• Proactive cleaning at consciously selected points in the program 

execution - similar to the first point, we can use the specificity of our 

application to be able to collect garbage in advance in moments that 

are not noticed by the user. A typical example is garbage collection 

while waiting for a user’s input or displaying various kinds of loading 

screens. This is, however, a weaker reason than the first one. We 

should be really convinced about the meaningfulness of such calls. 

Are such calls productive or do we call “just in case”? Remember that 

they disrupt the work of GC tuning.

• Cleaning up due to benchmarking - any measurements require a 

carefully prepared environment. To make sure that the GC overhead 

will be repeatable, we should prepare a test environment to be in a 

consistent state before each benchmark. This requires cleaning up 

memory from everything that is possible to clean. Calling full-GCs 

before benchmarks is a common pattern.

• As special cases of unit and integration tests - for example, those that 

use WeakReference (an example is shown in Chapter 12) or are using 

third-party code suspected of producing memory leak. By calling GC.

Collect explicitly before and after test (to clean everything that could 

be cleaned), we are creating repeatable test results.

As a solution to used third-party libraries’ unfortunate memory usage 

characteristics - the behavior of the library in use may involve something similar to the 

first two reasons mentioned here. While we are not in control in such code, the only 

thing we can do (except changing library) is to clean garbage before and/or after its 

usage. Having said all that, still GC.Collect should be only an occasional call. Making it 

cyclic to overcome some problems means you are most probably just trying to sweep the 

whole problem under the rug. The typical, real problems are a mid-life crisis or ever-

holding roots - those are not be solved by explicit GC calls.

Chapter 7  GarbaGe ColleCtion - introduCtion 



553

There is one additional way of triggering GC almost explicitly by using GC.

AddMemoryPressure (described in Chapter 15). By its call we inform GC that some 

managed objects are holding a specified amount of unmanaged memory. Because from 

a GC perspective such unmanaged data isn’t tracked by the GC heap, GC can’t take such 

data size into its decision regarding memory usage. If total unmanaged memory size set 

by GC.AddMemoryPressure calls exceeds dynamically tuned threshold, non-blocking GC 

of a generation based on internal heuristics will be triggered.

Current implementation starts with threshold of value 100,000 bytes (and will never 
drop below this value). it is then dynamically tuned based on the sizes passed via 
GC.AddMemoryPressure (increasing it by 10% or 8 times the specified size, 
depending which result is bigger) and GC.RemoveMemoryPressure calls. it also 
considers the ratio between each generation collection count. although those are 
internal implementation details that most probably will change, it is worth noticing 
that memory pressure logic operates on its internal heuristics and do not relate to 
the ones managed by the core GC logic.

 Scenario 7-3. Analyzing the Explicit GC Calls
Description: We are developing a desktop application written in WPF. Considering the 

above remarks, we want to check whether it triggers GC explicitly. Of course, having its 

source code, the simplest solution would be to search for GC.Collect calls. However, 

firstly, our application consists of various components and we do not have the source 

code for all of them. Secondly, the mere existence of a GC.Collect call does not say 

much about its real use - whether and how often it occurs. For example, we will look 

at the operation of the dnSpy application – a free, open source .NET debugger and 

assembly editor presented already in previous chapters.

Analysis: We will start the analysis of the program by checking if there are explicit 

GC triggers at all during its operation. The fastest and the easiest way is to use .\NET 

CLR Memory(dnSpy)\# Induced GC Performance Counter, which counts all GC calls 

of this type (see Figure 7-14). Clearly we see that indeed there are some induced GCs 

happening (six during a one-minute test). By observing this graph during the test, 

we may also quickly notice that they happen while opening new assemblies from the 

Assembly Explorer panel.
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Figure 7-14. Performance counter .\NET CLR Memory(dnSpy)\# Induced GC 
during the first minute of dnSpy application run

After confirming that such calls are actually occurring, let’s go to the analysis where 

it happens. For this purpose, we must again use the PerfView tool and GC analysis along 

with collecting the events stack traces. To do that we should type Microsoft-Windows-

DotNETRuntime:GCKeyword:Informational:@StacksEnabled=true option into the 

Additional Providers field at the Collect dialog box.

After recording the session, open GCStats report from Memory Group. In the GC 

Rollup By Generation table of the dnSpy process, we will also find there a confirmation 

of induced GC calls (see column Induced from Figure 7-15).

Figure 7-15. GC Rollup By Generation table from GCStats report of dnSpy process
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Now open the Events panel from the recorded session and find Microsoft-Windows-

DotNETRuntime/GC/Triggered events that are emitted when explicit GC calls happen. 

Because StacksEnabled option was turned on, we have corresponding stack trace of 

each event occurrence (see Figure 7-16).

Figure 7-16. Events view filtered to the dnSpy process

The following three values can appear in the Reason field:

• Induced - explicitly induced GC without preferences regarding 

compaction and blocking,

• InducedNotForced - explicitly induced GC that doesn’t have to be 

blocking,

• InducedCompacting - explicitly induced GC that should be 

compacting (but only SOH, remember that LOH compaction is 

enabled explicitly by a different setting).

By selecting Open Any Stacks option from the context menu of values from Time 

MSec column, we will be able to see the exact stack trace of each explicit GC trigger.

Microsoft-Windows-DotNETRuntime/GC/Start event might seem to be 
a better place for an analysis start in this case. however, it is emitted from the 
place where the actual GC work begins. in our case, most of GCs are processed in 
background, on a dedicated thread. Stack trace of such event would always simply 
indicate the place on a dedicated GC thread where it got the signal to start its job.
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From stack trace analysis we would be able to identify two main sources of explicit 

GC triggers (dnSpy tool is available on https://github.com/0xd4d/dnSpy that allows to 

show you exact code):

 1. Cleaning memory after assembly decompilation (see Figure 7-17).  

After it happens, the temporary cache may contain no longer 

needed data. As fast as possible collection of them is triggered by 

an explicit GC.Collect call.

Figure 7-17. Stack trace of the first kind of the explicit GC.Collect call

The excerpt of corresponding code is shown in Listing 7-3. It represents an approach 

to wrap around resource-heavy object (DsDocumentService instance in our case) with 

the helper implementing IDisposable interface. Such a helper realizes a very simple 

reference-counting technique to track the usage of a wrapped object. If it is no longer 

used, an explicit clean of heavy resources is conducted.

Listing 7-3. Sample of the explicit GC call in dnSpy code

sealed class DsDocumentService : IDsDocumentService {

   int counter_DisableAssemblyLoad;

   // ...

    public IDisposable DisableAssemblyLoad() => new DisableAssemblyLoadHelper 

(this);

      sealed class DisableAssemblyLoadHelper : IDisposable

      {
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         readonly DsDocumentService documentService;

          public DisableAssemblyLoadHelper(DsDocumentService document 

Service) {

            this.documentService = documentService;

             Interlocked.Increment(ref documentService.counter_Disable 

AssemblyLoad);

         }

         public void Dispose() {

             int value = Interlocked.Decrement(ref documentService.counter_

DisableAssemblyLoad);

            if (value == 0)

               documentService.ClearTempCache();

         }

      }

      // ...

      void ClearTempCache() {

         bool collect;

            lock (tempCache) {

               collect = tempCache.Count > 0;

               tempCache.Clear();

            }

            if (collect) {

               GC.Collect();

               GC.WaitForPendingFinalizers();

      }

   }

   // ...

}

The sample usage of such class is easy as presented in Listing 7-4.

Listing 7-4. Sample usage of code from Listing 7-3

using (context.DisableAssemblyLoad()) {

   // inside this block helper reference counter is incremented

   // context contains reference to the DsDocumentService instance

}
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Code from Listing 7-3 is only one of the examples of how such defensive memory 

cleaning could be implemented. Instead of reference counting, one could simply call 

GC.Collect at some well-defined moment in time when an application notices that an 

assembly has been decompiled (like an event sent from UI). It may also be tempting 

to make DsDocumentService implement IDisposable directly and call GC.Collect 

from inside its Dispose method. This would, however, change the semantic of using 

DsDocumentService that not always might be appropriate. Another solution could be 

calling GC.Collect from inside DsDocumentService finalizer.

Manual memory cleaning presented here is an example of the first case of  

possible use cases listed above. The developer has decided to make the explicit GC call 

because it knows that intermittent, user input-related action requires cleaning a lot of 

temporary data.

 2. Controlling unmanaged memory due to bitmaps usage 

(see Figure 7-18). As we can see, this time GC has been 

triggered internally by Windows Presentation Foundation 

(PresentationCore.dll is a part of WPF framework) because of 

loading an image.

Figure 7-18. Stack trace of the second kind of the explicit GC.Collect call

It turns out that this is a known issue. Bitmaps - represented by BitmapSource 

class in WPF - are small managed objects that hold image data as an unmanaged 

memory. This makes them small to the GC as unmanaged data is not included in 

object size. It could be done by making BitmapSource implementing IDisposable 

and calling GC.AddMemoryPressure and GC.RemoveMemoryPressure in its constructor 

and Dispose method respectively. Unfortunately, the design decision was the other. 
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Thus, as an internal WPF workaround, the bitmap data is held by an additional 

handle with reference counting, which deals with GC.AddMemoryPressure and GC.

RemoveMemoryPressure calls (see Listing 7-5). As stated before, he AddMemoryPressure 

method may trigger GC if certain thresholds have been exceeded and that is exactly what 

we see in our scenario.

Listing 7-5. SafeMILHandleMemoryPressure class from the PresentationCore.

dll (Windows Presentation Foundation)

namespace System.Windows.Media

{

   internal class SafeMILHandleMemoryPressure

   {

      [SecurityCritical]

      internal SafeMILHandleMemoryPressure(long gcPressure)

      {

         this._gcPressure = gcPressure;

         this._refCount = 0;

         GC.AddMemoryPressure(this._gcPressure);

      }

      internal void AddRef()

      {

         Interlocked.Increment(ref this._refCount);

      }

      [SecurityCritical]

      internal void Release()

      {

         if (Interlocked.Decrement(ref this._refCount) == 0)

         {

            GC.RemoveMemoryPressure(this._gcPressure);

            this._gcPressure = 0L;

         }

      }
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      private long _gcPressure;

      private int _refCount;

   }

}

This example shows a similar reference-counting wrapper approach as for the 

previously shown assembly decompilation case. This time, however, the wrapper does 

not call the GC explicitly but only informs it about an additional, unmanaged memory 

pressure. It leaves the decision about triggering garbage collection to the GC itself.

Without this hack, GC would happen much less frequently than it should, leaving 

the application with a high memory usage for a long time. It is the more severe problem 

as more images are loaded. Most probably you will notice such induced GC calls in your 

own WPF applications. As long as they do not introduce big overhead (like big % Time in 

GC), this is fine. If it becomes severe, you can’t obviously change the internal WPF code. 

As a workaround on an application level, one may create a pool of WriteableBitmap 

objects and reuse them accordingly.

historically SafeMILHandleMemoryPressure managed its own set of counters 
to control memory usage and called GC.Collect to trigger full-GC explicitly when 
they were exceeded. it caused more problems than benefits, however. From .net 
Framework 4.6.2, this logic has been transferred to the GC using a pair of AddMem
oryPressure/RemoveMemoryPressure methods.

note #2. if Clr is being hosted, there is yet another explicit GC trigger possible to 
use via ICLRGCManager::Collect method. it induces blocking the full-GC of a 
specified generation.

 Low Memory Level System Trigger
Garbage collection may be triggered “externally.” If an operating system notices it is 

running out of memory, it may broadcast “low memory notification” signal. Well-behaving 

applications may (but do not have to) listen to such a notification, trying to help or react 

to this situation. They may start reducing their working sets in the manner deemed 

appropriate by them. They may obviously also just ignore it if they consider it right.
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.NET runtime is listening to such a signal. After receiving it, an ephemeral GC is 

triggered (but it may be turned into full-GC under high memory pressure). Additionally, 

GC becomes more aggressive during these collections. For example, it is more likely 

that full-GC will be executed. The benefits are mutual because reducing the pressure on 

memory helps all applications in the system (including our .NET-based).

low memory notification mechanism is currently only supported on Windows. 
internally it uses CreateMemoryResourceNotification Winapi function.  
Such notification is then observed by the Finalizer thread (it will be introduced in 
Chapter 11), which was chosen because it is guaranteed to run throughout entire 
lifetime of the application. after noticing the notification, GC is being called from 
the Finalizer thread. according to the comment in the internal System.Runtime.
Caching.PhysicalMemoryMonitor class, that in turn is based on comments 
from internal Windows implementations, the low memory notification is signaled 
when 97–99% of physical memory is occupied (depending on the physical raM 
amount installed in the system).

If we would like to check whether a low memory level notification triggers GC in 

our application, the easiest way is to record the ETW session and look in reports or 

Microsoft-Windows-DotNETRuntime/GC/Start for GCs with the following reasons:

• LowMemory - operating system has signaled low memory 

notification.

• InducedLowMemory - operating system has signaled low memory 

notification (and the runtime asked for blocking GC).

• LowMemoryHost - host has signaled low memory notification (this is 

currently not a used one).

 Various Internal Triggers
There are various other places spread across both runtime and standard libraries that 

ask for GC internally. Such GCs are mostly marked as induced ones (like in case of 

explicit calls) because from GC perspective it does not matter whether it was being called 

from user, runtime, or managed library code.
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The most common reasons of this type include:

• AppDomain unload - cleaning up AppDomain-related objects is 

a good reason to perform garbage collection. In this scenario a 

blocking, full-GC is triggered.

• Cleanup of Thread objects representing dead threads - in a long-

running application various threads may be created and deleted. 

Each such thread is represented by a managed object. This scenario 

triggers non-blocking collection of generation that most dead Thread 

object lives, but not more often than the default period value of 30 

minutes.

• Before starting NoGC region (see Chapter 15) - a region of code asked 

for not triggering GC may put some pressure on memory. Thus, it is 

good to make a proactive cleanup in advance. This scenario triggers 

blocking, full-GC to make sure every dead object will be collected.

there is also an internal mechanism used by .net team called GC stress. it 
enables triggering GC much often for diagnostic reasons; mostly it’s for discovering 
so-called GC holes, for example, things that are supposed to be reported to the GC 
but aren’t.

In case of internal triggers listed here, most of them will be visible with reason 

Induced in ETW-based data. Additionally, the following reasons exist:

• Internal - internal reason used by the runtime in a stress test mode,

• Empty and PMFullGC - currently not used.

 EE Suspension
During Garbage Collection work there are moments when threads executing application 

code should not be working because they could access and modify memory regions 

accessed by the GC itself. Depending on the GC mode those moments are shorter or 

longer. In a Non-concurrent mode whole the GC is executed while user threads are 

suspended. Even in Concurrent mode (described in Chapter 11) only some parts of the 
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GC are done while managed threads are working so even in such a case where there is a 

need to suspend managed threads for those parts.

The process of suspending all threads executing user code is called “EE suspension” 

(Execution Engine suspension meaning “suspending the managed threads”). In case 

of Non-concurrent GC mode, which is described here, GC asks the suspension service 

to suspend all managed threads at the beginning of its work and resume them when it 

finishes. Such an intrusive approach is often referred to as “stop the world” technique 

because from the application perspective the whole world is being paused for the time of 

Garbage Collection.

As Book Of The Runtime says: “The CLR must ensure that all managed threads are 

stopped (so they aren’t modifying the heap) to safely and reliably find all managed 

objects. It only stops at safe point, when registers and stack locations can be inspected 

for live references.”

Thus, a safe point is a code location where registers and stack locations can be 

inspected for live references. Implementation of safe points is not trivial. Suspension 

obviously must also be very efficient because suspending and resuming threads counts 

into the overall GC pause time. From the perspective of the .NET memory management, 

and thus our entire book, those implementation details are not so important though. 

Thread suspension is not a part of GC at all. However, it is good to at least familiarize 

yourself with the nomenclature used in this process, which can appear in various tools 

during the analysis of memory consumption (especially in WinDbg). Moreover, thread 

suspension logic is closely related to the local data liveness as we will soon see.

From the GC perspective, each managed thread may be in two distinct modes:

• cooperative - As CoreCLR source says in comments: “when a thread 

is in cooperative mode, it is basically saying that it is potentially 

modifying GC references, and so the runtime must Cooperate with 

it to get to a ‘GC Safe’ location where the GC references can be 

enumerated.” This is the mode that threads are in most of the time 

when running managed code.

• preemptive - this mode means the suspension service does not 

need to care about it - it is guaranteed to be in a place where a GC 

can occur because it is executing code that does not access and 

manipulate GC references. Most of the time it just means such a 

thread knows how to suspend itself.

Chapter 7  GarbaGe ColleCtion - introduCtion 



564

Having said that, EE suspension can be defined as forcing a situation when all 

managed threads are in preemptive mode. Transition from cooperative to preemptive 

mode may happen only at safe points. At every safe point a view of the thread’s state is 

remembered - describing the layout of the stack and registers because they may contain 

references to objects (constituting roots of the object tree). Such data is called GC info. 

Treating all instructions in our application as safe points (making it possible to preempt 

thread at each instruction) would require storing GC info for each of them. That would 

consume quite large amounts of memory.

Thus, as often in such cases, a compromise has been introduced. Managed code 

might be JITed into two kinds of code:

• partially interruptible - the only safe points are during calls to other 

methods (including explicit GC pool calls checking whether a GC 

is pending.4). Number of instructions between method calls is an 

average .NET method is quite small. Thus, such approach provides 

good safe points density with a reasonable overhead of GC info 

storage. Generating partially interruptible code is preferred JIT 

compiler’s choice.

• fully interruptible - every instruction of a method is treated as a 

safe point (whole code is preemptive) except prolog and epilog 

(small code fragments executed when the method starts and 

ends respectively). JIT compiler must somehow store GC info for 

every instruction but this makes fully interruptible code quickly 

suspendable. Because of the storage overhead, JIT compiler rather 

tries to avoid this approach. One of the typical scenarios when JIT 

chooses it are loops of unknown repetition size without any method 

calls inside (they do not guarantee a quick end that does not lead to 

blocking off GC). One of the other typical solutions to such a problem 

is injecting GC pool calls on back jumps of the loop. The doubtful 

efficiency of such redundant pooling calls seems to be low though.

4 Such GC pool calls are spread around the runtime itself in various places and are also emitted by 
JIT for some scenarios. They are rare, however, because pooling is not such an efficient approach, 
and in an average method it is just enough to wait for the first method call that is also a safe 
point.
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if you want to investigate more, search for FC_GC_POLL and FC_GC_POLL_RET 
macros inside CoreClr code that realize above-mentioned GC pool calls.

As Book Of The Runtime says: “The JIT chooses whether to emit fully- or partially 

interruptible code based on heuristics to find the best trade-off between code quality, 

size of the GC info, and GC suspension latency.”

During suspending the Execution Engine, it tries to orchestrate all threads currently 

running in cooperative mode by forcing them to move into preemptive mode at their 

safe points.5 First of all, operating system API is called to suspend underlying native 

thread (SuspendThread function in case of Windows API) and then:

• For fully interruptible code this is easy. A thread is already at a safe 

point so it may be just leaved suspended.

• For partially interruptible code we might be lucky and suspend a 

thread during its safe point. In such case it may be left suspended as 

above. If a thread was suspended outside a safe point (which is more 

likely), the current stack frame’s return address is being manipulated 

to a special stub that will “park” it in a safe point and the thread is 

resumed for a short while (it may also hit its own safe point during 

that time).

Resuming threads is much simpler than suspending. When a GC is finished, all the 

suspended threads will be woken up by signaling an event about a suspension end and 

they will resume their execution.

We may monitor GC suspension and thread resuming with the help of ETW 

events pairs GCSuspendEE_V1/GCSuspendEEEnd_V1 and GCRestartEEBegin_

V1/GCRestartEEEnd_V1 accordingly.

5 Please note that such description is simplified for brevity. If you are interested in very deep 
implementation details, please refer to the CLR Threading Overview section in the Book Of The 
Runtime and ample comments at the beginning of the .\src\vm\threads.h file in CoreCLR 
source code.
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 Scenario 7-4. Analyzing GC Suspension Times
Description: Developing our .NET application, we would like to check with curiosity 

how long GC suspension actually takes. We should not expect any problems here. Just 

pure curiosity on our part.

Analysis: Thanks to the ETW events mentioned before, it is easy to calculate GC 

suspension and resumption time. The easiest way is to look at GCStats report in 

PerfView. GC Events by Time table shows a nice summary of each event, including the 

suspension and GC execution time (see columns Suspend Msec and Pause MSec in 

Figure 7-19). As we may see, suspension takes a lot less time than the GC itself.

Figure 7-19. GC suspension and GC execution times from GC Events by Time 
table in PerfView's GCStat raport
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We should not observe noticeable suspending times during our application 

execution. It would most probably mean a bug in the runtime because we have no 

control over the GC suspension mechanism. For example, there was a bug in some rare 

conditions in .NET 2.0 that in certain scenarios (tight CPU-bound loops executing the 

same code and not hitting any safe point) caused the suspend time to be extended to a 

value of seconds. It has been fixed in .NET 4.0. In regular applications, we can observe 

longer suspensions (let’s say, longer than 1 ms) in case of a long I/O operation or thread 

priorities messed up.

unmanaged threads are not suspended and restarted. if you create a background 
native thread doing its work (like executing a timer callback), it will run 
independently from the ee suspensions. however, p/invoke mechanism must block 
on a return from unmanaged code to managed code.

 Generation to Condemn
When GC is triggered with a specific generation to be collected, GC can decide to 

condemn a generation that’s older one than specified. Thus, if something (including 

your GC.Collect call) asked for collecting some particular generation, it may decide to 

collect an older generation - based on various heuristics it tracks internally. We have 

seen those data already in the section about static and dynamic GC data.

In this section an extensive list of possible reasons of changing condemned 

generation is provided. This allows you to better understand what and why GCs take 

place in our applications.

Let’s take into account that the order of decisions presented here is important. Each 

subsequent decision (heuristics) can increase the condemned generation but not lower 

it. In other words, for example, if one of the checks decides to condemn generation 2 and 

some later check will like to decide to condemn generation 1, eventually the older one 

will be condemned (effectively ignoring suggestion of condemning generation 1).
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Below is a comprehensive list of various decisions that may change the condemned 

generation (names in the parentheses are taken from PerfView’s Condemned reasons for 

GCs table that is the best and only place when you can analyze this stage):

• Allocation budget has been exceeded (Generation Budget  

Exceeded) - the oldest generation that exceeded allocation budget 

will be condemned. This includes Large Object Heap in case of 

which generation 2 will be condemned (triggering full-GC) but only if 

background GC is not already running. Please note that, for example, 

it means older generation may be condemned because of its 

allocation budget even if originally only generation 0 budget violation 

was detected during object allocation. We have seen such a typical 

situation in scenario 7-2.

• Time-based tuning (Time Tuning) - it may be surprising but GC also 

cares about the appropriate proportions of collections of individual 

generations based on time dependencies and their counting. This is 

done however only in Workstation mode, not in Server mode, and 

only in case of Interactive or SustainedLowLatency latency modes. 

GC may decide to condemn a generation if enough time has elapsed 

since the last GC of that generation and the number of GCs of lower 

generation has exceeded a certain threshold. Threshold values have 

been already presented in Tables 7-1 and 7-2 in the clock_time and 

gc_time columns. It means in particular that:

• generation 1 may be condemned if it was not collected since 10 

seconds and 10 GCs,

• generation 2 (triggering full-GC) may be condemned if it was not 

collected since 100 seconds and 100 GCs.

This is to accommodate the fact that processes running in 

Workstation GC mode are less regular than those in Server GC 

mode so the GC wants a chance to notice the allocation/survival 

pattern sooner.
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We can sometimes meet the so-called Golden Rule of GC that 

in a healthy application’s proportions between a generation’s 

collections count should be as 1:10:100 - clearly resulting from 

the time tuning described here. Please note, however, this only 

applies to Workstation GC and is considered no longer valid in 

general. The “Healthy” proportions of GCs the count are much 

more complex and dynamic than just such simple ratios.

• Low card table efficiency (Internal Tuning) - the card table has too 

many “generation faults.” If we return to the information about card 

tables from Chapter 5, we will remind ourselves that they introduce 

a certain overhead. Each card represents continuous memory region 

where multiple objects may live. Each of such objects may contain 

references to other objects but only some of them will be truly cross-

generational (will point to objects in the generations being collected). 

The ratio between these useful and all references is called card table 

efficiency. Low card table efficiency means unnecessary traversing 

through a lot of objects. Thus, if it drops below a certain threshold, it 

is worth it to condemn generation 1. This should group long-living 

objects into same generations, potentially removing most cross-

generational references.

• Running out of space in the ephemeral segment (Ephemeral Low and 

Ephemeral Low with Very Fragmented Gen2) - there is a shortage of 

space in the segment containing generations 0 and 1 (more precisely, 

there is no space for the doubled size of minimum generation 0 in 

the segment’s Reserved memory). In such case generation 1 will be 

condemned to free up ephemeral memory (with reason Ephemeral 

Low). Additionally, if there is a fragmentation in generation 2 big 

enough to fit (after compaction) generation 1, generation 2 will be 

condemned triggering full-GC (with reason Ephemeral Low with 

Very Fragmented Gen2). This in general means that if the ephemeral 

segment is running out of space, the GC is more aggressive in doing 

collections (meaning doing mainly more generation 1 collections) to 

avoid acquiring a new heap segment (or expanding current one).
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• Ephemeral generation is too fragmented (Fragmented Ephemeral) - 

the ephemeral generation whose threshold of fragmentation has 

been exceeded will be condemned (that is, generation 0 or 1).

• Running out of space in the ephemeral segment requires expanding 

it (Expand Heap) - if there is no other way to fit growing ephemeral 

generations other than by expanding segment, generation 2 will be 

condemned (triggering full, blocking GC).

• Running out of space during allocation (Compacting Full-GC) - as a 

last resort before throwing OutOfMemoryException during Allocator’s 

work, a full, blocking, and compacting GC will be triggered.

• Physical memory load in the system is more than 90% 6 or operating 

system has sent a low-memory notification (High Memory) - if 

generation 2 is heavily fragmented or it is already occupied in more 

than 10% of its allocation budget, condemn generation 2 (in many 

cases doing blocking GC). Please note, it means that the CLR may 

ignore a low- memory notification from the OS and does not trigger 

GC at all if it decides it is not worth doing it. In general, however, 

thanks to this point, system-wide memory pressure makes GC more 

aggressive if that’s likely to yield free space. This is important to 

prevent unnecessary paging across the whole machine.

• Generation 2 is too fragmented (Fragmented Gen2) - the generation 2 

threshold of fragmentation has been exceeded and it be condemned.

• Generation 2 or LOH is too small for doing background GC (Small 

Heap) - in such a case full, blocking GC will be triggered.

• In case of low-latency mode only generation 0 or 1 can be 

condemned (overriding any previous decisions).

Additionally, there is one special reason used in case of background GC (described 

in Chapter 11) to note starting an ephemeral GC before a background GC (Ephemeral 

Before BGC in PerfView).

6 This is the value used in most cases. For powerful machines with many logical cores, this 
threshold may be bigger - up to 97%.
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In some of the decisions described above, fragmentation threshold exceeding takes 

an important role. One can wonder what its value is. Each generation maintains its own 

threshold, consisting of two values taken from static generation data (see Tables 7-1  

and 7-2):

• total memory size wasted because of unusable fragmentation - 

unusable fragmentation includes:

• unused free space, not managed by the generation allocator - 

those include small gaps created during Sweeping (as we will see 

later) and space in ephemeral generations discarded after not 

successful fitting (as mentioned in Chapter 5, free-list items in 

these generations are checked only once and then released).

• expected allocator efficiency - how well it has been possible to 

reuse free-list items so far.

• This value is represented by fragmentation_limit column in  

Tables 7-1 and 7-2 (see Table 7-4 for a summary).

Table 7-4. Fragmentation Thresholds for Generations

Fragmentation limit Fragmentation ratio

Gen0 40,000 75%

Gen1 80,000 75%

Gen2 200,000 50%

• fragmentation ratio - this is the ratio of the above total unusable 

fragmentation size to the size of the whole generation. This value is 

calculated from the fragmentation_burden_limit column in Tables 7-1  

and 7-2 by doubling it, but not exceeding 75% (see Table 7-4 for a 

summary).

For example, generation 2 will be considered as too fragmented if the size of 

unusable fragmentation will exceed 200,000 bytes and it will be more than 50% of total 

generation size.
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 Scenario 7-5. Condemned Generations Analysis
Description: We want to understand the most common reasons of GCs in our 

application, altogether with the knowledge which and why generations were 

condemned. Such kind of analysis is very in-depth and will probably be necessary 

only in very specific cases (like, we see too many full-GCs happening and we want to 

understand why they are full-GCs).

Analysis: Currently there is no better tool to understand generations being condemned 

than analysis of GCStats report in PerfView. After recording even the simplest GC Collect 

Only session, it provides Condemned reasons for GCs table that pretty much explain 

everything (see Figure 7-20). This scenario is a follow-up of scenario 7-2 where the 

first five GCs were thoroughly analyzed. Now we can observe how they are described 

in PerfView. During analysis refer to the names from the list of various condemning 

decisions presented above.

We can indeed see here confirmation of our analysis for the first five GCs from 

scenario 7-2:

• GC #1 is explicitly induced (value of Blocking in Induced column) as 

full-GC (value of 2 in Initial Requested Generation). And it is indeed 

executed as full-GC (value of 2 in Final Generation).

Figure 7-20. Condemned reasons for GCs table from GCStats report in Perf View
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• GC #2 is initially requested for generation 0 (value of 0 in Initial 

Requested Generation) - because of this generation’s allocation 

budget exceeding. However, it becomes full-GC because also 

generation 2 budget has been exceeded (value of 2 in Final 

Generation). As we know, it is in fact the LOH allocation budget being 

exceeded, but as already explained, it is being treated as gen2.

• GC #3 is initially requested for generation 0 and actually performed 

for it. There are no reasons for other generation condemnation.

• GC #4 is initially requested for generation 0 but due to generation 1 

budget exceeding, finally generation 1 is condemned.

• GC #5 is initially requested for generation 1 - that happens in case of 

OutOfSpaceSOH reason (see value of 1 in Ephemeral Low column). 

However, due to generation 2 budget being exceeded, it becomes 

full-GC.

Careful analysis of Condemned reasons for GCs together with GC Events by 

Time tables may provide a great insight into your application GCs. However, this is 

q quite mundane and laborious task. You can view the Condemned reasons for GCs 

table and look for common patterns, frequently recurring reasons, and so on and so 

forth. Unfortunately, there is currently no tool that will try to summarize and analyze 

condemned reasons as a whole.

It is definitely worth paying special attention to the following columns that may 

indicate a problem in your code:

• Induced - explicit GC calls are rarely justified. If they occur 

frequently, we may wish to investigate why (refer to scenario 7-3).

• Fragmented Ephemeral and Fragmented Gen2 - if they occur 

frequently, they show problems with memory fragmentation. We 

probably should better understand the allocation patterns in our 

application (refer to scenario 5-2 and scenario 6-2).

if you would like to perform your own CoreClr code analysis, carefully read gc_
heap::generation_to_condemn method. all condemnation reasons described 
here are checked there one by one.
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 Summary
In this chapter we started to investigate deeply the heart of the .NET memory 

management - the Garbage Collector. We started here from the high-level view. An 

overall, generalized concept of GC work has been presented, including GC process in 

example and explained step by step. Then, all major phases of the GC were thoroughly 

described. While three subsequent chapters describe them in details, this one explained 

the three first:

• mechanisms that triggers garbage collection,

• how entire runtime cooperates to proceed with the EE suspension, 

that is - stopping all managed threads,

• how GC selects which generation should be collected.

Because those are such important topics, five practical scenarios were also presented 

here - including how to analyze the GC usage and finding explicit GC calls.

With all the knowledge from this chapter, we may proceed in explaining the next 

phases of the GC. The next chapter contains detailed explanation of the Mark phase.
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CHAPTER 8

Garbage Collection - Mark 
Phase
In the previous chapter we have gained knowledge about some general GC topics, 

like when it is triggered and how it decides which generation should be collected. 

Let’s now move into the details of implementation of the first main GC phase - Mark 

phase.

At this stage, GC decided which generations will be collected. It’s time to investigate 

which objects may be reclaimed. As mentioned before, CLR implements a tracing 

Garbage Collector. It starts from various roots and recursively traverses a whole object’s 

graph of the current program state. All those that are not reachable from any roots are 

considered dead (recall Figure 1-15).

In case of a Non-concurrent GC described in this chapter, at the beginning of this 

stage, all managed threads are suspended. Managed Heap is guaranteed to be not 

changing, and it remains the sole property of the GC. It can therefore start browsing 

safely in search of reachable objects.

 Object Traversal and Marking
Despite the existence of many different roots, the mechanism of finding reachable 

objects remains common. Given a specific root address, a traversal routine performs the 

following steps:

• Translate it to the proper address of a managed object - in case 

of a so-called interior pointer (indicating not at the beginning but 

somewhere inside the managed object). It may be done efficiently 

thanks to the bricks table mechanism described later.
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• Set pinning flag - if an object is pinned (which is known by the fact of 

traversal from the pinned handles table or flag reported to the GC), a 

proper single bit is set in the object’s header.

• Start traversal through object’s references - thanks to the type 

information (stored in a MethodTable), GC knows which offsets 

(fields) represent outgoing references. It starts visiting them in a 

depth-first manner by maintaining a collection of objects to be 

visited. This is called a mark stack because it is organized as a stack 

data structure with push and pop operations. During visiting an 

object:

• already visited object is simply skipped.

• not yet visited object is being marked - which is done by setting a 

bit in object’s MethodTable pointer.1

• its outgoing references are added to the mark stack collection.

Traversal ends when there are no more objects to visit on the mark stack.

Commonly, the typical approach to a depth-first graph traversal is based on 
recursive calls. However, they are hard to guarantee that no stack overflow will 
happen. It is easier and safer to replace the recursive-based technique with the 
iterative one - based on the heap allocated, stack-like collection (like mark stack 
used in CLR) that may be simply grown in case of exceeding its current size.

Please note, both pinned and marked flags are set during the Mark phase. Those 

flags are used and then unset during the Plan phase. During a normal object’s lifetime 

(while managed threads are running), both the fact of pinning or marking is not 

presented in the object’s header nor its MT pointer.

1 It does not destroy the MT pointer because MethodTable data address is word-aligned (it is 
multiplication of 4 or 8 bytes) so at least the two lowest bits are unused (always set to zero). 
Getting a proper MT pointer from such a modified pointer requires only zeroing the two lowest 
bits - see GetMethodTable method in CoreCLR for reference.
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If you are interested in details and want to study CoreCLR code, start from 
investigating GCHeap::Promote method. It calls the go_through_object_cl 
macro that triggers traversal through all objects’ references. the main work is 
done in gc_heap::mark_object_simple1 method that realizes depth-first 
object graph traversal using an auxiliary stack-like collection called mark_stack_
array (with mark_stack_bos and mark_stack_tos indexes pointing to the 
bottom and the top of the stack).

Knowing the overall structure of the marking process, let’s now investigate in detail 

different GC roots that may exist in our application. Good understanding of them is 

one of the most useful pieces of knowledge related to the .NET memory management. 

Roots may be holding whole graphs of reachable objects, counting into the common 

problems:

• big memory usage - we may be unaware of the existence of certain 

roots that cause the reachability of a much larger number of objects 

than we would expect. The mere fact of the existence of a large 

number of objects can be an overhead for GC by itself.

• memory leak - even worse, roots may cause continuous growth of the 

object graph hold by them, leading to constantly increasing memory 

usage.

 Local Variable Roots
Local variables are one of the most common roots. Some of them are very temporary 

(see Listing 8-1), while others live for the entire application lifetime (see Listing 8-2). We 

simply create local variables constantly here and there.

Listing 8-1. An example of very short-living local variable fullPath

public static void Delete(string path)

{

   string fullPath = Path.GetFullPath(path);

   FileSystem.Current.DeleteFile(fullPath);

}
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Listing 8-2. An example of very long-living local variable host that lives for an 

entire self-hosted ASP.NET application lifetime

public static void Main(string[] args)

{

   var host = BuildWebHost(args);

   host.Run();

}

We often create them explicitly (like in Listings 8-1 and 8-2), but many times they are 

also created implicitly (see Listing 8-3).

Listing 8-3. An example of very long-living local variable host created implicitly 

(this code is in fact the same as in Listing 8-2)

public static void Main(string[] args)

{

   BuildWebHost(args).Run();

}

Local variable may represent a value type (like struct) or a reference to the reference 

type value 2 (please recall an important distinction between “reference” and “reference 

type data” discussed in Chapter 4). In this section a Garbage Collection of objects allocated 

on the heap are considered so we will look into details of local variables holding references 

(regardless of whether it is a typical reference type like class or boxed value type).

 Local Variables Storage
When we assign a managed object reference to a local variable, we create a root like in 

Listing 8-4 where reference to a newly created object instance of type SomeClass has 

been assigned to a local variable c. Since then we should consider this instance to be 

reachable. Thus, assuming c is the only root, an object cannot be garbage collected until 

the method Helper ends because local variable c is used throughout the entire Helper 

method.

2 Local variable may represent a primitive type (like numbers), but those are not in our interest 
here as they do not represent a heap-allocated object.
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Listing 8-4. An example of local variable holding

private int Helper(SomeData data)

{

   SomeClass c = new SomeClass();

   c.Calculate(data);

   return c.Result;

}

In general, the situation from Listing 8-4 may be nicely illustrated by Figure 1-10 

from Chapter 1. Maybe we are used to it and we would like to treat local variables 

as being stack allocated (because reference may be treated as value type). Thus, the 

situation from Listing 8-4 may be seen as follows: allocator creates an object instance 

on the Managed Heap while local variable c should be stored on the stack within 

Helper's method activation frame. However, as we have seen already in Chapter 4,  

local variables may be enregistered (stored into CPU register) thanks to great JIT 

compiler optimizations. This leads to an important fact endlessly worth repeating - 

roots represented by local variables may be stored on the stack or in CPU registers. 

The JIT compiler makes its best to allocate registers and stack slots as efficiently as 

possible.

 Stack Roots
Roots described above in this chapter are called stack roots. Fundamentals of Garbage 

Collection section in .NET Guide Docs are describing them as “stack variables provided 

by the just-in-time (JIT) compiler and stack walker.” This description can be a bit 

confusing. As we know, it is really about the local variables in a method that is currently 

running and also local variables of all methods in the current call stack. It is the call stack 

that the term “stack roots” refers to. But please remember, such “stack roots” may be on 

the stack or in a CPU register.

When EE suspension is done, call stacks of all managed threads must be investigated 

to find all local variables because they may constitute what is referred to as stack roots. 

This is done by the mentioned stack walker. If a method from the current call stack 

has some local variables holding reference to the managed object - it is considered as 

live and starts such an object’s graph traversal. However, it is not trivial to answer the 

question whether there are local variables at a given line of the method code (instruction 

address, to be precise) and whether they are a reference to an object or not.
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As described in the section on suspension in Chapter 7, threads may be suspended 

at safe points - those include almost every instruction (in case of fully interruptible 

methods) or only other methods calls (in case of partially interruptible methods). This 

leads us to the conclusion that GC needs to store somehow the knowledge about live 

“stack roots” (both stack and register slots) for every safe point of a method. This is what 

GC info mentioned before really is.

 Lexical Scope
In C# inseparable from the concept of a local variable is the related concept of its lexical 

scope. In the simplest words, it defines areas of code in which the given variable is 

visible - considering all nested code blocks, etc. Taking as an example code from  

Listing 8-5, there are three local variables defined:

• c1 - local variable that represents a reference to the managed 

object of type ClassOne. Lexical scope of c1 spans to entire 

LexicalScopeExample method - c1 is accessible in the entire method 

because it has been declared in the most outer scope of it;

• c2 - local variable that represents a reference to the managed object of 

type ClassTwo. Lexical scope of c2 is limited to the conditional block;

• data - local variable for primitive, integer type.

Listing 8-5. An example of two local variables with different lexical scopes

1 private int LexicalScopeExample(int value)

2 {

3     ClassOne c1 = new ClassOne();

4     if (c1.Check())

5     {

6         ClassTwo c2 = new ClassTwo();

7         int data = c2.CalculateSomething(value);

8         DoSomeLongRunningCall(data);

9         return 1;

10    }

11    return 0;

12 }
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Let’s now elaborate how reachability of objects created within a method relates to 

their lexical scope.

 Live Stack Roots vs. Lexical Scope
When considering reachability of an object represented by a local variable, a very 

intuitive solution immediately comes to mind - it should be associated with the local 

variable lexical scope. Thus, taking Listing 8-5 as an example:

• Created instance of ClassOne should be reachable during entire 

method lifetime - since the creation (line 3) until the end of method 

(line 11). In other words, c1 local variable constitutes live stack root 

from line 3 until line 11;

• Created instance of ClassTwo may be reachable only within 

conditional block - since the creation (line 6) until the block end  

(line 9). In other words, c2 local variable constitutes live stack root 

from line 6 until line 9.

Taking such approach, GC Info of LexicalScopeExample method from Listing 8-5:

• For fully interruptible case could be imagined as in Listing 8-6 - each 

line has its own information (while obviously it would be created at 

an assembler level, let’s now stick with C# lines of code for brevity).

• For partially interruptible case could be imagined as in Listing 8-7 - 

 information is stored only at lines with method calls (including 

allocation/constructor).

Listing 8-6. A visualization of GC Info of LexicalScopeExample method from 

Listing 8-5-10 in fully interruptible case. Each line lists live stack roots.

1     No live slots

2     No live slots

3     Live slot of c1

4     Live slot of c1

5     Live slot of c1

6     Live slot of c1, live slot of c2

7     Live slot of c1, live slot of c2
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8     Live slot of c1, live slot of c2

9     Live slot of c1, live slot of c2

10    Live slot of c1

11    Live slot of c1

12    No live slots

Listing 8-7. A visualization of GC Info of LexicalScopeExample method from 

Listing 8-5 in partially interruptible case. Each line lists live stack roots.

3     Live slot of c1

4     Live slot of c1

6     Live slot of c1, live slot of c2

7     Live slot of c1, live slot of c2

8     Live slot of c1, live slot of c2

GC info stores information about JITted, assembly code. Thus, it obviously does not 

operate on specific C# variable names, but on specific stack slots or CPU register slots. 

For example, the more realistic GC info representation of Listing 8-6 would look like in 

Listing 8-8 (assuming that JIT compiler has assigned register rax to local variable c1 and 

rbx to local variable c2).

Listing 8-8. A visualization of GC Info (at JITted assembly level) of 

LexicalScopeExample method from Listing 8-5 in fully interruptible case

1     No live slots

2     No live slots

3     Live slots: rax

4     Live slots: rax

5     Live slots: rax

6     Live slots: rax, rbx

7     Live slots: rax, rbx

8     Live slots: rax, rbx

9     Live slots: rax, rbx

10    Live slots: rax

11    Live slots: rax

12    No live slots
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Imagine that due to GC, runtime has suspended a thread currently executing 

LexicalScopeExample method at line 7 (assuming the method has been JITted as fully 

interruptible). Thanks to the GC info presented in Listing 8-8, GC immediately knows 

that there are live stack roots in CPU registers rax and rbx. The marking process may be 

started with addresses stored in those registers.

Such an approach would be perfectly valid, leading to proper results. The 

reference local variable lexical scope obviously counts into the reachability of 

the reference type object. Similar, an even more relaxed approach is taken when 

compiling an application in Debug mode. JIT compiler extends the reachability of 

all local variables until the end of a method. This is very useful due to debugging 

purposes (like inspecting variable values). But more can be done in the Release 

mode to optimize memory usage.

 Live Stack Roots with Eager Root Collection
Looking at the code from Listing 7-10 once again, we may notice that lexical scope 

is not the optimal representation of reachability. From the fact that due to its lexical 

scope a local variable may be used does not mean it is used indeed. What really matters 

is whether those variables are in fact used or not. Looking at LexicalScopeExample 

method from such perspective we notice that:

• Created instance of ClassOne is no longer used since line 5 - so 

despite lexical scope of variable c1, it constitutes live stack root only 

from line 3 until line 4,

• Created instance of ClassTwo is used only at lines 6 and 7 - so despite 

lexical scope of variable c2, it constitutes live stack root only at those 

lines.

In other words, the C# compiler may notice the real usage of each object 

(through local variables) and save this information. Then the JIT compiler will use 

it during slots allocation (shorter object lifetimes allows it to reuse valuable CPU 

registers) and while emitting GC info. This results in much more efficient generated 

GC info (see Listing 8-9).
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Listing 8-9. A visualization of GC Info (at JITted assembly level) of 

LexicalScopeExample method from Listing 8-5 in fully interruptible case using 

eager root collectiont

1     No live slots

2     No live slots

3     Live slots: rax

4     Live slots: rax

5     No live slots

6     Live slots: rax

7     Live slots: rax

8     No live slots

9     No live slots

10    No live slots

11    No live slots

12    No live slots

With a new GC info, most of the time while the method is running, there are no live 

stack roots. Each object is treated as unreachable from local variables when it is indeed 

no longer needed. Such eagerness to collect an object as fast as possible is referred to as 

eager root collection. This obviously is more efficient from a memory usage perspective 

because it shortens an object’s lifetime to the required minimum. This in turns also 

allows it to use CPU registers more densely because they may be reused more often (like 

reusing rax register in Listing 8-9). Generated GC info for partially interruptible methods 

will be even shorter (see Listing 8-10).

Listing 8-10. A visualization of GC Info of LexicalScopeExample method from 

Listing 8-5 in partially interruptible case using eager root collection

3     Live slots: rax

4     Live slots: rax

6     Live slots: rax

7     Live slots: rax
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In all examples in this section, only CpU register slots were used. this is a typical 
scenario because JIt makes its best to use only blazingly fast CpU registers 
instead of stack slots. It may decide to use a stack slot in certain circumstances, 
but this will not change the mechanisms described here. only a stack slot would 
be listed instead of a register name. stack slots are represented as offsets to the 
rsp or rbp address (depending which one is used by a method). thus, GC info also 
stores current rsp and rbp register values for each safe point. Moreover, JIt in 
x64 runtime is much more likely to consume registers because x64 platform added 
eight new general-purpose registers (named r8 through r15).

When threads are suspended, their current context (including registers) is saved. 

So for example, when LexicalScopeExample happens to be suspended at line 6, based 

on the GC info, there will be one live stack root address taken from rax register (stored 

in the context). The same logic will be repeated for all methods on the call stacks by 

inspecting the call stack frame by frame (and restoring proper thread context thanks to 

information inside activation frames - like previous values of registers).

Eager root collection is used by JIT when our code is compiled in Release mode. It 

can sometimes lead to several surprising and even misleading behaviors. Most of the 

questions about such scenarios starts with “In Debug, my code does X. But in Release, it 

does Y... .”

First of all, setting a local variable to null to “inform” GC that we will no longer use 

a given object is not needed in most cases (see Listing 8-11). Even before long-running 

calls (to tell GC - hey, I am starting those very long-running calls so please note that 

this object is no longer used and may be collected). Thanks to an eager root collection 

technique, the compiler and JIT will perfectly notice the real scopes of our variables’ 

usage. There is no need to tell them explicitly. Code from Listings 8-5 and 8-11 are 

perfectly identical in that respect. They produce the same GC Info and assembly code 

(JIT will optimize out those redundant null settings in the first place).

Listing 8-11. An example of unnecessary null setting

private int LexicalScopeExample(int value)

{

      ClassOne c1 = new ClassOne();

      if (c1.Check())

CHapteR 8  GaRbaGe CoLLeCtIon - MaRk pHase



586

      {

            c1 = null;

            ClassTwo c2 = new ClassTwo();

            int data = c2.CalculateSomething(value);

            c2 = null;

            DoSomeLongRunningCall(data);

            return 1;

      }

      return 0;

}

there is one exception to that rule in case of so-called untracked variables 
(explained later), which are considered life for the entire method’s lifetime. so in 
case of really, really crucial resources, you may wish to set a local variable to null 
to help out the JIt compiler.

Secondly, eager root collection may cause strange results when imposed on 

objects with methods causing side effects. We may expect particular object’s lifetime 

based on its lexical scope, producing those side effects, while as we already know, 

the lifetime is not based on lexical scope. The typical scenarios here include using 

various timers, synchronization primitives (like Mutex), or system-wide resource 

access (like files).

Listing 8-12 shows a typical behavior that is hardly explainable without knowledge 

about eager root collection. Intuitively we expect Timer object lifetime to be 

corresponding to the local variable timer lexical scope. Thus, the presented program 

should print the current time endlessly until we do not hit any key. And this is a behavior 

we will observe in Debug build. However, in Release build, eager root collection comes 

into the play. As Timer object is not used since line 3, JIT compiler will emit GC Info 

about it. Timer object becomes unreachable after line 3! If GC will happen while Main 

method is executing code after that line, it will be collected (stopping printing current 

time). Depending how fast the GC will be processed, the timer may be able to print the 

current time a few times.
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Listing 8-12. An example of unexpected Timer behavior due to early root 

collection

1 static void Main(string[] args)

2 {

3      Timer timer = new Timer((obj) => Console.WriteLine(DateTime.Now.

ToString()), null, 0, 100);

4     Console.WriteLine("Hello World!");

5     GC.Collect(); // simulate GC happening here

6     Console.ReadLine();

7 }

Program result:

Hello World!

28/03/2018 14:29:01

Please note that in our example GC is called explicitly to produce repeatable results. 

In a real-world scenario such GC may happen due to allocations on other threads.

Moreover, eager root collection is so aggressive that an object may be treated as 

unreachable even while one of its methods is still running (if that method does not refer 

to this). Listing 8-13 shows a behavior simulating such scenario. While DoSomething 

method is running, GC occurs (again, for example purposes it is called explicitly). 

Additionally, SomeClass has a finalize method (finalization will be explained in detail in 

Chapter 12), which is executed when an object is being garbage collected.

Listing 8-13. An example of unexpected object behavior due to early root 

collection

static void Main(string[] args)

{

      SomeClass sc = new SomeClass();

      sc.DoSomething("Hello world!");

      Console.ReadKey();

}

class SomeClass

{

      public void DoSomething(string msg)
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      {

            GC.Collect();

            Console.WriteLine(msg);

      }

      ~SomeClass()

      {

            Console.WriteLine("Killing...");

      }

}

Program result:

Killing...

Hello world!

Surprisingly enough, the program produces an output suggesting that an object died 

before its whole method had been executed. This is because DoSomething does not refer 

to this, so in fact, it does not require its own object instance!

Going further, in certain circumstances eager root collection may collect an object 

while one of its methods is still running and its code refers to this! Listing 8-14 shows a 

behavior simulating such a scenario. Even DoSomethingElse method refers to this, and 

SomeClass instance will be eagerly collected like in the previous example.

Listing 8-14. An example of unexpected object behavior due to early root 

collection

static void Main(string[] args)

{

      SomeClass sc = new SomeClass() { Field = new Random().Next() };

      sc.DoSomethingElse();

      Console.ReadKey();

}

class SomeClass

{

      public int Field;

      public void DoSomethingElse()
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      {

            Console.WriteLine(this.Field.ToString());

            // further code

                Console.WriteLine("Am I dead?");

      }

      ~SomeClass()

      {

            Console.WriteLine("Killing...");

      }

}

Program result:

615323

Killing...

Am I dead?

How does it happen? It is possible due to method inlining. If JIT compiler decides 

to inline a method, it becomes a part of the calling method (see Listing 8-15). It may 

incur further optimizations. For example, DoSomethingElse used this.Field only at the 

beginning. After inlining into Main method, sc.Field reference will be the last one to the 

object and further code may be executed while the object is being collected.

Listing 8-15. An example of unexpected object behavior due to early root 

collection

static void Main(string[] args)

{

      SomeClass sc = new SomeClass() { Field = new Random().Next() };

      Console.WriteLine(sc.Field.ToString());

      // further code

        Console.WriteLine("Am I dead?");

      Console.ReadKey();

}

Please bear in mind that such optimizations are quite often as the JIT compiler 

is very aggressive at making the local variable lifetime as short as possible. In most 

cases the JIT compiler safely uses this technique because it does not change the 
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program’s logic. Any unexpected behaviors resulting from it should be very rare 

and related only to the above-mentioned objects with side effects related to their 

lifetime.

Sometimes for some reason we need to have better control over an object’s lifetime. 

Coming back to Listing 8-12, we may really need a timer running for the whole lifetime 

of the application. For such scenarios the GC.KeepAlive method has been exposed (see 

Listing 8-16).

Listing 8-16. Fixing an example of unexpected Timer behavior due to early root 

collection (based on Listing 8-17)

static void Main(string[] args)

{

    Timer timer = new Timer((obj) => Console.WriteLine(DateTime.Now.

ToString()), null, 0, 100);

   Console.WriteLine("Hello World!");

   GC.Collect(); // simulate GC happening here

   Console.ReadLine();

   GC.KeepAlive(timer);

}

GC.KeepAlive is a really simple trick to extend liveness of a stack root. 

Its implementation contains no code (see Listing 8-17) but is attributed with 

MethodImplOptions.NoInlining option. This makes KeepAlive no inlineable, which in 

turn forces the compiler to treat the passed argument as used (and thus reachable). So 

when GC.KeepAlive is used, resulting GC Info will extend liveness of the passed object 

until its occurrence.

Listing 8-17. Implementation of the GC.KeepAlive method in Base Class 

Library

[MethodImplAttribute(MethodImplOptions.NoInlining)] // disable 

optimizations

public static void KeepAlive(Object obj)

{

}
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Note In most cases objects with such side effects (like Mutex or timer) are 
implementing IDisposable interface. thus, simple timer.Dispose() call at 
the end of Main method (or using clause) would extend its lifetime appropriately, 
without a need of using GC.KeepAlive. It is still worth keeping in mind eager 
collection caveats.

 GC Info
Presented so far, visualizations of GC Info in Listings from 8-6 to 8-10 were only 

simplifications. In reality, GC Info is a very densely packed, binary piece of information. 

The actual implementation details of its storage are interesting but irrelevant for our 

purposes. The idea behind it remains the same as presented so far.

The only tool currently available allowing us to see it is WinDbg with SOS extension.

To see GC info in WinDbg running and either memory dump or process attached, 

find the method’s MethodDesc you are interested in (see Listing 8-18).

Listing 8-18. Looking for a managed heap in WinDbg with SOS loaded

> .loadby sos coreclr

> !name2ee *!Scenarios.EagerRootCollection.LexicalScopeExample

...

Module:      00007ffea9944f30

Assembly:    Scenarios.dll

Token:       000000000600000d

MethodDesc:  00007ffea9948598

Name:        Scenarios.EagerRootCollection.LexicalScopeExample(Int32)

JITTED Code Address: 00007ffea9a63310

...

Then you can see detailed GC info with command !gcinfo <MethodDesc> (see Listing 

8-19). Let’s now analyze with its help the LexicalScopeExample method from Listing 8-5. 

Command output contains various general information about the selected method (like 

return type kind, whether it uses variable number of arguments, and so on, and so forth). 

More importantly to us, it also lists all safe points together with live stack roots in each of 

them (if any). With each safe point, an instruction offset inside a method is also provided.
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Listing 8-19. !gcinfo command output for LexicalScopeExample method

> !gcinfo 00007ffea9948598

entry point 00007ffea9a63310

Normal JIT generated code

GC info 00007ffea9b29188

Pointer table:

Prolog size: 0

Security object: <none>

GS cookie: <none>

PSPSym: <none>

Generics inst context: <none>

PSP slot: <none>

GenericInst slot: <none>

Varargs: 0

Frame pointer: <none>

Wants Report Only Leaf: 0

Size of parameter area: 0

Return Kind: Scalar

Code size: 71

00000017 is a safepoint:

00000022 is a safepoint:

00000021 +rdi

0000002d is a safepoint:

00000040 is a safepoint:

0000004b is a safepoint:

0000004a +rdi

00000055 is a safepoint:

0000005c is a safepoint:

In case of LexicalScopeExample info showed in Listing 8-19, there are seven 

safe points generated. This is a way to find out that this method has been JITted  

as partially interruptible. In case of fully interruptible methods only stack root  

changes are stored without any safe points listed (as we will soon see). At Listing 8-19  

only two safe points contain a single stack root (enregistered in rdi CPU register). 

Each safe point invalidates all other stack roots. Thus, from Listing 8-19 we can 

infer that:
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• rdi register is live stack root from instruction offset 21 till instruction 

offset 2d,

• again rdi register is live stack root from instruction offset 4a till 

instruction offset 55.

Fully interruptible method may require significant storage (of quantity similar 
to the code itself). to make a good compromise between decoding time and 
storage efficiency, the main part of GC Info is stored internally as a chunk of 
bits representing stack roots’ liveness changes through corresponding code 
regions. additionally, initial state of that liveness is remembered for each chunk. 
thus, to decode stack root liveness for a specific code offset, the proper chunk 
is being analyzed starting from initial liveness and then by applying described 
liveness changes offset by offset until the offset of interest is not being hit. 
WinDbg sos extension does the same multiple times (for each valid instruction 
offset in a method) producing a nice summary seen in the presented listings.

However, such GC info without referring to code does not say much. Luckily, 

there is another command that interleaves JITted code with the GC info - !u -gcinfo 

<MethodDesc> (see Listing 8-20).

Listing 8-20. !u -gcinfo command output for LexicalScopeExample method

> !u -gcinfo 00007ffea9948598

Normal JIT generated code

Scenarios.EagerRootCollection.LexicalScopeExample(Int32)

Begin 00007ff81c5e3310, size 71

push    rdi

push    rsi

sub     rsp,28h

mov     esi,edx

mov     rcx,7FF81C69AD08h (MT: Scenarios.EagerRootCollection+ClassOne )

call    CoreCLR!JIT_New

0017 is a safepoint:

mov     rdi,rax

mov     rcx,rdi

CHapteR 8  GaRbaGe CoLLeCtIon - MaRk pHase



594

call    System_Private_CoreLib+0xc890f0 (System.Object..ctor())

0022 is a safepoint:

0021 +rdi

mov     dword ptr [rdi+8],esi

mov     rcx,rdi

call    00007ff8`1c5e2bb8 (Scenarios.EagerRootCollection+ClassOne .Check())

002d is a safepoint:

test    eax,eax

je      00007ff8`1c5e3378

mov     rcx,7FF81C69AFE8h (MT: Scenarios.EagerRootCollection+ClassTwo )

call    CoreCLR!JIT_TrialAllocSFastMP_InlineGetThread

0040 is a safepoint:

mov     rdi,rax

mov     rcx,rdi

call    System_Private_CoreLib+0xc890f0 (System.Object..ctor())

004b is a safepoint:

004a +rdi

mov     rcx,rdi

mov     edx,esi

call     00007ff8`1c5e2be0 (Scenarios.EagerRootCollection+ClassTwo.

CalculateSomething(Int32),)

0055 is a safepoint:

mov     ecx,eax

call     00007ff8`1c5e2d70 (Scenarios.EagerRootCollection.

DoSomeLongRunningCall(Int32))

005c is a safepoint:

mov     eax,1

add     rsp,28h

pop     rsi

pop     rdi

ret

xor     eax,eax

add     rsp,28h

pop     rsi

pop     rdi

ret
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Analysis of the result of the !u -gcinfo command confirms that safe points  

have been set only when calling methods. Those include both calling internal  

runtime methods (allocators) and calling other managed methods (including  

object constructors). GC info seen in Listing 8-20 is very similar to the one proposed in 

Listing 8-10. We see that:

• firstly, rdi register becomes live at offset 21 until the next safe point 

at offset 2d - this offset range covers holding a reference to ClassOne 

object from its construction untilcalling its Check method,

• secondly, rdi register becomes live again at offset 4a until the 

next safe point at offset 55 - this offset range covers holding a 

reference to ClassTwo object from its construction until calling its 

CalculateSomething method.

To see how GC info is shown in case of a partially interruptible method, we must 

write one. As mentioned before, its sole JIT responsibility is to choose between emitting 

fully or partially interruptible code. However, using non- trivial loops with a dynamic 

number of iterations makes generating a fully interruptible version more likely (see 

Listing 8-21).

Listing 8-21. An example of a method that probably will be JITted into fully 

interruptible code

private int RegisterMap(int value)

{

      int total = 0;

      SomeClass local = new SomeClass();

      for (int i = 0; i < value; ++i)

      {

            total += local.DoSomeStuff(i);

      }

      return total;

}

public int DoSomeStuff(int value)

{

      return value * value;

}
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When looking at RegisterMap method under WinDbg with the help of !u -gcinfo 

command, we will indeed notice that fully interruptible code has been generated (see 

Listing 8-22). Please remember this decision is based on internal JIT heuristics and the 

result may vary between versions, runtimes, and other not named conditions. Thus, 

one may need to make a few approaches to modify RegisterMap in a way that will cause 

generating fully interruptible code.

Listing 8-22. !u -gcinfo command output for fully interruptible RegisterMap 

method

> !u -gcinfo 00007fff42c18518

Normal JIT generated code

Scenarios.EagerRootCollection.RegisterMap(Int32)

Begin 00007fff42d32f20, size 3d

push    rdi

push    rsi

sub     rsp,28h

mov     esi,edx

00000008 interruptible

xor     edi,edi

mov     rcx,7FFF42DEAAC8h (MT: Scenarios.EagerRootCollection+SomeClass)

call    CoreCLR!JIT_TrialAllocSFastMP_InlineGetThread

00000019 +rax

mov     rcx,rax

0000001c +rcx

call    System_Private_CoreLib+0xc890f0 (System.Object..ctor())

00000021 -rcx -rax

xor     eax,eax

test    esi,esi

jle     00007fff`42d32f54

mov     edx,eax

imul    edx,eax

add     edi,edx

inc     eax

cmp     eax,esi

jl      00007fff`42d32f47
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mov     eax,edi

00000036 not interruptible

add     rsp,28h

pop     rsi

pop     rdi

ret

There are regions inside even fully interruptible code that is not interruptible 

(this includes function prolog and epilog by default), and this is in fact reflected with 

the presented output - interruptible code starts at offset 8 until offset 36. Instead of 

safe points around method calls, we notice various slot liveness changes (of registers 

rax and rcx in our example). In fact, all instructions within interruptible regions are 

safe points so there is no need to print it so. With the information already gained in 

this chapter and a little assembler knowledge, one can easily understand why so and 

no other GC info was generated. Please note, for example, that thanks to inlining 

DoSomeStuff method inside a loop, SomeClass object roots become dead even before 

that loop starts.

When using !gcinfo or !u -gcinfo commands, you may also encounter a so-called 

untracked root. Those represent an argument or local variable that contains a reference 

but whose lifetime information is not available at runtime. Untracked locations are 

assumed by the GC to be live during the entire method body (if they do not contain zero 

value obviously).

If you would like to investigate Mark phase from the stack root perspective, start 
from the gc_heap::mark_phase and its call to GCScan::GcScanRoots 
method. It calls Thread::StackWalkFrames with GCHeap::Promote callback 
for stack frames of the current call stack (for each managed thread). analyzing 
Promote callback is a very good start to analyze marking in general.

 Pinned Local Variables
A special type of local variable is a pinned local variable. It is created implicitly in C# and 

F# when using a fixed keyword (see Listing 8-23). VB.NET does not have it as it does not 

allow pointers at all.
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Listing 8-23. C# example of fixing keyword usage

public class Program

{

   private List<byte[]> list = new List<byte[]>();

   public unsafe int Run()

   {

      // ...

      fixed (byte* array = list[7])

      {

         // ...

         Console.ReadLine();

      }

   }

}

If we look at the CIL code generated for the method Run from Listing 8-23, we will 

notice a special, pinned local variable - in our case the one with index 2 (see Listing 8-24).  

Such a pinned keyword is for exactly what it stated - such local variable content should 

not be moved by GC during its work.

Listing 8-24. Beginning of the CIL code from Listing 8-23

.method public final hidebysig newslot virtual

instance int32 Run () cil managed

{

   // Header Size: 12 bytes

   // Code Size: 166 (0xA6) bytes

   // LocalVarSig Token: 0x11000016 RID: 22

   .maxstack 4

   .locals init (

         [0] int32 i,

         [1] uint8[] bigArray,

         [2] uint8& pinned 'array',

         [3] uint8[],

         [4] int32 i)
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      // ...

      // IL code

}

Information about pinned local variables is consumed by the JIT compiler and 

appropriate GCInfo is being generated. This time, along with the information about the 

root itself, the information is also preserved that it is pinned. We may notice it by looking 

at GCInfo emitted for Run method from Listing 8-24 (see Listing 8-25). A stack location 

under the address sp+20 (hence, relatively to the stack pointer at the beginning of the 

method execution) is noted as untracked and pinned. It means that content of such a 

stack address will be treated as pinned root during stack roots marking if the thread will 

be suspended within the Run method.

Listing 8-25. Fragments of method from Listing 8-24 disassembled (with GCInfo)

> !u -gcinfo 00007ff9fa9277d8

Normal JIT generated code

CoreCLR.CollectScenarios.Scenarios.SOHCompactionWithPinning.Run()

Begin 00007ff9faa43070, size 103

Untracked: +sp+20(pinned)(interior)

00007ff9`faa43070 57              push    rdi

00007ff9`faa43071 56              push    rsi

00007ff9`faa43072 4883ec28        sub     rsp,28h

00007ff9`faa43076 33c0            xor     eax,eax

00007ff9`faa43078 4889442420      mov     qword ptr [rsp+20h],rax

...

00007ff9`faa430bd 488b4e08        mov     rcx,qword ptr [rsi+8]

00007ff9`faa430c1 ba07000000      mov     edx,7

00007ff9`faa430c6 3909            cmp     dword ptr [rcx],ecx

00007ff9`faa430c8 e8830d155e      call     System.Collections.Generic.

List`1.get_Item(Int32)

...

00007ff9`faa430eb 4883c010        add     rax,10h

00007ff9`faa430ef 4889442420      mov     qword ptr [rsp+20h],rax

Code in Listing 8-25 shows relevant fragments of the entire method. At the 

beginning of the method execution, sp+20 stack location is being zeroed. Later, get_

Item method on generic List<T> is called and its result (reference to 7th element of 
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the list, which is reference to byte array) is stored in rax register. A few instructions 

later, rax is modified accordingly to get an address of the array data within array 

object. And, in the last shown line, such address is saved on the stack under sp+20 

address. If thread will be suspended after this line, GC will see this address and treat 

the whole object as pinned.

this is the reason why sp+20 root is also denoted as interior. address at sp+20 
location in fact points inside the array object (so it is called interior). It is later 
appropriately interpreted by the GC.

Such pinned roots will be visible for a short period of time - only during execution 

of the containing method. In fact, they will be marked as pinned only during GC 

execution - stack root scanning, based on the GCInfo, will mark them as pinned. And 

during the plan phase, the pinned bit will be cleared. This makes finding such sources 

of pinning not trivial. For example, when taking memory dumps, it is unlikely we will 

hit the middle of GC. In a memory dump taken during a normal application execution, 

simply they are not pinned at all.

Some tools may list sources of such pinning, however. With GCInfo for all methods 

executed on current threads and the status of all their local variables, one could check 

what variables would be pinned if the GC happened at the moment of memory dump. It 

would of course be approximate data because during GC the threads would stop in safe 

points, and not necessarily where they are at the moment of memory dump. Moreover, 

remember that memory dump is only a single snapshot of memory at a given moment in 

time. Such a single snapshot will not necessarily say a lot about local variable pinning in 

general. We should make a lot of such snapshots to get a better view.

Luckily, there is an ETW event called PinObjectAtGCTime emitted each time an 

object is being pinned. It is a great source of knowledge about every object being pinned, 

including local pinned variables.

In WinDbg we are able to list pinned handles, as soon will be presented. 
However, they are not the same as pinned local variables discussed here. 
this makes a difference you may observe in \.net CLR Memory\# of pinned 
objects counter - it counts all pinned (not moved) objects at the GC time, 
while via WinDbg we can only list pinned handles. on the other hand, perfView 
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is clever enough to list both types of pinning roots from its Heap snapshots. 
all this will be presented practically in scenario 9-2, including investigating 
PinObjectAtGCTime etW events.

 Stack Root Scanning
With all the description provided so far, it is easy to understand how GC Info helps 

to constitute stack roots. When all threads are suspended at their safe points, it can 

be decoded from GC info what live slots are there. Each such slot (either on stack or 

register) is being treated as root and starts marking traversal from it.

one can wonder how goto statement is being handled in the context of stack 
roots. It allows us to transfer the program control directly to a labeled statement - 
making an unconditional jump. It could disrupt the operation of the entire 
technique related to GC info described here - all of a sudden a thread could be 
executing a completely different set of data inside a completely different block of 
code. However, goto statement is not so powerful. as C# Language specification 
says about labels (which are goto targets): “a label can be referenced from 
goto statements (§8.9.3) within the scope of the label. this means that goto 
statements can transfer control within blocks and out of blocks, but never into 
blocks.” thus, goto statement can’t simply jump out of a method to a different 
method. It can’t also jump into nested blocks, omitting code in between. In 
other words, goto statement is made safe. this is also useful for the GC Info 
mechanism. With the current limitations, executing goto statement is nothing else 
than changing the instruction pointer to a proper code inside a method.

 Finalization Roots
Finalization is a mechanism used to add some behavior when an object is being 

collected. Most often it is used to make sure that unmanaged resources held by an object 

will be released. Because of its importance and some common caveats, finalization is 

described in detail in Chapter 12.
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For now it will be enough to say that to track objects that need to be “finalized,” GC 

maintains a special queues. Those queues hold references to “ready for finalization” 

objects. Thus, they also constitute roots that should be scanned.

Scanning ready to the finalization queue is straightforward - GC goes through objects 

in it one by one and starts marking traversal from each of them.

If you would like to investigate scanning finalization roots in CoreCLR source, start 
from CFinalize::GcScanRoots method call from gc_heap::mark_phase 
method (with GCHeap::Promote callback).

There is more practical, development related knowledge about finalization in 

Chapter 12.

 GC Internal Roots
As explained in detail in Chapter 5, in case of partial GC there is a need to include 

references from older-to-younger objects (see Figure 5-8). This step includes traversing 

through references inside objects stored in cross-generational remembered sets - 

through the cards mechanism. Card words and bundles described in Chapter 5 help to 

quickly identify memory regions that may be sources of such references. These are called 

the GC internal roots because they are originated from the user code.

Having cards information, scanning cards consists of the following, pretty 

straightforward steps:

• Outer loop finds continuous regions of set cards - those represent 

memory regions that contain objects with cross-generational 

references (let’s call them set card regions). For each such region:

• the first object is found (in case of Small Object Heap, with the 

help of bricks described in Chapter 9),

• Scanning of object starts inside this region one by one - objects 

that contain references are checked whether such reference is 

indeed cross-generational. If yes, it is treated as a root so it starts 

marking traversal.
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During such processing GC calculates also the card’s efficiency ratio - it’s for 

detecting how many cards are pointing to the actual generation 0 region versus how 

many are pointing to ephemeral regions. This ratio is then used during deciding 

what generation should be collected - if this ratio is too low GC chooses to condemn 

generation 1 instead of generation 0.

Card roots scanning is done after the previously described stack roots scanning. This 

means a lot of objects were probably already visited (marked) so card roots may or may 

not visit many more objects.

Marking through cards is realized by methods gc_heap::mark_through_
cards_for_segments (for soH) and gc_heap::mark_through_cards_for_
large_objects (for LoH) called from gc_heap::mark_phase method.

soH version uses gc_heap::find_card to find ‘set’ cards regions and gc_
heap::find_first_object for such region. For objects found in that way (that 
contain outgoing references) gc_heap::mark_through_cards_helper is 
being called, which goes through its reference fields. For target objects that are 
indeed cross-generational, it calls gc_heap::mark_object_simple callback 
that starts marking traversal.

LoH version uses very similar logic based on gc_heap::find_card and 
gc::heap::mark_through_cards_helper methods. the main difference 
is that dirty regions are scanned object by object due to not having bricks 
there.

Low cards’ efficiency may be a reason for condemning the older generation that 

initially requested. It was already mentioned in the “Generation to Condemn” section 

in Chapter 7. Such situations may be observed by PerfView with the help of Condemned 

reasons for the GCs table from GCStats report - if it occurs, Internal Tuning column will 

point which generation was tried to be condemned because of this.

Regular Internal Tunings are most probably natural and we should not be worried 

about them. From the user’s perspective, the only effect it has is that it would do a 

generation 1 GC instead of a generation 0 so it’s not a big difference.
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 GC Handle Roots
The last type of roots are various GC handles. We already seen them in Chapter 4. There 

are various types of handles, but they are stored in a single global handle table map. That 

handle table is being scanned for set of handle types and their targets are treated as roots 

that start marking traversal. Two most important handle types that are searched for are:

• strong handles - strong handles are like normal references. 

We may create them explicitly via proper GCHandle.Alloc 

call. They are also used by CLR internally, for example to store 

preallocated exceptions - like Exception, OutOfMemoryException or 

ExecutionEngineException.

• pinned handles - a subcategory of strong handles. When an object is 

being pinned via Pinned handle (with the help of proper GCHandle.Alloc 

call), a new handle of type “pinned” is created with that object as a target. 

During Mark phase those handles are treated as roots and the objects 

they point to are pinned, which means “pinning bit” is set in the object 

header. It is later on used by Plan phase (and cleared before GC ends).

There is also an important variation of a pinned handle type - so-called async 

pinned handle. It has the same meaning as regular pinned handle (making an object not 

movable) but it is used internally by the CLR with asynchronous I/O (like file or sockets 

reading and writing). Such handle has an additional feature of unpinning an object 

internally, as soon as the asynchronous I/O operation completes (without waiting for 

the explicitly releasing such handle from code). It allows it to make pinning related to 

such popular operations as short as possible, which is always good from its overhead 

perspective. However, as it is only used for .NET internal needs, we will be rather not 

interested in such type handle during our everyday work. At least not until our code 

performs such a tremendous amount of long-running asynchronous I/O operations that 

the resulting pinning starts to become a problem (i.e., by introducing fragmentation).

please note that pinning by handle (i.e., using GCHandle.Alloc(obj, GCHandle 
Type.Pinned)) described here is different than pinning via fixed keyword 
(described previously in the pinned local variables section). Result is the same - object 
will not be moved during heap compaction. the difference is only the root of such 
object - handles table in case of GCHandle and stack in case of fixed keyword.
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Please note that handle roots play a much more important role in the current 

runtime implementation than it may seem at first glance. Two crucial arrays stored in 

Large Object Heap (per AppDomain) are: an array storing references to interned strings 

and an array storing references to static objects (see Figure 8-1). Those arrays are pinned 

by the runtime itself. This is useful because various internal CLR data contains addresses 

to their elements. For example, in Figure 8-1, a string literal map has been illustrated 

to clearly show that it is not treated as a root for interned strings - it is only an auxiliary 

data structure for a fast search (referring to the appropriate elements of the array-storing 

references to interned strings).

It is interesting to see how some mechanisms are used internally to implement 

memory management logic!

Global handle table map

Small Object Heap Large Object Heap

String (interned)

(aka String Intern Pool)

Private Heap (unmanaged)

buckets

Object[] (pinned)

H MT

String literal map

buckets

GNORTS DENNIP

(for AppDomain statics)

Object[] (pinned)

pinned object

H MT

reference type static data

H MT

object with strong handle

H MT H MT

H MT

Figure 8-1. Handle tables as roots for different managed objects
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In CoreCLR source code it starts from GCScan::GcScanHandles (with 
GCHeap::Promote callback) methods that calls Ref_TracePinningRoots 
(for types HNDTYPE_PINNED and HNDTYPE_ASYNCPINNED), Ref_
TraceNormalRoots (for types HNDTYPE_STRONG, HNDTYPE_SIZEDREF and 
HNDTYPE_REFCOUNTED) and Ref_ScanDependentHandlesForRelocation.

We can easily see handle roots in actions thanks to WinDbg and SOS extension. 

Taking very simple code from Listing 8-26 as an example, we will investigate how 

different objects’ roots are reported. This is very useful to know while analyzing various 

cases of uncontrolled memory growth - we should understand what are the roots of the 

growing graph of objects.

Listing 8-26. An example program used to show different handle roots

public int Run()

{

      Normal normal = new Normal();

      Pinned onlyPinned = new Pinned();

      GCHandle handle = GCHandle.Alloc(onlyPinned, GCHandleType.Pinned);

      ObjectWithStatic obj = new ObjectWithStatic();

      Console.WriteLine(ObjectWithStatic.StaticField);

      Marked strong = new Marked();

      GCHandle strongHandle = GCHandle.Alloc(strong, GCHandleType.Normal);

      string literal = "Hello world!";

       GCHandle literalHandle = GCHandle.Alloc(literal, GCHandleType.

Normal);

      Console.ReadLine();

      GC.KeepAlive(obj);

      // ... free handles

      return 0;

}
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public class Normal

{

}

[StructLayout(LayoutKind.Sequential)]

public class Pinned

{

      public long F1 = 301;

}

public class Marked

{

      public long F1 = 401;

}

public class ObjectWithStatic

{

      public static Static StaticField = new Static();

}

public class Static

{

      public long F1 = 501;

}

By attaching WinDbg to the application running code from Listing 8-26 at the 

moment of Console.ReadLine, we may investigate various objects roots with the help 

of the !gcroot command. First, we may confirm that the normal object will be already 

treated as unreachable because JIT (with eager root collection) should notice that it is no 

longer used at this moment (see Listing 8-27).

Listing 8-27. Normal object - is not reachable due to eager root collection

> !dumpheap -type CoreCLR.CollectScenarios.Scenarios.VariousRoots+Normal

         Address               MT     Size

000001c6b4dd26a0 00007fff8e84bce0       24

> !gcroot 000001c6b4dd26a0

Found 0 unique roots
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Next, let’s see how roots are reported for an explicitly pinned onlyPinned object (see 

Listing 8-28). We may notice that the result is in line with Figure 8-1 - the root is said to 

be handle (of type pinned) from HandleTable that is an unmanaged internal CLR’s data 

structure (see Listing 8-28).

Listing 8-28. Pinned object - is reachable from pinned handle table 

(unmanaged)

> !dumpheap -type CoreCLR.CollectScenarios.Scenarios.VariousRoots+Pinned

         Address               MT     Size

000001c6b4dd26b8 00007fff8e84be80       24

> !gcroot 000001c6b4dd26b8

HandleTable:

    000001c6b0d015d8 (pinned handle)

    ->  000001c6b4dd26b8 CoreCLR.CollectScenarios.Scenarios.

VariousRoots+Pinned

Found 1 unique roots

> !gcwhere 000001c6b0d015d8

Address 0x1c6b0d015d8 not found in the managed heap.

Static reference type data are represented by ObjectWithStatic.StaticField field 

of type Static. Roots reported for such object instance are also in line with Figure 8-1. 

The reference to the instance is stored inside LOH allocated (denoted as generation 3 

here) array that is kept by a pinned handle from HandleTable (see Listing 8-29).

Listing 8-29. Static object - is reachable from pinned array from LOH (that is 

reachable from unmanaged pinned handle table)

> !dumpheap -type CoreCLR.CollectScenarios.Scenarios.VariousRoots+Static

         Address               MT     Size

000001c6b4dd2700 00007fff8e84c3b0       24

> !gcroot 000001c6b4dd2700

HandleTable:

    000001c6b0d015f8 (pinned handle)

    -> 000001c6c4dc1038 System.Object[]
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    ->  000001c6b4dd2700 CoreCLR.CollectScenarios.Scenarios.VariousRoots+Static

Found 1 unique roots

> !gcwhere 000001c6c4dc1038

Address          Gen   Heap              segment             begin      

allocated           size

000001c6c4dc1038   3      0     000001c6c4dc0000   000001c6c4dc1000    

000001c6c4dc5480    0x1ff8(8184)

You may often see a lot of such System.Object[] arrays being roots of various 

objects but do not be misled. Most often they are there because such objects are statics 

or interned strings as in our example.

A strong handle is similar to a pinned case - strong object from Listing 8-26 is said to 

be referenced from handle (of type string) from HandleTable (see Listing 8-30).

Listing 8-30. Object with strong handle - is reachable from strong handle table 

(unmanaged)

> !dumpheap -type CoreCLR.CollectScenarios.Scenarios.VariousRoots+Marked

         Address               MT     Size

000001c6b4dd26d0 00007fff8e84c020       24

> !gcroot 000001c6b4dd26d0

HandleTable:

    000001c6b0d01190 (strong handle)

    ->  000001c6b4dd26d0 CoreCLR.CollectScenarios.Scenarios.

VariousRoots+Marked

Found 1 unique roots

String literal in the example from Listing 8-26 should have two roots. One of them is 

string intern pool (a pinned array in LOH containing interned string references), and the 

other is strong handle created explicitly. Output of !gcroot command confirms that  

(see Listing 8-31).

Listing 8-31. String literal with additional strong handle (instance found by 

command !dumpheap -mt 00007fffed021400 -min 32 -max 32 )

! do 000001c6b4dd2650

Name:        System.String

MethodTable: 00007fffed021400
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EEClass:     00007fffebcdddc0

Size:        50(0x32) bytes

File:         F:\GithubProjects\coreclr\bin\Product\Windows_NT.x64.Debug\

System.Private.CoreLib.dll

String:      Hello world!

> !gcroot 000001c6b4dd2650

HandleTable:

    000001c6b0d01198 (strong handle)

    -> 000001c6b4dd2650 System.String

    000001c6b0d015e8 (pinned handle)

    -> 000001c6c4dc3050 System.Object[]

    -> 000001c6b4dd2650 System.String

Found 2 unique roots

Additionally, we may check that normal ObjectWithStatic instance has no handles 

roots but only stack roots (see Listing 8-32) - kept in register rsi to be more precise.

Listing 8-32. Instance of normal object - is still reachable from stack root 

(enregistered into rsi) due to GC.KeepAlive call

> !dumpheap -type CoreCLR.CollectScenarios.Scenarios.

VariousRoots+ObjectWithStatic

         Address               MT     Size

000001c6b4dd26e8 00007fff8e84c200       24

> !gcroot 000001c6b4dd26e8

Thread 273c:

     000000793097d530 00007fff8e79319d CoreCLR.CollectScenarios.Scenarios.

VariousRoots.Run()

        rsi:

            ->  000001c6b4dd26e8 CoreCLR.CollectScenarios.Scenarios.

VariousRoots+ObjectWithStatic

Found 1 unique roots
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It may be also very useful to list all (or specific type) handles in our application with 

the help of !gchandles command (see Listing 8-33).

Listing 8-33. Convenient !gchandles command to list handles in our application 

(with filtering possible)

> !gchandles

          Handle Type                    Object        Size            

 Data Type

000001c6b0d013e8 WeakShort      000001c6b4dc1e20        152               

System.Buffers.ArrayPoolEventSource

000001c6b0d017a8 WeakLong      000001c6b4dd2740         152           

System.RuntimeType+RuntimeTypeCache

000001c6b0d017f8 WeakLong      000001c6b4dc2878         64                  

Microsoft.Win32.UnsafeNativeMethods+ManifestEtw+EtwEnableCallback

000001c6b0d01190 Strong        000001c6b4dd26d0         24                  

CoreCLR.CollectScenarios.Scenarios.VariousRoots+Marked

000001c6b0d01198 Strong        000001c6b4dd2650         50                   

System.String

000001c6b0d011a0 Strong        000001c6b4dc2de0         32                   

System.Object[]

000001c6b0d011a8 Strong        000001c6b4dc2d78        104               

System.Object[]

000001c6b0d011b0 Strong        000001c6b4dc13e0         24                   

System.SharedStatics

000001c6b0d011b8 Strong        000001c6b4dc1300        144                   

System.Threading.ThreadAbortException

000001c6b0d011c0 Strong        000001c6b4dc1270        144                   

System.Threading.ThreadAbortException

000001c6b0d011c8 Strong        000001c6b4dc11e0        144                   

System.ExecutionEngineException

000001c6b0d011d0 Strong        000001c6b4dc1150        144                   

System.StackOverflowException

000001c6b0d011d8 Strong        000001c6b4dc10c0        144                   

System.OutOfMemoryException
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000001c6b0d011e0 Strong        000001c6b4dc1030        144                   

System.Exception

000001c6b0d011f8 Strong        000001c6b4dc13f8        128                   

System.AppDomain

000001c6b0d015d8 Pinned        000001c6b4dd26b8         24                   

CoreCLR.CollectScenarios.Scenarios.VariousRoots+Pinned

000001c6b0d015e0 Pinned        000001c6c4dc3488       8184                   

System.Object[]

000001c6b0d015e8 Pinned        000001c6c4dc3050       1048                   

System.Object[]

000001c6b0d015f0 Pinned        000001c6b4dc13a8         24                   

System.Object

000001c6b0d015f8 Pinned        000001c6c4dc1038       8184                   

System.Object[]

// ...

// statistical data

there are additional types of handles, especially weak handle described in  
Chapter 12. However, they do not differ from the perspective of this chapter so 
were omitted for brevity.

 Handling Memory Leaks
So you have observed that memory usage of your .NET application is growing in time? 

Regardless of the complexity of the marking mechanisms, just do not assume that there 

are any errors in it. In other words, increasing memory usage and memory leaks in our 

application are not caused by bugs in determining the reachability of objects! If there 

is a memory leak, most probably it is because in fact something continuously holds a 

reference to something else. Thus, the most typical problem in the whole .NET memory 

management topic is how to find the source of such memory leak - what are the roots 

holding it?
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But first of all, you need to find out if you really have a memory leak in the first place, 

and whether it really comes from managed code. Thus, investigation should be started 

with the two following steps:

• Check what part of the process memory is growing. It may be that due 

to some unmanaged library bug or misuse, it is unmanaged memory 

that is leaking. Such diagnostics are described in Chapter 4.

• If the occurrence of unmanaged memory leak is excluded, only then 

look at the managed memory, as described below.

The only way to be definitively sure of a managed memory leak is if memory is 

constantly growing despite the fact that full gen2 GCs are happening. Otherwise 

it could simply be because GC hasn’t gotten around to collecting the full heap 

yet. They may be such cases that memory is growing in gen2 but full GCs are not 

triggered because conditions are not met yet - from the GC perspective there is 

simply no need to do it (like, there is still a lot of memory available). Or there may 

be only non-compacting background full GCs, so memory simply grows due to 

fragmentation. Only if compacting full GCs happen without significantly helping in 

stopping overall memory growth in time, we may suspect a memory leak indeed is 

happening.

To distinguish those two cases, we should start from general measurements of 

GCs in time - if and how many GCs of generation 2 are executed? Use the tool of your 

preference, like Performance Counters or use GCStats view in PerfView. With the 

knowledge from this book you should be able to figure out why full GCs are not triggered 

by studying GC Events by Time and Condemned reasons for GCs tables from GCStats 

view.

After confirming that indeed gen2 GCs are there, we may start investigating the 

reason behind the memory leak. What are the roots holding more and more objects 

not becoming dead? This is not an easy question to answer. In simple applications, it is 

sometimes enough to carefully analyze the committed changes - because the problem 

most often manifests itself after the deployment of the new version of the application. 

However, it is difficult to count on such a solution.
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In larger applications with tens of thousands or millions of objects, constantly 

collected and created, it is really difficult to see this real source of the memory leak. 

Complex maze of connections between objects all tangled up with each other do not 

make things easier. There are two main ways how one could approach the diagnostics of 

a memory leak problem:

• The first approach, simpler but requiring a bit more luck, involves 

the analysis of a single memory dump of our application. We will 

look for a large number of objects, which in total take up a lot of 

memory. Preceding the analysis with additional measurements, 

we can help ourselves by identifying, for example, a particular 

generation (practically always it will be generation 2 or LOH), which 

will narrow our search. We can notice the occurrence of many 

objects from a similar area of our application (specific business 

logic, specific cross-cutting concern, or specific technology like 

database access). In this case, the knowledge about the structure 

and overall source code of the application being researched is 

very useful. However, this does not change the fact that such 

analysis requires a lot of intuition. Groups of numerous objects 

in our application can be many and not all must be a source of 

the memory leakage. Some of them may simply have to exist in 

order for the application to function properly. This makes analysis 

of memory leaks a laborious but rewarding detective challenge. 

Exactly such approach was presented in scenario 5-2 from 

Chapter 5 and in scenario 8-1 below. In such cases we may also 

help ourselves by analyzing several process memory dumps from 

moments of increasing memory consumption. Analyzing them one 

by one, we can help our intuition. However, we can also get some 

help by comparing such snapshots automatically. This leads us to 

another method of analysis.

• The second approach, which is in fact is the preferred one, involves 

the analysis of two or more successive memory dumps and focusing 

on the differences that occur. It makes things easier - now from the 

whole complicated system of tangled up objects we may notice 

groups of objects that are increasing in size. The better tool we use, 

the easier such analysis should be. Still however, such approach 
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requires some intuition and insight into the structure and design of 

the application because there may be several groups that grow in size 

(and only one unintentionally). This approach is also presented in 

scenario 8-1 soon. 

As memory leak analysis is tedious and complicated, there is no single work-for-all 

recipe. Most often the analysis of real-world problems involves mixing all three above-

mentioned techniques and scraping the surface of a problem layer by layer.

Finally, one more piece of advice. Regardless of the specifics of our application and 

the source of the memory leak, in the analyzed memory dumps, strings will almost 

certainly be the most numerous. This is generally the specifics of the application these 

days, that they process text - from files, HTTP requests, data from the database, etc. 

Let’s have strings in mind but do not necessarily start with the analysis from them. 

Strings may, or may not, lead you to the real problem because at the end they may 

point to the true roots - cumulating objects most probably will have some string data 

in it.

 Scenario 8-1. nopCommerce Memory Leak?
Description: We have a plain installation of nopCommerce - open source e-commerce 

platform written in ASP.NET. We want to validate nopCommerce performance, including 

memory usage patterns. We have prepared a simple load test scenario for JMeter 3.2 - 

popular open source load-testing tool. It executes three steps in a loop - visiting home 

page, one of the categories (Computers) and one of tags (“awesome”). We have added 

think times (pauses) between each request to simulate real users. During the test we 

have noticed increasing memory usage while generation 2 GCs are happening regularly - 

seems like we have a typical memory leak! This is an alternative approach to the same 

problem as in scenario 5-2.

Analysis: We know that managed memory is somehow leaking during our load test (see 

Figure 8-2). Full GCs are happening but apparently, long-living objects are gathering 

in generation 2. We will try to find the cause using the methods described above for 

dealing with memory leaks. We will use PerfView as our tool because it provides great 

capabilities of gathering and analyzing memory snapshots. When Using this tool for this 

purpose, read beforehand the great and comprehensive help topics Collecting GC Heap 

Data and Understanding GC Heap Data available from the Collecting Memory Data 

dialog box.
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Note. Obviously, before jumping into .NET memory analysis, we may also check 

whether it is indeed managed memory leak. Please refer to scenarios 4-2, 4-3, and 4-4.

Approach 1 - Analyzing single memory snapshot
In the first approach we take a single memory snapshot from PerfView (Memory 

➤ Take Heap Snapshot option), the first one marked on Figure 8-2. When looking at 

objects’ statistics, we may notice interesting things. Figure 8-3 shows the overall memory 

usage of different objects sorted by their inclusive (total) memory space. Obviously, 

[.NET Roots] reference all data so it takes 100% inclusive space (see Inc column). Most 

of them are static roots (which is interesting in itself), but nevertheless most of the 

memory seem to be hold by the Autofac IoC container (it holds 74% of all objects). This 

still may or may not indicate the root cause - it is not surprising that in an IoC-controlled 

application, most objects are in control of it. However, it is obviously some trace. 

Additionally, a lot of “memory cache”-related objects are also noticeably big.

Figure 8-2. Performance Counters during first 10 minutes of load test - all 
generation sizes are presented. The moments of performing memory dumps have 
been marked on the chart.
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We may look at this data with an even clearer view of Flame Graph (see Figure 8-4). 

The same observations are confirmed, and it seems that via Autofac Container, a lot of 

Microsoft.Extensions.Caching.Memory.CacheEntry entities are held in memory.

Figure 8-3. PerfView’s By Name view of the Heap Snapshot (sorted by Inc column 
in descending order)

Figure 8-4. PerfView’s Flame Graph view of the Heap Snapshot (mousover label is 
intentionally left)

This still however may be an expected behavior if our application is designed to 

cache a lot of data. What is worrying is the constant increase of memory usage - maybe 

we are caching more and more but release nothing? At this stage, without a doubt, it is 

worth reaching for the application source code and checking the caching mechanisms 

again. But we may help ourselves a little by looking at application-specific objects 

referencing CacheEntry objects.
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By digging into Referred-From view for CacheEntry objects, we may find indeed 

some clues. When looking for nopCommerce-related objects, quite quickly we may find 

Nop.Core.Caching.MemoryCacheManager instances held by Nop.Services.Catalog.

ProductTagService instances (see Figure 8-5). There are not so many, but it gives some 

additional tracks to follow.

At this stage, we can look at the source code how the service ProductTagService 

uses cache and find the real cause presented already in scenario 5-2, so we will not 

repeat it here. Needless to say, it turns out that the problem lies not in the nopCommerce 

but in bad preparation of our load test. Be warned, this is not a contrived example. Been 

there, seen that.

By solving problems in this way, it is sometimes difficult to recognize the real source 

of the problem. This is due to the very intermittent relations between objects that turn 

out to be very important at the same time. For example, in our case Nop.Services.

Catalog.ProductTagService for the duration of the request actually has a reference to 

Nop.Core.Caching.MemoryCacheManager, but it quickly disappears and in fact what 

keeps the CacheEntry entities is the cache mechanism itself.

Approach 2 - Comparing memory snapshots
In the second approach we take two memory snapshots from PerfView (Memory 

➤ Take Heap Snapshot option), the second and the third ones marked on Figure 8-2. 

They are spaced in time by 3 minutes because the memory leak under analysis is quite 

impressive. Sometimes you will need to compare snapshots taken every few dozen 

minutes. After taking both snapshots, we can compare them from the Diff menu. The 

results shown on By Name view seem to speak for themselves (see Figure 8-6). The 

overwhelming majority of new objects are CacheEntry type and other caching related - it  

Figure 8-5. PerfView’s Referred-From view of the Heap Snapshot (for type 
Microsoft.Extensions.Caching.Memory.CacheEntry)
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is indicated by positive values of the Exc (exclusive size of a given type) and Inc (inclusive 

size of a given type) columns, which means in between the two snapshots the total size 

of those types of instances increased.

In a properly functioning system, the number of new cache entries would be similar 

to the number of those that have already expired (assuming stable traffic on the page). 

Thus, inclusive size of CacheEntry instances and other cache-related types should be 

around zero.3 This points directly to the problems with the caching mechanism. At 

this stage, we can take a closer look at the CacheEntry instances in one or both of the 

snapshots, similar to approach 1 shown above.

 Scenario 8-2. Identifying the Most Popular Roots
Description: We would like to analyze the most popular kind of roots in our application. 

This may be helpful as an additional clue during memory leak analysis. By identifying 

the most popular roots, as long as they change along the time, we may find interesting 

patterns that will lead us to some conclusions. It is not realistic to expect that such 

analysis will lead us directly to the root cause of a problem. However, in the tedious 

process of reaching the truth, the more tips from different sources, the better.

Analysis: Events emitted by the runtime are great source of knowledge. It is no different 

if you try to know the statistics of the roots. There is ETW/LTTng event MarkWithType 

that provides information how many bytes of different root kinds were marked (thus, 

reachable) during particular GC. There is one event emitted per each root kind, so most 

typically there are several such events per GC. Types are represented by numbers that 

comes from _GC_ROOT_KIND enum (see Listing 8-34).

3 Obviously there will be some fluctuations in the traffic on the page, which makes those numbers 
not equal to zero.

Figure 8-6. PerfView’s By Name view of two Heap Snapshot difference (sorted by 
Inc column in descending order)
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Listing 8-34. Enum representing root kind..

namespace ETW

{

typedef  enum _GC_ROOT_KIND {

            GC_ROOT_STACK = 0,

            GC_ROOT_FQ = 1,

            GC_ROOT_HANDLES = 2,

            GC_ROOT_OLDER = 3,

            GC_ROOT_SIZEDREF = 4,

            GC_ROOT_OVERFLOW = 5

      } GC_ROOT_KIND;

};

}

MarkWithType will be recorded when using simple GC Collect Only option at Collect 

dialog box in PerfView. As a result, we will be able to list all events on Events view, 

filtered to the process that interests us (see Figure 8-7). Unfortunately, currently there 

is no any summary or any graphical representation of such data inside PerfView, which 

makes analyzing those events quite difficult.

Figure 8-7. MarkWithType for a sample process (with columns Promoted, Type, 
HeapNum and ThreadID displayed)
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However, we can export filtered events as a CSV file (Open View in Excel option from 

the context menu) and analyze it in any tool understanding it. The most obvious ones 

are MS Excel or other spreadsheet-like tools. After importing such CSV data, we will be 

able to analyze in a way we like. For example, Figure 8-8 presents distribution over time 

of the size of promoted objects due to particular kinds of roots (prepared in MS Excel). 

Please note that vertical scale is logarithmic.

Figure 8-8. Promoted sized with respect to root kind

Let’s take into account that the values of this events are mostly incremental 

(excluding the case of rather uncommon GC_ROOT_SIZEDREF), in the order given in 

Listing 8-34. Each subsequent MarkWithType event during GC indicates how many bytes 

were additionally promoted due to the given root type. For example, promoted bytes 

due to the finalization roots will not count in objects already marked due to stack roots. 

Events for handles roots will not count in objects already promoted due to stacks or 

finalization, and so on, so forth.
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 Summary
In this chapter we thoroughly looked at the first crucial part of the GC - Mark phase. 

Understanding it is crucial in understating which and why objects become dead or stay 

alive. Thus, it is one of the most important practical parts of the knowledge about .NET 

memory in general.

The marking mechanism starts from the subsequent types of roots and gradually 

builds the final graph of reachable objects. Since the marking flag stored in an object 

is considered for each subsequent type of roots, the same object outgoing references 

(and thus the whole subgraphs of the entire resulting graph) are not repeatedly visited. 

Another type of roots simply enlarges the resulting graph.

Hopefully, with such a comprehensive description of the marking mechanisms 

described in this chapter, you understand much better what it is. Particularly surprising 

may be the fact that both interned strings and static reference data are operated by the 

same marking mechanism as for other objects!

Having said that, we may now proceed to description of the next important step in 

the GC process - Plan phase - explained in the next chapter.
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CHAPTER 9

Garbage Collection - Plan 
Phase
After the mark phase, all objects have been identified as reachable or not. Those 

reachable are being marked by a dedicated bit. Some of the marked objects may be 

additionally marked as pinned by another bit. At this moment Garbage Collector has all 

necessary information to start its job. But the question arises - should it proceed with 

Sweep or Compact collection?

To answer this question, we can do one of two things. We can make an educated 

guess, for example - based on the previous memory usage patterns or the previous 

effects of sweeping and compacting collections. However, this still would be only a guess. 

And in such dynamic conditions as the continuous creation and removal of objects, it's 

hard to expect that our guessing will be much more than just a lottery.

Instead of guessing, we can in some way calculate whether in current conditions it 

pays off to Compact, or whether the resulting fragmentation is not so large and we can 

do just Sweep. This is a much more promising approach. Depending on the accuracy 

of our calculations, we are getting closer to the optimal solution. But as we will notice 

soon, the exact prediction of the resulting fragmentation is not so easy (mainly due to the 

pinning). We come to a certain paradox - to know if it is worth making compacting, you 

need to make compacting and see the result.

But how to compact while not doing it? This is exactly what the Plan phase really 

does. It calculates all information in such a way that they directly correspond to the 

information about the result of the compacting process. This information is prepared “on 

the side” - without actually moving objects. In this way we get to know the exact and the 

actual result of possible compacting.

Moreover, that information is prepared in a way directly used by both Compacting 

and Sweeping later on. If a compacting result is promising (and we will take a closer 

look at this decision later in this chapter) - GC performs compacting using directly the 
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collected information. If Sweep is enough, the collected information is also directly used 

for sweeping. And since compaction is a lot more often than sweeping, especially for 

ephemeral collections, such simulated compaction results are rarely discarded.

In that way we may see the Plan phase as a main horsepower of the whole GC 

process. It is doing all heavy, necessary calculations. Sweep or Compact phases are 

only then consuming results of those calculations in a more or less complicated, but 

straightforward manner.

So how this magic happens that the Plan phase somehow “executes” both 

compacting and sweeping at the same time without manipulating objects on the 

Managed Heap? The answer is very interesting, so I invite you to read further. The 

description is quite detailed but we are in the heart of the GC here. Understanding the 

Plan phase gives the best insight what and how GC really works. I believe it pays off to 

really understand this!

The processes described in this chapter are slightly different in SOH and LOH.

 Small Object Heap
Let's start from the SOH planning description first. It is a little more complex than the 

case of LOH, so after understanding it, we will understand LOH version easily.

 Plugs and Gaps
Imagine a fragment of the Managed Heap (inside Small Object Heap) right at the 

beginning of the GC process (see Figure 9-1). There are some objects located next to 

each other. Each object obviously consists of a header, Method Table pointer, and at least 

one pointer-sized field (even if it is not used, as mentioned in Chapter 4). Some objects 

are bigger, some are smaller.

Figure 9-1. A fragment of the Managed Heap (inside Small Object Heap) right at 
the beginning of the GC process (H stands for header, MT stands for method table 
pointer, objects are marked by light gray filling)
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Imagine that after the Mark phase described in the previous point, all reachable 

objects have been marked (see Figure 9-2). At this point the planning phase comes into 

action.

During the Plan phase whole condemned and younger generations are scanned 

object by object. This is easy because the size of the current object is easily calculated 

from the “hot” information inside an object. For arrays this is the base size of an object 

plus number of components times the size of component. During such scanning a 

dedicated pointer is simply advanced by the current object size (that's aligned).

The core principle of the planning phase is to group all marked and not-marked 

objects into groups during such an object-by-object scan (see Figure 9-3). And so a 

group of two kinds may be created:

• plug - represents an adjacent group of marked (reachable) objects

• gap - represents an adjacent group of not-marked (unreachable) 

objects

By splitting the whole Managed Heap into a series of plugs and gaps, we can easily 

calculate important information (see Figure 9-4):

• With each gap its size and location may be remembered. If Sweep 

collection will be chosen, most of the gaps will become a free space 

managed by the free-list item.

Figure 9-3. Plugs and gaps on the Managed Heap

Figure 9-2. A fragment of the Managed Heap right after Mark phase (medium 
gray objects are marked)
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• With each plug its relocation offset and location are remembered. If 

Compact collection will be chosen, it will be executed by moving plug 

by plug using their relocation offsets.

How to calculate relocation offset? In the simplest scenario we could calculate it 

as an accumulation of all sizes of previous gaps (as we have done in Figure 9-4). This is 

however much more complex in a real implementation. It uses its own internal allocator 

to find a proper address for each successive plug to relocate to, and this address is then 

recorded instead of actually moving the plugs there.

if you are interested in details and want to study CoreClr code, all this happens 
in gc_heap::plan_phase method. inside this method, by scanning successive 
objects, plugs and gaps are discovered. the new location of each plug is calculated 
by calling allocate_in_condemned_generations or allocate_in_older_
generations. You can start there with your own investigations.

In case of a simple scenario when we can move plugs, that is, it's not pinned, a bump 

pointer allocator will lay each plug next to each other. Figure 9-5 illustrates some “virtual 

space,” which is the Managed Heap representation from the internal allocator's point of 

view (it represents how a heap would look like after compacting). This is an illustration 

only for our convenience - normally, the allocator simply operates on the pointers 

updating them accordingly. Plan phase for our small fragment of the heap would consist 

of the following steps:

• At first allocation pointer is being reset to the beginning of the 

generation (see Figure 9-5a).

Figure 9-4. Size and offset information associated with plugs and gaps. Example 
values have been provided assuming single block (like header) is 8-bytes long
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• When first plug is encountered (consisting of one object), the 

allocator finds a place for it where allocation pointer is located 

(see Figure 9-5b) and moves the allocation pointer accordingly. 

The difference between the new and old location of the plug is 

remembered as its relocation offset.

• When next plug is encountered (consisting of three objects), 

the allocator finds a new place for it just after the previous one 

“allocated” plug. Again, the difference between new and old location 

of the plug is remembered as its relocation offset.

• When last plug is encountered, the same logic happens.

Figure 9-5. Calculation of plug relocation offsets is based on the internal allocator 
calculating a new address for each plug – (a) objects layout from Figure 9-4 and 
resulting view of the allocator on the Managed Heap, (b) internal allocator found 
a place for the first plug, (c) internal allocator found a plac for the second plug,  
(d) internal allocator found a place for the last plug
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As a result, all relocation offsets have been calculated so the GC knows exactly 

when eventually the allocation pointer will be placed if compaction occurs. That gives 

direct information about compaction efficiency used later during GC's decision on 

compacting.

in our example from Figure 9-5, we know that after compacting, space taken by 
objects will shrink by 136 bytes because this is a difference between the current 
and future location of the allocation pointer.

Our simplified case does not yet show why a more complex internal allocator is 

needed. This will happen when we go over to discuss pinning of objects.

To summarize what we have learned so far, by organizing objects into plugs and 

gaps, a complete set of information is obtained very efficiently:

• what is the compaction efficiency,

• where free-list items should be created in case of Sweep collection,

• where to move reachable objects in case of Compact collection.

The question arises, where to store plug- and gap-related data? GC could use a 

dedicated memory area managed by it for this purpose. However, in case of scenarios 

where there are many small gaps and plugs interleaved, this area would consume a lot 

of memory. In addition, intensive access to memory areas of the Managed Heap and 

separate areas for such information would not be efficient due to the CPU cache usage. 

Therefore, since GC is already intensively using the Managed Heap memory area, why 

not just reuse it to store plug- and gap-related information? This is exactly the approach 

that was decided in the Microsoft .NET.

If we build gaps and plugs appropriately, each plug will have its corresponding gap 

that precedes it.1 That is why GC stores interesting information only for every plug - just 

before where it starts, at the end of the preceding gap (see Figure 9-6). Content of the 

gap may be safely overwritten - it contains only unreachable objects that will be no 

longer used. Such plug info takes exactly 24 bytes (on 64-bit runtimes) or 12 bytes (on 

32-bit runtimes) - it contains the corresponding gap size, plug relocation offset, and 

1 The only exception could be the first plug not preceded by any gap, but we can omit it in our 
considerations. And as we will see soon, in fact each generation begins with a single empty 
object so even the first plug is always preceded with a gap.
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some additional data explained later (two bits being a part of relocation offset and two 

additional left/right offsets).

Storing plug info on the Managed Heap just before a plug is the main reason why 

even an empty object must be 24-bytes big (in case of 64-bit runtime). As a gap before a 

plug contains at least one object, it will be at least 24-bytes long. In this way it is nicely 

and elegantly assured that there is always enough room to store a plug info!

In that way, each gap and plug pair information is stored on the Managed Heap  

(see Figure 9-7). It will be used during Sweep or Compact phases later on.

If GC decides to perform compacting, it will use plug information very often. Please 

note that with such information it can answer the most frequent question (used when 

translating addresses) - what will be the new address of the object at address X? In this 

case, we only need to check if the address X belongs to some plug and if so, subtract from 

X the corresponding plug relocation offset. This question may be asked really, really 

often. All efforts must be made to respond efficiently. This is why plugs are organized 

into a binary search tree (BST).

Figure 9-6. Location of the plug information on the Managed Heap

Figure 9-7. Size and offset information associated with plugs and gaps stored on 
the Managed Heap itself (based on situation from Figure 9-4)
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Each plug info contains an offset to the left and right child plug info related to the 

given plug start (we have seen them in Figure 9-6) or 0 if there is no corresponding child. 

In that way a binary plug tree is build that contains addresses of all plugs (see Figure 9- 8). 

This tree is built in a balanced way so that for a node, all its left children are at smaller 

addresses, and all its right children are at higher addresses.

addresses in a plug tree point to the first object in a plug (their Mt field, as usual in 
Clr). GC knows where to find corresponding plug info by a constant offset related to it.

 Scenario 9-1. Memory Dump with Invalid Structures
Description: During some problem investigation, the full memory dump was taken off the 

.NET application. However, it seems to be unusable because data structures are invalid. 

For example, when invoking most SOS commands, the following message appears:

> !dumpheap -stat

The garbage collector data structures are not in a valid state for traversal.

It is either in the "plan phase," where objects are being moved around, or

we are at the initialization or shutdown of the gc heap. Commands related to

displaying, finding or traversing objects as well as gc heap segments may not

work properly. !dumpheap and !verifyheap may incorrectly complain of heap

consistency errors.

Analysis: Memory dump indeed could be taken during the GC planning phase, when 

there is no guarantee that objects will be in “normal state” - because the heap is not 

walkable by the normal means (meaning starting at the beginning of a segment and 

advancing by the object size as we talked about earlier in this chapter). In fact, if we look 

at CoreCLR code, we will see the following guard around Plan phase:

Figure 9-8. Plugs organized into a BST
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GCScan::GcRuntimeStructuresValid (FALSE);

plan_phase (n);

GCScan::GcRuntimeStructuresValid (TRUE);

It is the only place when such protection is made. Thus we can easily check if indeed 

our memory dump was taken in a such unfortunate moment by looking for threads 

executing GC-related code. There are four possible library and namespace combinations 

we should look for, depending on our environment:

• coreclr!wks - .NET Core with Workstation GC

• coreclr!srv - .NET Core with Server GC

• clr!wks - .NET Framework with Workstation GC

• clr!srv - .NET Framework with Server GC

So, for example, if we have a dump of .NET Core application with Workstation GC 

enabled, we may look for it in the following way:

> !findstack coreclr!wks

Thread 000, 6 frame(s) match

        *  00 000000a963b7cd30 00007ff903bb0b48  CoreCLR!WKS::gc_heap:: 

plan_phase+0xa9

        *  01 000000a963b7ce40 00007ff903bb095a CoreCLR!WKS::gc_heap:: 

gc1+0x178

        *  02 000000a963b7ceb0 00007ff903b90d21 CoreCLR!WKS::gc_heap:: 

garbage_collect+0x5ca

        *  03 000000a963b7cf20 00007ff903b90e98 CoreCLR!WKS::GCHeap:: 

GarbageCollectGeneration+0x191

        *  04 000000a963b7cf60 00007ff903b90b15 CoreCLR!WKS::GCHeap:: 

GarbageCollectTry+0xe8

        *  05 000000a963b7cff0 00007ff903670613 CoreCLR!WKS::GCHeap:: 

GarbageCollect+0x2a5

Obviously, in our case, we are indeed in the middle of Plan phase because there is a 

thread executing it.

However, from my own experience, this message may be also displayed in case of 

the generic problem of getting GC data because not the proper SOS was loaded (for 

example, .NET 2.0 runtime version instead of .NET 4.0 version or opposite).
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 Brick Table
Root of plug tree needs to be stored somewhere. Creating a single, huge plug tree for 

the entire Managed Heap would be impractical. While investigating consecutive gaps 

and plugs, adding a new item to the tree may require rebalancing it. In case of a huge 

tree covering each and every plug, it could be very costly. Traversing such a tree during 

lookup would also be expensive because it would involve the need to jump over many 

levels of the tree.

A much more practical approach is to build plug trees for consecutive address 

ranges. Such range is called a brick in CLR. Brick size is 2,048 B for 32bit and 4,096 B for 

64-bit runtimes. In other words, each 2 or 4 kB of the Managed Heap is represented by 

a single brick that contains information about its plug tree. Bricks are stored in a brick 

table that covers the whole Managed Heap (see Figure 9-9). Each brick table entry is a 

16-bit integer that may take three logically distinct values:

• 0 - brick has no plugs information assigned (there are no plugs in a 

specified address range).

• >0 - represents an offset of the plug tree root (this value is increased 

by 1 so that 0 could mean no information, as indicated above) in the 

corresponding memory region.

• <0 - represents an information that such brick is a continuation of 

previous bricks (there is a big plug that spans multiple bricks) and we 

should jump back a given amount of bricks to the start.

Figure 9-9. Bricks and brick table
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By combining the brick table entry with the left and right offsets inside plug 

information of each plug, the plug tree is represented in an efficient way (see Figure 9- 10). 

An example brick table entry contains value 0x6f1 - it represents an offset of plug tree root 

inside corresponding memory region. Because it is a second brick table entry, it represents 

a region between addresses 0x1000 and 0x2000. It means that the root is located at the 

address 0x6f0 (positive values must be reduced by 1 as denoted above) plus 0x1000, which 

gives address 0x16f0 on the Managed Heap. Starting from this address, we have access to 

the entire plug tree using the appropriate offsets contained in the plug information.

both brick table entry and left/right offsets are short integers (16-bit) because they 
allow us to store a value between -32767 to 32767 which is enough to represent 
offsets inside at most 4-kb address ranges.

When answering the question, “what will be the new address of the object at  

address X?,” the following, simple steps must be taken:

• Calculate the brick table entry based on address X - by simply 

dividing it by a brick size.

• If brick table entry is <0 - jump into proper brick table entry and 

repeat.

• If brick table entry is >0 - start to traverse plug tree to find proper 

plug.

• Get relocation offset from the plug and subtract it from X.

Figure 9-10. Bricks and brick table example - (a) brick entry as a root of plug tree 
and plug info entries with child information, (b) logical plug tree representation
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At this point, we could conclude the description of the operation of Plan phase. All 

necessary information has been collected so GC could proceed further. Compaction 

efficiency could be taken from the relocation offset of the last plug. However, there is still 

one, very important piece of the puzzle to describe, which makes the whole technique 

more complex.

 Pinning
If an object is pinned, it is most probably because we want to pass its address to the 

unmanaged code (see Figure 9-11).

We cannot simply move a pinned object during compacting because unmanaged 

code has no chance to be aware of it. It will still refer to the same address, which will now 

point to a completely different set of data (see Figure 9-12).

Pinning complicates quite significantly a simple technique described in the 

previous section. Pinned objects have to be taken into consideration in a special way by 

internal allocator and when building a plug tree. This section explains how it has been 

implemented.

Figure 9-11. Pinning example. Pinned objects are marked as dark gray

Figure 9-12. Pinning example - unmanaged code accessing undefined data after 
pinned object has been moved
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Because of pinning, in fact there are three kinds of objects group possible:

• plug - represents a group of marked (reachable) objects,

• pinned plug - represents a group of pinned (and thus marked) 

objects,

• gap - represents a group of not-marked (unreachable) objects.

Imagine first the simplest scenario - a pinned plug is located just after some gap (see 

Figure 9-13). In this case we do not change much. We may store plug info as usual, at the 

end of the corresponding gap. We will store proper left/right offset when building a plug 

tree. The main difference is that we should zero relocation offset for such plug.

Additionally, with all pinned plugs a size of the free space before it (in case of 

compacting will be chosen) is stored (see Figure 9-13b).

In that simple manner, during compaction normal plugs will be moved while the 

pinned plug will not (see Figure 9-13c). This is because the internal allocator described 

previously simply does not move pinned plugs (it “allocates” a space for them exactly 

where they are).

Figure 9-13. Plug management when pinned plug is located after gap –  
(a) an example object layout with single pinned plug, (b) organization of plug 
information, (c) result of compaction
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please note that in such case as from Figure 9-13c, we may introduce a big free 
space gap between the normal and pinned plug. such scenarios will be discussed 
soon in the section, “Demotion,” to not overwhelm you now with all the details.

Data related to all pinned plugs are also remembered on a pinned plug queue. As we 

will soon see, GC often needs to store more information about a pinned plug that will 

just not fit in standard plug information, hence the necessity to maintain such a separate 

pinned plug queue.

interestingly enough, to store pinned plug data already known mark_stack_
array is being reused. this time, however, it stores pointers to a dedicated mark 
class instances instead of objects’ addresses. thus, besides its names, when 
analyzing CoreClr code you can very often meet mark_stack_array (and 
corresponding mark_stack_tos and mark_stack_bos pointers) in a code 
related to the pinned plug handling.

Imagine now a more complex scenario - a pinned plug is located just after some 

normal plug (see Figure 9-14a). We have a problem here - we would like to store 

pinned plug info right before it starts, as usual, but there is a normal, reachable object 

there! GC could make some exceptions, storing pinned plug info somewhere else 

but... interestingly enough, GC actually overwrites such object preceding pinned plug 

(see Figure 9-14b). It is possible because the Plan phase is guaranteed to run while all 

managed threads are suspended. Thus, there is no chance that any .NET code will try to 

access such “destroyed” object before we “recover” it later on.

The cut-off end of the last object (which is 3-pointer-sized 24 bytes on 64-bit) is 

stored together with other pinned plug data inside a new pinned plug queue entry. Such 

object ending is called pre plug (because it precedes pinned plug). It would be used later 

during execution of compacting or sweeping.
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please note that again the requirement of an object to be at least 24-bytes long 
helps here a lot - it is assured that in such scenario there will be enough space for 
plug information even with the smallest preceding object.

Such an approach allows us to treat pinned plugs in a generic way. Related relocation 

offset will be 0, gap size will be set artificially to 24 bytes,2 and such plug info will be 

incorporated into the plug tree as usual (see Figure 9-15).

2 Although there is no real gap here, GC needs to account it for its statistical purposes.

Figure 9-14. Plug management when pinned plug is located after normal  
plug - (a) an example object layout with single pinned plug after normal object,  
(b) organization of plug information with end of the object stored as pre plug,  
(c) possible result of compaction

Figure 9-15. Logical representation of plug tree for plugs from Figure 7-43

Chapter 9  GarbaGe ColleCtion - plan phase

https://doi.org/10.1007/978-1-4842-4027-4_7#Fig43


638

However, this is not the end of adventures with complications resulting from pinning 

objects. Imagine a scenario when a pinned plug is located just before some normal plug (see 

Figure 9-16a). This raises another problem – a normal plug would like to store its information 

just before it starts, where the pinned object ends. But pinned objects may be accessed by 

unmanaged threads that are not suspended even during GC (see Figure 9-16b). Hence, 

pinned objects must be guaranteed to be untouched all the time. The solution is easy - 

instead of creating a new plug, the object right after it is being incorporated into pinned plug 

(see Figure 9-16c). Single pinned plug entry will be modified accordingly. We will see in a 

later section how such information would be consumed in case of compacting.

Figure 9-16. Plug management when pinned plug is located before normal 
plug - (a) an example object layout with single pinned plug, (b) organization 
of plug information that needs to be handled properly, (c) organization of plug 
information

It is a kind of compromise. From now on both pinned and normal objects are treated 

as an extended pinned plug so they will count into all pinning-related disadvantages. 

Pinning should be avoided but what is done here is exactly the opposite - we are 

aggressively pinning an additional, normal object. The advantage of the still generic 

treatment of plugs prevails here, however, over the disadvantages. If a normal object 

located after a pinned object is small, the introduced disturbances will be negligible.
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This could be however problematic if a pinned object is followed by a large block 

of marked objects. Should all of them be included as an extended pinned plug (giving 

theoretically pinned plugs in size of megabytes or gigabytes)? Obviously not. Extension 

of pinned plug is done only by a first, single object.

Imagine a pinned object followed by at least two marked objects (see Figure 9-17a). 

Pinned plug will be extended as described previously. This allows us to create a normal 

plug from the following marked objects because it is safe to overwrite the last normal 

object (see Figure 9-17b). Obviously, the ending of such “destroyed” object must be 

stored elsewhere like it was in case of pre-plug data. Such an object ending is called post 

plug. It would be used later during the execution of compacting or sweeping.

To summarize, the most typical scenario is when a pinned object is lying inside a 

larger block of marked objects (see Figure 9-18a). In such a case, both pre and post plugs 

must be saved and three separate plugs (including one pinned and extended) will be 

created (see Figure 9-18b).

Figure 9-17. Plug management when pinned plug is located before at least  
two marked objects – (a) an example object layout with single pinned plug,  
(b) organization of plug information
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This has several implications:

• Copying pre and post plugs introduces memory traffic - the more 

pinned objects, the more cumbersome it may become.

• Pinned plug can be extended by a single object so more memory 

is being pinned than it could be - if the normal object is big, we are 

freezing a significant memory region, disturbing the achievement of 

small fragmentation.

• During Plan phase some objects on the Managed Heap are 

“destroyed” making it not “walkable” in a normal way. We may hit 

this problem when analyzing memory dumps (see Scenario 9-1).

 Scenario 9-2. Investigating Pinning
Description: Thanks to \.NET CLR Memory\# of Pinned Objects Performance Counter, a 

lot of pinning has been observed in our application on the production environment  

(see Figure 9-19). We would like to investigate whether it is intentional or not.

Figure 9-18. Plug management when pinned plug is located inside larger  
block of marked objects – (a) an example object layout with single pinned plug,  
(b) organization of plug information
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Figure 9-19. \.NET CLR Memory()\# of Pinned Objects

Analysis: As you may remember from previous pinning descriptions, there are in fact 

two sources of pinning:

• local pinned variables - objects that are local variables, often created 

implicitly by using fixed keyword. Their life is limited to containing 

method lifetime. Thus, memory dump or Heap Snapshot (from 

PerfView) will show only a small slice of them based on what is 

currently executing. However, there is PinObjectAtGCTime ETW 

event emitted for every such object.

• pinned handles - objects that are pinned explicitly by pinned 

handle reference. Those include some internal objects held by CLR 

itself, as well as those explicitly created by GCHandle.Allocate 

call. The handle table resides in memory for an entire application 

lifetime so it may be easily analyzed from memory dump or Heap 

Snapshot. ETW sessions contain such information also in the form of 

PinObjectAtGCTime event, but only for the generation(s) that the GC 

is collecting (since handle table is generation aware).

Performance counter \.NET CLR Memory()\# of Pinned Objects also counts both 

types. At the beginning we do not know which type of pinning is contributing more.

We may start our analysis by recording ETW-based session during periods when 

# of Pinned Objects is high. Using PerfView, .NET option will be enough (without GC 

Collect Only selected). After opening GCStats report from Memory Group, we should 

see confirmation on noticeable number of pinned objects (see Figure 9-20). The last 
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As said, there is PinObjectAtGCTime event emitted for every pinned object during 

Mark phase. We can simply investigate those individual events from the Events view - 

especially interesting there is a TypeName field (see Figure 9-21). Only by looking at it, we 

can sometimes easily identify the source of pinning, if the pinned type is unique enough.

Figure 9-20. Pinned Obj column in GC Events by Time table

Figure 9-21. ETW Microsoft-Windows-DotNETRuntime/GC/PinObjectAtGCTime

column, named Pinned Obj, indicates the number of pinned objects each GC has 

promoted. Those values should be the same as observed by Performance Counter. If 

Performance Counters are not available (in case of .NET Core runtime), you can start 

from here to check whether there is a noticeable pinning in your application.

Obviously, in our case, # of Pinned Objects value comes mainly from local pinned 

variables, observed by PinObjectAtGCTime event.

please note that PinObjectAtGCTime have no stack traces attached. We could 
enable them by using @StacksEnabled=true option for .net etW provider, but 
it would not help us at all. the stack trace of such events is always inside the GC 
code, not at the place where pinned object is being used.
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There is however a much better view to analyze this source of pinning - specially 

dedicated Pinning At GC Time Stacks view from Advanced Group. It does additional 

analysis and grouping to provide summarized data. The default By Name view will show 

the main contribution of types that were pinned (see Figure 9-22). We see that all pinned 

objects are grouped into a NonGen2 source.

Figure 9-22. Pinning At GC Time Stacks - By Name

Figure 9-23. Pinning At GC Time Stacks - Callers of NonGen2

By selecting Goto Item in Callers command on it, we will be able to further analyze 

what types are the main sources of pinning. We may notice that they are in fact mostly 

“StackPinned” (see Figure 9-23). In our example, clearly, types from the System.

Data.SqlServerCe namespace have the largest contribution (namely, SqlCeCommand, 

SqlCeConnection and MEDBBINDING[] array).
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At this stage, by searching in source code for those type instances usage (with fixed 

keyword) should be enough to unambiguously identify the root source of such pinning. 

For example, System.Data.SqlServerCe.SqlCeCommand.ExecuteCommandText method 

contains code shown in Listing 9-1, where DbBinding field is of type MEDBBINDING[].

Listing 9-1. An example of local variable pinning from System.Data.SqlServerCe.

dll (decompiled by dnSpy)

fixed (IntPtr* ptr = this.accessor.DbBinding)

{

   // ...

}

There's another way to analyze objects pinned by handles, which is the !GCHandles 

SOS command inside WinDbg. Let's make a memory dump during high \.NET CLR 

Memory\# of Pinned Objects value. After opening it in WinDbg and loading SOS 

extension, we may list all pinned handles with the help of !GCHandles command (see 

Listing 9-2). We will see a list of objects pinned due to pinned handles - including CLR 

internals arrays (remember string intern pool or statics?), various buffers used by Kestrel 

server, and so on, and so forth. Currently there is no WinDbg extension that would help 

us listing stack-based pinning sources.

Listing 9-2. !GCHandles command to list all pinned handles

> !GCHandles -type Pinned

  Handle Type          Object     Size          Data Type

007f1374 Pinned      04988078   131084          System.Byte[]

007f1378 Pinned      04968058   131084          System.Byte[]

007f137c Pinned      04948038   131084          System.Byte[]

007f1398 Pinned      0490f058    32780          System.Object[]

007f13ac Pinned      04928018   131084          System.Byte[]

007f13b4 Pinned      0490b038    16396          System.Object[]

007f13b8 Pinned      048fb028    65532          System.Object[]

007f13bc Pinned      048f9008     8204          System.Object[]

007f13c0 Pinned      0403dbac       12          Bid+BindingCookie

007f13c4 Pinned      048f7fe8     4108          System.Object[]

007f13c8 Pinned      04918008    65532          System.Object[]

007f13cc Pinned      048e7fd8    65532          System.Object[]
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007f13d0 Pinned      048e3ff8    16332          System.Object[]

007f13d4 Pinned      048e1ff8     8172          System.Object[]

007f13d8 Pinned      048e17d8     2060          System.Object[]

007f13dc Pinned      048d18b8    65292          System.Object[]

007f13e0 Pinned      048c9918    32652          System.Object[]

007f13e4 Pinned      048c94f8     1036          System.Object[]

007f13e8 Pinned      048c5518    16332          System.Object[]

007f13ec Pinned      048c3518     8172          System.Object[]

007f13f0 Pinned      048c2508     4092          System.Object[]

007f13f4 Pinned      048c22e8      524          System.Object[]

007f13f8 Pinned      038c121c       12          System.Object

007f13fc Pinned      048c1020     4788          System.Object[]

Statistics:

      MT    Count    TotalSize Class Name

720dff90        1           12 System.Object

57fbb464        1           12 Bid+BindingCookie

720dffe4       18       417536 System.Object[]

720e419c        4       524336 System.Byte[]

Total 24 objects

The conclusion is simple - to have a good overview of pinning, we should look at 

ETW PinObjectAtGCTime events that take into consideration both pinning sources. Be 

aware that SOS extensions list only handle-related pinning sources.

As a final remark, the PerfView ability to analyze its Heap Snapshots is slightly more 

useful here. After opening such snapshot, we may look for [.NET Roots] row and select 

Goto Item in CallTree command. After removing folding (by clearing out Fold% field), 

you will be able to list all types of roots - including Pinned local vars (see Figure 9-24). 

We will see there already known to us the MEDBBINDING[] type as the main source of 

such kind of pinning. Remember that it is still only the static snapshot so stack-based 

pinning sources will not be listed exhaustively.
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it is sometimes also good to remove any grouping from Grouppats field and 
any folding from Foldpats field. this will produce more granular but yet more 
descriptive results. Figure 9-24 was prepared in such a way.

After identifying sources of pinning, we may decide whether they are avoidable or 

not. If they are not causing big fragmentation, most probably we may just leave them as 

they are. In case of being problematic (like causing big fragmentation), we have to find 

some solution. Approaches to avoid excessive pinning are presented in Chapter 13.

 Generation Boundaries
After Sweep or Compact, generation boundaries will be changed accordingly. It is rather 

simple to do in scenarios without pinned objects. Generation boundaries are aligned in 

such a way that they contain all accordingly promoted objects.

For example, imagine the layout of objects shown in Figure 9-25a during Full 

Collection. There are all three generations presented, and some objects are marked 

(reachable) in each of them. As we already know, during Plan phase the internal 

allocator calculates new addresses for plugs (see Figure 9-25b). But additionally, new 

generation boundaries are being calculated. All this is done again only virtually without 

moving any objects, hence Figure 9-25b shows the resulting view of the internal allocator 

on the Managed Heap as something abstract.

Figure 9-24. RefTree view of [.NET Roots] from PerfView Heap Snapshot analysis
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Figure 9-25. Calculating generation boundaries – (a) object layout, (b) resulting 
view of the allocator on the Managed Heap (light gray - dead objects, medium 
gray - live objects that are moved according to the dashed lines)

New generations’ boundaries are located in places that will contain all necessary 

survived objects. This may be easily calculated during Plan phase. There is however one 

small remark to mention. Each generation (even empty one) begins with a single Free 

space with a size of a minimum object. Such a generation start is useful when considering 

plug info storage for the first plug in the generation. It allows them to be treated in generic 

way also without worrying about having plugs that span two generations.

Hereinafter such a generation’s start is most often omitted to not clutter figures too 

much. Do not be surprised though when analyzing memory dumps to find out that each 

generation starts with 24-byte-long free space.

 Demotion
Previously in Figures 9-13 and 9-14, possible results of the compacting have been shown. 

It was not completely clear how the internal allocator will behave around pinned plugs 

and where generations will start. From the implementation point of view, the simplest 

solution would be just to reset the accumulated relocation offset after each pinned plug 

so each following plug will be allocated after it. Then the generation would start in places 

to cover all survived objects accordingly.
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This obviously would be very inefficient from the fragmentation point of view 

because it introduced sometimes big regions of free memory. Instead, the inner allocator 

is trying to fill all the gaps between pinned plugs with normal plugs and generation starts 

(see Figure 9-26). Plan phase for our small example fragment of the heap would consist 

of the following steps:

• At first allocation, pointer is being reset to the beginning of the 

generation (see Figure 9-26a).

• The allocator finds a place for the first (see Figure 9-26b) and the 

second (Figure 9-26c) plugs.

• The allocator “allocates” pinned plug under its original address (see 

Figure 9-26d).

• The allocator finds a place for the last plug before pinned plug - there 

is enough room for it (see Figure 9-26e).

One must now decide where generations should begin. At the beginning of our 

example all objects were in generation 0. If we wanted to promote all survived objects 

into generation 1 as expected, including a pinned one, generation 0 should start just after 

the pinned plug - pinned object from generation 0 should be promoted to generation 1  

as any other objects. But it would introduce a big fragmentation in generation 1. The 

better decision is to reuse existing gap and end generation 1 earlier. Generation 0 will be 

planned to start before pinned object (see Figure 9-26f)!

Thus, because of such decision, the pinned object remained in generation 0 - it was 

not promoted from generation 0 to generation 1 as usual! In our example, this would 

happen to all pinned plugs located after our pinned plug (if there were any, and if there's 

no more non-pinned plugs).
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Figure 9-26. Inner allocator filling gaps created due to pinning – (a) object layout 
taken from Figure 9-14 and resulting view of the allocator on the Managed Heap, 
(b) internal allocator found a place for the first plug, (c) internal allocator found 
a place for the second plug, (d) pinned plug was not moved, (e) internal allocator 
found a place for the last plug before the pinned plug (there was enough room 
for it), (f ) generation 1 starts before theoretically promoted pinned plug - it was 
demoted (not promoted).

Such an event is called demotion (as the opposite of promotion) and means that the 

object does not end up in a generation that it is supposed to be in. Demotion could mean 

that object is not promoted, but it also could mean that it lands in the lower generation.
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So because of pinning, all three possibilities about the object's promotion are possible. 

Let's analyze it from the perspective of a pinned plug (extended by single object after it) 

from generation 1. The following three scenarios can happen for such a pinned plug:

• Before it there is a gap big enough to allocate normal plugs and 

generation starts for both generations 1 and 0 - in such case, a pinned 

plug would be demoted from generation 1 to 0 (see Figure 9-27).

• Before it there is a gap big enough to allocate normal plugs and 

generation start for generation 1 - in such case a pinned plug would 

be demoted, staying in generation 1 (see Figure 9-28).

• Before it there is not enough room for normal plugs - therefore both 

pinned plug and a normal plug (including large free space gap) must 

be promoted into older generation (see Figure 9-29).

Figure 9-27. Demotion from generation 1 to 0 – (a) objects layout, (b) result of 
compaction

Figure 9-28. Demotion from generation 1 to 1 – (a) objects layout, (b) result of 
compaction
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Internal allocator operates on plugs, not on single objects. It means that even 

there was enough place before the pinned object in Figure 9-29, for some objects from 

the normal plug, it would not be split into smaller plugs to fill such a gap. This is a 

compromise between inner allocator complexity over the fragmentation overhead it 

introduces. However, in general, such overhead is rather negligible. Typical pinning 

either should be short lived or long lived:

• In the former case, it dies in generation 0, which is small and 

dynamic enough to accommodate that overhead and not introduce 

fragmentation.

• In the latter case, pinned object lives in generation 2 so the fact 

of pinning will just be irrelevant most of the time (as long as a 

compaction in gen2 doesn't happen, whether it's pinned or not or is 

of no relevance to the GC).

Note please note that in the current implementation, only pinned plugs may be 
demoted (which mean pinned object optionally extended by single non- pinned 
object following it, if there is one).

Obviously, when there are multiple pinned plugs, only some of them may be 

demoted. It all depends on the current layout of plugs and gaps. It has been illustrated 

in Figure 9-30. Normal plugs reused gaps as effectively as possible. It resulted in the first 

gap being normally promoted white the second demoted from generation 1 to 0.

Figure 9-29. Normal promotion from generation 1 to 2 – (a) objects layout,  
(b) result of compaction (introduces unwanted fragmentation)
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Demotion is an optimization to make sure that as many gaps have been reused 

as possible. The remaining free space will be turned into free-list items if they are big 

enough so they will get a chance to be reused also.

This is probably why there is no diagnostic data about demotion available. We can 

observe it by thorough memory dump analysis, but it is unlikely you will ever need to. 

What you should be concerned about is the fragmentation level induced by pinned 

plugs. Demotion is however an important part of the internal allocator and Plan phase, 

so describing them without demotion would be not comprehensive. It is good to know 

that pinned objects may be promoted and demoted. Generational GC concept does not 

incur any limitations here by design.

in case of previously mentioned ephemeral segment built by reusing already 
existing gen2-only segment, pinned plugs living there will be demoted from 
generation 2 to generations 1 and 0.

There is an undocumented !DumpGCData command in WinDBg's SOS extension. In 

addition to data that can be obtained by other means (e.g., from ETW) - like compacting 

reasons, a number of different kinds of GCs - it contains also nowhere else available 

information called “Interesting data points”:

Interesting data points

        pre short: 0

       post short: 0

      merged pins: 0

   converted pins: 0

Figure 9-30. Example of both promotion and demotion
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          pre pin: 0

         post pin: 0

 pre and post pin: 0

 pre short padded: 0

post short padded: 0

As we see, those include:

• various types of pre and post pin - pinned plugs with both pre and 

post plug info,

• various types of pre pin - pinned plugs with only pre plug info,

• various types of post pin - pinned plugs with only post plug info,

• converted pin - objects that were converted to pinned because of 

pinned plug extension.

This method is obviously mostly useful for the GC developers because there is a little 

practical usage of those data to users. It is even not guaranteed that this command will 

exist in the future edition of SOS extension. If you would like to investigate more, search 

for gc_heap::record_interesting_data_point method in CoreCLR's source code.

 Large Object Heap
In fact, actually the plan stage in LOH is almost never needed because it is mostly just 

Sweeping. However, LOH must be organized in a way that allows it to Compact if we 

explicitly asked the GC to do it.

 Plugs and Gaps
Plan phase for Large Object Heap is required only for compacting. The default is to 

always sweep, which does not use plugs and gaps (as described later). In case of Large 

Object Heap, compacting must be turned on explicitly and is not executed by default. 

This means in the vast majority of .NET applications, LOH will never be compacted at 

all. However, Large Object Heap must be prepared to make compacting possible. Thus, it 

incorporates the concept of plugs and gaps in a simplified form.
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LOH is specific because it is guaranteed that only large objects are living there. This 

makes some simplifications possible:

• There is no such urgent need to group objects into plugs as separate 

objects are quite large by itself already. Thus, to simplify LOH Plan 

phase, each reachable object is treated as a separate plug. First of 

all, this is enough to provide good address translation efficiency 

(the object density in LOH is a lot lower than in SOH). Secondly, it 

helps to avoid fragmentation (it would be much harder to efficiently 

relocate huge plugs consisting of many large objects).

• To overcome overhead of plug info storage handling (including pre 

and post plugs around pinned plugs), objects in LOH are allocated 

with the small padding between them (see Figure 9-31). This padding 

in current implementation takes 4-pointer-sized words (32 bytes on 

64-bit) and is made into a normal Free object.

padding in loh described here is used for all current .net runtime compilations 
enabling explicit loh compaction. however, .net runtime may be compiled without 
this feature enabled, which will turn allocations in loh into “without padding” 
mode. because such runtime does not support loh compaction, there will be no 
need to plan phase and to create plugs (storing their info).

During the mark phase, each object may be identified as marked or marked and 

pinned. From each such object a corresponding plug is created (see Figure 9-32).

Figure 9-31. Layout of objects in Large Object heap, including padding between 
objects in case of a runtime supporting LOH compaction
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Before each plug, its information needs to be stored but because of padding, there 

is always enough space for it (see Figure 9-33). This information is really simple and 

contains only a relocation offset of the plug.

Relocation offset is calculated on the same basis as in case of Small Object Heap. 

Internal allocator finds a proper place for successive plugs (successive objects). As 

mentioned, this is why it is good to treat each object as a plug and not to group them into 

single, huge plugs. Allocator most probably would have a big problem to find a proper 

place for such huge plugs between pinned plugs.

Because there is no possibility that the plug info will overwrite another object in 

LOH, there is no need to maintain pre and post plug data.

Because of a relatively small number of objects and big objects sizes, there is no need 

to manage a plug tree for plugs in LOH. When answering the question, “what will be the 

new address of the object at address X?,” one simple step must be taken - get relocation 

offset from the plug info of X and subtract it from X. Thus, there is also no need to 

maintain bricks and a brick table for Large Object Heap.

As there are also no generations inside Large Object Heap, there is no need to 

recalculate generation boundaries. There is no demotion possibility either.

Figure 9-32. Layout of objects in Large Object heap, after Mark phase

Figure 9-33. Plug information stored in Large Object Heap (in preceding padding)
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Taking all that into consideration, Plan phase in LOH is much more simplified 

comparing to SOH. Before each normal or marked and pinned plug, corresponding 

info will be stored (see Figure 9-34). Additionally, with all pinned plugs a size of the 

free space before it, in case of compacting, is stored (in corresponding pinned plug 

queue entry).

As an important side note, pinning in LOH does not differ comparing to SOH. It 

introduces the same problem of possible fragmentation.

You will find large object heap planning code in gc_heap::plan_loh method 
from CoreClr source code.

 Decide on Compaction
After performing complex calculations in the Plan phase, GC has to decide whether it 

is worth compaction. There are some objective reasons that can force it. In most cases, 

however, the decision is based on the level of fragmentation.

The list of reasons why GC might decide to compact is as follows:

• It is a last full GC before throwing OutOfMemoryException - GC 

should do its best trying to reclaim memory.

• Compaction has been induced explicitly - for example, by providing 

appropriate GC.Collect parameter.

• We are running out of space in the ephemeral segment - as 

mentioned in the section about generation condemnation, GC is 

aggressively trying to reclaim memory before it decides to expand 

existing one or create a new ephemeral segment.

Figure 9-34. Result of the Plan phase in Large Object Heap (last padding does not 
have reloc saved because it preceeds a gap)
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• Generation fragmentation is high - if some generation has high 

fragmentation, collecting that generation with compaction is to be 

productive - significant memory regions may be reclaimed.

• Physical memory load in the system is high - if possible reclamation 

of memory due to compaction exceeds certain threshold, GC decides 

to compact.

In some of the decisions described above, a fragmentation threshold violation 

takes an important role. One can wonder what its value is. Each generation maintains 

its own threshold, consisting of two values taken from static generation data  

(see Tables 7-1 and 7-2):

• Total fragmentation - with the information gathered during Plan 

phase, it is quite easy to calculate specific generation fragmentation. 

It is enough to take into account the planned ending allocation's 

addresses in individual segments and any free space that will be 

created due to pinning. This value is represented by fragmentation_

limit column in Tables 7-1 and 7-2 (see Table 9-1 for a summary).

• Fragmentation ratio - this is the ratio of the above total fragmentation 

size to the size of the whole collected generation. This value is 

represented by the fragmentation_burden_limit column in the  

Tables 7-1 and 7-2 (see Table 9-1 for a summary).

Table 9-1. Fragmentation Thresholds for Generations

Fragmentation size Fragmentation ratio

Gen0 40000 50%

Gen1 80000 50%

Gen2 200000 25%

For example, generation 2 will be considered as too fragmented if the size of all 

fragmentation will exceed 200,000 bytes and it will be more than 25% of total generation size.

You will find compaction decision inside gc_heap::decide_on_compacting 
method from CoreClr source code.
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 Summary
Plan phase described in this chapter is often overlooked in simple GC description as 

consisting of “Mark-Sweep-Compact” phases. However, after reading descriptions in this 

chapter, hopefully you already understand how crucial and important this phase is. By 

preparing all necessary data, subsequent phases are just consuming it in a proper way.

Personally, I found it fascinating how clever is the combination of plugs, gaps, and 

brick tables to proceed with calculating both compacting and sweeping results without 

actually doing them. This is the part barely documented so far in GC-related materials. 

Thus, although practical implications of the knowledge from this chapter are not huge 

(except understanding how pinning may be troublesome to the GC implementation),  

I believe the curious reader will find all this information very interesting.

This is almost the end of the GC description. The next chapter finishes with the 

description of the last phases - Compact and Sweep.
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CHAPTER 10

Garbage Collection - 
Sweep and Compact
This last chapter regarding the GC details is the smallest one. Although it describes such 

crucial GC phases as Sweep or Compact, we already noticed how much is done to this 

point in the previous phases. After the decision made in the Plan phase (described in the 

previous chapter), now GC proceeds with one of the steps described here.

Please keep in mind, however, that while most of the calculations are already done 

at this stage, from a performance overhead perspective, Sweep or Compact phases are 

still the most contributing - it is the cost of accessing memory while modifying and/or 

moving plugs that is the most costly. Thus, although from an implementation point of 

view those stages are less complex than previous ones, from a performance perspective 

they are the most important ones!

Please also note that the most typical GC combination is to make SOH compaction 

and LOH sweeping, and then LOH sweeping is done before SOH compaction.

 Sweep Phase
If the GC does not decide to compact (or it has not been told explicitly in case of LOH), it 

proceeds with the Sweep phase. As described in Chapter 1, Sweep collection is easy. All 

no-longer reachable objects must be turned into a free space. We already know that in 

.NET GC terminology, it means that it must transform all or some gaps into free-list items.

As mentioned earlier and as you may probably now understand on your own, both 

Sweep and Compact phases are only a simple consumption of the information gathered 

during Plan phase. For a person only skimming this book, it may be quite surprising 

that both Sweep and Compact terms - which are so popular when describing GC in 

literature - are taking such a small part of the book. This is because all heavy calculations 

were already done in Plan phase!
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 Small Object Heap
In case of Sweep of Small Object Heap, the following steps are taken (see Figure 10-1):

• Create free-list items from gaps - from each gap, bigger than two 

minimal objects, a new free-list item is created and incorporated into 

a free list (as described in Chapter 6). Smaller gaps are just treated as 

unused free space (but counted into fragmentation statistics).

• Recover saved pre and post plugs - all “destroyed” objects are 

recovered by writing back pre and post plugs.

• Additional tallying work is done to update the finalization queue 

(to reflect new generations boundaries) and to age (or rejuvenate) 

survived handles of appropriate type.

• Rearrange segments accordingly, for example, by removing those 

no longer needed (or storing them in a reusable list in case of VM 

hoarding).
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Figure 10-1. Example of Sweep results in Small Object Heap (based on the 
information from Plan phase)
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if you would like to make your own investigations about Soh Sweep from CoreClr 
code, start from the gc_heap::plan_phase method. in the part enclosed by else 
block of should_compact conditional check, the two most important methods 
are called: gc_heap::make_free_lists creates free-list items from gaps and 
gc_heap::recover_saved_pinned_info recovers objects destroyed by pre 
and post plugs.

 Large Object Heap
In case of a Sweep of Large Object Heap, there is no Plan phase involved at all. Sweeping 

is implemented by scanning object by object (like in SOH Plan phase) and simply 

creating free-list items between marked objects. Additionally, any no-longer needed 

LOH segments are deleted (unless VM hoarding is enabled in which case they will be 

remembered is segment reusage list).

Such simple implementation of LOH Sweep is easy and efficient. It leads only to 

one disadvantage - fragmentation. Typically, it should not be a big deal. Allocated large 

objects sizes distribution most probably is quite natural - there are some common 

sizes and some variations around it. In such case, statistically reusage of free-list items 

should be good. However, if that’s not the case, users can consider asking for LOH to be 

compacted

 Compact Phase
If the GC does decide to compact (or it has been told explicitly to do so), it proceeds with 

the Compact phase. As mentioned earlier, it means consumption of the information 

gathered during Plan phase. Compaction phase in general consist of two main phases - 

moving (copying) objects and updating all references to moved objects wherever they 

occur. This makes the compact phase significantly more complex compared to Sweep 

phase. Detailed descriptions for both Small and Large Object Heaps are presented here 

although they are in principle similar to each other.
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 Small Object Heap
Compacting of Small Object Heap must be extremely efficient. By default, there are many 

gaps and plugs interleaved that may span gigabytes of data. Moving all that memory 

around while keeping all addresses valid is not a trivial task from the performance point 

of view. Let’s dig into proper implementation details.

if you would like to make your own investigations about Soh compaction from 
CoreClr code, take a look at relocate_phase (which updates addresses to 
moved objects) and compact_phase (which recursively traverses plug tree brick 
by brick by calling compact_plug and compact_in_brick methods).

Having information from Plan phase, Compact is a process consisting of the steps 

described in the following sections.

 Getting a New Ephemeral Segment if Necessary

This step is executed if the planning phase has shown a need of expanding the 

ephemeral segment (there would be not enough space for generations 0 and/or 1 after 

compaction). This is done either by expanding the current ephemeral segment, by 

reusing the other one (as described in Chapter 7), or by creating a new one.

 Relocate References

This step updates all occurrences of addresses of objects that will be moved later on. 

Thanks to the data gathered during Plan phase, this is possible before actually moving 

those objects. Obviously, it requires quite a lot of work because there may be a lot of such 

references scattered throughout the managed heap. Relocation makes a heavy usage of 

bricks and plug trees to fast translate current address into a new one. During this step, 

various memory areas are scanned for addresses to be updated. These include:

• references on the stack - all addresses on the stack are updated by 

runtime support to scan all managed threads stack frames finding all 

references to managed objects.

• references inside objects stored in cross-generational remembered set - 

in case of non-Full GC, all cross-generational references stored through 

cards (see Chapter 5) must be updated to reflect new addresses (those 

include both SOH and LOH cross-generational references).
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• references inside objects on Small and Large Object Heap - survived 

objects that contain references to other objects must have their 

references updated. In case of SOH, bricks and plug trees are used to 

find survived objects fast (as we know they are grouped into plugs). 

For full GC, in case of LOH, most typically there are only survived 

objects at this stage because LOH sweeping is done before SOH 

compaction. This allows us to scan survived LOH objects one by one 

quite efficiently without bricks support.

• references inside pre and post plugs - as we know, the ending part 

of some objects may have been damaged due to overwriting by plug 

info. Its original memory content is being stored inside pinned plug 

queue entries. If it contains references, they have to be updated also.

• references inside objects from ready to finalization queue - addresses 

of objects staying in such queue (see Chapter 12) need to be updated.

• references from handle tables - handles need to update their 

pointers.

The more reference rich your objects are, the more work you put on GC at this stage. 

This may not be a problem in typical applications. However, in the case of very complex 

data structures used on the hot performance path, it is worth considering the avoidance 

of direct object references.

if you would like to investigate CoreClr code of the relocation phase, start from 
gc_heap::relocate_phase method. the most important method used by it 
internally is a gc_heap::relocate_address method that utilizes bricks and 
a plug tree to translate address to a new relocated value. it is used among others 
by GCScan::GcScanRoots, gc_heap::relocate_in_large_objects and 
gc_heap::relocate_survivors’ methods.
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 Compact Objects

After all required references have been updated in the previous step, it high time the GC 

moved all survived objects eventually. It consists of the following steps (see Figure 10-2):

• copying objects - it is done plug by plug using their calculated 

relocation offsets,

• restoring pre and post plug info - damaged parts of the objects are 

being restored from the copy stored in pinned plug queue entries.
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Figure 10-2. Compacting objects in Small Object Heap by using information 
calculated during Plan phase

Although the description of this step is quite short and simple, it is worth realizing 

how much heavy work may be done here. In case of the full GC, copying all plugs 

throughout all Managed Heap may introduce quite significant memory traffic. This is in 

fact the place where the most of the time during compacting GC is spent.

One may wonder how object copying is implemented. Because they are copied one 

by one in-place as grouped, theoretically quite long plugs, how do they not overwrite 

each other? (including themselves, see Figure 10-3).
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The obvious solution immediately comes to mind - to use some intermediate buffer 

(see Figure 10-4). However, this would double the memory traffic - now every object 

would have to be copied twice. Such a solution is obviously unacceptable.
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Figure 10-3. Theoretical problem of copying objects - by copying in-place they 
may overwrite themselves

H M
T

H M
TTTTHH TTTTHHH TTTTHHH MMMMHH MMMMMMM H M
TTTTHH TTTTHHH TTTTHHH MMMMHH MMMMMMMH M
T

H M
TTTTHH TTTTHHH TTTTHHH MMMMHH MMMMMMM

Figure 10-4. Possible solution to the problem of copying objects - using a 
temporary buffer

After a deeper reflection, however, we will come to the conclusion that there is 

really no problem here. We treat objects unnecessarily as consistent Lego bricks, which 

must be copied in their entirety. However, these are only continuous areas of memory 

that can be copied in smaller pieces. That’s exactly the approach chosen by CLR. The 

point of sliding compaction is you always copy earlier addresses first, and you copy in 

a small enough quantity that naturally makes overlapping impossible (in .NET, as the 

smallest relocation address is at least one pointer size apart). Thus, object copying is 

realized by memcopy function that copy memory in groups of four pointer-sized regions 

at a time, then copying remaining space in two or single pointer-sized regions (see 

Listing 10-1).
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Listing 10-1. Main part of memcopy method used during object copying

void memcopy (uint8_t* dmem, uint8_t* smem, size_t size)

{

   const size_t sz4ptr = sizeof(PTR_PTR)*4;

   // ...

   // copy in groups of four pointer sized things at a time

   if (size >= sz4ptr)

   {

      do

      {

         ((PTR_PTR)dmem)[0] = ((PTR_PTR)smem)[0];

         ((PTR_PTR)dmem)[1] = ((PTR_PTR)smem)[1];

         ((PTR_PTR)dmem)[2] = ((PTR_PTR)smem)[2];

         ((PTR_PTR)dmem)[3] = ((PTR_PTR)smem)[3];

           dmem += sz4ptr;

           smem += sz4ptr;

        }

        while ((size -= sz4ptr) >= sz4ptr);

    }

    // copy remaining 16 and/or 8 bytes

}

Memory copying lines from Listing 10-1 will be compiled into several mov assembly 

instructions making those operations extremely efficient.

if you would like to investigate CoreClr code of compaction phase, start from the 
gc_heap::compact_phase method. its main job is to call for each active brick 
gc_heap::compact_in_brick that underneath calls gc_heap::compact_
plug method.

 Fix Generation Boundaries

Called after the compact phase to fix all generation boundaries, these steps reset internal 

allocation pointers, creates free space for planned allocation context, and do other 

additional necessary corrections.

Chapter 10  GarbaGe ColleCtion - Sweep and CompaCt



667

 Delete/Decommit Segments if Necessary

Rearrange segments accordingly, for example by removing those no longer needed (or 

storing them reusable list in case of VM hording).

 Creating Free-List Items

Before each pinned plug, a new free object is created and added to the free list if it is big 

enough (as we may remember, its length has been calculated and saved during Plan 

phase in pinned plug queue entry) - see Figure 10-5.
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Figure 10-5. Creating the appropriate free items before pinned plugs 
(continuation of Figure 10-2) 

Age roots

Additional aging are made to update the finalization queue (to reflect new generations 

boundaries) and to age (or rejuvenate) survived handles of the appropriate type.

 Large Object Heap
Compacting Large Object Heap is based on a similar technique like in case of Small 

Object Heap. However, due to the lack of generations, complex plugs, bricks and plug 

tree, its implementation is much simpler.

If enabled, LOH compacting is executed before SOH compacting. It consists of a 

single loop scanning LOH for marked objects and copying them to the destination one 

by one (using relocation offset calculated during LOH planning phase). Additionally, for 

pinned objects, a corresponding free space will be created before them (see Figure 10-6) 

and threaded into a free list. Padding between objects will obviously remain because it 

may be needed in the next GC runs.
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 Scenario 10-1. Large Object Heap Fragmentation
Description: During our application development, we have noticed that its memory 

usage is noticeable higher that we would expect. The application consists in processing 

large data packages and producing resulting data packages from them - let’s say it is a 

batch processing of images. The extract of its processing code is presented in Listing 10-2. 

Notice comments describing sizes of the processed data. Both input and output frames 

are allocated in LOH because they are bigger than 85,000 bytes. The data we want to store 

is 100 kilobytes (largeBlocks), so they are also created in LOH.

Listing 10-2. An example code that illustrates LOH fragmentation

void Main()

{

// ...

List<byte[]> largeBlocks = new List<byte[]>();

while (someCondition)

{

      // ...

       var frame = reader.ReadBytes(size);  // input frame is always bigger 

than 85,000 bytes

       var output = processor.Process(frame);  // output is slightly bigger 

than input frame
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Figure 10-6. Compacting objects in Large Object Heap by using information 
calculated during Plan phase
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      var largeBlock = new byte[102_400];

      // store some data from output in smallBlock

      largeBlocks.Add(largeBlock);

}

// ...

}

Please do not be fooled that it is only a contrived example that will never happen. 

Obviously, you will most probably not write such naïve code as in Listing 10-2. But 

processing a batch of data that produces some intermediate results that we need to 

store - that sound much more practical. Using arrays (especially byte arrays) is also 

not unjustified. It is really hard to introduce LOH fragmentation problems without 

using arrays and strings because those are the most common types that land in Large 

Object Heap. It is really hard to create a normal object with so many fields that it will 

be allocated in LOH. Thus, such code as in this scenario quite realistically reflects the 

essence of the real source of problems that you may encounter in the real world.

Analysis: Let’s assume that from some preliminary analysis, we already checked that 

indeed LOH is bigger than expected (see Table 10-1). We may have done that by using 

Performance Counters or ETW-based data.

Table 10-1. Expected versus Observed Size of Large Object Heap

# objects Expected [MB] Observed [MB]

1,000 102,400,000 152,769,104

2,000 204,800,000 324,972,048

3,000 307,200,000 463,287,752

4,000 409,600,000 686,795,056

By recording the ETW-based session in PerfView (with standard GC Collect Only 

option), we can quickly spot that the reason is LOH fragmentation (see Figure 10-7). As 

LOH Frag % column states, the fragmentation is around 48%. A lot of space is wasted!
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Obviously, as always, we can simply analyze our code to find what and when we 

are allocating LOH objects. Is there any way we could help ourselves? As very often, 

PerfView to the rescue! LOH fragmentation comes from the dead objects - they are 

making up fragmentation. Therefore, it would be best to check what objects most 

often die in Large Object Heap. In the case of such noticeable fragmentation, it is likely 

that they will be the source of the problem. Fortunately, PerfView can provide us such 

statistics if we record the ETW session with .NET option enabled (and not GC Collect 

Only or GC Only). After such recording has ended, we should be able to open Gen 2 

Object Deaths (Coarse Sampling) Stacks from Memory Group (see Figure 10-8). Besides 

its name, this analysis includes also LOH objects. As we can see, a lot of System.Byte[] 

arrays are dying. This may be helpful by itself (if this identifies unambiguously source of 

such allocations). But we may go further.

Figure 10-7. GC Events by Time table from Perf View’s GCStats report for the 
process under investigation

Figure 10-8. Gen 2 Object Deaths (Coarse Sampling) - By Name view from 
PerfView showing objects dying in Gen2+
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After selecting for type System.Byte[] an option Goto Item in Callers from Goto 

group in the context menu, we will see allocations stack traces of such dying objects (see 

Figure 10-9). This is now really useful information!

remember that this is sampling information based on an etw 
GCAllocationTick event. however, it is enough for loh objects, because such 
an event is generated for each 100k of allocations. in loh, 100k of memory can’t 
contain two whole objects as they are at least 85,000 bytes big by definition. in 
case of analyzing fragmentation in Soh, you can get less coarse results by using 
.net alloc or .net Sampalloc when configuring perfView’s collection.

Figure 10-9. Gen 2 Object Deaths (Coarse Sampling) - Callers view from PerfView 
showing methods that allocate System.Byte[]

We clearly see from the Callers view that there are two sources of dying byte[] 

allocations. However, Reader.ReadBytes() method allocates only a single dying array. 

On the other hand, Processor.Process allocates thousands of them.

In many applications, of course, there may be many different types of “often dying” 

objects. Generally, it is good to search for the cause of the problem from the top of the 

list of such objects. Thus, in our case, we should look suspiciously at Processor.Process 

method allocating so many dying byte arrays.
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Another way of diagnosing this problem is to use WinDbg and SOS extension, 

whether by analyzing the memory dump or attaching to the process. By using !heapstat 

command, we get an overview of the entire Managed Heap (see Listing 10-3). We indeed 

see big fragmentation of LOH (of 22%). There are also many, not-yet collected but 

already unreachable objects (of 25%). Altogether it gives an expected fragmentation of 

47%, which confirms our previous findings.

Listing 10-3. Analyzing fragmentation - !heapstat command to get the Managed 

Heap overview

> !heapstat -inclUnrooted

Heap            Gen0         Gen1         Gen2          LOH

Heap0        1579192        96024           24   1907001192

Free space:                                                 Percentage

Heap0            7816        11160             0    434527752SOH:  1% LOH: 22%

Unrooted objects:                                           Percentage

Heap0         1567816        65560            0    488427824SOH: 97% LOH: 25%

However, we can use the knowledge of how the memory in Large Object Heap is 

organized and allocated. By using !eeheap command, we get a list of all LOH segments 

(see Listing 10-4). As memory grows, there are many LOH segments, as expected (as 

Table 5-3 states, they are 128MB big because our process runs on 64-bit runtime with 

Workstation GC). We know that typically segments are created one by one when the 

memory in the current one ends. And we know that Allocator allocates memory inside 

segments linearly. Thus, simplifing a little, the higher the address, the newest data it 

contains.

Listing 10-4. Analyzing fragmentation - !eeheap command to list LOH segments

> !eeheap -gc

Number of GC Heaps: 1

generation 0 starts at 0x0000013acb3c8730

generation 1 starts at 0x0000013acb3b1018

generation 2 starts at 0x0000013acb3b1000

ephemeral segment allocation context: none
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         segment             begin         allocated              size

0000013acb3b0000  0000013acb3b1000  0000013acb549fe8  0x198fe8(1675240)

Large object heap starts at 0x0000013adb3b1000

         segment             begin         allocated              size

0000013adb3b0000  0000013adb3b1000  0000013ae33af528  0x7ffe528(134210856)

0000013ae4a60000  0000013ae4a61000  0000013aeca5fdb0  0x7ffedb0(134213040)

0000013aed130000  0000013aed131000  0000013af512f300  0x7ffe300(134210304)

0000013af5130000  0000013af5131000  0000013afd11c870  0x7feb870(134133872)

0000013a80000000  0000013a80001000  0000013a87fecf10  0x7febf10(134135568)

0000013a8a890000  0000013a8a891000  0000013a9287d0d0  0x7fec0d0(134136016)

0000013a92890000  0000013a92891000  0000013a9a8811c8  0x7ff01c8(134152648)

0000013a9a890000  0000013a9a891000  0000013aa28881a0  0x7ff71a0(134181280)

0000013aa2890000  0000013aa2891000  0000013aaa879090  0x7fe8090(134119568)

0000013aaa890000  0000013aaa891000  0000013ab287d060  0x7fec060(134135904)

0000013ab2890000  0000013ab2891000  0000013aba87bb20  0x7feab20(134130464)

0000013aba890000  0000013aba891000  0000013ac2880680  0x7fef680(134149760)

0000013afd130000  0000013afd131000  0000013b05117f28  0x7fe6f28(134115112)

0000013b05130000  0000013b05131000  0000013b0d118458  0x7fe7458(134116440)

0000013b0d130000  0000013b0d131000  0000013b0ecb6fc8  0x1b85fc8(28860360)

Total Size:              Size: 0x71c41750 (1908676432) bytes.

------------------------------

GC Heap Size:            Size: 0x71c41750 (1908676432) bytes.

By dumping content of the oldest one segment (first one from Listing 10-4), we will 

get an insight how old fragmentation looks (see Listing 10-5). Fragmentation is clearly 

visible indeed - free memory areas of 78,974 bytes are interleaved with 102,424 bytes long 

objects. We can easily identify them by using !gcroot command (see also Listing 10-5).  

For example, the only root of the last object (byte array) is the local variable of type  

List<byte[]> in the Main method, that is - largeBlocks. This is how typical 

fragmentation looks - a large number of live objects (mostly arrays) interleaved with free 

blocks of memory.
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Listing 10-5. Analyzing fragmentation - !dumpheap command to list object 

in the first LOH segment (the result trimmed to the last few lines) and !gcroot 

command to identify roots of sample object

> !dumpheap 0000013adb3b1000  0000013ae33af528

...

0000013ae22b4cd8 00007fff857ebe10   102424

0000013ae22cdcf0 0000013ac914e200    78974 Free

0000013ae22e1170 00007fff857ebe10   102424

0000013ae22fa188 0000013ac914e200       30 Free

0000013ae22fa1a8 00007fff857ebe10   102424

0000013ae23131c0 0000013ac914e200    78974 Free

0000013ae2326640 00007fff857ebe10   102424

0000013ae233f658 0000013ac914e200       30 Free

0000013ae233f678 00007fff857ebe10   102424

0000013ae2358690 0000013ac914e200    78974 Free

0000013ae236bb10 00007fff857ebe10   102424

0000013ae2384b28 0000013ac914e200       30 Free

0000013ae2384b48 00007fff857ebe10   102424

0000013ae239db60 0000013ac914e200    78974 Free

0000013ae23b0fe0 00007fff857ebe10   102424

0000013ae23c9ff8 0000013ac914e200       30 Free

0000013ae23ca018 00007fff857ebe10   102424

> !gcroot 0000013ae23ca018

Thread 811c:

     000000233e9feeb0 00007fff28fc0645 CoreCLR.LOHFragmentation.Program.

Main(System.String[])

        rbp-80: 000000233e9fef20

             ->  0000013acb3b68d0 System.Collections.Generic.List`1 

[[System.Byte[], mscorlib]]

            ->  0000013abaf50a68 System.Byte[][]

            ->  0000013ae23ca018 System.Byte[]

Found 1 unique roots (run '!GCRoot -all' to see all roots).
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However, knowing that there are holes between still living objects is not very 

revealing. The real question is, after what object those holes were created! We can 

search for answers in the latest, just-allocated data. By dumping content of the newest 

one segment (the last one from Listing 10-4), we will get an insight how the newest 

fragmentation looks (see Listing 10-6). If we are lucky enough, there should be still some 

objects instead of future free items. And this is so. The newest LOH region contains small 

free items for padding (described earlier), 102,424byte-long objects we have seen already 

but there are also still some objects between them!

Listing 10-6. Analyzing fragmentation - !dumpheap command to list object in 

the last LOH segment (the result trimmed to the last few lines)

> !dumpheap 0000013b0d131000  0000013b0ecb6fc8

0000013b0ec0b4b0 0000013ac914e200       30 Free

0000013b0ec0b4d0 00007fff857ebe10    99634

0000013b0ec23a08 0000013ac914e200       30 Free

0000013b0ec23a28 00007fff857ebe10   102424

0000013b0ec3ca40 0000013ac914e200       30 Free

0000013b0ec3ca60 00007fff857ebe10    99627

0000013b0ec54f90 0000013ac914e200       30 Free

0000013b0ec54fb0 00007fff857ebe10    99635

0000013b0ec6d4e8 0000013ac914e200       30 Free

0000013b0ec6d508 00007fff857ebe10   102424

0000013b0ec86520 0000013ac914e200       30 Free

0000013b0ec86540 00007fff857ebe10    99628

0000013b0ec9ea70 0000013ac914e200       30 Free

0000013b0ec9ea90 00007fff857ebe10    99636

By analyzing roots of those objects, we will identify the root cause of fragmentation 

(see Listing 10-7). Clearly, those are the byte arrays from inside DataFrame class created 

in Program.Main and Processor.Process methods.
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Listing 10-7. Analyzing fragmentation - !gcroot commands to identify roots of 

objects causing fragmentation

0:000> !gcroot 0000013b0ec3ca60

Found 0 unique roots (run '!GCRoot -all' to see all roots).

0:000> !gcroot 0000013b0ec54fb0

Found 0 unique roots (run '!GCRoot -all' to see all roots).

0:000> !gcroot 0000013b0ec86540

Thread 811c:

     000000233e9feeb0 00007fff28fc0645 CoreCLR.LOHFragmentation.Program.

Main(System.String[])

        r15:

            ->  0000013acb549228 CoreCLR.LOHFragmentation.DataFrame

            ->  0000013b0ec86540 System.Byte[]

Found 1 unique roots (run '!GCRoot -all' to see all roots).

0:000> !gcroot 0000013b0ec9ea90

Thread 811c:

     000000233e9fee50 00007fff28fc0aad CoreCLR.LOHFragmentation.Processor.

Process(CoreCLR.LOHFragmentation.DataFrame)

        rbx:

            ->  0000013acb549240 CoreCLR.LOHFragmentation.DataFrame

            ->  0000013b0ec9ea90 System.Byte[]

Found 1 unique roots (run '!GCRoot -all' to see all roots).

This concludes our investigation. The example was simple, because only a few types 

are allocated in LOH and because a large objects allocation pattern was prepared to 

be so unfortunate (each successive input frame is slightly bigger than previous one). It 

produces free-item holes that might be reused very rarely. In such a scenario the newest 

objects gather at the end, so we could easily find the place where objects may be still live 

before collection.

There will be many more different-sized objects in LOH in complex applications. 

Then, the analysis of the origin of objects, which then become unusable holes is much 

more tedious. There is no single golden rule of investigation of the fragmentation 

problems. In fact, this is the most difficult aspect to analyze from various memory- 

related problems. This is due to its temporal characteristic. There are holes, but there is 

no easy way to check what was there before. In most cases, those holes are reused thanks 
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to a free-list allocator. It makes investigation even more difficult because new objects are 

spread over the entire generation 2 or LOH within holes that were reusable. There is no 

“here is a hole that was used by X object but is not used anymore for long time”-event 

unfortunately. We only have circumstantial evidence, like shown above.

please remember that large object heap contains some arrays used by the Clr 
internally. arrays including references for statics, created during assembly loading, 
should not be a problem. however, there are also arrays used for string interning 
(see Figure 8-1 in Chapter 8 and “String interning” section in Chapter 4). if you 
do excessive explicit string interning, creating those tables may also cause loh 
fragmentation!

Knowing that LOH fragmentation is a problem, what can we do about it? 

Since .NET Framework 4.5.1 (and since .NET Core 1.0), there is a possibility 

to explicitly force compacting Large Object Heap. It can be done by setting 

GCLargeObjectHeapCompactionMode.CompactOnce to the static GCSettings.

LargeObjectHeapCompactionMode property. It will be done only once, during the first 

blocking GC that occurs. Please note - it influences only blocking collections so any 

typical non-blocking (background) GC will not take into account this setting. Thus, most 

often just after setting this property, explicitly blocking full GC is being triggered explicitly.

So, as a solution to our problem, we may trigger LOH compaction explicitly. We 

can do it periodically or only if the memory usage exceeds a certain limit (as in the 

example from Listing 10-8). Both solutions are not perfect and should be thoroughly 

thought out. They simply introduce all the problems already discussed when 

describing explicit GC calls.

Listing 10-8. An example code that illustrates LOH fragmentation

if (GC.GetTotalMemory() > LOH_COMPACTION_THRESHOLD)

{

   GCSettings.LargeObjectHeapCompactionMode = 

GCLargeObjectHeapCompactionMode.CompactOnce;

   GC.Collect();

}
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Additionally, nevertheless since compacting LOH is blocking, it is also simply 

slow. Pause time scales linearly with the total size of survived objects. Even for small 

LOH when only a few hundreds of megabytes survived, it will pause your application 

for something between 100 and 200 milliseconds. The larger the size of the surviving 

objects, the worse. For the value of several gigabytes, we begin to notice over a second 

freeze of our application! The graph for both Workstation and Server GC modes is 

presented in Figure 10-10 (remember that exact values may vary depending on your 

hardware performance).

Figure 10-10. GC pause times with LOH fragmentation for both Workstation GC 
and Server GC with 8 managed heaps (taken on Intel i7- 4770K with 16 GB DDR3-
1600 memory)

Large Object Heap compacting is slightly faster for Server GC because LOH is split 

into multiple segments that may be compacted concurrently.
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There may be times when compacting LOH is the only solution to your problem - for 

example, when troublesome code is not yours and you cannot do any refactoring toward 

better management of LOH objects. If you do own source code, a much better solution 

would be to introduce large objects pooling or arrays pooling (refer to section “Creating 

Arrays - Use ArrayPool” and “Creating a Lot of Object - Use Object Pool” from Chapter 6).

there are some plans for an undetermined future that loh compaction may 
become automatic in some scenarios. the following Github issue comment 
explains it well: “For the near future, please assume that loh is still not 
automatically compacted except for this one scenario where we will make it 
automatic - if you have very little survived on loh compared to gen2 and loh’s 
fragmentation ratio is high (eg, say it’s 75% fragmented) and/or loh is full of 
objects that contain no references (as the relocation is really the expensive part).”

 Summary
As you can notice, sweeping may be really fast because it requires small memory traffic. 

Only some local modifications are required to create free items and restore memory 

after plug information. On the other hand, compaction is quite complex and may induce 

quite big memory traffic. It is responsibility of the Plan phase described earlier to choose 

between them.

This chapter concludes the great amount of knowledge concerning the heart of 

the memory management in .NET that has been presented - the Garbage Collector 

itself - presented from Chapters 7 to 10. Everything before those chapters was only an 

introduction. And everything further is an extension.

To summarize those chapters, they are explained step by step, and all major phases 

of the GC were thoroughly described:

• mechanisms that triggers garbage collection (Chapter 7),

• how entire runtime cooperates to proceed with the GC suspension, 

that is - stopping all managed threads (Chapter 7),

• how GC selects which generation should be collected (Chapter 7),

• how GC discovers reachable objects, thanks to marking from various 

roots (Chapter 8),
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• how GC plans both Compact and Sweep collection at the same time 

and then decides which one is more productive (Chapter 9),

• how compaction and sweeping is executed (this chapter).

Many of those points were interleaved both with theoretical knowledge (how and 

why it works) and with practical scenarios (how to utilize that knowledge for problem 

analysis and code development). From now on, if reading all chapters one by one, you 

should have a really solid foundation about what the GC in .NET really is. Practical 

scenarios mentioned allows you to investigate common problems and avoid making 

common mistakes.

Because knowledge from those chapters is tightly coupled, all Rules related to it are 

gathered and presented here, at the end of Chapter 10.

However, that’s not all. GC has still a lot of various nooks to discover. From now on, 

the book will become even more and more practical. Of course, there is still something to 

describe about the operation of internal mechanisms - different modes of GC (Chapter 11) 

and finalization (Chapter 12). I invite you to continue the journey!

Note please note that the entire chapter devoted to garbage collection does 
not mention the IDisposable interface in one place. Sometimes inexperienced 
programmers seem to be somehow connecting it with the garbage collection 
mechanism. they tend to think that IDisposable somehow “triggers” collection 
of an object. this is obviously not true. IDisposable is only an interface, a 
contract between an object and a developer, saying that its instance’s lifetime 
should be carefully tracked and needs some additional actions when they are no 
longer needed. in order not to deepen this misunderstanding and not too much 
clutter in this chapter, the description of IDisposable mechanism was placed in 
Chapter 10.

 Rule 17 - Watch Runtime Suspensions
Applicability: General but rare.

Justification: Runtime suspension is a service that the GC uses to suspend all managed 

threads in order to make a safe ground for the GC to work. In other words, during a non-

concurrent GC, user threads should not modify and access memory that is manipulated 
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by the GC. This process has to be very optimized. Care was taken as much as possible 

that the process of stopping (and resuming) the threads was as fast as possible. And it 

really is - it takes fractions of milliseconds to suspend all threads! In rare cases when 

suspension takes long, something is wrong and should be investigated if it happens 

consistently.

How to apply: First of all, we can measure EE suspension times in our application. The 

most convenient mechanism supporting it is ETW events. The easiest way to analyze 

them is to look at GC suspension times from GC Events by the Timetable in PerfView’s 

GCStat report. Everything near one millisecond and above would be starting to be an 

interesting fact.

In such an alarming case, we can investigate it by thoughtful debugging or CPU 

sampling during the suspension period - we may notice that our code is disturbing in 

giving the control to the runtime (by executing high-priority threads or executing very 

long IO operations synchronously).

Related scenarios: Scenario 7-4.

 Rule 18 - Avoid Mid-Life Crisis
Applicability: General and very popular.

Justification: Generational hypotheses underlie the .NET GC construction that make 

the assumption that objects either die young or live for a very long time. We already 

should be fully aware why collecting ephemeral generations introduces much less 

overhead than collecting the older ones. Mid-life crisis is a failure to comply with the 

generational hypotheses in our application - many objects are living long enough to 

be promoted to generation 2 just to die there quickly. This is exactly what generation 2 

was not designed for!

How to apply: We know that there are many allocations and that many of them are 

eventually promoted to generation 2, where they die. Thus, you should be more aware of 

your object’s lifetime. Creating a bunch of temporary data and storing them for too long 

is a straightforward way to create Mid-life crisis. However, it is often really hard to reason 

about the lifetime of objects we create in complex applications. Thus, the common way 

of applying this Rule is the reactive approach - after measuring our application, only 

after we notice that there is high % Time in GC. Then the diagnostics come in and we 

start investigation.
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We should watch then:

• What is the content of the older generation - by using any dump 

analysis tool of your preference,

• What is dying in the older generation - for example, by using gen 2 

Object Deaths view from PerfView session analysis (see scenario 10-1),

• What are the most common allocations - because Mid-life crisis 

requires a lot of objects being created and eventually promoted to the 

oldest generation (see scenario 6-2),

• What are the reasons for condemning the oldest generation (see 

scenario 7-5).

Related scenarios: Scenarios 5-1, 6-2, 7-5, 10-1.

 Rule 19 - Avoid Old Generation and LOH Fragmentation
Applicability: General and very popular.

Justification: Fragmentation, as long as it is used, is not bad at all - allocator 

reuses created free space for new objects. Fragmentation may be bad, however, if 

left uncontrolled - if we observe that even GCs of given generation were done, the 

resulting fragmentation does not drop. The program’s memory usage can grow in an 

unpredictable way, even though we actually use a small number of objects. In Small 

Object Heap, big fragmentation implies more common, but also more expensive, 

compacting GCs. In Large Object Heap, fighting with fragmentation is even harder. We 

need to call for it explicitly, and we may be sure that it will take noticeable time.

How to apply: SOH fragmentation is typically not so painful if it happens only in 

ephemeral generations. Their compaction is really fast, so we should not be worried about 

that. More problematic is the fragmentation of generation 2, for at least two reasons:

• Compacting generation 2 is much more costly than ephemeral 

generations because it typically spans to many segments. This 

requires a lot bigger memory traffic.

• Fragmentation of gen2 segments may lead to creating more 

segments. And more segments mean more expensive garbage 

collection of them.
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For similar reasons, we should also take care of Large Object Heap fragmentation. 

But the main problem there is that LOH is not automatically compacted at all. It exposes 

LOH to fragmentation problems much more.

For sure, we should observe fragmentation ratios in our applications - for example, 

by utilizing ETW/LTTng sessions. But knowing that big fragmentation occurs is just 

the first step. Then we should consider whether it is actually problematic for us - does 

it cause a large GC overhead or  worrying memory usage? If yes, the hardest step takes 

place - diagnostics of sources of fragmentation. There is no single Golden Rule of 

Fragmentation Diagnostic. Most common approaches were presented in scenario 10-1.

There isn’t a common solution to fragmentation. Commonly its impact may be 

reduced by pooling the source of fragmentation – namely, various types of arrays.

Related scenarios: Scenario 10-1.

 Rule 20 - Avoid Explicit GC
Applicability: General and very popular.

Justification: Explicit Garbage Collection calls are disturbing its work. Regardless of the 

internal tunings that GC uses, we suddenly make him forget about them and make GC 

happen at that specific moment. Although there are a few scenarios that calling it may be 

justified, most often - it is not.

How to apply: Learn about the GC - why, how and when it works (for example, by 

reading this book!). Then you will understand that very, very often, calling GC explicitly 

is not the right solution to the problem you experienced. You should think twice or 

three times before each usage of the GC explicit call in your code. There are really few 

situations that justify that (listed in “Explicit Trigger” section in Chapter 7).

Related scenarios: Scenario 7-3.

 Rule 21 - Avoid Memory Leaks
Applicability: General and very popular.

Justification: This is easy. Memory leaks are bad. Period. They make our programs 

unusable or so slow over time that we have to restart them. In the worst case, they simply 

crash. I believe that no one needs to be convinced that memory leak is undesirable. 

Still, there may be those small and unavoidable memory leaks that are just fine - if the 
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memory growth is so small that it does not hurt us in a practical sense. As in if we have 

to restart the application process once every few days to deploy a new build, and we 

know we have memory leaks but they account for such small amounts of memory - we 

probably should spend effort investigating worse performance problems. Most often 

such “accepted” memory leaks come from third-party code that we simply cannot fix.

How to apply: In .NET world a memory leak means an uncontrolled memory growth 

due to the growth of the number of reachable objects. Simply put, something holds a 

reference to leaking objects, even though we expect those objects are no longer in use 

and should have died a long time ago.

This is one of the most common problems. There are various types of such “hidden” 

roots: static variables, events, misconfigured IoC containers, and so on, and so forth.

In this book a few examples of memory leak diagnostics were presented in the form 

of scenarios. They do not provide any technology-specific leaks (like some memory leaks 

we may encounter in WCF or WPF). No matter what .NET technologies we use now and 

will use in the coming years, the GC changes much slower - ds well as such essential 

tools like WinDbg, SOS, and PerfView. If you have a memory leak problem, investigate it 

with the knowledge gained in this book!

Related scenarios: Scenarios 5-2, 8-1, 8-2, 9-1, and from 1-1 to 1-5 (to distinguish a 

managed leak from an unmanaged one).

 Rule 22 - Avoid Pinning
Applicability: General - moderately popular. High-performance code - important.

Justification: Pinning is bad because it may cause fragmentation (see Rule 21). It is also 

a certain overhead for GC itself - it complicates the operation of the internal allocator.

As mentioned in Chapter 9, pinning can either be short lived or long lived - it’s 

the middle ones that cause trouble. In the most commonly used concurrent GC, 

if a pinned object is in generation 2, it will just be irrelevant most of the time, not 

causing fragmentation, as most of the time gen2 collections are Background GCs (not 

compacting and thus ignoring the fact of pinning). Short-living pinned objects also will 

not have a chance to introduce big fragmentation before dying in generation 0.

Thus, the most problematic are those pinned objects that live enough to be 

promoted to older generations, causing various unwanted side effects like limiting the 

freedom of generation planning and necessity of segments reorganization (if ephemeral 

segment has so many pinned elements that it becomes barely usable).
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How to apply: In general, the best rule is just to avoid pinning but obviously sometimes 

we just need it. In such a case, it is good to remember the fact that the middle-life 

pinning makes the most trouble. Thus, when using pinning, it is best to:

• Pin for a short period of time, like using fixed keyword within a very 

small amount of code. As described in Chapter 8, it only influences 

GCInfo of a method, making it a special root during GC. So, if GC 

does not happen during method execution, fixed keyword will have 

no overhead at all.

• Create pinned buffers that will live long. This has an advantage both 

of prolonging the lifetime of such reusable pinned objects (thus, 

making them life in gen2 where their overhead is smaller) and by 

better locality (making them stay together instead being scattered 

around the Managed Heap).

As well as observing fragmentation, you should also observe the amount of pinning. 

It is not that we should get rid of it as soon as we notice it. In a typical application, as long 

as it does not cause much fragmentation, we have nothing to worry about. On the other 

hand, in high-performance programs where every millisecond counts, we may want to 

be fully aware of each pinned object. Your millage may vary here.

Related scenarios: Scenario 9-2.
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CHAPTER 11

GC Flavors
The previous four chapters contain a very detailed description of the Garbage Collector 

in .NET - in the vast majority in its simplest variant. In this chapter, however, we will 

look at all GC varieties. In addition to the standard knowledge of how and why they are 

designed, we will consider their pros and cons. We will look at both the GC operating 

modes and the latency settings.

In terms of the different GC flavors available in .NET, the most common question 

that arises is - which one to choose? Therefore, after learning how they differ, we will try 

to answer this important question in this chapter. Additionally, the scenarios contained 

in this chapter may be interesting in this context - they examine the impact of the 

selected mode on the performance and behavior of the application.

 Modes Overview
A short summary of various modes that .NET GC may operate on has been already 

provided at the beginning of Chapter 7, in the section “High-Level View.” It was 

necessary to give an overall context of the GC version described there. Let’s now take a 

little, deeper insight into those modes, how they differ, and why.

 Workstation vs. Server Mode
The first dividing line is the division into Workstation and Server modes. It has existed 

since the very beginning of the .NET runtime. The names of both modes come from the 

typical applications for which they were intended. But let’s not take these names dead 

seriously. Although they represent the typical usage, it may be perfectly fine to use Server 

mode in your desktop application or Workstation mode in your web application - it all 
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depends on your current needs. It is better to treat Workstation and Server modes as 

some two, noticeably different sets of GC configurations. However, this does not change 

the fact that the names of these modes came from the settings adapted for these two 

main environments.

 Workstation Mode

Workstation mode was designed mostly for responsiveness needed in interactive,  

UI- based applications. Interactivity implies as noticeable pauses in the application as 

short as possible. We do not want to stall the UI because a long GC was triggered. Longer 

pauses could impact the smoothness and responsiveness of all actions in general. 

Therefore:

• GCs will happen more frequently - but thanks to that, they will have 

less work to do (fewer objects have been created so less can become 

garbage).

• As a side effect of the above, memory usage will be lower - more often 

GCs mean memory is reclaimed more aggressively, and there is no 

large amount of “hanging” garbage.

• There is a single Managed Heap - because desktop applications 

generally perform one main action related to user actions, there is 

no need for a special parallelization of their work. Moreover, this 

mode assumes that many applications are running on the computer. 

Each of them utilizes some of the CPU cores and memory. Therefore, 

it is not necessary or especially desirable to multiply GC threads 

that process several heaps simultaneously. From the beginning, 

Workstation mode was designed to have one Managed Heap 

processed by one thread at a time.

• Segments are smaller - to operate on smaller areas of memory.

Please note that although most interactive applications can actually be satisfied 

with such decisions, this does not necessarily apply to everyone. We can have a desktop 

application that fits perfectly into, for example, parallel processing in the background.

Chapter 11  GC Flavors



689

 Server Mode

Server mode was designed for simultaneous, request-based processing applications. 

It implies that big throughput is desirable - processing as much data in a unit of time 

as possible. Assuming that the requests are processed relatively shortly, sporadic 

application stalls will not affect them significantly because statistically GC will happen 

during processig of at most several requests. Therefore:

• GCs will happen less frequently - but it may mean longer pauses 

because more objects have been created between GCs.1 This, 

however, allows us to improve throughput because we can process in 

parallel multiple requests during longer no-pause times.

• As a side effect of the above, memory usage will be higher - less often 

GCs mean more “hanging” garbage will be gathering between them. 

It implies bigger Working Set than in case of Workstation mode. 

However, generally understood “servers” are assumed to be equipped 

with a large amount of memory so it is not such a big problem.

• There are multiple Managed Heaps - this ensures scalability relative 

to the machine’s power. If the GC already happens, we want to do it 

as fast as possible. Parallel processing of many heaps is faster than 

of a single, large heap.2 What’s more, server applications are often 

hosted on dedicated servers so they can quite freely consume all the 

cores available to them.

• Default segment sizes are larger, especially on 64-bit systems - so if 

necessary, many more allocations can be accommodated before a 

GC is triggered.

• Taking the above into consideration, it’s often that the Server mode 

would consume more memory but give you a smaller % time in GC.

1 However, because they are processed by parallel on multiple CPU cores, pauses may be even 
shorter than in Workstation.

2 Remember that access to the memory is a bottleneck. Parallel heap processing with four CPU 
cores will not be four times faster than processing the same memory size by only one CPU core. 
Undoubtedly, however, it will be faster.
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one may wonder how those two various modes are organized in .Net source code 
and how much code they have in common. Using CoreClr as an example (while 
all .Net sKUs share the same GC, as mentioned in Chapter 4), the vast majority is 
implemented in the same .\src\gc\gc.cpp file that contains a lot of portions 
managed by #if preprocessor directives. then, this file is compiled twice within 
two different namespaces and set of defines - .\src\gc\gcsvr.cpp defines 
SERVER_GC constant and SVR namespace: 

#define SERVER_GC 1

namespace SVR {

      #include "gcimpl.h"

      #include "gc.cpp"

}

while .\src\gc\gcwks.cpp defines WKS namespace: 

namespace WKS {

      #include "gcimpl.h"

      #include "gc.cpp"

}

thus, when seeing various GC-related types or methods, they will come from 
either WKS:: or SRV:: namespaces. Definition of SERVER_GC implies a few other 
important defines, especially MULTIPLE_HEAPS that many, many regions inside 
gc.cpp rely on.

 Non-Concurrent vs. Concurrent Mode
Orthogonally to the mode of operation, the GC can also have two ways of operating 

in the context of work relative to the user’s threads. In general, by non-concurrent, 

we understand - not happening simultaneously with something else. Concurrent is 

obviously the opposite.
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 Non-Concurrent Mode

The non-concurrent GC version has existed since the beginning of .NET, both for 

Workstation and Server modes. All managed user threads are suspended during a GC. It 

is conceptually really simple - we have to stop all user threads, do GC, and resume user 

threads.

 Concurrent Mode

Concurrent GC, as one may expect, runs while normal user threads are working. This 

makes it more complex both in terms of concept as well as implementation. There 

must by an additional synchronization between user threads and Collector during its 

work so both have a coherent vision of reality and do not cause serious problems (like 

modifying collected objects or collecting objects that are still live). Such synchronization 

is obviously not easy to implement, especially due to the desired high performance of 

the whole. We will see how such a technique is implemented in .NET soon.

The concurrent flavor of the GC is differently named in different versions of .NET. We 

can summarize it in the following way:

• In case of Workstation GC, the concurrent flavor was available since 

.NET 1.0 and was called Concurrent Workstation GC. In .NET 4.0, 

after introducing important improvements, it has been renamed to 

Background Workstation GC.

• In case of Server GC, the concurrent flavor was not available until 

version .NET 4.5. It is called Background Server GC.

In terms of source code organization, again both modes are implemented in 
the same .\src\gc\gc.cpp file. Concurrent version is enclosed by #if 
BACKGROUND_GC preprocessor directive. BACKGROUND_GC is however always 
defined in both SVR and WKS versions. they contain code for both concurrent and 
non-concurrent flavors that are enabled or disabled during runtime startup.
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 Modes Configuration
From the previous sections it becomes clear that we have two orthogonal settings with 

two possible values each. It gives us four possible modes that GC may operate on. This 

is mostly all we can set in terms of the GC. Those used to very fine-grained settings 

from JVM world may be surprised. This is of course a design decision made with full 

awareness. JVM offers a GC-centric approach - we can configure virtually every aspect 

of a GC operation, but we need to understand it very well and be sure about what and 

why we change. On the other hand, Microsoft has chosen the application-centric path. 

Knowing what type of application that we are writing, we set one of the GC operation 

modes and it is the GC who has to deal with the rest. It is responsible for adjusting 

properly to the load and the specificity of the provided application mode.

The following sections describe briefly how you may change GC working modes both 

in .NET Framework and in the newer .NET Core.

You can also set those modes when hosting Clr inside your own process via 
ICLRRuntimeHost interface (including both .Net Framework and .Net Core 
runtimes) with proper startup flags. Clr hosting is briefly presented in Chapter 15, 
altogether with the mentioned flags. this is exactly what a simple hosting Corerun 
application does if you built CoreClr from source code. Corerun uses its own, very 
simplified configuration provider that ignores settings described below. only two 
environment variables are respected by Corerun host: CORECLR_SERVER_GC and 
CORECLR_CONCURRENT_GC (both can take value of 0 or 1). Use them if you want 
to play with your own custom-build CoreClr hosted by Corerun.

As you may notice, there is no description here how those settings are represented 

on the level of a project file - for example, in Visual Studio. There may be many tools and 

project formats along the whole .NET ecosystem. Just refer to the current documentation 

of your favorite tool. What is presented here are settings consumed by the runtime itself, 

which will be unlikely changed in the near future.

Be aware that on a machine with only one logic CPU core, Workstation GC is always 

used, regardless of the gcServer setting.
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 .NET Framework
In case of .NET Framework applications, the main way to change both GC modes is via a 

standard configuration file (see Listing 11-1):

• ASP.NET web applications - web.config file is used in case of web 

applications hosted in IIS. Please note that in such a case ASP.NET 

host enables Server GC by default (additionally, on post .NET 4.5+ 

runtimes, with Background mode enabled).

• Console applications or Windows Services - [appName].exe.config 

file is used by default. If such file does not specify those settings, 

concurrent Workstation mode is turned on by default. This may be 

very important especially for Windows Services processing a lot 

of data in a request-like manner! Such service behaves more like a 

server application, not an interactive one. Changing to some flavor 

of a Server GC may significantly improve performance in such a 

situation.

Listing 11-1. GC-related configuration of .NET Framework applications 

([appName].exe.config/Web.config file)

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

    <startup>

        <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.7" />

    </startup>

  <runtime>

    <gcServer enabled="true"/>

    <gcConcurrent enabled="true"/>

  </runtime>

</configuration>

 .NET Core
In case of .NET Core, slightly better flexibility exists regarding configuration. There are 

still file-based solutions, but two additional ones exist.
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The file configuration is very similar to the one from .NET Framework, only the 

configuration file format has been changed from XML to JSON (see Listing 11-2).

Listing 11-2. GC-related configuration of .NET Core application

SomeApplication.runtimeconfig.json

{

  "runtimeOptions": {

    "tfm": "netcoreapp2.0",

    "framework": {

      "name": "Microsoft.NETCore.App",

      "version": "2.0.0"

    },

    "configProperties": {

      "System.GC.Server": false,

      "System.GC.Concurrent": false

    }

  }

}

CoreCLR introduces the concept of so-called Configuration Knobs. Their values 

may be provided in various ways, one of which is the most interesting - via setting 

an environment variable (and registry in case of Windows). This may be especially 

useful in strictly isolated environments like docker images. You will find the full list of 

configuration knobs on the appropriate CoreCLR documentation page.

To set the configuration knob of the name X, you should add the environment 

variable COMPlus_X with a desired value or HKCU\Software\Microsoft\.NETFramework 

registry key with the Value of name X. Thus, in case of the GC mode settings, it will be:

• COMPlus_gcServer=0 or 1 environment variable or gcServer registry 

with value 0 or 1,

• COMPlus_gcConcurrent=0 or 1 environment variable or 

gcConcurrent registry key with value 0 or 1.

Note please remember that COMPlus_ settings will override the JsoN version if 
both are set.
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 GC Pause and Overhead
The topic of automatic memory management is inherently related to the overhead it 

introduces. After all, the GC is a code that works as part of our application. It consumes 

CPU cycles, and it may introduce pauses when the rest of the application is doing 

nothing. We have not looked at the topic of the GC activity overhead with a special 

interest so far. It’s time to take care of this topic. Different GC operating modes can 

introduce a different overhead so here is an ideal place for it.

But how to measure such overhead? What overhead are we talking about? In the 

context of overall .NET application performance, we may look at it from two sides:

• The GC side - as mentioned before, there are two of the most 

important, unwanted side effects of the GC work:

• The GC pauses - currently no pauseless GC exists.3 When 

application threads are paused by the GC, it is obviously 

unwanted, especially in interactive applications. We may be 

interested in measuring GC pauses time (total sum, average, 

percentiles, and so on, so forth). What is an acceptable threshold 

of the pause depends on your specific application characteristics. 

In my personal opinion, single GC pause times above tens of 

milliseconds should be rather alarming if they occur frequently.

• The GC CPU overhead - executing GC code, as executing any 

other code, consumes CPU resources. The longer the GC works 

or the more CPU cores it uses, the more CPU cycles have been 

stolen from the execution of regular code of yours and other 

applications. This is important both in case of concurrent and 

non-concurrent GCs. Again, what’s an acceptable threshold 

of the GC usage depends on your specific application 

characteristics. In regular web applications. I’ve seen constant 

usage above 10–20% that was rather alarming.

3 Although, you could meet in JVM world a commercial GC named Azul Pauseless GC, it was 
not truly pauseless because sometimes threads need to stop allocations to “catch up” (e.g., GC 
is not able to provide free space fast enough for allocations). Such a GC’s successor is called 
Continuously Concurrent Compacting Collector (C4), which is probably a less confusing name.
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• Application side - to the topic of measuring application performance, 

yet another whole book could be dedicated. However, the most 

obvious metrics should include are the following:

• Throughput - how fast the application executes. For example, 

how long it takes to process a single HTTP request of specific user 

actions.

• Latency - it’s common to look at tail latency, for example, how 

long your longest x% actions take.

• Memory consumption - how memory is being consumed, 

especially in terms of peak memory usage.

Figure 11-1 illustrates the two most popular measurements indicating GC overhead 

in .NET. It presents two user threads (T1 and T2) and one GC thread (GC1). As you can 

see, this picture shows the state of the threads over time. When the thread does not take 

up processor time (it is waiting for something), it is marked with a dashed line. When 

the thread executes the code associated with GC, it is marked with an arrow. The thread 

executing the program code is represented by a light gray rectangle. Additionally, the 

moment of suspending and resuming threads was marked with a dark gray area. We will 

stick to this convention later in this chapter, illustrating how each GC mode works.

With this approach, it is easy to illustrate the two most popular .NET metrics:

• GC pause times - they are considered non-concurrent phases of 

the GC, including GC suspension and resumption steps. They are 

typically obtained from the ETW/LLTNg events - that is, the time 

between SuspendEEStart and RestartEEStop events. We may 

observe them in GC Events by Time table from GCStats report in 

PerfView (as column Pause MSec).

• Relative GC time spent in CPU - it describes the ratio between the 

whole time spent in GC (including concurrent part of GC) to the time 

since the previous GC. We may observe it by % GC column in GC 

Events by Time from GCStats in PerfView.

Chapter 11  GC Flavors



697

popular % time in the GC performance counter may be also used to measure GC’s 
CpU overhead. however, it is less accurate and etW- based measurements are 
advised by the .Net team (since introduction of background GC they are investing 
more development in etW in favor of performance counters in general). please 
note that in case of a performance counter, if there is no GC, this counter is not 
refreshed, and it will indicate the previous value. thus, do not be surprised about 
constant 99% time in GC drawn in the performance Monitor tool - it may just be a 
last measured value not refreshed due to GC not happening! always check whether 
GC happens, for example, by looking also at the # Gen 0 Collections counter.

Obviously, many other free or commercial tools provide their own ways of providing 

those metrics. It is their implementation detail how exactly they are measured though. 

Refer to their documentation to get to know the details.

We will come back to those measurements when considering various GC modes. 

Now, let’s move to the comprehensive description of the four possible Garbage 

Collection flavors we can run in .NET.

Figure 11-1. Pause times and % Time in GC as a typical .NET GC measurement
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 Modes Descriptions
The next subsections of this section describe how the four GC modes available in 

.NET work. They have been illustrated with figures similar to Figure 11-1. For clarity, 

suspensions blocks were removed from most of them. Just remember they are around 

each non-concurrent phase of the GC. Additionally, all figures assume that at some point, 

the Allocator determines the need for GC. The lengths in the charts are only for illustration 

purposes. How long GC/user threads take should be measured by a proper tool.

Along with the description of the operation, each mode also contains a list of typical 

situations in which you can consider its use.

 Workstation Non-Concurrent
The simplest possible GC mode has been in fact already thoroughly described in 

chapters from 7 to 10. It’s a foundation how GC works in .NET in general. Let’s look at it 

now in the way that we will also look at other modes in this chapter.

Workstation Non-Concurrent GC mode executes typical GC - we will refer to it 

simply as Non-Concurrent GC (without Workstation or Server annotation) hereinafter. It 

has the following characteristics (see Figure 11-2):

• All managed threads are suspended for the time of the entire GC, 

regardless of whether it is garbage collection of generation 0, 1, or 

2 (full-GC) – a single ephemeral GC should take very little time so 

making it non-concurrent is not an issue. But as it is specifically 

pointed out in the figure, a full-blocking GC (when done in non- 

concurrent fashion these full-GCs are called full-blocking GCs) can 

take a lot more time that an ephemeral GC. Full-blocking GCs are 

thus much more unwanted.

• The GC code is executed on the user thread that triggered collection 

(from inside Allocator) without changing the user thread’s priority, 

which is usually a normal priority, in which case it must therefore 

compete with other threads of other applications.

• GC is always executed during the “stop the world” phase; it can be 

compacting if it decides to.
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If we would like to track such a GC in terms of ETW/LLTNg events, these are 

generated as in Figure 11-3.

Typical usage scenarios:

• A highly saturated environment where many more applications work 

than the available CPU resources - as there are no additional GC 

threads, only those regular ones, GCs does not add its own overhead 

consuming otherwise valuable CPU cores.

T1

T2

gen0/1 gen2+LOH

Figure 11-2. Workstation Non-concurrent GC mode illustration
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Figure 11-3. ETW/LLTNg events emitted during Workstation Non-concurrent GC 
mode
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• Environment with many lightweight web applications (like 

“dockerized” microservices) - if they are lightweight and their 

memory usage is small, non-concurrent GCs may be just fine. But 

we gain a small amount of threads needed to operate, which can 

be valuable in terms of CPU cores utilization for many applications 

running at the same time.

 Workstation Concurrent (Before 4.0)
As mentioned before, this was called “Concurrent GC” and was superseded by 

“Background GC” in 4.0 and beyond. Thus, we will not put a lot of attention to it (for 

example, omitting the whole section of the Concurrent GC implementation). The 

successor presented in the next section basically describes this mode as well.

Workstation Non-concurrent GC mode has the following characteristics (see 

Figure 11-4):

• There is one additional thread dedicated solely for the GC’s 

purposes - most of the time it is just suspended waiting for work to do.

• Ephemeral collections are always Non-concurrent - they are just fast 

enough to make them non-concurrently. This also allows them to be 

compacting if they wish.

• A full-GC may be executed in two modes:

• Non-concurrent GC - because of the “stop the world” nature, 

such a full-GC may be compacting.

• Concurrent GC - it executes most of the work while managed 

threads are normally executed. Because this would complicate 

the implementation very much, this GC variant is not compacting.

• Concurrent full-GC has the following additional characteristics:

• User-managed threads may allocate objects during its work – 

however, such allocations are limited to the size of the ephemeral 

segment because there is no way to make more space if it runs 

out (no other GC may be triggered during Concurrent GC). If 

such situation happens, user threads are suspended until the end 

of the full-GC.
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• It contains two short “stop the world” phases - at the beginning 

and in the middle.

• Objects allocated since the beginning of the GC and before the 

second “stop the world” phase will be promoted.

• Everything allocated after the second “stop the world” phase will 

be promoted.

Typical usage scenarios:

• Most UI applications before .NET 4.0. Concurrent GC was a big 

improvement toward smaller pause times, so desirable in interactive 

applications. Most of the time there were no big stalls due to the 

GC. Obviously, Concurrent GC were not compacting so from time to 

time a Non-Concurrent full-GC ought to be triggered to fight with the 

fragmentation. However, the fact it has to blocking allocating threads 

when the ephemeral segment is exhausted is a severe limitation. 

Segment sizes in Workstation mode were not large (especially in 

32-bit mode it is only 16 MB!) so even Concurrent GCs can suspend 

threads more often than desired because the ephemeral segment 

runs out of space. Overcoming those limitations was the major 

improvement introduced in the Background Workstation  

GC mode.

T1

T2

GC1

gen0/1/2 full GC

Figure 11-4. Workstation Concurrent GC mode illustration (available until .NET 
Framework 4.0)
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 Background Workstation
Background Workstation GC superseded Workstation Concurrent GC since .NET 

Framework 4.0 and it also exists in .NET Core. The major improvements lie in the fact 

that even during concurrent GC, ephemeral GCs may be triggered if needed. It removes 

the allocation limit from the work of normal threads, making them strongly independent 

of the work of GC operating in the background.

Background Workstation GC mode has the following characteristics, mostly similar 

to the Workstation Concurrent GC (see Figure 11-5):

• There is one additional thread dedicated solely for GC purposes - 

most of the time it is just suspended waiting for work to do.

• Ephemeral collections are Non-Concurrent - they are just fast 

enough to make them non-concurrently. This also allows them to be 

compacting if they wish.

• A full-GC may be executed in two modes:

• Non-Concurrent GC - because of the “stop the world” nature, 

such full-GC may be compacting.

• Background GC - it executes most of the work while managed 

threads are normally executed. Exactly as in the case of 

Concurrent GC, this mode is not compacting.

• Background full-GC has the following additional characteristics:

• User-managed threads may allocate objects during its work - 

such allocations may trigger regular ephemeral collections 

(called Foreground GCs, opposite to the Background GC).

• Foreground GCs may happen many times during Background 

GC. As .NET documentations says: “The dedicated background 

garbage collection thread checks at frequent safe points to 

determine whether there is a request for foreground garbage 

collection.” Foreground GCs are regular Non-Concurrent GCs, 

during which Background GC is temporarily suspended. They 

may be compacting (as everything is suspended) and can even 

expand the heap by creating additional segments.
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• It contains two short “stop the world” phases - at the beginning 

and in the middle; both will be briefly described further.

Let’s now dig into the “anatomy” of Background Workstation mode. Its Non- 

Concurrent GCs of generation 0, 1, or 2 are trivial. However, how does Background GC 

work and when exactly may Foreground GCs happen? When considering Background 

GC, it can be split into several phases (see Figure 11-6):

• Initial “stop the world” phase (A) - it is when the allocator triggered 

regular GC code and it decided to start Background GC. Additionally, 

likely there is a need to execute a normal ephemeral GC at this 

stage (for example, some allocation budget has been exceeded). 

During this phase also, an initial marking of objects is done, later on 

consumed by Background GC.

• Concurrent mark phase (B) - while user threads are resumed, 

Background GC proceeds with concurrently discovering reachability 

of objects. How exactly this is solved despite the simultaneous 

operation of user threads is described later in this chapter. 

Additionally, during this phase zero or more Foreground GCs may be 

triggered due to allocations.

• Final mark, “stop the world” phase (C) - while user threads are 

suspended, Background GC determines eventual reachability of 

objects it will collect in the next phase.

T1

T2

GC1

gen0/1/2

(gen0/1)

Background GC

Foreground GC

Figure 11-5. Background Workstation GC mode illustration (available since .NET 
Framework 4.0)
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• Concurrent sweep phase (D) - while user threads are running, GC 

may safely sweep not-longer used objects so far discovered. During 

this phase additional Foreground GCs may happen.

If we would like to track such Background and Foreground GCs in terms of ETW/

LLTNg events, these are generated as in Figure 11-7. There are much more than in case of 

a simple Non-Concurrent GC (as seen in Figure 11-3). As we can see, besides the typical 

GC-related events, there is a bunch of BGC-related events describing the Background GC 

in details. There are two - BGCRevisit and BGCDrainMark - that will be explained a little 

further. Other ones are pretty self-descriptive. Please note that Figure 11-7 shows a case 

with only single Foreground GC during Background GC.

T1

T2

GC1

gen0/1/2 full GC

0 or 1
FGC

0+
FGC

0+
FGC

A CB D

Figure 11-6. Background Workstation GC mode in-depth view

Chapter 11  GC Flavors



705

Figure 11-7. ETW/LLTNg events emitted during single Background  
Workstation GC
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Background GC code is mostly shared between the Workstation and server version 
(the main difference is the number of threads executing this code), obviously 
compiled twice within SVR and WKS namespaces. If you want to investigate it 
inside CoreClr code, start from gc_heap::garbage_collect method and look 
for do_concurrent_p flag usage. If Background GC is to be run, gc_heap::do_
background_gc method will be called that wakes up background GC threads. 
Interestingly enough, both Foreground and Background GCs are represented by the 
same gc_heap::gc1 method; the difference lies inside with respect to the global 
settings.concurrent flag. thus:

- in case of Foreground GC, gc_heap::gc1 method is executed while concurrent 
flag is disabled (which is a variant described in chapters from 7 to 10).

- in case of Background GC, on a separate thread, gc_heap::gc1 method 
is executed while concurrent flag is enabled. this triggers executing gc_
heap::background_mark_phase and gc_heap::background_sweep 
methods. they are described briefly in the two following sections.

Typical usage scenarios:

• In most UI applications, a lot of effort has been put in to make GC 

pause times in Background Workstation GC as short as possible. This 

makes it a perfect choice for all varieties of interactive applications 

(thus, mostly UI-based). Since Background GC still does not compact, 

fragmentation may become a problem, and so blocking full-GC may 

be triggered occasionally to fight with fragmentation, but it may ruin 

low-latency efforts.

 Concurrent Mark

One may wonder how it is possible to determine reachability of objects while user 

threads are running. Obviously, they are constantly modifying objects and creating and 

deleting references between them. How can reachability be discovered in such dynamic 

conditions?

As we know, Tracing Collector implemented in .NET discovers reachability of objects 

starting from various roots and by traversing the whole object graph (see Mark Phase 
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in Chapter 1 and Figure 1-15). Those that it has already visited are marked. At the end 

of this process, only marked objects are considered live. The rest is treated as garbage 

and may be collected. This approach, when considering work concurrent with the user 

threads, leads to two main problems:

• how to mark objects in a way not disturbing normal user threads 

work?

• how to maintain consistent view of relations between objects from 

both user threads and the Collector perspective?

Let’s consider marking the object problem first. In Chapter 9 it was said that marking 

an object means setting a single bit in its MethodTable. It was perfectly fine in case 

of the “stop the world” approach. However, modifying such a crucial pointer as an 

object’s MethodTable while threads may be using it is unacceptable - both for safety and 

performance reasons (including cache invalidation).

Thus, concurrent marking stores information about marking in a dedicated, separate 

mark array. Its organization is similar to card tables described in Chapter 5. Each single 

bit in a mark array correspond to 16 bytes region on the Managed Heap (in case of 32-bit 

runtime it is 8 bytes) as illustrated in Figure 11-8. Mark array is organized into 4-byte- 

long mark words. If GC visited an object and wants to mark it - the corresponding bit 

in the mark array is being set. As the GC is the only owner of mark array, there are no 

synchronization problems when accessing it. Moreover, during concurrent marking this 

bit may be only set, not clear. This makes synchronization much simpler in case of many 

threads doing parallel, concurrent marking (as is the case with Background Server GC, 

described later).

Mark array

16B

Mark word
(4 bytes)

single bit

128B
512B

mark
region

{

Figure 11-8. Mark array organization (in case of 64-bit runtime)
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Note that 16-byte granularity is enough because only a single object may lay inside 

such a region (remember that minimum object size is 24 bytes). Later on, by scanning 

the mark array for set bits, we get information about the reachability of corresponding 

objects. This is an easy solution to the first concurrent marking problem.

The second problem requires a little of rethinking. What can go wrong when 

references between objects are being modified while Collector is traversing objects 

graph? We may end up then in the following situations:

• Not-yet-visited object has modified (added, removed, or both) 

references to some other objects - this is fine, however. The object 

has not been visited yet so those changes will be simply included if 

GC will visit it.

• Already visited object has removed reference to the otherwise 

unreachable object (see Figure 11-9a) - this is still fine. We will create 

so-called floating garbage for a moment. Next, GC will discover that 

such an object is unreachable and will collect it.

• Already visited object has added reference to otherwise unreachable 

object (see Figure 11-9b), for example, by creating a new one or by 

reassigning a reference from another object - this is dangerous. It 

could mean that we will have no chance to visit (mark) an object that 

after such change is reachable from another object. It is treated as 

garbage and will be collected while it should still may in use! This is 

the so-called “the lost object” problem. Correct concurrent marking 

implementation should not allow such situations to happen.

• Already visited object has modified a reference to an otherwise 

reachable object - determining whether it is “the lost object” problem 

or not would require checking whether in fact we will have chance to 

visit such an object.

• Currently visiting object has modified its references - it would require 

checking whether such reference has been already visited or not. If 

not, we come back to the first point. If yes, one of the three previous 

points may apply here.
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The solution to the problems mentioned seems obvious - problematic objects should 

be revisited! Various concurrent marking techniques exist that introduce different trade- 

offs between amount of “floating garbage,” number of objects to be revisited, and overall 

synchronization costs between user threads and the Garbage Collector.

In case of .NET, a simple yet effective technique of write barriers was chosen. Every 

time an already visited (or currently visited) object is being modified, it should be treated 

as one “to revisit.” However, for simplicity, every object modification is treated as such. In 

case of Windows, the list of modifications is managed by operating system with an already 

known WriteWatch mechanism (used also by card tables as explained in Chapter 5). This 

mechanism has page-wide granularity so even a single modified object will invalidate 

the whole 4kB page. In case of non-Windows runtimes, CLR implements its own Write 

Watch - with the help of appropriately prepared write barriers injected by JIT that modify 

corresponding bytes in dedicated arrays. At some moments during the GC, such list of 

modifications (let’s call it write watch list) is scanned and marked objects are revisited 

(treating them as an additional roots). This is quite an easy solution to the second 

concurrent marking problem.

RootA RootA

(a)

RootA RootB RootA RootB

(b)

"floating
garbage"

Figure 11-9. Possible problems during concurrent marking: (a) creating floating 
garbage, (b) the lost object problem
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Thus, coming back to the Background GC phases, as shown in Figures 11-6 or 11-7, 

they do the following things:

• Initial “stop the world” phase (A) - while threads are suspended, 

initial list is being prepared. Only stack and finalization queues are 

scanned to populate “work list” for future, concurrent marking. 

Such work list contains only discovered objects, and their outgoing 

references are not followed at this stage.

• Concurrent mark phase (B) - while user threads are working, the 

main part of concurrent marking is executed. It does an object’s graph 

traversal for the following roots (marking objects in the mark array):

• Handles.

• work list prepared in a previous step - so a large graph of objects 

from the stack is considered here. During this step BGCDrainMark 

ETW/LLTNg event is emitted with the information about the 

number of objects in a work list.

• write watch list - at the end of concurrent marking, all objects 

modifications that happened during this stage are considered. 

During this step BGCRevisit ETW/LLTNg event is emitted 

describing how many pages were initially “dirty” and how many 

objects have been eventually marked because of that.

• Final mark, “stop the world” phase (C) - this is the “the final truth” 

point. All threads are suspended and the GC has an opportunity to 

“catch up.” At this moment, a mark array should pretty well reflect 

the actual state of reachability of objects. However, to be sure, they 

must be checked again. Note that this is incremental work. Traversing 

the graph of objects considers the marked flag from the mark array, 

so many objects will not be visited again. The revisiting of the roots 

is only to ensure that there are no new reachable objects available. 

This, of course, will introduce some floating garbage (already marked 

objects will not be “unmarked”), but as it was mentioned before, this 

is not a problem in terms of correctness of the result. During such a 

final marking the following roots are considered:

• stack, finalization queues, and handles
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• write watch list - to include all modifications that the GC cannot 

keep up with in the previous check

• additionally, all typical marking-related work is done like 

scanning dependent handles and weak references

In case of CoreClr, the core code responsible for concurrent marking exists in 
gc_heap::background_mark_phase method. the two most important data 
structures are mark_array (realizing array from Figure 11-8) and c_mark_list 
(realizing “work list” populated at the initial phase). c_mark_list is populated 
with gc_heap::background_promote_callback method during stack and 
finalization queue scanning and then consumed by gc_heap::background_
drain_mark_list method.

the write watch list in case of Windows is managed by the system itself and is 
consumed in the GC within gc_heap::revisit_written_pages method. 
It gets from the system a current list of dirtied pages (from the Managed 
heap memory region) and scans them object by object with the help of gc_
heap::revisit_written_page method. In case of a non-Windows CoreClr 
build, DFEATURE_MANUALLY_MANAGED_CARD_BUNDLES, and DFEATURE_
USE_SOFTWARE_WRITE_WATCH_FOR_GC_HEAP are defined and enable the 
software write watch mechanism. You may see its usage in write barriers like 
JIT_WriteBarrier_WriteWatch_PreGrow64.

all concurrent marking is done with the help of gc_heap::background_
promote method that through gc_heap::background_mark_simple and 
gc_heap::background_mark_simple1 traverses the object’s graph (marking 
corresponding bits in mark_array from gc_heap::background_mark1 
method).

In summary, the conclusions from the concurrent marking’s operation are as 

follows:

• It produces some floating garbage so it results in less aggressive 

garbage collection - more dead objects will occupy space for a longer 

time than in case of blocking marking.
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• Intense modification of the dependencies between objects during 

Background GC may invalidate many pages, and thus force GC to 

revisit many objects (remember that the page has 4 KB and may 

contain many small objects).

 Concurrent Sweep

At the moment of concurrent sweep, the mark array already contains information about 

all live objects. Similar to the non-concurrent Plan and Sweep phases described in 

Chapters 9 and 10, such information may be used to sweep dead objects. During this 

phase, objects from the heap are scanned one by one, checked against the mark array, 

and appropriate free-list items are created (exactly in a way described in Chapter 10, 

including updating generation allocators). Because SOH allocations may happen during 

Concurrent Sweep, it is interesting also to see how they interact with each other.

Having said that, we can describe this process as consisting of the following steps:

• Before runtime resumes execution of user threads, free-item lists are 

cleared in all generations - since then allocators will not be aware of 

free space for a short period of time (allocating at the end of already 

consumed segment part).

• Concurrent sweep on ephemeral generations is done - it creates free- 

list items in generations 0 and 1, operating on a separate list that is 

published to the allocator at the end (to avoid multithreaded access 

to the free list both from allocating user threads and concurrent GC). 

Thus, as soon as this fast step ends, allocators in ephemeral generations 

are able to consume created free space. Also, during this step 

Foreground GC is not allowed because it may be compacting - which 

would conflict with the ongoing object-by-object scanning.

• Concurrent sweep on generation 2 and Large Object Heap - it creates 

free-list items in generation 2 and LOH, immediately published to its 

allocators. During this step:

• user threads, while allocating, are able to consume already 

published free list in generation 0.
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• Foreground GCs are allowed so if objects gets promoted from 

generation 1 to 2, already created free-list entries in gen2 will be 

consumed - it is safe because Foreground GCs are regular  non- 

concurrent GCs, during which a Background GC is temporarily 

suspended so there is no simultaneous access to the list.

• During the entire process, LOH allocations are not allowed. This is 

because it would require multithreaded access to the free list from 

LOH allocators while the GC is modifying it. If a user thread wants 

to allocate a large object during Concurrent Sweep, it is blocked 

until its end. While such waiting happens, ETW/LLTng events 

BGCAllocWaitBegin/BGCAllocWaitEnd pair is emitted so we can 

search for it in our traces to be aware of such unwanted delays 

(and they are also summarized as a “LOH Allocation Pause (due to 

background GC) > 200 Msec” section in PerfView’s GCStats report).

• During concurrent sweeping, as in non-concurrent version, segments 

may be deleted if becomes empty (by decommitting its memory).

In case of CoreClr code, concurrent sweep phase is included in the gc_
heap::background_sweep method. It calls gc_heap::background_
ephemeral_sweep method scanning objects from generation 0 and 1) 
and then scans objects from generation 2 and large object heap (calling 
gc_heap::allow_fgc method at some well-defined safe points, after each 
of 256 objects has been scanned). During object scanning, already known gc_
heap::thread_gap or gc_heap::make_unused_array methods are used to 
create a free-list item or small unusable free space respectively.

Mentioned loh allocations are blocked by global gc_heap::gc_lh_block_
event which is used in gc_heap::wait_for_background_planning by 
calling gc_heap::user_thread_wait  on it. this path is used at the beginning 
of the gc_heap::a_fit_free_list_large_p method, which is in fact the 
begging of the entire loh allocation path (as described in Chapter 6).
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 Server Non-Concurrent
Since the beginning of .NET until .NET Framework 4.5, it was the default-only mode 

dedicated for the server (mainly web) applications. In fact, it is a quite simple extension 

of Workstation Non-Concurrent described earlier. All GCs are blocking, regardless which 

generation is collected. As we remember, from a memory management point of view 

there is an important difference though - by default, there are as many Managed Heaps 

as logical CPU cores.

Server Non-concurrent GC modes have the following characteristics (see  

Figure  11- 10):

• There are additional threads dedicated solely for the GC’s purposes - 

by default exactly as many as Managed Heaps (they are called simply 

Server GC threads). Most of the time they are suspended waiting 

for work to do. Each such single thread is dedicated to handle the 

corresponding Managed Heap.

• All collections are Non-Concurrent GCs - thanks to the parallel 

collection from many GC threads, introduced pauses are shorter 

than for corresponding heap sizes in case of Workstation mode. 

Being “stop the world” collections also allows them to be compacting 

if they wish.

• Marking is done in parallel from multiple GC threads - it speeds up 

the blocking phase. Additionally, the mark stealing technique is used 

to balance marking work between multiple threads. Heaps may be 

unbalanced in terms of required marking jobs because of different 

distribution of objects containing live outgoing references. Thus, GC 

threads may occasionally “steal” from each other batches of objects 

to be visited.

Chapter 11  GC Flavors



715

In case of Server GC, the number of GC Heaps, and thus the number of GC threads 

also do not have to be equal to the number of logical CPU cores on the machine. Since 

the .NET Framework 4.6+ and .NET Core, an additional configuration has been added - 

GCHeapCount. It specifies the number of threads and Managed Heaps used by the GC. It 

may be set only for Server GC mode, via COMPlus_GCHeapCount environment variable 

or through XML/JSON configuration file (see Listing 11-3). The provided value must be 

smaller than the number of logical CPUs the process is allowed to run on (as operating 

systems provide various ways of limiting this number); otherwise it will be cropped to 

such number.

Listing 11-3. Configuring number of GC-related threads and Managed Heaps

<configuration>

   <runtime>

      <gcServer enabled="true"/>

      <GCHeapCount enabled="6"/>

   </runtime>

</configuration>

Previously such limitations had to be configured via mentioned operating system 

techniques - to make the runtime thinking it had less logical cores available than it  

really had. But it had a severe caveat - the entire runtime had such limitation imposed, 

not only the GC. It means unwanted limitations on possible concurrency of the entire 

.NET program, while one would like to limit in that way only the GC configuration. Thus, 

since the introduction of GCHeapCount setting, this is a preferred way of controlling that 

GC aspect.

Figure 11-10. Server Non-concurrent GC mode illustration
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there is an additional pair of settings related to the threads/heaps CpU affinity: 
GCNoAffinitize and GCHeapAffinitizeMask. You may wish to refer to them in 
scenarios where you have a huge number of CpUs not consumed entirely, thanks to 
the settings like GCHeapCount. By using this setting, you can dedicate specific CpUs 
to specific applications, making a fully CpU-aware distribution of your applications.

Typical usage scenarios:

• In heavily saturated web servers, where there is an intensive CPU 

cores contention because of many concurrent threads from many 

applications, this mode may be a better choice than even more 

resource-heavy Background Server GCs described later. You can 

additionally limit thread consumption by using GCHeapCount setting.

• Because all GCs, including full-GC, may be compacting, this mode 

fights with fragmentation better than concurrent version. It results in 

a smaller working set.

• Because all GCs are blocking, no floating garbage is introduced during 

the concurrent marking state. It reduces the working set further.

 Background Server
Since .NET Framework 4.5, this is the default mode for server applications. This is by far 

the most complex GC available. However, knowing both Non-Concurrent Server and 

Background Workstation GCs, we will easily notice that it is in fact a combination of them.

Background Server GC mode has the following characteristics (see Figure 11-11) - 

very similar to the Background Workstation GC:

• There are two threads dedicated solely for the GC purposes per each 

Managed Heap - most of the time they are suspended waiting for 

work to do:

• Server GC threads - as in non-concurrent Server GC, they 

are responsible for performing all blocking GCs (including 

Foreground GCs).

• Background GC threads - an additional per heap thread 

responsible for performing Background GCs.
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• Ephemeral collections are Non-Concurrent GCs - they are fast enough 

to make them non-concurrently. This also allows them to be compacting 

if they wish. They are executed by foreground GC threads in parallel - 

each such thread is responsible for its dedicated Managed Heap.

• A full-GC may be executed in two modes:

• Non-Concurrent GC - because of the “stop the world” nature, it 

may be compacting. Like in the ephemeral collection, all Server 

GC threads are executing such GC in parallel.

• Background GC - it executes most of the work while managed 

threads are normally executed. This mode is not compacting. 

As in Background Workstation case, this GC is executed by 

dedicated background GC threads (in parallel).

• Background full-GC has the following additional characteristics:

• User-managed threads can allocate objects during its work - 

and these allocations can trigger ephemeral collections 

(Foreground GCs).

• Foreground GCs may happen many times during a Background GC.

• It contains two short “stop the world” phases - at the beginning 

and in the middle of the GC.

Figure 11-11. Background Server GC mode illustration
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The exact description of Background Server GC would require repeating most of the 

content from the description of the Background Workstation GC. The main difference is 

that instead of a single additional GC thread, there are as many available CPU cores.

This obviously introduces quite a sophisticated solution combining the advantages 

of both Background Workstation GC (short pauses, weak thread allocation restrictions) 

and Non-Concurrent Server GC (scalability due to parallel collection). This is the most 

resource-heavy GC in terms of thread utilization. On an 8-core machine, there will be an 

additional 16 threads dedicated to the GC.

Typical usage scenarios:

• default GC for most server-based applications. If you have dozens of 

.NET applications running on the same server instance, you would 

not want to have them all use Background Server GC.

• Resource heavy desktop application running on dedicated machines. 

If kind of controlled environment is used (like medical or factory 

station), running solely your application, you may consider using 

this mode - this most sophisticated GC should run well, having more 

resources at its disposal.

 Latency Modes
In addition to the four GC modes available, an orthogonal setting is also available that 

lets us control the latency (or pause) behavior. Thanks to the latency mode settings, we 

can control the intrusiveness of the GC - how willing it will be to introduce blocking 

pauses. Unlike the GC mode settings presented so far, the latency mode setting can be 

also changed dynamically during program operation. It gives interesting possibilities 

that we will also mention.

While latency mode can be configured via Configuration Knobs (by using COMPlus_

GCLatencyMode environment variable), the supported way is to set it from code via 

GCSettings.LatencyMode static field. It may take one of the GCLatencyMode enumeration 

values (see Listing 11-4), corresponding to the modes described in this section.
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Listing 11-4. Latency modes enumeration

public enum GCLatencyMode

{

      Batch = 0,

      Interactive = 1,

      LowLatency = 2,

      SustainedLowLatency = 3,

      NoGCRegion = 4

}

As we will see, the latency mode in fact lets us to control concurrency of the GC also. 

Let’s look at the subsequent sections where all those options are briefly described.

 Batch Mode
In Batch mode, we are not concerned about pauses length a lot. This allows to optimize 

GC in different aspects, for example, throughput or memory usage. Batch mode is a 

default latency setting for all non-concurrent GCs (meaning, started with the System.

GC.Concurrent or gcConcurrent setting disabled).

What this gives us in practice is the option to disable the possibility of Background  

GC occurrence. In other words, we can use it to dynamically disable the concurrent GC,  

even if it was started during runtime as such. But what happens to the background GC 

threads in such case? The answer differs depending on the GC mode:

• in case of Server GC they are simply infinitely suspended, until one 

will revert latency mode to the Interactive.

• in case of Workstation GC they will time out after some period of 

time (currently it is 20 seconds) and will be destroyed, emitting 

GCTerminateConcurrentThread ETW/LLTNg event.

 Interactive
In interactive mode, short pauses are most desired, even in cost of memory usage (for 

example, we are running an interactive UI-based application). It is a default setting for 

all concurrent GCs - it enables Background GC possibility. Thus, it is a default setting in 

.NET because both Workstation and Server GC modes are concurrent by default.
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Complementary to the Batch mode, we can use it to dynamically enable concurrent 

GC - in such case, proper background GC threads will be created if they do not exist 

already, emitting GCCreateConcurrentThread ETW/LLTNg event.

Additionally, in case of Workstation GC mode with interactive mode (so default 

one), GC time tuning is enabled already described in Chapter 7 in the “Generation to 

Condemn” section.

 Low Latency
Low-latency mode should be used when as short as possible pauses are essential, at any 

cost. It is available only in Workstation GC mode. Low-latency mode disables all regular, 

both concurrent and non-concurrent generation 2 (full) Garbage Collections - this is 

quite a strong requirement! Full-GC will be possible only in case of receiving a low- 

memory system notification or via explicit trigger (like calling GC.Collect method).

Needless to say, this mode actually has a very large impact on the operation of the 

application:

• Overall pause times will be really short because only fast ephemeral 

collections occur.

• Memory usage will likely grow vastly because all objects gathering in 

generation 2 or Large Object Heap will not be collected at all.

Such a strong latency mode should be used only for small periods of time, when 

latency requirements are absolutely essential - for example, during intensive interaction 

with the user. We should be aware, however, that after operating in this mode, sooner or 

later there will be intensive garbage collection - most often it is best to call the GC in a 

controlled moment as soon as possible afterward.

When setting low-latency mode, special care should be taken to make sure it will be 

soon reverted. Regular try/finally construct may be not enough because there still might 

be rare situations when finally the block is not executed. To make latency mode setting 

double-protected, it is best to use so-called Constrained Execution Regions. As .NET 

Documentations says: “A constrained execution region (CER) is part of a mechanism for 

authoring reliable managed code. A CER defines an area in which the common language 

runtime (CLR) is constrained from throwing out-of-band exceptions that would prevent 

the code in the area from executing in its entirety.” For example, the CLR delays thread 

aborts for code that is executing within a CER. Regardless of its internal workings, using 
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them is as easy as preceding try block with the PrepareConstrainedRegions method call 

(see Listing 11-5).

Listing 11-5. Safely setting LowLatency mode thanks to the Constrained 

Execution Regions

GCLatencyMode oldMode = GCSettings.LatencyMode;

RuntimeHelpers.PrepareConstrainedRegions();

try

{

   GCSettings.LatencyMode = GCLatencyMode.LowLatency;

   //Perform time-sensitive, short work here

}

finally

{

   GCSettings.LatencyMode = oldMode;

}

 Sustained Low Latency
Because latency requirements of LowLatency mode are so strong and the heap might 

grow too fast, another version of the low-latency requirement was introduced in .NET 

Framework 4.5, available both in Workstation and Server GC modes. Sustained low 

latency is a little compromise between desired short pauses and memory usage - in this 

mode only non-concurrent full-GCs are disabled. In other words, only ephemeral and 

Background Garbage Collections are allowed. This mode is available only if runtime has 

started with the concurrent setting enabled (regardless of changing it later on via Batch 

and Interactive latency modes). Like in the previous low-latency mode, a full, blocking 

GC will be possible only in case of receiving a low-memory system notification or via 

explicit trigger (like calling GC.Collect method).

Sustained low-latency mode allows us to stay in low-latency mode for a longer 

period of time, without such fast heap growth and with still short pauses but not as short 

as in LowLatency mode (due to pauses introduced by ephemeral and Background GCs). 

It may be a very good compromise in situations of handling user input. While the user 

makes some UI-based actions, we may enable it to improve interactivity. Exactly this 

scenario can be found in the source code of the Roslyn parser, used by Visual Studio. 
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SustainedLowLatency mode is enabled when the user types something in the editor but 

after a specified timeout, latency is reverted to the original value (see Listing 11-6).

Listing 11-6. Example of setting SustainedLowLatency mode from Roslyn  

source code

/// <summary>

/// This class manages setting the GC mode to SustainedLowLatency.

///

/// It is safe to call from any thread, but is intended to be called from

/// the UI thread whenever user keyboard or mouse input is received.

/// </summary>

internal static class GCManager

{

      /// <summary>

      /// Call this method to suppress expensive blocking Gen 2 garbage GCs in

       /// scenarios where high-latency is unacceptable (e.g. processing 

typing input).

      ///

       /// Blocking GCs will be re-enabled automatically after a short 

duration unless

      /// UseLowLatencyModeForProcessingUserInput is called again.

      /// </summary>

      internal static void UseLowLatencyModeForProcessingUserInput()

      {

            var currentMode = GCSettings.LatencyMode;

            var currentDelay = s_delay;

            if (currentMode != GCLatencyMode.SustainedLowLatency)

            {

                  GCSettings.LatencyMode = GCLatencyMode.SustainedLowLatency;

                  // Restore the LatencyMode a short duration after the

                  // last request to UseLowLatencyModeForProcessingUserInput.

                  currentDelay = new ResettableDelay(s_delayMilliseconds);

                   currentDelay.Task.SafeContinueWith(_ => RestoreGCLatency 

Mode(currentMode), TaskScheduler.Default);

                  s_delay = currentDelay;

            }
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            if (currentDelay != null)

            {

                  currentDelay.Reset();

            }

      }

}

 No GC Region
This is by far the strongest requirement that can be set, added in .NET Framework 4.6. 

As the MSDN documentations says, this mode: “attempts to disallow garbage collection 

during the execution of a critical path if a specified amount of memory is available.” 

In other words, it will try to disable GC entirely but it cannot be done indefinitely. 

Thus, we cannot set no GC mode simply by GCSettings.LatencyMode field (setting it 

to GCLatencyMode.NoGCRegion will have no effect). Instead, a dedicated method was 

introduced with several overloads:

• bool GC.TryStartNoGCRegion(long totalSize)

• bool GC.TryStartNoGCRegion(long totalSize, bool 

disallowFullBlockingGC)

• bool GC.TryStartNoGCRegion(long totalSize, long lohSize)

• bool GC.TryStartNoGCRegion(long totalSize, long lohSize, 

bool disallowFullBlockingGC)

As we can see, all those methods take the amount of memory (totalSize, in bytes) - 

it specifies how much memory we would like to be able to allocate without triggering 

any GC (in other words, how much memory should be already available upfront) per 

each Managed Heap. TryStartNoGCRegion method returns true if the GC acknowledges 

that much memory is indeed available and we have just entered no GC latency mode. 

Additionally, we can specify how much of those allocations may be dedicated to Large 

Object Heap (lohSize argument). If we do not specify lohSize, totalSize limit will be 

applied separately for SOH and LOH (thus, in fact, we would be able to allocate twice the 

totalSize size).

If initially there is less available memory than requested, a full non-concurrent GC 

will be triggered inside TryStartNoGCRegion method implementation, trying to get it. 

But we may disallow such behavior by disallowFullBlockingGC parameter.
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An important limitation is the fact that a specified size must be less than or equal to 

the total size of all ephemeral segments (that is, appropriate multiplication of ephemeral 

segment size in case of Server GC):

• In case of specifying lohSize, the totalSize minus the lohSize value 

(SOH size) must be less than or equal to the size of an ephemeral 

segment.

• In case of specifying only totalSize, one can’t tell if you meant that 

for SOH, LOH, or some combination of them, so it is assumed to be 

on the safe side - the whole totalSize value must be less than or 

equal to the size of an ephemeral segment.

This is because GC may be not triggered as long as allocations do not require 

segment reorganization due to ephemeral segment shortage. If we specify a size 

exceeding the ephemeral segment sizes, ArgumentOutOfRangeException will be thrown.

After entering no GC latency mode, we may proceed normally with our program 

execution. As long as allocations do not exceed specified sizes in SOH and LOH, 

no GC should be triggered. We should however remember to end no GC latency mode 

explicitly by calling GC.EndNoGCRegion() method! From the GC perspective it is not so 

important - even if we forget to, it is guaranteed that the latency mode will be reverted to 

the original one after exceeding totalSize allocations.

However, from the no GC API perspective, it is important that each GC.

TryStartNoGCRegion method has its corresponding GC.EndNoGCRegion call - otherwise 

subsequent GC.TryStartNoGCRegion calls will throw InvalidOperationException 

with the message “The NoGCRegion mode was already in progress.” It will happen 

even if the allocations limit were violated and latency mode was reverted to the 

original one! In such case we still have to call EndNoGCRegion, knowing that it will throw 

InvalidOperationException with the message “Allocated memory exceeds specified 

memory for NoGCRegion mode.”

As no GC region is by design limited to certain amount of allocations, disabling 

it does not have to be as much protected by using Constrained Execution Regions as 

when setting low-latency modes. In the worst-case scenario, GC will just be triggered. 

However, it is always good to check whether we should end previous no GC region 

before calling TryStartNoGCRegion, to prevent throwing InvalidOperationException.

Taking all that into consideration, using a no GC region may require a few safe 

checks and will end with a code similar to that in Listing 11-7.
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Listing 11-7. An example of no GC region creation

// in case of previous finally block not executed

if (GCSettings.LatencyMode == GCLatencyMode.NoGCRegion)

   GC.EndNoGCRegion();

if (GC.TryStartNoGCRegion(1024, true))

{

   try

   {

      // Do some work.

   }

   finally

   {

      try

      {

         GC.EndNoGCRegion();

      }

      catch (InvalidOperationException ex)

      {

         // Log message

      }

   }

}

Please note that calling the GC.EndNoGCRegion method without preceding GC.

TryStartNoGCRegion call (that succeeds) will throw InvalidOperationException 

with the message “NoGCRegion mode must be set.” Thus, you may see advice to check 

latency mode in advance, like in code (GCSettings.LatencyMode == GCLatencyMode.

NoGCRegion) GC.EndNoGCRegion. This, however, is not useful in the finally block from 

Listing 11-7. As mentioned, in case of an allocations limit violation, we still need to call 

GC.EndNoGCRegion, even if GCSettings.LatencyMode will already have reverted a value 

like Batch or Interactive.
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If you would like to investigate no GC latency mode in CoreClr code, 
start from GCHeap::StartNoGCRegion method, which implements 
GC.TryStartNoGCRegion methods listed before. It may call 
GCHeap::GarbageCollect method and it calls gc_heap::prepare_for_
no_gc_region - checking ephemeral segment size condition and setting 
allowed no GC allocation amounts. afterward, when during normal program 
execution, the GC would be triggered, gc_heap::should_proceed_for_
no_gc is called to check allocation limits violations.

 Latency Optimization Goals
If you recall section “Static Data” from Chapter 7, an additional level of latency control 

was presented there - latency optimization goals (levels), affecting the values of static 

data. As the CoreCLR comment says: “Latency modes required user to have specific 

GC knowledge (e.g., budget, full-blocking GC). We are trying to move away from them 

as it makes a lot more sense for users to tell us what’s the most important out of the 

performance aspects that make sense to them” (and those aspects include memory 

footprint, throughput, and pause predictability). Thus, in the future .NET releases we 

may expect moving from previously described latency modes into more aspect-oriented 

latency goals. Currently four such goals (levels) are planned:

• memory footprint (level 1) - where pauses can be long and more 

frequent but heap size stays small,

• throughput (level 2) - where pauses are unpredictable but not very 

frequent (and might be long),

• a balance between pauses and throughput (level 3) - where pauses 

are more predictable and more frequent. The longest pauses are 

shorter than level 1 pauses,

• short pauses (level 4) - where pauses are more predictable and more 

frequent. The longest pauses are shorter than level 3 pauses.
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As mentioned in Chapter 7, currently (at the time of .NET Framework 4.7 and .NET 

Core 2.1) only levels 1 and 3 are supported, but their usage along runtime and GC is yet 

very limited.

Latency level is accessible via GCLatencyLevel Configuration Knob, so it may be set 

by COMPlus_GCLatencyLevel variable with values 1 or 3.

 Choosing GC Flavor
We have already gained a lot of knowledge regarding various modes that GC may operate 

on as well as its intrusiveness control via latency settings. Although the pros and cons 

of described modes were already discussed, a clear answer to the question - what is the 

best GC choice in my case - has not been presented yet.

The simple answer is - use default GC mode! In many cases, this answer is enough 

and you do not have to tangle your head with alternatives. However, there are various 

knobs we may turn on and off. There are situations in which it is worth considering their 

use. The two most common exceptions are:

• Web application hosted on a server with many other applications 

running - in such case the default Background Server may be just too 

resource consuming. You can tune it a little by using GCHeapCount 

setting or change it to other mode.

• Windows Service making a lot of processing - in such case the default 

Background Workstation may be not scalable enough and you may 

wish to change it to some Server mode.

A summary of the available modes, taking into account the knowledge presented so 

far, can be found in Table 11-1.
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 Scenario 8-1. Checking GC Settings
Description: We are developing or maintaining a .NET application. Due to various 

reasons, we want to certainly identify its current GC settings on the production 

environment - let’s say that based on the observed behavior, we suspect that it is 

misconfigured. Obviously, we could check the application’s configuration file, but it will 

not give us one hundred percent certainty. As we know, a file-based configuration may 

be overridden by environment variables or a registry. Or maybe the file itself configures 

it in a wrong way (misspelling?). Why not just check what the .NET process itself says 

about its current settings?

Analysis: The easiest, fastest, and less intrusive way to check process settings is to 

use ETW/LLTNg mechanism. Every time ETW session starts and stops, .NET runtime 

sends additional diagnostics events (to be utilized by interpreting tools). We should be 

interested in the event Microsoft-Windows-DotNETRuntimeRundown/Runtime/Start. 

Although it is emitted when the runtime starts, it is also emitted, as mentioned, when 

ETW session starts and ends.

So it is as simple as starting and ending the ETW session and looking at this event, 

which contains the StartupFlags field that interests us. We can use for this purpose, for 

example, PerfView - record a very short standard .NET session and look at this event on 

the list of events (see Figure 11-12). StartupFlags are rather self-descriptive - we will be 

mostly interested in the following three values:

• CONCURRENT_GC - runtime has started with the concurrent GC 

enabled. If this value is not listed, Non-Concurrent GC is enabled.

• SERVER_GC - runtime has starter with the Server GC. If this value is 

not listed, Workstation GC is enabled.

• HOARD_GC_VM - VM hoarding (see Chapter 5) is enabled.

Such values may be combined with each other so. for example, Background 

Server GC will have both CONCURRENT_GC and SERVER_GC listed, while Non-Concurrent 

Workstation GC will have nothing listed.
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To make such a check even less invasive, we can use the great etrace tool created by 

Sasha Goldshtein. It allows you to control ETW sessions from the command line, with 

various filtering features available. In our case we are interested in only a single event of 

a single process. Because etrace starts .NET-related ETW session, mentioned diagnostic 

events will be emitted, including Runtime/Start. The appropriate command and its 

result are shown in Listing 11-8.

Listing 11-8. etrace tool to list specific ETW events from given providers and 

additional filters applied (like process ID)

.\etrace.exe --other Microsoft-Windows-DotNETRuntimeRundown --event 

Runtime/Start --pid=21316

Processing start time: 30/04/2018 10:21:51

Runtime/Start [PNAME= PID=21316 TID=14648 TIME=30/04/2018 10:21:51]

  ClrInstanceID        = 9

  Sku                  = 1

  BclMajorVersion      = 4

  BclMinorVersion      = 0

  BclBuildNumber       = 0

  BclQfeNumber         = 0

  VMMajorVersion       = 4

  VMMinorVersion       = 0

  VMBuildNumber        = 30319

  VMQfeNumber          = 0

  StartupFlags         = 1

  StartupMode          = 1

  CommandLine          = F:\IIS\nopCommerce\Nop.Web.exe

  ComObjectGuid        = 00000000-0000-0000-0000-000000000000

  RuntimeDllPath       = C:\Windows\Microsoft.NET\Framework\v4.0.30319\clr.dll

Figure 11-12. Microsoft-Windows-DotNETRuntimeRundown/Runtime/Start 
event showing CLR runtime settings
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The only inconvenience of this approach is that the StartupFlags value is given 

in numerical form, and we have to interpret it ourselves knowing the values of the 

corresponding enumeration (see Listing 11-9). In case of the result from Listing 11-8, 

StartupFlags has value 1, which means only CONCURRENT_GC flag is set.

Listing 11-9. Runtime StartupFlags enumeration

public enum StartupFlags

{

      None = 0,

      CONCURRENT_GC = 0x000001,

      LOADER_OPTIMIZATION_SINGLE_DOMAIN = 0x000002,

      LOADER_OPTIMIZATION_MULTI_DOMAIN = 0x000004,

      LOADER_SAFEMODE = 0x000010,

      LOADER_SETPREFERENCE = 0x000100,

      SERVER_GC = 0x001000,

      HOARD_GC_VM = 0x002000,

      SINGLE_VERSION_HOSTING_INTERFACE = 0x004000,

      LEGACY_IMPERSONATION = 0x010000,

      DISABLE_COMMITTHREADSTACK = 0x020000,

      ALWAYSFLOW_IMPERSONATION = 0x040000,

      TRIM_GC_COMMIT = 0x080000,

      ETW = 0x100000,

      SERVER_BUILD = 0x200000,

      ARM = 0x400000,

}

On the other hand, ASP.NET web application hosted on IIS will have StartupFlags 

of value 208919 (33017 hexadecimally), which corresponds to flags: CONCURRENT_GC, 

LOADER_OPTIMIZATION_SINGLE_DOMAIN, LOADER_OPTIMIZATION_MULTI_DOMAIN, 

LOADER_SAFEMODE, SERVER_GC, HOARD_GC_VM, LEGACY_IMPERSONATION, DISABLE_

COMMITTHREADSTACK.
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 Scenario 8-2. Benchmarking Different GC Modes
Description: The topic of different GC operating modes is inherently related to one 

question - which one is best for our application? The answer is obvious on the one 

hand - the default mode is probably good enough in most cases. Web application hosted 

on server? Background Server GC? Interactive UI-based application? Background 

Workstation GC? It is rarely justified to disable the concurrent mode. On the other hand, 

each application is different, and there is no certainty that the default mode best suits it. 

At this point, there is no answer to our question other than simply measuring the impact 

of individual options.

But how to measure this influence? What tools? What to look for? This is what 

the following scenario deals with. We assume in it an analysis of the already known 

nopCommerce web application. Do not pay too much attention to the results though - 

they are only significant for this application at its current stage of development. Do not 

apply the conclusions from the analysis in this scenario directly into your applications. 

This scenario is to show how to carry out such analyses so that you can apply them in 

your specific situations. We will also see typical traps that we may come across when 

analyzing such measurements.

Analysis: First of all, how to measure the effect of different GC settings? It was already 

discussed in the GC pause and overhead section. nopCommerce application under tests 

is a Windows-based application. So, in order to have a comprehensive overview of the 

situation, we will be measuring the following aspects:

• GC overhead using:

• GC Rollup By Generation data from GCStats report in Perf   View,

• Processed CSV data from Individual GC Events file from GCStats 

report in PerfView -to calculate percentiles of pause times (Pause MSec 

column) and CPU overhead (% GC column), memory usage using:

• processed CSV data from Individual GC Events file from GCStats 

report in PerfView -to calculate the Managed Heap size using 

After MB column (here we could also use/.NET CLR Memory/# 

Bytes in all Heaps performance counter with similar accuracy),

• process private working set as manually measured from the Task 

Manager (here we could also use /Process/Working Set - Private 

performance counter).
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• Application perspective:

• response times data from Summary Report in JMeter test.

• processed CSV data from Response Times Percentiles in JMeter 

test (to calculate percentiles).

Processing all this data makes such benchmarking quite tedious. The procedure 

is mainly manual due to the lack of good tools that would automate merging and 

processing all those results. If you found one, use it! Nevertheless, I strongly encourage 

you to look at GC settings measurements in a such comprehensive way. Otherwise, the 

look at the experiment is incomplete and can lead to false conclusions.

Testing scenario consists of the following steps:

• Running load test with the help of JMeter, simulating a typical 

user’s traffic on the site (as always, beware of repeatable starting 

conditions - restart application pool, warm it up a little, disable any 

other background applications, and so on, so forth).

• Immediately starting ETW session from PerfView - very simple one, 

with the lowest overhead possible. Checking only .NET option is 

just fine.

• Let the load test last for a specified amount of time.

• Stop everything and start analysis - that includes producing graphs 

similar to those presented below. It may include some Excel (or any 

other similar tool) manipulations to interpret CSV data, but such 

trivial aspects were omitted here for brevity.

The main advantage of such approach is its very low invasiveness. We can start tests 

at any time, even in a production environment. We do not even have to perform any load 

tests; it’s enough that we carry out observations with similar user traffic (time of the day, 

week, month, ...) if we are sure conditions are repeatable.

There is one more important aspect of this kind of measurements, mentioned in 

Chapter 3 - beware of averages! The average is a statistical value that gives the illusion of 

valuable information, but can really obscure many important facts. So while measuring 

the above values, pay attention to their behavior over time. If, for example, private 

Working Set does not change significantly, the average may be a sufficient value. But 

for such key parameters as the response time of the application (or the GC pause in our 

case), the average is often simply not enough.
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For key metrics, the truly valuable information is provided by percentiles. Thus, 

both for GC pause times and application response times, CSV data is used to produce 

percentiles graphs. Percentiles directly translate into business requirements - for 

example, we want 99% of users to have response times below 2 seconds and 99,99% users 

below 10 seconds. In this scenario percentiles are calculated from observed data - ETW 

and JMeter samples - with the help of manual work in Microsoft Excel. If we can afford 

to be more invasive, including changing the application code, we can use an excellent 

HdrHistogram.NET library (https://github.com/HdrHistogram/HdrHistogram.NET) 

that calculates them from inside the application.

During the scenario, we try to answer the question of which of the four GC 

configurations seems the most appropriate:

• Workstation Non-Concurrent,

• Background Workstation,

• Server Non-Concurrent,

• Background Server.

Of course, the “appropriateness” should be business-driven - whether it is about 

response times SLA, resource consumption (CPU, memory) or any other metrics we 

imagine. Note that the GC overhead itself is not really a business-centric metric. Can you 

imagine a company management that requires % Time in GC to be less than 10%? In fact, 

we will see the influence of GC overhead on the whole application also in this scenario.

Before each test, proper runtime settings are set in the configuration file. For each 

mode, a few tests were conducted to minimize the chance of impact from external factors.

Let’s discuss CPU overhead first. As we can see in Figure 11-13, there are some facts 

that can be noted from such results:

• Ephemeral GCs are a little faster in both Server GC flavors,

• Full-GCs introduce a little less overhead in both concurrent flavors.

This leads us to the conclusion that the best choice here is Background Server GC. 

However, measured differences are not overwhelming in our scenario so from a CPU’s 

overhead point of view, we can say that every mode behaves similarly. The point is, we 

had to make detailed measurements to confirm that. Such ETW-based data analysis was 

done with the help of a data processing tool (like Excel) to get average measurements 

(while double-checking if histogram does not reveal multimodal distribution).
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If we used % time in the GC performance counter measure, we would end with 
quite misleading results where it is much bigger in case of both Workstation modes 
compared to server modes. If you recall Figure 11-1, % time in GC is a time of GC 
versus time to the previous GC. In case of server mode, time spent in GC is small 
but processing is done in parallel for multiple Managed heaps (on multiple cores). 
thus, even the time is shorter, the overall CpU usage is similar, while % time in 
GC is not accurately showing this. this is an important observation for us. the % 
time in GC counter should be considered together with the GC mode we are in - 
in Workstation mode we should be more tolerant to higher values than in server 
mode. But, as mentioned earlier, it is just much better to use etW-based data 
instead of a performance counter in the first place.

Figure 11-13. % in GC results (for each generation)
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Memory usage distinguishes better various GC modes (see Figure 11-14). The 

managed heap is noticeably bigger in case of both concurrent (background) versions 

compared to non-concurrent ones - it confirms the already-mentioned bigger 

fragmentation due to frequent, non- compacting background GCs. Moreover, overall 

Working Set of each mode is also noticeably different. The smaller one is the simpler 

one - Non-Concurrent Workstation mode that can often compact its small segments. 

On the other side we have the most complicated one - Background Server that creates 

the biggest segments and produces both fragmentation and floating garbage. If memory 

usage is the most important metric for you, this data should help you decide.

Figure 11-14. Memory usage results
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More interesting may be information about GC pauses introduced in each GC mode, 

preferably with respect to each generation condemned. Such data are also in line with 

expectations (see Figure 11-15). Both ephemeral generations are collected really fast 

regardless of the GC mode. The real difference is seen for full-GCs. A definite loser here 

is the Non-Concurrent Workstation mode - one thread in a blocking mode must collect 

all garbage. The Non-Concurrent Server is faster because it does it in parallel on multiple 

Managed Heaps. However, it is still noticeably slower than both concurrent versions.

However, as mentioned earlier, the average is not enough precise information for 

such interesting measurements. Surprisingly enough, when we look at percentiles 

(see Figure 11-16), Background Workstation looks the best while Workstation Non- 

Concurrent is clearly the worst one (with a serious degradation for percentiles bigger 

than 99). This is how we should comprehensively look at pause times in our applications. 

Measure your own, and maybe you will be surprised by the results!

Figure 11-15. Mean GC pause time for each generation results
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But as said earlier, GC overhead (including GC pauses) are only contributing to much 

more relevant business-oriented metrics. How do those tests look from the application 

perspective? Surprisingly, the average response times of the prepared scenario are big 

enough to almost overwhelm benefits of the GC settings (see Figure 11- 17). In most 

configurations, the application processed a similar number of requests (still, throughput-

driven Concurrent Server GC was able to process a little more). Average response times 

are smaller with the more “complicated” version of GC we choose, but differences are 

not huge. These are the specifics of the application being tested. If the response times 

were generally much shorter, the impact of GC could be much more important.

Figure 11-16. GC pause time percentiles results
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Averages are not enough though, so let’s look at the percentiles of response times 

(see Figure 11-18). It only confirms a rather negligible influence of the GC settings. 

However, this does not make this whole scenario senseless. On the contrary! It shows 

how important it is to measure not only synthetic % Time in GC or pause time, but above 

all - the resultant impact on the application, on the indicators that will be experienced by 

real users.

Figure 11-17. Response count and average response time results
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The conclusion in our case is that it is best to use one of the two concurrent GC 

versions. Remember that these are conclusions for some assumptions - generated user 

load, specific environment (number of CPU cores, memory amount, other running 

applications). That is why it is extremely important to carry out such tests on possibly 

near-production environments, not your development desktop PC.

the scenario presents a web application in which testing is quite obvious using 
a load test. however, also desktop or mobile applications can be tested using 
automated tests. We can also, if our logic is well separated (as in the case of the 
MvvM approach), test only the logic layer exposed via apI. there is no excuse for 
not performance testing!

For brevity, similar benchmarking of various latency modes was omitted. The 

procedure would look the same. And the conclusions would be in line with the 

expectations. Only the measurements of your own application will, however, answer the 

question whether their use makes sense.

Figure 11-18. Response time percentiles results
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 Summary
In this chapter we learned about different ways in which we can configure GC activity in 

.NET. We have learned about differences between Workstation and Server mode, both 

from the implementation and practical side. Similarly, we have learned what is Non- 

Concurrent and Concurrent GC, and that currently the latter are named as Background 

GC. We also learned briefly how such interesting mechanisms as concurrent marking 

and sweeping are implemented.

The chapter ended with deliberations on the mode selection - including such an 

important decision whether it is Workstation or Server GC. On the one hand, knowledge 

of these different available modes seems quite common. On the other hand, we often do 

not think about changing the default settings at all. It is a great success of the .NET team 

that those default settings perform so well, and in fact we do not usually have to bother 

about changing it.

There will always be a situation where the default settings may not be sufficient. 

Therefore, the last scenario in the chapter describes in detail how to make an educated 

decision to choose settings based on careful benchmarks.

The following two rules summarize the knowledge from this chapter. The next one is 

dedicated to the important mechanism related to the object’s lifetime - finalization.

 Rule 23 - Choose GC Mode Consciously
Applicability: General - moderately popular. High performance code - very important.

Justification: As we have learned in Chapter 8, there are various GC modes and settings 

available. We are in control of crucial GC parameters - number of heaps and GC threads, 

aggressiveness, and so on, so forth. Most of the time the default settings are just fine. 

However, you should be aware of alternatives and how to make a good, educated 

decision about them.

How to apply: First of all, you should start with the major flavor that correctly reflects 

the characteristics of your app. For example, whether it is Server or Workstation app, 

whether you care about pauses or not. This should be very little work as you should 

know the general characteristics of you app. On the other hand, each GC mode has its 

own pros and cons in terms of CPU and memory usage. They may result in different 

characteristics of the overall application performance. Without measuring them, it 
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is really hard to say which mode best suits your needs. Thus, if you really care about 

performance, check them and measure. Applying Rules 5 - Measure GC Early and #6 - 

Measure Your Program may help you in doing that, especially on your pre-production 

environment (or even on production to some extent). When conducting tests, remember 

about careful methodology - especially about using percentiles on measurements that 

matter to you most.

Related scenarios: Scenarios 8-1, 8-2.

 Rule 24 - Remember About Latency Modes
Applicability: General - rather uncommon. High performance code - important.

Justification: Besides four .NET Garbage Collector modes, we can also influence GC’s 

aggressiveness by using latency modes. They control how willing GC will be in executing 

blocking GCs (thus, introducing unwanted pauses). This leads to a clear balance 

between responsiveness (due to only short blocking pauses) and memory usage (due to 

most non-compacting background GC). Modes that focus on short latencies is thus most 

often used in interactive applications when we want to have additional control over UI 

responsiveness - typically, for short periods of time requiring maximum fluency (e.g., 

keyboard typing). Some server apps like trading apps also use SustainedLowLatency to 

indicate they don’t want the interruption from full-blocking GCs while making sure they 

have enough memory during trading hours.

How to apply: Latency modes are changed from within application code. Various 

ways and related patterns were presented in this chapter. We always set low-latency 

modes for a certain time, the shorter the stronger our expectations are. On one side is 

SustainedLowLatency mode that may last for a long time as it only disables blocking 

full-GCs. On the other side we have no GC regions that disable garbage collection all 

together. Additionally, we can switch between concurrent and non-concurrent GC 

versions dynamically. If we well understand how users use our application, it can lead 

to even better-tuned memory and CPU usage. However, such precise tuning is not 

needed in typical applications. Only when we are approaching the limits of performance 

requirements we may look at latency mode with interest.

Related scenarios: Scenario 8-2 (to use the same testing methodology).
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CHAPTER 12

Object Lifetime
Previous chapters describe the automatic memory management process in .NET quite 

comprehensively. Chapter 6 contains information about how objects are created, 

while chapters from 7 to 11 inform in detail how they are collected when no longer 

needed. However, there are some side mechanisms, without the description of which 

our knowledge would not be complete. In this chapter we will focus on three such 

mechanisms. Although they exist separately and can be used independently, they 

relate to each other conceptually. All of them concern a common topic - the lifetime of 

the object.

The three mentioned mechanisms include finalization, disposable objects (and 

very popular Disposable pattern), and weak references. Through this chapter it should 

become clear how and why they are implemented, as well as how to use them. Typically, 

some practical scenarios are presented how to diagnose problems related to them. 

Please note, however, that those mechanisms are presented mainly from a memory 

management perspective. There are many more comprehensive descriptions available 

in other books that discuss all possible pros and cons, including common caveats 

you may face using them. This is not a C# learning book, so no general C#-related 

discussions happen here.

Both finalization and Disposable patterns are strongly related with interoperability 

with the unmanaged code (and P/Invoke mechanism), so a lot of this chapter is 

dedicated to this topic. Keep in mind, however, that both of them, and weak references 

especially, may be used in a regular managed code not related to unmanaged resources - 

like for logging or cache purposes. Thus, even if unmanaged code and P/Invoke are not 

your regular work, please feel invited to read this chapter nevertheless.
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 Object vs. Resource Life Cycle
In the managed world, everything seems to be pretty easy. We create objects, use them, 

and they are deleted by the GC sometime after we stop needing them. We do not have to 

worry that garbage collection is non-deterministic - that we do not know exactly when it 

will happen - as long as the GC will not delete objects too soon, while we are still using 

it (and this will not happen because it would mean a very severe bug in the GC). Such 

non-deterministic deallocation of objects is typical for tracing collectors, like the one 

implemented in .NET.

This is all fine as long as we do not want some action to happen when an object will 

be no longer needed - a technique called finalization. Out of a sudden non-deterministic 

nature of GC becomes a problem - there is simply no place when a developer could put 

appropriate code. This is because from the code perspective there is only a well-defined 

moment of object creation (constructor), but not of object reclamation.

Managed runtimes like .NET provide dedicated finalization mechanisms - including 

a well-defined place when a programmer can write code to be executed when an object 

becomes garbage. In fact, most of this chapter is devoted to such a finalization process. 

Because it is inherently related to the non-deterministic nature of garbage collection, it is 

often referred to as non-deterministic finalization - it will happen, but it is not said when.

Additionally, deterministic finalization may be sometimes desired - to take an action 

explicitly when we know that object becomes unused. .NET provides a contract in the 

form of IDisposable interface that implies using such finalization. We will look at it also 

later in this chapter.

In addition to the non-deterministic and deterministic finalization names, 
sometimes also names of implicit and explicit cleanup are used, respectively.

Please note that conceptually finalization does not relate directly to the mechanisms 

of garbage collection. It is for sure NOT garbage collection itself, as some developers 

tend to think. Finalization is just producing a side effect - we may do some action when 

an object becomes unreachable or simply is no longer needed. But neither finalizers 

(as we may know it from C#) nor IDisposable interface is responsible for reclaiming 

memory of a no-longer needed object! It happened to me several times during the 

recruitment interviews to hear such answers that the Dispose method frees the memory 

after the object. I hope after previous chapters, you are fully aware that it is not true.
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Why, however, is the finalization mechanism is needed at all? In a completely 

managed environment, its need is actually negligible. In such cases, all managed objects 

are referencing each other but the whole resulting objects graphs is properly managed by 

the GC. If one deletes an object (let’s say, by assigning a null to its last reference), tracing 

GC will take care of deleting all other related objects, not reachable from other places. 

Deleting all those related, owned objects was a typical responsibility of the destructor in 

an unmanaged world (i.e., C/C++).

In a managed world, finalization is mostly helpful when an object holds resources 

other than those managed by the GC and the runtime. Such unmanaged resources 

are typically various types of handles, descriptors, and other data related to the system 

resources that must be freed explicitly. The more the specific environment relies on such 

unmanaged cooperation, the more important that finalization is. .NET environment 

was from the very beginning designed as very “unmanaged-friendly.” As mentioned 

previously, one of the design goals was to take regular C++ code and with very minimal 

changes be able to compile it as .NET program (which resembles today’s C++/CLI 

language). Many very popular APIs rely on unmanaged resources underneath (like files, 

sockets, bitmaps, and so on, so forth). Thus, finalization exists in .NET developers’ minds 

since the very beginning - both in the forms of deterministic IDisposable contract and 

non-deterministic finalization.

jVm, as an extremely popular counterpart-managed environment, put much 
less attention to non-deterministic finalization. they are considered unreliable, 
problematic, and introducing unnecessary GC overhead. In fact, they are so 
unpopular that since java 9 they have received deprecated status. Instead, various 
methods of deterministic finalization are preferred since many years - by providing 
an explicit cleanup method and requiring developers to invoke it on object no 
longer needed (most typically by wrapping its usage within try-finally block). this 
resembles the well-known IDisposable pattern from .Net world.

as a replacement for deprecated java.lang.Object.finalize method, 
a suggested solution for non-deterministic finalization is to use java.lang.
ref.Cleaner class that manages object references by java.lang.ref.
PhantomReference and corresponding cleaning actions for them. phantom 
references are enqueued after the collector determines that their referents may 
otherwise be reclaimed (thus making this mechanism also non-deterministic).
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Because of managed and unmanaged worlds’ coexistence, we should think about 

two separate issues: management of the object lifetime and management of the 

resources (unmanaged) that it holds. Object lifetime management is solely the GC 

responsibility. On the other hand, runtime does not understand well our unmanaged 

resources so resources management is our responsibility, with the help of features 

described in this chapter.

Keeping in mind that the finalization is a side effect of removing the object, we will see 

in this chapter that specific implementations included in .NET do affect the object lifetime.

 Finalization
What is most commonly referred to as “finalization” in .NET is generally understood as 

non-deterministic finalization. As the ECMA-335 standard says: “A class definition that 

creates an object type can supply an instance method (called a finalizer) to be called 

when an instance of the class is no longer reachable.” This is exactly what we will look at 

in this part of the chapter - how the finalizer method may be declared, used, and how it 

is implemented in CLR.

 Introduction
For declaring a finalizer in a case of C# type, special syntax was introduced, called 

destructor (see Listing 12-1). It represents code called when an object is no longer 

reachable and is just about to be deleted. In our example it is used to close a handle to 

the opened file (otherwise, sooner or later we could hit the limit of maximum handles 

opened in the system). System resources are represented by “handles” in case of 

Windows, which quite often are represented by IntPtr structure.1

Listing 12-1. Simple example of using finalizer in C# (by destructor definition)

class FileWrapper

{

   private IntPtr handle;

   public FileWrapper(string filename)

   {

1 In the case of Linux resources, they are commonly represented as regular integers.
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      Unmanaged.OFSTRUCT s;

      handle = Unmanaged.OpenFile(filename, out s, 0x00000000);

   }

   // Destructor

   ~FileWrapper()

   {

      if (handle != IntPtr.Zero)

         Unmanaged.CloseHandle(handle);

   }

Destructor in C# is just a wrapper, which will be translated by compiler into a 

method that overrides System.Object.Finalize method (see Listing 12-2).

Listing 12-2. IL method definition of destructor form

.method family hidebysig virtual

instance void Finalize () cil managed

{

   .override method instance void [System.Runtime]System.Object::Finalize()

   // ...

}

Overriding the Finalize method is crucial. It is a contract between the type and 

the GC - objects that have the Finalize method overridden are called finalizable and 

receive special treatment by the GC.

to declare a finalizable type in f# or Vb.Net, we simply have to override 
Finalize method. this is however not possible in case of C#. trying to do so 
will result in an error: “Do not override Object.Finalize. Instead, provide a 
destructor.” thus the only way is to use ~Typename syntax. Its “destructor” name 
is rather unfortunate because as we know, it has nothing in common with the 
deconstruction of the managed objects itself but is more related with resource 
management. Interestingly, because C++ has already used ~Typename() notion 
for C++ destructor, finalizers are defined by !Typename() in C++/CLI.
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Note also that as mSDN states: “every implementation of Finalize in a derived 
type must call its base type’s implementation of Finalize. this is the only case in 
which application code is allowed to call Finalize.” this is done automatically 
by s destructor wrapper in C# but we should remember about that in other 
languages.

We can, for example, use finalizers to manage an additional memory pressure 

(by GC.AddMemoryPressure and GC.RemoveMemoryPressure methods) introduced 

by a consumed resource (even if it is managed but we know it uses some resources 

underneath). A typical example is using System.Drawing.Bitmap class that, in fact, 

is represented as a single handle to a system resource, but obviously it requires some 

additional memory when bitmap data are used (see Listing 12-3).

Listing 12-3. An example of finalizers usage to maintain additional memory 

pressure

class MemoryAwareBitmap

{

   private System.Drawing.Bitmap bitmap;

   private long memoryPressure;

   public MemoryAwareBitmap(string file, long size)

   {

      bitmap = new System.Drawing.Bitmap(file);

      if (bitmap != null)

      {

         memoryPressure = size;

         GC.AddMemoryPressure(memoryPressure);

      }

   }

   ~MemoryAwareBitmap()

   {

      if (bitmap != null)

      {
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         bitmap.Dispose();

         GC.RemoveMemoryPressure(memoryPressure);

      }

   }

   ...

}

However, using finalizers has certain limitations:

• As previously stated, their execution time is non-deterministic – s 

finalizer will be called (most probably, see below) but it is not defined 

when. This is bad from s resource management point of view. If 

an owned resource is limited, it should be released as quickly as 

possible. Waiting for non-deterministic cleanup is barely optimal. 

If we really need to make sure that finalizers were executed, we may 

call the GC.WaitForPendingFinalizers method. We will return to it 

several times hereinafter.

• Order of execution of finalizers is not defined - even if one 

finalizable object refers to the other finalizable object, it is not 

guaranteed their finalizers will run in any logical order (like the 

e.g., “slave” before the “master” or vice versa). Thus, we should not 

refer to any other finalizable objects inside a finalizer, even if we 

“own” them. Unordered execution is a well-thought-out design 

decision - sometimes it is simply not possible to find a natural order 

(for example, what about circular references between finalizable 

objects?). There is, however, some ordering between finalizers 

possible in the form of critical finalizers, as described later. However, 

finalizer code may refer to the regular managed objects if the 

corresponding object holds references to it - it is guaranteed that the 

whole object graph is collected only after running the finalizer.

• The thread on which the finalizer will be executed is also not 

defined - although we will see how current implementation defines 

that, ECMA-335 does not impose any requirements on that field. 

Thus, relying on any thread context should be avoided (including 

threads synchronization like locking, which may lead to deadlocks 

because nothing is guaranteed here).
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• It is not guaranteed that finalization code will be executed at all, 

exactly once, or may be executed only partially - for example, if some 

finalizer is malfunctioned and blocks its execution indefinitely, or 

the process is terminated rapidly without giving the GC chance 

to execute them. Moreover, it is even possible that finalizer will 

be executed more than once because of a resurrection technique, 

described later.2

• Throwing an exception from the finalizer is very dangerous - by 

default it simply kills the entire process. Because finalizer code is 

considered really important (like, for example, releasing system-wide 

synchronization primitive), being unable to execute it is treated with 

the highest severity. Thus, you should be extremely careful in not 

allow throwing any exception from the finalizer.

• Finalizable objects introduce additional overhead to the GC, which 

may impact overall application performance - as we will see later 

in the section describing the finalization implementation; this 

mechanism requires additional handling of such objects that is not 

without a cost.

All those points lead to one conclusion - implementing finalizers is tricky and using 

them may be unreliable, thus they should be generally avoided. Treat them as implicit 

“safety nets” for cases when a developer does not release resources explicitly by a 

preferred explicit cleanup approach (like Disposable pattern). We will see such typical 

usage when discussing Disposable patterns later on.

eCma-335 says that: “it is valid to define a finalizer for a value type. however, that 
finalizer will only be run for boxed instances of that value type.” at least in the case 
of .Net Core runtime, it is no longer valid. runtime simply ignores the finalizer 
defined in value types during boxing.

2 Even worse, due to resurrection and possible timing, there may be multiple simultaneous calls to 
the same finalizer.
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From a programmer’s perspective it should be only important that the finalizer is 

called “at some time” after the object becomes unreachable. And although it is rather 

an implementation detail, it is good to be aware when in fact finalizers may be called. In 

general, there are two scenarios when it happens:

• At the end of GC - no matter what triggered GC, at the end of 

the process, finalizers are called for the object discovered to be 

unreachable in this particular GC. Please keep in mind that this 

means only finalizers of objects from condemned (and younger) 

generations will be called.

• As the CLR internal bookkeeping - when runtime unloads 

AppDomain and when it is shutting down.

As mentioned earlier, finalizers do not necessarily have to be related to the 

unmanaged resources only. We may imagine other usages, like the lifetime logging 

example from Listing 12-4. If for some reason we would like to perform log creation and 

deletion of an object, its constructor and finalizer seem to be a perfect place - we may 

need to do it, for example, because such an object represents very crucial or resource-

heavy functionality.

Listing 12-4. Simple example of using finalizer in C# (by destructor definition)

class LoggedObject

{

   private ILogger logger;

   public LoggedObject(ILogger logger)

   {

      this.logger = logger;

      // ...

      this.logger.Log("Object created.");

   }

   // Destructor

   ~LoggedObject()

   {

      this.logger.Log("Object destroyed.");

   }
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Please note that even in such a “non-unmanaged” world, implementing a finalizer 

is not trivial. In case of Listing 12-4, a finalizer could be using a dependency-injected 

logger via interface. It means we are not guaranteed that an injected, concrete logger 

instance will not be finalizable and thus we are exposing ourselves to the problem 

of unordered finalization execution – the logger may be already disposed inside our 

finalizer. This is a simple yet expressive example of finalization caveats.

How should such danger could be mitigated? Some solutions may be based on code 

review or automated static analysis - to make sure that ILogger implementations are not 

finalizable or they are critically finalizable (soon we will understand why it may help). 

But the preferred solution is always the same - avoid using finalization. If the lifetime of 

such an object is so important, most probably you will benefit more by incorporating 

Disposable pattern into it, where the cleanup moment is also well-defined and much 

safer to include logging facilities.

 Eager Root Collection Problem
Separate lifetime management of objects and resources can lead to unusual side effects. 

We have already seen them in Chapter 8 in Listings from 8-13 to 8-16. Most of them are 

related to the eager root collection technique. Although in itself it is a great JIT-based 

optimization that takes care of the shortest possible lifetime of objects, in the context of 

resource management, it can be sometimes problematic.

The very typical example of such a problem is using a stream to access a file (see  

Listing 12-5). If we uncomment GC calls inside ProblematicObject.UseMe method 

(simulating GC that could happen simultaneously during this method execution), 

such program execution will end with an Unhandled Exception: System.

ObjectDisposedException: Cannot access a closed file. This is because due to JIT 

optimization, inside the UseMe method the whole ProblematicObject instance is treated as 

unreachable just after the last usage of this.3 Thus, after stream assignment to a localStream 

variable, it is perfectly fine to expect ProblematicObject finalizer to be executed. But as we 

see, such finalizer closes the stream so the following ReadByte call fails. In such a simple case 

we can quickly correct it by always using Stream from the instance, not from a local variable 

(so, for example, last line should be return this.stream.ReadByte()). In such a case, the 

whole ProblematicObject instance is referenced by the last line of UseMe method (by using 

this reference) so early root collection optimization will not come into play.

3 Refer to the early root collection technique described in Chapter 8.
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Listing 12-5. Problem with finalizer releasing resources too early

class ProblematicObject

{

   Stream stream;

   public ProblematicObject() => stream = File.OpenRead(@"C:\Temp.txt");

   ~ProblematicObject()

   {

      Console.WriteLine("Finalizing ProblemticObject");

      stream.Close();

   }

   public int UseMe()

   {

      var localStream = this.stream;

       // Normal code, complex enough to make this method not inlineable and 

partialy or fully-interrptible

      ...

      // GC happens here and finalizers had enough time to execute.

      // You can simulate that by the following calls:

      // GC.Collect();

      // GC.WaitForPendingFinalizers();

      return localStream.ReadByte();

   }

}

class Program

{

   static void Main(string[] args)

   {

      var pf = new ProblematicObject();

      Console.WriteLine(pf.UseMe());

      Console.ReadLine();

   }
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During P/Invoke we may introduce the same problems and because of that, a few 

ways of improving things have been introduced. Let’s start from extending the code 

from Listing 12-1, by adding corresponding UseMe method but now using P/Invoke calls 

directly (see Listing 12-6). We have introduced there exactly the same problem - eagerly 

collected ProblematicFileWrapper instance will trigger its finalizer closing used file 

handle, while the further code tries to use it. Unmanaged.ReadFile call will fail and UseMe 

method will return -1. In our example, we can also quickly fix the problem by using 

this.handle instead of local variable hnd but this is not always possible - quite often 

IntPtr is not part of the managed object (but only static or local variables).

Listing 12-6. Problem with finalizer releasing resources to0 early (extension 

from Listing 12-1)

public class ProblematicFileWrapper

{

   private IntPtr handle;

   public ProblematicFileWrapper(string filename)

   {

      Unmanaged.OFSTRUCT s;

      handle = Unmanaged.OpenFile(filename, out s, 0x00000000);

   }

   ~ProblematicFileWrapper()

   {

      Console.WriteLine("Finalizing ProblematicFileWrapper");

      if (handle != IntPtr.Zero)

         Unmanaged.CloseHandle(handle);

   }

   public int UseMe()

   {

      var hnd = this.handle;

      // Normal code

      // GC happens here and finalizers had enough time to execute.

      // You can simulate that by the following calls:

      //GC.Collect();

      //GC.WaitForPendingFinalizers();
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      byte[] buffer = new byte[1];

      if (Unmanaged.ReadFile(hnd, buffer, 1, out uint read, IntPtr.Zero))

      {

         return buffer[0];

      }

      return -1;

   }

The first general solution to this problem is typical to controlling eager root 

collection - we can add GC.KeepAlive(this) call just before return statement inside the 

UseMe method. This way we extend the lifetime of the object holding the corresponding 

handle. But this solution clutters code a lot and is cumbersome.

Such problems lead to introducing a helper structure HandleRef. It is a very simple 

wrapper that holds both a handle and an object who owns it. It is then specially treated 

by the interop marshaler, to extend the lifetime of the indicated object during the entire 

P/Invoke call. APIs of such P/Invoke calls expect HandleRef instead of bare IntPtr (see 

Listing 12-7).

Listing 12-7. Solving the problem with finalizer with the help of HandleRef struct

public int UseMe()

{

   var hnd = this.handle;

   // Normal code

   // GC happens here and finalizers had enough time to execute.

   // You can simulate that by the following calls:

   //GC.Collect();

   //GC.WaitForPendingFinalizers();

   byte[] buffer = new byte[1];

    if (Unmanaged.ReadFile(new HandleRef(this, hnd), buffer, 1, out uint 

read, IntPtr.Zero))

   {

      return buffer[0];

   }

   return -1;

}
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However, using HandleRef does not solve all the problems - especially related to the 

malicious handle-recycling attack that we will discuss soon. Thus, it is rather an old and 

deprecated approach, mainly used in legacy code (over 80% of its usage comes from 

Windows Forms and System.Drawing code).

HandleCollector class was introduced at the same time as HandleRef, which 

realizes reference counting semantics for the handles - if a given threshold of handles are 

created, it triggers GC. It is also considered legacy and its usage is very rare.

Do not use HandleRef and its equally old friend HandleCollector classes. 
they are described here to provide a concise view of the resource management 
topics and give a little historical background that helps to understand the preferred 
SafeHandle approach described later. even if you encounter those types usage in 
existing code, do not follow such pattern. Safe handles introduced in .Net framework 
2.0 are much better alternatives, described thoroughly in the next section.

 Critical Finalizers
Due to various problems with finalizers mentioned above, in .NET Framework a little 

firmer counterpart was introduced in the form of critical finalizers. They are simply 

regular finalizers with additional guarantees - designed for a situation where a finalizer 

code must be executed with certainty, even in case of rude AppDomain or thread abort 

cases. As MSDN says: “In classes derived from the CriticalFinalizerObject class, 

the common language runtime (CLR) guarantees that all critical finalization code will 

be given the opportunity to execute, provided the finalizer follows the rules for a CER 

(Constrained Execution Region), even in situations where the CLR forcibly unloads an 

application domain or aborts a thread.”

To define a critical finalizer, one must define a finalizer in the 

CriticalFinalizerObject- derived class. The CriticalFinalizerObject itself is 

abstract and has no implementation (see Listing 12-8). It is just yet another contract 

between type system and the runtime. Runtime makes some precautions to make 

executing critical finalizers possible in any circumstances. For example, it is JITting 

critical finalizer code in advance, to avoid a situation when later on there is not enough 

memory in an out-of-memory exception scenario.
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Listing 12-8. Definition of CriticalFinalizerObject class (some attributes are 

omitted for brevity)

public abstract class CriticalFinalizerObject

{

   [ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]

   protected CriticalFinalizerObject()

   {

   }

   [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]

   ~CriticalFinalizerObject()

   {

   }

}

Because the undefined order of finalizers execution was sometimes problematic, 

critical finalizers added some guarantees on that field also. As MSDN says: “the CLR 

establishes a weak ordering among normal and critical finalizers: for objects reclaimed 

by garbage collection at the same time, all the noncritical finalizers are called before any 

of the critical finalizers. For example, a class such as FileStream, which holds data in 

the SafeHandle class that is derived from CriticalFinalizerObject, can run a standard 

finalizer to flush out existing buffered data.”

You will rarely need to define types derived directly from CriticalFinalizerObject. 

More often, you use them via deriving from SafeHandle type (which derive from 

them). However, because SafeHandle type is strictly related both with finalization and 

Disposable pattern, it is described after both are presented later in this chapter.

 Finalization Internals
After learning about the meaning of finalizers, let’s now look at how they are currently 

implemented in the runtime. So far, I put much effort to describe them mostly from 

the semantic side - what they are designed for, what guarantees they provide, and 

what limitations they introduce. However, it is also good to understand that their 

implementation introduces yet another set of disadvantages. Getting to know them is the 

main purpose of this section.
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First of all, as already mentioned in Chapter 6, if a type has a finalizer, a slower 

allocation path will be used - this is the first important overhead introduced just because 

a type has Finalize method overridden.

If you would like to investigate slow-allocation path because of finalization in 
CoreCLr source, start from jIt reaction on CEE_NEWOBJ opcode implemented in 
jIt importer (importer.cpp:Compiler::impImportBlockCode).  
It checks inside CEEInfo::getNewHelperStatic whether the type has 
finalizer defined. If so, CORINFO_HELP_NEWFAST helper is chosen, which 
is assigned at runtime start to the JIT_New function. Inside it, eventually 
GCHeap::Alloc or GCHeap::AllocLHeap is called, which at the end contains 
macro CHECK_ALLOC_AND_POSSIBLY_REGISTER_FOR_FINALIZATION. this 
macro underneath calls CFinalize::RegisterForFinalization method - 
responsible for the finalizable objects’ bookkeeping described afterward. as 
mentioned earlier, although eCma-335 says that finalizers for boxed value types 
will be called, it is no longer true. When jIt decides what function will represent 
CORINFO_HELP_BOX helper, finalizer existence is not taken into consideration and 
most often a fast, assembly-based JIT_BoxFastMP_InlineGetThread helper 
is used that realizes a simple bump pointer allocation.

The GC must be aware of all finalizable objects, to call their finalizers when they 

become unreachable. It records these objects on what’s called the finalization queue. In 

other words, finalization queue at any moment contains a list of all finalizable objects 

currently live. If there are many objects in the finalization queue, it does not necessarily 

mean something bad happened - it means simply that currently there are many objects 

with a finalizer defined.

During GC, at the end of Mark phase, GC checks the finalization queue to see if any of 

the finalizable objects are dead. If they are some, they cannot be yet delete because their 

finalizers will need to be executed. Hence, such object is moved to yet another queue called 

fReachable queue. Its name comes from the fact that it represents finalization reachable (4) 

objects - the ones that are now reachable only because of finalization. If there are any such 

objects found, GC indicates to the dedicated finalizer thread there’s work to do.

4 Literature calls it “finalizer reachable,” but the mentioned name better aligns with the .NET naming.
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Finalization thread is yet another thread created by the.NET runtime. It removes 

objects from the fReachable queue one by one and calls their finalizers. This happens 

after GC resumes managed threads because finalizer code may need to allocate objects. 

Since the only root to this object is removed from the fReachable queue, the next GC that 

condemns the generation this object is in will find it to be unreachable and reclaim it.

Please note, this introduces one of the biggest overhead related to the finalization: a 

finalizable object by default survives for at least another GC. And if it gets promoted to 

gen2, it means it would take a gen2 GC to reclaim it instead of a gen1 GC.

Moreover, fReachable queue is treated as a root considered during Mark phase (as 

mentioned in Chapter 8) because the finalizer thread may not be fast enough to process 

all objects from it between GCs. This exposes the finalizable objects more to a Mid-

life crisis - they may stay in fReachable queue for a while consuming generation 2 just 

because of pending finalization.

To control such asynchronous nature of finalization processing, the GC.

WaitForPendingFinalizers method has been exposed. It does exactly what it sounds - 

it blocks calling thread until all objects have been processed from fReachable queue 

(that mean, all finalizers have been called). As a side effect, after its call all so-far 

“finalization reachable” objects have become truly unreachable and thus, subsequent 

GC will collect them.

This leads us to a very popular, common mantra of “the-ultimate-explicit-garbage-

collection” pattern (see Listing 12-9) - commonly used if we want to clean up memory 

fairly accurately. Seemingly senseless at first glance, those calls have perfect sense:

• first explicit full-blocking GC discovers current set of fReachable 

objects,

• the thread waits until the GC will process all fReachable objects, 

making them really unreachable,

• second explicit full-blocking GC reclaims memory after them.

Listing 12-9. Common pattern of explicit GC, taking into account finalization 

roots

GC.Collect();

GC.WaitForPendingFinalizers();

GC.Collect();
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Obviously, if other threads are allocating finalizable objects during 

WaitForPendingFinalizers method, at the moment of second GC.Collect call, 

yet another set of fReachable objects may be discovered. This leads to a paradox - 

seems we may never be able to fully reclaim memory (at least without aggressively 

blocking all possibly-allocating threads in the process). This is perfectly visible in the 

implementation of GC.GetTotalMemory method, returning the total number of bytes 

currently in use by live objects (see Listing 12-10). If we want to get precise value, we 

should pass true as its forceFullCollection argument. It then tries to get a true set of 

currently live objects by triggering full GC and finalization waits multiple times - as long 

as the result does not stabilize within a 5% change margin (with the maximum iterations 

limit to not repeat this pattern indefinitely).

Listing 12-10. GC.GetTotalMemory implementation.

[System.Security.SecuritySafeCritical]  // auto-generated

public static long GetTotalMemory(bool forceFullCollection) {

   long size = GetTotalMemory();

   if (!forceFullCollection)

      return size;

   // If we force a full collection, we will run the finalizers on all

   // existing objects and do a collection until the value stabilizes.

   // The value is "stable" when either the value is within 5% of the

   // previous call to GetTotalMemory, or if we have been sitting

   // here for more than x times (we don't want to loop forever here).

   int reps = 20;  // Number of iterations

   long newSize = size;

   float diff;

   do {

      GC.WaitForPendingFinalizers();

      GC.Collect();

      size = newSize;

      newSize = GetTotalMemory();

      diff = ((float)(newSize - size)) / size;

   } while (reps-- > 0 && !(-.05 < diff && diff < .05));

   return newSize;

}
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You can reuse such code from Listing 12-10 as “the-even-more-ultimate-explicit- 

garbage-collection” pattern (or you may just call GC.GetTotalMemory(true) as long 

as its implementation does not change). One may be even more aggressive, setting 

 GCSettings.LargeObjectHeapCompactionMode to GCLargeObjectHeapCompactionMode.

CompactOnce before first or even each GC.Collect call.

It is thus worth remembering how costly GC.GetTotalMemory call can be in case of 

forceFullCollection argument being true. In case of very dynamic memory usage 

pattern, it may call full-blocking GC 20 times! Thus, in large and dynamic applications, 

be prepared to wait even more than a second for this method result.

There is still one detail not explained so far - as previously said, during GC, 

finalizable objects only from the condemned and younger generations are considered. 

To explain it clearly - for example, when generation 1 GC is happening, only finalizable 

objects from generations 0 and 1 will be considered in the finalization queue and moved 

to fReachable queue if it becomes unreachable.

It requires a finalization queue to be generation aware - in which generation 

does the currently considered object live? One could imagine checking each object 

while finalization queue is being processed - in which generation address boundary 

it lives within. But remember that generation 2 and LOH may live within multiple 

segments, thus such check could be costly, consuming precious GC time. So instead, 

the finalization queue is generational itself - it organizes objects addresses in separate 

segments, one for each separate generation. Then, only given segments are considered 

during a particular GC. And yes, it requires promotion or demotion of object addresses 

between appropriate segments when corresponding objects are promoted or demoted! 

Do you feel that, yet another one, additional overhead of finalization?

Both finalization and fReachable queues are currently implemented as a single, plain 

array of object addresses (see Figure 12-1) - I will refer to it herein after as “finalization 

array.” It is logically split into three areas:

• finalization part - further divided into four segments, for the three 

generations and LOH,

• fReachable part - further divided into segments of object addresses 

with critical and regular finalizers,

• free part - to be consumed by growing above segment.
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Boundaries between segments are managed by yet another, short array of addresses 

called fill pointers. Thus, browsing a finalization queue for a given generations is as easy 

as accessing subsequent array elements within boundaries designated by appropriate 

fill pointers. Promotion from finalization to fReachable queue means copying a given 

address between segments (to the critical or normal part of fReachable area,  depending 

on the finalizer kind). The same as promotion or demotion means copying a given 

address between source and target generation segments. And because the finalization 

array is maintained without any gaps, such copying requires in fact shifting all addresses 

between source and target array elements (and updating fill pointers accordingly).

As said before, a newly created object that contains the finalizer must be added to 

the finalization queue - this is called registering for finalization. From an implementation 

point of view, such object must be added to the gen0 segment inside finalization array 

(and yes, this also requires shifting by one element all subsequent elements from Critical 

and Normal fReachable segments). Because of that, there is a lock around finalization 

queue access as multiple threads may modify it simultaneously (from its allocators). 

Additionally, if the finalization array is full, a new 20% bigger copy will be created. This 

all is obviously yet another overhead of finalization, directly impacting user threads by 

possibly slowing down allocation - due to the lock usage and copying array elements.
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There are two important finalization APIs exposed via GC class. Firstly, there is  

GC.ReRegisterForFinalize(object) method that allows us to re-register for finalization 

an object that has been already registered. We will see why it may be needed later in 

this chapter. Underneath GC.ReRegisterForFinalize(object) method call exactly the 

same runtime methods as used in regular registering for finalization during allocation - 

thus calling it introduces some overhead similar to described above. However, it is most 

commonly called from within a finalizer so its overhead is of less importance.

Secondly, in certain scenarios described later, it may be also useful to explicitly 

disable executing finalizer of finalizable object - a process called suppressing finalization. 

GC.SuppressFinalize(object) method exposes such functionality. Because it is 

very often called from the user threads (as a part of Disposable pattern), it has been 

highly optimized. It does not manipulate finalization array at all, as one could expect 

(for example, by removing such address from it, that would require shifting a lot of 

subsequent elements). By avoiding synchronized access to the finalization array, it is 

Object*[]

Finalization queue fReachable queue

LOH gen2 gen1 gen0 Critical Normal

LOH segment SOH segment

gen2 gen1 gen0

segment limits
("fill pointers")

free

Figure 12-1. Finalization internals showing finalization and fReachable queues. 
Only a few object references have been illustrated to not clutter this drawing too 
much - in reality, all finalization array elements (except the free part) contain a 
valid address of some object.
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not exposed to the related overhead. Instead, such method sets a single bit in the object 

header, which is obviously a very efficient operation. Afterward, Finalize method is just 

not called by finalizer thread for objects with this bit set.

As previously explained, at the end of Mark phase, the GC checks objects for being 

marked from the appropriate generation’s segments of finalization array. If an object is 

not marked, its address is moved into Critical or Normal fReachable segment.

Later on, finalizer thread reads elements from those segments and updates their fill 

pointers accordingly (so once read, object lies inside not further scanned “free part” and 

becomes truly unreachable). With the current implementation, there is a single finalizer 

thread, and there have been rumors about having multiple finalizer threads but they are 

not confirmed by the CLR team. From an implementation point of view, it is perfectly 

possible to have multiple finalizer threads reading and processing fReachable queue 

items simultaneously.

If you would like to investigate source code of finalization in CoreCLr, start from 
the CFinalize class that realizes the implementation described here. Instances 
of this class are gc_heap::finalize_queue fields so in case of multiple 
heaps (Server GC), there are in fact multiple finalization arrays (but still single 
finalization thread). CFinalize keeps finalization array as m_Array field of 
Object** type (array of Object pointers), while fill pointers are managed by 
Object**[] m_FillPointers field (array of pointers to the finalization array 
elements). at the beginning m_Array has 100 elements but is expanded by 
CFinalize::GrowArray method (by creating a 20% bigger array and copying 
all existing elements) as needed.

GC.SuppressFinalize method has very simple implementation, calling 
GCHeap::SetFinalizationRun method that sets BIT_SBLK_FINALIZER_RUN 
bit in the specified object header.

above-mentioned GCHeap::RegisterForFinalization method calls CFin
alize::RegisterForFinalization method that realizes described logic of 
shifting appropriate elements (and calling GrowArray if needed) to store an object 
address in the finalize queue.
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During mark phase, CFinalize::GcScanRoots method is called that starts 
marking from objects in both freachable segments (two last used m_Array 
segments). at the end of mark phase, CFinalize::ScanForFinalization 
method is called on proper segments (corresponding to condemned and younger 
generations), that executes finalization promotion - by calling MoveItem with 
appropriate parameters (depending on object having normal or critical finalizer). If 
there are any freachable objects found, it signals hEventFinalizer event that 
wakes up the finalizer thread processing. and eventually, at the end of the GC, CFi
nalize::UpdatePromotedGenerations method is called that checks current 
generation of all objects in the finalization queue and moves them to proper 
segment accordingly.

the finalizer thread main loop is implemented in FinalizerThread::Finaliz
erThreadWorker method. It indefinitely waits for hEventFinalizer event and 
starts processing if signaled, by calling FinalizerThread::FinalizeAllOb
jects and  FinalizerThread::DoOneFinalization (that calls Finalizer 
method underneath, if BIT_SBLK_FINALIZER_RUN bit is not set).

Careful readers may ask - why are all those queues and dedicated thread used 

instead of just calling finalizers from within the GC directly? This is a valid question. 

Remember that finalizer is a user-defined code. Literally everything may be put there 

by a programmer - including Thread.Sleep call for an hour. If the GC called finalizers 

during its work, it would be blocked for an hour! Even worse, finalizer code could 

introduce a deadlock and hence, the whole GC would become deadlocked. Executing 

a user-defined code of finalizers from within the GC would make its pauses completely 

unpredictable. It is thus much safer to process finalization asynchronously.

 Finalization Overhead

What order of magnitude is the finalization overhead? In a general case, it is not so 

trivial to measure what is the cost of additional object promotion and overall finalization 

queue handling during GC. We can, however, easily measure the overhead of the slower 

path of allocation because of finalization handling. It can be done with the help of 

BenchmarkDotNet simple benchmark of creating multiple finalizable or non-finalizable 

objects (see Listing 12-11).
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Listing 12-11. Simple benchmark to measure overhead of finalizable object 

allocation

public class NonFinalizableClass

{

   public int Value1;

   public int Value2;

   public int Value3;

   public int Value4;

}

public class FinalizableClass

{

   public int Value1;

   public int Value2;

   public int Value3;

   public int Value4;

   ~FinalizableClass()

   {

   }

}

[Benchmark]

public void ConsumeNonFinalizableClass()

{

   for (int i = 0; i < N; ++i)

   {

      var obj = new NonFinalizableClass();

      obj.Value1 = Data;

   }

}

[Benchmark]

public void ConsumeFinalizableClass()

{
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   for (int i = 0; i < N; ++i)

   {

      var obj = new FinalizableClass();

      obj.Value1 = Data;

   }

}

Results are eye opening (see Listing 12-12). Allocating the small finalizable object is 

about 40 times slower than a regular one in such simple scenario (and indeed there are 

gen1 GCs because of additional promotion)! Underlying JITed assembly code is identical 

for both methods (with the exception of the allocator function called). This may not be 

a problem if finalizable object is created rarely, but think twice before adding finalizer to 

the object with high- allocation rate consumed in the performance-critical path of your 

 application.

Listing 12-12. Results of BenchmarkDotNet benchmarks from Listing 12-11 

(Gen 0 and Gen 1 columns show the average number of generation 0 and 1 GCs 

per single test execution)

                     Method |    N |           Mean |  Gen 0 |  Gen 1 | Allocated |

--------------------------- |----- |---------------:|-------:|-------:|----------:|

 ConsumeNonFinalizableClass |    1 |       2.777 ns | 0.0076 |      - |      32 B |

    ConsumeFinalizableClass |    1 |     132.138 ns | 0.0074 | 0.0036 |      32 B |

 ConsumeNonFinalizableClass |   10 |      30.667 ns | 0.0762 |      - |     320 B |

    ConsumeFinalizableClass |   10 |   1,342.092 ns | 0.0744 | 0.0362 |     320 B |

 ConsumeNonFinalizableClass |  100 |     316.633 ns | 0.7625 |      - |    3200 B |

    ConsumeFinalizableClass |  100 |  13,607.436 ns | 0.7477 | 0.3662 |    3200 B |

 ConsumeNonFinalizableClass | 1000 |   3,244.837 ns | 7.6256 |      - |   32000 B |

    ConsumeFinalizableClass | 1000 | 131,725.089 ns | 7.5684 | 3.6621 |   32000 B |

Knowing all the implementation details described so far, we can summarize 

finalization as having the following disadvantages:

• it forces slower allocation by default, including the overhead of 

manipulating finalization queue during allocation,

• it promotes finalizable object at least once by default, making Mid- 

life crisis more likely,
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• it introduces some overhead of finalizable objects handling even 

while they are still alive - mostly keeping up-to-date generational 

finalization list,

• may be dangerous if allocation rate of finalization objects is higher 

than their finalization rate (see below scenario 12-1).

Scenario 12-1. Finalization Memory Leak
Description: Our application memory usage grows in time constantly. Both \.NET CLR 

Memory\# Bytes in all Heaps and \.NET CLR Memory\Gen 2 heap size counters are 

increasing. We would like to investigate such memory leak but nothing obvious is visible. 

This scenario simulates a rather unusual but yet possible cause of the memory leak.

There is one subtle memory leak possibility. Because finalizers from fReachable 

queue are executed sequential, it takes longer to process it when some finalizers are 

slow to execute. If allocation rate of finalizable objects is higher than finalization rate, 

the fReachable queue will grow, gathering all finalizable objects pending for finalization. 

This is yet another one reason why finalization code should be as simple as possible.

Let’s re-create such an evil finalizers problem with the code from Listing 12- 13. 

Sample application is creating finalizable objects much faster than  finalizers are able 

to run. Simulating a high-traffic scenario, when we already hitting the Mid-life crisis 

problem, GC is happening very often.5

Listing 12-13. Experimental code showing memory leak because of finalization

public class LeakyApplication

{

   public void Run()

   {

      while (true)

      {

         Thread.Sleep(100);

         var obj = new EvilFinalizableClass(10, 10000);

         GC.KeepAlive(obj); // prevent optimizing out obj completely

5 For simplicity it happens on each iteration although we could call it, for example, periodically. 
Such a little contrived example allows us to better illustrate some diagnostic problems.
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         GC.Collect();

      }

   }

}

public class EvilFinalizableClass

{

   private readonly int finalizationDelay;

   public EvilFinalizableClass(int allocationDelay, int finalizationDelay)

   {

      this.finalizationDelay = finalizationDelay;

      Thread.Sleep(allocationDelay);

   }

   ~EvilFinalizableClass()

   {

      Thread.Sleep(finalizationDelay);

   }

We already know the reason of the leak but let’s see how it looks from the diagnostics 

point of view. By the way, I hope we already know the solution also - just avoid finalizers and 

when you really, really need them, take as much care as possible to make it fast and simple.

Analysis: Let’s start from the less intrusive and the easiest tool - performance counters. 

When we look at such application behavior in time, indeed we will notice that generation 

2 is growing constantly (see thin line in Figure 12-2). There are also two finalization-

related performance counters to look at:

• \.NET CLR Memory \Finalization Survivors - count of objects 

surviving the last GC because of finalization (to be more precise - the 

number of objects that were moved from finalization to fReachable 

queue during last GC).

• \.NET CLR Memory\Promoted Finalization-Memory from Gen  

0 - total size of objects surviving the last GC because of finalization 

(so like above, total sum of objects that were moved from finalization 

to fReachable queue). Please note an important fact - besides 

the misleading name of this counter, it considers objects from all 

collected generations, not only from generation 0.
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remember that in the absence of performance counters, you can gain this 
information from etW/LLtng events: GCHeapStats_V1 event contains 
exactly the same values as FinalizationPromotedCount and 
FinalizationPromotedSize fields accordingly.

But those two counters in Figure 12-2 are completely stable showing promotion of a 

single object with a 24bytes size. It would not alarm us for sure during such application 

monitoring. This is because GC happens after each object allocation, which means each 

GC only promoted one finalizable object. Please note that those counters are related 

to the allocation rate of finalization objects - the more such objects will be created, the 

more will be promoted (because of finalization). Those counters do not depict what is 

happening to those promoted objects.

Figure 12-2. Finalization-related Performance Counters
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Unfortunately, there is no counter for finalization rate nor fReachable queue size. 

Analyzing such problem as we have is very unpleasant because many tools do not 

count fReachable queue into memory measurements at all - those objects were already 

considered dead by user code and the fReachable queue is the only root. Some tools 

will show EvilFinalizableClass instances as unreachable (if at all), which is not 

alarming and typically we will not look for memory leak reasons there (after all, they are 

unreachable so they could not be the cause of the problem, right?). Because of that, we 

move directly into finalization problem analysis. However, a typical way of approaching 

“gen2 size keeps increasing” problem would be to look to what’s holding onto objects in 

gen2 (for example, by analyzing heap snapshot in PerfView or memory in WinDbg with 

the help of SOS extension). We will look at such analyses soon also.

We can help ourselves in finalization monitoring with the finalization-related ETW 

events from Microsoft-Windows-DotNETRuntime/GC group (recorded if standard .NET 

option is used from PerfViews’s Collect dialog):

• FinalizersStart - emitted when finalizer thread wakes up after GC 

to start finalization,

• FinalizeObject - emitted for each finalizable object processed by 

finalization thread,

• FinalizersStop - emitted at the end of finalization current batch of 

objects (when all objects from fReachable queue were processed).

Looking at those events in recorded PerfView session quickly reveals our problem 

(see Figure 12-3). While there is a single and quick finalization run at the beginning of 

the application, the subsequent one is clearly misbehaving - there is a 10second delay 

between each finalizer execution! And until new EvilFinalizableClass instances will 

be created, the finalization thread will never be able to catch up (thus, we won’t see 

FinalizersStop event any more).
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Obviously in a real-world application, such a problem will be more subtle. But 

generally, long running finalization may be diagnosed in this way.

While observing the long finalization times is a useful clue, it would be much better 

to observe the root cause - the growing fReachable queue. Unfortunately, currently 

PerfView heap snapshots do not list fReachable queue roots,6 but only the finalization 

queue (see Figure 12-4). Other tools, similarly, most often will list such objects simply as 

unreachable, without the possibility to investigate fReachable queue directly.

6 There is an issue https://github.com/Microsoft/perfview/issues/722 created to fix that, so 
you can track it whether it has been already fixed at the time of your reading.

Figure 12-3. Finalization-related ETW events

Figure 12-4. Roots in heap snapshots do not show fReachable queue.
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However, there is the possibility of a closer look at both the finalization queue 

and fReachable queue using WinDbg. While during live debugging or memory dump 

analysis, we may issue !finalizequeue SOS command (see Listing 12- 14), which will 

provide very detailed information. As we can see, it informs both about “finalizable 

objects” (with respect to generations as finalization queue is generational) and “ready for 

finalization” objects that are nothing else than objects in fReachable queue. Clearly, we 

see the problem - there are 5,175 fReachable objects in our case!

Listing 12-14. Using finalizequeue command from SOS to investigate 

finalization queues

> !finalizequeue

SyncBlocks to be cleaned up: 0

Free-Threaded Interfaces to be released: 0

MTA Interfaces to be released: 0

STA Interfaces to be released: 0

----------------------------------

generation 0 has 1 finalizable objects (000001751fe7e700->000001751fe7e708)

generation 1 has 0 finalizable objects (000001751fe7e700->000001751fe7e700)

generation 2 has 2 finalizable objects (000001751fe7e6f0->000001751fe7e700)

Ready for finalization 5175 objects (000001751fe7e708->000001751fe888c0)

Statistics for all finalizable objects (including all objects ready for 

finalization):

              MT    Count    TotalSize Class Name

00007ffcee93c3e0        1           32 Microsoft.Win32.SafeHandles.

SafePEFileHandle

00007ffcee93d680        1           64 System.Threading.ReaderWriterLock

00007ffc93a35c98     5176       124224 CoreCLR.Finalization.

EvilFinalizableClass

Total 5178 objects

We may further investigate only fReachable queue by issuing command with an 

additional -allReady parameter (see Listing 12-15). Now everything is clear and in line 

with our expectations, there are 5,175 instances of EvilFinalizableClass. Having so 

many fReachable objects is rather alarming. We could additionally confirm that as a 

problem by taking further dumps and see whether this number is growing.
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Listing 12-15. Using finalizequeue command from SOS to investigate only 

fReachable queue

> !finalizequeue -allReady

SyncBlocks to be cleaned up: 0

Free-Threaded Interfaces to be released: 0

MTA Interfaces to be released: 0

STA Interfaces to be released: 0

----------------------------------

generation 0 has 1 finalizable objects (000001751fe7e700->000001751fe7e708)

generation 1 has 0 finalizable objects (000001751fe7e700->000001751fe7e700)

generation 2 has 2 finalizable objects (000001751fe7e6f0->000001751fe7e700)

Finalizable but not rooted:

Ready for finalization 5175 objects (000001751fe7e708->000001751fe888c0)

Statistics for all finalizable objects that are no longer rooted:

              MT  Count  TotalSize Class Name

00007ffc93a35c98   5175     124200 CoreCLR.Finalization.EvilFinalizableClass

Total 5175 objects

Please also note address ranges of corresponding finalizable objects segments from 

the underlying finalization array (given in parentheses). We can dump content of this 

array within given ranges to get concrete finalizable object references (see Listing 12-16 

showing the range of fReachable queue).

Listing 12-16. Seeing the content of fReachable queue

> dq 000001751fe7e708 000001751fe888c0

...

00000175`1fe88888  00000175`21850358 00000175`21850388

00000175`1fe88898  00000175`218503b8 00000175`218503e8

00000175`1fe888a8  00000175`21850418 00000175`21850448

00000175`1fe888b8  00000175`21850478 00000175`2182ae28

> !do 00000175`2182ae28

Name:        CoreCLR.Finalization.EvilFinalizableClass

MethodTable: 00007ffc93a35c98

EEClass:     00007ffc93b41208

Size:        24(0x18) bytes

...
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Similar analysis may be performed with the help of SOSEX extension, by issuing finq 

and frq commands for investigation finalization and fReachable queues accordingly 

(see Listing 12-17). I’m referring to it here because the output of those commands seems 

to be a little nicer than from their SOS counterpart.

Listing 12-17. Using finq and frq commands from SOSEX to investigate both 

finalization queues

> .load g:\Tools\Sosex\64bit\sosex.dll

> !finq -stat

Generation 0:

       Count      Total Size   Type

---------------------------------------------------------

           1              24   CoreCLR.Finalization.EvilFinalizableClass

1 object, 24 bytes

Generation 1:

0 objects, 0 bytes

Generation 2:

       Count      Total Size   Type

---------------------------------------------------------

           1              32   Microsoft.Win32.SafeHandles.SafePEFileHandle

           1              64   System.Threading.ReaderWriterLock

2 objects, 96 bytes

TOTAL: 3 objects, 120 bytes

> !frq -stat

Freachable Queue:

       Count      Total Size   Type

---------------------------------------------------------

        5175          124200   CoreCLR.Finalization.EvilFinalizableClass

5,175 objects, 124,200 bytes

Currently the !mex.finalizable command in meX WinDbg extension seems to 
be not listing freachable objects properly in case of .Net Core apps.
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 Resurrection
There is one very interesting topic related to the finalization. As we already know, the 

finalizer is called when the only object’s root is the fReachable queue. Finalizer thread is 

calling Finalize method and afterward, its reference is removed from the queue. Thus, it 

becomes unreachable and will be collected in the next GC that collects that generation.

But any user code is allowed in Finalize method, which is an instance method 

(having access to this). Thus, nothing can stop us from assigning an object’s own 

reference (this) to some globally accessible (like static) root - and of all a sudden our 

object becomes reachable again (see Listing 12-18)! This is called resurrection and is 

inherently related with the fact that finalizer is an uncontrolled user code.

Listing 12-18. Example of object resurrection (not fully correct)

class FinalizableObject

{

   ~FinalizableObject()

   {

      Program.GlobalFinalizableObject = this;

   }

}

Object that just was to be collected, becomes a normal reachable object again. Now 

its global reference (like Program.GlobalFinalizableObject in our example) is the only 

root, but of course it may further expand to other roots if we wish it to.

But what happens if the resurrected object becomes unreachable again? Will it 

be collected or resurrected again? To answer that question, let’s recall that registering 

for finalization happens during object allocation. After finalizer has been executed, 

object reference disappears from the fReachable queue. Resurrection does not put it 

again in finalization queue, so when FinalizableObject instance from Listing 12-18 

becomes unreachable the second time, its finalizer will not be called - it is simply not in 

a finalization queue to be discovered!

But when using resurrection, most commonly we would like to resurrect an object 

always, not only once. Thus, already mentioned GC.ReRegisterForFinalize method 

must be used to register an object for finalization once again (see Listing 12-19). After 

doing so, we are creating an immortal object - it will never be garbage collected. Please 
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note this is not entirely true for the simplified example from Listing 12-19 because we 

may create multiple instances of FinalizableObject class and there will be a race 

condition - only the last finalized object will be re-registered for finalization and thus 

properly resurrected!

Listing 12-19. Example of object resurrection (corrected Listing 12-18)

class FinalizableObject

{

   ~FinalizableObject()

   {

      Program.GlobalFinalizableObject = this;

      GC.ReRegisterForFinalize(this);

   }

}

Resurrection is not a very popular technique. It is rarely used even in Microsoft’s own 

code. This is because it plays with an object’s lifetime in a hidden way. It is a finalization 

on steroids - taking all its disadvantages and doubling them.

One could imagine an object pooling based on resurrection - finalizer may be  

responsible for returning an object to some shared pool (resurrecting it), like in 

Listing 12-20. But the EvilPool name and missing implementation details are 

there not without a reason. There are much better ways how an object pool may be 

implemented, based on explicit pool management (like in ArrayPool<T> showed in 

Chapter 6). There is no special advantage of making such a pool management implicit. 

Keeping in mind every caveat of implementing finalizers, not using them is often the 

best solution (especially if simpler alternatives exist). Please feel invited, however, to 

implement  EvilPool on your own as an exercise, regardless of its practical usage - it is 

a lot of learning fun!

Listing 12-20. Example of practical object resurrection

public class EvilPool<T> where T : class

{

   static private List<T> items = new List<T>();

   static public void ReturnToPool(T obj)
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   {

      // ...

      // Add obj to items

      GC.ReRegisterForFinalize(obj);

   }

   static public T GetFromPool() { ... }

}

public class SomeClass

{

   ~SomeClass()

   {

      EvilPool<SomeClass>.ReturnToPool(this);

   }

}

Each object defining a finalizer is exposed to calls of GC.ReRegisterForFinalize 

and GC.SuppressFinalize methods because they expect just a plain object argument 

(internally checking whether indeed such object has finalizer defined). It means, we may 

play with the object resource management, by having some control over how its finalizer 

is being called. This may be undesirable for some objects. One good example is System.

Threading.Timer type, which provides a mechanism for period method execution on a 

thread pool, at specified intervals. Finalization related to Timer that tells the thread pool 

to cancel the timer. So, for example, by calling GC.SuppressFinalize on such object, we 

are controlling the timer behavior in an unusual way - it would be never stopped. This 

may be or may not be a poor design decision. But in most such scenarios, it is rather 

unexpected that we control internal behavior of an object in such way.

If we really want to rely on finalization but do not want to expose our type to such 

problems, we should exclude the possibility to temper with our finalizer. The first step is 

making our class sealed, to not allow overriding Finalize in derived class. The second 

step is to introduce some helper, or finalizable object, that is responsible for finalization 

of our main object. Exactly such approach was chosen during System.Threading.Timer 

type implementation. Simplified form of such approach is presented in Listing 12-21. 

Internal, private class TimerHolder holds a reference to our main Timer object. When 

Chapter 12  ObjeCt LIfetIme



779

Timer instance becomes unreachable, so timerHolder field does - triggering its finalizer 

that is responsible for cleaning parent object (please note that part of Disposable pattern 

is included in this example).

Listing 12-21. Simplified Timer class implementation (using nested finalizable 

object)

public sealed class Timer : IDisposable

{

   private TimerHolder timerHolder;

   public Timer()

   {

      timerHolder = new TimerHolder(this);

   }

   private sealed class TimerHolder

   {

      internal Timer m_timer;

      public TimerHolder(Timer timer) => m_timer = timer;

      ~TimerHolder() => m_timer?.Close();

      public void Close()

      {

         m_timer.Close();

         GC.SuppressFinalize(this);

      }

   }

   public void Close()

   {

      Console.WriteLine("Finalizing Timer!");

   }

   public void Dispose()

   {

      timerHolder.Close();

   }
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In that way we are introducing finalization without publicly exposing it - Timer is not 

finalizable by itself! GC.SuppressFinalize and GC.ReRegisterForFinalize cannot be 

called on it.

Does it make sense to call GC.ReRegisterForFinalize in resurrection 
scenarios when resurrected object is not assigned to any root (for example, without 
Program.GlobalFinalizableObject = this code in Listing 12-19)? 
absolutely! What will happen then? re-registered object will land in finalization 
queue to be processed in the next GC. and the whole cycle begins again - it will 
be promoted to freachable queue and its finalizer will be eventually called... again 
resurrecting such object. We may create that way an immortal object that will be 
ever only referenced by the finalization queues. One example why it may be useful 
is presented in the Listing 12-37 later in this chapter. however, more often such 
re-registering for finalization is optional - that way we may trigger finalizer code 
multiple times (if finalization logic is so complicated or crucial that it makes sense 
to do it). but please remember - this is absolutely not a design pattern you should 
follow. just be aware that this such possibility exists.

 Disposable Objects
So far a lot of words have been spoken about non-deterministic finalization. Let’s now 

move to the preferred way of resources cleanup - deterministic, explicit finalization. It is 

conceptually much simpler than non-deterministic finalization using finalizers - and it 

makes it one of their strongest advantages. There are no so many finalization caveats and 

disadvantages. In fact, conceptually there are just only two methods:

• one for initialization - used to create and store resources. In case of 

.NET this is obviously runtime-supported constructor, called during 

object allocation.

• one for cleanup - used to release resources. In case of .NET there is 

no runtime-supported method for it. Your mileage may vary how to 

name it.
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Combing back to the simple FileWrapper class from Listing 12-1, getting rid of 

finalization and introducing explicit cleanup, we will end in code similar to Listing 12-22. 

Cleanup method is just a regular method to be called and it releases all relevant resources 

inside. Additional UseMe method has been added, compared to Listing 12-1, for further 

the purpose of examples.

Listing 12-22. Simple example of using explicit cleanup

class FileWrapper

{

   private IntPtr handle;

   public FileWrapper(string filename)

   {

      Unmanaged.OFSTRUCT s;

      handle = Unmanaged.OpenFile(filename, out s, 0x00000000);

   }

   // Cleanup

   public void Close()

   {

      if (handle != IntPtr.Zero)

         Unmanaged.CloseHandle(handle);

   }

   public int UseMe()

   {

      byte[] buffer = new byte[1];

       if (Unmanaged.ReadFile(this.handle, buffer, 1, out uint read, 

IntPtr.Zero))

      {

         return buffer[0];

      }

      return -1;

   }
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World is so simple when using explicit cleanup (see Listing 12-23). Everything is 

executed in visible order so there are no surprises here. All object usage is enclosed by 

its initialization (constructor) and cleanup methods so early root collection will not kick 

us back here either. We perfectly know when an underlying resource is allocated and 

released.

Listing 12-23. Usage of FileWrapper from Listing 12-22

var file = new FileWrapper(@"C:\temp.txt");

Console.WriteLine(file.UseMe());

file.Close();

If this approach is so ideal, why did someone even bother to invent an alternative? 

Obviously, this approach has one huge disadvantage - programmer must remember to 

call cleanup method. If it fails to do so, we will leak our (probably limited) resource.

To help with that, explicit cleanup has been standardized in C# by introducing 

IDisposable interface. Its definition is more than trivial (see Listing 12- 24). It is a contract 

that simply says, “I have something that should be cleaned up when I finish my work.”

Listing 12-24. IDisposable interface declaration

namespace System {

   public interface IDisposable {

      void Dispose();

   }

}

Thus, following this design, FileWrapper from Listing 12-24 should implement 

IDisposable interface and its Dispose implementation should call Close method (or it 

should replace it as in Listing 12-25).

Listing 12-25. Simple example of using explicit cleanup with IDisposable 

interface

class FileWrapper : IDisposable

{

   private IntPtr handle;

   public FileWrapper(string filename)
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   {

      Unmanaged.OFSTRUCT s;

      handle = Unmanaged.OpenFile(filename, out s, 0x00000000);

   }

   // Cleanup

   public void Dispose()

   {

      if (handle != IntPtr.Zero)

         Unmanaged.CloseHandle(handle);

   }

   public int UseMe()

   {

      byte[] buffer = new byte[1];

       if (Unmanaged.ReadFile(this.handle, buffer, 1, out uint read,  

IntPtr.Zero))

      {

         return buffer[0];

      }

      return -1;

   }

Having such a well-established contract helps in various manual and automatic 

code reviews. If someone creates instance of type implementing IDisposable interface 

(hereinafter simply called disposable object) but never calls its Dispose method, it is a 

great candidate to be banished. Especially various automatic tools may help here (like 

ReSharper).

as said in IDisposable interface comment: “this interface could be theoretically 
used as a marker by a compiler to ensure a disposable object has been cleaned 
up along all code paths if it’s been allocated in that method, though in practice any 
compiler that draconian may tick off any number of people.”
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Because language relying on external tools does not sound impressive, C# 

standardization of explicit cleanup went even further by introducing the using clause. It 

is yet another simple construct that relieves us from the need to manually call Dispose 

(see Listing 12-26).

Listing 12-26. Example of using clause

public static void Main()

{

   using (var file = new FileWrapper())

   {

      Console.WriteLine(file.UseMe());

   }

}

Using clause is translated by C# compiler into corresponding try-finally block, in 

which Dispose method will be called inside finally block (see Listing 12-27). Note that it 

also gives us confidence that early root collection will not collect an object instance too 

early, because its Dispose method is called at the end.

Listing 12-27. Resulting code of using clause (from Listing 12-26)

public static void Main()

{

   FileWrapper fileWrapper = new FileWrapper();

   try

   {

      Console.WriteLine(file.UseMe());

   }

   finally

   {

      if (fileWrapper != null)

      {

         ((IDisposable)fileWrapper).Dispose();

      }

   }

}
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However, even having using clause does not guarantee that programmers will be 

using it. In other words, still nothing stops them from simply instantiating disposable 

objects and forgetting to call its Dispose method. Using clause is just a good practice.

If from your resource management perspective cleanup code is crucial (and most 

probably it is), you have namely two possible approaches:

• Be polite and ask your programmers to always call Dispose method 

of disposable objects - although it sounds a little ridiculous, in 

fact it is the preferred way. Already-mentioned tools can help you, 

especially if the requirement is even stronger - that disposable object 

is always used within using clause. It can be easily discovered and, 

for example, a pull request may not be accepted if it contains such 

misbehaving code.

• Create a safety net by utilizing finalizer to call Dispose - this is a 

quite popular approach. If Dispose was not called explicitly, finalizer 

will call it on our behalf. There is only one drawback - we are using 

finalizers while generally it is good to avoid them. Such simple, 

protecting finalizer code may be really simple so we can assume that 

there are not so many finalizer-related implementation problems 

related with it. But still, we are introducing a little overhead of slower 

allocation and need to maintain one more object in finalization 

queue. Be sure then that you are using such an approach for 

something important.

When using the second approach, if the only finalizer’s responsibility is to clean up 

resources by calling Dispose, it not need be called if the well- behaving programmer 

already called Dispose explicitly. Exactly for that purpose an already-mentioned  

GC.SuppressFinalize method was introduced - it disables calling finalizer of the object. 

This leads to very popular pattern, where Dispose method calls GC.SuppressFinalize 

as a finalizer is no longer needed. Very concise example of such approach may be found 

inside System.Reflection library in the form of abstract CriticalDisposableObject 

(see Listing 12-28). It implements critically a finalizable object that uses a finalizer as 

such a safety net call.
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Listing 12-28. System.Reflection internal type CriticalDisposableObject

namespace System.Reflection.Internal

{

    internal abstract class CriticalDisposableObject : 

CriticalFinalizerObject, IDisposable

   {

      protected abstract void Release();

      public void Dispose()

      {

         Release();

         GC.SuppressFinalize(this);

      }

      ~CriticalDisposableObject()

      {

         Release();

      }

   }

}

Generally, using both explicit cleanup in the form of IDisposable and protecting, 

implicit cleanup in the form finalization has developed into a form of so-called 

Disposable pattern (or IDisposable pattern). It is a little more structured way of 

combining those both approaches (see Listing 12-29). Disposable pattern may be seen 

as almost standard in the .NET world. The main difference is the introduction of a 

virtual Dispose method that is both used from finalizer (with its disposing argument 

set to false) and from explicit Dispose method (with disposing parameter set to true). 

Deriving classes are then able to add their own specific cleanup code, while still the 

whole finalization logic stays. Additionally, a dedicated disposed field prevents multiple 

disposal of such object. Each public method should check this flag and (typically) throw 

ObjectDisposedException to inform that this instance should not be longer used.
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Listing 12-29. Simple example of using both implicit and explicit cleanup with 

IDisposable pattern

class FileWrapper : IDisposable

{

   private bool disposed = false;

   private IntPtr handle;

   public FileWrapper(string filename)

   {

      Unmanaged.OFSTRUCT s;

      handle = Unmanaged.OpenFile(filename, out s, 0x00000000);

   }

   // Cleanup

   protected virtual void Dispose(bool disposing)

   {

      if (!disposed)

      {

         if (disposing)

         {

            // Put here code required only in case of explicit Dispose call

         }

         // Common cleanup - including unmanaged resources

         if (handle != IntPtr.Zero)

            Unmanaged.CloseHandle(handle);

         disposed = true;

      }

   }

    ~FileWrapper()

   {

      Dispose(false);

   }
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   public void Dispose()

   {

      Dispose(true);

      GC.SuppressFinalize(this);

   }

   public int UseMe()

   {

      if (this.disposed) throw new ObjectDisposedException("...");

      byte[] buffer = new byte[1];

       if (Unmanaged.ReadFile(this.handle, buffer, 1, out uint read, 

IntPtr.Zero))

      {

         return buffer[0];

      }

      return -1;

   }

}

Disposable objects and using a clause may be also used to realize simple 
reference counting techniques, like in the Listing 7-3 from Chapter 7. Dedicated 
helper class is introduced, used within a using clause. Its constructor adds 
a reference counter, while Dispose method decrements it. If it hits zero, 
target object cleanup is triggered. Obviously, we may be double protected by 
incorporating whole Disposable pattern to such class, making sure that the cleanup 
will happen even if the reference counting logic misbehaved. 

Generally, giving a voice to IDisposable interface comment from .NET sources, 

implemented Dispose method should meet the following criteria:

• Be safely callable multiple times,

• Release any resources associated with the instance,

• Call the base class’s Dispose method, if necessary,
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• Suppress finalization of this class to help the GC by reducing the 

number of objects on the finalization queue,7

• Dispose shouldn’t generally throw exceptions, except for very serious 

errors that are particularly unexpected. (i.e., OutOfMemoryException).

After all those words said about IDisposable, disposable objects and Disposable 

patterns, please, remember - they have nothing directly in common with the GC! 

Dispose method is not reclaiming object’s memory, it is not killing them, and so on, 

so forth. If you were to remember only one thing from this part of the chapter, just 

remember it. As you noticed, almost nothing about the runtime (besides mentioning 

finalization) was mentioned here. Disposable objects are implemented purely on the 

language level.

 Safe Handles
Implementing finalizers have many caveats. Most of the time, unmanaged resources 

are represented simply by some handle or pointer - thus IntPtr type. Those two facts 

lead to introducing a new type helping to deal with unmanaged resources. In .NET 

Framework 2.0, together with critical finalizers, a SafeHandle object was introduced 

built on top of it. They were introduced as a much better alternative to the previously 

mentioned approaches of managing system resources (including finalizers, bare IntPtr, 

and HandleRef). As said, it comes from the observation that almost all handles may be 

represented as IntPtr, thus it wraps them with an additional default behavior and the 

support from the runtime itself.

So instead of implementing a finalizer, the preferred and suggested alternative is 

to create a type that derives from the abstract System.Runtime.InteropServices.

SafeHandle class (see Listing 12-30) and use it as handle wrapper. Having much of 

the logic already implemented, we are less exposed to any problem we may introduce 

implementing our own finalization logic. As we may see, SafeHandle is critically 

finalizable and implements Disposable pattern. Both its Dispose and Finalize logic is in 

fact internal (implemented in the runtime itself).

7 As explained earlier, suppressing finalization logic is trivial, based only on setting a single bit in 
an object header. Thus, we should not be afraid of its overhead (for example, by calling it twice 
on the same object both from the derived as well as from the base class).
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Listing 12-30. Fragments of the SafeHandle class (a lot of code, including 

members attributes, are omitted for brevity)

public abstract class SafeHandle : CriticalFinalizerObject, IDisposable

{

   protected IntPtr handle;    // this must be protected so derived classes 

can use out params.

   private int _state;    // Combined ref count and closed/disposed flags 

(so we can atomically modify them).

   ~SafeHandle()

   {

      Dispose(false);

   }

   public void Dispose() {

      Dispose(true);

   }

   protected virtual void Dispose(bool disposing)

   {

      if (disposing)

         InternalDispose();

      else

         InternalFinalize();

   }

   [MethodImplAttribute(MethodImplOptions.InternalCall)]

   extern void InternalFinalize();

   [MethodImplAttribute(MethodImplOptions.InternalCall)]

   private extern void InternalDispose();

   public abstract bool IsInvalid { get; }

   protected abstract bool ReleaseHandle();

}
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InternalDispose and InternalFinalize methods are implemented by 
SafeHandle::DisposeNative and SafeHandle::Finalize respectively in 
CoreCLr code. both SafeHandle::DisposeNative and SafeHandle::Finalize 
calls SafeHandle::Dispose that calls SafeHandle::Release - the main horse-
work method. It calls IsInvalidHandle managed method and if it is true, it calls 
managed ReleaseHandle method (via SafeHandle::RunReleaseMethod).

Special treatment from the runtime gives SafeHandle more than just being a good 

design practice. What is the most important, CLR treats instances of this class in special 

way during P/Invoke calls - it is protected from being garbage collected (like HandleRef), 

and for security reasons it implements reference counting semantics. It means each such 

P/Invoke call has JITed logic to increment an internal reference counter and decrement 

it at the end of the call. Only instances with a zeroed reference counter will release their 

handle. And only for zeroed reference counter explicit cleanup will it indeed release the 

resource. This prevents so-called malicious handle-recycling attack (see note below).

Handle-recycling attack.

there is a subtle security flaw possible with bare usage of system handles (like the 
most popular IntPtr representation used so far in FileWrapper examples). In 
case of Windows, system handles are reused (recycled) aggressively - because they 
are treated as a very limited, system-wide resource. So-called handle-recycling 
attack may be used inside a single .Net process to get an elevated privilege from 
an untrusted thread (with limited security permissions) to the handle otherwise 
accessible only from fully trusted thread. Such attack may be used when a 
managed object holding a handle provides some explicit termination method, like 
in popular Disposable pattern. attacking, untrusted thread may explicitly clean up 
such resource (closing underlying handle, but still remembering handle value) while 
it is being used by other threads. those other threads will most probably experience 
some kind of state corruption errors because suddenly their handle was closed. 
moreover, simultaneously, other full-trusted thread may have just opened a new 
resource and received the same, recycled handle value. attacking thread has now 
handle value pointing to a new resource, possibly not otherwise accessible to it.
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Thus, using SafeHandles provides many advantages over their alternatives:

• They are critically finalizable, making them more reliable than 

regular finalizers, without the necessity to write custom finalizers 

code - which removes from the programmer the obligation to avoid 

multiple finalization code dangers.

• They are minimal wrappers around unmanaged resource (handle) - 

this eliminates the risk of creating large objects with numerous 

dependencies that will be promoted due to finalization.

• Our object does not need to be finalizable at all - when an object 

holding and using SafeHandle-derived object becomes unreachable, 

such wrapper will become also unreachable. So eventually its 

finalizer will be called, releasing the handle.

• Better lifetime management - special treatment from the GC during 

P/Invoke calls keeps them alive, instead of GC.KeepAlive magic or 

using HandleRef.

• Strongly typing instead of using pure IntPtr because there are 

multiple SafeHandle-derived types for various resources - so P/

Invoke APIs are not cluttered with meaningless IntPtr handles. You 

will not be able to pass file handle to Mutex API, and so on, so forth.

• Better security by preventing handle-recycling attack.

Unfortunately, besides long existence in .NET ecosystem, SafeHandles seem to 

be still quite unpopular in regular code (while its usage in framework itself is quite 

common). Most often people tend to use plain finalization logic, even when wrapping 

around simple IntPtr handles.

If you are interested how jIt is handling special treatment of SafeHandle, 
start from the ILSafeHandleMarshaler::ArgumentOverride method. 
It underneath calls SafeHandle::AddRef and SafeHandle::Release 
respectively around p/Invoke call.
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Meanwhile, defining SafeHandle-based types is trivial. When you inherit from 

SafeHandle, you must override only two members: IsInvalid and ReleaseHandle. 

There are even two more specialized abstract classes created for convenience:8 

SafeHandleMinusOneIsInvalid and SafeHandleZeroOrMinusOneIsInvalid that provide 

trivial IsInvalid implementations (with checks suggested by their names).

In derived class we have access to the protected IntPtr handle, we can also set it 

via SetHandle method. To improve FileWrapper, we first need to create our custom file 

SafeHandle (see Listing 12-31). The core logic in SafeHandle- derived class lies in its 

constructor (allocating handle) and implementation of ReleaseHandle method.

Listing 12-31. Example implementation of SafeHandle-derived class

class CustomFileSafeHandle : SafeHandleZeroOrMinusOneIsInvalid {

    // Called by P/Invoke when returning SafeHandles. Valid handle value 

will be set afterwards.

   private CustomFileSafeHandle() : base(true)

   {

   }

   // If and only if you need to support user-supplied handles

    internal CustomFileSafeHandle (IntPtr preexistingHandle, bool 

ownsHandle) : base(ownsHandle)

   {

      SetHandle(preexistingHandle);

   }

   internal CustomFileSafeHandle(string filename) : base(true)

   {

      Unmanaged.OFSTRUCT s;

      IntPtr handle = Unmanaged.OpenFile(filename, out s, 0x00000000);;

      SetHandle(handle);

   }

8 They are introduced to provide a standardized way of consuming handles as most often indeed 
those values are treated as invalid handles.
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   override protected bool ReleaseHandle()

   {

      return Unmanaged.CloseHandle(handle);

   }

Such handle may be then used as a field of our new, improved FileWrapper class 

(see Listing 12-32). It still implements Disposable pattern like in Listing 12-29. But 

because now it does not contain unmanaged resources (as unmanaged file handle is 

hidden inside CustomFileSafeHandle field), finalizer is not necessary. Explicit cleanup 

will dispose our handle, but in case of forgetting to do it, CustomFileSafeHandle finalizer 

will do it instead of us.

Listing 12-32. Simple example of using SafeHandle-based resources

public class FileWrapper : IDisposable

{

   private bool disposed = false;

   private CustomFileSafeHandle handle;

   public FileWrapper(string filename)

   {

      Unmanaged.OFSTRUCT s;

      handle = Unmanaged.OpenFile(filename, out s, 0x00000000);

   }

   public void Dispose()

   {

      if (!disposed)

      {

         handle?.Dispose();

         disposed = true;

      }

   }

   public int UseMe()

   {

      byte[] buffer = new byte[1];
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       if (Unmanaged.ReadFile(handle, buffer, 1, out uint read, IntPtr.Zero))

      {

         return buffer[0];

      }

      return -1;

   }

}

Please note that OpenFile and ReadFile P/Invoke calls visible in Listing 12-32 

are returning and accepting CustomFileSafeHandle (see Listing 12-33). It is possible 

because P/Invoke marshaling mechanism is able to treat SafeHandle- derived class 

as IntPtr underneath. But it gives us above-mentioned type safety regarding using 

handles.

Listing 12-33. P/Invoke methods consuming SafeHandle-based handles

public static class Unmanaged

{

    [DllImport("kernel32.dll", BestFitMapping = false, ThrowOnUnmappableChar 

= true)]

    public static extern CustomFileSafeHandle OpenFile2([MarshalAs(Unmanaged

Type.LPStr)]string lpFileName,

      out OFSTRUCT lpReOpenBuff,

      long uStyle);

   [DllImport("kernel32.dll", SetLastError = true)]

    public static extern bool ReadFile(CustomFileSafeHandle hFile, 

[Out] byte[] lpBuffer, uint nNumberOfBytesToRead, out uint 

lpNumberOfBytesRead, IntPtr lpOverlapped);

   ...

}

In our example, we even do not need to define custom SafeHandle for file handles. 

Various predefined safe handles are already implemented for typical resources:

• SafeFileHandle - safe handle for a file handles,

• SafeMemoryMappedFileHandle and SafeMemoryMappedViewHandle - 

safe handle related to memory-mapped file handles,
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• SafeNCryptKeyHandle, SafeNCryptProviderHandle, and 

SafeNCryptSecretHandle - safe handles for cryptographic resources,

• SafePipeHandle - safe handle for named pipes handles,

• SafeProcessHandle - safe handle for process,

• SafeRegistryHandle - safe handles for registry keys,

• SafeWaitHandle - safe wait handle (used for synchronization).

If you are interested in intrinsic (runtime) part of SafeHandle implementation, 
investigate CoreCLr .\src\vm\safehandle.cpp file.

If some part of your unmanaged-related code really needs to use IntPtr instead 

of SafeHandle, you can get underlying raw handle by DangerousGetHandle method. 

Please note however that it exposes it to the leakage as plain IntPtr is not tracked in any 

way. Thus, you should guard using raw handle from SafeHandle by reference counting 

approach - you inform SafeHandle about such usage by calling  DangerousAddRef and 

DangerousRelease method (implementing reference counting approach).

A large awareness of the existence of finalizers is in fact not so desirable. We should 

rarely see and even more rarely need to write our custom finalizers. The most use cases 

may be handled by SafeHandle approach.

 Weak References
There is one type of handle available but not-yet described that realizes a very interesting 

type of root - so-called weak handle. Conceptually a weak handle is very simple - it 

stores a reference to an object, but is not treated as a root (it does not make such object 

reachable). In other words, during Mark phase the GC does not scan weak handles 

to decide the lifetime of objects. Weak handles are “live” as long as target object is 

reachable, but they are zeroed when it becomes unreachable.
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There are in fact two types of weak handles:

• short weak handles - they are zeroed before finalizers run, when GC 

decides the object is dead. For example, even if finalizer resurrects an 

object, such handle will remain zeroed.

• long weak handles - their target still remains valid when the object is 

promoted due to finalization. For example, if finalizer resurrects an 

object, such handle will remain valid (pointing to the same object). 

Thus, they are said to track resurrection.

Let’s create a very simple class used in the following examples, with an optional 

resurrection implemented (see Listing 12-34).

Listing 12-34. A class-implementing resurrection in its finalizer

public class LargeClass

{

   private readonly bool ressurect;

   public LargeClass(bool ressurect) => this.ressurect = ressurect;

   ~LargeClass()

   {

      if (ressurect)

      {

         GC.ReRegisterForFinalize(this);

      }

   }

}

We create weak handles by using GCHandle.Alloc with GCHandleType.Weak or 

GCHandleType.WeakTrackResurrection type (see Listings 12-35 and 12-36). Its Target 

property points to the target object or is null if target was already collected (taking 

resurrection into consideration or not).

Listing 12-35. Example of short weak handle usage

var obj = new LargeClass(ressurect: true);

GCHandle weakHandle = GCHandle.Alloc(obj, GCHandleType.Weak);

GC.Collect();
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GC.WaitForPendingFinalizers();

GC.Collect();

Console.WriteLine(weakHandle.Target ?? "<null>"); // prints <null>

Listing 12-36. Example of long weak handle usage

var obj = new LargeClass(ressurect: true);

GCHandle weakHandle = GCHandle.Alloc(obj, GCHandleType.

WeakTrackResurrection);

GC.Collect();

GC.WaitForPendingFinalizers();

GC.Collect();

Console.WriteLine(weakHandle.Target ?? "<null>"); // prints CoreCLR.

Finalization.LargeClass

We may say that short weak handle is zeroed for the first time an object is to be 

collected (although it may be resurrected), while long weak handle is zeroed when an 

object is eventually truly collected.

But why would anyone need something as strange as weak reference? There are two 

main general situations when they are useful:

• Various types of observers and listeners (like events) - you want to 

keep reference to an object as long as it is used by someone else. 

However, we do not want to affect the state of the object by such 

observation.

• Caching - we may create cache that stores normal references but 

after some time of no use, they are changed into weak references. So 

instead of aggressively trimming cache, we will just keep them until 

the next GC of a given generation (probably generation 2 as objects 

cached for some time will eventually land there). By controlling 

the time of such “weak cache eviction,” we control the compromise 

between the memory usage (as we may keep items in cache longer) 

and the object creation overhead (as they have to be re-created when 

accessed after cleaning from cache).

There is a very interesting example of the “observer nature” of weak references in 

the form of Gen2GcCallback class located in the core .NET library (see Listing 12-37). 

As we should recognize after reading this chapter, it is a critically finalizable object 

Chapter 12  ObjeCt LIfetIme



799

with an optional resurrection. It observes a given target object by holding short weak 

reference to it. Given callback is executed on each finalization - thus on each GC of the 

generation where the target object lives. After two GCs it will land in generation 2, thus 

this is “mostly generation 2 callback” - executed on each gen2 collection and two first 

ephemeral collections (see the opening comment from Listing 12-37 for possible fixes9). 

Resurrection is terminated when the weak handle become zeroed - thus callbacks on 

target object will be terminated after target object dies. Without weak reference it would 

never happen because our callback object would keep the target object alive.

Gen2GcCallback is used inside PinnableBufferCache to TrimFreeListIfNeeded be 

called on it with every gen 2 GC.

Listing 12-37. Example of interesting weak references and resurrection usage 

from System library

/// <summary>

///  Schedules a callback roughly every gen 2 GC (you may see a Gen 0 an Gen 

1 but only once)

///  (We can fix this by capturing the Gen 2 count at startup and testing, 

but I mostly don't care)

/// </summary>

internal sealed class Gen2GcCallback : CriticalFinalizerObject

{

   private Gen2GcCallback()

   {

   }

    public static void Register(Func<object, bool> callback, object 

targetObj)

   {

       // Create a unreachable object that remembers the callback function 

and target object.

9 We are on thin ice here, depending on deep implementation details how objects get promoted. 
For example, with the current implementation, if the target object is pinned (or becomes a 
part of extended pinned plug), it may be demoted and we will be calling our callback again for 
ephemeral GCs also.
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      Gen2GcCallback gcCallback = new Gen2GcCallback();

      gcCallback.Setup(callback, targetObj);

   }

   private Func<object, bool> _callback;

   private GCHandle _weakTargetObj;

   private void Setup(Func<object, bool> callback, object targetObj)

   {

      _callback = callback;

      _weakTargetObj = GCHandle.Alloc(targetObj, GCHandleType.Weak);

   }

   ~Gen2GcCallback()

   {

      // Check to see if the target object is still alive.

      object targetObj = _weakTargetObj.Target;

      if (targetObj == null)

      {

          // The target object is dead, so this callback object is no longer 

needed.

         _weakTargetObj.Free();

         return;

      }

      // Execute the callback method.

      try

      {

         if (!_callback(targetObj))

         {

             // If the callback returns false, this callback object is no 

longer needed.

            return;

         }

      }
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      catch

      {

          // Ensure that we still get a chance to resurrect this object, 

even if the callback throws an exception.

      }

      // Resurrect ourselves by re-registering for finalization.

      if (!Environment.HasShutdownStarted)

      {

         GC.ReRegisterForFinalize(this);

      }

   }

Instead of manually creating weak GCHandle, dedicated WeakReference and 

WeakReference<T> types were introduced (see Listings 12-38 and 12-39). They  represent 

exactly the same logic but as strongly typed representation of weak handles, it is a preferred 

way to use them. Please note the naming change - as in general weak handles realize weak 

reference semantics, such a name was chosen to hide its implementation detail (one may not 

be interested in knowing that weak reference is represented by weak handle underneath).

WeakReference targets object type and provides three important members:

• IsAlive - to check whether target is still alive

• Target - to access target object reference

• TrackResurrection - to check whether weak reference should 

remain resurrection

There is however a small issue with such API, illustrated in Listing 12-38. Between 

weakReference.IsAlive and weakReference.Target calls, GC may happen that will 

collect target object and make such condition check useless. Moreover, losing type 

information (by keeping reference to plain object type) is far from good design practice 

and requires further casting to use the target.

Listing 12-38. WeakReference type example usage

var obj = new LargeClass(ressurect: true);

WeakReference weakReference = new WeakReference(obj, trackResurrection: false);

if (weakReference.IsAlive)

   Console.WriteLine(weakReference.Target ?? "<null>"); // prints <null>
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Thus, in .NET Framework 4.5 a new, generic version was introduced. Besides 

being generic, its API was also revised. Now only one TryGetTarget exists that returns 

information about target liveness atomically (see Listing 12-39).

Listing 12-39. WeakReference<T> type example usage

var obj = new LargeClass(ressurect: true);

WeakReference<LargeClass> weakReference = new 

WeakReference<LargeClass>(obj, trackResurrection: false);

if (weakReference.TryGetTarget(out var target))

   Console.WriteLine(target);

Please note that we may easily convert a weak reference to a strong reference by 

assigning its target to some reachable root. Exactly such approach is used in internal 

System.StrongToWeakReference<T> class (see Listing 12- 40). It is a weak reference 

that optionally keeps strong reference to the target object. Making such pair a weak 

reference is as easy as setting strong reference to null. We may also try to revert it to a 

strong reference if weak reference target is still alive. Obviously it may fail if target has 

been already garbage collected (hence I would prefer to provide bool TryMakeStrong() 

method instead of MakeStrong used in presented internal class).

Listing 12-40. StrongToWeakReference class as an example of conversion 

between strong and weak references

internal sealed class StrongToWeakReference<T> : WeakReference where T : 

class

{

   private T _strongRef;

   public StrongToWeakReference(T obj) : base(obj)

   {

      _strongRef = obj;

   }

   public void MakeWeak() => _strongRef = null;
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   public void MakeStrong()

   {

      _strongRef = WeakTarget;

   }

   public new T Target => _strongRef ?? WeakTarget;

   private T WeakTarget => base.Target as T;

Let’s now see briefly the two most typical usages of weak references in the form of 

caching and event listeners.

 Caching
When someone hears or reads about weak references, he will probably associate it with 

caching immediately. It’s tempting to have objects in memory held by such a “weak 

cache.” Objects are used normally but additional weak references exist so we may cache 

objects without prolonging their life just because of the cache itself. During the time 

when the target is live, weak reference in cache is also live - but because it is only a weak 

reference, the object dies as usual, when it becomes unused by the application. In such 

way we cache objects currently used by the application (for example, to not re-create 

duplicates if other code needs them). This may be useful by itself.

Most often, however, cache works on a time basis, to keep recently used resources 

for some time even after they become unused. This may not be achieved with the weak 

references obviously. In such case, we would probably like to implement regular cache 

that stores strong references for some absolute time or time related to their last usage. 

After such threshold time exceeds, such references would be simply removed (evicted).

But instead, we may imagine something like weak eviction cache where after some 

time-cached strong references are becoming weak references. This softens caching 

policy - we certainly keep cached item for some specified amount of time and afterward 

we keep it cached only if it is still used. In other words, in case of such cache expiration 

while object is still live, cache is not trimmed prematurely - instead of forced removal 

from cache after specified amount of time, item is kept there as long as it is used. In case 

of regular cache, after specified amount of time the item from cache would be simply 

removed unconditionally, because without weak references there is no way to check 

whether object is still alive (assuming there is no API provided that informs cache that 

object is still in use, which is unlikely in generic object cache discussed here).
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Let’s assume a little extension of StrongToWeakReference class from Listing 12-40 

that keeps track of the time when it had become strong (via StrongTime field). Having 

such helper class, a very simplified design of the weak eviction cache is presented 

in Listing 12-41. It simply stores a dictionary of cached items as our hybrid strong/

weak reference object. Items are saved as strong references at the beginning. At some 

time, periodically DoWeakEviction method should be called that converts appropriate 

references from strong to weak (and cleans already dead cache items).

Listing 12-41. Weak eviction cache using weak references after specified amount 

of time

public class WeakEvictionCache<TKey, TValue> where TValue : class

{

   private readonly TimeSpan weakEvictionThreshold;

   private Dictionary<TKey, StrongToWeakReference<TValue>> items;

   WeakEvictionCache(TimeSpan weakEvictionThreshold)

   {

      this.weakEvictionThreshold = weakEvictionThreshold;

      this.items = new Dictionary<TKey, StrongToWeakReference<TValue>>();

   }

   public void Add(TKey key, TValue value)

   {

      items.Add(key, new StrongToWeakReference<TValue>(value));

   }

   public bool TryGet(TKey key, out TValue result)

   {

      result = null;

      if (items.TryGetValue(key, out var value))

      {

         result = value.Target;

         if (result != null)

         {

            // Item was used, try to make it strong again

            value.MakeStrong();
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            return true;

         }

      }

      return false;

   }

   public void DoWeakEviction()

   {

      List<TKey> toRemove = new List<TKey>();

      foreach (var strongToWeakReference in items)

      {

         var reference = strongToWeakReference.Value;

         var target = reference.Target;

         if (target != null)

         {

            if (DateTime.Now.Subtract(reference.StrongTime)

               >= weakEvictionThreshold)

            {

               reference.MakeWeak();

            }

         }

         else

         {

            // Remove already zeroed weak references

            toRemove.Add(strongToWeakReference.Key);

         }

      }

      foreach (var key in toRemove)

      {

         items.Remove(key);

      }

   }

Please keep in mind that WeakEvictionCache class is trivial and would require a lot 

of improvement before even thinking about real-world usage (including better API and 

thread safety to name only two).
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 Weak Event Pattern
Yet another most typical usage scenario related to weak references are weak events. 

Using events in .NET is not hard but may introduce one of the most typical sources of the 

memory leak. Let’s investigate it now in detail before moving forward to the solution in 

form of the mentioned weak events.

Let’s first introduce two trivial classes simulating windows-based library (whether it 

would be Windows Forms, WPF, or something else) shown in Listing 12-42. They present 

overwhelmingly popular hierarchical approach of such libraries - almost every element 

is in parent-child relationship with some other. It is also quite common to subscribe to 

events between such elements. Thus, sample SettingsChanged event was prepared for our 

experiments and RegisterEvents method in the other component that subscribes to it.

Listing 12-42. Two simple classes simulating UI library, used for further 

experiments

public class MainWindow

{

   public delegate void SettingsChangedEventHandler(string message);

   public event SettingsChangedEventHandler SettingsChanged;

}

public class ChildWindow

{

   private MainWindow parent;

   public ChildWindow(MainWindow parent)

   {

      this.parent = parent;

   }

   public void RegisterEvents(MainWindow parent)

   {

      // ChildWindow - target, MainWindow - source

      parent.SettingsChanged += OnParentSettingsChanged;

   }
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   private void OnParentSettingsChanged(string message)

   {

      Console.WriteLine(message);

   }

Sample code from Listing 12-43 consumes those types, simulating typical work of an 

UI-based application - there is a single main window and occasionally created additional 

child windows doing some work. Child windows subscribe to some of the parent window 

events. In each iteration GC is triggered to clean up everything aggressively. Additionally, 

for diagnostic purposes a list of weak references is maintained to track every created 

child window (note how nicely WeakReference fits into such experimental purposes).

Listing 12-43. Experiment showing memory leak because of unsubscribed events

public void Run()

{

   List<WeakReference> observer = new List<WeakReference>();

   MainWindow mainWindow = new MainWindow();

   while (true)

   {

      Thread.Sleep(1000);

      ChildWindow childWindow = new ChildWindow(mainWindow);

      observer.Add(new WeakReference(childWindow));

      childWindow.RegisterEvents(mainWindow);  // Leave this line 

uncommented to leak child 

windows

      childWindow.Show();

      GC.Collect();

      foreach (var weakReference in observer)

      {

         Console.Write(weakReference.IsAlive ? "1" : "0");

      }

      Console.WriteLine();

   }
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Obviously, if RegisterEvents call is commented, child window instance becomes 

unreachable before GC.Collect call, thanks to the early root collection technique. Thus, 

the result is in line with expectations (see Listing 12-44). Each child window dies after 

each iteration.

Listing 12-44. Result of the program from Listing 12-43 (in case of 

RegisterEvents call is commented)

ChildWindows showed

0

ChildWindows showed

00

ChildWindows showed

000

ChildWindows showed

0000

ChildWindows showed

00000

However, registering to an event introduces clear memory leak (see Listing 12- 45). 

There are more and more live child windows kept in memory.

Listing 12-45. Result of the program from Listing 12-43 (in case of 

RegisterEvents call being made)

ChildWindows showed

1

ChildWindows showed

11

ChildWindows showed

111

ChildWindows showed

1111

ChildWindows showed

11111
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Obviously, there is a very simple solution to that problem - at some time 

UnregisterEvents counterpart should be called that uses -= operator underneath to 

unsubscribe from the parent window events. This is simple but requires explicit cleanup 

mindset of a programmer - it needs to remember to unsubscribe from each event 

subscribed. We will return to that a little later. Let’s now dig in a little into the reason of 

such memory leak.

Registering to an event is a moderately complicated process. When a corresponding 

delegate is defined in a class, it is internally represented as nested class that derives 

from System.MulticastDelegate type (see Listing 12-46). As we can see, its constructor 

expects both an object and a method - because delegate needs to represent information 

about what should be called (method) and on what target (object instance).

Listing 12-46. SettingsChangedEventHandler internal implementation

.class public auto ansi beforefieldinit CoreCLR.Finalization.MainWindow

   extends [System.Runtime]System.Object

{

   // Nested Types

   .class nested public auto ansi sealed SettingsChangedEventHandler

      extends [System.Runtime]System.MulticastDelegate

   {

      // Methods

      .method public hidebysig specialname rtspecialname

         instance void .ctor (

            object 'object',

            native int 'method'

         ) runtime managed

      {

      } // end of method SettingsChangedEventHandler::.ctor

      ...

      .method public hidebysig newslot virtual

         instance void Invoke (

            string message

         ) runtime managed
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      {

      } // end of method SettingsChangedEventHandler::Invoke

   } // end of class SettingsChangedEventHandler

This is exactly what happens underneath RegisterEvents method (see Listing 12-47).  

this field (ChildWindow reference) is passed to the SettingsChangedEventHandler 

constructor and add_SettingsChanged method is called to combine such delegate into 

current delegate invocation list (see Listing 12-48).

Listing 12-47. RegisterEvents representation in CIL

.method public hidebysig

   instance void RegisterEvents (

      class CoreCLR.Finalization.MainWindow parent

   ) cil managed

{

   .maxstack 8

   IL_0000: ldarg.1   // parent

   IL_0001: ldarg.0   // this

   IL_0002: ldftn      instance void ChildWindow::OnParentSettingsChanged 

(string)

   IL_0008: newobj     instance void MainWindow/

SettingsChangedEventHandler::.ctor(object, native int)

   IL_000D: callvirt   instance void MainWindow::add_SettingsChanged 

(class CoreCLR.Finalization.MainWindow/

SettingsChangedEventHandler)

   IL_0012: ret

} // end of method ChildWindow::RegisterEvents

Listing 12-48. SettingsChanged event internal implementation (much 

simplified for brevity, omitting thread safety)

public event MainWindow.SettingsChangedEventHandler SettingsChanged

{

   [CompilerGenerated]

   add

   {
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       // value is of type SettingsChangedEventHandler (and contains 

ChildWindows reference in our example)

       this.SettingsChanged = (MainWindow.SettingsChangedEventHandler)

Delegate.Combine(this.SettingsChanged, value);

   }

   remove

   {

      ...

   }

}

Thus, ChildWindow instances are gathering in the delegate invocation list 

representing SettingsChanged event. In other words, the event becomes the only root 

of them, keeping them alive even most probably they should be dead. And even more 

probably those ChildWindows instances are no longer interested in the SettingsChanged 

event in the first place. This is simply a bug leading to less or more severe memory leak - 

depending on how much longer an event source outlives target instances. The worst-

case scenario is static events (or events in static classes and so on, and so forth). They 

live as long as their AppDomain lives (typically, the whole application lifetime) so there 

is plenty of time to gather a lot of leaked memory.

The longer source outlives targets and the heavier targets are (with respect to memory 

usage), the more severe such memory leak becomes. I’ve seen very small objects leaking 

because of unsubscribed static event in applications running for days, and I’ve seen also 

quite large objects killing an application in few hours just because of the same reason.

please note that our example event is defined intentionally in a little nontypical 
way. typically it would be defined with the first argument representing an event 
source (most often named sender):

public delegate void SettingsChangedEventHandler(object 
sender, string message);

this, however, does not change anything regarding memory leak because sender 
is taken from the MulticastDelegate instance. I’m pointing this out just to 
ensure your that it is not the presence of this argument that binds source and 
target so strongly, resulting in a memory leak.
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So what is the solution? Knowing about weak references, it should be obvious to you 

already. The relationship between source and target should be weak reference - there is 

no need to maintain former if the latter should die, and vice versa.

However, full and correct implementation of such “weak event” pattern is not trivial. 

It would take too much space to describe it here thoroughly. Instead, let’s look briefly 

how they are implemented in case of Windows Presentation Foundation, which allows to 

define them explicitly.

Unfortunately, pretty and concise syntax of event handling in C# (represented 

by += and -= operators) cannot be customized to provide equally pretty weak event 

syntax. Thus, every weak event pattern implementation uses similar API based on 

plain method calls. For example, if our dummy UI-based application was written in 

WPF, we could subscribe a weak event in RegisterEvents method as in Listing 12-49. 

There are various ways of doing that in WPF, this is however a little more preferred - 

by using generic WeakEventManager static AddHandler method that ties everything 

up - it defines that we are interested in SettingsChanged event in parent instance and 

OnParentSettingsChanged handler should be called (target is taken from underneath 

delegate implicitly).

Listing 12-49. Usage of weak event pattern in WPF

public void RegisterEvents(MainWindow parent)

{

   // ChildWindow - target

   // MainWindow - source

   WeakEventManager<MainWindow, string>.AddHandler(parent, 

"SettingsChanged", OnParentSettingsChanged);

}

Studying the implementation of WeakEventManager can be very informative. Even 

the opening comment of the WeakEventManager class contains great details (see 

Listing 12-50).

Listing 12-50. Opening comment from WeakEventManager.cs source file

// Normally, A listens by adding an event handler to B's Foo event:

//    B.Foo += new FooEventHandler(OnFoo);

// but the handler contains a strong reference to A, and thus B now 

effectively has a strong reference to A.  (...)
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// The solution to this kind of leak is to introduce an intermediate 

"proxy" object P with the following properties:

// 1. P does the actual listening to B.

// 2.  P maintains a list of "real listeners" such as A, using weak 

references.

// 3.  When P receives an event, it forwards it to the real listeners that 

are still alive.

// 4. P's lifetime is expected to be as long as the app (or Dispatcher).

If you want to practice weak references, I strongly encourage you to study weak 
event pattern implementation in Wpf. One of the core WeakEventManager 
parts is WeakEventTable. Look also at Listener struct that contains a weak 
reference to the target and EventKey struct that contains a weak reference to the 
source.

Why doesn’t the default implementation of events in .NET follow a weak event 

pattern approach? Wouldn’t it be helpful and aligned with the spirit of automatic 

memory management, to not require explicit cleanup of events? The main reason is the 

ratio of introduced performance cost versus the gained convenience of the API. Using 

weak events incurs using weak handles and those do not come without performance and 

memory overhead. Events usage is unbounded - even if typically we expect only a dozen 

of UI-based events, they have to be designed in a way handling hundreds of instances. 

Thus, it is much safer to use regular instance member (because in essence, that’s what 

events are) than introduce handles overhead.

In particular, all this would be done just to relieve a little lazy programmer that 

does not want to think where she or he should unsubscribe an event. In most cases, 

a desired moment when events should be unsubscribed is well-defined. MSDN says 

about WPF’s weak events: “You typically use the weak event pattern when the event 

source has an object lifetime that is independent of the event listeners. Using the central 

event dispatching capability of a WeakEventManager allows the listener’s handlers to be 

garbage collected even if the source object persists.” Such independent object lifetimes 

between source and listeners are rather uncommon, thus using explicit cleanup by 

default was a much better decision. Still, it would be nice to have opt-in possibility to use 

concise events syntax in C#.
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If you would like to investigate weak references CoreCLr source code a little, 
start from WeakReferenceNative::Create method that creates handle of 
type HNDTYPE_WEAK_LONG or HNDTYPE_WEAK_SHORT in the regular handle 
store. During mark phase, GCScan::GcShortWeakPtrScan method nulls out 
the target of short weak references that were not promoted. then, after scanning 
of finalization roots it also nulls out the target of long weak references by calling 
GCScan::GcWeakPtrScan.

 Scenario 9-2. Memory Leak Because of Events
Description: Our application memory usage grows in time. After double checking, for 

example, with the help of performance counters, we are sure that it is the Managed 

Heap that grows in time. More and more objects are gathering in generation 2, but its 

fragmentation is stable in time (checked for example via PerfView sessions). Apparently 

we are dealing with a memory leak, as some objects are continuously reachable because 

of some not-yet identified root.

Let’s use code from Listing 9-43 as a simple simulation of such case. Of course, in this 

case, we already know the cause of the problem. Let’s use it however as a nice and clean 

playground to see how it could be diagnosed.

Analysis: During memory weak analysis we have always two basic approaches:

• Take a single memory dump when memory usage is huge. We can 

count on the fact that the leaking objects will somehow stand out - by 

quantity, total size, numerous presences in the queue of finalization 

(if we are lucky and it happens that leaking objects are finalizable) 

and so on, and so forth. This may be sometime the only available 

approach - for example, if memory leak is extremely rare and we 

had only a single chance to make a memory dump on production. 

Analyzing such dumps is tedious though - mainly because memory 

leak characteristic may be more complex than single leakage of big 

objects. There may by a whole intricate graph of flyweight objects 

related to each other kept by some elusive roots that simply hides in 

the whole big spacious graph of all the objects. Thus, analysis of such 

single memory shoots requires quite good intuition, at least some 

level of knowledge about application internals (to quickly identify 

expected object subgraphs), and a bit of luck also.
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• Take two or more successive memory dumps and analyze differences 

(preferably, automatically). If it is only possible, we should prefer 

this approach. Comparison of successive application states cleans 

the analysis from unnecessary noise - the objects that leak should 

actually stand out from the others, allocated and collected in a stable 

manner. As already showed in this book, various tools may be used. 

I prefer low-level analysis from within WinDbg but this requires 

manual comparison. A much more preferred way is to compare heap 

snapshots taken from PerfView - with low overhead introduced and 

good difference analysis support. Of course, all commercial tools 

support such approach as it is the best way to find a memory leak 

source.

Let’s use the heap snapshots comparison approach from PerfView. While our 

problematic application runs, we should take two successive heap snapshots (by using 

Memory ➤ Take Heap Snapshot option), in the time between the process noticeably 

grows (to have a chance to see leaked objects). I always prefer to take such snapshots 

after some time the application is running, to give it a chance to warm up and reclaim 

memory after regular initialization code that often happens at the beginning.

After opening both heap snapshots, compare them by using Diff ➤ With baseline... 

option from the menu. Your mileage may vary how to analyze such comparison - 

whether to start from ByName view (and sort by Inc or Exc columns), RefTree view, or 

simply visually by Flame Graph view. Sometimes indeed looking at the Flame Graphs 

provides enough of an informative view. In our test application case, it becomes 

immediately visible that in the snapshots difference the most contributing type is 

MainWindow, that holds SettingsChangedEventHandler, that then holds ChildWindows 

instances (see Figure 12- 5). We have just identified a very serious suspect!
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By looking at RefTree view, confirmation immediately stands out - 

between our snapshots balance shows over three hundred ChildWindow and 

SettingsChangedEventHandler instances created (see Figure 12-6).

Figure 12-5. Flame Graph view of two heap snapshots difference in PerfView

Figure 12-6. RefTree view of two heap snapshots difference in PerfView

Such analysis will send your directly to the problematic event handler in 

your application hopefully. Please note also an additional Object[] array used by 

SettingsChangedEventHandler objects. It is nothing else than the invocation list 

mentioned earlier - because SettingsChangedEventHandler is a MulticastDelegate 

(and yes, such kind of delegate holds and array of listening delegates internally, which 

are delegates also. Look at MulticastDelegate .NET source code if you are interested in 

details).
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As an example of how such information is presented in commercial tools, let’s see 

heap snapshots comparison is presented in .NET Memory Profiler (two successive 

snapshots were taken during live session) in Figure 12-7. Clearly we see the same results, 

with the same problematic event handlers leaking. We see also increase of GCHandles 

hold by the weak references but this is expected as they are gathering in our observer list 

(refer to Listing 12-43).

Figure 12-7. Overview of two heap snapshots difference in .NET Memory Profiler

As mentioned earlier, similar reports are available in every other commercial tool 

available (to not be accused of promoting this particular tool at the moment).

 Summary
Finalization and disposable objects are strongly related to the unmanaged world 

cooperation. They are more related to the resource management than to object lifetime 

management. However, altogether with weak references, all those topics interleave each 

other in more or less subtle way.

Disposable objects, introduced by standardization explicit cleanup of resources in 

the form of IDisposable interface and supported by using clause in case of C#. This 

way they tend to replace missing RAII (Resource Acquisition Is Initialization) approach 

from unmanaged environment when a local variable within its lexical scope is the 

owner of some resource - it acquires resource at creation (in constructor) and releases it 

when leaving its scope (in destructor). While IDisposable was from the very beginning 

thought as exactly for that purpose, it gained an additional popularity also in other use 

cases. Logging, tracing, profiling - those are only a few examples of popular usages not 

related to unmanaged resources at all. They become popular every time when explicit 

region of control is required. Besides of this, explicit cleanup stays as a preferred way of 

managing unmanaged resources.
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On the other hand, finalization is quite still popular, especially in case of full 

Disposable pattern implementation when it is treated as a safety net in case of explicit 

cleanup omission. But one must be fully aware of all finalization-related caveats and 

overhead it introduces. I hope all the implementation details, as long as presented 

benchmarks and scenario 9-1 convinced you about that at least a little. General rule to 

remember is to avoid finalization if possible.Don’t treat them as a fancy feature to add 

logging or something else to make your code look smart!

Weak references are most probably the less popular type along described in this 

chapter. Dedicated mostly to only few scenarios, most often you will not need to use them in 

your code. However, it is good to know about them, especially with respect to popular weak 

event design pattern. They are also really useful when doing some fancy code experiments, 

as they provide the only easy way to check object reachability (if your experiments need so).

It must be said that this chapter concludes all the most relevant parts of the .NET 

memory management internals. We have had a very long journey so far. The next two 

chapters are much more practical biased, based on the knowledge gained so far. I 

strongly encourage you to read them!

 Rule 25 - Avoid Finalizers
Applicability: General and popular. High performance code - important.

Justification: Finalizers were designed for a very specific purpose - provide implicit 

cleanup of unmanaged resources, just in case that explicit one is not possible. However, 

there are not so many cases I can imagine where explicit cleanup could be not possible. 

By using finalizers. we expose ourselves to many problems. Even implementing a 

good finalizer is not trivial if we take into consideration each possible edge case (like 

reentrancy, multithreading, possibility to be executed only partially or not at all, to name 

a few problems). Moreover, due to required implementation, there are many really 

considerable overheads - mostly in terms of performance and memory usage.

How to apply: Just try to use some other possible alternatives, namely:

• SafeHandle - as a well-designed finalizable handle representation 

with the runtime support,

• Disposable pattern - as most probably you may get rid of finalization 

and manage your resource explicitly,

• Critical finalization - if releasing resource if crucial for you.
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In cases when you really do not see a possibility to avoida finalizer, remember about 

the following good practices:

Write only small wrappers encapsulating only unmanaged resources, without any 

other managed references - to not promote too much because of finalization.

• Avoid allocating memory in finalizer and critical finalizer - throwing 

OutOfMemoryException inside of it may be really problematic.

• Always check if you really own expected resources - typical scenario 

includes throwing an exception from the constructor, which may lead 

to executing finalizer in not fully initialized object state.

• Avoid any thread context dependency - simply do not assume 

anything about the thread executing your finalizer. This imposes also 

avoiding blocking execution by any synchronization techniques.

• Do not throw any exceptions from finalizers - and do not allow it to 

be thrown by third-party code. Remember to always wrap finalizer 

code by try-finally block!

• Avoid calling virtual members from finalizers - as they may introduce 

all unwanted behavior lister above

Related scenarios: Scenario 12-1.

 Rule 26 - Prefer Explicit Cleanup
Applicability: General and popular. High performance code - important.

Justification: Deterministic cleanup is a preferred way of managing resources. Cleanup 

time is well-defined and (if designed well) as early as possible - it helps in limited 

resources management. Obviously, it is a little more demanding for programmers. They 

cannot create resources on the fire-and-forget basis. They must take care about proper 

releasing of all they initialized. Yes, we know. This is a little in opposite what managed 

environments promise - including automatic memory management at the first place. But 

unmanaged resources are... unmanaged. We should take a little effort to remember that.

How to apply: Stick to what .NET ecosystem proposes - IDisposable and disposable 

objects. Most often, when you need to clean up your resources, probably always it is 

possible to do it in Dispose, not in a dedicated, heavyweight finalizer. It will impose 

additional care on programmers, but using clause in C# and tools like ReSharper or 

Visual Studio rules are there to help them.
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CHAPTER 13

Miscellaneous Topics
So far, all chapters have focused on how different aspects of memory-management 

work in .NET (so the vast majority of how Garbage Collector in .NET works). At this 

point in the book, we have gained most of the knowledge necessary for a profound 

understanding of how most of this machinery works underneath. I say “most” because 

of course there are still some more or less minor aspects that we have not touched 

because of the limited size of the book. I hope, however, that you already feel quite 

comfortable with the knowledge about partitioning (generations, segments), allocation 

and deallocation, how garbage collection is proceeded, and so on, and so forth.

All this knowledge was intertwined with some practical tips and various scenarios 

(usually diagnostic). However, for the sake of clarity and not the excessive growth of 

individual chapters, not all more advanced practical aspects have been mentioned. 

Exactly to such things, however, this and the next chapter are dedicated. Let’s treat them 

as the “creme de la creme” of .NET memory management, purely practical (with some 

internal knowledge still mentioned) and touching more advanced topics. This does not 

mean that the topics discussed here are not useful in the daily work of the programmer. 

Quite the opposite, we may see the bigger and bigger adoption of such techniques 

as more and more performance-aware code is being written in .NET - this especially 

includes using Span<T> and everything around it.

Due to such a general, complementary nature of this chapter, it a conspectus, and 

individual subchapters are loosely connected. Choose what you are most interested in or 

(what I strongly recommend), and read everything in a row!

 Dependent Handles
Besides already known kind of handles, there is yet still one more available not 

mentioned so far - dependent handle, added in .NET Framework 4.0 (and available  

in .NET Core). It allows us to couple the lifetime of two objects. A dependent handle 

points to a target, just like what other GC handles do. And it behaves like a weak handle, 
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that is, it does not keep the target alive. This is the primary object for the dependent 

handle. It also carries a secondary object. The behavior of a dependent handle is the 

following:

• a “weak” handle both to primary and secondary objects (it does not 

influence their lifetime by itself);

• a strong handle from primary object to secondary object (secondary 

object will be kept alive as long as primary object is alive).

This makes them a very flexible tool that allows you to something like “adding” fields 

to objects in a dynamic way. In fact, such “adding fields” usage is exactly the purpose of 

it, as we will soon see.

Dependent handles are not available via GCHandle API as other types of handles. 

In fact, they are not directly exposed by any public API. The only way to use it is with the 

wrapper class ConditionalWeakTable. As its own source code comment says, it provides 

“compiler support for runtime-generated “object fields,” and that it “lets DLR and other 

language compilers expose the ability to attach arbitrary “properties” to instanced 

managed objects at runtime.”

There is an intrinsic DependentHandle struct (in System.Runtime.
CompilerServices namespace) that directly wraps a dependent handle on 
the runtime level. It has a simple constructor DependentHandle(object 
primary, object secondary) and methods like GetPrimary and 
GetPrimaryAndSecondary. But it is internal as it was decided to not 
expose it directly. DependentHandle is consumed by the mentioned 
ConditionalWeakTable class.

Additionally, interestingly enough, a dependent handle type is used internally by the 
runtime to support adding fields during the Edit and Continue debugger features. Since 
instances of modified type may already exist on the heap, such a feature can’t simply 
change the runtime layout of the object to include the new field. Thus, a dependent 
handle maintains a lifetime relationship between those two in such a scenario.
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ConditionalWeakTable is organized as dictionary, with the key storing primary 

object and the value storing added “property” (secondary object). Please note that  

such dictionary keys are weak references and will not keep those objects alive  

(unlike regular dictionary keys). Once the key dies, the dictionary automatically removes 

the corresponding dictionary entry.

API of ConditionalWeakTable is intuitive and similar to the regular, generic 

Dictionary<TKey, TValue> (see Listing 13-1). By using Add method we create a new 

underlying dependent handle, “adding” a value instance to the key instance. Please 

note that ConditionalWeakTable is generic, so strong typing is employed (to allow only 

adding only specific type to other specific type). Because the key must be unique (keys 

are compared with the help of Object.ReferenceEquals), this class supports attaching 

only a single value per managed object (you would need to attach as a value yet another 

dictionary-like object to simulate attaching multiple properties). You can try to get a 

value represented by a given key using TryGetValue method, as shown in Listing 13-1.

Listing 13-1. Example of ConditionalWeakTable usage

class SomeClass

{

   public int Field;

}

class SomeData

{

   public int Data;

}

public static void SimpleConditionalWeakTableUsage()

{

   //  Dependent handles between SomeClass (primary) and SomeData 

(secondary)

    ConditionalWeakTable<SomeClass, SomeData> weakTable = new 

ConditionalWeakTable<SomeClass, SomeData>();

   var obj1 = new SomeClass();

   var data1 = new SomeData();
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   var obj1weakRef = new WeakReference(obj1);

   var data1weakRef = new WeakReference(data1);

   weakTable.Add(obj1, data1); // Throws an exception if key already added

   weakTable.AddOrUpdate(obj1, data1);

   GC.Collect();

    Console.WriteLine($"{obj1weakRef.IsAlive} {data1weakRef.IsAlive}");    

// Prints True True

   if (weakTable.TryGetValue(obj1, out var value))

   {

      Console.WriteLine(value.Data);

   }

   GC.KeepAlive(obj1);

   GC.Collect();

    Console.WriteLine($"{obj1weakRef.IsAlive} {data1weakRef.IsAlive}");  

// Prints False False

}

Without a GC.KeepAlive call in Listing 13-1, both obj1 and data1 instances 

could be already dead after the first GC.Collect (if JIT compiler decided to use early 

root collection, described in Chapter 8). If, on the other hand, we instead called GC.

KeepAlive(data1) to keep alive the secondary object (the value), not the primary object 

(the key), first Console.WriteLine most probably would print: False True. At this 

moment the key was collected because nothing holds its reference.

please note that ConditionalWeakTable is in fact a container maintaining a 
collection of dependent handles, which are unmanaged resources (like GChandle-
allocated ones). We create them implicitly by using Add or AddOrUpdate, 
but when they are released (freed) then? With the current implementation, 
they are released implicitly by the finalizer of the internal container (thus, after 
ConditionalWeakTable instance becomes unreachable). We can, however, do 
an explicit cleanup by calling Clear method (which was added in .nET Core 2.0). 
Even calling Remove method currently does not release underlying handles (due to 
multithreading issues it could incur).
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Of course, we may omit strong typing of the ConditionalWeakTable by using Object 

type as its generic types (see Listing 13-2). In this way we will be able to add any object to 

any other object.

Listing 13-2. Example of ConditionalWeakTable usage

ConditionalWeakTable<object, object> weakTable = new 

ConditionalWeakTable<object, object>();

var obj1 = new SomeClass();

var data1 = new SomeData();

weakTable.Add(obj1, data1);

Moreover, keep in mind that the limitation of the single value per managed object 

(key) comes from the ConditionalWeakTable, not from the dependent handles itself. 

Thus, nothing can stop us from adding multiple “values” to the same object in that way, 

by using multiple ConditionalWeakTable instances (see Listing 13-3).

Listing 13-3. Example of ConditionalWeakTable usage

var obj1 = new SomeClass();

var weakTable1 = new ConditionalWeakTable<object, object>();

var weakTable2 = new ConditionalWeakTable<object, object>();

var data1 = new SomeData();

var data2 = new SomeData();

weakTable1.Add(obj1, data1);

weakTable2.Add(obj1, data2);

Underlying weak references of dependent handle behave as long weak references, 

so they are maintaining relation between primary and secondary objects even when 

the primary one is being finalized (see Listing 13-4). It allows us to handle resurrection 

scenarios properly.
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Listing 13-4. Finalization behavior of dependent handles

class FinalizableClass : SomeClass

{

   ~FinalizableClass()

   {

   }

}

public static void FinalizationUsage()

{

    ConditionalWeakTable<SomeClass, SomeData> weakTable = new 

ConditionalWeakTable<SomeClass, SomeData>();

   var obj1 = new FinalizableClass();

   var data1 = new SomeData();

   var obj1weakRef = new WeakReference(obj1, trackResurrection: true);

   var data1weakRef = new WeakReference(data1, trackResurrection: true);

   weakTable.Add(obj1, data1);

   GC.Collect();

    Console.WriteLine($"{obj1weakRef.IsAlive} {data1weakRef.IsAlive}");    

// Prints True True

   GC.KeepAlive(obj1);

   GC.Collect();

    Console.WriteLine($"{obj1weakRef.IsAlive} {data1weakRef.IsAlive}");  

// Prints True True

   GC.WaitForPendingFinalizers();

   GC.Collect();

    Console.WriteLine($"{obj1weakRef.IsAlive} {data1weakRef.IsAlive}");  

// Prints False False

}

Dependent handles are treated in WinDbg as one of the handles type, so we can use 

the regular !gchandles SOS command to investigate them (see Listing 13-5). Because 

internal ConditionalWeakTable container is finalizable, we will also often see it in 

finalization queues (see Listing 13-6).
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Listing 13-5. Result of !gchandles SOS extension command (for code like from 

Listing 13-3)

> !gchandles -stat

...

Handles:

    Strong Handles:       10

    Pinned Handles:       4

    Weak Long Handles:    1

    Weak Short Handles:   1

    Dependent Handles:    2

> !gchandles -type Dependent

          Handle Type                  Object     Size             Data 

Type

00000292abfe1bf0 Dependent   00000292b034d188       24 00000292b034d448 

CoreCLR.DependentHandles.SomeClass

00000292abfe1bf8 Dependent   00000292b034d188       24 00000292b034d430 

CoreCLR.DependentHandles.SomeClass

Statistics:

              MT    Count    TotalSize Class Name

00007fff033166b8        2           48 CoreCLR.DependentHandles.SomeClass

Total 2 objects

Listing 13-6. Result of !finalizequeue SOS extension command (for code like 

from Listing 13-3)

> !finalizequeue

...

Statistics for all finalizable objects (including all objects ready for 

finalization):

              MT    Count    TotalSize Class Name

...

00007fff03429678        2          112  

System.Runtime.CompilerServices.ConditionalWeakTable`2+Container[[System.

Object, System.Private.CoreLib],[System.Object, System.Private.CoreLib]]

Total 5 objects
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ConditionalWeakTable is useful in implementing caching or weak event patterns. 

In the former case, we may cache some data related to an object, as long as such 

object lives. In the latter case, we may appropriately couple the handler (delegate) 

lifetime with the target lifetime (see Chapter 12 for a wider weak event pattern 

description). Listing 13-7 shows fragments of the WeakEventManager class used in 

Windows Presentation Foundation. To couple delegate the lifetime with its target, 

ConditionalWeakTable is used (represented here by _cwt field). In this way, a list of 

delegates is alive as long as the target itself is alive.

Listing 13-7. ListenerList class methods (part of WeakEventManager class from 

WPF)

public void AddHandler(Delegate handler)

{

   object target = handler.Target;

   ...

   // add a record to the main list

   _list.Add(new Listener(target, handler));

   AddHandlerToCWT(target, handler);

}

void AddHandlerToCWT(object target, Delegate handler)

{

   // add the handler to the CWT - this keeps the handler alive throughout

   // the lifetime of the target, without prolonging the lifetime of

   // the target

   object value;

   if (!_cwt.TryGetValue(target, out value))

   {

      // 99% case - the target only listens once

      _cwt.Add(target, handler);

   }
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   else

   {

      // 1% case - the target listens multiple times

      // we store the delegates in a list

      List<Delegate> list = value as List<Delegate>;

      if (list == null)

      {

         // lazily allocate the list, and add the old handler

         Delegate oldHandler = value as Delegate;

         list = new List<Delegate>();

         list.Add(oldHandler);

         // install the list as the CWT value

         _cwt.Remove(target);

         _cwt.Add(target, list);

      }

      // add the new handler to the list

      list.Add(handler);

   }

}

During the Mark phase, dependent handles need to be scanned in a special way 
because they may create complex dependencies and a single scan is simply just 
not enough. Imagine three dependent handles saved in the handle table in the 
following order: object C targets object A, B targets C, and A targets B. Assuming 
that reachability of object A has been already determined (it is marked as 
reachable), the first scan of such handles will only mark B as reachable. Second 
scan will mark C as reachable (because now GC knows that B is reachable). Third 
scan will change nothing (A is already marked) so the whole analysis will be 
terminated. Such multiple scanning could theoretically introduce some overhead 
with millions of dependent handles with complex dependencies between them; 
however, it was assumed there is typically not so many of them.
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If you would like to investigate this feature more in CoreClr code, start from 
gc_heap::background_scan_dependent_handles and gc_heap::scan_
dependent_handles methods. Both are greatly documented, as well as methods 
called by them: GcDhReScan and GcDhUnpromotedHandlesExist. At the 
beginning of the Mark phase, GcDhInitialScan is called whose comments also 
shed some light on dependent handles implementation.

 Thread Local Storage
Normal static variables may be seen as global variables within a single AppDomain. 

Every thread in our application has access to it. Thus, typically it requires multithreading 

synchronization techniques to make it thread-safe. However, there is another type of 

“almost” global data, but which is unique to each thread - thread local storage (TLS). 

In other words, it behaves like a global variable - every thread accesses it by the same 

name or identifier - but data is stored separately for each thread. It reliefs us from 

synchronization issues, as each data will be accessible only by its dedicated thread.

Currently in .NET there are three ways to use thread local storage:

• thread static fields - available as static fields, additionally marked with 

ThreadStatic attribute,

• class helper that wraps thread static field - available as 

ThreadLocal<T> type,

• thread data slots - available with the help of Thread.SetData and 

Thread.GetData methods.

.NET documentation clearly states that thread static fields provide much better 

performance than data slots and should be preferred whenever possible. We will look 

into both techniques internals to understand the difference. Moreover, static fields are 

strongly typed (they have type, as any other field in .NET) while data slots always operate 

on an Object type and, in case of named data slots, string-based identifiers that both 

may lead to problems hard to catch at compile time.
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 Thread Static Fields
Using thread static fields is as easy as marking a regular static field with a ThreadStatic 

attribute. Both value and reference types may be used as thread static fields (see Listing 13-8). 

In our example, even the same instance of SomeClass is used by two different threads, and 

its static fields values are separate for both of them. Thus, one thread will print Worker 1:1 

while the other Worker 2:2. If both static fields were only regular statics, a multithreaded race 

condition would occur in writing to them (and as a result, some undetermined combination 

of 1 and 2 values would be stored).

Listing 13-8. Example of using thread static fields

class SomeData

{

   public int Field;

}

class SomeClass

{

   [ThreadStatic]

   private static int threadStaticValueData;

   [ThreadStatic]

   private static SomeData threadStaticReferenceData;

   public void Run(object param)

   {

      int arg = int.Parse(param.ToString());

      threadStaticValueData = arg;

      threadStaticReferenceData = new SomeData() { Field = arg };

      while (true)

      {

         Thread.Sleep(1000);

          Console.WriteLine($"Worker {threadStaticValueData}:{threadStatic 

ReferenceData.Field}.");

      }

   }

}
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static void Main(string[] args)

{

   SomeClass runner = new SomeClass();

   Thread t1 = new Thread(new ParameterizedThreadStart(runner.Run));

   t1.Start(1);

   Thread t2 = new Thread(new ParameterizedThreadStart(runner.Run));

   t2.Start(2);

   Console.ReadLine();

}

Plain thread statics have one surprising inconvenience - if a static field has an 

initializer, it will be invoked only once, on the thread that executed the static constructor. 

In other words, only the single thread that first used a given type will have a thread static 

field properly initialized. Others will have such a field initialized to its default value (see 

Listing 13-9). Quite surprisingly, SomeOtherClass.Run method will print Worker 100 and 

Worker 0 lines because of such behavior.

Listing 13-9. Example of surprising thread static field initialization

class SomeOtherClass

{

   [ThreadStatic]

   private static int threadStaticValueData = 100;

   public void Run()

   {

      while (true)

      {

         Thread.Sleep(1000);

          Console.WriteLine($"Worker {threadStaticValueData}");    

// Will print Worker 100 or Worker 0.

      }

   }

}

static void Main(string[] args)

{

   SomeOtherClass runner = new SomeOtherClass();
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   Thread t1 = new Thread(runner.Run);

   t1.Start();

   Thread t2 = new Thread(runner.Run);

   t2.Start();

}

To overcome similar problems, ThreadLocal<T> class is available since .NET 

Framework 4.0, which provides better, more deterministic initialization behavior. We can 

provide to its constructor a value factory, which will lazily initialize such class instance 

when first accessed via Value property (see Listing 13-10).

Listing 13-10. Example of ThreadLocal<T> usage

class SomeOtherClass

{

    private ThreadLocal<int> threadValueLocal = new ThreadLocal<int>(() => 

100, trackAllValues: true);

   public void Run()

   {

      while (true)

      {

         Thread.Sleep(1000);

          Console.WriteLine($"Worker {threadStaticValueData}:{threadValue 

Local.Value}.");

         Console.WriteLine(threadValueLocal.Values.Count);

      }

   }

}

Additionally, ThreadLocal<T> provides functionality of tracking all initialized 
values by passing true to its constructor’s trackAllValues argument. We can 
later on use Values property to iterate all current values. Be careful, however, as 
it is a straight road to problems - we may start to pass around reference instances 
between threads that were supposed to be only thread local.
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Underneath ThreadLocal<T> still is a thin wrapper around thread static field. 

With all the additional handling of its internal structures, some performance hit may 

be observed (see Listing 13-11). However, if performance is not your main concern, 

ThreadLocal<T> is even more preferred than using plain thread static fields.

Listing 13-11. Results of DotNetBenchmark comparing access to primitive and 

reference thread local storage - by thread statics and ThreadLocal<T>

                Method |      Mean | Allocated |

---------------------- |----------:|----------:|

 PrimitiveThreadStatic |  4.072 ns |       0 B |

 ReferenceThreadStatic |  5.076 ns |       0 B |

  PrimitiveThreadLocal |  7.866 ns |       0 B |

  ReferenceThreadLocal | 11.762 ns |       0 B |

If you really need performance of a plain thread static field, while overcoming an 

initialization problem, you can use a small trick to wrap around the thread static field 

with lazy initialization via a regular static field (see Listing 13-12).

Listing 13-12. Solution to problems with thread static data initialization

[ThreadStatic]

private static int? threadStaticData;

public static int ThreadStaticData

{

   get

   {

      if (threadStaticData == null)

         threadStaticData = 44;

      return threadStaticData.Value;

   }

}
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 Thread Data Slots
Using a thread data slot is simple and straightforward. There are two different kinds of 

data slots available (see Listing 13-13):

• named thread data slot - they are accessible by string-based 

name via Thread.GetNamedDataSlot. You can store and reuse 

LocalDataStoreSlot instance returned by this method or you can 

call it with an appropriate name whenever you need it.

• unnamed thread data slot - they are accessible only by 

LocalDataStoreSlot instance returned from Thread.

AllocateDataSlot method.

Listing 13-13. Example of using thread data slots

public void UseDataSlots()

{

   // Named data slots

   Thread.SetData(Thread.GetNamedDataSlot("SlotName"), new SomeData());

   object data = Thread.GetData(Thread.GetNamedDataSlot("SlotName"));

   Console.WriteLine(data);

   Thread.FreeNamedDataSlot("SlotName");

   // Unnamed data slots

   LocalDataStoreSlot slot = Thread.AllocateDataSlot();

   Thread.SetData(slot, new SomeData());

   object data = Thread.GetData(slot);

   Console.WriteLine(data);

}

As mentioned later, we lose strong typing because of using thread data slots API - 

both Thread.SetData and Thread.GetData expect and return Object type. What mostly 

data slots give in return is flexibility - we may dynamically define thread statics identified 

by the string. However, such flexibility is rarely required and indeed, thread statics or 

ThreadLocal<T> should be a preferred approach.

A simple benchmark of accessing both primitive value (an integer) and an integer 

field of reference type clearly shows a significant performance advantage of plain thread- 

static variables (see Listing 13-14). I hope such benchmarks conclude why data slots 
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are unpopular - for example, we can find only single usage of it in all .NET-related, open 

sourced libraries (including WPF and ASP.NET Core).

Listing 13-14. Results of DotNetBenchmark comparing access to primitive and 

reference thread local storage - by thread statics and data slots

                  Method |      Mean | Allocated |

------------------------ |----------:|----------:|

   PrimitiveThreadStatic |  3.938 ns |       0 B |

   ReferenceThreadStatic |  5.061 ns |       0 B |

 PrimitiveThreadDataSlot | 51.843 ns |       0 B |

 ReferenceThreadDataSlot | 48.616 ns |       0 B |

To be clearer, you better forget about data slots once and for all.

 Thread Local Storage Internals
It is good to understand how thread local storage is implemented because it may be 

tempting to treat it as some kind of magical, super-fast thread-affinity storage. Thread 

affinity reminds us of the stack, and the stack is fast, right? So such special thread local 

storage, kept in some secret thread-related space, probably is even faster, right? The truth 

is much more complicated and knowing how thread local storage works underneath will 

help you to remember the pros and cons of this technique.

First of all, indeed there is a special memory region dedicated for each thread’s own 

purposes. It is called Thread Local Storage (TLS) in case of Windows, and Thread-specific 

data in case of Linux. However, such a region is rather small, expressed rather in terms 

of a single memory page. Such a region is organized in terms of single, pointer-sized, 

so-called slots. For example, Windows guarantees only 64 such slots available in each 

process and that the maximum number of slots will not exceed 1,088. Those are quite 

tight requirements - guaranteed 64 slots makes only 512 bytes of memory in a 64-bit 

process!

Thus, let us be careful in saying that such data are kept in TLS. The use of slots kept 

in TLS means storing in them the address to normally allocated memory. It is a normal 

technique, used not only in .NET but in any other compiler, including C and C++ ones. 
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Thread local storage is simply too limited to keep there the data itself. Even so, such 

storage gives the following performance advantages:

• memory page with TLS is most probably kept in physical memory if 

we use its data on regular basis,

• access to such page must not be synchronized because only single 

thread sees it.

CLR uses the regular way of using thread local storage in C++. There is global, 

thread-static variable defined of type ThreadLocalInfo struct (see Listing 13-15). Single 

TLS slot is consumed by C++ compiler to store an address of such struct instance (and 

each underlying system thread keeps an address of its own ThreadLocalInfo copy).

Listing 13-15. Thread local storage definition in CoreCLR

#ifndef __llvm__

EXTERN_C __declspec(thread) ThreadLocalInfo gCurrentThreadInfo;

#else // !__llvm__

EXTERN_C __thread ThreadLocalInfo gCurrentThreadInfo;

#endif // !__llvm__

ThreadLocalInfo keeps addresses of the three following CLR internal data:

• instance of unmanaged Thread class representing currently running 

managed thread - this is the crucial part, used overwhelmingly in the 

whole runtime (for example by GetThread method call);

• instance of AppDomain in which current thread’s code is being 

executed - this is a shortcut for efficiency, as the same pointer could 

be obtained from the Thread instance;

• instance of ClrTlsInfo structure - this is an array of addresses 

to many internal, thread-related CLR structures (mostly used for 

diagnostic and profiling).

So in fact, when we are using any thread local storage technique in .NET, only the 

pointer to ThreadLocalInfo structure is stored in TLS. The whole other thing lives 

both in the CLR private heap and on the GC heap, similarly how regular statics are 

implemented (see Figure 13-1). Thread class instance organizes its thread local storage-

related data into two more classes:
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Figure 13-1. Internals of thread local storage in .NET. Places where thread local 
data are indeed stored are marked as gray.

• ThreadLocalBlock - it is created for each AppDomain in the 

application (so there will be only single instance in case of .NET 

Core apps). It additionally maintains ThreadStaticHandleTable, 

which keeps a strong handle references to dedicated managed arrays, 

storing references of thread-static field instances (references).

• ThreadLocalModule - it is created for each module in each 

AppDomain. It consists of two crucial data:
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• unmanaged statics blob - here all thread-static unmanaged1 

values are stored. For efficient memory access, data in blobs are 

using padding (to consider memory alignment).

• offset in the managed array where static references of this module 

begin - here references are also grouped into types.

In other words, thread static data is stored in the following way:

• For fields being reference types - instances are normally heap-allocated 

and references to them are stored in a dedicated Object[] array kept 

alive by strong handles managed by ThreadStaticHandleTable. Please 

note that it means in particular that:

• There may be multiple heap-allocated instances of the same type 

(if those fields are initialized, not nulls) - each for every managed 

thread running.

• There will be multiple heap-allocated Object[] arrays to 

store references to the above - each for every AppDomain and 

managed thread running.

• For fields being unmanaged types - those values are stored in static 

blobs in unmanaged memory. Again, there will be multiple blobs - 

each per Thread, per AppDomain, and per Module in it.

• For structs - they are stored on the managed heap in a boxed form 

and treated the same as above-mentioned reference types.

As the number of types is known at compile time, both dedicated Object[] arrays 

and static blobs have constant, pre-calculated size (we know how many managed and 

unmanaged thread static fields are out there).

1 Meaning, primitive types or value types that does not contain references.
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A careful reader may notice that creating a thread in .nET may incur quite many 
allocations because of thread static fields. There can be many new Object[] 
arrays created per each AppDomain (most probably in Soh as the number of 
managed thread static fields is rather small in single AppDomain) as well as even 
more ThreadLocalModules allocated in private Clr data (containing static blobs 
for each module).

So, for example, in Figure 13-1, the viewpoint of one of the modules is presented - 

even there would be probably more ThreadLocalModules, they are not shown for brevity. 

In this module a few types are defined. Let’s concentrate on Type1, which could look like 

that in Listing 13-16. It contains two primitive thread-static fields (of type long and int) so 

its values are stored inside ThreadLocalModule statics blob. Additionally, it contains two 

reference type thread-static fields of type SomeData. Like regular statics, such instances 

are normally heap-allocated and their references are stored in a dedicated, regular object 

array. In Figure 13-1 both such fields of Type1 are already initialized for Thread 1, but (for 

illustrative purposes) only the first field is initialized for Thread 2.

Listing 13-16. Example of simple type showed in Figure 13-1

class Type1

{

   [ThreadStatic] private static int static1;

   [ThreadStatic] private static long static2;

   [ThreadStatic] private static SomeData static3;

   [ThreadStatic] private static SomeData static4;

   ...

}

Obviously, it may seem pretty uncomfortable at first glance that objects we think of 

being “thread-only statics” are simply lying somewhere next to each other in a GC heap. 

Please bear in mind, however, that unless something terrible happens, they are not 

visible to each other from the managed threads perspective (thus, are still thread-safe). 

On the other hand, we can unconsciously introduce False Sharing (refer to Chapter 2) 

between such instances, as they may live inside single cache line boundary.

So again, it is good to keep in mind Figure 13-1 when thinking about TLS as “fast, 

magic memory.” In fact, TLS here is used only as a functional, implementation detail of 

thread affinity of corresponding data structures. It is not speeding up anything in general.
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When code is being JITted, appropriate offsets are calculated for thread static fields - 

in statics blob for unmanaged types and in references array for reference types. Those 

offsets are stored in MethodTable-related regions so JIT compiler may use them to 

generate addresses of data access. In fact, data access requires obtaining corresponding 

ThreadLocalModule of the current thread. Accessing thread-static data introduces 

additional and noticeable overhead (see Listings 13-17 and 13-18, with comments).

Listing 13-17. Assigning thread-static unmanaged variable (like 

threadStaticValueData in Listing 13-8)

// Assume esi register contains value to store

// Pass info about module and class (type) index into rcx and edx registers

mov    rcx,7FFD3E295690h

mov     edx,2

// Accesses ThreadLocalModule inside (via TLS-stored pointer)

// As a result, rax contains ThreadLocalModule address

call    CoreCLR!JIT_GetSharedNonGCThreadStaticBase

mov     rdi,rax

// Store the value:

// 1Ch is an pre-calculated offset in the statics blob, esi contains value 

to storemov     dword ptr [rdi+1Ch],esi

Listing 13-18. Assigning thread-static referece variable (like 

threadStaticReferenceData in Listing 13-8)

// Assume rbx contains value (reference) to store

// Pass info about module and class (type) index into rcx and edx registers

mov    rcx,7FFD3E295690h

mov     edx,2

// Accesses ThreadLocalModule inside (via TLS-stored pointer)

// As a result, rax contains reference to an array element where references 

of that type begins

call    CoreCLR!JIT_GetSharedGCThreadStaticBase

mov     rcx,rax

// Store the reference (in rbx) under given array element (in rcx) by 

calling write barrier

mov     rdx,rbx

call    CoreCLR!JIT_WriteBarrier (00007ffd`9d6c57d0)
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On the other hand, without fields being statics (regular or thread ones), data access 

is orders of magnitude faster as it does not require any runtime call (one or two simple 

mov instructions would be enough in such case).

Both JIT_GetSharedNonGCThreadStaticBase and JIT_
GetSharedGCThreadStaticBase are great methods to start of CoreClr code 
analysis related to thread local storage. Methods generated by JIT often contain 
INLINE_GETTHREAD macro that gets gCurrentThreadInfo (thread static 
ThreadLocalInfo instance) from TlS storage - for example, in case of Windows it 
uses  OFFSET__TEB__ThreadLocalStoragePointer to look for TlS address in 
current Thread Environment Block. As listed before, ThreadLocalInfo contains a 
pointer to unmanaged Thread instance. AppDomain pointer and m_EETlsData array 
of pointers are irrelevant for our context. ThreadLocalModule, ThreadLocalBlock 
and ThreadStatics types from .\src\vm\threadstatics.h file contain main 
logic related of handling thread local storage.

regarding the calculation of fields offsets (both regular and thread-static), 
Module::BuildStaticsOffsets method fills an additional, helper array of  
all offsets within a module (see fields m_pRegularStaticOffsets and  
m_pThreadStaticOffsets arrays) that is later on consumed by MethodTable
Bulder::PlaceRegularStaticFields and MethodTableBulder::Place 
ThreadStaticFields.

One may wonder what about generic types containing thread static fields? It’s been 

said that at compile time a number of thread static fields is known but obviously it is 

not true in case of generic types - compiler does not know how many various generic 

types instantiation will happen (and each may require brand new sets of thread static 

variables). Solution is similar to the regular statics of generic types - ThreadLocalModule 

maintains an additional, dynamic array of pointers to smaller structures similar to 

ThreadLocalModule itself (see Figure 13-2 and corresponding Listing 13-19). Each such 

structure is dedicated for a single generic type instantiation and contains the same  

data - offset where its reference-type fields begins in ThreadStaticHandleTable (which 

may be dynamically resized) and static blob fields.
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Figure 13-2. Internals of thread local storage of generic types
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Listing 13-19. Simple Some<T> generic type illustrated in Figure 13-2

class Some<T>

{

   [ThreadStatic]

   private static T static1;

   [ThreadStatic]

   private static SomeData static2;

   [ThreadStatic]

   private static SomeData static3;

   ...

}

From a GC perspective, thread static data of reference type is a regular object 
rooted by mentioned, dedicated Object[] arrays that are kept alive by strong 
handles maintained by ThreadLocalBlock. Thus, they are alive as long as 
corresponding Thread and AppDomain are alive.

Using data slots is even slower because its general- purpose mechanism is built 

on internal, thread-static data store (see Listing 13-20). Thus, it obviously is slower 

than using a plain thread-static field. It adds some additional bookkeeping of internal 

dictionary-like structures (to maintain a key-value list of slots) and multithreading 

synchronization. For unmanaged, primitive types, it also introduces boxing and 

unboxing overhead. Feel free to investigate further types showed in Listing 13-20 to get a 

grasp how much is done more than simple access to the static thread variable.

Listing 13-20. Thread data storage-related part of Thread class definition

public sealed class Thread : CriticalFinalizerObject, _Thread

{

   /*====================================================================

   ** Thread-local data store

   =====================================================================*/

   [ThreadStatic]

    static private LocalDataStoreHolder s_LocalDataStore; // stores 

LocalDataStore
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    sealed internal class LocalDataStore

    {

        private LocalDataStoreElement[] m_DataTable;

        private LocalDataStoreMgr m_Manager;

If you conceptually add to Figure 13-1 all managed data structures used by thread 

data slots, you can probably imagine why data slots are so noticeably slower.

 Usage Scenarios
Although the above description of thread data storage clearly shows that it adds some 

overhead, there is one main advantage of it from a performance perspective - getting rid 

of multithreading synchronization. Obviously, thread affinity is another, and the main, 

functional feature that distinguishes it from other data.

In general, thread local storage may be seen as useful in the following scenarios:

• It is required to store and manage thread-aware data - for example, 

some unmanaged resources may require it to be acquired and 

released by the same thread,

• It is possible to take advantage of single-thread affinity - for example:

• Logging or diagnostics - each thread may without 

synchronization manipulate some local data used for diagnostic 

purposes, without interfering others (System.Diagnostics.

Tracing being an example).

• Caching - it may be perfectly fine to provide some thread-

local cache, although we should be aware that there will be as 

many possible cache duplicates as running managed threads. 

StringBuilderCache class showed in Chapter 4 is a perfect 

example of such approach - there is a cached instance of small 

StringBuilder for each thread to access it efficiently without 

thread synchronization from some sort of global pool. Another 

example is TlsOverPerCoreLockedStacksArrayPool<T> from 

System.Buffers namespace, an implementation of ArrayPool 

using a tiered caching scheme, with a small per-thread cache for 

each array size, followed by a cache per array size shared by all 
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threads (partitioned into multiple partitions, each with its own 

lock, with the goal of minimizing contentions between multiple 

CPU cores access) - which is by the way the one returned when 

using ArrayPool<T>.Shared instance.2

using thread statics is obviously not eligible in async programming because 
async method continuations are not guaranteed to be executed on the same 
thread - we would lose thread local data after async method is continued. Thus, 
complementary to ThreadLocal<T>, AsyncLocal<T> type is available that 
keeps data across all async method execution. From the memory-management 
point of view, this class is not so interesting though - it is a class, which instance is 
being kept (altogether with the corresponding value) in the dictionary stored in the 
execution context (ExecutionContext class).

 Managed Pointers
So far, the topic of managed pointers was slightly skipped for brevity (although a careful 

reader may remember referring to them once or twice). Most of the time a regular 

.NET developer uses object references and it is simply enough because this is how a 

managed world is constructed - objects are referencing each other via object references. 

As explained in Chapter 4, object reference is in fact a type-safe pointer (address) that 

always points to an object MethodTable reference field (it is often said it points at the 

beginning of an object). Thus, using them may be quite efficient. Having an object 

reference, we simply have the whole object address. For example, the GC can quickly 

access its header via constant offset. Addresses of fields are also easily computable due 

to information stored in MethodTable.

2 This is true in .NET Core 2.1, while in .NET Core 2.0 it was only used for array pools of char and 
byte.
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There is, however, another pointer type in CLR - a managed pointer. It could be 

defined as a more general type of pointer, which may point to other locations than just 

the beginning of an object. ECMA-335 says that a managed pointer can point to:

• a local variable - whether it be reference to a heap-allocated object or 

simply stack-allocated type,

• parameter - like above,

• field of a compound type - meaning a field of other type (whether it is 

value or reference type),

• element of an array.

Despite this flexibility, managed pointers are still types. There is a managed pointer 

type that points to System.Int32 objects, regardless of their localization, denoted as 

System.Int32& in CIL. Or SomeNamespace.SomeClass& type pointing to our custom 

SomeNamespace.SomeClass instances. Strong typing makes them safer than pure, 

unmanaged pointers that may be used back and forth for literally everything. This is 

also why managed pointers do not offer pointer arithmetic known from raw pointers - 

it particularly does not make sense to “add” or “subtract” addresses they represent, 

pointing to various places inside objects or to local variables.

However, flexibility does not come without a cost. It reveals itself as limitations of 

a possible place where we can use managed pointers. As ECMA-335 says, managed 

pointer types are only allowed for:

• local variables

• parameter signatures

It is directly said that “they cannot be used for field signatures, as the element type 

of an array and boxing a value of managed pointer type is disallowed. Using a managed 

pointer type for the return type of methods is not verifiable.”

Due to those limitations, managed pointers are not directly exposed into C# 

language. However, they have long been present in the well-known form of ref 

parameters. Passing parameter by reference is nothing else than using a managed 

pointer underneath. Thus, managed pointers are also often referred to as byref types  

(or byref simply). We have already seen examples of passing by reference in Listings 4-30 

and 4-31 from Chapter 4.

ChApTEr 13  MISCEllAnEouS TopICS



848

Recently, since C# 7.0, managed pointers usage has been widened in the form of ref 

locals and ref returns. Thus, the last sentence from the above ECMA citation about using 

a managed pointer type as the return type has been relaxed.

 Ref Locals
You can see ref local as a local variable to store a managed pointer. Thus, it is a 

convenient way of creating helper variables that may be later on used for direct access 

to a given field, array element or other local variable (see Listing 13-21). Please note 

that both the left and right side of assignment must be marked with the ref keyword to 

denote operating on managed pointers.

Listing 13-21. Basic usage of ref locals

public static void UsingRefLocal(SomeClass data)

{

   ref int refLocal = ref data.Field;

   refLocal = 2;

}

A trivial example from Listing 13-21 make only illustrative sense - we are gaining 

direct access to an int field so the performance gain will be neglectable. More 

commonly you may want to use ref local to gain direct pointer to some heavyweight 

instance to make sure copying will not happen (see Listing 13-22) and pass it by 

reference somewhere or use locally. Ref locals are also commonly used to store the result 

of ref return method (as we will soon see).

Listing 13-22. Possible usage of ref locals (example from MSDN)

ref VeryLargeStruct reflocal = ref veryLargeStruct;

// afterwards, using reflocal we use veryLargeStruct without copying

Ref local may be assigned to reference that itself is null (see Listing 13-23). At 

first glance, it may look strange but makes perfect sense. You can think of ref local as a 

variable storing an address to a reference, but it does not mean that the reference itself 

points to anything.

ChApTEr 13  MISCEllAnEouS TopICS



849

Listing 13-23. Assigning null reference to a ref local

SomeClass local = null;

ref SomeClass localRef = ref local;

 Ref Returns
Ref return allows us to return a managed pointer from a method. Obviously, some 

limitations must be introduced when using them. As MSDN says: “The return value 

must have a lifetime that extends beyond the execution of the method. In other words, 

it cannot be a local variable in the method that returns it. It can be an instance or static 

field of a class, or it can be an argument passed to the method”. Attempting to return a 

local variable generates compiler error CS8168, “Cannot return local ‘obj’ by reference 

because it is not a ref local.”

An example of the mentioned local variable limitation is shown in Listing 

13-24. Obviously, we cannot return a managed pointer to a stack-allocated 

(or enregistered) localInt variable because it becomes invalid as soon as 

ReturnByRefValueTypeInterior method ends.

Listing 13-24. An example of invalid code trying to ref return local variable

public static ref int ReturnByRefValueTypeInterior(int index)

{

   int localInt = 7;

   return ref localInt; // Compilation error:  Cannot return local 

'localInt' by reference because it is not a ref local

}

However, it is perfectly fine to ref return element of the method parameter because 

from the method perspective, this argument lives longer that the method itself (see 

Listing 13-25). In our example, GetArrayElementByRef method returns a managed 

pointer to a given element of the array argument.

Listing 13-25. An example of ref return usage

public static ref int GetArrayElementByRef(int[] array, int index)

{

   return ref array[index];

}
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Consuming ref returning method is easy but may be done in two ways (see  

Listing 13-26):

• By consuming returned managed pointer - this is by far the most 

typical way of using ref returning methods because we want to take 

advantage of the fact that it returns byref. In such case we must call a 

method with ref keyword and store the result in a local ref variable. 

The first GetArrayElementByRef call in Listing 13-26 shows such 

approach. Because we are returning a managed pointer to an array 

element, we can modify its content directly (423 will be written to the 

console).

• By consuming a value pointed by the returned managed pointer - it is 

also possible to fall back to regular method call by omitting both ref 

keywords (see second GetArrayElementByRef call in Listing 13-26).  

In that way, the method will return a by value so modifying such 

result does not modify the original content directly (still 423 will be 

written to the console, ignoring our try to change first element to 5).

Listing 13-26. Consuming ref return method

int[] array = {1, 2, 3};

ref int arrElementRef = ref PassingByref.GetArrayElementByRef(array, 0);

arrElementRef = 4;

Console.WriteLine(string.Join("", array));    // Will write 423

int arrElementVal = PassingByref.GetArrayElementByRef(array, 0);

arrElementVal = 5;

Console.WriteLine(string.Join("", array));    // Will still write 423

Please note that like in ref locals, you may ref return a null referencing reference (see 

Listing 13-27). This example, inspired by .NET samples, provides a very simple book 

collection type. Its GetBookByTitle method returns by ref a book with the given title if it 

exists. If it does not exist, it returns a predefined instance reference nobook that is null. 

It is then perfectly fine to check if GetBookByTitle returns a reference that points to 

something or not.
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Listing 13-27. Ref returning null reference

public class BookCollection

{

   private Book[] books =

   {

      new Book { Title = "Call of the Wild, The", Author = "Jack London" },

       new Book { Title = "Tale of Two Cities, A", Author = "Charles 

Dickens" }

   };

   private Book nobook = null;

   public ref Book GetBookByTitle(string title)

   {

      // Book nobook = null; // Would not work

      for (int ctr = 0; ctr < books.Length; ctr++)

      {

         if (title == books[ctr].Title)

            return ref books[ctr];

      }

      return ref nobook;

   }

}

static void Main(string[] args)

{

   var collection = new BookCollection();

   ref var book = ref collection.GetBookByTitle("<Not exists>");

   if (book != null)

   {

      Console.WriteLine(book.Author);

   }

}

Please note that we could not simply use local nobook variable (as in commented 

line inside GetBookByTitle) because it is not possible to ref return local variable value 

with the lifetime that does not extend beyond the execution of the method.
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 Readonly Ref Variables and in Parameters
Ref types are quite powerful, because we may change its target. Thus, readonly refs 

were introduced in C# 7.2 that controls the ability to mutate the storage of a ref variable. 

Please note a subtle difference in such context between a managed pointer to a value 

type versus a reference type:

• For value type target - it guarantees that the value will not be 

modified. As the value here is the whole object (memory region), in 

other words it guarantees that all fields will not be changed.

• For reference type target - it guarantees that the reference value will 

not be changed. As the value here is the reference itself (pointing 

to another object), it guarantees that we will not change it to point 

to another object. But we can still modify the properties of the 

referenced object.

Let’s modify an example from Listing 13-27 to return a readonly ref  

(see Listing 13-28). The code is in fact identical, the only difference is a signature change 

of GetBookByTitle method.

Listing 13-28. Example taken from dotnet docs examples

public class BookCollection

{

   private Book[] books =

   {

      new Book { Title = "Call of the Wild, The", Author = "Jack London" },

       new Book { Title = "Tale of Two Cities, A", Author = "Charles 

Dickens" }

   };

   private Book nobook = null;

   public ref readonly Book GetBookByTitle(string title)

   {

      // Book nobook = null; // Would not work

      for (int ctr = 0; ctr < books.Length; ctr++)

      {

         if (title == books[ctr].Title)
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            return ref books[ctr];

      }

      return ref nobook;

   }

}

static void Main(string[] args)

{

   var collection = new BookCollection();

   ref readonly var book = ref collection.GetBookByTitle("<Not exists>");

   if (book != null)

   {

      Console.WriteLine(book.Author);

   }

}

Our BookCollection may illustrate the difference between readonly reference in 

case of both value type and reference type. If Book is a class, it is guaranteed that we will 

not change the reference value, like trying to change it to a new object in commented 

line in Listing 13-29. However, it is perfectly fine to modify fields of the target referenced 

instance (like changing the author in Listing 13-29).

Listing 13-29. Using class from Listing 13-28 when Book is a class

static void Main(string[] args)

{

   var collection = new BookCollection();

    ref readonly var book = ref collection.GetBookByTitle("Call of the Wild, 

The");

   // book = new Book();          //  Not possible. Would be possible 

without readonly

   book.Author = "Konrad Kokosa";

}

However, if Book is a struct, it is guaranteed that we will not be able to change its 

value, like trying to change the author in Listing 13-30 (and for the same reason, it is not 

possible to assign to it a new value in the one line above).
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Listing 13-30. Using class from Listing 13-28 when Book is a struct

static void Main(string[] args)

{

   var collection = new BookCollection();

    ref readonly var book = ref collection.GetBookByTitle("Call of the Wild, 

The");

   // book = new Book();             //  Not possible. Would be possible 

without readonly

   // book.Author = "Konrad Kokosa";   //  Not possible. Would be possible 

without readonly

}

These seemingly difficult nuances are easy to remember if we keep in mind what is a 

protected value - the whole object (for value type) or reference (for reference type).

There is still one important aspect to be mentioned in this context. Let’s assume that 

our Book struct has a method that modifies its field (see Listing 13-31). What happens if 

we call it on a returned readonly ref? Even in such case it is guaranteed that the original 

value will not be changed (see Listing 13-32). It is implemented by a defensive copy 

approach - before executing ModifyAuthor method, a copy of the returned value type 

(a Book struct in our case) is being made and its method is called on it. Compiler does 

not analyze whether called method modifies state as it really difficult (assuming a lot of 

possible conditions inside a method, maybe even depending on external data). Thus, 

any method called on such struct will be treated that way.

So in fact, ModifyAuthor method is still executed but only on temporary instance 

that becomes unused soon. Any changes applied to such a defensive copy obviously are 

not performed for the original value.

Listing 13-31. Simple value type method modifying its state

public struct Book

{

   ...

   public void ModifyAuthor()

   {

      this.Author = "XXX";

   }

}
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Listing 13-32. Using class from Listing 13-28 when Book is a struct

static void Main(string[] args)

{

   var collection = new BookCollection();

    ref readonly var book = ref collection.GetBookByTitle("Call of the Wild, 

The");

   book.ModifyAuthor();

    Console.WriteLine(collection.GetBookByTitle("Call of the Wild, The") 

.Author);   // Prints Jack London

}

Such defensive copy may be both surprising and costly - one may expect the field to 

be modified if ModifyAuthor method executed successfully. Creating a defensive copy of 

a struct also is an obvious performance overhead.

please note in case of a Book being a class, the expected behavior remains - 
ModifyAuthor would modify the object state even if readonly reference was 
returned to it. remember, readonly reference disables reference mutation, not the 
reference target values.

Please note that readonly refs do not have to be used only in the context of 

collections. There is a good example of using readonly refs in MSDN to return static 

value type representing some global, commonly used value (see Listing 13-33). 

Without readonly ref returned the Origin value would be exposed to modification, 

which is obviously unacceptable because Origin should be treat as a constant. Before 

introducing ref returns, such value could be exposed as a regular value type, but it could 

introduce copying of such structure many times.
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Listing 13-33. An example of using readonly ref for public static value (based on 

MSDN documentation example)

struct Point3D

{

   private static Point3D origin = new Point3D();

   public static ref readonly Point3D Origin => ref origin;

   ...

}

A form of readonly refs is also available in the form of in parameters. This is a small 

yet very important addition to passing by reference feature added in C# 7.2. While 

a passing by reference using ref parameter, the argument may be changed inside 

such method - exposing the same problems as ref returning. Thus, the in modifier on 

parameters was added, to specify that an argument is passed by reference but should not 

be modified by the called method (see Listing 13-34).

Listing 13-34. An example of using in parameter

public class BookCollection

{

   ...

   public void CheckBook(in Book book)

   {

      book.Title = "XXX";      //  Compilation error: Cannot assign to a 

member of variable 'in Book' because it 

is a readonly variable.

   }

}

Please note the same rules apply here as in readonly refs explained before: only a 

value of the parameter is guaranteed to be not modified. So, in case of in parameter 

being a reference type, only the reference value is not modifiable - the target reference 

instance may be changed. So, in Listing 13-34 if Book was a class, it would compile 

without a problem and Title would be changed. Only an assignment like book = new 

Book() would not be possible.
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Thus, the same defensive copy approach is used when a method is called on 

in value type parameter (see Listing 13-35). Remember that to avoid such implicit 

copying overhead that does not make sense in the first place (as any modifications are 

discarded).

Listing 13-35. An example of using in parameter

public class BookCollection

{

   ...

   public void CheckBook(in Book book)

   {

      book.ModifyAuthor(); //  Called on book defensive copy, original book 

Title will not be changed.

   }

}

You may also avoid defensive copies by making such struct readonly (if it is 

applicable) - they will be explained in the next subchapter. Because readonly structs 

disable any possible modifications on its fields, the compiler may safely omit creating 

defensive copy and call methods on passed value type arguments directly.

 Ref Types Internals
A careful reader may have raised a lot of interesting questions looking at listings from 

13-21 to 13-33. For example, how does passing around all those managed pointers 

cooperate with the GC? What code is generated underneath by the JIT compiler? What 

are the real performance gains by using all this complicated machinery? If you are 

interested in answers, read on. You may however feel free to omit this point and go 

straight into the next one, describing practical usage of ref types in C#.

Let’s dig deeper into main use cases that managed pointer usage may be grouped 

into. Understanding them will reveal reasons behind the mentioned limitations as well 

as will help us to understand them better. In the following code examples, we will be 

using two trivial types from Listing 13-36. All three ways how managed pointers appear 

in C# are utilized in those examples - ref parameters, ref locals, and ref returns.
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Listing 13-36. Two trivial types used in the following examples

public class SomeClass

{

    public int Field;

}

public struct SomeStruct

{

    public int Field;

}

We will start from looking at some details underneath the working of managed 

pointers. Eventually it will lead us to practical usage considerations.

 Managed Pointer Into Stack-Allocated Object

A managed pointer can point to a method’s local variable or parameter. From an 

implementation point of view, as we have seen in Chapter 8, a local variable or 

parameter may be stack-allocated or enregistered into CPU register (if JIT compiler 

decides so). How does a managed pointer work in such a case then? Simply put, it is 

perfectly fine that the managed pointer points to a stack address! This is one of the 

reasons why a managed pointer may not be the object’s field (and may not be boxed).  

If it appears in this way on the Managed Heap, it could outlive the method within  

which the indicated stack address is located. It would be very dangerous (pointed stack  

address would contain undefined data, most probably other’s method stack frame). So 

by limiting a managed pointer’s usage to local variables and parameters, their lifetime  

is limited to the most restrictive lifetime of a possible target they can point to - data on 

the stack.

What about enregistered local variables and parameters? Remember that such 

an enregistered target is just an optimization detail; it has to provide at least the same 

lifetime characteristics as a stack-allocated target. A lot depends on the JIT compiler 

here. If some target was enregistered, it is even better! Such a register may be simply 

used as a managed pointer. In other words, using a CPU register instead of a stack 

address does not change much from the JIT compiler perspective.
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But how are managed pointers (or more precisely, objects pointed by them) reported 

to the GC? They must be, because otherwise GC may not detect reachability of the target 

object; if it happens that managed pointer is the only root at the moment.

Let’s analyze a very simple passing by reference scenario, similar to Listing  4-34 

from Chapter 4 (see Listing 13-37). To remove the effects of inlining and make things 

clearer, NoInlining attribute was used that prevents inlining of Test method (inlined 

version will be discussed also later on).

Listing 13-37. Simple pass by reference scenario (passing by reference whole 

reference type object)

static void Main(string[] args)

{

   SomeClass someClass = new SomeClass();

   PassingByref.Test(ref someClass);

   Console.WriteLine(someClass.Field); // Prints "11"

}

public class PassingByref

{

   [MethodImpl(MethodImplOptions.NoInlining)]

   public static void Test(ref SomeClass data)

   {

      //data = new SomeClass();

       data.Field = 11; // at least to this line corresponding SomeClass 

instance must be live (not garbage collected)

   }

}

What is interesting for us at the moment is to see how such code is represented 

both on CIL and assembly level after JITting. Corresponding CIL code reveals usage of 

strongly typed SomeClass& managed pointer (see Listing 13-38). In the Main method 

ldloca instruction is used that loads the address of the local variable at a specific 
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index (and index 0 corresponds to our someClass variable) onto the evaluation stack, 

which is then passed to Test method. Then Test method uses ldind.ref instruction to 

dereference such address and push resulting object reference on the evaluation stack.

Listing 13-38. CIL code from Listing 13-37

.method private hidebysig static

   void Main (string[] args) cil managed

{

   .locals init (

      [0] class SomeClass

   )

   IL_0000: newobj instance void SomeClass::.ctor()

   IL_0005: stloc.0

   IL_0006: ldloca.s 0

   IL_0008: call void PassingByref::Test(class SomeClass&)

   IL_000d: ret

}

.method public hidebysig static

   void Test (class SomeClass& data) cil managed noinlining

{

   IL_0000: ldarg.0

   IL_0001: ldind.ref

   IL_0002: ldc.i4.s 11

   IL_0004: stfld int32 SomeClass::Field

   IL_0009: ret

}

But while CIL code may be interesting, we already have seen examples that only 

JITted code reveals the true nature what happens underneath. Looking at the assembly 

code of both methods, we indeed see that Test method receives an address pointing to 

the stack where reference to newly created SomeClass instance is stored (see Listing 13-39  

with comments).
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Listing 13-39. Assembly code of methods from Listing 13-38

Program.Main(System.String[])

    L0000: sub rsp, 0x28                // Growing stack frame

    L0004: xor eax, eax                 // Zeroing EAX register

    L0006: mov [rsp+0x20], rax          //  Zeroing the stack under rsp+0x20 

address (where local variable is 

stored)

    L000b: mov rcx, 0x7ffa69398840      //  Moving MT of SomeClass into RCX 

register

    L0015: call 0x7ffac3452520          //  Calling allocator (as a result, 

RAX will contain address of the 

new object)

    L001a: mov [rsp+0x20], rax          //  Storing the address of new 

object onto the stack

    L001f: lea rcx, [rsp+0x20]          //  Moving the local variable's stack 

address into RCX register (which 

is first Test method argument)

    L0024: call PassingByref.Test(SomeClass ByRef)

    L0029: nop

    L002a: add rsp, 0x28

    L002e: ret

PassingByref.Test(SomeClass ByRef)

    L0000: mov rax, [rcx]               //  Dereferencing the address in 

RCX into RAX (As a result, RAX 

contains object instance address)

    L0003: mov dword [rax+0x8], 0xb     //  Storing value 11 (0x0B) in the 

proper field of an object

    L000a: ret

From a pure assembly code point of view, similar code as in Listing 13-39 would be 

generated, for example, if using pointer to a pointer in C++. But how, while Test method 

is executing, the GC knows that RCX register contains an object address? The answer is 

interesting for us - Test method from Listing 13-39 contains an empty GCInfo. In other 

words, Test method is so simple that GC will not interrupt its work. Thus, it does not 

need to report anything.
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In the example from listing 13-39, SomeClass instance is life because of the 
Main method. GCInfo of the Main method would reveal that rsp+0x20 stack 
address is reported to contain live root (Untracked: +sp+20 would be listed 
by !u -gcinfo command). This, however, does not change anything regarding 
further passing such instance by reference or not.

If Test method was more complex, it could be JITted into fully- or partially 

interruptible method (see Chapter 8). For example, in the latter case, we could see 

various safepoints, some of them listing some CPU registers (or stack addresses) as live 

slots - see Listing 13-40 as an example, showing an excerpt of !u -gcinfo command 

from SOS extension in WinDbg (already explained in Chapter 8).

Listing 13-40. Example of JITted code and corresponding GCInfo of more 

complex Test method variation (its C# source code is not shown as irrelevant)

> !u -gcinfo 00007ffc86850d00

Normal JIT generated code

CoreCLR.Unsafe.PassingByref.Test(CoreCLR.Unsafe.SomeClass ByRef)

Begin 00007ffc86850d00, size 44

push    rdi

push    rsi

sub     rsp,28h

mov     rsi,rcx

...

call    00007ffc`86850938

00000029 is a safepoint:

00000028 +rsi(interior)

...

call    00007ffc`868508a0

00000033 is a safepoint:

00000032 +rsi(interior)

...

add     rsp,28h
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pop     rsi

pop     rdi

ret

Those life slots would be listed as so-called interior pointers because managed pointers 

in general may point inside objects (it will be explained soon). Thus, managed pointers are 

always reported as interior roots; besides that in our case they point in fact at the beginning 

of the object. Interpretation of such pointers is on the GC side, explained later.

As mentioned before, our example was a little contrived by an explicit disabling 
inlining possibility. If we commented out the NoInlining attribute in listing 13-37, 
we would get after JITting the following code:

Program.Main(System.String[]) 

      L0000: sub rsp, 0x28 

      L0004: mov rcx, 0x7ffa69398840  //  Moving MT of SomeClass 

into RCX register

      L000e: call 0x7ffac3452520      //  Calling allocator (as a 

result, RAX will contain 

address of the new object)

      L0013: mov dword [rax+0x8], 0xb //  Directly storing value 11 

into proper field of an 

object

      L001a: add rsp, 0x28 

      L001e: ret

once again, the power of JIT compiler optimizations may be noticed. The whole 
concept of managed pointers has been reduced into the simplest possible handling 
of direct object addresses.

Very similar code would be generated in case of using struct instead of class (see 

Listing 13-41, similar to Listing 4-33 from Chapter 4). What is more interesting, even 

it is theoretically known that Test method from Listing 13-41 operates only on stack-

allocated data (local variable of SomeStruct value type), corresponding GCInfo will still 

list live slots because of using a managed pointer. It is up to the GC just to ignore them.
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Listing 13-41. Simple pass by reference scenario (passing by reference whole 

value type object)

static void Main(string[] args)

{

   SomeStruct someStruct = new SomeStruct();

   PassingByref.Test(ref someStruct);

   Console.WriteLine(someStruct.Field);

}

[MethodImpl(MethodImplOptions.NoInlining)]

public static void Test(ref SomeStruct data)

{

   data.Field = 11;

}

 Managed Pointer Into Heap-Allocated Object

While stack-pointing managed pointers may seem to be interesting, those that are 

pointing to objects on the Managed Heap are even more interesting. In contrast to the 

object reference, a managed pointer can point to the inside of the object - field of a type 

or element of an array as already cited ECMA standard says (see Figure 13-3). That is why 

they are in fact “interior pointers,” as it is named in the literature. When you think about 

it a little, it may seem very interesting - how interior pointers pointing inside managed 

objects may be reported to the GC?

MT

MT

Header

reference

managed pointer (&)

fields

F1 F2 F3 F4 F5

(pointer to field F3)

Figure 13-3. Managed pointer (also known as interior pointer or byref) versus 
regular object reference
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Let’s modify a little code from Listing 13-37, to pass by reference only a field 

of heap-allocated SomeClass instance (see Listing 13-42). The main method looks 

straightforward. It instantiates SomeClass object, passes a reference to one of its field to 

the Test method, and prints the result.

But our modified Test method expects now System.Int32& managed pointer. 

During execution, Test method operates only on a managed pointer to int. But it is not 

just a regular pointer to int - it is a field of a heap-allocated object! From where the GC 

knows that it may not collect corresponding object, to which used managed pointer it 

belongs? There is absolutely nothing said about from where int& pointer comes from, 

though.

Listing 13-42. Simple pass by reference scenario (passing by reference  

object’s field)

static void Main(string[] args)

{

   SomeClass someClass = new SomeClass();

   PassingByref.Test(ref someClass.Field);

   Console.WriteLine(someClass.Field);   // Prints "11"

}

public class PassingByref

{

   [MethodImpl(MethodImplOptions.NoInlining)]

   public static void Test(ref int data)

   {

       data = 11;   // this should keep containing object life!

   }

}

First of all, please note that our Test method contrived example will be JITted into 

atomic (from the GC point of view) method that the GC will simply not interrupt at 

all - similarly as in case of code from Listing 13-37 (see Listing 13-43). So the question of 

proper root reporting is not needed at all for such a simple method.
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Listing 13-43. Assembler code after JITting code from Listing 13-42

Program.Main(System.String[])

    L0000: sub rsp, 0x28

    L0004: mov rcx, 0x7ffa6d128840

    L000e: call 0x7ffac3452520

    L0013: lea rcx, [rax+0x8]

    L0017: call PassingByref.Test(Int32 ByRef)

    L001c: nop

    L001d: add rsp, 0x28

    L0021: ret

PassingByref.Test(Int32 ByRef)

    L0000: mov dword [rcx], 0xb

    L0006: ret

But let’s suppose Test method is complex enough to produce interruptible code. 

Listing 13-44 shows an example of how corresponding JITted code could look then. RSI 

register, which keeps the value of the integer field address passed as argument in RCX 

register, is reported as an interior pointer.

Listing 13-44. Fragments of assembler code after JITting code that becomes fully 

interruptible

> !u -gcinfo 00007ffc86fb0ce0

Normal JIT generated code

CoreCLR.Unsafe.PassingByref.Test(Int32 ByRef)

Begin 00007ffc86fb0ce0, size 41

push    rdi

push    rsi

sub     rsp,28h

mov     rsi,rcx

00000009 interruptible

00000009 +rsi(interior)

...

0000003a not interruptible

0000003a -rsi(interior)

add     rsp,28h
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pop     rsi

pop     rdi

ret

If GC happens and Test method is suspended when RSI contains such interior 

pointer, GC must interpret it to find the corresponding object. This is in general not 

trivial. One could think about simple algorithm that starts from such a pointer’s address 

and then tries to find the beginning of the object by scanning memory to the left byte by 

byte.3 This obviously is not efficient and has many drawbacks:

• Interior pointer may point to a distant field of big object (or distant 

element of very large array) - so a lot of such naïve scans had to be 

performed.

• It is not trivial to detect beginning of the object - it could be a check 

if subsequent 8 bytes (or 4 in 32-bit case) forms valid MT address but 

this only increases such algorithm complexity. One could imagine 

some “marker” bytes that are allocated at the beginning of each 

object but this adds unnecessary memory overhead just to support 

theoretically rare interior pointer’s usage (and it would be really hard 

to define mark bytes unique enough to identify object beginning 

unambiguously).

• All managed pointers are reported as interior pointers - so they may 

point to the stack and it makes no sense to find containing object in 

the first place (as it may point, for example, inside stack-allocated 

struct).

I hope you get the point that such algorithm is impractical. Some more intelligent 

support is required to resolve interior pointers efficiently.

We in fact have already seen the mechanism used here. During GC, interior pointers 

are translated into corresponding objects, thanks to the bricks and plug trees described 

in Chapter 9. Given a specified address, a proper brick table entry is calculated and a 

corresponding plug tree traversed to find the plug within which such an address lives 

3 It must have been done with a single byte shift because it is not guaranteed in any way how 
aligned are interior pointers with respect to the object’s beginning.
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(see Figures 9-9 and 9-10 in Chapter 9). Then, such plug is being scanned object by 

object to find the one that contains the considered address.4

Obviously, such algorithm has its costs also. Plug tree traversal and plug scanning 

takes some time. Dereferencing interior pointer is not trivial then. This is the second 

important reason why managed pointers are not allowed to live on the heap (especially 

as the object’s fields) - creating complex graphs of objects referenced by interior pointers 

would make traversing such a graph quite costly. Giving such flexibility is simply not 

worth the quite significant overhead it introduces.

Please also note that with such implementation, dereferencing the interior pointer 

is possible only during GC, after Plan phase. Only then plug and gaps are constructed, 

altogether with the corresponding plug tree.

If you would like to investigate interior pointers on your own, start from the 
CoreClr gc_heap::find_object(uint8_t* interior, ...) method - 
plug scanning is done in the gc_heap::find_first_object(uint8_t* 
start, uint8_t* first_object) method.

Interior pointer interpretation allows some magic things to happen, dangerous at 

the first glance. For example, we are able to return a managed pointer to a locally created 

class instance or an array (see Listing 13-45). This may seem to be counterintuitive - how 

one could return from a method reference to single integer array element, while the 

array object itself seems to become unreachable? Obviously, it is not, because after such 

method ends, the returned interior pointer becomes the only root of the array.

Listing 13-45. Example of interior pointer becoming the only root

public static ref int ReturnByRefReferenceTypeInterior(int index)

{

   int[] localArray = new[] { 1, 2, 3 };

   return ref localArray[index];

}

static void Main(string[] args)

4 Plug scanning is possible because the plug starts with an object and then the following objects 
are easily found because object sizes are known.
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{

   ref int byRef = ref ReturnByRefReferenceTypeInterior(0);

   //  Array created in above method is no longer accessible from code, 

while still alive

   byRef = 4; // using by byRef to prevent eager root collection

}

The array itself is then still alive because of the interior pointer; however, we have 

lost the array object reference (see Figure 13-4). Due to the limitation mentioned 

previously (bricks and plug tree availability), such a pointer cannot be at runtime 

“converted back” to the proper reference of the object it points to.

We may play a little with WeakReference type to observe interior pointer behavior 

(for fun experiments or fancy unit tests). A little modified code in Listing 13-46 uses 

a class ArrayWrapper instead of plain array, which will turn out to be useful for our 

experiment soon. Byref is returned to the integer field of ArrayWrapper. Moreover, 

ObservableReturnByRefReferenceTypeInterior method returns a WeakReference to 

the created object, to make its liveness observable.

Listing 13-46. Example of interior pointer becoming the only root

public static ref int ObservableReturnByRefReferenceTypeInterior(int index, 

out WeakReference wr)

{

    ArrayWrapper wrapper = new ArrayWrapper() { Array = new[] {1, 2, 3}, 

Field = 0 };

redaeH TM

managed pointer (byRef)

F1 F2 F3sizeint[]

Figure 13-4. Managed pointer being the only root of the array object (pointing to 
one of its elements)
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   wr = new WeakReference(wrapper);

   return ref wrapper.Field;

}

static void Main(string[] args)

{

    ref int byRef = ref ObservableReturnByRefReferenceTypeInterior(2, out 

WeakReference wr);

   byRef = 4;

   for (int i = 0; i < 3; ++i)

   {

      GC.Collect();

      Console.WriteLine(byRef + " " + wr.IsAlive);

   }

   GC.Collect();

   Console.WriteLine(wr.IsAlive);

}

In that way we can observe it in Main method to confirm that ArrayWrapper instance 

is live as long as the returned interior pointer, represented by local ref byRef variable, is 

used (see Listing 13-47).

Listing 13-47. Results of code from Listing 13-4

4 True

4 True

4 True

False

If we took a memory dump inside for loop in Main method from Listing 13-46, with 

the help of WinDbg we could find a root of ArrayWrapper instance to be an interior 

pointer kept on the stack (see Listing 13-48).
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Listing 13-48. Dumpheap and gcroot SOS commands in WinDbg - interior 

pointer is stored on the stack (RBP is a stack-addressing register)

> !dumpheap -type ArrayWrapper

         Address               MT     Size

0000027b00023d20 00007ffdace07220       32

...

> !gcroot 0000027b00023d20

Thread 3f48:

     000000a65857de60 00007ffdacf60598 CoreCLR.Unsafe.Program.Main 

(System.String[])

        rbp-50: 000000a65857dec0 (interior)

            ->  0000027b00023d20 CoreCLR.Unsafe.ArrayWrapper

Found 1 unique roots (run '!GCRoot -all' to see all roots).

Other tools, including PerfView, most often list such an object as regular local variable 

roots ([local vars] root in case of PerfView). This may be sometimes misleading as from 

code there is no direct connection between Main method and ArrayWrapper type (and such 

relation could be even more hidden if the interior pointer would point to a more nested type).

What is more interesting, such interior pointer usage may lead to surprising (yet still 

sensible) behaviors. Let’s change code from Listing 13-46 to return byref given element 

of internal ArrayWrapper array, similarly like in Listing 13-45 (see Listing 13-49).

Listing 13-49. Example of interior pointer becoming the only root

public static ref int ObservableReturnByRefReferenceTypeInterior(int index, 

out WeakReference wr)

{

    ArrayWrapper wrapper = new ArrayWrapper() {Array = new[] {1, 2, 3}, 

Field = 0};

   wr = new WeakReference(wrapper);

   return ref wrapper.Array[index];

}

After such a change, Main method produces different results (see Listing 13-50). 

Apparently, the returned ArrayWrapper instance becomes unreachable (and thus 

garbage collected) soon after ObservableReturnByRefReferenceTypeInterior method 

ends. This may be surprising as underlying array is still kept live by byRef interior pointer!
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Listing 13-50. Results of code from Listing 13-49

4 False

4 False

4 False

False

A careful reader probably already catches it. It is easy to explain what 

happens by illustrating relevant relationships (see Figure 13-5). After 

ObservableReturnByRefReferenceTypeInterior method ends but before first GC.

Collect call, the situation is as in Figure 13-5a - ArrayWrapper instance is still alive, 

referencing int[] array through Array field. And there is byRef ref local that points into 

the same array. When GC happens, int[] array is still held by interior pointer. But, in 

fact, nothing points to the ArrayWrapper instance, as it is detected as unreachable and 

garbage collected.

redaeH TM

ArrayWrapper

managed pointer (byRef)

F1 F2 F3

redaeH TM

size

Field

Array

int[]

(a)

redaeH TM

ArrayWrapper

managed pointer (byRef)

F1 F2 F3

redaeH TM

size

Field

Array

int[]

(b)

Figure 13-5. Illustration of objects relationships in Listing 13-49: (a) before the GC 
run, (b) after the GC run
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I hope you already notice the direction chosen by this description - avoid such ref 

returns that return interior-only rooted objects. They are fun but may be misleading!

Interior pointers are, of course, also considered during relocation in compacting 
GC. Their value (address) is accordingly changed according to a corresponding 
plug offset, just as for regular references.

One may be quite surprised that code from Listing 13-45 is correctly handled by the 

GC. Similarly, code from Listing 13-51 may be surprising although we should already 

understand why it works. Even if the array of ints seems to be only temporary, due to the 

interior pointer to the first element, it will be kept alive as long as such pointer is being 

used.

Listing 13-51. Ref local with interior pointer to temporary (yet still alive) 

managed array

ref var local = ref (new int[1])[0];

We can use such “magical” syntax to create a generic helper of creating interior 

pointers (see Listing 13-52). Its usage should be limited only for testing and 

benchmarking scenarios (at least I am not able to imagine any real-world usage of it).

Listing 13-52. Code that creates interior pointer to a given object

public class Helpers {

    public static ref T MakeInterior<T>(T obj) => ref (new T[] { obj })[0];

}

For flexibility, managed pointers may also point to unmanaged memory regions. 
They are obviously ignored by the GC during the Mark or Compact phases.
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 Managed Pointers in C# - ref Variables
As previously said, ref variables (ref parameters, ref locals, and ref return usage) are small 

wrappers around managed pointers. They should not be treated as pointers obviously. 

They are variables! Read great “ref returns are not pointers” article by Vladimir Sadov at 

http://mustoverride.com/refs-not-ptrs/ for more details.

It is nice to experiment with all those bigger or smaller managed pointers and ref 

variables usages, but why do we need them at all? Why are all those ref locals, ref returns, 

and ref parameters were introduced in the first place? There is one single, very important 

reason behind them:

to avoid copying data - especially when using large structs - in a 

type safe manner!

Value types have many advantages and we have seen it already in this book - 

avoiding heap allocations and better data locality can make code significantly faster. 

Their value passing semantics (explained in detail in Chapter 4) makes them, however, 

a little troublesome - JIT compiler is making its best to avoid copying small structures 

but it is in fact an implementation detail behind our control. Every time we are passing a 

value type (our custom struct most probably) as a parameter or return it from a method, 

we should assume that undesired memory copying happens.

Ref variables were introduced to overcome this main disadvantage. They guarantee 

passing value types by reference, combining the best of two worlds - avoiding heap 

allocations while still making possible to use them in reference-like manner (because 

they provide reference semantics).

Let’s look at a simple benchmark to let the numbers speak (see Listing 13-53). There 

are methods defined that are passing value types (structs) both typically by value and 

also by reference. To measure impact of the passed struct size, three various structs are 

used - containing 8, 28, and 48 integers (thus, with the sizes of 32, 112, and 192 bytes 

respectively). Only the smallest struct definition is shown for brevity. Additionally, there 

is also a single method taking as an argument a similarly sized class.
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Listing 13-53. Benchmark to measure by value versus by reference passing

public unsafe class ByRef

{

   [GlobalSetup]

   public void Setup()

   {

      this.struct32B = new Struct32B();

      // ...

   }

   [Benchmark]

   public int StructAccess()

   {

      int result = 0;

      result = Helper1(struct32B);

      return result;

   }

   [Benchmark]

   public int ByRefStructAccess()

   {

      int result = 0;

      result = Helper1(ref struct32B);

      return result;

   }

   [Benchmark]

   public int ClassAccess()

   {

      int result = 0;

      result = Helper2(bigClass);

      return result;

   }

   [MethodImpl(MethodImplOptions.NoInlining)]

   private int Helper1(Struct32B data)

   {
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      return data.Value1;

   }

   [MethodImpl(MethodImplOptions.NoInlining)]

   private int Helper1(ref Struct32B data)

   {

      return data.Value1;

   }

   [MethodImpl(MethodImplOptions.NoInlining)]

   private int Helper2(BigClass data)

   {

      return data.Value1;

   }

   public struct Struct32B

   {

      public int Value1;

      public int Value2;

      public int Value3;

      public int Value4;

      public int Value5;

      public int Value6;

      public int Value7;

      public int Value8;

   }

}

Results from DotNetBenchmark tool of such a simple benchmark are clearly showing 

the advantage of passing by reference (see Listing 13-54). Passing by reference shows the 

same performance regardless of the struct size (and similar to class reference passing, 

regardless of its size). On the other hand, as regular by value passing (which involves 

struct copying) becomes the more drastically slower, the bigger the struct size is. The 

same would apply to the ref returning so a very similar benchmark is omitted for brevity.

ChApTEr 13  MISCEllAnEouS TopICS



877

Listing 13-54. Results from benchmark in Listing 10-52

         Method |     Mean | Allocated |

--------------- |---------:|----------:|

      Struct32B | 1.560 ns |       0 B |

     Struct112B | 5.229 ns |       0 B |

     Struct192B | 7.457 ns |       0 B |

 ByRefStruc32tB | 1.332 ns |       0 B |

ByRefStruct112B | 1.343 ns |       0 B |

ByRefStruct192B | 1.329 ns |       0 B |

    ClassAccess | 1.098 ns |       0 B |

Introducing ref variables is thus especially important when using large value types. 

Having them, we should be no longer afraid of struct-copying. Moreover, we can control 

such data mutability with the help of already-mentioned readonly refs and readonly 

structs that will be explained soon. All this was introduced to make value types more 

usable in high-performance scenarios.

However, even in trivial cases ref variables may be useful. A good sample from .NET 

documentation is shown in Listing 13-55. A method that is dedicated to find a value in 

a given matrix is written in two ways - returning found element by value tuple and by 

reference. There would be no significant performance difference between those two (as 

returned value tuple would be rather enregistered and no struct copying would happen). 

However, the second version allows for very fast modification of the returned value. 

The first one returns only indexes within a matrix. Modification would require a second 

matrix access to the element designated by those indexes. This is obviously a matter of 

the API that we would like to expose to the users of such method. And while the resulting 

performance difference might not be huge, it may sum up if such method would be 

called very often.

Listing 13-55. Example of ref return to provide more flexible and faster 

mutability

public static (int i, int j) FindValueReturn(int[,] matrix, Func<int, bool> 

predicate)

{

   for (int i = 0; i < matrix.GetLength(0); i++)

      for (int j = 0; j < matrix.GetLength(1); j++)
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         if (predicate(matrix[i, j]))

            return (i, j);

   return (-1, -1); // Not found

}

public static ref int FindRefReturn(int[,] matrix, Func<int, bool> 

predicate)

{

   for (int i = 0; i < matrix.GetLength(0); i++)

      for (int j = 0; j < matrix.GetLength(1); j++)

         if (predicate(matrix[i, j]))

            return ref matrix[i, j];

   throw new InvalidOperationException("Not found");

}

ref structs will be explained soon; this does not change anything with respect to 
the current context.

Because of ref variables, ref returning collections may gain more popularity. They may 

be especially useful for collections storing big value types, as they allow them to access 

their elements without copying. An example of such simple collection is presented in 

Listing 13-56. It exposes an indexer that returns specified element by reference. This 

allows direct access to the elements without copying as they would regular references 

(see Main method in Listing 13-56).

Listing 13-56. Simple example of the custom ref returning collection

public class SomeStructRefList

{

   private SomeStruct[] items;

   public SomeStructRefList(int count)

   {

      this.items = new SomeStruct[count];

   }
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   public ref SomeStruct this[int index] => ref items[index];

}

static void Main(string[] args)

{

   SomeStructRefList refList = new SomeStructRefList(3);

   for (var i = 0; i < 3; ++i)

      refList[i].Field = i;

   for (var i = 0; i < 3; ++i)

      Console.Write(refList[i].Field); // Prints 012

}

Obviously, sometimes one could expose API that does not allow us to modify 

returned elements (to provide kind of read-only collection). This is perfectly possible 

with the help of readonly refs explained before (see Listing 13-57). Bear in mind all 

consequences though - especially about defensive copying of the value when a method 

is being called on it (see Main method in Listing 13-57).

Listing 13-57. Simple example of the custom read-only ref returning collection

public struct SomeStruct

{

   public int Field;

   public void ModifyMe()

   {

      this.Field = 9;

   }

}

public class SomeStructReadOnlyRefList

{

   private SomeStruct[] items;

   public SomeStructReadOnlyRefList(int count)

   {

      this.items = new SomeStruct[count];

   }
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   public ref readonly SomeStruct this[int index] => ref items[index];

}

static void Main(string[] args)

{

    SomeStructReadOnlyRefList readOnlyRefList = new 

SomeStructReadOnlyRefList(3);

   for (var i = 0; i < 3; ++i)

       //readOnlyRefList[i].Field = i; // Error CS8332: Cannot assign to 

a member of property 'SomeStructRefList.this[int]' because it is a 

readonly variable

       readOnlyRefList[i].ModifyMe();   // Called on defensive copy! Does 

not modify orignal value.

   for (var i = 0; i < 3; ++i)

      Console.WriteLine(readOnlyRefList[i].Field);    // Prints 000 instead 

of 999

}

If we compare relevant parts of the CIl code of Main method in listings 13-56 and 
13-57, we will notice the mentioned defensive copying. ref return code just calls 
ModifyMe method on the element returned by the indexer:

IL_0008: ldc.i4.0
IL_0009: callvirt instance valuetype SomeStruct& 
SomeStructRefList::get_Item(int32)
IL_000e: call instance void SomeStruct::ModifyMe()

on the other hand, readonly ref value is being copied into an additional, temporary 
local variable:

IL_0008: ldc.i4.0
IL_0009: callvirt instance valuetype SomeStruct& 
modreq(InAttribute)  SomeStructRefList2::get_Item(int32)
IL_000e: ldobj C/SomeStruct     //  Load object from the 

returned address on the 
evaluation stack
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IL_0013: stloc.0                //  Store the value from the evaluation 

stack into local variable

IL_0014: ldloca.s 0             //  Load the address of the local variable

IL_0016: call instance void C/SomeStruct::ModifyMe()

After introducing more flexible ref variables in C# 7.2, we may expect more and 

more public API of common collections to include ref returning semantics. It has been 

standardized to the method with the ItemRef name. Currently most of the immutable 

collections from System.Collections.Immutable namespace (like ImmutableArray, 

ImmutableList, ...) include such a change. Ref returning logic may be more complex 

than single access to the underlying storage. For example, ImmutableSortedSet internal 

storage is based on Nodes forming binary AVL three. Thus, its ItemRef implementation 

is based on binary tree traversal (see Listing 13-58).

Listing 13-58. An example of more complex ref returning collection 

implementation

public sealed partial class ImmutableSortedSet<T>

{

   internal sealed class Node : IBinaryTree<T>, IEnumerable<T>

   {

      ...

      internal ref readonly T ItemRef(int index)

      {

         if (index < _left._count)

         {

            return ref _left.ItemRef(index);

         }

         if (index > _left._count)

         {

            return ref _right.ItemRef(index - _left._count - 1);

         }

         return ref _key;

      }
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      ...

   }

   ...

}

Implementing ref returning behavior is not always trivial because it exposes the 

collection item. It is sometimes unwanted because such collection may:

• Require special treatment of its items, which is omitted by exposing 

it via byref - for example, each modification of the collection item 

should be logged or requires other handling (like versioning).

• Want to reorganize its internal storage, which invalidates returned 

byref - for example, underlying storage may be based on array, which 

needs to be recreated when collection growth is needed.

Exactly those two problems make introducing ItemRef to popular List<T> (or 

Dictionary<TKey, TValue>) problematic:

• It uses internal _version counter (used for serialization).

• Tt may reorganize items due to internal array storage.

 More on Structs...
Structs were in .NET since the very beginning. It is hard to overlook that they were 

not so popular since then. Only in the last year or two have we observed the growing 

popularity and awareness of structs. The times requiring excellent performance pushes 

more and more limits on the GC and memory usage in overall. Thus, returning to structs 

is happening - not heap allocated if used carefully, they provide a great performance 

gain releasing GC from its work. As a performance fan, I am more than happy to see this. 

Many, many places where allocations were made carelessly are now changed into struct-

based types avoiding allocations (often, at all).

This is a great direction I would like to emphasize here. Along with the growing 

awareness of structs inside .NET-related Microsoft teams, more and more features are 

released in C# regarding them. Many were already mentioned - ref locals and returns 

complement ref arguments to make using value types copy-free. Readonly refs and in 

parameters make easier controlling mutability of used values. And there are two other 

important new features added in C# 7.2 that need to be carefully described - readonly 
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structs and ref structs. I expect a noticeable growth of their popularity in upcoming years, at 

least in the code with high-performance requirements. I do not expect that CRUD business 

layers will all of a sudden be cluttered with all those struct-related features though.

 Readonly Structs
We have already seen readonly ref and in parameters that disable modification 

of the argument in specified context. It may be very helpful in controlling that ref 

variables used for value types will not allow the programmer to modify its value. One 

may, however, go even further and create immutable struct - the one that cannot be 

modified once created. I hope you already see possible C# compiler and JIT compiler 

optimizations that comes from that fact - like the possibility to safely get rid of defensive 

copies while methods are called.

We define a readonly struct by adding a readonly modifier to a struct declaration 

(see Listing 13-59). C# compiler enforces that every field of such struct is also defined as 

readonly.

Listing 13-59. An example of readonly struct declaration

public readonly struct ReadonlyBook

{

   public readonly string Title;

   public readonly string Author;

   public ReadonlyBook(string title, string author)

   {

      this.Title = title;

      this.Author = author;

   }

   public void ModifyAuthor()

   {

      //this.Author = "XXX";   //  Compilation error: A readonly field 

cannot be assigned to (except in a 

constructor or a variable initializer)

      Console.WriteLine(this.Author);

   }

}
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If your type is (or can be) immutable from business and/or logic requirements point 

of view, it is always worth it to consider using a readonly struct passed by reference (with 

the help of in keyword) in high-performance pieces of code.

As MSDN says: “You can use the in modifier at every location where a readonly 

struct is an argument. In addition, you can return a readonly struct as a ref return 

when you are returning an object whose lifetime extends beyond the scope of the 

method returning the object.” Thus, using a readonly struct is a very convenient way of 

manipulating immutable types both in safe and performance- aware manner.

For example, let’s modify BookCollection class from Listing 13-28 to contain 

internally an array of readonly structs instead of regular structs (see Listing 

13-60). It is fine that they will be heap allocated inside such an array, because 

ReadOnlyBookCollection instances are heap-allocated reference types. However, all 

immutability guarantees remains. Thus, the compiler will omit defensive copy creation 

in the CheckBook method.

Listing 13-60. Modification of code from Listing 13-28 - storing readonly structs

public class ReadOnlyBookCollection

{

   private ReadonlyBook[] books = {

      new ReadonlyBook("Call of the Wild, The", "Jack London" ),

      new ReadonlyBook("Tale of Two Cities, A", "Charles Dickens")

   };

   private ReadonlyBook nobook = default;

   public ref readonly ReadonlyBook GetBookByTitle(string title)

   {

      for (int ctr = 0; ctr < books.Length; ctr++)

      {

         if (title == books[ctr].Title)

            return ref books[ctr];

      }

      return ref nobook;

   }

ChApTEr 13  MISCEllAnEouS TopICS



885

   public void CheckBook(in ReadonlyBook book)

   {

      //book.Title = "XXX"; // Would generate compiler error.

      book.DoSomething();     //  It is guaranteed that DoSomething does not 

modify book's fields.

   }

}

public static void Main(string[] args)

{

   var coll = new ReadOnlyBookCollection();

    ref readonly var book = ref coll.GetBookByTitle("Call of the Wild, 

The");

   book.Author = "XXX";    //  Compiler error: A readonly field cannot be 

assigned to (except in a constructor or a 

variable initializer)

}

 Ref Structs (byref-like types)
As already explained a few times, managed pointers have their well-justified limitations - 

especially in that they are not allowed to appear on the Managed Heap (as a field of 

reference type or just by boxing). However, for some scenarios that will be explained 

later, it would be really nice to have a type that contains a managed pointer. Such type 

should have similar limitations as the managed pointer itself (to not break limitations of 

the contained managed pointer). Thus, those kinds of types are commonly called byref-

like types (as the other name of managed pointer is simply byref).

Since C# 7.3 we can declare our custom byref-like types in the form of ref structs by 

adding a ref modifier to the struct declaration (see Listing 13-61).

Listing 13-61. An example of ref struct declaration

public ref struct RefBook

{

   public string Title;

   public string Author;

}
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C# compiler imposes many limitations on ref structs to make sure that they will only 

be stack allocated:

• It cannot be declared as a field of a class or normal struct (because it 

could be boxed).

• It cannot be declared as a static field for the same reasons.

• It cannot be boxed - so it is not possible to assign/cast it to object, 

dynamic or any interface type. It is also not possible to use them as 

array elements, as array stores boxed structs.

• It cannot be used as an iterator, generic argument and cannot 

implement an interface (because it could become boxed then).

• It cannot be used as local variable in async method - as it could be 

boxed as a part of async state machine.

• It cannot be captured by lambda expressions or local functions - as it 

would be boxed by the corresponding closure class (see Chapter 6).

Trying to use ref struct in those situations will end with compilation error. Some 

examples are shown in Listing 13-62.

Listing 13-62. An example of some of not possible ref struct usages

public class RefBookTest

{

   private RefBook book;   //  Compilation error: Field or auto-implemented 

property cannot be of type 'RefBook' unless 

it is an instance member of a ref struct

   public void Test()

   {

      RefBook localBook = new RefBook();

      object box = (object) localBook;   //  Compilation error: Cannot 

convert type 'CoreCLR.Unsafe 

Tests.RefBook' to 'object'

      RefBook[] array = new RefBook[4];   //  Compilation error: Array 

elements cannot be of type 

'RefBook'

   }

}

ChApTEr 13  MISCEllAnEouS TopICS



887

Similar to managed pointers, ref structs can be used only as method parameters and 

local variables. It is also possible to use ref struct as a field type of other ref structs (see 

Listing 13-63).

Listing 13-63. An example of ref struct as a field of other ref struct

public ref struct RefBook

{

   public string Title;

   public string Author;

   public RefPublisher Publisher;

}

public ref struct RefPublisher

{

   public string Name;

}

Additionally, we can declare “readonly ref struct” to combine readonly and ref struct 

features - to declare immutable struct that will exist only on the stack. It helps the C# 

compiler and JIT compiler to make further optimizations when using them (like ignoring 

defensive copy creation).

Although we already know what ref structs provide, one could really bother where 

they can be useful, if anywhere at all? Obviously, if they were not, they would not be 

introduced. They provide two very important features based on their limitations:

• They will never be heap allocated - this allows to use them in a 

special way because their lifetime guarantees are quite strong. As 

mentioned at the beginning of this section, the main advantage is 

that they may contain a managed pointer as their field (although 

currently in C#, this is not directly exposed feature, as we will 

elaborate soon).

• They will be never accessed from multiple threads - as it is illegal to 

pass stack addresses between threads, it is guaranteed that stack-

allocated ref struct is accessed only by its own thread. This eliminates 

in a trivial way any troublesome synchronization issues without any 

synchronization costs.
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Those two features make ref struct quite interesting on their own. However, the 

primary motivation of ref structs was Span<T> structure that will be explained in the next 

chapter.

one could ask why not the stackonly keyword is used instead of ref keyword 
when declaring “ref structs”? The reason behind that is the fact that “ref structs” 
provide stronger limitations than a simple “stack-only allocation”: as listed above, 
for example, they can’t be used as generic arguments and as pointer types. Thus, 
naming them “stackonly” would be misleading.

 Fixed Size Buffers
When we define an array as a field of a struct, obviously only a reference to such heap-

allocated array is a part of such struct (see Listing 13-64 and Figure 13-6a). This may be 

or may not be suitable for your needs.

Listing 13-64. An example of array as a field of struct

public struct StructWithArray

{

   public char[] Text;

   public int F2;

   // other fields...

}

static void Main(string[] args)

{

   StructWithArray data = new StructWithArray();

   data.Text = new char[128];

   ...

}

There is, however, s possibility to embed the whole array into the struct itself - it is 

called fixed size buffer then. The only restriction is that the array must have a predefined 

size and its type must be one of the primitive types only: bool, byte, char, short, int, long, 

sbyte, ushort, uint, ulong, float, or double. Additionally, struct that uses fixed size buffer 
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must be marked as unsafe (see Listing 13-65 and Figure 13-6b). Fixed array buffers are 

not allowed in classes. It is clear from Figure 13-6b that it is better to name them as 

buffers instead of arrays because they are plain, sequential layouts of given elements 

(without any type or size information).

Listing 13-65. An example of fixed size buffer in struct

public unsafe struct StructWithFixedBuffer

{

   public fixed char Text[128];

   public int F2;

   // other fields...

}

AredaeH TM 1 A2 A3sizechar[]

F2StructWithArray

A1 A2 A3 F2StructWithFixedArray

fixed size buffer
(a) (b)

Text

Figure 13-6. Difference between field of a struct in the form of: (a) typical heap-
allocated array, (b) fixed size buffer

Fixed size buffers are most commonly used in the P/Invoke context to define 

Interop marshaling structures (see Listing 13-66), typically representing unmanaged 

array structures of characters or integers (for example, to represent an array of system 

handles).

Listing 13-66. Examples of fixed buffers from CoreFX repository

public unsafe ref partial struct FileSystemEntry

{

   private const int FileNameBufferSize = 256;

   ...

   private fixed char _fileNameBuffer[FileNameBufferSize];

internal unsafe struct WIN32_FIND_DATA
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{

   internal uint dwFileAttributes;

   ...

   private fixed char _cFileName[MAX_PATH];

   private fixed char _cAlternateFileName[14];

   internal ReadOnlySpan<char> cFileName

   {

       get { fixed (char* c = _cFileName) return new ReadOnlySpan<char> 

(c, MAX_PATH); }

   }

}

However, one could think about using them for general-purpose code as a 

convenient way of defining more dense data structures. Even when such structs are heap 

allocated as a part of generic collection, resulting code provides better data locality. As 

an example, let’s illustrate it in case of generic List<T> usage (see Listing 13-67).

Listing 13-67. Using boxed structs as List<T> elements

List<StructWithArray> list = new List<StructWithArray>();

List<StructWithFixedBuffer> list = new List<StructWithFixedBuffer>();

The resulting data locality difference is clearly visible in Figure 13-7. In case of using 

a regular heap-allocated array as a boxed struct field, there are many objects scattered 

around the Managed Heap (with the obvious advantage that each struct element may have 

an array of different size). On the other hand, with fixed size buffers, there is only single 

array with all elements embedded (with the obvious disadvantage that each embedded 

buffer has the same size). The latter approach provides a much denser data layout, which 

may be beneficial in high-performance scenarios due to better CPU cache utilization.5

5 You can rightly see that this approach is no different from defining in struct many fields of the 
same type. In this application, it is true, the difference lies in the more convenient (indexed) 
access to such data.
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In case of stack-allocated data, similar results can be gained by using stackalloc 

operator. Thus, in such scenario it is more a matter of preference if one chooses 

stackalloc-acted buffer or fixed size buffer of a custom struct (and optionally making it 

ref struct to make sure it will not be boxed).

C# 7.3 added a feature named Indexing movable fixed buffers. A movable fixed buffer 

is just a fixed size buffer that became part of a heap-allocated object (like in our boxing 

example of generic List<T>). It is called “movable” because GC may move it while 

relocating the whole object during Compact phase. Without this feature, in such case it was 

required to pin the whole buffer before accessing its elements. Let’s explain this by using 

an additional class that wraps around our StructWithFixedArray (see Listing 13-68).

Listing 13-68. Wrapper that boxes struct with fixed size buffer

public class StructWithFixedArrayWrapper

{

   public StructWithFixedArray Data = new StructWithFixedArray();

}

Accessing fixed size buffer by an index while struct is not boxed is obviously safe 

because stack-allocated struct will not move, so pinning is not required at all (see first 

block in Listing 13-69). However, trying to use indexed access to buffer in case of boxed 

ezisredaeH TMStructWithArray[]

List<StructWithArray>

A1 A2 A3 F2

item1
internal array

redaeH TM

AredaeH TM 1 A2 A3sizechar[] AredaeH TM 1 A2sizechar[] AredaeH TM 1 A2 A3sizechar[]

List<StructWithFixedBuffer> redaeH TM

F2 F2 F2

redaeH TMStructWithFixedBuffer[]

internal array

A1 A2 A3 F2 A1 A2 A3 F2

item2 item3

item1 item2 item3

(a)

(b)

Figure 13-7. Difference in data locality in case of List<T> for boxed structs with: 
(a) normal arrays, (b) fixed sized buffers
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struct would result in compiler error: “You cannot use fixed size buffers contained in 

unfixed expressions. Try using the fixed statement.” Thus, before C# 7.3, the whole buffer 

needed to be pinned (see second block in Listing 13-69). You can rightly see that pinning 

here is in fact strange and unnecessary - indexing is a relative operation, with respect to 

the beginning of the corresponding field, and moving the whole object does not change 

anything here. Thus, since C# 7.3 this small inconvenience has been removed (see the 

third block in Listing 13-69).

Listing 13-69. Fixed size buffer indexing changes in C# 7.3

static void Main(string[] args)

{

   // Block 1 - accessing stack-allocated fixed buffer

   StructWithFixedBuffer s1 = new StructWithFixedBuffer();

   Console.WriteLine(s1.text[4]);

   // Block 2 - accessing movable buffer before C# 7.3

   StructWithArrayWrapper wrapper1 = new StructWithArrayWrapper();

   fixed (char* buffer = wrapper1.Data.Text)

   {

      Console.WriteLine(buffer[4]);

   }

   // Block 3 - accessing movable buffer after C# 7.3

   StructWithArrayWrapper wrapper2 = new StructWithArrayWrapper();

   Console.WriteLine(wrapper2.Data.text[4]);

}

It may be interesting to read the C# language Designer comment from the 
discussion of this feature: “one reason why we require pinning of the target when 
it is movable is the artifact of our code generation strategy - we always convert to 
unmanaged pointer and thus force the user to pin via fixed statement. however, 
conversion to unmanaged is unnecessary when doing indexing. The same unsafe 
pointer math is equally applicable when we have the receiver in the form of 
managed pointer. If we do that, then the intermediate ref is managed (GC-tracked) 
and the pinning is unnecessary.”
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As a last note regarding fixed size buffers usage, keep in mind we can combine them 

with stackalloc to create stack-allocated arrays of elements that contain other “arrays” 

(buffers). It would not be possible when using a regular heap-allocated array field, due to 

limitations described in Chapter 6 (see Listing 13-70).

Listing 13-70. Combining stackalloc with fixed size buffers

var data = stackalloc StructWithArray[4]; // Not-possible with compilation 

error: Cannot take the address of, get the size of, or declare a pointer to 

a managed type ('StructWithArray')

var data = stackalloc StructWithFixedBuffer[4]; // Possible

 Object/Struct Layout
Did you ever bother to see how a memory layout of instances of classes or structs you 

create looks? Probably not and this is a good thing. When working with managed code, 

it should completely not bother you how fields are organized. CLR does a great job in 

the appropriate layout of the type’s fields. Looking at them most probably would be 

over-engineering things. However, there are always some exceptions when you do like to 

know such layout or even want to control it. In overwhelmingly popular cases, it is when 

you pass type instances to unmanaged code, which expect some explicit layout already 

defined somewhere else (like in system API calls). On the other hand, there may be also 

rare scenarios when you are so attached to the optimal use of memory and accessing it 

efficiently, that reliance on automatic field’s layout may be not enough.

As this whole book, and this chapter in particular, is focused on such boundary 

situations so much, let’s now dedicate a few words about objects layout in memory. And 

besides, knowing how things work underneath, and not just that they work, is one of the 

slogans of this book.

From what we have learned so far, we already know that for reference-type instances 

there is always an object header and MethodTable reference at the beginning of each 

instance. On the other hand, value type instances do not have them and contain only 

their fields values (see Figures 4-17 and 4-18 from Chapter 4). What about fields then?

There is one golden rule of the efficient memory access and field layout relies on it 

heavily - data alignment (already briefly mentioned in Chapter 2). Each primitive data 

type (like integers, various floating points and so on, and so forth) has its own preferred 

alignment - a multiple of what value should be the address (expressed in bytes) under 
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which it is stored. Most often such primitive type alignment is equal to its size. So a 

4-byte int32 has 4-byte alignment (its address should be multiplication of 4), 8-byte 

double has 8-byte alignment, and so on and so forth. The simplest are 1-byte char and 

byte types because their alignment is 1 byte - they are aligned wherever are stored then. 

Modern CPUs can use efficient code to access aligned data. Accessing unaligned data, 

while still possible, requires more instructions and thus is simply slower.

Complex types, containing primitive type fields, should lay out those fields with their 

alignment requirements in mind. This may introduce padding between fields - unused 

bytes that are there just because the next field needs to be under a specific, aligned 

address (we will see padding in the examples below). Complex type instances should be 

aligned by itself also - to make sure that when being a part of other, more complex type 

(or an array), their fields are still aligned.

All this leads to the following three rules defined by MSDN regarding objects’ layout:

• The alignment of the type is the size of its largest element (1, 2, 4, 8, 

etc., bytes) or the specified packing size, whichever is smaller.6

• Each field must align with fields of its own size (1, 2, 4, 8, etc., bytes) 

or the alignment of the type, whichever is smaller. Because the 

default alignment of the type is the size of its largest element, which 

is greater than or equal to all other field lengths, this usually means 

that fields are aligned by their size. For example, even if the largest 

field in a type is a 64- bit (8-byte) integer or the Pack field is set to 8, 

Byte fields align on 1-byte boundaries, Int16 fields align on 2-byte 

boundaries, and Int32 fields align on 4-byte boundaries.

• Padding is added between fields to satisfy the alignment 

requirements.

6 Packing will be described a little further but is irrelevant for the current context of automatic 
fields layout.
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Keeping in mind alignment golden rule and resulting three rules presented above, 

we should be also aware of design decisions regarding a field’s layout in both types 

categories:

• structs - by default have sequential layout, so fields are stored in 

memory in the same order as they are defined. This is mainly because 

it is assumed they will be passed to unmanaged code and the fields 

definition order is not accidental but by design. At the beginning 

of .NET design, it was mostly expected that structs would be used 

in Interop scenarios so such default behavior was reasonable. This 

however is only true for “unmanaged types,” as defined already 

in Chapter 6 (we will soon see it again in the context of a new 

unmanaged constraint). Even fields order is explicitly defined, their 

layout will still take into account alignment requirements. This may 

introduce padding and grow the resulting struct size (as a cost of 

efficient, aligned fields access).

• classes - by default have automatic layout, so fields may be reordered 

freely. Because CLR is the sole owner of such data, it is up to it how 

to lay out fields. Fields are reordered in the most efficient way both in 

terms of CPU access time (considering alignment) and memory usage.

Nowadays, with the growing popularity of value types in regular, general-purpose 

code, default sequential alignment of structs may be not the most optimal one and it is 

good to know alternatives.

Let’s see all this in action. Having a simple struct from Listing 13-71, its field layout 

will look like that in Figure 13-8a - all three fields are stored in memory in the order of 

definition. However, because of alignment requirements, fields inside such struct start 

from the following addresses:

• 0-byte offset - first field is a byte with 1-byte alignment so it can be 

stored at any address.

• 8-byte offset - second field is a double with 8-byte alignment so it 

must start at address being multiplication of 8. Unfortunately, it 

introduces big padding of 7 bytes that are just waste of space.

• 16-byte offset - the last field is an integer with 4-byte alignment so it is 

fine that it starts at address 16.
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Additionally, the alignment of the whole struct must be the size of its largest 

element - 8 bytes in our case. In other words, the whole struct size must be multiplication 

of 8. It already occupies 20 bytes so it is rounded up to the 24-bytes size with additional 

padding at the end.

The whole struct alignment ensures that instances of this struct will have their fields 

always aligned, for example, in case of being array elements (see Figure 13-8b). If the 

whole struct was not properly aligned (without additional padding at the end), such 

scenarios would produce unaligned data (see Figure 13-8c).

(a) B D Ipadding padding

0B 8B 16B

B D Ipadding padding B D Ipadding padding

B D Ipadding B D Ipadding

(b)

(c)

24B

Figure 13-8. Default fields layout in struct: (a) layout of struct from Listing 13-71,  
(b) example of using AlignedDouble struct as array element, (c) example of 
inproper using AlignedDouble struct (if whole struct alignment was not correct)

As we can see, the sequential layout of struct fields introduced here has quite big 

memory overhead - 11 bytes are unused, which is almost a half of the whole struct! It 

most probably will not be a problem if such struct is used occasionally. On the other 

hand, if your code heavily relies on value types and should process millions of them in 

performant manner, such waste could make a difference.

Listing 13-71. Example of simple struct (to investigate field’s layout)

public struct AlignedDouble

{

   public byte B;

   public double D;

   public int I;

}
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.NET provides a way of controlling a field’s layout. While again, it was mainly due to 

the Interop scenarios, we can utilize this feature to control memory layout that better 

suits our needs in a general case. Fields layout is controlled by StructLayout attribute, 

that besides its name may be used both for classes and structs, and may take three 

values:

• LayoutKind.Sequential - already described layout where proper 

field’s alignment is guaranteed and fields are stored in the order of 

definition. This is a default value for structs being unmanaged (as 

explained in Chapter 6 and recalled soon).

• LayoutKind.Auto - layout where field’s alignment is guaranteed 

but fields may be reordered (to utilize memory efficiently). This is a 

default value for classes and struct not being unmanaged.

• LayoutKind.Explicit - layout where nothing is guaranteed because 

we explicitly define the layout.

An example struct from Listing 13-71 (that by default uses LayoutKind.Sequential 

layout) may easily be changed to use automatic layout (see Listing 13-72). As we can 

see in Figure 13-9, this option indeed produces a much better layout because much less 

padding of only three bytes was introduced (while still all fields are properly aligned).

gniddapID B

0B 8B 16B

Figure 13-9. Automatic fields layout in struct from Listing 13-72

Listing 13-72. Example of simple struct (to investigate automatic field’s layout)

[StructLayout(LayoutKind.Auto)]

public struct AlignedDoubleAuto

{

      public byte B;

      public double D;

      public int I;

}
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The main drawback of automatic layout is the fact that we cannot use such struct 

in Interop. However, I mostly imagine using it in high-performance general code where 

we do not care at all about this limitation. So when you use value types because of their 

memory-management advantages (stack allocation, data locality, less space occupancy), 

you will most probably be interested in using automatic layout instead of the default one!

The more fields and the bigger differences in their sizes, the more unfortunate 

sequential layout may be introduced. As an exercise, I suggest that you understand why 

struct from Listing 13-73 will consume:

• 64 bytes bytes with LayoutKind.Sequential (where 28 bytes are 

wasted because of padding)

• 40 bytes bytes with LayoutKind.Auto (where only 4 bytes are 

wasted)

Listing 13-73. Example of struct where layout strongly influences its size

public struct ManyDoubles

{

   public byte B1;

   public double D1;

   public byte B2;

   public double D2;

   public byte B3;

   public double D3;

   public byte B4;

   public double D5;

}

So far presented structs were examples of unmanaged types. To recall – an 

unmanaged type is a type that is not a reference type and does not contain reference-

type fields. However, we may obviously create structs that are not unmanaged - by 

simply adding a single reference type field to them (see Listing 13-74). As stated before, 

this changes the default layout to be automatic, like for reference types. As we can 

see in Figure 13-10, AlignedDoubleWithReference fields are indeed reordered like in 

LayoutKind.Auto mode.
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Listing 13-74. Example of non-unmanaged struct

public struct AlignedDoubleWithReference

{

   public byte B;

   public double D;

   public int I;

   public object O;

}

Figure 13-10. Default fields layout in struct from Listing 13-74

The default behavior changes for non-unmanaged structs because they are not 

allowed to be passed via P/Invoke. This is because they contain reference to a managed 

object that may change during GC. As its unmanaged usage is blocked, it is safe to use 

automatic layout for such structs.

please note that automatic layout prefers putting object references as first fields. 
You should already guess why this is so. It is useful in the Mark phase for more 
efficient object traversal because of better cache line utilization. Most object 
references will fall in the same cache line as the already accessed MT field.

The default layout behavior will be changed to automatic also when the struct 

contains the other struct with LayoutKind.Auto layout. Most of the commonly used built-

in structs (Decimal, Guid, Char, Boolean) are sequential so using them will not change the 

layout behavior. However, surprisingly DateTime has automatic layout so when used as 

another struct field, it changes its layout also to automatic (see Listing 13-75).
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Listing 13-75. Different types of fields and their layout influence

public struct StructWithFields

{

   public byte B;

   public double D;

   public int I;

   //public SomeEnum E;      // Still sequential

   //public SomeStruct AD;   // Still sequential

   //public unsafe void* P;  // Still sequential

   //public decimal DE;      // Still sequential

   //public Guid G;          // Still sequential

   //public char C;          // Still sequential

   //public Boolean BL;      // Still sequential

   //public object O;        // Triggers automatic

   //public DateTime DT;     //  Triggers automatic because DateTime has 

automatic layout

}

If you do really care about memory usage (and probably you do if you decided to use 

structs), then awareness of its layout should bother you. Imagine those precious bytes 

of stack space wasted because of padding in your stackallock-ated array! But space 

utilization is not the only concern - sometimes we should do care about it because of 

cache utilization (it will be discussed later in the data-oriented design section in the next 

chapter).

please note that automatic layout for classes and unmanaged structs cannot be 
changed - explicitly set LayoutKind.Sequential will be simply ignored.

A not-yet-described explicit layout is especially useful in P/Invoke scenarios as it gives 

you full control over how the struct storage looks (see Listing 13-76). You may create a 

layout corresponding to what unmanaged code expects with a 100% guarantee. Obviously, 

you should remember that with such full control, meeting alignment requirements is  

on your side so it is really easy to introduce unaligned fields (see Figure 13-11).  
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In P/Invoke scenarios it is rather irrelevant but be careful when explicitly designing 

struct for dense, high- performance usage.7

Listing 13-76. Example of simple struct (to investigate explicit field’s layout)

[StructLayout(LayoutKind.Explicit)]

public struct UnalignedDouble

{

   [FieldOffset(0)]

   public byte B;

   [FieldOffset(1)]

   public double D;

   [FieldOffset(9)]

   public int I;

}

In particular, compiler does not require that fields in our explicit layout do not 

overlap. Thus, we must be careful when specifying offsets, to not create fields that 

interfere each other. This is even desirable in one scenario - creating so-called 

discriminated unions. It is a type that is able to represent various set of data. By using 

explicit layout and setting offsets of differently typed fields to the same value, we are 

simply simulating such a discriminated union (see Listing 13-77).

7 To be honest, benchmarks conducted by me does not show significant performance change 
when accessing a double field both from AlignedDouble and UnalignedDouble structs. It seems 
that underlying Intel® Advanced Vector Extensions (Intel® AVX) instructions used in case of my 
Intel CPU are really nicely handling unaligned double access. This is, however, implementation 
detail and aligned memory is still the recommended design.

B D I padding

0B 8B 16B

Figure 13-11. Explicit fields layout in struct from Listing 13-76
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Listing 13-77. Example of simple discriminated union

[StructLayout(LayoutKind.Explicit)]

public struct DiscriminatedUnion

{

   [FieldOffset(0)]

   public bool Bool;

   [FieldOffset(0)]

   public byte Byte;

   [FieldOffset(0)]

   public int Integer;

}

This, of course, requires discipline from the programmer, to read the same type 

as it was written to, unless we want to use this technique to provide memory-based 

conversion between types. One could think of using a fixed size buffer to access the same 

memory with different granularity (see Listing 13-78).

Listing 13-78. Example of discriminated union using fixed buffers

[StructLayout(LayoutKind.Explicit)]

public struct DiscriminatedUnion

{

   [FieldOffset(0)]

   public bool Bool;

   [FieldOffset(0)]

   public byte Byte;

   [FieldOffset(0)]

   public int Integer;

   [FieldOffset(0)]

   Public fixed byte Buffer[8];

}
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There is an additional control of object layout in the form of packing. The Pack 
field of StructLayout attribute controls the alignment of a type's fields in 
memory. For example, we can define Pack value to be 1 byte:

[StructLayout(LayoutKind.Sequential, Pack = 1)]
public struct AlignedDouble

{

public byte B;

public double D;

public int I;

}

how will the resulting layout look then? let’s recall the first rule from MSDn 
documentation presented above: “The alignment of the type is the size of its 
largest element (1, 2, 4, 8, etc., bytes) or the specified packing size, whichever is 
smaller.” So in our case, instead of 8-byte alignment (double size), type alignment 
is just 1 byte. The second rule says: “Each field must align with fields of its own 
size (1, 2, 4, 8, etc., bytes) or the alignment of the type, whichever is smaller.” 
Thus, each field alignment is also just 1 byte. As a result, a very dense 13-byte 
memory layout will be generated without any padding (but with fields inconsistent 
with their optimal alignment requirements).

If you would like to investigate your type’s layout, there are several ways to do 

that. There are two great free tools that can be used to do that. The first one is a great 

ObjectLayoutInspector library (available on GitHub and as a NuGet package) written 

by Sergey Teplyakov, solely dedicated for inspecting an object’s memory layout. It 

provides a very convenient way of analyzing types with just a single method call (see 

Listing 13-79). Results are presented then nicely in an ASCII way (see Listing 13-80).
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Listing 13-79. Using ObjectLayoutInspector to print layout of structs from 

Listings 13-71 and 13-74

static void Main(string[] args)

{

   TypeLayout.PrintLayout<AlignedDouble>();

   TypeLayout.PrintLayout<AlignedDoubleWithReference>();

}

Listing 13-80. Result of the console program from Listing 13-79

Type layout for 'AlignedDouble'

Size: 24 bytes. Paddings: 11 bytes (%45 of empty space)

|===========================|

|     0: Byte B (1 byte)    |

|---------------------------|

|   1-7: padding (7 bytes)  |

|---------------------------|

|  8-15: Double D (8 bytes) |

|---------------------------|

| 16-19: Int32 I (4 bytes)  |

|---------------------------|

| 20-23: padding (4 bytes)  |

|===========================|

Type layout for 'AlignedDoubleWithReference'

Size: 24 bytes. Paddings: 3 bytes (%12 of empty space)

|===========================|

|   0-7: Object O (8 bytes) |

|---------------------------|

|  8-15: Double D (8 bytes) |

|---------------------------|

| 16-19: Int32 I (4 bytes)  |

|---------------------------|

|    20: Byte B (1 byte)    |

|---------------------------|

| 21-23: padding (3 bytes)  |

|===========================|
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If you do not want to use Console application to print object’s layout out of the box, 

you can manually consume an analyzed layout (see Listing 13-81).

Listing 13-81. Using ObjectLayoutInspector to manually analyze layout of 

structs

static void Main(string[] args)

{

   TypeLayout layout = TypeLayout.GetLayout<AlignedDouble>();

    Console.WriteLine($"Total size {layout.FullSize}B with {layout.Paddings}

B padding.");

   foreach (var fieldBase in layout.Fields)

   {

      switch (fieldBase)

      {

          case FieldLayout field: Console.WriteLine($"{field.Offset}  

{field.Size} {field.FieldInfo.Name}"); break;

          case Padding padding: Console.WriteLine($"{padding.Offset} 

{padding.Size} Padding"); break;

      }

   }

}

Obviously, such a tool is more likely to be used during your custom-build step or just 

offline, during development, than during runtime of your target application.

The second tool is the https://sharplab.io web page that provides great .NET code 

analysis capabilities. It provides Inspect.Heap and Inspect.Stack static methods that 

print the layouts of specified types (see Listing 13-82 and Figure 13-12).

Listing 13-82. Sample script used in Sharplab.io to inspect memory layout

using System;

using System.Runtime.InteropServices;

public class C {

    public static void Main() {
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        var o = new AlignedDouble();

        Inspect.Heap(new AlignedDouble());

        Inspect.Stack(in o);

    }

}

In the presence of those two great tools, I hope you will not need to use low-level 

tools like WinDbg to inspect object manually. If you decide to do so, I would suggest 

using SOS !dumpobject (for classes) and !dumpvc (for value types) commands (see 

Listing 13-83).

Listing 13-83. Inspecting object layout with dumpvc SOS command in WinDbg

> !dumpvc 00007ffda2725e18 00007ffda2725e18

Name:        CoreCLR.ObjectLayout.AlignedDouble

MethodTable: 00007ffda2725e18

EEClass:     00007ffda2872110

Size:        40(0x28) bytes

File:        (...)\CoreCLR.ObjectLayout.dll

Fields:

              MT    Field   Offset                 Type VT     Attr             

Value Name

00007ffdfd6a8b60  4000001        0          System.Byte  1 instance                 

0 B

00007ffdfd6b0858  4000002        8        System.Double  1 instance 

0.000000 D

00007ffdfd6c66d8  4000003       10         System.Int32  1 instance         

-43316160 I

Figure 13-12. The result of script from Listing 13-82 in https://sharplab.io 
online tool
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 Unmanaged Constraint
Unmanaged type was already mentioned in Chapter 6, in context of what type may be 

used in stackalloc, and in this chapter, in context of unmanaged structs. From C# 7.3 a 

new generic constraint has been introduced - unmanaged. It allows us to write generic 

code that operates on unmanaged types and pointers to them.

Let’s recall its brief definition from MSDN: “An unmanaged type is a type that is 

not a reference type and doesn’t contain reference type fields at any level of nesting.” 

Stackalloc limitations already mentioned state it a little more precisely: “unmanaged 

type may contain only primitive types, enum and pointer types and user defined structs 

satisfying the same criteria.”8

Listing 13-84 shows an example of two structs, where only the first one meets 

unmanaged type criteria. Remember that all levels of nesting are checked so if struct 

A contains struct B, that contains other struct C, that contains struct D with reference 

type - the whole struct A is treated as not being unmanaged.

Listing 13-84. Example of unmanaged and non-unmanaged type

public struct UnmanagedStruct

{

   public int Field;

}

public struct NonUnmanagedStruct

{

   public int Field;

   public object O;

}

With the help of the new unmanaged generic constraint, the compiler checks for 

us unmanaged type criteria. If they are not met, appropriate compilation error will be 

8 To be strict, the definition of unmanaged type is listed in ECMA-334 C# Language Specification 
in paragraph 23.3 Pointer types.
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generated. We can use it both for generic methods (see Listing 13-85) and generic struct 

types (see Listing 13-86).

Listing 13-85. Example of unmanaged generic constraint usage in method

public static void UnamanagedContraint<T>(T arg) where T : unmanaged

{

}

static void Main(string[] args)

{

   UnamanagedContraint(new UnmanagedStruct());

   UnamanagedContraint(new NonUnmanagedStruct()); // Compilation error: The 

type 'NonUnmanagedStruct' must be a non-nullable value type, along with all 

fields at any level of nesting, in order to use it as parameter 'T' in the 

generic type or method 'Constraints.UnamanagedContraint<T>(T)'

}

Listing 13-86. Example of unmanaged generic constraint usage in type

public struct UnmanagedStruct<T> where T : unmanaged

{

      ...

}

static void Main(string[] args)

{

   var obj = new UnmanagedGenericStruct<object>(); // Compilation error: 

The type 'object' must be a non-nullable value type, along with all fields 

at any level of nesting, in order to use it as parameter 'T' in the generic 

type or method 'UnmanagedGenericStruct<T>'

}
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What does an unmanaged constraint give us? With it the following things are possible:

• We may use pointer of T - if type T satisfies the unmanaged constraint 

it can also be used as a T* pointer (conversion to void* is also 

possible).

• We may use sizeof(T).

• We may use stackallock of T.

Without unmanaged constraint, each above operation was not allowed, resulting in 

the compilation error, “Cannot take the address of, get the size of, or declare a pointer 

to a managed type (‘T’)” even when T was constrained to struct. Obviously, those 

operations require an unsafe context but this is not changed regardless of unmanaged 

constraint (which by itself does not require unsafe code).

All operations listed above are, of course, quite low level and will be mostly useful in 

low-level memory-management scenarios like fast serialization of data. Do not expect to 

see unmanaged constraint in regular business code though!

Listing 13-87 shows an example of a method utilizing possible operations coming 

from an unmanaged constraint. Please note an interesting fact - in Listing 13-87 we can 

get the pointer of the argument without pinning. This is because unmanaged constraint 

implies that T is a value type, thus passed by value. It is safe to take an address in such 

case (because value is not heap allocated).

Listing 13-87. Simple example of unmanaged constraint usage

unsafe public static int UseUnmanagedConstraint<T>(T arg) where T : 

unmanaged

{

   T* ptr = &arg;                // Use T* pointer

   T* sa = stackalloc T[16];     // Use stackalloc

   return sizeof(T);             // Use sizeof

}

Similar code would work without unmanaged constraint, for simple struct usage (see 

Listing 13-88).
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Listing 13-88. Regular struct usage similar to code from Listing 13-87

unsafe static public void UseUnmanagedConstraint2(SomeStruct obj)

{

   SomeStruct* p = &obj;

   ...

}

However, if we pass by reference an object with unmanaged constraint, we must 

explicitly pin it because it may be heap allocated, for example, because of boxing (see 

Listing 13-89).

Listing 13-89. Simple example of unmanaged constraint usage with object 

passed by reference

unsafe public int UseUnmanagedRefConstraint<T>(ref T arg) where T : 

unmanaged

{

   fixed (T* ptr = &arg)

   {

      Console.WriteLine((long) ptr);

      return sizeof(T);

   }

}

Because of the same reason, we must explicitly pin fields of the struct when used 

from within struct instance methods (see Listing 13-90) because method may be called 

on boxed struct instance.9

9 In the current state of C# 7.3, changing StructWithUnmanagedField into ref struct does not 
change that behavior, although it could, as within Use method context field is guaranteed to be 
stack allocated.
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Listing 13-90. Example of unmanaged constraint usage within a struct method

public struct StructWithUnmanagedField<T> where T : unmanaged

{

   private T field;

   unsafe public void Use()

   {

      fixed (T* ptr = &field)

      {

         // ...

      }

   }

}

What are practical usage scenarios of unmanaged generic constraints? It is designed 

to allow handling in generic way types, which otherwise would require many concrete 

implementations. Perfect examples are various types of serialization. Thanks to 

sizeof(T) availability, we may create, for example, a generic “to byte array” serialization 

(see Listing 13-91).

Listing 13-91. Example of generic serialization (taken from MSDN 

documentation)

unsafe public static byte[] ToByteArray<T>(this T argument) where T : 

unmanaged

{

   var size = sizeof(T);

   var result = new Byte[size];

   Byte* p = (byte*)&argument;

   for (var i = 0; i < size; i++)

      result[i] = *p++;

   return result;

}

We can also think of a generic logging mechanism, where the passed argument is 

consumed in a low-level manner as in Listing 13-92. Here the stackalloc helper structure 

is a description of logged value (by providing its address and size) passed to some core 
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logging routine. To make such method useful, at least two or three overloads could be 

necessary that take two and three arguments respectively (and stackalloc bigger arrays 

respectively).

Listing 13-92. Example of generic, low-level logging (inspired by ETW logging 

code from .NET code)

public unsafe void LogData<T>(T arg) where T : unmanaged

{

   if (IsEnabled())

   {

      EventData* data = stackalloc EventData[1];

      data[0].DataPointer = (IntPtr)(&arg);

      data[0].Size = sizeof(T);

      WriteEventCore(data);

   }

}

An unmanaged generic constraint may be also useful in creating types consuming 

unmanaged memory (especially collections). A very simple example of such type is 

presented in Listing 13-93. Without a generic constraint, it would not be possible to 

create such generic type because sizeof would not be accessible (element size should 

be provided in constructor likely). More importantly, thanks to unmanaged constraint, 

we can freely use T* pointer - which makes indexing trivial and possible to use ref return 

T (without constraint we would be forced to use void* and ugly pointer casting to 

implement indexer’s getter and setter).

Listing 13-93. Example of type wrapping unmanaged memory

public unsafe class UnmanagedArray<T> : IDisposable

   where T : unmanaged

{

   private T* data;

   public UnmanagedArray(int length)

   {

      data = (T*)Marshal.AllocHGlobal(length * sizeof(T));

   }
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   public ref T this[int index]

   {

      get { return ref data[index]; }

   }

   public void Dispose()

   {

      Marshal.FreeHGlobal((IntPtr)data);

   }

}

static void Main(string[] args)

{

   using (UnmanagedArray<int> array = new UnmanagedArray<int>(20))

   {

      array[10] = 10;

      for (int i = 0; i < 20; i++)

         Console.WriteLine(array[i]); //  Will print garbage and only 10 for 

10th element

   }

}

 Blittable Types
Besides unmanaged types, there are also so-called blittable types, defined as having an 

identical presentation in memory for both managed and unmanaged code. Blittable 

types are most often met in the context of Interop marshaling, as they do not require any 

conversion when using P/Invoke.

Unmanaged and blittable types are almost the same but the latter are a little stricter 

than the former. This is because some value types are only “sometimes blittable” as they 

expected representation differs on managed and unmanaged side occasionally:

• decimal - its binary representation is not well-established so 

unmanaged side format cannot be assumed,

• bool - typically consumes 1 byte on both sides but sometimes is 

bigger on unmanaged side (for example, C language may use 4 

bytes),
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• char - typically consumes 2 bytes but sometimes is smaller or bigger 

on unmanaged side (depending on encoding),

• DateTime - due to historical reasons, as we have seen, it is a struct 

with automatic layout, which makes it non-blittable,

• Guid - its internal representation depends on machine endianness.

Thus, a struct that contains one of such a special value type field is a valid 

unmanaged type (so it will meet unmanaged generic constraint) but is no blittable in the 

Interop marshaling sense. There is a little confusion regarding naming though, as always 

in computer science.

To make things even a little more complicated, only blittable types may be pinned 

by GCHandle.Alloc call (as it is supposed that pinning is done because of subsequent 

AddrOfPinnedObject call and passing the whole object address into unmanaged code). 

Thus, an unmanaged generic constraint is not enough to guarantee that such pinning 

will succeed (see Listing 13-94). WeirdStruct struct is non-blittable because it contains 

fields of non-blittable types (in fact, all kind of them). It is however, still unmanaged 

type (as it does not break an unmanaged type requirements). Thus, it can be used 

with unmanaged constraint in UseUnmanagedConstraint method, while it will throw 

appropriate ArgumentException when trying to be pinned with GCHandle.Alloc call.

Listing 13-94. Blittable vs. managed type difference when pinning with GCHandle

public struct WeirdStruct

{

   public decimal DE;

   public DateTime DT;

   public Guid G;

   public char C;

   public Boolean BL;

}

unsafe public static int UseUnmanagedConstraint<T>(T obj) where T : unmanaged

{

   var handle = GCHandle.Alloc(obj, GCHandleType.Pinned); // throws System.

ArgumentException: Object contains non-primitive or non-blittable data.

   ...

}
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static void Main(string[] args)

{

   var s = new WeirdStruct();

   UseUnmanagedConstraint(s);

}

In summary, we can say that:

• Unmanaged types (along with unmanaged generic constraints) - 

are used in general-purpose programming, for low-level memory 

optimization of features like serialization and deserialization, 

hashing, ... Because they are general purpose in this context, they 

were more carefully described. As they operate on low-level memory, 

most often they are used in unsafe context, while an unmanaged 

constraint does not impose that.

• Blittable types - are used in Interop marshaling scenarios. Because 

this book does not put a lot of attention on Interop, they were only 

briefly mentioned here. The only aspect that may be important for us 

is the blittable requirement of pinning via a GCHandle.

To make things even more fascinatingly complicated, decimal is a special 
except - it is not blittable but structs containing it may be still pinned via 
GCHandle.

 Summary
In this chapter we touched quite a lot of interesting and mostly low-level topics. Starting 

from a deep explanation of thread static fields, we moved to the managed pointers - which 

greatly help in understanding passing by reference mechanics in .NET. These are also 

especially useful nowadays with all the topics related to growing struct usage popularity.

Indeed, a great part of this chapter is taken by everything related to value types - ref 

structs, byref-like types, byref-like field types, and so on, and so forth. Comprehensive 

descriptions of managed pointers were also introduced as quite a necessary foundation 

of understanding all those things. Nowadays, by looking at performance with caution, 
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squeezing every not necessary heap allocation, those topics are gaining more and more 

attention in the .NET ecosystem. Obviously, one most probably would not need to use 

them in writing a regular business-driven application. But this chapter is in general not 

dedicated to such types of programming so it should not be surprising so many words 

were spoken about that.

Then, interesting information about managed layout has been presented, which is 

not always so obvious as one could think. The chapter concludes with a description of 

a generic unmanaged constraint added recently to C# (altogether with slightly related 

topic of blittable types).

All those topics are useful by itself but also provide a good foundation of the topics 

introduced in the next chapter - especially about Span<T> usage and implementation.
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CHAPTER 14

Advanced Techniques
This chapter is somehow a continuation of the previous one, describing more advanced 

techniques that are available in .NET. Thus, please note that the knowledge from the 

previous chapter is really helpful to understand this one (especially regarding ref types, 

ref returns, and ref structs).

This chapter is aligned with today’s trends in .NET programming (at least those 

heavily performance-oriented) - squeezing all the possible CPU clock cycles and 

memory usage to make managed frameworks and applications faster. I found it really 

fascinating. More and more libraries and their APIs are being “spanified” and/or 

“pipeliefied” by replacing their current code with the code based on efficient Span<T> 

and/or pipelines usage. I hope that all the descriptions from this chapter will help you to 

find yourself in this modern .NET world. Speaking of which, this chapter is closed by the 

section about incoming .NET features that are not yet released (or released in preview).

 Span<T> and Memory<T>
We can allocate contiguous memory in a various way in C#, whether it is a regular heap- 

allocated array, fixed buffer, stackalloc, or from unmanaged memory. It would be very 

convenient to have a single way of representing all such cases, while still in an efficient 

manner (similar to using plain array). Moreover, quite often such memory needs to be 

“sliced” - to provide only some part of it to be processed by other methods. And all this 

ideally should be done without the main enemy of high-performance .NET code - heap 

allocations. Exactly because of all those dreams, Span<T> was born.

Please keep in mind that in the rest of this chapter, a little simplified stack- and 
heap-allocation division is used. As we should remember from Chapter 4, whether 
something is heap or stack allocated is rather an implementation detail, resulting 
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from the expected lifetime characteristics of given data. However, repeating all 
the time in the following sections that stack or heap are in fact implementation 
details would be both tedious and boring. Span<T> and Memory<T> are somehow 
leaking underlying abstractions so it is even a little justified.

 Span<T>
A new generic Span<T> type was introduced in .NET Core 2.1. It is a value type (ref 

struct), so it does not incur allocations by itself. It has ref returning indexer so it may be 

consumed like an array. Moreover, it is designed to provide slicing capabilities so one 

could use subranges efficiently - subrange is represented by other Span<T> ref struct so 

yet again, it does not require any allocations.1

A few typical Span<T> usage scenarios are presented in Listing 14-1. No matter 

which span instance we use at the end of UseSpan method (representing various types of 

memory), it may be consumed in an array-like way by the Length and indexer members 

exposed from Span<T>. Note that UseSpan is marked as unsafe because of pointer usage, 

not because of the Span<T>.

Listing 14-1. Typical Span<T> usage scenarios

unsafe public static void UseSpan()

{

   var array = new int[64];

   Span<int> span1 = new Span<int>(array);

   Span<int> span2 = new Span<int>(array, start: 8, length: 4);

   Span<int> span3 = span1.Slice(0, 4);

   Span<int> span4 = stackalloc[] { 1, 2, 3, 4, 5 };

   Span<int> span5 = span4.Slice(0, 2);

   IntPtr memory = Marshal.AllocHGlobal(64);

   void* ptr = memory.ToPointer();

   Span<byte> span6 = new Span<byte>(ptr, 64);

   var span = span1; // or span2, span3, ...

1 Originally, this type was even supposed to be called Slice, not Span.
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   for (int i = 0; i < span.Length; i++)

      Console.WriteLine(span[i]);

   Marshal.FreeHGlobal(memory);

}

Obviously, not every memory should be modified. Thus, ReadOnlySpan<T> 

counterpart is also available, which represent memory that cannot be written to. The 

typical usage includes representing string data. Strings are immutable and exposing 

them as Span<char> would break that. Instead, the AsSpan string extension method 

returns ReadOnlySpan<char>. One could, of course, also be willing to represents regular 

data (or normal Span<T>) as read-only by using this type (see Listing 14-2).

Listing 14-2. Typical ReadOnlySpan<T> usage scenarios

public static void UseReadOnlySpan()

{

   var array = new int[64];

   ReadOnlySpan<int> span1 = new ReadOnlySpan<int>(array);

   ReadOnlySpan<int> span2 = new Span<int>(array);

   string str = "Hello world";

   ReadOnlySpan<char> span3 = str.AsSpan();

   ReadOnlySpan<char> span4 = str.AsSpan(start: 6, length: 5);

}

Although it may not sound amazing at first glance, such type is in a way a game 

changer in many applications. First of all, it can significantly simplify some APIs. Let’s 

imagine an integer parsing routine, which may expect various types of memory (see 

Listing 14-3). Such an API surface grows very fast to include any possible usage scenario. 

On the other hand, it can be greatly simplified to a single method by using Span<char> 

(see Listing 14-4).

Listing 14-3. Problematic int parsing API

int Parse(string input);

int Parse(string input, int startIndex, int length);

unsafe int Parse(char* input, int length);

unsafe int Parse(char* input, int startIndex, int length);
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Listing 14-4. Simplified int parsing API with the help of Span<T>

int Parse(Span<int> input);

Thanks to Span<T>, the possibility to represent various forms of contiguous collection 

of values (like arrays, strings, pointers to unmanaged arrays, and so on, and so forth), it 

may greatly simplify APIs operating on them without creating a bunch of overloads or 

forcing users to create unnecessary copies (to adapt data to such API expectations).

Secondly, Span<T> greatly simplifies writing high-performance code, for example, 

by safely using stackalloc like in Listing 14-1. Most important, however, are its slicing 

abilities, which allow you to operate on smaller blocks of memory (e.g., when parsing) 

passing them around in your code without overhead. We will soon see how it was 

implemented to provide efficient slicing though. Moreover, most often all this may be 

done in a generic way so convenient helper methods or classes are possible.

Compiler is also smart enough to consider the lifetime of data wrapped into Span<T>. 

So it is perfectly fine to return from a method Span<T> wrapping managed array 

(because it outlives the method, see method ReturnArrayAsSpan in Listing 14-5), but it 

is not allowed to return local stack data (as it will be discarded after method ends, see 

illegal ReturnStackallocAsSpan method in Listing 14-5). Be careful when wrapping 

around unmanaged memory though, as one needs to remember to explicitly free it 

afterwards (see ReturnNativeAsSpan method in Listing 14-5 where we’ve allocated 

memory but never deallocated it).

Listing 14-5. Three examples of returning Span<T>

public Span<int> ReturnArrayAsSpan()

{

   var array = new int[64];

   return new Span<int>(array);

}

public unsafe Span<int> ReturnStackallocAsSpan()

{

    Span<int> span = stackalloc[] { 1, 2, 3, 4, 5 }; // Compilation Error 

CS8352: Cannot use local 'span' in this context because it may expose 

referenced variables outside of their declaration scope

   return span;

}
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public unsafe Span<int> ReturnNativeAsSpan()

{

   IntPtr memory = Marshal.AllocHGlobal(64);

   return new Span<int>(memory.ToPointer(), 8);

}

 Usage Examples

Let’s look at a few examples of Span<T> usage. Please be aware that at the time of writing 

this book, Span<T> is a quite new beast in the .NET ecosystem so there are not so many 

well-established design patterns related to it. However, a few nice examples are already 

there, especially in open sourced .NET-related libraries.

Slicing capabilities of bigger data are nicely utilized in the Kestrel server, used to host 

ASP.NET Core web applications. Appropriate fragments of HttpParser class from 

KestrelHttpServer GitHub repository are presented in Listing 14-6. As we can see, line-by-

line parsing of an incoming HTTP request is done by using slices of Span<T>. First, each line 

is passed as separate slice into the ParseRequestLine method. Then, each relevant part of 

such line (like HTTP path or query) is also sliced into separate Span<T> and passed further to 

OnStartLine method. This way no memory copying happens, like it would be in case of using 

string.Substring call. As Span<T> is stack allocated, there are no heap allocations at all.

OnStartLine method further uses passed Span<T> to provide required logic. 

Similarly, sliced HTTP headers are analyzed in the same HttpParser class.

Listing 14-6. Fragments of HttpParser class from KestrelHttpServer code

public unsafe bool ParseRequestLine(TRequestHandler handler, in 

ReadOnlySequence<byte> buffer, out SequencePosition consumed, out 

SequencePosition examined)

{

   var span = buffer.First.Span;

   var lineIndex = span.IndexOf(ByteLF);

   if (lineIndex >= 0)

   {

      consumed = buffer.GetPosition(lineIndex + 1, consumed);

      span = span.Slice(0, lineIndex + 1);

   }

   ...
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   // Fix and parse the span

   fixed (byte* data = &MemoryMarshal.GetReference(span))

   {

      ParseRequestLine(handler, data, span.Length);

   }

}

private unsafe void ParseRequestLine(TRequestHandler handler, byte* data, 

int length)

{

   int offset;

   // Get Method and set the offset

   var method = HttpUtilities.GetKnownMethod(data, length, out offset);

   // Find pathStart index

   var pathBuffer = new Span<byte>(data + pathStart, offset - pathStart);

   ...

   // Find queryStart index

   var targetBuffer = new Span<byte>(data + pathStart, offset - pathStart);

   var query = new Span<byte>(data + queryStart, offset - queryStart);

    handler.OnStartLine(method, httpVersion, targetBuffer, pathBuffer, 

query, customMethod, pathEncoded);

}

Another great example of using Span<T> is internal ValueStringBuilder ref struct 

defined in .NET CoreFX library. As its name indicates, its value-typed StringBuilder 

counterpart provides mutable string functionality.

As a ref struct, it is always stack allocated, getting rid of multithreading problems 

(because it will be always accessed only from the current thread). As an internal storage 

it uses Span<char>, which makes it storage agnostic (see Listing 14-7). It can be then 

initially backed up by stackalloc, native, or heap-allocated array. Ref returning indexer 

efficiently exposes individual characters.

Listing 14-7. Fragments of internal ValueStringBuilder class

internal ref struct ValueStringBuilder

{

   private char[] _arrayToReturnToPool;
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   private Span<char> _chars;

   private int _pos;

   public ValueStringBuilder(Span<char> initialBuffer)

   {

      _arrayToReturnToPool = null;

      _chars = initialBuffer;

      _pos = 0;

   }

   public ref char this[int index]

   {

      get

      {

         Debug.Assert(index < _pos);

         return ref _chars[index];

      }

   }

   ...

}

As we can see, private _pos field is a cursor indicating how many chars were already 

consumed. It is then easy to return a current builder content via set of AsSpan methods 

(see Listing 14-8) using slicing (thus, what is worth repeating yet once again, without any 

allocations).

Listing 14-8. Fragments of internal ValueStringBuilder class (slicing 

capability)

public ReadOnlySpan<char> AsSpan() => _chars.Slice(0, _pos);

public ReadOnlySpan<char> AsSpan(int start) => _chars.Slice(start, _pos - 

start);

public ReadOnlySpan<char> AsSpan(int start, int length) => _chars.

Slice(start, length);

If you really do need string, there is heap-allocating appropriate ToString method 

(see Listing 14-9). Please note that that it is then assumed that such instance has been 

consumed so Dispose method is being called (explained later).
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Listing 14-9. Fragments of internal ValueStringBuilder class (string returning 

capability)

public override string ToString()

{

   var s = new string(_chars.Slice(0, _pos));

   Dispose();

   return s;

}

Appending to such a builder is most often as easy as setting the proper character 

under the current cursor position (or multiple characters in case of appending string) 

as shown in Listing 14-10. Obviously, there may be a case when initially a used 

Span<char> runs out of space and there is a need to grow it. In such scenario, an array 

from ArrayPool<char> is being used to provide bigger storage (see Grow method in 

Listing 14-10) but yet again, it may be simply assigned to the same internal Span<char> 

due to its storage-agnostic nature.

Listing 14-10. Fragments of internal ValueStringBuilder class (appending logic)

   public void Append(char c)

   {

      int pos = _pos;

      if (pos < _chars.Length)

      {

         _chars[pos] = c;

         _pos = pos + 1;

      }

      else

      {

         GrowAndAppend(c);

      }

   }

   [MethodImpl(MethodImplOptions.NoInlining)]

   private void GrowAndAppend(char c)
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   {

      Grow(1);

      Append(c);

   }

   [MethodImpl(MethodImplOptions.NoInlining)]

   private void Grow(int requiredAdditionalCapacity)

   {

      Debug.Assert(requiredAdditionalCapacity > 0);

       char[] poolArray = ArrayPool<char>.Shared.Rent(Math.Max(_pos + 

requiredAdditionalCapacity, _chars.Length * 2));

      _chars.CopyTo(poolArray);

      char[] toReturn = _arrayToReturnToPool;

      _chars = _arrayToReturnToPool = poolArray;

      if (toReturn != null)

      {

         ArrayPool<char>.Shared.Return(toReturn);

      }

   }

Obviously, an array acquired from the array pool should be returned to it. This is 

handled in Dispose method (see Listing 14-11). Please note that while such method 

is named Dispose, ValueStringBuilder does not implement IDisposable interface 

because ref structs cannot implement interfaces! Thus, it is a sole programmer 

responsibility to explicitly call Dispose on such a builder instance.

Listing 14-11. Fragments of internal ValueStringBuilder class (dispoe logic)

   [MethodImpl(MethodImplOptions.AggressiveInlining)]

   public void Dispose()

   {

      char[] toReturn = _arrayToReturnToPool;

       this = default; // for safety, to avoid using pooled array if this 

instance is erroneously appended to again

      if (toReturn != null)
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      {

         ArrayPool<char>.Shared.Return(toReturn);

      }

   }

Using ValueStringBuilder is trivial. We just need some initial storage, small 

stackalloc buffer used most often, and pass it to its constructor (see Listing 14-12).

Listing 14-12. Example usage of ValueStringBuilder

public string UseValueStringBuilder()

{

   Span<char> initialBuffer = stackalloc char[40];

   var builder = new ValueStringBuilder(initialBuffer);

   // Logic using builder.Append(...);

   string result = builder.ToString();

   builder.Dispose();

   return result;

}

ValueStringBuilder is a very nice example of a type where many various 

modern techniques are used: ref structs, ref returns, Span<T>, ArrayPool<T>, and 

(most often) stackalloc. Make sure you understand it well and you are guaranteed 

that you understand these modern techniques well also. Please, feel invited to read 

ValueStringBuilder source code in the CoreFX Github repository.

there is also a very similar ValueListBuilder struct in CoreFX code. i invite you 
to read it also though!

Tempted by Span<T> flexibility, we could think of a concise solution to a small 

local buffer acquiring as in Listing 14-13. Below some small-size threshold, we are 

stackalloc-ating our buffer, while using ArrayPool for bigger ones. While it looks 

nice, is valid and compiles, it has one serious drawback. We have no way to return 

such an array to the pool (we cannot get back the original array from the Span<T> 

instance)!

CHAPter 14  AdvAnCed teCHniques



927

Listing 14-13. Attempt to provide concise conditional local buffer acquiring

private const int StackAllocSafeThreshold = 128;

public void UseSpanNotWisely(int size)

{

    Span<int> span = size < StackAllocSafeThreshold ? stackalloc int[size] : 

ArrayPool<int>.Shared.Rent(size);

   for (int i = 0; i < size; ++i)

      Console.WriteLine(span[i]);

   //ArrayPool<int>.Shared.Return(??);

}

If we think about it a little, ValueStringBuilder presented before is addressing a 

similar problem as code from Listing 14-14 (with additional feature of making such a 

local buffer growable).

If we insist in doing something similar as in Listing 14-13, we will hit some current 

C# limitations (as far as in current C# 7.3 state). For example, it is not possible to assign 

stackalloc result to an already defined variable (it may be assigned only in initializer). 

So this approach requires some additional code and becomes far less concise and 

pleasant (see Listing 14-14). We may encounter such code in the .NET base library 

though, as it does what it is supposed to do (unfortunately requiring unsafe, as it uses 

pointers).

Listing 14-14. Attempt to provide concise conditional local buffer acquiring

public unsafe void UseSpanWisely(int size)

{

   int* ptr = default;

   int[] array = null;

   if (size < StackAllocSafeThreshold)

   {

      int* localPtr = stackalloc int[size];

      ptr = localPtr;

   }

   else

   {

      array = ArrayPool<int>.Shared.Rent(size);

   }
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   Span<int> span = array ?? new Span<int>(ptr, size);

   for (int i = 0; i < size; ++i)

      Console.WriteLine(span[i]);

   if (array != null) ArrayPool<int>.Shared.Return(array);

}

One more typical usage of Span is a non-allocating substring by using "some 
string".AsSpan().Slice(...) method calls. this is a great way of string 
parsing not requiring costly string.Substring calls.

 Span<T> Internals

After being saturated with the examples for where you can use Span<T>, let’s go over to 

discuss how it all works. Although maybe not visible at first glance, its implementation is 

not trivial and reveals some interesting CLR internal issues. Thus, I dedicate quite a lot 

of words to explain various design decisions behind Span<T> internal workings, step by 

step. If you are really in a hurry, feel free to skip this section. Although, as always, I invite 

you to read it thoroughly! Span<T> is really at the heart of current changes in the .NET 

ecosystem so it is really nice to understand it well.

Knowing what Span<T> should provide, what design decisions come to our minds? 

To start with:

• As it may represent stack-allocated memory (like stackalloc), it itself 

should not appear on the heap (as it could outlive what it wraps) - so 

we have to use stack-allocated struct and somehow ensure it will not 

be boxed (first difficult challenge).

• Because of performance reasons, it would be nice to use struct 

anyway (no heap allocations).

• As we need to represent the memory region, we need to 

somehow represent two items of information: pointer (address) 

and the size.
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• If our Span<T> contains both pointer and size, we are exposed to 

multithreading issues if multiple threads are using it (so- called 

struct tearing) - both fields should be changed atomically. But such 

mandatory synchronization is very efficient in a type that we design 

for high-performance code (second difficult challenge).

• Our Span<T> may represent a subregion of a managed array (for 

example, because of slicing) so our pointer may point inside a 

managed object - if it reminds you of an interior pointer, excellent! 

In fact, ideally our pointer would be a managed pointer (which can 

point into an object’s interior). But we may remember that managed 

pointers are allowed only for local variables, arguments, and returns, 

not fields. Even struct fields are disallowed because struct may be 

boxed (third difficult challenge).

Those points conclude the most relevant design Span<T> considerations. Going 

further, all three difficult challenges we are facing could be solved if:

• We had type that may be only stack allocated - then it will be safe to 

store stack address there, and we get rid of threading issues as it is 

single threaded by default.

• We had the possibility to use a managed pointer as a field of 

Span<T> - then we can target any interesting memory type in a safe 

manner.

For sure you have noticed it already. Indeed, we have stack-only types - ref structs! 

Those byref-like types indeed suit our needs perfectly (to be honest - they were 

introduced mainly because Span<T> needed them). Moreover, byref-like types do not 

require runtime changes. Most of the work is done on the C# compiler side, and they 

are back compatible on the CIL level with both current .NET Core and .NET Framework. 

Thus, we may consider our first requirement fulfilled.

The second requirement is stronger. Having byref-like types, one could think of byref- 

like instance fields - a managed pointer could be a part of byref-like type because their 

limitations are related. In other words, a managed pointer may be safely a field of stack- 

only ref struct because it is guaranteed it will not escape to the heap. Unfortunately, 

currently both C# and CIL does not have support for such byref-like instance fields and 

runtime changes are required. Specially for Span<T> type, a new intrinsic (implemented 
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in runtime) type has been introduced to represent such byref-like instance field. Thus, 

the second requirement is fulfilled only in runtimes supporting that change. Currently 

this is only .NET Core 2.1 (and later ones).

Nothing is lost however. When the second requirement is not met, we can work 

around it without runtime support (and we will soon see how). This leads to a situation 

in which we have two versions of Span<T>, referred to as:

• “slow span” - it is a back-compatible version running on .NET 

Framework and .NET Core prior to version 2.1, which does not 

require runtime changes. Most probably .NET Framework will 

never include those changes due to backward-compatibility risks 

it brings.

• “fast span” - it is a version running with the support of byref-like 

instance field added in .NET Core 2.1.

Do not put too much attention to “slow” or “fast” names - both are still quite fast! 

Slow is simply a little slower than the second version. A corresponding benchmark from 

Listing 14-15 and results from Listing 14-16 clearly shows that:

• “fast” Span<T> in .NET Core 2.1 achieves performance similar to 

regular .NET array.

• “slow” Span<T> in .NET Framework is indeed slower by around 25%.

However, keep in mind that such a little contrived benchmark concentrates purely 

on data access via an indexer. More real-world examples show performance differences 

on the level of 12–15%.

Listing 14-15. Simple benchmark of access time with the help of Span (“slow” 

for .NET Framework, “fast” for .NET Core) and regular array, for comparison

public class SpanBenchmark

{

   private byte[] array;

   [GlobalSetup]

   public void Setup()
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   {

      array = new byte[128];

      for (int i = 0; i < 128; ++i)

         array[i] = (byte)i;

   }

   [Benchmark]

   public int SpanAccess()

   {

      var span = new Span<byte>(this.array);

      int result = 0;

      for (int i = 0; i < 128; ++i)

      {

         result += span[i];

      }

      return result;

   }

   [Benchmark]

   public int ArrayAccess()

   {

      int result = 0;

      for (int i = 0; i < 128; ++i)

      {

         result += this.array[i];

      }

      return result;

   }

}

Listing 14-16. Results of BenchmarkDotNet benchmark from Listing 14-1

      Method |           Job |     Mean |     Error | Allocated |

------------ |-------------- |---------:|----------:|----------:|

  SpanAccess |    .NET 4.7.1 | 90.35 ns | 0.1085 ns |       0 B |

 ArrayAccess |    .NET 4.7.1 | 66.86 ns | 0.7334 ns |       0 B |

  SpanAccess | .NET Core 2.1 | 65.81 ns | 0.7035 ns |       0 B |

 ArrayAccess | .NET Core 2.1 | 66.18 ns | 0.0603 ns |       0 B |
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Let’s now look how both versions are implemented in detail. We will look only at the 

most interesting aspects - construction from both managed and unmanaged memory 

and indexer implementation.

in further code listings, Unsafe class will be quite often used. this is a general- 
purpose class providing low-level operations on memory and pointers. it is briefly 
described later in this chapter. Unsafe usage presented here is quite self-
explanatory - it is used for casting and simple pointer arithmetic.

 “Slow Span”

“Slow Span” has to live without byref-like fields. To simulate an interior pointer as 

a field, we have to remember both an object reference and offset inside of it (see 

Listing 14-17). Keeping an object reference avoids creating GC hole - we need to 

make an object reachable because of wrapping in Span<T>. Obviously, the length is 

always required.

Listing 14-17. “Slow” Span<T> declaration in CoreFX repository

public readonly ref partial struct Span<T>

{

   private readonly Pinnable<T> _pinnable;

   private readonly IntPtr _byteOffset;

   private readonly int _length;

   ...

}

// This class exists solely so that arbitrary objects can be Unsafe-casted 

to it to get a ref to the start of the user data.

[StructLayout(LayoutKind.Sequential)]

internal sealed class Pinnable<T>

{

   public T Data;

}
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So how does construction of Span<T> from both managed and unmanaged data look? 

Wrapping around the managed array is straightforward (see Listing 14-18). We keep the 

whole reference to an array (making it discoverable by the GC to avoid collecting it), 

and we save the offset where the array data begins (this is what ArrayAdjustment really 

returns), optionally properly shifted in case of array slicing.

Listing 14-18. “Slow” Span<T> construction from managed array

public Span(T[] array)

{

   ...

   _length = array.Length;

   _pinnable = Unsafe.As<Pinnable<T>>(array);

   _byteOffset = SpanHelpers.PerTypeValues<T>.ArrayAdjustment;

}

public Span(T[] array, int start, int length)

{

   ...

   _length = length;

   _pinnable = Unsafe.As<Pinnable<T>>(array);

    _byteOffset = SpanHelpers.PerTypeValues<T>.ArrayAdjustment.

Add<T>(start);   // Add method realizes pointer arithmetic

}

Wrapping unmanaged memory is even simpler because there is no object reference 

that we should be worried about (see Listing 14-19). We only save the length and the 

address.

Listing 14-19. “Slow” Span<T> construction from unmanaged memory

public unsafe Span(void* pointer, int length)

{

   ...

   _length = length;

   _pinnable = null;

   _byteOffset = new IntPtr(pointer);

}
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The area from which the difference in performance between both Span<T> types 

is mostly visible is access to the memory elements. Indexer of “slow Span” has to 

perform more calculations - in case of a managed array, it adds to an object address 

byte offset where data begins and byte offset of the element under a given index (see 

Listing 14-20).

Listing 14-20. Indexer implementation in “slow” Span<T>

public ref T this[int index]

{

   get

   {

      if (_pinnable == null)

          unsafe { return ref Unsafe.Add<T>(ref Unsafe.AsRef<T>(_byteOffset.

ToPointer()), index); }

      else

          return ref Unsafe.Add<T>(ref Unsafe.AddByteOffset<T> 

(ref _pinnable.Data, _byteOffset), index);

   }

}

if you would like to investigate “slow” Span<T> source code more, look at  
.\corefx\src\System.Memory\src\System\Span.Portable.cs file.

 “Fast Span”

“Fast Span” has runtime support of byref-like fields. We could imagine it looks like in 

Listing 14-21. But C# does not support any syntax to represent byref- like fields so until 

they will be added (if ever), a dedicated type was introduced to represent such fields.

Listing 14-21. Hypothetical syntax of byref-like fields in “fast” Span<T> declaration

public readonly ref partial struct Span<T>

{

   internal readonly ref T _pointer;
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   private readonly int _length;

   ...

}

This type is named ByReference<T> so the true declaration of “fast” Span<T> 

looks like in Listing 14-22. Internal ByReference<T> type is handled by runtime 

specially to wrap around its managed pointer nature (and currently only Span<T> and 

ReadOnlySpan<T> types are using it).

Listing 14-22. Fast Span declaration (including ByReference<T> type) in CoreFX 

repository

// ByReference<T> is meant to be used to represent "ref T" fields. It is  

// working around lack of first class support for byref fields in C# and IL.  

// The JIT and type loader has special handling for it that turns it  

// into a thin wrapper around ref T.

[NonVersionable]

internal ref struct ByReference<T>

{

   private IntPtr _value;

   ...

}

public readonly ref partial struct Span<T>

{

   /// <summary>A byref or a native ptr.</summary>

   internal readonly ByReference<T> _pointer;

   /// <summary>The number of elements this Span contains.</summary>

   private readonly int _length;

   ...

}
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Thanks to the byref-like field, this version of Span<T> has simpler implementation. 

Both managed and unmanaged data is held by such a byref- like field (see Listing 14-23). 

As managed (interior) pointer is considered by the GC, no risk exists that the relevant 

managed object will be collected.

Listing 14-23. “Fast” Span<T> construction from both managed and unmanaged 

memory

public Span(T[] array)

{

    _pointer = new ByReference<T>(ref Unsafe.As<byte, T>(ref array.

GetRawSzArrayData()));

   _length = array.Length;

}

public Span(T[] array, int start, int length)

{

    _pointer = new ByReference<T>(ref Unsafe.Add(ref Unsafe.As<byte, T>(ref 

array.GetRawSzArrayData()), start));

   _length = length;

}

public unsafe Span(void* pointer, int length)

{

    _pointer = new ByReference<T>(ref Unsafe.As<byte, T>(ref *(byte*)

pointer));

   _length = length;

}

Moreover, access to the memory elements is trivial and requires only very fast 

pointer arithmetic (see Listing 14-24) - which results in comparable performance to 

regular arrays.

Listing 14-24. Indexer implementation in “fast” Span<T>f

public ref T this[int index]

{

   get
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   {

      return ref Unsafe.Add(ref _pointer.Value, index);

   }

}

The other component of the performance difference comes from JIT compiler 

improvements in CoreCLR. In particular, it does better bounds check elimination 

when for looping the “fast” span. Another difference is that “fast” span is simply 

smaller and such a cheaper to pass by value, which shows in some code that passes 

it a lot.

Interestingly, if you think about it, from the GC overhead point of view, “slow” and 

“fast” Span<T> are a little opposite. “Slow” version contains direct object reference 

(in case of wrapping managed object) so it will be faster to traverse. “Fast” version 

will contain interior pointer, whose dereferencing is slower (requires plugs traversal 

and scanning). However, this difference is negligible, and it is even hard to imagine 

application with such a big number of simultaneously living Span<T> that any difference 

may be noticed.

General byref-like fields? is there a chance that general-purpose byref fields will 
be introduced to C#? it is unlikely it will be justified to allow them for classes 
(which will in fact introduce heap-to-heap interior pointers). As already mentioned, 
it gives too little compared to the difficulty of implementation.

But what about general-purpose byref-like fields to be allowed in byref-like (ref 
struct) types? Will code like in Listing 14-21 ever be possible? there are ongoing 
discussions, and maybe you already know the answer a year or two after reading 
this book. Besides array slicing already exposed via Span<T>, one could think of 
other usages of such fields: structs that are interconnected by pointers for faster 
traversal, returning multiple byref results in a single byref-like struct and so on, 
and so forth. However, as far as i know, CLr team has no plans to generalize this 
feature.
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 Memory<T>
Span<T> is great and fast. But as we’ve seen, it has many limitations. Many of them are 

especially painful when considering asynchronous code. For example, Span<T> can’t live 

on the heap, which then means that it can’t be boxed so it can’t be a field on the async state 

machine type that might itself be on the heap. Thus, a complementary type was introduced - 

Memory<T>. It still represents a contiguous region of arbitrary memory similar to Span<T>, 

but it is not a byref- like type and does not contain a byref-like instance field. So unlike 

Span<T>, this type can exist on the heap (although it is still struct for performance reasons, it 

is not ref struct). It can be a field of normal objects, it can be used in async states machines, 

etc. It is disallowed to wrap stack data with Memory<T> (like returned from stackalloc).

Memory<T> may wrap around the following data (see Listing 14-25):

• array T[] - used as a preallocated buffer reused through asynchronous 

calls or in APIs for which the limitation to use Span<T> is too strong,

• string - in such case it is represented as ReadOnlyMemory<char>,

• type that implements IMemoryOwner<T> - used in scenarios where 

more control about Memory<T> instance’s lifetime is required (we will 

look at such scenario soon).

Listing 14-25. Sample Memory<T> usages

byte[] array = new byte[] {1, 2, 3};

Memory<byte> memory1 = new Memory<byte>(array);

Memory<byte> memory2 = new Memory<byte>(array, start: 1, length: 2);

ReadOnlyMemory<char> memory3 = "Hello world".AsMemory();

You can imagine Memory<T> as a box that can be freely allocated and passed in and 

out through methods. Mostly its storage is not directly accessible. To utilize it, you have 

the following options:

• Span<T> may be generated from it for local, efficient use (hence 

Memory<T> is often described as “Span factory”).

• in case of Memory<char> you may generate string from it by calling 

ToString, in other cases ToArray may be used (remember that both 

are allocating new reference type!).

• like Span<T>, it can be sliced via Slice methods.
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Both slicing and generating Span<T> are efficient operations that do not allocate 

anything - it is just wrapping around a given memory range into a struct. And as we know 

it, the whole operation may be sometimes enregistered so even no stack usage may be 

required.

As mentioned, asynchronous code is the most common use of Memory<T>, as a 

replacement for Span<T> (see Listing 14-26). Inside the asynchronous code payload of 

the Memory<T> may be accessed in ways listed before (Listing 14-26 uses direct ToString 

conversion).

Listing 14-26. Example of using ReadOnlyMemory<T> instead of Span<T> in 

asynchronous code

public static async Task<string> FetchStringAsync(ReadOnlySpan<

char> requestUrl) // Error CS4012  Parameters or locals of type 

'ReadOnlySpan<char>' cannot be declared in async methods or lambda 

expressions.

{

   HttpClient client = new HttpClient();

   var task = client.GetStringAsync(requestUrl.ToString());

   return await task;

}

public static async Task<string> FetchStringAsync(ReadOnlyMemory<char> 

requestUrl)

{

   HttpClient client = new HttpClient();

   var task = client.GetStringAsync(requestUrl.ToString());

   return await task;

}

Let’s look at a more complex example (see Listing 14-27). BufferedWriter class 

implements buffered writing to a specified Stream2. It uses internally a small array of 

bytes (writeBuffer) and keeps track of its current utilization by writeOffset field. The 

only public WriteAsync method is asynchronous so it accepts ReadOnlyMemory<byte> as 

2 Although specific Stream implementation may implement its buffering and flushing 
mechanisms, this is used for example purposes. In fact, such design is used in classes like 
FileStream where stream is replaced by native OS calls.
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a source. This makes it more generic and flexible than various overloads that accept an 

array, a string, a native memory pointer, and so on, and so forth.  Dependency only on 

ReadOnlyMemory<T> allows us to write much more concise code, as long as the source is 

compatible with ReadOnlyMemory<T>.

Inside asynchronous WriteAsync method, ReadOnlyMemory<T> is used to get the 

appropriate span from it and pass it to private, synchronous method WriteToBuffer 

that consumes it. Inside WriteToBuffer method another Span<T> wraps 

writeBuffer to use the convenient CopyTo method. Additionally, slicing capabilities 

help to write simple while loop in the WriteAsync method that consumes sources 

in chunks. Please note also that BufferedWriter class does not allocate anything 

besides writeBuffer.

Listing 14-27. Example of ReadOnlyMemory<T> and ReadOnlySpan<T> 

cooperation

public class BufferedWriter : IDisposable

{

   private const int WriteBufferSize = 32;

   private readonly byte[] writeBuffer = new byte[WriteBufferSize];

   private readonly Stream stream;

   private int writeOffset = 0;

   public BufferedWriter(Stream stream)

   {

      this.stream = stream;

   }

   public async Task WriteAsync(ReadOnlyMemory<byte> source)

   {

      int remaining = writeBuffer.Length - writeOffset;

      if (source.Length <= remaining)

      {

         // Fits in current write buffer. Just copy and return.

         WriteToBuffer(source.Span);

         return;

      }
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      while (source.Length > 0)

      {

         // Fit what we can in the current write buffer and flush it.

          remaining = Math.Min(writeBuffer.Length - writeOffset, source.

Length);

         WriteToBuffer(source.Slice(0, remaining).Span);

         source = source.Slice(remaining);

         await FlushAsync().ConfigureAwait(false);

      }

   }

   private void WriteToBuffer(ReadOnlySpan<byte> source)

   {

       source.CopyTo(new Span<byte>(writeBuffer, writeOffset,  

source.Length));

      writeOffset += source.Length;

   }

   private Task FlushAsync()

   {

      if (writeOffset > 0)

      {

         Task task = stream.WriteAsync(writeBuffer, 0, writeOffset);

         writeOffset = 0;

         return task;

      }

      return default;

   }

   public void Dispose()

   {

      stream?.Dispose();

   }

}
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 IMemoryOwner<T>
There is one issue with Memory<T> - lifetime control. In contrary, Span<T> has a very 

restricted lifetime limited by the method lifetime so it was guaranteed that wrapped 

memory will not outlive it3. Memory<T>, quite oppositely, has less strict lifetime 

limitations (as it may wrap heap-allocated objects). In other words, the relation between 

Memory<T> and the memory it wraps is not obvious.

One could think about making Memory<T> to use explicit resource management - 

because underlying memory can be seen as resource. In .NET words - maybe it should 

be disposable? However, Memory<T> instances are passed around between various 

methods, including asynchronous ones. Who and when should be responsible for calling 

Dispose on such instance would be problematic to determine. We could implement 

the reference counting approach as the solution but it has its own problems - mostly it 

imposes the need for multithreaded synchronization when building a general-purpose 

solution.

Thus, another, more flexible solution was proposed - an additional level of control 

in the form of ownership semantic. If there is a requirement for Memory<T> with a 

controlled lifetime, we must provide its owner in the form of IMemoryOwner<T> interface 

implementation (see Listing 14-28). Memory<T> instances are accessible from the owner 

as the public Memory property. IMemoryOwner<T> implements IDisposable interface 

so it is clear that the owner itself realizes explicit resource management and controls 

ownership of the given Memory<T>.

Usage of IMemoryOwner instances is restricted by convention (like always in case of 

IDisposable) - we have to remember to call Dispose, with the help, for example, of the 

using clause. Or we may realize ownership semantics - there should be always only one 

object (or method) that “owns” IMemoryOwner instance, and it is clear it is the one that 

will have to call Dispose when the job is done.

Listing 14-28. IMemoryOwner<T> interface declaration

/// <summary>

///  Owner of Memory<typeparamref name="T"/> that is responsible for 

disposing the underlying memory appropriately.

/// </summary>

3 Unless we have passed an unmanaged address, see ReturnNativeAsSpan method in Listing 14-5.
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public interface IMemoryOwner<T> : IDisposable

{

   Memory<T> Memory { get; }

}

IMemoryOwner<T> and ownership semantics are not necessary in cases such as 
simple as in Listing 14-25. then, the GC becomes the only one, implicit “owner” 
of the underlying memory. it will take care of collecting it when all Memory<T> 
instances using it will be dead.

A typical example when explicit resource management is required is wrapping 

around an object rented from a pool, like an array from ArrayPool<T> (see Listing 

14- 29). If we rented an array from a pool and wrapped it in Memory<T>, when it should 

be returned? Inside Consume method, in our example? Or maybe after await ends? But 

what if Consume method stored somewhere reference to passed Memory<T> (it is possible 

because it may be boxed)?

Listing 14-29. Problematic ownership of underlying Memory<T> memory

Memory<int> pooledMemory = new Memory<int>(ArrayPool<int>.Shared.

Rent(128));

await Consume(pooledMemory);

IMemoryOwner<T> interface helps to organize things a little - only the method or 

class holding it should be worried about explicit cleanup of resources. IMemoryOwner<T> 

instance should be very carefully passed - if some method or type’s constructor accepts 

it, such method or type should be treated as the new owner of the underlying memory 

(it should call Dispose afterwards or pass such instance further). It is assumed that such 

owner, meaning a given method or a whole type, may safely consume the underlying 

Memory property.

To see it in action, we can use MemoryPool<T> class already exposed in System.Memory 

NuGet package that wraps around the array instance returned from ArrayPool<T>.

Shared instance. Listing 14-30 shows a simple usage example when ownership is 

controlled by using a clause inside a single method and Listing 14-31 shows an example 

when the entire type is the owner of underlying memory. In the latter case, such type 

should also be disposable to make it clear it has some explicit cleanup to perform.
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Listing 14-30. An example of Memory<T> with explicit owner as a method

using (IMemoryOwner<int> owner = MemoryPool<int>.Shared.Rent(128))

{

   Memory<int> memory = owner.Memory;

   ConsumeMemory(span);

   ConsumeSpan(memory.Span);

}

Listing 14-31. An example of Memory<T> with explicit owner as a type

public class Worker : IDisposable

{

   private readonly IMemoryOwner<byte> memoryOwner;

   public Worker(IMemoryOwner<byte> memoryOwner)

   {

      this.memoryOwner = memoryOwner;

   }

   public UseMemory()

   {

      ConsumeMemory(memoryOwner.Memory);

      ConsumeSpan(memoryOwner.Memory.Span);

   }

   public void Dispose()

   {

      this.memoryOwner?.Dispose();

   }

}

MemoryPool<T>.Shared uses static ArrayMemoryPool<T> instance whose 
Rent method returns new ArrayMemoryPoolBuffer<T> instance. it implements 
IMemoryOwner<T> in a trivial way - its constructor rents a properly sized array 
from ArrayPool<T>.Shared while Dispose method returns it to the pool. 
ArrayMemoryPool<T>.Memory property just wraps around a rented array 
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into a new Memory<T> instance. if you would like to investigate this code on 
your own, read .\corefx\src\System.Memory\src\System\Buffers\
ArrayMemoryPool.cs and .\corefx\src\System.Memory\src\System\
Buffers\ArrayMemoryPool.ArrayMemoryPoolBuffer.cs files.

For example, we could make BufferedWriter from Listing 14-27 more flexible and 

let it accept underlying buffer, instead of allocating its own (see Listing 14-32). This 

allows us to populate it with a rented array or, for example, unmanaged memory.

Listing 14-32. Modification of BufferedWriter class from Listing 14-27 that uses 

provided buffer

public class FlexibleBufferedWriter : IDisposable

{

   private const int WriteBufferSize = 32;

   private readonly IMemoryOwner<byte> memoryOwner;

   private readonly Stream stream;

   private int writeOffset = 0;

    public FlexibleBufferedWriter(Stream stream, IMemoryOwner<byte> 

memoryOwner)

   {

      Debug.Assert(memoryOwner.Memory.Length > MinimumWriteBufferSize);

      this.stream = stream;

      this.memoryOwner = memoryOwner;

   }

   ...

   public void Dispose()

   {

      stream?.Dispose();

      memoryOwner?.Dispose();

   }

}
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Thanks to the possibility of getting Span<T> from Memory<T>, most implementation 

of our changed FlexibleBufferedWriter is very similar to previous BufferedWriter. 

For example, WriteToBuffer method uses now CopyTo method between source Span<T> 

and Span<T> representing owned memory (see Listing 14-33). In WriteAsync method, all 

calls to writeBuffer.Length may be safely replaced to memoryOwner.Memory.Length.

Listing 14-33. FlexibleBufferedWriter.WriteToBuffer method 

implementation

private void WriteToBuffer(ReadOnlySpan<byte> source)

{

    source.CopyTo(memoryOwner.Memory.Span.Slice(writeOffset, source.

Length));

   writeOffset += source.Length;

}

Unfortunately, not all APIs will be always aligned to use Span/Memory classes 

(although hopefully soon most BCL types will cover it). For example, before .NET 

Core 2.1, Stream.WriteAsync method accepted only a byte array parameter. In such 

a case, we have to convert it accordingly (see Listing 14-34). If we are lucky and the 

underlying storage is an array, MemoryMarshal.TryGetArray will succeed (we will look 

at MemoryMarshal later in this chapter) and we will get an underlying array instance 

without copying. In other cases, we have to copy the data to a temporary array (so it is 

better to rent it from the pool to at least avoid allocations). Note that we need now to 

return optionally rented shared buffer to return the pool by the FlushAsync method 

caller.

Be prepared for the need for this kind of solutions by writing a low-level code. And 

although code from Listing 14-34 may not be necessary after adjusting Stream API, it 

serves well as an interesting example of cooperation between various functionalities 

described in this chapter.

Listing 14-34. FlexibleBufferedWriter.FlushAsync method implementation

private Task FlushAsync(out byte[] sharedBuffer)

{

   sharedBuffer = null;

   if (writeOffset > 0)
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   {

      Task result;

       if (MemoryMarshal.TryGetArray(memoryOwner.Memory, out 

ArraySegment<byte> array))

      {

          result = stream.WriteAsync(array.Array, array.Offset, 

writeOffset);

      }

      else

      {

         sharedBuffer = ArrayPool<byte>.Shared.Rent(writeOffset);

          memoryOwner.Memory.Span.Slice(0, writeOffset).CopyTo(sharedBuffer);

         result = stream.WriteAsync(sharedBuffer, 0, writeOffset);

      }

      writeOffset = 0;

      return result;

   }

   return default;

}

General-purpose classes that accept buffers are generally good design patterns that 

should be followed by libraries creators (at least as opt-in possibility). Especially all kind 

of serializers or other memory-intensive code is well-behaving if it allows us to specify 

explicitly provided buffers or pooling mechanism. You can plug in your own machinery 

then, instead of relying on the internal ones (or no buffering, allocating-all-the-way 

machinery in the worst case).

Memory<T> may be used in P/invoke scenarios so it may be necessary to pin 
underlying memory. For that purpose, Memory<T> exposes Pin method that 
returns MemoryHandle struct instance (disposable object that represents pinned 
memory). in case of wrapping string or array, it pins them via GCHandle. in case 
of Memory<T> returned from IMemoryOwner<T>, it is expected that such owner 
is an implementation of an abstract class MemoryManager<T>. such class 
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additionally implements IPinnable interface with Pin and Unpin methods. 
its Pin method is called from Memory<T>.Pin method and Unpin method is 
called from MemoryHandle.Dispose method. in that way, the memory owner 
is responsible for proper pinning and unpinning memory it owns. We will not look 
thoroughly into Memory<T> pinning as it is mostly related to P/invoke, being not 
our main interest.

 Memory<T> Internals
Unlike Span<T>, the implementation of Memory<T> is quite obvious and does not 

contain any puzzles. Of course, this is due to current runtime limitations of managed 

pointers. When designing Memory<T> we should take into account the following aspects:

• it should have reference type lifetime - although it may start as a 

struct and only be boxed if needed.

• heap-allocated objects are represented only by reference - currently 

interior pointers cannot live on heap so this is obvious. This simplifies 

design as the only two types where “interior-like” behavior makes sense 

are arrays and strings (because they are indexable and may be sliced).

• stack-allocated addresses do not need to be represented.

• unmanaged memory requires explicit resource management - thus 

it may be backed up by an additional owner class, as explained 

previously.

Those points lead to simple Memory<T> implementation. Listing 14- 35 shows an 

excerpt from the current CoreFX source code. There is simply a managed reference kept 

(be it an array or string), index and the length (used for slicing). Construction is also 

mostly trivial.

Listing 14-35. Memory<T> declaration in CoreFX repository (including example 

of one constructor)

public readonly struct Memory<T>

{

   private readonly object _object;
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   private readonly int _index;

   private readonly int _length;

   ...

}

public Memory(T[] array, int start, int length)

{

   ...

   _object = array;

   _index = start;

   _length = length;

}

But because of Memory<T> flexibility, it cannot expose a general- purpose indexer. 

As previously said, memory may be accessed by slicing and converting to Span<T>. 

Span property itself has simple implementation also (see Listing 14-36). In case of array 

or string, appropriate sliced span is returned. If memory is owned, getting a span is 

delegated to the owner (by calling GetSpan method).

Listing 14-36. Excerpt from Span property implementation in Memory<T>

public Span<T> Span

{

   get

   {

      if (_index < 0)

      {

          return ((MemoryManager<T>)_object).GetSpan().Slice(_index & 

RemoveFlagsBitMask, _length);

      }

      else if (typeof(T) == typeof(char) && _object is string s)

      {

         // return string slice as a Span

      }
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      else if (_object != null)

      {

          return new Span<T>((T[])_object, _index, _length & 

RemoveFlagsBitMask);

      }

      ...

   }

}

When analyzing Memory<T> code you will notice that both _index and _length 
are sometimes manipulated by bit flags to indicate the type of memory wrapped. 
this is due to tight memory usage requirements. While an additional field could 
be added for that purpose (let’s say - an enum), this would obviously noticeably 
increase the size of the object to store relevantly small information. thus, for 
example, the highest order bit of _index is used to discern whether _object is 
an array/string or an owned memory.

You may wonder how unmanaged memory may be represented by Memory<T> fields 

shown in Listing 14-35. Because unmanaged memory requires explicit cleanup, in such 

case _object field would represent appropriate MemoryManager<T> implementation that 

is responsible for allocating and releasing underlying memory. A very brief outline of 

such a manager is presented in Listing 14-37, inspired by internal NativeMemoryManager 

class from System.Buffers namespace.

Listing 14-37. Example of native memory managed

class NativeMemoryManager : MemoryManager<byte>

{

   private readonly int _length;

   private IntPtr _ptr;

   public NativeMemoryManager(int length)

   {

      _length = length;

      _ptr = Marshal.AllocHGlobal(length);

   }
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   protected override void Dispose(bool disposing)

   {

      ...

      Marshal.FreeHGlobal(_ptr);

      ...

   }

    public override Memory<byte> Memory => CreateMemory(_length);    

// Creates Memory<T> instance that sets this as wrapped object

    public override unsafe Span<byte> GetSpan() => new Span<byte>((void*)_

ptr, _length);

 Span<T> and Memory<T> Guidelines
After learning quite a lot about those types, the question arises when to use them and 

which should be preferred? Please find the following rules regarding their usage:

• use Span<T> or Memory<T> in high-performance, general-purpose 

code - most probably you do not need to clutter all your business 

logic with it.

• prefer Span<T> over Memory<T> as a method argument if possible - 

it is faster (with runtime support) and may represent more 

memory types. In asynchronous code there is no choice other than 

Memory<T> though.

• prefer read-only version over mutable ones - to express the intent 

and make it safer. Do not use regular versions by default. Also, use 

it because it’s more accepting, for example, if you expose a method 

that accepts a Span<T>, a ReadOnlySpan<T> can’t be passed to that 

method, but if you expose a method that accepts a ReadOnlySpan<T>, 

then both a Span<T> and a ReadOnlySpan<T> can be passed to it.

• remember that IMemoryOwner<T> instance (or MemoryManager<T>) 

is... ownership - at some point Dispose method must be called 

on it. For safety, ideally only a single object at the moment should 

keep such instance. Types that keep IMemoryOwner<T> (which is 

a disposable object) should also be disposable (to manage this 

resource appropriately).
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 Unsafe
System.Runtime.CompilerServices.Unsafe package provides generic, low-level 

functionality for manipulating pointers in a safer way than using plain unsafe code 

(based on pointers and fixed statements) and express some capabilities possible in 

CIL but not in C# directly. However, what it allows is still really unsafe and dangerous! 

Thanks to its flexibility, Unsafe class is widely used in modern .NET libraries code (many 

types like Span<T>, Memory<T>, and others are relying on it underneath).

Describing all capabilities of Unsafe class is by far possible in this book because 

it is like describing all capabilities of pointer arithmetic or pointer casting - you really 

can do anything you want. Instead, a short brief of these class methods and a few 

usage examples are presented to give you an overall grasp of what and how you can do 

with it.

System.Runtime.CompilerServices.Unsafe provides a rich set of methods (see 

Listing 14-38). They may be grouped into the following functional groups:

• casting and reinterpretation - you can convert between unmanaged 

pointer and ref type back and forth. Additionally, you can convert 

between any two ref types (yes, it is as dangerous as it sounds).

• pointer arithmetic - you can add or subtract ref type instances 

like regular pointers (and if you remember the managed pointers 

description, you already imagine all those boundary cases when it is 

dangerous as hell).

• information - lets you get various information, like size or byte offset 

between two ref type instances.

• memory access - you can write or read anything from everywhere.

Listing 14-38. Unsafe class API - some overloads removed for brevity, methods 

are reordered into feature-like groups, comments are my own

public static partial class Unsafe

{

   // Casting/reinterpretation

   public unsafe static void* AsPointer<T>(ref T value)

   public unsafe static ref T AsRef<T>(void* source)

   public static ref TTo As<TFrom, TTo>(ref TFrom source)
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   // Pointer arithmetic

   public static ref T Add<T>(ref T source, int elementOffset)

   public static ref T Subtract<T>(ref T source, int elementOffset)

   // Informative methods

   public static int SizeOf<T>()

   public static System.IntPtr ByteOffset<T>(ref T origin, ref T target)

   public static bool IsAddressGreaterThan<T>(ref T left, ref T right)

   public static bool IsAddressLessThan<T>(ref T left, ref T right)

   public static bool AreSame<T>(ref T left, ref T right)

   // Memory access methods

   public unsafe static T Read<T>(void* source)

   public unsafe static void Write<T>(void* destination, T value)

   public unsafe static void Copy<T>(void* destination, ref T source)

   // Block-based memory access

    public static void CopyBlock(ref byte destination, ref byte source, uint 

byteCount)

    public unsafe static void InitBlock(void* startAddress, byte value, uint 

byteCount)

}

It is clear that Unsafe is not a general-purpose class. It can be used in only very 

specific, well-controlled places where the programmer really knows what it wants to do 

and considered all uncommon, boundary cases. Do not treat this class as a helper to 

overcome strange type-safety problems, for example, to break a type hierarchy in object- 

oriented programming!

Let’s look at few examples. First of all, we have already seen important Unsafe class 

usage in Listings 14-18, 14-20, 14-23, and 14-24 where casting and pointer arithmetic 

were used to implement Span<T>.

Casting is a powerful tool though. For example, we can cast one managed type to 

another, completely unrelated type (see Listing 14-39). Memory of source instance is 

reinterpreted with respect to the field’s layout of the target instance. In our simple example 

we are just reinterpreting two successive integers as long, which may even make some 

sense. Please note that even such low-level pointers operations are used, DangerousPlays 

method is not marked as unsafe because Unsafe class wraps everything inside.
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Listing 14-39. Dangerous but working code - casting with Unsafe.As

public class SomeClass

{

   public int Field1;

   public int Field2;

}

public class SomeOtherClass

{

   public long Field;

}

public void DangerousPlays(SomeClass obj)

{

    ref SomeOtherClass target = ref Unsafe.As<SomeClass, SomeOtherClass> 

(ref obj);

   Console.WriteLine(target.Field);

}

such powerful casting is used, for example, to break mutability rules and allows 
them to cast between Memory<T> and ReadOnlyMemory<T> in both directions. 
this of course requires that both types have the same memory layout.

Casting is, for example, intensively used in BitConverter static class to convert from 

byte arrays back and forth to various types (see Listing 14-40).

Listing 14-40. Example of Unsafe usage in BitConverter class

public static byte[] GetBytes(double value)

{

   byte[] bytes = new byte[sizeof(double)];

   Unsafe.As<byte, double>(ref bytes[0]) = value;

   return bytes;

}
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While using all that memory reinterpretation, imagine primitive types 

reinterpreted into references or the other way around! Obviously, this is extremely 

dangerous and most probably will lead to the whole runtime crash. As an illustration, 

see Listing 14-41 as an example of such careless casting. VeryDangerous method will 

throw AccessViolationException (unless we are so unusual lucky that the value of 

Long1 had the value of the valid string).

Listing 14-41. Very dangerous code - casting with Unsafe.As

public struct UnmanagedStruct

{

   public long Long1;

   public long Long2;

}

public struct ManagedStruct

{

   public string String;

   public long Long2;

}

public void VeryDangerous(ref UnmanagedStruct data)

{

    ref ManagedStruct target = ref Unsafe.As<UnmanagedStruct, 

ManagedStruct>(ref data);

    Console.WriteLine(target.String);   //  Value of Long1 is now treated as 

string reference!

}

Pointer arithmetic is the other popular usage of Unsafe. As a good example, consider 

the may serve Array.Reverse static method implementation (see Listing 14-42). This is 

nothing else than a reincarnation of regular C or C++-like code manipulating pointers to 

reverse an array in place.

Listing 14-42. Example of Unsafe usage in Array.Reverse static method

public static void Reverse<T>(T[] array, int index, int length)

{

   ...
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    ref T first = ref Unsafe.Add(ref Unsafe.As<byte, T>(ref array.

GetRawSzArrayData()), index);

   ref T last = ref Unsafe.Add(ref Unsafe.Add(ref first, length), -1);

   do

   {

      T temp = first;

      first = last;

      last = temp;

      first = ref Unsafe.Add(ref first, 1);

      last = ref Unsafe.Add(ref last, -1);

   } while (Unsafe.IsAddressLessThan(ref first, ref last));

}

Because many Span<T>, Memory<T>, and Unsafe usages require the same patterns, 

the MemoryMarshal helper class was introduced with many static methods. To name only 

a few of them:

• AsBytes - converts any Span<T> of primitive type (struct) to 

Span<byte>,

• Cast - converts between two Span<T> of primitive types (structs),

• TryGetArray, TryGetMemoryManager, TryGetString - tries to convert 

from given Memory<T> (or ReadOnlyMemory<T>) to a specific type,

• GetReference - to ref return underlying Span<T> or ReadOnlySpan<T> 

object.

With the MemoryMarshal class we can even more easily do “magic” things. For 

example, we can take a part of some struct and reinterpret it as another struct, all 

without any copying (see Listing 14-43).

Listing 14-43. Example of MemoryMarshal usage

public struct SmallStruct

{

   public byte B1;

   public byte B2;

   public byte B3;

   public byte B4;

CHAPter 14  AdvAnCed teCHniques



957

   public byte B5;

   public byte B6;

   public byte B7;

   public byte B8;

}

public unsafe void Reinterpretation(ref UnmanagedStruct data)

{

   var span = new Span<UnmanagedStruct>(Unsafe.AsPointer(ref data), 1);

   ref var part = ref MemoryMarshal

                      // cast from Span<byte> to Span<SmallStruct>

                      .Cast<byte, SmallStruct>(

                          // cast from Span<UnmanagedStruct> to Span<byte>

                          MemoryMarshal.AsBytes(span)

                                       //  slice accordingly and access 

first element

                                       .Slice(0, 8))[0];

   Console.WriteLine(part.B1); // Get the first byte

}

One may wonder where all that “magic” may be useful for him. Does a regular 

.NET developer need Unsafe at all? To be honest, mostly not. I imagine Unsafe usage 

only in low-level operating libraries code - serialization, binary logging, network 

communication, and so on, so forth. For example, popular jemalloc.NET library uses it 

to provide strong typing over underlying unmanaged memory (see Listing 14-44).

Listing 14-44. Example of Unsafe usage in jemalloc.NET - FixedBuffer.Read 

method

[MethodImpl(MethodImplOptions.AggressiveInlining)]

public unsafe ref C Read<C>(int index) where C : struct

{

   return ref Unsafe.AsRef<C>(PtrTo(index));

}
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jemalloc.net is a great .net library written by Allister Beharry and hosted on 
GitHub (https://github.com/allisterb/jemalloc.NET). As the author 
says, it is a wrapper “over the jemalloc native memory allocator and provides 
.net applications with efficient data structures backed by native memory for 
large scale in-memory computation scenarios.” jemalloc is indeed a popular and 
efficient malloc replacement. Feel free to read about its internal  implementation 
at http://jemalloc.net/ and also feel invited to experiment with jemalloc.
net. due to the book=size limitations, not without regret, i have to skip a 
description of this library.

speaking of unmanaged memory wrappers, there is also ongoing work on the 
Microsoft side - project snowflake. Currently its status is a little frozen but 
expect open sourcing it sooner or later. You can read about it on https://www.
microsoft.com/en-us/research/publication/project- snowflake- 
non-blocking-safe-manual-memory-management-net/ site.

 Unsafe Internals
In fact, what Unsafe class really does is wrap various IL-based possibilities that are 

otherwise not possible to express in C# - because IL type control is less strict than that 

incurred by C# compiler. CIL implementation of most Unsafe methods are really trivial 

(see Listing 14-45).

Listing 14-45. Example of Unsafe method implementation (in Common 

Intermediate Language)

.method public hidebysig static !!TTo& As<TFrom, TTo> (!!TFrom& source) cil 

managed

{

   IL_0000: ldarg.0

   IL_0001: ret

}

.method public hidebysig static !!T& Add<T> (!!T& source, int32 

elementOffset) cil managed
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{

   IL_0000: ldarg.0

   IL_0001: ldarg.1

   IL_0002: sizeof !!T

   IL_0008: conv.i

   IL_0009: mul

   IL_000A: add

   IL_000B: ret

}

There is no magic underneath Unsafe though. What makes it really useful is exposing 

all those operations, most often consumable even in safe code.

 Data-Oriented Design
The discrepancy between CPU performance and memory access times are constantly 

growing. We have discussed it already in Chapter 2 quite comprehensively - how CPU 

and memory cooperation are organized into hierarchical cache and how significantly 

its organization into cache lines and memory internal implementation influences 

performance of code we write, preferring sequential data access with strong temporal 

and spatial locality.

Such a low-level view of memory access is not crucial during everyday development 

of business-driven, regular web, or desktop applications. Those milliseconds of better 

or worse performance aren’t simply noticeable in small volume of processed data, 

processed HTTP requests, or handled UI interactions. Readability, extensibility, and 

expressiveness of the source code, as well as the ability to write, deliver, and extend 

software fast, are the most important factors when designing such applications. Object-

oriented programming, with all its design patterns and SOLID principles, are an exact 

incarnation of such approach.

However, there is a narrow category of applications that can benefit from breaking 

this universal convention. These are applications that have to process significant 

amounts of data in the most efficient way and shortest possible time. Where every 

millisecond counts. To name a few such examples:

• financial software - especially real-time trading and any analytical 

decisions may require as fast-as-possible answer based on significant 

amount of various data.
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• Big Data - although in general we may associate it more with batch, 

slow processing, every millisecond per data processing operation 

can sum up to a difference of hours or days of overall processing. And 

still, there are applications where fast answer does really count - like 

search engines.

• games - in a world where FPS (Frames per seconds) decides 

on game reception and limits possible graphics quality, every 

millisecond matters.

• machine learning - there is always not enough processing power to 

execute various, complicated algorithms used in gaining popularity ML.

Please note that although, at first glance, many of those applications could 

be CPU- bound (i.e., contains complex algorithms to be executed), because of 

the above- mentioned discrepancy, it may be memory access that introduces a 

performance bottleneck. Another, not-yet mentioned aspect is parallel processing 

of the data, to benefit from multiple logical cores installed on our personal or server 

computers.

This leads us to data-oriented design of software - concentrated around designing 

data representation and architecture that lead to the most efficient memory access. It 

almost certainly stays in contradiction to the object-oriented design, because techniques 

like encapsulation or polymorphism are interfering with achieving effective memory 

utilization.

What data-oriented design is trying to leverage is:

• designing types and data in a way that lead to a sequential memory 

access wherever possible, taking into consideration cache-line limits 

(to pack together most frequent used data) and hierarchical cache 

nature (to keep as much in higher caches as possible).

• designing types and data, as well as algorithms using them, in a way 

that leads to easy parallelization without costly synchronization.

I would further split data-oriented design into two more categories:

• tactical data-oriented design - concentrates on “local” data structures, 

like most efficient field’s layout or accessing data in correct order. 

Such design is local enough to be incorporated quite easily into 

already existing object-oriented applications.
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• strategic data-oriented design - concentrates on high-level view of 

the application, from architecture perspective. It mostly requires 

mindset shift from object-oriented structures into more data-

oriented ones.

In the two subsequent sections we will look deeper at both mentioned aspects of 

such design.

 Tactical Design
This book is basically steeped with the spirit of tactical data-oriented design since 

Chapter 2, where we have learned how important cache utilization is - and summarized 

in Rule 2 - Random access should be avoided and Rule 3 - Improve spatial and temporal 

data locality.

Several patterns constitute such tactical design. Let’s summarize them here a little, 

with appropriate references from the rest of the book and additional examples.

 Design Types to Fit as Much Relevant Data as Possible 
in the First Cache Line

We have seen this rule in action when considering the automatic memory layout 

of managed types - references all laid at the beginning of the object to make them 

accessible for the GC within already accessed cache line containing MethodTable 

pointer. This is optimization done by CLR but we should be aware of it.

Such automatic layout may be, or may not be, a desired one when considering 

the most commonly accessed data. Imagine the class from Listing 14-46. Obviously, 

the object-oriented programmer will be quite happy with such design4 - everything is 

encapsulated within a single object and only behavior (calculating scoring) is publicly 

exposed.

4 But taking Domain Driven Design into consideration, it would be probably even more complex, 
with separate types to represent money or other data.
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Listing 14-46. Example class used to illustrate cache line utilization

class Customer

{

   private double Earnings;

   // ... some other fields ...

   private DateTime DateOfBirth;

   // ... some other fields ...

   private bool IsSmoking;

   // ... some other fields ...

   private double Scoring;

   // ... some other fields ...

   private HealthData Health;

   private AuxiliaryData Auxiliary;

   public void UpdateScoring()

   {

      this.Scoring = this.Earnings * (this.IsSmoking ? 0.8 : 1.0) *

                     ProcessAge(this.DateOfBirth);

   }

   private double ProcessAge(DateTime dateOfBirth) => 1.0;

}

Such a programmer will not be completely interested in the resulting automatic 

layout of the Customer object. On the other hand, imagine that we use Customer class 

massively, mainly calling UpdateScoring on millions of such instances per second. As 

UpdateScoring method uses Scoring, Earning, IsSmoking, and DateOfBirth fields, 

they should be laid out within the range of the first cache line (the one accessed always 

when Customer instance is used). LayoutKind.Automatic, default one for classes, 

obviously doesn’t care about that. It will put, probably very rarely used, HealthData and 

AuxiliaryData references at the beginning of the object while the rest will be laid out 

according to alignment requirements (as explained in Object/struct layout section in the 

previous chapter).
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The solution should be already known to us - we must change Customer into 

unmanaged struct that may use sequential layout (see Listing 14-47). It may be 

done by:

• changing HealthData and AuxiliaryData into value-type identifiers, 

to get rid of references - this helps not only in changing such type into 

unmanaged type, it will also relieve the GC from marking overhead 

(as each Customer instance will not be a root of two additional 

objects to be scanned).

• changing DateTime to other type as its automatic layout triggers 

automatic layout of the whole struct, as described in Chapter 13.

Then we may use LayoutKind.Sequential, carefully designing the layout of the 

fields on our own (considering padding introduced due to the alignment, but probably 

we can sell some space in favor of the speed). Thus, the four most commonly used fields 

should be placed at the beginning.

Listing 14-47. Struct with layout considering cache-line utilization

[StructLayout(LayoutKind.Sequential)]

struct CustomerValue

{

   public double Earnings;

   public double Scoring;

   public long DateOfBirthInTicks;

   public bool IsSmoking;

   // ... some other fields ...

   public int HealthDataId;

   public int AuxiliaryDataId;

}

However, not always, we must use sequential layout to achieve good spatial locality. 

Sometimes it is just enough to make sure that data locality of primitive types is simply 

taken care of (in other words, it is assured that commonly accessed fields are laid out 

next to each other).

FrugalObjectList<T> and FrugalStructList<T> are an example of very interesting 

internal collections used inside Windows Presentation Library. Their internal storage 

is an instance of one of the following, specific collections: SingleItemList<T>, 
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ThreeItemList<T>, SixItemList<T>, and ArrayItemList<T>. While adding or removing 

elements, such storage is converted between those types (while the last one handles 

storage of seven or more items). What does it give in return? A very concise, trivial, 

and mostly switch-based implementations of methods like IndexOf, SetAt or EntryAt, 

used by indexer, for scenarios with less than seven elements (see Listing 14-48, showing 

fragments of ThreeItemList<T>). So while getting rid of generic array overhead (bounds 

checking, to name one), such an approach still provides good spatial locality because of 

three or six fields laid out next to each other.

Listing 14-48. Fragments of ThreeItemList<T> class (one of storages used by 

FrugalObjectList<T> and FrugalStructList<T> types)

/// <summary>

/// A simple class to handle a list with 3 items.  Perf analysis showed

///  that this yielded better memory locality and perf than an object and an 

array.

/// </summary>

internal sealed class ThreeItemList<T> : FrugalListBase<T>

{

   public override T EntryAt(int index)

   {

      switch (index)

      {

         case 0:

            return _entry0;

         case 1:

            return _entry1;

         case 2:

            return _entry2;

         default:

            throw new ArgumentOutOfRangeException("index");

      }

   }
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   private T _entry0;

   private T _entry1;

   private T _entry2;

}

As those types comment says: “Performance measurements show that Avalon5 

has many lists that contain a limited number of entries, and frequently zero or a single 

entry. (...) Therefore these classes are structured to prefer a storage model that starts at 

zero, and employs a conservative growth strategy to minimize the steady state memory 

footprint. (...) The code is also structured to perform well from a CPU standpoint. Perf 

analysis shows that the reduced number of processor cache misses makes FrugalList 

faster than ArrayList or List<T>, especially for lists of 6 or fewer items.”

 Design Data to Fit into Higher Cache Levels

Overhead of various cache levels has been already illustrated in Listing 2-5 and 

corresponding Figure 2-11 in Chapter 2. You should be always aware how big your data is 

and how it relates to the typical CPU cache sizes.

 Design Data That Allows Easy Parallelization

Topic of parallel processing goes out of the scope of this book. However, good data layout 

and algorithm design may allow some parts of the data to be processed in parallel - 

whether it be multiple cores and/or SIMD instructions. Remember still about the false- 

sharing caveat illustrated in Listing 2-6 and corresponding benchmark in Table 2-3.

 Avoid Non-sequential, Especially Random Memory Access

This rule has been explained in Chapter 2, starting from explaining how DRAM works 

and why sequential access is preferred. A simple example of accessing a two-dimensional 

array by rows versus by columns was shown in Listing 2-1 and corresponding benchmark 

in Table 2-1, showing several times slower access due to a lot of cache miss.

Accessing the sequentially contiguous memory region of T[] is a preferred way over 

other collections, especially if T is a struct (recall Figure 4-22 from the chapter comparing 

data locality of arrays). We will make use of this design rule when describing strategic 

patterns.

5 Avalon is a codename for WPF engine.
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 Strategic Design
Strategic design pushes forward data-oriented design, leaving far behind typical object- 

oriented design practices. Code it produces may be surprising to developers used to 

OOP but become more and more justified if you think about it deeply. Therefore, unlike 

tactical design, strategic design requires a significant mind-shift of the programmer. Let’s 

now look at some of the most popular techniques.

 Moving from Array-of-Structures to Structure-of-Arrays

In object-oriented programming, data is encapsulated. Objects and methods are 

representing well-crafted, single responsibility behaviors. For example, we can 

imagine that Customer instances from Listing 14-46 are kept by separate “container.” Its 

UpdateScorings method enumerates all customer instances and ask them to update 

their scoring (see Listing 14-49). This is a plain and simple code that every developer 

using OOP would understand.

Listing 14-49. Repository of customers from Listing 14-46

class CustomerRepository

{

   List<Customer> customers = new List<Customer>();

   public void UpdateScorings()

   {

      foreach (var customer in customers)

      {

         customer.UpdateScoring();

      }

   }

}

Such code introduces a lot of cache-line misses - Customer instances may be 

scattered all around the GC Heap as there is no guarantee that they are allocated next 

to each other (see Figure 14-1). Although, as we know, compacting GC eventually may 

lead to good data locality of objects allocated around the same time. Additionally, a 

bump- a- pointer allocator may allocate them next to each other in the first place. But 
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those are assumptions, not guarantees. For example, because filled allocation context 

will be changed into a new one, possibly all around the ephemeral segment, even two 

successive Customer allocations may land in two completely different places. As a result, 

we must assume that in case of array of reference types, each cache line consists of only a 

small part of interesting data and a lot of surrounding garbage.

We know that array of structs provides much better data locality so 

CustomerRepository instead of Customer instances could store a list of boxed 

CustomerValue instances, defined in Listing 14-47 (see Figure 14-2). Successive reading 

of List’s underlying array utilizes cache lines much better as CPU’s prefetcher will 

easily recognize such pattern and will prefetch data in advance. There is also much 

less memory garbage read into each cache line - it consists only of other, currently not 

needed fields of CustomerValue instance.

List<CustomerValue> redaeH TM

redaeH TMCustomerValue[]

internal array

A1 A2 A3 A4 A2 A3 A4 A1 A2 A3 A4A1

Figure 14-2. Much better data locality of value-type array leads to cache lines 
reading a lot less of unnecessary data (necessary data is grayed)

ezisredaeH TMCustomer[]

List<Customer>

item1
internal array

redaeH TM

AredaeH TM 1 A2 A3Customer

item2 item3

AredaeH TM 1 A2 A3Customer

AredaeH TM 1 A2 A3Customer
A4

A4

A4

cache line

Figure 14-1. Poor data locality of reference type array leads to many cache lines 
reading a lot of unnecessary data (necessary data is grayed)
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However, reading those unnecessary data (fields) may be still too costly in 

performance- critical scenarios. At this moment it’s high time we left well-known OOP 

paradigms and changed things all around. In data-oriented design, the most important 

are not objects and behaviors they encapsulate, but the data itself. In our case the data 

consist of a few important attributes of customer (both as input and output).

The first approach would be to split customer data into two separate arrays of value 

types - one containing “hot data” used in scoring algorithm, the second with the rest, less 

relevant fields.

But we may go even further. So instead of gathering code around the customer, 

we may organize them around the data itself - by exposing each relevant data with a 

separate array (see Listing 14-50). Such approach is one of the most popular in data-

oriented design, often referred to as changing the layout from AoS (array-of-structures) to 

SoA (structure-of-arrays).

Listing 14-50. Structure-of-arrays data organization example

class CustomerRepository

{

   int NumberOfCustomers;

   double[] Scoring;

   double[] Earnings;

   DateTime[] DateOfBirth;

   bool[] IsSmoking;

   // ...

   public void UpdateScorings()

   {

      for (int i = 0; i < NumberOfCustomers; ++i)

      {

          Scoring[i] = Earnings[i] * (IsSmoking[i] ? 0.8 : 1.0) * 

ProcessAge(DateOfBirth[i]);

      }

   }

   ...

}
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By directly exposing the data, there is in fact no “customer” entity in such 

approach. “Customer” is just a bunch of data under a specific index in respective 

arrays. Those arrays are densely packed with relevant data, accessed sequentially by 

our hot-path algorithm. Cache-line utilization is optimal (see Figure 14-3). CPU can 

detect multiple sequential reads simultaneously so prefetcher will be used in each 

array access.

As an additional advantage, the struct-of-arrays approach provides nice flexibility. If 

we introduce other high-performance algorithm use at other time, using different fields, 

such data organization will be beneficial also.

In a similar way we may flatten hierarchical (tree) data. Typically, each node would 

be storing a list of its children. Obviously, traversal of such tree may be quite costly due 

to the cache misses while accessing heap-allocated node instances scattered all around 

the GC Heap.

Let’s use a trivial tree example from Listing 14-51, which implements also simple, 

exemplary algorithm - Process method changes value of each node into a sum of values 

from its ancestors.6

6 Please note that triviality of presented processing is for brevity, but it does not change the overall 
presented approach.

redaeH TMType1[] A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1A1

redaeH TMType1[] A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2A2

redaeH TMType1[] A3 A3 A3 A3 A3 A3 A3 A3 A3 A3 A3A3

redaeH TMType1[] A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4A4

Figure 14-3. Optimal data locality in structure-of-arrays approach (necessary 
data is grayed)

CHAPter 14  AdvAnCed teCHniques



970

Listing 14-51. Simple tree with nodes implementation

public class Node

{

   public int Value { get; set; }

   public List<Node> Children = new List<Node>();

   public Node(int value) => Value = value;

   public void AddChild(Node child) => Children.Add(child);

   public void Process()

   {

      InternalProcess(null);

   }

   private void InternalProcess(Node parent)

   {

      if (parent != null)

          this.Value = this.Value + parent.Value;    //  Imagine more complex 

processing here

      foreach (var child in Children)

      {

         child.InternalProcess(this);

      }

   }

}

However, such tree may be described quite oppositely by a flat array of nodes - 

each element being a node, storing a reference (or better, an index) of its parent. Such 

approach most probably will require preprocessing of an initial, more natural, object-

oriented tree into such an array. Processing of such tree may be then linear, if it was 

appropriately flattened (see Listing 14-52).

Listing 14-52. Example of flattened tree, represented as array of value- type 

nodes

public class Tree

{

    public struct ValueNode
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    {

        public int Value;

        public int Parent;

    }

      private ValueNode[] nodes;

      private static Tree PrecalculateFromRoot(OOP.Node root)

      {

            //  Flatten tree navigating it in pre-order depth-first 

manner...

      }

      public void Process()

      {

            for (int i = 1; i < nodes.Length; ++i)

            {

                  ref var node = ref nodes[i];

                  node.Value = node.Value + nodes[node.Parent].Value;

            }

      }

}

Please be careful when designing tree flattening. the particular example from 
Listing 14-52 works because the used processing algorithm (value adding inside 
Process method) depends only on parent values so it is perfectly fine to use a 
pre-order depth-first traversal. After, such flattening elements in the nodes array 
are always located after the already processed parent. if our algorithm depended 
on children (like a node value being a sum of all its descendants), post-order 
depth-first traversal should be used, which guarantees that each element of the 
flattened array is after all its children.
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 Entity Component System

In object-oriented programming, inheritance and encapsulation are one of the core 

features. In complex applications, inheritance tree may be quite complicated, with many 

objects sharing some part of possible behaviors. Games are perfect example of scenario 

where there are dozens of various types of differently behaving entities - for example, 

tanks being armored vehicles while trucks being vehicles not armored but they are 

containers. Or a regular solider being only movable and having attributes like health, 

but is not always armored. A sample inheritance tree to illustrate that is presented in 

Figure 14-4.

In the broader context of software development, such inheritance tree may be 

cumbersome because adding a new kind of entity that shares only part of possible 

behaviors is not trivial - it must be added, overriding appropriate methods to include 

new behavior, and so on, and so forth (like adding MagicTree class in Figure 4-4, which is 

both “positionable” and is a living - but is not movable).

Figure 14-4. Example of inheritance tree representing some game objects
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In our data-oriented context, caveats of such approach should be immediately 

visible - data is spread all around such tree hierarchy. It is perfectly OK in regular OOP, 

where there are few business objects cooperating with each other. But it becomes 

bottleneck if we have to process thousands or millions similar entities, let’s say - vehicles, 

to update their position.

We could use the structure-of-arrays approach to keep separate list of structs 

representing houses, vehicles, livings, and so on, so forth. This however is not very 

practical, and still many algorithms may need to access various set of properties 

contained in those lists (breaking good data locality benefits).

The solution to this problem is proposed into form of so-called Entity Component 

System that, simply speaking, prefers composition over inheritance. As we will soon 

see, one of its foundations is good data locality consistent with the idea of structure-

of-arrays.

In Entity Component System, there are no types representing house, vehicle, or 

any other living. Entities are being composed by dynamically adding and removing 

components, representing capabilities. Such entities are then processed by various 

systems, representing required logic. In other words, the three main building blocks in 

ECS are (see Figure 14-5):

• Entity - is a simple object with an identity but does not contain any 

data or logic. By adding or removing specific Components to it, we 

define capabilities of such Entity. So, for example, when we need 

something like a vehicle in a game, we create an entity and assign 

appropriate components to it (Position and Movable component in 

our simplified example).

• Component - simple object only consisting of data but no logic. 

Those data are needed to represent current state of the capability 

represented by such component (so position in Position component 

or speed in Movable component).

• System - is where the logic of specific capabilities or features lives. 

Systems operate on filtered list of entities, one by one. For example, 

Move System will filter all entities to those that have Position 

and Movable components assigned (and its logic knows how to 

transform/process properties of those components).
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In a main loop of a game, each system executes one after another. I hope it is 

already visible where the power of such approach is lying. With such design, data of 

each component are kept sequentially and separately, incorporating structure-of-arrays 

approach. For example, when Display System iterates through entities, it in fact needs 

to iterate over sequential collection of Position Component data. Obviously, it requires 

a very efficient filtering technique of entities (or answering the question whether entity 

has given component attached). Those are, however, implementation details we will 

not touch here. Instead, let’s implement the simplest possible ECS we can imagine. 

Hopefully it will allow us to illustrate the whole concept better.

First of all, Entity may be really simple type containing only identifier (see Listing 14-53). 

It is a readonly struct - to keep it densely in the array of entities and to avoid defensive 

copies when passing around as in arguments.

Listing 14-53. Entity definition

public readonly struct Entity

{

   public readonly long Id;

   public Entity(long id)

   {

      Id = id;

   }

}

Figure 14-5. Overview of Entity Component System
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Components are also only simple containers for data. Again, to make a dense 

array of component data, they are structs (see Listing 14-54). They are mutable and 

thanks to ref returns, we will be able to return them from the corresponding storage for 

modification.

Listing 14-54. Sample components definitions

public struct PositionComponent

{

   public double X;

   public double Y;

}

public struct MovableComponent

{

   public double Speed;

   public double Direction;

}

public struct LivingComponent

{

   public double Fatigue;

}

To effectively store data of a given component in a data-oriented way, let’s introduce 

ComponentManager<T> class (see Listing 14-55). Its main part is registeredComponents 

array of a given component type. Registering is as easy as filling the next free slot 

in the array (and for brevity I’ve skipped a problem of unregistering and resulting 

fragmentation). Checking whether given entity (identified by its Id) has component 

assigned is based on an additional dictionary - this is again by far the most efficient way 

but it was used for brevity (as well as ignoring any multithreading issues). Its ref returns 

an array element so no copying is involved.

Listing 14-55. ComponentManager<T> class managing component data

public class ComponentManager<T>

{

   private static T Nothing = default;

   private static int registeredComponentsCount = 0;
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   private static T[] registeredComponents = ArrayPool<T>.Shared.Rent(128);

    private static Dictionary<long, int> entityIdtoComponentIndex = new 

Dictionary<long, int>();

   public static void Register(in Entity entity, in T initialValue)

   {

      registeredComponents[registeredComponentsCount] = initialValue;

      entityIdtoComponentIndex.Add(entity.Id, registeredComponentsCount);

      registeredComponentsCount++;

   }

   public static ref T TryGetRegistered(in Entity entity)

   {

      if (entityIdtoComponentIndex.TryGetValue(entity.Id, out int index))

      {

         //result = true;

         return ref registeredComponents[index];

      }

      //result = false;

      return ref Nothing;

   }

}

Them we need an abstract representation of the system (see Listing 14-56) and a 

manager that ties all this together (see Listing 14-57).

Listing 14-56. Definition of simple abstract system base

public abstract class SystemBase

{

   public abstract void Update(List<Entity> entities);

}

Listing 14-57. Manager storing list of entities and systems

public class Manager

{

   private List<Entity> entities = new List<Entity>();

   private List<SystemBase> systems = new List<SystemBase>();
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   public void RegisterSystem(SystemBase system)

   {

      systems.Add(system);

   }

   public Entity CreateEntity()

   {

      var entity = new Entity(entities.Count);

      entities.Add(entity);

      return entity;

   }

   public void Update()

   {

      foreach (var system in systems)

      {

         system.Update(entities);

      }

   }

}

Having all those bricks in place, it’s high time to write an example system. 

MoveSystem requires entities with both Position and Movable components, so its Update 

methods filters them appropriately (see Listing 14-58). The requirement of very efficient 

entities filtering is clearly visible here. However, if managed properly, data components 

are accessed sequentially with a high probability, providing great data locality and 

prefetching possibility.

Listing 14-58. An example of Moving system

public class MoveSystem : SystemBase

{

   public override void Update(List<Entity> entities)

   {

      foreach (var entity in entities)

      {

         bool hasPosition = false;

         bool isMovable = false;
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          ref var position = ref ComponentManager<PositionComponent>.

TryGetRegistered(in entity, out hasPosition);

          ref var movable = ref ComponentManager<MovableComponent>.

TryGetRegistered(in entity, out isMovable);

         if (hasPosition && isMovable)

         {

            position.X += CalculateDX(movable.Speed, movable.Direction);

            position.Y += CalculateDY(movable.Speed, movable.Direction);

         }

      }

   }

}

Please note that provided implementation is oversimplified in many places. 
As mentioned, it does not include any thread synchronization, and proposed 
entity-to-component management is also trivialized. Presenting here a full, 
even closely real-world implementation is by far behind such book capacity. 
in real-world libraries, like entitas (https://github.com/sschmid/
Entitas- CSharp by simon schmid) or recently rewritten entity Component 
system in unity, those aspects are much better thought out and implemented. 
For example, most often system does not filter entities on its own, but 
receives dynamically managed, already filtered list of entities (appropriately 
updated underneath when entities are adding or removing components). 
the presented APi is also far from perfect. in addition, a mature eCs 
implementation must support communication between the systems and the 
relationships between them (supported by some kind of messaging system), 
which is completely omitted here.

Entity Component System is overwhelmingly popular in game development, but I 

believe it may be justified in high-performance scenarios where data-oriented design 

makes sense. Having a lot of different “entities” with various characteristics, which need 

to be processes in huge batches? Does not that sound like ECS?
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 More on Future...
This section contains a list of features that probably could be included in any other part 

of this chapter (or previous one) because they are quite general. I decided to gather them 

in a common “future” section because at the time of writing, they are planned for less or 

more distant future releases of .NET. Probably at the time of your reading some or most of 

them are already available or even yet already well-established in the .NET ecosystem. On 

the other hand, seeing absorption of other newer types (like already available Span<T>), at 

least a few years will pass before they settle in the widespread awareness of programmers.

 Nullable Reference Types
Nullable reference types may, but are not guaranteed, to be introduced in C# 8.0. 

Although they are not directly related to memory management - their usage does not 

incur better or worse performance or memory consumption - they are such important 

change related to generally understood memory safety, that a book about memory in 

.NET just cannot simply ignore it.

In the context of null, everyone must cite British computer scientist Tony Hoare who 

invented a null reference while designing ALGOL language. In 2009 he apologized for 

inventing it:

I call it my billion-dollar mistake. It was the invention of the null reference 
in 1965. At that time, I was designing the first comprehensive type system 
for references in an object oriented language (ALGOL W). My goal was to 
ensure that all use of references should be absolutely safe, with checking 
performed automatically by the compiler. But I couldn’t resist the tempta-
tion to put in a null reference, simply because it was so easy to implement. 
This has led to innumerable errors, vulnerabilities, and system crashes, 
which have probably caused a billion dollars of pain and damage in the 
last forty years.

Is null billion-dollar really a mistake? Could you imagine a world, C# and .NET 

world, without null and all those NullReferenceException occurrences in your life? 

Generally, it is hard to imagine a language that does not have any notion of “nothing.” 

Some values are optional because the domain they come from specifies them as such 

(being middle name a canonical example). What really null complicates is a lack of 

clear intent whether it makes sense in a specific context that such “nothing” is allowed 

(because null is allowed always by default).
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Some languages, especially functional ones, replaced nullable types with option 

types - a polymorphic type that represents an optional value (so it may represent 

“nothing” or a value). For example, F# uses Option type defined as discriminated 

union with two cases: Some (containing value) and None. Having such optional type 

explicitly says that there is possibility a value may be “nothing.” Programmer need to use 

appropriate checks before accessing such type value (or at least it may be checked by a 

compiler if she does so).

Ideally, reference types in C# should contain such “optionally nullable” reference 

types to get rid of current “always nullable” reference types. To have clear intent of 

nullability, two new kinds of safe reference types are planned to be introduced:

• nullable reference type - they may have null assigned so dereferencing 

them always require checking for null value (and such check may 

be enforced by C# compiler). Please note they differ from current 

reference types because while being always nullable, dereferencing 

them now is not guarded by compiler checks. Such types are 

representing optional value like Option in F#.

• non-nullable reference type - they will never have null value so it is 

always safe to dereference them.

Of course, care should be taken to introduce them in a way that helps to find 

bugs in existing code without a need to rewrite everything. To make existing code 

benefit from them, current reference types must take one of these roles (instead of, 

for example, introducing two new kinds of reference types besides the existing one). 

It was decided that current, unannotated reference type will be treated as non-

nullable reference type. As Mads Torgersen says on behalf of the whole C# language 

team, this is because:

• They believe reference types actually requiring null values are less 

common that we may think.

• C# language already has ? syntax of nullable value types so it seems 

natural to extend it for reference types.

• It seems right to explicitly express a need of nulls and opt-in for them, 

rather than the other way around.
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So in other words, nullable reference types are going to be added in some future C# 

version (with the ? syntax) while the behavior of already existing reference types will 

be been changed into non-nullable reference types (see Listing 14-59). This is why this 

feature is officially called nullable reference types, while we should remember that in fact 

both new reference types behavior are new.

Listing 14-59. An example of a class with both non-nullable (by default) and 

nullable (by explicitly stating) reference type fields

public class SomeClass

{

   public int Field;

   public OtherClass? NullableReference;      // May be null

   public OtherClass  NonNullableReference;   // May not be null

}

public class OtherClass

{

   public int OtherField;

}

Obviously, such a change may generate a lot of errors while compiling existing, 
pre-nullable reference types code. this is by design, however, as those types 
are introduced to help us with finding null-related bugs in the first place. not to 
paralyze the work, it has decided to treat such null-related issues as warnings, 
instead of errors (while you may still opt-in to errors though).

With this feature, C# compiler does it best to check for nullability violations, 

especially with respect to local variables and parameters access (see Listing 14-60). 

When accessing nullable object instances without any checks (like in first line in 

Listing 14-60), appropriate warnings are generated. The same happens when compiler 

discovers null is being accessed (like in the last line in Listing 14-60). Program flow 

control is considered (like conditions and loops) also, as we may see in Listing 14-60.
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Listing 14-60. Compiler behavior with nullable reference type argument

public static void UseNullableReference(SomeClass? obj)

{

   Console.WriteLine(obj.Field);  //  Warning CS8602: Possible dereference 

of a null reference.

   Console.WriteLine(obj?.Field); // Ok, checked

   if (obj == null)

      return;

   Console.WriteLine(obj.Field);  // Ok, checked above

   obj = null;

   Console.WriteLine(obj.Field);  //  Warning CS8602: Possible dereference 

of a null reference.

}

However, there always will be a problem of how deep such a nullability violation 

check should be. Currently method calls are ignored, as they may contain logic of 

any complexity you can imagine. So even if ArgumentsValid method checks for null 

internally (in Listing 14-61), a warning still will be generated.

Listing 14-61. Compiler behavior with nullable reference type argument

public static void UseChainedNullableReference(SomeClass? obj)

{

   if (!ArgumentsValid(obj))

       return;

    Console.WriteLine(obj.Reference.OtherField);   //  Warning or not, 

depending on the  

check used

}

On the other hand, accessing non-nullable reference types is much safer so the 

compiler will generate many less errors (see Listing 14-62).

Listing 14-62. Compiler behavior with non-nullable reference type argument

public static void UseNonNullableReference(SomeClass obj)

{

   Console.WriteLine(obj.Field);   // Ok

   Console.WriteLine(obj?.Field);  // Ok, checked
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   if (obj == null)

      return;

   Console.WriteLine(obj.Field);   // Ok, checked above

    obj = null;                     //  Warning CS8600: Converting null 

literal or possible null value to 

non-nullable type.

    Console.WriteLine(obj.Field);   //  Warning CS8602: Possible dereference 

of a null reference.

}

Warning CS8600 may be surprising though, as it seems we may still assign null 

to a non-nullable reference type! This is because of many scenarios where it is still 

necessary (and most of them generate an appropriate warning) - like explicitly 

assigning null like in Listing 14-62 or assigning a nullable reference type to non-

nullable reference type. There is still one important exception decided to not 

generate any warnings - an array creation (see Listing 14-63). In case of an array of 

non-nullable types, the compiler should require initialization of all its elements but 

this would break a lot of existing code. Array declarations like in Listing 14-63 are 

overwhelmingly popular so even emitting a warning would flood our compilation with 

an unmanageable number of messages.

Listing 14-63. Compiler behavior with the array of non-nullable reference type

SomeClass[] array = new SomeClass[4];

UseNonNullableReference(array[1]);      // Ok, warning is not generated.

Please note that at the time of writing this book, nullable reference types are in the 
pre-release version before official release (planned but not yet confirmed for C# 
8.0). this section presents possible design and usage of this feature, to give you 
an overall picture of why and what it does. Please update your knowledge with 
official .net documentation regarding the current state of this feature at the time 
of reading this book.

What is null by the way? In general, it is a representation of an address that 

should never happen in normal code, to differentiate it from valid pointers (and 

references in case of .NET). In all popular programming environments, it is an 
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address of value 0 - because at least the first OS memory page is always kept free 

(unused) so it is always an invalid address. Being a zero is also useful because 

pointers and references are becoming null by default in zeroed memory regions (like 

reference type fields in an object).

Any access to an invalid page (like mentioned on the first page) raises an exception 

by the OS which is then handled by the CLR. The difference is that if the first page 

was accessed (which is typically, first 64KB), such exception would be turned into a 

well-known NullReferenceException. On the other hand, if any higher address was 

accessed, AccessViolationException will be thrown. So for example, when in C# one 

tries to access an unmanaged zero pointer, NullReferenceException will occur (see 

Listing 14-64).

Listing 14-64. Example of unsafe code generating NullReferenceException

unsafe { int read = *((int*)IntPtr.Zero); }

On the other hand, if we try to access an address higher than the first 64 KB, 

AccessViolationException will occur (Listing 14-65).

Listing 14-65. Example of unsafe code generating AccessViolationException

unsafe { int read = *((int*)0x1_0000 + 1); }

Most often NullReferenceException happens in regular C# code, when we try to 

access a field of null reference (see Listing 14-66). This is however handled in the same 

way because accessing an object’s field is just dereferencing a given address with a small 

field’s offset (see Listing 14-67). In our example, if the reference argument passed in rcx 

is 0, the corresponding field address will be calculated as 0x8 (assuming Field is the first 

field in SomeClass). Trying to access 0x8 address still results in NullReferenceException 

because it fits into the first page.

Listing 14-66. Example of managed code generating NullReferenceException 

(assuming obj is null)

public static void Test(SomeClass obj)

{

   Console.WriteLine(obj.Field);

}
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Listing 14-67. Assembly code of Test method from Listing 14-66

C.Test(SomeClass)

    L0000: sub rsp, 0x28

    L0004: mov ecx, [rcx+0x8]

    L0007: call System.Console.WriteLine(Int32)

    L000c: nop

    L000d: add rsp, 0x28

    L0011: ret

Immediately we may wonder what if an object is bigger than the first page and 

we are trying to access the end of it (via null reference)? Will it confusingly throw 

AccessViolationException instead of NullReferenceException? The answer is, no. 

Such scenarios are guarded by JIT that generates appropriate code. For example, in 

case of passing an array, bound-checking code is injected anyway (accessing array’s 

size field) so it will result in NullReferenceException even before trying to access 

given element. And if we imagine an enormous object with thousands of fields (see 

Listing 14-68), JIT will add null checking of the entire object before accessing a 

specific field (see Listing 14-69). The second assembly instruction from Listing 14-69 is 

generated only when higher fields of SomeClass instance are accessed (if rcx is zero, it 

will trigger throwing NullReferenceException).

Listing 14-68. Example of managed code generating NullReferenceException 

(assuming obj is null)

public class SomeClass

{

    public long Field0;

    public long Field1;

    public long Field2;

   ...

    public long Field8229;

    public long Field8230;

}
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public static void Test(SomeClass obj)

{

   Console.WriteLine(obj.Field8000);

}

Listing 14-69. Assembly code of Test method from Listing 14-68

C.Test(SomeClass)

    L0000: sub rsp, 0x28

    L0004: cmp [rcx], ecx

    L0006: mov rcx, [rcx+0xfa08]

    L000d: call System.Console.WriteLine(Int64)

    L0012: nop

    L0013: add rsp, 0x28

    L0017: ret

Please note that both 0 and the first page are used here in terms of virtual memory 
of a given address. this means that physically “null page” is mapped to some 
arbitrary physical page.

 Pipelines
Streams are as old as the entire .NET. They are great and do their job but are not well- 

suited for high-performance code. They may allocate a lot, requiring copying memory 

here and there. And they introduce overhead of required synchronization when used 

in multithreading scenarios. For writing efficient code using buffers, like streams, 

something new has to be invented. This is exactly how pipelines (initially called 

channels) were invented, mostly with network streaming kept in mind, used in a new 

Kestrel web hosting server. But even Kestrel was one of the main reasons behind them, 

they will be exposed as a general-purpose library.

Upcoming versions of .NET, at the time of this writing, are expected to include 

completely new API for pipelines, which may be seen as Stream-like buffers that 

target a range of problems related to high-performance and high-scalable code. They 

are designed in a producer-consumer manner, so there is a writer (sending data) 
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and a receiver (reading those data). As its current documentation says: “A pipeline 

is like a Stream that pushes data to you rather than having you pull. One chunk 

of code feeds data into a pipeline, and another chunk of code awaits data to pull 

from the pipeline.” As other techniques showed in this chapter, most probably only 

low-level libraries creators will be interested in them - to be used in networking or 

serialization code.

Because pipelines are from the ground up designed in high performance and 

scalability requirements in mind, they have the following characteristics:

• Their memory usage is based on pooling of internal buffers - it allows 

them to avoid heap allocations.

• They intensively use Span<T> and Memory<T> on API level - it allows 

them to provide zero-copy usage of the data (data is being provided 

by slicing internal buffers without a need for copying anything).

• They are asynchronous and thread-safe in an efficient manner.

Regardless of all the complicated machinery underneath, pipeline API is quite 

straightforward. First of all, we must configure a pipeline instance providing a memory 

pool that will be used by them (see Listing 14-70). There are other configuration options 

that are not described in this book, especially related to pipe schedulers. This is because 

my intent is to only briefly describe pipelines capabilities and usage, without going 

any further with advanced topics. Although they are interesting, this book can’t cover 

everything in detail.

Listing 14-70. Example of pipeline configuration

var pool = MemoryPool<byte>.Shared;

var options = new PipeOptions(pool);

var pipe = new Pipe(options);

An instantiated pipeline provides two crucial properties: Writer and Reader. 

The basic usage of them is presented in Listing 14-71. Keep in mind that write and 

read side from such example could be split into two different threads in a thread-safe 

manner. As we may see, when using pipelines, we must explicitly flush the writer 

buffers with the help of FlushAsyncs method (to make data visible for readers). And 

the reader must explicitly update the reading position with the help of AdvanceTo 

method (to inform pipeline that underlying data has been read so corresponding 

buffers may be released).
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Listing 14-71. Basic usage of pipelines

static async Task AsynchronousBasicUsage(Pipe pipe)

{

   // Write data

   pipe.Writer.Write(new byte[] { 1, 2, 3 }.AsReadOnlySpan());

   await pipe.Writer.FlushAsync();

   // Read data

   var result = await pipe.Reader.ReadAsync();

   byte[] data = result.Buffer.ToArray();

   pipe.Reader.AdvanceTo(result.Buffer.End);

   data.Print();

}

However, while pipelines usage presented in Listing 14-71 is useful for introductory 

purposes, it is quite an anti-pattern because:

• writer had to heap-allocate byte array before sending data,

• reader had to heap-allocate byte array where read data were copied.

Obviously, it stands in contradiction with the assumptions that were mentioned 

at the beginning of this section. To make better use of pipelines features, we may get a 

buffered memory straight from the pipeline itself.

Let’s start from improving the write side of our example (see Listing 14-72). As we 

can see, we may get buffered Span<byte> or Memory<T> from the Writer directly, which 

does not require any allocations (underneath a slice of required size is returned to use 

from internal buffers). After accordingly modifying data in the acquired Span<T>, we 

must explicitly update the writing position with the help of Advance method. It informs 

the pipeline how many bytes are considered to be written and will be flushed by the 

following FlushAsync method.

Listing 14-72. Usage of pipelines with buffered memory. Because of Span<byte> 

usage, method is not async

static void SynchronousGetSpanUsage(Pipe pipe)

{

   Span<byte> span = pipe.Writer.GetSpan(minimumLength: 2);

   span[0] = 1;
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   span[1] = 2;

   pipe.Writer.Advance(2);

   pipe.Writer.FlushAsync().GetAwaiter().GetResult();

   var readResult = pipe.Reader.ReadAsync().GetAwaiter().GetResult();

   byte[] data = readResult.Buffer.ToArray();

   pipe.Reader.AdvanceTo(readResult.Buffer.End);

   data.Print();

   pipe.Reader.Complete();

}

We should conceptually treat data returned by GetSpan and GetMemory methods as 

separate blocks that will be written into the pipeline. Those blocks have a configurable 

minimum size, which is 2,048 bytes by default. So even if we ask for minimumLength of a 

few bytes, we will receive 2 kB of memory (this is not a problem as it uses pool internally 

so no heap allocations are required). Be aware that the returned memory block most 

probably is reused and may already contain some previously written data. So it is 

important that Advance method call will truly say how many bytes were indeed modified. 

Listing 14-73 shows two successive writes of two acquired buffered blocks but more 

bytes were “advanced” that really modified. As a result, some parts of read data may have 

undefined values (0 is our example).

Listing 14-73. Usage of pipelines with buffered memory. Thanks to 

Memory<byte> usage, method may be async.

static async Task AsynchronousGetMemoryUsage(Pipe pipe)

{

   Memory<byte> memory = pipe.Writer.GetMemory(minimumLength: 2);

   memory.Span[0] = 1;

   memory.Span[1] = 2;

   Console.WriteLine(memory.Length);   // Prints 2048

   pipe.Writer.Advance(4);

   await pipe.Writer.FlushAsync();

   Memory<byte> memory2 = pipe.Writer.GetMemory(minimumLength: 2);

   memory2.Span[0] = 3;

   memory2.Span[1] = 4;

   pipe.Writer.Advance(4);            // Prints 2048
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   await pipe.Writer.FlushAsync();

    //pipe.Writer.Complete(); close the pipeline from writer side (so reader 

will not expect more data)

   var readResult = await pipe.Reader.ReadAsync();

   byte[] data = readResult.Buffer.ToArray();

   pipe.Reader.AdvanceTo(readResult.Buffer.End);

   data.Print(); // 1,2,0,0,3,4,0,0

   //pipe.Reader.Complete(); no more reads possible

}

Improving the read side of pipeline usage to use a zero-copy approach requires 

a little more, yet still quite intuitive changes. Instead of aggressively reading all 

readResult.Buffer data and copying it to a newly created array, we may investigate it 

and access data without copying. Reader.Buffer is of type ReadOnlySequence<byte> 

that provides the following features:

• such sequence (buffer) represents one or more segments received 

from the producer,

• its IsSingleSegment property tells us whether sequence represents 

only single segment,

• its First property is of ReadOnlyMemory<byte> type and returns the 

first segment,

• it is enumerable, providing ReadOnlyMemory<byte> elements in case 

of representing multiple segments.

This leads us to a common way of consuming a read buffer (see Listing 14-74). Please 

note that no allocations happen in the presented code - read data is represented by 

sliced ReadOnlyMemory<byte> and ReadOnlySpan<byte> structs.

Additionally, one more feature of a pipeline is presented in Listing 14-74 - reader’s 

AdvanceTo method may update two different read positions separately:

• consumed position - to inform that memory until such position has 

been already read (consumed) and we do not need it anymore. Such 

data will not return to us after successive reader’s ReadAsync calls 

(and may be released by underlying buffering mechanism).

CHAPter 14  AdvAnCed teCHniques



991

• examined position - to inform that although we read data until such 

position (we’ve already seen them) but it was not enough for us – 

so, for example, we have read only a part of incoming message and 

we must wait for the rest. Data between consumed and examined 

position will return to us after successive ReadAsync calls altogether 

with a new data that arrives.

Listing 14-74. Example of zero-copy read side of pipeline

static async Task Process(Pipe pipe)

{

   PipeReader reader = pipe.Reader;

   var readResult = await pipe.Reader.ReadAsync();

   var readBuffer = readResult.Buffer;

   SequencePosition consumed;

   SequencePosition examined;

   try

   {

      ProcessBuffer(in readBuffer, out consumed, out examined);

   }

   finally

   {

      reader.AdvanceTo(consumed, examined);

   }

}

private static void ProcessBuffer(in ReadOnlySequence<byte> sequence, out 

SequencePosition consumed, out SequencePosition examined)

{

   consumed = sequence.Start;

   examined = sequence.End;

   if (sequence.IsSingleSegment)

   {

      // Consume buffer as single span

      var span = sequence.First.Span;

      Consume(in span);

   }
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   else

   {

      // Consume buffer as collections of spans

      foreach (var segment in sequence)

      {

         var span = segment.Span;

         Consume(in span);

      }

   }

   //  out consumed - to which position we have already consumed the data 

(and do not need them anymore)

   //  out examined - to which position we have already analyzed the data 

(data between consumed and examined will be provided again when new 

data arrives)

}

private static void Consume(in ReadOnlySpan<byte> span) // No defensive 

copy as ReadOnlySpan is readonly struct

{

   //...

}

The way of zero-copy reading from pipelines presented in Listing 14-74 most 

probably will become a common design pattern. For example, it is already used in 

HttpParser class in KestrelHttpServer, already presented partially in Listing 14-6 (see 

Listing 14-75). What such parser needs is to interpret incoming network data line by line. 

So a design pattern presented in a ProcessBuffer method should be modified to read 

incoming buffer data, seeking a newline character. If a new line end has been found, the 

consumed position is set accordingly. But if not, data is mark only as examined so it will 

be reinterpreted once again when new data comes.

Listing 14-75. Full code of ParseRequestLine from HttpParser class from 

KestrelHttpServer

public unsafe bool ParseRequestLine(TRequestHandler handler, in 

ReadOnlySequence<byte> buffer, out SequencePosition consumed, out 

SequencePosition examined)
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{

   consumed = buffer.Start;

   examined = buffer.End;

   // Prepare the first span

   var span = buffer.First.Span;

   var lineIndex = span.IndexOf(ByteLF);

   if (lineIndex >= 0)

   {

      consumed = buffer.GetPosition(lineIndex + 1, consumed);

      span = span.Slice(0, lineIndex + 1);

   }

   else if (buffer.IsSingleSegment)

   {

      // No request line end

      return false;

   }

   else if (TryGetNewLine(buffer, out var found))

   {

      span = buffer.Slice(consumed, found).ToSpan();

      consumed = found;

   }

   else

   {

      // No request line end

      return false;

   }

   // Fix and parse the span

   fixed (byte* data = &MemoryMarshal.GetReference(span))

   {

      ParseRequestLine(handler, data, span.Length);

   }

   examined = consumed;

   return true;

}
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private static bool TryGetNewLine(in ReadOnlySequence<byte> buffer, out 

SequencePosition found)

{

   var byteLfPosition = buffer.PositionOf(ByteLF);

   if (byteLfPosition != null)

   {

      // Move 1 byte past the \n

      found = buffer.GetPosition(1, byteLfPosition.Value);

      return true;

   }

   found = default;

   return false;

}

Interpretation of incoming segments from the read buffer is quite tedious. We need 

to maintain the interpretation state and correctly handle the interpretation of successive 

segments (as byte data we interpret most probably will be split into multiple segments). 

For common scenarios of interpreting underlying segments as stream of bytes, 

BufferReader helper class is also introduced (see Listing 14-76). Underneath it handles 

interpreting successive segments while providing single and contiguous stream of bytes 

accessible by Read method. Obviously, it still does not heap allocate anything as it is also 

based on zero-copy approach internally.

Listing 14-76. An example of BufferReader helper class usage

private static void ProcessWithBufferReader(in ReadOnlySequence<byte> 

sequence, out SequencePosition consumed, out SequencePosition examined)

{

   var byteReader = BufferReader.Create(sequence);

   while (!byteReader.End)

   {

      var ch = byteReader.Read();

      // Consume... read more, and so on, so forth.
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      // setting:

      consumed = byteReader.Position;

      examined = byteReader.Position; // or less if Peek was used

      // return if you are done with some part

   }

}

 Summary
We have covered quite a lot of various topics in this chapter. It is a kind of all-in- 

one bag where seemingly unrelated techniques and types were discussed. In my 

opinion, however, they have one important thing in common - they are advanced, 

highly specialized things required mostly in even-more specialized code with high- 

performance requirements. This is exactly why this chapter has a title “Advanced 

Techniques,” right?

Many words were spoken here about types like Span<T> or Memory<T>, which allow 

us to write very efficient, no heap-allocating code as was well as other possibilities, like 

Unsafe class.

Eventually, we took a little insight into the future of C# and .NET. Of course, 

predicting the future is always hard. So, I refrained from going too far into the future. Two 

features that are most important from a memory management perspective were briefly 

described - nullable reference types and pipelines (one should count here also UTF8 

strings that are planned to be introduced).

There are no Rules defined in this chapter. If I were to mention a general one, 

it would sound: do not over-engineer. I mean, most of the techniques described in 

this chapter are relevant only on low-level code that should most probably belong to 

something called Infrastructure Level - preferably generalized and sealed in library or 

NuGet package. Do not clutter Business Layer with strictly technical types like Span<T> 

or Memory<T>. They do not belong to the business domain for sure and expressiveness 

of the domain is one of the most important factors during our application’s domain 

modeling. Span<T> and Memory<T> are the best types for no- copy handling where 

performance is critical for advanced scenarios.
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CHAPTER 15

Programmatical APIs
This is the last chapter of this book. We have seen, so far, many various topics related 

to .NET memory management - including a comprehensive description of how, in fact, 

Garbage Collector in .NET works. Other important topics were also described, including 

resource management with the help of finalization and disposable objects, various types 

of handles, usage of structs or many diagnostic scenarios, and practical advice related to 

all of that. At this moment we should feel quite comfortable in the memory management 

topic, although the amount of knowledge could be a little overwhelming so going back to 

at least some parts of the book is fully understandable and advisable.

What’s left then? Not so much indeed. In this chapter I would like to describe a few 

programmatical APIs related to the GC. They are available from code on different levels, 

providing different levels of flexibility. I believe it is a good theme for the end of the 

book. Already more or less understanding the operation of the GC, we can now look at 

how it can be controlled and measured from code. We start from reviewing an already 

well-known GC class, mainly for reference, as most of the available methods were already 

used here and there throughout the book. Then, the CLR Hosting feature is described. 

Eventually, two great libraries that provide deep diagnostic capabilities are shown - 

ClrMD and EventTrace. As the crème de la crème, a few words are dedicated to the 

possibility of changing the whole GC into our custom one.

 GC API
As said, a static GC class with its static methods has been quite intensively already used 

in the previous chapters. Here, I want to briefly summarize its usage and show those 

little possibilities not yet mentioned or described with insufficient details. I do not repeat 

myself, so if examples of a specific method usage were already presented, I just refer 

back to them. All methods were organized into some functional groups, presented as 

subsections. Moreover, besides the GC class itself, a few other methods and types are 

presented that perfectly suit the overall “Programmatical GC API” section.
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 Collection Data and Statistics
The first group contains properties and methods that inform us about the GC status and 

internal state of memory.

 GC.MaxGeneration

This informs about the number of maximum generations currently implemented in the 

GC. It is mostly useful in a code that would like to iterate over all available generations 

(to not hard-code its number) - like by successive calls of GC.CollectionCount 

presented below. Or when you want to check with the help of GC.GetGeneration method 

whether an object is already in the oldest generation (such usage is shown later as well). 

Please note, this property currently has a value of 2 because the oldest generation 2 and 

LOH are treated as one (collected together during full GC).

 GC.CollectionCount(Int32)

This informs about the number of GC occurrences of a specific generation since the 

program’s beginning. The generation number we ask for should be not less than 0 and 

not bigger than a value returned by GC.MaxGeneration. Remember that such count 

is inclusive, so if generation 1 is condemned, both generations 0 and 1 counters are 

increased. Thus, Listing 15-1 will produce results as shown in Listing 15-2 (each younger 

generation collection counter includes collections of older generations).

Listing 15-1. Illustration of GC.CollectionCount method usage

GC.Collect(0);

Console.WriteLine($"{GC.CollectionCount(0)} {GC.CollectionCount(1)}  

{GC.CollectionCount(2)}");

GC.Collect(1);

Console.WriteLine($"{GC.CollectionCount(0)} {GC.CollectionCount(1)}   

{GC.CollectionCount(2)}");

GC.Collect(2);

Console.WriteLine($"{GC.CollectionCount(0)} {GC.CollectionCount(1)}  

{GC.CollectionCount(2)}");

Chapter 15  programmatiCal apis



999

Listing 15-2. Results of code from Listing 15-1

1 0 0

2 1 0

3 2 1

We can use this method for diagnostic and logging from inside our application. 

However, most popular usage is probably implementing a “smart” explicit GC call only if 

it does not happen by itself (see Listing 15-3). In that way our code that wants to trigger 

GC will be less aggressive. Recall Chapter 7’s elaboration about explicitly calling GC in 

general. We could also use such code to periodically check each generation counter to 

notice that the collection of a given generation has happened recently (thus, allowing 

us to create a sort of “callback” that is executed after each GC, if checking granularity is 

small enough).

Listing 15-3. Conditional explicit GC call if it didn’t happen by itself

if (lastGen2CollectionCount == GC.CollectionCount(2))

{

   GC.Collect(2);

}

lastGen2CollectionCount = GC.CollectionCount(2);

 GC.GetGeneration

This informs about the generation to which the given object belongs. For valid objects on 

the Managed Heap, it returns value between 0 and GC.MaxGeneration.

It may be used, for example, to create some generation-aware caching policy. 

Supposing we want to create a pool of objects that are being pinned, it would be good to 

reuse only objects from the oldest generation, which are most probably living in gen2-

only segments. Assuming objects are pinned for a short period of time, pinning in gen2-

only segments is less severe because there is much less probability of full GC during that 

time.

Thanks to the GC.GetGeneration method, we can create such a pool, maintaining 

a list of already “aged” objects (preferred to be rented from the pool) and another list 

of younger objects (with the expectation they will become aged at some time). A draft 

of such pool is presented in Listing 15-4. If someone wants to rent an object from the 

pool (by calling Rent method), already aged objects are first checked for availability. 
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If there is none, a list of already maintained younger objects is checked in the 

RentYoungObject method. If again, there is none currently, a new object is being created 

via a provided factory method. When an object is being returned to the pool (by calling 

Return method), its “age” is checked with the help of GC.GetGeneration method and 

depending on the result, added to the appropriate collection for later reuse. Additionally, 

Gen2GcCallback class (described in Chapter 12) is used to perform an action on every 

full GC to maintain both lists - moving those objects that already landed in the oldest 

generation from the young collection to the aged collection.

Listing 15-4. Draft of PinnableObjectPool<T> implementation, preferring to 

provide objects from the oldest generation

public class PinnableObjectPool<T> where T : class

{

   private readonly Func<T> factory;

   private ConcurrentStack<T> agedObjects = new ConcurrentStack<T>();

   private ConcurrentStack<T> notAgedObjects = new ConcurrentStack<T>();

   public PinnableObjectPool(Func<T> factory)

   {

      this.factory = factory;

      Gen2GcCallback.Register(Gen2GcCallbackFunc, this);

   }

   public T Rent()

   {

      if (!agedObjects.TryPop(out T result))

         RentYoungObject(out result);

      return result;

   }

   public void Return(T obj)

   {

      if (GC.GetGeneration(obj) < GC.MaxGeneration)

         notAgedObjects.Push(obj);

      else

         agedObjects.Push(obj);

   }
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   private void RentYoungObject(out T result)

   {

      if (!notAgedObjects.TryPop(out result))

      {

         result = factory();

      }

   }

   private static bool Gen2GcCallbackFunc(object targetObj)

   {

      ((PinnableObjectPool<T>)(targetObj)).AgeObjects();

      return true;

   }

   private void AgeObjects()

   {

      List<T> notAgedList = new List<T>();

      foreach (var candidateObject in notAgedObjects)

      {

         if (GC.GetGeneration(candidateObject) == GC.MaxGeneration)

         {

            agedObjects.Push(candidateObject);

         }

         else

         {

            notAgedList.Add(candidateObject);

         }

      }

      notAgedObjects.Clear();

      foreach (var notAgedObject in notAgedList)

      {

         notAgedObjects.Push(notAgedObject);

      }

   }

}
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Obviously, PinnableObjectPool<T> presented here is simplified for brevity 

and does not include such important aspects as cache trimming or multithreading 

synchronization (especially in AgeObjects method).

there is already mentioned in Chapter 12, an internal PinnableBufferCache 
class in .Net fundamental libraries (CoreFX) that is a real-world implementation 
of a pool similar to that presented in listing 15-4. it includes cache trimming, a lot 
of care about optimal multithreading access, and another optimization related to 
managing both objects collections. i strongly recommend that you find a moment 
to study the code of this class carefully. it is an excellent summary of many of the 
aspects discussed in this book.

Please note that if we pass an invalid object to GetGeneration method, we should treat 

its result as undefined (see Listing 15-5) - for example, current .NET Core implementation 

will always return 2 in such a case because it assumes that if an object does not belong to 

an ephemeral segment, it belongs to one of the LOH or gen2 segments.

Listing 15-5. Passing invalid, stack-allocated object to GC.GetGeneration 

method

UnmanagedStruct us = new UnmanagedStruct { Long1 = 1, Long2 = 2 };

int gen = GC.GetGeneration(Unsafe.As<UnmanagedStruct, object>(ref us));

Console.WriteLine(gen);

Output:

2

 GC.GetTotalMemory

This returns the total number of bytes in use, excluding fragmentation, in all generations. 

In other words, it is a total size of all managed objects on the Managed Heap. This 

include the size of already unreachable, dead objects if we do not trigger explicit GC 

before.1 As mentioned in Chapter 12, where this method implementation was presented 

1 Strictly speaking, since there could be any number of things that happen between explicitly 
triggering a GC and calling GetTotalMemory method, some objects could also have become 
unreachable, unless there’s no other threads running.
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(see Listing 12-9), be aware that when passing true as its forceFullCollection 

argument, this method may be very costly. In the worst scenario, it may trigger full-

blocking GC 20 times trying to get a stable result!

GetTotalMemory method may be used obviously for diagnostic and logging purposes. 

Its usage in various unit tests and experiments is popular. However, for the purpose 

of tracking allocations during the test, GC.GetAllocatedBytesForCurrentThread, 

described later, is a better alternative.

Moreover, be cautious when using this method for memory-based limiting 

processing, like web request throttling. Because of not counting fragmentation 

and overall overhead of segments management (for example, committing some 

segment’s pages in advance), such measure does not reflect precisely the overall 

pressure of the memory. For such scenarios, it is better to use overall memory 

measurements provided by the Process class (or at least relate GC.GetTotalMemory 

result to them). The simple “Hello world” example in Listing 15-6 illustrates the 

difference (see Listing 15-7 for results). Objects in the GC Heap are taking around 

600 kB of memory. However, private memory usage of the overall process is around 

9 MB (while Virtual Memory is obviously bigger, refer to Chapter 2 for memory 

categorization in a process).

Listing 15-6. Using GC.GetTotalMemory and various Process memory-related 

measurements

static void Main(string[] args)

{

   Console.WriteLine("Hello world!");

   var process = Process.GetCurrentProcess();

   Console.WriteLine($"{process.PrivateMemorySize64:N0}");

   Console.WriteLine($"{process.WorkingSet64:N0}");

   Console.WriteLine($"{process.VirtualMemorySize64:N0}");

   Console.WriteLine($"{GC.GetTotalMemory(true):N0}");

   Console.Readline();

}

Listing 15-7. Result of code from Listing 15-6

Hello world!

9,162,752
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146,680,064

2,199,553,761,280

620,496

Even the memory taken by the Managed Heap is noticeably bigger than the total 

size of objects in it (see Figure 15-1). We can see that memory committed by the GC 

segments take 1,772 kB while results from Listing 15-7 show only around 600 kB.

And yes, most of this difference lies in fragmentation not being counted in. We may 

confirm that by using the heapstat command from WinDbg’s SOS extensions (see 

Listing 15- 8), where total space taken by free space may be easily calculated.

Figure 15-1. VMMAP view of program from Listing 15-6 (stopped at the last line)

Listing 15-8. HeapStat SOS command result of program from Listing 15-6

> !heapstat -inclUnrooted

Heap             Gen0         Gen1         Gen2          LOH

Heap0            8216           24       145280       701024

Free space:                                                 Percentage

Heap0            24           0       94576       131280 SOH: 61% LOH: 18%

Unrooted objects:                                            Percentage

Heap0            40           0          184            0 SOH:  0% LOH:  0%
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Unfortunately, to get the most interesting Working set - private value, you would 
need to use PerformanceCounter class and read performance Counters 
data of your own process. there is also no way to get programmatically overall 
managed heap size including fragmentation other than using ClrmD or etW-based 
traceevent library presented later in this chapter. there is also an internal GC.
GetMemoryInfo method returning such information added in .Net Core 2.1, but 
at the time of this writing, it was decided to not make it public.

 GC.GetAllocatedBytesForCurrentThread

This method returns the total number of bytes allocated so far by the current thread. 

Please note it is a cumulative value and is always growing. It considers only the number 

of allocations, and it does not matter for this measure how many objects/bytes were 

afterwards garbage collected.

As it returns a value only for the current thread, it is not possible to ask about 

allocations on the other thread. Thanks to that, its implementation is fast and 

straightforward (see Listing 15-9): it sums the number of bytes so far allocated in the 

previous allocation contexts plus the already consumed part of the current allocation 

context (recall Chapter 5 where allocation context was described in detail).

Listing 15-9. Implementation of GC.GetAllocatedBytesForCurrentThread 

method in CoreCLR.

FCIMPL0(INT64, GCInterface::GetAllocatedBytesForCurrentThread)

{

      ...

    INT64 currentAllocated = 0;

    Thread *pThread = GetThread();

    gc_alloc_context* ac = pThread->GetAllocContext();

     currentAllocated = ac->alloc_bytes + ac->alloc_bytes_loh -  

(ac->alloc_limit - ac->alloc_ptr);

    return currentAllocated;

}

FCIMPLEND
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Because the allocation measurement is limited to the only current thread, the GC.

GetAllocatedBytesForCurrentThread method is much better suited to isolated unit 

tests or experiments about allocations, instead of using GC.GetTotalMemory method 

(see Listing 15-10). Please note that the latter provides a total memory usage for overall 

process so other allocating threads will influence the result. On the other hand, thread 

isolation in case of this method provides clean and reproducible results.

Listing 15-10. Example of using GC.GetAllocatedBytesForCurrentThread in 

unit test

[Fact]

public void SampleTest()

{

   string input = "Hello world!";

   var startAllocations = GC.GetAllocatedBytesForCurrentThread();

   ReadOnlySpan<char> span = input.AsSpan().Slice(0, 5);

   var endAllocations = GC.GetAllocatedBytesForCurrentThread();

   Assert.Equal(startAllocations, endAllocations);

   Assert.Equal("Hello", span.ToString());

}

Please also note this method was added in .NET Core 2.1 and is not available yet 

in .NET Framework. On the other hand, .NET Framework exposes yet another way of 

programmatically measuring memory usage with the help of AppDomain class and its two 

properties2:

• MonitoringTotalAllocatedMemorySize - it returns total number of 

bytes allocated so far by an application domain. It is then similar to 

the GC.GetAllocatedBytesForCurrentThread method, but it works 

on the AppDomain, not thread level. Moreover, it is being updated at 

every allocation context change (which may happen more often than 

GC). Thus, it has allocation context granularity, which has a few kB 

accuracies.

2 To use those properties, we have to enable Application Domain Resource Monitoring - refer to 
MSDN for ways of doing that.

Chapter 15  programmatiCal apis



1007

• MonitoringSurvivedMemorySize - it returns total number of bytes 

taken by objects that survived last GC. It is only guaranteed to be 

accurate after a full GC, although it is updated more often but with 

less accuracy.

The current mismatch of the methods of allocations measurements causes difficulty 

when writing code compatible with .NET Standard and designed to be used both by 

.NET Core and .NET Framework. For example, BenchmarkDotNet library solves this 

problem using the best possible (most precise) in each case (see Listing 15-11).

Listing 15-11. Fragments of BenchmarkDotNet’s GcStats class used by 

MemoryDiagnoser

public struct GcStats

{

   private static readonly Func<long> 

GetAllocatedBytesForCurrentThreadDelegate = 

GetAllocatedBytesForCurrentThread();

   private static Func<long> GetAllocatedBytesForCurrentThread()

   {

      // for some versions of .NET Core this method is internal,

      // for some public and for others public and exposed ;)

       var method = typeof(GC).GetTypeInfo().GetMethod("GetAllocatedBytesFor

CurrentThread",

                  BindingFlags.Public | BindingFlags.Static)

               ?? typeof(GC).GetTypeInfo().GetMethod("GetAllocatedBytesForCu

rrentThread",

                  BindingFlags.NonPublic | BindingFlags.Static);

      return () => (long)method.Invoke(null, null);

   }
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   private static long GetAllocatedBytes()

   {

      ...

      //  "This instance Int64 property returns the number of bytes that 

have been allocated by a specific

      //  AppDomain. The number is accurate as of the last garbage 

collection." - CLR via C#

      //  so we enforce GC.Collect here just to make sure we get accurate 

results

      GC.Collect();

#if CLASSIC

       return AppDomain.CurrentDomain.MonitoringTotalAllocatedMemorySize;

#elif NETSTANDARD2_0

      ...

      //  https://apisof.net/catalog/System.GC.GetAllocatedBytesForCurrentT

hread() is not part of the .NET Standard, so we use reflection to 

call it..

       return GetAllocatedBytesForCurrentThreadDelegate.Invoke();

#elif NETCOREAPP2_1

      //  but CoreRT does not support the reflection yet, so only because of 

that we have to target .NET Core 2.1

      //  to be able to call this method without reflection and get 

MemoryDiagnoser support for CoreRT ;)

      return System.GC.GetAllocatedBytesForCurrentThread();

#endif

   }

   ...

}

 GC.KeepAlive

GC.KeepAlive is a method that extends the liveness of a stack root, because it makes the 

passed argument reachable at least to the line when this method is called (influencing 

generated GC info). The use and significance of this method is discussed in Chapter 8 

(see Listings 8-16 and 8-17). It was also used in several other examples throughout the 

book.
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 GCSettings.LargeObjectHeapCompactionMode

By setting this property to GCLargeObjectHeapCompactionMode.CompactOnce value, we 

may explicitly ask for compacting LOH when the first-blocking full-GC will occur. The 

usage and performance impact of this settings was thoroughly described in Scenario  

10-1- Large Object Heap Fragmentation in Chapter 10.

 GCSettings.LatencyMode

By setting this property, we control the latency mode of the GC, which allows us 

to control GC’s concurrency and enables additional modes like LowLatency or 

SustainedLowLatency. The usage of various latency modes and elaboration of which one 

we should choose was presented in Chapter 11.

 GCSettings.IsServerGC

This indicates whether CLR was started with Workstation or Server GC mode (see 

Chapter 11). Please note this is a read-only property as the GC mode cannot be changed 

after runtime has been started. This field value is also not affected by any other settings, 

like latency mode. Altogether with the pointer size (designating bitness of a process) and 

the number of processors, it may provide quite comprehensive diagnostic data that you 

may wish to log during application startup (see Listing 15-12).

Listing 15-12. Example of getting simple diagnostic data

Console.WriteLine("{0} on {1}-bit with {2} CPUs",

                  (GCSettings.IsServerGC ? "Server" : "Workstation"),

                  ((IntPtr.Size == 8) ? 64 : 32),

                  Environment.ProcessorCount);

 GC Notifications
Part of the GC API are notifications, which allow us to be notified about the possibility 

of full, blocking GC. Such need comes mainly from pre-.NET 4.5 times where the Server 

GC had only the non- concurrent, blocking version. Because such GC could take a while, 

having the possibility to react on it was quite useful. A typical example is to use such 

notification to tell the load balancer to make this server instance unavailable for the 
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duration of a full-blocking GC. Nowadays GC notifications have lost their importance 

as most often web applications are running in Background GC mode, with much 

less noticeable pause times. Moreover, only blocking garbage collections raises such 

notifications. Thus, if the concurrent configuration is enabled, background garbage 

collection will not be emitted.

Notifications API consists of the following methods:

• GC.RegisterForFullGCNotification(int 

maxGenerationThreshold, int largeObjectHeapThreshold) - 

registers GC notification that should be raised if conditions are met 

to full-blocking GC make this happen. Those conditions are based 

on generation 2 or LOH allocation budgets utilization It is then 

important to remember that those notifications are not directly 

related to the real GC. As MSDN says: “Note that the notification 

does not guarantee that a full garbage collection will occur, only that 

conditions have reached the threshold that are favorable for a full 

garbage collection to occur.” If we specify too high of values, we will 

get a lot of false positive notifications that do not come before real 

GC. On the other hand, if we specify too low of values, we may miss 

real GCs that happened.

• GC.CancelFullGCNotification - cancels the registration of GC 

notification.

• GC.WaitForFullGCApproach - it is a blocking call that waits 

indefinitely for GC notification (there is also method overload with a 

parameter to specify a timeout value).

• GC.WaitForFullGCComplete - it is a blocking call that waits 

indefinitely for full-GC being completed (and again, there is method 

overload with a parameter to specify a timeout value).

A typical example of GC notifications usage is presented in Listing 15-13. One of 

the dedicated threads is periodically waiting for GC notification and takes appropriate 

action if it happens.
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Listing 15-13. Example of using GC notifications

GC.RegisterForFullGCNotification(10, 10);

Thread startpolling = new Thread(() =>

{

  while (true)

  {

    GCNotificationStatus s = GC.WaitForFullGCApproach(1000);

    if (s == GCNotificationStatus.Succeeded)

    {

      Console.WriteLine("GC is about to begin");

    }

    else if (s == GCNotificationStatus.Timeout)

      continue;

    // ...

    //  react to full GC, for example call code disabling current server 

from load balancer

    // ...

    s = GC.WaitForFullGCComplete(10_000);

    if (s == GCNotificationStatus.Succeeded)

    {

      Console.WriteLine("GC has ended");

    }

    else if (s == GCNotificationStatus.Timeout)

      Console.WriteLine("GC took alarming amount of time");

  }

});

startpolling.Start();

GC.CancelFullGCNotification();

Remember that this API isn’t exact by design because you are asking to predict the 

future. Therefore, it requires experimentation with your workload to find appropriate 

values of GC.RegisterForFullGCNotification arguments.
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one could complain about necessity of guessing thresholds provided to 
RegisterForFullGCNotification, but there are no good alternatives in fact. 
the situation changes all the time in a real-world process so if it does not happen 
to be completely regular, it is hard to expect that we will predict future accurately. 
Fine-tuning with the help of mentioned thresholds allows us at least to adapt to our 
typical workload.

 Controlling Unmanaged Memory Pressure
By calling the following methods, we may inform GC that some managed objects are 

holding (or releasing) some amount of unmanaged memory not directly visible to it:

• GC.AddMemoryPressure(Int64)

• GC.RemoveMemoryPressure(Int64)

If some threshold of such memory is exceeded, GC will be triggered. As mentioned 

in Chapter 7, altogether with those methods’ usage in Scenario 7-3 - Analyzing the 

Explicit GC Calls, currently this threshold starts at value of 100,000 bytes and is later 

on dynamically tuned. Listing 12-3 in Chapter 12 is yet another typical example of this 

method usage.

Note also that you could implement your own similar mechanism, if you want, 
because the default implementation works poorly for you. although exposed by GC 
class, this mechanism is not internal to the gC (while still implemented in runtime).

 Explicit Collection
The possibility of explicitly calling GC was thoroughly described already in Chapter 7.  

Please refer to the “Explicit Trigger” section in Chapter 7 for more details, as well as 

above-mentioned Scenario 7-3 - Analyzing the Explicit GC Calls.
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Just for completeness, please find the list of GC method overloads used to induce 

such explicit collection:

• Collect()

• Collect(int generation)

• Collect(int generation, GCCollectionMode mode)

• Collect(int generation, GCCollectionMode mode, bool 

blocking)

• Collect(int generation, GCCollectionMode mode, bool 

blocking, bool compacting)

 No-GC Regions
Regions of code within which runtime tries to disallow GC may be created with the help 

of the following methods:

• GC.TryStartNoGCRegion(long totalSize)

• GC.TryStartNoGCRegion(long totalSize, bool 

disallowFullBlockingGC)

• GC.TryStartNoGCRegion(long totalSize, long)

• GC.TryStartNoGCRegion(long totalSize, long lohSize, bool 

disallowFullBlockingGC)

• GC.EndNoGCRegion()

Further discussion, explanation, and examples of those methods’ usage were already 

presented in the “No GC Region” section in Chapter 11.

 Finalization Management
Intimately explained in Chapter 12, the set of methods in GC API allow us to control 

finalization behavior. Such API consists of three methods:

• GC.ReRegisterForFinalize(object obj)

• GC.SuppressFinalize(object obj)

• GC.WaitForPendingFinalizers()

Chapter 15  programmatiCal apis



1014

 Memory Usage
Handling OutOfMemoryException is cumbersome, especially if it happens in the 

middle of important processing. To proactively avoid such situations, we may use 

MemoryFailPoint class that tries to guarantee that there is enough memory available 

before we start our processing of great importance. Remember that there’s no guarantee 

that you will not get OutOfMemoryException with this API. It’s just a best effort to avoid it.

Usage of this class is plain and simple (see Listing 15-14). MemoryFailPoint 

constructor will throw InsufficientMemoryException if there is less than the required 

memory available. Due to internal bookkeeping required for multithreaded usage, 

MemoryFailPoint is a disposable object so we should remember about calling its 

Dispose method (or use using clause).

Listing 15-14. Simple example of MemoryFailPoint usage

try

{

    using (MemoryFailPoint failPoint = new MemoryFailPoint(sizeInMegabytes: 

1024))

   {

      // Do calculations

   }

}

catch (InsufficientMemoryException e)

{

   Console.WriteLine(e);

   throw;

}

it is important to note that currently only Windows-based runtimes implement 
this class functionality. in case of other systems, MemoryFailPoint constructor 
always succeeds.
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In case of current Windows implementation MemoryFailPoint checks for the 

possibility of allocating a specified amount of managed memory in the following steps:

• Whether there is enough virtual address space in general - this 

should be always true in case of 64-bit huge address space, as well as 

it is hard to imagine a need of allocating at once more memory than 

32-bit virtual address space.

• It explicitly calls full, blocking, and compacting GC to give it an 

opportunity to free unused segments and compact managed memory 

usage as much as possible.

• It checks whether there is enough free virtual memory.

• It checks whether there is a need to grow the OS page file to 

accommodate required memory size.

• It checks whether there is enough contiguous free virtual memory to 

create a GC segment, if it is needed.

i strongly encourage you to read MemoryFailPoint class source if you are 
interested in managing free memory space of a process. internally it uses Win32 api 
calls to get currently available memory (in private CheckForAvailableMemory 
method) and Virtual api’s VirtualQuery call to find a contiguous free virtual 
address region (in private MemFreeAfterAddress method). it has also 
a private and internal static method GetMemorySettings(out ulong 
maxGCSegmentSize, out ulong topOfMemory) implemented in runtime that 
returns the gC segment size and maximum available virtual address of a process. 
relying on such implementation detail, we could even use it to gain information 
about the segment’s size by the following reflection usage:

var args = new object[2];

var mi = typeof(MemoryFailPoint).GetMethod("GetMemorySettings",  
BindingFlags.Static | BindingFlags.NonPublic); mi.Invoke(null, 
args);    // As a result, args[0] contains maxGCSegmentSize 
value
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 Internal Calls in the GC Class
Just in case you are curious, static GC class is mainly a thin wrapper around intrinsic, 

runtime method implementations. Most of its methods are marked as InternalCall 

(see Listing 15-15), which are mapped to appropriate runtime methods in CoreCLR’s  

.\src\vm\ecalllist.h file (see Listing 15-16).

Listing 15-15. Fragments of GC class implementation from CoreFX source code

public static class GC

{

   [MethodImplAttribute(MethodImplOptions.InternalCall)]

   public static extern int GetGeneration(Object obj);

   [MethodImplAttribute(MethodImplOptions.InternalCall)]

   internal static extern bool IsServerGC();

   ...

}

Listing 15-16. Fragments of GC class runtime interface from CoreCLR  

source code

FCFuncStart(gGCInterfaceFuncs)

   FCFuncElement("IsServerGC", SystemNative::IsServerGC)

   FCFuncElement("GetGeneration", GCInterface::GetGeneration)

   ...

FCFuncEnd()

Static GCInterface methods are calling (mostly) methods defined in gc.cpp file (see 

Listing 15-17).

Listing 15-17. Example runtime implementation of GC method

FCIMPL1(int, GCInterface::GetGeneration, Object* objUNSAFE)

{

   FCALL_CONTRACT;

   if (objUNSAFE == NULL)

      FCThrowArgumentNull(W("obj"));
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    int result = (INT32)GCHeapUtilities::GetGCHeap()->WhichGeneration 

(objUNSAFE);

   FC_GC_POLL_RET();

   return result;

}

FCIMPLEND

 CLR Hosting
Whole CLR runtime may be seen as a set of libraries that are able to load and execute 

CIL code from compatible .NET assembly. Indeed, every time we use .NET, such runtime 

must be hosted in some process. In case of a regular .NET Framework, thanks to native 

Windows support, such a host “bootstrap” is contained in the EXE file itself. In case 

of .NET Core, there is also already a well- known dotnet host application. If we build 

CoreCLR on our own, there will be also simplified for testing a CoreRun host available. 

All those hosts have one thing in common - they load the appropriate CLR runtime 

into process memory, configure it, and execute loaded assembly code (specified from 

appropriate assembly file). Such host is also included, for example, in SQL Server 

instance to allow managed code execution from inside it.

Hosting API is publicly exposed and everyone could write its own CLR hosting 

process. We can imagine many various use cases, but there at least two common ones:

• Create an internal CLR runtime to be able to call managed code from 

a native process - which is in fact a use case of SQL Server.

• Create customized CLR runtime to gain control over how the CLR 

works, including the GC.

Because CLR hosting provides many configuration capabilities, we can somehow 

craft our “own runtime,” suitable for our needs. This is obviously very rarely necessary, 

so I will not create a full CLR hosting tutorial here. This functionality is pretty well 

documented. Instead, let’s see a few examples for what it can be used for in the context 

of memory management.
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When using CLR Hosting API, we are entering the C++ and COM world - full of well-

defined interfaces with well-specified functionality. Every object in CLR Hosting API is 

represented by some specific interface. The main one, representing the runtime itself, is 

called ICLRRuntimeHost (in .NET Framework) or ICLRRuntimeHost4 (in .NET Core).3

CLR Hosting API is slightly different in .NET Framework and .NET Core. Because 

currently .NET Core version does not support many features interesting to us, only 

full .NET Framework examples are shown here. Refer to MSDN documentation to see 

the current status and API of .NET Core version. Currently .NET Core version of CLR 

Hosting mainly supports loading runtime and executing code, without the possibility of 

customizing it via the interfaces described below.

Before moving into examples, let’s briefly skim a list of CLR hosting interfaces related 

to the memory management (including some general, always used ones) to see what is 

possible in the field of memory management. Although all this information is available on 

MSDN, I’ve decided to include here a brief summary because it takes a while to merge all 

this information (including omitting already obsolete interfaces, and so on, and so forth). 

Currently, from our perspective, the most interesting interfaces are as follows:

• ICLRControl - interface to get various managers, representing 

specific functionality (like GC, Debugging, Assembly 

management, and so on, so forth). With respect to .NET memory 

management, two managers are interesting: ICLRGCManager2 and 

ICLRAppDomainResourceMonitor.

• ICLRGCManager2 - interface representing some control over GC. More 

specifically, it includes the following methods:

• Collect - triggers GC explicitly.

• GetStats - gets a set of current statistics about the garbage 

collection - they are directly based on the same values as 

represented by corresponding performance counters (thus, in 

CoreCLR build those stats are not available).

• SetGCStartupLimitsEx - sets the size of GC segment and 

the maximum size of the generation 0 used during runtime 

initialization.

3 We should get used to numbering COM interfaces as it is a canonical way of taking care of 
backward compatibility. Instead of modifying an existing interface, a new one is added with an 
increased number.
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• ICLRAppDomainResourceMonitor - it provides 

measurements about AppDomain, - the same values 

as MonitoringTotalAllocatedMemorySize and 

MonitoringSurvivedMemorySize properties of AppDomain object.

• IHostControl - interface allowing to inject various “host managers” 

into hosted CLR. From a memory management perspective, there 

are two interesting: IHostGCManager and IHostMemoryManager. If we 

want to inject our own manager, we have to override GetHostManager 

method appropriately, returning our custom implementation of 

those interfaces.

• IHostGCManager - interface providing notifications about GC 

suspensions, with the following methods that we have to implement:

• SuspensionStarting - fired when CLR started to suspend threads 

because of GC.

• SuspensionEnding - fired when CLR resumed suspended threads 

because GC of given generation has ended.

• ThreadIsBlockingForSuspension - fired from each running 

thread before it is being suspended.

• IHostMemoryManager - interface providing a range of important 

methods related to memory management. By implementing it, we 

gain full control over how CLR is consuming system memory for 

its purposes. We can, for example, change it completely from using 

Window’s Virtual API to some other libraries (or modify how Virtual 

API is used). The following methods have to be implemented:

• AcquiredVirtualAddressSpace - informs that CLR has acquired 

the specified amount of memory from the operating system. It 

will not be called if we create our custom memory manager if we 

omit calling it explicitly.

• CreateMalloc - allows to get an IHostmalloc interface 

implementation responsible for requesting heap memory 

allocations from inside CLR. In this way we can completely 

change how memory is being allocated for CLR’s internal 

purposes - for example, replacing default malloc calls with 
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jemalloc memory allocator (mentioned in Chapter 14). Please 

note this is the internal runtime’s allocator used to allocate 

memory for private CLR data. It does not replace the GC allocator 

used to allocate managed objects on the Managed Heap.

• GetMemoryLoad - returns the amount of physical memory that is 

currently being used.

• NeedsVirtualAddressSpace - informs the host that CLR will need 

specified amount of memory.

• RegisterMemoryNotificationCallback - allows us to register 

ICLRMemoryNotificationCallback interface implementation, 

which is used to notify the CLR on the high memory utilization.

• ReleasedVirtualAddressSpace - informs the host that CLR will 

no longer need specified amount of memory.

• VirtualAlloc - used to acquire virtual memory from the system. 

Thanks to this method, we may replace or modify how CLR 

utilizes Virtual API to get memory pages.

• VirtualFree - used to release virtual memory to the system.

• VirtualProtect - used to change protection of a given virtual 

memory region.

• VirtualQuery - used to query information about given virtual 

memory region.

• IHostMalloc

• Alloc - called by the runtime, asking the host to allocate the 

requested amount of memory from the heap.

• DebugAlloc - like above but additionally is should track where the 

memory was allocated.

• Free - called by the runtime to free memory that was allocated by 

using the Alloc or DebugAlloc methods.

An overview of how all those relevant interfaces cooperate is presented in Figure 15-2.  

Summarizing what is most relevant to us, in our custom CLR host we can override how 

runtime acquires both memory pages and memory from an unmanaged heap.
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there are many other possibilities when using custom Clr hosting, but only the 
most relevant to us were presented. For example, it is possible to take an action on 
StackOverflowException via ICLROnEventManager. please also note that 
.Net Framework before version 2.0 used another set of interfaces, starting from 
ICorRuntimeHost representing runtime and IGCHost used to control gC. those 
interfaces are not described here for brevity as they are rather ancient and no 
longer used.

An example of loading CLR runtime and obtaining ICLRRuntimeHost and 

ICLRControl interfaces is presented in Listing 15-184. Remember that presented  

4 For brevity, only the most relevant parts of code are presented in the subsequent examples. Refer 
to the accompanying GitHub repository to get full, working examples.

Figure 15-2. The most relevant memory-related interfaces in CLR Hosting API
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CLR Hosting examples are written in unmanaged C++ code (and the provided example 

project is created as a regular Windows console application).

Listing 15-18. Initialization of CLR Hosting

ICLRRuntimeHost* runtimeHost;

ICLRMetaHost *pMetaHost = nullptr;

ICLRRuntimeInfo *pRuntimeInfo = nullptr;

hr = CLRCreateInstance(CLSID_CLRMetaHost, IID_ICLRMetaHost, 

(LPVOID*)&pMetaHost);

hr = pMetaHost->GetRuntime(L"v4.0.30319", IID_PPV_ARGS(&pRuntimeInfo));

hr = pRuntimeInfo->GetInterface(CLSID_CLRRuntimeHost, IID_ICLRRuntimeHost, 

(LPVOID*)&runtimeHost);

ICLRControl* clrControl;

hr = runtimeHost->GetCLRControl(&clrControl);

From now on, we could simply start the runtime and execute the specified method 

from a given file (see Listing 15-19). However, it is the possible customization that 

interests us the most, so let’s look at some further examples.

Listing 15-19. Executing code in CLR Hosting

DWORD dwReturn;

hr = runtimeHost->Start();

hr = runtimeHost->ExecuteInDefaultAppDomain(targetApp, L"HelloWorld.

Program", L"Test", L"", &dwReturn);

From a CLR memory management point of view, we can distinguish possibilities 

presented by the CLR hosting into two or three groups:

• configuration - besides providing standard CLR flags (GC 

workstation/server mode and concurrency), we can tune GC a little 

by using ICLRGCManager2::SetGCStartupLimitsEx that allows us 

to set default GC segment size and maximum generation 0 size (see 

Listing 15-20).

• getting diagnostic measurements - thanks to 

ICLRGCManager2::GetStats or ICLRAppDomainResourceMonitor 

interface, we may observe memory utilization of hosted CLR 
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instance (see Listing 15-21). This may be especially useful in high 

environments hosting (like production) to observe if hosted managed 

code does not violate given memory thresholds.

• customization - thanks to IHostControl interface, we may inject a 

wide range of managers by providing our custom implementations 

(see Listing 15-22). This is the most interesting part of this section so 

let’s look at this possibility in detail.

Listing 15-20. Example of setting SetGCStartupLimitsEx in CLR Hosting

ICLRGCManager2* clrGCManager;

hr = clrControl->GetCLRManager(IID_ICLRGCManager2, (void**)&clrGCManager);

SIZE_T segmentSize = 4 * 1024 * 1024 * 1024;

SIZE_T maxGen0Size = 4 * 1024 * 1024 * 1024;

hr = clrGCManager->SetGCStartupLimitsEx(segmentSize, maxGen0Size);

Listing 15-21. Example of getting CLR memory usage data in CLR Hosting

_COR_GC_STATS gcStats;

gcStats.Flags = COR_GC_COUNTS | COR_GC_MEMORYUSAGE;

// Based on perf counters so does not work in CoreCLR

hr = clrGCManager->GetStats(&gcStats);

cout << gcStats.CommittedKBytes << endl

   << gcStats.Gen0HeapSizeKBytes << endl

   << gcStats.Gen1HeapSizeKBytes << endl

   << gcStats.Gen2HeapSizeKBytes << endl

   << gcStats.LargeObjectHeapSizeKBytes << endl

   << gcStats.ExplicitGCCount << endl

   << gcStats.GenCollectionsTaken[0] << endl

   << gcStats.GenCollectionsTaken[1] << endl

   << gcStats.GenCollectionsTaken[2] << endl;

Listing 15-22. Setting custom host controller in CLR Hosting

CustomHostControl customHostControl;

hr = runtimeHost->SetHostControl(&customHostControl);
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Custom IHostControl has to implement GetHostManager method called by CLR for 

obtaining necessary managers (see Listing 15-23). If this method returns E_NOINTERFACE, 

the default manager will be used. In our case we want to override IHostMemoryManager 

implementation to return our CustomHostMemoryManager class. Please note that all COM 

interfaces should implement also common IUnknown methods: AddRef, Release, and 

QueryInterface. There are presented here but omitted for brevity in subsequent code 

listings.

Listing 15-23. Example of custom IHostControl implementation

class CustomHostControl : public IHostControl

{

    ULONG referenceCounter;

public:

    CustomHostControl()

    {

        referenceCounter = 0;

    }

    // Inherited via IHostControl

    virtual HRESULT GetHostManager(REFIID riid, void ** ppObject) override

    {

        if (riid == IID_IHostMemoryManager)

        {

             IHostMemoryManager *pMemoryManager = new CustomHostMemory 

Manager();

            *ppObject = pMemoryManager;

            return S_OK;

        }

        *ppObject = NULL;

        return E_NOINTERFACE;

    }

    virtual HRESULT QueryInterface(const IID &riid, void **ppvObject)

    {

        if (riid == IID_IUnknown)

        {
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             *ppvObject = static_cast<IUnknown*>(static_cast<IHostControl*>(

this));

            return S_OK;

        }

        if (riid == IID_IHostControl)

        {

            *ppvObject = static_cast<IHostControl*>(this);

            return S_OK;

        }

        *ppvObject = NULL;

        return E_NOINTERFACE;

    }

    virtual ULONG AddRef()

    {

        return referenceCounter++;

    }

    virtual ULONG Release()

    {

        return referenceCounter--;

    }

};

Custom HostMemoryManager has the powerful capability of replacing all virtual 

memory management and heap-allocation handling. Remember that the whole GC (and 

its internal allocators) is seen as a black box - memory pages will be obtained for it as for 

any other necessary regions. There is, in fact, no way to distinguish VirtualAlloc call 

acquiring pages for the Managed Heap from the other calls.

However, even on such a level of customization, we may implement interesting 

things. For example, we can override VirtualAlloc method to lock all acquired pages in 

physical memory, so they will not be ever paged to disk (with high probability). In such 

cases, other methods we may leave as thin wrappers around regular a Virtual API (see 

Listing 15-24). Aggressive page locking may improve such .NET application performance 

as its memory most probably will always reside in the physical RAM.
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Listing 15-24. Example of custom host memory manager implementing 

aggressive page locking in physical memory

class CustomHostMemoryManager : public IHostMemoryManager

{

    ULONG referenceCounter;

public:

    CustomHostMemoryManager() : referenceCounter(0) { }

    // Inherited via IHostMemoryManager

     virtual HRESULT CreateMalloc(DWORD dwMallocType, IHostMalloc ** 

ppMalloc) override

    {

        *ppMalloc = new CustomHostMalloc();

        return S_OK;

    }

     virtual HRESULT VirtualAlloc(void * pAddress, SIZE_T dwSize, DWORD 

flAllocationType, DWORD flProtect, EMemoryCriticalLevel eCriticalLevel, 

void ** ppMem) override

    {

          void* result = ::VirtualAlloc(pAddress, dwSize, flAllocationType, 

flProtect);

         *ppMem = result;

        BOOL locked = false;

        if (flAllocationType & MEM_COMMIT)

        {

            locked = ::VirtualLock(*ppMem, dwSize);

        }

         cout << "VirtualAlloc " << *ppMem << " (" << dwSize << "),  

flags: " << flAllocationType << " " << flProtect << " => "  

<< pAddress << " " << locked << endl;

        return S_OK;

    }

     virtual HRESULT VirtualFree(LPVOID lpAddress, SIZE_T dwSize, DWORD 

dwFreeType) override

    {
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        ::VirtualFree(lpAddress, dwSize, dwFreeType);

        return S_OK;

    }

     virtual HRESULT VirtualQuery(void * lpAddress, void * lpBuffer, SIZE_T 

dwLength, SIZE_T * pResult) override

    {

         *pResult = ::VirtualQuery(lpAddress, (PMEMORY_BASIC_INFORMATION)

lpBuffer, dwLength);

        return S_OK;

    }

     virtual HRESULT VirtualProtect(void * lpAddress, SIZE_T dwSize, DWORD 

flNewProtect, DWORD * pflOldProtect) override

    {

        ::VirtualProtect(lpAddress, dwSize, flNewProtect, pflOldProtect);

        return S_OK;

    }

     virtual HRESULT GetMemoryLoad(DWORD * pMemoryLoad, SIZE_T * 

pAvailableBytes) override

    {

        // Simulate no problems

        *pMemoryLoad = 1;

        *pAvailableBytes = 1024 * 1024 * 1024;

        return S_OK;

    }

     virtual HRESULT RegisterMemoryNotificationCallback(ICLRMemoryNotificati

onCallback * pCallback) override

    {

        return S_OK;

    }

     virtual HRESULT NeedsVirtualAddressSpace(LPVOID startAddress, SIZE_T 

size) override

    {

        return S_OK;

    }
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     virtual HRESULT AcquiredVirtualAddressSpace(LPVOID startAddress, SIZE_T 

size) override

    {

        return S_OK;

    }

     virtual HRESULT ReleasedVirtualAddressSpace(LPVOID startAddress) 

override

    {

        return S_OK;

    }

    // Inherited via IUnknown

    // ...

};

Presented custom IHostMemoryManager overrides also CreateMalloc method, which 

returns our custom IHostMalloc implementation (see Listing 15-25). It is shown for 

illustrative purposes, but we can imagine here a whole set of different implementations, 

including using the already-mentioned jemalloc library instead of malloc and free 

functions.

Listing 15-25. Example of custom heap-allocation implementation for 

hosted CLR

class CustomHostMalloc : public IHostMalloc

{

    ULONG referenceCounter;

public:

    CustomHostMalloc() : referenceCounter(0) { }

    // Inherited via IHostMalloc

     virtual HRESULT Alloc(SIZE_T cbSize, EMemoryCriticalLevel 

eCriticalLevel, void ** ppMem) override

    {

        *ppMem = ::malloc(cbSize);

        cout << "   Alloc " << *ppMem << " (" << cbSize << ")" << endl;

        return S_OK;

    }
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     virtual HRESULT DebugAlloc(SIZE_T cbSize, EMemoryCriticalLevel 

eCriticalLevel, char * pszFileName, int iLineNo, void ** ppMem) 

override

    {

        *ppMem = ::malloc(cbSize);

        return S_OK;

    }

    virtual HRESULT Free(void * pMem) override

    {

        ::free(pMem);

        return S_OK;

    }

    // Inherited via IUnknown

      // ...

};

such a “non-paged Clr host” as presented here is obviously only a simple draft. 
Full, much more well-thought-out implementation is already prepared by sasha 
goldshtein and alon Fliess, currently available at https://archive.codeplex.
com/?p=nonpagedclrhost. i strongly recommend reading its source code. For 
example, it takes into consideration limits of possible page locking. obviously, 
too aggressive locking could negatively influence overall system performance 
as other applications will have less physical memory available. as msDN says: 
“the maximum number of pages that a process can lock is equal to the number 
of pages in its minimum working set minus a small overhead.” thus, sasha 
and alon’s implementation uses SetProcessWorkingSetSize Win32 call to 
appropriately configure working set limits.
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 ClrMD
The Microsoft.Diagnostics.Runtime library, also known as ClrMD (or CLR MD) is a 

set of managed APIs for introspecting managed processes and memory dumps. It is 

rather designed to build diagnostic tools and small snippets, than to use it as self-

monitoring solution of a process (although such possibility also exists as we will soon 

see). It provides similar capabilities as WinDBG’s SOS extensions but in a much more 

convenient way available from C# code. Microsoft.Diagnostics.Runtime library is 

available as a NuGet package and may be used both in .NET Framework and .NET Core 

applications to analyze both .NET Framework and .NET Core targets. Moreover, full 

source code of ClrMD is publicly available in GitHub so you can investigate how it is 

implemented!

Please note that describing all possibilities of this library is not possible here due 

to book space limitations. The following examples are presented to give you an overall 

grasp of what is possible and how powerful this library is. Do not treat this section 

neither as a ClrMD tutorial nor as a comprehensive use-case description. Refer to 

ClrMD’s documentation and samples for further knowledge.

The root object required to work with ClrMD is DataTarget class instance, which 

may be obtained by attaching to a running process or loading memory dump, with the 

help of the following static methods:

• AttachToProcess - allows us to attach to existing process of given 

PID (Process ID). It may be done in three different ways:

• Invasive - the process will be paused and we will be able to 

control it like we attached from the regular debugger. This is a 

preferred way in normal circumstances.

• NonInvasive - the process will be paused but we will not be able 

to control the process. Because in general only a single debugger 

may control any process, this method is useful if we want to 

attach to a process with other debugger already attached.

• Passive - the process in not paused and no debugger is attached 

to it in any mode. We should be aware that many queries about 

dynamic data, like thread stacks or object references, may be 

often inconsistent. The overall idea with this mode is that the 
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program using ClrMD is responsible for doing all process control-

related work (like suspending the observed process). This gives 

the developer complete flexibility in how the target process is 

controlled.

• LoadCrashDump - allows us to load a file of already taken memory 

dump (e.g., with the help of ProcDump).

please note that passive mode theoretically allows us to attach even to our own 
process, to provide self-monitoring capabilities. this, however, makes many 
problems if you think about it deeply - like how ClrmD would handle a dynamically 
changing state of the process, inspecting a heap while gCs and allocations are 
happening, and so on, and so forth. thus, the ClrmD maintainer didn’t specifically 
disallow self-inspection, because it was something that could be useful in small 
corner cases. however, doing this correctly is essentially rocket science, not for the 
faint of heart, and if you run into issues, treat such a scenario as not supported by 
the maintainer.

When DataTarget is initialized, we may start investigating underlying data, 

looking for the runtimes that are (or were) used in it (see Listing 15-26). This includes 

information about needed underlying DAC (Data Access Component), which is 

responsible for understanding all of CLR’s internal data structures.

Listing 15-26. Example of simple ClrMD usage - attaching to already running 

process

using (DataTarget target = DataTarget.AttachToProcess(pid, 5000, 

AttachFlag.Invasive))

{

   foreach (ClrInfo clrInfo in target.ClrVersions)

   {

      Console.WriteLine("Found CLR Version:" + clrInfo.Version.ToString());

      // This is the data needed to request the dac from the symbol server:

      ModuleInfo dacInfo = clrInfo.DacInfo;

      Console.WriteLine($"Filesize:  {dacInfo.FileSize:X}");
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      Console.WriteLine($"Timestamp: {dacInfo.TimeStamp:X}");

      Console.WriteLine($"Dac File:  {dacInfo.FileName}");

      ClrRuntime runtime = clrInfo.CreateRuntime();

      ...

   }

}

Having properly the initialized ClrRuntime instance, we may do a lot of very 

interesting things. Let’s look at only just a few examples. Please note that only a small 

part of possible methods or attributes of used ClrMD objects is presented here. Refer to 

documentation to see all of them.

We may inspect all running threads and print their current stacks (see Listing 15-27).

Listing 15-27. Example of ClrMD usage - listing all thread’s call stacks

foreach (ClrThread thread in runtime.Threads)

{

   if (!thread.IsAlive)

      continue;

   Console.WriteLine("Thread {0:X}:", thread.OSThreadId);

   foreach (ClrStackFrame frame in thread.StackTrace)

       Console.WriteLine("{0,12:X} {1,12:X} {2}", frame.StackPointer, frame.

InstructionPointer,

         frame.ToString());

   Console.WriteLine();

}

We may iterate through all AppDomains and modules loaded by the runtime, as well 

as every managed type already used by them (see Listing 15-28).

Listing 15-28. Example of ClrMD usage - listing all AppDomains, modules and 

types loaded

foreach (var domain in runtime.AppDomains)

{

   Console.WriteLine($"AppDomain {domain.Name} ({domain.Address:X})");

   foreach (var module in domain.Modules)
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   {

       Console.WriteLine($"   Module {module.Name} ({(module.IsFile ? 

module.FileName : "")})");

      foreach (var type in module.EnumerateTypes())

      {

         Console.WriteLine($"{type.Name} Fields: {type.Fields.Count}");

      }

   }

}

please note that ClrmD gives a view into how the runtime sees the process state 
of the world, and not how things are defined in code. For example, let’s say there’s 
a module loaded that defines a type Foo, and Foo is never used by the process. 
in that case, EnumerateTypes may or may not return Foo… depending on 
whether the runtime decided to load that type out of the module or not. having said 
that, whether it does load Foo is an implementation detail that may change from 
version to version, in the first place.)

However, from our perspective, the most interesting are obviously all memory-

related information. For example, we can investigate all memory regions used by CLR, 

including the Managed Heap (see Listing 15-29 and sample result in Listing 15-30).

Listing 15-29. Example of ClrMD usage - listing all memory regions of a process

foreach (var region in runtime.EnumerateMemoryRegions().OrderBy(r => 

r.Address))

{

    Console.WriteLine($"0x{region.Address:X} (bytes: {region.Size:N0}) - 

{region.Type} " +

                      $"{(region.Type == ClrMemoryRegionType.GCSegment ?  

"(" + region.GCSegmentType.ToString() + ")" : "")}");

}
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Listing 15-30. Example results of code from Listing 15-28

0x24198CC1000 (bytes: 4,096) - HandleTableChunk

0x24199541000 (bytes: 200,704) - GCSegment (Ephemeral)

0x24199572000 (bytes: 268,230,656) - ReservedGCSegment

0x241A9541000 (bytes: 69,632) - GCSegment (LargeObject)

0x241A9552000 (bytes: 134,144,000) - ReservedGCSegment

0x7FF9F5250000 (bytes: 12,288) - LowFrequencyLoaderHeap

0x7FF9F5250000 (bytes: 12,288) - LowFrequencyLoaderHeap

0x7FF9F5256000 (bytes: 28,672) - HighFrequencyLoaderHeap

0x7FF9F5256000 (bytes: 28,672) - HighFrequencyLoaderHeap

0x7FF9F525D000 (bytes: 12,288) - StubHeap

0x7FF9F525D000 (bytes: 12,288) - StubHeap

0x7FF9F5260000 (bytes: 12,288) - LowFrequencyLoaderHeap

0x7FF9F5263000 (bytes: 40,960) - HighFrequencyLoaderHeap

0x7FF9F5274000 (bytes: 28,672) - CacheEntryHeap

0x7FF9F527D000 (bytes: 192,512) - DispatchHeap

0x7FF9F52AC000 (bytes: 344,064) - ResolveHeap

0x7FF9F5300000 (bytes: 24,576) - IndcellHeap

0x7FF9F5300000 (bytes: 24,576) - IndcellHeap

0x7FF9F5306000 (bytes: 24,576) - CacheEntryHeap

0x7FF9F5306000 (bytes: 24,576) - CacheEntryHeap

0x7FF9F530C000 (bytes: 16,384) - LookupHeap

0x7FF9F530C000 (bytes: 16,384) - LookupHeap

0x7FF9F5310000 (bytes: 155,648) - DispatchHeap

0x7FF9F5310000 (bytes: 155,648) - DispatchHeap

0x7FF9F5336000 (bytes: 237,568) - ResolveHeap

0x7FF9F5336000 (bytes: 237,568) - ResolveHeap

0x7FF9F53B0000 (bytes: 65,536) - LowFrequencyLoaderHeap

The Managed Heap may be further investigated through ClrHeap class available as 

ClrRuntime’s Heap property. It allows for iterating over all currently existing managed 

objects, as well as traversing those object fields and references (see Listings 15-31 and 

15-32 for the corresponding result).
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Listing 15-31. Example of ClrMD usage - listing references of some managed 

type instances

ClrHeap heap = runtime.Heap;

foreach (var clrObject in heap.EnumerateObjects())

{

   if (clrObject.Type.Name.EndsWith("SampleClass"))

      ShowObject(heap, clrObject, string.Empty);

}

private static void ShowObject(ClrHeap heap, ClrObject clrObject, string 

indent)

{

    Console.WriteLine($"{indent}{clrObject.Type.Name} ({clrObject.

HexAddress}) - gen{heap.GetGeneration(clrObject.Address)}");

   foreach (var reference in clrObject.EnumerateObjectReferences())

   {

      ShowObject(heap, reference, "   ");

   }

}

Listing 15-32. Example results of code from Listing 15-31

CoreCLR.HelloWorld.SampleClass (24199564fa0) - gen0

   CoreCLR.HelloWorld.AnotherClass (24199564fc0) - gen0

   CoreCLR.HelloWorld.AnotherClass (24199564fd8) - gen0

   CoreCLR.HelloWorld.SomeOtherClass (24199564ff0) - gen0

Individual GC segments may be also investigated, thanks to ClrHeap’s Segments 

property. Each such ClrSegment provides various interesting data, including its internal 

structure, like generations it contains (see Listing 15-33 and sample result in Listing 15-34).

Listing 15-33. Example of ClrMD usage - listing all GC segments of a process

foreach (var segment in heap.Segments)

{

    Console.WriteLine($"{segment.Start:X16} - {segment.End:X16} ({segment.

CommittedEnd:X16}) Heap#: {segment.ProcessorAffinity}");

Chapter 15  programmatiCal apis



1036

   if (segment.IsEphemeral)

   {

       Console.WriteLine($"   Gen0: {segment.Gen0Start:X16}  ({segment.

Gen0Length})");

       Console.WriteLine($"   Gen1: {segment.Gen1Start:X16} ({segment.

Gen1Length})");

      if (segment.Gen2Start >= segment.Start &&

         segment.Gen2Start < segment.CommittedEnd)

      {

          Console.WriteLine($"   Gen2: {segment.Gen2Start:X16} ({segment.

Gen2Length})");

      }

   }

   else if (segment.IsLarge)

   {

      Console.WriteLine($"   LOH: {segment.Start} ({segment.Length})");

   }

   else

   {

       Console.WriteLine($"   Gen2: {segment.Gen2Start:X16} ({segment.

Gen2Length})");

   }

   foreach (var address in segment.EnumerateObjectAddresses())

   {

      var type = heap.GetObjectType(address);

      if (type == heap.Free)

      {

         Console.WriteLine($"{type.GetSize(address)}");

      }

   }

}
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Listing 15-34. Example results of code from Listing 15-32

000002551B871000 - 000002551B896730 (000002551B8A2000) Heap#: 0

   Gen0: 000002551B871030 (153344)

   Gen1: 000002551B871018 (24)

   Gen2: 000002551B871000 (24)

We already know that the gC implementation detail is that segments (representing 
heaps) are linked to a CpU that handles allocation, marking, and so on. 
Conceptually, however, ProcessorAffinity field is better thought of as which 
heap# it lives in. essentially, it should have been probably named something like 
HeapNumber instead of current ProcessorAffinity.

Filling this section with more and more examples seems to be rather redundant.  

I believe you’ve already noticed the real power of ClrMD. I will just only mention here a 

few other interesting possibilities:

• enumerating over all objects in fReachable queue with the help of 

runtime.EnumerateFinalizerQueueObjectAddresses() method,

• enumerating over all handles with the help of runtime.

EnumerateHandles(),

• enumerating all current GC roots with the help of heap.

EnumerateRoots(),

• enumerating all current stack roots of a given thread,

• getting an address of JITted method’s code (so we may use some 

disassembler to see its native code).

Quite popular approach to use ClrMD, especially for memory dump analysis, is to 

use ClrMD from within LINQPad (https://www.linqpad.net) application. It provides 

nice scripting capabilities so we can easily utilize ClrMD without a need of using Visual 

Studio and creating dedicated projects.
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even though it is so powerful, sometimes we may notice that still ClrmD does not 
publicly expose some desired properties. one of the examples is investigating the 
current thread’s allocation context. although such information is known to ClrmD, 
relevant properties are not directly accessible. We can use reflection to get them 
(but remember that there is no guarantee that used properties will not be changed 
in future versions).

foreach (ClrThread thread in runtime.Threads)

{

     var mi = runtime.GetType().GetMethod("GetThread", BindingFlags.Instance 

| BindingFlags.NonPublic);

     var threadData = mi.Invoke(runtime, new object[] {thread.Address});

     var pi = threadData.GetType().GetProperty("AllocPtr", BindingFlags.

Instance | BindingFlags.Public);

     ulong allocPtr = (ulong) pi.GetValue(threadData);

     pi = threadData.GetType().GetProperty("AllocLimit", BindingFlags.

Instance | BindingFlags.Public);

     ulong allocLimit = (ulong) pi.GetValue(threadData);

}

this is an example that digging into ClrmD source code may be beneficial!

If you are like me, you can see with your eyes all these great diagnostic tools that you 

can write, thanks to such possibilities. And indeed, there are currently many smaller 

or bigger initiatives (mostly open sourced) to create such tools, created for various 

reasons. It is not possible to list them all here, but the two most important should be 

named: Netext and SOSEX. Those WinDbg extensions are written as wrappers around 

ClrMD. And yes, it is a little ironic that one of the best WinDbg extensions for .NET 

diagnostics is written in .NET.

if you want to get a current list of tools based on ClrmD (or integrating with it in 
some way), please look for tools built on top of ClrmD online list maintained by 
matt Warren available at http://mattwarren.org/2018/06/15/Tools- for- 
Exploring-.NET-Internals.
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 TraceEvent Library
Microsoft.Diagnostics.Tracing.TraceEvent is a .NET library providing collecting 

and processing capabilities of ETW data. It is a relevant part of the main PerfView’s 

machinery, exposed now as a separate Nuget package (but its source code is available 

also as a part of the PerfView repository).

I would rather like to avoid repeating here basic examples of using TraceEvent to 

not artificially lengthen the book. You can find comprehensive documentation and 

examples under the address https://github.com/Microsoft/perfview/blob/master/

documentation/TraceEvent/TraceEventProgrammersGuide.md. Let’s just briefly 

summarize it that TraceEvent library allows us to record ETW session to a file (regular 

ETL file known from PerfView) and analyze such file afterwards, or just to create and 

consume ETW session in real time. Every ETW provider may be enabled and its events 

appropriately consumed.

For the convenience of using most common ETW providers, TraceEvent library 

provides two strongly-typed parsers already built in into it: ClrTraceEventParser and 

KernelTraceEventParser (represented by Clr and Kernel properties of Source property 

of the session). As the former knows how to parse all the Common Language Runtime 

events, it is very useful also in all GC-related scenarios. We are just consuming then 

strongly-typed callbacks representing the reaction on events of our interest. Listing 15-35 

shows an example of creating an ETW session that in real time reacts on the GC start and 

stop events, printing also the GC statistics.

Listing 15-35. Example of TraceEvent usage - using built-in CLR provider parser

using (var session = new TraceEventSession("SampleETWSession"))

{

    Console.CancelKeyPress += (object sender, ConsoleCancelEventArgs 

cancelArgs) =>

   {

      session.Dispose();

      cancelArgs.Cancel = true;

   };

    session.EnableProvider(ClrTraceEventParser.ProviderGuid, 

TraceEventLevel.Verbose, (ulong)ClrTraceEventParser.Keywords.Default);

   session.Source.Clr.GCStart += ClrOnGcStart;
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   session.Source.Clr.GCStop += ClrOnGcStop;

   session.Source.Clr.GCHeapStats += ClrOnGcHeapStats;

   session.Source.Process();

}

private static void ClrOnGcStart(GCStartTraceData data)

{

   Console.WriteLine($"[{data.ProcessName}] GC gen{data.Depth} because 

{data.Reason} started {data.Type}.");

}

private static void ClrOnGcStop(GCEndTraceData data)

{

   Console.WriteLine($"[{data.ProcessName}] GC ended.");

}

private static void ClrOnGcHeapStats(GCHeapStatsTraceData data)

{

   Console.WriteLine($"[{data.ProcessName}]     Heapstats - 

{data.GenerationSize0:N0}|{data.GenerationSize1:N0}|{data.

GenerationSize2:N0}|{data.GenerationSize3}");

}

Using CLR and kernel parsers with appropriate callbacks makes consuming ETW 

data trivial and very pleasant. Obviously, we can observe events related to our own 

process by filtering incoming events by the ProcessID field. It allows us to provide quite 

deep self-monitoring insight into a process with very low overhead (assuming we will 

carefully choose how many providers and keywords we enabled to not flood us with the 

incoming events).

Additionally, with the help of TraceEvent, we can use the ETW ability to record the 

event’s stack trace. To make it possible, a “higher-level” type of session interpreter must 

be used, named TraceLog. If interesting events have stacks registration enabled, we may 

use CallStack() method on received trace data to obtain a collection of stack frames. 

Please refer to TraceEvent library code samples to see a working example. Remember 

also that enabling stack trace capturing significantly increases the session overhead so it 

should be used carefully.
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at this point, we have already described all the possibilities how we can monitor 
the use of the memory of our application from within a process:

•   we can observe allocations of each thread by calling  
GC.GetAllocatedBytesForCurrentThread method (see listing 15-10 
earlier in this chapter). obviously, we may build some process-wide statistics 
built on top of that functionality, gathering data from each thread. please 
remember this is only information about allocations and does not inform in any 
way how much of allocated memory survives. thus, it does not say anything 
about overall memory usage of a process. in case of .Net Framework, we can 
also use appDomain’s MonitoringTotalAllocatedMemorySize property 
for the same purpose (see listing 15-11 shown earlier).

•   We can observe the total size occupied by managed objects (excluding 
fragmentation) in all generations by calling GC.GetTotalMemory method  
(see listing 15-6). as already explained, this is a very informative 
measurement but without consideration of fragmentation and overall 
memory taken by the managed heap, it does not relate greatly to the process 
memory consumption as seen from the operating system point of view. it 
is, however, a great way of noticing memory leak, when there are more and 
more reachable objects on the managed heap. We can additionally observe 
overall process memory usage by Process properties like WorkingSet64 or 
PrivateMemorySize64, to support GC.GetTotalMemory measurement.

•   We can observe .Net Clr memory performance Counters of our own process. 
this provides great insights into a process (generation sizes, virtual memory 
consumption, and so on, and so forth) provided with at most one-second 
granularity, which is enough for many use cases. the main drawback is the fact 
that performance Counters are supported only on Windows .Net Framework.

•   We can observe the gC etW events with the traceevent library. it provides 
even more precise and deeper insights into a process, because as we 
have seen many times in this book, etW provides tremendous amounts of 
information. the amount of overhead etW introduces is proportional to the 
number of events captured. observing the not so common gC start/end/
gCheapstats events is a reasonable approach to get high-level memory info.
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•   We can self-attach the ClrmD library to our own process in a passive way, 
giving ourselves powerful insights into the managed heap (including memory 
organization into segments, objects, and their references, roots, finalization 
queues, and so on, and so forth). this is a nice diagnostic approach possibility 
in Debug build, but i would recommend careful consideration before including 
it in release builds on production. remember that self-attaching in passive 
mode is not supported by the ClrmD maintainers so it is risky and may lead 
you to strange problems.

 Custom GC
Starting from .NET Core 2.1, coupling between Garbage Collector and the Execution 

Engine itself have been loosened a lot. Prior to this version, the Garbage Collector code 

was pretty much tangled with the rest of the CoreCLR code. However, .NET Core 2.1 

introduces a concept of Local GC, which means the runtime can use a GC in its own dll, 

which means GC is now pluggable. We can plug in our custom GC by setting a single 

environment variable (see Listing 15-36).

Listing 15-36. Setting proper environment variable to replace GC 

implementation

set COMPlus_GCName=f:\GithubProjects\CoreCLR.ZeroGC\x64\Release\ZeroGC.dll

.NET Core, when initializing, notices such an environment variable and will try to 

load GC code from the specified library instead of default, built-in GC. The custom GC 

can contain a completely different implementation from the default GC. Concepts like 

generations, segments, allocators, and finalization may not be available in a custom GC.

The simplest possible implementation of a Local GC is not very complex. It 

requires including only a few files directly from CoreCLR code to have things compiled: 

debugmacros.h, gcenv.base.h, and gcinterface.h. Please note that for brevity only 

most illustrative parts of such code is presented here. Refer to the accompanying book’s 

source repository for the whole, working example.

A custom GC library needs to define only two required exported functions, called by 

the CoreCLR during initialization: GC_Initialize and GC_VersionInfo (see Listing 15-37). 

The former should specify custom implementations of two crucial interfaces: IGCHeap 
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and IGCHandleManager. The latter is used to manage backward compatibility, as you can 

specify which version of runtime (its GC interface, more precisely) is required for our 

custom GC.

Listing 15-37. Two required exported functions in Local GC library

extern "C" DLLEXPORT HRESULT

GC_Initialize(

    /* In */  IGCToCLR* clrToGC,

    /* Out */ IGCHeap** gcHeap,

    /* Out */ IGCHandleManager** gcHandleManager,

    /* Out */ GcDacVars* gcDacVars

)

{

    IGCHeap* heap = new ZeroGCHeap(clrToGC);

    IGCHandleManager* handleManager = new ZeroGCHandleManager();

    *gcHeap = heap;

    *gcHandleManager = handleManager;

    return S_OK;

}

extern "C" DLLEXPORT void

GC_VersionInfo(

    /* Out */ VersionInfo* result

)

{

    result->MajorVersion = GC_INTERFACE_MAJOR_VERSION;

    result->MinorVersion = GC_INTERFACE_MINOR_VERSION;

    result->BuildVersion = 0;

    result->Name = "Zero GC";

}

We should additionally store the provided IGCToCLR interface address, used to 

communicate with CLR from inside our GC code. It contains a lot of methods and some 

of the most interesting ones are:

• SuspendEE and RestartEE - asks the runtime to suspend and resume 

managed threads, for a given reason (we can use it to implement not-

concurrent parts of our custom GC).
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• GcScanRoots - performs a stack walk of all managed threads and 

invokes the given promote_func on all GC roots encountered 

on the stack (we would need this in our custom Mark phase 

implementation).

• GcStartWork and GcDone - inform the runtime that a GC has started 

and completed.

Custom IGCHeap interface implementation is the main interface representing core 

Garbage Collection functionality (see Listing 15-38). Implementing IGCHeap requires 

implementing about 71 methods! Not all really need to have valid implementation 

though, as they are declared in built-in current GC design in mind - so we will 

provide some dummy implementations of methods like SetGcLatencyMode or 

SetLOHCompactionMode as our custom GC may does not have the concept of latency 

mode or LOH at all.

Listing 15-38. Fragment of custom IGCHeap implementation

class ZeroGCHeap : public IGCHeap

{

private:

    IGCToCLR* gcToCLR;

public:

    ZeroGCHeap(IGCToCLR* gcToCLR)

    {

        this->gcToCLR = gcToCLR;

    }

    // Inherited via IGCHeap

      ...

}

Among various IGCHeap methods, the top-level methods are for allocations 

(IGCHeap::Alloc) and garbage collection (IGCHeap::GarbageCollect). The simplest 

possible so- called Zero GC (only capable of allocating objects but never reclaiming 

memory) could be implemented as in Listing 15-39. Please note that our custom GC 

does not have to distinguish “small” or “large” objects (and thus, SOH and LOH). We 

may allocate our objects as we wish regardless of its size - for example, by always using 

Heap API with the regular calloc function call.
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Listing 15-39. Examples of the 2 top-level methods implementation of the 

custom IGCHeap

class ObjHeader

{

private:

#ifdef _WIN64

    DWORD    m_alignpad;

#endif // _WIN64

    DWORD m_SyncBlockValue;

};

Object * ZeroGCHeap::Alloc(gc_alloc_context * acontext, size_t size, 

uint32_t flags)

{

    int sizeWithHeader = size + sizeof(ObjHeader);

    ObjHeader* address = (ObjHeader*)calloc(sizeWithHeader, sizeof(char*));

    return (Object*)(address + 1);

}

HRESULT ZeroGCHeap::GarbageCollect(int generation, bool low_memory_p, int 

mode)

{

    return NOERROR;

}

It is really funny to see a single line of GarbageCollect method - the one that in 

case of default .NET GC triggers executing several thousand lines of code, described in 

hundreds of pages in this book. Here is where only our imagination is the limit. Feel free 

to implement your own GC!

By writing our custom GC, we replace all default GC functionality. Hence, it is not 

easy to just modify the default behavior “a little.” Although, if one takes the whole built- 

in GC code and will publish it as a Standalone GC library, it will be much easier to 

complete.

Chapter 15  programmatiCal apis



1046

as write barriers are simply specially handled functions written in assembly 
code and injected by Jit, currently there is no api to replace them. as we may 
remember from Chapter 5, write barriers are responsible for updating card tables 
so they are expected to exist, even if our implementation does not need them. 
look for ZeroGCHeap::Initialize method in the accompanying example to 
see how IGCToCLR::StompWriteBarrier is configured to omit its usage by 
manipulating the lowest and the highest ephemeral segment address. and even 
if in custom gC, distinguishing between Workstation and server mode should not 
make sense, because of write barriers, it still does matter: only in Workstation 
mode write barrier checks’ ephemeral segment boundaries (as explained in 
Chapter 5 in listing 5-8), so we can use it to omit card table updating. however, 
server gC mode with our custom gC crashes the runtime because JIT_
WriteBarrier_SVR64 is being used, which requires unconditionally valid card 
table address.

Please note that IGCHandleManager and IGCHandleStore dummy implementations 

are omitted for brevity. I invite you to read the Zero GC implementation provided with 

this book to see their code.

 Summary
This chapter described various ways of controlling and monitoring .NET memory 

usage programmatically. Based on the knowledge acquired from previous chapters, we 

should feel quite comfortable in writing code utilizing shown capabilities. As we might 

notice, knowledge about CLR and GC internals is quite often helpful, if not necessary, to 

properly configure and interpret data provided by libraries described in this chapter.

Firstly, comprehensive list of static GC class methods and properties was presented to 

summarize its already shown possibilities altogether with things that were not described 

well or not at all so far (like GC notifications). GC class usage was quite frequent 

throughout the book, so you’ve probably already noticed how useful it may be in various 

scenarios. From all the techniques described in this chapter, GC class (and a few auxiliary 

classes) seem to be the most common ones in an everyday’s developer work.

Chapter 15  programmatiCal apis



1047

Then, CLR Hosting was presented with the most relevant interfaces on the field 

of memory management, to show what may be achieved with it. I do not expect 

big popularity of CLR hosting in your development, but I really wanted to present 

it to widen your toolbox. Maybe your use cases include calling managed code from 

unmanaged applications (like .NET scripting capabilities in SQL Server), so a possibility 

to manipulate how hosted CLR uses memory may be beneficial for you (with some 

monitoring capabilities available).

Presented ClrMD and EventTrace are two great libraries dedicated to deep 

diagnostic and monitoring of your .NET processes (including your own process in 

case of a self-monitoring scenario). Used together or alone, they allow us to get very 

detailed information about .NET runtime and your application’s behavior. Even they 

are overwhelmingly popular in implementing various diagnostic tools, you may also 

consider using it in self-monitoring scenarios as they provide relatively small overhead 

(a possibility especially tempting on pre-production environments).

Just in case you might be curious, the last section of this chapter presents a new 

possibility currently implemented only in .NET Core 2.1, which allows for a complete 

replacement of the GC implementation. I believe it greatly and ironically concludes 

the whole book, dedicated solely to the description of the default, built-in GC that may 

now be removed and replaced with something totally different. I strongly invite you to 

experiment with the Zero GC included as a sample of such custom GC. With the whole 

knowledge you’ve gained in this book, including theoretical introduction in the first 

chapters, you should now have the solid basics to start writing your own, not-so-trivial 

GC implementation!
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JetBrains DotMemory, 203–205
JIT_GetSharedGCThreadStaticBase 

method, 842
JIT_GetSharedNonGCThreadStaticBase 

method, 842
JIT_WriteBarrier function, 371
Just-in-time compiler (JIT compiler), 238

K
Kernel space, 104

L
LargeHeapHandleTable structure, 346–347
LargeObjectHeap, 406
Large object heap (LOH), 342, 344, 434, 661

array size, 437
arrays of double, 344–345
bump pointer technique, 434
free-list allocation, 434
gcAllowVeryLargeObjects  

setting, 437–438
LargeHeapHandleTable structure

arrays, 348
CoreCLR, 346
Object[] arrays, 347, 349
RuntimeType, 349
SOS extension, 348
use, 346
WinDbg, 347–348

loh_try_fit method, 434, 436
OutOfMemoryException, 434
slow path, 434–435
sweeping GC, 434
zeroing memory, 437
layout of objects, 654–655
plug information, 655
result, 656

Last in, first out (LIFO), 12
Latency mode

batch mode, 719
CER, 720–721
configuration knobs, 718
enumeration, 719
interactive mode, 719
latency optimization goals, 726–727
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low-latency, 720–721
no GC region

creation, 725
GC.EndNoGCRegion method, 725
GC.TryStartNoGCRegion  

method, 724
sustained low latency, 721, 723

Latency to access memory, 88
Latency vs. throughput, 139–141
Lexical scope, 580

vs. live stack roots, 581–583
Lifetime partitioning

absolute time, 349
card bundles, 375
card tables (see Card tables)
definition, 349
generational GCs, 350
generations

copying GC, 352
logical boundaries, 354
sizes measurements, 355–356

relative time, 349
remembered sets

CIL code, 367
cross-generational  

references, 362, 364
generational GC, 361
JIT_WriteBarrier function, 367–368
schematic pseudo-code, write 

barrier, 365
write barriers in .NET, 366

strong generational hypothesis, 350
weak generational hypothesis, 350

Little’s Law, 140
Live debugging, 142
Live stack roots

eager root collection

calling method, 589
GC info, 583–584
GC.KeepAlive method, 590
memory usage, 584
null settings, 585
object behavior, 589
optimizations, 589
side effects, 586
threads, 585
Timer object, 586–587

vs. lexical scope, 581–583
Loader Heap, 259
Local variable roots

fullPath, 577
GC Info

calling methods, 595
fully interruptible code, 595–596
stack roots, 592
untracked root, 597
WinDbg, managed heap, 591

lexical scope, 580
live stack roots (see Live stack roots)
pinned local variables

CIL code, 598
fixed keyword, 597–598
fragments of method, 599
memory dumps, 600

stack roots, 579–580
stack root scanning, 601
storage, 578–579

LOH fragmentation
arrays, 669
arrays pooling, 679
blocking, 678
callers view, 671
!dumpheap command, 674–675
!eeheap command, 672–673
expected vs. observed size, 669

Latency mode (cont.)
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!gcroot command, 673–674, 676
Gen 2 object deaths, 670–671
holes, 676
managed heap, 672
performance counters, 669
PerfView, 670
processing code, 668–669
server GC, 678
SOS extension, 672
strings, 669
System.Byte[], 671
WinDbg, 672
workstation GC, 678

Long weak handles, 797–798
Low Frequency Heap, 258

M
Machine learning (ML), 960
Managed pointers

C#-ref variables, 874
limitations, 847
object references, 846
readonly ref variables and in 

parameters, 852
ref locals, 848–849
ref return

consuming ref returning method, 850
limitations, 849
local variable, 849
null referencing reference, 850

ref types internals
heap-allocated object (see Heap- 

allocated object)
stack-allocated object, 858

return type of methods, 847
System.Int32 objects, 847
types, 847

Mark phase, garbage collection
finalization roots, 601
GC handle roots

asynchronous I/O operation, 604
!gchandles command, 611
instance of normal object, 610
managed objects, 605
normal object, 607
object with strong handle, 609
pinned handles, 604
pinned object, 608
simple code, 606–607
static object, 608
string literal, 609–610
strong handles, 604

GC internal roots, 602–603
local variable roots (see Local variable 

roots)
memory leak (see Memory leak)
object traversal and marking, 575–577
popular roots

MarkWithType, 619–621
promoted sized, 621

Mark stack, 576
Memory allocation

Allocator.Allocate(amount) method, 411
avoiding allocations

garbage collection, 449
memory optimization, 449
premature optimization, 450
sources, 450
zeroing memory, 449

bump pointer
allocate method, 418
allocation context, 415–418
allocation limit, 415
allocation pointer, 412
allocation quantum, 415

Index



1062

ephemeral segment  
structure, 419–420

fallback mechanism, 415–416
garbage collection, 420–422
infinite memory, 414
multiple allocation contexts, 419
sequential algorithm, 414
simple sequential allocator, 413
thread affinity, 418
TLS, 418
zeroing memory, 415

explicit allocations, reference types 
(see Explicit allocations)

free-list
best-fit, 422
buckets, 423–425
first-fit, 422
free object, 423
memory zeroing, 426
unlinking, 426–427

GC Managed Heap, 412
Heap API, 412
heap balancing, 438–440, 442
hidden allocations (see Hidden 

allocations)
LOH (see Large object heap (LOH))
object creation

allocation helpers, 428
CIL, 428
decision tree, 428
JIT compilation, 429

OutOfMemoryException  
(see OutOfMemoryException)

SOH (see Small Object Heap (SOH))
stack allocation

localloc CIL instruction, 447
Span<T> type, 449

stackalloc operator, 446–447
StackOverflowException, 448
unmanaged_type, 448

Memory bus, 67
Memory dump, 227, 630–631
Memory leak

diagnostic, 614
GCStats view, 613
gen2 GCs, 613
investigation, 613
memory usage, 612
performance counters, 613
strings, 615

Memory management
automatic, 35

Allocator, 39–40
Collector, 40–42
garbage collection, 36–37
LISP, 35
memory handling, 35
Mutator, 37–39
reference counting, 42–48

manual, 28
ALGOL, 29
characteristics, 29
C program, 29–30
C++ program, 33
dangling pointer, 32
free function, 32
improvements, 34
problems, 31

.NET, 2
Memory modules, 70
Memory partitioning strategy, 340–341
MemoryPool<T> class, 943–944
Memory-related terms

address, 8
assembly code, 10

Memory allocation (cont.)
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Automatic Sequence Controlled 
Calculator, 5

binary code, 3
binary number, 3
bit, 3
byte, 4
control unit, 8
Harvard architecture, 6
heap, 25–28
pointer, 23–25
register, 8
register machine, 11–12
stack

activation frame, 16
ALGOL, 18–19
allocation, 10
BURY and UNBURY, 13
first compiler, 13
FORTRAN, 18
frame, 17
LIFO, 12
low-level mechanisms, 18
machine, 19–21
pop and push, 12
StackOverflowException, 17
Wheeler jump, 13

von Neumann architecture, 7
Williams tubes, 7
word, 9

Memory segments, 105
Memory<T>

BufferedWriter class, 939
explicit owner, 944
internals, 948
ReadOnlyMemory<T>, 939–941
ReadOnlySpan<T>, 940, 941
rules, 951

stack data, 938
usages, 938

Memory write watch mechanism, 120
MESI protocol, 92
Microarchitecture, processor, 76
Modified Harvard Architecture, 88
Mono, 237
Mutator, 37–39

N
Named thread data slot, 835
.NET memory dump, 630–631
.NET Compact Framework, 235
.NET Core, 236
.NET Framework 1.0-4.7.2, 234
.NET internals, 237

CLR, 238
exception handling, 239
Execution Engine, 239
GC, 239
Hello World application

C#, 242
execution, 248–249
JIT compiler, 249
JITted code, Main method, 248–249
logical locations, 247
CIL, Main method, 244–246
SOS extension, 248
WinDbg, 248

managed code, 239
memory-management  

mechanisms, 239
misconceptions, 241
.NET runtime execution, 240
process, 240–241
responsibilities, 238, 239

Index



1064

.NET memory management
call tree, 131–132
core dump (memory dump), 142
description, 127
invasiveness, 130
latency vs. throughput, 139–141
Linux environment (see CoreCLR, 

Linux environment)
live debugging, 142
measure early, 129
measuring GC parameters, 231
monitoring, 141
objects graphs, 133

dependency subgraph, 134
retained size, 135
retained subgraph, 134
shallow size, 134
shortest root path, 133
total size, 134

operating system, 128
overhead, 130
performance, 128
sampling, 131
statistics

Anscombe’s quartet, 135–136
bimodal distribution, 138–139
median, percentile and  

histogram, 136–139
multimodal distribution, 139
normal distribution, 138

tools, 127
Linux, 230
Windows, 228–229

tracing, 130
Windows environment (see Windows 

environment, .NET)
.NET Micro Framework, 236
.NET Native, 236

.NET versions
CLI, 234
Mono, 237
.NET Compact Framework, 235
.NET Core, 236
.NET Framework 1.0-4.7.2, 234
.NET Micro Framework, 236
.NET Native, 236
Shared Source CLI, 235
Silverlight, 235
Windows Phone 7.x, 8.x, and 10 

Mobile, 236
WinRT, 236

Non-nullable reference type
array, compiler behavior, 983
class, 981
compiler behavior, 982

Non-uniform access memory, 8
Non-uniform memory architecture 

(NUMA), 121–122
Non-unmanaged struct, 899
Nullable reference types

class, 981
compiler behavior, 982
managed code generation, 985
test method, 986
unsafe code generation, 984

Null Garbage Collector, 41
NullReferenceException, 979, 984–985

O
Object layout, 906
ObjectLayoutInspector library, 903
Object lifetime

description, 743
disposable patterns (see Disposable 

objects)
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explicit cleanup, 819
finalization (see Finalization)
mechanisms, 743
resource life cycle, 744–746
SafeHandle, 789–796
weak references (see Weak handles)

Object-oriented  
programming, 959

Object-relational mapping  
(ORM), 253

Objects’ layout, 894
Operating system (OS)

large pages, 102
Linux

memory layout, 118–120
memory management, 115–117

memory layout, 103–105
memory manager, 97
virtual memory, 96–101
virtual memory fragmentation, 103
Windows

memory layout, 112–115
memory management, 105

OutOfMemoryException
clrstack command, 445
DebugDiag rule, 444
GC, 442
LOH, 442
memory congestion, 446
memory dump, 444
objects allocation, 443
objects pooling, 443
physical backing store, 443
regedit tool, 444
virtual memory, 442
VM hoarding, 443
WinDbg, 445

P, Q
Passing by reference semantics

reference-type instance, 323
value-type instance, 321–322

Perfcollect script, 212–214
Performance counters, 143

advantage and disadvantage, 144
application pools, 151–152
architecture, 144–145
attributes, 145
counters, 146
CPU usage, 145
ETW data, 148
garbage collection, 147–148
instance process, 151
monitoring tools, 148
.NET CLR Memory category, 146
Performance Monitor

Add Counters context  
option, 148–149

Add Counters dialog, 149
long-term analysis, 151
parameters, 150
short-term analysis, 150

sample data, 145
PerfView tool, 264–265, 267–268

configure symbol paths, 182
data analysis, 184

Any stacks view, 187–188
GCStats view, 186–187
Generic Events panel, 185
sample ETL file, 184–185

data collection, 182–184
description, 180
main actions, 181
memory snapshots, 188–192
options, 180
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startup, 181
tabular view, 181

Physical partitioning
allocation patterns, 384
blocks and segments, 380
default segment sizes, 382
heap segments, 379
large object heap waste, 398–399
managed heaps, 379
segments and generations 

information, WinDbg, 381
segments and heap anatomy, 400, 

402–403
segments reuse, 403–406
segment types, 386
server mode, 379
single block, ASP.NET application, 383
workstation GC initial segments 

configuration, 384
workstation mode, 379

Pipelines
AdvanceTo method, 990
API, 987
buffered memory, 988–989
characteristics, 987
configuration, 987
FlushAsync method, 988
GetSpan and GetMemory  

methods, 989
KestrelHttpServer, 992, 994
ParseRequestLine, 992, 994
Reader.Buffer, 990
usage, 988–989
zero-copy read side, 991–992

Plan phase
LOH (see Large object heap (LOH))
SOH (see Small Object Heap (SOH))

Plugins, 253
Pointer, 22–25
Pointer arithmetic, 25
Post-mortem analysis, 142
ProcDump tool, 192
Process memory regions

dumpbin command-line program, 260
heap and private data, 256
images, 255
Managed Heaps, 257

domains heaps, 258–259
GC Heap, 258

mapped files, 255
measurements

private bytes, 261
private working set, 260
virtual bytes, 261

.NET runtime, 254
page tables, 257
Performance Monitor tool, 261–262
program’s memory usage

AssemblyLoad events, 271
commercial tools, 270
gigabytes of memory, 266
growth of private bytes, 266
Lookup Symbols, 264
Managed Heap size, 264
memory leak, 265
MSDN documentation, 

XmlSerializer, 272
Net OS Heap Alloc Stacks, 264
Performance Counter, 269
Performance Monitor  

tool, 263, 266, 270
PerfView tool, 264–265, 267–268
Task Manager, 269
VirtualAlloc call, 267–268
VMMap, 264, 266–267, 269–270

PerfView tool (cont.)
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RAM, 260
shareable, 255
stacks, 256
unusable, 257
VMMap tool, 254–255, 262
Window’s Task Manager, 261

Processor groups, 122
Program counter (PC), 9

R
Random Access Memory (RAM), 8, 67
Reachability of object, 41–42
Read-only heap segments, 386
ReadOnlyMemory<T>, 940
Readonly struct, 883–884
RedGate ANTS Memory  

Profiler, 206–207
Reference counting, 42–43

advantages, 48
circular references, 45
C++ program, 46
dangling pointer, 48
data.use_count() method, 47
disadvantages, 48
exception handling, 47
liveness of objects, 43
Mutators, 44
pseudo-code, 43–44
smart pointers, 45–46

Reference types
classes

definition, 290
heap allocated object, 293
memory layout, 292
method table reference, 291
object header, 291
sample code, 293

local variable sd, 293
entities, 288
escape analysis, 289
heap allocation possibilities, 289
object type, 288
pointer type, 288

Ref structs, 885–887
Register machine, 11
Remembered sets, 363
Resource Acquisition Is Initialization 

(RAII), 47
Resource life cycle vs. object, 744–746
Roots, 42
Rotor, 235

S
SafeHandle object

advantages, 792
DangerousGetHandle method, 796
fragments of, 790
handle-recycling attack, 791
implementation, 793
IntPtr, 789, 792
IsInvalid and ReleaseHandle, 793
P/Invoke calls, 791, 795
resources, 794–795
System.Runtime.InteropServices.

SafeHandle class, 789
Sampling, 131
Scitech .NET Memory Profiler, 201–203
Segmentation fault error, 31
Serializers, 253
SGen Garbage Collector, 53
Shared Domain, 252
Shared Source CLI, 235
Short weak handles, 797
Silverlight, 235
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Simultaneous multithreading mechanism 
(SMT), 91

Size partitioning
LargeHeapHandleTable, 346–347
LOH (see Large object heap (LOH))
small object heap, 343

SmallObjectHeap, 406
Small Object Heap (SOH), 342–343,  

429, 660
brick table, 632–634
demotion, 648–653
fastest allocation helper, 429–430
generation boundaries, 646–647
heavy-allocating library, 434
investigating pinning

ETW-based session, 641
local pinned variables, 641–644
pinned handles, 641, 644–645

memory dump, 630–631
OutOfMemoryException, 431
pinned object, 634
pinned plug

after gap, 635
implications, 640
before marked objects, 639–640
normal plug, 636–638
plug tree, 637
queue, 636

plugs and gaps
BST, 629–630
Managed Heap, 624–625
relocation offset, 626–628
size and offset information, 626

pointer technique, 429
slow path, 431–432
soh_try_fit() method, 431, 433

Smart pointers, 45
SOLID principles, 959

Span <T>
compiler, 920
Fast Span, 934–936
internals, 928
ReadOnlySpan<T>, 919
rules, 951
simplified int parsing API, 920
Slow Span, 932–934
usage, 918

concise conditional local buffer 
acquiring, 927

OnStartLine method, 921
scenarios, 919
ValueStringBuilder, 922, 924–926

Spatial locality, 78, 124
Stack-allocated object, 858
Stack roots, 579–580
Static data

internals
implementation, 330
JIT-compiled code, 334
JIT compiler, 332
Object[] array, 331
primitive static field, 333
reference-type, 334
storage in .NET Core, 331
types, 332
user-defined value type, 334

static fields, 328–330
Static memory allocation, 10
Static Random Access Memory (SRAM), 73
Stored-program computers, 9
StringBuilderCache class, 301
StringBuilder instance caching, 302
StringFreezingAttribute class, 386
String interning

advantages, 309
code, 314
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disadvantages, 310
duplication analysis, JetBrains 

dotMemory tool, 312
internals, 308
JIT compilation, 309
manual, 306
optimization technique, repetitive 

texts, 304
PerfView graph, allocation, 312
string duplication, 313
string.Intern method, 306, 309

String Literal Map, 307
Strings

benchmark results, 303
concatenation and hidden temporary 

string creation, 298
Concat method, 298
design decisions, 303
FormatHelper method, 300
Greet method, 298
immutability, 298
interning (see String interning)
mutable string, 299
reference type, 296
StringBuilder, 302
StringBuilderCache, 301

StructLayout attribute, 903
Structs, 279

advantages, 280
arrays, 325
automatic field’s layout, 897
avoid allocation, 282
boxing, 281
default fields layout, 896, 899
definition, 281
discriminated union, 901
explicit field’s layout, 901
field layout, 895

fixed size buffer, 888–892
LayoutKind.Auto layout, 899
memory layout, 281
memory region, 281
ObjectLayoutInspector, 904–905
readonly, 883–884
ref structs (byref-like types), 885–887
sequential layout, 895, 896
Sharplab.io, memory layout, 905
storage

CIL code of Main method, 283–284
evaluation stack, 283
Helper method, 285–286
JIT compiler, 285
local variables, 286
locations, 284
sample code, 282
SomeData, 286–287

unmanaged type, 907
Stub Heap, 258
SuperBenchmarker, 170
Symmetric multiprocessing (SMP), 121
System Domain, 252

T
Tactical data-oriented design, 960
Tactical design

cache levels, 965
cache line utilization, 962–963
LayoutKind.Automatic, 962
parallel processing, 965
random memory access, 965
ThreeItemList<T> class, 964

Temporal locality, 78, 124
Thread affinity, 836
Thread data slots, 830, 835
ThreadLocalInfo structure, 837
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ThreadLocalModule, 842
Thread local storage (TLS), 418

definition in CoreCLR, 837
internals

CLR internal data, 837
generic types, 843
Object[] arrays and static blobs, 839
structs, 839
thread affinity, 840
ThreadLocalBlock, 838
ThreadLocalInfo structure, 837
ThreadLocalModules, 838, 840
thread static data, 839, 844
ThreadStaticHandleTable, 839
type thread-static fields, 840

multithreading synchronization 
techniques, 830

performance advantages, 837
thread data slots, 835
thread static fields (see Thread static 

fields)
usage scenarios, 845–846

ThreadLocal<T> class, 833
Thread-specific data, 836
Thread static fields, 830

field initialization, 832
initialization, regular static field, 834
primitive and reference TLS, 834
SomeClass, 831
SomeOtherClass.Run method, 832
ThreadLocal<T> usage, 833
value and reference types, 831–832
Value property, 833

ThreadStaticHandleTable, 842
TraceEvent Library, 1039
Tracing GC, 49

Collect phase, 54
Compact, 56–57, 59

Sweep, 55–56
Mark phase, 50, 52

conservative garbage  
collector, 52–54

marking process, 52
Precise GC, 54
states of object, 50
steps, 50–51

Triggers
allocation, 547–548
explicit

batch processing, 551
benchmarking, cleaning, 552
GC.AddMemoryPressure, 553
GC.Collect method call, 548–549
generation 0, 550
generation 1, 550
generation 2, 551
memory usage, 552
proactive cleaning, 552
WeakReference, 552

explicit GC calls
AddMemoryPressure method, 559
bitmaps, 558
dispose method, 558
events view, 555
IDisposable interface, 556
manual memory cleaning, 558
performance counter, 553–554
reason field, 555
SafeMILHandleMemoryPressure 

class, 559–560
stack trace, 556, 558

internal triggers, 561–562
low memory level system, 560–561
memory usage, 546
self-tuning GC, 547

Types data locality, 324
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Type storage, 275–277
Type system

identity, 275
immutable types, 275
implementation details, 273
lifetime, 274
memory-management, 272
MethodTable, 273
reference types (see Reference types)
sharing, 274
type storage, 275–277
value types (see Value types)

U
Unboxing, 320
Unmanaged constraint

blittable types, 913–914
generic constraint usage, 908
generic logging mechanism, 911
generic serialization, 911
object passed by reference, 910
regular struct usage, 910
struct method, 911
type wrapping unmanaged  

memory, 912
usage, 909

Unmanaged type, 907
Unnamed thread data slot, 835
Unsafe internals

class API, 952–953
class usage

Array.Reverse static method, 955–956
BitConverter class, 954
casting, 953, 955
jemalloc.NET library, 957
MemoryMarshal helper class, 956
static methods, 956

MemoryMarshal usage, 956–957
method implementation, 958
methods, 952

User space, 104

V
ValueStringBuilder class, 926
Value types

definition, 277
enumerations, 277
storage

arguments of method, 278
evaluation stack, 279
instance field, 278
local memory pool, 279
local variables, 278
static field, 279
structs (see Structs)

Virtual address space, 105
Virtual API, 106
Virtual Call Stub, 259
Virtual memory, 96–101
Virtual stub dispatching (VSD), 259
Visual Studio, 199–201
VMMap tool, 143–144, 391

W, X, Y
Weak handles

caching, 798, 803–805
Gen2GcCallback class, 798–801
long weak handles, 797–798
object type and members, 801
observers and listeners, 798
short weak handles, 797
types, 797
weak events
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child windows, 807, 811
WeakEventManager class, 812–813
Windows Presentation  

Foundation, 812
WeakReference<T> type, 802

WinDbg, 193
commands, 195
extensions

NetExt, 195
SOS, 195
SOSEX, 195

installing, 193
main window, 194
msos tool, 196
.NET runtime, 193
operations, 194

Windows 10 Mobile, 236
Windows Driver Kit (WDK), 193
Windows environment, .NET

BenchmarkDotNet, 197–198
commercial tools (see Commercial 

tools)
DebugDiag, 192
disassemblers and decompilers, 196
ETW (see Event Tracing for Windows 

(ETW))

performance counters  
(see Performance counters)

PerfView (see PerfView tool)
ProcDump, 192
VMMap, 143–144
Windows Performance Analyzer (see 

Windows Performance Analyzer)
Windows Performance  

Recorder, 167–169
Windows Performance Analyzer

custom graphs, 179–180
description, 169–170
flame charts, 178–179
generic events, 174–176
opening file and configuration, 170–174
profiles, 180
region of interests, 176–177
stack tags, 179
SuperBenchmarker, 170

Windows Performance Recorder, 167–169
Windows Phone 7.x, 236
Windows Phone 8.x, 236
WinRT, 236

Z
Zero Garbage Collector, 41

Weak handles (cont.)
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