
Margriet Bruggeman and
Nikander Bruggeman

Pro SharePoint 2007
Development
Techniques

www.allitebooks.com

http://www.allitebooks.org

Pro SharePoint 2007 Development Techniques

Copyright © 2007 by Margriet Bruggeman and Nikander Bruggeman

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-913-6

ISBN-10 (pbk): 1-59059-913-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Hassell
Technical Reviewer: Sahil Malik
Editorial Board: Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan Gennick,

Jason Gilmore, Kevin Goff, Jonathan Hassell, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Candace English
Copy Editor: Benjamin Berg
Associate Production Director: Kari Brooks-Copony
Production Editor: Kelly Gunther
Compositor: Patrick Cunningham
Proofreader: Paulette McGee
Indexer: Beth Palmer
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.lcbridge.nl/download.

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

About the Authors . ix

About the Technical Reviewer . xi

Acknowledgments . xiii

Introduction . xv

■CHAPTER 1 Incorporating ASP.NET 2.0 into
Microsoft Office SharePoint Server 2007 . 1

■CHAPTER 2 Creating Interactive Web Parts Using ASP.NET Ajax 55

■CHAPTER 3 Enhancing Business Intelligence via
SQL Server 2005 Reporting Services . 123

■CHAPTER 4 Building Human-Oriented Workflows Using
Windows Workflow Foundation . 179

■CHAPTER 5 Building a Domain-Specific Language for
Connectable Web Parts. 229

■CHAPTER 6 Reusing Presentation Layers via Web Services
for Remote Portlets . 313

■CHAPTER 7 Changing Code Privileges Using Impersonation,
Elevation, and Delegation . 339

■CHAPTER 8 Working with InfoPath in a MOSS 2007 Environment 379

■CHAPTER 9 Deep Traversal of SQL Full-Text Extensions . 439

■INDEX . 469

iii

www.allitebooks.com

http://www.allitebooks.org

Contents

About the Authors . ix

About the Technical Reviewer . xi

Acknowledgments . xiii

Introduction . xv

■CHAPTER 1 Incorporating ASP.NET 2.0 into
Microsoft Office SharePoint Server 2007 . 1

Architecture Overview . 1

Web Parts Overview. 3

WSS 3.0 Tools: Visual Studio 2005 Extensions. 9

ASP.NET 2.0 Server Controls . 16

Enhancing Development of Web Parts with the
Guidance Automation Toolkit . 37

Summary . 54

■CHAPTER 2 Creating Interactive Web Parts Using ASP.NET Ajax 55

What Are Ajax and ASP.NET Ajax? . 55

Ajax Frameworks for ASP.NET . 58

Adding Service Virtualization to a Web Service . 59

JavaScript in Web Parts . 66

Remote Calls Prior to ASP.NET Ajax. 73

Web Service Message Types . 77

Installing ASP.NET Ajax . 80

Building a Performance Counter Web Part . 80

Building a Company Contact Web Part Using ASP.NET Ajax and JSON 94

Building an Autocompletion Web Part . 100

Client-Side Connectable Web Parts and ASP.NET Ajax . 105

Revisiting the Performance Counter Web Part . 113

Client Callbacks and the People Picker Control . 116

Summary . 121

v

www.allitebooks.com

http://www.allitebooks.org

■CHAPTER 3 Enhancing Business Intelligence via
SQL Server 2005 Reporting Services. 123

Introducing Reporting Services. 123

Requirements for Reporting Services . 125

Mode of Deployment . 127

Building a Report . 133

Reporting Services Web Parts . 140

Report Center . 146

Reports in SharePoint . 147

Reporting Services Extensions . 158

Summary . 177

■CHAPTER 4 Building Human-Oriented Workflows Using
Windows Workflow Foundation . 179

Basics of Windows Workflow Foundation . 179

Creating Basic Workflows with SharePoint Designer 2007. 186

Creating Advanced Workflow Solutions with Visual Studio 194

Summary . 228

■CHAPTER 5 Building a Domain-Specific Language for
Connectable Web Parts . 229

Introducing Software Factories . 229

Background on Domain-Specific Languages . 230

Components of a Software Factory . 231

Using DSL Tools . 232

Web Part Connections . 233

A Domain-Specific Language: Using WPCL 2007 . 269

Creating the Web Part Connection Language . 282

Summary . 311

■CHAPTER 6 Reusing Presentation Layers via Web Services
for Remote Portlets . 313

Getting to Know WSRP . 313

Configuring a WSRP Consumer for
Microsoft Office SharePoint Server 2007. 331

Summary . 338

■CONTENTSvi

www.allitebooks.com

http://www.allitebooks.org

■CHAPTER 7 Changing Code Privileges Using Impersonation,
Elevation, and Delegation. 339

Setting Up the Development Environment. 339

Impersonation and Elevation Within the SharePoint Object Model 341

Encrypting Sensitive Data via DPAPI . 352

Single Sign-on . 356

RevertToSelf and RunWithElevatedPrivileges . 361

Delegation. 367

Impersonation in WCF . 370

Summary . 377

■CHAPTER 8 Working with InfoPath in a MOSS 2007 Environment 379

InfoPath Walkthrough . 379

Sharing Data Connection Files in a Data Connection Library 393

Using Data from a SharePoint List . 399

Updating and Saving an InfoPath Form Programmatically 402

Using a Submit Button. 405

Importing Forms. 408

Forms Services 2007. 410

Integration Between InfoPath, SharePoint, and BizTalk Server 2006. 414

Summary . 438

■CHAPTER 9 Deep Traversal of SQL Full-Text Extensions 439

Search Architecture . 439

Working with SQL Full-Text Extensions . 441

SQL Full-Text Extensions Syntax . 448

Common Pitfalls and Questions . 465

Summary . 468

■INDEX . 469

■CONTENTS vii

About the Authors

■MARGRIET BRUGGEMAN began her professional career as a quality assurance
engineer. She then became a software developer, architect, consultant, and
trainer. Margriet is an independent consultant who specializes in building
.NET applications using the latest Microsoft technologies. She has worked for
companies such as Interpay, Ericsson, Ford, Corus, Interpolis, and SNS Reaal.
Margriet has written numerous articles, coauthored multiple SharePoint
books, and was awarded the prestigious Most Valuable Professional (MVP)
award from Microsoft for her work on the SharePoint Portal Server platform.
Margriet is very fond of animals, and when not busy doing IT-related activities,

she can be found near dogs, cats, horses, rabbits, birds, and other fuzzy creatures. Margriet can be
reached at info@lcbridge.nl.

■NIKANDER BRUGGEMAN started his career building web sites using HTML, CGI,
and Perl. Later, when JavaScript 1.0 was released, he built numerous web sites
based on LiveWire technology while working for a Netscape-oriented company.
Nikander then moved to a company that specializes in Microsoft technology.
Currently, Nikander is an independent consultant who specializes in building
.NET applications using the latest Microsoft technologies. His current work
includes software design, development, consulting, and training, and he has
worked for companies such as Universal Music, Arvato-Bertelsmann, Coca-
Cola, Shell, Intel, and Sara Lee/DE. He was given the prestigious Most Valu-

able Professional (MVP) award from Microsoft for his work on the SharePoint Portal Server platform,
and has coauthored several SharePoint books as well as written numerous articles. He lives in the
heart of Amsterdam, and when not developing software or writing about it, he loves to watch sports
and movies. Nikander can be reached at info@lcbridge.nl.

ix

About the Technical Reviewer

■SAHIL MALIK (www.winsmarts.com) is a Microsoft MVP and INETA speaker.
He has authored numerous books and articles, and can be seen speaking
at major conferences around the world. His talks are high-energy, highly
charged, and highly rated. He works as a consultant and trainer centered
around Microsoft technologies. Sahil also blogs about various technical
topics at http://blah.winsmarts.com.

xi

Acknowledgments

Writing a book is time-consuming and a lot of work, and we have seen many acknowledgments in
books where the author feels guilty for neglecting his or her partner or family. In our case, we have
not lost any time at all, as we wrote this book together, which made working on the book a lot of fun.

We have three cats and a rabbit, and normally we would say it is rather strange to thank an
animal because the chances that the animal will read the acknowledgments section of the book are
pretty slim. But in this case, we want to make an exception, because one of our cats has taken an
unusual interest in this book. She spent many hours accompanying us during writing, sleeping on
the test server, and urging us onward by standing guard over our computer room. So here goes:
thanks to our cat, Wijfie.

We sure want to thank Jonathan Hassel: if you had not asked us to write a follow-up for the
book Pro SharePoint 2003 Development Techniques, this book would not exist.

We also want to thank Candace English, Benjamin Berg, Kelly Gunther, and the other people at
Apress. It sure was nice working with you guys!

Special thanks go to our technical reviewer, Sahil Malik. You have done an excellent job making
this a better book, and we do appreciate it. You are also a very funny guy.

As a final note: we are extremely glad that the book is finished and we are finally able to book
our vacation to West Pomerania.

Enjoy the book!

xiii

Introduction

We have been working with SharePoint technology since the beta release of SharePoint Portal
Server 2001 and have seen the product evolve to SharePoint 2007. The sheer number of new fea-
tures added to this product line is huge, and we are pleased to note how popular this product has
become, since we love working with it.

You should read this book if you want to expand your knowledge about developing solutions
for both Windows SharePoint Services 3.0 and Microsoft Office SharePoint Server 2007. A few sec-
tions only apply to MOSS 2007, but those have been clearly identified.

Unfortunately, nowadays SharePoint is such a big topic that you cannot cover every available
topic and still provide in-depth information, so we had to choose which topics to include.

Since we have started working with Microsoft Office SharePoint Server 2007, we have noticed
time and again that all SharePoint developers seem to share a common interest in four topics:
building workflows, improving business intelligence, using InfoPath, and creating interactive web
environments using Ajax techniques. Therefore, when we decided to write a new book about Share-
Point 2007, it was crystal clear to us that we needed to dedicate a considerable portion to these Big
Four topics.

That is not all we discuss in this book. With the passage of time, we have seen that new and
interesting topics related to SharePoint technologies have arisen, and we have made sure to include
a bunch of them. These topics will not be found in the typical SharePoint book you might have lying
about, and we hope you will have fun learning about them.

What Does This Book Cover?
This book discusses different contemporary development techniques for doing SharePoint develop-
ment. Every chapter is independent of the other chapters, so you can read the book from cover to
cover or in any other order you see fit according to your personal interest.

Chapter 1, Incorporating ASP.NET 2.0 into Microsoft Office SharePoint Server 2007: This
chapter discusses the ins and outs of building ASP.NET 2.0 web parts in a SharePoint 2007 environ-
ment, laying the foundation every SharePoint developer needs. You will learn how to use the new
Visual Studio 2005 Extensions for Windows SharePoint Services to build web parts fast, as well as
the drawbacks of this approach. The chapter also discusses how to configure web parts via proper-
ties, how to use resources in web parts, and how you can provide a better user interface by adding
web part menu verbs. You will also see how to create editor parts that can be shown in the web part
tool pane to enhance a web part’s configurability. Then, we will discuss how to deploy a web part
within a SharePoint server farm via a SharePoint solution file. The final topic of this chapter dis-
cusses how to enhance web part development using the Guidance Automation Toolkit.

Chapter 2, Creating Interactive Web Parts Using ASP.NET Ajax: This is a very complete chapter
about doing Ajax development in web parts. Ajax is a framework for communicating client-side
with servers in an asynchronous manner; this chapter starts with a discussion of Ajax and the
ASP.NET Ajax framework. We dedicate a small portion of this chapter to an overview of all available
Ajax frameworks for ASP.NET. After that, we show you how to add service virtualization to a web
service to make sure the web service is able to run in a SharePoint context. Then, you will learn
the ins and outs of using JavaScript within web parts, and you will see how to use JavaScript in the
Content Editor web part, how to use web part tokens, and how to render JavaScript within a web
part. We will discuss an advanced JavaScript technique called on-demand loading. We will talk

xv

about debugging JavaScript and devote some attention to the impressive debugging capabilities of
Visual Studio 2008 (code-named “Orcas”). You will learn how to issue remote calls within a browser
from the client side via the XMLHttpRequest object and web service behavior. Then, a discussion is
included of available web service message types, including plain text, HTML responses, XML mes-
sages, and JSON messages. ASP.NET Ajax–enabling a SharePoint site is a tricky manual task, but in
this chapter, we will show you how to do it. Then, you will learn everything you need to know about
using ASP.NET Ajax in web parts, with various useful examples including a company contact web
part, a performance counter web part, an auto-completion web part, client-side connectable web
parts, and creating a web part that uses client callbacks and the People Picker control.

Chapter 3, Enhancing Business Intelligence via SQL Server 2005 Reporting Services: This
chapter contains the most extensive information about using SQL Server 2005 Reporting Services
in a SharePoint 2007 environment we have seen, including a thorough discussion of the new Share-
Point 2007 capabilities offered by SQL Server 2005 Service Pack 2.0. You will learn how to run
Reporting Services in native mode and SharePoint integration mode, see how to build a report,
explore the available reporting services web parts, and learn how to use Report Center. Then, you
will see how to build reports in SharePoint and how to develop a custom reporting services extension.

Chapter 4, Building Human-Oriented Workflows Using Windows Workflow Foundation:
Building workflows using Windows WorkFlow Foundation is quite a large topic. Because of this, we
have written a large chapter that includes all the information you need to start being prolific in
building workflows in a SharePoint environment. The chapter starts with a discussion of the basics
of Windows Workflow Foundation, including discussions about activities, components, and work-
flow styles. Then, the chapter guides you through the creation of a basic workflow using SharePoint
Designer 2007. After that, you will see how to build advanced workflows using Visual Studio 2005
Designer, including the creation of initiation forms and custom task forms. After building such a
workflow, you will learn how to deploy and debug workflows. Then, we discuss how to use forms to
capture and automate your business processes. The final topic of the chapter discusses how to cre-
ate and use a custom activity in a workflow.

Chapter 5, Building a Domain-Specific Language for Connectable Web Parts: This chapter
combines two interesting topics: building connectable web parts and creating a domain-specific
language. First, the chapter provides more background on the topic of software factories and the
development of domain-specific languages. Then, we go into further detail about the available
Microsoft DSL tools that can help you build a domain-specific language. The next part of the chap-
ter discusses everything you need to know about building connectable web parts. The chapter starts
with a little history lesson discussing connectable web part techniques that have preceded the
SharePoint 2007 web part connection framework. You will learn how to create a connection for web
parts implementing a custom interface. You will learn about the available predefined web part con-
nection interfaces, the use of transformers, and the available set of predefined transformers. After
that, you will create a custom transformer. The final part of this section shows how to create field,
row, table, and parameters connections. The next part of this chapter explains how to use the Web
Part Connection Language (WPCL), a freely downloadable domain-specific language that makes
creating connectable web parts significantly easier. The final part of this section discusses in detail
how we created the WPCL.

Chapter 6, Reusing Presentation Layers via Web Services for Remote Portlets: The Web Ser-
vices for Remote Portlets (WSRP) protocol is a web services protocol for aggregating content and
interactive web applications from remote sources. In this chapter, we will discuss what WSRP is and
how this specification can be of help in portal implementations. After that, we will look deeper into
the WSRP specification. Also, we explain how to configure a generic WSRP consumer web part in
SharePoint and how to build WSRP producers.

Chapter 7, Changing Code Privileges Using Impersonation, Elevation, and Delegation: Code
is executed under a given identity. There are several techniques available for you to do this. You can
use the LogonUser and RevertToSelf Win32 API calls to access resources that are not controlled by
the SharePoint object model, or you can use new techniques offered by the SharePoint 2007 API to

■INTRODUCTIONxvi

access SharePoint resources. These techniques include the use of the SPUserToken object, the
RunWithElevatedPrivileges method, and the CodeToRunElevated delegate. All techniques will be
discussed extensively. In impersonation scenarios, you will typically need a place to store the user
credentials used during impersonation. Passwords need to be stored in a safe place; this chapter
shows you how to encrypt sensitive data in an application configuration file and discusses how to
use SharePoint Single Sign-on to store user credentials in a safe and encrypted way, although you
will need Microsoft Office SharePoint Server 2007 to use the latter technique. In cases when you
need to access resources located on other computers on the network, you need to use delegation.
This chapter discusses how to set this up. The final topic of this chapter discusses how to imperson-
ate identities using Windows Communication Foundation (WCF).

Chapter 8, Working with InfoPath in a MOSS 2007 Environment: This chapter starts out with a
discussion of InfoPath itself. Along the way, you will learn what InfoPath Trust levels are and how to
use an InfoPath form as a SharePoint site content type. You will see how to share data connection
files in a data connection library, and how to use data coming from a SharePoint list. Then, we will
discuss how to update and save an InfoPath form programmatically. You will also learn how to
implement InfoPath Submit buttons, providing an alternative way to store the data in InfoPath
forms. After that, we will show you how to use one of the exciting new features of SharePoint 2007:
Forms Services 2007. The final part of this chapter contains a detailed overview of the use of the
BizTalk Windows SharePoint Services adapter in a SharePoint 2007 environment.

Chapter 9, Deep Traversal of SQL Full-Text Extensions: The final chapter of this book discusses
an important topic that seldom gets the attention it deserves. This chapter explains how to work
with SQL Full-Text Extensions. You will learn how to fire a SQL Full-Text Extensions query via the
SharePoint object model, the SharePoint web services API, and the MOSS Query Tool. Then, we will
take a close look at the elements of the SQL Full-Text query language. The final part of the chapter
discusses common pitfalls and answers common questions that arise when working with SQL Full-
Text Extensions.

Who Is This Book For?
This book is targeted toward SharePoint 2007 developers who want to expand their knowledge
about the shape of the landscape of SharePoint 2007 by discussing a large range of interesting topics
that help provide quality SharePoint solutions. The book will provide information and insight about
contemporary development techniques that will help you in your daily activities as a SharePoint
developer.

Source Code
The code listings in this book are available on the Apress web site and can be downloaded from our
web site at http://www.lcbridge.nl/download.

What Do You Need to Use This Book?
Each chapter discusses the requirements for testing the techniques and examples described in the
chapter. In general, you will need to have access to SharePoint 2007 and Visual Studio 2005. Other
requirements will be discussed on a per-chapter basis.

■INTRODUCTION xvii

Incorporating ASP.NET 2.0 into
Microsoft Office SharePoint
Server 2007

SharePoint technologies have been around for a couple of years now and have proven to be quite
useful for companies around the world that are implementing portal, team collaboration, or enter-
prise content management (ECM) strategies.

The development model for working with SharePoint technologies has changed considerably
in Microsoft Office SharePoint Server 2007, largely influenced by the release of Microsoft .NET
Framework 2.0. This chapter covers the integration between the exciting new features of ASP.NET
2.0 and Microsoft Office SharePoint Server 2007.

First, we will discuss how the integration between Microsoft Office SharePoint Server 2007 and
.NET Framework 2.0 works. Then, we will look at the benefits offered by the Visual Studio 2005
Extensions for Windows SharePoint Services 3.0. After that, we will create some web parts using
these tools and show you how to use a couple of the new ASP.NET 2.0 server controls within web
parts along the way. The chapter finishes with a discussion of the Guidance Automation Toolkit,
also known as GAT, and how it can be used to enhance the development experience.

Architecture Overview
Before looking at Microsoft Office SharePoint Server 2007, we shall take a quick look at its predeces-
sor. SharePoint Products and Technologies 2003 is more or less integrated with IIS 6.0 and ASP.NET
1.1, using an ISAPI filter that intercepts all IIS page requests. In most cases, requests are forwarded
to ASP.NET; in other cases, the ISAPI filter determines that a request should be forwarded by an
HTTP handler called SharePointHandler. In the latter case, SharePoint passes page requests to the
SafeMode parser, a construct specifically created for SharePoint Products and Technologies 2003.
The most important features provided by the SafeMode parser are related to advanced caching sce-
narios and implementing additional security measures. The biggest problem associated with this
architecture is that it is not built on top of ASP.NET technology. As a result, the ASP.NET runtime
does not always handle all incoming requests first, and therefore does not have the chance to ini-
tialize a request with the ASP.NET context. This, along with the use of the custom SafeMode parser,
has caused problems and confused a lot of the SharePoint 2003 developers out there.

ASP.NET 2.0 was released well after SharePoint Products and Technologies 2003. But even
so, you can configure SharePoint Products and Technologies 2003 to support ASP.NET 2.0, as we
discussed in detail in the first edition of this book (which can be found on Amazon.com at the
following location: http://www.amazon.com/Pro-SharePoint-2003-Development-Techniques/dp/
1590597613/ref=sr_1_2/102-5827992-1824111?ie=UTF8&s=books&qid=1179750099&sr=8-2).

1

C H A P T E R 1

Microsoft Office SharePoint Server 2007 has been redesigned completely when it comes to integrat-
ing with ASP.NET 2.0; it is now built on top of ASP.NET 2.0 and is far more reliant on the features
provided by the ASP.NET 2.0 infrastructure.

■Note Configuring SharePoint Products and Technologies 2003 to support ASP.NET 2.0 used to be tricky. In
Microsoft Office SharePoint Server 2007, integration is available out of the box. Planning and installing Microsoft
Office SharePoint Server 2007 remains a complex topic, but it falls outside the scope of this book. The book
Microsoft SharePoint: Building Office 2007 Solutions in C# 2005 by Scot Hillier (Apress, 2007) contains extensive
information about this topic, including capacity planning guidelines, deployment architectures, and detailed
instructions on how to create a SharePoint 2007 development environment using Virtual Server 2005.

In Microsoft Office SharePoint Server 2007, incoming requests are always handled first by the
ASP.NET runtime. The SharePoint ISAPI filter has been removed, and instead the Microsoft Office
SharePoint Server 2007 infrastructure relies on ASP.NET 2.0 by defining HTTP modules and HTTP
handlers responsible for handling SharePoint-related requests.

■Note All HTTP requests are handled by the ASP.NET engine, which ensures that the ASP.NET context is initial-
ized entirely before SharePoint gets a chance to process a request.

In the web.config file of a SharePoint web application, you will notice that the <httpHandlers>
section contains an HTTP handler called Microsoft.SharePoint.ApplicationRuntime.
SPHttpHandler. This handler ensures that the SPHttpHandler will eventually handle all requests for
all file types (for instance, .aspx, .txt, .doc, or .docx files). You can find the web.config file by follow-
ing these steps:

1. Open a command prompt and type the following command: inetmgr. This opens Internet
Information Services (IIS) Manager.

2. Expand the [server name] (local computer) node.

3. Expand the Web Sites node.

4. Right-click the SharePoint web application and choose Properties. This opens the [web
application] Properties window.

5. Click the Home Directory tab and copy the value of the Local path text field.

6. Open an instance of Windows Explorer and navigate to the path found in the previous step.

7. Open the web.config file found in this folder in any text editor.

When the ASP.NET engine is finished processing a request, it calls the SharePoint Virtual Path
Provider (also known as the WSS File provider or SPVirtualPathProvider). ASP.NET 2.0 introduces
the concept of virtual path providers, which are pluggable components that integrate with ASP.NET
and can be used to parse .aspx pages. The SharePoint Virtual Path Provider is able to retrieve .aspx
pages from a SQL Server database with full-text extensions and does not suffer from the limited
functionality regarding page parsing found in SharePoint 2003.

Microsoft Office SharePoint Server 2007 supports two types of pages: uncustomized and
customized.

Uncustomized pages are page templates that are located on the file system of the web server.
Customized pages are modified page templates that are written to a SharePoint content database.
One task the SharePoint Virtual Path Provider is responsible for when handling a page request is

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 20072

deciding whether the page is located on the file system or in a content database. The SafeMode
parser optionally parses pages that are retrieved from the database.

■Note Microsoft Office 2007 SharePoint Designer can be used to customize pages or undo customizations (also
known as reverting back to the original template). In SharePoint Products and Technologies 2003, customized
pages were called unghosted pages; uncustomized pages were called ghosted pages.

After the SharePoint Virtual Path Provider has had the opportunity to handle (but not compile)
a page, it returns the result to the ASP.NET engine that compiles the page, which then asks the vir-
tual path provider to fetch the page layout class, which is also compiled. The ASP.NET engine adds
SharePoint context data to the web metadata and then retrieves the master page associated to the
SharePoint page. The master page is compiled, and a response is returned to the client. Figure 1-1
shows an overview of the page-handling process in Microsoft Office SharePoint Server 2007.

Figure 1-1. Handling a page request in Microsoft Office SharePoint Server 2007

Web Parts Overview
After the huge success of web parts in SharePoint technologies, web parts have been incorporated
into ASP.NET 2.0. This has had an effect on Microsoft Office SharePoint Server 2007, which supports

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 3

the use of ASP.NET 2.0 web parts. There is also support for SharePoint legacy web parts, accom-
plished by rebasing the web part base class, which will be discussed later in this section.

Although support for SharePoint 2003 web parts is still available primarily for legacy reasons,
they are not the only reason. The web part connection model in ASP.NET 2.0 is in some ways infe-
rior to the connection model for SharePoint legacy web parts. Because of this, you may want to use
SharePoint legacy web parts instead of ASP.NET 2.0 web parts. You might want to use SharePoint
legacy web parts when you want to

• Create cross-page connections. Differences in the web part connection model will be dis-
cussed in Chapter 5.

• Use web part caching.

• Communicate with web parts outside web part zones.

Other than that, it is strongly recommended that you use ASP.NET 2.0 web parts when creating new
web parts.

SharePoint legacy web parts all inherit from the Microsoft.SharePoint.WebPartPages.WebPart
class, the base class for all SharePoint legacy web parts. Listing 1-1 shows a SharePoint legacy web
part that overrides the CreateChildControls() method and uses generics (one of the new features of
the .NET Framework 2.0) to print a “Hello World” message to the page.

Listing 1-1. Hello World Web Part

using System;
using System.Collections.Generic;
using System.Text;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using Microsoft.SharePoint.WebPartPages;

namespace LoisAndClark.WPLibrary
{
..public class MyWP : WebPart

{
protected override void CreateChildControls()
{
Content obj = new Content();
string str1 = obj.MyContent<string>(“Hello World!”);
this.Controls.Add(new System.Web.UI.LiteralControl(str1));

}
}

}

For the purposes of this example, we have created a new class called Content that is used in the
SharePoint legacy web part. Listing 1-2 shows the Content class.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 20074

Listing 1-2. Example Class Using Generics

namespace LoisAndClark.WPLibrary
{

public class Content
{
internal Content() { }

public string MyContent<MyType>(MyType arg)
{
return arg.ToString();

}
}

}

All ASP.NET 2.0 web parts inherit from the System.Web.UI.WebControls.WebParts.WebPart base
class. Listing 1-3 shows an ASP.NET 2.0 web part that writes a “Hello World” message to the page
that contains the web part.

Listing 1-3. The Complete Code for a Hello World Web Part

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;

using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;

namespace LoisAndClark.WPLibrary
{

[Guid(“c22d5295-81a3-4a23-97ed-3a0a3e8caecf”)]
public class WPLibrary : System.Web.UI.WebControls.WebParts.WebPart
{
public WPLibrary()
{
this.ExportMode = WebPartExportMode.All;

}

protected override void Render(HtmlTextWriter writer)
{
writer.Write(“Hello World!”);

}
}

}

Notice the presence of the GUID class attribute. This attribute explicitly (instead of automati-
cally) assigns a GUID to this class. Including this GUID is necessary; otherwise web part
deployment via Visual Studio 2005 extensions for Windows SharePoint Services 3.0 fails. If you right-
click a web part library that was created using Visual Studio 2005 extensions for Windows
SharePoint Services 3.0 in Visual Studio 2005 and click the SharePoint Solution tab, you will see a
solution called Solution ([web part library name]). (Solutions are discussed in detail in the section
“Deploying a Web Part,” later in this chapter.) This solution contains a separate feature for every
web part, as can be seen in Figure 1-2. During deployment, the class GUID of every web part is used
as the GUID for a feature containing a web part.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 5

Figure 1-2. Viewing SharePoint Solution properties

In order to be able to support both SharePoint legacy web parts and ASP.NET 2.0, the
Microsoft.SharePoint.WebPartPage.WebPart class is rebased. In SharePoint 2003, this class used to
inherit from the System.Web.UI.Control class; in Microsoft Office SharePoint Server 2007, the
Microsoft.SharePoint.WebPartPage.WebPart class inherits from the System.Web.UI.WebControls.
WebParts.WebPart class. This is shown in Figure 1-3.

Figure 1-3. Rebasing the SharePoint web part class

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 20076

■Note If you have the choice, create ASP.NET 2.0 web parts instead of SharePoint legacy web parts; this is the
approach recommended by Microsoft.

HYBRID WEB PARTS

Besides ASP.NET 2.0 and SharePoint 2003 legacy web parts, there is a third flavor of web parts: hybrid web parts.
Hybrid web parts, just like SharePoint legacy web parts, inherit from Microsoft.SharePoint.WebPartPage.
WebPart. Hybrid web parts use ASP.NET 2.0 web part development techniques and capabilities combined with
SharePoint capabilities. There are a couple of things you can do to make a web part hybrid:

• Use the IPersonalizable interface. This interface is new in .NET 2.0 and defines capabilities for the
extraction of personalization state.

• Use the [Personalizable] attribute, which enables a particular property on a web part for
personalization.

• Omit the use of XML serialization attributes.

There are a couple of drawbacks associated with creating hybrid web parts, things you can do in a normal
SharePoint legacy web part but cannot do in hybrid web parts:

• Hybrid web parts cannot return tool parts via the GetToolParts() method. Instead, you will need to use
controls that inherit from the EditorPart class (via the CreateEditorPart() method).

• Properties within a hybrid web part that are serializable will not be persisted unless you define a type con-
verter for them.

However, some SharePoint capabilities can be leveraged within hybrid web parts. These capabilities are con-
sidered advantages of hybrid web parts:

• You can use the SharePoint 2003 web part caching framework to store items per user or per web part in
memory or in SQL Server.

• You can use the SharePoint 2003 web part connection interfaces. You might want to use these interfaces
when you want to create web parts that support cross-page connections or client-side communication. Web
part connection interfaces are discussed in detail in Chapter 5.

• You can use the asynchronous features of web parts.

Although hybrid web parts are a somewhat esoteric topic and our guess is that you will not see them used
often, it is good to know they exist. In Microsoft Office SharePoint Server 2007, we do not recommend that you cre-
ate hybrid web parts anymore. The reason you might have wanted to create a hybrid web part in the past is for
migration purposes; in SharePoint 2003, you could have created a hybrid web part that combined SharePoint capa-
bilities with ASP.NET 2.0 web part development techniques. Such a hybrid web part would operate like a normal
ASP.NET 2.0 web part that is easy to migrate to Microsoft Office SharePoint Server 2007.

In the final part of this section, we will take a closer look at the anatomy of the ASP.NET 2.0 web
part. The most important parts of an ASP.NET 2.0 web part are as follows:

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 7

• OnInit(): This event handler is called immediately before the OnInit() method of the page
that hosts the web part. This method can be used to initialize values required within the
web part.

• OnLoad(): This event is called immediately before the OnLoad() method of the page that hosts
the web part. This method is typically used to interact with the controls that are part of the
web part.

• CreateChildControls(): This method can be used to add child controls to a web part and
define event handlers for those child controls.

• PreRender(): This is the last event that occurs before the web part output is rendered to
the page.

• Render(): This method sends the web part to its HTML writer. This method calls the follow-
ing methods: RenderBeginTag(), RenderContents(), and RenderEndTag().

• RenderContents(): This method is responsible for adding content to the web part’s
HTML writer.

• UnLoad(): This event occurs when the instance of the web part is discarded; at that time, the
response is already sent back to the client. This is a good place to release any handles to
resources that are still left open.

Listing 1-4 shows an ASP.NET 2.0 web part that incorporates the basic anatomy, as described
previously.

Listing 1-4. Example Web Part Incorporating Important Parts of a Web Part Anatomy

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;

using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;

namespace LoisAndClark.WPLibrary
{

[Guid(“c22d5295-81a3-4a23-97ed-3a0a3e8caecf”)]
public class WPLibrary : System.Web.UI.WebControls.WebParts.WebPart
{
public WPLibrary() : base()
{ }

protected override void OnInit(EventArgs e)
{
base.OnInit(e);

}

protected override void OnLoad(EventArgs e)
{
base.OnLoad(e);

}

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 20078

protected override void CreateChildControls()
{
TextBox txtAddress = new TextBox();
txtAddress.ID = “txtAddress”;
Controls.Add(txtAddress);

Button btnSubmit = new Button();
btnSubmit.ID = “btnSubmit”;
btnSubmit.Click += new EventHandler(btnSubmit_Click);
Controls.Add(btnSubmit);

}

void btnSubmit_Click(object sender, EventArgs e)
{
throw new Exception(“The method or operation is not implemented.”);

}

protected override void OnPreRender(EventArgs e)
{
base.OnPreRender(e);

}

protected override void Render(HtmlTextWriter writer)
{
base.Render(writer);

}

protected override void RenderContents(HtmlTextWriter writer)
{
writer.Write(“Hello world!”);

}

protected override void OnUnload(EventArgs e)
{
base.OnUnload(e);

}
}

}

This concludes our web part overview. Detailed information about creating web parts falls
outside the scope of this book. If you want to learn more about creating web parts that support
ASP.NET Ajax, please refer to Chapter 2. For detailed information about creating connectable web
parts, please refer to Chapter 5.

WSS 3.0 Tools: Visual Studio 2005 Extensions
When you start using Visual Studio 2005 to develop custom SharePoint solutions, one of the first
things you should do is download Visual Studio 2005 extensions for Windows SharePoint Services
3.0 (VSeWSS). This is a set of tools for developing custom SharePoint 2007 solutions, supporting
Windows SharePoint Services 3.0 (or any product built on top of it). The tools can be downloaded
from the following location: http://www.microsoft.com/downloads/details.aspx?familyid=
19f21e5e-b715-4f0c-b959-8c6dcbdc1057&displaylang=en. After the download, double-click on
VSeWSS.exe and follow the installation procedure. In the rest of this section, we will assume you
have correctly installed Visual Studio 2005 extensions for Windows SharePoint Services 3.0.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 9

Project Templates
If you have installed VSeWSS and then start Visual Studio 2005 again, you will find that a new set of
Visual Studio project templates is available when you create a new project. The new project tem-
plates are available in the Visual C# ➤ SharePoint section, as shown in Figure 1-4. The following
project templates are added by Visual Studio 2005 extensions for Windows SharePoint Services 3.0:

• Team Site Definition

• List Definition

• Empty

• Blank Site Definition

• Web Part

■Note Figure 1-4 contains other templates in the SharePoint project types section that are related to workflows.
Those templates are not installed by Visual Studio 2005 extensions for Windows SharePoint Services 3.0, and will
be discussed in detail in Chapter 4.

Figure 1-4. SharePoint Visual Studio project templates

Visual Studio 2005 extensions for Windows SharePoint Services 3.0 also contains a set of item
templates that can be used within SharePoint projects for Visual Studio 2005. The following item
templates are added by VSeWSS:

• List Definition

• Content Type

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200710

• Web Part

• List Definition from Content Type

• Field Control

• Module

The item templates for Visual Studio are found in the Visual C# Project Items ➤ SharePoint sec-
tion of the Add New Item – [name of project] window. This is shown in Figure 1-5.

Figure 1-5. SharePoint Visual Studio item templates

The following section discusses the Web Part project template as well as the similarly named
Web Part item template. Although the other templates are certainly interesting enough to look at,
discussing them falls outside the scope of this chapter.

■Note It is somewhat confusing that the project template and item template for creating web parts share the
same name. In our opinion, it would have been better if the project template had been called Web Part Library.

Web Part Project Template
The Web Part project template for Visual Studio 2005 extensions for Windows SharePoint Services
3.0 makes creating web part libraries easy. In this section, you will learn how to create a web part
library, how to create a web part, and how to deploy and debug a web part. The following procedure
explains how to create a web part library:

1. Start Visual Studio .NET 2005.

2. Choose File ➤ New ➤ Project. This opens the New Project window.

3. Select Visual C# ➤ SharePoint and choose the following template: Web Part.

4. In the Name text field, enter the following name: WPLibrary.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 11

5. In the Location text field, enter the following location: c:\projects.

6. Make sure the Create directory for Solution check box is selected.

7. Click OK.

A new web part library based on the Web Part project template is created. It automatically con-
tains references to the Microsoft.SharePoint assembly, it is strong named (see the section “Installing
and Using the Web Part Library Template” in this chapter for more information about strong nam-
ing), and it contains a WPLibrary folder that contains a default web part. If some of the default
settings are not acceptable to you, now is a good time to change them.

■Note If you like the idea of having short assembly names and longer, descriptive namespaces, you will
probably want to change the default namespace of the project. The project template adds a reference to a
strong-named key file called Temporary .snk, so you will definitely need to change this and add a reference in
your project to a strong-named key file (.snk file) that is used by you or your company to identify the developer of
the web part library.

In the next procedure, we will add a new web part and have it write a “Hello!” message to the
page that contains the web part.

1. Right-click the WPLibrary folder in the Solution Explorer, and choose Add ➤ New Item. This
opens the Add New Item - [name of project] window.

2. Under Visual C# Project Items ➤ SharePoint, select the Web Part item template.

3. In the Name text field, enter the following name: MyWebPart.

4. Click Add. This adds a new MyWebPart folder that includes a class called MyWebPart.cs.

5. Open MyWebPart.cs. This is an ASP.NET 2.0 web part.

6. Add the following code to the body of the MyWebPart.cs class:

protected override void RenderContents(HtmlTextWriter writer)
{
writer.Write(“Hello!”);

}

One of the nice features of the Web Part project template is the ability to package a web part
within the project as a SharePoint feature. Features make it easy to deploy and activate web parts
(and they can do a lot more than that).

You have fine-grained influence over the settings of a web part feature. The following proce-
dure explains how to configure feature settings:

1. Right-click the WPLibrary project and choose Properties.

2. Click the SharePoint solution tab.

■Note More information about the available settings can be found in the MSDN article “Creating a Windows
SharePoint Services 3.0 Web Part Using Visual Studio 2005 Extensions” (http://msdn2.microsoft.com/
en-us/library/aa973249.aspx) in the section “Customizing the Web Part Solution Package.”

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200712

At this point, you are almost ready to deploy the web parts in your web part solution. First, you
must configure to which SharePoint site the web part solution needs to be deployed. This is
explained in the next procedure:

1. Right-click WPLibrary and choose Properties.

2. Click the Debug tab.

3. In the Start Action section, make sure the Start browser with URL radio button is selected.

4. Enter the SharePoint site URL into the Start browser with URL text field.

■Note If you fail to specify a correct SharePoint site URL, the following error message appears during deploy-
ment: “No SharePoint Site exists at the specified URL.”

Deploying a web part has never been easier; all you need to do is press F5 (or Debug ➤ Start
Debugging). When you do this, a couple of things happen:

1. The web part solution is compiled.

2. The web part solution is packaged as a feature.

3. If a previous version of the web part feature exists, it is removed.

4. The web part library is added to the Global Assembly Cache (GAC).

5. The web part feature is deployed to the SharePoint site URL you specified earlier.

6. If deployment is successful, the web part feature is activated.

7. The web parts in the web part library are added to the <SafeControls> list in the web.config
file of the SharePoint web application that contains the web part.

8. The web part gallery is modified so that the site can use the web parts.

9. Internet Information Services (IIS) is restarted.

10. If debugging is enabled, Visual Studio 2005 automatically tries to attach to the w3wp
process hosting the web part.

■Note The bin\debug folder of a web part library created using Visual Studio 2005 contains a setup.bat file that
can be customized to deploy the web parts created in the web part library. You can find more information about
web part deployment in the section “Deploying a Web Part,” later in this chapter.

Now, you should go ahead and add the web part to a web part page. The following procedure
explains how to do this:

1. Navigate to the SharePoint site URL you specified earlier.

2. Choose Site Actions ➤ Edit Page. This opens the page in Edit Mode.

3. Choose a web part zone and click the Add a Web Part link. This opens the Add Web Parts —
Web Page Dialog window.

4. Locate the All Web Parts ➤ Miscellaneous section and select the MyWebPart Web Part check
box.

5. Click the Add button.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 13

This adds the MyWebPart web part to the page. If you want to go ahead and debug this web
part, follow these steps:

1. Open a command prompt and type inetmgr. This opens Internet Information Services (IIS)
Manager.

2. Expand the [computer name] (local computer) node.

3. Expand the Web Sites node.

4. Locate the SharePoint web site that contains your web part, right-click it, and choose Prop-
erties. This opens the [web site name] Properties window.

5. Click the Home Directory tab.

6. Copy the value of the Local Path text field.

7. Open Windows Explorer and navigate to the local path you copied in the previous step. This
opens the root folder of the SharePoint web application that contains your web part.

8. Set a break point to a line of code in the web part.

9. Press F5.

After deployment, Visual Studio 2005 attaches automatically to the process hosting your web
part, and break mode is entered automatically. This is shown in Figure 1-6.

Figure 1-6. Using the web part template to debug a web part

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200714

DEBUGGING WEB PARTS

Whenever an error occurs in a web part, Microsoft Office SharePoint Server 2007 shows a generic error message. If
you want to see a detailed error message, you should open the web.config file of the SharePoint web application
that contains the web part, locate the <SafeMode> node, and set the CallStack attribute to true. If you want to
be able to see more than a generic server error message, you should locate the <customErrors> element and set
the mode attribute to Off.

You do not need to set the debug property of the <compilation> element to true to be able to debug a web
part. This setting tells ASP.NET to generate symbol tables (.pdb files) when compiling pages. Since your web part
code is contained in an assembly, you can debug the necessary .pdb files by building a Debug version of the web
part library. When the debug symbols are present, you can debug web parts by attaching to the process (an
instance of w3wp.exe).

However, if you want to be able to debug web parts by letting Visual Studio 2005 auto-attach to the process,
you do need to set the debug attribute of the <compilation> attribute to true. In that case, you also need to raise
the trust level for the SharePoint web application containing your web part to WSS_Medium or greater.

Be careful: setting the debug attribute of the <compilation> attribute to true has an undesirable side effect.
Every time you run the web part library project, a .bak copy of your web application’s web.config file is created.

The blog post “Debugging web parts – a full explanation of the requirements,” written by Maurice Prather,
discusses the previously discussed techniques in detail. The blog post can be found at the following location:
http://www.bluedoglimited.com/SharePointThoughts/ViewPost.aspx?ID=60.

Whenever you are auto-attaching to a process in Visual Studio 2005, the web server is restarted in order to
recycle the w3wp.exe process hosting your web part. This is overkill. Instead, it is much faster if you just restart the
application pool that hosts the SharePoint web application containing your web part and then manually attach to the
process hosting your web part. You can restart the application pool via iisapp.vbs (located in the [drive letter]:\win-
dows\system32 folder) using the following command:

iisapp.vbs /a “[application pool name]” /r

You can make attaching to this process even easier by installing the Debugger feature for SharePoint, created
by Jonathan Dibble. This feature adds a new menu item to the Site Actions menu of a SharePoint site and is
described in detail in the blog post “Debugger ‘Feature’ for SharePoint ” at http://blogs.msdn.com/
sharepoint/archive/2007/04/10/debugger-feature-for-sharepoint.aspx. The feature can be
downloaded from the SharePoint 2007 Features site at CodePlex (http://www.codeplex.com/features/
Release/ProjectReleases.aspx?ReleaseId=2502). This list of free SharePoint features is maintained by
Scot Hillier.

SharePoint Solution Generator
You have seen that Visual Studio 2005 extensions for Windows SharePoint Services 3.0 contains a set
of project and item templates. The final part of the Visual Studio 2005 extensions is the SharePoint
Solution Generator. This is a stand-alone tool that can be started by choosing Start ➤ All Programs
➤ SharePoint Solution Generator. SharePoint Solution Generator is a convenient tool that allows
you to generate either site definitions or list definitions in the form of Visual Studio 2005 projects
(.csproj files) based on existing SharePoint sites and lists.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 15

■Caution The current version of the tool (version 1.0) breaks if the default IIS web site is not extended with
SharePoint functionality. You can extend the default IIS web site via SharePoint Central Administration ➤ Applica-
tion Management ➤ Create or extend Web Application. If the default IIS web site is not extended with SharePoint
functionality, you will get an unhandled exception once you start generating a Site or List definition.

ASP.NET 2.0 Server Controls
In this section, we will show you a couple of the ASP.NET 2.0 server controls used within a Share-
Point web part. ASP.NET 2.0 server controls contain great functionality for database access,
calendars, text boxes, drop-down lists, and a lot of other common composite web functionality.
Controls are essential to the ASP.NET programming model. In ASP.NET 2.0, there are nearly 60 new
server controls.

Configuring Web Parts
If you are building a generic web part, you probably will need to be able to configure it on a per-web
part basis. You can use web part properties and the Web Part Editor tool pane to configure web
parts, as you will see in this section. Such configuration information is stored in the SharePoint con-
tent database.

To demonstrate web part configuration via properties, we will create a web part that uploads a
local file to a SharePoint document library. File upload in ASP.NET 1.x was possible, although you
did have to jump through some hoops to get everything working. For example, you had to add
enctype=”multipart/form-data” to the page’s <form> element. The new ASP.NET 2.0 FileUpload
server control makes the process of uploading files to the hosting server as simple as possible.

The FileUpload control displays a text box and a Browse button that allow users to select a file
to upload to the server. The user specifies the file to upload by entering the fully qualified path to
the file on the local computer (for example, C:\Temp\Test.txt) in the text box of the control. The
user can also select the file by clicking the Browse button and then locating it in the Choose File dia-
log box. You need to hook up an event handler to a Submit button, which calls the SaveAs() method
of the FileUpLoad control. Via this method, you can specify the location where the file will be saved.
The file will not be uploaded to the server until the user clicks the Submit button.

To build this web part, we need three configurable properties to store the following information:

• Site collection URL

• Site URL

• Name of the document library that is going to hold the uploaded file

If you want to create a configurable property, you first need to add the [Personalizable]
attribute to a property to indicate that the property supports personalization. You also need to spec-
ify the personalization scope that associates the scope of a web part property to the state a web part
page is running in. This determines which configuration data is retrieved from the SharePoint con-
figuration database. You can set the personalization scope to either Shared or User.

Setting the personalization scope of a web part to Shared ensures that the data associated with
a page running in Shared mode is retrieved. In this case, the configuration information applies to all
users viewing the web part.

You can also set the personalization scope of a web part to User to make sure that the data
associated to a page running in User mode is retrieved. Such configuration information indicates
that configuration information is retrieved for the currently executing user.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200716

In this example, we are not interested in user-specific data; we are interested in application-
specific data. As a result, we will set the personalization scope to Shared. You will also need to set
the [WebBrowsable] attribute to true to make it appear in the web part tool pane. In addition, you
can use the [WebDisplayName] and [WebDescription] attributes to define a friendly name and
description for the web part property. This information is shown in the web part tool pane. The fol-
lowing code fragment shows a web part property containing the URL of a site collection that is
personalizable, stores configuration on an application-wide basis, and defines a friendly name and
description:

private string _strSiteCollectionUrl;
[Personalizable(PersonalizationScope.Shared),
WebBrowsable(true),
WebDisplayName(“Site Collection URL”),
WebDescription(“Enter the URL of the site collection that contains the
list a document is uploaded to”)]
public string SiteCollectionUrl
{
get { return _strSiteCollectionUrl; }
set { _strSiteCollectionUrl = value; }

}

The web part in this section opens a site collection containing the document library that will
hold the uploaded file. Then, it opens the site that contains this document library, and finally, it
opens the document library itself. In this example, we are saving uploaded files to the root folder of
the document library by using the Add() method of the RootFolder object’s Files collection. By pass-
ing the input stream of the FileUpload control to the Add() method, you can save a file to a
document library. The next code fragment shows how to save a file uploaded via the FileUpload
control in a document library, overwriting files that have the same name:

using (SPSite objSite = new SPSite(SiteCollectionUrl))
{
using (SPWeb objWeb = objSite.OpenWeb(SiteUrl))
{
SPList objList = objWeb.Lists[ListName];
if (_objFileUpload.HasFile)
{
objList.RootFolder.Files.Add(_objFileUpload.FileName, ➥
_objFileUpload.PostedFile.InputStream, true);

}
}

}

The complete code for a configurable web part that uses the FileUpload control to upload a file
to a SharePoint document library is shown in Listing 1-5.

Listing 1-5. The FileUpload Web Part

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;

using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 17

namespace LoisAndClark.AspNetExample
{
[Guid(“288802c4-4dfe-45b6-bb28-49dda89ec225”)]
public class NormalPart : System.Web.UI.WebControls.WebParts.WebPart
{
FileUpload _objFileUpload = new FileUpload();

protected override void CreateChildControls()
{
Controls.Add(_objFileUpload);

Button btnUpload = new Button();
btnUpload.Text = “Save File”;
this.Load += new System.EventHandler(btnUpload_Click);
Controls.Add(btnUpload);

}

private void btnUpload_Click(object sender, EventArgs e)
{
using (SPSite objSite = new SPSite(SiteCollectionUrl))
{
using (SPWeb objWeb = objSite.OpenWeb(SiteUrl))
{
SPList objList = objWeb.Lists[ListName];
if (_objFileUpload.HasFile)
{
objList.RootFolder.Files.Add(_objFileUpload.FileName,
_objFileUpload.PostedFile.InputStream, true);

}
}

}
}

private string _strSiteCollectionUrl;
[Personalizable(PersonalizationScope.Shared), WebBrowsable(true),
WebDisplayName(“Site Collection URL”),
WebDescription(“Enter the URL of the site collection that contains
the list a document is uploaded to”)]
public string SiteCollectionUrl
{
get { return _strSiteCollectionUrl; }
set { _strSiteCollectionUrl = value; }

}

private string _strSiteUrl;
[Personalizable(PersonalizationScope.Shared),
WebBrowsable(true), WebDisplayName(“Site Collection URL”),
WebDescription(“Enter the URL of the site that contains
the list a document is uploaded to”)]
public string SiteUrl
{
get { return _strSiteUrl; }
set { _strSiteUrl = value; }

}

private string _strListName;
[Personalizable(PersonalizationScope.Shared),

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200718

WebBrowsable(true),
WebDisplayName(“List name”), WebDescription(“Enter the name of the list that
will contain the uploaded document”)]
public string ListName
{
get { return _strListName; }
set { _strListName = value; }

}
}

}

Figure 1-7 shows the FileUpload web part (called NormalPart) in action. First, the web part
allows you to choose a local file (test.txt) that you want to upload to a SharePoint document library.

Figure 1-7. Choosing a local file to upload

Figure 1-8 shows the end result. The local file test.txt is uploaded to a document library called
Shared Documents.

Figure 1-8. The local file is successfully uploaded to the Shared Documents document library.

Using Resources in Web Parts
Most web parts use external resources such as images or JavaScript libraries. Such resources can be
deployed to the _layouts virtual directory of a SharePoint web application, which is a suitable loca-
tion because every user has sufficient rights to access it without being able to modify the resources
located there. However, since the advent of ASP.NET 2.0, there is another possibility: web resources.
In this section, we will use the BulletedList server control to demonstrate the use of web resources.

■Note The images subfolder of the _layouts folder is an excellent place to store custom resources because
every user has sufficient rights to read resources in it. The images folder can be found at the following location:
[drive letter]:\Program Files\Common Files\Microsoft Shared\web server extensions\12\TEMPLATE\IMAGES\.

The BulletedList control, as the name says, displays a bulleted list of items in an ordered (
HTML element) or unordered (HTML element) fashion. The BulletedList control has extra

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 19

features, such as the option to choose bullet style, data binding, and support for custom images.
The bullet style lets you choose the style of the element that precedes the item. For example, you
can choose to use numbers, squares, or circles. Child items can be rendered as plain text, hyper-
links, or buttons. The web part example in this section shows a bulleted list made with the
BulletedList control that uses a custom image.

Web resources allow you to include external resources such as images and JavaScript libraries
in assemblies. This allows you to include such resources in the web part assembly, if you want. For
reasons of better component design, we have decided to create a new assembly that contains web
resources.

■Note This is also known as the Common-Closure principle, which requires that the content of an assembly
should be closed against the same kinds of code changes. If you want to learn more about component design, we
advise you to read the book Agile Software Development by Robert C. Martin.

If you want to create web resources, you need to add them to an assembly and mark them as
Embedded Resources using Visual Studio 2005 by setting the resource’s Build Action property to
Embedded Resource. After doing that, you need to add a [WebResource] attribute for each embed-
ded resource in the assembly to enable the resource to be used as a web resource. The constructor
for the [WebResource] attribute accepts two parameters: web resource and content type. The web
resource consists of three parts:

• Assembly namespace: For example, LoisAndClark.WebResources

• Folder structure: For example, folder1.childfolder2.grandchildfolder3

• Resource name: For example, favicon.gif

The following code fragment shows how to mark favicon.gif as a web resource:

[assembly: WebResourceAttribute(
“LoisAndClark.WebResources.gfx.favicon.gif”,
“image/gif”
)]

You will also need to create a dummy class, which we will call PlaceHolder.cs. This class does
not actually need to do anything, but it is used by clients to obtain a reference to the resource
assembly when retrieving resource URLs. This will be shown later in this section. Here is the code
fragment for the dummy class:

public class PlaceHolder
{}

In the next procedure, you will learn how to create a new assembly that contains a custom
image. The custom image is used by a BulletedList control to display a list in a web part called
NormalPart:

1. Open web part library project. If you are not sure how to create a web part library project,
please refer back to the section “WSS 3.0 Tools: Visual Studio 2005 Extensions.”

2. Choose File ➤ Add ➤ New Project. This opens the Add New Project wizard.

3. In the Project types section, click Visual C#.

4. In the Templates section, choose Class Library.

5. Choose the following name: WebResources.

6. Choose the following location: c:\projects\wplibrary.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200720

7. Click OK.

8. Rename Class1.cs to PlaceHolder.cs.

9. Rename the namespace from WebResources to LoisAndClark.WebResources.

10. Right-click the References folder and choose Add Reference. This opens the Add Reference
window.

11. In the .NET tab, locate System.Web and click OK.

12. Right-click the WebResource project and choose Properties. This opens the WebResources page.

13. Click the Application tab and add the following value in the Default namespace textbox:
LoisAndClark.WebResources.

14. Click the Signing tab and select the Sign the assembly check box.

15. In the Choose a Strong-Name Key file drop-down list, choose <New...>. This opens the Cre-
ate Strong-Name Key window.

16. In the Key file name text box, add the following value: WebResourcesKey.

17. Do not select the Protect my key file with a password check box.

18. Click OK.

19. Right-click the WebResources project and choose Add ➤ New Folder.

20. Enter the following folder name: gfx.

21. Right-click the gfx folder and choose Add ➤ Existing Item. This opens the Add Existing Item
- WebResources window.

■Note In this example, we are using a custom image called favicon.gif. If you do not want to break the code that
is discussed later, you should note that casing is important.

22. Click favicon.gif. In the Properties window, set the Build Action property to Embedded
Resource.

23. In the WebResources project, expand the Properties node and double-click AssemblyInfo.cs.

24. Add the following statement to the top of AssemblyInfo.cs:

using System.Web.UI;

25. At the bottom of AssemblyInfo.cs, add the following attribute:

[assembly: WebResourceAttribute(
“LoisAndClark.WebResources.gfx.favicon.gif”,
“image/gif”
)]

■Note The first part of a WebResource constructor accepts the name of the resource, consisting of the name-
space of the assembly, the folder structure, and the name of the resource itself. Remember that casing is
important here! The second part of the constructor accepts the type of the resource. In this case, image/gif is
used to indicate that the web resource is an image. The most common other option is to include a JavaScript
library as a web resource. If you want to add a JavaScript library instead of an image, use text/javascript
instead of image/gif.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 21

At this point, you have created a new assembly called WebResources that contains the custom
favicon.gif image. Next, we will show you how to build a web part that displays a custom image that
is deployed as a web resource in a bulleted list.

■Note When resource assemblies are compiled in debug mode, caching is not enabled. When resource assem-
blies are compiled in release mode, caching is enabled.

You can use the GetWebResourceUrl() method of the Page.ClientScript object to obtain a URL
reference to a web resource. The first argument of this method accepts the type of the server
resource, which can be obtained by determining the type of the dummy class called
PlaceHolder.cs, like so:

typeof(LoisAndClark.WebResources.PlaceHolder)

The second argument is the name of the server resource, consisting of the namespace, folder
structure, and name of the resource. In this example, the fully qualified name of the resource is

LoisAndClark.WebResources.gfx.favicon.gif

The next code fragment shows the complete code for obtaining a URL reference to a web resource:

Page.ClientScript.GetWebResourceUrl(➥
typeof(LoisAndClark.WebResources.PlaceHolder), strResource);

The URL that is retrieved will look like this:

/WebResource.axd?d=[Assembly key]&t=[last write time of resource assembly]

The next procedure explains how to create the NormalPart web part that displays a bulleted list
using a custom image that is available as a web resource:

1. Switch to your web part library. Ours is called WPLibrary.

2. Right-click the References node and choose Add Reference. This opens the Add Reference
window.

3. Click the Projects tab. Select WebResources and click OK.

4. Open the web part class file. Ours is called NormalPart.

5. Add the code from Listing 1-6.

Listing 1-6. Consuming Resources Within a Web Part

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;
using Microsoft.SharePoint.Administration;
using Microsoft.SharePoint.Utilities;
using System.Net;
using System.Net.Mail;

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200722

namespace LoisAndClark.AspNetExample
{
[Guid(“288802c4-4dfe-45b6-bb28-49dda89ec225”)]
public class NormalPart : System.Web.UI.WebControls.WebParts.WebPart
{
protected override void CreateChildControls()
{
string strResource = “LoisAndClark.WebResources.gfx.favicon.gif”;
string strUrl = ➥
Page.ClientScript.GetWebResourceUrl(➥
typeof(LoisAndClark.WebResources.PlaceHolder), strResource);

BulletedList objBullist = new BulletedList();
objBullist.BulletStyle = BulletStyle.CustomImage;
objBullist.BulletImageUrl = strUrl;
objBullist.Items.Add(“One”);
objBullist.Items.Add(“Two”);
objBullist.Items.Add(“Three”);
objBullist.Items.Add(“Four”);

Controls.Add(objBullist);
}

}
}

Now, you have created all the code you need. The last step you need to perform is to deploy the
WebResources assembly to the Global Assembly Cache (GAC) to make sure the web resources are
available to the web part. One way to do this is to open [drive letter]:\Windows\Assembly. Drag and
drop WebResources.dll into the Global Assembly Cache.The resulting BulletedList control is shown
in Figure 1-9.

Figure 1-9. The BulletedList control in a web part

Web resources are great for packaging resources in assemblies. This allows you to tie specific
versions of an assembly to a specific set of resources. However, there are some drawbacks associ-
ated to the use of web resources:

• You cannot embed every type of resource in an assembly. For instance, you cannot embed
.asmx, .ascx, and web.config files as web resources.

• It is hard, if not impossible, to debug embedded resources.

Alternatively, you could store resources in a separate virtual directory.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 23

■Note It is possible to deploy resources using a solution (.wsp) file. Creating solution files is discussed in detail
in the section “Deploying a Web Part,” later in this chapter. You can use the Location attribute of the
<ClassResource> element in the web part manifest file to specify resource files. Do not use the FileName attrib-
ute; this attribute is still present but it is only used in SharePoint 2003.

Web Part Menu Verbs
Every web part on a SharePoint page has a web part menu that contains standard options such as
the ability to minimize or close the web part. An example of a standard web part menu is shown in
Figure 1-10.

Figure 1-10. The standard web part menu

In this section, you will learn how to create custom web part menu verbs that are added to the
verbs menu in a web part’s header. To start with, it is good to realize that there are three kinds of
web part menu verbs:

• Client-side verbs. These verbs perform some kind of action on the client side.

• Server-side verbs. These verbs perform some kind of action on the server side.

• Both. These verbs perform actions on both the client and server side.

You can create a client-side verb by creating a new instance of the WebPartVerb class. The first
argument that needs to be passed to the WebPartVerb constructor for a client-side verb is the verb’s
id. This needs to be unique. The second argument refers to the client-click event handler. This typi-
cally refers to a piece of JavaScript that needs to be executed once an end user clicks on a web part
menu verb. The following code fragment shows how to create a client-side verb:

WebPartVerb objFirst = new WebPartVerb(“FirstVerbId”, ➥
“javascript:alert(‘Hello from verb!’);”);
objFirst.Text = “first verb text”;
objFirst.Description = “first verb description”;
objFirst.ImageUrl = “_layouts/images/loisandclark/favicon.gif”;

If you want to create a server-side verb, you need to instantiate a new WebPartVerb class, pass it
a unique verb id, and specify a server-side event handler to be executed once an end user clicks on
the verb. The next code fragment shows how to create a server-side verb:

WebPartVerb objSecond = new WebPartVerb(“SecondVerbId”,
new WebPartEventHandler(SecondVerbHandler));
objSecond.Text = “second verb text”;
objSecond.Description = “second verb description”;

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200724

The final web part menu verb type, the kind that performs both client-side and server-side actions,
is created by passing a unique verb id, a server-side event handler, and a client-side event handler.

You can add custom web part verbs by overriding the Verbs property of a web part and adding
custom verbs to it. Listing 1-7 shows how to add custom verbs to the web part menu and define an
event handler that handles a server-side verb click event:

Listing 1-7. Adding Custom Verbs to a Web Part Menu

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;
using Microsoft.SharePoint.Administration;
using Microsoft.SharePoint.Utilities;
using System.Net;
using System.Net.Mail;

namespace LoisAndClark.AspNetExample
{

[Guid(“288802c4-4dfe-45b6-bb28-49dda89ec225”)]
public class NormalPart : System.Web.UI.WebControls.WebParts.WebPart
{
public override WebPartVerbCollection Verbs
{
get
{
WebPartVerb objFirst = new WebPartVerb(“FirstVerbId”, ➥
“javascript:alert(‘Hello from verb!’);”);
objFirst.Text = “first verb text”;
objFirst.Description = “first verb description”;
objFirst.ImageUrl = “_layouts/images/loisandclark/favicon.gif”;

WebPartVerb objSecond = new WebPartVerb(“SecondVerbId”, ➥
new WebPartEventHandler(SecondVerbHandler));
objSecond.Text = “second verb text”;
objSecond.Description = “second verb description”;

WebPartVerb[] objVerbs = new WebPartVerb[] {objFirst, objSecond};
WebPartVerbCollection objVerbCollection = ➥
new WebPartVerbCollection(base.Verbs, objVerbs);

return objVerbCollection;
}

}

protected void SecondVerbHandler(object sender, WebPartEventArgs args)
{
//Do something...

}
}

}

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 25

This code adds two web part verbs to the web part menu: a client-side verb and a server-side
verb. Both verbs are shown in Figure 1-11.

Figure 1-11. A web part menu containing two custom verbs

Figure 1-12 shows what happens when you click on the client-side verb. Some JavaScript will
be executed that displays an alert box.

Figure 1-12. The client-side event handler for the client-side verb in action

In this section, you have seen that adding verbs to a web part menu enhances the user inter-
face experience and is quite easy to accomplish.

Creating Editor Parts
If you have sufficient permissions, you are allowed to configure web parts. When you start configur-
ing web parts via the user interface, a web part tool pane opens. Any configuration information
stored in the pane is persisted in the SharePoint content database. In the section “Configuring Web
Parts,” earlier in this chapter, you learned how to create properties that can be configured using the
web part tool pane. Figure 1-13 shows an example of a web part tool pane.

Out of the box, SharePoint offers different editors for different types of data. For instance, a
string property is represented by the text box editor, while a Boolean property is represented by
check boxes. In this section, you will learn how to create custom editor parts, which will be shown
in the web part tool pane when you are configuring a web part.

All editor parts inherit from the EditorPart base class, so that is the first step you need to take
when creating a custom editor part. Editor parts look a lot like normal web parts. For instance, if
you want to add child controls to an editor part, you need to override its CreateChildControls()
method. The following code fragment adds a text area consisting of five lines to an editor part:

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200726

protected override void CreateChildControls()
{
_txtNormalBox = new TextBox();
_txtNormalBox.ID = “txtNormalBox”;
_txtNormalBox.Text = “[Custom editor part]”;
_txtNormalBox.TextMode = TextBoxMode.MultiLine;
_txtNormalBox.Rows = 5;
Controls.Add(_txtNormalBox);

}

You will also need to override the ApplyChanges() method of an EditorPart instance. This
method is responsible for mapping values in the editor part to corresponding properties in the
associated web part. The following code fragment shows how the ApplyChanges() method sets a
property in an instance of the NormalPart web part called NormalValue:

public override bool ApplyChanges()
{
NormalPart objNormal = (NormalPart)WebPartToEdit;
objNormal.NormalValue = _txtNormalBox.Text;

return true;
}

Figure 1-13. The default web part tool pane

■Note This code performs a downcast, which is considered a bad practice in object-oriented programming
because it tightly couples the editor part and the web part. It would have been better to define an interface that is
implemented by every web part that can be used in conjunction with the editor part.

The final piece of an editor part that must be implemented is the SyncChanges() method. This
method is the opposite of the ApplyChanges() method; it retrieves property values from a web part
and stores them in the editor part. The following code fragment shows an implementation for the

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 27

SyncChanges() method that retrieves the NormalValue property of a NormalPart web part and stores
it in the text area of the web part editor tool pane:

public override void SyncChanges()
{
// Make sure the text area child control is created.
EnsureChildControls();

NormalPart objNormal = (NormalPart) WebPartToEdit;
_txtNormalBox.Text = objNormal.NormalValue;

}

So far, you have seen how to create an editor part. Before a custom editor part is shown in the
web part editor tool pane, you need to implement support for this in your web part. In this example,
we are creating a web part called NormalPart. First, we need to add one or more properties that are
read from and written to within the editor part. The custom editor part in this section expects the
presence of a NormalValue property in a web part, so that is the first thing that needs to be imple-
mented. If you need more information on how to do this, please refer back to the section
“Configuring Web Parts.” The following code fragment shows how to implement the NormalValue
property:

private string _strNormalValue = String.Empty;
[Personalizable(PersonalizationScope.Shared), WebBrowsable(false), ➥
WebDisplayName(“Normal value”), WebDescription(“Normal value description”)]
public string NormalValue
{
get { return _strNormalValue; }
set { _strNormalValue = value; }

}

After that, you need to override the CreateEditorParts() method. This method is responsible
for returning a collection of custom editor part controls that are shown in the web part editor tool
pane when a web part is in edit mode. Basically, this method is used to create a new instance of
one or more custom editor parts and add those to the editor part collection. This collection is used
when the web part tool pane is rendered. The following code fragment shows how to add the
NormalEditorPart editor part to the collection of customer editor parts that is shown when the
NormalPart web part is being edited:

public override EditorPartCollection CreateEditorParts()
{
NormalEditorPart objEditor = new NormalEditorPart();
objEditor.ID = ID + “normalEditor1”;
objEditor.Title = “Normal Editor title”;
objEditor.ToolTip = “Normal Editor tooltip”;
objEditor.TabIndex = 100;
objEditor.GroupingText = “Normal editor grouping text”;

ArrayList objEditorParts = new ArrayList();
objEditorParts.Add(objEditor);

EditorPartCollection objEditorPartsCollection = new
EditorPartCollection(objEditorParts);

return objEditorPartsCollection;
}

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200728

Listing 1-8 shows the complete code for a custom editor part called NormalEditorPart that is
being used in a web part called NormalPart:

Listing 1-8. Creating an Editor Part

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;

namespace LoisAndClark.AspNetExample
{

public class NormalEditorPart : EditorPart
{
TextBox _txtNormalBox;

protected override void CreateChildControls()
{
_txtNormalBox = new TextBox();
_txtNormalBox.ID = “txtNormalBox”;
_txtNormalBox.Text = “[Custom editor part]”;
_txtNormalBox.TextMode = TextBoxMode.MultiLine;
_txtNormalBox.Rows = 5;
Controls.Add(_txtNormalBox);

}

public override bool ApplyChanges()
{
NormalPart objNormal = (NormalPart)WebPartToEdit;
objNormal.NormalValue = _txtNormalBox.Text;

return true;
}

public override void SyncChanges()
{
EnsureChildControls();
NormalPart objNormal = (NormalPart)WebPartToEdit;
_txtNormalBox.Text = objNormal.NormalValue;

}
}

}

Listing 1-9 contains the implementation of the NormalPart web part. This web part displays the
custom NormalEditorPart web part in edit mode:

Listing 1-9. Creating a Web Part Displaying a Custom Editor Part

using System;
using System.Collections;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 29

using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;
using Microsoft.SharePoint.Administration;
using Microsoft.SharePoint.Utilities;

using System.Net;
using System.Net.Mail;

namespace LoisAndClark.AspNetExample
{
[Guid(“288802c4-4dfe-45b6-bb28-49dda89ec225”)]
public class NormalPart : System.Web.UI.WebControls.WebParts.WebPart
{
protected override void RenderContents(HtmlTextWriter writer)
{
writer.Write(“Normalvalue: “ + NormalValue);

}

public override EditorPartCollection CreateEditorParts()
{
NormalEditorPart objEditor = new NormalEditorPart();
objEditor.ID = ID + “normalEditor1”;
objEditor.Title = “Normal Editor title”;
objEditor.ToolTip = “Normal Editor tooltip”;
objEditor.TabIndex = 100;
objEditor.GroupingText = “Normal editor grouping text”;

ArrayList objEditorParts = new ArrayList();
objEditorParts.Add(objEditor);

EditorPartCollection objEditorPartsCollection = ➥
new EditorPartCollection(objEditorParts);

return objEditorPartsCollection;
}

private string _strNormalValue = String.Empty;
[Personalizable(PersonalizationScope.Shared), ➥
WebBrowsable(false), ➥
WebDisplayName(“Normal value”), ➥
WebDescription(“Normal value description”)]
public string NormalValue
{
get { return _strNormalValue; }
set { _strNormalValue = value; }

}
}

}

Figure 1-14 shows the end result of our efforts: the editor tool pane when the web part is in edit
mode. As you can see, the custom text area that is created in our custom editor part is displayed in
the tool pane.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200730

Figure 1-14. Adding a custom control to the web part editor tool pane

Deploying a Web Part
If you want to deploy a web part, you can use SharePoint solution files. Basically, SharePoint solu-
tion files are cabinet files (.cab) with a different extension, namely .wsp. When you use Visual Studio
2005 extensions for Windows SharePoint Services 3.0 to create a web part, as was discussed in the
section “WSS 3.0 Tools: Visual Studio 2005 Extensions,” a web part solution file is created automati-
cally for you. In this section, you will learn how to create a SharePoint solution file that allows you to
deploy a web part to other SharePoint servers and/or SharePoint web applications.

■Note WSP files (SharePoint solution files) can be used to deploy site definitions, site features, template files,
assemblies, code access security policy files, and web parts.

To demonstrate web part deployment, we will create a new web part called MyWebPart.cs that
uses the ASP.NET 2.0 Wizard control to implement a wizard. The Wizard server control enables you
to build a sequence of steps that are displayed to the end user. You could use the Wizard control to
either display or gather information in small steps. The Wizard control lets you define a group of
views in which only one view at a time is active and is rendered to the client. Each view consists
of four zones: sidebar, header, content, and navigation. The optional sidebar part contains an
overview of all the steps in the wizard. The header contains the header information. The content
part contains whichever control or controls you like. The navigation part consists of buttons to
navigate through the steps in the wizard.

When you are constructing a step-by-step process that includes logic for every step taken,
use the Wizard control to manage the entire process. The Wizard control’s navigation buttons fire
server-side events whenever the user clicks one of the buttons, helping to navigate to other wizard
views on the same page. Navigation can be linear and nonlinear; in other words, you can jump from
one view to another or navigate randomly to whichever view you like. All the controls in a wizard
view are part of the page, so you can access them in code using their control IDs.

In this example, we have defined six different steps. Each step is a WizardStep control and con-
tains a text box. The state of the text boxes in the wizard is maintained automatically. The order in
which the steps are defined is completely based upon the order in which they are added to the wiz-
ard via the Add() method of the Wizard object’s WizardSteps property. The WizardSteps property
contains a collection of WizardSteps. Changing this order changes the order in which the end user
sees them. Figure 1-15 shows the first step.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 31

Figure 1-15. Step 1 of the Wizard control in a web part

The first step, the start step, always has one button called Next. The following steps will have
two buttons, as seen in Figure 1-16.

Figure 1-16. Step 2 of the Wizard control in a web part

There are six steps in this example. The final step, step 6, has a Previous and a Finish button, as
you can see in Figure 1-17.

Figure 1-17. The final step of the Wizard control in a web part

The MyWebPart web part creates a very simple wizard; the Wizard control itself has a lot more
options that we will not cover in this chapter. The code for the web part using the Wizard control is
shown in Listing 1-10:

Listing 1-10. The Wizard Web Part

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200732

using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;

namespace LoisAndClark.MyWebPartLibrary
{
[Guid(“3d82fb59-c294-497d-9d47-d85c21540b06”)]
public class MyWebPart : System.Web.UI.WebControls.WebParts.WebPart
{
public MyWebPart()
{
}

protected override void CreateChildControls()
{
Wizard objWizard = new Wizard();
objWizard.HeaderText = “Wizard Header”;

for (int i = 1; i <= 6; i++)
{
WizardStepBase objStep = new WizardStep();
objStep.ID = “Step” + i;
objStep.Title = “Step “ + i;
TextBox objText = new TextBox();
objText.ID = “Text” + i;
objText.Text = “Value for step “ + i;
objStep.Controls.Add(objText);
objWizard.WizardSteps.Add(objStep);

}

Controls.Add(objWizard);
}

}
}

Now that we have created a web part, we are ready for the next step, the creation of a Share-
Point solution file. In the first part of the process, we will add a manifest file (Manifest.xml) to our
web part library solution. The manifest file is used by Visual Studio 2005 and defines how to popu-
late the cabinet file that is used to deploy the MyWebPart web part. The next procedure explains
how to create a Manifest.xml file and how to add IntelliSense support to it:

1. In the MyWebPartLibrary project, choose Add ➤ New Item. This opens the Add New Item -
WPLibrary dialog box.

2. In the Templates section, choose XML file.

3. In the Name text box, add the following value: Manifest.xml.

4. Click the Add button.

5. Click the Code window of Manifest.xml.

6. In the Properties window, click Schemas.

7. Click the ... button. This opens the XSD Schemas dialog box.

8. Click the Add button. This opens the Open XSD Schema dialog box.

9. Locate wss.xsd ([drive letter]:\Program Files\Common Files\Microsoft Shared\web server
extensions\12\TEMPLATE\XML) and choose Open.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 33

10. Click OK.

11. Add the code from Listing 1-11 to Manifest.xml:

Listing 1-11. Creating a Manifest File

<?xml version=”1.0” encoding=”utf-8” ?>
<Solution xmlns="http://schemas.microsoft.com/sharepoint/"
SolutionId="312ae869-37dc-4a74-9ecc-359fb3c1461d">
<Assemblies>

<Assembly DeploymentTarget=”WebApplication”
Location=”WPLibrary.dll”>
<SafeControls>
<SafeControl Assembly=”WPLibrary,
Version=1.0.0.0,
Culture=neutral,
PublicKeyToken=9f4da00116c38ec5”
Namespace=”LoisAndClark.MyWebPartLibrary”
TypeName=”*”
Safe=”True” />

</SafeControls>
</Assembly>

</Assemblies>
</Solution>

After adding the Manifest.xml file to the web part library project, you can go ahead and create a
cabinet project to deploy the MyWebPart web part to another SharePoint server or SharePoint web
application. The next procedure explains how to create a SharePoint solution file:

1. Open the WPLibrary web part library solution.

2. Choose File ➤ Add ➤ New Project. This opens the Add New Project dialog box.

3. In the Project types section, expand the Other Project Types node and choose Setup and
Deployment.

4. In the Templates section, choose CAB Project.

5. In the Name text box, add the following value: WPLibraryCab.

6. Click OK.

7. Right-click WPLibraryCab and choose Add ➤ Project Output. This opens the Add Project
Output Group dialog box.

8. In the Project drop-down list, choose WPLibrary.

9. Select Primary output and Content Files.

10. Click OK.

11. Build WPLibraryCab.

12. Locate WPLibraryCab.cab and rename it to WPLibraryCab.wsp.

13. Open a command prompt, and type the following command:

stsadm -o addsolution -filename wplibrary.wsp

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200734

■Note Make sure the account you are using to run this account has SharePoint farm administration rights and at
least read/write access to the SharePoint content database. Otherwise, you will get the following error message:
“Object reference not set to an instance of an object.”

Now, the SharePoint solution is added to SharePoint. You can deploy it further using the stsadm
tool, or deploy the solution via the user interface of the SharePoint 3.0 Central Administration tool.
The next procedure explains how to deploy the solution using the SharePoint 3.0 Central Adminis-
tration tool:

1. Open SharePoint 3.0 Central Administration.

2. Click Operations. This opens the Operations page.

3. In the Global Configuration section, choose Solution Management. This opens the Solution
Management page. This is shown in Figure 1-18.

Figure 1-18. The Solution Management page shows a list of all available SharePoint solutions.

■Note The Solution Management page contains an overview of all available solutions, and indicates whether
they have been deployed or not. Figure 1-18 shows two solutions: wplibrary.wsp and wplibrarycab.wsp.
Wplibrary.wsp was created and deployed automatically by Visual Studio 2005 extensions for Windows SharePoint
Services 3.0 (discussed in the section “WSS 3.0 Tools: Visual Studio 2005 Extensions”). The other solution,
wplibrarycab.wsp, is the one created in this section. As you can see, it is not deployed yet.

4. Click the wplibrarycab.wsp link. This opens the Solution Properties page, which is shown in
Figure 1-19.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 35

Figure 1-19. The Solution Properties page shows detailed information about a given Share-
Point solution.

5. Click Deploy Solution. This opens the Deploy Solution page, shown in Figure 1-20.

Figure 1-20. The Deploy Solution page allows you to deploy a solution to a specific web
application.

6. In the Deploy to? section, choose a Web application to deploy this solution.

7. Click OK. This opens the Solution Management page that is shown in Figure 1-21.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200736

Figure 1-21. The wplibrarycab.wsp SharePoint solution has been deployed.

At this point, the SharePoint solution is deployed to a specific SharePoint server and a specific
SharePoint web application. Before you are able to use the web parts deployed using a SharePoint
solution, you need to add them to the web part gallery of the site collection:

8. Browse to the web application you have chosen in the previous step.

9. Choose Site Actions ➤ Site Settings. This opens the Site Settings page.

10. In the Galleries section, click Web Parts. This opens the Web Part Gallery page.

11. Click New. The web parts in the MyWebPartLibrary assembly should be listed; select them
and click the Populate Gallery button.

You have seen how to create a SharePoint solution (.wsp) file that can be used to deploy web
parts. After completing all the steps described in this section, you are ready to start using the web
parts deployed via the SharePoint solution.

Enhancing Development of Web Parts with the
Guidance Automation Toolkit
Since the release of Visual Studio 2005 extensions for Windows SharePoint Services 3.0 (see the ear-
lier section “WSS 3.0 Tools: Visual Studio 2005 Extensions”), creating, deploying, and debugging
ASP.NET 2.0 web parts in Visual Studio 2005 has become easy as can be. Although we imagine you
will use Visual Studio 2005 extensions most of the time when doing web part development because
of its ease of use, it has a major drawback: you cannot extend the functionality offered by Visual Stu-
dio 2005 extensions yourself. This means that you will have to live with the limitations of Visual
Studio 2005 extensions. The following is an overview of the most common limitations that exist dur-
ing web part development:

• Development using Visual Studio 2005 extensions is slow. Every time a solution is executed
(by pressing F5) that contains a web part library built using Visual Studio 2005 extensions,
it creates a SharePoint solution, and retracts and deletes the current version of the solution
if it has been deployed before. After that, the new solution is deployed. Every web part is
installed as a separate feature; during deployment, every feature that has been previously
deployed is deactivated and uninstalled before it can be activated again. In the final step of a
deployment, the web server is restarted using iisreset. Overall, this makes running or
debugging a web part library project a time-consuming experience.

• Visual Studio 2005 extensions do not provide support for building SharePoint legacy web
parts (see the section “Web Parts Overview” for detailed information about SharePoint
legacy web parts).

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 37

• Visual Studio 2005 extensions obscure the creation of a .webpart file that defines metadata
about a web part. The SharePoint tab of the Project properties window offers some control
over the configuration of your web part library, but it does not allow you to configure
advanced .webpart elements.

• A web part built using the web part template in Visual Studio 2005 extensions overrides the
RenderContents() method, which removes client-side IDs from your controls. As a result, you
cannot use client-side code in a web part.

• The web part library assembly is always deployed to the Global Assembly Cache (GAC).
Instead, our preference would be to place this assembly in the bin folder of a SharePoint web
application. Deploying web part libraries to the Global Assembly Cache makes it impossible
to define custom security policies and limit the code access permissions granted to those
assemblies.

• Every web part in a web part library is deployed in a separate feature. Instead, you might be
interested in deploying a group of web parts as a single unit.

Visual Studio 2005 extensions makes it easy to create web parts, at the cost of having granular
control over a web part library project. Whether you want to put in the time and effort to create a
custom solution that is more advanced than what is offered by Visual Studio 2005 extensions is
completely up to you, although we doubt that we will ever go that road ourselves.

If you want to remain in control and are interested in facilitating web part development, you
can create your own web part library template. The use of the Guidance Automation Toolkit (GAT) is
paramount in achieving this goal.

The GAT is an extension to Visual Studio 2005 that allows architects to automate the easy parts
of development so that developers can concentrate on the other parts. The GAT can be used to cre-
ate assets that are developed in-house or by third parties, such as Microsoft. In the case of building
a web part, the GAT can be used to build a package you can use as a template to start making Share-
Point legacy web parts in Visual Studio 2005. It can also be used to adjust Visual Studio 2005 to your
specific needs for every project type. In this section, you will learn how to use the Guidance
Automation Toolkit to create a template that makes creating web part libraries easier.

Guidance Automation Toolkit
In this section, we will show you how to create a web part library template using the GAT. If you
want to work with the GAT, you first have to install the Guidance Automation Extensions, which can
be downloaded at the Microsoft MSDN web site: http://msdn.microsoft.com/vstudio/teamsystem/
workshop/gat/. Next, you should install the Guidance Automation Toolkit itself. You can find addi-
tional information about GAT at the following location: http://msdn2.microsoft.com/en-us/
teamsystem/aa718950.aspx. In this book, we used the February 2007 CTP (Community Technology
Preview) version of the GAT.

The GAT contains a couple of elements that work together to provide the automation function-
ality. The elements are recipes, actions, text template transformation templates, wizards, and Visual
Studio templates, as described in the following list:

• Recipes: Recipes are used to automate activities that are usually performed by a developer.
Most of the time, recipes automate following a series of instructions. Recipes are most suit-
able to automate repetitive actions.

• Actions: Actions are atomic units of work that are called in a defined order by recipes. The
order in which actions are called is specified in the recipe definition. An action will accept
input from an argument gathered by the recipe or from output received from another action
that has already been run by the recipe.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200738

• Text template transformation templates: Text template transformation templates (T4) are
templates that contain a combination of text and scriptlets. Scriptlets are expressions in
Visual Basic or C# that, when run, return a string that is directly inserted into the output
stream of the template. The text template transformation engine is part of the GAT, and is
also included in the Domain Specific Language (DSL) Toolkit, which we will discuss in Chap-
ter 5. The templates are unfolded by this engine and the text part of a template is inserted
unmodified in the template output. It is also possible to use an action to generate text from a
T4 text template.

• Wizards: Wizards consist of a set of pages that help recipes to gather values. A recipe can
have a wizard associated with it. A wizard can contain one or more steps. Steps are displayed
as pages to guide the developer. Each page of the wizard will contain one or more fields.
Each field is associated with a recipe argument, and includes a type converter and a user
interface (UI) type editor. The type converter validates the value of a field and converts the
value from a user interface representation to a type representation. The UI type editor is
used to render the user interface that collects the information.

When the wizard displays a page, it will present the developer with a number of default val-
ues. These are initial values of arguments that are either set when the recipe reference is
created or obtained by the recipe framework. When a recipe has value providers for all argu-
ments—in other words, when a wizard already has default values—the user will still have to
step through the wizard, which will show these values to the developer. This gives the devel-
oper a chance to acknowledge the default values.

It is possible that the user is not responsible for the input of a field value. Some fields may be
filled in by the framework or the wizard itself. This process is known as value propagation.
Fields that retrieve their values via value propagation will not be shown in the wizard. Value
propagation is done via a combination of argument value change notifications and value
providers observing the changes of other arguments (event handlers). As the user edits a
field, the field value is validated and assigned to one or more corresponding arguments
(parameters) that have registered their interest via value providers. After assignment, argu-
ments are passed to a template.

In some cases, some fields of a wizard are required. The wizard framework provided with the
GAT requires the user to populate fields that correspond to required arguments. The wizard
will not enable the Next or Finish buttons on a page, nor will it allow you to access later
pages in the wizard from the wizard sidebar, until all fields corresponding to required argu-
ments contain data. If an argument is not collected at all by a wizard, and the associated
value provider cannot find a value, the recipe framework will not initiate actions and instead
will raise an exception.

• Visual Studio templates: Visual Studio templates are written in XML and are used by Visual
Studio to create solutions or add one or more projects or items to an existing solution. The
templates are unfolded by the Visual Studio template engine. Using the GAT, you can associ-
ate Visual Studio templates with recipes. This association means that when a template is
unfolded, the wizard extension calls the recipe to let it collect parameter values, also known
as arguments. The arguments are used to execute actions that may further transform solu-
tion items created by the template. Guidance packages can be managed via the Guidance
Package Manager in Visual Studio 2005. You can find the Guidance Package Manager via the
Tools menu. Once a guidance package is installed and enabled for a particular solution,
recipes can be executed to carry out the required tasks.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 39

Creating the Web Part Library Template
In this section, you will learn how to create a web part library guidance package that makes creating
SharePoint legacy web parts considerably easier in Visual Studio 2005. If you have not done so
already, install the Guidance Automation Extensions and the Guidance Automation Toolkit.

■Caution Installing the Guidance Automation Toolkit can take a considerable amount of time. Do not abort the
installation process.

The GAT contains a predefined solution for developing a guidance package, which we will use
to create a web part library template. The next procedure discusses how to create a guidance
package:

1. Start Visual Studio 2005.

2. Choose File ➤ New ➤ Project. This opens the New Project dialog window.

3. Expand the Guidance Packages node.

4. Select the Guidance Package Development node.

5. In the templates section, select the Guidance Package template.

6. In the Name text field, enter the following value: WebPartLibrary.

7. In the Location text field, enter the following value: C:\projects.

8. Click OK. This opens the Create New Guidance Package window.

9. In the Package Description text field, enter the following text: Package for creating a web
part library.

10. In the Package Namespace text field, enter the following value: LoisAndClark.
WebPartLibrary.

11. Click Finish.

The WebPartLibrary guidance package is created. A guidance package contains lots of files and
folders; throughout this section, you will learn how to develop a guidance package solution that
facilitates the creation of SharePoint legacy web parts.

The first step for building a web part library template is to create a new folder in the Templates
➤ Solutions ➤ Projects folder. We will call this folder WebPartLibrary. You need to add the following
(empty) files to this folder: WebPart.cs, WebPartLibrary.csproj, and a WebPartLibrary.vstemplate file.
Then, you need to create a subfolder called Properties and add an empty file to the Properties folder
called assembly.info. Now, you are finished with the initial setup of the WebPartLibrary guidance
package.

Adding a Solution Template
The WebPartLibrary.vstemplate file is a Visual Studio template that looks identical to a normal
Visual Studio template except that it contains additional information used by the recipe framework.
The template includes a <WizardExtension> element that specifies a class in the recipe framework
that implements template extensions for the GAT. The XML in Listing 1-12 shows the content you
need to add to the WebPartLibrary Visual Studio template (WebPartLibrary.vstemplate) in the Web-
PartLibrary folder:

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200740

Listing 1-12. WebPartLibrary. vstemplate

<VSTemplate Version=”2.0.0” Type=”Project” ➥
xmlns=”http://schemas.microsoft.com/developer/vstemplate/2005”>
<TemplateData>
<Name>WebPart Library Project</Name>
<Description>WebPart class library project </Description>
<Icon Package=”{FAE04EC1-301F-11d3-BF4B-00C04F79EFBC}” ID=”4547” />
<ProjectType>CSharp</ProjectType>
<SortOrder>20</SortOrder>
<CreateNewFolder>false</CreateNewFolder>
<DefaultName>ClassLibrary</DefaultName>
<ProvideDefaultName>true</ProvideDefaultName>

</TemplateData>
<TemplateContent>
<Project File=”WebPartLibrary.csproj” ReplaceParameters=”true”>
<ProjectItem ReplaceParameters=”true”>Properties\AssemblyInfo.cs</ProjectItem>
<ProjectItem ReplaceParameters=”true”>WebPart.cs</ProjectItem>

</Project>
</TemplateContent>
<WizardExtension>
<Assembly>
Microsoft.Practices.RecipeFramework.VisualStudio, Version=1.0.60429.0, ➥
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a

</Assembly>
<FullClassName>
Microsoft.Practices.RecipeFramework.VisualStudio.Templates.UnfoldTemplate

</FullClassName>
</WizardExtension>

</VSTemplate>

This XML is called a solution template. Solution templates are launched via the New command
on the File menu.

Adding a Project Template
The next file in the package is the WebPartLibrary.csproj file. This is a project template that contains
a project description. The template creates (or unfolds) a new project in an existing solution. The
project template will include references to other assemblies and will be responsible for creating any
class files, the project file (.csproj), and the assembly.info file. The XML in Listing 1-13 needs to be
added to the project template (WebPartLibrary.csproj) and contains code that can be used to create
the web part library project:

Listing 1-13. The Project Template

<Project DefaultTargets=”Build” ➥
xmlns=”http://schemas.microsoft.com/developer/msbuild/2003”>
<PropertyGroup>
<Configuration Condition=” ‘$(Configuration)’ == ‘’ “>Debug</Configuration>
<Platform Condition=” ‘$(Platform)’ == ‘’ “>AnyCPU</Platform>
<ProductVersion>8.0.30703</ProductVersion>
<SchemaVersion>2.0</SchemaVersion>
<ProjectGuid>$guid1$</ProjectGuid>
<OutputType>Library</OutputType>
<AppDesignerFolder>Properties</AppDesignerFolder>
<RootNamespace>$safeprojectname$</RootNamespace>
<AssemblyName>$safeprojectname$</AssemblyName>

</PropertyGroup>

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 41

<PropertyGroup Condition=” ‘$(Configuration)|$(Platform)’ == ‘Debug|AnyCPU’ “>
<DebugSymbols>true</DebugSymbols>
<DebugType>full</DebugType>
<Optimize>false</Optimize>
<OutputPath>\inetpub\wwwroot\bin\</OutputPath>
<DefineConstants>DEBUG;TRACE</DefineConstants>
<ErrorReport>prompt</ErrorReport>
<WarningLevel>4</WarningLevel>

</PropertyGroup>
<PropertyGroup Condition=” ‘$(Configuration)|$(Platform)’ == ‘Release|AnyCPU’ “>
<DebugType>pdbonly</DebugType>
<Optimize>true</Optimize>
<OutputPath>\inetpub\wwwroot\bin\</OutputPath>
<DefineConstants>TRACE</DefineConstants>
<ErrorReport>prompt</ErrorReport>
<WarningLevel>4</WarningLevel>

</PropertyGroup>
<ItemGroup>
<Reference Include=”System”/>
<Reference Include=”System.Data”/>
<Reference Include=”System.Xml”/>
<Reference Include=”System.Web”/>
<Reference Include=”Microsoft.SharePoint”/>

</ItemGroup>
<ItemGroup>
<Compile Include=”WebPart.cs” />
<Compile Include=”Properties\AssemblyInfo.cs” />

</ItemGroup>
<Import Project=”$(MSBuildBinPath)\Microsoft.CSHARP.Targets” />

</Project>

Defining the Final Part of the Web Part Library Guidance Package
The project template allows you to create new web part classes based on the web part template
specified in WebPart.cs. Add Listing 1-14 to the WebPart.cs file:

Listing 1-14. The Web Part Item Template

using System;
using System.ComponentModel;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.Utilities;
using Microsoft.SharePoint.WebPartPages;

namespace $safeprojectname$
{
[DefaultProperty(“Text”),
ToolboxData(“<{0}:$ClassName$ runat=server></{0}:$ClassName$>”),
XmlRoot(Namespace = “$safeprojectname$”)]
public class $ClassName$: WebPart
{
protected override void RenderWebPart(HtmlTextWriter output)

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200742

{
string htmlcode = “Hello World”;
output.Write(SPEncode.HtmlEncode(htmlcode));

}
}

}

All arguments preceded by a $ will be replaced once the project is created. Some values are
entered in the wizard by the developer, and some values will have dynamic values based on other
values. For example, we have decided that the default namespace of a solution will be identical to
the solution name. The assembly.info file is another file that will be added to a project once a web
part library project is created. It contains general information about the web part library assem-
bly, and looks similar to WebPart.cs in that it uses arguments preceded by $. Add Listing 1-15 to
assembly.info:

Listing 1-15. Assembly.info

using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;

[assembly: AssemblyTitle(“$projectname$”)]
[assembly: AssemblyDescription(“”)]
[assembly: AssemblyConfiguration(“”)]
[assembly: AssemblyCompany(“$registeredorganization$”)]
[assembly: AssemblyProduct(“$projectname$”)]
[assembly: AssemblyCopyright(“Copyright © $registeredorganization$ $year$”)]
[assembly: AssemblyTrademark(“”)]
[assembly: AssemblyCulture(“”)]
[assembly: Guid(“$guid1$”)]

[assembly: AssemblyVersion(“1.0.0.0”)]
[assembly: AssemblyFileVersion(“1.0.0.0”)]

Not only will we define a new project template, we also want to add a new item template that
makes adding items that are related to the development of SharePoint legacy web parts easier. Cre-
ate a new Visual Studio template in the Templates ➤ Items folder called WebPartTemplate.
vstemplate (at this point, just an empty file). Then, add a new item template called WebPart.dwp.
Leave the item template empty for now. This item template is responsible for creating a .dwp file.
DWP files contain information about web parts. Add the XML in Listing 1-16 to the Visual Studio
template (WebPartTemplate.vstemplate):

Listing 1-16. Adding a Web Part (DWP) Item Template to the WebPartTemplate.vstemplate

<VSTemplate Version=”2.0.0” Type=”Item” ➥
xmlns=”http://schemas.microsoft.com/developer/vstemplate/2005”>
<TemplateData>
<Name>Web Part Dwp</Name>
<Description>Web Part Description File</Description>
<Icon Package=”{FAE04EC1-301F-11d3-BF4B-00C04F79EFBC}” ID=”4515” />
<ProjectType>CSharp</ProjectType>
<SortOrder>10</SortOrder>
<DefaultName>WebPart.dwp</DefaultName>

</TemplateData>
<TemplateContent>
<ProjectItem ReplaceParameters=”true”>WebPart.dwp</ProjectItem>

</TemplateContent>

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 43

<WizardExtension>
<Assembly>
Microsoft.Practices.RecipeFramework.VisualStudio, Version=1.0.60429.0, ➥
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a

</Assembly>
<FullClassName>
Microsoft.Practices.RecipeFramework.VisualStudio.Templates.UnfoldTemplate

</FullClassName>
</WizardExtension>
<WizardData>
<Template xmlns=http://schemas.microsoft.com/pag/gax-template ➥
SchemaVersion=”1.0” Recipe=”NewItemClass”/>

</WizardData>
</VSTemplate>

The item template (WebPart.dwp) is used when the developer wants to add a .dwp file to the
project. The item template uses a recipe called NewItemClass, which is discussed later. Add Listing
1-17 to the item template (WebPart.dwp):

Listing 1-17. The Web Part Description Item Template

<?xml version=”1.0” encoding=”utf-8”?>
<WebPart xmlns=”http://schemas.microsoft.com/WebPart/v2”>
<Title>$TitleWebPart$</Title>
<Description>$DescriptionWebPart$</Description>
<Assembly>$AssemblyName$</Assembly>
<TypeName>$Namespace$.$ClassName$</TypeName>

</WebPart>

All arguments preceded by a $ are replaced once the developer creates a new .dwp file. Now
you have seen the solution template, the project template, the item template, and all corresponding
files. The last file that needs to be changed, which we have not discussed yet, is WebPartLibrary.xml.

You can find WebPartLibrary.xml directly underneath the project node in the Solution Explorer
(the root folder of the WebPartLibrary project). This file contains the XML configuration code, con-
taining all the recipes, actions, and wizards that are relevant within this guidance package. The first
part of the WebPartLibrary.xml file contains a recipe called BindingRecipe. The <Action> element
contains a reference to the item template called WebPartTemplate.vstemplate. The <Arguments> ele-
ment contains all arguments that are asked for in the first wizard page when you create the solution.
Listing 1-18 shows the contents of WebPartLibrary.xml:

Listing 1-18. WebPartLibrary.xml

<Recipe Name=”BindingRecipe”>
<Types>
<TypeAlias Name=”RefCreator” ➥
Type=”Microsoft.Practices.RecipeFramework.Library.Actions. ➥
CreateUnboundReferenceAction, Microsoft.Practices.RecipeFramework.Library”/>

</Types>
<Caption>Creates unbound references to the guidance package</Caption>
<Actions>
<Action Name=”CreateSampleUnboundItemTemplateRef” Type=”RefCreator” ➥
AssetName=”Items\WebPartTemplate.vstemplate” ➥
ReferenceType=”WebPartLibrary.References.ClassLibraryReference, ➥
WebPartLibrary” />

</Actions>
</Recipe>

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200744

<Recipe Name=”CreateSolution”>
<Caption>Collects information for the new sample solution.</Caption>
<Arguments>
<Argument Name=”ProjectName”>
<Converter Type=”Microsoft.Practices.RecipeFramework. ➥
Library.Converters.NamespaceStringConverter, ➥
Microsoft.Practices.RecipeFramework.Library”/>

</Argument>
<Argument Name=”ClassName”>
<Converter Type=”Microsoft.Practices.RecipeFramework. ➥
Library.Converters.NamespaceStringConverter, ➥
Microsoft.Practices.RecipeFramework.Library”/>

</Argument>
</Arguments>
<GatheringServiceData>
<Wizard xmlns=”http://schemas.microsoft.com/pag/gax-wizards” ➥
SchemaVersion=”1.0”>
<Pages>
<Page>
<Title>Initial values for the new solution</Title>
<Fields>
<Field Label=”Project Name” ValueName=”ProjectName” />
<Field Label=”Class Name” ValueName=”ClassName” />

</Fields>
</Page>

</Pages>
</Wizard>

</GatheringServiceData>
</Recipe>

The next recipe (shown in Listing 1-19) that is important within the web part library template is
called NewItemClass. This recipe contains all arguments that are collected by the wizard when you
create a .dwp file. Some arguments have default values, such as assembly name and namespace.

Listing 1-19. Recipe for the New Item Class

<Recipe Name=”NewItemClass” Recurrent=”true”>
<xi:include href=”TypeAlias.xml” xmlns:xi=”http://www.w3.org/2001/XInclude” />
<Caption>Collects information from the user</Caption>
<Description></Description>
<HostData>
<Icon ID=”1429”/>
<CommandBar Name=”Project” />

</HostData>
<Arguments>
<Argument Name=”CurrentProject” Type=”EnvDTE.Project, EnvDTE, ➥
Version=8.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”>
<ValueProvider Type=”Microsoft.Practices.RecipeFramework. ➥
Library.ValueProviders.FirstSelectedProject, ➥
Microsoft.Practices.RecipeFramework.Library” />
</Argument>
<Argument Name=”Namespace”>
<Converter Type=”Microsoft.Practices.RecipeFramework. ➥
Library.Converters.NamespaceStringConverter, ➥
Microsoft.Practices.RecipeFramework.Library”/>
<ValueProvider Type=”Evaluator” Expression= ➥
“$(CurrentProject.Properties.Item(‘DefaultNamespace’).Value)” />

</Argument>

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 45

<Argument Name=”AssemblyName”>
<Converter Type=”Microsoft.Practices.RecipeFramework. ➥
Library.Converters.NamespaceStringConverter, ➥
Microsoft.Practices.RecipeFramework.Library” />
<ValueProvider Type=”Evaluator” Expression=”$(CurrentProject.Name)” />

</Argument>
<Argument Name=”ClassName”>
<Converter Type=”Microsoft.Practices.RecipeFramework. ➥
Library.Converters.NamespaceStringConverter, ➥
Microsoft.Practices.RecipeFramework.Library”/>

</Argument>
<Argument Name=”TitleWebPart”>
<Converter Type=”Microsoft.Practices.RecipeFramework. ➥
Library.Converters.NamespaceStringConverter, ➥
Microsoft.Practices.RecipeFramework.Library”/>

</Argument>
<Argument Name=”DescriptionWebPart”>
<Converter Type=”Microsoft.Practices.RecipeFramework. ➥
Library.Converters.NamespaceStringConverter, ➥
Microsoft.Practices.RecipeFramework.Library”/>

</Argument>
</Arguments>
<GatheringServiceData>
<Wizard xmlns=”http://schemas.microsoft.com/pag/gax-wizards” ➥

SchemaVersion=”1.0”>
<Pages>
<Page>
<Title>
Collect information using editors, converters and value providers.

</Title>
<Fields>
<Field ValueName=”AssemblyName” Label=”Assembly Name”>
<Tooltip></Tooltip>

</Field>
<Field ValueName=”Namespace” Label=”Namespace”>
<Tooltip></Tooltip>

</Field>
<Field ValueName=”ClassName” Label=”Classname Web Part”>
<Tooltip></Tooltip>

</Field>
<Field ValueName=”TitleWebPart” Label=”Title Web Part”>
<Tooltip></Tooltip>

</Field>
<Field ValueName=”DescriptionWebPart” Label=”Description Web Part”>
<Tooltip></Tooltip>

</Field>
</Fields>

</Page>
</Pages>

</Wizard>
</GatheringServiceData>

</Recipe>

After customizing the code and creating your own templates, build the project and register it.
You can do this by right-clicking the WebPartLibrary project file and selecting Register Guidance

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200746

Package. This launches a recipe that is associated with the guidance package. The recipe registers
the package you are developing on your computer. Registration is a form of installation that you
can perform without leaving the Visual Studio development environment. It is also possible to un-
register the package: this will reverse the registration.

After registering the guidance package, you can open a new instance of Visual Studio to test the
functionality of the package.

Installing and Using the Web Part Library Template
In this section, we will show you how to install and use the web part library template. Download the
WebPartLibrarySetup.msi file from our web site (http://www.lcbridge.nl/download). You can install
the web part library template by double-clicking the Windows Installer package. Close all instances
of Visual Studio .NET 2005 before installing the package. The package will install all assemblies
related to the web part library template in a folder dedicated to the guidance package. The
Guidance Automation Extensions do not support assemblies in the GAC and will not load assem-
blies located there, even if the assembly is explicitly referenced in the guidance package. Double-
click the .msi file to install the package. This opens a pop-up window with a welcome text, as shown
in Figure 1-22.

Figure 1-22. First step of the setup of the web part library template

■Note To create the Windows Installer package, we used the Guidance Automation Toolkit Technology February
2007 CTP version, because the official GAT was not released at the time of this writing.

Next, choose the folder where you want the template to be installed and click Next.
See Figure 1-23.

Click Next to start the installation, as shown in Figure 1-24.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 47

Figure 1-23. Second step of the setup of the web part library template

Figure 1-24. Last step of the setup of the web part library template

When the installation has succeeded, you will find the web part library template under Add
and Remove Programs, as seen in Figure 1-25. This is where you can remove or repair the template.
You cannot install two versions of the same guidance package at the same time. If you do attempt
to install a guidance package with the same name as an existing guidance package, the Guidance
Automation Extensions will throw an exception, informing you that you must uninstall the previous
instance of the guidance package before installing the new one.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200748

Figure 1-25. The Add and Remove Programs window

You will also find evidence of installing the web part library template in Visual Studio 2005.
Open Visual Studio 2005 and choose File ➤ New ➤ Project. In the New Project window, you will
see a new project type called Guidance Packages. Click Guidance Packages. Underneath it you
will find a package called WebPartLibrary. In the right window pane, you will see a template
called WebPartLibrary Solution, as shown in Figure 1-26.

Figure 1-26. Choose a project in Visual Studio 2005.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 49

Click WebPartLibrary Solution, fill in a location and a descriptive name, and click OK. This will
start a wizard page where you will fill in a project name and the name of the class that will be cre-
ated initially. This is shown in Figure 1-27. After providing a project name and a class name, you can
finish the wizard.

Figure 1-27. Wizard page belonging to the project creation

A couple of things will be created at this point:

• A solution containing a Properties directory with an assembly.info file

• A References directory containing the following references:

• System

• System.Data

• System.Web

• System.Xml

• Microsoft.SharePoint

• A class file called WebPart.cs

Figure 1-28 shows the new solution created with the help of the web part library template.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200750

Figure 1-28. Web part library template in Visual Studio

The WebPart.cs class contains the code shown in Listing 1-20:

Listing 1-20. Generated Code in a Web Part Created Using the Custom Web Part Library Template

using System;
using System.ComponentModel;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.Utilities;
using Microsoft.SharePoint.WebPartPages;

namespace WebPartLibrarySolution1
{
[DefaultProperty(“Text”),
ToolboxData(“<{0}:Test runat=server></{0}:Test>”),
XmlRoot(Namespace = “WebPartLibrarySolution1”)]
public class Test : WebPart
{

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 51

protected override void RenderWebPart(HtmlTextWriter output)
{
string htmlcode = “Hello World”;
output.Write(SPEncode.HtmlEncode(htmlcode));

}
}

}

The class itself inherits from the Microsoft.SharePoint.WebPartPages.WebPart class, which
makes it a web part that is suitable to be used within a SharePoint site.

There are two things left to do. First, check whether the output path of the project is changed
to the bin directory of the virtual server’s root folder. If it is not, change the output path. This
makes testing the web part considerably easier. Otherwise, you would have to copy the web part
DLL manually each time you compile. By default, the root folder is [drive letter]\inetpub\
wwwroot. If the bin folder does not exist, you have to create one yourself. Second, you need to
add your assembly to the SafeControls list in the web.config file, which is also located in the root
of the SharePoint web application.

<SafeControl Assembly=”MyWebPartLib” Namespace=”MyWebPartLib” TypeName=”*” ➥
Safe=”True” />

Here, we are using a partially qualified assembly name, which is great for creating code
examples. We could have chosen to use fully qualified names, a practice that is recommended
for production code. Those names include the following information: assembly name, version
number, culture (which is always set to neutral for code assemblies), and developer identity
(a public key token).

Assemblies with fully qualified names are also known as strong-named assemblies. Strong-
named assemblies make it easier to enforce security policies for assemblies, because you can assign
security permissions based on developer identity. Another advantage is that strong names make
creating unique assembly names easier, thus reducing the chances for name conflicts. The content
of a strong-named assembly cannot be tampered with after compilation, as strong-named assem-
blies contain a hash code representing the binary content of the assembly. This hash code is unique
for every assembly, and the .NET CLR makes sure the hash code matches the assembly content dur-
ing load time. If someone has tampered with your assembly after compilation, the hash code will
not match the content and will not be loaded. A final advantage is that version policies are only
applied to strong-named assemblies, not to assemblies with partially qualified names. Strong
names are mandatory for assemblies that need to be installed in the GAC. The next code fragment
shows a SafeControl entry for a strong-named assembly:

<SafeControl Assembly=”MyWebPartLib” Namespace=”MyWebPartLib, ➥
Version=1.0.0.0, Culture=neutral, ➥
PublicKeyToken=71e9bce111e9429d” TypeName=”*” ➥
Safe=”True” />

If you want to register your web part on a SharePoint site via a Web Part Description File, you can
create one by right-clicking your project and choosing Add New Item. Under Categories, you will find a
new category called WebPartLibrary. Click this category and choose the template called Web Part Dwp.
Give the .dwp file a descriptive name and click Add. Figure 1-29 shows the Add New Item window.

■Note SharePoint 2003 used .dwp (Dashboard web part) files to describe web parts. In ASP.NET 2.0, similar XML
files with the extension .webpart are used for the same purpose. This version of the web part library template does
not contain an item template that corresponds to .webpart files, although such a template is easy to add. Microsoft
Office SharePoint Server 2007 supports the use of both web part description formats. If you are using a (legacy)
.dwp file to import a web part, the web part needs to derive from the Microsoft.SharePoint.WebPartPages.
WebPart class. Failing to do so results in an error message when you try to add the web part to a web part zone.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200752

Figure 1-29. The Add New Item window in Visual Studio 2005

You can also create a .dwp file by right-clicking your project and then choosing Web Part Dwp,
as you can see in Figure 1-30. This will open the Add New Item window as well.

Figure 1-30. Add a new web part .dwp file by right-clicking your project.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 2007 53

This will start a wizard that collects information about the Web Part Description file. The
assembly name and namespace will have default values. You will only have to type the name of the
class, a title for your web part, and a description. The title and description are shown on the Share-
Point site page the web part is imported into. The wizard is shown in Figure 1-31.

Figure 1-31. The web part .dwp file wizard

At this point, you have created your first web part using the web part library template. Now you
can start adding your own code to the web part.

Summary
This chapter explored the incorporation of the new features of ASP.NET 2.0 into Microsoft Office
SharePoint Server 2007. We talked about the integration between SharePoint and .NET Framework
2.0, and we provided an overview of the basic anatomy of web parts. Then, you learned how to cre-
ate web parts in Visual Studio .NET 2005 using the new Visual Studio 2005 extensions for Windows
SharePoint Services 3.0. Then, we showed you how to use a couple of the new ASP.NET 2.0 server
controls within a web part. Finally, we discussed how the Guidance Automation Toolkit can be used
to build a web part library template guidance package to enhance the creation of web parts.

CHAPTER 1 ■ INCORPORATING ASP.NET 2.0 INTO MICROSOFT OFFICE SHAREPOINT SERVER 200754

Creating Interactive Web Parts
Using ASP.NET Ajax

Ajax and ASP.NET Ajax deliver compelling web sites that are highly responsive and offer a great
user experience. You may have heard this before, and the person who told you was not lying. Ajax
makes it possible to perform asynchronous communication with a server, and makes creating
advanced user interfaces using JavaScript a lot easier. ASP.NET Ajax is a Microsoft implementation
of Ajax.

This chapter describes what Ajax and ASP.NET Ajax are and provides an overview of the
more popular ASP.NET Ajax implementations. We will also explain how to create Ajax server-side
applications within the confines of a Microsoft Office SharePoint Server 2007 environment. Then
we detail how to deal with the client side of Ajax within SharePoint web parts and take a look at
server-side response types. From that point on, the chapter is dedicated solely to ASP.NET Ajax.
We discuss several realistic examples where ASP.NET Ajax enhances the user experience within
SharePoint web parts.

What Are Ajax and ASP.NET Ajax?
Ajax stands for Asynchronous JavaScript and XML and has been around for quite a long time. Ajax is
a set of technologies that enables parts of a page to communicate directly with the server. If needed,
communication can be performed asynchronously. Ajax uses a mixture of DHTML, JavaScript, and
XMLHTTP to enrich the browser user interface.

Ajax-style applications really shine when you need to perform actions that take a long time to
complete and you do not want to force the end user to wait. Typical examples are complex calcula-
tions, advanced form and field validation scenarios, data retrieval over slow remote connections,
retrieval of huge amounts of information (for instance, scrolling a large map using Google maps or
the slider functionality of Farecast.com), or data retrieval from multiple remote resources. Ajax is
also great for server-polling scenarios, where you continually refresh parts of a page with the latest
information, as well as in-place submission scenarios that allow users to submit information to the
server without refreshing the entire page, thus providing a nice user experience. (Take a look at the
feedback functionality of Amazon.com.) Ajax’s rich interaction comes close to that of Windows
applications.

During the last two years or so, Ajax has become quite popular. One reason is because not only
do all popular browsers now support the capability to communicate directly between client and
server, without requiring a complete page postback, but, because of the emergence of Ajax frame-
works, interacting with those object models has become significantly easier. Another important
reason why Ajax has become popular is because processor speeds of client computers are high and
bandwith available to the general public has become quite decent too.

55

C H A P T E R 2

Another reason has to do with the maturity level of Ajax-style development. In its infancy,
Ajax-style development included a lot of manual work. The same was true for server-side web
development. ASP.NET solved many of the complexities involved in developing the server side of
web applications. Now, modern Ajax frameworks such as ASP.NET Ajax solve many of the complexi-
ties of the client side of web development.

The result of Ajax-style development is a new generation of web applications that are responsive
and interactive, provide advanced user interfaces, and are capable of processing data in real time.

Creating Ajax-style applications is not simple, because you have to understand the different
object models each browser offers. Browser compatibility issues can be a real hassle when doing
client-side development. Another disadvantage is that a significant amount of the development
work is spent creating JavaScript script libraries. JavaScript is object based instead of object ori-
ented and is type-unsafe. The JavaScript development experience does not compare to doing
ASP.NET server-based development, and although there are plenty of JavaScript debugger tools
around, generally, the JavaScript debugging experience is not nearly as rich as the ASP.NET debug-
ging experience.

ASP.NET Ajax, the logical next step in the evolution of Ajax-style applications, tries to solve
these problems. ASP.NET Ajax is a framework built on top of .NET 2.0 that allows developers to cre-
ate Ajax-style applications combining client script libraries with the ASP.NET 2.0 server-based
development framework. This makes it easy to add rich client-side behavior to ASP.NET 2.0 web
applications. ASP.NET Ajax provides a set of object-oriented application programming interfaces
(APIs) that make JavaScript development easier, and also offers cross-browser compatibility.
ASP.NET Ajax also ships with a set of Ajax-enabled controls, the ASP.NET Control Extenders library,
and offers UpdatePanels that allow you to use existing ASP.NET controls in Ajax scenarios. Finally,
ASP.NET Ajax offers integrated Visual Studio 2005 development tools for client-side development,
offering features such as debugging and statement completion.

The focus of ASP.NET Ajax is broader than Ajax. Ajax focuses on asynchronous communication
with the server. ASP.NET Ajax is very capable of taking care of that, but goes a step further. ASP.NET
Ajax tries to make client-side development easier, letting you create advanced user interfaces. The
ASP.NET Ajax control toolkit (found at http://ajax.asp.net) offers a set of controls that are very
easy to use and would require advanced JavaScript coding to implement yourself. At the time of this
writing, the toolkit (the 2007-03-01 release) contained over 30 controls. In the section “Building an
Autocompletion Web Part,” you will learn how to use one of those controls.We will show a couple of
screenshots to whet your appetite:

• DragPanel: This control is shown in Figure 2-1 and allows you to define page sections that
can be dragged around the page.

Figure 2-1. The DragPanel control

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX56

• Hover Menu: This control is shown in Figure 2-2 and lets you associate a control with a pop-
up panel to display additional content.

Figure 2-2. The Hover Menu control

• PopupControl: This control is shown in Figure 2-3 and can be attached to any control to
open a pop-up window that displays additional content.

Figure 2-3. The PopupControl

• Reorder List: This control is shown in Figure 2-4 and implements a bulleted databound list
with items that can be reordered interactively.

Figure 2-4. The Reorder List control

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 57

• Text Box Watermark: This control is shown in Figure 2-5 and can be attached to an ASP.NET
text box control to add watermark behavior. This lets you display a default message in a text
box (for example, Type First Name Here) that goes away once the user has typed some text
into the text box.

Figure 2-5. The Text Box Watermark control

• Toggle Button: This control is shown in Figure 2-6 and can be attached to the ASP.NET check
box control to enable the use of custom images to show the state of the check box.

Figure 2-6. The Toggle Button control

Ajax Frameworks for ASP.NET
As a testament to the popularity of Ajax, if you search for it on the Internet, you will probably find
a couple dozen Ajax implementations. There are Ajax frameworks written in JavaScript, C++, Java,
ColdFusion, Lisp, Perl, PHP, Python, and the list goes on. Even if you limit the search to .NET
frameworks, you will find more than 10 of them. The following list provides an overview of the
well-known Ajax frameworks that have been around for some time and are targeted toward
ASP.NET:

• ASP.NET Ajax: ASP.NET Ajax is created by Microsoft and as such is probably the most impor-
tant Ajax framework on the Microsoft platform. ASP.NET Ajax integrates an extensive set of
client script libraries with the rich, server-based development platform of ASP.NET 2.0. At
the time of this writing, version 1.0 of ASP.NET Ajax was the latest official release. More infor-
mation about ASP.NET Ajax can be found at http://ajax.asp.net.

• ComfortASP.NET: Internally, ComfortASP.NET uses a mixture of DHTML, JavaScript, and
XMLHTTP, and reduces HTML traffic. The developer only implements pure server-side
ASP.NET. ComfortASP.NET supports ASP.NET 1.1 and ASP.NET 2.0. More information can be
found at http://www.comfortasp.de/.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX58

• MagicAjax.NET: MagicAjax.NET is an open-source framework that lets you put Ajax-enabled
controls on a web page within an Ajax panel. MagicAjax.NET does not require you to write
any JavaScript. MagicAjax.NET supports ASP.NET 1.1 and ASP.NET 2.0. More information can
be found at http://www.magicajax.net.

• Outpost: Outpost is a free framework that gets the HTML of page controls that have been
changed and transports the changes automatically to the client in a hidden postback. Out-
post supports ASP.NET 1.1 and ASP.NET 2.0. More information can be found at http://
csharpedge.blogspot.com.

• FastPage: FastPage is a commercial framework that is easy to use, install, and configure.
FastPage supports ASP.NET 1.1 and ASP.NET 2.0. More information can be found at
http://fastpage.more.at.

■Note The web site http://www.ajaxpatterns.org is an excellent resource if you are looking for
information about Ajax. The DotNet Ajax Frameworks page on this site (http://ajaxpatterns.org/
DotNet_Ajax_Frameworks) contains an up-to-date list of all Ajax frameworks for ASP.NET.

As you can see, when it comes to choosing an Ajax framework for .NET, you have plenty of
choices. With the ASP.NET Ajax framework being an exception, all frameworks offer support for
ASP.NET 1.1 as well as ASP.NET 2.0. ASP.NET Ajax only offers support for ASP.NET 2.0. Most of the
frameworks are free.

When choosing a framework, we prefer not to focus on the current features of a framework, per
se. We are more interested in where the framework will be two or three years from now. We don’t
doubt that ASP.NET Ajax will become the primary framework for .NET developers who are doing
Ajax-style development in ASP.NET 2.0 applications. As a result, in this chapter we have chosen to
focus on ASP.NET Ajax and ignore the other .NET Ajax implementations.

Adding Service Virtualization to a Web Service
If you want to incorporate Ajax into your SharePoint applications, it is likely that the Ajax client side
communicates with a server side implemented using web services. In this section, we will show how
to create a .NET 2.0 web service in a Microsoft Office SharePoint Server 2007 environment and how
to call such a web service within the context of a SharePoint site. Service virtualization is the process
where you change the end point address of the web service at runtime instead of using a static
address, allowing you to run the web service within the context of a SharePoint site.

In this section, we will create a test web service that we will call AskMe. Before you can use
Visual Studio 2005 to create a web service, you need to do some manual work. First, using Windows
Explorer, you need to create a destination folder for your web service. Then you need to create a
new virtual directory in Internet Information Services Manager for this folder. The following steps
describe how to create a virtual directory in Internet Information Services 6.0 for a test web service
project called AskMe that is created later on:

1. Open Windows Explorer.

2. Create a folder called AskMe in [drive letter]:\inetpub\wwwroot.

3. Choose Start ➤ Run. Type inetmgr and click OK.

4. Expand the Local Computer node.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 59

5. Expand the Web Sites node.

6. Expand the Default Web Site node.

7. Locate the AskMe folder, right-click it, and choose Properties.

8. On the AskMe Properties page, click Create.

9. Click OK.

Now you can use Visual Studio 2005 to create the AskMe web service project. In the following
steps, you will create a web service project called AskMe and add a class to it called Mediator:

1. Open Visual Studio 2005.

2. Choose File ➤ New ➤ Web Site.

3. On the New Web Site screen, click ASP.NET Web Service.

4. Make sure Location is set to HTTP.

5. Set the URL to http://localhost/AskMe.

6. Click OK.

7. Right-click Service.asmx ➤ Delete ➤ OK.

8. Right-click the http://localhost/AskMe/ project ➤ Add New Item.

9. On the Add New Item – http://localhost/AskMe/ screen, choose the following item
template: Web Service.

10. Enter the name Mediator.asmx.

11. Make sure the Place Code in Separate File check box is checked.

12. Click Add.

By default, a HelloWorld() method is added to Mediator.asmx. This is the method we will use to
validate whether the AskMe web service project works. You can precompile the AskMe web service
project if you want, but in ASP.NET 2.0 you no longer need to compile your code and put the assem-
bly into the bin folder. The actual code for Mediator.asmx is placed in a code-behind class called
Mediator.cs. The Mediator.cs class is located in the App_Code folder. If you open a browser and
navigate to http://localhost/askme/mediator.asmx, you can see that the AskMe web service project
works as expected.

If all you want to do is create a general web service, you are finished. If you want to create a
web service that will run in a given SharePoint context (which allows you easy access to information
in this context, such as the CurrentWeb object that allows access to the current SharePoint site in the
context), things get a bit more complex. Web services that need to run in a given SharePoint context
are stored in a virtual folder called _vti_bin. This is a virtual directory in IIS that is mapped to the
[drive letter]:\Program Files\Common Files\Microsoft Shared\web server extensions\12\ISAPI
folder. The name of the _vti_bin folder originates from a company called Vermeer Technologies
Incorporated, which was acquired by Microsoft in the beginning of 1996. Vermeer Technologies cre-
ated the original version of FrontPage. The _vti_bin folder is a special Common Gateway Interface
(CGI)–like folder that contains server-side functionality that needs to be available within the entire
virtual server. On a SharePoint server, the _vti_bin folder is where the default SharePoint web serv-
ice files are stored.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX60

■Note The influence of Vermeer Technologies on SharePoint technology does not stop with the folder name.
Microsoft Office SharePoint Server 2007 uses a customized version of FrontPage Server Extensions. This is why
SharePoint Designer can be used to adjust SharePoint sites. This is also why you should never install FrontPage
Server Extensions on a SharePoint server.

If you reference a web service in the context of a given SharePoint site, the web service will have
access to this context. For example, suppose you create the Mediator.asmx file within the AskMe
web service and add it to _vti_bin. Its URL would be http://localhost/_vti_bin/Mediator.asmx.
If you create a SharePoint site called Ajax, you can reference Mediator.asmx within the context of
the SharePoint site via the following URL: http://localhost/ajax/_vti_bin/Mediator.asmx. We will
look at this in more detail later.

Since our web service only supports a method that returns a greeting to the world, it will not
help us much to test whether the web service runs successfully within a given SharePoint context.
In the next step, remove the HelloWorld() method and replace it with a GetCurrentSiteName()
method that returns the name of the SharePoint site in which the AskMe web service is running.
In order to do that, you need to set a reference to Microsoft.SharePoint.dll, which is located in
[drive letter]:\Program Files\Common Files\Microsoft Shared\web server extensions\12\ISAPI.
Import the Microsoft.SharePoint.WebControls namespace. Add the following code to the
GetCurrentSiteName() method:

return SPControl.GetContextWeb(Context).Name;

The resulting code looks like Listing 2-1.

Listing 2-1. The Mediator Web Service

using System;
using System.Web;
using System.Collections;
using System.Web.Services;
using System.Web.Services.Protocols;
using Microsoft.SharePoint.WebControls;

[WebService(Namespace = “http://tempuri.org/”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class Mediator : System.Web.Services.WebService
{
public Mediator ()
{
}

[WebMethod]
public string GetCurrentSiteName()
{
return SPControl.GetContextWeb(Context).Name;

}
}

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 61

■Note We have used the [WebServiceBinding] attribute to specify that this web service conforms to the
Basic Profile 1.1 specification. This instructs Visual Studio 2005 to generate WSDL and ASMX files that adhere to
this specification. More information about the Web Services Interoperability Organization (WSI) Basic Profile 1.1
can be found at the following web site: http://www..ws-i.org.

At this point, we have created the AskMe web service in a separate virtual folder. Now you will
see how to create a web service that can be run within a SharePoint context. First, you will need to
create a static discovery (.disco) file and a Web Services Description Language (.wsdl) file using the
disco.exe tool. The DISCO protocol is used to discover web services located on a particular domain.
A .disco file contains a list of web services and points to their WSDL files. WSDL is a language
designed to describe a web service and all its methods. The following procedure explains how to
create .disco and .wsdl files for the MediatorService web service:

1. Open a Visual Studio 2005 command prompt.

2. Navigate to the web service folder [drive letter]:\inetpub\wwwroot\AskMe.

3. Run the following command: disco http://localhost/askme/mediator.asmx.

As a result, three new files will be created in the AskMe folder: mediator.disco, mediator.wsdl,
and results.discomap. Results.discomap contains references to the .wsdl and .disco files and can be
used to generate web service proxy classes via the WSDL tool. In this example, we will use Visual
Studio 2005 to locate the AskMe web service and create a web service proxy class. Because of this,
the results.discomap file is irrelevant in this example.

The two files that are important in the example are mediator.disco and mediator.wsdl. The
Microsoft.SharePoint namespace needs to be registered within both of the files. To do this, open
the files in any text editor. In both files, locate the following line: <?xml version=”1.0” encoding=
”utf-8”?>. Replace this line with the following lines of code:

<%@ Page Language=”C#” Inherits=”System.Web.UI.Page”%>
<%@ Assembly Name=”Microsoft.SharePoint, Version=11.0.0.0, ➥

Culture=neutral, PublicKeyToken=71e9bce111e9429c” %>
<%@ Import Namespace=”Microsoft.SharePoint.Utilities” %>
<%@ Import Namespace=”Microsoft.SharePoint” %>
<% Response.ContentType=”text/xml”; %>

The page directives indicate that the .disco and .wsdl files are no longer XML. XML parsers will
not be able to handle these directives. However, the ASP.NET engine will be able to recognize the
page directives, so you need to rename both files to .aspx. Rename the mediator.disco file to Media-
tordisco.aspx and save the mediator.wsdl file as Mediatorwsdl.aspx. Now you need to add support
for service virtualization. This means that it needs to be possible to change the end point address of
the web service at runtime. Instead of using a static address, the address of the web service depends
on the context of a request. First, open Mediatordisco.aspx and locate the following line:

<contractRef ref=”http://localhost/askme/mediator.asmx?wsdl” ➥
docRef=”http://localhost/askme/mediator.asmx” ➥
xmlns=”http://schemas.xmlsoap.org/disco/scl/” />

Replace this line with the following:

<contractRef ref=<% SPEncode.WriteHtmlEncodeWithQuote(Response, ➥
SPWeb.OriginalBaseUrl(Request) + “?wsdl”, ‘“‘); %> ➥
docRef=<% SPEncode.WriteHtmlEncodeWithQuote(Response, ➥
SPWeb.OriginalBaseUrl(Request), ‘“‘); %> ➥
xmlns=”http://schemas.xmlsoap.org/disco/scl/” />

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX62

Then locate the following line:

<soap address=”http://localhost/askme/mediator.asmx” xmlns:q1= ➥
“http://tempuri.org/” binding=”q1:MediatorSoap” ➥
xmlns=”http://schemas.xmlsoap.org/disco/soap/” />

Replace it with the following:

<soap address=<% SPEncode.WriteHtmlEncodeWithQuote(Response, ➥
SPWeb.OriginalBaseUrl(Request), ‘“‘); %> xmlns:q1= ➥
“http://tempuri.org/” binding=”q1: MediatorSoap” ➥
xmlns=”http://schemas.xmlsoap.org/disco/soap/” />

Now open Mediatorwsdl.aspx, and toward the end of the file, locate the line

<soap:address location=”http://localhost/askme/mediator.asmx” />

and replace it with

<soap:address location=<% SPEncode.WriteHtmlEncodeWithQuote(➥
Response, SPWeb.OriginalBaseUrl(Request), ‘“‘); %> />

Find the following line:

<soap12:address location=”http://localhost/askme/mediator.asmx” />

Replace that line with this:

<soap12:address location=<% SPEncode.WriteHtmlEncodeWithQuote(➥
Response, SPWeb.OriginalBaseUrl(Request), ‘“‘); %> />

At this point, you have successfully added service virtualization. Move the Mediatordisco.aspx
and Mediatorwsdl.aspx pages to the _vti_bin folder ([drive letter]:\Program Files\Common
Files\Microsoft Shared\web server extensions\12\ISAPI), because this is where all SharePoint web
services are stored. By the way, if you do not move these files, you will no longer be able to compile
the AskMe web service.

Because the AskMe web service is written in .NET 2.0 and uses the Microsoft.SharePoint
assembly, the _vti_bin folder’s web.config file needs to contain a reference to the SharePoint DLL.
Add the following XML below the <system.web> element of the web.config file in the _vti_bin folder:

<compilation debug=”false”>
<assemblies>
<add assembly=”Microsoft.SharePoint, Version=12.0.0.0, ➥
Culture=neutral, PublicKeyToken=71e9bce111e9429c” />

</assemblies>
</compilation>

The complete web.config file should resemble Listing 2-2.

Listing 2-2. The web.config File in the _vti_bin Folder

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>
<configuration>
<system.web>
<compilation debug=”false”>
<assemblies>
<add assembly=”Microsoft.SharePoint, Version=12.0.0.0, ➥
Culture=neutral, PublicKeyToken=71E9BCE111E9429C”/>

</assemblies>
</compilation>

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 63

<webServices>
<protocols>
<remove name=”HttpGet” />
<remove name=”HttpPost” />
<remove name=”HttpPostLocalhost” />
<add name=”Documentation” />

</protocols>
</webServices>
<customErrors mode=”On”/>

</system.web>
<location path=”authentication.asmx”>
<system.web>
<authorization>
<allow users=”*”/>

</authorization>
</system.web>

</location>
<location path=”wsdisco.aspx”>
<system.web>
<authorization>
<allow users=”*”/>

</authorization>
</system.web>

</location>
<location path=”wswsdl.aspx”>
<system.web>
<authorization>
<allow users=”*”/>

</authorization>
</system.web>

</location>
</configuration>

If you include the Mediator.asmx file in the list of default Windows SharePoint Services web
services, it will be easier to reference the web service via Visual Studio 2005. You can do this by
opening spdisco.aspx (also located in the _vti_bin folder) and adding the following lines within the
<discovery> element:

<contractRef ref=<% SPEncode.WriteHtmlEncodeWithQuote(Response, ➥
spWeb.Url + “/_vti_bin/Mediator.asmx?wsdl”, ‘“‘); %> docRef=<% ➥
SPEncode.WriteHtmlEncodeWithQuote(Response, spWeb.Url + ➥
“/_vti_bin/Mediator.asmx”, ‘“‘); %> ➥
xmlns=”http://schemas.xmlsoap.org/disco/scl/” />

<soap address=<% SPEncode.WriteHtmlEncodeWithQuote(Response, ➥
spWeb.Url + “/_vti_bin/Mediator.asmx”, ‘“‘); %> ➥
xmlns:q1=”http://schemas.microsoft.com/sharepoint/soap/directory/” ➥
binding=”q1:MediatorSoap” xmlns=”http://schemas.xmlsoap.org/disco/soap/” />

If you open a browser and go to http://localhost/_vti_bin/mediator.asmx?WSDL, you should
see a valid web service description file. Now you can add a reference to the web service from within
a web part library project and access the SharePoint context from within a web part in this library.
In order to complete the following steps, you must create a web part and open it in Visual Studio
2005. If you are not sure how to do this, refer to Chapter 1.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX64

1. From within Visual Studio 2005, create a new project, right-click it, and then choose Add
Web Reference.

2. Click the Web Services on the Local Machine link.

3. Locate the Mediator web service and click it.

4. Change the web reference name to MediatorService and click Add Reference.

Now you need to create an instance of the MediatorService web service and set the security
credentials that are used for web service client authentication. If you do not set the security creden-
tials correctly (by setting the Credentials property, which is shown in the next code fragment), you
will get an “HTTP status 401: Unauthorized” error. You can set the correct SharePoint context via the
MediatorService web service’s Url property. Assign the following static value: http://localhost/
ajax/_vti_bin/mediator.asmx. This ensures the MediatorService web service is run within the con-
text of the Ajax SharePoint site. You can also set this property dynamically by using the Url property
of the current SharePoint site. The following code fragment can be added to any client such as an
ASP.NET page or a web part and uses the latter approach:

string strValue = String.Empty;
SPWeb objSite = SPControl.GetContextWeb(Context);
strValue = objSite.Url + “/_vti_bin/mediator.asmx”;
MediatorService.Mediator objMediator = new MediatorService.Mediator();
objMediator.Credentials = CredentialCache.DefaultCredentials;
objMediator.Url = strValue;
strValue = objMediator.GetCurrentSiteName();

Figure 2-7 shows that the web service returns the SharePoint site name from the current context.

Figure 2-7. The web service returns the SharePoint site name from the current context.

As you have seen, creating web services in a Microsoft Office SharePoint Server 2007 environ-
ment is easy enough. However, adding service virtualization to such a web service is a bit complex
because of the manual steps you have to take. The following is an overview of the steps that we have
taken and described in this section to add service virtualization to a web service:

1. Create a web service.

2. In the web service, add a reference to the SharePoint assembly.

3. Use disco.exe to create .disco and .wsdl files.

4. Rename the .disco file and make it an ASP.NET page. Add support for service virtualization
to the ASP.NET page.

5. Rename the .wsdl file and make it an ASP.NET page.

6. Add support for service virtualization to the ASP.NET page.

7. Copy both ASP.NET pages to the _vti_bin folder and add, if not yet present, a reference to
the SharePoint assembly.

8. Add the web service to the list of default SharePoint web services.

9. Add a reference to the web service within a Visual Studio 2005 project and set the correct
security credentials.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 65

JavaScript in Web Parts
Web services are an important part of Ajax-style development. We have already taken an in-depth
look at creating web services on a Microsoft Office SharePoint Server 2007 server and adding serv-
ice virtualization to them. The other important part of Ajax is JavaScript. In this section, we will
look in detail at JavaScript development within Microsoft Office SharePoint Server 2007 web parts.
A working understanding of the concepts in this section is essential for understanding the rest of
this chapter.

The Content Editor Web Part
The easiest way to add JavaScript to a SharePoint page is probably via the Content Editor web part.
This method is suitable for simple and ad hoc uses of JavaScript, or to add some nice visual tricks to
a SharePoint page. If you want to see an example of the latter, around Christmas time, check out the
Snow web part at http://mindsharpblogs.com/todd/archive/2005/12/20/906.aspx. The Content
Editor web part can be used to add formatted text, tables, hyperlinks, and images to a web part
page. You can also add JavaScript by typing it straight into the Content Editor Web Part Text Entry
window, as shown in the next example:

1. Go to a SharePoint page and select Site Actions ➤ Edit Page. This opens the SharePoint page
in Edit Mode.

2. Choose a web part zone that is going to hold the Content Editor web part and click the Add
a Web Part link. This opens the Add Web Parts — Web Page Dialog window.

3. Locate the Miscellaneous section, select the Content Editor Web Part check box, and click
Add. This adds the Content Editor web part to the web part zone.

4. In the Content Editor web part, choose Edit ➤ Modify Shared Web Part. This opens the
Content Editor Web Part tool pane.

5. Click the Source Editor... button. This opens the Text Entry — Web Page Dialog window.

6. Type the following JavaScript code in the Text Entry — Web Page Dialog window:

<script>alert(“hi!”);</script>

7. Click Save.

The JavaScript code generates a dialog box containing a hello message.

Web Part Tokens
The SharePoint web part framework contains several web part tokens that are used to aid client-
side development when creating web parts. The tokens we like to use most are the _WPR_ and
WPQ tokens.

When rendered, the _WPR_ token is replaced with the path to the web part resources folder of the
SharePoint site containing the web part. The web part resources folder is a predefined folder that can
be found in the root of every web application folder. This folder is meant to store web part resources
such as images or JavaScript libraries. If you use the _WPR_ token on a SharePoint site called Ajax, the
token will be replaced with the following value: http://myserver/Ajax/_wpresources/WPLibrary/
1.0.0.0_[guid].

■Note Another good place to store web part resources is a web resource file. The creation of web resource files
is discussed in Chapter 1.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX66

The _WPQ_ token is used to create names that are unique per web part. For example, if you cre-
ate a JavaScript function called DoSomething(), there is always the possibility that another web part
could create a JavaScript function with the same name. If you place the same web part on a page
multiple times, you have guaranteed name conflicts. To prevent this type of problem, append the
WPQ token to a function name. A function called DoSomething_WPQ_() will be rendered to some-
thing like DoSomething[unique name]().

The following lines of code demonstrate the use of web part tokens and can be added to a
web part:

protected override void RenderContents(HtmlTextWriter writer)
{
string strValue = SPWebPartManager.ReplaceTokens(Context, ➥
SPControl.GetContextWeb(Context), ➥
this, ➥
“WPQ: _WPQ_ ➥
WPR: _WPR_” ➥
);
writer.Write(strValue);

}

Figure 2-8 shows the result of two instances of the same web part on a single page containing
this line of code.

Figure 2-8. The web part tokens

■Note The ReplaceTokens() per-instance method of the Microsoft.SharePoint.WebPartPages.WebPart
class in SharePoint 2003 used to return names that are more user friendly than the names returned by the per-
type ReplaceTokens() method of the SPWebPartManager class. In the section “Client-side Connectable Web
Parts and ASP.NET Ajax,” later in this chapter, you will see an example of this.

The other available web part tokens are

• _LogonUser_: The _LogonUser_ token specifies the [domain\]user name for the currently
logged-on user. The domain part of the user name is optional and does not appy in form-
based authentication scenarios.

• _WPID_: The _WPID_ token specifies the control ID of the web part.

• _WebLocaleID_: The _WebLocaleID_ token specifies the locale id of the current web site.

• _WPSRR_: The _WPSRR_ token specifies the server relative class resource path, which can be
used to prefix resource URLs for the browser to fetch.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 67

■Note For more information about web part tokens, please refer to the Windows SharePoint Services 3.0 SDK.

Rendering JavaScript Within a Web Part
This section describes how to use JavaScript within web parts. When rendering JavaScript within a
web part, you should register an event handler for the PreRender event in the web part constructor
and render the JavaScript within the PreRender event handler. This ensures that the web part frame-
work loads the JavaScript before the web part is rendered to the web part page.

The ClientScriptManager class, which is new in ASP.NET 2.0, can be used to manage client-side
scripts. You can obtain an instance of the ClientScriptManager class via the ClientScript property
of the Page object that is always available within a web part. Use the ClientScriptManager instance
to add JavaScript to the page. You can use the IsClientScriptBlockRegistered() method of the
ClientScriptManager class to add a JavaScript library (a .js file) to the page. The best place to store
the JavaScript library is the web part resources folder. The following code fragment shows how to
register a JavaScript library on a web page:

if (!Page.ClientScript.IsClientScriptIncludeRegistered (“MyKey1”))
{
Page.ClientScript.RegisterClientScriptInclude(“MyKey1”, ➥
“/wpresources/customlib.js”);

}

As you can see, a unique key is used to check whether the JavaScript library is already added to
the page. Do not use the _WPQ_ token as a key. The _WPQ_ token is used to create names that are guar-
anteed to be unique within a page. The key used here ensures that no duplicate registrations take
place on a single page.

You can also render dynamic pieces of JavaScript code to a page. Use the ClientScriptManager
class’s RegisterClientScriptBlock() method to do this. The following code fragment shows an
example:

if (!Page.ClientScript.IsClientScriptBlockRegistered(“MyKey2”))
{
Page.ClientScript.RegisterClientScriptBlock(typeof(string), “MyKey2”, ➥
“alert(‘test’);”, true);

}

■Note Generally, we prefer to use JavaScript libraries instead of dynamic pieces of JavaScript code. This makes
it much easier to write and change the JavaScript code. But a disadvantage is that you cannot work with web part
tokens in JavaScript libraries, so you need to take this into consideration when developing web parts. This devel-
opment style may become a problem when you want to use the same web part multiple times on the same
SharePoint page. You can see examples of these approaches in the sections “JavaScript On-Demand Loading”
and “Building a Performance Counter Web Part,” later in this chapter.

The complete code for a web part registering JavaScript on a page is shown in Listing 2-3.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX68

Listing 2-3. A Web Part That Renders JavaScript

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;

namespace LoisAndClark.Ajax
{

[Guid(“be6ec8e3-2706-4f52-bdf9-f6eb18fc65c0”)]
public class AjaxClient : System.Web.UI.WebControls.WebParts.WebPart
{
public AjaxClient()
{
PreRender += new EventHandler(AjaxClient_PreRender);

}

void AjaxClient_PreRender(object sender, EventArgs e)
{
if (!Page.ClientScript.IsClientScriptIncludeRegistered (“MyKey1”))
{
Page.ClientScript.RegisterClientScriptInclude(“MyKey1”, ➥
“/wpresources/customlib.js”);

}

if (!Page.ClientScript.IsClientScriptBlockRegistered(“MyKey2”))
{
Page.ClientScript.RegisterClientScriptBlock(typeof(string), ➥
“MyKey2”, “alert(‘test’);”, true);

}
}

protected override void CreateChildControls()
{
try
{
// ... do stuff...

}
catch (Exception err)
{
Controls.Add(new LiteralControl(err.Message));

}
}

}
}

This web part registers a reference to a custom JavaScript library called customlib.js that
should be placed in the wpresources virtual folder of the SharePoint web application holding the
web part. The wpresources virtual folder was discussed previously in the section “Web Part Tokens.”
The web part also renders a dynamic piece of JavaScript that generates an alert message.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 69

JavaScript On-Demand Loading
Ajax-style applications rely heavily on the use of JavaScript. If you add your JavaScript functions to
JavaScript script libraries, the end user will have to wait until all script libraries have been loaded.
This could take a while, as the complexity of the Ajax application increases, thus defeating the pri-
mary purpose of Ajax, which is namely to create a great user experience. In this section, we discuss
JavaScript on-demand loading, a technique where JavaScript libraries are loaded as needed.

■Note The on-demand approach is applied to the .NET Framework as well. The .NET Common Language Run-
time (CLR) loads assemblies as needed (on-demand loading), and Intermediate Language (IL) within an assembly
is compiled as needed (just-in-time compilation).

Alas, JavaScript on-demand loading is not done automatically for you. In its simplest form, the
JavaScript on-demand approach consists of a piece of JavaScript code calling a web service. The
web service does not return a normal response, but instead returns a piece of JavaScript code that is
executed via the JavaScript eval() function. The following code fragment shows an example:

var strJsCode = CallWebService(); // web service returns “alert(‘hi’);”;
eval(strJsCode); // This line is equivalent to: alert(‘hi’);

■Note The eval()function is built into the JavaScript language; it evaluates a string and parses it on the fly.
In SharePoint Portal Server 2001, the eval() function was the core of the web part rendering process. All server-
side code in web parts (either VBScript or JavaScript) was retrieved from the web part XML and parsed by the
eval() function when the web part was rendered.

The second solution for JavaScript on-demand loading is more sophisticated and more com-
plex to implement. In this approach, a JavaScript function knows which JavaScript library it needs
and loads the required library on demand, waits until the JavaScript library is loaded, and then calls
a function within the newly loaded library.

In the following example, you should create a new JavaScript library called ondemand.js.
Add the JavaScript library to the web part resources folder ([drive letter]:\inetpub\wwwroot\
wpresources). The entire content of the ondemand.js JavaScript library looks like this:

function OnDemandHello()
{

alert(‘on demand hi!’);
}

We will show how to load this library on demand from another script library that we will call
customlib.js. The customlib.js JavaScript library is registered on the page from within a web part
via the RegisterClientScriptInclude() method, which was described earlier in the section “Ren-
dering JavaScript Within a Web Part.” Suppose the customlib.js library contains a function called
CustomLibHello() that wants to call the OnDemandHello() function in the ondemand.js library.
The CustomLibHello() function calls a function that adds the ondemand.js script library to the
page dynamically, like so:

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX70

var objHeadElement = document.getElementsByTagName(‘head’)[0];
var objScriptLibrary = document.createElement(‘script’);
objScriptLibrary.id = ‘OnDemandScript’;
objScriptLibrary.type = ‘text/javascript’;
objScriptLibrary.src = ‘/wpresources/ondemand.js’;
objHeadElement.appendChild(objScriptLibrary);

The JavaScript within the ondemand.js script library will not be loaded immediately, so you
will have to check explicitly whether the function you want to call is already available. You can use
the following code:

if (self.OnDemandHello)
{
// OnDemandHello is available.

}

If the OnDemandHello() function is not available, you should use the setTimeout() function
that is a part of the JavaScript language to try again later after x number of milliseconds. Listing
2-4 shows how to implement JavaScript on demand for the OnDemandHello() function in the
customlib.js JavaScript library.

Listing 2-4. On-demand Loading in a JavaScript Library

function CustomLibHello()
{

LoadOnDemand();
}

function LoadOnDemand()
{
ensureUploadScriptIsLoaded();
if (self.OnDemandHello == null)
{
alert(‘not yet loaded’);
setTimeout(“LoadOnDemand();”,2000);

}
else
{
alert(‘loaded’);
OnDemandHello();

}
}

function ensureUploadScriptIsLoaded()
{
if (self.OnDemandHello)
{
// OnDemandHello() is already loaded.
return;

}

var objHeadElement = document.getElementsByTagName(‘head’)[0];
var objScriptLibrary = document.createElement(‘script’);
objScriptLibrary.id = ‘OnDemandScript’;
objScriptLibrary.type = ‘text/javascript’;
objScriptLibrary.src = ‘/wpresources/ondemand.js’;
objHeadElement.appendChild(objScriptLibrary);

}

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 71

The technique described in this section is used in advanced scenarios where performance is a
problem because of the size of the JavaScript libraries used. Although one of the goals of ASP.NET
Ajax is to abstract the use of JavaScript away, there are still situations where it cannot be avoided.

Debugging JavaScript
Although JavaScript is not a very advanced language, you can use Visual Studio 2005 and enjoy a
rich debugging experience. If you want to debug JavaScript code, you need to do the following:

1. Open Internet Explorer and click Tools ➤ Internet Options ➤ Advanced. Uncheck Disable
Script Debugging.

2. Close the browser and start it again.

Now you can debug JavaScript, as shown in Figure 2-9.

Figure 2-9. Debugging JavaScript using Visual Studio 2005

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX72

Visual Studio 2008, code-named Orcas, has fantastic improvements when it comes to develop-
ing solutions in JavaScript. The following is a list of the most important JavaScript support features
in Orcas:

• Full JavaScript InstelliSense completion in .aspx, .htm, and .js files.

• Rich support for ASP.NET Ajax.

• The option to add IntelliSense comments that can be used to provide validation checking
and type descriptors. Every JavaScript is of the type object; type descriptors allow you to
define the data type that is intended, for example, an integer.

• The ability to create a release version of JavaScript code (a version without documentation,
whitespace, and other non-needed content) that results in a JavaScript file that is smaller to
download.

• The JavaScript debugger in Orcas allows you to debug run-time documents and switch to
design-time documents.

• Type information in debug mode is far richer than it used to be.

• You can see the methods of an object in debug mode.

• You can easily navigate the JavaScript Document Object Model (DOM) visually.

• You can add visualizers to JavaScript objects.

• A proactive completion list makes suggestions while you type.

More information about the JavaScript support in Orcas can be found in the articles “JScript
Debugging in Visual Web Developer Orcas” at http://blogs.msdn.com/webdevtools/archive/2007/
03/09/jscript-debugging-in-visual-web-developer-orcas.aspx and “JScript IntelliSense in Visual
Studio Orcas” at http://blogs.msdn.com/webdevtools/archive/2007/03/02/
jscript-intellisense-in-orcas.aspx.

Remote Calls Prior to ASP.NET Ajax
In this section, we discuss how to use client-side JavaScript to communicate with web services with-
out using ASP.NET Ajax. We will discuss techniques that have been available longer and can also be
used when doing asynchronous communication with the server. This will in turn help you under-
stand ASP.NET Ajax better.

Retrieving Data via XMLHttpRequest
Microsoft implemented the XMLHttpRequest object for the first time in Internet Explorer 5 as an
ActiveX control. In Internet Explorer 7, this object has been implemented as a native script object.
This is a good thing, since most companies place additional security restrictions on the use of
ActiveX controls.

The purpose of the XMLHttpRequest object is to let clients retrieve and convert XML from the
server and use the client-side Document Object Model to do something useful with this data. The
following JavaScript code fragment calls a web service method Hi() defined within Mediator.asmx:

var objRequest = new ActiveXObject(“Msxml2.XMLHTTP”);
objRequest.open(“POST”, “/askme/mediator.asmx/Hi”, false);
objRequest.send(null);
var strServerResponse = objRequest.responseText;
alert(strServerResponse);

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 73

The false option that is passed as an argument to the XMLHttpRequest object’s open()
method makes the call synchronous, meaning that the code will wait until a response comes back.
The send() method completes the request. The Hi() method gives a greeting to all its clients, and
its response looks like this:

<?xml version=”1.0” encoding=”utf-8” ?>
<string xmlns=”http://tempuri.org/”>Hi all!</string>

If needed, you can also pass arguments to a web service. The following code fragment shows
how to pass two arguments to a web service method called Hi2():

var strBody = “strFirstArg=MyFirst&strSecondArg=MySecond”;
var objRequest = new ActiveXObject(“Msxml2.XMLHTTP”);
objRequest.open(“POST”, “/askme/mediator.asmx/Hi2”, false);
objRequest.setRequestHeader(“Content-Type”, ➥
“application/x-www-form-urlencoded”);
objRequest.setRequestHeader(“Content-Length”, strBody.length);
objRequest.send(strBody);
alert(objRequest.responseText);

It is beneficial to the user experience to make asynchronous XMLHttpRequest calls, so that the
user can continue to work on other tasks while waiting for a response. You can check if the response
is ready by calling the readystate property of the XMLHttpRequest object. The readystate property
always reflects the current point in the call’s life cycle. Initially, upon creation, the state value is 0.
After a call it is 1. When the response is back, the value of the readystate property will be 4. In the
following asynchronous code example, we will use the XMLHttpRequest object’s readystatechange
event to define an event handler called OnResponse. The event handler will be called multiple times
(once per call state) during the call life cycle. In the OnResponse event handler, we will check the
readystate property to see when the response is ready, as shown in Listing 2-5.

Listing 2-5. Calling a Web Service via the XMLHttpRequest Object

objRequest = new ActiveXObject(“Msxml2.XMLHTTP”);
objRequest.open(“POST”, “/askme/mediator.asmx/Hi”, true);
objRequest.onreadystatechange = OnResponse;
objRequest.send(null);

function OnResponse()
{
if (_objRequest.readyState != 4)
{
alert(‘not ready yet’);
return;

}

// Error checking
if (_objRequest.status != 200)
{
alert(“unexpected status!”);

}

var strResponse = _objRequest.responseText;
alert(strResponse);

}

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX74

■Note In this code example, we are checking for an HTTP status equal to 200, indicating that the request has
succeeded. The status code indicating a valid response might be different depending on the content you are
requesting. You can find an overview of HTTP status codes at http://www.w3.org/Protocols/rfc2616/
rfc2616-sec10.html.

You can use the XMLHttpRequest object’s abort() method to abort a remote call, like this:
_objRequest.abort();. Listing 2-6 shows a technique that aborts a remote call after five seconds
have passed.

Listing 2-6. Aborting a Web Service Call

function MyRemoteCall()
{

objRequest = new ActiveXObject(“Msxml2.XMLHTTP”);
objRequest.open(“POST”, “/askme/mediator.asmx/Hi”, true);
objRequest.onreadystatechange = OnResponse;
objRequest.send(null);
setTimeout(“Abort()”, 5000);

}

function Abort()
{
objRequest.abort();
alert(“abort”);

}

function OnResponse()
{
if (_objRequest.readyState != 4)
{
//alert(‘not ready yet’);
return;

}

if (_objRequest.status != 200)
{
alert(“unexpected status!”);

}

var strResponse = _objRequest.responseText;
alert(strResponse);

}

MyRemoteCall();

In the previous example, you saw how to use the XMLHttpRequest object’s responseText prop-
erty to retrieve the response as a string. You can also retrieve the response as XML directly using the
responseXML property, like so:

var xmlResponse = _objRequest.responseXML;
alert(xmlResponse.innerXml);

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 75

■Note A weak point of the JavaScript language related to this topic is its inability to handle re-entrancy
issues. A piece of code is said to be re-entrant if it can be called recursively and concurrently from multiple
processes. This chapter does not discuss how to solve re-entrancy issues in JavaScript, although you can find
general information about re-entrant code in the article “Writing Reentrant and Thread-Safe Code” at http://
www.unet.univie.ac.at/aix/aixprggd/genprogc/writing_reentrant_thread_safe_code.htm.

Web Service Behavior
XMLHttpRequest is the first step in the evolution of Ajax-style application development. The XML-
HttpRequest object makes communicating with web services via JavaScript possible but not easy.
The next step in the evolution of building Ajax applications is the WebService behavior, which can
be downloaded from the MSDN web site (http://msdn.microsoft.com/archive/default.asp?url=/
archive/en-us/samples/internet/behaviors/library/webservice/default.asp). Behaviors are a
way of programmatically packaging actions and associating those actions to page elements. The
WebService behavior enables client-side script to invoke remote methods exposed by web services
that support Simple Object Access Protocol (SOAP) and WSDL. The behavior is a simple, lightweight
component that is implemented as an HTML component (HTC) file.

■Note If you want to use the WebService behavior within a web part, you need to download it and preferably
store it in the web part resources folder.

If you have a choice, we do not recommend using the WebService behavior, because ASP.NET Ajax
is even more developer-friendly and the WebService behavior is not officially supported anymore. Hav-
ing said that, Listing 2-7 shows how to use the WebService behavior. In the example, the behavior is
attached to a page element, a <div> with the ID service. The useService() function of the WebService
behavior ties the web service to a friendly name that can be used later to call the web service. You can
call the web service asynchronously by specifying an event handler that we will call OnGetNameResult.

Listing 2-7. Using the Web Service Behavior

<html>
<body onload=”InitRemoteCall();”>
<div id=”service” style=”behavior:url(webservice.htc)”></div>

<script>
function InitRemoteCall()
{

service.useService(“http://pluto/AskMe/Mediator.asmx?WSDL”,”Mediator”);
var intId = service.Mediator.callService(OnGetNameResult,
“GetCurrentSiteName”);

}

function OnGetNameResult(objResult)
{
if (objResult.error)
{
alert(objResult.errorDetail.string + “ “ + ➥
objResult.errorDetail.code + “ “ + objResult.errorDetail.raw);

}

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX76

else
{
alert(objResult.value);

}
}
</script>
</body>
</html>

The previous example showed how to call the GetCurrentSiteName() web service method with-
out passing any arguments to it. If you want to call a web service via the WebService behavior and
pass multiple arguments to the web service, you can do it like this:

var intId = service.HelloService.callService(OnGetNameResult, ➥
“GetCurrentSiteName”, “arg1”, “arg2”);

■Note To ensure that the useService() method works correctly, it should be placed inside a handler for the
onload event, so that the first attempt to call a method in the behavior only occurs after the page has been down-
loaded and parsed. Web services referenced by the useServer() method need to reside on the same domain as
the web server.

Web Service Message Types
At this point, you have seen how to create a web service on a Windows SharePoint Services server.
You have also seen how to call web services via client-side JavaScript using the XMLHttpRequest
object and the WebService behavior. This section is dedicated to discussing the types of responses
that can be given by web services.

Plain Text
If a web service just needs to return simple data, a plain text response will be sufficient. If the web
service returns a single value, the JavaScript code would use an XMLHttpRequest object to issue a
request and store the result in a variable. Calling a web service via XMLHttpRequest was discussed in
a previous section, “Retrieving Data via XMLHttpRequest.” The part of the code that assigns the web
service response to a JavaScript variable would look something like this:

var strResponse = _objRequest.responseText;

Plain text is suitable for simple data structures as well. Suppose a web service response con-
tains name, city, and country information. The web service could return this information in plain
text like this: MyName|MyCity|MyCountry. The advantage of this format is that it contains a mini-
mal amount of information with very little overhead. This is only for simple data structures; if you
want to pass complex data structures, you are better off using XML or JavaScript Object Notation
(JSON) formats. The section “JSON Messages” later in this chapter discusses JSON in detail. The fol-
lowing code fragment shows an example of accepting a simple data structure in plain text format:

// web service response looks like this: MyName|MyCity|MyCountry
var arrResult = objRequest.responseText.split(‘|’);
var strName = arrResult[0];
var strCity = arrResult[1];
var strCountry = arrResult[2];

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 77

HTML Response
Web service responses can also contain HTML. Now we are entering the domain of Web Services for
Remote Portlets (WSRP). We have dedicated Chapter 6 to WSRP, so we will not discuss the ins and
outs of returning HTML via a web service here.

The following line of code shows how to use an HTML response and update the contents of a
page dynamically using DHTML:

document.getElementById(‘MyDisplay’).innerHTML = strHtmlResponse;

XML Message
All web service responses are wrapped in XML (SOAP), whether the response itself is plain text, HTML,
XML, or JSON. You can choose to work with XML directly in JavaScript. Let’s say we have a web service
with a method called Hi() that returns the following response (plain text wrapped in XML):

<?xml version=”1.0” encoding=”utf-8” ?>
<string xmlns=”http://tempuri.org/”>Hi</string>

Using the XMLHttpRequest object’s responseText property returns the value Hi (in plain text).
You can access the XML of the response by using the XMLHttpRequest object’s responseXML property.
XML can be used to transfer complex data structures and is very flexible. In addition, you can use
XML schemas to define the format of an XML message in an unambiguous manner. The following
code fragment shows how to work with XML using JavaScript:

var objXmlDom = objRequest.responseXML;
alert(objXmlDom.documentElement.firstChild);

JSON Messages
JSON (pronounced Jason) is a serialization format created in 2002 as (supposedly) a cleaner and
lighter alternative to XML. It is possible to express simple as well as complex types in JSON. JSON
is based on a subset of the JavaScript programming language and is very easy to parse and gener-
ate in a JavaScript programming environment. This makes JSON a well-suited, lightweight
data-interchange format for browser-server communication. If you want to learn more about
JSON, visit http://www.json.org/.

A JSON representation of a string is a collection of zero or more characters wrapped in double
quotes. This means the JSON representation of the name William Bender looks like this: “William
Bender”. A JSON representation can be converted to a JavaScript (simple or complex) type using the
JavaScript eval() function. You could also dynamically generate a new function that handles the
conversion using the Function() function. Both approaches are shown here:

var strJSON = “\”William Bender\””;
var strResult = eval(strJSON);
strResult = new Function(“return “ + strJSON);

The JSON representation of a number is identical to the number itself. For example, the JSON
representation of the number 7 is 7:

var strJSON = “7”;
var intResult = eval(strJSON);

The JSON representation of a Boolean is either true or false. Here’s an example:

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX78

var strJSON = “true”;
var blnResult = eval(strJSON);
if (blnResult)
{
alert(blnResult);

}

An array is an ordered collection of values. The JSON representation of an array begins with a
left bracket ([) and ends with a right bracket (]). Values are separated by a comma (,). The JSON rep-
resentation of a number array looks like this: [1, 2, 3]. Here’s an example:

var strJSON = “[1, 2, 3]”;
var arrResult = eval(strJSON);
alert(arrResult[0]);

The JSON representation of a string array looks like this: [“Bob”, “Sue”]. Here’s an example:

var strJSON = “[\”Bob\”, \”Sue\”]”;
var arrResult = eval(strJSON);
alert(arrResult[1]);

Objects are unordered sets of name-value pairs. JSON representations of objects are enclosed
by curly braces ({}). Each name is followed by a colon (:). Name-value pairs are separated by com-
mas (,). Look at the following definition of a JavaScript object called Person containing Name and Age
properties:

function Person(strName, strAge)
{
this.Name = strName;
this.Age = strAge;

}

The JSON representation of the Person object looks like this: {“Name”:”Jack”,”Age”:47}.
Although you are able to use the eval() function to convert this JSON string representation to a
JavaScript object containing Name and Age properties, this is more complex than converting JSON
representations to simple types. Instead, we recommend you use a JSON parser to do the conver-
sion for you.

Another argument for using a JSON parser is that the eval() function compiles and executes
any JavaScript code. This makes you vulnerable to script injection attacks. A good JSON parser will
offer safeguards against this sort of attack and thus will be safer.

If you want to use a JSON parser, you can download one at http://www.json.org/json.js.
The parser consists of only 120 lines of code including comments and is very easy to use. Add the
JSON parser to the web part resources folder ([drive letter]:\[root folder of SharePoint web applica-
tion] \wpresources) and register the JavaScript library containing the JSON parser with the web part
page. In an earlier section, “JavaScript in Web Parts,” we explained how to register JavaScript
libraries from within a web part with web part pages.

The following example shows how to convert the JSON object representation
{“Name”:”Jack”,”Age”:47} to a JavaScript object using the parseJSON() function. The parseJSON()
function is defined within the JSON parser library:

var strJSON = “{\”Name\”:\”Jack\”,\”Age\”:47}”;
var objPerson = strJSON.parseJSON();
alert(objPerson.Name + “ “ + objPerson.Age);

■Note It is possible to create complex object hierarchies via JSON because nested types are allowed.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 79

It is easy to retrieve the JSON representation of a JavaScript type via the toJSONString() func-
tion that is defined within the JSON parser library. This is shown in the following code fragment:

function Person(strName, strAge)
{
this.Name = strName;
this.Age = strAge;

}

var objPerson = new Person(“Jason”, 47);
var strPerson = objPerson.toJSONString();
alert(strPerson);

At first look, JSON seems to be less verbose than XML. However, you should not take this for
granted. We have seen complex structures where the differences between XML and JSON represen-
tations were minimal. If you care a lot about the size of data, you should consider ZIP-encoding the
data before sending it to the browser. We have seen examples where the zipped XML object repre-
sentation is actually smaller than the zipped JSON representation. We would advise you to
experiment first if you want to claim the JSON representation is the smallest.

In our opinion, the size of a JSON message probably will not be the deciding factor when it
comes to choosing a message format. A disadvantage of JSON compared to XML is that you cannot
describe the structure of a JSON message the way you can describe XML messages using schemas.
We also believe JSON has the disadvantage of being less readable compared to XML object repre-
sentations. The big advantage of JSON is that it is a representation of JavaScript types built into the
JavaScript programming language that requires very little coding and processing.

Installing ASP.NET Ajax
If you want to install ASP.NET Ajax, go to http://ajax.asp.net, click the Downloads link, and down-
load ASP.NET 2.0 AJAX Extensions 1.0. After the download is complete, installation is easy; just click
the ASPAJAXExtSetup.msi file and follow the setup wizard. After installation, start Visual Studio
2005. Choose File ➤ New ➤ Web Site. Under the My Templates section, you should see a new entry
called the ASP.NET AJAX-Enabled Web Site template. Choose this template if you want to create a
new ASP.NET Ajax–enabled web site.

You should also install the ASP.NET AJAX Control Toolkit. This toolkit offers a range of Ajax-
enabled controls. Just download the toolkit and extract AjaxControlToolkit.zip somewhere on your
local file system. In the section “Building an Autocompletion Web Part” later in this chapter, you will
learn how to use one of the controls in the ASP.NET AJAX Control Toolkit.

Building a Performance Counter Web Part
At the time of writing, ASP.NET Ajax is not officially supported in SharePoint 2007 environments. We
hear that after the release of the first service pack for Windows SharePoint Services 2007, ASP.NET
Ajax will be supported. Until then, we have to jump through some hoops to add support for
ASP.NET Ajax in Microsoft Office SharePoint Server 2007 environments.

Creating a Performance Counter Web Service
In the next example, we show how to build a SharePoint web part that uses ASP.NET Ajax to display
server performance counters. The web part will continue updating the performance counter by
polling a web service that returns performance information.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX80

In our example, we have chosen to use the following performance counters: Processor/%
Processor Time, Web Service/Total Bytes Sent, and Web Service/Bytes Received/sec. We have chosen
these counters randomly—our only criterion being that the performance counter values need to
change often. When implementing a performance counter web part for an enterprise, you will
probably be more interested in other performance counters. For example, you could create a web
part that displays the key performance counters used by the Microsoft IT staff to monitor the per-
formance of SharePoint Products and Technologies. A detailed overview of those performance
counters can be found on the following web site: http://www.microsoft.com/technet/itsolutions/
msit/infowork/spsperfnote.mspx.

The following code fragment shows how to retrieve the value for the Processor Time perform-
ance counter. In order to try out the code, you need to import the System.Diagnostics namespace.
As an important side note, the first call to the PerformanceCounter class’s NextValue() method
always returns a zero. Normally, you would create a static member containing an instance of the
PerformanceCounter class, or store the instance in the ASP.NET Session object. In our implementa-
tion, we take a shortcut and call the NextValue() method twice with a two-second interval between
two calls. This way we can retrieve a realistic indicator of current processor usage, instead of a zero.

PerformanceCounter objCounter = new PerformanceCounter();
objCounter.CategoryName = “Processor”;
objCounter.CounterName = “% Processor Time”;
objCounter.InstanceName = “_Total”;
objCounter.MachineName = “.”; // current computer
objCounter.ReadOnly = true;

int intCurrentCpuUsage = Convert.ToInt32(objCounter.NextValue());
Thread.Sleep(2000);

return objCounter.NextValue();

The easiest way to retrieve performance counter names, category names, and instance names
is via the Visual Studio Server Explorer. Open Visual Studio 2005 and choose View ➤ Server Explorer.
Within the Server Explorer, expand Servers ➤ [server name] ➤ Performance Counters ➤ [category
name] ➤ [counter name]. Then choose the instance name you are interested in.

■Note You can use the Extensible Performance Counter List (Exctrlst.exe) tool to enable or disable performance
categories. This tool can be downloaded from the Microsoft web site (http://www.microsoft.com).

The first step to create the performance counter web part is to make a new ASP.NET
Ajax–enabled virtual directory and add a web service that returns the values of various performance
counters, as shown in the following steps:

1. Open Windows Explorer and navigate to [drive letter]:\inetpub\wwwroot.

2. Create a new folder and call it AskMe2.

3. Choose Start ➤ Run, and type inetmgr.

4. In Internet Information Services Manager, expand the [server name] (local computer) node
➤ Web Sites ➤ Default Web Site.

5. Right-click the AskMe2 folder and choose Properties.

6. In the AskMe2 Properties window, click Create.

7. Click OK.

8. Open Visual Studio 2005.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 81

9. Choose File ➤ New ➤ Web Site.

10. Choose the ASP.NET AJAX-Enabled Web Site template. Make sure the Location type value is
set to HTTP. Set the location to the following value: http://localhost/askme2.

At this point, you have created an ASP.NET Ajax web site called AskMe2. Using the following
steps, add a web service to this project called PerformanceService. This service will return a couple
of performance counter values. The PerformanceService web service will contain three methods:
GetProcessorTime(), GetCounter2(), and GetCounter3().

1. Right-click the AskMe2 project and choose Add New Item ➤ Web Service.

2. Choose the following name: PerformanceService.asmx. Make sure the Place Code in
Separate File check box is not checked.

3. Click Add.

Later on in this section, we will use ASP.NET Ajax within a web part to call this web service from
the client side. To be able to support such a scenario, we need to add the [ScriptService] attribute
to the web service, which indicates that the web service is intended to be used by ASP.NET Ajax.
This means that requests for such web services are handled by a special ASP.NET Ajax HTTP han-
dler. Under the hood, if this attribute is present, a JavaScript proxy is created that is able to
communicate with the PerformanceTest web service. The [ScriptService] attribute is located in
the System.Web.Script.Services namespace, which is a part of the System.Web.Extensions assem-
bly. Listing 2-8 shows how to use the [ScriptService] attribute and contains the entire code for the
PerformanceService web service. This code should be added in its entirety to the PerformanceSer-
vice.asmx file (replacing its previous content).

Listing 2-8. Building a PerformanceService Web Service with Support for ASP.NET Ajax

<%@ WebService Language=”C#” Class=”LoisAndClark.PerformanceService” %>

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Diagnostics;
using System.Threading;
using System.Web.Script.Services;

namespace LoisAndClark
{

[WebService(Namespace = “http://tempuri.org/”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[ScriptService]
public class PerformanceService : System.Web.Services.WebService
{
[WebMethod]
public float GetProcessorTime()
{
PerformanceCounter objCounter = new PerformanceCounter();
objCounter.CategoryName = “Processor”;
objCounter.CounterName = “% Processor Time”;
objCounter.InstanceName = “_Total”;
objCounter.MachineName = “.”;
objCounter.ReadOnly = true;

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX82

int intCurrentCpuUsage = Convert.ToInt32(objCounter.NextValue());
Thread.Sleep(2000);

return objCounter.NextValue();
}

[WebMethod]
public float GetCounter2()
{
PerformanceCounter objCounter = new PerformanceCounter();
objCounter.CategoryName = “Web Service”;
objCounter.CounterName = “Total Bytes Sent”;
objCounter.InstanceName = “_Total”;
objCounter.MachineName = “.”;
objCounter.ReadOnly = true;

float fltPagesPerSecond = objCounter.NextValue();
Thread.Sleep(2000);

return objCounter.NextValue();
}

[WebMethod]
public float GetCounter3()
{
PerformanceCounter objCounter = new PerformanceCounter();
objCounter.CategoryName = “Web Service”;
objCounter.CounterName = “Bytes Received/sec”;
objCounter.InstanceName = “_Total”;
objCounter.MachineName = “.”;
objCounter.ReadOnly = true;

float fltCurrentCpuUsage = objCounter.NextValue();
Thread.Sleep(2000);

return objCounter.NextValue();
}

}
}

In this section, we discussed how to create a web service returning information about various
performance counters on a SharePoint server and showed how to implement a web part that uses
Ajax to poll for this information.

Creating a Test Client
Now that you have created a web service, you’ll need a test client. In the next step, you will add an
.aspx page to the AskMe2 project that uses ASP.NET Ajax to call the PerformanceService web service.
Click Add New Item ➤ Web Form, call the page PerformanceTest.aspx, and make sure the check box
Place Code in Separate File is not checked.

There is nothing special about the page yet. You have to add some parts to it to make the
page an ASP.NET Ajax–enabled client. First you need to add the ASP.NET Ajax script manager to
the PerformanceTest.aspx page. You can do this manually or by opening the page in Design Mode
and dragging the ScriptManager control, located in the Toolbox AJAX Extensions section, onto the
page. In the following fragment, the ASP.NET Ajax script manager is used to add a reference to
the PerformanceService web service:

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 83

<form id=”form1” runat=”server”>
<div>
<asp:ScriptManager ID=”ScriptManager1” runat=”server”>
<Services>
<asp:ServiceReference Path=”~/PerformanceService.asmx” />

</Services>
</asp:ScriptManager>

</div>
</form>

The ASP.NET Ajax script manager is the brains of every ASP.NET Ajax–enabled ASP.NET page.
The script manager offers functionality for developers and orchestrates partial page refreshes and
incremental updates, and its set of responsibilities will become even more extensive in the future.
The script manager also renders all client-side registrations for the ASP.NET Ajax script library.

The next interesting bit of the PerformanceTest.aspx page is a JavaScript function called
GetPerfCounter() that we will add ourselves. This JavaScript function is responsible for communi-
cating with the PerformanceService web service from the client side.

Because the PerformanceService web service is ASP.NET Ajax–enabled, a JavaScript proxy is
generated automatically that allows us to use JavaScript to talk to the web service. Every web service
has a corresponding JavaScript object, every web service method a corresponding JavaScript
method that is part of the JavaScript object representing the web service. A JavaScript web service
method has the following format:

[namespace].[type name].[method name]([arguments])

This means that you can call the PerformanceService web service’s GetProcessTime() method
by calling the LoisAndClark.PerformanceService.GetProcessorTime() JavaScript method. This func-
tion is a JavaScript proxy created by the ASP.NET Ajax framework. The proxy calls the actual
PerformanceService web service asynchronously. As an argument to the JavaScript proxy, you will
need to pass the name of the JavaScript function (in this case OnRequestComplete()) that will handle
the web service response. You can also pass the name of JavaScript function that handles failure (in
this case OnRequestFailure()). If everything goes well, the web service response is passed as an
argument to the OnRequestComplete() method; otherwise you need to do some error handling in the
OnRequestFailure() method event handler. The following code fragment shows JavaScript code
responsible for communicating with the PerformanceService web service:

function GetPerfCounter()
{
LoisAndClark.PerformanceService.GetProcessorTime(➥
OnRequestComplete, ➥
OnRequestFailure);

}

function OnRequestComplete(strResult)
{
var objDisplay = document.getElementById(“Results”);
objDisplay.innerHTML = strResult;

}

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX84

function OnRequestFailure(error)
{
var strStackTrace = error.get_stackTrace();
var strMessage = error.get_message();
var strStatusCode = error.get_statusCode();
var strExceptionType = error.get_exceptionType();
var strTimedout = error.get_timedOut();

alert(“Error\n” +
“Stack Trace: “ + strStackTrace + “\n” +
“Service Error: “ + strMessage + “\n” +
“Status Code: “ + strStatusCode + “\n” +
“Exception Type: “ + strExceptionType + “\n” +
“Timedout: “ + strTimedout);

}

Listing 2-9 shows the complete code for PerformanceTest.aspx.

Listing 2-9. Creating a Test Client for the Performance Counter Web Service

<%@ Page Language=”C#” %>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>
<title>PerformanceService test page</title>

</head>
<body>
<form id=”form1” runat=”server”>
<div>

<asp:ScriptManager ID=”ScriptManager1” runat=”server”>
<Services>
<asp:ServiceReference Path=”~/PerformanceService.asmx” />

</Services>
</asp:ScriptManager>

<input id=”GetPerformanceCounter” type=”button” ➥
value=”Get Performance Counter” onclick=”GetPerfCounter()” />

</div>
</form>

<script type=”text/javascript” language=”javascript”>
<!—
function GetPerfCounter()
{
LoisAndClark.PerformanceService.GetProcessorTime(➥
OnRequestComplete, ➥
OnRequestFailure);

}

function OnRequestComplete(strResult)
{
var objDisplay = document.getElementById(“Results”);
objDisplay.innerHTML = strResult;

}

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 85

function OnRequestFailure(error)
{
var strStackTrace = error.get_stackTrace();
var strMessage = error.get_message();
var strStatusCode = error.get_statusCode();
var strExceptionType = error.get_exceptionType();
var strTimedout = error.get_timedOut();

alert(“Error\n” +
“Stack Trace: “ + strStackTrace + “\n” +
“Service Error: “ + strMessage + “\n” +
“Status Code: “ + strStatusCode + “\n” +
“Exception Type: “ + strExceptionType + “\n” +
“Timedout: “ + strTimedout);

}
//—>
</script>

</body>
</html>

Right-click PerformanceTest.aspx and select Set As Start Page. Press F5 to start the web applica-
tion. You will see a pop-up window asking whether you would like to enable debugging. Choose
Modify the Web.config to enable debugging and click OK. If you click the Get Performance Counter
button, you will see how the PerformanceService web service is called via ASP.NET Ajax from the
client-side application. The result is shown in Figure 2-10.

Figure 2-10. The Get Performance Counter button

Do not close the browser yet. Right-click PerformanceTest.aspx and select View Source. Find
the <script> element containing a reference to WebResource.axd and look at it. It will look similar
to the following:

<script src=”/AskMe2/WebResource.axd?d=[encoded information] ➥
&t=[encoded information] “ type=”text/javascript”></script>

The src attribute of the <script> element refers to an HTTP handler called WebResource.axd.
This HTTP handler enables ASP.NET pages to load embedded resources from .NET assemblies.
Examples of such embedded resources are client scripts, images, and data files. In this case, the ref-
erence to WebResource.axd will cause the server to generate the ASP.NET Ajax client library (written
in JavaScript). The d argument in the URL refers to an encrypted identifier that uniquely identifies
the requested web resource. The t argument is an optional time stamp for the requested assembly
and is used for caching purposes.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX86

■Note Chapter 1 discusses how to create custom web resource assemblies.

If you continue looking through the HTML source of the rendered PerformanceTest.aspx page,
you will find an interesting part that adds a reference to ScriptResource.axd:

<script src=”/AskMe2/ScriptResource.axd?d=[enc info]&t=[enc info]” ➥
type=”text/javascript”></script>

At the time of this writing, the ScriptResource.axd file is not well documented, but one of its
jobs is to reduce the size of script files. Other tasks for the ScriptResource.axd file seem to include
determining the culture of the user, for localization settings such as language, decimal digits, cur-
rency symbols, date-time format, and names of the month, as well as setting the client-side
Sys.CultureInfo object accordingly (which is a part of the ASP.NET Ajax JavaScript framework).

The final interesting part of the rendered PerformanceTest.aspx page’s HTML source adds a ref-
erence to the PerformanceService web service JavaScript proxy:

<script src=”PerformanceService.asmx/js” type=”text/javascript”></script>

The JavaScript proxy is responsible for communicating with the web service. At the same time,
the proxy makes it very easy for the client side to call web services. At this point, you have created a
web service that supports ASP.NET Ajax and created a test client for it. In the next section, you will
learn how to Ajax-enable Microsoft Office SharePoint Server 2007 and eventually how to use
ASP.NET Ajax in a web part.

ASP.NET Ajax-Enabling a Microsoft Office SharePoint Server
2007 Web Application
Now that we have identified the important parts of an ASP.NET Ajax client, you are ready to incor-
porate ASP.NET Ajax in a web part. To do this, we first need to copy some of the web.config file of an
ASP.NET Ajax-enabled web site and add it to the web.config file of a SharePoint web application.

■Note At the time of writing, ASP.NET Ajax is not supported officially in SharePoint environments. There are plans
to add support for ASP.NET Ajax in Microsoft Office SharePoint Server 2007 in service pack 1.

Basically, to be able to support ASP.NET Ajax in Microsoft Office SharePoint Server 2007, you
need to merge the web.config file of an ASP.NET Ajax-enabled web site with the contents of a
web.config file for a SharePoint web application. This is a tedious and error-prone job, but for now,
because of the lack of official support in Microsoft Office SharePoint Server 2007 for ASP.NET Ajax,
you need to do it.

In the next procedure, we will discuss the steps required to ASP.NET Ajax-enable a SharePoint
web application. First, we will copy configuration information to a SharePoint web.config file, regis-
ter ASP.NET Ajax controls, and add a reference to the ASP.NET Ajax assembly (called
System.Web.Extensions).

1. Open the web.config file of the AskMe2 ASP.NET Ajax-enabled web site (the ASP.NET Ajax
web.config file).

2. Open the web.config file of the SharePoint web application (the SharePoint web.config file).

3. Locate the <sectionGroup> section in the ASP.NET Ajax web.config file. This section looks
like Listing 2-10.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 87

Listing 2-10. The <SectionGroup> Section of the ASP.NET Ajax web.config File

<sectionGroup name="system.web.extensions" ➥
type="System.Web.Configuration.SystemWebExtensionsSectionGroup, ➥
System.Web.Extensions, Version=1.0.61025.0, Culture=neutral, ➥
PublicKeyToken=31bf3856ad364e35">

<sectionGroup name="scripting" ➥
type="System.Web.Configuration.ScriptingSectionGroup, ➥
System.Web.Extensions, ➥
Version=1.0.61025.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35">

<section name="scriptResourceHandler" ➥
type="System.Web.Configuration.ScriptingScriptResourceHandlerSection, ➥
System.Web.Extensions, Version=1.0.61025.0, Culture=neutral, ➥
PublicKeyToken=31bf3856ad364e35" requirePermission="false" ➥
allowDefinition="MachineToApplication"/>

<sectionGroup name="webServices" ➥
type="System.Web.Configuration.ScriptingWebServicesSectionGroup, ➥
System.Web.Extensions, Version=1.0.61025.0, Culture=neutral, ➥
PublicKeyToken=31bf3856ad364e35">

<section name="jsonSerialization" ➥
type="System.Web.Configuration.ScriptingJsonSerializationSection, ➥
System.Web.Extensions, Version=1.0.61025.0, Culture=neutral, ➥
PublicKeyToken=31bf3856ad364e35" requirePermission="false" ➥
allowDefinition="Everywhere"/>

<section name="profileService" ➥
type="System.Web.Configuration.ScriptingProfileServiceSection, ➥
System.Web.Extensions, Version=1.0.61025.0, Culture=neutral, ➥
PublicKeyToken=31bf3856ad364e35" requirePermission="false" ➥
allowDefinition="MachineToApplication"/>

<section name="authenticationService" ➥
type="System.Web.Configuration.ScriptingAuthenticationServiceSection, ➥
System.Web.Extensions, Version=1.0.61025.0, Culture=neutral, ➥
PublicKeyToken=31bf3856ad364e35" requirePermission="false" ➥
allowDefinition="MachineToApplication"/>

</sectionGroup>
</sectionGroup>

</sectionGroup>

4. Copy this section and add it to the <configSections> section of the SharePoint web.config
file.

5. Locate the <controls> section within the <pages> section of the ASP.NET Ajax web.config
file. This section looks like the following code fragment:

<pages>
<controls>
<add tagPrefix=”asp” namespace=”System.Web.UI” ➥
assembly=”System.Web.Extensions, Version=1.0.61025.0, ➥
Culture=neutral, PublicKeyToken=31bf3856ad364e35”/>

</controls>
</pages>

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX88

6. Copy the <controls> section and add it to the <pages> element in the SharePoint
web.config file.

7. In the <compilation> section of the ASP.NET Ajax web.config file, locate the <Assemblies>
section. This section looks like the following code fragment:

<assemblies>
<add assembly=”System.Web.Extensions, Version=1.0.61025.0, ➥
Culture=neutral, PublicKeyToken=31bf3856ad364e35”/>

</assemblies>

8. Copy the reference to System.Web.Extensions.dll to the <Assemblies> section of the Share-
Point web.config file. The following code fragment shows the reference to this assembly

<add assembly=”System.Web.Extensions, Version=1.0.61025.0, ➥
Culture=neutral, PublicKeyToken=31bf3856ad364e35”/>

9. In the ASP.NET Ajax web.config file, locate the <httpHandlers> section, and copy the regis-
trations in this section.

<add verb=”*” path=”*.asmx” validate=”false”
type=”System.Web.Script.Services.ScriptHandlerFactory, ➥
System.Web.Extensions, Version=1.0.61025.0, Culture=neutral, ➥
PublicKeyToken=31bf3856ad364e35”/>
<add verb=”*” path=”*_AppService.axd” validate=”false”
type=”System.Web.Script.Services.ScriptHandlerFactory, ➥
System.Web.Extensions, Version=1.0.61025.0, Culture=neutral, ➥
PublicKeyToken=31bf3856ad364e35”/>
<add verb=”GET,HEAD” path=”ScriptResource.axd”
type=”System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, ➥
Version=1.0.61025.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35” ➥
validate=”false”/>

10. Add these registrations to the <httpHandlers> section of the SharePoint web.config file.

11. Locate the <httpModules> section in the ASP.NET Ajax web.config file and copy the Script-
Module registration that looks like the following code fragment:

<add name=”ScriptModule” type=”System.Web.Handlers.ScriptModule, ➥
System.Web.Extensions, Version=1.0.61025.0, Culture=neutral, ➥
PublicKeyToken=31bf3856ad364e35”/>

12. Add this registration to the <httpModules> section of the SharePoint web.config file.

13. Go back to the beginning of the ASP.NET Ajax web.config file and locate the <sectionGroup>
element named Scripting. Copy the fully qualified assembly name from the type attribute
of this element. The following code fragment shows the fully qualified assembly name:

System.Web.Extensions, Version=1.0.61025.0, Culture=neutral, ➥
PublicKeyToken=31bf3856ad364e35

14. Locate the <SafeControls> section of the SharePoint web.config file and add a new
<SafeControl> entry for the System.Web.Extensions assembly. This section looks like the
following code fragment:

<SafeControl Assembly=”System.Web.Extensions, Version=1.0.61025.0, ➥
Culture=neutral, PublicKeyToken=31bf3856ad364e35” ➥
Namespace=”System.Web.UI” TypeName=”*” Safe=”True” />

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 89

15. Locate the <system.web.extensions> section in the ASP.NET Ajax web.config file. This sec-
tion looks like Listing 2-11.

Listing 2-11. The <system.web.extensions> Section of the ASP.NET Ajax web.config File

<system.web.extensions>
<scripting>
<webServices>
<!—
Uncomment this line to customize maxJsonLength and add a custom converter
—>
<!—
<jsonSerialization maxJsonLength=”500”>
<converters>
<add name=”ConvertMe” type=”Acme.SubAcme.ConvertMeTypeConverter”/>

</converters>
</jsonSerialization>
—>
<!—
Uncomment this line to enable the authentication service. Include
requireSSL=”true” if appropriate.
—>
<!—
<authenticationService enabled=”true” requireSSL = “true|false”/>
—>
<!—
Uncomment these lines to enable the profile service. To allow profile
properties to be retrieve and modified in ASP.NET AJAX applications,
you need to add each property name to the readAccessProperties and
writeAccessProperties attributes.
—>
<!—
<profileService enabled=”true” ➥
readAccessProperties=”propertyname1,propertyname2” ➥
writeAccessProperties=”propertyname1,propertyname2” />
—>
</webServices>
<!—
<scriptResourceHandler enableCompression=”true” enableCaching=”true” />
—>

</scripting>
</system.web.extensions>

16. Add this information to the <configuration> section of the SharePoint web.config file.

17. In the ASP.NET Ajax web.config file, locate the <system.webServer> element. This section
looks like Listing 2-12.

Listing 2-12. The <system.webServer> Section of the ASP.NET Ajax web.config File

<system.webServer>
<validation validateIntegratedModeConfiguration=”false”/>
<modules>
<add name=”ScriptModule” preCondition=”integratedMode”
type=”System.Web.Handlers.ScriptModule, System.Web.Extensions,
Version=1.0.61025.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35”/>

</modules>

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX90

<handlers>
<remove name=”WebServiceHandlerFactory-Integrated”/>
<add name=”ScriptHandlerFactory” verb=”*” path=”*.asmx” ➥
preCondition=”integratedMode” ➥
type=”System.Web.Script.Services.ScriptHandlerFactory, ➥
System.Web.Extensions, Version=1.0.61025.0, Culture=neutral, ➥
PublicKeyToken=31bf3856ad364e35”/>
<add name=”ScriptHandlerFactoryAppServices” verb=”*” ➥
path=”*_AppService.axd” preCondition=”integratedMode” ➥
type=”System.Web.Script.Services.ScriptHandlerFactory, ➥
System.Web.Extensions, Version=1.0.61025.0, Culture=neutral, ➥
PublicKeyToken=31bf3856ad364e35”/>
<add name=”ScriptResource” preCondition=”integratedMode” ➥
verb=”GET,HEAD” path=”ScriptResource.axd” ➥
type=”System.Web.Handlers.ScriptResourceHandler, ➥
System.Web.Extensions, Version=1.0.61025.0, ➥
Culture=neutral, PublicKeyToken=31bf3856ad364e35”/>

</handlers>
</system.webServer>

18. Add this section to the <configuration> element of the SharePoint web.config file, just after
the <system.web.extensions> section.

As stated before, it is difficult to merge the ASP.NET Ajax part of a web.config file with a Share-
Point web.config file manually. At this point, you have ASP.NET Ajax-enabled your SharePoint web
application, meaning you can call ASP.NET Ajax-enabled web services within your SharePoint
environment.

Ajax-Enabling a Web Part
In this section, you will learn how to create an Ajax-enabled web part that calls the Performance
Counter web service. As the first step, create a new web part. If you are unsure how to do this, refer
to Chapter 1. Create a new JavaScript library called ajax.js and place it in the web part resources
folder. Specify an event handler for the PreRender event in the web part constructor and use the
PreRender event handler to register the Ajax.js JavaScript library in it. The following code fragment
shows how to do this:

public AjaxClient()
{
PreRender += new EventHandler(PerformanceCounterWebPart_PreRender);

}

void PerformanceCounterWebPart_PreRender(object sender, EventArgs e)
{
if (!Page.ClientScript.IsClientScriptBlockRegistered(“Ajax”))
{
Page.ClientScript.RegisterClientScriptInclude(“Ajax”, ➥
“/wpresources/ajax.js”);

}
}

The ASP.NET Ajax ScriptManager object takes care of managing the required client-side
registrations. If you want your web part to use Ajax, you need to make sure an instance of the
ScriptManager is registered on the page containing the Ajax-enabled web part. You can do this in
the CreateChildControls() method. The following code fragment shows how to register a
ScriptManager object that contains a reference to the Performance Counter web service:

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 91

string strPath = “/AskMe2/PerformanceService.asmx”;
ServiceReference objReference = new ServiceReference();
objReference.Path = strPath;

ScriptManager objManager = new ScriptManager();
objManager.Services.Add(objReference);
Controls.Add(objManager);

■Note Since only a single instance of a ScriptManager object is allowed on a single page, it is easier to add
such a registration to the master page of a SharePoint site. In this section, the ScriptManager object is registered
dynamically within the web part itself; in the section “Building a Company Contact Web Part Using ASP.NET Ajax
and JSON” you will learn how to register a ScriptManager object within the master page of a SharePoint site.

The complete code listing for the performance counter web part looks like Listing 2-13.

Listing 2-13. The Performance Counter Web Part
using System;

using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;
using System.Web.UI.WebControls;

namespace AjaxClient
{
[Guid(“be6ec8e3-2706-4f52-bdf9-f6eb18fc65c0”)]
public class AjaxClient : System.Web.UI.WebControls.WebParts.WebPart
{
public AjaxClient()
{
PreRender += new EventHandler(PerformanceCounterWebPart_PreRender);

}

void PerformanceCounterWebPart_PreRender(object sender, EventArgs e)
{
if (!Page.ClientScript.IsClientScriptBlockRegistered(“Ajax”))
{
Page.ClientScript.RegisterClientScriptInclude(“Ajax”, ➥
“/wpresources/ajax.js”);

}
}

protected override void CreateChildControls()
{
try
{
string strPath = “/AskMe2/PerformanceService.asmx”;
ServiceReference objReference = new ServiceReference();
objReference.Path = strPath;

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX92

ScriptManager objManager = new ScriptManager();
objManager.Services.Add(objReference);
Controls.Add(objManager);

string strDisplay = “<div id=\”ProcessorTimeDisplay\”> ➥
Display 1</div> \n”;
Controls.Add(new LiteralControl(strDisplay));

strDisplay = “<div id=\”Counter2Display\”>Display 2</div> \n”;
Controls.Add(new LiteralControl(strDisplay));

strDisplay = “<div id=\”Counter3Display\”>Display 3</div> \n”;
Controls.Add(new LiteralControl(strDisplay));

}
catch (Exception err)
{
Controls.Add(new LiteralControl(err.Message));

}
}

}
}

The ajax.js JavaScript library calls the PerformanceService web service and defines several
JavaScript handlers for the web service responses. The following line of code shows how to call
PerformanceService’s GetProcessorTime() method and define a JavaScript handler called
OnProcessorTimeResponse that handles the web service response:

LoisAndClark.PerformanceService.GetProcessorTime(OnProcessorTimeResponse);

We have built a mechanism around the Ajax web service calls to make sure web service calls are
made when the client-side application is ready. The complete code for Ajax.js looks like Listing 2-14.

Listing 2-14. Building the Performance Counter JavaScript Library

var intTimeOut = 5000;

function GetProcessorTime()
{
LoisAndClark.PerformanceService.GetProcessorTime(OnProcessorTimeResponse);

}

function GetCounter2()
{
LoisAndClark.PerformanceService.GetCounter2(OnCounter2Response);

}

function GetCounter3()
{
LoisAndClark.PerformanceService.GetCounter3(OnCounter3Response);

}

function OnProcessorTimeResponse(objResult)
{

var objDisplay = document.getElementById(“ProcessorTimeDisplay”);
objDisplay.innerHTML = “Processor time: “ + objResult;
setTimeout(“GetCounter3()”, intTimeOut);

}

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 93

function OnCounter2Response(objResult)
{

var objDisplay = document.getElementById(“Counter2Display”);
objDisplay.innerHTML = “Counter 2: “ + objResult;
setTimeout(“GetProcessorTime()”, intTimeOut);

}

function OnCounter3Response(objResult)
{

var objDisplay = document.getElementById(“Counter3Display”);
objDisplay.innerHTML = “Counter 3: “ + objResult;
setTimeout(“GetProcessorTime()”, intTimeOut);

}

function Init()
{
try
{
if (LoisAndClark != null)
{
GetProcessorTime();
GetCounter2();
GetCounter3();

}
}
catch (err)
{
setTimeout(“Init()”, 1000);

}
}

Init();

The performance counter web part can be seen in action in Figure 2-11.

Figure 2-11. Performance counter web part

Building a Company Contact Web Part Using
ASP.NET Ajax and JSON
In the next example, we show you how to build a company contact web part using ASP.NET Ajax
and JSON. If you want to test the example, you should create a custom SharePoint list that contains
a default title, company name, contact person, city, and country, and call this list ContactInfo (set
the column types of all columns to a single line of text). Figure 2-12 shows the ContactInfo list.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX94

Figure 2-12. Company contact list

The idea behind the company contact web part is that if you type in the name of the company
and click the AutoFill button, the web part will call a web service that retrieves the rest of the form
information for you from the ContactInfo SharePoint list. The web service will return the data in
JSON format, so the client-side application needs to be able to deal with that.

In the next step, you will create the server side of the company contact application. Add a new
web service to the AskMe2 project; make sure the Place Code in Separate File check box is not
checked, and name the web service ContactService.asmx. The following code will loop through
every item in the ContactInfo SharePoint list.

SPSite objSites = new SPSite(strUrl);
SPWeb objSite = objSites.OpenWeb();
SPList objContactList = objSite.Lists[“ContactInfo”];

foreach (SPListItem objItem in objContactList.Items)
{

}

The ContactService web service returns a JSON message containing all contact information.
The ContactService web service will return a JSON message that looks like this:

{“ContactPerson”:”[value]”, “City”:”[value]”, “Country”:”[value]”}

Listing 2-15 shows the complete implementation of the ContactService web service. Make sure
to add a reference to the Microsoft.SharePoint assembly.

Listing 2-15. The Contact Web Service

<%@ WebService Language=”C#” Class=”LoisAndClark.CompanyContact. ➥
ContactService”%>
using System;
using System.Web;
using System.Collections;
using System.Web.Services;
using System.Web.Services.Protocols;
using Microsoft.SharePoint;

namespace LoisAndClark.CompanyContact
{
[WebService(Namespace = “http://tempuri.org/”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[ScriptService]
public class ContactService : System.Web.Services.WebService
{
public ContactService()
{
}

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 95

[WebMethod]
public string GetContactInfo(string strCompanyName)
{
string strResponse = “\”ContactPerson\”:\”{0}\”, \”City\”:\”{1}\”, ➥
\”Country\”:\”{2}\””;
string strUrl = “http://web1:23456/jfz/test”;

try
{
using (SPSite objSites = new SPSite(strUrl))
{
using (SPWeb objSite = objSites.OpenWeb())
{
SPList objContactList = objSite.Lists[“ContactInfo”];
foreach (SPListItem objItem in objContactList.Items)
{
string strName = objItem[“CompanyName”].ToString();
if (strName == strCompanyName)
{
string strContact = objItem[“ContactPerson”].ToString();
string strCity = objItem[“City”].ToString();
string strCountry = objItem[“Country”].ToString();

strResponse = “{“ + String.Format(strResponse, strContact, ➥
strCity, strCountry) + “}”;
break;

}
}

}
}

return strResponse;
}
catch (Exception)
{
throw;

}
}

}
}

■Note The GetContactInfo() method returns a JSON message. This is meant as an example. In a real enter-
prise application, you should probably opt to use a third-party JSON serializer instead of writing your own.

In the section “Building a Performance Counter Web Part,” you learned how to register a
ScriptManager object within a web part. In this section, and the examples that will be discussed in
the rest of this chapter, we will add a single registration of a ScriptManager object to the master page
of a SharePoint site.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX96

■Note The preferred way of registering a ScriptManager object is by adding a single registration to the
master page of a SharePoint site. There may be scenarios where it is not possible to add a ScriptManager
object within a web part early enough in the page lifecycle. Although we have not encountered this situation
ourselves, this issue is reported on Mike Ammerlaan’s blog at http://sharepoint.microsoft.com/blogs/
mike/Lists/Posts/Post.aspx?ID=3. Mike Ammerlaan is a program manager at Microsoft working on Win-
dows SharePoint Services.

In the following procedure, you will learn how to use SharePoint Designer to add a single
ScriptManager registration to the default master page of a SharePoint site.

1. Open a browser and navigate to the SharePoint site that you want to add Ajax-enabled web
parts to.

2. Choose File ➤ Edit with Microsoft Office SharePoint Designer. This opens the SharePoint
site in SharePoint Designer.

3. Expand the _catalogs folder.

4. Expand the masterpage gallery.

5. Double-click default.master. This opens default.master in SharePoint Designer.

6. Switch to Code view.

7. Locate the registration for the web part manager. This looks like the following code fragment:

<WebPartPages:SPWebPartManager id=”m” runat=”Server” />

8. Add the following registration for a ScriptManager object to this page, right after the regis-
tration for the web part manager:

<asp:ScriptManager ID=”theScriptManager” runat=”Server”/>

9. Save the page and close SharePoint Designer.

Now, you have successfully added a registration of a ScriptManager object called
theScriptManager.

The web part code looks very much like the earlier example in the “Building a Performance
Counter Web Part” section of this chapter. The biggest difference is that this web part locates the
ScriptManager in the master page instead of registering a new instance of the ScriptManager object.
The following code fragment shows how to find the ScriptManager object located in the master page
(called theScriptManager) and how to add a reference to the Contact web service to it:

string strPath = “/AskMe2/ContactService.asmx”;
ServiceReference objReference = new ServiceReference();
objReference.Path = strPath;

Control ctlManager = Page.Master.FindControl(“theScriptManager”);
ScriptManager objManager = ctlManager as ScriptManager;
objManager.Services.Add(objReference);

Because the web service returns a JSON response, you also need to add a reference to json.js,
the JavaScript library that facilitates working with JSON. The JSON script library is discussed in fur-
ther detail later in this chapter in the section “JSON Messages.” You also need to register ajax.js,
the custom JavaScript library that contains the logic that calls the web service and processes the
response. Then you need to add the required client registrations, and add fields for company name,
contact person, city, and country to the web part. If you enter a value for the company name, the

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 97

example shows how to use ASP.NET Ajax to autofill the other fields. The complete code listing for
the CompanyContactClient web part looks like Listing 2-16.

Listing 2-16. The Contact Web Part

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;
using System.Web.UI.WebControls;

namespace AjaxClient
{
[Guid(“be6ec8e3-2706-4f52-bdf9-f6eb18fc65c0”)]
public class AjaxClient : System.Web.UI.WebControls.WebParts.WebPart
{
public AjaxClient()
{
PreRender += new EventHandler(PerformanceCounterWebPart_PreRender);

}

void PerformanceCounterWebPart_PreRender(object sender, EventArgs e)
{
if (!Page.ClientScript.IsClientScriptBlockRegistered(“JSON”))
{
Page.ClientScript.RegisterClientScriptInclude(“JSON”, ➥
“/wpresources/json.js”);

}

if (!Page.ClientScript.IsClientScriptBlockRegistered(“Ajax”))
{
Page.ClientScript.RegisterClientScriptInclude(“Ajax”, ➥
“/wpresources/ajax.js”);

}
}

protected override void CreateChildControls()
{
try
{
string strPath = “/AskMe2/ContactService.asmx”;
ServiceReference objReference = new ServiceReference();
objReference.Path = strPath;

Control ctlManager = Page.Master.FindControl(“theScriptManager”);
ScriptManager objManager = ctlManager as ScriptManager;
objManager.Services.Add(objReference);

string strCompanyName = “Name: <input id=\”CompanyName\” ➥
type=\”text\” />”;
Controls.Add(new LiteralControl(strCompanyName));

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX98

string strAutoFill = “<input id=\”AutoFill\” type=\”button\” ➥
value=\”AutoFill...\” onclick=\”AutoFillRequest();\” />
”;
Controls.Add(new LiteralControl(strAutoFill));

string strContactPerson = “Contact: <input id=\”ContactPerson\” ➥
type=\”text\” />
”;
Controls.Add(new LiteralControl(strContactPerson));

string strCity = “City: <input id=\”City\” type=\”text\” />
”;
Controls.Add(new LiteralControl(strCity));

string strCountry = “Country: <input id=\”Country\” ➥
type=\”text\” />
”;
Controls.Add(new LiteralControl(strCountry));

}
catch (Exception err)
{
Controls.Add(new LiteralControl(err.Message));

}
}

}
}

The final part of the company contact ASP.NET Ajax solution is the content of the ajax.js
JavaScript library. It contains a function called AutoFillRequest() that calls the ContactService web
service. A callback function called OnAutoFillResponse() converts the web service response to a
JavaScript object and uses the object to set the values of the contact person, city, and country fields.
The content of the ajax.js JavaScript library looks like Listing 2-17.

Listing 2-17. The Contact JavaScript Library

function AutoFillRequest()
{
var objCompanyName = document.getElementById(“CompanyName”);
LoisAndClark.CompanyContact.ContactService.GetContactInfo(➥
objCompanyName.value, OnAutoFillResponse) ;

}

function OnAutoFillResponse(strResult)
{
var objContact = strResult.parseJSON();

var objContactPerson = document.getElementById(“ContactPerson”);
objContactPerson.value = objContact.ContactPerson;

var objCity = document.getElementById(“City”);
objCity.value = objContact.City;

var objCountry = document.getElementById(“Country”);
objCountry.value = objContact.Country;

}

Figure 2-13 shows the company contact web part with a name typed in by the end user.
In Figure 2-14, the AutoFill has filled in the rest of the fields.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 99

Figure 2-13. The user types in a name in the company contact web part.

Figure 2-14. AutoFill fills in the rest of the fields.

In this section, you have seen how to create a web service that retrieves information from a
SharePoint list and how to create a web part that uses Ajax to fetch and display this information.

Building an Autocompletion Web Part
In this section, we will discuss how to use ASP.NET Ajax controls within a web part. The example in
this section uses the ASP.NET AJAX Toolkit to enhance the user interface in a powerful way. We will
create an autocompletion web part using the ASP.NET Ajax AutoCompleteExtender control. We will
use this control to call a web service that retrieves all SharePoint lists within a SharePoint site, start-
ing with what is typed into a text box. Figures 2-15, 2-16, and 2-17 show how the ASP.NET Ajax
AutoCompleteExtender control works.

Figure 2-15. The text box in the web part

Figure 2-16. The SharePoint lists returned by the web service

Figure 2-17. The SharePoint lists narrowed down after more letters are typed in

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX100

In this example, first we will create a new web service. Add another web service to the AskMe2
project you created previously and call it DocLibExtenderService.asmx. Do not place the code in a
separate file. The DocLibExtenderService web service retrieves all SharePoint lists from a given
SharePoint site, like this:

SPSite objSites = new SPSite(strUrl);
SPWeb objSite = objSites.OpenWeb();
SPListCollection objLists = objSite.Lists;

foreach (SPList objList in objLists)
{
...

}

ASP.NET Ajax autocompletion web services return string arrays containing all results starting
with a given prefix. Because of this, we want to add all lists to a data structure that makes it easy to
sort and filter. We have chosen to use the ADO.NET DataView to do this. The following code frag-
ment shows how to filter and sort document libraries using a DataView.

■Note In the next code example, a DataView object is used to sort the data. Alternatively, we could have used
the DataTable.Select(filterExpression, sort) method.

DataTable dtLists = new DataTable();
dtLists.Columns.Add(“ListName”, typeof(string));

// code that retrieves all SharePoint lists...
// this part is shown later in this section...

foreach (SPList objList in objLists)
{
DataRow drList = dtLists.NewRow();
drList[“ListName”] = objList.Title;
dtLists.Rows.Add(drList);

}

// the initialization of _dvLists is shown later in this section
_dvLists = dtLists.DefaultView;
_dvLists.Sort = “listname ASC”;

string strFilter = “listname LIKE ‘A%’”;
_dvLists.RowFilter = strFilter;

The ASP.NET Ajax autocompletion web service interface is very strict. Not only does it require a
given signature, but the parameter names have to match exactly, otherwise the autocompletion web
service will not work. Although this limits the usefulness of ASP.NET Ajax autocompletion web serv-
ices, they are so powerful that it pays to work around this limitation. The ASP.NET Ajax
autocompletion web service interface looks like this:

public string[] MyMethodName(string prefixText, int count)

The only variable part of this interface is the method name. You are not allowed to change the
signature or parameter names. The return type needs to be some type of string array, although
there is some flexibility here. In the implementation of MyMethodName(), a string array is returned,
as this is one of the data types that can easily be understood by the client-side AutoComplete

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 101

extender. As another example, a generic List collection (List<string>) would work, too. The
prefixText argument contains the prefix of any match found by the autocompletion service. The
count argument limits the maximum number of results. By the way, our example autocompletion
wizard does not implement a maximum result limit and ignores the count argument. The complete
code listing for the autocompletion wizard looks like Listing 2-18.

Listing 2-18. The Autocompletion Web Service

<%@ WebService Language=”C#” Class=”LoisAndClark.DocLibExtenderService” %>

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using Microsoft.SharePoint;
using System.Collections;
using System.Data;
using System.Diagnostics;

namespace LoisAndClark
{
[WebService(Namespace = “http://tempuri.org/”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[ScriptService]
public class DocLibExtenderService : System.Web.Services.WebService
{
static DataView _dvLists = null;

private void InitLists(string strUrl)
{
if (_dvLists == null)
{
DataTable dtLists = new DataTable();
dtLists.Columns.Add(“ListName”, typeof(string));

SPSite objSites = new SPSite(strUrl);
SPWeb objSite = objSites.OpenWeb();
SPListCollection objLists = objSite.Lists;

foreach (SPList objList in objLists)
{
DataRow drList = dtLists.NewRow();
drList[“ListName”] = objList.Title;
dtLists.Rows.Add(drList);

}

_dvLists = dtLists.DefaultView;
_dvLists.Sort = “listname ASC”;
}

}

//Note: it is very important to use the correct names for the arguments!
// The names of the arguments have to match exactly.
[WebMethod]
public string[] GetLists(string prefixText, int count)
{
string strReturn = String.Empty;

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX102

try
{
string strUrl = “http://[server]/[site]/”;
InitLists(strUrl);
string strFilter = String.Format(“listname LIKE ‘{0}%’”, prefixText);
_dvLists.RowFilter = strFilter;

string[] arrLists = new string[_dvLists.Count];
for (int i = 0; i < _dvLists.Count; i++)
{
if (i > count - 1) break;
arrLists[i] = _dvLists[i][“ListName”].ToString();

}

return arrLists;
}
catch (Exception err)
{
Trace.Write(err.Message);
throw;

}
}

}
}

You have completed the server-side part of the autocompletion example. Incorporating the
autocompletion web service into the client is made very easy, thanks to the ASP.NET Ajax
AutoCompleteExtender control that can be found in AjaxControlToolkit.dll.

Using the AutoCompleteExtender control, you can tie the DocLibExtender web service to a text
box called TextBox1. As the end user starts typing into the text box, ASP.NET Ajax calls the
GetLists() method of the web service and shows the web service response in a <div> element
called MyDisplay. The DocLibExtender web service is called as soon as the user types in a minimum
number of keys in the ListsTextBox text box, which equals the value of the AutoCompleteExtender
control’s MinimumPrefixLength property. The maximum number of items that the client wants to
retrieve equals the AutoCompleteExtender control’s CompletionSetCount property, although it’s up
to the service whether or not to do something with this maximum. You can also specify the comple-
tion interval, which is the time it takes between service calls. The code for adding and configuring
an AutoCompleteExtender control looks like this:

AutoCompleteExtender objAuto = new AutoCompleteExtender();
objAuto.ID = “autoComplete1”;
objAuto.TargetControlID = “TextBox1”;
objAuto.ServicePath = “/AskMe2/DocLibExtenderService.asmx”;
objAuto.ServiceMethod = “GetLists”;
objAuto.MinimumPrefixLength = 1;
objAuto.CompletionInterval = 1000;
objAuto.EnableCaching = true;
objAuto.CompletionSetCount = 12;
Controls.Add(objAuto);

Finally, you have to create a web part that uses the AutoCompleteExtender control. To be able
to do this, you first need to set a reference to AjaxControlToolkit.dll, which can be found in [drive
letter]:\[install directory]\AjaxControlToolkit\SampleWebSite\Bin.

The complete code for a web part that uses the AutoCompleteExtender control to communi-
cate with a web service looks like Listing 2-19.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 103

Listing 2-19. The Autocomplete Extender Web Part

using System; using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;
using System.Web.UI.WebControls;
using AjaxControlToolkit;

namespace AjaxClient
{
[Guid(“be6ec8e3-2706-4f52-bdf9-f6eb18fc65c0”)]
public class AjaxClient : System.Web.UI.WebControls.WebParts.WebPart
{
public AjaxClient()
{
}

protected override void CreateChildControls()
{
try
{
string strPath = “/AskMe2/DocLibExtenderService.asmx”;
ServiceReference objReference = new ServiceReference();
objReference.Path = strPath;

Control ctlManager = Page.Master.FindControl(“theScriptManager”);
ScriptManager objManager = ctlManager as ScriptManager;
objManager.Services.Add(objReference);

TextBox txtList = new TextBox();
txtList.ID = “TextBox1”;
Controls.Add(txtList);

AutoCompleteExtender objAuto = new AutoCompleteExtender();
objAuto.ID = “autoComplete1”;
objAuto.TargetControlID = “TextBox1”;
objAuto.ServicePath = “/AskMe2/DocLibExtenderService.asmx”;
objAuto.ServiceMethod = “GetLists”;
objAuto.MinimumPrefixLength = 1;
objAuto.CompletionInterval = 1000;
objAuto.EnableCaching = true;
objAuto.CompletionSetCount = 12;
Controls.Add(objAuto);

}
catch (Exception err)
{
Controls.Add(new LiteralControl(err.Message));

}
}

}
}

In this section, you have learned how to enhance the user interface experience by adding intel-
ligent autocomplete behavior to a web part.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX104

Client-Side Connectable Web Parts
and ASP.NET Ajax
The SharePoint web part infrastructure allows web parts to exchange information at run time. This
mechanism is called web part connections. Connectable web parts can communicate client-side via
JavaScript, avoiding the need for a page postback when exchanging information, and server-side,
requiring page postbacks whenever data is exchanged between web parts. Client-side connectable
web parts and ASP.NET Ajax match each other really well. In this section, we will build two con-
nectable web parts that offer a master-detail view. We do not provide detailed information about
creating connectable web parts here. If you want to learn more about the connected web part infra-
structure, refer to Chapter 5.

■Note The connectable web part framework has been improved considerably in ASP.NET 2.0 compared to
SharePoint 2003. However, there is no support in ASP.NET 2.0 web parts for client-side connections. This is one of
the few areas where the SharePoint 2003 web part connection framework offers more capabilities than can be
found in the ASP.NET 2.0 web part connection framework.

In this section, we will build two SharePoint legacy web parts that take advantage of the fea-
tures offered by the SharePoint 2003 web part connection framework (which is still supported in
Microsoft Office SharePoint Server 2007). We will also use the ContactService web service created
previously in the section “Building a Company Contact Web Part Using ASP.NET Ajax and JSON.”

The provider web part is a standard connectable web part that does not need to know anything
about ASP.NET Ajax. The complete code for the provider web part looks like Listing 2-20.

Listing 2-20. The Client-side Provider Web Part

using System;
using System.ComponentModel;
using System.Web.UI;
using Microsoft.SharePoint.WebPartPages;
using System.Xml.Serialization;
using System.Web.UI.WebControls;
using System.Security;
using Microsoft.SharePoint.Utilities;
using Microsoft.SharePoint.WebPartPages.Communication;

namespace LoisAndClark.Connectable
{
public class ProviderPart : WebPart, ICellProvider
{
public event CellProviderInitEventHandler CellProviderInit;
public event CellReadyEventHandler CellReady;

private bool _blnConnected = false;
private string _strConnectedWebPartTitle = string.Empty;
private string _strRegistrationErrorMsg = “An error has occurred trying ➥
to register your connection interfaces.”;
private bool _blnRegistrationErrorOccurred = false;
private string _strNotConnectedMsg = “NOT CONNECTED. To use this Web ➥
Part, connect it to a client-side Cell Consumer Web Part.”;

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 105

public override void EnsureInterfaces()
{
try
{
RegisterInterface(“MyCellProviderInterface_WPQ_”,
InterfaceTypes.ICellProvider,
WebPart.UnlimitedConnections,
ConnectionRunAt.Client,
this,
“CellProviderInterface_WPQ_”,
“Provide Cell To”,
“Provides a single value to a cell consumer Web Part.”);

}
catch (SecurityException err)
{
_blnRegistrationErrorOccurred = true;

}
}

public override ConnectionRunAt CanRunAt()
{
return ConnectionRunAt.Client;

}

public override void PartCommunicationConnect(
string strInterfaceName,
WebPart objConnectedPart,
string strConnectedInterfaceName,
ConnectionRunAt enumRunAt)

{
if (strInterfaceName == “MyCellProviderInterface_WPQ_”)
{
blnConnected = true;
_strConnectedWebPartTitle = ➥
SPEncode.HtmlEncode(objConnectedPart.Title);

}
}

public void CellConsumerInit(object objSender, ➥
CellConsumerInitEventArgs ➥
objCellConsumerInitEventArgs)
{
}

protected override void RenderWebPart(HtmlTextWriter output)
{
if (_blnRegistrationErrorOccurred)
{
output.Write(_strRegistrationErrorMsg);
return;

}

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX106

if (_blnConnected)
{
output.Write(ReplaceTokens(“<P>\n”
+ “ Company name: \n”
+ “ <INPUT TYPE=\”text\” ID=\”CompanyName_WPQ_\”/>\n”
+ “ <INPUT TYPE=\”button\” ID=\”CellButton_WPQ_\” ➥
onclick=\”CellButtonClick_WPQ_()\” VALUE=\”AutoFill\”/>
\n”
+ “</P>\n”

+ “<SCRIPT LANGUAGE=\”JavaScript\”>\n”
+ “<!— \n”
+ “ var CellProviderInterface_WPQ_ = new Provider_WPQ_();\n”

+ “ function Provider_WPQ_()\n”
+ “ {\n”
+ “ this.PartCommunicationInit = myInit;\n”
+ “ this.PartCommunicationMain = myMain;\n”
+ “ this.CellConsumerInit = myCellConsumerInit;\n”

+ “ function myInit()\n”
+ “ {\n”
+ “ var cellProviderInitEventArgs = new Object();\n”
+ “ cellProviderInitEventArgs.FieldName = \”ProvideCell\”;\n”
+ “ cellProviderInitEventArgs.FieldDisplayName = \”Provide ➥
Cell\”;\n”

+ “ WPSC.RaiseConnectionEvent ➥
(\”MyCellProviderInterface_WPQ_ ➥
\”, \”CellProviderInit\”, cellProviderInitEventArgs);\n”
+ “ }\n”

+ “ function myMain()\n”
+ “ {\n”
+ “ var cellReadyEventArgs = new Object();\n”
+ “ cellReadyEventArgs.Cell = null;\n”

+ “ WPSC.RaiseConnectionEvent ➥
(\”MyCellProviderInterface_WPQ_ ➥
\”, \”CellReady\”, cellReadyEventArgs);\n”
+ “ }\n”

+ “ function myCellConsumerInit ➥
(sender, cellConsumerInitEventArgs)\n”
+ “ {\n”
+ “ document.all(\”ConnectedField_WPQ_\”).innerText = ➥
cellConsumerInitEventArgs.FieldDisplayName;\n”
+ “ }\n”
+ “ }\n”

+ “ function CellButtonClick_WPQ_()\n”
+ “ {\n”
+ “ var cellReadyEventArgs = new Object();\n”
+ “ cellReadyEventArgs.Cell = ➥
document.all(\”CompanyName_WPQ_\”).value;\n”

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 107

+ “ WPSC.RaiseConnectionEvent(\”MyCellProviderInterface_WPQ_\”, ➥
\”CellReady\”, cellReadyEventArgs);\n”
+ “ }\n”
+ “//—>\n”
+ “</SCRIPT>\n”));

}
else
{
output.Write(_strNotConnectedMsg);

}
}

}
}

In the consumer web part, you need to add some additional client-side code. First you need to
retrieve the cell value that is provided by the provider web part. Then pass this value as an argument
to the JavaScript function that calls the ContactService web service. This function specifies an event
handler JavaScript function that handles the ContactService response and updates the user inter-
face. Since the response is in JSON format, you can use the parseJSON() function defined in the
JSON script library (json.js) to convert the information to a JavaScript object. The JavaScript code
that needs to be added to the consumer web part looks like this:

function myCellReady(sender, cellReadyEventArgs)
{
if(cellReadyEventArgs.Cell != null)
{
AutoFillRequestWPQ1(cellReadyEventArgs.Cell);

}
}

function AutoFillRequestWPQ1(strCompanyName)
{
LoisAndClark.ContactService.GetContactInfo(strCompanyName, ➥
OnAutoFillResponseWPQ1)

}

function OnAutoFillResponseWPQ1(strResult)
{
var objContact = strResult.parseJSON();
var objContactPerson = document.getElementById(“ContactPerson”);
objContactPerson.innerHTML = objContact.ContactPerson;
var objCity = document.getElementById(“City”);
objCity.innerHTML = objContact.City;
var objCountry = document.getElementById(“Country”);
objCountry.innerHTML = objContact.Country;

}

The complete code for the consumer web part looks like Listing 2-21.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX108

Listing 2-21. The Client-side Consumer Web Part

using System;
using System.ComponentModel;
using System.Web.UI;
using Microsoft.SharePoint.WebPartPages;
using System.Xml.Serialization;
using System.Web.UI.WebControls;
using System.Security;
using Microsoft.SharePoint.Utilities;
using Microsoft.SharePoint.WebPartPages.Communication;
using System.Web.UI.WebControls;

namespace LoisAndClark.Connectable
{
public class ConsumerPart : WebPart
{
public event CellConsumerInitEventHandler CellConsumerInit;

private bool _blnConnected = false;
private string _strConnectedWebPartTitle = string.Empty;
private string _strRegistrationErrorMsg = “An error has occurred ➥
trying to register your connection interfaces.”;
private bool _blnRegistrationErrorOccurred = false;
private string _strNotConnectedMsg = “NOT CONNECTED. To use this ➥
Web Part, connect it to a client-side Cell Provider Web Part.”;

public ConsumerPart()
{
}

public override void EnsureInterfaces()
{
try
{
RegisterInterface(“MyCellConsumerInterface_WPQ_”,
InterfaceTypes.ICellConsumer,
WebPart.LimitOneConnection,
ConnectionRunAt.Client,
this,
“CellConsumerInterface_WPQ_”,
“Consume Cell From”,
“Consume a single value from another Web Part.”);

}
catch (SecurityException err)
{
blnRegistrationErrorOccurred = true;

}
}

public override ConnectionRunAt CanRunAt()
{
return ConnectionRunAt.Client;

}

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 109

public override void PartCommunicationConnect(string strInterfaceName,
WebPart objConnectedPart,
string strConnectedInterfaceName,
ConnectionRunAt enumRunAt)

{
if (strInterfaceName == “MyCellConsumerInterface_WPQ_”)
{
blnConnected = true;
strConnectedWebPartTitle = SPEncode.HtmlEncode(objConnectedPart.Title);

}
}

public void CellProviderInit(object objSender, ➥
CellProviderInitEventArgs objCellProviderInitEventArgs)
{
}

public void CellReady(object sender, CellReadyEventArgs cellReadyEventArgs)
{
}

protected override void CreateChildControls()
{

string strPath = “/AskMe2/ContactService.asmx”;
ServiceReference objReference = new ServiceReference();
objReference.Path = strPath;

Control ctlManager = Page.Master.FindControl(“theScriptManager”);
ScriptManager objMManager = ctlManager as ScriptManager;
objManager.Services.Add(objReference);

}

protected override void RenderWebPart(HtmlTextWriter output)
{
if (_blnRegistrationErrorOccurred)
{
output.Write(_strRegistrationErrorMsg);
return;

}

if (_blnConnected)
{
output.Write(ReplaceTokens(
“<div id=\”Result\”>Result</div>”

+ “<SCRIPT LANGUAGE=’JavaScript’>\n”
+ “<!— \n”
+ “function AutoFillRequest_WPQ_(strCompanyName)\n”
+ “{ \n”
+ “LoisAndClark.CompanyContact.ContactService. ➥
GetContactInfo(strCompanyName, OnAutoFillResponse_WPQ_)\n”
+ “}\n”

+ “function OnAutoFillResponse_WPQ_(strResult)\n”
+ “{\n”
+ “var objResult = document.getElementById(\”Result\”);\n”
+ “objResult.innerHTML = strResult;\n”
+ “}\n”

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX110

+ “var CellConsumerInterface_WPQ_ = new Consumer_WPQ_();\n”

+ “function Consumer_WPQ_()\n”
+ “{\n”
+ “this.PartCommunicationInit = myInit;\n”
+ “this.CellProviderInit = myCellProviderInit;\n”
+ “this.CellReady = myCellReady;\n”
+ “this.GetInitEventArgs = myGetInitEventArgs;\n”

+ “function myInit()\n”
+ “{\n”
+ “var cellConsumerInitEventArgs = new Object();\n”
+ “cellConsumerInitEventArgs.FieldName = \”ConsumerCellName\”;\n”
+ “cellConsumerInitEventArgs.FieldDisplayName = \”Consume Cell\”;\n”

+ “WPSC.RaiseConnectionEvent(\”MyCellConsumerInterface_WPQ_\”, ➥
\”CellConsumerInit\”, cellConsumerInitEventArgs);\n”
+ “}\n”

+ “function myCellProviderInit(sender, cellProviderInitEventArgs)\n”
+ “{\n”
+ “document.all(\”ConnectedField_WPQ_\”).innerText = ➥
cellProviderInitEventArgs.FieldDisplayName;\n”
+ “}\n”

+ “function myCellReady(sender, cellReadyEventArgs)\n”
+ “{\n”
+ “if(cellReadyEventArgs.Cell != null)\n”
+ “{\n”
+ “AutoFillRequest_WPQ_(cellReadyEventArgs.Cell);\n”
+ “}\n”
+ “}\n”

+ “function myGetInitEventArgs()\n”
+ “{\n”
+ “var cellConsumerInitEventArgs = new Object();\n”
+ “cellConsumerInitEventArgs.FieldName = \”Consume Cell\”;\n”
+ “cellConsumerInitEventArgs.FieldDisplayName = \”Consume Cell\”;\n”

+ “return(cellConsumerInitEventArgs);\n”
+ “}\n”
+ “}\n”
+ “//—>\n”
+ “</SCRIPT>\n”));

}
else
{
output.Write(_strNotConnectedMsg);

}
}

}
}

Figure 2-18 shows a SharePoint page after importing both the consumer and provider
web parts.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 111

Figure 2-18. Unconnected provider and consumer web parts

The consumer and provider web parts are still not connected to each other. Next, you will con-
nect the provider web part to the consumer web part. You can do so by clicking the Web Part edit
menu of the ConsumerPart Web Part ➤ Connections ➤ Consume Cell From ➤ ProviderPart. This is
shown in Figure 2-19.

Figure 2-19. Connected consumer and provider web parts

After connecting the provider and consumer web parts, they should look like Figure 2-20.

Figure 2-20. Connected consumer and provider web parts

If you enter a value into the company name text box and click the AutoFill button in the My
Provider web part, this value will be propagated to the ConsumerPart web part. The My Client web
part will use the value to call the ContactService web service via ASP.NET Ajax. The ContactService
web service looks in the ContactInfo SharePoint list to see if it can find the contact information that
matches the company name. Once the contact information is returned, the My Client web part
updates the user interface. All of the processing is handled client-side.

To sum up, a provider part passes information to a consumer using JavaScript, thus preventing a
page postback. The consumer web part uses ASP.NET Ajax to communicate with a web service on the
server, using values retrieved from the provider web part. The end result is a dynamic and seamless
experience for the end user, without requiring any page postback. The result is seen in Figure 2-21.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX112

Figure 2-21. Client-side connectable web parts and ASP.NET Ajax

In this section, you learned how to use ASP.NET Ajax combined with scenarios using client-side
connectable web parts.

Revisiting the Performance Counter Web Part
So far, you have learned how ASP.NET Ajax makes it easy to communicate in an object-based
manner with web services using extensions to JavaScript, most importantly, using JavaScript proxies
to interact with web services. You have also seen how to use ASP.NET controls that add Ajax capabil-
ities to existing controls. ASP.NET Ajax consists of three parts, the final part being UpdatePanels.
UpdatePanels allows you to Ajax-enable existing ASP.NET controls. In the next example of this
chapter, you will see how to use UpdatePanels in web parts.

The UpdatePanel control is located in the System.Web.UI namespace and allows sections of a
page to be partially rendered without a postback. All you need to do to use an UpdatePanel is to add
one to a page, add some child controls to it, and define when the content of an UpdatePanel needs
to be updated.

If you want to allow child control postbacks to update the content of an UpdatePanel, you need
to set its ChildrenAsTriggers property to true.

The UpdateMode property of an UpdatePanel control determines when its content should be
updated. By default, this property is set to Always. In this case, the content of the UpdatePanel is
updated on every postback originating from anywhere on a page. If you set the UpdateMode to
Conditional, the content is updated if

• The page calls UpdatePanel’s Update() method.

• The postback is caused by a control that is explicitly defined as a trigger using UpdatePanel’s
Triggers property.

• The ChildrenAsTriggers property is set to true and one of the child controls of the
UpdatePanel causes a postback.

Finally, you can add child controls to an UpdatePanel by using its ContentTemplateContainer prop-
erty. The following code fragment shows how to programmatically add and configure an UpdatePanel:

UpdatePanel pnlHolder = new UpdatePanel();
pnlHolder.ID = “UpdatePanel1”;
pnlHolder.ChildrenAsTriggers = true;
pnlHolder.UpdateMode = UpdatePanelUpdateMode.Conditional;
Controls.Add(pnlHolder);

lblDisplay = new Label();
lblDisplay.Text = “Retrieve value via Ajax”;
pnlHolder.ContentTemplateContainer.Controls.Add(lblDisplay);

Button btnSubmit = new Button();
btnSubmit.Text = “Get current Processor time”;
btnSubmit.Click += new EventHandler(OnSubmit);
pnlHolder.ContentTemplateContainer.Controls.Add(btnSubmit);

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 113

Because of the lack of official support for ASP.NET Ajax in Microsoft Office SharePoint Server
2007 (something which should be solved after the release of the first service pack for Windows
SharePoint Services 2007), you need to add a JavaScript workaround to the default master page and
to your web part. You need to disable the JavaScript function _spFormOnSubmitWrapper() that
ensures that some types of URLs containing double byte characters will work across most postback
and asynchronous scenarios. The next procedure explains how to adjust the default master page to
disable the _spFormOnSubmitWrapper() function:

1. Open a SharePoint site in SharePoint Designer.

2. Open the _catalogs folder.

3. Open the masterpage gallery.

4. Open the Forms folder.

5. Double-click the default.master page.

6. Switch to Code view.

7. Add the following code to the page:

<script type=’text/javascript’>
_spOriginalFormAction = document.forms[0].action;
_spSuppressFormOnSubmitWrapper=true;
</script>

Alternatively, you could add this JavaScript code to the page by registering it within a web part, like so:

if (Page.Form != null)
{
string strSubmit = Page.Form.Attributes[“onsubmit”];
if (strSubmit == “return _spFormOnSubmitWrapper();”)
{
Page.Form.Attributes[“onsubmit”] = “_spFormOnSubmitWrapper();”;

}
}

ScriptManager.RegisterStartupScript(this, typeof(AjaxClient),
“UpdatePanelFixup”,
“_spOriginalFormAction = document.forms[0].action; ➥
_spSuppressFormOnSubmitWrapper=true;”, true);
}

The complete code for a web part that uses an UpdatePanel to support Ajax scenarios is shown
in Listing 2-22.

Listing 2-22. Performance Counter Web Part Using UpdatePanel Control

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;
using System.Web.UI.WebControls;
using System.Diagnostics;
using System.Threading;
using System.Text;

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX114

namespace AjaxClient
{
[Guid(“be6ec8e3-2706-4f52-bdf9-f6eb18fc65c0”)]
public class AjaxClient : System.Web.UI.WebControls.WebParts.WebPart
{
private Label lblDisplay;
protected override void CreateChildControls()
{
base.CreateChildControls();
EnsureUpdatePanelFixups();

UpdatePanel pnlHolder = new UpdatePanel();
pnlHolder.ID = “UpdatePanel1”;
pnlHolder.ChildrenAsTriggers = true;
pnlHolder.UpdateMode = UpdatePanelUpdateMode.Conditional;
Controls.Add(pnlHolder);

lblDisplay = new Label();
lblDisplay.Text = “Retrieve value via Ajax”;
pnlHolder.ContentTemplateContainer.Controls.Add(lblDisplay);

Button btnSubmit = new Button();
btnSubmit.Text = “Get current Processor time”;
btnSubmit.Click += new EventHandler(OnSubmit);
pnlHolder.ContentTemplateContainer.Controls.Add(btnSubmit);

}

private void OnSubmit(object sender, EventArgs eventArgs)
{
lblDisplay.Text = “processor time: “ + GetProcessorTime();

}

public string GetProcessorTime()
{
try
{
PerformanceCounter objCounter = new PerformanceCounter();
objCounter.CategoryName = “Processor”;
objCounter.CounterName = “% Processor Time”;
objCounter.InstanceName = “_Total”;
objCounter.MachineName = “.”;
objCounter.ReadOnly = true;

int intCurrentCpuUsage = Convert.ToInt32(objCounter.NextValue());
Thread.Sleep(2000);

return objCounter.NextValue().ToString();
}
catch (Exception err)
{
return err.Message;

}
}

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 115

private void EnsureUpdatePanelFixups()
{
if (Page.Form != null)
{
string strSubmit = Page.Form.Attributes[“onsubmit”];
if (strSubmit == “return _spFormOnSubmitWrapper();”)
{
Page.Form.Attributes[“onsubmit”] = “_spFormOnSubmitWrapper();”;

}
}

ScriptManager.RegisterStartupScript(this, typeof(AjaxClient), ➥
“UpdatePanelFixup”, “_spOriginalFormAction = document.forms[0].action;
_spSuppressFormOnSubmitWrapper=true;”, true);

}
}

}

Figure 2-22 shows what this web part looks like in action.

Figure 2-22. UpdatePanel web part

■Note There are a couple of web sites containing information about integrating ASP.NET Ajax and SharePoint
2007 that are worth reading. “Integrating ASP.NET Ajax with SharePoint” by Mike Ammerlaan (http://
sharepoint.microsoft.com/blogs/mike/Lists/Posts/Post.aspx?ID=3) discusses how to use
UpdatePanels within web parts. The article “Use ASP.NET AJAX Framework with Windows SharePoint Services
3.0” by Laurent Cotton (http://www.bewise.fr/download/articles/article-41.doc) discusses the
same topic, but contains a bit more information about the JavaScript workaround required to get the use of
UpdatePanels within web parts working. The blog post “AjaxBasePart: Easy ASP.NET 2.0 AJAX Extensions 1.0
and Office SharePoint Server 2007” by Eric Schoonover (http://www.capdes.com/2007/02/
microsoft_office_sharepoint_se.html) discusses the creation of an AjaxBasePart class that makes
creating ASP.NET Ajax web parts easier. Finally, CodePlex contains a project called Daniel Larson’s ASP.NET
AJAX Extensions Toolkit for SharePoint (http://www.codeplex.com/sharepointajax). This toolkit provides a
base framework for deploying client-side Ajax controls that work against web services and XML feeds utilizing
the ASP.NET Ajax framework.

In this section, you have learned how to use the ASP.NET Ajax UpdatePanel control.

Client Callbacks and the People Picker Control
There is a final topic left to discuss when it comes to implementing Ajax scenarios in SharePoint
environments. Before ASP.NET Ajax was released, ASP.NET 2.0 offered another technology that lets
client-side script communicate asynchronously with a server-side method. This technology is
known as client callback technology, and although it is reasonably easy to implement, it does not
offer a full-blown framework for implementing Ajax scenarios like ASP.NET Ajax does.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX116

However, there are still powerful controls out there that use client callbacks for their imple-
mentation, such as the ASP.NET 2.0 Treeview control and the SharePoint People Picker. In this
section, we will discuss how client callbacks work and then show how to build a web part that uses
the People Picker to find account names and groups.

■Note Under the hood, client callbacks use the XmlHttpRequest object. Please refer to section “Retrieving Data
via XMLHttpRequest” for more information.

The life cycle of a client callback consists of three stages:

1. A JavaScript event is fired that triggers a callback.

2. A server-side method is executed that accepts a string as a parameter and returns a string as
the result.

3. A client-side JavaScript method receives the response and adjusts the user interface.

An ASP.NET page that wants to use client callbacks needs to implement the
ICallbackEventHandler interface of the System.Web.UI namespace. This interface consists of two
methods:

• RaiseCallbackEvent(): This method accepts data passed by client-side code.

• GetCallbackResult(): This method passes results back to a page.

An important limitation of client callbacks is that data is passed in the form of a string. If you
want to transfer information that has a complex structure, you need to design some kind of system
to serialize and deserialize data, or use an existing system such as JSON. You can find more informa-
tion about JSON in section “JSON Messages.”

Also, you need to realize that the RaiseCallbackEvent() and GetCallbackResult() methods do
not have access to controls on an ASP.NET page because these methods are called out-of-band and
only a part of the page life cycle is executed. The following stages still take place during a callback:

1. Init

2. Load state

3. Process postback data

4. Load

5. Callback event

6. Unload

Most modern browsers such as MSIE 5 and higher, Netscape 6 and higher, Safari 1.2 and
higher, and Firefox support the use of the XmlHttpRequest object and thus allow you to use client
callbacks. Use the Request.Browser.SupportsCallback property to determine whether a browser
supports client callbacks. If you want to determine whether a postback is caused by a callback, use
the Page.IsCallback property.

Building a People Picker Web Part
The SharePoint People Picker allows you to choose one or more account names and groups in a
user-friendly way. As stated before, the People Picker is a powerful control that uses client callbacks.
The people picker functionality is implemented in the PeopleEditor control, which is located in the
Microsoft.SharePoint.WebControls namespace of the Microsoft.SharePoint assembly.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 117

Figure 2-23 shows that you can type an account name into the People Picker’s text box. There
are two buttons on the People Picker control: Check Names and Browse.

Figure 2-23. Looking for an account name using the People Picker

If you click the Check Names action, you start looking for the name of a user or group.
This causes a client callback. As the result, a list with matching names is shown, as you can see in
Figure 2-24.

Figure 2-24. Resolving multiple matching entries

The end result of this search is shown in Figure 2-25.

Figure 2-25. The People Picker finds the user account.

Alternatively, if you click on the Browse button, the Select People and Groups – Webpage
Dialog window appears, which allows you to search for people and groups. This is shown in
Figure 2-26.

The PeopleEditor control has a number of properties that allow you to configure it. In the
next section, we will discuss the properties that we think are most important.

The PlaceButtonsUnderEntityEditor property determines the locations of the Names and
Browse buttons. If set to true, the buttons are placed at the bottom-right corner of the account
name text box; otherwise they are placed to the right of the text box.

The AllowEmpty property lets you define whether the user is required to fill in a value in the
People Picker.

The SelectionSet property allows you to define the set of users and groups the People Picker
can choose from. This set can consist of users, Active Directory distribution lists, Active Directory
security groups, and SharePoint groups.

The MultiSelect property lets you define whether a user is allowed to specify multiple user
accounts.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX118

Figure 2-26. Searching for a user account

The following code fragment shows how to add a People Picker to a web part and how to con-
figure it:

objEditor = new PeopleEditor();
objEditor.AutoPostBack = true;
objEditor.PlaceButtonsUnderEntityEditor = true;
objEditor.ID = “pplEditor”;
objEditor.AllowEmpty = false;
objEditor.SelectionSet = “User,SecGroup,SPGroup”;
objEditor.MultiSelect = false;
Controls.Add(objEditor);

You can retrieve the values selected in the People Picker by looping through the
ResolvedEntities collection of the PeopleEditor object.

string strAccountName = String.Empty;

for (int i = 0; i < objEditor.ResolvedEntities.Count; i++)
{
PickerEntity objEntity = (PickerEntity) objEditor.ResolvedEntities[i];
SPUserInfo objInfo = new SPUserInfo();
objInfo.LoginName = objEntity.Key;
strAccountName = objInfo.LoginName;

}

Listing 2-23 shows the complete code for a web part that uses the People Picker.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 119

Listing 2-23. Web Part That Uses the People Picker

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;

namespace LoisAndClark.PeoplePickerExample
{
[Guid(“93bc9836-7deb-4ce6-bc6d-91312563603b”)]
public class PeoplePickerExample : ➥
System.Web.UI.WebControls.WebParts.WebPart
{
private PeopleEditor objEditor;
private Label lblAccount;
private Button btnPostMe;

public PeoplePickerExample()
{
this.ExportMode = WebPartExportMode.All;

}

protected override void CreateChildControls()
{
lblAccount = new Label();
lblAccount.ID = “lblAccount”;
Controls.Add(lblAccount);

objEditor = new PeopleEditor();
objEditor.AutoPostBack = true;
objEditor.PlaceButtonsUnderEntityEditor = true;
objEditor.ID = “pplEditor”;
objEditor.AllowEmpty = false;
objEditor.SelectionSet = “User,DL,SecGroup,SPGroup”;
objEditor.MultiSelect = false;
Controls.Add(objEditor);

btnPostMe = new Button();
btnPostMe.Text = “ OK “;
btnPostMe.Click += new EventHandler(btnPostMe_Click);
Controls.Add(btnPostMe);

}

private string GetAccountName()
{
string strAccountName = String.Empty;

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX120

for (int i = 0; i < objEditor.ResolvedEntities.Count; i++)
{
PickerEntity objEntity = (PickerEntity) objEditor.ResolvedEntities[i];
SPUserInfo objInfo = new SPUserInfo();
objInfo.LoginName = objEntity.Key;
strAccountName = objInfo.LoginName;

}

return strAccountName;
}

private void btnPostMe_Click(object sender, EventArgs eventArgs)
{
string strAccountName = GetAccountName();
lblAccount.Text = “account name: “ + strAccountName;

}
}

}

This section demonstrated how to use the PeoplePicker control, a control that uses client call-
backs, within a web part.

Summary
This chapter discussed Ajax and ASP.NET Ajax. We looked at some of the more popular Ajax imple-
mentations for .NET. Ajax-style applications rely heavily on communication with the server-side
application. Nowadays, most of the time the server-side application will consist of web services. It
can be a hassle to add service virtualization on a Microsoft Office SharePoint Server 2007 server, but
you have learned how to do it. There are multiple important aspects when building the client side of
Ajax-style applications. Within Ajax-style development, you can choose between various types of
server responses: plain text, HTML, XML, and JSON. We showed you examples of all these message
types and discussed their benefits and disadvantages.

ASP.NET Ajax is an Ajax implementation, and this chapter explained how to use it. We dis-
cussed how to install ASP.NET Ajax and how to use it within web parts. We gave detailed information
about creating a performance counter web part that uses ASP.NET Ajax to provide up-to-date infor-
mation about performance counters that run on the server. We also explained how to create a web
part that shows company contact information that is stored in a SharePoint list. The company con-
tact information is retrieved using ASP.NET Ajax in a JSON message format. You have seen how to
use ASP.NET Ajax autocompletion in a web part and how to use ASP.NET Ajax within connectable
web parts. You also learned how to use UpdatePanels within a web part. Finally, you learned what
client callbacks are and how to use the People Picker in a web part.

CHAPTER 2 ■ CREATING INTERACTIVE WEB PARTS USING ASP.NET AJAX 121

Enhancing Business Intelligence via
SQL Server 2005 Reporting Services

Business intelligence is all about having comprehensive knowledge of all of the factors that
affect your business. Business intelligence can be described as the process that transforms data
into information, thus providing in-depth knowledge about customers, competitors, business
partners, economic environment, or internal operations. Such knowledge helps companies gain
a competitive edge, so it should come as no surprise that as of late, business intelligence has
become a very popular topic.

Microsoft’s Business Intelligence suite supports all facets of decision-making. It consists of
such products as SQL Server Analysis Services, Office Business Scorecard Manager, and SQL Server
Reporting Services. This chapter focuses on SQL Server 2005 Reporting Services—which provides
web reporting on a variety of data sources, published reports, and subscriptions—in relation to
Microsoft Office SharePoint Server 2007. We discuss the basics of Reporting Services and show you
how to create a simple report using Business Intelligence Development Studio. Then we show you
how to view a report via the Report Manager and how to use the SharePoint reporting web parts.
We will also discuss how to create and deploy a report model to a SharePoint Report Center.

Introducing Reporting Services
The intent of this section is to get you acquainted and comfortable with SQL Server 2005 Reporting
Services. As Reporting Services is quite a large topic, we will start with a general overview. Later in
the chapter, we will cover detailed topics regarding the combination of Reporting Services and
Microsoft Office SharePoint Server 2007.

Reporting Services is a middle-tier server that runs under Internet Information Services (IIS)
and allows you to build a reporting environment on top of an existing web server infrastructure.
With Reporting Services, it is possible to retrieve data from any available data server for any data
source type that has a .NET Framework–managed data provider, OLE DB provider, or ODBC data
source. The Reporting Services product consists of three main components: databases, report
server, and client applications. The Reporting Services architecture is shown in Figure 3-1.

When you install Reporting Services, the following databases are created: ReportServer and
ReportServerTempDB. The ReportServer database is the primary database used to store all informa-
tion about reports. The ReportServerTempDB database contains cached copies of reports that are
used to improve performance.

The report server is the most important component in the SQL Server Reporting Services
architecture. It is responsible for responding to every client request to render a report or to per-
form a management request. The report server consists of two parts: a Windows service and a web
service. This way the report server provides an optimized and parallel processing infrastructure for

123

C H A P T E R 3

processing and rendering reports. The Windows service provides initialization, scheduling, and
delivery services, as well as server maintenance. Clients can access report servers via the web serv-
ice layer. It performs end-to-end processing for reports that run on demand. It also provides the
primary programmatic interface for applications that integrate with a report server, for example,
Report Manager, Report Builder, and SQL Server Management Studio.

Figure 3-1. Reporting Services architecture

The report server can be divided into two subcomponents: report processors and extensions.
Report processors support the integrity of the reporting system and cannot be modified; you can
think of them as the hub of the report server. Extensions are also processors, but they perform very
specific functions. Extensions will be discussed later, in the section “Reporting Services Extensions.”

The following client applications are part of Reporting Services: Report Manager, Business
Intelligence Development Studio, and command-line utilities. We will cover Report Manager and

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES124

Business Intelligence Development Studio in more detail later in the “Building a Report” and “View-
ing a Report” sections of this chapter. First we will discuss the command-line utilities.

Reporting Services ships with three command-line utilities:

• Rsconfig.exe: This tool is used to configure and manage a report server connection to the
report server database.

• Rskeymgmt.exe: This tool is an encryption key management tool. You can use it to back up,
apply, create, and delete symmetric keys. You can also use this tool to attach a report server
instance to a shared report server database. Encryption keys are used to encrypt credentials,
connection information, and accounts.

• Rs.exe: This tool is a script host that you can use to perform scripted operations. Use this tool
to run Microsoft Visual Basic .NET scripts that copy data between report server databases,
publish reports, create items in a report server database, and more.

■Note If you want to learn more about the Rsconfig, Rskeymgmt, and Rs command-line tools, SQL Server 2005
Books Online (Start ➤ All Programs ➤ Microsoft SQL Server 2005 ➤ Documentation and Tutorials ➤ SQL Server
Books Online) contains a complete overview of the arguments that are available for these tools and explains in
detail how to use them.

Requirements for Reporting Services
In this section, we will discuss the requirements Reporting Services must meet to integrate with
Microsoft Office SharePoint Server 2007. Of course, SQL Server 2005 Reporting Services must be
installed on the server. When you install Reporting Services on a different server than the Microsoft
Office SharePoint Server 2007 server, you must take care that the Windows SharePoint Services 3.0
object model is installed on the Reporting Services server. You can do this by installing Windows
SharePoint Services 3.0 on the Reporting Services server.

■Tip More information about installing SQL Server 2005 Reporting Services can be found at http://technet.
microsoft.com/en-us/library/ms143736.aspx.

If you want deep integration of Reporting Services and Microsoft Office SharePoint Server
2007, you have to install the SQL Server 2005 Service Pack 2.0 and the SQL Server 2005 Reporting
Services Add-in for Microsoft SharePoint Technologies. The advantages of this deep integration are
discussed later, in the section “SQL Server 2005 Service Pack 2.0.” The Reporting Services Add-in
must be installed after Service Pack 2.0, because the Reporting Services Add-in makes use of fea-
tures added by the service pack. Table 3-1 shows an overview of what you must install to use
Reporting Services and SharePoint.

SQL Server 2005 Service Pack 2.0
SQL Server 2005 Service Pack 2.0 was released in the first quarter of 2007. This service pack is a
very important addition to SQL Server 2005 and its integration with Microsoft Office SharePoint
Server 2007. Service Pack 2.0 adds new or improved features to the following components of SQL
Server 2005:

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 125

• Analysis Services

• Database Engine

• Integration Services

• Replication

• Reporting Services

• Shared Tools

In this chapter, we will only pay attention to the Reporting Services features. You can download
Service Pack 2.0 at the following location: http://technet.microsoft.com/en-us/sqlserver/
bb426877.aspx. Table 3-1 shows an overview of the prerequisites.

Service Pack 2.0 enables deep integration between SQL Server 2005 Reporting Services and
Microsoft Office SharePoint Server 2007 (and Windows SharePoint Services 3.0). Service Pack 2.0
provides the following new features for integrating Reporting Services with SharePoint:

• With Service Pack 2.0, you can integrate a report server instance with Microsoft Office
SharePoint Server 2007 or Windows SharePoint Services 3.0 via a Report Center. This way,
a report can be stored, managed, and accessed via a SharePoint document library. In addi-
tion, this allows the use of standard document library features such as versioning and
checking in and out.

• Service Pack 2.0 makes it possible to store reports and associated resources such as database
connections in the SharePoint content database. These reports and associated resources will
be automatically synchronized with the Report Server database.

• The report server contains a custom security extension that integrates with existing
SharePoint permissions to control access to report server operations. Security extensions
are used by the report server to take care of authenticating and authorizing users and
groups. More information about Reporting Services Extensions can be found in the section
“Reporting Services Extensions.”

• Service Pack 2.0 comes with a new delivery extension that can be used in subscriptions to
deliver reports to SharePoint libraries. Delivery extensions are used by the report server to
deliver reports to various locations. More information about Reporting Services Extensions
can be found in the “Reporting Services Extensions” section.

• Service Pack 2.0 updates the Reporting Services Configuration tool with a new configuration
option called SharePoint integration. With this option, the report server can be configured
for SharePoint integrated operations.

• Service Pack 2.0 comes with a new SOAP endpoint that can be used for managing report
server content in SharePoint integrated mode.

SQL Server 2005 Reporting Services Add-in for Microsoft
SharePoint Technologies
The Reporting Services Add-in must be installed after Service Pack 2.0, so you can use the Service
Pack 2.0 reporting processing and management capabilities within SharePoint 2007. The Reporting
Services Add-in can be downloaded from the following location: http://www.microsoft.com/
downloads/details.aspx?familyid=1E53F882-0C16-4847-B331-132274AE8C84&displaylang=en.
Table 3-1 shows an overview of the prerequisites.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES126

Table 3-1. Installation Requirements to Enable Integration Between Reporting Services and SharePoint

Name Location

SQL Server 2005 http://technet.microsoft.com/en-us/sqlserver/bb426877.aspx
Service Pack 2.0

SQL Server 2005 Reporting http://www.microsoft.com/downloads/
Services Add-in for Microsoft familyid=1E53F882-0C16-4847-B331-
SharePoint Technologies 132274AE8C84&displaylang=en

The Reporting Services Add-in contains the following functionality:

• A SQL Server Reporting Services Report Viewer web part. More information about this web
part can be found in the section “SQL Server Reporting Services Report Viewer Web Part.”

• Web application pages that can be used to do the following:

• Create subscriptions and schedules.

• Manage reports and report models.

• Manage data sources.

• Support for report server content types within SharePoint.

Mode of Deployment
SQL Server 2005 Reporting Services comes with a tool called the Reporting Services Configuration
Manager. With the Reporting Services Configuration Manager, you can create a report server data-
base and configure the connection between the report server and the report server database. You
can also configure the report server database to run in Native mode or SharePoint integrated mode.

The SQL Server 2005 Service Pack 2.0 comes with two modes of deployment for report
instances:

• Native mode

• SharePoint integrated mode

The default mode for a report server instance is native mode. When a report server is a stand-
alone application that is responsible for performing activities related to reports, such as viewing
and processing, it is deployed in native mode. Reporting Services provides two web parts that can
be installed and used with SharePoint 2007 (both Microsoft Office SharePoint Server 2007 and
Windows SharePoint Server 3.0) when the report server is in native mode. More information about
these two web parts can be found in the section “Report Explorer and Report Viewer Web Parts.”

■Note These web parts were already available before Service Pack 2.0 and were also used in SharePoint 2003.

When the ReportServer database is deployed in SharePoint integrated mode, the report server
becomes part of the SharePoint web application deployment. SharePoint users can store and access
reports in document libraries. The report server can be configured to interact with SharePoint inte-
grated mode when Service pack 2.0 is installed.

When you configure a report server to run in SharePoint integrated mode, you must create
a new report server database. When you connect a report server instance to a report server data-
base running in SharePoint integrated mode, the report server’s SharePointIntegrated property is

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 127

automatically set to true. The report server then switches to the custom security extension and
SOAP endpoint that are used when a report server is set to SharePointIntegrated mode. When the
report server database is created with SharePointIntegrated mode set to true, the site hierarchy
in SharePoint becomes the content hierarchy for the report server. The report server keeps track
of the URLs of all reports that are stored in SharePoint. When you deploy a Report Server or
Report Model project using the Business Intelligence Development Studio, you must use fully
qualified URLS; relative paths are not allowed. Make sure to include file extensions in the report
URL path; they are required for each item.

■Note Normally, reports are stored in the report server database. Once the report server is running in SharePoint
integrated mode, SharePoint acts as the content repository for all reports.

SharePoint integrated mode offers the following advantages:

• You can use document libraries to store, access, and manage reporting services reports, data
sources, and report models. The section “Viewing a Report” discusses this topic.

• The SharePoint user interface can also be used to publish, view, manage, and deliver reports.

• It is possible to build Business Intelligence dashboards with Reporting Services reports.

• The workflow and collaboration features of SharePoint can be used in combination with
Reporting Services reports. For instance, you could create a workflow that requires a report
to be approved by somebody before it is published.

The following features are no longer supported when running a report server database in
SharePoint integrated mode:

• Report Manager: Report Manager is a web-based report access and management tool.

• Management Studio: Management Studio can be used by report server administrators to
manage a report server alongside other SQL Server component servers. Management Studio
offers almost the same functionality as Report Manager, but has additional support for man-
aging other server types in the same management workspace. If you try to connect to a
report server running in SharePoint integration mode, you will get a pop-up window
indicating that the current operation is not supported.

• My Reports: With the My Reports feature, users can save reports in a private folder in the
report server database.

• Linked Reports: Linked reports are report server items that provide access points to existing
reports. This acts as shortcuts to an existing report.

• Job Management: Job management features are features that allow you to stop a long-
running report process.

■Note SQL Server 2005 does not offer support for migrating existing reports built in native mode to
SharePoint integrated mode. If you want to use these reports in a SharePoint environment, you must republish
them in SharePoint integrated mode. In general, you should use SharePoint integrated mode if end users are
planning to interact with the report server within a SharePoint environment.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES128

Configuring Native Mode
Follow these steps to create a report server database that runs in native mode:

1. Connect to the database server that will hold the report server database. After installing
Reporting Services, you can find this tool via Start ➤ All Programs ➤ SQL Server 2005 ➤
Configuration Tools ➤ Reporting Services Configuration. This opens the Report Server
Installation Instance Selection window, as can be seen in Figure 3-2.

2. In the Machine Name text box, enter the name of the server running the report server. In the
Instance name text box, enter the name of the SQL Server 2005 Reporting Services instance.
Click Connect to connect to the Reporting Services instance.

Figure 3-2. Report Server Installation Instance Selection window

Go to the Database Setup option in the Reporting Services Configuration Manager and follow
these steps:

1. Enter a database server name.

2. Specify the name of the reporting services database. See Figure 3-3.

Figure 3-3. SQL Server Connection

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 129

3. Select the SharePoint integrated mode check box if you want to deploy the reporting data-
base in SharePoint integrated mode. If you want to deploy the Reporting database in native
mode, leave the check box unchecked. The earlier section “Mode of Deployment” discussed
this topic more thoroughly.

4. Enter the credentials required to connect to the report server database, as shown in Figure 3-4.

Figure 3-4. Configuring a database connection in Reporting Services Configuration Manager

5. Click Apply to create the report server database.

Configuring SharePoint Integration Mode
In this section, we will discuss how to configure Report Server to integrate with Microsoft Office
SharePoint Server 2007. What you have to do is create a new report server database that runs in
SharePoint integration mode. This can be done by opening the Reporting Services Configuration
Manager and going to the Database Setup section. Here you can click the New button and make a
new report server database that runs in SharePoint integrated mode, as shown in Figure 3-5.

After configuring the database to run in SharePoint integration mode, you will notice two
changes in the Report Configuration Manager. The Report Manager Virtual Directory section has a
gray circle and displays the message shown in Figure 3-6.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES130

Figure 3-5. A database connection in SharePoint integrated mode

Figure 3-6. Report Manager Virtual Directory Settings

The other thing you will notice is that the SharePoint Integration option displays a green check
mark and displays a message that is shown in Figure 3-7.

The next thing to do is to configure the integration with the report server in the SharePoint web
application. You can do this using SharePoint Central Administration. Open SharePoint Central
Administration by clicking the link in the Report Configuration window or by going to Start ➤ All
Programs ➤ Microsoft Office Server ➤ SharePoint 3.0 Central Administration.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 131

Figure 3-7. Windows SharePoint Services settings in the report server

The Reporting Services Add-in has added a Reporting Services section to the Application
Management tab of SharePoint Central Administration. Figure 3-8 shows this section.

Figure 3-8. The Reporting Services section in the Application Management tab

In order to configure reporting services accurately, you must edit each option in this section.
The first option is called Manage integration settings. Clicking this option opens the Reporting
Services Integration page (see Figure 3-9). This page lets you configure the report server web service
URL and the authentication mode. The report server web service URL is the name of your server
plus the name of the virtual directory containing the report server.

Figure 3-9. Reporting Services Integration page

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES132

The second option is called Grant database access. This opens a page where you can configure
the server name and the instance name of the report server. Figure 3-10 shows the Grant Database
Access page.

Figure 3-10. Grant Database Access page

With the third option, Set server defaults, you can configure how many snapshots you want to
keep in the report history, set whether to use report processing timeouts, enable a report processing
log, enable Windows integrated security, and enable ad hoc reporting. This is shown in Figure 3-11.

Figure 3-11. Reporting Services ServerDefaults page

Building a Report
It is possible to create interactive, tabular, or freeform reports that retrieve data as soon as the user
opens the report. You can also create reports at scheduled time intervals. In this section, we will
show you how to build a simple report. Our server configuration consists of one server with SQL
Server 2005, Reporting Services, and Micosoft Office SharePoint Server 2007 installed on it.

The first thing we are going to do is build a report project using Business Intelligence
Development Studio. Business Intelligence Development Studio is a Visual Studio 2005 environ-
ment with enhancements that are specific to SQL Server 2005 business intelligence solutions.
When you install Reporting Services, the following project templates become available in Busi-
ness Intelligence Development Studio:

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 133

• Report Model Project: This is used as a starting point for building your own report model. A
report model is a simplified view of a database and is used by the Report Builder. This project
type is not relevant for this chapter.

• Report Server Project: This is used as a starting point for building your own report.

• Report Server Project Wizard: This is used as a starting point for building your own report
with the help of the Report Wizard.

In this section, we will describe how to create a report project using the AdventureWorks data-
base, a sample database that ships with SQL Server 2005. This is the database that is used in sample
projects and code examples in SQL Server 2005 Books Online. The AdventureWorks database is not
installed by default in SQL Server 2005.

The AdventureWorks sample database can be downloaded from the MSDN web site via the
Code Samples page (http://www.microsoft.com/downloads/details.aspx?FamilyId=E719ECF7-9F46-
4312-AF89-6AD8702E4E6E&displaylang=en). The database is provided for three different processor
types; you should download a file called AdventureWorksDB.msi for the processor type most appro-
priate for you.

The next steps describe how to install the AdventureWorks database.

1. Double-click the MSI file to begin installation. This starts the AdventureWorksDB –
InstallShield Wizard. Follow the steps in this wizard to install the AdventureWorks data-
base. The wizard installs the required MDF file that contains the AdventureWorks data
and objects such as tables, indexes, stored procedures, and views.

2. Open Microsoft SQL Server Management Studio.

3. Right-click Databases ➤ Attach. This opens the Attach Databases window.

4. Click the Add... button.

5. Select the AdventureWorks_Data.mdf file. By default it should be located at the following
location: [drive letter]:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data.

6. Click OK twice.

After following these steps, the AdventureWorks database should appear in the Object Explorer
window of Microsoft SQL Server Management Studio. Now you are ready to build a report using the
AdventureWorks sample database.

You can open Business Intelligence Development Studio via All Programs ➤ Microsoft SQL
Server 2005 ➤ SQL Server Business Intelligence Development Studio. The following steps show you
how to create a report project:

1. Open Business Intelligence Development Studio and click File ➤ New ➤ Project. This opens
the New Project dialog box.

2. Choose Business Intelligence Projects in the Project Types list, and choose Report Server
Project Wizard in the Templates list.

3. Give the project a name and choose the location where you want to create the project. Click
OK. This creates a report project.

After creating the report project, the Report Wizard will be opened. The next step is to create a
report definition file.

1. Click Next on the first page of the Report Wizard; this opens the Select the Data Source page.
On this page, you need to define a data source that you want to use for your report. In our
example, we will make use of the AdventureWorks database.

2. Name the data source AdventureWorks.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES134

3. Select the following type of data source: Microsoft SQL Server.

4. Specify the following connection string (replace [server] with your server name):

Data source=[server]; initial catalog=AdventureWorks

■Tip http://www.connectionstrings.com is great place to find the format of connection strings for a wide
range data sources.

5. Click Next; this opens the Design the Query page, where you can specify the query that
retrieves the data for the report. You can do this manually by typing the query directly in the
text box, or you can use the Query Builder. Type the following query and click Next:

SELECT AddressID, AddressLine1, AddressLine2, City, StateProvinceID,
PostalCode, rowguid, ModifiedDate
FROM Person.Address

6. On the Select the Report Type page, you can choose whether you want a tabular report or a
matrix report. We’ll stick to the default, the tabular one, and click Next.

7. On the Design the Table page, you can choose how to group the data in the table. In this
example we select AddressLine1, Addressline2, PostalCode, and City, and click the Details
button. Click Next. Figure 3-12 shows the Design the Table page.

Figure 3-12. The Design the Table page in the Report Wizard

8. On the Choose the Table Style page, you can choose which table style you would like to use.
There are six standard themes you can choose from. Click Next.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 135

9. The Choose the Deployment Location page of the Report Wizard allows you to specify
where the report is deployed. Accept the default settings and click Next.

10. The last page of the wizard offers you the chance to enter a descriptive name for the report
and add a summary to it. Before you click Finish, note the check box that allows you to pre-
view the report.

Figure 3-13 shows Business Intelligence Development Studio displaying a preview of the report
that we have just created.

Figure 3-13. Business Intelligence Development Studio

The report that we created is opened in the Report Designer in Business Intelligence
Development Studio. The Report Designer is a graphical tool for creating reports. There are three
tabs available for building the report query, designing the report layout, and viewing a rendered
version of the report:

1. On the Data tab, you generate the query that provides data to the report.

2. On the Layout tab, you arrange and format the look of the report.

3. On the Preview tab, you render the report to see what it will look like when it is saved to the
report server.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES136

Viewing a Report
There are different ways that you can run and view a report. If you want to view reports that are
published to a report server, you can choose between the use of Report Manager, SharePoint web
parts, or a browser. When you open a report located in the report server, it will be rendered as HTML
in an HTML viewer. This HTML viewer provides page navigation and other functionality that is use-
ful for working with a report.

You can also directly open a report server in a browser by typing the report’s URL in the
browser. The first part of a report URL specifies the report location; it includes the name of the web
server, the name of the report server virtual directory, and the fully qualified name of the report.
A fully qualified name includes the path to the report and concludes with the name of the report
itself. The second part of a report URL specifies parameters. URL access parameters are used to
configure the look and feel of a report. There are several types of parameters.

Report parameters are passed to a report. They can refer to anything you like, such as a customer
ID. Report parameters can be used as variables in a report or as values for filtering report queries.

HTML viewer parameters are prefixed by rc:. These parameters indicate how to render a
report. Table 3-2 provides an overview of the available HTML viewer parameters.

Table 3-2. HTML Viewer Parameters

Name Description

DocMap Shows or hides a report document map. Document maps present end users
with an integrated navigation pane when a report is rendered.

DocMapID Specifies the document map ID to scroll to in the report.

EndFind Specifies the last page that is to be searched for the text defined in the search.
This parameter is typically used in conjunction with the StartFind parameter.

FallbackPage Specifies the page number to display if a search (FindString) or a document
map selection (DocMapID) fails.

FindString Specifies the text to search for in the report. By default, this value is empty.

GetImage Gets a particular icon for the HTML viewer user interface.

Icon Gets the icon for a rendering extension.

Parameters Shows or hides the parameters area of the toolbar. You can set this parameter
to true, false, or Collapsed. If the value is set to Collapsed, the parameter
area will not be displayed, but can be toggled by the end user.

Section Specifies the page number of the report page that is displayed.

StartFind Specifies the first page that is to be searched for the text defined in the search.
This parameter is typically used in conjunction with the EndFind parameter.

Stylesheet Specifies a style sheet that is to be applied to the HTML viewer.

Toolbar Shows or hides the toolbar. If you omit this parameter, the toolbar will be
displayed.

Zoom Sets the report zoom value to either an integer percentage or a string constant
(such as Page Width and Whole Page).

Device information settings are commands that can be used to influence the report server
rendering process. You do not need to provide device information settings per se, as all device
information settings have default values. Table 3-3 provides an overview of the device informa-
tion settings for rendering in HTML format. All device information settings commands are
prefixed by rc:.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 137

Table 3-3. Device Information Settings Commands

Name Description

BookmarkID Specifies the report section (bookmark) to jump to.

HTMLFragment Indicates whether an HTML fragment should be created (omitting <HTML> and
<BODY> tags) instead of a full HTML document.

JavaScript Indicates whether the report supports JavaScript.

LinkTarget Specifies the target for hyperlinks in the report.

ReplacementRoot Specifies the path used for prefixing the value of the href attribute of the <A>
tag in the report. By default, the report server provides the value for this path.

StreamRoot Specifies the path used for prefixing the value of the src attribute of the
tag in the report. By default, the report server provides the value for this path.

StyleStream Indicates whether styles and scripts are created as a separate stream. By
default this value is false and styles and scripts are created as parts of the
document.

Type Specifies the short name of the browser type, for example, IE5, as defined in
browscap.ini.

■Note The browscap.ini file lists the features a browser supports. When a browser connects to a web server,
it will automatically send an HTTP User Agent header. This HTTP User Agent Header is an ASCII string that will
identify the browser and its version number. The BrowserType object compares the header to entries in the
browscap.ini file. This way the server-side application can determine the capabilities of the client browser.

Report server command parameters are prefixed by rs:. They are targeted at the report server
and are used to define the type of request being made. Table 3-4 provides an overview of the report
server commands.

Table 3-4. Report Server Commands

Name Description

Command Sets the type of request being made. Supported values are
GetDataSourceContents, GetResourceContents, ListChildren, and Render.
GetDataSourceContents shows the properties of a given shared data source as
XML. GetResourceContents renders a resource and displays it in an HTML
page. ListChildren displays children of the item passed to the URL within a
generic item-navigation page. Render renders the specified report.

Format Specifies the format in which to render the report. Examples of valid values
are: HTML4.0, EXCEL, CSV, PDF, and XML.

ParameterLanguage Provides a language for the parameters passed in a URL. Culture information
values consist of a language part and a region part. Valid examples of such
values are en-US and nl-NL.

Snapshot Renders a report based on a report history snapshot.

Credential parameters can be used to supply username (prefixed by dsu:) and password (pre-
fixed by dsp:) information to the report server. The credentials are used to connect to a data source.
Table 3-5 provides an overview of the credential parameters.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES138

Table 3-5. Credential Parameters

Name Description

dsu Username that is used to access the data source

dsp Password that is used to access the data source

To conclude this section, the following code shows an example report URL:

http://[server]/ReportServer/Pages/ReportViewer.aspx?/Report1&rs:Command=Render.

Figure 3-14 shows a report opened directly in the browser.

Figure 3-14. Report opened in the browser

Report Manager
The Report Manager installed with Reporting Services is a web-based tool to access and manage
reports via Internet Explorer 6.0 and higher. You can administer a report server over an HTTP con-
nection using Report Manager.

Report Manager’s customization options are very limited; you can modify the application title
on the Site Settings page and that’s it. If you find that Report Manager does not meet your needs,

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 139

you can develop a custom report viewer or configure SharePoint web parts to explore and view
reports from within a SharePoint site.

The ability to perform a task in Report Manager depends on user role assignments. A user who
is assigned to a role that has full permissions will have access to the complete set of application
menus and pages available for managing a report server. A user assigned to a role that has permis-
sions to view and run reports will only see the menus and pages that support those activities. Each
user can have different role assignments for different report servers. Each user can also have differ-
ent permissions for the various reports and folders that are stored on a single report server.

You can use Report Manager to perform the following tasks:

• View reports, search for reports, and subscribe to reports.

• Create and maintain a folder hierarchy to store items on the report server.

• Configure site properties.

• Configure role-based security to determine access to items and operations.

• Configure report execution properties, report history, and report parameters.

• Create report models that connect to and retrieve data from a Microsoft SQL Server Analysis
Services data source or a SQL Server relational data source.

• Create shared schedules and data sources to make schedules and data source connections
more manageable.

• Create data-driven subscriptions that roll out reports to a large recipient list.

• Create linked reports to reuse and repurpose an existing report in different ways.

• Use Report Builder, a report design tool to create and modify model-driven ad hoc reports.

By default, the Report Manager URL is http://[server]/reports. Figure 3-15 shows the Report
Manager.

Figure 3-15. The Report Manager

Reporting Services Web Parts
There are a total of three web parts available for viewing Reporting Services reports. Two of the three
web parts were already available in SQL Server 2000 Reporting Services Service Pack 2.0, SQL Server
2005, and SQL Server 2005 Service Pack 1.0. The following are the two legacy web parts:

• Report Explorer

• Report Viewer

These two web parts were designed for an earlier version of Microsoft Office SharePoint Server,
namely SharePoint Products and Technologies 2003. They are still available for use in Service Pack 2.0,

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES140

but they do not include new features or capabilities. So, if you were used to using these web parts in
SharePoint Products and Technologies 2003, you can still use them in Microsoft Office SharePoint
Server 2007.

The Report Explorer and Report Viewer web parts are optimized to run in a SharePoint envi-
ronment, but they can also be run as stand-alone components within ASP.NET pages. The web parts
cannot be customized and can only be used with reports that are built in native mode.

A report server that is deployed to run in SharePoint integrated mode cannot use these two
web parts. The SQL Server 2005 Reporting Services Add-in comes with the SQL Server Reporting
Services Report Viewer web part, which can be used to view reports that are built in SharePoint
integrated mode. Table 3-6 shows the differences between the old web parts that were built for
SharePoint 2003 and the new web parts that can be used with SharePoint integrated mode.

Table 3-6. Differences Between SharePoint 2003 Report Web Parts and SharePoint Integrated Mode
Web Parts

SharePoint 2003 Report Web Parts SharePoint Integrated Mode Report Web Part

The Report Explorer web part is used to The Report Viewer web part can be used to
display a list of reports stored on a report display reports. This web part can be used as a
server. The Report Viewer web part is used connectable web part and can be customized.
to show one report. Neither web part can
be customized.

The report server is used to store, manage, The reports are stored, managed, and accessed via
and access reports. the SharePoint site.

The reports are stored in the content database. Reports, report models, and data sources can be
published and stored in SharePoint.

You must configure and maintain access on There is no support for data-driven subscriptions,
both the SharePoint site and the report server. linked reports, and Report Manager.

Report Explorer and Report Viewer Web Parts
The Report Explorer web part can be used to show available reports on a report server. This web
part lets you browse the report server folder hierarchy and view reports. You can also create or edit
subscriptions to a report. The subscription feature allows you to receive reports via e-mail.

The Report Viewer web part is used to view and navigate multipage reports as well as export
reports to supported formats. Using web part connections, this web part can be connected to the
Report Explorer web part to display the selected report within the web part page.

Installing Report Web Parts
If you want to use the reporting web parts, you must include Report Manager when installing Report-
ing Services. The reporting web parts that come with Reporting Services are packed into a cabinet
(.cab) file. If you want to use these web parts, you will have to install them via the stsadm.exe tool.
The stsadm.exe tool, a command-line tool that is a part of every SharePoint installation, offers a
complete set of operations, and you can use it from the command line or within a batch file.
Stsadm.exe must be run on the server itself. If you want to use the tool, you must be a member of the
local administrators group on the server. You can find the stsadm.exe tool in the following folder:
[drive letter]:\Program Files\Common Files\Microsoft Shared\web server extensions\12\bin\.

The CAB file that contains the reporting web parts is located in the following folder: [drive letter]:
\Program Files\Microsoft SQL Server\90\Tools\Reporting Services\SharePoint. The name of this cab
file is RSWebParts.cab. To install this CAB file via the command line, run the following line of code:

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 141

stsadm.exe -o addwppack -filename “[drive letter]:\Program ➥
Files\Microsoft SQL Server\90\Tools\Reporting ➥
Services\SharePoint\RSWebParts.cab”

Instead of using the operations parameter, we have used its short form, –o. After the –o
parameter, you need to specify which operation needs to be performed. The name of the operation
is addwppack, which adds a web part package to your server web part gallery. The filename parame-
ter specifies the path to the cabinet file that contains the web parts and all its associated files.

If you are running SharePoint on network-load-balanced machines, you have to add the con-
trol to the <SafeControls> section of the web.config file for each additional machine. Stsadm.exe
automatically adds the control to the <SafeControls> section of web.config for the SharePoint web
application specified on the command line. You can find the web.config file of a SharePoint web
application by following these steps:

1. Open a command prompt and type the command inetmgr. This opens Internet Informa-
tion Services (IIS) Manager.

2. Expand the [server name] (local computer) node.

3. Expand the Web Sites node.

4. Right-click the SharePoint web application and choose Properties. This opens the [web
application] Properties window.

5. Click the Home Directory tab and copy the value of the Local path text field. This value rep-
resents the path to the web.config file of the specified SharePoint web application.

The <SafeControl> element that is added to the <SafeControls> section of the web.config looks
like this:

<SafeControl Assembly=”RSWebParts, Version=8.0.242.0, Culture=neutral, ➥
PublicKeyToken= 89845dcd8080cc91” Namespace= ➥
“Microsoft.ReportingServices.SharePoint.UI.WebParts” TypeName=”*” Safe=”True” />

Using Report Web Parts
Once you have installed the reporting web parts via the stsadm.exe command-line tool, you can add
them to a web part page using the SharePoint user interface. To add the web part to a SharePoint site,
you must at least have web designer rights, so you are able to customize pages in the SharePoint site.
After installing the reporting web parts via stsadm you do not have to add these web parts to the web
part gallery for the site collection first, the addwppack operation took care of this.

The next procedure shows you how to add both reporting web parts to a SharePoint site.

1. Go to your SharePoint site and select Site Actions ➤ Edit Page.

2. Click Add a Web Part. This opens the Add Web Parts – Web Page Dialog window.

3. Scroll down to the Miscellaneous section and select the Report Explorer web part and the
Report Viewer web part.

4. Click Add. This adds both web parts to the SharePoint site.

After placing both reporting web parts onto your SharePoint site, you need to configure the
web parts. You can do this by clicking the web part’s Web Part menu and choosing Modify Shared
Web Part. This will open the Report Explorer task pane, as shown in Figure 3-16.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES142

Figure 3-16. Configuring the Report Explorer web part

In the Report Explorer task pane, you have to configure a couple of things. First, you need to
configure the Report Manager URL. This is the URL that you use to go to the Report Manager in the
browser (by default, http://[server]/reports). The Start Path setting is optional; this can be a spe-
cific folder that is shown in the Report Manager by default. The View Mode option has two settings:
Detail or List. Detail view includes metadata about the items and folders shown in the web part,
such as type and subscription information. It is also possible to sort items based on metadata
columns. Figure 3-17 shows the Report Explorer web part in Detail view mode. When you click a
report shown in the Report Explorer web part, the report is opened in a new window.

Figure 3-17. The Report Explorer web part

The Report Viewer web part can be configured by clicking the web part’s Web Part menu and
choosing Modify Shared Web Part. Figure 3-18 shows the Report Viewer task pane.

Figure 3-18. Configuration of the Report Viewer web part

In the Report Viewer task pane, you can enter the Report Manager URL. You can also specify a
report path, which is optional. If you do specify a report path, you need to make sure the report
path starts with a forward slash followed by the name of the report you would like to see. There are
three modes for the Toolbar Size option: None, Small, and Full. The None mode will not show any
kind of toolbar; the web part will only show the report. The Small mode shows the paginating part
of the toolbar. The Full mode’s name says it all: in this mode, the web part shows everything. Figure
3-19 shows the Report Viewer web part with the Full toolbar selected.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 143

Figure 3-19. The Report Viewer web part

When you specify the report path for the Report Viewer web part and the start path for the
Report Explorer web part, you have configured two reporting web parts that work alone. It is possi-
ble to connect the two web parts, in which case the report path and the start path properties should
not be filled in. This way, once you select a report in the Report Explorer web part, it will be shown
in the Report Viewer web part. Follow these steps to connect the reporting web parts:

1. Go to the Report Explorer web part, click the Web Part menu, and choose Modify Shared
Web Part.

2. Again, click the Report Explorer’s Web Part menu and select Connections ➤ Show Report In
➤ Report Viewer.

3. Click a report in the Report Explorer web part and notice that it opens in the Report Viewer
web part.

SQL Server Reporting Services Report Viewer Web Part
The SQL Server Reporting Services Report Viewer web part can be used to view reports that are built
in SharePoint integrated mode. This web part comes with the SQL Server 2005 Reporting Services
Add-in. The next procedure shows you how to add and configure the SQL Server Reporting Services
Report Viewer web part to a SharePoint site:

1. Browse to a SharePoint site.

2. Select Site Actions ➤ Edit Page.

3. Click Add a Web Part. This opens the Add Web Parts – Web Page Dialog window.

4. Scroll down to the Miscellaneous section and select the SQL Server Reporting Services
Report Viewer web part.

5. Click Add. This adds the SQL Server Reporting Services Report Viewer web part to the
SharePoint site.

The next step is to open the web part’s tool pane. This can be done via the link called Click
here to open the tool pane, which is shown in the web part body. Next, click the Browse button in
the Report section to open the Select an Item – Web Page Dialog window. In this window, you can
select a report from any library in the SharePoint site collection. If you want a report from another

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES144

site collection, you can type the report URL instead. The report URL can be obtained by right-
clicking the report and selecting Properties. The URL must be a fully qualified path to a report and
you must replace any %20 encodings with a space when you paste the URL in the Location text box.
Figure 3-20 shows the Select an Item – Web Page Dialog window.

Figure 3-20. Select an Item dialog

You can specify a report from another site collection or SharePoint site, but the report must be
located in the same web application or farm as the Report Viewer web part. Specifying the report is
enough; you do not need to specify the report model or the shared data source files. The report itself
contains the references to the files it needs. Figure 3-21 shows a sample report displayed in the
Report Viewer web part.

Figure 3-21. Report Viewer web part

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 145

Report Center
Microsoft Office SharePoint Server 2007 offers out-of-the-box functionality for generating Reporting
Services reports via the Report Center. The Report Center is a SharePoint site template that can be
used to create SharePoint sites for hosting reports. Collaboration portals automatically contain a
Report Center. You can also create a Report Center as a separate site collection by using the existing
Report Center site template. When you create a Report Center using the Report Center site tem-
plate, it looks like Figure 3-22.

The Report Center that is offered by SharePoint is meant to be the center of all business intelli-
gence data. A Report Center contains the following items:

• Reports library: A reports library contains links to the site’s reports. Here you can create new
versions, keep a version history, and archive old reports.

• Dashboards: It is possible to create report dashboards that contain different web parts, for
example, a filter web part and Excel Web Access web parts. Figure 3-22 shows a sample
report dashboard.

Figure 3-22. Sample dashboard

• Supporting content: Besides reports, a Report Center can also contain content such as data
connections or references to reports.

• Home page with links to reports and supporting content: The Report Center home page,
shown in Figure 3-23, contains several web parts that give an overview of reports that are
available and where to find those reports.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES146

Figure 3-23. Out-of-the-box Report Center

Reports in SharePoint
There are two groups of people that can create reports: end users and developers. The reports that
are created by end users are built using report models that have been predefined by developers. The
reports that are created by developers are created using the Business Intelligence Development Studio.

Creating a report using the Business Intelligence Development Studio was already discussed in
the section “Building a Report.” In the following sections, we will discuss the creation of a report
model, how to use a report model in SharePoint, and how to manage reports in a Report Center.

Building a Report Model
To create a report model and use it in SharePoint, you must follow these steps:

1. Create a Report Model project.

2. Create a data source.

3. Create a data source view.

4. Create a report model using Business Intelligence Development Studio.

5. Publish the report model to a SharePoint Report Center.

In this section, we will cover all these steps. Let’s start with creating a Report Model project. We
are going to use Business Intelligence Development Studio to create a Report Model project. The
following procedure shows you how to do this:

1. Open Business Intelligence Development Studio by selecting Start ➤ All Programs ➤
Microsoft SQL Server 2005 ➤ SQL Server Business Intelligence Development Studio.

2. Select the File menu ➤ New ➤ Project. This opens the New Project dialog box.

3. Select the Business Intelligence Projects project type. From the Templates section, select the
Report Model Project template. Name the project AdventureReportModel and click OK.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 147

A report model project consists of three components: data sources, data source views, and
report models. A report model requires a data source view, while a data source view requires a
data source. Therefore, we are first going to create a data source for the report model using the
AdventureWorks database. The AdventureWorks database is a sample database that ships with SQL
Server 2005. More information about installing the AdventureWorks database can be found in the
earlier section “Building a Report.” The next procedure shows you how to add the AdventureWorks
database as a data source.

1. Right-click the Data Sources folder in the Solution Explorer and select Add New Data
Source. This opens the Data Source Wizard.

2. The first screen that is displayed by the wizard is the Welcoming screen. Click Next.

3. When defining a data source you have two options: create a data source based on a new
connection or based on an existing connection. In this example, we are going to create a
data source based on a new connection. Click the New button to start creating a new con-
nection in the Data Source Wizard, as shown in Figure 3-24. This opens the Connection
Manager dialog box.

Figure 3-24. Creating a new connection

4. In the Connection Manager dialog, you have to specify the provider, server name,
and database you are going to use. In this example, we are selecting the SqlClient Data
Provider. The name of our database server is Jupiter and we are using the AdventureWorks
database. The Connection Manager dialog window is shown in Figure 3-25. Click OK
when you are ready.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES148

Figure 3-25. The Connection Manager dialog box

5. The next screen of the wizard shows an overview of the connection you have created.
Click Finish.

6. The last screen of the wizard shows an overview of the selected connection string and gives
you an opportunity to provide a name for the data source that you are about to create.
We will leave the name as is (Adventure Works).

For a report model project, you have to create data source views based on relational data
sources. The basis of the data source view consists of a list of tables that can be joined.

Follow these steps to create a data source view:

1. Right-click the Data Source Views folder in the Solution Explorer and select Add New Data
Source View. This opens the Data Source View Wizard.

2. The first screen is the Welcome screen. Click Next.

3. Select the data source we have just created (called Adventure Works) and click Next.

4. The Select Tables and Views screen shows all available tables you can choose from.
In this example, we will select the following tables: Product, ProductSubcategory,
ProductCategory, ProductReview, ProductModel, ProductModeIllustration, and
ProductModelProductDescription. This is shown in Figure 3-26. Click Next.

5. The final screen of the Data Source View Wizard shows an overview of the tables you have
selected and an opportunity to give the Data Source View a name. In this example we will
give it the name Adventure Works. Click Finish.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 149

Figure 3-26. Selected tables in data source view

Now we are ready to create a report model based upon the data source view we just created.
The next procedure explains how to create a report model.

1. Right-click the Report Models folder in the Solution Explorer and select Add New Report
Model. This opens the Report Model Wizard.

2. The first screen of the wizard is the Welcome screen. Click Next.

3. The Select Data Source View screen lets you select a data source view for the report model
you are about to create. This page also offers the option to create a new data source view if
you have not done that already. Select the Adventure Works data source view we created and
click Next.

4. On the next screen of the wizard, you can select the report model generation rules. The
generation rules are divided in two passes. Table 3-7 shows the rules for the two passes of
generating the report model. By default, two of the first pass rules are not selected, namely
Create Entities for Non-empty Tables and Create Attributes for Non-empty Columns. Select-
ing these rules means that entities and attributes are created only for tables that already
contain data.

■Note Report model entities are conceptually equivalent to tables in relational databases; report model attrib-
utes are equivalent to fields or columns within tables.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES150

Table 3-7. Report Model Generation Rules

Rule Name Description

First Pass Rules

Create entities for all tables Choose this rule if you want to create an entity for each
table automatically.

Create entities for non-empty tables Choose this rule if you want to create an entity for each
table that contains data.

Create count aggregates Choose this rule if you want to create an aggregate field
containing the number of unique instances in an entity.

Create attributes Choose this rule if you want to create an attribute for each
column in a table automatically.

Create attributes for Choose this rule if you want to create an attribute for each
non-empty columns column that contains data.

Create attributes for Choose this rule if you want to create an attribute for an
auto-increment columns auto-increment column.

Create date variations Choose this rule if you want to create variations for date
display.

Create numeric aggregates Choose this rule if you want to aggregate numeric fields.

Create date aggregates Choose this rule if you want to aggregate date fields.

Create roles Choose this rule if you want to create roles for a
relationship between entities

Second Pass Rules

Lookup entities This rule creates lookup entities from entities containing
only one field.

Small lists This rule creates drop-down lists from entities that contain
fewer than 100 values.

Large lists This rule creates lists from entities that contain more than
500 values.

Very large lists This rule creates a filter in a list from entities that contain
more than 5,000 values.

Set identifying attributes This rule creates identifying attributes for fields that are
unique.

Set default detail attributes This rule creates default detail attributes for fields that are
displayed by default.

Role name only This rule automatically creates the contextual name
property of the Role attribute.

Numeric/date formatting This rule adds sorting capabilities for numeric and date
fields.

Integer/decimal formatting This rule creates formatting rules for integers and
decimals.

Float formatting This rule creates formatting rules for float fields.

Date formatting This rule creates formatting rules for date time fields.

Discourage formatting This rule prevents grouping on fields that are unique.

Dropdown value selection This rule creates the Value Selection property for drop-
down lists that contain fewer than 200 values.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 151

5. In this example, we will keep the default selections and click Next; see Figure 3-27.

Figure 3-27. Report Model generation rules

6. The Collect Model Statistics page of the wizard lets you update the statistics before generat-
ing the report. This is important if there is a chance that the data has changed since the last
time the report model was generated. See Figure 3-28.

Figure 3-28. Collect Model Statistics

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES152

7. On the Completing the Wizard screen, you can give the report model a custom name. In this
example, we will use the default name: Adventure Works. The last thing to do is click Run to
start generating the report model.

8. After generating the report model, you will see the Completing the Wizard screen again,
displaying an overview of the status of the rules. Again, you will have the opportunity to
give the report model a custom name and click Finish, as shown in Figure 3-29.

Figure 3-29. Completing the Wizard screen

The report model is generated and we are going to deploy the model to a SharePoint Report
Center. The next procedure shows you how to do this.

1. Right-click the project in the Solution Explorer and select Project Properties.

2. Select the General Configuration property and enter the following values:

• TargetDataSourceFolder is the URL of the SharePoint library for shared data sources.
In this example that will be http://jupiter:23456/sites/MOSSPortal/Reports/
Data Connections.

• TargetModelFolder is the URL of the SharePoint library for report models. In this exam-
ple that will be http://jupiter:23456/sites/MOSSPortal/Reports/ReportsLibrary.

• TargetServerURL is the URL of the SharePoint site to which the project is deployed.
In this example that will be http://jupiter:23456/sites/MOSSPortal.

■Note You need to have sufficient (read and write) permissions to the specified libraries and SharePoint site;
otherwise you will receive a Microsoft.ReportingService.RsProxy.AccessDeniedException when you try
to deploy the report model project.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 153

3. Click OK.

4. Right-click the project and click Deploy. The Report model will be deployed to the Report
Center you have specified.

At this moment the Report Center will contain one report model called Adventure Works and one
data source, also called Adventure Works. The next section will discuss how to use the report model.

Using a Report Model
After publishing the report model to a SharePoint Report Center, end users can manage a report
via the arrow next to the report model, as shown in Figure 3-30. Clicking this arrow gives the user
a couple of options; some are SharePoint-specific while others are reporting services–specific.
Figure 3-30 shows the list of all the options available for a report model. The reporting services
specific options for a report model are

• Load in Report Build: We will talk more about this option later in this section.

• View Dependent Items: Clicking this option will display a page that contains a list of reports
that depend on the selected model.

• Manage Data Sources: This option can be used to view or change data source information for
a report or model.

• Manage Clickthrough Reports: This option can be used to make custom clickthrough reports
(reports that are created using the ClickThrough Reports wizard) for report model entities in
the selected report model (remember, entities are conceptually comparable to database
tables). There can be one report for each entity that returns a single instance of this entity.
There can also be one report that lists multiple instances for the specified entity.

• Manage Model Item Security: This option can be used to give permissions to individual
model items in the report models. By default, the model items inherit the security from the
report model.

• Regenerate Report Model: This option can be used to regenerate a report model.

End users are able to create reports using of the Report Builder. The Report Builder is a click-
once design application that can be used to create and publish reports. If you use the Report
Builder to build reports, you do not need a full development environment such as Visual Studio
or Business Intelligence Development Studio. The first time an end user starts the Report Builder,
it will be automatically downloaded from the SharePoint server and installed as a component on
the end user’s machine.

The Report Builder can be started from a Report Center by clicking on the arrow next to the
report model and selecting Load in Report Builder from the drop-down list.

End users can use the Report Builder to create and publish reports to a SharePoint site based
on the selected report model. The Report Builder consists of three areas: design, report data, and
report layout. The report layout area is not opened by default when you start the Report Builder
via SharePoint. This is because you have already selected a data source by clicking Load in Report
Builder.

■Note There are three available report templates: table, matrix, and chart. The templates all consist of prede-
fined areas, such as title, total column, and filter column.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES154

Figure 3-30. Load in Report Builder action

We are going to use the table template for this report, and we will start by dropping the follow-
ing columns in the design area (also is called drag-and-drop column fields): Name, Product
Number, Product Category, Product Mode. The Report Builder now looks like Figure 3-31.

Figure 3-31. Report Builder design area

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 155

When these fields are added to the design area, we can click Run Report to preview the report,
as shown in Figure 3-32. Each field in the report contains an interactive sorting icon next to the
name of the column. If you click the sorting icon, the report will be generated again.

Figure 3-32. Report Builder preview mode

It is possible to save the generated report in SharePoint. You can do this by clicking the Save
icon or selecting File ➤ Save. This opens a Save As Report window with the location already set to
the report library that stores the report model. Figure 3-33 shows the Save As Report window.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES156

Figure 3-33. Save As Report window

When we return to our Report Center, we will notice, maybe after a refresh of the page, that our
report is present. Clicking the arrow next to the report shows a couple of options. Some of these
options are SharePoint-specific, while others are Reporting Services–specific. Figure 3-34 shows the
list of the options available for a report in a report library. The Reporting Services–specific options
for a report are

• Edit in Report Builder: This option starts Report Builder so you can change the definition of
the report.

• Manage Subscriptions: This option can be used to manage the subscriptions for the speci-
fied report.

• Manage Data Sources: This option can be used to view or change data source information for
a report or model.

• Manage Parameters: This option can be used to manage the parameters that are used in
the report.

• Manage Processing Options: This option can be used to specify how and when report pro-
cessing occurs, as well as set snapshot options and timeouts.

• View Report History: This option can be used to manage the history of the report.

■Tip For more information about building reports using the Report Builder, you can look at the SQL Server 2005
Books Online from Microsoft. You can find the SQL Server 2005 Books Online at http://technet.microsoft.com/
en-us/sqlserver/bb428874.aspx.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 157

Figure 3-34. Options available for a report

Reporting Services Extensions
SQL Server 2005 Reporting Services is designed with extensibility in mind. A managed code
Application Programming Interface (API) is available so that you can easily develop, install, and
manage extensions consumed by many Reporting Services components. Reporting Services can
be extended in various ways:

• Data processing extensions: Data processing extensions make it possible to consume custom
data and include this data into reports using the report server and Report Designer.

• Delivery extensions: Delivery extensions make it possible to extend the range of mechanisms
that can be used to send report notifications to end users and to extend the subscription
management pages of Report Manager to support subscriptions of custom delivery exten-
sion types.

• Security extensions: Security extensions are used by report server for authenticating and
authorizing users and groups to the server. The default security mechanism that is used by
report server is Windows authentication. You can create custom security models using secu-
rity extensions; for example, you could create a security model based on forms-based
authentication. A single Reporting Services installation only allows you to use one security
extension at a time.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES158

• Rendering extensions: Rendering extensions are responsible for transforming data and layout
information into a specific format. By default, Reporting Services includes six rendering
extensions: HTML, Excel, CSV, Image, PDF, and XML. Using the Rendering API, you can cre-
ate support for other formats as well.

• Report processing extensions: Report processing extensions are responsible for processing
report items. Using the processing API, you can create support for the processing of custom
report items. By default, report server is able to process tables, charts, matrices, lists, text
boxes, and images.

Every report server installation requires the presence of one or more security extensions, one
or more data processing extensions, and one or more rendering extensions. Delivery and custom
report processing extensions are optional and only need to be present if you want to support report
distribution or custom controls.

The Reporting Services Extension Library contains all the types that make up Reporting
Services. This library can be used to access Reporting Services and to extend Reporting Services
components. Table 3-8 shows the namespaces that are available within the Reporting Services
Extension Library.

Table 3-8. Namespaces Reporting Services Extension Library

Name Description

Microsoft.ReportingServices.DataProcessing All types located in this namespace allow you
to build custom components that extend
Reporting Services’ data processing
capabilities.

Microsoft.ReportingServices.Interfaces All types located in this namespace allow you
to create and send custom notifications via
your own delivery extensions. This namespace
also contains all types related to Reporting
Services security extensions.

Microsoft.ReportingServices.ReportRendering All types located in this namespace allow you
to extend Reporting Services’ default rendering
capabilities. Custom rendering extensions can
be built using the types in this namespace in
conjunction with the types that can be found in
the Microsoft.ReportingServices.Interfaces
namespace.

Data Processing Extension Example
Data processing extensions allow you to connect to a data source and retrieve data. For example,
the data processing extension for SQL Server, which is included with Reporting Services, can be
used to connect to a SQL Server database and retrieve data from this database. The data processing
extensions that are included with Reporting Services use a common set of interfaces that indicate
the kind of functionality that needs to be implemented by each data processing extension.

If you want to add a custom data processing extension, you need to implement the complete
set, or in some scenarios a subset, of the interfaces described in the Reporting Services data pro-
cessing API, as shown in Figure 3-35.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 159

Figure 3-35. Report server architecture

The first thing that happens when a report server processes data via data extensions is it cre-
ates an ADO.NET connection object. The report server makes sure the correct connection string
and current client credentials are included. The command text of the report is used to create a com-
mand object. In the process, the data processing extension may include code that parses the
command text and creates any parameters for the command. Once the command object and any
parameters are processed, a data reader is generated that returns a result set and enables the report
server to associate the report data with the report layout. Figure 3-36 shows this process.

In the example described in this section, we will create a new data processing extension that
will be used to create a report based on data retrieved from a SharePoint list.

■Note The advantage of using SharePoint lists to store data is that the user interface required to manage the
information in such a list is available automatically. Having said that, storing large amounts of application data in a
SharePoint list is not something we would recommend. In such cases, we think you are better off storing data in a
suitable repository, such as a database.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES160

Figure 3-36. Data processing via data extensions

We will use a SharePoint list that contains a summary of bugs. Such lists can become rather long
and it might not be so easy for a project manager to get a clear picture of the current bug status. To
solve this, we are going to build a SharePoint data processing extension that creates a report based
on the data in the SharePoint Bugs list. The report will show bug status as well as the developers
responsible for solving the bugs.

Windows SharePoint Services 3.0 offers a web service interface that contains 21 different web
services. This web service interface makes it possible for a remote report server to interact with
SharePoint. We will use the Lists web service for creating the data processing extension. This web
service can be used to work with lists and list data.

As far as we know, the first person to write about creating a custom data processing extension
for SharePoint lists was Teun Duynstee. The example discussed in this section was based on the
code found on his blog at http://www.teuntostring.net.

Developing a Custom Data Extension
The first thing you need to do to create a custom data processing extension is create a new Visual C#
class library. The next steps will show you how to do this:

1. Go to Start ➤ All Programs ➤ Microsoft Visual Studio 2005 ➤ Microsoft Visual Studio 2005.
This opens the Visual Studio development environment.

2. Go to File ➤ New ➤ Project. This opens the New Project dialog box.

3. Select Visual C# in the Project Types list and select Class Library in the Templates list. Enter
the following name for the project: SharePointListExtension.

The next thing to do is to add a reference to the Microsoft.ReportingServices.Interfaces assem-
bly, which can be found at the following location: [drive letter]:\Program Files\Microsoft SQL Server\
MSSQL.2\Reporting Services\ReportServer\bin. Follow these steps to add this reference:

1. Right-click References in the Solution Explorer and choose Add Reference.

2. In the Add Reference dialog box, click the Browse tab and browse to the following location:
[drive letter]:\Program Files\Microsoft SQL Server\MSSQL.2\Reporting Services\
ReportServer\bin.

3. Click the Microsoft.ReportingServices.Interfaces.dll file and click OK.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 161

We are going to add another reference, but this time it will be a web reference. We will refer to
the Windows SharePoint Services Lists web service. Follow these steps to add the web reference:

1. Right-click References in the Solution Explorer and choose Add Web Reference.

2. In the Add Web Reference dialog box, type the URL http://[server]/ _vti_bin/Lists.asmx
and click the Go button.

3. Call the web reference WssLists and click Add Reference.

The first class we are going to create is a connection class, which we will simply call Connection.
The Connection class implements the IDbConnection and IDbConnectionExtension interfaces. This
class is responsible for managing the connection to a SharePoint list and is the starting point for
users of the data processing extension.

The IDbConnection interface supports the IExtension interface, which means that implement-
ing the IDbConnection interface in a connection class implicitly means supporting the IExtension
interface as well. We will discuss the IExtension interface a little bit later; first, we will take a closer
look at the IDbConnection interface.

Our class will contain two constructors. The first constructor does nothing and accepts no
parameters. The second constructor accepts a String parameter containing the connection string
to the SharePoint list and sets the ConnectionString property, which is a part of the IDbConnection
interface. The next code fragment shows the second constructor.

public Connection(string strConnection)
{
ConnectionString = strConnection;

}

If you want to support the IDbConnection interface, you have to implement the following four
methods:

• BeginTransaction(): This method begins a database transaction. In our connection class,
this method is not supported and will always throw a NotSupportedException error.

public IDbTransaction BeginTransaction()
{
throw new NotSupportedException();

}

• CreateCommand(): This method creates and returns a Command object associated with the con-
nection. We will discuss the Command class later on.

public IDbCommand CreateCommand()
{
return new Command(this);

}

• Close(): This method is intended to close the connection to a database. In our example it is a
simple method, because we do not have a real database connection that needs to be opened
and closed. Here the method just indicates that the current connection state is closed:

public void Close()
{
_objConnState = System.Data.ConnectionState.Closed;

}

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES162

• Open(): This method is intended to open a database connection using the settings specified
in the ConnectionString property of the provider-specific Connection object. What is true for
the Close() method is also true for the Open() method; as we do not have a real database
connection, the method just indicates that the current connection state is open:

public void Open()
{
_objConnState = System.Data.ConnectionState.Open;

}

We also have to implement the following two properties from the IDbConnection interface:

• ConnectionString: This property gets or sets the string used to open a database. The format
of the connection string expected by the SharePoint list connection class is a name/value
pair that looks like this: data source=http://[server]. The “set” part of the ConnectionString
property knows how to add the name/value pair to a HybridDictionary collection called
_objConn:

public string ConnectionString
{

get { return _strConn; }
set
{
_strConn = value;
_objConn.Add(_strConn.Substring(0,
_strConn.IndexOf(“=”)).ToLower(),➥
_strConn.Substring(_strConn.IndexOf(“=”) + 1));

}
}

• ConnectionTimeout: This property returns the maximum time to wait while trying to establish
a connection. If the timeout period has expired, the attempt is terminated and an error is
generated. In this example, this property is not supported and will therefore always return 0
(zero).

public int ConnectionTimeout
{
get { return 0; }
set { }

}

The IExtension interface enables a class to implement the localized name of the extension (a
friendly name, such as SharePointListExtension) that will be displayed in the user interface and to
process extension-specific configuration information stored in the Reporting Services configuration
file. The LocalizedName property and the SetConfiguration() method of the IExtension interface
are implemented in the Connection class.

We have also implemented the IDbConnectionExtension interface to extend our Connection
class to include support for credentials in Reporting Services. The following four properties are
implemented:

• IntegratedSecurity: This property indicates whether the connection should use integrated
security rather than supply a username and password. This property enables the integrated
security check box and the username and password text boxes in the Data Source dialog in
the Report Designer. This way credentials can be stored and retrieved by the Report Designer
for data sources that support authentication. The credentials are stored securely and are
used when rendering reports in preview mode.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 163

• UserName: This property gets or sets the user name that is used when connecting to the
database.

• Impersonate: This property sets the user name that is impersonated while queries are exe-
cuted. This property is ignored by the report server if impersonation is not supported by the
data provider.

• Password: This property gets or sets the password to use when connecting to the database.

The complete code for the Connection class looks like Listing 3-1.

Listing 3-1. Creating a Connection Manager Class That Interacts with a SharePoint List

using System;
using d = System.Data;
using System.Collections.Specialized;
using System.Security.Permissions;
using System.Security.Principal;
using Microsoft.ReportingServices.DataProcessing;
using Microsoft.ReportingServices.Interfaces;

namespace LoisandClark.SharePointListExtension
{

public class Connection : IDbConnection, IDbConnectionExtension
{
private string _strConn;
private string _strLocName = “MOSS”;
private string _strImpersonate;
private string _strUsername;
private string _strPassword;
private bool _blnSecurity;
private HybridDictionary _objConn = new HybridDictionary();
private d.ConnectionState _objConnState = d.ConnectionState.Closed;

public Connection()
{ }

public Connection(string strConnection)
{
ConnectionString = strConnection;

}

public string ConnectionString
{
get { return _strConn; }
set
{
_strConn = value;
_objConn.Add(_strConn.Substring(0, _strConn.IndexOf(“=”)).ToLower(), ➥
_strConn.Substring(_strConn.IndexOf(“=”) + 1));

}
}

public IDbTransaction BeginTransaction()
{
throw new NotSupportedException();

}

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES164

public void Open()
{
_objConnState = d.ConnectionState.Open;

}

public void Close()
{
_objConnState = d.ConnectionState.Closed;

}

public IDbCommand CreateCommand()
{
return new Command(this);

}

public string LocalizedName
{
get { return _strLocName; }
set { _strLocName = value; }

}

public void SetConfiguration(string configuration)
{ }

public void Dispose()
{ }

public int ConnectionTimeout
{
get { return 0; }
set { }

}

public string strDataSourcePath
{
get
{
if (_objConn.Contains(“data source”))
{
string strUrl = (string)_objConn[“data source”];
if (!strUrl.EndsWith(“/”))
{
strUrl = strUrl + “/”;

}
return strUrl;

}
return “”;

}
}

public d.ConnectionState State
{
get { return _objConnState; }

}

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 165

public bool IntegratedSecurity
{
get { return _blnSecurity; }
set { _blnSecurity = value; }

}

public string UserName
{
get { return _strUsername; }
set { _strUsername = value; }

}

public string Password
{
get { return _strPassword; }
set { _strPassword = value; }

}

public string Impersonate
{
set { _strImpersonate = value; }

}

}
}

The next class you need to create is a Command class. A Command class formulates a request and
passes it on to the data source. Command requests can take many different syntactical forms,
including text and XML. If results are returned, a Command object always returns results as a
DataReader object. To create a Command class, you will have to implement the IDbCommand interface.
The IDbCommand interface contains the following three methods:

• Cancel(): This method attempts to cancel the execution of an object implementing the
IDbCommand interface. Our Command class will not support this operation; it will throw a
NotSupportedException.

• CreateParameter(): This method creates a new instance of an object implementing the
IDataParameter interface. In this example, we will not use parameters; the operation will
return null instead.

• ExecuteReader(): This method executes a command request (the contents of the CommandText
property) against the Connection object and builds a response object that supports the
IDataReader interface. The DataReader class implementing this interface is discussed in
detail later in this section. The ExecuteReader() method is overloaded and includes an
implementation that takes a CommandBehavior enumeration as an argument. The default
ExecuteReader() method accepts no parameters and calls the overload passing
CommandBehavior.SingleResult as its single argument. The overloaded method calls a
custom GetDataTableFromWSS() method. This method does not belong to any of the inter-
faces that are a part of the Data Processing API; it is just used for clarity (we’ll get back to
this method in a moment). ExecuteReader() methods for data processing extensions
need to support schema-only requests. Schema-only requests are specified using the
CommandBehavior.SchemaOnly command behavior enumeration value. A response to such
requests contains type and name information about fields or columns but does not
include actual data.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES166

public IDataReader ExecuteReader()
{
return ExecuteReader(CommandBehavior.SingleResult);

}

public IDataReader ExecuteReader(CommandBehavior behavior)
{
d.DataTable objDataTable = GetDataTableFromWSS((behavior == ➥
CommandBehavior.SchemaOnly));
return new DataReader(this._objConn, objDataTable);

}

The IDbCommand interface contains the following five properties:

• CommandText: This property gets or sets the text command to run against the data source. We
will use this property to specify which SharePoint list we want to use. Therefore, instead of
using a SQL query, we will use the name of a SharePoint list:

public string CommandText
{
get { return _strText; }
set { _strText = value; }

}

• CommandTimeout: This property gets or sets the maximum wait time before terminating the
attempt to execute a command and generating an error. We have specified the wait time for
our solution to be 60 seconds:

public int CommandTimeout
{
get { return 60 * 1000; }
set { }

}

• CommandType: This property indicates or specifies how the CommandText property should be
interpreted, for example, as text:

public CommandType CommandType
{
get { return _objCmdType; }
set
{
if (value != CommandType.Text)
{
throw new NotSupportedException();

}
_objCmdType = value;

}
}

• Parameters: This property gets the IDataParameterCollection. In this example, we will do
nothing with parameters, so this property will return an empty collection.

• Transaction: This property gets or sets the transaction context in which the Command object of
a SQL Server Reporting Services data provider executes. In this example we will not support
transactions. The Transaction property returns null.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 167

We promised to pay some attention to the GetDataTableFromWSS() method that gets called by
the ExecuteReader() method of the Command class. This method is the core of the code for our cus-
tom data extension. We will discuss parts of the method and show the entire method in the
complete code listing of the Command class.

The first part of the GetDataTableFromWSS() method sets up a proxy object that is able to call
the SharePoint web service, as shown in the following code fragment. The PreAuthenticate property
can be used to indicate that credentials need to send on the very first request.

WssLists.Lists objLists = new WssLists.Lists();
objLists.Url = _objConn.strDataSourcePath + “_vti_bin/Lists.asmx”;
objLists.Credentials = GetCredential(_objConn);
objLists.PreAuthenticate = true;
objLists.Timeout = this.CommandTimeout;

The next part of the code calls the GetListCollection() method. This method returns an
XmlNode containing the entire list collection node. The method looks for the Name attribute because
it contains a GUID (Globally Unique Identifier) that identifies SharePoint lists. We are going to use
this GUID when calling the web service later, as shown in this code fragment:

XmlNode ListCollectionNode = objLists.GetListCollection();
XmlElement xmlElem = (XmlElement)ListCollectionNode. ➥
SelectSingleNode(String.Format(“wss:List[@Title=’{0}’]”, ➥
this.CommandText), NameSpaceManager);
if (xmlElem == null)
{
throw new ArgumentException(String.Format(“ ➥
List {0} does not exist in site {1}”, this.CommandText, ➥
_objConn.strDataSourcePath));

}

string strTechListName = xmlElem.GetAttribute(“Name”);
XmlNode xmlNode = objLists.GetList(strTechListName);

For each column in the SharePoint list, we will add a new column to our DataTable with an
identical name.

■Tip Alternatively, if there are lots of columns in a SharePoint list, you can create a datatable based on this list
and call the Clear() method to obtain a DataTable object that contains the right set of columns. This approach
is not demonstrated in this section.

In SharePoint, each column has two names—one called Name and another called DisplayName.
Upon column creation, these two names are always the same. Later, the DisplayName can be
changed by end users. The SharePoint user interface displays the DisplayName of the column.
Having taken this into account, it is better to use the DisplayName of the column as the ColumnName
in our DataTable. The Name of the SharePoint column is added to a hybrid dictionary. This way we
can always look up which Name belongs to a given ColumnName, as shown in this code fragment:

StringBuilder objStringBuilder = new StringBuilder();
HybridDictionary objDictionary = new HybridDictionary();
d.DataTable objResult = new d.DataTable(“list”);
foreach (XmlElement xmlField in xmlNode.SelectNodes(“ ➥
wss:Fields/wss:Field”, NameSpaceManager))
{
string strName = xmlField.GetAttribute(“Name”);
string strDisplayName = xmlField.GetAttribute(“DisplayName”);

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES168

if (objResult.Columns.Contains(strDisplayName))
{
strDisplayName = strDisplayName + “ (“ + strName + “)”;

}
objResult.Columns.Add(strDisplayName, TypeFromField(xmlField));
objStringBuilder.AppendFormat(“<FieldRef Name=\”{0}\”/>”, strName);
objDictionary.Add(strDisplayName, strName);

}

if (blnSchema)
{
return objResult;

}

XmlElement fields = xmlNode.OwnerDocument.CreateElement(“ViewFields”);
fields.InnerXml = objStringBuilder.ToString();

In the following code fragment, we will load the data into the DataTable using the SharePoint
web service’s GetListsItems() method. The regular expression ^\\d+;# that is used in the next code
fragment means that we are looking for one or more digits between zero and nine, followed by a “;”
character, and a “#” character.

XmlNode ItemsNode = objLists.GetListItems(strTechListName, “”, null, ➥
fields, “1000000”, null, null);
System.Text.RegularExpressions.Regex CheckLookup = ➥
new System.Text.RegularExpressions.Regex(“^\\d+;#”);

foreach (XmlElement Item in ItemsNode.SelectNodes(“ ➥
rs:data/z:row”, NameSpaceManager))
{
d.DataRow newRow = objResult.NewRow();
foreach (d.DataColumn col in objResult.Columns)
{
if (Item.HasAttribute(“ows_” + (string) objDictionary[col.ColumnName]))
{
string val = Item.GetAttribute(“ows_” + ➥
(string)objDictionary[col.ColumnName]);
if (CheckLookup.IsMatch((string)val))
{
string valString = val as String;
val = valString.Substring(valString.IndexOf(“#”) + 1);

}
newRow[col] = val;

}
}
objResult.Rows.Add(newRow);

}
return objResult;
}

■Note The complete code listing for the Command class can be downloaded from our web site at http://www.
lcbridge.nl/download/.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 169

The next class to discuss is the DataReader class. If you want to create a DataReader class, you
have to implement the IDataReader interface. The DataReader implementation must provide two
basic capabilities: forward-only access over the result sets obtained by executing a command, and
access to the column types, names, and values within each row. You can use the Read() method of
the DataReader object to obtain a row from the results of the query.

The complete code for the DataReader class looks like Listing 3-2.

Listing 3-2. Creating a DataReader Class for Access to the Result Sets and Columns

using System;
using System.Collections;
using d = System.Data;
using System.Diagnostics;
using System.Globalization;
using System.IO;
using System.Security;
using System.Security.Permissions;
using System.Security.Principal;
using Microsoft.ReportingServices.DataProcessing;

namespace LoisandClark.SharePointListExtension
{

public class DataReader : IDataReader
{
private Connection _objConn = null;
private d.DataTable _objDataTable;
private DataParameterCollection _objDataParameters = null;
IEnumerator enumTable = null;

public DataReader()
{ }

public DataReader(Connection objConn, d.DataTable objDataTable)
{
_objConn = objConn;
_objDataTable = objDataTable;

}

public DataReader(Connection objConn, d.DataTable objDataTable, ➥
DataParameterCollection objParameters) ➥
: this(objConn, objDataTable)

{
_objDataParameters = objParameters;

}

public bool Read()
{
if (enumTable == null)
{
enumTable = _objDataTable.Rows.GetEnumerator();

}
return enumTable.MoveNext();

}

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES170

protected d.DataRow CurrentRow
{
get { return (d.DataRow)enumTable.Current; }

}

public int FieldCount
{
get { return _objDataTable.Columns.Count; }

}

public string GetName(int i)
{
return _objDataTable.Columns[i].ColumnName;

}

public Type GetFieldType(int i)
{
return _objDataTable.Columns[i].DataType;

}

public Object GetValue(int i)
{
return CurrentRow[i];

}

public int GetOrdinal(string strName)
{
foreach (d.DataColumn objColumn in _objDataTable.Columns)
{
if (objColumn.ColumnName == strName)
{
return objColumn.Ordinal;

}
}
throw new IndexOutOfRangeException(“ ➥
There is no field with the name “ + strName);

}

public void Dispose()
{
_objDataTable.Dispose();

}
}

}

The DataParametercollection class inherits fron ArrayList and implements the
IDataParameterCollection interface. The IDataParameterCollection interface contains
the Add() method; with this method you can populate the IDataParameterCollection class.
Listing 3-3 shows the DataParameterCollection class.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 171

Listing 3-3. Creating a Class That Inherits from ArrayList and Implements the
IDataParameterCollection Interfaces

using System;
using System.Collections;
using System.Globalization;
using Microsoft.ReportingServices.DataProcessing;

namespace LoisandClark.SharePointListExtension
{

public class DataParameterCollection : ArrayList, IDataParameterCollection
{
public object this[string index]
{
get { return this[IndexOf(index)]; }
set { this[IndexOf(index)] = value; }

}

public override int Add(object value)
{
return Add((IDataParameter)value);

}

int IDataParameterCollection.Add(IDataParameter parameter)
{
if (parameter.ParameterName != null)
{
return base.Add(parameter);

}
else
{
throw new ArgumentException(“parameter must be named”);

}
}

}
}

Deploying a Custom Data Extension
Deploying a custom data extension is simple. You need to make sure the custom data extension is
accessible to the report server and the Report Designer. You can do this by copying the extension
to the appropriate directories and adding entries to the appropriate Reporting Services configu-
ration files.

1. Copy your assembly to the bin directory of the report server where you want to use your
custom extension. The default location is [drive letter]:\Program Files\Microsoft SQL Server\
MSSQL.2\Reporting Services\ReportServer\bin.

2. Copy your assembly to the Report Designer directory. The default location is [drive letter]:
\Program Files\Microsoft Visual Studio 8\Common7\IDE\PrivateAssemblies.

3. The name of the report server configuration file is RSReportServer.config and it is located
at [drive letter]:\Program Files\Microsoft SQL Server\MSSQL.2\Reporting Services\
ReportServer. Open the RSReportServer.config file in a text editor. Go to the <Data> section
and add the following entry:

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES172

<Extension Name=”MOSS” ➥
Type=”LoisandClark.SharePointListExtension.Connection, ➥
LoisandClark.SharePointListExtension”/>

4. The name of the Report Designer configuration file is RSReportDesigner.config and
it is located at [drive letter]:\Program Files\Microsoft Visual Studio 8\Common7\IDE\
PrivateAssemblies. Open the RSReportDesigner.config file in a text editor. Go to the <Data>
section and add the following entry:

<Extension Name=”MOSS” ➥
Type=”LoisandClark.SharePointListExtension.Connection, ➥
LoisandClark.SharePointListExtension”/>

The value of the Name attribute is the unique name of the data processing extension. The value
of the Type attribute is a comma-separated list that includes an entry for the fully qualified name-
space of the Connection class including the class name itself, followed by the name of your assembly
(do not include the extension .dll). By default, data processing extensions are visible. To hide an
extension from user interfaces such as Report Manager, add a Visible attribute to the <Extension>
element and set it to false.

The last thing you need to do is to add a code group for your custom assembly. Follow the next
steps to add a code group for the report server and the Report Designer:

1. For the report server, you will have to add a code group to the rssrvpolicy.config file located
in [drive letter]:\Program Files\Microsoft SQL Server\MSSQL.2\Reporting Services\
ReportServer. The following code is a valid code group for our custom data extension:

<CodeGroup
class=”UnionCodeGroup”
version=”1”
PermissionSetName=”FullTrust”
Name=”LCExtensionCodeGroup”
Description=”Code group for my data processing extension”>
<IMembershipCondition
class=”UrlMembershipCondition”
version=”1”
Url=”C:\Program Files\Microsoft SQL Server\MSSQL.2\Reporting
Services\ReportServer\bin\LoisandClark.SharePointListExtension.dll”

/>
</CodeGroup>

■Note A permission allows code to perform a specific operation. A permission set is a collection of permissions.
.NET provides seven predefined permission sets; one of them is called FullTrust. The FullTrust permission set is the
most liberal of all and allows code to perform all operations. A code group specifies which permission set applies
to a .NET assembly based on origin-based evidence (.NET examines where the assembly is coming from) or content-
based evidence (.NET looks at the actual content of an assembly). The .NET Common Language Runtime (CLR)
evaluates which code groups apply to a given assembly, and based on this information the CLR determines which
permissions are granted to an assembly. The code group in the code fragment described in step one of the proce-
dure associates the assembly SharePointListExtension.dll with the FullTrust permission set.

2. For the Report Designer, you can add a code group to the rspreviewpolicy.config file
located in [drive letter]:\Program Files\Microsoft Visual Studio 8\Common7\IDE\
PrivateAssemblies:

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 173

<CodeGroup
class=”UnionCodeGroup”
version=”1”
PermissionSetName=”FullTrust”
Name=”LCExtensionCodeGroup”
Description=”Code group for my data processing extension”>
<IMembershipCondition
class=”UrlMembershipCondition”
version=”1”
Url=”C:\Program Files\Microsoft Visual Studio 8\Common7\IDE\ ➥
PrivateAssemblies\LoisandClark.SharePointListExtension.dll”

/>
</CodeGroup>

Using the Custom Data Extension
Now that you have created a custom data extension, you are probably interested in learning how
you can use it. Let’s create a report that is based on a custom Issue Tracking SharePoint list and call
this list Issues. This list contains the issues (bugs) our testers have discovered and assigned to devel-
opers. Figure 3-37 shows our sample Issues list.

Figure 3-37. Bugs SharePoint list

We are going to use our new SharePoint list data extension to create a report via Reporting
Services. The next procedure shows you how to do this:

1. Open SQL Server Business Intelligence Development Studio by clicking Start ➤ All Programs
➤ Microsoft SQL Server 2005 and choose SQL Server Business Intelligence Development
Studio.

2. Click File ➤ New Project and choose Business Intelligence Projects in the Project types list.
In the Templates list, choose Report Server Project Wizard, give your project a descriptive
name, and click OK. We will call our report project IssuesReportProject. Figure 3-38 shows
the New Project dialog window.

3. Once you have clicked OK, a report project will be created and the Report Wizard will be
started. The first page is a Welcome page. Click Next.

4. On the Select the Data Source page, you have to select the data source you are going to use.
In the Type drop-down list, choose our custom SharePoint data extension and specify the con-
nection string. Figure 3-39 shows the Select the Data Source page from the Report Wizard.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES174

Figure 3-38. New Project dialog window

Figure 3-39. Select the Data Source page in the Report Wizard.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 175

5. If you want to use a specific username and password, you have to click the Credentials but-
ton. This opens a Data Source Credentials dialog box that lets you specify whether you want
to use Windows Authentication, no credentials, or a specific username and password. Click
Next in the Report Wizard.

6. The Design the Query page gives you the opportunity to use the query designer to build a
query. You will not need a query designer for our extension, since all you have to do is add
the name of the SharePoint list you want to use for the report. In our example, this will be
the Issues list. When you are done, click Next to go to the next page.

7. The Select the Report Type page lets you choose between a tabular report and a matrix
report. We will stick to the default option and click Next.

8. The Design the Table page shows all available fields from the Issues SharePoint list. Here
you can choose which fields will be used for the report and how you want to use them. We
want a report that groups information by the fields Assigned_To and Priority and shows the
details of the Title field, as shown in Figure 3-40.

Figure 3-40. Design the Table page

At this point, we have already defined the majority of our report. There are only two things left to
do: the table layout and the table style. In the next steps of the Report Wizard, you will get the chance
to choose a table layout and style. In addition, you need to specify a report server URL and the name
you would like to give your freshly made report. These steps are all very simple; therefore, we will not
show them. When you are done and have created a report, the result resembles Figure 3-41.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES176

Figure 3-41. Issues report made with the SharePoint list data extension

Summary
In this chapter, you learned about SQL Server 2005 Reporting Services. We discussed the different
report server deployment modes and how to configure those modes. You learned how to create a
report using the Business Intelligence Development Studio, and how to use Report Manager. We
looked at the three SharePoint Reporting web parts that are available, and how and when you
should use them. You learned how to create a report model and how to use this report model in a
SharePoint Report Center. Finally, we looked in detail at the architecture of reporting extensions,
taking a closer look at creating custom data extensions and delivering extensions.

CHAPTER 3 ■ ENHANCING BUSINESS INTELLIGENCE VIA SQL SERVER 2005 REPORTING SERVICES 177

Building Human-Oriented Workflows
Using Windows Workflow Foundation

Every day, information workers follow work processes to get their jobs done. Some of those work
processes will be quite formal, others very informal. Some of those processes will involve one or
more people within the same organization; still others will involve multiple people working for
different companies. These work processes have one thing in common: they are all examples of
human-oriented workflows. A subset of this wide range of workflows falls in the solution domain
of SharePoint 2007. SharePoint 2007 allows information workers and developers to create and use
document-centric workflows.

Basics of Windows Workflow Foundation
SharePoint 2007 incorporates an infrastructure that supports the use of existing document-centric
workflows as well as the creation of new document-centric workflows by either developers or infor-
mation workers.

Windows Workflow Foundation (WF) forms the basis of the SharePoint 2007 workflow func-
tionality. Windows Workflow Foundation is a part of the Microsoft .NET Framework 3.0.

■Note The Microsoft .NET Framework 3.0 was formerly known as WinFX. It adds four new technologies to the
.NET Framework 2.0: Windows Workflow Foundation, Windows Communication Foundation (WCF, formerly known
as Indigo), Windows Presentation Foundation (WPF, formerly known as Avalon), and Windows Cardspace (WCF,
formerly known as InfoCard).

Windows Workflow Foundation is not a stand-alone application; instead, it has a run-time
workflow engine that can execute short-term as well as persistable workflows. The Windows
Workflow Foundation run time provides additional services that are important for executing
workflows such as tracking, notifications, and transactions.

Any application or service can leverage WF workflow services by hosting WF in its process.
SharePoint 2007 acts as a host for WF and adds a couple of custom implementations for workflow
services as well.

SharePoint 2007 offers two different tools for working with and creating workflows: SharePoint
Designer 2007 and Visual Studio 2005 Designer. Both will be discussed in this chapter.

SharePoint Designer 2007 is a great tool for creating ad hoc workflows. It places the tools to
create workflows well within the grasp of normal information workers. Visual Studio 2005 Designer,
on the other hand, allows developers to create advanced, enterprise-level workflows. Table 4-1
provides a comparison of SharePoint Designer 2007 and Visual Studio 2005 Designer.

179

C H A P T E R 4

Table 4-1. Comparison Between SharePoint Designer 2007 and Visual Studio 2005 Designer

SharePoint Visual Studio
Feature Designer 2007 Designer 2005

Requires you to write code No Yes

Supports sequential workflows Yes Yes

Supports state machine workflows No Yes

Supports the use of custom forms within Yes Yes
the workflow

Workflows can be started manually Yes Yes

Workflows can be started by an event Yes Yes

Workflows can associated with a list Yes. Workflows created Yes
using SharePoint Designer
2007 can only be bound
to a single list. You cannot
alter this association after
deployment.

Workflows can be associated with a No Yes
content type

Workflows can be associated with a site No Yes

Supports the use of ASP.NET forms Yes Yes

Supports the use of other form technologies, No Yes
such as InfoPath

Workflow deployment happens automatically Yes No, but you can
use a Web Part
Solution Package
(.wsp) to deploy
a workflow.

Step-by-step debugging is available No Yes

■Note Actually, you can associate a workflow created in SharePoint Designer with more than one list. The
auto-generated code contains hard-coded GUIDs representing a list. If you change those GUIDs, it is possible to
associate a workflow with another list.

In the following sections, we will delve deeper into the concepts related to Windows Workflow
Foundation.

Activities
We will begin by looking at the basic structure of a workflow. A workflow represents a business
process that consists of a set of transactions which form a model to describe a real-world problem.
Business transactions form the elementary building blocks of a business process. A business trans-
action involves two parties:

• The initiator is responsible for starting a business transaction by issuing some sort of
request.

• The executor is responsible for performing some kind of action based on a request.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION180

Conceptually, the life cycle of a business transaction consists of three phases:

1. Order phase: This phase starts when the initiator makes a request for some kind of action to
be performed. This phase ends with a promise by the executor to perform that action.

2. Execution phase: In this phase, the executor performs the requested action. The action suc-
ceeds or fails. Either way, a result is reached, thus ending this phase of the business trans-
action life cycle.

3. Result phase: In this phase, the executor communicates which result was reached, which is
either accepted or rejected by the initiator.

In Windows Workflow Foundation, the abstract concept of business transactions (a concept
that has meaning in the external world) is translated to activities (a concept that has meaning in the
software world). Activities are the building blocks of a workflow; every single step within a workflow
requires an activity. Windows Workflow Foundation utilizes three different kinds of activities:

• Simple activity: A simple activity represents a simple action in its most basic form. An exam-
ple of such a simple activity is the DelayActivity.

• Composite activity: A composite activity is an activity that aggregates one or more child activi-
ties within a single activity. An example of such a composite activity is the IfElse activity.

• Rule activity: A rule activity (also called a data-driven activity) drives the flow of a workflow.
An example of this type of activity is the EventDriven activity.

Out of the box, the Windows Workflow Foundation framework contains a set of activities that
provide functionality for the creation of workflows that contain control flow, conditions, event han-
dling, and state management, and are able to communicate with other applications and services.
Table 4-2 shows the activities that are included out of the box in Windows Workflow Foundation and
that can be used in a SharePoint workflow.

Table 4-2. Out of the Box Activities That Can Be Used in a SharePoint Workflow

Name Description

CodeActivity This activity lets you add custom logic to a workflow in the form of
code written using VB.NET or C#.

ConditionedActivityGroup This activity lets you aggregate one or more child activities that are
executed conditionally. The child activities can be executed based
on some kind of condition that applies to the
ConditionedActivityGroup activity itself, or based on a condition
that only applies to the child.

DelayActivity This activity lets you incorporate delays into workflows that are
based on time-out intervals.

EventHandlingScopeActivity This activity aggregates child activities and decides whether event
handling is supported when those child activities are executed.

HandleExternalEventActivity This activity is able to communicate with a local service by
handling an event that is raised the service and is often used in
conjunction with the CallExternalMethod activity.

IfElseActivity This activity supports the ability to add decisioning mechanisms to
a workflow. Such activities test for a condition and perform
activities that are a part of the first branch of the IfElseActivity that
matches the condition.

InvokeWebServiceActivity This activity allows you to add web service communication within
a workflow.

Continued

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 181

Table 4-2. Continued

Name Description

ParallelActivity This activity can be used to add parallel processing power
(multithreading) to your workflows. This activity allows you to add
two or more child Sequence activities that are executed
concurrently.

ReplicatorActivity This activity lets you create single child activities.

SequenceActivity This activity lets you link multiple activities together that are to be
executed sequentially.

SetStateActivity This activity lets you specify a transition to a new state if you are
creating a workflow that contains multiple states.

StateActivity This activity lets you represent each separate state in a state
machine type of workflow.

StateFinalizationActivity This activity aggregates child activities that are executed whenever
a StateActivity activity is finished executing.

StateInitializationActivity This activity aggregates child activities that are executed upon
entering a StateActivity activity.

SuspendActivity This activity lets you temporarily suspend the operation of a
workflow. You might want to do this if there is some kind of event
or error condition that requires special attention.

TerminateActivity This activity allows you to end workflow execution immediately. You
might want to do this if an irrecoverable error condition occurs.

ThrowActivity This activity is part of a larger exception-management framework
that allows you to implement an error-handling mechanism in
your workflows. This activity allows you to throw exceptions to
signal unexpected conditions in your workflow.

WhileActivity This activity adds conditional logic that enable workflows to loop
until a given condition is met.

■Note Please note that the toolbox contains other activities that are available in normal WF workflows. They are
not discussed in this section because they cannot be used in workflows in a SharePoint environment.

If you design a workflow, you can choose to make use of one of the activities belonging to this
default set or you can create your own activities. Developers are free to create their own custom
activity libraries and use them in other workflows. You can also use code activities to add custom
code to a workflow. Code activities allow you to add basic behavior to a workflow; if you want com-
plex behavior, such as the ability to create a composite activity that is able to contain other
activities, you should create your own custom activity.

Activities can be sequential, in which case the order of workflow actions is specified at design
time. Alternatively, activities can be event-driven. In such scenarios, the order of workflow actions is
determined at run time in response to external events. Each activity contains the following logic/data:

• Metadata responsible for describing design time properties of the activity.

• Instance data describing the activity run-time state.

• Activity behavior in the form of programmed execution logic.

• Validation logic that can be used to validate activity metadata. This is optional.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION182

Figure 4-1 shows a basic workflow that consists of several activities and uses custom
activity libraries.

Figure 4-1. Workflow with activities

Components
Windows Workflow Foundation provides services as well as a framework and consists of the follow-
ing components (see Figure 4-2):

• Base activity library: This library contains all activities that are available out of the box.
Activities are essential building blocks for creating custom workflows and are discussed in
the previous section, “Activities.”

• Runtime engine: The workflow runtime engine is able to interpret and execute workflows
created using Windows Workflow Foundation. The runtime engine is also responsible for
keeping track of workflow state.

• Runtime services: The WF workflow runtime engine can be hosted by different host applica-
tions, including SharePoint. This is a very flexible system, which is made possible via the
workflow runtime services. The workflow runtime services are also responsible for handling
any communication between the host application and the workflow.

Figure 4-2. Windows Workflow Foundation

Windows Workflow Foundation ships with a couple important tools that facilitate workflow
creation: a visual designer and a debugger. Both of them are integrated into Visual Studio 2005 and
are discussed later in this chapter, in the sections “Visual Studio 2005 Designer” and “Debugging a
Workflow.”

The workflow runtime engine is hosted in-process within a host application (never as a
stand-alone process) and is responsible for creating and maintaining running workflow instances.
For each application domain (in .NET, the fundamental process that executes code), there can be
only one workflow runtime engine. A workflow runtime engine is able to run multiple workflow
instances concurrently. The runtime engine needs to be hosted by a host process, such as a console
application, Windows form-based application, ASP.NET web site, or a web service. Because a work-
flow is hosted in-process, it can easily and efficiently communicate with its host application.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 183

The workflow runtime engine utilizes many WF services when a workflow instance runs.
The following services are included in the runtime engine:

• Execution

• Tracking

• State management

• Scheduler

• Rules

Besides the runtime engine itself, WF contains multiple runtime services. Runtime services
are pluggable, so applications can provide these services in unique ways within their execution
environment. Table 4-3 shows an overview of the runtime services that are provided out of the box
with Windows Workflow Foundation.

Table 4-3. Runtime Services

Name Description

Persistence The persistence service is responsible for saving and loading state data to and
from a persistent data store, such as an SQL Server database. Some
workflows, called persistent workflows, need to be able to survive system
reboots or run for a long period of time. Building such workflows is easier
with the Windows Workflow Foundation runtime services persistence service.

Communication The communication service is responsible for handling the communication
between a workflow and other applications, services, or workflows.

Timer The timer service handles activities within workflows that are time-related.
DelayActivity, discussed previously in the section “Activities,” is an excellent
example of such an activity.

Tracking The tracking service facilitates tracking and monitoring the execution flow of
workflows. The tracking service also enables you to persist this information
to a data store, such as a log file or an SQL Server database.

Transaction The transaction service facilitates the incorporation of transactions within
custom workflows.

Threading The threading service facilitates the inclusion of multithreaded operations
within custom workflows.

Workflow Styles
Windows Workflow Foundation supports two styles of workflow: sequential and state machine.
Before you start creating a workflow project, it is important to figure out what style of workflow you
want to use.

The sequential workflow style is used for repetitive operations such as designing a set of activ-
ities that must always be performed in the same order. The workflow follows the sequence until
the last activity is completed, and the workflow always remains in control of what happens next.
Such workflows are not necessarily entirely deterministic; you can use branching logic such as
IfElseActivity activities or ParallelActivity activities and let the exact sequence of events vary.
For example, imagine you are creating a workflow that describes the process of installing software.
This is a typical scenario where you always follow the steps one by one and in the same order.
Therefore, you can represent this process using a sequential workflow. Figure 4-3 shows an exam-
ple sequential workflow.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION184

Figure 4-3. Sequential workflow

The state machine workflow style is used when you want to model your workflow as a state
machine. State machine workflows are made up of different states, one being the starting state,
which is the state that is entered once the workflow process begins. Each state can receive a cer-
tain set of events. Based on these events, the workflow can transition from one state to another
state. In state machine workflows, the end user is always in control. That is why this type of work-
flow is also known as a human-oriented workflow. It is not required to define a final state, but if
you do happen to have a final state in a workflow and the transition is made to that state, the
workflow will end.

An example of a state machine workflow is an online shop where one state of the workflow
process describes the situation where the customer can submit an order and wait for approval
of the credit card data. Another state in the workflow process describes the situation where the
customer, for the time being, is satisfied with selecting a couple of products and wants to place
the order at a later time. Therefore, each customer finds himself in one of the states in the work-
flow process and goes to another state depending on his choices. Figure 4-4 shows a state
machine workflow.

Figure 4-4. State machine workflow

Although you certainly can, you do not have to rush out and start creating your own work-
flows immediately, because, out of the box, SharePoint 2007 ships with a set of default workflows.
Table 4-4 provides an alphabetical overview of the default workflows.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 185

Table 4-4. Overview of Default Workflows in SharePoint 2007

Workflow Name Description

Approval This is probably the most basic and often-used workflows you can
imagine. You can submit a document for approval; approvers can
accept or reject a document or request changes.

Collect Feedback Gathers feedback information from a group of reviewers.

Collect Signatures Collects signatures from a group of approvers and requires the use of
Microsoft Office clients.

Disposition Approval Centered on document expiration and retention.

Group Approval An advanced version of the Approval workflow.

Issue Tracking Dedicated to an issue process involving tasks, task assignments, and
task completion.

Translation Management Facilitates a translation process involving documents, tasks, and
translators.

Three-state Tracks the status of an item through three states.

Creating Basic Workflows with
SharePoint Designer 2007
With SharePoint Designer, it is possible to design workflows with no-code application logic.
By making use of SharePoint Designer’s Workflow Designer, you can create rules consisting of
conditions and actions that are available out of the box in SharePoint Designer.

Designing a Workflow
Before you design the workflow, you need to make any necessary changes or customizations to your
site, list, or library—for example:

• A SharePoint Designer workflow is always attached to exactly one SharePoint list or library.
Your site must have at least one list or library before you create a workflow. If there are no
lists in your site, you are prompted to create one when you create a workflow.

• If you want your workflow to use any custom columns or settings, you must make those
changes before you create the workflow so that those columns and settings are available to
you in the Workflow Designer.

• If you want your workflow to use any list or library features that are not turned on by default,
such as Content Approval, you must turn on these features before you design the workflow.

■Note The workflow feature is built on the Microsoft Windows Workflow Foundation, a component of Microsoft
Windows. The same version of the Workflow Foundation must be installed on both your computer and the server.
The first time you create a workflow, you may be prompted to install the Workflow Foundation.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION186

Rules: Conditions and Actions
With SharePoint Designer, you create rules to add conditional logic to the workflow. A rule in a
workflow consists of conditions and actions. A rule sets up a condition, and when this condition is
true an associating action will be performed. For instance, you can create a rule with a condition
that checks whether a title of a document contains the word test, and if it does, an e-mail will be
sent to the owner of the document.

Multiple conditions can be added together via And and Or clauses. You can also add more
conditional branches to a workflow. With multiple branches, you will get scenarios like the follow-
ing: if condition A is true then run action A; otherwise when condition A is false, run action B.
When more than one conditional branch in your workflow is present, you will see a green diamond
shape beside that conditional branch. Figure 4-5 shows a Workflow Designer wizard page with two
conditional branches. The first branch has two conditions, an And clause, and two actions that will
run in sequence.

Figure 4-5. The Workflow Designer wizard with conditions and actions in SharePoint Designer

■Note It is not necessary for a conditional branch to contain a condition. A conditional branch, however, must
always consist of one or more actions.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 187

There are a lot of conditions available out of the box in SharePoint Designer. Some examples
include

• The title field of a list or library contains specified keywords

• The item was created in a specific time span

• The item’s file size is in a specific range of kilobytes

There are also conditions available that you can customize just the way you want. For example,
you can create a custom condition that checks the value of a field with a custom value, or you can
compare a field in the specified list with a value in another list. Conditions are created visually and
you cannot add code fragments to these conditions.

The conditions that are available in the Conditions drop-down list depend on whether the
workflow will be attached to a SharePoint list or library. You specify this list or library on the first
page of the Workflow Designer wizard. Figure 4-6 shows the conditions available for a Shared Docu-
ment document library.

Figure 4-6. The Workflow Designer wizard with the conditions available for the Shared Documents
document library

An action is the most basic unit of the workflow. SharePoint Designer contains several out of
the box actions. If that is not enough, with Visual Studio 2005 Designer, you can create actions and
deploy them to SharePoint Designer where they can be used.

There are 23 actions available in SharePoint Designer. You can use them via the Actions drop-
down list. The actions are divided into the following categories:

• All Actions: This category contains an overview of all 23 actions available in SharePoint
Designer.

• Core Actions: This category contains 13 core actions such as “Log to History List” and “Set
Workflow Variable.”

• List Actions: This category contains 7 list-specific actions such as “Create List Item.”

• Task Actions: This category contains 3 task-specific actions such as “Assign a To-do item.”

Figure 4-7 shows an overview of the Workflow Actions window.
Multiple actions can be associated with a condition. It is possible to run the actions in

sequence, which means that first action 1 runs and then action 2 will take place, or in parallel,
which means action 1 and action 2 will be performed at the same time.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION188

Figure 4-7. The Workflow Actions window showing the All Actions category

■Note When you specify that actions run in parallel, you will not have the guarantee that they will be performed
simultaneously. The exact order of running cannot be specified; it may vary each time the workflow runs.

Creating an Example Workflow
In this section, we will create a simple example workflow using SharePoint Designer. We are going
to create a workflow for an imaginary company’s Human Resources department. They have placed
an advertisement for a new C# developer and they expect a lot of letters and resumes. The CTO
wants to read these letters and approve or decline them. If a letter is approved, the candidate will
be invited for an interview. In this example, we are going to create the first part of the process:
namely, a document (the letter from the candidate) will be uploaded to a document library called
LettersCandidates. This document library will contain two columns: Assigned to and Status. The
custom column Assigned to will contain three values: CTO, CEO, and CFO. When a document is
uploaded to the document library and assigned to the CTO, the CTO will receive a new task in
his Tasks list asking whether he approves or declines the document. The second custom column,
Status, contains the following values: prospect, 1st interview, 2nd interview, declined, and hired.

Follow these steps to create a new document library called LettersCandidates and a new column:

1. Open a SharePoint site where you want to create a new document library.

2. Click the View All Site Content link on the left of the SharePoint site. This opens the All Site
Content page.

3. Click Create. This opens the Create page.

4. Click Document Library in the Libraries section.

5. Name the document library LettersCandidates and click Create.

6. Select Settings in the LettersCandidates document library and click Create Column.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 189

7. Name the column Status, check the Choice radio button, and enter the values: prospect, 1st
interview, 2nd interview, declined, and hired. Click OK.

8. Click Create Column.

9. Name the column Assigned to, check the Choice radio button, and enter the values: CTO,
CEO, and CFO. Click OK.

After setting up the LettersCandidates document library and adding a column, you are ready to
open the SharePoint site in SharePoint Designer. The next thing to do is to start designing the exam-
ple workflow. Follow these steps to create the workflow.

1. Open the SharePoint site containing the LettersCandidates document library in SharePoint
Designer.

2. In the File menu, click New and select Workflow. This opens the Workflow Designer wizard.

3. In the Give a name to this workflow text box, specify the following name: Candidates Notifi-
cation WF.

4. In the What SharePoint list should this workflow be attached to drop-down list, select the
LettersCandidates document library.

5. In the Select workflow start options for items in LettersCandidates section, do the following.
Uncheck the Allow this workflow to be manually started from an item check box. Check the
Automatically start this workflow when an item is created check box and uncheck the Auto-
matically start this workflow when an item is changed check box. This way the workflow will
run each time an item is created. Figure 4-8 shows the first page of the Workflow Designer
wizard.

Figure 4-8. The Workflow Designer wizard page 1

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION190

6. Click Next.

7. In the Step Name text box, specify the following name: AssignTaskStep.

8. Click the Conditions drop-down list and select Compare LettersCandidates Field. The con-
dition if field equals value is inserted, where field and value are the parameters that
must be filled in.

9. Click the field parameter and select the Assigned to column. The field parameter shows a
drop-down list filled with the specified document library’s metadata.

10. Click the value parameter and select the CTO value. The value parameter shows a drop-
down list filled with the values from the specified column. Figure 4-9 shows the value
parameter’s drop-down list.

Figure 4-9. The value parameter’s drop-down list in page 2 of the Workflow Designer

11. Click the Actions drop-down list and select Collect data from a user (output to
variable:collect1). The action Collect data from this user is inserted, where data and
this user are parameters that must be filled in. The parameter variable:collect1 will be
where we save the data that is collected from the user.

12. Click data. This opens the Custom Task wizard. Click Next.

13. In the Name text box, specify the following name: ApprovalCTO. Click Next.

14. Click the Add button to define a custom task field that the user can fill out. This opens the
Add Field dialog box.

15. In the Field name text box, specify the following name: DecisionCTO. In the Information
type drop-down list, choose choice (menu to choose from). Click Next.

16. In the Choices list, enter the following two choices: Approve, Decline.

17. Uncheck the Allow fill-in choices check box. Click Finish twice.

18. Click this user. This opens the Select Users dialog box. Select a user from the list of users,
click Add, and click OK. Figure 4-10 shows the AssignTaskStep workflow step.

Figure 4-10. The AssignTaskStep workflow step

19. Click Add workflow step. This adds a new workflow step to the workflow.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 191

20. In the Step Name text box, specify the following name: ChangeStatus.

21. Click the Conditions drop-down list and select Compare any data source. The condition if
value equals value is inserted, where value and value are the parameters that must be filled in.

22. Click the display data binding icon next to the first value parameter. This opens the Define
Workflow Lookup window. The Source drop-down list shows the SharePoint site’s available
lists. The Field drop-down list shows all fields available in the specified list. In the Source
drop-down list, select Tasks. In the Field drop-down list, select DecisionCTO. In the Value
drop-down list, select Approve, as shown in Figure 4-11.

Figure 4-11. The Define Workflow Lookup window

23. Click OK.

24. Click the Actions drop-down list and select Set Field in Current Item. The action
Set field to value is inserted, where field and value are parameters that must be filled
in. Click the field parameter and select the Status value. The field parameter shows a
drop-down list filled with the specified document library’s metadata.

■Note It is not possible to create custom activities with SharePoint Designer. However, it is possible to make use of
custom activities created using Visual Studio 2005 in SharePoint Designer. More information about creating custom
activities and using them in SharePoint Designer can be found in the section “Creating and Using a Custom Activity.”

25. Click the value parameter and select 1st interview. The value parameter shows a drop-
down list filled with the values from the specified column. Figure 4-12 shows you the
ChangeStatus workflow step.

Figure 4-12. The ChangeStatus workflow step

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION192

26. Click the Check Workflow button to check whether your workflow contains any errors.

■Tip If there is an error in your workflow, asterisks appear before and after the parameters that were not config-
ured correctly. In addition, in the Workflow Steps section, an error symbol appears next to each step that contains
an error.

27. Click Finish. The workflow is validated and associated with the document library.

The next set of figures walks you through the example workflow in a SharePoint site. Figure 4-13
shows you a letter from Candidate A in the LettersCandidates document library. The Candidates
Notification Workflow is in progress.

Figure 4-13. The LettersCandidates document library

The workflow will assign a task to the CTO. This task will also be send as an e-mail to the
CTO. The task can be edited and the CTO can approve or decline the document. This is shown in
Figure 4-14.

Figure 4-14. The LettersCandidates document library

After the CTO has approved or declined the document, the status of the document will change.
See Figure 4-15.

Figure 4-15. The LettersCandidates document library

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 193

Creating Advanced Workflow Solutions
with Visual Studio
The team responsible for creating Windows Workflow Foundation has also created a Visual Studio
add-in called Visual Studio 2005 Designer that makes it easy to create custom workflows. Visual
Studio 2005 Designer can also be used to include custom code in a workflow, or to include custom
forms that are used by the workflow to communicate with the workflow users. It is also possible to
create custom activities that can be used in other workflows or in SharePoint Designer.

Getting to Know Visual Studio 2005 Designer
Before even thinking about starting to create workflows, you first have to make sure your develop-
ment environment is ready for the job. You have to install the following components:

• Visual Studio 2005 extensions for .NET Framework 3.0 (Windows Workflow Foundation):
You can download the Visual Studio 2005 extensions for .NET Framework 3.0 here:
http://www.microsoft.com/downloads/details.aspx?familyid=5D61409E-1FA3-48CF-8023-
E8F38E709BA6&displaylang=en.

• Windows SharePoint Services 3.0: Software Development Kit: You can download the Windows
SharePoint Services 3.0 SDK here: http://www.microsoft.com/downloads/
details.aspx?FamilyId=05E0DD12-8394-402B-8936-A07FE8AFAFFD&displaylang=en.

■Note Support for Workflow Services in Visual Studio 2008 (the next version of Visual Studio 2005) and .NET 3.5
has been improved. The most important new feature is the integration between Workflow Services and Windows
Communication Foundation. In .NET 3.5, it is easy to invoke WCF services within WF workflows. Another interesting
feature is the ability to expose a WF workflow as a WCF service.

Make sure you install the following components of the Visual Studio 2005 extensions for .NET
Framework 3.0:

• Visual Studio 2005 Designer for Windows Workflow Foundation (also known as the Visual
Studio 2005 Workflow Designer)

• Windows Workflow Foundation Debugger

■Note Visual Studio 2005 extensions for .NET Framework 3.0 requires the final version either of Windows
Workflow Foundation Runtime Components, Microsoft Windows Vista, or the .NET Framework 3.0 Runtime
Components. The .NET Framework 3.0 Runtime Components can be downloaded here: http://www.
microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=10CC340B-F857-4A14-83F5-
25634C3BF043.

The Windows SharePoint Services 3.0 SDK is very helpful if you are developing solutions
based on Windows SharePoint Services. The WSS 3.0 SDK contains conceptual overviews, pro-
gramming tasks, and references. The WSS 3.0 SDK also includes the Workflow Developer Starter Kit
for Windows SharePoint Services 3.0.

The Workflow Developer Starter Kit for Windows SharePoint Services 3.0 contains the
following items:

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION194

• Visual Studio Project Templates

• Sequential Workflow Library

• State Machine Workflow Library

• Sample Custom Workflow

• Simple Collect Feedback using ASPX forms

Visual Studio 2005 Designer can be used to create two types of workflows: state machine work-
flows and sequential workflows. A state machine workflow is a workflow that contains a number of
different states where one state always acts as the starting point. Each state in such a workflow
receives events, which lead to the transition to the next state. A sequential workflow is a workflow
that contains a fixed sequence of steps that always must be followed in the same order.

After installing the WSS 3.0 SDK and the Visual Studio 2005 extensions for .NET Framework 3.0,
two new project types appear in the Project types list of the Visual Studio 2005 New Project dialog
box. Figure 4-16 shows the Workflow project types.

Figure 4-16. Workflow project types in Visual Studio 2005

The Workflow project types section contains the following Visual Studio 2005 project templates:

• Sequential Workflow Console Application: This project is a starting point for creating sequen-
tial workflows hosted by a console host application.

• Workflow Activity Library: This project is a starting point for creating your own activities that
can be reused later as building blocks in a workflow.

• State Machine Workflow Library: This project is a starting point for creating your own state
machine workflow in the form of a library (.dll).

• Sequential Workflow Library: This project is a starting point for creating your own sequential
workflows in the form of a library (.dll).

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 195

• State Machine Workflow Console Application: This project is a starting point for creating state
machine workflows hosted by a console host application.

• Empty Workflow Project: This project is an unconfigured workflow project that can include
multiple workflows and/or activities.

The Workflow project types let you create generic workflow projects, but whenever you want to
create a specific SharePoint workflow, you are better off if you choose one of the SharePoint work-
flow project types. Figure 4-17 shows the SharePoint project types.

Figure 4-17. SharePoint project types in Visual Studio 2005

The SharePoint project types section contains the following Visual Studio 2005 workflow proj-
ect templates:

• SharePoint Server Sequential Workflow Library: This project is a starting point for creating
your own sequential workflows for Office SharePoint Server in the form of a library (.dll).

• Sequential Workflow Library: This project is a starting point for creating your own sequential
workflows for Windows SharePoint Services in the form of a library (.dll).

• SharePoint Server State Machine Workflow Library: This project is a starting point for creating
your own state machine workflows for Office SharePoint Server in the form of a library (.dll).

• State Machine Workflow Library: This project is a starting point for creating your own state
machine workflows for Windows SharePoint Services in the form of a library (.dll).

Visual Studio 2005 Designer for Windows Workflow Foundation contains a visual designer that
you can use to create a workflow. You can drag and drop activities from the toolbox onto the design
surface, where you can configure them.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION196

■Note You are now looking at a domain-specific language (DSL) at work. A DSL is a concept closely related to
software factories. If you want to find out more about software factories and DSLs, refer to Chapter 5.

The Visual Studio 2005 Designer for Windows Workflow Foundation should be familiar to expe-
rienced Visual Studio users. In addition to the design surface, there are other windows available,
such as the toolbox window that contains graphical representations of activities, the properties win-
dow that lets you configure activity properties, the Solution Explorer window, and the standard
Visual Studio debug windows.

Creating an Example Workflow
Once you are happy with the setup of your development environment, you are ready to move to the
design phase. You could make a sketch on paper or design a model using Office Visio, or do what-
ever works for you, as long as you have a clear concept about what you want to accomplish in the
workflow. As soon as you have reached that point, you are ready to move to the development phase.

■Tip When you create a workflow for Microsoft Office SharePoint Server or Windows SharePoint Services, it is
best to develop on a machine hosting a SharePoint server itself. This way it becomes much easier to deploy and
debug the workflow.

The following procedure describes the steps you have to follow to develop SharePoint work-
flows or workflow activities with Visual Studio 2005 Designer.

• Create a workflow or workflow activity.

• Create and publish custom forms.

• Create a feature definition file and a workflow definition file. These files contain information
about the workflow assembly and are used to bind the custom forms to the workflow.

• Make sure the workflow assembly is compiled as a strongly named assembly.

■Note A strong-named assembly is an assembly that has a fully qualified name. Fully qualified names contain
the following information: assembly name, version number, culture, and a public key token that can be used to
uniquely identify the developer of the assembly.

• Deploy the workflow.

• Debug the workflow if necessary.

In this section we will discuss how to create a Microsoft Office SharePoint Server workflow with
Visual Studio 2005 Designer. The other steps (deploying and debugging) will be discussed later in
the sections “Deploying a Workflow” and “Debugging a Workflow.” To develop a custom workflow
for Microsoft Office SharePoint Server, you start by creating a SharePoint workflow project in Visual
Studio 2005 Designer.

The example workflow we are going to create will be a sequential workflow for Microsoft Office
SharePoint Server that can be associated with a list or library. When a document is uploaded into the
document library or changed in the document library, a task will be created for a specified person.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 197

This task contains predefined instructions and comments. When the user opens the task, she will
get a custom-designed InfoPath form with instructions to complete the task. We are going to create
two custom InfoPath forms, one for associating the workflow to the list or library and specifying
the name of the user who will get the task, and another for completing the custom task form (and
the workflow).

Creating an Initiation Form
The first thing we are going to do is to create an initiation form, which will double as an association
form. More information about forms can be found in the section “Using Forms to Capture and
Automate Your Processes.” The initiation form will be shown when a SharePoint item is associated
with a workflow. We are going to create the initiation form using InfoPath 2007.

■Tip It is also possible to create custom ASP.NET forms to interact with the user in your workflow. This allows
developers to choose the development model they are most comfortable with. InfoPath forms are easier to create
and more powerful. When creating a workflow for Windows SharePoint services 3.0, you do not have this option:
you can only use ASP.NET forms. Custom forms will be displayed to the user during some stage in the workflow.
You can find more information about forms in the section “Using Forms to Capture and Automate Your Processes.”

The following procedure shows how to create an initiation form.

1. Open InfoPath by clicking All Programs ➤ Microsoft Office ➤ Microsoft InfoPath 2007.
This opens the Getting Started window.

2. Click Design a Form Template in the Design a Form section. This opens the Design a Form
dialog box.

3. Select Form Template in the Design a new section.

4. Select Blank in the Based on area.

5. Make sure the Enable browser-compatible features only check box is checked.

6. Click OK.

Now that we have created an empty InfoPath form, we are going to design this form and add
three text boxes to it. The first text box contains the name of the person to whom the task is assigned,
the second text box allows the user to enter instructions, and the last text box allows the user to spec-
ify additional comments. The form will also contain a Submit button. The following procedure shows
how to design such a form in InfoPath.

1. In the Design Tasks pane, click Layout.

2. Drag a Table with Title onto the form. Enter the following title: MOSSworkflow initiation
form.

3. Drag a Custom Table with two columns and four rows onto the form.

4. In the Design Tasks tool pane, click Controls.

5. In the left column of the first row, type the following: Assign Task to:.

6. Drag a Textbox control onto the form in the right column of the first row. Right-click the
Textbox and select Text Box Properties. In the Field Name text box, enter the following value:
assignee. Click OK.

7. In the left column of the second row, type the following: Instructions:.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION198

8. Drag a Textbox control onto the form in the right column of the second row. Right-click the
Textbox and select Text Box Properties. In the Field Name text box, enter the following value:
instructions. Click OK.

9. In the left column of the third row, type the following: Comments:.

10. Drag a Textbox control onto the form in the right column of the third row. Right-click the
Textbox and select Text Box Properties. In the Field Name text box, enter the following value:
comments. Click OK.

11. Drag a Button control onto the form in the right column of the fourth row. Right-click the
Button and select Button Properties. In the Label text box, enter the following value: submit.
Click OK. Figure 4-18 shows the way the InfoPath form should look.

Figure 4-18. Custom workflow initiation form

Next, we are going to give the form fields collection (all the text boxes on the form) a unique
name. We do this because we want to extract the XML schema (.xsd) file for this form and use this
schema as the basis for the class we are going to use in the OnWorkflowActivation activity. The
root element of the schema file will have the same name as the form fields collection. The class that
will be generated from the schema file will have the same name as the schema file root element.
Therefore, when you specify a unique name for the form fields collection, you will get a class with a
unique name. This is especially important when you are programming a workflow that deserializes
multiple forms. Follow these steps to configure the InfoPath form.

1. Go to the Design Tasks pane and click Data Source.

2. Double-click the myFields fields collection. This opens the Field or Group Properties dialog
window.

3. Enter the following value in the Name text box: InitForm.

4. Click OK.

We are going to add two rules to the InfoPath form’s Submit button. The first rule submits the
form information to Microsoft Office SharePoint Server 2007; the other rule closes the form when
the user clicks the Submit button. Follow these steps to add these two rules to the Submit button.

1. Right-click the Button control and select Button Properties. This opens the Button Proper-
ties dialog window.

2. On the General tab, click the Rules button. This opens the Rules dialog window.

3. Click the Add button. This opens the Rule dialog window.

4. Click the Add Action button. This opens the Action dialog window.

5. Select Submit using a data connection from the Action drop-down list. Click the Add
button. This opens the Data Connection Wizard dialog window.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 199

6. Select Create a new connection and select the Submit data radio button. Click Next.

7. Select To the hosting environment and click Next.

8. Click Finish.

9. Click OK twice.

10. In the Rules dialog window, click Add to add another rule. This opens the Rule dialog window.

11. Click the Add Action button. This opens the Action dialog window.

12. Select Close the form from the Action drop-down list. You will get a message stating the fol-
lowing: Prompting the user to save on close is not supported.

■Note In this scenario, we do not want to support save on close, since this form will be rendered to HTML by
InfoPath Forms Server 2007. As a result, the form is shown in the browser. Closing the form equates to closing the
entire browser, which is undesirable. We want the user to save the form, not close the browser.

The next thing to do is to set the form’s security level to a mode that is supported by InfoPath
Forms Server. This allows InfoPath Forms Server to host the form. The security model for InfoPath is
related to the security settings in Internet Explorer. InfoPath has three security levels for forms:
Restricted, Domain, and Full Trust. We are going to give this form a Domain security level, so the
form can access content that is stored in the form itself.

■Tip More information about InfoPath and MOSS 2007 can be found in Chapter 8.

The next procedure shows you how to change the security level of a form.

1. Select Tools from the menu and click Forms options. This opens the Forms Options dialog
window.

2. Select the Security and Trust category from the Category section.

3. Uncheck the Automatically determine security level check box and select Domain. Click OK.

The next procedure shows how to publish the initiation form. By publishing the initiation form
to the workflow project’s Feature files directory, you allow the initiation form to be deployed as part
of the workflow feature.

1. In the File menu, click Publish. This opens the Save As dialog window.

2. Enter the following value in the FileName text box: InitiationForm. Then, click Save.

3. Select To a network location and click Next.

4. Click the Browse button to browse to where you keep your Visual Studio project and go to
the Deployment Files\Feature Files directory to publish the form. Then, click OK.

5. Enter the following value in the Form template name text box: InitiationForm. Click Next.

6. Make sure the alternate access path text box is empty and click Next. This way, the initiation
form can only be accessed within the workflow process (as opposed to accessing the form
directly from within a browser).

7. Click Publish and then click Close.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION200

To get the data from the submitted form into the workflow, we have to generate a class using
xsd.exe. The Microsoft .NET Framework 2.0 command-line tool xsd.exe lets you generate a new
class file based on the myschema.xsd form schema. The xsd.exe tool is located by default in the fol-
lowing location: [drive letter]:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin. Follow these
steps to generate a new class file that is based on the form schema file.

1. Select Save as Source Files in the File menu. Browse to the location where you want to save
the InfoPath source files and click OK.

■Note An InfoPath template consists of a collection of form source files, including the schema file. By default,
the form schema file is named myschema.xsd. You can find more information about InfoPath in Chapter 8.

2. Go to Start ➤ All Programs ➤ Microsoft Visual Studio 2005 ➤ Visual Studio Tools ➤ Visual
Studio 2005 Command Prompt. This opens a Visual Studio 2005 Command Prompt window.

3. From the command prompt, navigate to the location of the myschema.xsd file and enter the
following line of code.

xsd myschema.xsd /c

4. This generates a new class file based on the form schema called myschema.cs. Rename the
schema.cs file to InitForm.cs.

5. Add the InitForm.cs class file to the workflow project.

Listing 4-1 shows the content of the InitForm.cs file. As you will notice, the name of the class is
identical to the name of the form fields collection in the InfoPath form.

Listing 4-1. Generated Code Class from myschema.xsd

using System.Xml.Serialization;

[System.CodeDom.Compiler.GeneratedCodeAttribute(“xsd”, “2.0.50727.42”)]
[System.SerializableAttribute()]
[System.Diagnostics.DebuggerStepThroughAttribute()]
[System.ComponentModel.DesignerCategoryAttribute(“code”)]
[System.Xml.Serialization.XmlTypeAttribute(AnonymousType=true)]
[System.Xml.Serialization.XmlRootAttribute(➥
Namespace=”http://schemas.microsoft.com/office/ ➥
infopath/2003/myXSD/2007-05-25T12:13:02”, IsNullable=false)]
public partial class InitForm
{
private string assigneeField;
private string instructionsField;
private string commentsField;
private System.Xml.XmlAttribute[] anyAttrField;

public string assignee
{
get { return this.assigneeField; }
set { this.assigneeField = value;}

}

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 201

public string instructions
{
get { return this.instructionsField; }
set { this.instructionsField = value; }

}

public string comments
{
get { return this.commentsField; }
set { this.commentsField = value; }

}

[System.Xml.Serialization.XmlAnyAttributeAttribute()]
public System.Xml.XmlAttribute[] AnyAttr
{
get { return this.anyAttrField; }
set { this.anyAttrField = value; }

}
}

Creating a Custom Task Form
The second form we are going to create is the task form. This form enables users of the workflow to
interact with the task that is assigned to them. More information about forms can be found in the
section “Using Forms to Capture and Automate Your Processes.” Again, as we did in the “Creating an
Initiation Form” section, we are going to create the new form using InfoPath 2007. The next proce-
dure shows how to create a workflow task form in InfoPath 2007.

1. Open InfoPath by clicking All Programs ➤ Microsoft Office ➤ Microsoft InfoPath 2007. This
opens the Getting Started window.

2. Click Design a Form Template in the Design a Form section. This opens the Design a Form
dialog box.

3. Select Form Template in the Design a new section.

4. Select Blank in the Based on area.

5. Make sure the Enable browser-compatible features only check box is checked.

6. Click OK.

We are going to place one text box, one check box, and one button on the task form. The text
box displays instructions to a user. This text box will be prepopulated with data from the initiation
form. The check box is used to indicate that the workflow task is completed; the OK button closes
the task form. The next procedure shows how to design the task form in InfoPath.

1. In the Design Tasks pane, click Layout.

2. Drag a Table with Title onto the form. Enter the following title: MOSSworkflow edit task form.

3. Drag a Custom Table with two columns and three rows onto the form.

4. In the Design Tasks tool pane, click Controls.

5. In the left column of the first row, type the following: Instructions:.

6. Drag a Textbox control onto the form in the right column of the first row. Right-click the
Textbox and select Text Box Properties. In the Field Name text box, enter the following value:
instructions. Click OK.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION202

7. In the left column of the second row, type the following: Task completed.

8. Drag a Check Box control onto the form in the right column of the second row. Right-click
the check box and select Check Box Properties. In the Field Name text box, enter the value
isFinished, and select True/False from the Data type drop-down list. Click OK.

9. Drag a Button control onto the form in the right column of the third row. Right-click the
Button and select Button Properties. In the Label text box, enter the following value: OK.
Click OK. Figure 4-19 shows what the InfoPath form should look like.

Figure 4-19. Custom workflow edit task form

We are going to add two rules to the Submit button of the task InfoPath form: one rule to
submit the form information to Microsoft Office SharePoint Server 2007, and another rule to
close the form when the user clicks the Submit button. Follow these steps to add two rules to the
Submit button:

1. Right-click the Button control and select Button Properties. This opens the Button Proper-
ties dialog window.

2. On the General tab, click the Rules button. This opens the Rules dialog window.

3. Click the Add button. This opens the Rule dialog window.

4. Click the Add Action button. This opens the Action dialog window.

5. Select Submit using a data connection from the Action drop-down list. Click the Add button.
This opens the Data Connection Wizard dialog window.

6. Select Create a new connection and select the Submit data radio button. Click Next.

7. Select To the hosting environment and click Next.

8. Click Finish.

9. Click OK twice.

10. In the Rules dialog window, click Add to add another rule. This opens the Rule dialog window.

11. Click the Add Action button. This opens the Action dialog window.

12. Select Close the form from the Action drop-down list. You will get a message stating the fol-
lowing: Prompting the user to save on close is not supported. This is precisely the way we
want it, because we are going to use InfoPath Forms Services. Click OK four times.

The workflow task form is used to display data from the initiation form. In this example,
we show the instructions for the task assignee that were added in the initiation form. You have to
add the workflow task schema to the workflow edit task form as a secondary data source to allow
Microsoft Office SharePoint Server 2007 to prepopulate the task form’s Instructions field. The Item-
Metadata.xml file represents the task schema. In the file, each task property that you want to use as
data in your form must be defined. You can define a task property by adding an attribute with prefix
ows_ and the name of the task property. In this example, that will be ows_instructions. The value of

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 203

the attribute must be set to an empty string, like this: ows_instructions=””. The next procedure
shows you how to create the ItemMetadata.xml file.

1. Open the text editor of your choice, for example, Notepad.

2. Create a file with the following name: ItemMetadata.xml.

3. Add the following line of XML to the file.

<z:row xmlns:z=”#RowsetSchema”
ows_instructions=””

/>

4. Save the ItemMetadata.xml file.

■Note The name of this file must always be ItemMetadata.xml, and the filename is case sensitive. Microsoft
Office SharePoint Server 2007 always sends task data XML to the task edit form. Therefore, you must always add
the ItemMetadata.xml file as a secondary data source. Otherwise, you will receive an error.

The following procedure shows you how to add the ItemMetadata.xml file to the task edit form
as a secondary data source.

1. In the Design Tasks pane, click Data Source.

2. Click Manage Data Connection in the section Actions. This opens the Data Connections
dialog box.

3. Click Add. This opens the Data Connection Wizard.

4. Select Create a new connection to and select Receive data. Click Next.

5. Select XML document and click Next.

6. Browse to the location where you have saved the ItemMetadata.xml file, select the file, and
click Next.

7. Select the Include the data as a resource file in the form template or template part radio
button and click Next.

8. In the Enter a name for this data connection text box, enter the following name:
ItemMetadata.

9. Make sure the Automatically retrieve data when form is opened check box is checked.
Click Finish and then click Close.

If the ItemMetadata.xml file is included as a resource file in the form, like we just did, we no
longer need this file anymore. So you do not have to include the ItemMetadata.xml file in the work-
flow solution. The next thing to do is to bind the instructions Textbox control to the instructions
attribute in the workflow schema that we have added as a data source. The following procedure
shows you how to do this.

1. Right-click the instructions text box and select Text Box Properties. This opens the Text Box
Properties dialog box.

2. Select the Data tab. In the Default value section, next to the Value text box, click the formula
button. This opens the Insert Formula dialog box.

3. Click the Insert a Field or Group button. This opens the Select a Field or Group dialog box.

4. Select the ItemMetadata (secondary) data source from the Data Source drop-down list.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION204

5. Select the ows_instructions attribute and click OK. Figure 4-20 shows the Text Box Proper-
ties dialog box.

Figure 4-20. Databinding the instructions text box to the instructions attribute

6. Click OK two more times.

At this time, the instructions text box is bound to the instructions workflow task property.
When the task edit form is loaded by Microsoft Office SharePoint Server 2007, this form will display
the task instructions in the text box.

The next thing we need to do is set the security level of the form so it can be hosted by InfoPath
Forms Server and publish the task edit form. The next procedure shows you how to do this.

1. Select Tools from the menu and click Forms options. This opens the Forms Options dialog
window.

2. Select the Security and Trust category from the Category section.

3. Uncheck the Automatically determine security level check box and select Domain. Click OK.

■Note When the Automatically determine security level option is checked, InfoPath will automatically select the
appropriate security level for the functionality of the form. This way, the minimum level of trust that is needed for
the form is enabled.

4. On the File menu, click Publish. This opens the Save As dialog window.

5. Enter the value EditTaskForm in the FileName text box and click Save.

6. Select To a network location and click Next.

7. Click the Browse button to browse to the place where you keep you Visual Studio project, go
to the Deployment Files\Feature Files directory to publish the form, and click OK.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 205

8. Enter EditTaskForm in the Form template name text box and click Next.

9. Make sure the alternate access path text box is empty and click Next. This way, the task edit
form can only be accessed from within the workflow process.

10. Click Publish and click Close.

Developing the Workflow
Developing a workflow consists of adding and configuring activities and adding code behind these
activities. The first step is creating a new SharePoint workflow project. The next procedure shows
you how to create a new SharePoint workflow project.

1. Open Visual Studio 2005.

2. Click the File menu, click New, and select Project. This opens the New Project dialog box.

3. Select the SharePoint project type.

4. In the New Project dialog box, you have the choice between four different workflow project
templates, as can be seen in Figure 4-25. Choose the SharePoint Server Sequential Workflow
Library project type.

5. Type the following name in the Name text box: MOSSWorkflow.

6. Click OK.

Visual Studio 2005 Designer opens a new SharePoint workflow project. This workflow project
contains a reference to the Microsoft.SharePoint.dll, so you have access to the Microsoft Windows
SharePoint Services 3.0 object model in your code. It also contains a reference to the
Microsoft.SharePoint.WorkflowActions.dll to enable access to predefined Microsoft Office Share-
Point Server activities.

Table 4-5 shows an overview of the Microsoft Office SharePoint Server–specific activities that
are added to the Toolbox pane. These activities are specially designed for use within Visual Studio
2005 Designer.

■Note Some of the activities mentioned in Table 4-5 (all activities starting with On*) implement the
IEventActivity interface, which provides methods and properties for event-driven activities that allow
consumers to subscribe to events. Such activities are important when building SharePoint workflows. Human-
oriented workflows such as the ones you will be building in SharePoint typically run for an extended period of
time, during which end users cannot proceed with the execution of the workflow until another end user has
completed a task. To be able to build such workflows, you need to rely on activities that can support asynchro-
nous tasks.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION206

Table 4-5. Microsoft Office SharePoint Server Activities

Activity Name Description

CompleteTask Some activities add tasks to a SharePoint Tasks list once
the workflow is started. The Approval workflow that is
available out of the box is an example of such a workflow.
The CompleteTask activity marks a task as completed.

CreateTask The CreateTask activity adds a task to the SharePoint
Tasks list, along with specific task properties.

CreateTaskWithContentType The CreateTaskWithContentType activity adds a task of a
specific content type to the SharePoint Tasks list.

DelayFor The DelayFor activity delays the workflow for a specified
duration.

DelayUntil The DelayUntil delays the workflow until the specified date.

DeleteTask The DeleteTask activity deletes a task from the SharePoint
Tasks list.

EnableWorkflowModification The EnableWorkflowModification activity enables a
workflow modification form so that it can be used within
the workflow.

InitializeWorkflow The InitializeWorkflow activity initializes a new instance
of the workflow.

LogToHistoryListActivity The LogToHistoryListActivity activity logs audit
information in the workflow’s History List.

OnTaskChanged The OnTaskChanged activity responds to the
ITaskService.OnTaskChanged event that is raised by
Microsoft Office SharePoint Server 2007 when a task
associated with the workflow is edited. This activity
implements the interface IEventActivity and allows you
to perform asynchronous tasks.

OnTaskCreated The OnTaskCreated activity responds to the
ITaskService.OnTaskCreated event that is raised by
Microsoft Office SharePoint Server 2007 when a task that
is associated to the workflow is created. This activity
implements the interface IEventActivity and allows you
to perform asynchronous tasks.

OnTaskDeleted The OnTaskDeleted activity responds to the
ITaskService.OnTaskDeleted event that is raised by
Microsoft Office SharePoint Server 2007 when a task that
is associated with the workflow is deleted. This activity
implements the interface IEventActivity and allows you
to perform asynchronous tasks.

OnWorkflowActivated This activity responds to the
ISharePointService.OnWorkflowActivated event that is
raised by Microsoft Office SharePoint Server 2007 when a
workflow instance is initiated for a SharePoint item. The
OnWorkflowActivated activity must always be the first
activity in a Microsoft Office SharePoint Server 2007
workflow and will be ignored in the workflow if it is not
the first activity. This activity takes care of the
initialization of the correlation between the workflow id
and the correlation token. This activity implements the
interface IEventActivity and allows you to perform
asynchronous tasks.

Continued

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 207

Table 4-5. Continued

Activity Name Description

OnWorkflowItemChanged The OnWorkflowItemChanged activity responds to the
event that is raised by Microsoft Office SharePoint Server
2007 when an item in the list is changed. This activity
implements the interface IEventActivity and allows you
to perform asynchronous tasks.

OnWorkflowItemDeleted The OnWorkflowItemDeleted activity responds to the
event that is raised by Microsoft Office SharePoint Server
2007 when an item in the list is deleted. This activity
implements the interface IEventActivity and allows you
to perform asynchronous tasks.

OnWorkflowModified The OnWorkflowModified activity responds to the event
that is raised by Microsoft Office SharePoint Server 2007
when a user submits a modification form. This activity
implements the interface IEventActivity and allows you
to perform asynchronous tasks.

RollbackTask The RollbackTask activity rolls back a task that was
previously modified.

SendEmail The SendEmail activity creates and sends an e-mail
message to specified users.

SetState The SetState activity sets the status of the workflow, as
shown in the status column of the list the workflow
operates on.

SharePointSequentialWorkflowActivity The SharePointSequentialWorkflowActivity enables
execution of multiple activities in a given event.

UpdateAllTasks The UpdateAllTasks activity updates all tasks in the
SharePoint Tasks list.

UpdateTask The UpdateTask activity updates a task in the SharePoint
Tasks list.

Figure 4-21 shows the MOSSWorkflow project in Visual Studio 2005 Designer. You will notice
that there are a number of files that are created by default:

• Feature.xml: The feature definition file feature.xml contains information necessary to
deploy the workflow. You can learn more about the feature.xml file in the section
“Deploying a Workflow.”

• Workflow.xml: The workflow definition file workflow.xml contains information about the
workflow that SharePoint requires to instantiate and run the workflow. More about the
workflow.xml file can be found in the section “Deploying a Workflow.”

• Manifest.xml: The manifest file is used by Visual Studio 2005 and defines how to populate the
cabinet file that is used to deploy the workflow project. Please refer to Chapter 1.

• Wsp_structure.ddf: This file specifies the structure of the .wsp solution cab file.

• Workflow1.cs: This class file contains the actual workflow code and components.

• PostBuildActions.bat: This batch file is used to deploy the workflow. If you want to learn more
about deploying a workflow, please refer to the section “Deploying a Workflow.”

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION208

Figure 4-21. A SharePoint Server Sequential Workflow Library project in Visual Studio 2005 Designer

The workflow you are creating for Microsoft Office SharePoint Server 2007 will have access to
the complete context of SharePoint. In other words, your workflow can write to lists and libraries,
change properties, and create, edit, and delete items. Your workflow can do everything that the user
account running the workflow is authorized to do.

We are going to add the following activities to the design view of the workflow1.cs file: Create-
Task, While, OnTaskChanged, and CompleteTask. The next procedure shows how to add activities to
a workflow.

1. Double-click the workflow.cs file to open it in design view. By doing this, you are opening
the so-called Workflow Designer.

2. As discussed in Table 4-5, every workflow starts with an OnWorkflowActivated activity.
By default, each workflow contains the OnWorkflowActivated activity.

3. Double-click the workflow1.cs file in the Solution Explorer. This opens the design window.

4. Drag and drop a CreateTask activity right below the OnWorkflowActivated activity.

5. Drag and drop a While activity below the CreateTask activity.

6. Drag and drop an OnTaskChanged activity in the While activity.

7. Drag and drop a CompleteTask activity below the While activity. The workflow design view
should now look like Figure 4-22.

You will notice that each activity has a red exclamation mark in its right corner, which means
that the configuration of that activity is incomplete. These exclamation marks indicate that work-
flow configuration is not complete yet, and the workflow is not ready for use.

To finish off the workflow configuration, we start with the OnWorkflowActivated activity.
Right-click OnWorkflowActivated and select Generate Handlers to create an event handler for the
Invoked event. We are going to use this event to set up initial variable values. Figure 4-23 shows the
Properties task pane of the OnWorkflowActivated activity.

Correlation tokens allow you to identify workflows and workflow tasks in a unique way and
map them to the WF host executing the workflows. The workflow engine distills the correlation
token from an incoming request to determine which workflow instance the request is meant for and
then delivers the request to that instance.

The next thing we are going to do is to set the properties of the other activities one by one. Let
us start with the CreateTask activity. After the workflow is started, we want it to create a task for a
user; this will take place in the CreateTask activity. The next procedure shows you how to create and
bind variables to the properties of the CreateTask activity.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 209

Figure 4-22. The workflow activities

Figure 4-23. The OnWorkflowActivated activity properties

1. Right-click the CreateTask activity and select Properties. This opens the Properties task
pane.

2. Enter the value taskToken for the CorrelationToken property and hit the Enter key.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION210

3. Select the following value for OwnerActivityName: Workflow1. Workflow1 is the name of
the workflow class that we are using. By adding the name of the workflow class to the
OwnerActivityName property, we will ensure that the lifetime of the workflow is correctly
managed.

4. Click the default value of the TaskId property and click the button with the ellipsis. This
opens the Bind ‘TaskId’ to an activity’s property dialog box.

5. Select the Bind to a new member tab.

6. Enter the following value in the New member name text box: taskID.

7. Select the Create Field radio button and click OK. The taskID variable contains a unique id
for the task. The following simple member variable is added automatically to the code:

public Guid taskID = default(System.Guid);

8. Click the default value of the TaskProperties property and click the button with the ellipsis.
This opens the Bind ‘TaskProperties’ to an activity’s property dialog box.

9. Select the Bind to a new member tab.

10. Enter the following value in the New member name text box: taskProperties.

11. Select the Create Field radio button and click OK. The taskProperties variable contains
information about the task. The following simple member variable is added automatically
to the code:

public SPWorkflowTaskProperties TaskProperties = ➥
new Microsoft.SharePoint.Workflow.SPWorkflowTaskProperties();

The last thing you need to do with the CreateTask activity is create an event that fires when the
CreateTask activity executes. You can create this event by right-clicking the CreateTask activity in
the design view and selecting Generate Handlers. Figure 4-24 shows the CreateTask activity’s Prop-
erties task pane.

Figure 4-24. The CreateTask activity properties

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 211

After the workflow is assigned to a user, the workflow engine waits until the user has
completed the workflow. The While activity is a loop that contains an OnTaskChanged activity.
The responsibility of the While activity is to check whether the task has been changed to complete
before moving on to the CompleteTask activity. The OnTaskChanged activity checks whether the
task has been changed. Follow these steps to create and bind variables to the properties of the
While activity.

1. Right-click the While activity and select Properties. This opens the Properties task pane.

2. Select the following value for the Condition property: CodeCondition.

3. Expand the Condition field, and enter the value notFinished for the extra field, and press
Enter. This creates an event handler where you can check whether the CodeCondition of the
While activity is met. Figure 4-25 shows the Properties task pane of the While activity.

Figure 4-25. The While activity properties

The next activity that we will configure is OnTaskChanged. This activity is located within the
While activity. That means that the While loop runs and checks the code condition until the condi-
tion is met. In this example, that will be until the notFinished method returns false. Follow these
steps to set the properties of the OnTaskChanged activity.

1. Right-click the OnTaskChanged activity and select Properties.

2. Select the following value for CorrelationToken: taskToken.

3. Click the default value of the AfterProperties property and click the button with the
ellipsis. This opens the Bind ‘AfterProperties’ to an activity’s property dialog box.

4. Select the Bind to a new member tab.

5. Enter the following value in the New member name text box: afterProperties.

6. Select the Create Field radio button and click OK. The following variable is added automati-
cally to the code:

public SPWorkflowTaskProperties afterProperties = ➥
new Microsoft.SharePoint.Workflow.SPWorkflowTaskProperties();

7. Click the default value of the BeforeProperties property and click the button with the ellip-
sis. This opens the Bind ‘BeforeProperties’ to an activity’s property dialog box.

8. Select the Bind to a new member tab.

9. Enter the following value in the New member name text box: beforeProperties.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION212

10. Select the Create Field radio button and click OK. The following variable is added automati-
cally to the code:

public SPWorkflowTaskProperties beforeProperties = ➥
new Microsoft.SharePoint.Workflow.SPWorkflowTaskProperties();

■Note You can use the Create Field or Create Property radio buttons. The functionality provided by both controls
is comparable. Seen from an object-oriented programming perspective, it is often preferable to create a property
that provides better encapsulation.

11. Click the default value of the TaskId property and click the button with the ellipsis.
This opens the Bind ‘TaskId’ to an activity’s property dialog box.

12. Select the Bind to an existing member tab.

13. Select taskID and click OK.

14. Right-click the OnTaskChanged activity in the design view and select Generate Handlers to
create an event handler for the Invoked event.

Figure 4-26 shows the Properties task pane of the OnTaskChanged activity.

Figure 4-26. The OnTaskChanged activity properties

The last activity that needs to be configured is CompleteTask. The CompleteTask activity lets
you initiate further steps in the process or take actions in other systems. The following procedure
shows you which properties of the CompleteTask activity must be set.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 213

1. Right-click the CompleteTask activity and select Properties.

2. Select the following value for the CorrelationToken: taskToken.

3. Click the default value of the TaskId property and click the button with the ellipsis.
This opens the Bind ‘TaskId’ to an activity’s property dialog box.

4. Select the Bind to an existing member tab.

5. Select taskID and click OK. Figure 4-27 shows the Properties task pane for the CompleteTask
activity.

Figure 4-27. The CompleteTask activity properties

After adding and configuring the activities, the next step is adding code to the code
view of the workflow1.cs class. We are going to add the following string declarations to the
workflow1.cs class:

private String assignee = default(String);
private String instructions = default(String);
private String comments = default(String);

We will retrieve the values of these three variables from our initiation form. They are passed
to the workflow as an XML string represented by the SPWorkflowActivationProperties object’s
InitiationData property. To access these properties, we need to parse this XML string. We can
do this by using the generated class from the schema of the initiation form. We have added a
class called InitForm.cs to our workflow project. The following code fragment shows the
WorkflowActivated1_Invoked method that retrieves values from our initiation form:

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION214

private void onWorkflowActivated1_Invoked(object sender, ExternalDataEventArgs e)
{
workflowId = workflowProperties.WorkflowId;

XmlSerializer serializer = new XmlSerializer(typeof(InitForm));
XmlTextReader reader = new XmlTextReader(
new System.IO.StringReader(workflowProperties.InitiationData));

InitForm initform = (InitForm)serializer.Deserialize(reader);

assignee = initform.assignee;
instructions = initform.instructions;
comments = initform.comments;

}

The createTask1_MethodInvoking() method runs whenever a new task is created. We will
add a unique task id (called taskID) to the task along with some other properties such as Title,
Description, comments, and instructions. The Comments and instructions are custom properties
that are passed to the workflow as key-value pairs via the SPWorkflowTaskProperties object’s
ExtendedProperties property. The createTask1_MethodInvoking() method looks like this:

private void createTask1_MethodInvoking(object sender, EventArgs e)
{
taskID = Guid.NewGuid();
TaskProperties.Title = “MOSS Workflow Task”;
TaskProperties.AssignedTo = assignee;
TaskProperties.Description = instructions;
TaskProperties.ExtendedProperties[“comments”] = comments;
TaskProperties.ExtendedProperties[“instructions”] = instructions;

}

The last thing we have to do is to make sure is that the While loop stops when the task is com-
pleted. Therefore, we add a private boolean variable called IsFinished to the code.

private bool isFinished;

In the CodeCondition property of the While loop, we have specified that the notFinished()
method is called. One of the arguments of the notFinished() method is ConditionalEventArgs.
ConditionalEventArgs has a property called Result. If the Result property is set to false, the While
loop ends. If the Result property is set to true, the While loop continues. Once the task has been fin-
ished, the isFinished variable contains the value true. The notFinished() method looks like this:

private void notFinished(object sender, ConditionalEventArgs e)
{
e.Result = !isFinished;

}

The last bit of coding we have to do is set the isFinished variable to true when the isFinished
value of the afterProperties.ExtendedProperties object is true. The onTaskChanged1_Invoked()
method looks like this:

private void onTaskChanged1_Invoked(object sender, ExternalDataEventArgs e)
{
isFinished = bool.Parse(afterProperties.ExtendedProperties[“isFinished”]. ➥
ToString());

}

Listing 4-2 shows the complete code for the workflow1.cs class.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 215

Listing 4-2. Complete Code for the workflow1.cs Class

using System;
using System.ComponentModel;
using System.ComponentModel.Design;
using System.Collections;
using System.Drawing;
using System.Workflow.ComponentModel.Compiler;
using System.Workflow.ComponentModel.Serialization;
using System.Workflow.ComponentModel;
using System.Workflow.ComponentModel.Design;
using System.Workflow.Runtime;
using System.Workflow.Activities;
using System.Workflow.Activities.Rules;
using System.Xml.Serialization;
using System.Xml;
using Microsoft.SharePoint;
using Microsoft.SharePoint.Workflow;
using Microsoft.SharePoint.WorkflowActions;
using Microsoft.Office.Workflow.Utility;

namespace MOSSWorkflow
{

public sealed partial class Workflow1 : SharePointSequentialWorkflowActivity
{
public Workflow1()
{
InitializeComponent();

}

public Guid workflowId = default(System.Guid);
public Microsoft.SharePoint.Workflow.SPWorkflowActivationProperties ➥
workflowProperties = ➥
new Microsoft.SharePoint.Workflow.SPWorkflowActivationProperties();
public SPWorkflowTaskProperties afterProperties = ➥
new Microsoft.SharePoint.Workflow.SPWorkflowTaskProperties();
public SPWorkflowTaskProperties beforeProperties = ➥
new Microsoft.SharePoint.Workflow.SPWorkflowTaskProperties();

private String assignee = default(String);
private String instructions = default(String);
private String comments = default(String);

private void onWorkflowActivated1_Invoked(object sender, ExternalDataEventArgs e)
{
workflowId = workflowProperties.WorkflowId;
XmlSerializer serializer = new XmlSerializer(typeof(InitForm));
XmlTextReader reader = new XmlTextReader(new ➥
System.IO.StringReader(workflowProperties.InitiationData));
InitForm initform = (InitForm)serializer.Deserialize(reader);
assignee = initform.assignee;
instructions = initform.instructions;
comments = initform.comments;

}

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION216

public Guid taskID = default(System.Guid);
public SPWorkflowTaskProperties TaskProperties = ➥
new Microsoft.SharePoint.Workflow.SPWorkflowTaskProperties();

private void onTaskChanged1_Invoked(object sender, ExternalDataEventArgs e)
{
isFinished = bool.Parse(afterProperties.ExtendedProperties[“isFinished”]. ➥
ToString());

}

private bool isFinished;
private void notFinished(object sender, ConditionalEventArgs e)
{
e.Result = !isFinished;

}

private void createTask1_MethodInvoking(object sender, EventArgs e)
{
taskID = Guid.NewGuid();
TaskProperties.Title = “MOSS Workflow Task”;
TaskProperties.AssignedTo = assignee;
TaskProperties.Description = instructions;
TaskProperties.ExtendedProperties[“comments”] = comments;
TaskProperties.ExtendedProperties[“instructions”] = instructions;

}
}

}

■Tip If you want more information about building workflows for SharePoint environments, you should check out
the book Workflow in the 2007 Microsoft Office System by David Mann (Apress, 2007).

Deploying a Workflow
In this section, we will discuss the process of deploying your workflow so that it can be used within
Microsoft Office SharePoint Server 2007. A custom workflow can be deployed to SharePoint as a fea-
ture. In order to do so, you must create the following files: feature.xml and workflow.xml. However,
the first thing you need to do is place the workflow assembly inside the Global Assembly Cache
(GAC), which means that the workflow assembly needs to be strong named.

■Note Strong naming is discussed in more detail in Chapter 1.

We are going to deploy the example workflow we made in the earlier section “Creating a Work-
flow.” Follow these steps to sign your assembly:

1. Right-click the MOSSWorkflow project and select Properties.

2. Select the Signing tab and check the Sign the assembly check box.

3. Select <New> from the Choose a strong name key file drop-down list. This opens the Create
Strong Name Key dialog box.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 217

4. Specify a name in the Key file name text box and uncheck the Protect my key file with a
password check box.

5. Click OK.

6. Rebuild the workflow project.

To install the assembly in the Global Assembly Cache, you can use the gacutil tool. This tool
allows you to view and manipulate the contents of the GAC. The following command installs an
assembly in the Global Assembly Cache.

gacutil /i [assembly.dll]

■Tip You can find more information about the gacutil tool at the following URL: http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/
cpgrfGlobalAssemblyCacheUtilityGacutilexe.asp. Alternatively, you can install an assembly in the
GAC by dragging and dropping it to the [drive letter] :\Windows\Assembly folder.

Creating a feature.xml File
In the next step, you have to create a feature definition file called feature.xml. This file contains all
the information necessary to deploy the workflow. Follow this procedure to create a feature defini-
tion file.

1. Open the Feature.xml file in Visual Studio 2005.

2. Right-click in the Feature.xml file and select Insert Snippet ➤ SharePoint Server Workflow ➤
Feature.xml Code.

■Note If the code snippets are not loaded in Visual Studio 2005, you can add them yourself. Go to Tools ➤ Code
Snippets Manager. Select XML in The Language drop-down list. Click Add, browse to [drive letter]:\\Program Files\
Microsoft Visual Studio 8\Xml\1033\Snippets\SharePoint Server Workflow, and click Open. Click OK. Now you will
have the SharePoint Server Workflow snippet available in Visual Studio 2005.

The Id attribute of the <Feature> element contains a global unique identifier (GUID). You
have to create your own guid. You can do this by using the guidgen.exe tool (which should be
available after installing Visual Studio 2005 and C++), or you can create one yourself by calling the
Guid.NewGuid() method in a C# application and copying the string result to the feature file. The
Scope attribute contains the scope of the workflow assembly; in this example the scope is set to
Site, which refers to a site collection–level scope. The other scopes that are available are Farm,
WebApplication, and Web (which refers to a site level scope). The <ElementManifest> element speci-
fies the relative path to the workflow definition file. Each workflow feature must have a workflow
definition file. Listing 4-3 shows what the feature.xml file will look like.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION218

Listing 4-3. Content of the feature.xml File

<Feature Id=”C3287B4A-2688-4cc6-C34F-92EF5B787BCE”
Title=”MOSSWorkflow”
Description=”Description of the workflow”
Version=”12.0.0.0”
Scope=”Site”
ReceiverAssembly=”Microsoft.Office.Workflow.Feature, Version=12.0.0.0, ➥
Culture=neutral, PublicKeyToken=71e9bce111e9429c”
ReceiverClass=”Microsoft.Office.Workflow.Feature.WorkflowFeatureReceiver”
xmlns=”http://schemas.microsoft.com/sharepoint/”>
<ElementManifests>
<ElementManifest Location=”workflow.xml” />

</ElementManifests>
<Properties>
<Property Key=”GloballyAvailable” Value=”true” />
<Property Key=”RegisterForms” Value=”*.xsn” />

</Properties>
</Feature>

Creating a workflow.xml File
The workflow definition file workflow.xml contains information that SharePoint requires to instanti-
ate and run the workflow. Follow these steps to create a workflow definition file.

1. Open the Workflow.xml file in Visual Studio 2005.

2. Right-click in the Workflow.xml file and select Insert Snippet ➤ SharePoint Server Workflow
➤ Workflow.xml Code.

The Name attribute of the <Workflow> element contains the name of the workflow. The Id
attribute must be a different guid than the one specified in the feature.xml file. The PublicKeyToken
attribute contains the public key token of the workflow assembly. The <TaskListContentTypeId>
element specifies the content type id of the content type assigned to the workflow task list (this is
optional).

■Note By default, the content type of the workflow task is the Task base content type. The content type id of the
Task base content type is 0x0108.

The <StatusPageUrl> element contains the URL of a custom workflow status page. If this URL is
not specified, Microsoft Office SharePoint Server 2007 uses the default status page that is located at
_layouts/WrkStat.aspx.

The <Instantiation_FormURN> and <Association_FormURN> elements contain the ids of the initi-
ation form. You can get the id of the initiation form by opening the form in InfoPath in design mode.
Select File ➤ Properties and copy the value from the ID text box. The <Task0_FormURN> element con-
tains the id of the task edit form. Listing 4-4 shows what the workflow.xml file will look like.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 219

Listing 4-4. Content of the workflow.xml File

<Elements xmlns=”http://schemas.microsoft.com/sharepoint/”>
<Workflow
Name=”MOSSWorkflow”
Description=”Description of the workflow”
Id=”D250636F-0A26-4019-8425-A5232D592C10”
CodeBesideClass=”MOSSWorkflow.Workflow1”
CodeBesideAssembly=”MOSSWorkflow, Version=1.0.0.0, ➥
Culture=neutral, PublicKeyToken=bebe1ea49fdec076”
TaskListContentTypeId=”0x01080100C9C9515DE4E24001905074F980F93160”
AssociationUrl=”_layouts/CstWrkflIP.aspx”
InstantiationUrl=”_layouts/IniWrkflIP.aspx”
ModificationUrl=”_layouts/ModWrkflIP.aspx”
StatusUrl=”_layouts/WrkStat.aspx”>
<Categories/>
<MetaData>
<Association_FormURN>
urn:schemas-microsoft-com:office:infopath:InitiationForm: ➥
-myXSD-2007-05-25T12-13-02

</Association_FormURN>
<Instantiation_FormURN>
urn:schemas-microsoft-com:office:infopath:InitiationForm: ➥
-myXSD-2007-05-25T12-13-02

</Instantiation_FormURN>
<Task0_FormURN>
urn:schemas-microsoft-com:office:infopath:EditTaskForm: ➥
-myXSD-2007-05-25T17-06-24

</Task0_FormURN>
</MetaData>

</Workflow>
</Elements>

Deploying the Workflow
After creating these two XML files, you have to create a directory in the following location:
[drive letter]:\Program Files\Common Files\Microsoft Shared\web server extensions\12\
TEMPLATE\FEATURES. Specify a unique and recognizable name for this directory. Copy the
feature.xml and workflow.xml files and the InfoPath forms in this directory.

The last thing to do to deploy your workflow is install and activate the workflow via the Share-
Point Administrators tool stsadmin.exe. The stsadmin tool can be found in the following location:
[drive letter]:\Program Files\Common Files\Microsoft Shared\web server extensions\12\BIN\.
The following command will install the workflow.

STSADM.EXE -o installfeature -name MOSSWorkflow –force

To activate the workflow feature use the following command:

STSADM.EXE -o activatefeature -filename MOSSWorkflow\feature.xml –url ➥
http://myserver

■Note If this does not work, open a command prompt, type iisreset, and try again.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION220

Via SharePoint Central Administration, you can check whether the InfoPath forms are correctly
uploaded. Open SharePoint Central Administration ➤ Application Management ➤ Manage form
templates. In the Manage Form Template page, you will find the two InfoPath forms with Status set
to Ready and WorkflowEnabled set to Yes, as shown in Figure 4-28.

Figure 4-28. InfoPath forms with WorkflowEnabled set to Yes

At this point, you are ready to use the workflow in the SharePoint site. For instance, you can
link the workflow to a document library, which is shown in Figure 4-29.

Figure 4-29. Adding a custom workflow to a document library in SharePoint

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 221

■Note If you build the workflow solution in release mode in Visual Studio 2005 Designer, the postbuildactions.bat
batch file creates and deploys a .wsp solution file that can be used for deployment on a production server. The
manifest.xml and wsp_structure.ddf files are filled with the following information from the workflow project: the fea-
ture directory name, the name of the feature.xml file, the name of the workflow.xml file, and the name and relative
path of the compiled workflow assembly. For more information about the deployment of a .wsp solution file, check
out the following link: http://msdn2.microsoft.com/en-us/library/ms460303.aspx.

Debugging a Workflow
Debugging workflows is not very different from debugging other types of .NET projects. This is not
surprising, as the Visual Studio 2005 Workflow Designer is hosted within Visual Studio 2005. In addi-
tion to standard debugging capabilities such as the ability to set break points and the option to view
call stack windows, it also supports a range of visual indicators that provide information about the
debugging process. It is possible to step in, step out, and step over steps in a workflow.

Two types of debugging are not supported in Visual Studio 2005 Workflow Designer:

• Just-in-time debugging of run-time exceptions in the hosting process

• Just-in-time debugging by selecting a process in the Task Manager

■Note It is only possible to debug workflow applications if the Windows Workflow Foundation Debugger compo-
nent is installed. This component is part of Visual Studio 2005 extensions for .NET Framework 3.0. You can find
more information about Visual Studio 2005 extensions for .NET Framework 3.0 in the section “Getting to Know
Visual Studio 2005 Designer.”

Follow these steps to attach to a Microsoft Office SharePoint Server 2007 process in Visual
Studio 2005 Designer.

1. Open the workflow project in Visual Studio.

2. Add one or more breakpoints to the workflow. This can be done either in code view or in
design view in the Workflow Designer. Figure 4-30 shows a breakpoint that is set with the
Workflow Designer design view.

Figure 4-30. Setting and hitting a breakpoint in the design view of the Workflow Designer

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION222

3. Right-click the project and select Properties.

4. Select the Debug tab.

5. In the Start Action section, enter the SharePoint site URL in the Start browser with URL
text box.

6. Hit F5.

7. Start your workflow in Microsoft Office SharePoint Server 2007 by selecting the action menu
of an item that is stored in the Shared Documents document library. Then, choose the
Workflows option and click Example Microsoft Office SharePoint Server 2007 Workflow.

Using Forms to Capture and Automate Your Processes
It is possible to make a workflow more dynamic and flexible by adding forms to it. This way, you can
gather information from users at specific points in the workflow process. One important thing to
know about Windows SharePoint Services workflows is that they are form-agnostic. This means that
you can create forms with any technology you want as long as the forms are capable of doing the
following:

• Invoking the Windows SharePoint Services 3.0 object model

• Generating the data necessary to send to the Windows SharePoint Services object model

• Receiving and parsing the required data from the Windows SharePoint Services object model

Information passed to the form is formatted as a string; this is also true for data that the form
must pass back to the Windows SharePoint Services object model when the user submits the form.
This string characteristically contains XML, although any data format can be used, as long as the
data is a string. A common example of a form type used within SharePoint workflows is custom
forms created using ASPX that use XML as the data format of choice.

There are three types of forms available in a workflow:

• Association and initiation forms

• Modification forms

• Custom task forms

Association and initiation forms are forms that are displayed before the workflow starts. This
way the user can set parameters and other information for the workflow in advance.

Association forms are used to take care of how the workflow applies to a specific list, library, or
content type. These forms are displayed to the person who decides to associate a workflow to a list,
library, or content type. When a workflow is associated with a document library, the Add new work-
flow page will be displayed first. On the Add new workflow page, you can set specific settings that
are common to every workflow, such as the type of workflow and which Tasks list you want to use.
The next page is the association page. This page is specifically designed for this specific workflow. It
will collect customized association information to create the association with the list, library, or
content type.

Initiation forms are optional forms that deal with a workflow as it is associated with a specific
SharePoint item. The initiation form uses the data from the association form to prepopulate initial
values. Sometimes the association and initiation forms are the same form. This way you can enable
users to overwrite the initial values set by the administrator.

Modification forms enable the user to make modifications while the workflow is running. With
a modification form, a user can make modifications at any moment, for example, to assign a task to
another user.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 223

Custom task forms are custom forms that are specified for the tasks in a workflow. A custom
task form is based on the workflow task type. Each workflow task type in SharePoint has a content
type assigned with it. This content type determines whether the custom task form is specified for a
certain workflow task type.

Creating and Using a Custom Activity
To get familiar with every aspect of Windows Workflow Foundation, we are also going to create a
simple custom activity. We will create an activity that shows a string in a message box. Follow these
steps to create a custom activity:

1. Click File ➤ New ➤ Project. The New Project dialog window will open.

2. Choose to create a Workflow Activity Library and give it the following name: TestActivity.
Click OK.

An activity is a class that ultimately inherits from the System.Workflow.ComponentModel.
Activity base class. You can create an activity based on other existing activities by inheriting from a
built-in activity, a custom activity, or an activity created by a third-party vendor. If you want to build
an activity that is completely new, you need to inherit from the Activity base class directly.

In this section, we are going to create a new activity that is a direct child of the base Activity
class. By default, the activity class that is created when you create a Workflow Activity Library proj-
ect inherits from the SequenceActivity class. To change this, go to the code view of Activity1.cs and
change the base class of Activity1 to Activity.

After the Workflow Activity Library project is compiled, the new activity becomes available
automatically on the toolbox, so users can drag and drop your activity onto the design view of a
workflow. It is useful for an activity to have dependency properties, which bind their values to rele-
vant data, including other properties in other activities that use this custom activity. Follow these
steps to insert a dependency property.

1. Go to the code view of the Activity1.cs class.

2. Right-click in the class and choose Insert Snippet.

3. Choose Workflow and press Tab.

4. Choose DependencyProperty – Property and press Tab (see Figure 4-31).

Figure 4-31. Inserting the DependencyProperty – Property code snippet

The following code fragment shows the result of inserting this code snippet:

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION224

public static DependencyProperty MyPropertyProperty = ➥
System.Workflow.ComponentModel.DependencyProperty.Register(“MyProperty”, ➥
typeof(string), typeof(Activity1));

[Description(“This is the description which appears in the Property Browser”)]
[Category(“This is the category which will be displayed in the Property Browser”)]
[Browsable(true)]
[DesignerSerializationVisibility(DesignerSerializationVisibility.Visible)]
public string MyProperty
{
get
{
return ((string)(base.GetValue(Activity1.MyPropertyProperty)));

}
set
{
base.SetValue(Activity1.MyPropertyProperty, value);

}
}

This code creates a static instance of the DependencyProperty type and defines a property (this
time a member type, not a static type) that uses the DependencyProperty static instance as a key for
retrieving the run-time value of the MyProperty property.

You need to give the static member the following name: MessageProperty. The name of the actual
property (the member type) will be Message. You also need to change the [Description] and [Category]
attributes of the property. The values of these attributes are displayed in the Property Browser. Use the
Tab key to tab through the code snippet and customize the code so it looks like the following:

public static DependencyProperty MessageProperty = ➥
System.Workflow.ComponentModel.DependencyProperty.Register(“Message”, ➥
typeof(string), typeof(MyTestActivity));

[Description(“This is the description which appears in the Property Browser”)]
[Category(“This is the category which will be displayed in the Property Browser”)]
[Browsable(true)]
[DesignerSerializationVisibility(DesignerSerializationVisibility.Visible)]
public string Message
{
get
{
return ((string)(base.GetValue(MyTestActivity.MessageProperty)));

}
set
{
base.SetValue(MyTestActivity.MessageProperty, value);

}
}

Finally, you need to add an Execute() method. This method is a mediator that manages the
core tasks of the workflow. The code in this method makes use of the System.Windows.Forms name-
space.

protected override ActivityExecutionStatus Execute ➥
(ActivityExecutionContext executionContext)

{
MessageBox.Show(Message);
return ActivityExecutionStatus.Closed;

}

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 225

You can find the new custom activity on the Toolbox of the workflow solution used to develop
the new activity (see Figure 4-32).

Figure 4-32. Custom Activity1 in Toolbox

If you want to reuse this activity in another workflow project in Visual Studio 2005 Designer,
follow these steps:

1. Right-click in the Toolbox area and choose Choose Items.

2. In the Choose Toolbox Items dialog window, click the Activities tab and click Browse.

3. Browse to your activity assembly and click Open.

4. Your activity is mentioned in the list of activities and you can add a check to its check box to
include it on the Toolbox (see Figure 4-33).

Figure 4-33. Choose Toolbox Items dialog window

It is not possible to create custom activities with SharePoint Designer. However, you can use
custom activities created using Visual Studio 2005 in SharePoint Designer. To use a custom activity,
you must make sure that the activity is added to the safe controls list in Microsoft Office SharePoint
Server 2007. This way, all activities must be preapproved by a server administrator before using
them. It is not possible to deploy a custom activity without the approval of a server administrator.

If you want to use a custom activity assembly in SharePoint Designer, you have to place the
assembly inside the GAC, which means that the workflow assembly must be strong named. Follow
the next procedure to sign your assembly:

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION226

1. Right-click the activity project in the Solution Explorer and select Properties.

2. Select the Signing tab on the left.

3. Check the Sign the assembly check box.

4. Select <New> from the Choose a strong name key file drop-down list. This opens the Create
Strong Name Key dialog box.

5. Specify a name in the Key file name text box and uncheck the Protect my key file with a
password check box.

6. Click OK.

7. Rebuild the activity project.

The next step is to add the activity to the action safe list in the SharePoint web application’s
web.config file. The web.config of file can be found via the following procedure:

1. Open Internet Information Services (IIS) Manager.

2. Expand the [server name] (local computer) node.

3. Expand the Web Sites node.

4. Right-click the SharePoint web application and choose Properties. This opens the [web
application] Properties window.

5. Click the Home Directory tab and copy the value of the Local path text field.

6. Open an instance of Windows Explorer and navigate to the path found in the previous step.

7. Open the web.config file in any text editor.

Locate the <SafeControls> section and add a <SafeControl> element. This element should look
like this:

<SafeControl Assembly=”[assembly name],
Version=1.0.0.0, Culture=neutral,
PublicKeyToken=[public key token]”
Namespace=”[namespace name]” TypeName=”*” Safe=”True” />

The last thing to do is add an <Action> element, rules, and parameters to the WSS.actions
file. You can find the WSS.actions file in the following location: [drive letter]:\Program Files\
Common Files\Microsoft Shared\web server extensions\12\TEMPLATE\1033\Workflow. The
Action element gives SharePoint Designer all the information it needs to let the action appear
and function correctly. The following code fragment shows the <Action> element that must be
added to the WSS.actions file:

<Action Name=”TestActivity”
ClassName=”[class name]”
Assembly=”[assembly name], Version=1.0.0.0, Culture=neutral,
PublicKeyToken=[public key token]”

Category=”Core Actions”
AppliesTo=”all”>

</Action>

After adding a <SafeControl> element to the SharePoint web application’s web.config file and
an <Action> element to the WSS.actions file, the custom activity is added to the Actions list in the
Workflow Designer. Figure 4-34 shows that we’ve added the custom activity TestActivity to the
Workflow Designer in SharePoint Designer.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION 227

Figure 4-34. The custom activity TestActivity in the Workflow Actions dialog window

Summary
In this chapter, we discussed Windows Workflow Foundation. We have taken a look at the basics of
Windows Workflow Foundation. Next, we discussed the two development tools available to create
workflows: SharePoint Designer and Visual Studio 2005 Designer. We showed you how to create a
workflow with SharePoint Designer and how to create, deploy, and debug a workflow with Visual
Studio 2005 Designer. Finally, we discussed the different forms that you can use to capture and
automate the workflow process.

CHAPTER 4 ■ BUILDING HUMAN-ORIENTED WORKFLOWS USING WINDOWS WORKFLOW FOUNDATION228

Building a Domain-Specific Language
for Connectable Web Parts

The notion of software factories is one of the most important contemporary trends in software
architecture. The main promise of software factories is the industrialization of software development,
thus increasing productivity and decreasing development costs dramatically.

The ultimate goal of this chapter is to show you how to develop a part of a software factory;
we will show you how to develop a domain-specific language (DSL) for creating connectable web
parts. If you want to succeed in developing such a language, it is essential that you have a solid
understanding of the web part connection framework. If you do not possess this knowledge already,
this chapter will help you to acquire it.

Introducing Software Factories
A software factory is a software product line that automates parts of software development.
Most discussions about software factories will probably start with a reference to the book Software
Factories: Assembling Applications with Patterns, Models, Frameworks, and Tools, published by
Wiley in 2004 (see the bibliography for more details). This book is rapidly becoming a classic, and
if you want to delve deeply into the theory behind software factories, we definitely recommend it.
We also advise you to take a look at the web site http://www.softwarefactories.com, which con-
tains general information about software factories.

“Software development is an art.” This is a phrase you’ve probably heard before. It is true:
even nowadays, software development is based on the individual skills of software developers.
This is sometimes referred to as heroism, the developers being the heroes. Developers engage in
manual, labor-intensive tasks, just like other craftsmen do. Such a development style is slow
and allows much room for mistakes, and the quality of software is very dependent on the skills of
the individual software developers. As the art of software development matures, it must transcend
to another level. We have to move toward software industrialization, which is all about assem-
bling software products from components, automating tasks, forming product lines (the steps
required to create software) and supply chains (that deliver standard components), and stan-
dardizing processes and architectures. The belief that industrialization can be accomplished for
the world of software development is based on the premise that software is fundamentally like
every other industry.

Although software factories help industrialize the work of software developers, we do not think
this will make being a software developer boring. Software factories help automate boring tasks,
thus giving developers the opportunity to spend a higher percentage of their time on the interesting
bits of creating software.

A related trend is that programming languages tend to become more abstract over time.
Nowadays, you can still create programs by typing code, although more and more you will have

229

C H A P T E R 5

the opportunity to program by creating visual models graphically. Creating BizTalk orchestrations
(Chapter 8 covers BizTalk orchestrations) and workflows created using Windows Workflow Foundation
(Chapter 4 covers Windows Workflow Foundation) are excellent examples of this. This is also known
as model-driven development, a development approach where visual modeling is used to create
models to capture information in forms that can be processed easily. The goal of model-driven
development does not lie in creating design documentation, but in creating models that are used
to fully or partially automate its implementation. You can think of model-driven development as
programming with models.

FLAWS IN UML?

The Unified Modeling Language (UML) has been successful as a language that allows developers, analysts, and
architects to create models that are used for design and documentation purposes. However, UML has not been
successful as a language that is used widely and effectively in creating models for model-driven development. Or
to put it another way, UML has not been successful as a language to help automate software development. This is
primarily caused by one of the great strengths of the language: its generality. As it turns out, automation of devel-
opment requires precise languages, and UML has failed as a language that can be mapped precisely to
programming languages such as C#.

Background on Domain-Specific Languages
If you are going to adopt a model-driven development approach and want to create a model that
is suitable for use in a model-driven development environment, you need it to be precise and
unambiguous. Because of this, a modeling language needs to be closely tied to the problem domain
itself (something that does not hold true for UML). Such modeling languages are called DSLs or
domain-specific languages. DSLs can be textual or graphical, although this chapter only discusses
the creation of a graphical DSL. The opposite of a DSL is a general-purpose language. General-
purpose languages are generic and can be applied to any kind of problem domain, whereas DSLs
are intended to be used in a very specific problem domain.

Models created in some kind of high-level DSL need to be transformed to some other form
before they are really useful. Most often, models will be transformed to either code (that can be
compiled into executables) or directly into executables, but it is also possible to use a model and
transform it in another lower-level DSL. Different types of model transformation exist:

• Vertical: Vertical transformations take some kind of higher-level model and map this model to
another lower-level model. For instance, if you compile a piece of C# code into Intermediate
Language (IL), a vertical transformation takes place.

• Horizontal refactoring: Horizontal refactoring transformations reorganize a model to
improve its design but not its meaning. For instance, if you take a piece of C# code, you can
use the refactoring menu items listed in the Refactor menu to improve the design, but not
the meaning of code. Using these techniques is an example of horizontal refactoring.

• Horizontal delocalizing: Horizontal delocalizing transformations optimize a model. A typical
example of this type of refactoring is the generation of binary code that is optimized to
improve performance. Horizontal delocalizing transformations can also be used to specify a
part or aspect of software. This is an essential part of aspect-oriented programming (AOP).
For example, AOP allows you to address a part of software (let’s say, security concerns), and
apply this part to one or more separate software programs.

• Oblique: Oblique transformations combine horizontal and vertical transformations.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS230

Typically, modeling languages are declarative, not imperative. Imperative languages focus on
the how of software execution. Such languages describe which instructions need to be executed and
do not bother to describe the desired results. Declarative languages focus on the what of software
execution. Declarative languages describe the desired results of the execution of the software pro-
gram, but do not bother to describe how these results are obtained. DSLs are used to express
developer intent and are thus an example of declarative languages.

DSLs are used in model-driven development approaches, where metadata is captured in mod-
els to automate software development tasks. Model-driven development has the following features:

• Model-driven development uses DSLs that capture developer intent.

• Model-driven development allows you to create and adapt software via configuration,
not coding.

• Tools that support model-driven development make it easy to generate software based
on models.

• Tools that support model-driven development make it easy to create and debug models.

Components of a Software Factory
A software solution solves a problem or subproblem in a specific domain and reduces the total cost
of software creation. In software factory terms, a solution is a production asset that makes software
creation cheaper every time the solution is reused. Software factories and supply chains are used to
create software that is similar and yet distinct, using the same practices, processes, tools, and mate-
rials, thus providing another level of reuse.

Software factories contain extensible tools, processes, and content, and use a software factory
template based on a schema to automate (parts of) software development. A software factory
schema categorizes and summarizes development artifacts that are relevant to a software factory.
Examples of such artifacts are configuration files, models, and source code files.

■Note A software factory schema does not contain development artifacts; it describes them.

Software factory schemas also define relationships between the artifacts. Tables are very suit-
able for representing software factory schemas. If you represent a software factory in a table, every
table cell represents a perspective or viewpoint from which you can build a certain aspect of the
software. Such tables can be used to create more than one software product. A software factory
schema provides a high-level overview of a software product belonging to a certain software prod-
uct family, and describes the artifacts that must be developed to produce a software product in a
fully or partially automated way.

The software factory schema represents the entire software development process for produc-
ing software that belongs to a certain family. Software factory schemas contain fixed and variable
parts; the fixed parts remain the same for every member of the product family.

To summarize what we have discussed so far, a software factory schema describes the software
factory; a software factory template contains the actual assets used to build a software product
belonging to a certain software family. DSLs are assets of a software factory template and are used
to capture information about some aspect (or viewpoint) of a family of software products. Multiple
DSLs are needed to describe a typical business application.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 231

Using DSL Tools
A DSL is a language designed to be useful for a specific task in a fixed problem domain, in contrast
to a general-purpose language. DSLs are an important part of software factories, so it is interesting
to see what you need to create a DSL. If you want to use DSLs, you will need the following tools:

• Editors for creating and maintaining specifications. For complex languages, graphical
editors may be required for editing and validation.

• Language processors for producing implementations from models.

• Debugging tools to debug implementations using the DSL.

• Tools that automate other development tasks using metadata captured by models based on
the language, including test generation and execution, instrumentation and measurement,
configuration management, and deployment.

The first three tools can be found in the new Microsoft DSL Toolkit product, which enables
users to design graphical DSLs that can be tailored to any problem domain and generate code and
other artifacts from the languages. The last set of tools belongs to the realm of Visual Studio Team
System and will not be discussed in this chapter. The DSL Toolkit consists of the following:

• A project wizard that supports the creation of domain models via a designer and a textual
artifact generator. Domain models created with this project wizard can be tested within
separate instances of Visual Studio 2005.

• A graphical designer that can be used to define and edit domain models.

• An XML format that is used for describing designer definitions. Designer definitions define
the look and feel of a graphical designer hosted in Visual Studio 2005 that is used to create
domain models.

• A set of code generators that is able to generate code for a DSL that is defined via a domain
model definition and designer definition.

• A framework for defining templates.

Running the project wizard results in the creation of a Visual Studio DSL solution that contains
two projects: DomainModel and Designer. The DomainModel project describes the DSL and allows
you to visually customize and define this language. The Designer project defines the look and feel of
the DSL. After creating a DSL using the DSL Toolkit, you can create a deployment package (.msi file)
to distribute your DSL. We will discuss the DSL Toolkit in detail in the section “Creating the Web Part
Connection Language,” when we discuss the creation of the Web Part Connection Language, a
domain-specific language for creating connectable web parts.

■Note The DSL Toolkit and the Guidance Automation Toolkit (GAT) both fall under the Software Factories Initiative
umbrella at Microsoft. Basically, GAT is an extension to Visual Studio 2005 that creates rich user experiences. If
you want more information about GAT, please refer to Chapter 1. Currently, integration between the two tools is
limited to the shared use of the T4 templating engine (which is discussed later in this chapter in the section “Text
Templates”). There are additional plans to integrate both products. For example, it will be possible to run GAT
recipes from commands in a model designer that is created using the DSL Toolkit.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS232

Web Part Connections
Now that you have more background on software factories and DSLs, we will switch to a discussion
of web part connections. After that, in the next section, we will discuss how to use a DSL that aids in
creating connectable web parts. In the final section of this chapter, you will learn how to create such
a DSL.

Connectable web parts are able to share information and communicate with each other using
predefined or custom interfaces. Connectable web parts do not have to have intimate knowledge
about each other, and are thus loosely bound. This section brings you up to speed on connectable
web part technology, so you will be able to follow the discussion of building a graphical DSL for web
part connections later.

Microsoft Office SharePoint Server 2007 has support for the SharePoint 2003 web part connec-
tion framework as well as the ASP.NET 2.0 web part connection framework. Creating web part
connections using the ASP.NET 2.0 web part connection framework is the preferred method.
Because of this, it is the only method that will be discussed in detail in this chapter. If you want to
learn more about the SharePoint 2003 web part connection framework, please refer to the Windows
SharePoint Services 2003 SDK.

■Note There are still some valid reasons for using the SharePoint 2003 web part connection framework. Create
SharePoint 2003 connectable web parts if you want to create cross-page connections, connections between web
parts that are outside of a web part zone, or client-side connections if you want to communicate with an existing list
using the ListViewWebPart.

Background on Web Part Connections
Let’s take a step back and look at the history of the connectable web part framework. The Digital
Dashboard Services Component (DDSC) can be considered to be the first version of connectable
web parts. The DDSC is a client-side component that was first included in SharePoint technology in
2001. It provides a standard infrastructure for services such as the following:

• Part discovery: A web part discovers another web part on a web part page (or a dashboard, as
it was called in 2001).

• Notification: The notification system allows web parts to respond to external events that
occur at the web part page or web part level.

• Session state management: The session state management system allows web parts to inter-
change information and objects within a browser session.

• State management: The state management system allows web part pages and web parts to
maintain global state and offered access to a state persistence mechanism.

• Item retrieval: This allows web parts to retrieve and maintain the state of items.

Although not used as often, the DDSC is still included in Microsoft Office SharePoint Server
2007. In Microsoft Office SharePoint Server 2007, the DDSC has been renamed Web Part Services
Component (WPSC), a component that plays an important role in creating client-side web part
connections for web parts using the SharePoint 2003 web part connection framework. An example
of such a client-side web part connection is discussed in Chapter 2.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 233

In a nutshell, connectable web parts are web parts that can communicate with other web
parts. There are two ways end users can connect web parts to each other: via the browser or using
SharePoint Designer 2007. Web part connections are useful in many ways; here is an overview of
the most common scenarios:

• Master/detail: In this scenario, a master web part provides information that allows a detail
web part to show further details. For example, a web part provides an overview of all employ-
ees. If you click on the name of one of the employees, employee details are shown in another
web part.

• Parent/child: In this scenario, a parent web part provides an overview of items of some sort;
a child web part shows the children of these items. For example, a web part provides an
overview of orders. If you click one of the orders, another web part shows all items belonging
to this order.

• Data entry and filtering: In this scenario, a web part contains some kind of search or filter
form. The data entered in this form is used to filter the data that is shown in another web part.

• Alternate views: In this scenario, a web part passes data to another web part that displays this
data in some new and interesting way. For example, a web part provides an overview of order
items; product A is ordered 10 times, product B 20 times. This data is passed to another web
part that uses a pie chart to display this information.

• Data enhancement: In this scenario, a web part enhances the data shown in another web
part. For example, a web part shows an overview of all employees. If you click the name of
one of the employees, another web part shows a picture of this employee.

These scenarios all have in common that web parts share information and are able to commu-
nicate with each other. The intent, however, is a little bit different in every scenario.

The SharePoint 2003 Web Part Connection Framework
The SharePoint 2003 web part connection framework provides several interfaces that allow web
parts to receive or pass information to other connected web parts on a web part page. The inter-
faces can be divided in two categories: providers and consumers. Provider web parts are able to
publish data to other web parts (consumer web parts) via a web part connection. Consumer web
parts are able to digest data coming from other web parts (provider web parts) via a web part con-
nection. Every provider type is paired to a specific consumer type.

■Note A provider can be connected to multiple consumers. It is even possible to connect a provider to different
types of consumers if an appropriate transformer is available. Transformers are discussed later in this section.

The following list provides an overview of the available interface provider/consumer pairs that
are available in the SharePoint 2003 web part connections framework:

• Cell interface provider/consumer pair: Cell interfaces are used to pass a single value to
another web part. Cell interfaces are very suitable for implementing data enhancement
scenarios.

• Row interface provider/consumer pair: Row interfaces are used to pass a row of information
to a consumer web part. Row interfaces are very suitable for implementing master/detail
scenarios.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS234

• List interface provider/consumer pair: List interfaces are used to pass an entire list of data
(a set of rows) to a consumer web part. List interfaces are very suitable for implementing
alternate-view scenarios.

• Filter interface provider/consumer pair: Filter interfaces are used to pass filter values to a
consumer web part. Filter interfaces are very suitable for implementing data entry and filter-
ing scenarios.

• ParamsOut interface provider/consumer pair: ParamsOut interfaces are used to pass a param-
eter list (or, if you will, a property bag containing various values) to a consumer web part.

• ParamsIn interface provider/consumer pair: ParamsIn interfaces are also used to pass
parameters to consumer web parts. The reason why one might want to use ParamsIn
interfaces lies in the fact that ParamsOut providers and consumers need to have intimate
knowledge of each other (they are tightly bound). You can support scenarios to pass
parameters to unknown consumers by combining a ParamsOut provider with a ParamsIn
consumer. This forces an interface mismatch, which forces the SharePoint user interface
to display a transformation window that allows the person connecting the web parts to
choose which values need to be connected to each other. This offers more flexibility and
loose coupling.

The SharePoint 2003 web part connection framework includes transformers that allow a
provider and consumer web part to connect to each other, even though they implement different
interfaces. The following transformers are available:

• IRowProvider to ICellConsumer

• IRowProvider to IFilterConsumer

• IRowProvider to IParametersInConsumer

• IParametersOutProvider to IParametersInConsumer

You have the option of choosing between two available clients when it comes to creating web
part connections: the browser and SharePoint Designer 2007. If you are connecting web parts
implementing interfaces that require the use of a transformer, you cannot always use either client.
Table 5-1 shows an overview of the available clients for different transformer scenarios.

Table 5-1. Available Clients in Different Transformer Scenarios

Transformation Clients

IRowProvider to ICellConsumer Browser and SharePoint Designer 2007

IRowProvider to IFilterConsumer Browser and SharePoint Designer 2007

IRowProvider to IParametersInConsumer SharePoint Designer 2007

IParametersOutProvider to IParametersInConsumer SharePoint Designer 2007

■Note There are some other, less-often-used ways to create web part connections. You can also create them
programmatically by setting the connection ID, hard-coding the connection in the web part by setting the connec-
tion ID in the consuming web part (which is useful in testing scenarios), or by defining a web part connection
within a site template.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 235

The ASP.NET 2.0 Web Part Connection Framework
The use of the web part connection framework has been simplified considerably in ASP.NET 2.0.
The connection model still consists of a provider/consumer pair. As opposed to the SharePoint 2003
web part connection framework (discussed previously in the section “The SharePoint 2003 Web Part
Connection Framework”), the ASP.NET 2.0 web part connection framework makes it easy to use
custom interfaces for sharing data.

■Note Microsoft recommends that you create ASP.NET 2.0 web parts and connectable web parts. You should not
create new web parts using the SharePoint 2003 web part connection framework, unless you are facing one of the
scenarios discussed in the section “Web Part Connections.”

The ASP.NET 2.0 web part connection framework allows a provider web part to implement a
custom interface, and if the consumer web part understands this interface, both web parts will be
able to communicate with each other over a web part connection. We will demonstrate this in the
first example of this section, in which we will create a provider web part that implments an interface
called IMyInterface and a client that is able to communicate with web parts implementing this
interface.

Take a look at Listing 5-1, which contains an interface called IMyInterface containing a single
method, GetGreeting().

Listing 5-1. Defining a Connection Interface

using System;
using System.Collections.Generic;
using System.Text;

namespace Connections
{

public interface IMyInterface
{
string GetGreeting();

}
}

The interface IMyInterface will be implemented by a provider web part and finally consumed
by a consumer web part. This is discussed in the sections “Creating a Provider Web Part Implement-
ing a Custom Interface” and “Creating a Consumer Web Part Consuming a Custom Interface”.

Creating a Provider Web Part Implementing a Custom Interface
If you want to create provider and consumer web parts that communicate via the custom
IMyInterface interface, you first need to create a provider web part that implements this interface.
We will create such a provider and call it ProviderA, as can be seen in the following code fragment:

public class ProviderA : System.Web.UI.WebControls.WebParts.WebPart, ➥
IMyInterface

Next, you need to create a method that returns a control that is able to act as the provider
in a web part connection. You can define a connection provider by decorating a method with the
[ConnectionProvider] attribute and provide a display name for the connection. In this case, this
method returns a provider supporting the IMyInterface interface. The web part connection

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS236

framework will use the connection provider to retrieve an instance of IMyInterface and pass this
to a connection consumer point in the consumer web part (this will be discussed later in this
chapter). The next code fragment shows the connection provider retrieval method, which returns
the current instance of the ProviderA class:

[ConnectionProvider(“connection provider A”)]
public IMyInterface GetProviderA()
{
return this;

}

You will also need to implement the GetGreeting() method, the sole method of the
IMyInterface interface. Its implementation is shown in the next code fragment:

public string GetGreeting()
{
return “Hello from provider A”;

}

After completing these steps, you have completed the essential part of a web part that can
function as a connection provider communicating via a custom interface. The complete code listing
for this web part is shown in Listing 5-2.

Listing 5-2. Creating a Connection Provider Using a Custom Interface

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;

namespace Connections
{
[Guid(“8da110b0-da38-4278-8ddd-fb6989c53621”)]
public class ProviderA : System.Web.UI.WebControls.WebParts.WebPart, ➥
IMyInterface
{
public ProviderA()
{
this.ExportMode = WebPartExportMode.All;

}

protected override void Render(HtmlTextWriter writer)
{
writer.Write(“Provider web part A”);

}

[ConnectionProvider(“connection provider A”)]
public IMyInterface GetProviderA()
{
return this;

}

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 237

public string GetGreeting()
{
return “Hello from provider A”;

}
}

}

At this point, you have successfully created a provider web part that implements a custom
interface.

Creating a Consumer Web Part Consuming a Custom Interface
After building a provider that communicates via a custom interface, you will also need to build a
consumer that is able to exchange data with the provider. In this example, we are creating a con-
sumer that is called ConsumerA. First, it is convenient to define a member variable that is able to hold
an instance of a provider web part. This is shown in the next code fragment:

private IMyInterface _objProvider;
public IMyInterface Provider
{
get { return _objProvider; }
set { _objProvider = value; }

}

Once the member variable is in place, you can define a connection consumer method, a callback
point called by the web part connection framework that acts as a consumer in a web part connection.
You can define a connection consumer method by decorating a method with the ConnectionConsumer
attribute. This is an ideal place for setting the Provider property. The next code fragment shows how to
set a reference to a connection provider:

[ConnectionConsumer(“connection consumer A”)]
public void GetProvider(IMyInterface objProvider)
{
Provider = objProvider;

}

You are now ready to use the connection provider by calling its methods. The next code frag-
ment shows an implementation of the web part Render() method that calls the GetGreeting()
method of a connection provider implementing the IMyInterface interface:

protected override void Render(HtmlTextWriter writer)
{
if (Provider != null)
{
writer.Write(Provider.GetGreeting());

}
else
{
writer.Write(“no connection established”);

}
}

The complete code for the consumer web part that is able to communicate with the ProviderA
web part created earlier in this section is shown in Listing 5-3.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS238

Listing 5-3. Creating a Connection Consumer for a Custom Interface

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;

namespace Connections
{

[Guid(“33ede5c2-c92a-4a32-87e6-99a14fb6b70c”)]
public class ConsumerA : System.Web.UI.WebControls.WebParts.WebPart
{
public ConsumerA()
{
this.ExportMode = WebPartExportMode.All;

}

protected override void Render(HtmlTextWriter writer)
{
if (Provider != null)
{
writer.Write(Provider.GetGreeting());

}
else
{
writer.Write(“no connection established”);

}
}

[ConnectionConsumer(“connection consumer A”)]
public void GetProvider(IMyInterface objProvider)
{
Provider = objProvider;

}

private IMyInterface _objProvider;
public IMyInterface Provider
{
get { return _objProvider; }
set { _objProvider = value; }

}
}

}

If you import those web parts in a SharePoint site, you will get to see a sight similar to Figure 5-1.
If you are not sure how to do this, please refer back to Chapter 1. Figure 5-1 shows two provider web
parts implementing the IMyInterface interface and two consumer web parts that are able to com-
municate with these providers. At this moment, the consumer web parts have not yet been
connected to a provider.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 239

Figure 5-1. A SharePoint page containing multiple provider and consumer web parts

Next, you will see how to connect a provider web part to a consumer web part. If you click the
drop-down arrow at the right-side of the ProviderA web part, an action menu appears. Choose the
option Modify Shared Web Part, as shown in Figure 5-2.

Figure 5-2. Connecting the ProviderA web part to a consumer web part

This opens the SharePoint page in Edit Mode. Follow these steps to connect the ProviderA
provider web part to the ConsumerA consumer web part:

1. Click the Edit menu of the ProviderA web part. This opens an action menu.

2. Choose Connections ➤ Send connection provider A To ➤ ConsumerA Web Part.

3. Click OK in the ProviderA tool pane.

This connects the ProviderA web part to the ConsumerA web part. Repeat the same steps if you
want to break the connection between both web parts.

■Note A consumer web part can only be connected to a single provider. A provider can have multiple connec-
tions to consumer web parts.

Figure 5-3 shows the user interface provided by Microsoft Office SharePoint Server 2007 when
creating a web part connection.

The final figure associated to this example, Figure 5-4, shows a SharePoint page containing two
provider web parts connected to two different consumer web parts.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS240

Figure 5-3. Choosing a consumer web part

Figure 5-4. SharePoint page containing connected web parts

Interfaces and Transformers
As you learned in the section “The SharePoint 2003 Web Part Connection Framework,” the
SharePoint 2003 web part connection framework contains a set of predefined interfaces and
transformers that are able to map certain predefined provider interfaces to other predefined
consumer interfaces. Although this model has been simplified in the ASP.NET 2.0 web part con-
nection framework, it still contains a set of predefined interfaces and transformers for these
interfaces.

■Note You should use one the predefined interfaces if they match the scenario you are trying to implement; this
saves you the trouble of creating your own interface. As an added bonus, there is a set of transformers that allow
you to exchange data between web parts that would have been incompatible without a transformer. Transformers
are discussed later in this section.

The following is an overview of the predefined interfaces that are available in the ASP.NET 2.0
web part connections framework (all interfaces are located in the System.Web.UI.WebControls.
WebParts namespace):

• IWebPartField interface: This interface is used when web parts want to exchange a single
value. This interface is comparable to cell interfaces in the SharePoint 2003 web part connec-
tion framework. Classes supporting the web part field interface are very suitable for
implementing data enhancement scenarios.

• IWebPartRow interface: This interface is used when web parts want to exchange a row of
information. This interface is comparable to row interfaces in the SharePoint 2003 web part
connection framework. Classes supporting the web part row interface are very suitable for
implementing master/detail scenarios.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 241

• IWebPartTable interface: This interface is used when web parts want to exchange an entire
list of data (a set of rows). This interface is comparable to list interfaces in the SharePoint
2003 web part connection framework. Classes supporting the web part table interface are
very suitable for implementing alternate-view scenarios.

• IWebPartParameters interface: This interface is used when web parts want to exchange a
list of parameters (or, if you will, a property bag containing various values). This interface
is comparable to the ParamsOut interfaces of the SharePoint 2003 web part connection
framework.

■Note We will also refer to the interfaces as the IWebPart* interfaces.

The ASP.NET 2.0 web part connection framework includes transformers that allow provider
and consumer web parts to connect to each other, even though they implement different interfaces.
The following ASP.NET transformers are available:

• RowToFieldTransformer: Transforms a row provider interface into a field consumer interface.

• RowToParametersTransformer: Transforms a row provider interface into a parameters con-
sumer interface.

Building a Custom Transformer
In the previous section, you learned that the ASP.NET web part connection framework provides
two transformers out of the box. In this section, you will learn how to create your own custom trans-
former. We will create two custom interfaces: a consumer web part that consumes the first interface,
and then a provider web part that implements the second interface. We want the provider web part
to provide data to the consumer web part. Normally, this fails because both web parts are incom-
patible. Because of this, we will create a transformer that is able to transform the data provided by
the provider web part to something that is intelligible to the consumer web part. Finally, you will
see how to register web part transformers in the web.config file of a SharePoint web application.

In the first step, we will create an interface called IMyFirstInterface. Later, we will create a
consumer web part called FirstConsumer that is able to consume data from IMyFirstInterface
provider web parts. The IMyFirstInterface interface prescribes that every class implementing it
should contain a property called Name. This is shown in Listing 5-4.

Listing 5-4. Creating the First Custom Interface

using System;
using System.Collections.Generic;
using System.Text;

namespace Connections
{

public interface IMyFirstInterface
{
string Name { get; set;}

}
}

Then, we will create an interface called IMySecondInterface. Later, this interface will be imple-
mented in a provider web part called SecondProvider. The IMySecondInterfaces interface prescribes

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS242

that classes implementing this interface should contain a property called CurrentTitle. This is
shown in Listing 5-5.

Listing 5-5. Creating the Second Custom Interface

using System;
using System.Collections.Generic;
using System.Text;

namespace Connections
{

public interface IMySecondInterface
{
string CurrentTitle { get; set; }

}
}

Next, we will discuss building a transformer class. Every web part connection transformer
inherits from the WebPartTransformers class located in the System.Web.UI.WebControls.WebParts
namespace. This class provides the basic implementation for all transformer classes that convert
data between incompatible interfaces. You need to decorate this class with the [WebPartTransformer]
attribute, which defines the types of connection points that the transformer supports. The first argu-
ment that needs to be passed to the transformer is the provider type (in our example, we will pass the
IMySecondInterface type). Second, you need to pass the consumer type (in our example, we will pass
the IMyFirstInterface type).

■Caution The code comment for the [WebPartTransformer] attribute states that the first argument of its con-
structor pertains to the consumer type, the second to the provider type. We believe in reality it is the other way around.

Finally, you will need to override the Transform() method of the WebPartTransformer class.
This method is responsible for creating an object that will be used when transforming data. The
complete code for the transformer is shown in Listing 5-6.

Listing 5-6. Creating the Second Custom Interface

using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.SharePoint;
using System.Web.UI.WebControls.WebParts;

namespace Connections
{

[WebPartTransformer(typeof(IMySecondInterface), typeof(IMyFirstInterface))]
public class MyInterfaceTransformer : WebPartTransformer, IMyFirstInterface
{
IMyFirstInterface _objFirstObject;
IMySecondInterface _objSecondObject;

public override object Transform(object providerData)
{
_objSecondObject = (IMySecondInterface)providerData;
return this;

}

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 243

public string Name
{
get
{
return _objSecondObject.CurrentTitle;

}
set
{
_objSecondObject.CurrentTitle = value;

}
}

}
}

If you have created a web part connection transformer, you can use it by copying the assem-
bly to the bin folder of the SharePoint web application root folder and adding a reference to it in
the <transformers> section of the SharePoint web application’s web.config file. This is shown in
Listing 5-7.

Listing 5-7. Creating the Second Custom Interface

<transformers>
<!—
The other registrations for transformers are not shown in this code listing.
They will be discussed in section “SharePoint 2007 transformers”.
—>
<add name=”MyInterfaceTransformer” ➥
type=”Connections.MyInterfaceTransformer, MyWebPartLibrary, ➥
Version=1.0.0.0, Culture=neutral, PublicKeyToken=9f4da00116c38ec5” />

</transformers>

We still need to create a provider web part that implements the IMySecondInterface interface.
If you need more information about this topic, please refer to the beginning of the section “The
ASP.NET 2.0 Web Part Connection Framework.” Listing 5-8 shows the complete code for a provider
web part called SecondProvider.

Listing 5-8. Creating a Provider Web Part Called SecondProvider

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;

using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;

namespace Connections
{

[Guid(“f4e7c5b7-5acb-4990-a7e9-511d9ec5b94e”)]
public class SecondProvider : System.Web.UI.WebControls.WebParts.WebPart, ➥
IMySecondInterface
{
public SecondProvider()

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS244

{
this.ExportMode = WebPartExportMode.All;

}
protected override void Render(HtmlTextWriter writer)
{
writer.Write(“SECOND PROVIDER”);

}

[ConnectionProvider(“connection provider”)]
public IMySecondInterface GetProvider()
{
return this;

}

private string _strTitle = “Title from second provider”;
public string CurrentTitle
{
get
{
return _strTitle;

}
set
{
_strTitle = value;

}
}

}
}

Finally, we need to create a consumer web part that is able to consume data provided by
IMyFirstInterface web parts. If you need more information about this topic, please refer to the
beginning of the section “The ASP.NET 2.0 Web Part Connection Framework.” Listing 5-9 shows
the complete code for a consumer web part called FirstConsumer.

Listing 5-9. Creating a Consumer Web Part Called FirstConsumer

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;

using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;

namespace Connections
{

[Guid(“07492348-a4ad-4a30-a9f5-c14bf6a3c373”)]
public class FirstConsumer : System.Web.UI.WebControls.WebParts.WebPart
{
public FirstConsumer()
{
this.ExportMode = WebPartExportMode.All;

}

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 245

protected override void Render(HtmlTextWriter writer)
{
if (Provider != null)
{
writer.Write(Provider.Name);

}
else
{
writer.Write(“no connection established”);

}
}

[ConnectionConsumer(“connection consumer”)]
public void GetProvider(IMyFirstInterface objProvider)
{
Provider = objProvider;

}

private IMyFirstInterface _objProvider;
public IMyFirstInterface Provider
{
get { return _objProvider; }
set { _objProvider = value; }

}
}

}

Now, you can go ahead and place both web parts on a SharePoint page. If you have registered
our custom web part connection transformer correctly, you will be able to create a connection
between the SecondProvider provider web part and the FirstConsumer consumer web part.

SharePoint 2007 Transformers
In the section “Building a Custom Transformer,” you have learned that you can create custom trans-
formers and that you need to register those custom transformers in the <transformers> section of
your SharePoint web application’s web.config file. SharePoint provides four custom transformers:

• TransformableFilterValuesToFilterValuesTransformer: This allows filter web parts imple-
menting the ITransformableFilterValues interface to provide data to any web part that can
consume objects implementing the IFilterValues interface. This transformer always returns
the first value of the first parameter of the filter web part.

• TransformableFilterValuesToParametersTransformer: This allows filter web parts imple-
menting the ITransformableFilterValues interface to provide data to any web part that can
consume objects implementing the IWebPartParameters interface.

• TransformableFilterValuesToFieldTransformer: This allows filter web parts implementing
the ITransformableFilterValues interface to provide data to any web part that can consume
objects implementing the IWebPartField interface.

• TransformableFilterValuesToEntityInstanceTransformer: This allows filter web parts imple-
menting the ITransformableFilterValues interface to provide data to any web part that can
consume objects implementing the IEntityInstanceProvider interface. An example of such
a web part is the BusinessDataDetailsWebPart.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS246

■Note If you add a web part to a SharePoint page, you will notice a Filters section in the Add Web Parts — Web
Page dialog box. This section contains a range of filter web parts, such as the Business Data Catalog Filter, Choice
Filter, and Date Filter. These web parts are all examples of filter web parts and are generally used to filter the con-
tents of other web parts, such as the Links, Announcements, and Site Image web parts. Some of the available filter
web parts still use the SharePoint 2003 web part connection framework; others implement the
ITransformableFilterValues interface.

Building a Field Provider and Consumer
Field providers and consumers exchange single values in a web part connection. This section dis-
cusses how to build a field provider and field consumer web part. We will start by creating a web
part called FieldProvider that implements the IWebPartField interface (discussed in the section
“The ASP.NET 2.0 Web Part Connection Framework”).

Also, you need to include a connection provider method that returns a provider that supports
the IWebPartField interface. Creating a connection provider method is also discussed in section
“The ASP.NET 2.0 Web Part Connection Framework.” The next code fragment shows the implemen-
tation of the connection provider method for the FieldProvider web part:

[ConnectionProvider(“My field provider”)]
public IWebPartField GetFieldProvider()
{
return this;

}

Also, you need to create a member variable that holds the value that will be provided to
consumer web parts. In this example, we have created a property called ColumnA that contains
the value default value for column a, a value that is shared by all end users. Please note that we
could also have decided to allow every user to specify a unique value, in which case we would have
used Personalitzation.User. The member variable is shown in the following code fragment:

private string _strColumnA = “default value for column a”;
[
Personalizable(PersonalizationScope.Shared)
, WebBrowsable(true)
, WebDisplayName(“Column A”)
, WebDescription(“Value for column A”)
]
public string ColumnA
{
get { return _strColumnA; }
set { _strColumnA = value; }

}

Every provider web part must also provide a schema for the data that is returned by the
provider. You can implement such a schema by creating a property called Schema that returns a col-
lection of properties. In this example, we are building a field provider that returns the value of a
property called ColumnA. You can use the static GetProperties() method of the TypeDescriptor class
(located in the System.ComponentModel namespace) to define the schema. This is shown in the fol-
lowing code fragment:

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 247

public System.ComponentModel.PropertyDescriptor Schema
{
get
{
return TypeDescriptor.GetProperties(this)[“ColumnA”];

}
}

Finally, if you are creating a field provider web part, you will need to implement a method
called GetFieldValue(). This method will contain a reference to the field consumer web part after a
connection is made. This allows the provider to communicate with the consumer. The next code
fragment shows the implementation for the GetFieldValue() method:

public void GetFieldValue(FieldCallback callback)
{
callback.Invoke(ColumnA);

}

The complete code for the field provider web part is shown in Listing 5-10.

Listing 5-10. Creating a Field Provider Web Part

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;
using System.ComponentModel;

namespace Connections
{
[Guid(“6203652c-9d3f-4c43-8b5e-0ca00b98e4bd”)]
public class FieldProvider : ➥
System.Web.UI.WebControls.WebParts.WebPart, IWebPartField
{
public FieldProvider()
{
this.ExportMode = WebPartExportMode.All;

}

protected override void Render(HtmlTextWriter writer)
{
writer.Write(“Provider FieldProvider”);

}

[ConnectionProvider(“My field provider”)]
public IWebPartField GetFieldProvider()
{
return this;

}

public void GetFieldValue(FieldCallback callback)
{
callback.Invoke(ColumnA);

}

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS248

public System.ComponentModel.PropertyDescriptor Schema
{
get
{
return TypeDescriptor.GetProperties(this)[“ColumnA”];

}
}

private string _strColumnA = “default value for column a”;
[
Personalizable(PersonalizationScope.Shared)
, WebBrowsable(true)
, WebDisplayName(“Column A”)
, WebDescription(“Value for column A”)

]
public string ColumnA
{
get { return _strColumnA; }
set { _strColumnA = value; }

}
}

}

After creating the field provider web part, you are ready to create a field consumer web part. It
is convenient to create a member variable that can store the field value provided by the provider
web part. In this example, we will create a Value property that does this, which is shown in the next
code fragment:

private string _strValue = “default consumer value”;
public string Value
{
get { return _strValue; }
set { _strValue = value; }

}

You will also need to create a method that retrieves the field value from the provider and stores
it somewhere. In this case, we have created a method called GetField() that stores the field value
provided by the provider web part in the Value property. This is shown in the next code fragment:

public void GetField(object objField)
{
if (objField != null) Value = objField.ToString();

}

Finally, you need to create a connection consumer web part that can obtain a reference to the
provider web part and pass our GetField() method as a callback method to the provider web part.
This is shown in the next code fragment:

[ConnectionConsumer(“my field consumer”)]
public void GetProvider(IWebPartField objProvider)
{
FieldCallback objCallback = new FieldCallback(GetField);
objProvider.GetFieldValue(objCallback);

}

The entire code for the field consumer web part is shown in Listing 5-11.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 249

Listing 5-11. Creating a Field Consumer Web Part

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;

namespace Connections
{
[Guid(“969e5c8f-0682-43f5-a17f-fcdd57c65f8a”)]
public class FieldConsumer : System.Web.UI.WebControls.WebParts.WebPart
{
public FieldConsumer()
{
this.ExportMode = WebPartExportMode.All;

}

protected override void Render(HtmlTextWriter writer)
{
writer.Write(Value);

}

[ConnectionConsumer(“my field consumer”)]
public void GetProvider(IWebPartField objProvider)
{
FieldCallback objCallback = new FieldCallback(GetField);
objProvider.GetFieldValue(objCallback);

}

public void GetField(object objField)
{
if (objField != null) Value = objField.ToString();

}

private string _strValue = “default consumer value”;
public string Value
{
get { return _strValue; }
set { _strValue = value; }

}
}

}

If you import both web parts into a SharePoint page and connect them together (if you are not
sure how to do this, please refer back to the section “The ASP.NET 2.0 Web Part Connection Frame-
work”), you will see that the FieldConsumer web part retrieves its display value from the
FieldProvider web part. This is shown in Figure 5-5.

In this section, you have seen how to use the IWebPartField interface. You can use this interface
if you want to create a web part connection that allows web parts to share a single value. This way,
you do not have to create your own custom interface when you want to share a single value and
have the additional benefit of the RowToFieldTransformer, which allows row provider web part to
provide data to field consumer web parts.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS250

Figure 5-5. SharePoint page containing connected web parts

Building a Row Provider and Consumer
Row providers and consumers exchange a row of information via a web part connection. This sec-
tion discusses how to build a row provider and row consumer web part. We will start by creating a
web part called RowProvider that implements the IWebPartRow interface (discussed in the section
“The ASP.NET 2.0 Web Part Connection Framework”).

In the constructor of the RowProvider web part (which implements the IWebPartRow interface,
as shown in Listing 5-12), we will create a single row of information consisting of two columns;
which we will call ColumnA and ColumnB. Those columns will contain the values row provider column
A value and row provider column B value. We will use a DataTable object to create this single row
of information (which will be added later to the constructor of the provider web part, as is shown in
Listing 5-12).

Listing 5-12. RowProvider Constructor

private DataTable _dtData;

public RowProvider()
{
this.ExportMode = WebPartExportMode.All;

_dtData = new DataTable();
DataColumn objColumnA = new DataColumn();
objColumnA.DataType = typeof(string);
objColumnA.ColumnName = “ColumnA”;
_dtData.Columns.Add(objColumnA);

DataColumn objColumnB = new DataColumn();
objColumnB.DataType = typeof(string);
objColumnB.ColumnName = “ColumnB”;
_dtData.Columns.Add(objColumnB);

DataRow objRow = _dtData.NewRow();
objRow[“ColumnA”] = “row provider column A value”;
objRow[“ColumnB”] = “row provider column B value”;
_dtData.Rows.Add(objRow);

}

As you might remember from the previous provider web part scenarios, you’ll need to provide
a connection provider method that returns an instance of an IWebPartRow provider. This is shown in
the next code fragment:

[ConnectionProvider(“my row provider”)]
public IWebPartRow GetRowProvider()
{
return this;

}

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 251

After that, you need to provide a schema for the data that is returned by the provider.
This is a concept you should recognize from the “Building a Field Provider and Consumer” sec-
tion. The difference between field providers and row providers is that a field provider needs to
describe a single property (a PropertyDescriptor object), whereas a row provider might need to
describe multiple properties. You can do this by returning a collection of property descriptions
(a PropertyDescriptorCollection object). This is shown in the next code fragment:

public System.ComponentModel.PropertyDescriptorCollection Schema
{
get
{
return TypeDescriptor.GetProperties(_dtData.DefaultView[0]);

}
}

Finally, if you are creating a row provider web part, you will need to implement a method called
GetRowData(). This method will contain an object reference (the callback parameter) to the row con-
sumer web part after a connection is made. This allows the provider to communicate with the
consumer. The next code fragment shows the implementation for the GetRowData() method:

public void GetRowData(RowCallback callback)
{
DataRowCollection coll = _dtData.Rows;
DataRowView view = _dtData.DefaultView[0];
callback.Invoke(_dtData.Rows);

}

All the code for the row provider web part is shown in Listing 5-13.

Listing 5-13. Creating a Row Provider Web Part

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;
using System.ComponentModel;
using System.Data;
using System.Globalization;
using System.Collections;
using System.Web;
using Microsoft.SharePoint.Security;
using System.Security.Permissions;

namespace Connections
{
[Guid(“371f6f56-e0f8-4df2-bc1c-bab9fbd9b092”)]
public class RowProvider : ➥
System.Web.UI.WebControls.WebParts.WebPart, IWebPartRow
{
private DataTable _dtData;

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS252

public RowProvider()
{
this.ExportMode = WebPartExportMode.All;

_dtData = new DataTable();
_dtData.Locale = CultureInfo.InvariantCulture;

DataColumn objColumnA = new DataColumn();
objColumnA.DataType = typeof(string);
objColumnA.ColumnName = “ColumnA”;
_dtData.Columns.Add(objColumnA);

DataColumn objColumnB = new DataColumn();
objColumnB.DataType = typeof(string);
objColumnB.ColumnName = “ColumnB”;
_dtData.Columns.Add(objColumnB);

DataRow objRow = _dtData.NewRow();
objRow[“ColumnA”] = “row provider column A value”;
objRow[“ColumnB”] = “row provider column B value”;
_dtData.Rows.Add(objRow);

}

protected override void Render(HtmlTextWriter writer)
{
writer.Write(“Provider RowProvider”);

}

[ConnectionProvider(“my row provider”)]
public IWebPartRow GetRowProvider()
{
return this;

}

public void GetRowData(RowCallback callback)
{
DataRowCollection coll = _dtData.Rows;
DataRowView view = _dtData.DefaultView[0];
callback.Invoke(_dtData.Rows);

}

public System.ComponentModel.PropertyDescriptorCollection Schema
{
get
{
return TypeDescriptor.GetProperties(_dtData.DefaultView[0]);

}
}

}
}

Now that we have created a row provider web part, we will continue by building a row con-
sumer web part. First, we will add a member variable to the consumer web part that is able to hold
the values provided by the row provider web part. The data type of such a variable needs to be com-
patible with the ICollection interface. In this example, we will create a property called Data to hold
the values provided by the row provider web part. This is shown in the following code fragment:

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 253

private ICollection _collData;
public ICollection Data
{
get { return _collData; }
set { _collData = value; }

}

You can access this property to display the values retrieved from the provider web part. The
next code fragment shows how to display the values of the first two columns of the row in the Data
property that is ultimately provided by the row provider web part:

■Caution The implementation of the Render() method in this example has intimate knowledge about the
provider. It assumes that the Data property contains data rows.

protected override void Render(HtmlTextWriter writer)
{
if (Data != null)
{
foreach (DataRow objRow in Data)
{
writer.Write(“column “ + objRow.Table.Columns[0] + “: “ + objRow[0]);
writer.WriteBreak();

writer.Write(“column “ + objRow.Table.Columns[1] + “: “ + objRow[1]);
writer.WriteBreak();

}
}
else
{
writer.Write(“Not connected”);

}
}

We have created a method called GetProvider() that is called by the web part connection
framework, which passes an object reference to the row provider web part. This method passes a
callback method (GetRow()) to the provider web part. In turn, the provider web part calls the call-
back method (GetRow()) and passes data to it. The GetRow() method stores the row of data that is
passed to it. The following code fragment shows the implementation for the GetProvider() method:

[ConnectionConsumer(“my row consumer”)]
public void GetProvider(IWebPartRow objProvider)
{
RowCallback objCallback = new RowCallback(GetRow);
objProvider.GetRowData(objCallback);

}

Finally, the GetRow() method assigns the row of data to the Data property, as shown in the next
code fragment:

public void GetRow(object objRow)
{
if (objRow != null) Data = (ICollection) objRow;

}

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS254

The complete code for the row consumer web part is shown in Listing 5-14.

Listing 5-14. Creating a Row Consumer Web Part

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;
using System.Collections;
using System.Data;

namespace Connections
{
[Guid(“7335c370-4451-40a3-a013-aeae97824235”)]
public class RowConsumer : System.Web.UI.WebControls.WebParts.WebPart
{
public RowConsumer()
{
this.ExportMode = WebPartExportMode.All;

}

protected override void Render(HtmlTextWriter writer)
{
if (Data != null)
{
foreach (DataRow objRow in Data)
{
writer.Write(“column “ + objRow.Table.Columns[0] + “: “ + objRow[0]);
writer.WriteBreak();

writer.Write(“column “ + objRow.Table.Columns[1] + “: “ + objRow[1]);
writer.WriteBreak();

}
}
else
{
writer.Write(“Not connected”);

}
}

[ConnectionConsumer(“my row consumer”)]
public void GetProvider(IWebPartRow objProvider)
{
RowCallback objCallback = new RowCallback(GetRow);
objProvider.GetRowData(objCallback);

}

public void GetRow(object objRow)
{
if (objRow != null) Data = (ICollection) objRow;

}

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 255

private ICollection _collData;
public ICollection Data
{
get { return _collData; }
set { _collData = value; }

}
}

}

If you import both web parts to a SharePoint page and connect them together (if you are not sure
how to do this, please refer back to the section “The ASP.NET 2.0 Web Part Connection Framework”),
you will see that the RowConsumer web part retrieves its display value from the RowProvider web
part. This is shown in Figure 5-6.

Figure 5-6. Two web parts sharing a row connection

CONNECTION TRANSFORMERS

There seems to be a flaw in the documentation of Windows SharePoint Services v3 SDK. You should be able to use
the RowToFieldTransformer and RowToParametersTransformer transformers to connect row providers to
field consumers and parameter consumers.

Also, you should be able to provide only a single row of data in a row provider web part, whereas the
DataTable object used in the GetRowData() method allows you to specify multiple rows. So far, whenever we
transform a row provider into another type of connectable web part, the transformer wizard starts correctly but it
ends in an error message stating that a DataRowCollection cannot be transformed into a DataRowView. We
have not been able to solve this problem yet, so make sure to check whether the Windows SharePoint Services
v3 SDK has been updated in this regard.

The only working examples of row provider web parts that can be used in transformation scenarios are web
parts that are based on the DataFormWebPart web part located in the Microsoft.SharePoint.WebPartPages.
DataFormWebPart namespace of the Microsoft.SharePoint assembly. This web part uses the undocumented and
internal SPPropertyDescriptor type, which means it can only be used by other types located in the same
assembly (such as the DataFormWebPart type).

In this section, you have seen how to use the IWebPartRow interface. You can use this interface if
you want to create a web part connection that allows web parts to share a row of data. This way, you
do not have to create your own custom interface in scenarios where you want to share a row of data.

Building a Table Provider and Consumer
Table providers and consumers exchange a list of information. This section discusses how to build a
table provider and consumer web part. We will start by creating a web part called TableProvider that
implements the IWebPartTable interface (discussed in the section “The ASP.NET 2.0 Web Part Con-
nection Framework”).

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS256

In the constructor of the TableProvider web part, we will create two rows of information con-
sisting of two columns, ColumnA and ColumnB. We will use a DataTable object to create this single
row of information, as shown in the following code fragment:

public TableProvider()
{
_dtData = new DataTable();

DataColumn objColumnA = new DataColumn();
objColumnA.DataType = typeof(string);
objColumnA.ColumnName = “ColumnA”;
_dtData.Columns.Add(objColumnA);

DataColumn objColumnB = new DataColumn();
objColumnB.DataType = typeof(string);
objColumnB.ColumnName = “ColumnB”;
_dtData.Columns.Add(objColumnB);

DataRow objRow1 = _dtData.NewRow();
objRow1[“ColumnA”] = “table provider column A value row 1”;
objRow1[“ColumnB”] = “table provider column B value row 1”;
_dtData.Rows.Add(objRow1);

DataRow objRow2 = _dtData.NewRow();
objRow2[“ColumnA”] = “table provider column A value row 2”;
objRow2[“ColumnB”] = “table provider column B value row 2”;
_dtData.Rows.Add(objRow2);

}

You also need to provide a connection provider method that returns an instance of an
IWebPartTable provider. This is shown in the next code fragment:

[ConnectionProvider(“my table provider”)]
public IWebPartTable GetTableProvider()
{
return this;

}

After that, you need to provide a schema for the data that is returned by the provider. The
next code fragment is identical to the one described in the section “Building a Row Provider and
Consumer”:

public System.ComponentModel.PropertyDescriptorCollection Schema
{
get
{
return TypeDescriptor.GetProperties(_dtData.DefaultView[0]);

}
}

Then, you need to implement a method called GetTableData() that contains an object refer-
ence (the callback parameter) to the table consumer web part after a connection is made. This
allows the provider to communicate with the consumer. The next code fragment shows the imple-
mentation for the GetTableData() method.

public void GetTableData(TableCallback callback)
{
callback.Invoke(_dtData.Rows);

}

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 257

The complete code for the table provider web part can be found in Listing 5-15.

Listing 5-15. Creating a Table Provider Web Part

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;
using System.ComponentModel;
using System.Data;

namespace Connections
{
[Guid(“64fd1be8-d803-4fb6-893a-3799a278168c”)]
public class TableProvider : ➥
System.Web.UI.WebControls.WebParts.WebPart, IWebPartTable
{
private DataTable _dtData;

public TableProvider()
{
this.ExportMode = WebPartExportMode.All;

_dtData = new DataTable();

DataColumn objColumnA = new DataColumn();
objColumnA.DataType = typeof(string);
objColumnA.ColumnName = “ColumnA”;
_dtData.Columns.Add(objColumnA);

DataColumn objColumnB = new DataColumn();
objColumnB.DataType = typeof(string);
objColumnB.ColumnName = “ColumnB”;
_dtData.Columns.Add(objColumnB);

DataRow objRow1 = _dtData.NewRow();
objRow1[“ColumnA”] = “table provider column A value row 1”;
objRow1[“ColumnB”] = “table provider column B value row 1”;
_dtData.Rows.Add(objRow1);

DataRow objRow2 = _dtData.NewRow();
objRow2[“ColumnA”] = “table provider column A value row 2”;
objRow2[“ColumnB”] = “table provider column B value row 2”;
_dtData.Rows.Add(objRow2);

}

protected override void Render(HtmlTextWriter writer)
{
writer.Write(“Provider TableProvider”);

}

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS258

[ConnectionProvider(“my table provider”)]
public IWebPartTable GetTableProvider()
{
return this;

}

public void GetTableData(TableCallback callback)
{
callback.Invoke(_dtData.Rows);

}

public System.ComponentModel.PropertyDescriptorCollection Schema
{
get
{
return TypeDescriptor.GetProperties(_dtData.DefaultView[0]);

}
}

}
}

The next step consists of creating a table consumer web part. Like before, we will add a
member variable to the consumer web part that can hold a list of data. You can only pass data
that supports the ICollection interface (located within the System.Collections namespace). The
member variable is shown in the next code fragment:

private ICollection _collData;
public ICollection Data
{
get { return _collData; }
set { _collData = value; }

}

You also need to implement a method that can obtain a reference to the table provider web
part. This method, which we will call GetProvider(), calls the GetTableData() method of the table
provider web part and passes a callback method called GetTable() to the provider. The following
code fragment shows the implementation for the GetProvider() method:

[ConnectionConsumer(“my table consumer”)]
public void GetProvider(IWebPartTable objProvider)
{
TableCallback objCallback = new TableCallback(GetTable);
objProvider.GetTableData(objCallback);

}

The GetTable() method is used as a callback method in the GetProvider() method. This
method assigns the table of data to the Data property. The implementation for the GetTable()
method is shown in the next code fragment:

public void GetTable(ICollection objTable)
{
if (objTable != null) Data = (ICollection) objTable;

}

The complete code for the table consumer web part is shown in Listing 5-16.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 259

Listing 5-16. Creating a Table Consumer Web Part

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;
using System.Collections;
using System.Data;

namespace Connections
{
[Guid(“50476016-46b0-4746-bcb8-ae0e70682675”)]
public class TableConsumer : System.Web.UI.WebControls.WebParts.WebPart
{
public TableConsumer()
{
this.ExportMode = WebPartExportMode.All;

}

protected override void Render(HtmlTextWriter writer)
{
if (Data != null)
{
foreach (DataRow objRow in Data)
{
writer.Write(“column “ + objRow.Table.Columns[0] + “: “ + objRow[0]);
writer.WriteBreak();

writer.Write(“column “ + objRow.Table.Columns[1] + “: “ + objRow[1]);
writer.WriteBreak();

}
}
else
{
writer.Write(“Not connected”);

}
}

[ConnectionConsumer(“my table consumer”)]
public void GetProvider(IWebPartTable objProvider)
{
TableCallback objCallback = new TableCallback(GetTable);
objProvider.GetTableData(objCallback);

}

public void GetTable(ICollection objTable)
{
if (objTable != null) Data = (ICollection) objTable;

}

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS260

private ICollection _collData;
public ICollection Data
{
get { return _collData; }
set { _collData = value; }

}
}

}

If you import both web parts to a SharePoint page and connect them together (as discussed in
the section “The ASP.NET 2.0 Web Part Connection Framework”), you will see that the TableConsumer
web part retrieves its display value from the TableProvider web part. This is shown in Figure 5-7.

Figure 5-7. Two web parts sharing a table connection

In this section, you have seen how to use the IWebPartTable interface. You can use this interface
to create a web part connection that allows web parts to share a collection of data. This way, you do
not have to create your own custom interface when you want to share rows of data.

Building a Parameters Provider and Consumer
Parameter providers and consumers exchange a set of one or more parameters via a web part con-
nection. This section discusses how to build a parameter provider and consumer web part.

As in the other scenarios described in this section, first you need to implement one of the
interfaces for connectable web parts. This time, you need to implement the IWebPartParameters
interface (discussed in the section “The ASP.NET 2.0 Web Part Connection Framework”). As the
name for our parameter provider web part, we will use ParametersProvider.

In this example, the parameters provider passes two parameters to a consumer: two variables
named ColumnA and ColumnB of the data type string.

■Tip In the examples in this chapter, we are using the property names ColumnA and ColumnB. They are used for
educational purposes only; you are free to use other names and other data types.

The provider web part class contains two properties that contain the values that will be passed
as parameters to parameter consumer web parts. The implementation of those parameters is
shown in the following code fragment:

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 261

private string _strColumnA = “ParametersProvider column A value”;
public string ColumnA
{
get { return _strColumnA; }
set { _strColumnA = value; }

}

private string _strColumnB = “ParametersProvider column B value”;
public string ColumnB
{
get { return _strColumnB; }
set { _strColumnB = value; }

}

The implementation of the connection provider method returns an instance of an
IWebPartParameters provider. The implementation looks like this:

[ConnectionProvider(“my parameters provider”)]
public IWebPartParameters GetParametersProvider()
{
return this;

}

As you are probably getting used to from the other examples implementing IWebPart* interfaces,
you need to provide a schema for the data returned by the provider. You do this by implementing a
Schema property that loops through all the properties in the ParametersProvider web part and adds
them to a collection of property descriptors. The implementation for the Schema property is shown in
the next code fragment:

public System.ComponentModel.PropertyDescriptorCollection Schema
{
get
{
PropertyDescriptorCollection objProperties;
PropertyDescriptor[] arrProperties = ➥
new PropertyDescriptor[Parameters.Count];
TypeDescriptor.GetProperties(this);

objProperties = TypeDescriptor.GetProperties(this);
int intParameterCount = 0;
foreach (PropertyDescriptor objProperty in Parameters)
{
if (Parameters[objProperty.Name] != null)
{
intParameterCount++;
arrProperties[intParameterCount] = objProperty;

}
}

objProperties = new PropertyDescriptorCollection(arrProperties);
return objProperties;

}
}

A parameters consumer web part must tell the provider which parameters it wishes to
retrieve. To that end, the consumer will pass a collection of property descriptors to the provider.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS262

The provider needs to keep track of the parameters a consumer is interested in. To be able to do
this, we add a property called Parameters to the provider. The implementation of the property
holding the list of property descriptors that the consumer is interested in is shown in the next
code fragment:

private PropertyDescriptorCollection _objParameters;
public PropertyDescriptorCollection Parameters
{
get { return _objParameters; }
set { _objParameters = value; }

}

A parameters provider web part always needs to implement a SetConsumerSchema() method
that allows a consumer to express its interest in a set of parameters provided by the provider. The
implementation of this method is shown in the next code fragment:

public void SetConsumerSchema(➥
System.ComponentModel.PropertyDescriptorCollection schema)
{
Parameters = schema;

}

Every parameters provider web part needs to implement a method called GetParametersData().
This method will contain a reference to the parameters consumer web part after a connection is
made. This allows the provider to communicate with the consumer. The GetParametersData() method
needs to check the Parameters property to determine that the set of parameters it returns to the con-
sumer is indeed of interest to the consumer. If a parameter needs to be returned to the client, it is
added to a state bag object. The next code fragment shows the implementation for the
GetParametersData() method.

public void GetParametersData(ParametersCallback callback)
{
StateBag objParameters = new StateBag();

foreach (PropertyDescriptor objProperty in Parameters)
{
switch (objProperty.Name)
{
case “ColumnA”:
objParameters.Add(“ColumnA”, ColumnA);
break;

case “ColumnB”:
objParameters.Add(“ColumnB”, ColumnB);
break;

default:
throw new Exception(“ParametersProvider: Unknown parameter name”);

}
}

callback.Invoke(objParameters);
}

This concludes the implementation for the parameters provider web part. The complete code
can be found in Listing 5-17.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 263

Listing 5-17. Creating a Parameters Provider Web Part

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;
using System.ComponentModel;

namespace Connections
{
[Guid(“bf4ec57c-e919-4d5d-903e-10f5373ba406”)]
public class ParametersProvider : ➥
System.Web.UI.WebControls.WebParts.WebPart, IWebPartParameters
{
public ParametersProvider()
{
this.ExportMode = WebPartExportMode.All;

}

protected override void Render(HtmlTextWriter writer)
{
writer.Write(“Provider ParametersProvider”);

}

[ConnectionProvider(“my parameters provider”)]
public IWebPartParameters GetParametersProvider()
{
return this;

}

public void GetParametersData(ParametersCallback callback)
{
StateBag objParameters = new StateBag();

foreach (PropertyDescriptor objProperty in Parameters)
{
switch (objProperty.Name)
{
case “ColumnA”:
objParameters.Add(“ColumnA”, ColumnA);
break;

case “ColumnB”:
objParameters.Add(“ColumnB”, ColumnB);
break;

default:
throw new Exception(“ParametersProvider: Unknown parameter name”);

}
}

callback.Invoke(objParameters);
}

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS264

public System.ComponentModel.PropertyDescriptorCollection Schema
{
get
{
PropertyDescriptorCollection objProperties;
PropertyDescriptor[] arrProperties = ➥
new PropertyDescriptor[Parameters.Count];
TypeDescriptor.GetProperties(this);

objProperties = TypeDescriptor.GetProperties(this);
int intParameterCount = 0;
foreach (PropertyDescriptor objProperty in Parameters)
{
if (Parameters[objProperty.Name] != null)
{
intParameterCount++;
arrProperties[intParameterCount] = objProperty;

}
}

objProperties = new PropertyDescriptorCollection(arrProperties);
return objProperties;

}
}

public void SetConsumerSchema(➥
System.ComponentModel.PropertyDescriptorCollection schema)
{
Parameters = schema;

}

private PropertyDescriptorCollection _objParameters;
public PropertyDescriptorCollection Parameters
{
get { return _objParameters; }
set { _objParameters = value; }

}

private string _strColumnA = “ParametersProvider column A value”;
public string ColumnA
{
get { return _strColumnA; }
set { _strColumnA = value; }

}

private string _strColumnB = “ParametersProvider column B value”;
public string ColumnB
{
get { return _strColumnB; }
set { _strColumnB = value; }

}
}

}

Now that we have finished creating a parameters provider web part, you are ready to start
creating a parameters consumer web part. This is discussed in the remainder of this section.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 265

Let’s suppose the parameters consumer web part is interested in both parameters provided by
the parameters provider web part: ColumnA and ColumnB. In that case, the consumer web part
needs to implement two parameters that can hold the values of those parameters. The next code
fragment shows the implementation of two properties to hold the values provided by the parame-
ters provider web part:

private string _strColumnA = “parameters consumer default value column A”;
public string ColumnA
{
get { return _strColumnA; }
set { _strColumnA = value; }

}

private string _strColumnB = “parameters consumer default value column B”;
public string ColumnB
{
get { return _strColumnB; }
set { _strColumnB = value; }

}

Next, the consumer needs to define a connection consumer method that lets the provider
know which parameters it is interested in. You can express the desire to receive both parameters
(ColumnA and ColumnB) by calling the provider SetConsumerSchema() method and passing an array of
property descriptors containing descriptions of both columns. Finally, you will need to pass a call-
back method (GetParameters()) to the provider; this method is responsible for retrieving the
parameter values from the provider. The implementation of the connection consumer method is
shown in the next code fragment:

[ConnectionConsumer(“my parameters consumer”)]
public void GetProvider(IWebPartParameters objProvider)
{
PropertyDescriptor[] objProperties =
{
TypeDescriptor.GetProperties(this)[“ColumnA”],
TypeDescriptor.GetProperties(this)[“ColumnB”]

};

PropertyDescriptorCollection objSchema = ➥
new PropertyDescriptorCollection(objProperties);
objProvider.SetConsumerSchema(objSchema);

ParametersCallback objCallback = new ParametersCallback(GetParameters);
objProvider.GetParametersData(objCallback);

}

After all else is in place, you need to implement the GetParameters() method and retrieve the
values provided by the parameters provider web part. The implementation of the GetParameters()
method is shown in the next code fragment:

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS266

public void GetParameters(IDictionary objParameters)
{
foreach (DictionaryEntry objEntry in objParameters)
{
StateItem objStateItem;
switch (objEntry.Key.ToString())
{
case “ColumnA”:
objStateItem = (StateItem) objEntry.Value;
ColumnA = objStateItem.Value.ToString();
break;

case “ColumnB”:
objStateItem = (StateItem) objEntry.Value;
ColumnB = objStateItem.Value.ToString();
break;

default:
throw new Exception(“unknown parameter”);

}
}

}

The complete code for the parameters consumer web part can be found in Listing 5-18.

Listing 5-18. Creating a Parameters Consumer Web Part

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;
using System.Collections;
using System.ComponentModel;

namespace Connections
{
[Guid(“87f37650-ac8c-4ad2-9ff1-328ebf6fe4a5”)]
public class ParametersConsumer : ➥
System.Web.UI.WebControls.WebParts.WebPart
{
public ParametersConsumer()
{
this.ExportMode = WebPartExportMode.All;

}

protected override void Render(HtmlTextWriter writer)
{
writer.Write(“ColumnA: “ + ColumnA);
writer.WriteBreak();

writer.Write(“ColumnB: “ + ColumnB);
writer.WriteBreak();

}

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 267

[ConnectionConsumer(“my parameters consumer”)]
public void GetProvider(IWebPartParameters objProvider)
{
PropertyDescriptor[] objProperties =
{
TypeDescriptor.GetProperties(this)[“ColumnA”],
TypeDescriptor.GetProperties(this)[“ColumnB”]

};
PropertyDescriptorCollection objSchema = ➥
new PropertyDescriptorCollection(objProperties);
objProvider.SetConsumerSchema(objSchema);

ParametersCallback objCallback = new ParametersCallback(GetParameters);
objProvider.GetParametersData(objCallback);

}

public void GetParameters(IDictionary objParameters)
{
foreach (DictionaryEntry objEntry in objParameters)
{
StateItem objStateItem;
switch (objEntry.Key.ToString())
{
case “ColumnA”:
objStateItem = (StateItem) objEntry.Value;
ColumnA = objStateItem.Value.ToString();
break;

case “ColumnB”:
objStateItem = (StateItem) objEntry.Value;
ColumnB = objStateItem.Value.ToString();
break;

default:
throw new Exception(“unknown parameter”);

}
}

}

private string _strColumnA = “parameters consumer default value column A”;
public string ColumnA
{
get { return _strColumnA; }
set { _strColumnA = value; }

}

private string _strColumnB = “parameters consumer default value column B”;
public string ColumnB
{
get { return _strColumnB; }
set { _strColumnB = value; }

}
}

}

If you import both web parts to a SharePoint page and connect them together (as discussed in
the section “The ASP.NET 2.0 Web Part Connection Framework”), you will see that the Parameter-
sConsumer web part retrieves its display value from the ParametersProvider web part. This is shown
in Figure 5-8.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS268

Figure 5-8. Two web parts sharing a parameters connection

As you may have noticed, the IWebPartParameters interface resembles the IWebPartRow inter-
face quite a bit. However, there is an interesting difference. A row provider web part uses its Schema
property to dictate which columns are offered to the consumer, and it is up to the consumer to
decide what is does with this information.

In a scenario where the IWebPartParameters interface is used, this works quite differently. Here,
the parameter consumer web part calls the parameters provider’s SetConsumerSchema() method in
the connection consumer point to let the provider know which parameters it will accept. The
parameters provider will typically use this information to determine which parameters it provides
to the consumer. This is done via the parameters provider’s Schema property. This mechanism allows
the consumer to express its needs, and the provider can then act on that. Therefore, the communi-
cation is a bit more advanced compared to web parts communicating via the IWebPartRow interface.

In this section, you have seen how to use the IWebPartParameters interface. You can use this
interface if you want to create a web part connection that allows web parts to share a set of parame-
ters. This way, you do not have to create your own custom interface when you want to provide
parameters to other web parts and have the additional benefit of the RowToParametersTransformer
that allows row provider web parts to provide data to field consumer web parts.

A Domain-Specific Language: Using WPCL 2007
A domain-specific language is a language that is closely tied to a problem domain, as opposed to
general-purpose languages such as UML. DSLs can be textual or graphical and are intended to
make solving a very specific problem easier than a general-purpose language ever could. DSLs are
typically high-level and often need to be transformed into some other form before they are really
useful. A common example is some kind of model that can be transformed into code, which in turn
can be compiled into an executable.

WPCL 2007 stands for the Web Part Connection Language 2007, a DSL that integrates with Visual
Studio 2005 and can be used to create ASP.NET 2.0–connectable web parts. The WPCL language

• Allows you to create a diagram that can be used to define web parts and web part connections.

• Performs basic checks to ensure the validity of a model.

• Allows you to transform a WPCL diagram into C# code that can be copied and pasted into a
web part library project.

We have used the DSL tools to create a domain-specific language that makes creating
connectable web parts that can be used in a SharePoint 2007 environment (or, for that matter, every
other ASP.NET 2.0 web site supporting web parts) easier, and we will call this domain-specific lan-
guage the WPCL.

■Note The WPCL is not a standard or language created by a large vendor such as Microsoft. It is a tool we have
created for ourselves to facilitate the creation of connectable web parts, and you are welcome to use it as well.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 269

If you like the idea of having a domain-specific language to facilitate creating connectable web
parts, you are welcome to download the WPCL, use it, or send suggestions to us. In this section, you
will learn how to install and use the WPCL 2007.

■Tip If you need more information about creating connectable ASP.NET 2.0 web parts, please refer to MSDN (at
http://msdn2.microsoft.com/en-us/library/system.web.ui.webcontrols.webparts(VS.80).aspx).
You can also refer to the section “The ASP.NET Web Part Connection Framework” earlier in this chapter.

Installing WPCL 2007
If you want to install WPCL 2007, you need to have installed the latest release of Visual Studio 2005 SDK
Version 4.0 or later. At the time of writing, this is the February 2007 version (VsSDKFebruary2007.exe).
Newer versions of the SDK are released regularly; check the web site http://msdn.microsoft.com/
vstudio/DSLTools/ or go to the Visual Studio 2005 Extensibility Center (http://msdn.microsoft.com/
vstudio/extend/) and download the latest release of Visual Studio 2005 SDK Version 4.0.

After installing Visual Studio 2005 SDK Version 4.0, you can download the WPCL 2007 at
http://www.lcbridge.nl/download. The download consists of a zip file called WPCL2007.zip. The zip
file consists of several files:

• DSLToolsRedist.msi: This file contains the DSL Tools redistributable package containing all
components required to run a DSL in a standard installation of Visual Studio 2005.

• Readme.htm: Contains information about the installation files and the location where you
can download new versions of the WPCL.

• settings.ini: A configuration file used by setup.exe.

• WebPartConnectionLanguage.msi: Contains all components for the WPCL DSL.

• setup.exe: Primary installation file.

If you are missing a part of the DSL tools, setup.exe first runs DSLToolsRedist.msi to try to fix
this. Do not depend on this; you really need to make sure you have installed the Visual Studio 2005
SDK Version 4.0 first. After that, the WPCL itself is installed on the client computer. If you need more
information about the WPCL or want to check whether updates are available, please refer to our
web site at http://www.lcbridge.nl/download.

Double-click setup.exe to install the Web Part Connection Language. This opens the
WebPartConnectionLanguage Setup wizard. Follow the instructions and complete the wizard.

■Note The current version (version 0.1) of the WPCL 2007 only supports C#.

Creating a New WPCL 2007 Application
If you start up Visual Studio 2005 after installing the WPCL, you will see that a new type of project
appears in the New Project dialog, the WPCL 2007 Application. This is shown in Figure 5-9.

If you create a new project based on this template, you will notice that it contains two default
files: test.wpcl and WebPartsTemplate.tt. This is shown in Figure 5-10.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS270

Figure 5-9. The WPCL 2007 Application project template

Figure 5-10. The default contents of a WPCL 2007 project

The Test.wpcl file is used to create WPCL diagrams; WebPartsTemplate.tt is a text template that
can be used to create C# code based on a WPCL diagram. If you want to use the WPCL, you need to
add new WPCL diagrams to the project. Just right-click the project name and choose Add ➤ New
Item. Under the Visual C# Project Items node, you will find a new entry for a WebPartConnection-
Language project item, as can be seen in Figure 5-11. We will discuss the creation of WPCL diagrams
extensively in the rest of the chapter.

Figure 5-11. WPCL project item

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 271

Near the top of the WebPartsTemplate.tt file, you will find a processor directive that refers to a
WPCL model called Test.wpcl. This is shown in the next code fragment:

<#@ WebPartConnectionLanguage ➥
processor=”WebPartConnectionLanguageDirectiveProcessor” ➥
requires=”fileName=’Test.wpcl’” #>

If you let the text template refer to another WPCL diagram, the template will generate code
based on that model. If you are happy with the way your WPCL diagram looks (again, this will be
discussed in detail later), you can start generating code based on the diagram by right-clicking
WebPartsTemplate.tt and choosing Run Custom Tool. This is shown in Figure 5-12.

Figure 5-12. Start code generation based on a WPCL model

As a result of this, a new output file is created. In this case, a C# class (.cs) file. This is shown in
Figure 5-13.

Figure 5-13. Text template output file

■Note The tt extension in WebPartsTemplate.tt stands for text template. The text template in this example is a
web part template that is used to create web parts in combination with .wpcl diagrams.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS272

Elements of the WPCL
If you open a WPCL diagram (.wpcl file), the WPCL adds two new sections to the Visual Studio 2005
toolbox: WPCL General and WPCL Interfaces. Figure 5-14 shows both of these sections. The WPCL
language contains several language elements that are divided over both sections.

Figure 5-14. The WPCL toolbox

■Note Figure 5-14 displays all language elements of the WPCL. The WPCL language elements can be used to
create WPCL diagrams.

You can use the language elements in the toolbox to create WPCL diagrams by dragging and drop-
ping them to the designer canvas. In this section, we will discuss every language element of the WPCL.

Let’s start with the designer canvas itself. The canvas represents a WPCL model. If you click on
it, the Properties window shows all properties that we have defined at the uppermost level of the
language. The current version only has support for a single property, called Namespace. This is the
default namespace that is used for web parts (and optionally, interfaces) that are created during
code generation (when a WPCL model is transformed to C# code).

In this post, we will create several code examples using the WPCL, and we want a default name-
space called LoisAndClark.TestConnections to be used within all of those samples. Figure 5-15
shows how to use the Properties window to define a default namespace within a WPCL model.

Figure 5-15. The WPCL model

■Note Although the validation rules of version 0.1 of the WPCL do not check for the presence of a namespace
value, you should make sure you enter a value here.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 273

Now, you can drop language elements to the canvas and build a WPCL model. The first language
element that we’ll discuss is the WebPart element. The WebPart element represents an ASP.NET 2.0
web part and looks like Figure 5-16 when it is dragged to the designer canvas of a WPCL model.
WebPart elements allow you to define a web part name. In this example, this name is set to WebPart1.
This name will be used as the class name of the web part during code generation.

Figure 5-16. The WebPart element

Web parts can have connections to each other, although there are some restrictions, such as
the fact that a web part consumer is only allowed to have a single provider.

■Note A limited set of validation rules is added to the WPCL to indicate flaws in the design of a WPCL diagram.
The validation of a WPCL diagram can be started by right-clicking the designer canvas of the diagram and choos-
ing Validate All.

The Connection element of the WPCL enables you to define a connection between two web
parts. The direction in which the relationship is drawn determines which web part acts as the
provider and which acts as the consumer. Connection elements allow you to define a label, which is
only used for clarity’s sake. You can use labels to annotate a WPCL diagram; this information is dis-
carded during code generation.

Figure 5-17 shows a web part connection between two web parts called WebPart1 and WebPart2.
In this case, WebPart1 acts as the provider, WebPart2 as the consumer. The connection is annotated
with a default comment, Connection1, which is only used in the WPCL model and is discarded once
the code generation process starts.

Figure 5-17. The Connection element

Connected web parts need some kind of interface that let them communicate with each other.
You can either use one of the predefined interfaces in the System.Web.UI.WebControls.WebParts
namespace (either the IWebPartField, IWebPartRow, IWebPartTable, or IWebPartParameters inter-
face), or you can define your own custom interface. In the WPCL Interfaces section of the toolbox,
you will find four representations of predefined web part connection interfaces and one you can
use if you want to build a custom interface. The WPCL interface elements are shown in Figure 5-18.
All elements have a Name property. In the case of the four predefined interfaces, this property is only
used to annotate a WPCL diagram should you feel the need to. In the case of a custom interface, the
name you specify will actually be used to generate a custom interface during code generation.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS274

Figure 5-18. Interface elements

Web parts can be associated with interfaces. To be precise, a web part provider always needs to
be associated with an interface. In the WPCL, a web part consumer can optionally be associated
with an interface, indicating that it is compatible with a given interface. For instance, a web part
consumer associated with the IWebPartField interface indicates that it supports providers imple-
menting this interface.

The Implements element of the WPCL is used to associate web parts to interfaces, as can be
seen in Figure 5-19. The Implements element has a property called Label that can be used to anno-
tate diagrams. This information is discarded during the code transformation process.

Figure 5-19. Web part implements interface

Figure 5-20 shows a web part provider called MyProvider that implements a custom interface
called CustomInterface1. The MyProvider web part provides data to a web part consumer called
MyConsumer, which does not have an explicit relationship with any interface. In such a case, the
WPCL assumes it is compatible with the interface implemented by its web part provider, in this case
CustomInterface1.

Figure 5-20. Web part consumer implicitly associated to an interface

■Note You can define the structure of an interface with the help of InformationObjects (discussed later in this
section). You can see an example of this in the section “Creating a Connection Using a Custom Interface.”

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 275

Figure 5-21 expresses the same meaning as previous Figure 5-20. In this case, MyConsumer is
explicitly associated with the CustomInterface1 interface, thereby declaring that this consumer is
compatible with web part providers implementing the CustomInterface1 interface.

Figure 5-21. Web part consumer explicitly associated to an interface

The final important part of the WPCL is the InformationObject element. InformationObjects in
a WPCL diagram mean different things in different contexts, and can be associated to web parts or
interfaces. If you associate an InformationObject with a web part, it is used to help to define the
structure of the web part. If you associate an InformationObject with an interface, it is used to help
to define the structure of the interface. This is explained in Table 5-2.

Table 5-2. The Meaning of InformationObjects

Associated With Context Meaning

Provider web part IWebPartField Describes field used in connection

Consumer web part IWebPartField Describes member variable that is
used to contain provider field

Provider web part IWebPartRow Refers to column in row of data

Consumer web part IWebPartRow Refers to column in row of data

Provider web part IWebPartTable Refers to column in table of data

Consumer web part IWebPartTable Refers to column in table of data

Provider web part IWebPartParameters Describes parameter used in
connection

Consumer web part IWebPartParameters Describes member variable that is
used to contain provider parameter

Interface CustomInterface Describes interface method used to
provide data to consumer

Figure 5-22 shows what an InformationObject looks like once it is dragged to a WPCL diagram.

Figure 5-22. The InformationObject element

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS276

The InformationObject element contains several properties that allow you to describe a field,
column, parameter, member, or method:

• Data Type: Describes the data type of a field, column, parameter, or member, or describes
the return type of a method.

• Default Value: Describes the default value of a field, column, parameter, member, or method.

• Name: Describes the name of a field, column, parameter, member, or method.

The Properties window can be used to set these properties, as seen in Figure 5-23.

Figure 5-23. Setting the properties of an InformationObject

■Note Version 0.1 of the WPCL does not check whether you enter valid values for the InformationObject proper-
ties, so you should ensure that you enter values here. Failing to do so results in the generation of code that does
not compile. We advise you to specify correct values, but even if you have not done so, you still will be able to cor-
rect the situation by changing the result code itself.

If you want to associate a web part with an information object, you can use the MapToInformation
element of the WPCL. This is shown in Figure 5-24. The MapToInformation element contains a Label
property that is used to annotate a diagram; this information is discarded during code generation.

Figure 5-24. Associating a web part with an information object

You can use the MapCustomInterfaceToInformationObject element of the WPCL
to associate an interface with an information object. This is shown in Figure 5-25. The
MapCustomInterfaceToInformationObject element contains a Label property that is used to
annotate a diagram; this information is discarded during code generation.

Information objects can only be associated with custom interfaces, not with the IWebPartField,
IWebPartRow, IWebPartTable, and IWebPartParameters interfaces. This is because those interfaces
have been predefined. For a custom interface, you will have to define exactly what it looks like.

■Note The section “Creating a Connection Using a Custom Interface” shows an example of defining a custom
interface.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 277

Figure 5-25. Associating an interface with an information object

In this section, you have learned about all the existing elements in the WPCL. In the following
sections, you will learn how to use those elements to build connectable web parts.

Creating a Connection Using the IWebPartField Interface
In this example, we have added two web parts to a WPCL diagram: MyFieldProvider and
MyFieldConsumer. We have drawn a Connection relationship from MyFieldProvider to
MyFieldConsumer, thereby designating MyFieldProvider as the web part provider. MyFieldProvider
implements the predefined IWebPartField interface, indicating that it is a field provider. The field
provided by MyFieldProvider is called ProviderValueA. MyFieldConsumer contains a member variable
ConsumerValue that can be used to contain the value provided by MyFieldProvider. This is shown in
Figure 5-26.

Figure 5-26. Creating an IWebPartField connection

■Caution The current version of the WPCL does not support web parts implementing multiple interfaces.

You can generate code based on this model by right-clicking WebPartsTemplate.tt (discussed in
the section “Creating a New WPCL 2007 Application”). The generated code can be retrieved (when
you unfold WebPartsTemplate.tt) from the file called WebPartTemplate.cs. You can then copy this
code into a web part library project. If you add both web parts to the same web part page, you can
connect the MyFieldProvider provider web part and the MyFieldConsumer consumer web part to
each other, as can be seen in Figure 5-27.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS278

Figure 5-27. Connecting MyFieldProvider to MyFieldConsumer

After the web part connection has been made, the web part consumer displays the value pro-
vided by the web part provider. This is shown in Figure 5-28.

Figure 5-28. The result of an IWebPartField connection

Creating a Connection Using the IWebPartRow Interface
In this example, we have added two web parts to a WPCL diagram: MyRowProvider and
MyRowConsumer. MyRowProvider acts as a row web part provider that provides a row consisting
of two columns: ColumnA and ColumnB. This is shown in Figure 5-29.

Figure 5-29. Creating an IWebPartRow connection

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 279

If you generate code based on this model and copy it to a web part library project, you can add
the two web parts to a page. Figure 5-30 shows that MyRowConsumers displays the values provided
by MyRowProvider.

Figure 5-30. An IWebPartRow connection

Creating a Connection Using the IWebPartTable Interface
In this example, we have added two web parts to a WPCL diagram: MyTableProvider and
MyTableConsumer. MyTableProvider provides data to MyTableConsumer over an IWebPartTable
interface. It provides a data table that contains two columns: ColumnA and ColumnB. This is
shown in Figure 5-31.

Figure 5-31. Creating an IWebPartTable connection

If you generate code based on this model and copy it to a web part library, you can add both
web parts to a page. Figure 5-32 shows that the MyTableConsumer web part displays data provided
by the MyTableProvider web part.

Figure 5-32. IWebPartTable connection

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS280

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 281

Creating a Connection Using the IWebPartParameters Interface
In this example, we have added two web parts to a WPCL diagram: MyParametersProvider and
MyParametersConsumer. The MyParametersProvider implements the IWebPartParameter interface
and provides two parameters to a consumer: ParameterA and ParameterB. This is shown in Figure 5-33.

Figure 5-33. Creating an IWebPartParameters connection

Once you have generated the code for this model, added it to a web part library, and eventually
added both web parts to a page and connected them to each other, the ParametersConsumer web
part displays the parameters provided by the ParametersProvider web part. The end result is shown
in Figure 5-34.

Figure 5-34. IWebPartParameters connection

Creating a Connection Using a Custom Interface
In this example, we have added two web parts to a WPCL diagram: MyCustomInterfaceProvider and
MyCustomInterfaceConsumer. The MyCustomInterfaceProvider web part implements a custom
interface called IMyCustomInterface that contains a single method called GetCustomMethod(). This
is shown in Figure 5-35.

If you generate the code for this model and add this code to a web part library, you can add
both web parts to a page. Figure 5-36 shows that the MyCustomInterfaceConsumer web part dis-
plays the value provided by the MyCustomInterfaceProvider web part.

Figure 5-35. Creating a custom interface connection

Figure 5-36. Custom interface connection

What If You Are Not Happy with the Generated Code?
The problem with any tool that generates code is that you might not like the end result. If you don’t
have access to the code templates responsible for generating code, this can become a reason not to
use the tool.

■Note Lack of access to the code templates is one of the downsides of the 1.0 version of VseWSS (Visual Studio
Extensions for Windows SharePoint Services). Please refer to Chapter 1 for more information about VseWSS.

If you don’t like the end result of the code generation template, there are a couple things you
can do. First of all, you can e-mail suggestions to info@lcbridge.nl. If we like the ideas, we will
include them in the WPCL or enhance the language so that you can specify a code style that influ-
ences the way the generated code looks. You can also change WebPartsTemplate.tt or create a new
text template altogether. Finally, if you are not interested in changing the code template, you can
change the end result, the code itself.

To Sum Up
The WPCL 2007 is intended to make creating connectable web parts significantly easier. It does this by
providing a visual language that lets you create diagrams that can be used to create code. This code
can be copied and pasted into web part library projects. Once the web part library project is compiled,
the connectable web parts can be added to SharePoint 2007 pages (or any ASP.NET 2.0 page that sup-
ports web parts, provided you do not need to use any parts of the SharePoint framework).

Creating the Web Part Connection Language
In this section, we will use the Visual Studio 2005 DSL Toolkit to create a new graphical DSL for cre-
ating connectable web parts. We will call this DSL the Web Part Connection Language (WPCL) 2007.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS282

This section explains in detail how to create the WPCL. If you want to see why you would want to
use or create the Web Part Connection Language, feel free to skip ahead to the section “Using the
Web Part Connection Language.”

If you are creating a DSL for Visual Studio 2005, you will need to take a standard series of steps.
First, you need to download and install the Visual Studio 2005 SDK Version 4.0, which contains the
Domain Specific Language Tools Version 1.0. The DSL Toolkit enables you to create a graphical DSL.
Then, you need to use the DSL Toolkit to create a domain model that describes how the graphical
DSL works and how it should be shown within Visual Studio 2005. A standard domain model cap-
tures basic validation rules; for example, concept A has a relationship with concept B, but not with
concept C. Most of the time, after creating a standard domain model, you will need to add advanced
validation rules. After that, you need to create a set of text templates that is responsible for generat-
ing code based on a given model of your custom DSL. Most DSL solution development life cycles
will conclude with the deployment of the DSL. To this end, you need to create a DSL setup project.
You do not need to do this if you are just creating a DSL to use yourself.

We will start with a discussion of the DSL Toolkit, explain how to create a domain model, add
advanced validation rules, and create a text template that can generate code for connectable web
parts based on a WPCL model. We will create another text template that is able to generate code
for web part description (.webpart) files, which can be used to import connectable web parts to
SharePoint web sites. We will also create a setup project for our custom DSL. Finally, we will show
how to use the Web Part Connection Language.

Installing the DSL Toolkit for Visual Studio 2005
In the section “A Domain-Specific Language: Using WPCL 2007,” you learned that you need to
install the latest version of the DSL Toolkit for Visual Studio 2005 to take advantage of the WPCL.
If you have not done so already, install Visual Studio 2005 SDK Version 4.0.

Creating a Domain Model
The purpose of the WPCL 2007 is to let developers create connectable web parts in a graphical
manner. The WPCL 2007 will allow you to drag shapes representing web parts to a designer canvas,
connect them to other web parts, and have them implement certain interfaces required for con-
nectable web parts in Microsoft Office SharePoint Server 2007, such as the IWebPartField interface
(for clarity’s sake, we will call those interfaces IConnectable interfaces). The WPCL 2007 will validate
web part connections for you and is able to generate code based on WPCL 2007 models. The WPCL
2007 will speed up the development of connectable web parts and reduce the chances of making
mistakes. If you want detailed information about the WPCL in action, please refer back to the sec-
tion “A Domain-Specific Language: Using WPCL 2007.”

■Note In WPCL 2007, we will only support ASP.NET 2.0–connectable web parts. In the previous version of this
book, called Pro SharePoint 2003 Development Techniques, you can find a detailed description of the first version
of WPCL, a language that is dedicated to supporting SharePoint 2003 connectable web parts.

Choosing a Domain-Specific Language Template
In this section, we will show how to create the domain model for the WPCL, thus laying the basis for
our custom DSL. During the next procedure, you will create a new DSL Designer project used to cre-
ate DSLs:

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 283

1. Start Visual Studio 2005.

2. Choose File ➤ New ➤ Project.

3. In the New Project window, in the Project Types pane, choose Other Project Types ➤
Extensibility.

4. In the Templates pane, under Visual Studio Installed Templates, choose the Domain-
Specific Language Designer template.

5. Type the following name: WebPartConnectionLanguage.

6. Type the following location: C:\Projects. At this point, the New Project window should look
like Figure 5-37.

7. Click OK. This opens the DSL Designer Wizard.

Figure 5-37. Creating a new DSL

The first screen of the DSL Designer Wizard lets you choose between several solution templates
for DSLs. Solution templates are the starting points for defining custom DSLs. (Figure 5-42 shows
the templates that are available out of the box.) The following list contains a description of each of
the solution templates:

• Class diagrams: Choose this solution template if you want to create UML-like class diagrams.
This template includes graphical symbols for classes, interfaces, several types of associations,
and generalization and implementation relations. Look at Figure 5-38 to see a DSL that is
built using this template.

• Component models: Choose this solution template if you want to create basic UML-like
component diagrams. This template can be used to create a DSL that uses ports to connect
components to other components. Look at Figure 5-39 to see a DSL that is built using this
template.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS284

Figure 5-38. Class diagram template

Figure 5-39. Component model template

• MinimalLanguage: Choose this solution template if the DSL you want to create is very
different from any of the other solution templates. This template creates a basic language
consisting of only a box and a line. The other languages already clearly define elements
and rules used within a DSL; the MinimalLanguage template does not. This makes the
MinimalLanguage template an ideal starting point for creating a brand new language.
Look at Figure 5-40 to see a DSL that is built using this template. Shortly, we will start
building a new DSL based on the MinimalLanguage template.

Figure 5-40. MinimalLanguage template

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 285

• Task flow: Choose this solution template if you want to create a language that deals in work-
flows, states, or sequences. The template helps to create DSLs that resemble UML activity
diagrams. Look at Figure 5-41 to see a DSL that is built using this template.

Figure 5-41. Task flow template

Since our own DSL, the WPCL, does not look like class diagrams, component models, or task
flows, we will start from scratch and build a new DSL using the MinimalLanguage template:

1. Make sure the Solution Settings tab of the DSL Designer Wizard window is selected. Choose
the MinimalLanguage template.

2. Type the following DSL name: WebPartConnectionLanguage. This is shown in Figure 5-42.

3. Click Next.

Figure 5-42. Creating a new DSL

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS286

Configuring the DSL Solution
Once our DSL is created, a new item template is added to Visual Studio 2005 that is associated to
our language. Since we are planning to call our DSL the Web Part Connection Language, we will use
the following extension: .wpcl. The following procedure explains how to create a new DSL that can
generate an item template for creating WPCL models:

1. On the File Extension tab, type the following extension: wpcl.

2. If other tools and applications are registered to handle this extension, check the Unregister
Domain-Specific Language Tools That Currently Handle This Extension check box. By
default, there should be no other registrations.

3. Choose an icon to use for .wpcl model files, or leave the default setting (Default Template
Icon). We have chosen to use our own company icon; the window shows a preview of it in
Figure 5-43.

4. Click Next.

Figure 5-43. The Define New Model File Type window

In the next step, you need to define a few general product settings: the name of the DSL, the
name of the company creating the language, and the default namespace of classes created within
the DSL:

1. On the Product Settings tab, type the following product name:
WebPartConnectionLanguage.

2. Type a company name. We have chosen the name of our own company, Lois and Clark IT
Services.

3. Type the following root namespace: LoisAndClark.WebPartConnectionLanguage. This is
shown in Figure 5-44.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 287

4. At this point, we have not reached the end of the wizard yet, but we are satisfied with the
settings we have configured so far. So let’s skip the strong naming and summary windows
and click Finish.

Figure 5-44. Specify Product Details window

■Note You might see a security warning stating that running this text template can potentially harm your com-
puter. Just click OK to run the template. All the text template does is generate the code that is needed to create a
new domain-specific language.

This creates a new solution called WebPartConnectionLanguage and two new projects called
Dsl and DslPackage. A basic DSL solution contains two or three projects:

• Dsl project: This project defines the DSL itself.

• DslPackage project: This project determines how the DSL Toolkit couples to Visual Studio
2005 (it determines the look and feel of the DSL).

• Setup project: Although not created by default, most DSL solutions will also contain a setup
project. DSL Setup projects are used to deploy DSL solutions.

The Dsl and DslPackage projects contain text templates that are used to generate code.
This code is required to run the DSL. As soon as the new solution is created, automatically all text
templates are used to generate the required code for the MinimalLanguage template. Wait until
the transformation of all text templates is finished, and then make sure that DslDefinition.dsl of
the Dsl project is selected. DslDefinition.dsl contains the definition of the domain model, which
defines the entities and relationships that exist in any given DSL. The default domain model for
our WebPartConnectionLanguage language is shown in Figure 5-45.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS288

Figure 5-45. Default domain model

Adding Support for Web Parts
Figure 5-45 shows the MinimalLanguage template domain model. The domain model starts with
the definition of the ExampleModel root domain class, which can be found at the upper-left corner of
Figure 5-45. Root domain classes are the starting point of every DSL. The ExampleModel root domain
class has a relationship with the ExampleElement domain class, called the ModelHasElements relation-
ship. This relationship expresses that our WPCL consists of multiple ExampleElement instances that
have a Name property. Since the ExampleModel root domain class has no other relationships, our lan-
guage cannot contain other kinds of domain classes. The ExampleRelationship relationship expresses
that ExampleElement instances can be related to each other. This set of rules constitutes the WPCL so
far, which determines the kind of diagrams that can be created with it. Up to this point, the WPCL is
not yet very useful. Figure 5-40 shows a small program created via the MinimalLanguage.

We will use this domain model and enhance it step-by-step to build our WPCL. First, you will
adjust the MinimalLanguage domain model to accommodate the most basic of needs of the WPCL.
You will adjust the current model so that our language consists of web parts that can be related to
each other via server-side connections:

1. On the Classes and Relationships swimming lane (located on the left of the canvas, as can
be seen in Figure 5-45), click the ExampleModel domain class, go to the Properties window,
and change the value of the Name property to WPCLModel.

2. Right-click the DomainProperties section of the WPCLModel domain class ➤ Add New
DomainProperty.

3. Set the name of the new property to the following value: Namespace. This property will be
used as the default namespace of web parts that are generated using a WPCL model.

4. Click the ExampleElement domain class, go to the Properties window, and change the value
of the Name property from ExampleElement to WebPart.

5. Click the WebReferencesTargets relationship, go to the Properties window, and change the
value of the Name property from WebReferencesTargets to Connection.

6. Click the right side of the Connection relationship, go to the Properties window, and change
the value of the Name property from Target to Consumers.

7. Click the left side of the ServerSideConnection relationship, go to the Properties window,
and change the value of the Name property from Source to Providers.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 289

The Classes and Relationships section of the basic Web Part Connection Language DSL should
look like Figure 5-46.

Figure 5-46. The Classes and Relationships section

Creating the Look and Feel for Web Parts in the WPCL 2007
You have defined a logical model of the Web Part Connection Language DSL to indicate that our
WPCLModel consists of WebPart domain classes representing web parts.

The WPCL is a graphical language that allows you to create visual models that describe sets of
connectable web parts and their relationships. Although we’ve created the logical part of the
domain model that describes web parts, we have yet to translate this logic to a user interface that
can be shown in Visual Studio 2005. Next, we will define what a web part shape will look like in the
WPCL when displayed in Visual Studio 2005 in a WPCL model.

Although not strictly necessary, for consistency reasons we will rename the connector that
binds web parts to other web parts to ConnectionConnector, because the names of the other con-
nectors are structured in the same format.

1. Go to the right swimming lane called Diagram Elements and click the ExampleShape
GeometryShape. Go to the Properties window and change the value of the Name property
from ExampleShape to WebPartShape.

2. Change the InitialHeight property from 0.75 to 0.5.

3. Change the InitialWidth property from 2 to 1.

4. Change the FillColor property to Linen.

5. Click the ExampleConnector connector, go to the Properties window, and change the value
of the Name property from ExampleConnector to ConnectionConnector.

The Diagram Elements section of your base WPCL DSL should look like Figure 5-47.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS290

Figure 5-47. Select domain model diagram elements

Changing the WPCL Toolbox
If you look back at Figure 5-38, you will see that the toolbox related to class diagram items contains
entries for class diagram elements such as Class, Attribute, Class Operation, and Interface. If you
compare this to Figure 5-40, you will notice that the toolbox in Figure 5-40 only contains the follow-
ing elements: ExampleElement and ExampleRelationship. In the next step, we will adjust the toolbox
for our WPCL so that it contains elements representing web parts and web part connections. This
reflects the entities defined in our logical domain model so far:

1. Click the DSL Explorer tab. This hides the Solution Explorer window.

2. Expand Editor ➤ Toolbox Tabs ➤ WebPartConnectionLanguage tab.

3. Change the Name property from WebPartConnectionLanguage to WPCL General.

4. Expand Tools.

5. Click ExampleElement. ExampleElement is an ElementTool. Change the value of the Name
property from ExampleElement to WebPart.

6. Ensure that the WebPart tool is the first in the list. If it’s not, right-click WebPart and choose
Move Up.

7. Click ExampleRelationship. ExampleRelationship is a ConnectionBuilderTool. Change the
value of the Name property from ExampleRelationship to Connection.

The toolbox definition should look like Figure 5-48.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 291

Figure 5-48. Changing the toolbox via the DSL Explorer

Creating the Look and Feel for Existing Relationships
At this point, you have decided that web parts are allowed to have connections to each other in your
project. Since the WPCL is a graphical language, you will also need to define what such a relation-
ship will look like when you start to create programs written in the WPCL. First, we will create a new
icon that will be used to represent a connection in our WPCL toolbox:

1. Open the Solution Explorer and go to the Resources folder of the Dsl project. Copy Exam-
pleConnectorToolBitmap.bmp (the one that currently represents a connection), and
rename the copy ConnectionConnectorToolBitmap.bmp.

2. If you click on this bitmap, a simple Colors toolbox appears that helps you customize the
images, should you feel the need to. The images will appear later on the toolbox of our
WPCL. In this case, we will leave the connection toolbox image as it is. This can be seen in
Figure 5-49.

Figure 5-49. Connection toolbox image

Next, you will change the look and feel of the connection shape that will be used within the
WPCL. Basically, what we will do in this section is make sure connections are black. Furthermore,
you will add a Label property to all relationships, which allows developers using the WPCL to anno-
tate them. You will also define that the default names of relationships will be shown at the upper-
left corner:

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS292

1. Double-click DslDefinition.dsl and switch to the DSL Explorer.

2. Expand the Connection Builders node.

3. Ensure that there is a connection builder called ConnectionBuilder. This builder represents
the Connection Domain Relationship.

4. In the DSL Explorer, expand the Connectors node and select ConnectionConnector.

5. Change the value of the DashStyle property to Solid.

6. In the Diagram Elements section of DslDefinition.dsl, right-click the Decorators section of
the ConnectionConnector diagram element and choose Add new Text decorator.

7. Call this decorator Label.

8. Switch back to the DSL Explorer, expand Connectors ➤ ConnectionConnector ➤
Decorators and select Label.

9. Set the value of the DefaultText property to Connection.

10. Set the Position property to SourceTop.

■Note Connector maps are used to relate logical relationships to connector shapes. You can find connector
maps in the DSL Explorer by expanding the Diagram node ➤ Connector Maps. If you do this, you should find a
connection map called ConnectionConnector. A connection map has a property called Relationship, which refers
to an existing type of relationship, in this case the Connection relationship. It has a Connector property, which
refers to an existing connector, in this case ConnectionConnector.

Making a Domain Property Editable in a WPCL Diagram
You may have noticed that domain property objects have a property Is UI Read Only, which is
by default set to false. For certain domain properties, it is desirable that they be shown in visual
domain elements in a WPCL diagram, and can be edited there. Setting the Is UI Read Only prop-
erty to false is not enough to accomplish this. In the next procedure, you will learn how to make a
domain property editable in a WPCL diagram:

1. Open DslDefinition.dsl.

2. Select the IWebPartField domain class.

3. Select View ➤ Other Windows ➤ DSL Details. This opens the DSL Details – Delete Behavior
of Domain Class IWebPartField window.

4. Click the Mapping Details icon. This opens the DSL Details – Share Mapping < - - >
IWebPartField window.

5. Select the Decorator Maps tab.

6. In the Decorators section, check the Name check box.

7. In the Display property drop-down list, select Name.

8. Repeat the previous six steps for the following domain classes: IWebPartRow, IWebPartTable,
IWebPartParameters, and CustomInterface.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 293

You can also create editable properties for connection connectors. In the following procedure,
you will see how you can do this for the ConnectionConnector and the ImplementsConnector.

1. Open ConnectionConnector in the Diagram Elements swimming lane in the DSL Details
window.

2. Click the Mapping Details icon. This opens the DSL Details – Connector Mapping
ConnectionConnector < - - > Connection window.

3. Select the Decorator Maps tab.

4. In the Decorators section, check the Label check box.

5. In the Display property drop-down list, select Label.

6. Repeat the same steps for ImplementsConnector.

Testing the First Version of the WPCL
Creating a domain model for the very first time is a somewhat abstract activity. It is helpful to build
the DSL solution to see what you have accomplished thus far. If you switch to the Solution Explorer
and click the Transform All Templates on the Solution Explorer toolbar (shown in Figure 5-50), all
text templates in the DSL solution are transformed. The text templates are responsible for creating
the code required for creating our WPCL.

Figure 5-50. Transform All Templates

After the transformation is complete, you can build the DSL solution. If you press F5 to start
debugging the solution, a new instance of Visual Studio 2005 is started. The new instance of Visual
Studio 2005 is a so-called experimental build, which means that the new instance uses its own reg-
istry hive called the experimental hive. This safeguards the original Visual Studio 2005 instance from
any changes caused by the experimental instance. You can start Visual Studio 2005 using the experi-
mental registry hive by running the following command from the Visual Studio 2005 command
prompt:

[drive letter]:\Program Files\Microsoft Visual Studio 8 ➥
\Common7\IDE\devenv /RootSuffix Exp

The experimental hive is created upon installation of the Visual Studio 2005 SDK; installation
creates a clone of the existing Visual Studio registry hive and makes a new copy in the experimental
hive.

The new instance of Visual Studio 2005 shows what the WPCL looks like thus far. If it is not
selected by default, double-click the file test.wpcl. This is a WPCL item that allows you to work with
the WPCL. Figure 5-51 shows a sample diagram made using the base version of the WPCL you have
created at this point.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS294

Figure 5-51. Basic version of WPCL

Adding IConnectable Interfaces
When building a graphical language that helps to create connectable web parts, there is no doubt
that web parts and types of web part connections are key parts of such a language. However, so far,
a crucial element of a language for creating connectable web parts is missing: connectable inter-
faces, such as IWebPartField and IWebPartRow. In the next part, we will add connectable interfaces
to the WPCL.

First of all, the domain model needs to reflect the fact that not can only web parts be added to
the WPCLModel root domain class, but interfaces as well. As we do not want to add a relationship
between the WPCLModel root domain class and every type of connectable interface (five in total,
please refer to the section “Interfaces and Transformers” for additional information), we will create
a new domain class called IConnectable (a name we invented ourselves; don’t try to find this one in
the SharePoint documentation). You will add a relationship between the WPCLModel domain class
and the IConnectable domain class called ModelHasInterfaces. The ModelHasInterfaces relation-
ship expresses the fact that a WPCLModel can contain interfaces. In our domain model, we will make
sure that every connectable interface, such as IWebPartField, inherits from IConnectable. This way,
the ModelHasInterfaces relationship applies to every child of IConnectable.

You will also add a new relationship between the WebPart domain class and the IConnectable
domain class, called Implements. The Implements relationship expresses the fact that a web part can
implement one or more connectable interfaces.

The next procedure adds the possibility to use IConnectable classes within WPCL models:

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 295

1. Drag a new Domain Class shape onto the designer canvas in the Classes and Relationships
swimming lane.

2. Click the new domain class called DomainClass1 and set the value of the Name property to
IConnectable.

3. Set the InheritanceModifier property to abstract. This prevents the IConnectable domain
class from being used directly in WPCL models.

4. Right-click the DomainProperties section of the IConnectable domain class and choose
Add New DomainProperty.

5. Set the name of the new domain property to Name.

6. Set the IsElementName property of the new Name domain property to true (this indicates that
the property should be used as the name of the element to which the property belongs).

7. Open DSL Explorer.

8. Expand the Xml Serialization Behavior node that is located beneath the
WebPartConnectionLanguage (Dsl) root node.

9. Expand Class Data ➤ IConnectable ➤ Element Data.

10. Select the Name node and set its IsMonikerKey property to true. A moniker key is a domain
property that uniquely identifies an object when a model is serialized to a file. For each
domain class, you should choose a property that can be set differently for each sibling of
the class, typically a name or a serial number. You can mark a property as an ElementName
(by setting its Is Element Name property to true) to ensure that names are unique; this
causes the designer to give a distinct initial value to a property when an instance of a
domain class is created. Although not required, often a property that is marked as being
a moniker key is also marked as being an element name.

11. In the Toolbox, click Embedding Relationship, then click the WPCLModel domain class and
drag the embedding relationship all the way down to the IConnectable domain class.

12. Select the new domain relationship shape called WPCLModelHasIConnectable and set its Name
property to ModelHasInterfaces.

13. Select the right side of the Implements relationship and set the Name property to Interfaces.

14. Drag a new Domain Class shape to the designer canvas and set the Name property to
IWebPartField.

15. In the Toolbox, click Inheritance.

16. Click the IWebPartField domain class and drag the mouse to the IConnectable domain
class. This creates an inheritance relationship where the IConnectable domain class is the
parent of the IWebPartField domain class.

17. Repeat the previous three steps for the following domain classes: IWebPartRow,
IWebPartTable, IWebPartParameters, and CustomInterface.

18. In the Toolbox, click Reference Relationship.

19. Click the WebPart domain class and drag the mouse to the IConnectable domain class.
This creates a new reference relation between web parts and IConnectable interfaces.

20. Click the new reference relation (called WebPartReferencesIConnectable) and choose the
following value for the Name property: Implements.

21. Right-click the Implements domain class and add a new domain property called Label.

22. Click the right side of the Implements relationship and change the Name property to
IConnectableInterfaces.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS296

Figure 5-52 shows a part of the WPCL definition. As you can see, the IConnectable domain
class has several children, such as the IWebPartField domain class. The ModelHasInterfaces rela-
tionship that expresses that a WPCLModel can contain multiple interface domain classes is shown
in Figure 5-52 as well.

Figure 5-52. Interfaces of Web Part Connection Language DSL

Adding Visual Representations for Interface Items
Now that you have created IConnectable interface domain classes for the WPCL, you will need to
add interface items to the toolbox as well, thus enabling developers using the WPCL to add inter-
faces to a WPCL diagram. In this section, you will create a new interface shape, create a new shape
that is used to model the Implements relationship, create a new icon that is used in the toolbox to
represent the Implements relationship, and create a new toolbox tab that hosts the new toolbox
interface elements.

In the following steps, you will add a new interface shape that represents the Implements
relationship:

1. Drag a new Geometry Shape to the Diagram Elements swimming lane of the designer
canvas.

2. Select the new geometry shape called GeometryShape1, and set the value of the Name
property to the following value: InterfaceShape.

3. Set the FillColor property of the InterfaceShape shape to Bisque.

4. Set the Geometry property to RoundedRectangle.

5. Set the InitialHeight property to 0.5.

6. Set the InitialWidth property to 1.

7. Set the OutlineDashStyle to Dash.

8. Switch to the DSL Explorer and expand the Shapes node that is located beneath the
WebPartConnectionLanguage (Dsl) root node.

9. Right-click the InterfaceShape shape ➤ Add New TextDecorator.

10. Set the Name property to the following value: NameDecorator.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 297

11. Set the FontStyle property to Italic.

12. Set the Position property to Center.

Next, you will map the newly created interface shape to the IConnectable domain classes.
This tells Visual Studio 2005 how to display interfaces in a WPCL model:

1. Expand the Diagram node located beneath the WebPartConnectionLanguage (Dsl) root node.

2. Expand the Shape Maps node and inspect its contents. You should find a ShapeMap called
WebPartShape that maps the WebPartShape shape to the WebPart class.

3. Right-click the Diagram node ➤ New ShapeMap.

4. Select the new ShapeMap that is located beneath the Shape Maps node.

5. Set the Class property to IWebPartField.

6. Set the Shape property to InterfaceShape.

7. Repeat the previous four steps to create InterfaceShape mappings to the following classes:
IWebPartRow, IWebPartTable, IWebPartParameters, and CustomInterface.

Next, follow these steps to create a new shape that represents the Implements relationship in a
WPCL model:

1. Right-click the WebPartConnectionLanguage (Dsl) node ➤ Add New Connector.

2. Expand the Connectors node and select the new connector (Connector1).

3. Set the Name property to the following value: ImplementsConnector.

4. Set the DashStyle to Dash.

5. Set the TargetEndStyle property to the following value: HollowArrow.

6. Right-click the ImplementsConnector node ➤ Add New TextDecorator.

7. Expand the Decorators node and select the new decorator (TextDecorator1).

8. Set the Name property of the text decorator to Label.

9. Set the FontStyle property to Italic.

10. Right-click the Diagram node beneath the WebPartConnectionLanguage (Dsl) root node ➤
Add New ConnectorMap. This opens the Pick ConnectorMap relationship and connector
dialog box.

11. In the Relationship drop-down list, choose Implements.

12. In the Connector drop-down list, choose ImplementsConnector.

Now you will create a toolbox tab for the WPCL toolbox. You will add icons that represent the
IConnectable interfaces to this new tab:

1. Expand the Editor node located beneath the WebPartConnectionLanguage (Dsl).

2. Right-click the Expand the Editor node and choose Add New Toolbox Tab.

3. Select the new toolbox tab and change the value of the TabText property from
WebPartConnectionLanguage2 to WPCL Interfaces.

4. Right-click the Interfaces Toolbox tab ➤ Add New Element Tool.

5. Select the new Element tool (ElementTool1) that is located under the Tools node.

6. Set the Name property to IWebPartField.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS298

7. Set the Class property to IWebPartField.

8. Set the ToolboxIcon property to Resources\ExampleShapeToolBitmap.bmp.

9. Repeat the previous six steps for the following classes: IWebPartRow, IWebPartTable,
IWebPartParameters, and CustomInterface.

To complete the WPCL toolbox, you will create and add a new icon that represents the
Implements relationship:

1. Click Solution Explorer and expand the Resources folder of the Dsl project.

2. Copy ExampleConnectorToolBitmap.bmp and rename the new image
ImplementsConnectorToolBitmap.bmp. We have adjusted the image a little bit so that it
looks like Figure 5-53.

Figure 5-53. ImplementsConnectorToolBitmap.bmp

3. Double-click DslDefinition.dsl.

4. Open DSL Explorer.

5. Expand Editor ➤ Toolbox Tabs ➤ WPCL General.

6. Right-click the WPCL General node ➤ Add New Connection Tool.

7. Select the new connection tool (ConnectionTool1) and set the Name property to Implements.

8. Set the Connection Builder property to ImplementsBuilder.

9. Set the ToolboxIcon property to Resources\ImplementsConnectorToolBitmap.bmp.

Making the Interface Shapes Visible on the Canvas
In earlier versions of the DSL Toolbox, this was not sufficient to make the new shapes (such as the
IWebPartField shape) visible on the designer canvas of a WPCL diagram. In such cases, you needed
to use the DSL Details window to specify an explicit parent element for every (new) interface
domain class. Luckily, you do not have to do this anymore. Nevertheless, it might be interesting to
inspect this setting in the Mapping Details of a domain shape. You will need to use this window
anyway to ensure that a property in a WPCL diagram is editable, which will be discussed shortly.
Opening the DSL Details window is discussed in the next procedure:

1. Click View ➤ Other Windows ➤ DSL Details. This opens the DSL Details Window.

2. On the designer canvas that allows you to create WPCL models, select the IWebPartField
domain class.

3. On the DSL Details window, click the Mapping Details tab.

4. On the General Tab, note that the Parent Element path is set to
ModelHasInterfaces.WPCLModel/!WPCLModel (see Figure 5-54).

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 299

Figure 5-54. The DSL Details window

If you want to make sure a property in a WPCL model is editable, you need use the DSL Details
window to make this happen. Follow these steps to make a property editable within a WPCL model:

1. Choose a Geometry shape that contains a property that you want to edit within a WPCL
diagram.

2. Open DSL Details window (View ➤ Other Windows ➤ DSL Details).

3. Click the Mapping Details button.

4. In the Decorators list, click the Labels check box.

5. In the Display property drop-down list, choose Name.

So far, we have discussed everything you needed to do to create the WPCL. Because of space
constraints, we will not discuss adding the InformationObject to the WPCL. InformationObjects are
discussed in detail in the section “A Domain-Specific Language: Using WPCL 2007.” The next proce-
dure discusses a high-level overview of what you need to do to introduce InformationObjects to the
WPCL (everything you need to know to follow this procedure has already been discussed in this
chapter):

1. Add a domain class called InformationObject.

2. Add three domain properties to this class called Name, DataType, and DefaultValue.

3. Add reference relationship between web parts and information objects.

4. Add a visual representation for InformationObject items.

5. Add a visual representation for relationships between web parts and information objects.

6. Map domain class to shape.

7. Map connection to shape.

8. Add a relationship connector called MapInterfaceToInformationConnector.

Generating the WPCL
If you transform all text templates and run the solution, you can try out the WPCL in a new instance
of Visual Studio 2005. Figure 5-55 shows the toolbox available for WPCL diagrams.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS300

Figure 5-55. The WPCL toolbox

Figure 5-56 shows a model that has been created using the WPCL.

Figure 5-56. A WPCL diagram

Validation
The domain model created in the section “Creating a Domain Model” contains basic validation
rules. For example, an IWebPartField web part provider is not allowed to provide data to an
IWebPartTable consumer web part. The ability to check for semantic correctness in a domain
model will only take you so far. Since the WPCL is governed by a number of additional and
advanced validation rules (discussed in the rest of this section), we will need to provide another
method of validation.

This is done by adding validation rules in the form of methods of partial classes. The name
of a partial class corresponds to the name of the domain model class that you want to validate.
The validation framework applies each validation rule to each object in the WPCL model that
corresponds to the given domain class or its subclasses. This allows users of our DSL to run vali-
dation on WPCL models.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 301

Validation Events
Validation rules can be applied to any domain class in a DSL, including the root model and relation-
ships. You can enable validation for the following events:

• Menu: If you enable this option, users can validate a model by right-clicking anywhere in
the model.

• Save: If you enable this option, users validate a model every time they save it to a file.

• Open: If you enable this option, users validate a model every time they open it from a file.

• Custom: If you enable this option, you invoke validation from your custom code.

Before you start adding custom validation rules, you should enable validation rules for the
Menu, Save, and Open events. You can do this by selecting the DSL Explorer, expanding the Editor
node, which is located under the WebPartConnectionLanguage (Dsl) root node, and selecting the
Validation (Validation) node. Set the following properties to true: UsesMenu (validation occurs when
the validate menu option is selected), UsesOpen (validation occurs when a WPCL model is opened),
and UsesSave (validation occurs when a WPCL model is saved). This is shown in Figure 5-57.

Figure 5-57. Enabling Validation events

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS302

Building a Validation Rule That Always Fails
In this section, you will build a set of validation rules that apply to web parts. To enable this, you
will add a new partial class to the Dsl project that has a name that is identical to the WebPart
domain class. This partial class will contain a validation method that responds to the following
validation events: Open, Save, and Menu. In the first version of this validation method, validation
will never succeed. Instead, the LogError() method of the ValidationContext object is called. This
method receives three arguments: an error description, an error code, and the current domain
object causing the error.

1. Right-click the Dsl project ➤ Add ➤ New Item. This opens the Add New Item – Dsl window.

2. Select the following template: Class.

3. Specify the following name: WebPartValidation.cs.

4. Click Add.

5. Double-click WebPartValidation.cs and add the following code:

using System;
using System.Collections.Generic;
using System.Text;
using System.Collections.ObjectModel;
using Microsoft.VisualStudio.Modeling.Validation;

namespace LoisAndClark.WebPartConnectionLanguage
{
[ValidationState(ValidationState.Enabled)]
partial class WebPart
{
[ValidationMethod(ValidationCategories.Open | ➥
ValidationCategories.Save | ➥
ValidationCategories.Menu)]
public void ValidateConnections(ValidationContext objContext)
{
string strMessage = “My error description”;
objContext.LogError(strMessage, “myerrorcode”, this);

}
}

}

Calling the LogError() method of a ValidationContext object results in the failure of the valida-
tion process. You can specify an error code and description that will be displayed by Visual Studio
2005 in the user interface.

Establishing the Web Part Validation Rules
Now that you have established a validation rule that fails all the time, you are ready to add real vali-
dation rules. The first set of validation rules that you will add to the WPCL is that each provider is
able to communicate with a corresponding consumer of the same type. Table 5-3 shows the basic
set of rules of valid web part connections. Please refer back to the section “Web Part Connections” if
you need detailed information about this subject.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 303

Table 5-3. Basic Set of Web Part Connection Validation Rules

Provider Interface Consumer

IWebPartField Field consumer

IWebPartRow Row consumer

IWebPartTable Table consumer

IWebPartParameters Parameter consumer

Custom interface Custom interface consumer

The second set of validation rules that needs to be added to the WPCL specifies the remaining
compatible interfaces. Those interfaces are compatible because the web part connection framework
provides transformers that are able to transform the information provided by a web part provider to
something that is understandable to a web part consumer. Table 5-4 provides an overview of the
available web part transformers. You can refer back to the section “Web Part Connections” if you
need detailed information about this subject.

Table 5-4. Web Part Transformers

Provider Interface Consumer

IWebPartRow Field consumer

IWebPartRow Parameter consumer

There are other validation rules that we could have implemented, such as a validation rule that
prohibits circular references in web part connections. However, we have chosen to include the vali-
dation rules discussed earlier in this section and stop there. We have kept the set of validation rules
simple but useful. Having said that, it is easy to extend the set of validation rules if you want to.

Implementing Web Part Validation Rules
In pseudocode, the validation process for the WPCL web part domain class looks like this:

1. Determine web parts that act as a provider to this web part.

2. Determine web parts that act as a consumer to this web part.

3. If this web part is neither a provider nor a consumer, it is valid.

4. A consumer can only have a single provider.

5. Determine interfaces implemented by consumer.

6. Every provider must implement an interface (it does not matter which one).

■Note You can associate a consumer web part with a specific interface—for instance, the IWebPartField
interface—if you want to define explicitly that a web part can communicate with certain types of web part
providers. You don’t have to do this; the WPCL automatically assumes that a consumer web part that is not asso-
ciated with a specific interface is always compatible with a provider. For documentation purposes, you might
want to create an explicit association with an interface in a consumer web part if you think that is more clear.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS304

7. Stop the validation process if this web part does not implement any interface. In this case,
the web part is always compatible with a provider.

8. If this web part has a provider, let’s determine if it’s compatible with this web part.

We do not have the space for a thorough discussion of the validation rules, although the com-
plete code can be downloaded from our web site at http://www.lcbridge.nl/download/wpcl2007/
validation.txt. To give you a taste of how validating a DSL model works, we have included a couple
of short code fragments.

The following code fragment shows how to retrieve the web part providers of the current object
(also a web part) that is being validated:

LinkedElementCollection<WebPart> objProviders = Connection.GetProvider(this);

■Note The objects in the WPCL object model that are available are based on the language elements that you
created throughout the section “Creating the Web Part Connection Language.” You can call the WPCL object model
within a text template; this will be discussed in detail in the section “Text Templates.”

The following code fragment shows how to retrieve the web part consumers of the current web
part being validated:

LinkedElementCollection<WebPart> objConsumers = Connection.GetConsumer(this);

The following code fragment shows how to retrieve the interfaces implemented by the current
web part being validated:

List<string> objInterfaces = new List<string>();
foreach (IConnectable objInterface in IConnectableInterface)
{
objInterfaces.Add(objInterface.GetType().ToString());

}

The following code fragment shows how to use the current ValidationContext object that is
passed to the current web part being validated:

objContext.LogError(strErrorMessage, “ERROR”, this);

■Tip If you want to debug the validation code, just use the Visual Studio 2005 editor like you are used to. Press
F5 to debug the solution, which opens another instance of Visual Studio 2005. Break mode will be entered once
the first breakpoint in the validation code is reached. Previously we specified that validation logic is run every time
we open, save, or validate a WPCL model, so each of these events can trigger the start of a debug session.

Text Templates
So far we have created a domain model and validation logic encompassing the rules related to
creating web part connections. At this point, the WPCL can be used to validate the design of and
relationships between web part connections. Since we also want to generate code for connectable
web parts, we will take the WPCL one step further in this section; we will use text templates to gen-
erate code.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 305

■Note The code generation techniques demonstrated in this chapter do not include advanced topics such as
code regeneration or integration with source versioning systems. If you want to learn more about code generation,
we advise you to read the book Code Generation in Microsoft.NET by Kathleen Dollard.

Text templates contain text blocks that are used to generate text artifacts, such as a C# source
code (.cs) file or an HTML file. A text template generates text artifacts based on information sup-
plied by at least one input source, typically a model.

In this section, we will create a text template that generates code for connectable web parts
based on one input source only: a WPCL model. Text templates are files containing a mixture of text
blocks and control logic. The control logic is typically used to manipulate the data held within a
model. The data generated by the control logic combined with the data in the text blocks are used to
produce an output file. A text template looks very similar to a classic ASP page, as you can seen in
the next code fragment. This template counts the number of elements present in a WPCL model:

<#@ template ➥
inherits=” ➥
Microsoft.VisualStudio.TextTemplating.VSHost.ModelingTextTransformation” ➥
debug=”true”#>
<#@ output extension=”.txt” #>
<#@ WebPartConnectionLanguage ➥
processor=”WebPartConnectionLanguageDirectiveProcessor” ➥
requires=”fileName=’Test.wpcl’” #>
The number of elements in my WPCL model:
<#= WPCLModel.Elements.Count #>

Templates are transformed via the Text Template Transformation Toolkit, which is included in
the DSL Toolkit. The Text Template Transformation Toolkit consists of the following components:

• Text Template Transformation Engine: This engine is responsible for processing text tem-
plates given to it.

• Hosts: A host is the interface between the engine and the user environment. Out of the box,
you can use the Visual Studio host or a command-line host.

• Directive processors: Directive processors handle directives in text templates. Directives are
typically used to provide data from an input source (for example, from a model) to a text
template. When using the DSL Toolkit, a directive processor is generated for each DSL, so
that text templates can access the models in that language as input sources. The following
code is an example of a directive processor that uses a WPCL model as input source:

<#@ WebPartConnectionLanguage ➥
processor=”WebPartConnectionLanguageDirectiveProcessor” ➥
requires=”fileName=’Test.wpcl’” #>

■Note The current version of the Text Template Transformation Engine is also called the T4 Text Templating
Engine. The T4 engine is used by the DSL Toolkit, but it is also used in the GAT. Chapter 1 discusses the GAT
in detail.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS306

Text Template Syntax
A text template can contain a number of block types that can appear in any order:

• Directive

• Text

• Statement

• Expression

• ClassFeature

Directive block types provide instructions to the Text Template Transformation Engine. The
syntax for a directive block type looks like this:

<#@ DirectiveName [ParameterName = “ParameterValue”]#>

There are three types of directives:

• Built-in directives

• Custom directives

• Generated directives

There are five built-in directive block types:

assembly: This directive is equivalent to using the Add Reference feature in Visual Studio 2005.
This directive identifies an assembly that is to be referenced, so you can use types that are
defined within the referenced assembly. The following code shows an example of an assembly
directive:

<@ assembly name=”MyReferencedLibrary.DLL” #>

import: This directive is equivalent to the C# using statement. It enables you to refer to types in
the text template without providing a fully qualified name. The following code shows an exam-
ple of an import directive:

<#@ import namespace=”LoisAndClark.WebPartConnectionLanguage” #>

template: This directive allows you to specify general information about the generated
transformation class, a temporary class that is compiled and executed to produce generated
text. Examples of such information are code language, class inheritance, and the ability to
debug. The template directive allows the use of a number of optional parameters:

• language: This parameter identifies which language is used for code inside statement
and expression blocks. By default, this parameter is set to C#.

• inherits: This parameter specifies which class should be used as the base class for
the generated transformation class. The base class must be derived from the
ModelingTextTransformation class located in the Microsoft.VisualStudio.
TextTemplating.VSHost namespace.

• culture: This parameter is used when converting expression blocks to text.

• debug: This parameter determines whether debugging is enabled in the generated trans-
formation class. By default, debugging is set to true.

• hostspecific: This parameter is only used in combination with custom hosts. If this
parameter is set to true, you are able to access a property called Host within the text
template. The Host property allows you to reference the object hosting the engine.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 307

The following code shows a valid example of a template directive:

<#@ template ➥
inherits=” ➥
Microsoft.VisualStudio.TextTemplating.VSHost.ModelingTextTransformation” ➥
debug=”true”#>

output: This directive specifies the extension of the generated text output file. The following
code example shows an output directive that specifies a .cs extension for the generated text
output file:

<#@ output extension=”.txt” #>

include: This directive is equivalent to the include statement in classic ASP. The include direc-
tive processes text from a specified file and includes it literally in the text template currently
being processed. The following code shows an example of the include directive:

<#@ include file=”c:\test.txt” #>

Besides the existing built-in directives, there are two other types of directives: custom and
generated. Custom directives allow you to create directives that are specific to your custom tools.
A typical use of custom directives is to load external data for use within a text template. Generated
directives allow you to access models for use within a text template. The following code shows an
example of a generated directive:

<#@ WebPartConnectionLanguage ➥
processor=”WebPartConnectionLanguageDirectiveProcessor” ➥
requires=”fileName=’Test.wpcl’” #>

The next block type we will discuss is the text block type. A text block is nonprogrammatic text
in a text template that is written directly and literally to the output file of the text transformation.
The following code shows an example of a text block:

The number of elements in my WPCL model:

Statement blocks are used to control the flow of processing in the text template. Code state-
ments are delineated using opening (<#) and closing (#>) text template tags and must be written in
the language specified in the language parameter of the template directive. The following code
shows an example statement block:

<#
for (int i = 0; i < 10; i++)
{
WriteLine(“Hello”);

}
#>

Expression blocks are used to add strings to the generated text output. Expression blocks are
delineated by opening (<#=) and closing (#>) text template tags. The following code shows an exam-
ple expression block:

<#= WPCLModel.Elements.Count #>

The final block type is the ClassFeature block type. ClassFeature blocks are used to add helper
functions to avoid repeating common code. ClassFeature blocks are delineated using opening
(<#=+) and closing (#>) text template tags. The following code shows an example ClassFeature block.
The ClassFeature block contains a method that returns the current date and time:

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS308

<#@ template ➥
inherits=” ➥
Microsoft.VisualStudio.TextTemplating.VSHost.ModelingTextTransformation” ➥
debug=”true”#>
<#@ output extension=”.txt” #>
<#@ WebPartConnectionLanguage ➥
processor=”WebPartConnectionLanguageDirectiveProcessor” ➥
requires=”fileName=’Test.wpcl’” #>

Current date and time: <#= GetDateAndTime() #>

<#+
private string GetDateAndTime()
{
return DateTime.Now.ToString();

}
#>

Running this text template results in the creation of a text file called WebPartDescriptions.txt
containing the following text:

Current date and time: 7/10/2006 11:48:46 AM

You can run text templates by adding a new file to a Visual Studio 2005 project; for example,
test.tt. Associate the template file with the text template generator tool by clicking test.tt and
specifying the following value for the Custom Tool property: TextTemplatingFileGenerator. Now,
if you right-click test.tt ➤ Run Custom Tool, the text template is executed. Below the text template
file (test.tt), you will find a new file with an extension identical to the one specified in the output
directive.

Debugging Text Templates
A text template consists of a mixture of text blocks and control logic used to combine the text blocks
with the data held within a model to produce an output file. If you want to debug text templates,
first you need to set the debug parameter of the template directive to true. It helps to import the
System.Diagnostics namespace using the import directive, as this makes adding breakpoints easier.
Then you can add a Debugger.Break() statement in the text template where you want to insert a
breakpoint. The Debugger class is located in the System.Diagnostics namespace. The following code
shows a valid text template containing a breakpoint:

<#@ template ➥
inherits=” ➥
Microsoft.VisualStudio.TextTemplating.VSHost.ModelingTextTransformation” ➥
debug=”true”#>
<#@ output extension=”.cs” #>
<#@ WebPartConnectionLanguage ➥
processor=”WebPartConnectionLanguageDirectiveProcessor” ➥
requires=”fileName=’Test.wpcl’” #>
<#@ import namespace=”System.Diagnostics” #>

<# Debugger.Break(); #>
The number of elements in my WPCL model:
<#= WPCLModel.Elements.Count #>

As soon as you run the text template, the break statement will execute and you will either be
prompted for a debugging session or be taken to the applicable line of code.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 309

Generating Connectable Web Part Code
Unfortunately, we do not have the space for a detailed discussion of the text template that can be
used to generate C# code based on WPCL diagrams. The complete code for the text template is
included in the WPCL itself, which can be downloaded at http://www.lcbridge.nl/vision/2007/
wpcl.htm.

Deploying the Web Part Connection Language
After creating a DSL, you will need to deploy it as well. You can deploy DSL solutions by creating a
special Windows Installer package (.msi). In this section, we discuss how to create such a package. If
you want more detailed information about this topic, you can refer to the documentation in the
Visual Studio 2005 SDK.

■Tip If you want to learn more about DSL deployment, check out the book Domain-Specific Development with
Visual Studio DSL Tools.

The first step of deploying a DSL consists of creating a DSL Setup project. The next procedure
explains how to do this:

1. Open the WebPartConnectionLanguage solution.

2. Right-click the solution and choose Add ➤ New Project. This opens the Add New Project
dialog.

3. In the Project types section, expand Other Project Types and click the Extensibility node.

4. In the Templates section, select the Domain Specific Language Setup template.

5. In the Name text box, enter the following value: WPCLSetup.

6. Click OK.

Deploying this solution results in the addition of a WPCL project item that allows you to create
WPCL diagrams. Since we want to create a dedicated WPCL project type based on the Debugging
solution discussed throughout this chapter—which also includes the text template that can be used
to generate code based on a WPCL diagram—we have not finished yet. In the next step, we will
export the Debugging project template and include it in our deployment solution.

1. Start Visual Studio 2005. This time, do not open the WebPartConnectionLanguage
solution yet; instead open the Debugging solution that was created earlier by the
WebPartConnectionLanguage. By default, this is located in the [path to
WebPartConnectionLanguage]\Debugging subfolder.

2. Choose File ➤ Export Template. This opens the Export Template Wizard.

3. On the Choose Template Type page, ensure that the Project template option is selected.

4. In the From which project would you like to create a template drop-down list, choose
Debugging.

5. Click Next. This opens the Select Template Options page.

6. Change the Template name to WPCL 2007 Application.

7. Enter the following description: Project template for the Web Part Connection Language.

8. Click Finish.

9. Close Visual Studio 2005.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS310

Check that Windows Explorer opens and shows a zip file that contains the WPCL project tem-
plate created by the wizard (called WPCL2007.zip). In the next procedure, you will add the project
template to the deployment solution:

1. Open the WebPartConnectionLanguage in Visual Studio 2005.

2. Add WPCL 2007 Application.zip to the project WPCLSetup by right-clicking the project and
choosing Add ➤ Existing Item. This opens the Add Existing Item – WPCLSetup dialog.

3. Select WPCL2007.zip and click Add.

4. Double-click InstallerDefinition.dslsetup, located in the root folder of the WPCLDeploy
project.

5. Locate the <vsItemTemplates> section in the InstallerDefinition.dslsetup file; directly below
it, add the new <vsProjectTemplates> section shown in the following code fragment:

<!- -
Omitted rest of XML of dslsetup file
- - >
</vsItemTemplates>
<vsProjectTemplates>
<vsProjectTemplate localeId=”1033” targetDirectories=”CSharp” ➥
templatePath=”WPCL 2007 Application.zip” />

</vsProjectTemplates>

6. Click Transform All Templates on the Solution Explorer toolbar.

7. Right-click the Deploy project ➤ Build.

Now if you click Show All Files on the Project menu, you will see two important files in the
bin\Debug folder: DSLToolsRedist.msi and WebPartConnectionLanguage.msi. WebPartConnection-
Language.msi contains your DSL, and DSLToolsRedist.msi contains the necessary run-time
components of the toolkit for DSLs. Copy the entire contents of the bin\Debug folder and paste it to
the c:\deployment folder of the computer where you want to deploy the WPCL. Create this folder if
it does not exist. The destination computer must have the Visual Studio 2005 SDK installed on it.
After that, double-click setup.exe and follow the steps presented in the wizard.

Now you have installed the WPCL successfully, and you can start to use it in Visual Studio 2005.
If you need more information about using the WPCL, please refer to the section “A Domain-Specific
Language: Using WPCL 2007.”

■Tip If you want to uninstall the WPCL, open Control Panel and double-click Add or Remove Programs. In the list
of installed programs, choose WebPartConnectionLanguage, click Remove, and click OK to confirm.

Summary
This chapter showed you how to create a DSL for creating connectable web parts. We have called
this language the WPCL. The chapter started with a discussion of software factories, DSLs, and
model-driven development. Because our DSL is tied to a very specific problem domain—the
creation of connectable web parts—it is essential that you have a good working knowledge of the
SharePoint web part connection framework. If you did not have this knowledge, this chapter pro-
vided a good overview of this framework. After that, the chapter discussed how to create, deploy,
and use the WPCL using the Microsoft DSL Tool.

CHAPTER 5 ■ BUILDING A DOMAIN-SPECIF IC LANGUAGE FOR CONNECTABLE WEB PARTS 311

Reusing Presentation Layers via Web
Services for Remote Portlets

The primary goal of a portal is to stimulate collaboration and enhance efficiency by offering access to
people as well as to a collection of content and application services. Gaining personalized access to
information, applications, processes, and people is achieved via a single interface: the portal interface.

When building a portal, you need to determine what information your organization needs and
where this information comes from. Typically, portals obtain information from local or remote data
sources such as databases, transaction systems, syndicated content providers, or remote web sites.
Portals render and aggregate this information into portal pages.

A portal page is a composite of information. Portals typically incorporate the ability to add
individual components to a portal page. Such components are often referred to as portlets, although
in SharePoint terminology we will call such components web parts instead.

The Web Services for Remote Portlets (WSRP) protocol is a web services protocol for aggregating
content and interactive web applications from remote sources. In this chapter, we will discuss what
WSRP is and how it can be of help in portal implementations. After that, we will look deeper into the
WSRP specification. In addition, we explain how to configure a generic WSRP consumer web part in
SharePoint and how to build WSRP producers.

Getting to Know WSRP
In this chapter, you will learn about WSRP and why it is important for portal products. Then, in
the section “WSRP Benefits and Drawbacks,” we will really delve into the theoretical side of WSRP. If
you are casually interested in WSRP, you might want to glance over this section, although it helps to
understand how the Microsoft Office SharePoint Server 2007 WSRP consumer web part works. Later
on, in the section “Configuring a WSRP Consumer for Microsoft Office SharePoint Server 2007,” we
will discuss how to use WSRP in a SharePoint environment.

WSRP is an OASIS (Organization for the Advancement of Structured Information Standards)
standard that simplifies the integration of remote content and applications into other applications,
most notably portals. Version 1.0 of WSRP was approved in August 2003. The current version of
WSRP is version 1.1; version 2.0 is in the making and will probably be approved sometime in 2007.
Check the OASIS web site (http://www.oasis-open.org) if you want an update on the status of WSRP
version 2.0.

WSRP defines presentation-oriented, interactive web services with a common, well-defined
interface and protocol for processing user interactions and for providing presentation fragments. The
presentation fragments are suited for mediation and aggregation by portals. WSRP also defines con-
ventions for publishing, finding, and binding such services. WSRP is built on standards such as XML,
SOAP, and WSDL. It would not be a serious misrepresentation to describe WSRP as a protocol that
defines how to send and receive HTML via SOAP, as this is what WSRP currently is used for most often.

313

C H A P T E R 6

A specification closely related to WSRP is Web Services for Interactive Applications (WSIA).
If you are looking for information about WSRP, you’ll frequently come across references to WSIA, so
we might as well prepare you for this. Both specifications are standards for presentation-oriented,
interactive web services. WSRP and WSIA let you create web services that include presentation and
multipage, multistep user interaction. WSRP defines interfaces to include portal-specific features;
WSIA focuses on the framework for creating interactive web services.

Another specification that is mentioned a lot in discussions about WSRP is Sun Microsystems’s
Java Portlet specification, formerly and better known as the JSR168 specification. Where WSRP is
primarily intended as a communication protocol that allows the reuse of a portlet’s (or web part’s)
user interface within another portal, JSR 168 is a Java specification that lets Java-based portlets
work within other JSR 168–compliant portal products (such as Vignette Application Portal, IBM
WebSphere Portal, and BEA WebLogic Portal). With WSRP, you can share a centrally hosted portlet;
with JSR 168, you can send the portlet code itself and use the portlet in another portal product.

WSIA and JSR 168 fall outside the scope of this chapter and are not discussed anymore, but at
least you will be able to discern those specifications from WSRP.

The implementation of the WSRP standard requires the presence of WSRP producers and
WSRP consumers. A WSRP producer contains portlets. In general, the WSRP producer implements
WSRP-defined web services. To be more specific, there are two kinds of WSRP producers: complex
and simple producers. A complex producer requires explicit consumer registration, offers more
advanced features such as URL rewriting, and has support for a management interface. Simple
producers lack these features, but do offer support for portal and portlet description, basic portlet
and consumer management, and portlet markup.

A WSRP consumer communicates with presentation-oriented web services (WSRP producers).
The consumer gathers and aggregates the content and displays it to the end user. Portals are a typi-
cal example of WSRP consumers. Consumers route requests from users to the appropriate WSRP
producer, which in turn processes the request and sends results back to the consumer. Sometimes a
consumer communicates with multiple producers and aggregates the results to send the result back
to the end user. Such communication is completely opaque; the end user will never know what
communication actually takes place to fulfill a user request.

Approaches for User Interface Reuse
The WSRP specification helps us reuse remote content and/or applications in a portal, but there are
alternatives available that do something similar. This section discusses the remote reuse options
that are available today:

• Image: The image approach is an easy way to reuse a part of the user interface. All you need
to do is add an tag to a web page and specify the image URL, like so: <img src=”[url]”
/>. While image channels are easy to define, they are very limited. This reuse approach can
only be used to display the image in the current browser.

• Inline frame: The inline frame approach allows you to include a web page into your own
web pages. This is very easy to implement: you only need to include an <IFRAME> tag in
your web page and provide the URL of the other web page you want to include, like so:
<iframe src=”[url]” />. The problem with this approach is that other web pages might
not be well suited for inline framing. The look and feel of your own portal can be broken if
a remote web page incorporates its own navigation system or has a distinct appearance
that clashes with the style of your own portal. Quite often, remote web pages use
JavaScript to prevent inline framing altogether, and some browsers might not even
support inline framing at all.

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS314

• Embedded client-side applications: In this approach, you will build small client-side applica-
tions that will be incorporated into portal pages. At the moment, ActiveX controls, Java applets,
and Flash applications are the most popular examples of embedded client-side applications.
You can also use Ajax to create client-side applications (see Chapter 2), and in the near future,
Microsoft’s Silverlight will be added to this list. Embedded client-side applications contain the
logic for obtaining content or application services. The user interfaces of such applications
tend to be feature-rich and easy to replicate across pages and portals. Embedded client-side
applications place restrictive demands on clients and are difficult to develop, depending on
the diversity of environments where the embedded applications will be hosted.

• RSS: RSS stands for Really Simple Syndication. The RSS approach allows you to import con-
tent that blends in far better compared to inline-framed remote web pages. RSS content is
rendered from RSS files that contain XML describing content, and from the actual content
itself. The RSS specification does not support navigation mechanisms, and suppresses control
over the look and feel of RSS content. The use of RSS can easily lead to links to external refer-
ence points, and thus the undesirable side effect of luring the end user away from your portal.

• Web proxy/screen scraping: The web proxy or screen scraping approach tries to convert well-
formed HTML from remote web pages into XML and render that XML in your portal. This
approach allows you to reuse remote web pages that were not even intended for reuse. This
approach lets you leverage the existing HTML knowledge within an organization and gives
you complete control over layout and behavior.

There are also disadvantages to this approach. Creating implementations like this tends to
be cumbersome and fragile. Cumbersome because you are consuming remote web pages
that were not intended for reuse in this way and that do not have a well-defined communi-
cation interface. Consuming such remote web pages is a process of trial and error. Such
implementations are fragile, because the author of a remote page typically does not know
that you are reusing content and certainly cannot be held responsible for breaking your
application, so whenever the content author decides to change or move the page, it probably
will break your application.

Finally, you run the risk of facing legal issues when you reuse content without the explicit
consent of the content author. In situations where a third party knows that you are consum-
ing content or application services and takes responsibility for delivering those services, the
web proxy/screen scraping approach is the wrong one. In this case, you should choose an
approach that allows parties to agree upon a well-defined interface.

• Traditional web service: In this approach, a portlet consumes XML and transforms the XML
to portal content. For example, the portlet might use XSLT to do the transformation. Nowa-
days, portlets primarily use web services as the means to obtain XML from remote locations.
The use of web services that return XML gives you complete control over layout and behav-
ior as well as well-defined communication interfaces. As a drawback, you need to build logic
into the portlets that consume web services so that they are able to do something useful with
the XML they obtain. To alleviate this drawback, there are products that make consuming
web services and creating a user interface very easy, such as SharePoint Designer or the Busi-
ness Data Catalog technology that is part of Microsoft Office SharePoint Server 2007.

• Proprietary remoting: In this approach, you use a proprietary remoting protocol to obtain
content or application services. In a Microsoft environment, you can use .NET remoting or
DCOM to perform remote communication. Custom channels offer complete control over
layout and behavior as well as well-defined communication interfaces. Portlets that use cus-
tom remoting (on the server side) to obtain data are relatively difficult to develop and result
in solutions with limited interoperability.

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS 315

• WSRP: WSRP allows a complete interactive channel to be incorporated in other applications
(for example, a portal). The maintenance of this interactive channel is managed in a single
location. It is easy to add interactive content or application services to a portal using WSRP.
WSRP is ideal for offloading work to a server separate from the portal server. But one draw-
back is that the WSRP specification has not matured yet. Also, it is important to realize that
WSRP is not a replacement for traditional web services; WSRP is an addition to them.

Common WSRP Architectures
In this section, we will discuss common usage scenarios for WSRP. Figure 6-1 shows a common pat-
tern for portlets. In this pattern, the actual content is delivered via remote web services. Figure 6-1
represents a SharePoint environment where two portlets (Web Parts 1 and 2) are imported into a
web part page on a SharePoint portal. The portlets consume remote web services and are responsi-
ble for implementing the presentation layer.

Figure 6-1. Basic web part architecture

In this approach, the portlets have to be installed on the portal server, or, in a server farm, on
every front end of the portal server. Every portlet that uses our custom web services will need to
redevelop the presentation layer. In terms of time and cost, this is not optimal.

Figure 6-2 shows how you can solve these problems while making use of WSRP. In this scenario,
the business logic is wrapped in the web services Custom Web Service 1 and 2. This part of the solu-
tion is identical to the previous approach. The difference is that we will add two web services
containing the presentation logic. Those web services are WSRP producers. The portlets (Web Parts
1 and 2) that contained the presentation layer are replaced with generic portlets that are able to
consume WSRP services.

Figure 6-2. Basic WSRP architecture

WSRP interfaces are well-defined. All web services that implement the WSRP standard can
be plugged into a WSRP-compliant portal. WSRP-compliant portals contain some kind of generic
WSRP consumer portlet that is able to communicate with WSRP services. But a portal can do more

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS316

when it comes to WSRP. If the portal contains a WSRP producer as well, the portal can publish any
portlet it contains via a WSRP service. This will be completely opaque to the portlet developer.
These WSRP services can then be consumed by other WSRP-compliant portals.

A typical WSRP architecture looks like Figure 6-3. (It looks different in SharePoint environ-
ments, but we will get to that later.) You can see that Portal A is a WSRP producer. Some of these
WSRP services are consumed by Portal B, a WSRP-compliant portal that contains a generic WSRP
consumer portlet to do so. The portal contains a number of portlets that are made available to other
applications via Portal B’s WSRP producer. WSRP consumers, such as Portal C, are able to consume
Portal B’s portlets via Portal B WSRP services. Portal C uses its own set of generic WSRP consumer
portlets to consume those services. User agents such as browsers consume the markup returned by
Portal B.

Figure 6-3. A typical WSRP architecture

It is important to keep this typical architecture in mind. Realizing that WSRP is created for
reusing portlets at the presentation level in other portals is essential to understanding the entire
specification.

When it comes to WSRP, Microsoft has a different vision compared to portal vendors imple-
menting WSRP producers in their portal products. In the Microsoft view, a SharePoint portal
consolidates all information on a big centralized server. In this view, there is no need to share the
user interface of web parts via WSRP services with other portals. Instead, if you need access to con-
tent or application services, you should go to the central SharePoint portal. Do not expect a WSRP
producer to be included in SharePoint technology anytime soon. However, Microsoft Office Share-
Point Server 2007 does contain a WSRP consumer that is able to reuse a user interface from other
applications (such as other portals).

This is not to say that WSRP cannot play a role in SharePoint portals. WSRP consumers can be
of great help when consolidating content and applications in a central location. This results in an
architecture as shown in Figure 6-4. Here you see a traditional web service that contains the busi-
ness layer. The WSRP web service encapsulates the presentation layer. WSRP consumer web parts in
various portals are able to consume these services.

■Note Since other portal products, such as IBM WebSphere, support WSRP producers, you can also use the
SharePoint WSRP Consumer web part to consume services from such providers.

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS 317

Figure 6-4. A typical SharePoint WSRP architecture

WSRP Benefits and Drawbacks
The section “Approaches for User Interface Reuse” briefly discussed the advantages and disadvan-
tages of WSRP, but there is a whole lot more to say about this topic. In this section, we will look in
detail at the benefits and drawbacks of WSRP.

Benefits
Let’s start with a discussion of the advantages of WSRP. The first advantage is that WSRP defines a
standard for remote content and application service reuse at the presentation level. Without WSRP,
most scenarios for remote content and application service reuse involve custom coding. Because
WSRP interfaces are common and well-defined, all web services that implement the WSRP standard
can be consumed by WSRP consumers. In a portal, all you need is access to a generic WSRP con-
sumer portlet. Using such a portlet, even nontechnical users are able to incorporate WSRP services
into a portal in a plug-and-play fashion.

Another advantage of WSRP is that it allows applications to reuse presentation layers, thus sav-
ing investment in good user interfaces. Although in principle every kind of application can be a
WSRP consumer, the specification is created for use in portals, as portals are applications that
aggregate and reuse information.

The next advantage is related to reusing portal content itself. If you are using a portal that
includes a WSRP producer (such as Vignette Application Portal, IBM WebSphere Portal, and BEA
WebLogic Portal, but not Microsoft Office SharePoint Server 2007), you can integrate the user inter-
face of your portlets into other portals. Again, this does not require any coding on your part. WSRP
allows you to integrate content and application services into other applications in a fast and easy
way while keeping costs low.

If you are consuming a content service, you need to determine whether the content producer
or the content consumer is responsible for the look and feel of the content. An advantage of WSRP
in the former scenario is that it enables content producers to maintain complete control over layout
and behavior of their content. This reduces the distribution-of-updates problem frequently faced in
other solutions.

WSRP is advantageous in server farm scenarios. WSRP allows content and application services
to be hosted in the environment most sensible for their execution (regardless of location or plat-
form), while remaining easy to access by WSRP consumers. This makes WSRP an attractive

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS318

candidate in distributed computing and load-balancing scenarios. This results in flexible, interop-
erable and scalable architectures that decouple portal aggregation from portlet execution. A result
of this flexibility is that it is easy to switch to new WSRP producers.

WSRP is a standard that can be used in all sorts of environments and scenarios, because it is
agnostic to what and how it communicates. As a protocol, WSRP is agnostic to the markup type
being communicated between WSRP producers and consumers. WSRP is also agnostic to the proto-
col that is used for communication. Having said that, a typical WSRP solution uses HTML as the
markup type and HTTP as the communication protocol, which fits well into the security infrastruc-
ture of most companies. WSRP can be used in all sorts of environments because it builds on
standards such as XML, SOAP, and WSDL, and is supported by large players in the industry (for
example, BEA, IBM, Microsoft, Oracle, and Sun).

WSRP decouples deployment and delivery of applications. WSRP consumers get to use the lat-
est version of remote content or application services, independent of where portlets are physically
deployed. Portals are able to consume WSRP services without deploying any additional code on the
portal server at all, resulting in zero installation effort on the portal. This way, portal developers and
administrators get to focus on building and managing a portal; other developer groups can focus on
building WSRP-compliant portlets.

WSRP services deliver data and presentation logic. Traditional web services are data-oriented;
they contain business logic but lack presentation logic. As a result, every client needs to implement
its own piece of presentation logic. Providing presentation logic via a WSRP service makes it easy to
dynamically integrate business applications. This way, consumers get the complete package. This is
not to say that WSRP services replace traditional web services; instead, WSRP services complement
traditional web services.

Drawbacks
We have looked at the benefits of WSRP, but there are drawbacks as well. In this section, we will look
into them. The goal of WSRP is rather ambitious: is it indeed possible to build highly interactive
applications that can be exposed to different portal products and offer a unified and secure experi-
ence completely opaquely to the end user?

The first problem is that application service providers do not have a great incentive to build
WSRP producers. For example, if you sell an ERP application that holds mission-critical data, you
might ask yourself why you’d want to expose your services to other portals. This does not sound like
a sure way to make money. Until now, major vendors have shown that they do not have any prob-
lems creating WSRP consumers for their products, but the effort put into creating WSRP producers
for their own application services is considerably less. Having said this, this doesn’t stop you from
creating your own WSRP producers that can be used freely in, let’s say, an intranet environment.

The next disadvantage is that although interactive, WSRP offers a limited experience compared
to full-blown portlets. A normal portlet utilizes programming models such as JavaScript, DOM, and
embedded client-side applications. In generic WSRP portlets, you have less control over the user
interface, using JavaScript is more problematic, and some types of interactivity are hard to achieve.
For example, Ajax-style development is considerably more complex in WSRP scenarios. In WSRP 1.0
and WSRP 1.1, you are allowed to include JavaScript within a markup fragment, but you cannot
include JavaScript outside the <body> of the aggregated page. A WSRP portlet cannot use external
style sheets provided by a WSRP consumer. You can, however, create a common look-and-feel
across portlets on an aggregated page, as is discussed in the section “CSS Style Definitions.” Locally
running portlets will usually be faster than calling remote WSRP services. Local portlets typically
have access to information about the portal server, portal site, and portal pages hosting the portlet,
and to other portlets as well. In the future, new versions of the WSRP specification will solve at least
some of these problems.

Another disadvantage the additional security issues in WSRP scenarios. Because WSRP con-
sumers have little or no control over the contents of markup fragments sent by WSRP producers,

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS 319

unknown code (for example, client-side JavaScript) can be embedded in WSRP responses, which
makes WSRP consumers vulnerable to script injection attacks. This means you need to have a con-
siderable amount of trust in the WSRP producers you are using. The creators of the WSRP speci-
fication think this will not be a big concern for WSRP consumers because of inherent client-side
JavaScript limitations. Optionally, WSRP responses can contain binary data as well, but it is up to
the consumer to decide how to interpret and use this binary data.

■Note In addition to being subject to script injection issues, a WSRP service is exposed to the same security
issues as other web services. The WSRP specification will leverage existing and forthcoming web service stan-
dards such as WS-Security. Currently, a typical WSRP solution that needs to be secure uses HTTPS and the
combination of client and server certificates.

Another problem with the WSRP specification is the question about its usefulness compared to
a (in some scenarios) competing and hugely successful technology: RSS. RSS can be used for basic
content syndication. RSS is simple and very popular. Although WSRP provides a richer content
delivery mechanism, RSS is already used in lots of content syndication scenarios, thus limiting the
role WSRP can play in those scenarios.

It can be hard to work with WSRP because the WSRP specification is quite complex, although
this problem is alleviated by several commercial vendors building WSRP frameworks and tools. For
.NET, the only vendor we know of that is offering a WSRP framework is a company called NetUnity
(http://www.netunitysoftware.com).

Another disadvantage of WSRP is related to speed and performance. WSRP introduces addi-
tional latency because user interaction needs to pass through the WSRP consumer to the remote
WSRP provider. The WSRP protocol typically uses SOAP over HTTP, which brings a considerable
amount of overhead. WSRP consumers send two kinds of data to WSRP consumers: form parame-
ters and uploaded data. For HTTP POST requests, this data is sent as multipart requests to the
WSRP consumer, which transports the data within a SOAP envelope to the WSRP producer. This
takes up additional memory and processing power on the servers hosting WSRP consumers and
WSRP producers. WSRP solutions are not optimized for speed and performance.

WSRP can be used to aggregate content from multiple sources. Although WSRP offers mecha-
nisms to standardize the look of this content, those mechanisms are superficial, resulting in a user
experience that may not always be optimal. If a WSRP consumer aggregates markup fragments from
various producers, you have no guarantee that every WSRP producer will follow the same style and
naming conventions. For example, Form A might contain a Submit button; a comparable Form B
might contain a Proceed button. As another example, date formats might be represented in differ-
ent ways in different forms. For yet another example, field and form validation requirements may
differ between forms. WSRP addresses only part of this problem by specifying a standard set of CSS
styles that can be defined by WSRP consumers. Although this enhances consistency, user experi-
ence usability issues remain.

A danger of using WSRP producers in a portal is that they invite you to promote portlets at the
presentation level only, as this level of reuse is available automatically after creating a portlet. This
results in applications that are not really built with reuse in mind, or that reuse at the wrong level.
If you refer back to Figure 6-3, you will see that WSRP promotes reuse at the presentation level. If you
are building applications that need to be reused, it can be a mistake to offer reuse only at the user
interface level. Always consider whether it makes sense to offer a traditional web service encapsulat-
ing business logic as well. Refer back to Figure 6-4 to see a diagram depicting this kind of architecture.

Finally, there are some drawbacks to the maturity of web service standards. The WSRP specifi-
cation itself does not currently include eventing, security, and caching. Instead, WSRP builds on
other web service standards to provide these features. Those standards have not yet matured, which
can also be said for WSRP itself.

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS320

Delving Deeper into the WSRP Specification
In most situations, developers implementing an architecture involving WSRP will have little or
nothing to do with the WSRP specification itself, as this will be abstracted away by a portal or
framework. This holds true for the examples discussed later in the chapter, where we will show
how to use a WSRP consumer in SharePoint and build a WSRP producer using a WSRP .NET frame-
work. Nevertheless, it is helpful to gain a better understanding of the underlying WSRP technology.
In this section, we will take a closer look at the WSRP specification and discuss the most important
aspects of the specification.

■Note This section describes how the interfaces that make up the WSRP specification are described in SOAP.
Typically, you will not have to construct SOAP messages yourself; this will be handled by WSRP producers and
consumers.

Interfaces
The WSRP specification defines four communication interfaces:

• Service Description

• Registration

• Markup

• Portlet Management

A WSRP producer may be discovered through discovery mechanisms such as UDDI (Universal
Description, Discovery and Integration) and WSIL (Web Services Inspection Language). Listing 6-1
shows an example WSRP service WSDL file that specifies the locations of services responsible for
implementing the four WSRP interfaces:

Listing 6-1. Describing a WSRP Service in WSDL

<?xml version=”1.0” encoding=”UTF-8”?>
<wsdl:definitions targetNamespace=”urn:oasis:names:tc:wsrp:v1:wsdl” ➥

xmlns:bind=”urn:oasis:names:tc:wsrp:v1:bind” ➥
xmlns=http://schemas.xmlsoap.org/wsdl/ ➥
xmlns:wsdl=http://schemas.xmlsoap.org/wsdl/ ➥
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”>

<import namespace=”urn:oasis:names:tc:wsrp:v1:bind” ➥
location=”wsrp_v1_bindings.wsdl”/>

<wsdl:service name=”WSRPService”>
<wsdl:port binding=”bind:WSRP_v1_Markup_Binding_SOAP” name=”WSRPBaseService”>
<soap:address location=”http://my.service:8080/WSRPService”/>

</wsdl:port>
<wsdl:port binding=”bind:WSRP_v1_ServiceDescription_Binding_SOAP” ➥
name=”WSRPServiceDescriptionService”>
<soap:address location=”http://my.service:8080/WSRPService”/>

</wsdl:port>
<wsdl:port binding=”bind:WSRP_v1_Registration_Binding_SOAP” ➥
name=”WSRPRegistrationService”>
<soap:address location=”http://my.service:8080/WSRPService”/>

</wsdl:port>

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS 321

<wsdl:port binding=”bind:WSRP_v1_PortletManagement_Binding_SOAP” ➥
name=”WSRPPortletManagementService”>
<soap:address location=”http://my.service:8080/WSRPService”/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

The Service Description interface is required and provides the means for a consumer to ascer-
tain the capabilities of a WSRP producer and the portlets it has to offer. The Service Description
interface defines only a single method called getServiceDescription(). This method is responsible
for providing information about the capabilities of a producer in a context-sensitive manner. For
example, a consumer may be required to register itself first before it is allowed to discover the full
capabilities of a producer.

The following code fragment shows an example of a web service call to the
getServiceDescription() method of the Service Description interface:

POST /wsrp/wsrp4j/WSRPServiceDescriptionService HTTP/1.0
Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; ➥
MS Web Services Client Protocol 1.1.4322.2300)
Host: localhost
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: “urn:oasis:names:tc:wsrp:v1:getServiceDescription”
Content-Length: 499

<?xml version=”1.0” encoding=”UTF-8”?>
<soapenv:Envelope xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope/” ➥
xmlns:xsd=”http://www.w3.org/2001/XMLSchema” ➥
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
<soapenv:Body>
<getServiceDescription xmlns=”urn:oasis:names:tc:wsrp:v1:types”>
<registrationContext>
<registrationHandle>22.34.152.220_2039571409459_4</registrationHandle>

</registrationContext>
</getServiceDescription>

</soapenv:Body>
</soapenv:Envelope>

The Registration interface is used to register or deregister a WSRP consumer with a WSRP
producer. This interface defines the following methods: register(), modifyRegistration(), and
deregister(). The register() method is used to establish a relationship between a consumer and
a producer. It returns a handle that is used in all subsequent invocations the consumer makes.
Consumers and producers are free to end this relationship at any time. If the consumer ends the
relationship, it must call the deregister() method. A producer indicates it wants to end the rela-
tionship by informing the consumer via an error message. The modifyRegistration() method is
used by the consumer to modify a relationship.

The following code fragment shows an example of a web service call to the register() method
of the Registration interface:

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS322

<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/” ➥
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” ➥
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<soap:Body>
<register xmlns=”urn:oasis:names:tc:wsrp:v1:types”>
<consumerName>wsrpConsumer</consumerName>
<consumerAgent>wsrpConsumer.1.1</consumerAgent>
<methodGetSupported>false</methodGetSupported>

</register>
</soap:Body>

</soap:Envelope>

The Markup interface is required and contains operations to request the generation of
markup and the processing of interactions with that markup. This interface defines the following
methods: getMarkup(), performBlockingInteraction(), initCookie(), and releaseSessions().
The getMarkup() method requests the markup for rendering the current state of a portlet. The
performBlockingInteraction() method is used for synchronization purposes. A portlet will
receive only one invocation of this method per client interaction, and will persist some sort of
state change within the portlet. The consumer has to wait for the response before invoking the
getMarkup() method on the portlets it is aggregating. This allows the WSRP producer to share state
between portlets. The initCookie() method is used in scenarios where the WSRP consumer assists
in managing state via cookies and allows the consumer to supply cookies. The releaseSessions()
method enables the consumer to inform the producer that it will no longer be using session infor-
mation. The following code fragment shows an example response from a WSRP producer after a
call to the Markup interface’s getMarkup()method:

<soapenv:Envelope xmlns:soapenv=”http://schemas.xmlsoap.org/soap/envelope/”>
<soapenv:Body>
<urn:getMarkupResponse xmlns:urn=”urn:oasis:names:tc:wsrp:v1:types”>
<urn:markupContext>
<urn:mimeType>text/html; charset=UTF-8</urn:mimeType>
<urn:markupString>
<![CDATA[<form name=”searchForm” ➥
action=”http://localhost:7001/consumer/test.portal?_nfpb=true ➥
&_windowLabel=search_1_1&_pageLabel=test_page_2&wsrp- ➥
urlType=blockingAction&wsrp-url= ➥
&wsrp-requiresRewrite=&wsrp-navigationalState=&wsrp-interactionState= ➥
_action%3D%252FSearch%252Fsearch&wsrp-mode=&wsrp-windowState=” ➥
method=”post”>
<table>
<tr valign=”top”>
<td>First Name:</td>
<td> ➥
<input type=”text” name=”search_1{actionForm.firstName}” value=””> ~

</td>
</tr>
<tr valign=”top”>
<td>Last Name:</td>
<td><input type=”text” name=”search_1{actionForm.lastName}” value=””></td>
</tr>
</table>

<input type=”submit” value=”search”>
</form>]]>

</urn:markupString>

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS 323

<urn:locale>en-US</urn:locale>
<urn:requiresUrlRewriting>false</urn:requiresUrlRewriting>

</urn:markupContext>
<urn:sessionContext>
<urn:sessionID>
B9Ml78JJyZNrMbzKnPxfyXZj511LL420BfKZGmLssNG02DbSJm3y!-1979539005

</urn:sessionID>
<urn:expires>3600</urn:expires>

</urn:sessionContext>
</urn:getMarkupResponse>

</soapenv:Body>
</soapenv:Envelope>

The Portlet Management interface is used to manage portlets. It can be used for operations
such as cloning portlets, destroying portlets, and retrieving portlet definitions. This interface
defines the following methods: getPortletDescription(), clonePortlet(), destroyPortlets(),
setPortletProperties(), getPortletProperties(), and getPortletPropertyDescription(). The
getPortletDescription() method allows the producer to provide information about the portlets
it offers in a context-sensitive manner. The clonePortlet() method allows the creation of a new
portlet from an existing portlet. The initial state of a cloned portlet will need to be identical to the
original portlet. Basically, this is a copy-by-value action that can be used to copy a producer-offered
portlet, resulting in a consumer-configured portlet. You can also use the clonePortlet() method
to copy previously cloned consumer-configured portlets. Consumer-configured portlets can be
discarded by calling the destroyPortlets() method. Portlet properties are specific to a portlet.
The setPortletProperties() method allows the consumer to set portlet properties. The
getPortletProperties() method exhibits the opposite behavior: it is used to retrieve portlet meta-
data. The getPortletPropertyDescription() method is used for discovering portlet properties and
information such as type and description about those properties. This information can be used
when generating a user interface for editing the portlet’s configuration.

The following code fragment shows an example of a web service call to the clonePortlet()
method of the Portlet Management interface:

<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/” ➥
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” ➥
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<soap:Body>
<clonePortlet xmlns=”urn:oasis:names:tc:wsrp:v1:types”>
<registrationContext>
<registrationHandle>AAAUU111yy777...</registrationHandle>

</registrationContext>
<portletContext>
<portletHandle>portlet_1</portletHandle>

</portletContext>
<userContext>
<userContextKey>wsrpConsumer</userContextKey>

</userContext>
</clonePortlet>

</soap:Body>
</soap:Envelope>

State
Sometimes you need to keep track of the session state of a WSRP portlet. If you find yourself in such
a situation, you can choose between multiple WSRP portlet state types:

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS324

• URL state

• Navigational state

• Interaction state

• Session state

• Persistent state

The URL state type can be divided in two subtypes: portlet navigational state and portlet inter-
action state. Portlets that use navigational state let WSRP consumers take care of keeping track of
most of the state. The only part of the portlet state that gets pushed to the consumer is navigational
state. Portlet navigational state identifies the current view of the portlet. Examples of the use of nav-
igational state include support for page refreshes and bookmarks.

Portlets that use interaction state let WSRP consumers take care of keeping track of the state,
but also push interaction state to the consumer. Portlet interaction state identifies what action
should be taken by a portlet.

In session state scenarios, a WSRP producer establishes a session and returns some sort of
handle (a session ID), which is returned by the consumer on all subsequent invocations of a portlet
instance. Session state is transient, can expire, and can be stored on the consumer or producer side.
Session state is user- and portlet-specific.

In persistent state scenarios, the state is kept in some type of permanent data store, typically a
database, and held for the entire lifetime of a portlet. The WSRP producer is responsible for keeping
track of persistent state. Persistent state is typically used to store portlet configuration.

Portlet Mode
A portlet should render different content and perform different activities based on its state and the
operation requested by the end user. The WSRP specification defines a set of modes that reflects
common functionality for portal-to-portlet interactions. WSRP defines the following modes:

• wsrp:view

• wsrp:edit

• wsrp:help

• wsrp:preview

• Custom mode

The wsrp:view mode will render portlet markup reflecting the current state of a portlet. This
mode will include one or more screens that the end user can view, navigate, or even interact with.
In wsrp:edit mode, a portlet should provide content and logic that lets the user customize the
behavior of a portlet. The wsrp:help mode provides context-sensitive help. If a portlet is in
wsrp:preview mode, the portlet should render a preview of the standard content shown in
wsrp:view mode. Finally, consumers can declare additional custom modes.

Window State
Window state is an indicator of the amount of page space that will be assigned to the content gener-
ated by a portlet. It is up to the consumer to decide how much information will be rendered even-
tually. WSRP defines the following window states:

• wsrp:normal

• wsrp:minimized

• wsrp:maximized

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS 325

• wsrp:solo

• Custom mode

In the wsrp:normal window state, the portlet is likely sharing the aggregated page with other
portlets. Therefore, the size of its rendered output should be restricted. The wsrp:minimized win-
dow state indicates the portlet should not render visible markup. The portlet is free to include
nonvisible data such as JavaScript or hidden forms. A portlet in the wsrp:maximized window state is
likely to be the only portlet being rendered on the aggregated page, or the portlet is assigned more
space compared to other portlets on the aggregated page. In this case, a portlet can generate richer
content if it wants to. The wsrp:solo window state is comparable to the wsrp:maximized window
state. It indicates that the portlet is the only portlet being rendered on the aggregated page, so the
portlet is free to generate richer content. Finally, consumers are allowed to declare additional cus-
tom window states.

Markup URLs
Portlets return markup, typically in the form of HTML markup. Often, a portlet creates URLs that
reference the portlet itself. When an end user clicks on a link or submits a form, eventually this
should result in a new invocation to the portlet. Portlet URLs embedded in a markup fragment
often cannot or should not be direct links. For example, you always have the guarantee that the end
user has access to the WSRP consumer. However, the WSRP producer may be shielded from the end
user. As another example, the WSRP consumer might want to perform additional operations such as
enriching the end-user request with context information. In such scenarios, WSRP consumers will
need to intercept end-user requests and reroute them to the WSRP producer.

To facilitate interception mechanisms, URLs need to be encoded. The encoding of URLs is also
known as URL rewriting. There are two styles when it comes to URL rewriting:

• Consumer URL rewriting

• Producer URL writing

Consumer URL Rewriting

The consumer URL rewriting style renders the URL in markup with delimiters that are replaced by
the WSRP consumer with real URLs. The disadvantage of this approach is that the consumer will
become more complex and take up more processing time (this does not affect the producer).
The following URL is an example of a consumer URL that is marked with delimiters and fit for
consumer URL rewriting:

wsrp_rewrite?wsrp-urlType=render&wsrp-mode=help&wsrp-windowState=solo/wsrp_rewrite

Consumer portlet URLs start with the token wsrp_rewrite, appended by a “?” (question mark).
The end of such a URL is another token, wsrp_rewrite, preceded by a “/” (forward slash). The
content of a consumer portlet URL consists of name/value pairs separated by “&” (ampersand)
characters. The names of those pairs consist of a series of well-known portlet URL parameters,
which specify what the consumer needs to do. Currently, the WSRP specification defines the fol-
lowing portlet URL parameters:

• wsrp-urlType

• wsrp-url

• wsrp-requiresRewrite

• wsrp-navigationalState

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS326

• wsrp-interactionState

• wsrp-mode

• wsrp-windowState

• wsrp-fragmentID

• wsrp-secureURL

The wsrp-urlType portlet URL parameter must be specified first. This parameter can be set to
the following values: blockingAction, render, and resource. If the wsrp-urlType parameter is set to
blockingAction, the performBlockingInteraction() method is called on the portlet generating the
markup. The performBlockingInteraction() method was described previously in the section “Inter-
faces.” If the wsrp-urlType parameter is set to render, the getMarkup() method is called. Finally, if
the wsrp-urlType parameter is set to resource, the WSRP consumer will try to retrieve some sort of
resource, possibly in a cached manner, and return it to the end user.

The wsrp-url parameter provides the actual URL to a resource. The URL needs to be absolute
and URL-escaped (for example, use & instead of &). The wsrp-requiresRewrite parameter is a
Boolean parameter that tells the WSRP consumer whether it needs to parse a URL for consumer
URL rewriting. The wsrp-navigationalState parameter defines the navigational state of a portlet, as
determined by the WSRP consumer and send to the WSRP producer. The wsrp-interactionState
parameter contains the interaction state provided by the consumer. The wsrp-mode parameter
requests a change of portlet mode. Valid values are wsrp:view, wsrp:edit, wsrp:help, wsrp:preview,
or a custom mode. Portlet modes were discussed in detail in the earlier section “Portlet Mode.” The
wsrp-windowState requests a change of window state. Valid values are wsrp:normal, wsrp:minimized,
wsrp:maximized, wsrp:solo, or a custom mode. Window states were discussed in detail in the earlier
section “Window State.” The wsrp-fragmentID parameter specifies a portion of a URL that navigates
to a place within a document. The wsrp-secureURL parameter is a Boolean parameter indicating
whether a URL needs to be accessed in a secure manner. Setting this parameter to true means that
both the communication between the end user and WSRP consumer and the communication
between WSRP consumer and WSRP producer need to be secure.

Producer URL Writing

In the producer URL writing style, URL templates are provided by the WSRP consumer and known
tokens within those templates are replaced by the WSRP producer. In this approach, the consumer
passes context information to the producer. The URL template format is completely up to the WSRP
consumer, as the consumer is the only party that knows what the final URL should look like. A dis-
advantage of this approach is that the dynamic nature of the resulting markup makes it harder to
cache. The following URL is an example of a producer URL fit for producer URL writing:

http://www.theConsumerPortal.com/site/{wsrp-urlType}?mode= ➥
{wsrp-mode}&navigationalState={wsrp-navigationalState}&

A producer URL contains zero or more replacement tokens that are enclosed in curly braces
(“{” and “}”). Any content outside the curly braces will not be modified by the WSRP producer.
As an example, in the previous producer URL, the WSRP producer might replace the token
{wsrp-urlType} with the value render. The list of defined parameters that can be used as replace-
ment tokens in producer URLs is a superset of the set of consumer URL parameters. All parameters
from wsrp-urlType to wsrp-secureURL are supported in producer URLs. There are also four new
parameters that cannot be used in consumer URLs. These parameters help to establish the correct
communication context, which helps to identify the portlet, current user, current instance of the
portlet, and the current session state. The parameters are

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS 327

• wsrp-portletHandle

• wsrp-userContextKey

• wsrp-portletInstanceKey

• wsrp-sessionID

The wsrp-portletHandle parameter identifies the portlet, wsrp-userContextKey identifies
the current user, wsrp-portletInstanceKey identifies the current instance of the portlet, and
wsrp-sessionID identifies a handle to the current session state. If the consumer includes these
parameters, the producer must include these values in the producer-written URL, which helps
the consumer to keep track of and establish the current context.

The producer will replace those tokens with actual handles to a portlet, user, portlet instance,
and session ID. The values are provided by the consumer itself originally.

Although the exact template format of a producer URL is up to the consumer, the WSRP speci-
fication does define various templates that determine the minimal number of URL parameters that
must be included in a producer URL. The WSRP specification supplies the following templates:

• blockingActionTemplate

• secureBlockingActionTemplate

• renderTemplate

• secureRenderTemplate

• resourceTemplate

• secureResourceTemplate

• defaultTemplate

• secureDefaultTemplate

The blockingActionTemplate template results in a performBlockingInteraction() method
call. When this template is used, a consumer must include the following replacement tokens:
wsrp-navigationalState, wsrp-interactionState, wsrp-mode, and wsrp-windowState. The
secureBlockingActionTemplate template is identical to the blockingActionTemplate template,
but uses secure communication (SSL connections).

The renderTemplate template results in a getMarkup() method call. When this template is used,
a consumer must include the following replacement tokens: wsrp-navigationalState, wsrp-mode,
and wsrp-windowState. The secureRenderTemplate template is identical to the renderTemplate tem-
plate, but uses secure communication.

The resourceTemplate template fetches a resource. When this template is used, a
consumer must include the replacement tokens wsrp-url and wsrp-requiresRewrite. The
secureResourceTemplate template is identical to the resourceTemplate template, but uses secure
communication.

The defaultTemplate template is the default template, a generic template that is used
whenever a specialized template was not provided by the consumer. When this template is
used, a consumer must include the following replacement tokens: wsrp-navigationalState,
wsrp-interactionState, wsrp-mode, and wsrp-windowState. The secureDefaultTemplate template
is identical to the defaultTemplate template, but uses secure communication.

The following code example shows typical uses of the render, blocking action, and resource
producer URL templates within HTML markup:

...
<form action=”[blocking action template]”>...</form>

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS328

CSS Style Definitions
One of the biggest strengths of the WSRP specification is the ability to create a common look-and-
feel across portlets on an aggregated page. This is done by using a common Cascading Style Sheets
(CSS) style sheet for all portlets and defining a set of standard styles. Portlets must use these CSS
style definitions to be able to participate in a uniform display. For example, to indicate that a text
fragment is in the normal page font, you should use the portlet-font style definition:

<div class=”portlet-font”>A normal text</div>

■Note CSS Style definitions allow you to brand a portlet in accordance with the requirements of a page.
More details about all available style definitions can be found in the OASIS WSRP specification (http://www.
oasis-open.org).

Portlet Cloning
In the introduction to this chapter, we stated that portals help to gain personalized access to
information, applications, processes, and people. To this end, portals typically contain portlet
personalization and customization features. As the WSRP specification is targeted toward portlets,
WSRP needs to support the ability for end users to have their own instances of portlets and set their
own preferences on those instances. The mechanism that makes this possible is called portlet
cloning and is done via methods defined in the portlet management interface.

In WSRP, there are two types of portlets:

• Producer-offered portlets

• Consumer-configured portlets

By default, portlets are producer-offered. They are not personalized or customized: producer-
offered portlets are preconfigured and not modifiable by consumers. Since personalization and
customization are important aspects of a portlet, WSRP allows consumers to clone producer-
offered portlets, so that consumers can customize them and change their persistent state. After
cloning, the portlet is called a consumer-configured portlet.

There are multiple ways to change the persistent state of a consumer-configured portlet.
You can clone a portlet explicitly via the clonePortlet() method defined in the portlet management
interface. This method takes the registration context, portlet context, and user context as parame-
ters, and its response returns a new portlet context identifying the new portlet. You can also clone a
portlet explicitly; in such scenarios the WSRP consumer creates a portlet clone that is used by a
group of end users. This is completely opaque to the end user.

Namespace Encoding
Aggregating multiple portlets from different sources can lead to naming conflicts in portlet ele-
ments such as IDs of HTML tags, CSS styles, and JavaScript functions. To create unique names in
markup, you can use namespaces. WSRP defines two forms of namespace encoding:

• Producer namespacing

• Consumer namespacing

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS 329

With producer namespacing, the portlet uses a namespace prefix provided by the consumer to
prefix elements in a portlet that need to be unique. The following code shows how producer name-
spacing is used to create a unique namespace for an HTML form called myform:

<form name=”NS001_myform” ...>

If a portlet prefixes a portlet element that is intended to be unique with the wsrp_rewrite
token, the WSRP consumer will locate it and generate a unique namespace. The following code
shows how to use this token to create a unique namespace for an HTML form called myform:

<form name=”wsrp_rewrite_myform” ...>

Markup Tag Restrictions
For efficiency reasons, WSRP consumers are not required to validate the markup fragments
returned by producers. To allow consumers to safely aggregate multiple portlet markup fragments,
there are restrictions placed on the set of markup tags that may be returned by portlets. Disallowed
tags can break the coherence of an entire aggregated page. Examples of HTML tags that should
never be returned by a portlet are <body>, <frame>, <frameset>, <head>, <html>, and <title>.

There are other tags that, according to the HTML specification, should never occur outside the
<head> element of a document. However, some user-agent implementations might support other-
wise. As a result of this, it is up to the portlet developer to use or refrain from using those tags.
Examples of such tags are <base>, <link>, <meta>, and <style>.

What About WSRP 2.0?
Microsoft Office SharePoint Server 2007 only has support for the WSRP 1.1 specification (in our
tests, it does not seem to have problems supporting WSRP 1.0 producers as well). The goal of this
specification was to provide basic portlet capabilities, as discussed previously in this chapter. As
time has passed, some features have been found to be missing in the current WSRP specification,
the biggest problem lying in the lack of portlet interactivity features. Currently, the forthcoming
WSRP 2.0 specification is still in draft. The WSRP specification is expected to be completed some-
time in 2007.

■Note You can find the latest information about the WSRP 2.0 specification at the OASIS web site at http://
www.oasis-open.org. The public review draft version of the WSRP 2.0 specification from June 2006 can be
found at http://www.oasis-open.org/committees/download.php/18617/wsrp-2.0-spec-pr-01.html.
At the time of writing, the WSRP 2.0 specification has not been approved yet.

There are some major improvements in the WSRP 2.0 specification, such as

• Portlet coordination: This allows portlets to communicate in a loosely coupled manner with
each other (comparable to web part connections in Microsoft Office SharePoint Server 2007,
described in detail in Chapter 5).

• Support for the use of Ajax within portlets. Ajax is discussed in detail in Chapter 2.

• Easy-to-use portlet migration by way of portlet import and export capabilities. This improves
portlet portability.

• Improved resource handling.

• Publishing and finding portlets will become easier.

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS330

• Leasing: This describes the scheduled destruction of portlets with the opportunity to extend
the scheduled termination time.

• Support for portlet runtime IDs.

• Support for CC/PP: CC/PP stands for Composite Capability/Preference Profiles, a specifica-
tion that allows you to describe device capabilities and user preferences.

• Improved security.

Other improvements, such as support for VoiceXML and complex data-type transport, are still
under consideration. We will have to wait and see what the final version of the WSRP 2.0 specifica-
tion will look like. One thing seems to be certain, though; it will take a considerable amount of time
before support for the WSRP 2.0 specification is going to be incorporated into Microsoft Office
SharePoint Server 2007.

Configuring a WSRP Consumer for Microsoft
Office SharePoint Server 2007
Microsoft Office SharePoint Server 2007 ships with a WSRP consumer called the WSRP Consumer
web part. This web part displays portlets that support WSRP 1.1 (in our tests, WSRP 1.0 portlets
work just as well). In this section, we will show how to configure the WSRP Consumer web part and
use it within Microsoft Office SharePoint Server 2007.

In this section, we do not yet want to create our own custom WSRP producer; this will be
discussed later in the section “Implementing a WSRP Producer.” Instead, we will use a test WSRP
service built by NetUnity (http://www.netunitysoftware.com), a company that provides products
and services that enable businesses to develop and deploy portal solutions based on WSRP using
the Microsoft .NET platform.

Before using the WSRP consumer web part, you need to configure at least one trusted WSRP
producer on the Microsoft Office SharePoint Server 2007 server.

■Note If you fail to configure a trusted WSRP producer for your Microsoft Office SharePoint Server 2007 server,
you will see an error message when you try to configure a WSRP Consumer web part, stating the following: “No
WSRP producers are configured for this site. Contact your administrator to configure trusted WSRP producers.”

In this section, we define two trusted WSRP producers, both referring to the NetUnity test
WSRP producer. Normally, we would only add one entry to the WSRP producer;\, the only reason
we do this twice is to show you that the portal user interface allows you to choose a WSRP producer
from the list that is available. The following procedure explains how to configure a trusted WSRP
producer that refers to the NetUnity test WSRP producer:

1. Open the Config folder of Microsoft Office SharePoint Server 2007. By default, this folder
can be found on the following location: [drive letter]:\Program Files\Microsoft Office
Servers\12.0\Config.

2. In this folder, locate the file called TrustedWSRPProducers.xml.sample and rename it
TrustedWSRPProducers.config.

3. Open TrustedWSRPProducers.config and replace its contents with Listing 6-2.

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS 331

Listing 6-2. Registering a WSRP Producer

<Configuration>
<Producer Name=”Sample1” AllowScripts=”true”>
<ServiceDescriptionURL>
http://wsrp.netunitysoftware.com:80/WSRPTestService/WSRPTestService.asmx
</ServiceDescriptionURL>
<RegistrationURL>
http://wsrp.netunitysoftware.com:80/WSRPTestService/WSRPTestService.asmx
</RegistrationURL>
<MarkupURL>
http://wsrp.netunitysoftware.com:80/WSRPTestService/WSRPTestService.asmx
</MarkupURL>
<PortletManagementURL>
http://wsrp.netunitysoftware.com:80/WSRPTestService/WSRPTestService.asmx
</PortletManagementURL>

</Producer>
<Producer Name=”Sample2” AllowScripts=”true”>
<ServiceDescriptionURL>
http://wsrp.netunitysoftware.com:80/WSRPTestService/WSRPTestService.asmx
</ServiceDescriptionURL>
<RegistrationURL>
http://wsrp.netunitysoftware.com:80/WSRPTestService/WSRPTestService.asmx
</RegistrationURL>
<MarkupURL>
http://wsrp.netunitysoftware.com:80/WSRPTestService/WSRPTestService.asmx
</MarkupURL>
<PortletManagementURL>
http://wsrp.netunitysoftware.com:80/WSRPTestService/WSRPTestService.asmx
</PortletManagementURL>

</Producer>
</Configuration>

■Note You can also specify a proxy address using the ProxyAddress attribute of the <Configuration> ele-
ment. This address is used when outbound requests are made from the WSRP Consumer web part and no proxy is
configured for the web application or the front-end server. You can also add an <SsoApplication> element that
allows you to specify the name of the SSO application to be used when authenticating to the WSRP producer. Sin-
gle Sign-On (SSO) is discussed in detail in Chapter 8. The TrustedWSRPProducers.xml.sample file contains
examples of both the ProxyAddress attribute and the <SsoApplication> element.

At this point, you have defined trusted WSRP producers and web services corresponding to the
four WSRP interfaces: Service Description, Registration, Markup, and Portlet Management. See the
section “Interfaces” earlier in this chapter if you want more information about these interfaces.

Now you are ready to add a WSRP Consumer web part to a page in your portal. In order to test
this, we have created a test SharePoint site called WSRPTest. In the next procedure, we will show you
how to add and configure a WSRP Consumer web part:

■Note If the WSRP consumer does not support secure communication, you will receive a warning that the WSRP
producer does not use encryption, so it is possible that network communication might be intercepted. If that is not
a problem, you can ignore the message and proceed.

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS332

1. Navigate to the WSRPTest site.

2. Click Site Actions ➤ Edit Page. This opens the default web part page in edit mode.

3. Choose any web part zone and click the Add a Web Part link. This opens the Add Web Parts
— Webpage Dialog window.

4. Locate All Web Parts ➤ Business Data ➤ WSRP Consumer Web Part and check the WSRP
Consumer Web Part check box.

■Note The WSRP Consumer web part can be found in any site created using any Microsoft Office SharePoint
Server 2007 site definition.

5. Click Add. This adds the WSRP Consumer web part to the default web part page.

6. Click the Open the tool page link in the WSRP Consumer web part. This opens the Web Part
tool pane.

7. Open the Producer drop-down list and select the Sample1 producer.

8. A new drop-down list called Portlet appears. This drop-down list displays all the portlets that
are available on a given WSRP producer. Choose the NetUnity: Document Manager portlet.

9. Since the NetUnity test WSRP producer does not require authentication, you can keep the
default User Identification setting that indicates that anonymous access is used.

10. Click OK.

Now, the WSRP Consumer web part tries to communicate with the portlet. In the meantime,
the web part shows a message indicating that it is waiting for a response from the portlet server.
What happens next depends on the portlet you are consuming. Some portlets will show you a
screen that allows you to configure how you want to consume the portlet. Others, such as the Docu-
ment Manager portlet, just show the result, as can be seen in Figure 6-5.

Figure 6-5. The Document Manager portlet is consumed in a SharePoint portal.

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS 333

Implementing a WSRP Producer
In this section, we will show you how to create your own WSRP producer and consume it via the
WSRP Consumer web part. On the GotDotNet web site (http://www.gotdotnet.com), you can find
the WSRP web service toolkit for SharePoint Products and Technologies 2003. In the previous sec-
tion, “Configuring a WSRP Consumer for Microsoft Office SharePoint Server 2007,” you saw that the
toolkit contains a WSRP consumer. The toolkit can also be used to create WSRP producers. As this
toolkit really is no more than a proof of concept for the SharePoint development team, and the
documentation is quite limited, we do not advise you to use it.

The only option for .NET developers to create WSRP producers that we know and can
recommend is to use the commercial WSRP .NET framework created by NetUnity (http://www.
netunitysoftware.com). This framework makes creating WSRP producers very easy. You can sign up
for a limited free trial version of the framework at the NetUnity web site. The example WSRP pro-
ducer created in this section is built using NetUnity software.

In this section, we are using version 2.0.0.1 of the NetUnity WSRP .NET Framework, a frame-
work that has support for .NET 2.0. Follow the software’s installation procedure and make sure you
select all WSRP .NET Framework components and installation options:

• Register Framework Library in Global Assembly Cache (GAC)

• Install WSRP Producer Database Setup Utility

• Install Visual Studio 2005 Templates

• Install Documentation and Development Samples

After installing the WSRP .NET Framework, you need to create a virtual directory that is going
to contain the custom WSRP producer. This is explained in the following procedure:

1. Go to the following location: [drive letter]\inetpub\wwwroot.

2. Create a new folder called testwsrpproducer.

3. Open a command prompt and type inetmgr. This opens the Internet Information Services
(IIS) Manager.

4. Expand the [server name] (local computer) node.

5. Expand the SharePoint web application of your choice.

6. Right-click the SharePoint web application node and choose New ➤ Virtual Directory.
This opens the Virtual Directory Creation Wizard.

7. Click Next.

8. Specify the following Alias: testwsrpproducer.

9. Click Next.

10. Enter the following path: [drive letter]\inetpub\wwwroot\testwsrpproducer.

11. Click Next twice, and then click Finish.

12. Switch back to Internet Information Services (IIS) Manager, locate the new testwsrppro-
ducer node, and right-click it. Then, choose Properties.

■Note If you try to create a new WSRP producer directly within Visual Studio 2005, you will get an error mes-
sage stating the Visual Web Developer does not support creating web sites on a SharePoint web application.

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS334

13. Click the Create button.

14. Click OK.

Now, you have successfully created a new virtual directory that is able to hold the
testwsrpproducer WSRP producer. In the next procedure, you will learn how to create your own
custom WSRP producer.

1. Start Visual Studio 2005.

2. Choose File ➤ New ➤ Project ➤ Web Site. This opens the New Web Site dialog box.

3. Locate the My Templates section and choose WSRP Producer.

4. Set the Location drop-down list to HTTP.

5. In the location value text box, enter the URL of the virtual folder you created earlier.
Our URL looks like this: http://localhost/testwsrpproducer.

6. Click OK. The WSRP producer is created.

You have successfully created a WSRP producer called WsrpProducer.asmx. It is easy to create a
WSRP producer using the NetUnity WSRP framework; all you need to do is create a new web service
that inherits from the NetUnity.WSRP.Producer class. Listing 6-3 is created using the WSRP Producer
template and shows a working WSRP producer:

Listing 6-3. Base WSRP Producer Class

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using NetUnity.WSRP;

[WebService(Namespace = “urn:TODO:Rename”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[RequiresRegistration(true)]
[SoapDocumentService(RoutingStyle=SoapServiceRoutingStyle.RequestElement)]
public class WsrpProducer : NetUnity.WSRP.Producer
{

public WsrpProducer ()
{
}

}

This is all the code we need to create a WSRP producer that suits the purposes of the example
described in this section. The [WebService] attribute can be used to specify a default namespace for
the producer. The [WebServiceBinding] attribute is used to indicate that this service conforms to the
WS-I Basic Profile 1.1 (you can find more information about this profile at the following location:
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html). The [RequiresRegistration]
attribute indicates that this WSRP producer requires clients to be registered. By adding the
[SoapDocumentService] attribute, you indicate that the web server needs to locate the correct method
by looking at the HTTP Request-URI rather than the SoapAction HTTP Header.

Next, we will create two portlets. Later, the SharePoint WSRP Consumer web part will reuse the
user interface of those portlets by accessing the WSRP producer.

Although our example WSRP producer contains no custom code at all, by default, a NetUnity
WSRP producer is able to find all portlets in the same assembly via reflection. So, when a WSRP
consumer calls the getServiceDescription() method described in the WSRP interfaces section, the
metadata for all portlets in the producer assembly will be returned. You can override this behavior

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS 335

via the web.config file of a WSRP Producer project and restrict which portlets have their metadata
returned or allow the producer to search other assemblies for portlets. In the next procedure, you
will create two test portlets:

1. Right-click the App_Code folder of the TestWSRPProducer project and choose Add ➤ Add
New Item.

2. In the Templates section, choose the WSRP Portlet and enter the name TestPortlet.cs.

3. Click Add.

4. Locate the OnRenderView() method and add the following code:

Response.Write(“Hello, world!”);

■Note Make sure to add portlets to the App_Code folder of the project; otherwise they will not work.

The complete code for the TestPortlet portlet looks like Listing 6-4.

Listing 6-4. The Test WSRP Producer

using System;
using System.Web.UI;
using NetUnity.WSRP;

[OfferedHandle(“6406eb81-1c38-4039-94b9-19a3599dd88a”)]
[Title(“TestPortlet”)]
[DisplayName(“TestPortlet”)]
[Modes(PortletMode.View, PortletMode.Edit, PortletMode.Help, ➥
PortletMode.Preview)]
[WindowStates(WindowState.Maximized, WindowState.Minimized, ➥
WindowState.Normal, WindowState.Solo)]
public class TestPortlet : NetUnity.WSRP.Portlet
{
protected override void OnRenderView()
{
Response.Write(“<H1>Hello World</H1>”);

}

protected override void OnRenderEdit()
{
//TODO: Add code to render the edit view

}

protected override void OnRenderHelp()
{
//TODO: Add code to render portlet help text

}

protected override void OnRenderPreview()
{
//TODO: Add code to render the portlet in preview mode

}

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS336

protected override void OnAction()
{
//TODO: Add code to handle blocking action (no rendering)
}

}

Now it is time to create a second portlet called AnotherPortlet.cs. The following procedure
explains how:

1. Right-click the TestWSRPProducer project and choose Add ➤ Add New Item.

2. In the Templates section, choose the WSRP Portlet and enter the name AnotherPortlet.cs.

3. Click Open.

4. Locate the OnRenderView() method and add the following code:

Response.Write(“<H1>Hello</H1>, from my second portlet!”);

5. Compile the project.

At this point, you have successfully created a WSRP producer that can be consumed so that
you can reuse the user interface of two test portlets. As you may have noticed, creating portlets
and building HTML programmatically is very similar to creating web parts. Next, you will config-
ure the WSRP Consumer web part so that it knows which WSRP producer to consume and which
portlet to reuse.

The section “Configuring a WSRP Consumer for Microsoft Office SharePoint Server 2007” ear-
lier in this chapter explained how to configure a trusted WSRP producer. Please refer to this section
if you need more information about this topic. In the following procedure, you will learn how to add
configuration information so that the WSRP consumer is able to interact with our custom WSRP
producer:

1. Open the Config folder of Microsoft Office SharePoint Server 2007. By default, this folder
can be found on the following location: [drive letter]:\Program Files\Microsoft Office
Servers\12.0\Config.

2. In this folder, locate TrustedWSRPProducers.config.

3. Open TrustedWSRPProducers.config and add the code from Listing 6-5.

Listing 6-5. Add the Test WSRP Producer to the SharePoint WSRP Config File

<Configuration ProxyAddress=””>
<Producer Name=”MyProducer” AllowScripts=”true”>
<ServiceDescriptionURL>
http://[WSRP producer URL]/testwsrpproducer/WsrpProducer.asmx
</ServiceDescriptionURL>
<RegistrationURL>
http://[WSRP producer URL]/testwsrpproducer/WsrpProducer.asmx
</RegistrationURL>
<MarkupURL>
http://[WSRP producer URL]/testwsrpproducer/WsrpProducer.asmx
</MarkupURL>
<PortletManagementURL>
http://[WSRP producer URL]/testwsrpproducer/WsrpProducer.asmx
</PortletManagementURL>

</Producer>
</Configuration>

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS 337

■Note The example described in this section is very basic. If you want to create advanced WSRP producers, you
should check out the samples folder called WSRPNET20Tutorial in the NetUnity Software directory.

The last step in this example is the configuration of the WSRP consumer. If you need more
information on how to do this, please refer to the earlier section “Configuring a WSRP Consumer for
Microsoft Office SharePoint Server 2007.” If you open a browser and navigate to the SharePoint site
containing the WSRP Consumer web part, you will notice the WSRP consumer lets you choose one
of the available portlets. This is shown in Figure 6-6.

Figure 6-6. Choose to consume the TestPortlet WSRP portlet.

In this example, we chose to consume the TestPortlet WSRP portlet. This portlet displays the
text “Hello World”. The result is shown in Figure 6-7.

Figure 6-7. Consuming the TestPortlet WSRP portlet

Summary
In this chapter, you learned about Web Services for Remote Portlets. You learned about other
approaches for remote content and application service reuse. We looked at common architectures
for solutions incorporating WSRP. Then, we discussed the advantages and disadvantages of WSRP.
We looked in greater detail into the WSRP specification, taking a closer look at all the important
aspects of WSRP. You also learned how to configure a generic WSRP Consumer web part for
Microsoft Office SharePoint Server 2007. Finally, you saw how to create a WSRP producer using
the NetUnity WSRP framework.

CHAPTER 6 ■ REUSING PRESENTATION LAYERS VIA WEB SERVICES FOR REMOTE PORTLETS338

Changing Code Privileges Using
Impersonation, Elevation, and
Delegation

Every web part is executed under a given identity. In most cases, this will be the identity of the
current logged-on user. But there are times when a web part needs to be able to assume another
user context in order to do its work. Normally speaking, changing identities is only a temporary sit-
uation. Assuming another user context is widely known as impersonation, although we prefer to use
the term impersonation in a narrower sense. We will discern two types of user identity assumption:
impersonation and elevation, which differ only in their intent. We talk about impersonation when a
process does something on behalf of someone else. A well-known impersonation scenario is when a
web part impersonates the identity of an end user to process a request on behalf of the user instead
of using the identity of the application pool that runs the web part. A web part elevates when it does
something that the current user is not allowed to do. In those types of scenarios, a super account is
used to perform the required actions. Elevation is particularly useful for rollup-type web parts: web
parts that provide overviews of some sort. You can also discern two types of impersonation based
on scope. We call it impersonation when a server process impersonates the client security context
on its local system; we call it delegation when the server process impersonates the client security
context on a remote system. This chapter shows you all you need to know about doing imperson-
ation, elevation, and delegation within Microsoft Office SharePoint Server 2007.

Setting Up the Development Environment
In order to test the examples discussed in this chapter, we had to set up a couple of test accounts
and test web parts. If you want to try out the examples, we advise you to do the same. We have cre-
ated three test user accounts, as described in Table 7-1.

Table 7-1. Test User Accounts Used in This Chapter

Name Password Group

NormalA normala Users

NormalB normalb Users

SuperB superb Administrators

339

C H A P T E R 7

■Caution In the examples in this chapter, we often use the SuperB administrator account to demonstrate a spe-
cific technique. That does not mean that we advise you to use super accounts that are granted all the permissions
you can think of, because we do believe in granting a user account the minimal set of required permissions
needed to accomplish a task. We use these accounts for educational purposes only.

The following procedure details how to add this group of test users as local user accounts:

1. Open Windows Explorer.

2. Expand the Control Panel node.

3. Expand Administrative Tools.

4. Double-click the Computer Management node.

5. Go to Computer Management (Local) ➤ System Tools ➤ Local Users and Groups ➤ Users.

6. Right-click the Users node and choose New User.... This opens the New User dialog box.

7. Specify the following value for the User name text field: NormalA.

8. Specify the following value for the Password text field: normala.

9. Specify the following value for the Confirm password text field: normala.

10. Uncheck the User must change password at next logon check box.

11. Check the User cannot change password check box.

12. Check the Password never expires check box.

13. Click Create. This adds a normal user to the server.

14. Repeat the previous steps for the users NormalB and SuperB. After adding these user
accounts, click the Close button.

15. Select the Groups node.

16. Double-click the Administrators group. This opens the Administrators Properties dialog box.

17. Click Add.... This opens the Select Users dialog window.

18. In the Enter the object names to select text area, enter the value SuperB, and then click the
Check Names button.

19. Click OK. The SuperB user account is added to the local administrators group.

At this point, you have successfully added local test users to the server. In the next procedure,
you will assign SharePoint permissions to the newly created normal user accounts:

1. Open a browser and navigate to a SharePoint test site.

2. Click Site Actions ➤ Site Settings. Alternatively, if you browse to a top-level site, click Site
Actions ➤ Site Settings ➤ Modify All Site Settings. This opens the Site Settings page.

3. In the Users and Permissions section, click the People and groups link. This opens the Peo-
ple and Groups: [site collection] Members page.

4. In the Groups section on the left, click the [site collection] Members link. This opens the
People and Groups: [members group] page.

5. Click New ➤ Add Users in the list action menu. This opens the Add Users: [site] page.

6. In the Add Users section, in the Users/Groups text area, enter the following value:
NormalA;NormalB.

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION340

7. Click the Check Names icon.

8. In the Give Permission section, under the Give Permission label, make sure the Add users to
a SharePoint group radio button is selected and make sure the Add users to a SharePoint
group drop-down list is set to [members group] [Contribute].

9. Click OK.

Next, we specify a Full control permission set for the remaining super test users. This is shown
in the next procedure:

1. Open SharePoint 3.0 Central Administration.

2. Click Application Management. This opens the Application Management page.

3. In the Application Security section, click the Policy for Web application link. This opens the
Policy for Web Application link.

4. Click Add Users. This opens the Add Users page.

5. In the Web Application section, in the Web Application drop-down list, make sure you have
selected the correct SharePoint web application.

6. Click the Next button.

7. In the Choose Users section, enter the value SuperB in the Users text area.

8. Click the Check Names icon.

9. In the Choose Permissions section, under the Permissions label, select the Full Control -
Has full control check box.

10. In the Choose System Settings section, select the Account operates as System check box.
This makes sure that any changes made by the SuperB account will be recorded as made by
the system instead of the actual SuperB user account.

11. Click Finish.

■Note Making accounts “operate as System” is a great option in impersonation, elevation, and delegation
scenarios. The System account is so generic, it will be more clear to the end user that some action was executed
by SharePoint itself, and not by another user. If an item in a SharePoint list is modified using an account that
operates as System, the Modified By column says that an item has been changed by the System account. If you
plan to create a user account and use it in such scenarios, we advise you to select this option.

Finally, we have created a new web part called SuperPart. This web part is created using the
Web Part project template of Visual Studio 2005 extensions for Windows SharePoint Services 3.0,
which we discussed in detail in Chapter 1. The SuperPart web part is used to demonstrate what
happens when a piece of code is executed under a different identity. Complete code listings for the
SuperPart web part will be provided later in the chapter.

Impersonation and Elevation Within the
SharePoint Object Model
The possibilities in the Microsoft Office SharePoint Server 2007 object model for implementing
impersonation and elevation scenarios have been enhanced considerably, compared to the 2003
version of the SharePoint object model.

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION 341

In any .NET application, you can impersonate or elevate code privileges using the LogonUser()
and RevertToSelf() Win32 API functions to access resources that are not controlled by the
SharePoint API. These approaches will be discussed in detail later, in the sections “LogonUser”
and “RevertToSelf and RunWithElevatedPrivileges.”

In Microsoft Office SharePoint Server 2007, implementing impersonation and elevation sce-
narios can (and actually needs to) be done without using Win32 API functions, and has become
easier as well as more reliable.

■Note In SharePoint 2003, using the LogonUser() and RevertToSelf() Win32 API functions did not always
work correctly when accessing resources controlled by the SharePoint API. This was a bug in the product, and the
exact scenarios where these functions failed were poorly documented. This is solved with the introduction of the
SPUserToken object and RunWithElevatedPrivileges method. When accessing SharePoint resources, you
should always use these methods.

You can use the SPUserToken object to impersonate code (discussed later in the section
“SPUserToken”), and you can use the RunWithElevatedPrivileges method to elevate code (dis-
cussed in the section “RevertToSelf and RunWithElevatedPrivileges”).

LogonUser
Microsoft Office SharePoint Server 2007 offers capabilities to make requests using another user’s
credentials easy. These capabilities are discussed in the sections “SPUserToken” and “RevertToSelf
and RunWithElevatedPrivileges.” The LogonUser()Win32 API call is comparable to using SharePoint
SPUserToken objects; both allow you to impersonate any given user account. The difference between
the two lies in the kind of resources that you can access. Use the LogonUser() function to access
non-SharePoint resources. SPUserToken objects can help you implement impersonation scenarios
where you want to access resources that are controlled by the SharePoint object model.

When you pass an SPUserToken object to the constructor of certain objects within the SharePoint
object model (such as SPSite), the object is instantiated within the context of the user represented
by SPUserToken. As useful as that might be, this technique will not do you much good when you
need to interact with other resources, such as accessing a file located on the server. You will still
need the LogonUser() function for that. In this section, you will learn how to use the LogonUser()
Win32 API call to impersonate a user account. In the next section, you will learn how to use the
SPUserToken object.

If you want to try out the code, you should create a test SharePoint site called PrivilegesTest
and make sure the user account called NormalA is added to this site and has contributor permis-
sions. This was described in detail in the section “Setting Up the Development Environment.” The
current members of this site are shown in Figure 7-1.

■Note User SuperB is also a member of this site, but because this account operates as a System account, it is
not shown on the Members page.

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION342

Figure 7-1. The Manage Users page from the PrivilegesTest site

In this section, we will use a web part called SuperPart that uses the LogonUser() function to
impersonate another user account. If you try to use this web part in a SharePoint environment that
runs under the default security permission set (WSS_Minimal), it fails. This is because the web part
needs considerable security privileges. The easiest way to solve this is to set the trust level in the
<trust> element in the web.config file of the SharePoint application’s root web folder to Full, like this:

<trust level=”Full” originUrl=”” processRequestInApplicationTrust=”false” />

This is not exactly the best security practice. If you need a reminder why setting the trust level
to Full can be dangerous, try out Listing 7-1 in a web part. The code in this web part reboots the
server. Make sure the trust level in the web.config file is set to Full.

Listing 7-1. Dangers of Full Trust: Rebooting the Server Within a Web Part

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;

using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;

namespace LoisAndClark.ImpersonationAndElevation
{

[Guid(“7f6654e9-6a4d-4e3b-85e3-b8f9c98cb42d”)]
public class SuperPart : System.Web.UI.WebControls.WebParts.WebPart
{
private const uint REBOOT = 2;

[DllImport(“user32.dll”, SetLastError = true)]
static extern bool ExitWindowsEx(uint uFlags, uint uReason);

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION 343

public SuperPart()
{

this.ExportMode = WebPartExportMode.All;
}

protected override void CreateChildControls()
{

try
{

ExitWindowsEx(REBOOT, 1);
}
catch (Exception err)
{

Controls.Add(new LiteralControl(err.Message));
}

}
}

}

■Note This web part’s constructor sets the ExportMode property to WebPartExportMode.All. This code is
added automatically whenever you generate a web part using the Visual Studio 2005 extensions for Windows
SharePoint Services 3.0. Although it is of no importance to the code discussed in this chapter, it might be useful to
understand that this property determines which of a web part’s properties can be exported. Other possible values
are None and NonSensitiveData. Properties cannot be exported by default; only when they are decorated with the
[Personalizable] attribute. If you set the Export mode to None, export is disabled for the web part. If you set the
Export mode to NonSensitiveData, the personalization data will not be exported if the [Personalizable] attrib-
ute specifies that a property is sensitive by setting the isSensitive parameter to true.

Having noted that setting the trust level to Full is a liability in production environments, doing
so is great for experimenting with code and for trying out the examples in this book. Alternatively,
you can deploy assemblies to the Global Assembly Cache (GAC).

It is possible to impersonate a user account within the SharePoint object model, which is dis-
cussed in section “SPUserToken.” It might also be useful to impersonate a user account to be able
to access some resource on the server. For such scenarios, using the SharePoint SPUserToken object
will not help you. In the next example, you will see how to use the LogonUser()Win32 API function
call to access a text file on the server. We will create a text file and explicitly deny access to user
NormalA. We will then impersonate the account and use the SuperB account to access the text file.
The next procedure shows how to set up the test text file:

1. Create a new text file called test.txt in the c:\temp folder.

2. Add some text to this file.

3. Open Windows Explorer, right-click test.txt, and choose Properties. This opens the test.txt
Properties dialog window.

4. Click the Security tab.

5. Click the Advanced button. This opens the Advanced Security Settings for test.txt window.

6. Deselect the Allow inheritable permissions from the parent to propagate to this object and
all child objects check box. This opens the Security dialog window.

7. Click Copy.

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION344

8. Click OK.

9. Click the Add button. This opens the Select Users or Groups dialog window.

10. Add [domain name]\NormalA user and click OK.

11. Select the Full Control Deny check box.

Now that the test text file and its permissions are set up correctly, we are ready to create a web
part that uses the user SuperB account to access the text file’s contents. Reading and rendering the
content of a text file in a web part can be done using the following two lines of code:

string strText = File.ReadAllText(@”C:\Temp\test.txt”);
Controls.Add(new LiteralControl(strText + “</br>”));

This fails if you are logged in as user NormalA. Now, we will add code to impersonate the
SuperB account. We will access the default page of the PrivilegesTest site while logged in as user
NormalA, and we will read the contents of the test.txt test file.

The impersonation code makes a Win32 API call to the LogonUser() function to impersonate
the SuperB user account. To do this, you will need to import two DLLs: advapi.dll and kernel32.dll.
This can be done via the [DllImport] attribute, which can be found in the
System.Runtime.InteropServices namespace. Add the import statements to the web part class:

[DllImport(“advapi32.dll”, SetLastError = true)]
static extern bool LogonUser(
string principal,
string authority,
string password,
LogonTypes logonType,
LogonProviders logonProvider,
out IntPtr token);

[DllImport(“kernel32.dll”, SetLastError = true)]
static extern bool CloseHandle(IntPtr handle);

■Note If you call the SetLastError() function, you can use the GetLastError() function to determine what
went wrong if the call to LogonUser() fails.

Advapi32.dll contains the LogonUser() function, which attempts to log a user on to a local
computer. The most important arguments that need to be passed to this function are username,
domain, and password. The function returns a boolean value indicating whether the logon was
successful. A handle is passed (by reference). This handle is very important because it can be
used to create a new Windows identity.

You might have noticed that advapi32.dll uses the LogonTypes and LogonProviders types. These
types are enumerations that can be used as arguments for the LogonUser() function. You will need
to add the following code to your web part class:

enum LogonTypes : uint
{
Interactive = 2,
Network,
Batch,
Service,
NetworkCleartext = 8,
NewCredentials

}

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION 345

enum LogonProviders : uint
{
Default = 0, // default
WinNT35,
WinNT40, // uses NTLM
WinNT50 // negotiates Kerberos or NTLM

}

The LogonTypes enumeration contains the following values:

• Interactive: This type of logon operation is used by users who log on to a machine interac-
tively, for example, by logging on via a terminal server. This type of logon is less efficient
because it caches logon information to cater to the need to perform disconnected operations.

• Batch: This type of logon operation is used by batch processes that execute operations on
behalf of a user without their direct intervention. This is a high-performance logon type that
does not cache logon information.

• Service: This type of logon is used by services. The account that is used must be granted the
service privilege.

• NetworkCleartext: This type of logon is used by processes that access a machine from the
network.

• NewCredentials: This type of logon allows a caller to clone the current security token and
specify new credentials for outbound connections.

The LogonProviders enumeration contains the following values:

• efault: This option uses the standard logon provider for the system and is recommended.

• WinNT35: This option uses the Windows NT 3.5 logon provider.

• WinNT40: This option uses the Windows NT 4.0 logon provider.

• WinNT50: This option uses the Windows NT 5.0 logon provider.

Kernel32.dll contains the CloseHandle() function, which closes an open object handle. This
function is used to close the handle that is the result of the LogonUser() call.

The WindowsIdentity class in the System.Security.Principal namespace represents a Windows
user. It can be useful to retrieve the current Windows identity by calling the GetCurrent() method of
the WindowsIdentity class, so you are able to restore the original user context later. If you call the
advapi32.dll LogonUser() function, you will obtain a token that can be used to create a new Windows
identity. In our example, this will be the SuperB account. If you now call the Impersonate() method of
this Windows identity object, a WindowsImpersonationContext object is returned that impersonates
the user represented by the WindowsIdentity object. Attempts to read the contents of the test.txt file
will succeed, even if you are logged in as user NormalA, because the file is read in the security context
of user SuperB.

Calling the Undo() method of the WindowsImpersonationContext object reverts the user context,
and then you need to clean up the open object handle (the token) by calling the Kernel32.dll
CloseHandle() function. The complete code for this web part is found in Listing 7-2.

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION346

Listing 7-2. Using the LogonUser() Function in a Web Part

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using System.Security.Principal;
using System.IO;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;

namespace LoisAndClark.ImpersonationAndElevation
{

[Guid(“47500629-54d5-4ac4-ac44-097b4ce2e3eb”)]
public class SuperPart : System.Web.UI.WebControls.WebParts.WebPart
{
[DllImport(“advapi32.dll”, SetLastError = true)]
static extern bool LogonUser(
string principal,
string authority,
string password,
LogonTypes logonType,
LogonProviders logonProvider,
out IntPtr token);

[DllImport(“kernel32.dll”, SetLastError = true)]
static extern bool CloseHandle(IntPtr handle);

enum LogonTypes : uint
{
Interactive = 2,
Network,
Batch,
Service,
NetworkCleartext = 8,
NewCredentials

}

enum LogonProviders : uint
{
Default = 0, // default
WinNT35,
WinNT40, // uses NTLM
WinNT50 // negotiates Kerberos or NTLM

}

public SuperPart()
{
this.ExportMode = WebPartExportMode.All;

}

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION 347

protected override void CreateChildControls()
{
try
{
WindowsImpersonationContext objUserContext;
IntPtr objToken;
WindowsIdentity objOrgIdentity;
WindowsIdentity objIdentity;

bool blnReturn = LogonUser(@”SuperB”, “web1”, “superb”, ➥
LogonTypes.Interactive, LogonProviders.Default, out objToken);

string strValue = String.Empty;

if (blnReturn)
{
objOrgIdentity = WindowsIdentity.GetCurrent();
objIdentity = new WindowsIdentity(objToken);
objUserContext = objIdentity.Impersonate();

string strText = File.ReadAllText(@”C:\Temp\test.txt”);
Controls.Add(new LiteralControl(strText + “</br>”));

strValue += “Identity name after impersonation: “ + “ “ ➥
+ objIdentity.Name + “
”;
objUserContext.Undo();
strValue += “Identity name when impersonation is undone: “ + ➥
objOrgIdentity.Name;

CloseHandle(objToken);
}
else
{
strValue = “Logon failed!”;

}

Controls.Add(new LiteralControl(strValue));
}
catch (Exception err)
{
Controls.Add(new LiteralControl(err.Message));

}

}
}

}

The result of executing this web part is shown in Figure 7-2.

Figure 7-2. The SuperPart web part uses the LogonUser() function to access test.txt.

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION348

As you can see in Figure 7-2, the content of test.txt is read successfully, although we are logged
in using the NormalA account, which is not allowed to read test.txt. This is because the SuperPart
web part uses the LogonUser() function to impersonate the SuperB account, which has sufficient
rights to read test.txt.

In this section, you have learned how to access a resource on the server using the LogonUser()
Win32 API call.

SPUserToken
If you want to impersonate another user account to interact with the SharePoint object model, you
can use the SPUserToken object. In Microsoft Office SharePoint Server 2007, several constructors of
SPSite objects accept an SPUserToken object as one of the parameters to establish a different secu-
rity context.

To demonstrate the use of the SPUserToken object, we will programmatically check out a file on
behalf of a different user. We have created a test document called Test.doc and uploaded it to the
Shared Documents document library (see Figure 7-3). Make sure that versioning is enabled on the
Shared Documents document library. Later in this section, we will use the version history of this
document to check whether the code involving the SPUserToken object has succeeded.

■Note This example is chosen for educational purposes only, and is probably not something you would do in real
life. Recently, we have used the SPUserToken object in combination with the PeoplePicker control (discussed in
Chapter 2) to create a web part that is able to determine the roles and site access rights for any given user. That is
an example of a realistic use of the SPUserToken object.

Figure 7-3. The Shared Documents document library

In the next example, we will programmatically check out and then check in a document. We
have created a web part called SuperPart that is responsible for doing this. The code retrieves the
current site collection from the current SharePoint context and gets the PrivilegesTest SharePoint
site from this site collection. By default, you are not allowed to check out and check in files in
SharePoint using HTTP GET requests. To get around that, our code sample allows unsafe updates
on the PrivilegesTest SharePoint site. An instance of SPFile associated with the test document can
be retrieved from the PrivilegesTest SPWeb instance. Finally, the code adds some information to the
test document’s versioning comment. The code responsible for checking out and checking in the
test document looks like this (it will be added to the Load event of a web part shortly):

SPSite objSite = SPControl.GetContextSite(Context);
SPWeb objWeb = objSite.AllWebs[“PrivilegesTest”];
objWeb.AllowUnsafeUpdates = true;
SPFile objFile = objWeb.GetFile(“Shared Documents/Test.doc”);
objFile.CheckOut();
SPUser objUser = objFile.CheckedOutBy;
objFile.CheckIn(“check-in version: “ + objFile.UIVersion + ➥
“ by “ + objUser.Name);

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION 349

The complete code listing of the SuperPart web part looks like Listing 7-3.

Listing 7-3. Checking Out a File Stored in a Document Library in a Web Part

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;

namespace LoisAndClark.ImpersonationAndElevation
{
[Guid(“47500629-54d5-4ac4-ac44-097b4ce2e3eb”)]
public class SuperPart : System.Web.UI.WebControls.WebParts.WebPart
{
public SuperPart()
{
this.ExportMode = WebPartExportMode.All;

}

protected override void OnLoad(EventArgs e)
{
SPSite objSite = SPControl.GetContextSite(Context);
SPWeb objWeb = objSite.AllWebs[“PrivilegesTest”];
objWeb.AllowUnsafeUpdates = true;
SPFile objFile = objWeb.GetFile(“Shared Documents/Test.doc”);
objFile.CheckOut();
SPUser objUser = objFile.CheckedOutBy;
objFile.CheckIn(“check-in version: “ + objFile.UIVersion + “ by “ +
objUser.Name);

}
}

}

In this example, we first navigated to a page containing the SuperPart web part while logged
in as user SuperB. This caused the SuperPart web part to load and execute, which checked out and
then checked in a document in a document library under the SuperB system account. Then, we
logged in as user NormalA and went back to the same page, causing the creation of a new version of
Test.doc under the identity of NormalA. Figure 7-4 shows the version history of the test document.
The version history can be used to check our results. As you can see, the document was first
updated by a system account, followed by an update by the NormalA user.

Figure 7-4. Version history of the test document

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION350

Now we are ready to show how to impersonate a user account using the SPUserToken object. We
will access the default page of the PrivilegesTest site while logged in as SuperB, but we will check out
and check in the file using the NormalB account. To make it easier to concentrate on the imperson-
ation part of the code, copy the code concerning document modification to a new private method
called CheckInAndOut() in the web part.

First, the web part needs to retrieve a valid SPUser object from the current SharePoint site rep-
resenting the NormalB user account. We will use the AllUsers collection of the current SharePoint
site to retrieve the NormalB user account. Then, we will need to create an instance of an SPSite
object in the context of the NormalB user account. This is done by passing a valid user token repre-
senting the NormalB user account. This token is retrieved from a property called UserToken that is a
member of an SPUser object. The UserToken object needs to be passed to an SPSite object’s con-
structor in order to impersonate a given user. This is shown in the following code fragment:

SPUser user = web.AllUsers[@”web1\NormalB”];
SPSite objSite = new SPSite(“http://web1”, user.UserToken);

The complete code for the web part that uses the NormalB account to check out and then
check in a document is shown in Listing 7-4.

Listing 7-4. Using the SPUserToken Object in a Web Part

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;

namespace LoisAndClark.ImpersonationAndElevation
{
[Guid(“47500629-54d5-4ac4-ac44-097b4ce2e3eb”)]
public class SuperPart : System.Web.UI.WebControls.WebParts.WebPart
{
public SuperPart()
{
this.ExportMode = WebPartExportMode.All;

}

protected override void CreateChildControls()
{
try
{
string strValue = String.Empty;

SPSite site = SPControl.GetContextSite(Context);
SPWeb web = site.AllWebs[“PrivilegesTest”];
SPUser user = web.AllUsers[@”web1\NormalB”];

CheckInAndOut(user);
}
catch (Exception err)
{
Controls.Add(new LiteralControl(err.Message));

}
}

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION 351

private void CheckInAndOut(SPUser user)
{
SPSite objSite = new SPSite(“http://web1”, ➥
user.UserToken);
SPWeb objWeb = objSite.AllWebs[“PrivilegesTest”];

objWeb.AllowUnsafeUpdates = true;
SPFile objFile = objWeb.GetFile(“Shared Documents/Test.doc”);
objFile.CheckOut();
SPUser objUser = objFile.CheckedOutBy;
objFile.CheckIn(“check-in version: “ + objFile.UIVersion + “ by “ +
objUser.Name);

Controls.Add(new LiteralControl(objFile.Name +
“ checked out by: “ + objUser.Name));

}
}

}

The result of executing this web part is shown in Figure 7-5.

Figure 7-5. The SuperPart uses the SPUserToken object to impersonate the NormalB account.

It does not matter which account you use to log in to the SharePoint site containing the SuperPart
web part; the web part uses the SPUserToken object to impersonate the NormalB account and then
checks out test.doc using this account. You can also use the document version history to check this.

■Caution As you can see, adding web parts that use this impersonation technique can have an influence on
the security model of your SharePoint environment. That is why Code Access Security (CAS) and creating custom
security policies are important tools for securing your environment. Basically, you should only allow web parts to
impersonate user identities that you trust completely. Discussion of CAS and the creation of custom security policy
files falls outside the scope of this chapter. You can find more information about this topic in the MSDN article
“Microsoft Windows SharePoint Services and Code Access Security” (http://msdn2.microsoft.com/en-us/
library/ms916855.aspx). The information is written for SharePoint 2003, but is still a good starting point to
learn about these topics.

In this section, you have learned how to use the SharePoint SPUserToken object. We have
used the SPUserToken object to add a new version to the version history of a document stored in
a SharePoint list.

Encrypting Sensitive Data via DPAPI
In the previous example, user credentials were stored in the code. It is unsafe to store passwords in plain
text in code. This can be avoided by saving the credentials in a configuration file and encrypting the sen-
sitive areas using DPAPI. The DP part in DPAPI stands for Data Protection. It’s an API provided by the
operating system since Windows 2000. In .NET 2.0, working with DPAPI becomes significantly easier
with the new ProtectedData class that is located in the System.Security.Cryptographynamespace.

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION352

■Note Out of the box, ASP.NET 2.0 provides two encryption providers: RSA and DPAPI. In this section, we use
DPAPI to encrypt sensitive data, but we could have used RSA as well. RSA is widely used in electronic commerce
protocols and was created by Ron Rivest, Adi Shamir, and Leonard Adleman. The letters RSA are taken from the
first letter of each surname and have no real meaning.

The ProtectedData class allows you to encrypt or decrypt data. The class’s Protect() method
encrypts data. The first argument of this method expects a byte array containing data. Optionally,
as the second parameter, you can pass an entropy parameter, which is a random value designed to
make deciphering more difficult. You could define a unique entropy for each application to pre-
vent other applications from being able to decrypt your sensitive data, although the use of the
entropy parameter raises the question of how to manage the entropy information securely. If you
do not want to use the entropy parameter, you can pass the value null. The last parameter of the
Protect() method allows you to specify the DataProtectionScope. This can be set to CurrentUser
or LocalMachine mode. If you use CurrentUser, only the current user will be able to decrypt the
information; in LocalMachine mode every process on the machine will be able to decrypt it. For
server scenarios in which SharePoint web parts decrypt sensitive information, setting the mode to
LocalMachine makes a lot of sense, because there will be no untrusted logins to the server. Client
applications should always use CurrentUser mode. The following code fragment shows how to
encrypt and decrypt information:

string strValue = “secret password”;
byte[] arrSecret = Encoding.Unicode.GetBytes(strValue);
byte[] arrEntropy = {0, 1, 2};
byte[] arrEncryptedData = ProtectedData.Protect(arrSecret, arrEntropy, ➥
DataProtectionScope.LocalMachine);
byte[] orgData = ProtectedData.Unprotect(arrEncryptedData, arrEntropy, ➥
DataProtectionScope.LocalMachine);
string strSecret = Encoding.Unicode.GetString(orgData);

If you want to try out this code in a web part, make sure the following namespaces are imported:

using System.Text;
using System.Security.Cryptography;

In this section, you saw how to encrypt sensitive data via DPAPI.

Storing Sensitive Information in an Encrypted Way
At this point, we have shown you how to use DPAPI to encrypt and decrypt data. However, our goal
is to show you how to store sensitive information in an encrypted way in a .config file, and we have
not yet reached that goal.

Suppose you want to store the password for user NormalA in a .config file. You would create an
<add> element under the <appSettings> configuration section, like so:

<appSettings>
<add key=”NormalA” value=”normala” />

</appSettings>

You could add this manually by opening the web.config file. You could also add this informa-
tion manually via a more advanced user interface by opening the web site properties of the
SharePoint virtual server in Internet Information Services (IIS), clicking on the ASP.NET tab, and
clicking the Edit Configuration button. You will find the Application settings under the General tab.
Finally, you can also add application settings programmatically, and take care of the encryption of
sensitive data at the same time. We will demonstrate the last approach.

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION 353

You can use the WebConfigurationManager in the System.Web.Configuration namespace
to retrieve the SharePoint web.config file. The OpenWebConfiguration() method of the
WebConfigurationManager class returns a Configuration object. The Configuration object provides
access to the AppSettings section in the web.config file via its AppSettings property, which returns
an AppSettingsSection object. You can add application settings via the Add() method of the
AppSettingsSection object. Using the ProtectSection() method of the ConfigurationSection class,
you can determine whether the content of a given configuration section should be encrypted,
and, if so, what data protection provider should be used. In the following code fragment, we will
use the DataProtectionConfigurationProvider, which uses DPAPI.

string strUser = “NormalA”;
string strPassword = “normala”;
Configuration objConfig = ➥
WebConfigurationManager.OpenWebConfiguration(Context.Request.ApplicationPath);
AppSettingsSection objAppSettings = objConfig.AppSettings;
objAppSettings.Settings.Add(strUser, strPassword);
objAppSettings.SectionInformation.ProtectSection ➥
(“DataProtectionConfigurationProvider”);
objConfig.Save();

If you want to try out this code in a web part, you should add a reference to system.
configuration.dll. You should also have write permission on the configuration file. Make sure the
following namespaces are imported:

using System.Configuration;
using System.Web.Configuration;

The <AppSettings> section now looks like this:

<appSettings configProtectionProvider=”DataProtectionConfigurationProvider”>
<EncryptedData>
<CipherData>
<CipherValue>AQAAANCM[…deleted stuff…]fnKLBAw==</CipherValue>

</CipherData>
</EncryptedData>

</appSettings>

As you can see, sensitive data is not stored in plain text anymore.
You don’t have to do anything special to retrieve encrypted data from the SharePoint web.config

file. Just do this:

string strSetting = WebConfigurationManager.AppSettings[“NormalA”];

If you want to go back to a web.config file without encrypted data, use the following line of code:

objAppSettings.SectionInformation.UnprotectSection();

■Note The biggest advantage of ASP.NET’s built-in support for encrypting sensitive areas in the web.config file
without having to change a single line of code is that you can leave sensitive areas in a development environment
unprotected, and protect those areas in a production environment. This way, you’ll still be able to change the
web.config file easily in a development environment, and stay secure in a production environment.

Alternatively, you can use the aspnet_regiis tool to encrypt a section of the web.config file. By
default, the aspnet_regiis tool can be found at the following location: [drive letter]:\WINDOWS\
Microsoft.NET\Framework\v2.0.50727. The next code fragment shows how to use the tool:

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION354

Aspnet_regiis –pe [section name] –app [name of MOSS web application]
–prov [name of encryption provider]

In this code fragment, you need to pass the name of the Microsoft Office SharePoint Server
2007 web application. Then, you need to pass the name of the configuration section, for example,
connectionStrings. You can choose to use DPAPI to encrypt data by specifying
DataProtectionConfigurationProvider as the name of the encryption provider. If you want to use
RSA instead, you should enter RSAProtectedConfigurationProvider.

You can decrypt a configuration section using the following command:

Aspnet_regiis –pd [section name] –app [name of MOSS virtual directory]
–prov [name of encryption provider]

If you prefer to pass the physical path to the Microsoft Office SharePoint Server 2007 virtual
directory, you need to run the following command:

Aspnet_regiis –pef [section name] –app [physical path to MOSS virtual directory]
–prov [name of encryption provider]

This can be decrypted by issuing the following command:

Aspnet_regiis –pdf [section name] –app [physical path to MOSS virtual directory]
–prov [name of encryption provider]

The following code fragment shows a part of a <connectionStrings> section that is encrypted
using RSA:

<connectionStrings configProtectionProvider=”➥
RsaProtectedConfigurationProvider”>
<EncryptedData Type=”http://www.w3.org/2001/04/xmlenc#Element” ➥
xmlns=”http://www.w3.org/2001/04/xmlenc#”>
<EncryptionMethod Algorithm=”http://www.w3.org/2001/04/➥
xmlenc#tripledes-cbc” />
<KeyInfo xmlns=”http://www.w3.org/2000/09/xmldsig#”>
<EncryptedKey xmlns=”http://www.w3.org/2001/04/xmlenc#”>
<EncryptionMethod Algorithm=”http://www.w3.org/2001/04/xmlenc#rsa-1_5” />
<KeyInfo xmlns=”http://www.w3.org/2000/09/xmldsig#”>
<KeyName>Rsa Key</KeyName>

</KeyInfo>
<CipherData>
<CipherValue>[encrypted value] </CipherValue>

</CipherData>
</EncryptedKey>

</KeyInfo>
<CipherData>
<CipherValue>[encrypted value[</CipherValue>

</CipherData></EncryptedData>
</connectionStrings>

The content of the <CipherValue> element is encrypted, thus making the contents of the
<connectionStrings> configuration section unreadable to the prying eye.

■Note If you want to learn more about using DPAPI and RSA, go to http://msdn2.microsoft.com and look for
the articles “How To: Encrypt Configuration Settings in ASP.NET 2.0 using DPAPI” and “How To: Encrypt Configura-
tion Settings in ASP.NET 2.0 using RSA.”

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION 355

In this section, you learned how to add encrypted information to a web application’s web.config
file. ASP.NET 2.0 makes it easy to work with encrypted information in a web.config file, allowing you
to access it as if it were unencrypted. This allows you to leave sensitive information unencrypted in
.config files located on development machines and encrypt that information in a production envi-
ronment without having to change a single line of code.

Single Sign-on
In the previous section, you saw how to encrypt sensitive data. Instead of encrypting data, you
could also use SharePoint Single Sign-on (SSO) to store user credentials in the Single Sign-on data-
base. The Single Sign-on database is also called the credential-mapping database and it keeps the
information in a safe and encrypted way.

If you want to use the Single Sign-on service, you need to be using Microsoft Office SharePoint
Server 2007, because this service is not a part of Windows SharePoint Services 3.0. You will also
need to install Microsoft Office SharePoint Server 2007 in an environment using Active Directory.
Furthermore, the user account that runs the Single Sign-on service needs to have an extensive set
of permissions, such as membership in the local administrators group, membership in the local
administrators group on the server running the configuration database, and db_owner rights for
the SharePoint configuration database.

■Note In Microsoft Office SharePoint Server 2007, it is possible to change the credential caching mechanism
used by Single Sign-On. You can create your own or use a third-party credential caching system.

We assume you have access to a server with Microsoft Office SharePoint Server 2007 installed
and Single Sign-on enabled on it. More information about enabling Single Sign-on can be found in
the Microsoft Office SharePoint Server 2007 SDK, which can be downloaded from
http://www.microsoft.com/downloads/details.aspx?familyid=6D94E307-67D9-41AC-B2D6-
0074D6286FA9&displaylang=en, or in the book Microsoft SharePoint Building Office 2007 Solutions in
C# 2005 by Scot Hillier (Apress, 2007).

SharePoint Single Sign-on introduces a concept known as Enterprise Application Definition.
Enterprise Application Definitions allow you to define what a set of credentials should look like for a
given application. For instance, if you have a custom application that allows you to log in using a
username, password, and one-time password (a password that is only valid only once and for a lim-
ited period of time), you can set up an Enterprise Application Definition that specifies that user
credentials for this application consist of these three parts.

In the next example, we are going to add an Enterprise Application Definition called
SuperAccount, which defines the different parts of information that form the credential infor-
mation you are interested in. The next procedure explains how to create a new Enterprise
Application Definition called SuperAccount:

1. Open SharePoint 3.0 Central Administration.

2. Click the Operations tab.

3. In the Security Configuration section, click Manage settings for single sign-on. This opens
the Manage Settings for Single Sign-On for [server] page.

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION356

4. In the Enterprise Application Definition Settings page, click Manage settings for enterprise
application definitions. This opens the Manage Enterprise Application Definitions page
(shown in Figure 7-6).

Figure 7-6. Manage Single Sign-on page

5. Click New Item. This opens the Create Enterprise Application Definition page.

6. Locate the Application and Contact Information section.

7. Enter the value SuperAccount in the Display name text box.

8. Enter the value SuperAccount in the Application name text box.

9. Enter testmail@lcbridge.nl in the Contact e-mail address text box.

10. In the Account type section, choose either Group or Group using restricted account.

■Note If you want to connect to another application using a different account for every user, choose Individual as
the Account type. For example, suppose a user logs in to the portal and needs information extracted from SAP within
the portal. It would be a drag if users needed to type their credentials repeatedly. Choose Group or Group using
restricted account to use a single account for all users. If you choose to use Group using restricted account, you
indicate that you are using a single privileges account for all users, which must be used by applications that perform
additional security policy enforcements when using this account. In impersonation scenarios, you should choose
either Group or Restricted Group as the account type, because you generally will want to define one impersonation
account for a group of users. The administrator should manage this impersonation account, not the end user.

11. Locate the Logon Account Information section.

12. Verify that the Field 1: Display Name text box contains the value Username.

13. Verify that the Field 2: Display Name text box contains the value Password. Ensure that the
mask of this field is set to Yes. You should set the display type to mask so the password is
not shown onscreen in plain text later on. Figure 7-7 shows the Create Enterprise Application
Definition page.

14. Click OK.

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION 357

Figure 7-7. The Create Enterprise Application Definition page

In the next step, you need to tie the credential information template, the Enterprise App-
lication Definition, to a group account name. The next procedure explains how to associate
the SuperAccount Enterprise Application Definition with a test group account called
MyApplication:

1. Click the Operations tab. This opens the Operations page.

2. In the Security Configuration section, click Manage settings for single sign-on. This opens
the Manage Settings for Single Sign-On for [server name] page.

3. In the Enterprise Application Definition Settings section, click the Manage account infor-
mation for enterprise application definitions link. This opens the Manage Account
Information for an Enterprise Application Definition page.

4. In the Account Information section, enter the following value in the Group account name
text box: [domain name]\MyApplication.

5. Click the Set button.

For this example, we have created a group called MyApplication. Every member of this group
will be allowed to use web parts that need to elevate user privileges temporarily. This is shown in
Figure 7-8.

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION358

Figure 7-8. The Manage Account Information for an Enterprise Application Definition page

Next, you need to define the credentials of the super account that is used for impersonation.
The definition for the super account credentials consists of two fields: UserName and Password. We
defined these fields earlier in this section. This is shown in Figure 7-9. The next procedure explains
how to define this account:

1. On the Provide [user name of the super account] Account Information page, locate the
Logon Information section.

2. In the Username text field, enter the user name of the super account.

3. In the Password text field, enter the password of the super account.

Figure 7-9. Provide the credentials of the impersonation account

The following procedure explains how to tie an Enterprise Application Definition to a group
account name:

1. Go to Central Administration ➤ Operations ➤ Manage Single Sign-On.

2. In the Enterprise Application Definition Settings section, click Manage account information
for enterprise application definitions. This opens the Manage Account Information for an
Enterprise Application Definition page (shown in Figure 7-6).

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION 359

3. In the Account Information section, in the Enterprise application definition drop-down list,
make sure SuperAccount is selected.

4. In the Group account name section, add the following value: [domain]\MyApplication.

5. Click Set. This opens the Provide SuperAccount Account Information page.

6. Locate the Logon Information section.

7. Enter a user name and password. In this example, we are using the administrator account of
our test domain. This is shown in Figure 7-7.

8. Click OK.

9. Click Done.

If you want to retrieve this information from the Single Sign-on service from within a web
part, you will need to set a reference to Microsoft.SharePoint.SingleSignOn.dll. The Credentials
class in the Microsoft.SharePoint.SingleSignOn namespace has a GetCredentials() method that
retrieves the super account credentials defined earlier. Style-wise, in our view, this method is not
the best part of the SharePoint object model. Although the method is called GetCredentials(), its
return type is void. The first argument of the method expects an unsigned integer as argument. The
documentation says this flag is reserved for internal use. Apparently you need to pass it the value 1,
but the reason why is a mystery. Then you need to pass the application name, which is the name of
the Enterprise Application Definition. Finally, you need to pass a string array by reference, which is
filled by the GetCredentials() method with all the credential information the Single Sign-on service
can find. The code looks like this:

string[] strCredentialData = null;
Credentials.GetCredentials(1, “SuperAccount”, ref strCredentialData);
string strUserName = strCredentialData[0];
string strPassword = strCredentialData[1];

Listing 7-5 shows the complete code.

Listing 7-5. Retrieving Account Information Stored in the SSO Database

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using System.Security.Principal;
using System.IO;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;

namespace LoisAndClark.ImpersonationAndElevation
{
[Guid(“47500629-54d5-4ac4-ac44-097b4ce2e3eb”)]
public class SuperPart : System.Web.UI.WebControls.WebParts.WebPart
{

/// <summary>
/// Render this Web Part to the output parameter specified.
/// </summary>
/// <param name=”output”> The HTML writer to write out to </param>

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION360

protected override void RenderContents(HtmlTextWriter writer)
{
try
{
string[] strCredentialData = null;
Credentials.GetCredentials(1, “SuperAccount”, ref strCredentialData);
string strUserName = strCredentialData[0];
string strPassword = strCredentialData[1];
writer.Write(“username: “ + strUserName + “ password: “ + strPassword);

}
catch (Exception err)
{
writer.Write(“error: “ + err.Message);

}
}

}
}

It takes some time to set up Single Sign-on, but once you have that up and running, a Single
Sign-on mechanism that uses a secure credential mapping database is at your disposal. Figure 7-10
shows what happens when Listing 7-5 is run.

Figure 7-10. Retrieving credentials from the credential mapping database in a web part

■Note In the beginning of this section, we advised you to create a Group or Group using restricted account to
create a single account that is used by a group of users, which is the way to go for impersonation and elevation
scenarios. If you chose that every individual user needs to specify a different account to access another applica-
tion, your code needs to catch the SingleSignOnCredsNotFoundException exception. This exception is raised
whenever the credentials of a given user are not present in the credential mapping database (which is actually not
a real application error) and uses the GetCredentialEntryUrl() method of the SingleSignOnLocator class to
collect the correct credentials.

In this section, you have seen how to use SharePoint Single Sign-on (SSO) to store user creden-
tials in a credential-mapping database and retrieve them again later to use in impersonation, ele-
vation, and delegation scenarios. Single Sign-on offers the additional advantage of offering a user
interface for managing the credentials in the SSO database.

RevertToSelf and RunWithElevatedPrivileges
You have seen how to store encrypted information in configuration files and how to store creden-
tials in the Single Sign-on database. In elevation scenarios, where you want to perform actions that
require more privileges than the current user has, an easier and more elegant solution is available.
This solution is called credential-less impersonation. The first way to accomplish this is to make a
call to the Win32 API RevertToSelf() function that terminates the impersonation of a client appli-
cation. You can use this method if you want to access resources that are not controlled by the
SharePoint API. The second way to accomplish this is to use the RunWithElevatedPrivileges()

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION 361

method, which is new in Microsoft Office SharePoint Server 2007. You need to use this method if
you want to access resources that are controlled by the SharePoint API.

■Note In Microsoft Office SharePoint Server 2007, you should use the RunWithElevatedPrivileges method
when implementing elevation scenarios using the SharePoint object model.

A SharePoint user context is itself an impersonated identity. SharePoint uses Internet Informa-
tion Server 6 (IIS), and Internet Information Server 6 uses application pool identities as the context
in which worker processes are run. If you call the advapi32.dll RevertToSelf() function or the
RunWithElevatedPrivileges method, you will end the current user impersonation. The effect is that
you will revert from a current user context (say, user account NormalA) to the original identity,
which is the application pool identity.

The credentials of the application pool identity are stored safely in the Internet Information
Services metabase. This trait makes the application pool identity account an ideal candidate for use
in elevation scenarios. If you dump the current context and revert to the application pool’s security
context, it is possible to perform actions that require an extensive set of privileges while avoiding
storing credentials in code.

If you have installed SharePoint (either Windows SharePoint Services 3.0 or Microsoft Office
SharePoint 2007) using an existing SQL Server instance, you get to choose the application pool
identity. This account becomes administrator of the SharePoint content database.

This is not the case if you install SharePoint using SQL Server Express, which is the license-
free version of SQL Server. In this scenario, the predefined NT AUTHORITY\NETWORK SERVICE
account is used as the security account for the application pool. By default, the Network Service
account will not be a member of the SharePoint administration group, and it is not a local admin-
istrator either. The use of SQL Server Express is highly unlikely if you are using Microsoft Office
SharePoint Server 2007, but it is a more feasible solution if you are using Windows SharePoint
Services 3.0, which comes free with the Windows Server 2003 operating system.

In elevation scenarios, you will probably want to use some kind of super account that has at
least SharePoint admin rights. You can go to the Internet Information Services (IIS) manager and
change the application pool identity or, theoretically, go the SharePoint Central Administration
pages and extend the permissions of the Network Service account.

■Note The Network Service account is a predefined local account used by the service control manager (SCM).
This account does not have a password (if you need to supply password information, it will be ignored), acts as the
computer on the network, and has minimum privileges on the local computer. You should not add privileges to this
predefined account, as this changes the very essence of this account.

First, we will discuss how to use the RevertToSelf()Win32 API call to demonstrate credential-
less impersonation. If you want to use this function, you need to import Advapi32.dll into the
SuperPart web part class, like so:

[DllImport(“advapi32.dll”)]
static extern bool RevertToSelf();

At this point, you are ready to elevate code privileges using the RevertToSelf()Win32 API call.
It is advisable to store the current user context in a WindowsIdentity object so that you are able to
elevate privileges temporarily. Then you can execute the code that absolutely needs to have an
extensive set of privileges and go back to the original user context. This way, you limit security risks
associated with user elevation.

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION362

WindowsIdentity objOriginalUser = WindowsIdentity.GetCurrent();
RevertToSelf();
ShowVirtualServerInfo(); // reads virtual server info
WindowsImpersonationContext objContext = objOriginalUser.Impersonate();

Listing 7-6 shows the complete code.

Listing 7-6. Using the RevertToSelf() Win32 API Function

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using System.Security.Principal;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;
using Microsoft.SharePoint.Navigation;

namespace LoisAndClark.ImpersonationAndElevation
{
[Guid(“47500629-54d5-4ac4-ac44-097b4ce2e3eb”)]
public class SuperPart : System.Web.UI.WebControls.WebParts.WebPart
{
[DllImport(“advapi32.dll”, SetLastError = true)]
static extern bool RevertToSelf();

protected override void CreateChildControls()
{
try
{
string strValue = String.Empty;

WindowsIdentity objOriginalUser = WindowsIdentity.GetCurrent();
RevertToSelf();
strValue += “application pool identity name: “ + ➥
WindowsIdentity.GetCurrent().Name + “
”;

// Execute code that needs to have elevated privileges.

WindowsImpersonationContext objContext = objOriginalUser.Impersonate();
strValue += “original user name: “ + WindowsIdentity.GetCurrent().Name;

Controls.Add(new LiteralControl(strValue));
}
catch (Exception err)
{
Controls.Add(new LiteralControl(err.Message));

}
}

}
}

Figure 7-11 shows what happens when this web part is executed.

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION 363

Figure 7-11. Elevating code privileges using RevertToSelf()

■Note If you want to implement elevation scenarios within a SharePoint web context, Microsoft recommends
that you always use the RunWithElevatedPrivileges() method. In this section, the RevertToSelf() function
is explained for educational purposes. You should only use this method to access resources that are not controlled
by the SharePoint API.

To demonstrate the credential-less impersonation solution using the RunWithElevatedPrivileges()
method, you can use the NormalA user account again. Our next example uses the SharePoint object
model to add a node to the Quick Launch navigation bar. This is something user NormalA is not
allowed to do, so this gives us a chance to show you how to elevate code privileges. The following code
adds an external link to the Quick Launch navigation bar:

SPWeb web = SPControl.GetContextWeb(Context);
web.AllowUnsafeUpdates = true;
SPNavigationNode node = new SPNavigationNode(➥
“My Custom Node”, “http://node.url”, true);
web.Navigation.QuickLaunch.AddAsFirst(node);
web.Update();

If you open a browser, choose the Sign in as Different User option at the upper-right corner,
and log in with the NormalA user account, you will see that a web part that tries to add a Quick
Launch node will be denied access (the complete code for this web part will be shown later in this
section). This is shown in Figure 7-12.

Figure 7-12. Access is denied error in the web part

The RunWithElevatedPrivileges() method can be used to execute a piece of code using ele-
vated privileges. You can pass this method a delegate that contains the code that needs to be run. The
code then runs in the context of the System Account User (SHAREPOINT\system identity). The next
code fragment shows how to use an anonymous method to add a node to the Quick Launch bar:

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION364

SPWeb objWeb = SPControl.GetContextWeb(Context);
SPSecurity.RunWithElevatedPrivileges(delegate()
{
using (SPSite objElevatedSite = new SPSite(objWeb.Site.ID))
{
using (SPWeb objElevatedWeb = objElevatedSite.OpenWeb())
{
// Code to add a node to the quick launch navigation bar.

}
}

}
);

Listing 7-7 shows the complete code for the SuperPart web part that uses the
RunWithElevatedPrivileges() method to add a new node to the Quick Launch bar.

Listing 7-7. Using the RunWithElevatedPrivileges Method

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using System.Security.Principal;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;
using Microsoft.SharePoint.Navigation;

namespace LoisAndClark.ImpersonationAndElevation
{
[Guid(“47500629-54d5-4ac4-ac44-097b4ce2e3eb”)]
public class SuperPart : System.Web.UI.WebControls.WebParts.WebPart
{
public SuperPart()
{
this.ExportMode = WebPartExportMode.All;

}

protected override void RenderContents(HtmlTextWriter writer)
{
string strValue = String.Empty;

try
{
SPWeb objWeb = SPControl.GetContextWeb(Context);

SPSecurity.RunWithElevatedPrivileges(delegate()
{
using (SPSite objElevatedSite = new SPSite(objWeb.Site.ID))
{

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION 365

using (SPWeb objElevatedWeb = objElevatedSite.OpenWeb())
{
// Allow unsafe updates because you can’t save changes
// during HTTP GET requests.
objElevatedWeb.AllowUnsafeUpdates = true;
SPNavigationNode node = new SPNavigationNode(➥
“My Custom Node”, “http://node.url”, true);

objElevatedWeb.Navigation.QuickLaunch.AddAsFirst(node);
objElevatedWeb.Update();

}
}

}
);

}
catch (Exception err)
{
strValue = err.Message;

}

writer.Write(strValue);
}

}
}

The previous code could have been written differently using the SPSecurity.CodeToRunElevated
delegate. This code is almost identical to the previous example; the difference is that this time
we are using an existing method called AddQuickLaunchNode() instead of an anonymous method.
Listing 7-8 shows a web part that uses the CodeToRunElevated delegate to call a named method
that adds a node to the Quick Launch bar.

Listing 7-8. Using the CodeToRunElevated Delegate to Create Elegant Code

using System;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;
using System.Security.Principal;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;
using Microsoft.SharePoint.Navigation;

namespace LoisAndClark.ImpersonationAndElevation
{

[Guid(“47500629-54d5-4ac4-ac44-097b4ce2e3eb”)]
public class SuperPart : System.Web.UI.WebControls.WebParts.WebPart
{
public SuperPart()
{
this.ExportMode = WebPartExportMode.All;

}

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION366

protected override void RenderContents(HtmlTextWriter writer)
{
string strValue = String.Empty;

try
{
SPSecurity.CodeToRunElevated objCode = new ➥
SPSecurity.CodeToRunElevated(AddQuickLaunchNode);
SPSecurity.RunWithElevatedPrivileges(objCode);

}
catch (Exception err)
{
strValue = err.Message;

}

writer.Write(strValue);
}

private void AddQuickLaunchNode()
{
SPWeb web = SPControl.GetContextWeb(Context);
web.AllowUnsafeUpdates = true;
SPNavigationNode node = new SPNavigationNode(➥
“My Custom Node”, “http://node.url”, true);
web.Navigation.QuickLaunch.AddAsFirst(node);
web.Update();

}
}

}

The result of adding a node to the Quick Launch bar programmatically is shown in Figure 7-13.

Figure 7-13. A custom node in the Quick Launch bar

In this section, you learned how to elevate a user’s privileges by switching to the context of a
power user account without needing to specify a user name or password. The RevertToSelf()
Win32 API is useful in elevation scenarios where you need to access resources that are not con-
trolled by the SharePoint API; the RunWithElevatedPrivileges method is the way to go for elevation
scenarios that access resources controlled by the SharePoint API. Finally, you have seen that the
CodeToRunElevated delegate can be used in conjunction with the RunWithElevatedPrivileges
method to create elegant code.

Delegation
Thus far, we have used impersonation and elevation techniques to access local resources. Trying to
access remote resources (such as a file share) by assuming another user context is called delegation.

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION 367

In delegation scenarios, the server process impersonates the client security context on a remote
system, whereas in impersonation scenarios, the server process impersonates the client security
context on its local system. In impersonation scenarios, the server cannot impersonate the client on
remote systems. If you are developing web parts that access remote resources, you must take a cou-
ple of additional steps before you are able to support delegation. This section guides you through
these steps.

■Note In order for this to work, the delegation account needs to be in the same domain as the user account.

If you want to get delegation working, Active Directory is a requirement. You will need to set up
your network to use the Kerberos authentication protocol (which requires Active Directory). You
will also need to set up the computers and accounts on your network as trusted for delegation.

In the first step, you will enable Kerberos authentication on your SharePoint server. The
Kerberos protocol is based on ticketing; users provide a valid user name and password to an
authentication server, which hands the user a ticket that can be used on the network to request
other network services.

If you want to enable Kerberos authentication on a SharePoint virtual server, you should do the
following:

1. Determine the virtual server id of your SharePoint virtual server. By default, this is 1. One way
to retrieve the correct virtual server id is to use the IIS Metabase Explorer, which can be down-
loaded from http://www.download.com. The IIS Metabase Explorer is shown in Figure 7-14.

Figure 7-14. The IIS Metabase Explorer

2. On the SharePoint server, open a new command prompt.

3. Go the following location: [drive letter]:\inetpub\adminscripts.

4. You can use the adsutil.vbs utility (located in the adminscripts folder) to retrieve informa-
tion about a given virtual server. If you want to find out which form of authentication is
enabled, use the following command:

cscript adsutil.vbs get w3svc/1/root/NTAuthenticationProviders

5. The default authentication model is NTLM. This is a secure protocol that is based on
encrypting user names and passwords before sending them over the network. If you have
not already set the authentication provider, the previous command will return the following
message: the parameter “NTAuthenticationProviders” is not set at this node.

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION368

6. To enable Kerberos authentication, issue the following command:

cscript adsutil.vbs set w3svc/1/root/NTAuthenticationProviders “Negotiate,NTLM”

7. Restart IIS by typing iisreset at a command prompt.

■Tip If you want to switch back and only allow NTLM authentication on the virtual server, issue the following
command: cscript adsutil.vbs set w3svc/1/root/NTAuthenticationProviders “NTLM”.

In the next step, we will check that the application pool hosting the SharePoint web site is using
the NT Authority\NetworkService identity. Built-in accounts such as the NetworkService account
are automatically configured to work with Kerberos authentication. If you are using a domain user
account, you will have to specify a service principal name (SPN) for it. There are two kinds of princi-
pal names: user principal names and service principal names. A user principal name is associated
with a specific user. A service principal name is the name by which a client uniquely identifies an
instance of a service and authorizes the client to use a particular service.

1. Open Internet Information Services (IIS) Manager.

2. Open the [server name] (local computer) node.

3. Open the Web Sites node.

4. Right-click your SharePoint virtual server and choose Properties.

5. Click the Home Directory tab. The Application pool drop-down list displays the application
pool that hosts the SharePoint web site. Check which application pool is hosting the web
site.

6. Click OK.

7. In Internet Information Services (IIS) Manager, open the Application Pools node.

8. Right-click the name of the application pool that is hosting the SharePoint web site and
choose Properties.

9. Click the Identity tab.

If the security account is not one of the predefined accounts, we will use the setspn.exe tool
to set a service principal name for it. The setspn.exe tool is a command-line utility that allows you
to read, modify, and delete service principal names for an Active Directory property. Setspn.exe is
part of the Support Tools pack, located in the Support folder on the Windows Server 2003 CD. It
can also be downloaded from the following URL: http://www.microsoft.com/downloads/
details.aspx?familyid=5fd831fd-ab77-46a3-9cfe-ff01d29e5c46&displaylang=en.

If you want to set a service principal name for an account, type the following command at a
command prompt (the a parameter indicates that a service principal name needs to be added for
this account for a given computer):

Setspn -a HTTP/[server] [domain name]\[user name]

■Note More information about the setspn.exe tool can be found on the Microsoft TechNet web site (http://
www.microsoft.com/technet) in the article “Configuring Constrained Delegation for Kerberos (IIS 6.0).”

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION 369

Next, you need to configure the SharePoint server so that it is trusted for delegation.

1. Click Start ➤ Administrative Tools ➤ Start Active Directory Users and Computers.

2. In the left pane, expand the domain node.

3. Click the Computers node.

4. In the right pane, right-click the name of the SharePoint server, and then click Properties.

5. Click the General tab.

6. Select the Trust computer for delegation check box, and click OK.

If the application pool identity is configured to use a domain account instead of a predefined
account, or if you are using impersonation techniques to run the process under a domain account,
you need to configure the account to be trusted for delegation before you can use Kerberos
authentication.

1. If it is not open yet, click Start ➤ Administrative Tools ➤ Start Active Directory Users and
Computers.

2. In the left pane, expand the domain node.

3. In the left pane, click the Users node.

4. In the right pane, right-click the name of the user account and choose Properties.

5. Click the Account tab ➤ Account Options. Select the Account is trusted for delegation check
box. Then click OK.

6. Close Active Directory Users and Computers.

In this section, you have learned how to configure delegation. Delegation allows you to access
remote resources within another user context. If you want to enable delegation, you need to use
Active Directory and the Kerberos authentication protocol.

Impersonation in WCF
Windows Communication Foundation (WCF) is the new communication subsystem for .NET appli-
cations. It was introduced as a part of the .NET Framework 3.0, which also introduced three other
major new components:

• Windows Presentation Foundation (WPF)

• Windows Workflow Foundation (WF)

• Windows CardSpace (WCS)

In this section, you will learn how to implement a WCF service that uses the application pool
identity to connect to Microsoft Office SharePoint Server 2007. If you want to create a WCF service,
it helps if you install either Visual Studio 2005 Extensions for .NET Framework 3.0 (WCF & WCF)—
which can be found at http://www.microsoft.com/downloads/details.aspx?familyid=F54F5537-
CC86-4BF5-AE44-F5A1E805680D&displaylang=en—or the latest version of Visual Studio 2008 (at the
time of writing, this tool is still in beta). Neither tool is supported officially, but both support WCF
and make creating WCF services considerably easier. The example in this section is created using
Visual Studio 2008 Beta 2 Professional Edition (which can be downloaded at http://msdn2.
microsoft.com/en-us/vstudio/aa700831.aspx).

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION370

In the example we will discuss in this section, we will create a WCF service that is hosted by
Internet Information Server. Then, we will specify an application pool identity and use that in our
impersonation scenario to run some code the end user is normally not allowed to execute.

In the next procedure, you will see how to create a new virtual directory for a WCF service.

1. Create a new folder at the following location: C:\Inetpub\wwwroot\TestWCFHost.

2. Open a command prompt and type inetmgr. This opens Internet Information Services (IIS)
Manager.

3. Expand the [server name] (local computer) node.

4. Expand the Web Sites node.

5. Locate a SharePoint web site where you want to add a virtual directory for your custom WCF
service, right-click it, and choose New ➤ Virtual Directory. This opens the Virtual Directory
Creation Wizard.

6. Click Next.

7. Enter the following alias: TestWCFHost.

8. Click Next.

9. Enter the following path: C:\Inetpub\wwwroot\TestWCFHost.

10. Click Next.

11. Accept the default Virtual Directory Access Permissions and click Next.

12. Click Finish.

13. Right-click the newly created TestWCFHost node and choose Properties. This opens the
TestWCFHost Properties window.

14. Click Create.

15. Click OK.

We will create a custom application pool for this virtual directory, specify an application pool
identity under which the server will run, and associate them with each oher. This is explained in the
next procedure.

1. In Internet Information Services (IIS) Manager, right-click the Application Pools node and
choose New ➤ Application Pool. This opens the Add New Application Pool dialog window.

2. Specify the following Application pool ID: WCFAppPool.

3. Click OK.

4. Right-click the newly created WCFAppPool node and choose Properties. This opens the
WCFAppPool Properties window.

5. Click the Identity tab.

6. Select the Configurable radio button.

7. Specify a user name and password.

8. Click OK.

9. Right-click the previously created TestWCFHost virtual directory (located under the Web
Site node) and choose Properties. This opens the TestWCFHost Properties window.

10. In the Application pool drop-down list, choose WCFAppPool.

11. Click OK.

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION 371

At this point, you have created the container that will hold the WCF service. Now, we will use
Visual Studio 2008 Beta 2 to create the WCF service. This is discussed in the following procedure:

1. Start Visual Studio 2008 Beta 2 (Start ➤ All Programs ➤ Microsoft Visual Studio 2008 Beta 2
➤ Microsoft Visual Studio 2008 Beta 2).

2. Click File ➤ New ➤ Web Site. This opens the New Web Site dialog window.

3. In the Templates section, choose WCF service.

4. Select HTTP from the Location drop-down list.

5. In the Location text box, type the URL of the virtual directory you created earlier in this sec-
tion. In our case, this is http://[sharepoint web application]/TestWCFHost.

As a result, several default files are created automatically. Delete the following files: Service.svc,
App_Code\Service.cs, and App_Code\IService.cs. You will notice that creating a WCF service is quite
similar to creating a classic .asmx web service. The following procedure discusses creating a WCF
service:

1. Right-click your project and choose Add New Item. This opens the Add New Item – [URL
WCF service host] dialog window.

2. In the Templates section, choose WCF Service.

3. Enter the following name: MyWCFService.svc.

4. Ensure that the selected Language drop-down list is set to Visual C#.

5. Click Add.

This creates three files: MyWCFService.svc (located in the root of the project), and
IMyWCFService.cs and MyWCFService.cs (both located in the App_Code folder). The
MyWCFService.svc file contains of a single line of code that refers to a code-behind file.
Listing 7-9 shows the file.

Listing 7-9. The Code for MyWCFService.svc

<%@ ServiceHost Language=”C#” Debug=”true” Service=”LoisAndClark.MyWCFService” ➥
CodeBehind=”~/App_Code/MyWCFService.cs” %>

Next, we will take a closer look at the IMyWCFService class file. In WCF, all services expose con-
tracts that explicitly define what a service does. There are four different types of contracts:

• Service contracts that describe the operations that can be performed by the client.

• Data contracts that describe the data that is passed to and from the service.

• Fault contracts that describe errors that are raised by the service.

• Message contracts that describe how a service can interact directly with a message.

In this example, only service contracts are relevant. You can create a service contract by
adding a .cs file that defines a new interface. Then, you need to decorate the interface with a
[ServiceContract] attribute that exposes a normal CLR interface as a WCF contract. Every
method within such an interface that needs to be exposed in the WCF contract needs to be deco-
rated with the [OperationContract] attribute. Listing 7-10 shows the implementation for the
IMyWCFService WCF service contract:

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION372

Listing 7-10. Defining a Contract for a WCF Service

using System;
using System.Collections.Generic;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.Text;

namespace LoisAndClark
{
[ServiceContract]
public interface IMyWCFService
{

[OperationContract]
string DoWork();

}
}

This service contract needs to be implemented by a class. To demonstrate that impersonation
has worked, we will use a piece of code that fails if the identity executing the code is not an adminis-
trator. The code retrieves the current SharePoint site and shows the collection of site groups of
which the current user is a member:

string strValue = String.Empty;
RevertToSelf();
SPWeb objCurrentWeb = SPControl.GetContextWeb(Context);
foreach (SPRole objRole in objCurrentWeb.CurrentUser.Roles)
{
strValue += “Role: “ + objRole.Name + “
”;

}

This code fails unless you are an administrator. If we modify the code a bit so you can pass the
URL of the site collection and the user name as arguments, the code looks like this:

public string GetUserRoles(string strUrl, string strUserName)
{
string strResult = String.Empty;
using (SPSite objSiteCollection = new SPSite(strUrl))
{
using (SPWeb objSite = objSiteCollection.OpenWeb())
{
SPUser objUser = objSite.Users[strUserName];
foreach (SPRole objRole in objUser.Roles)
{
strResult += objRole.Name + “, “;

}
}

}

return strResult;
}

Listing 7-11 shows the complete code for the MyWCFService code behind file.

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION 373

Listing 7-11. Implementing a WCF Service

using System;
using System.Collections.Generic;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.Text;
using System.Security.Principal;
using Microsoft.SharePoint;

namespace LoisAndClark
{
public class MyWCFService : IMyWCFService
{
public string DoWork()
{
// e.g. SHAREPOINT\system as the user name.
return GetUserRoles(“[site collection URL]”, @”[user name] “);

}

public string GetUserRoles(string strUrl, string strUserName)
{
try
{
string strResult = String.Empty;
using (SPSite objSite = new SPSite(strUrl))
{
using (SPWeb objWeb = objSite.OpenWeb())
{
SPUser objUser = objWeb.Users[strUserName];
foreach (SPRole objRole in objUser.Roles)
{
strResult += objRole.Name + “, “;

}
}

}

return strResult;
}
catch (Exception err)
{
return err.Message;

}
}

}
}

Before you can use the WCF service, you need to adjust the web.config file to define endpoints
that can be accessed by a client. This is done by adding a new <service> element to the <services>
node of the web.config file. The <service> element allows you to define the service name via the
name property. You can also add an <endpoint> element that defines a service contract that is used
for the WCF service (service contracts were discussed earlier in this chapter) and a binding that is
used by the service. Bindings define aspects about the transport mechanism, such as the protocol
or the message encoding type that are used. In this example, we will use WsHttpBinding, which uses
HTTP as the transport protocol. The following code fragment shows how to define a new service
endpoint that uses the IWcfImpersonator service contract and uses HTTP as the transport protocol:

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION374

<service name=”LoisAndClark.MyWCFService”>
<endpoint
address=””
binding=”wsHttpBinding”
contract=”LoisAndClark.IMyWCFService” />

</service>

You will also need to make sure that the WCF service emits metadata that is used by the client
to retrieve a service description. You can do this by defining a service behavior for the service. Ser-
vice behaviors affect all endpoints of a service, and you can specify which service behavior applies
to a service by using the <service> element’s behaviorConfiguration attribute. This is shown in the
following code fragment:

<service
name=”LoisAndClark.MyWCFService”
behaviorConfiguration=”MyServiceTypeBehaviors”>

The following service behavior needs to be added to the <serviceBehaviors> section of the
web.config file, and specifies that any service associated to this behavior exposes metadata:

<behavior name=”MyServiceTypeBehaviors” >
<serviceMetadata httpGetEnabled=”true” />

</behavior>

If you open a browser and browse to the svc file (http://[sharepoint web application]/
TestWCFService/MyWCFService.svc), you should see a page similar to Figure 7-15.

Figure 7-15. The WCF Service description page

The next procedure explains how to create a test client for this WCF service.

1. Right-click the solution and choose Add ➤ New Project. This opens the Add New Project
dialog window.

2. In the Templates section, choose Windows Forms Application.

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION 375

3. Enter the following Name: WCFTestClient.

4. Click OK.

5. Right-click the WCFTestClient project and choose Add Service Reference. The Add Service
Reference dialog window appears.

6. In the Service URI text box, enter the URL of the MyWCFService.svc file. This is shown in
Figure 7-16.

Figure 7-16. Adding a service reference

7. In the Service reference name text box, enter a friendly name that represents the service. In
this case, we have specified a value of MyWCFServiceReference.

8. Click OK.

9. Open the code view window of the Windows form and add the code from Listing 7-12 to the
Form load event:

Listing 7-12. Calling a WCF Service

private void Form1_Load(object sender, EventArgs e)
{
MyWCFServiceReference.MyWCFServiceClient objService = ➥
new MyWCFServiceReference.MyWCFServiceClient();
string strResult = objService.DoWork();
objService.Close();

}

You have now created a test client for your WCF service. Try it out and if everything works fine,
you can add a service reference to this WCF service within web parts or SharePoint pages.

In this section, you learned how to create a WCF service that is hosted in IIS and runs under a
custom application pool identity. WCF services can be used to execute code under this custom
application pool identity that a normal end user would not be allowed to run.

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION376

■Caution In this scenario, the WCF application pool identity executes some sort of action on behalf of the end
user. This is a potential security risk if everybody is allowed to communicate with the WCF service. In this case,
where the WCF service is hosted by IIS, you could restrict the users that are allowed to call the WCF service (by
adding IP address and domain name restrictions). There are a lot of other options when it comes to securing WCF
services, but they fall outside the scope of this chapter.

Summary
You have concluded the tour on impersonation, elevation, and delegation for SharePoint 2007.
You have seen how to use the LogonUser() Win32 API function to impersonate user accounts, a
technique that can be used to access resources not controlled by the SharePoint API. Then, you
saw how to store user credentials in a safe and encrypted way in configuration files and the Single
Sign-on database. You have seen how to avoid storing credentials via credential-less imperson-
ation. After that, you learned what delegation is and how to enable it on a SharePoint server.
Finally, we discussed how to create a Windows Communication Foundation service and use that
in impersonation scenarios. That concludes this chapter, and as far as we are concerned, you are
ready to impersonate.

CHAPTER 7 ■ CHANGING CODE PRIV ILEGES USING IMPERSONATION, ELEVATION, AND DELEGATION 377

Working with InfoPath in a
MOSS 2007 Environment

When talking about Microsoft Office SharePoint Server 2007 and Office 2007, the conversation
will most definitely include InfoPath 2007. This product is a rich client desktop application that is
part of the Office system product suite. InfoPath 2007 can be used by teams and organizations to
collect data in an efficient way. With InfoPath 2007, you can create rich and dynamic forms and
publish them so users can fill them out and submit them. The fact that InfoPath forms are built
using XML makes it very easy to share information in organizations. In this chapter, we discuss
the basic principles of creating InfoPath forms and the connection between InfoPath 2007 and
SharePoint 2007.

We will discuss site content types, which enable you to add more than one InfoPath form
template to a SharePoint form library. Form libraries are used to store XML-based business forms,
such as InfoPath forms. We will also take a look at data connection files, and see how to create and
use them.

Furthermore, this chapter discusses how to access data that is stored in a SharePoint list within
an InfoPath form. After that, we show you how to update and save InfoPath forms programmati-
cally in a SharePoint form library. We will also discuss Forms Server 2007, which is a new server
product that allows end users to open forms in a browser without having to install InfoPath 2007
on the client.

The final topic that is discussed in this chapter is automating business processes. If you have a
need for automated collection and distribution of InfoPath forms, BizTalk Server 2006 can help you
out. This chapter goes into detail about using the BizTalk Server 2006 Windows SharePoint Services
adapter.

InfoPath Walkthrough
The first thing you need to find out when starting to work with InfoPath is how to design and
develop an InfoPath form. The easiest way to start is by creating a form based on an existing tem-
plate. You can do this by opening InfoPath and clicking Customize a Sample in the Getting Started
window. InfoPath has a number of default templates that you can customize any way you want (see
Figure 8-1). For this example, we will use the Expense Report template.

InfoPath runs in either design mode or published mode. Design mode lets developers set up
the form structure as well as the look and feel of the form. Published mode shows how users will see
the form. By default, our sample form opens in design mode, as you can see in Figure 8-2.

379

C H A P T E R 8

Figure 8-1. An overview of sample forms in InfoPath

Figure 8-2. The Expense Report sample form opened in design mode

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT380

When you look at the Expense Report sample form, you will notice that InfoPath has taken care
of the layout of the form and puts several different controls on the form. The Design Tasks task pane
contains the following tasks to help you design your form:

• Layout: The Layout task pane is meant to create the layout of the form. With the Layout
task pane, you can add tables to a form to organize the different parts of the form template.
Figure 8-3 shows the Layout task pane.

Figure 8-3. The Layout task pane

• Controls: The Controls task pane will let you add controls so users can easily fill out the form.
Other than standard controls (shown in Figure 8-4) you have been familiar with for years
(such as text boxes and list boxes), InfoPath 2007 contains its own specific set of controls
such as repeating tables, repeating sections, and choice groups. You should also note that it
it is possible to create your own custom controls. The article “Creating an InfoPath Custom
Control Using C# and .NET” on the InfoPath team Blog located at http://blogs.msdn.com/
infopath/archive/2005/04/15/408728.aspx provides more information about this.

Figure 8-4. The Controls task pane

■Note There are a couple of controls that are not supported in browser-enabled form templates, such as the
repeating recursive section, the choice group, and the horizontal repeating table. More information about browser-
enabled form templates can be found in the section “Forms Services 2007.”

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 381

• Data Source: The Data Source task pane displays the data sources that are available and
bindable to the controls you have added to the form. Figure 8-5 shows the Data Source task
pane. More information about data sources can be found in the section “Sharing Data
Connection Files in a Data Connection Library.”

Figure 8-5. The Data Source task pane

• Views: The Views task pane lets you create one or multiple views of the same InfoPath form.
Views let you create a manager’s view, a print view, or any other kind of view. Figure 8-6
shows the Views task pane.

Figure 8-6. The Views task pane

• Design Checker: InfoPath 2007 lets you design a form that can be opened in either InfoPath
or a web browser, or both. A form is considered browser-compatible if it can be opened by a
web browser. Some InfoPath features are not supported in browser-compatible forms. More
information about browser-compatible forms can be found in the section “Forms Services
2007.” The Design Checker task pane gives you the option to check whether there are com-
patibility problems. Figure 8-7 shows the Design Checker task pane.

■Note In the Design Checker task pane, you can also select the Verify on server check box. This allows you to
view additional errors and messages detected by InfoPath Forms Services, such as the negative impact a form
may have on the performance in the browser.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT382

Figure 8-7. The Design Checker task pane

• Publish Form Template: With the Publish Form Template task, you can publish the form tem-
plate to the following locations:

• SharePoint Server: (This can be either Microsoft Office SharePoint Server 2007 or
Windows SharePoint Services 3.0.) The form template can be published to a form
library or it can be published as a site content type. If you publish a form template
as a site content type, the form template can be used in multiple sites within a site
collection. You can find more information about this in the section “Using Site
Content Types.”

• Forms Server 2007 server: A browser-compatible form template can be published to a
server that runs Forms Server. Users without InfoPath can still fill out the InfoPath form.
You can find more information about browser-compatibility in the section “Forms
Services 2007.”

• Part of an e-mail: A form template can be published by sending it in an e-mail using
Outlook 2007. Receivers of this e-mail can open the form and fill it out.

• Shared network folder: A form template can be published to a shared network folder.
Users can go to the shared network folder and fill out the form.

• Installable file: A form template can be published as an installable file to a shared net-
work location. This is only possible if Visual Studio 2005 is installed on the server.

■Tip Another interesting scenario is to use InfoPath 2007 to create custom Document Information Panels, in
which case you need to publish the InfoPath form as a Document Information Panel template. This topic is not
discussed in this chapter, but the blog post “InfoPath 2007: Customizing the default Document Information Panel”
located at http://blah.winsmarts.com/2006-12-InfoPath_2007__Customizing_the_default_
Document_Information_Panel.aspx provides an excellent overview.

When you are finished designing the form, you can preview how it will look when it is pub-
lished (see Figure 8-8) via the Preview Form button, which is located on the InfoPath toolbar.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 383

Figure 8-8. The Expense Report sample form in preview mode

When you are happy with the design of your form, you must first save it in order to publish the
form. In this example, we are going to publish the Expense Report form to a SharePoint form library.

1. To publish a form, choose the Publish Form Template from the Design Tasks task pane.
This brings up the Publishing Wizard dialog window.

2. In the first step of the Publishing Wizard, you can choose where you want to publish your
form, as shown in Figure 8-9. Choose to publish the form to a SharePoint server with or
without InfoPath Forms Services, and click Next.

3. In the second step of the Publishing Wizard, enter the location of the SharePoint site where
you want to publish the form template. The recommended location for saving a form is the
Forms Templates document library located at the root of the site collection. Click Next.

4. The next step lets you confirm that the form is browser-compatible; in this example it is.
Then you can choose how you want to publish a form template. You can choose between a
document library (choosing this option results in the creation of a form library), a site con-
tent template, or an administrator-approved form template. This is shown in Figure 8-10.
In this example, we are going to create a document library and click Next.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT384

Figure 8-9. Choose where to publish an InfoPath form.

Figure 8-10. Choose how you want to publish a form template.

■Note Make sure you are using the Enterprise edition of Microsoft Office SharePoint Server 2007 and that you
have activated the “Office SharePoint Server Standard Web application features” feature for the web application.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 385

5. The next step of the Publishing Wizard lets you decide whether you want to create a new
document library or modify an existing one. If you want to publish a form to an existing
document library, you are going to overwrite the existing one. If you open a form created
using the original form template, it will do so using the new form template. If the original
form template contained fields that are no longer a part of the new form template, this
information will be discarded, which can lead to the loss of valuable data. Therefore, choose
to create a new SharePoint document library and click Next again.

6. The next thing to do is to enter a name and description for the new document library. We
will call this document library ExpenseReports and click Next.

7. The Publishing Wizard lets you determine which form data elements will be visible as
columns in the SharePoint document library, as you can see in Figure 8-11. Click Next when
you are satisfied with the list of visible columns.

Figure 8-11. Choose the columns in the SharePoint document library.

■Note The names of the columns shown in this list are based on the names of the various controls within the
InfoPath form itself. The names of the controls will be made more user friendly based on their camel casing; for
example, ManagerName becomes Manager Name.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT386

8. To add a column, click the Add button. This opens the Select a Field or Group window.
Here you can select which field you want to include in the default content type associated
to the form library. Because of this, such a field will become available as a column within
a SharePoint document library column. You can choose to create a new column or to add
the selected field to an already existing site column group (see Figure 8-12).

Figure 8-12. Choose which fields you want to promote.

9. The next step of the Publishing Wizard gives an overview of the information you entered in
the previous steps. Click Finish when you are satisfied with this information.

10. The last step of the Publishing Wizard lets you know that the form was published success-
fully and offers the following options:

• Notify users via e-mail that you have published a form in a Sharepoint document library:
Selecting this option creates a new e-mail containing the form. Users receiving this
e-mail can fill out the form and submit it. Figure 8-13 shows an e-mail containing the
Expense Report form.

• Open this Document Library option: The browser will open the document library as
soon as you click the Close button.

• Open in Browser option: Clicking this link will open the form in a browser using Forms
Server 2007, like a user would see the form without InfoPath. Read more about Forms
Server in the section “Forms Services 2007.” Depending on how the form was published
or what it contains, you might also need to set the form’s security options.

11. In this example, we will just click the Close button and browse to the ExpenseReports form
library on the SharePoint site.

Click New ➤ New Document in the ExpenseReports forms library. InfoPath opens and shows
you the form in published mode. A user can fill out the form and submit it back to the form library.
The form library will show all filled-out forms and the values of the promoted columns, as shown in
Figure 8-14.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 387

Figure 8-13. An InfoPath form in an e-mail using Outlook 2007

Figure 8-14. The SharePoint form library called ExpenseReports

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT388

Trust Levels
You can let InfoPath 2007 decide automatically what security level applies to an InfoPath form. A
security level determines which features are available to the InfoPath form. InfoPath 2007 supports
three separate security levels that determine what features are available to an InfoPath form:

• Full trust security level

• Domain security level

• Restricted security level

At design time, InfoPath 2007 will automatically choose the security level that provides the
minimum amount of permissions that are required to execute the form successfully. You can over-
ride this behavior by choosing a different form security level manually.

You can do this by setting the security level and signing the form template with a certificate in
InfoPath via Tools ➤ Form Options. This opens the Form Options window, where you can select the
Security and Trust category. Figure 8-15 shows the Security and Trust category in the Form Options
window. Here you can select whether you want InfoPath to automatically determine the security
level or whether you want to do it manually. You can also specify a digital certificate that you want
to use to sign the form template.

Figure 8-15. Specify the security level in the Form Options window.

If the developer specifies that a form must run within a certain security level, the form will
only run if the client decides to grant sufficient rights to the form; otherwise the form will not
open. Security levels are granted based on the location, installation type, and the (optional) pres-
ence of a digital signature.

A form is allowed to run within the full trust context when it is digitally signed with a certificate,
or when the form is installed on the client via an .msi (Microsoft Installer) file. Forms running
within the full trust context are allowed to access content located anywhere.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 389

A form that runs in the domain security context is allowed to access resources that the end user
is allowed to access based on the security levels specified for a zone in Internet Explorer. This means
that the form is able to access data stored within the form itself or the domain of the form, and it is
also allowed to access data coming from content included in the Internet Explorer Trusted sites
zone, Local computer zone, and Local intranet zone.

Finally, forms running in the Restricted security level context are only allowed to access data
that is stored within the form itself. If you want to find out more about the security levels of InfoPath
forms, please refer to the following location: http://office.microsoft.com/en-us/infopath/
hp010967191033.aspx.

■Note If you publish a form that runs under the Restricted security level, you can still publish it as a content type
unless the form is browser-enabled. In the latter case, you will not be able to publish the form as a site content type.

Using Site Content Types
Content types are a new feature of SharePoint 2007 (Windows SharePoint Services 3.0 and Microsoft
Office SharePoint Server 2007). Content types are centrally defined and can be used by every library
in the site collection. Content types define the document profile of a piece of content concerning
the use of columns, workflows, and templates. In SharePoint 2007, document libraries and form
libraries can contain more than one content type.

Looking at an InfoPath form template, this means that a form template can be published as a
site content type and can be used in more than one form library. Besides that, it is also possible to
use more than one form template per form library. In this section, we will show you how to publish
a form template as a site content type and how to use multiple form templates in one form library.

The next procedure shows you how to publish a form template as a site content type.

1. Open InfoPath 2007.

2. Customize a Sample on the Getting Started window.

3. Select Sample – Asset Tracking and click Design this form.

4. In the Design Tasks task pane, click Publish Form Template.

5. Save the form template locally. This opens the Publishing Wizard.

6. Choose to publish the form to a SharePoint server with or without InfoPath Forms Services
and click Next.

7. Enter the name of a SharePoint site and click Next.

8. On the next page of the Publishing Wizard, select Site Content Type and click Next.

9. Select Create a new content type and click Next.

10. Specify a name for the new content type in the Name text box and click Next.

11. On the next page of the Publishing Wizard, enter a location for the form template and
click Next.

12. You can add, remove, or modify a site column. Click Next when you’re done.

13. Click Publish and click Close.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT390

■Note The Create a new content type option is only available if you are using Microsoft Office SharePoint Server
2007 Enterprise edition and you have activated the “Office SharePoint Server Standard Web application features”
feature for the web application.

We are going to repeat the previous procedure for another form template. This time we will use
the Sample – Meeting Agenda form template. After publishing the Meeting Agenda sample form
template, open the site content type gallery. The next procedure shows you how to do this.

1. Open the site (or site collection) where you pulished the form templates as content types in
a browser.

2. If you have published the form templates to a site, click Site Actions ➤ Site Settings.

3. If you have published the form templates to a site collection, click Site Actions ➤
Site Settings ➤ Modify All Site Settings.

4. In the Galleries section, click Site content types. This opens the Site Content Type Gallery
page, as shown in Figure 8-16.

Figure 8-16. Site Content Type Gallery

We have published two form templates, AssetTracking and MeetingAgenda, as site content
types. Now, it is time to create a form library that supports the use of content types and add these
two content types. The next procedure shows you how to do this.

1. Open the site where you want to create a form library.

2. Click Site Actions ➤ Create.

3. In the Libraries section, click Form Library.

4. Specify a name for the form library and click Create.

5. Select Settings ➤ Form Library Settings.

6. In the General Settings section, click Advanced settings.

7. In the Content Types section, select Yes to allow management of content types. Click OK.

8. On the Customize page, a section called Content Types is added. This section contains one
content type called Form, which is the default content type. Click Add from existing site
content types. This opens the Add Content Types page.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 391

9. Select Microsoft Office InfoPath from the Select site content types from drop-down list. This
results in two available content types, namely AssetTracking and MeetingAgenda.

10. Select the two content types and click Add. This is shown in Figure 8-17.

Figure 8-17. Add Content Types page

11. Click OK.

12. In the Content Types section, select the Form content type. This opens the List Content
Type : [name content type] page.

13. In the Settings section, select Delete this content type. A pop-up window will be shown with
the question: Are you sure you want to delete this list content type? Click OK.

Browse to the form library, where you have added the AssetTracking and MeetingAgenda con-
tent types. When you click New, you will notice that there are now two content types you can choose
from, as shown in Figure 8-18.

Figure 8-18. Select which form to create.

In this section, we have shown you how to publish an InfoPath form template so that it can be
used as a site content type. Site content types can be used by every library in the site collection (this
can also be a document library), and it is possible to add multiple content types to one library.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT392

Sharing Data Connection Files in a Data
Connection Library
InfoPath forms can have one main data connection (primary connection) and one or more second-
ary data connections. A data connection can submit to or receive data from an external data source
such as a web service, SharePoint list, or SQL Server database.

■Note InfoPath insists that you can only create a connection to a SQL Server database. It also seems to work
for other types of databases, such as Oracle, although this is not supported officially. Instead, if you want to sup-
port such a scenario, you should instead create a web service that retrieves the data as XML from a third-party
database.

If several form templates are using the same data connection, it is useful to create a data con-
nection file. This connection file can be reused among different form templates so that you do not
have to create a data connection for each form template.

A data connection file is an XML file with an .xml or .udc(x) extension, where udc(x) stands for
Universal Data Connection.

■Note Data connection files follow the Universal Data Connection version 2.0 format. This is a superset of ver-
sion 1.0, which is used by SharePoint Designer and Access. Udc 1.0 files use the extension .odc, which stands for
Office Data Connection. Data connection files that are in the version 1.0 format cannot be used by InfoPath 2007.
InfoPath is not the only technology that supports data connection files; Excel Services (a component of Microsoft
Office SharePoint Server 2007, but not discussed in this book) also support the reuse of data connections.

The advantages of using data connections files are

• Data connection files can be reused; multiple forms can use the same data connection file.

• If the connection settings change, you only have to change this once in the data connection
file and not in every form template that contains this data connection.

• A data connection file can include alternative authentication information that can be used
when a browser-enabled form is filled out.

• It is possible for browser-enabled forms to connect to other servers in another domain when
making use of data connections that use data connection files.

When you start to work with data connection files, you first need to create a SharePoint data
connection library, a library where data connection files can be saved. The next procedure shows
you how to create a data connection library.

1. Open a site collection in a browser.

2. Click the View All Site Content link (on the left). This opens the All Site Content page.

3. Click Create. This opens the Create page.

4. In the Libraries section, click Data Connection Library. This opens the New page.

5. Enter a name. We will enter the following name: DataConnections.

6. Click Create. This creates a new data connection library.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 393

There are three ways to create data connection files. Two of those ways are easy; the other
requires some work. The first, easy way, and probably the one that is used most often, is creating a
data connection file via InfoPath. In InfoPath, you can covert data connections into UDC files and
store them in a data connection library. You can also use Excel to create data connection files. If you
want to learn more about this topic, please refer to the article “Create, edit, and manage connec-
tions to external data,” located at http://office.microsoft.com/en-us/excel/HA101672271033.aspx.
You can also create the UDC file manually via Notepad (or any other text editor you prefer) or via
the UDC File Authoring Tool that is discussed at the end of this section. The section “Using Data
from a SharePoint List” shows how to convert a data connection into a UDC file and save it in a data
connection library.

■Note One of the reasons why you should create a data connection file manually (or by using the UDC File
Authoring Tool) instead of using InfoPath to create a data connection file is because in InfoPath, you cannot add
authentication information to a data connection file. More information about authentication in data connection files
can be found at the following location: http://blogs.msdn.com/infopath/archive/2006/06/14/
advanced-server-side-authentication-for-data-connections-part-1.aspx.

In the remainder of this section, we will show you how to create a data connection file via a text
editor and how to use the UDC File Authoring Tool. Follow these steps to create and upload a data
connection file.

1. Open Notepad.

2. Copy and paste Listing 8-1 into Notepad.

Listing 8-1. UDC File for a SharePoint List

<?MicrosoftWindowsSharePointServices ➥
ContentTypeID=”0x010100B4CBD48E029A4ad8B62CB0E41868F2B0”?>

<udc:DataSource MajorVersion=”2” MinorVersion=”0” ➥
xmlns:udc=”http://schemas.microsoft.com/office/infopath/2006/udc”>
<udc:Name>Tasks</udc:Name>
<udc:Description/>
<udc:Type MajorVersion=”2” MinorVersion=”0” Type=””/>
<udc:ConnectionInfo Purpose=””>
<udc:SelectCommand>
<udc:ListId>{4008B331-501E-4E73-A147-822D01E4326C}</udc:ListId>
<udc:WebUrl>http://[server]</udc:WebUrl>

</udc:SelectCommand>
</udc:ConnectionInfo>

</udc:DataSource>

3. Replace value of the udc:ListId element with the list id of the SharePoint list you want to use.
In this example, we are going to use the Tasks list.

The data connection file starts with a processing instruction that specifies a content type id.
This processing instruction associates this file with the UDC content type on a Microsoft Office
SharePoint 2007 server. As a result, the Name, Title, Description, Type, and Purpose fields will be
promoted into columns in the data connection library. This helps InfoPath to recognize the data
connection file. The root element of the data connection file is DataSource. The DataSource ele-
ment has a Major attribute to specify that the UDC version is 2.0. It also declares that the udc v2
namespace is used. The Type attribute of the Type element and the Purpose attribute of the Connec-
tion element are required. The Type attribute contains information about the type of connection

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT394

that is used. The Purpose attribute contains information about the type of access of the data source.
See Table 8-1 for more details. The values of the Type and Purpose attributes can be specified when
we upload the UDC file into the SharePoint data connection library.

Table 8-1. Values of the Type and Purpose Attributes

Value Description

Type Attribute Values of the Type Element

SharePointList This is a query connection to a SharePoint list.

SharePointLibrary This is a submit connection to a SharePoint library.

Database This is a query connection to a database.

XmlQuery This is a query connection to an XML file.

XmlSubmit This is an HTTP Post submit connection.

WebService This is a query or submit connection to a web service.

Purpose Attribute Values of the Connection Element

ReadOnly All query connections are read-only connections.

WriteOnly All submit connections are write-only connections.

ReadWrite Only the WebService connection type can be ReadWrite. The
XmlSubmit and XmlQuery connections must both be specified and
must both reference the same WSDL.

CONVERTING A URL-ENCODED GUID

You can retrieve the GUID of a SharePoint list by browsing to the SharePoint list and clicking Settings ➤ List Settings.
You can copy the URL-encoded GUID from the URL (which is the value of the list query string parameter). You can
remove any URL escape codes programmatically using the JavaScript unescape() function. Copy the following line
of code in the location bar of the browser and press Enter

javascript:unescape ➥
(‘%7B4008B331%2D501E%2D4E73%2DA147%2D822D01E4326C%7D’);

The browser will display a GUID that does not contain URL encoding. In this case, the result is
{4008B331-501E-4E73-A147-822D01E4326C}.

Please note that not all browsers support this little trick. Alternatively, you can create a custom HTML page
that does the same job for you. This is shown in Listing 8-2.

Listing 8-2. Converting a URL-encoded GUID

<html>
<body>
<script language=”javascript”>
document.write(➥
unescape(‘%7B4008B331%2D501E%2D4E73%2DA147%2D822D01E4326C%7D’));

</script>
</body>

</html>

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 395

4. Replace the value of the udc:WebUrl element with the fully qualified URL of the SharePoint
site that contains the data connection library.

5. Save the file with an .xml extension.

6. Open a browser and go to the data connection library you created earlier.

7. Click Upload ➤ Upload Document.

8. Click Browse and select the data connection file you just created.

9. Click OK.

10. On the Properties page, select the following value from the Content Type drop-down list:
Universal Data Connection File.

11. Enter a name and description for the data connection file.

12. Select the following value from the UDC Purpose drop-down list: ReadOnly.

13. Select the following value from the Connection Type drop-down list: SharePoint list. This is
shown in Figure 8-19. Click OK when you are ready.

14. From the action menu of the newly added data connection file, select Approve/reject and
approve the data connection file.

Figure 8-19. Properties page of a data connection file

Two members of the Microsoft InfoPath Team, Nick Dallet and Travis Rhodes, have created a
UDC file authoring tool. This tool is actually an InfoPath form template and can be used to create
UDC files. You can download the UDC file authoring tool from the following blog: http://blogs.
msdn.com/infopath/archive/2007/02/12/udc-file-authoring-tool.aspx. After you have down-
loaded the form template, you have to republish it on your own network location; after that you can
use it to create custom UDC files. Figure 8-20 shows the UDC authoring tool that is used to create a
UDC file.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT396

Figure 8-20. UDC authoring tool

■Caution If you are running Windows SharePoint Services 3.0 in combination with Forms Server 2007
(described in the section “Forms Services 2007”), it is possible that the data connection files you upload to
your data connection library might not be visible. For example, when you enter the URL http://[server]/
dataconnectionlib/forms, a data connection file might not show up in the data connection library. This
problem can be solved by entering the fully qualified URL (including the name of the data connection file), like
this: http://[server]/dataconnectionlib/forms/mydataconnection.udcx. More information about this
issue can be found in knowledge base article 922084: http://support.microsoft.com/kb/922084.

To try out the data connection file, we are going to create a very simple form template and add
our data connection. For this example, we have added some dummy tasks to the Tasks list. The next
procedure shows you how to create a form template that references the data connection file.

1. Open InfoPath 2007.

2. In the Getting Started window, click Design a Form Template.

3. Select Blank and click OK.

4. Click Tools ➤ Data Connections. This opens the Data Connections window.

5. Click Add. This opens the Data Connection Wizard.

6. Select Search for connections on a Microsoft Office SharePoint server and click Next.

7. Click Manage Sites. This opens the Manage Sites window.

8. Click Add. This opens the Site Details window.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 397

9. Enter the URL of the SharePoint site that contains the data connection library. Optionally
you can enter a display name for this site. Click OK and click Close.

10. In the Site drop-down list, select the site you just entered.

11. Expand data connections and select the data connection file you want to use. Figure 8-21
shows the Data Connection Wizard containing the selected data connection file.

Figure 8-21. Data Connection Wizard containing the selected data connection file

12. Click Next.

13. The available columns for the Tasks list are shown. Select Title and click Next.

14. You can choose to store a copy of the data in the form template. If you choose to do so, the
data is stored locally for use in offline mode. Choosing this option enables users to access
form data if they are offline working with the form for the first time. Click Next.

15. Enter a name for the data connection. Click Finish and Close.

16. Add some text and a drop-down list to the InfoPath form and double-click the drop-down
list. This opens the Drop-Down List Box Properties window.

17. In the List box entries section, select Look up values from an external data source.

18. In the Data Source drop-down list, select the data connection we just added.

19. Click the button at the right of the Entries field. This opens the Select a Field or Group
window.

20. Select Title (as shown in Figure 8-22) and click OK.

21. Select the Show only entries with unique display names check box. Click OK and save the
InfoPath form.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT398

Figure 8-22. The Select a Field or Group window

You can test the InfoPath form by clicking File ➤ Preview Form. This opens a new instance of
InfoPath with the InfoPath form in preview mode.

Using Data from a SharePoint List
Other than the option of publishing a form in a SharePoint form library, there are other ways to use
SharePoint and InfoPath together. You can access data that is stored in a SharePoint list within an
InfoPath form. Data stored in a SharePoint list can be accessed via the SharePoint library or list data
connection, or via the SharePoint Lists web service. An advantage of using a list data connection is
that it allows you to specify authentication information within the data connection itself.

■Tip If you want to use Forms Based Authentication (FBA) and create a data source that retrieves data from a
SharePoint list, you cannot use the list directly. Instead, you need to access the list data via the SharePoint Lists
web service.

Sometimes you want to use data listed in a SharePoint site. For example, imagine a list of users
or e-mail addresses that you would like to use in an InfoPath form. We will show you how to make a
drop-down list in an InfoPath form populated by the data from a SharePoint list. The SharePoint list
we are going to use for this example will contain a couple of e-mail addresses. We have made a cus-
tom list called EmailAddresses and added a couple of e-mail addresses to the Title column.

We are going to work with the Expense Report form template that we saved in the
ExpenseReports form library. The next procedure shows you how to edit the form template.

1. Browse to the form library. Click Settings ➤ Form Library Settings.

2. In the General Settings section, select Advanced Settings.

3. In the Document Template section, click Edit Template.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 399

The next step is to create a secondary data connection to the EmailAddresses SharePoint list.
This data connection will be used by the InfoPath form to receive data. The following procedure
shows you how to do this:

1. Click Tools ➤ Data Connections ➤ Add. This opens the Data Connection Wizard.

2. Select that you want to create a new connection to Receive data and click Next.

3. Choose that you want to receive the data from a SharePoint list or library and click Next.

4. Enter the URL of your SharePoint site and click Next.

5. The Data Connection Wizard page, shown in Figure 8-23, shows all the lists and libraries
that are available for providing an XML representation of the content of a list or a library of
the SharePoint site you specified. Select the EmailAddresses list and click Next.

Figure 8-23. The Data Connection Wizard page lets you choose which list to use.

6. The next step gives you a list of all the columns that can be selected for use. Select the ID
and Title columns and click Next.

7. In this step, you can choose to store a copy of the data in the form template. If you choose to
do so, the data is stored locally for use in offline mode.

8. Enter a name for the data connection (we will call it EmailAddresses) and click Finish. This
page has a check box that enables automatic data retrieval in the InfoPath form. If the con-
tent of the source SharePoint list is changed, the InfoPath form will detect this and display
the latest changes in the form.

9. Click Convert. This opens the Convert Data Connection window.

10. Browse to the data connection library created earlier in this chapter (in our case http://
mars:9876/DataConnections) and specify a name for the new data connection file. We will
call the data connection file EmailAddresses.udcx.

11. Click OK.

12. In the Data Connection Wizard, click Close.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT400

At this point, the EmailAddresses data connection is hooked up to the EmailAddresses
SharePoint list, but not to the user interface of the form. To do this, you need to go back to the
Expense Report InfoPath form template and bind the EmailAddresses data connection to the
e-mail field of the manager, which is just a text box. The following procedure shows you how to
do this:

1. Right-click the Manager E-mail Address text box, click Change To, and choose Drop-Down
List Box.

2. Right-click the Manager E-MailAddress drop-down list box and choose Drop-Down List Box
Properties. This opens the Drop-Down List Box Properties dialog window.

3. In the List Box Entries section of the Drop-Down List Box Properties dialog window, select
the Look up values from an external data source option.

4. Set the Data Source to the EmailAddresses data connection, as shown in Figure 8-24.

Figure 8-24. The Drop-Down List Box Properties window

5. Click the button at the right of the Entries field. This opens the Select a Field or Group
window.

6. Select the Title field and click OK twice.

When previewing the customized form, you will see the content of the SharePoint list in a
drop-down list in the InfoPath form (see Figure 8-25).

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 401

Figure 8-25. Preview of the customized form template

In this section, we have showed you how to use a SharePoint list as a data source and how to
convert this data source into a data connection file.

Updating and Saving an InfoPath Form
Programmatically
In the next example, we will show you how to update an InfoPath form programmatically and save it
back to a SharePoint form library. If you want to try out the code, you should create a SharePoint
site called Site03 and create a new InfoPath form without using one of the sample forms. The next
procedure shows you how to create the new InfoPath form that we are going to use in this example.

1. Open InfoPath 2007.

2. In the Getting Started window, click Design a Form Template. This opens the Design a Form
Template window.

3. Select a Blank Form Template and click OK.

4. In the Design Tasks task pane, click Layout. This opens the Layout task pane.

5. Drag and drop the Layout with Title layout table onto the design surface of the form.

6. Give the InfoPath form a title; in this example we will call it Custom Form.

7. In the Layout task pane, click Design Tasks. This opens the Design Tasks task pane.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT402

8. In the Design Tasks task pane, click Controls. This opens the Controls task pane.

9. Drag and drop a Text Box control onto the design surface of the form. Double-click this text
box. This opens the Text Box Properties window.

10. In the Field name text box, enter the following name: Name.

11. Add four more text boxes and give them the following Field names: Address, City, Country,
and Email. Figure 8-26 shows what our form looks like in design mode.

Figure 8-26. Custom InfoPath form in design mode

We will publish the InfoPath form to a SharePoint form library called TestFormLib. Make sure
that you promote at least the Email field to the SharePoint form library. The publication of InfoPath
forms was demonstrated previously in the section “InfoPath Walkthrough.”

Create an empty form in this form library based on the new template and call it TestA.xml.
Open the InfoPath form (TestA.xml) in Notepad (or any other text editor) to see the XML

contents. The <mso-infoPathSolution> InfoPath processing instruction contains attributes that
describe the solution version, the version of InfoPath used to create the form, the processing
instruction version, and the location and name of the InfoPath template (href). The href attribute
represents the URL of the document template; this is also known as the template pointer location.
Listing 8-3 shows the XML contents of the InfoPath form.

Listing 8-3. XML Contents of an InfoPath Form

<?xml version=”1.0” encoding=”UTF-8”?>
<?mso-infoPathSolution ➥
solutionVersion=”1.0.0.2” ➥
productVersion=”12.0.0” ➥
PIVersion=”1.0.0.0” ➥
href=http://mars:9876/SiteDirectory/Site03/TestFormLib/Forms/template.xsn ➥
name=”urn:schemas-microsoft-com:office:infopath:TestFormLib: ➥
-myXSD-2007-08-17T08-22-21” ?>
<?mso-application ➥
progid=”InfoPath.Document” ➥
versionProgid=”InfoPath.Document.2”?>

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 403

<my:myFields ➥
xmlns:my=”http://schemas.microsoft.com/office/infopath/2003 ➥
/myXSD/2007-08-17T08:22:21” ➥
xml:lang=”en-us”>
<my:Name></my:Name>
<my:Address></my:Address>
<my:City></my:City>
<my:Country></my:Country>
<my:Email></my:Email>

</my:myFields>

■Note InfoPath supports the W3C XML Signature standard (XMLDSIG). If you are using XMLDSIG, the XML data
of an InfoPath form is secured; changing the XML data of an InfoPath form that is digitally signed invalidates the
digital signature, which will be detected by InfoPath once InfoPath attempts to load or otherwise consume the
data. XMLDSIG digital signatures are most commonly used to ascertain that the XML data underlying the InfoPath
form has not been altered since the form was originally signed.

Next, you will create a web part that opens the empty InfoPath form (TestA.xml) program-
matically. We have chosen to create a web part to demonstrate how to open an InfoPath form
programmatically; we could have just as well chosen to create another type of application to do
this. If you need more information about creating web parts, please refer to Chapter 1. Then you
are going to read the InfoPath form into an XML document, update the value of the e-mail field,
and save the XML document as a new InfoPath form to the SharePoint form library.

Because InfoPath uses namespaces in the XML, you need to associate a namespace with
the prefix you are using in your XPath query in order to match the correct nodes in the document.
This namespace can be retrieved from the XML contents of the InfoPath form. This namespace
is retrieved from the <myFields> element shown in Listing 8-3. You can do this by using of the
XmlNamespaceManager class that is shown in Listing 8-4.

Listing 8-4. Web Part That Uses the XmlNamespaceManager Class

using System;
using System.IO;
using System.Collections.Generic;
using System.Runtime.InteropServices;
using System.Text;
using System.Web.UI;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Xml;
using System.Xml.Serialization;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.WebPartPages;

namespace LoisAndClark.TestWebPartLibrary
{

[Guid(“48b4bc88-44d5-471e-8cb6-da79a22569ff”)]
public class TestFormWebPart : System.Web.UI.WebControls.WebParts.WebPart
{

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT404

protected override void CreateChildControls()
{
SPWeb objSite = ➥
new SPSite(@”http://mars:9876/SiteDirectory/Site03”).OpenWeb();
objSite.AllowUnsafeUpdates = true;
SPFile objFile = objSite.Folders[“TestFormLib”].Files[“TestA.xml”];

MemoryStream objMemoryStream = new MemoryStream(objFile.OpenBinary());
XmlTextReader objXmlReader = new XmlTextReader(objMemoryStream);
XmlDocument objXmlDocument = new XmlDocument();
objXmlDocument.Load(objXmlReader);
objXmlReader.Close();
objMemoryStream.Close();

XmlElement objRootElement = objXmlDocument.DocumentElement;

XmlNamespaceManager objNamespaceManager = ➥
new XmlNamespaceManager(objXmlDocument.NameTable);
objNamespaceManager.AddNamespace(“my”, ➥
“http://schemas.microsoft.com/office/infopath/2003 ➥
/myXSD/2007-08-17T08:22:21”);
XmlNode objNode = ➥
objXmlDocument.SelectSingleNode(“//my:Email”, objNamespaceManager);
objNode.InnerXml = “info@lcbridge.nl”;

ASCIIEncoding encoding = new ASCIIEncoding();
objFile = objSite.Folders[“TestFormLib”].Files.Add(“TestA-edited.xml”, ➥
(encoding.GetBytes(objXmlDocument.OuterXml)), true);

}
}

}

Figure 8-27 shows the programmatically created InfoPath form in a SharePoint form library.

Figure 8-27. The programmatically created InfoPath form

Using a Submit Button
End users can save a form to a location, for example, a SharePoint form library. Alternatively, you
can add a Submit button to a form that allows end users to save the form. This gives the designers
of the form greater control over the saving process. For example, this allows the form designer to
decide where and under which name a form is saved (so that the form adheres to naming conven-
tions). This makes the saving process easier, which is also beneficial to the end user. Also, taking
control of the submission process results in a higher level of control over the user interface.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 405

Within an InfoPath form, you must use a secondary data connection. It is possible to submit
data to more than one location by using rules.

In this example, we will show you how to submit a form to a SharePoint form library via a
Submit button. We are going to create a Travel Request form. Do this by using the Travel Request
sample form and publish the form to a new form library called TravelRequests. The next proce-
dure shows you how to edit the form template.

1. Browse to the form library. Click Settings ➤ Form Library Settings.

2. In the General Settings section, select Advanced Settings.

3. In the Document Template section, click Edit Template.

The next step is to create a secondary data connection to the TravelRequests form library. This
data connection will be used by the InfoPath form to submit data to a form library. The following
procedure shows you how to do this:

1. Click Tools ➤ Data Connections ➤ Add. This opens the Data Connection Wizard.

2. Select that you want to create a new connection to submit data, and click Next.

3. Choose that you want to submit the data to a document library on a SharePoint site and
click Next.

4. In the document library text box, enter the URL and the name of the form library. In our
case, the URL looks like this: http://mars:9876/SiteDirectory/Site03/TravelRequests. You
have to provide a unique file name for each form that the user submits. This file name can
contain a formula, and you can use fields that are available in the form (see Figure 8-28).

Figure 8-28. The Data Connection Wizard page

Use the following formula to generate a file name: concat(name, “ - “, now()). The formula
uses the name of the traveler (it is after all a travel request form we are making) concatenated
with the current date and time. Click Next when you are ready.

5. Enter a name for the data connection. We will call the form SubmitForm. Click Finish.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT406

6. Click Convert. This opens the Convert Data Connection window.

7. Browse to the data connection library created earlier in this chapter (http://mars:9876/
DataConnections) and specify a name for the new data connection file. In this example, we
will call the data connection file SubmitForm.udcx.

8. Click OK.

9. Click Close in the Data Connection Wizard.

Now you need to configure the Submit command for the InfoPath form template. The following
procedure shows you how to do this:

1. Click Tools ➤ Submit Options. This opens the Submit Options window, as you can see in
Figure 8-29. Click the Allow users to submit this form radio button to enable the Submit
commands and buttons.

2. Select SharePoint document library from the Send form data to a single destination drop-
down list.

3. Select the SubmitForm data connection from the Choose a data connection for submit
drop-down list.

4. Click the Advanced button to reveal options that let you specify what to do after the user
submits the form. For example, you can choose to create a new blank form for the user. In
addition, you can specify success and failure messages, which the user will see in a pop-up
window after clicking the Submit button. Figure 8-29 shows the Submit Options window.
Click OK when you are finished.

5. Save the form template and publish it again to the TravelRequests form library.

Figure 8-29. Submit Options dialog window

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 407

■Note In the Submit Options window, you have the option to perform custom actions by using rules or code. You
can use rules to submit data in the form to more than one external data source. For example, you can add a rule to
submit data in the form to a web service and a database when the user clicks the Submit button.

When you go to the SharePoint form library, you will see the submitted InfoPath forms and
their generated names. One of the forms in our form library is named
“van Vuuren A - 2007-08-10T18_49_46” as you can see in Figure 8-30.

Figure 8-30. SharePoint form library with submitted form

Importing Forms
A new feature of InfoPath 2007 is the document import feature. In itself, this feature does not have
anything to do with SharePoint, but since we think it is a nice feature, we will discuss it anyway. The
document import feature helps users migrate Word forms (documents) into InfoPath form tem-
plates. InfoPath can convert Word and Excel forms. There is a set of interfaces available to create
your own document converter for other form types, such as Adobe PDF files. More information
about the available interfaces can be found in the InfoPath 2007 SDK.

In this section, we will show you how to convert a Word form to an InfoPath form. Examples of
Word 2007 forms can be found at Microsoft Office Online: http://office.microsoft.com/en-us/
templates/CT101043201033.aspx. We have downloaded a business form called Employee warning
notice. In Word 2007, this form looks like Figure 8-31.

The next procedure shows you how to import and convert this form using InfoPath 2007.

1. Open InfoPath 2007.

2. In the Getting Started window, click Import a Form. This opens the Import Wizard.

3. Select InfoPath importer for Word documents and click Next.

4. Click browse and select the Word form you want to import.

5. Click Options. This opens the Import Options window.

6. Select Layout and form fields (custom conversion). Here you can select custom conversion
settings, as shown in Figure 8-32. Click OK when you are ready.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT408

Figure 8-31. Word 2007 form

Figure 8-32. Conversion settings

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 409

7. Click Finish and the conversion of the Word form starts.

8. The last step of the Import Wizard contains comments concerning the conversion. Click OK
to open the InfoPath form. Figure 8-33 shows the InfoPath form.

Figure 8-33. Converted InfoPath form

The Design Checker task pane shows warnings and errors concerning elements that were not
correctly imported. Clicking an error or warning in the Design Checker task pane opens a pop-up
window containing more information about this message. The Design Checker task pane can be
used to check again if there are any incompatibilities.

Forms Services 2007
The biggest drawback of InfoPath 2003 was that the InfoPath client had to be installed on each
client machine. In order to change this situation, InfoPath 2007 includes a new service named
Forms Services 2007. By making use of Forms Services 2007, InfoPath forms will be available for end
users whether they have InfoPath 2007 installed or not.

■Note Actually, there are two new products in the Office System product line that provide the same functionality:
Forms Server 2007 and Forms Services 2007. Forms Services is a component of Microsoft Office SharePoint
Server 2007 Enterprise edition. Forms Server 2007 can be purchased as a separate product that is built on top of
Windows SharePoint Services 3.0. In this chapter, we will look at the Microsoft Office SharePoint Server 2007
Enterprise Edition viewpoint and discuss Forms Services 2007. However, everything you will learn about Forms
Services 2007 applies to Forms Server 2007 as well.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT410

Using Form Services, end users can fill in forms via a browser. The following list shows an
overview of the browsers that are supported:

• Internet Explorer 6.x or higher

• Firefox 1.5

• Mozilla 1.7

• Netscape Navigator 7.2

• Netscape Navigator 8.1

• Safari 2.0

■Note If you have Microsoft Office SharePoint Server 2007 Enterprise Edition, the Forms Services 2007 compo-
nent is automatically available. If you only have Windows SharePoint Services 3.0, it is possible to acquire a
separate license and run Forms Server 2007 separately. By the way, you cannot use InfoPath forms within work-
flows when you are using Windows SharePoint Services 3.0.

An InfoPath form template consists of one package with an .xsn extension. An InfoPath client
parses these files and transforms the XML files into HTML files for display. Forms Server converts
the files in the package to .aspx, .css, and .jscript files to render them in a browser.

Forms Services is available as a SharePoint feature on a Microsoft Office SharePoint Server
2007 web application, which can be activated or deactivated. If you want to use it, you need to
configure at least one Shared Services Provider and associate it with the web application where
you want to use Forms Services. The next procedure shows how to activate the Office SharePoint
Server Enterprise Web Application features feature.

1. Open SharePoint 3.0 Central Administration.

2. Click the Application Management tab.

3. In the SharePoint Web Application Management section, click Manage Web application
features. This opens the Manage Web Application Features page.

4. Next to the Office SharePoint Server Enterprise Web Application features feature, click
Activate.

The next thing to do is to activate the Office SharePoint Server Enterprise feature for a specified
site collection. The following procedure shows how to do this:

1. Open a browser and go to your site collection.

2. Click Site Actions ➤ Site Settings ➤ Modify All Site Settings. This opens the Site Settings page.

3. In the Site Collection Administration section, click Site collection features. This opens the
Site Collection Features page.

4. Next to the Office SharePoint Server Enterprise Site Collection features feature, click
Activate.

Go back to the SharePoint Central Administration ➤ Application Management to configure
Forms Server. Now, you will notice a new section called InfoPath Forms Services, as shown in
Figure 8-34.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 411

Figure 8-34. InfoPath Forms Services section in SharePoint Central Administration

Click Configure InfoPath Forms Services in the InfoPath Forms Services section to configure
Forms Server. The Configure InfoPath Forms Services page gives you several configuration options,
as shown in Figure 8-35. In the User Browser-enabled Form Templates section, you can configure
two settings:

• Allow users to browser-enable form template: Deselecting this option displays the following
message whenever a user uploads a browser-enabled form template to a form library: This
form is browser compatible, but it cannot be browser-enabled on the selected site.

• Render form templates that are browser-enabled by users: Deselecting this option prohibits
the form from being rendered even if the Allow users to browser-enabled form template
option is selected.

Figure 8-35. Configure InfoPath Forms Services

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT412

It is possible to force forms to open in a browser even if the InfoPath client is installed on the
end user’s machine. The next procedure shows you how to change the form library settings.

1. Open a browser and go to a form library.

2. Click Site Settings ➤ Form Library Settings. This opens the Customize [name form library]
page.

3. In the General Settings section, click Advanced settings. This opens the Form Library
Advanced Settings: [name form library] page.

4. In the Browser-enabled Document section, select Display as a Web page. This is shown in
Figure 8-36.

Figure 8-36. Form Library Advanced Settings

The end result, an InfoPath form that opened in a browser, is shown in Figure 8-37.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 413

Figure 8-37. InfoPath form opened in a browser

Integration Between InfoPath, SharePoint, and
BizTalk Server 2006
If InfoPath forms are used regularly in your company, you might need to collect or redistribute
them automatically. Because InfoPath data is stored in XML, it is possible for any application to
grab content from any kind of data store, generate InfoPath forms, and store those forms in a

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT414

SharePoint form library. Application-generated InfoPath forms are a great example of forms that
need to be collected and redistributed to the right form libraries. The other way around is also pos-
sible; you might be interested in retrieving information from an InfoPath form and storing pieces
of it in other applications.

In such application-to-application business process scenarios, you might decide that every
application involved contains logic to collect or distribute InfoPath forms. This promotes code
duplication and adds complexity to your IT infrastructure.

So instead, you might decide to build some kind of central messaging system responsible for
all collection and redistribution of InfoPath forms. This is better, although there will come a time,
sooner rather than later, when you will find it will be quite the effort to make the messaging system
robust, scalable, and easy to monitor.

The final option, and probably the best way to go, is to use an existing messaging system. This
is where BizTalk Server 2006 enters the picture. BizTalk Server 2006 offers integration capabilities
with SharePoint 2007 (Windows SharePoint Services 3.0 and Microsoft Office SharePoint Server
2007) via the Windows SharePoint Services adapter.

In this section, we will show you how to use the Windows SharePoint Services adapter to store
or retrieve InfoPath forms in and from SharePoint 2007 (this works for both Windows SharePoint
Services 3.0 and Microsoft Office SharePoint Server 2007). Normally, you would use the Windows
SharePoint Services adapter to transport InfoPath forms from an application to SharePoint 2007 or
vice versa. You could also use the Windows SharePoint Services adapter to collect or redistribute
data within SharePoint 2007. If the data you are retrieving from another application is not an
InfoPath form, BizTalk Server 2006 can be used to transform the data to the required InfoPath form
format, although you will have to tell BizTalk how to perform this transformation.

■Note In human-oriented workflow scenarios, we do not recommend BizTalk Server 2006. The primary focus of
BizTalk Server lies in facilitating process-driven workflows, where messages are exchanged between applications.
Since BizTalk Server 2004, BizTalk Server contains Human Workflow Services (HWS), which is aimed at facilitating
human-oriented workflows. Unfortunately, HWS has become deprecated technology. It will be supported for the
next couple of years, but you have to realize no additional features have been added to the product since its
release. Instead, use Windows Workflow Foundation, which is covered in Chapter 4.

Comparing Biztalk to Windows Workflow Foundation
Biztalk and Windows Workflow Foundation (WF, discussed in detail in Chapter 4) are not competi-
tors, and Windows Workflow Foundation does not replace BizTalk. Both products complement each
other. BizTalk is targeted toward application-to-application (A2A) communication, where two or
more programs on one or more computers need to work together in an automated fashion; Win-
dows Workflow Foundation is used in human-oriented workfows (workflows that need to be
included as part of their applications). Table 8-2 provides a detailed comparison between both
products.

You can find more information about the relation between WF and other Microsoft products
such as BizTalk in MSDN article “Introducing Microsoft Windows Workflow Foundation: An Early
Look”, located at http://msdn2.microsoft.com/en-us/library/Aa480215.aspx#wwfi_topic3.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 415

Table 8-2. Comparison Between BizTalk and Windows Workflow Foundation

BizTalk Windows Workflow Foundation

BizTalk is targeted to toward applications. WF is targeted toward humans.

BizTalk is a product that hosts workflows WF is a framework that can be used to build
and offers numerous extension points workflows.
(such as adapters).

BizTalk workflows are hosted by BizTalk itself. WF workflows are hosted by a client application
that uses the WF framework.

BizTalk is highly scalable. Scalability of WF workflow depends on the
developer.

BizTalk supports long running transactions. Long running transactions need to be
implemented by the developer.

BizTalk supports design-time workflows. WF supports design-time and run-time
workflows.

BizTalk is primarily focused on XML. WF does not need information in the form of
If you want create an advanced workflow, XML to be able to process it.
a message first needs to be transformed
into XML. BizTalk provides advanced
transformation capabilities.

BizTalk contains extensive tracking and Out of the box, WF offers rudimentary support for
management tooling. tracking and management.

BizTalk offers extensive cross-platform Out of the box, WF does not have cross-platform
capabilities. support.

Installing the Windows SharePoint Services Adapter
Microsoft has not yet announced official support in BizTalk Server 2006 for SharePoint 2007
technology. Nevertheless, the Windows SharePoint Services adapter still seems to work nicely for
Microsoft Office SharePoint Server 2007, although you have to configure it a bit in order to get it to
work. You can read more about this topic in the blog post “WSS v3 Beta 2 is out – try it with WSS
adapter” (http://blogs.msdn.com/ahamza/archive/2006/06/05/WSS_v3_Beta_2_Wss_Adapter_
Workaround.aspx). Adrian Hamza, a member of the BizTalk team, maintains this blog.

Unfortunately, the BizTalk 2006 Configuration Wizard does not allow you to install the Windows
SharePoint Services adapter directly. If you want to use this adapter, there are three ways to do so:

• Install the Windows SharePoint Services adapter on a SharePoint 2003 server and upgrade to
SharePoint 2007.

• Install the adapter web service manually by copying the web service and all related compo-
nents the web service depends on from another location.

• On a SharePoint 2007 server, install Windows SharePoint Services 2.0, then install the
Windows SharePoint Services adapter and remove Windows SharePoint Services 2.0 to
prevent having to create the web service manually.

■Note The blog posts “WSS Adapter for Biztalk 2006 Usage against MOSS2007” and “BizTalk 2006 and
SharePoint 2007 adapter” at http://biztalkblogs.com/fairycat/ contain more information about the
manual installation of the adapter web service and its related components.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT416

In the rest of this section, we assume you have installed the adapter web service on a
SharePoint 2003 server that you are planning either to upgrade or remove. We will also assume
the adapter web service still needs to be configured in order to work nicely in a SharePoint 2007
environment. The first step you need to take to configure the adapter web service is to create a
new virtual directory for it. The next procedure discusses how to create a virtual directory for the
Windows SharePoint Services adapter web service.

1. Open Internet Information Services (IIS) Manager.

2. Expand the [web server name] node.

3. Expand the Web Sites node.

4. Right-click the [name SharePoint web application] node and choose New ➤ Virtual
Directory. This opens the Virtual Directory Creation Wizard.

5. On the Welcome to the Virtual Directory Creation Wizard, click Next.

6. On the Virtual Directory Alias page, enter the following value in the Alias text box:
BTSharePointAdapterWS. Click Next.

7. On the Web Site Content Directory page, enter the following path: [drive letter]:\
Program Files\Microsoft BizTalk Server 2006\Business Activity Services\
BTSharePointAdapterWS. Click Next.

8. On the Virtual Directory Access Permissions page, accept the default settings and click Next,
then click Finish.

9. Right-click the new BTSharePointAdapterWS node and choose Properties.

10. This opens the BTSSharePointAdapterWS Properties window.

11. Click the Create button.

12. Click OK.

At this point, you have successfully created a virtual directory for the Windows SharePoint Ser-
vices adapter. Now, you need to adjust its web.config file so the adapter web service supports
SharePoint 2007 and so you can test it.

1. Open the WSS adapter web.config file located in [drive letter]:\Program Files\
Microsoft BizTalk Server 2006\Business Activity Services\BTSharePointAdapterWS.

2. You need to define a policy that ensures that the WSS adapter uses the 2007 version of the
SharePoint assembly. Paste the following code into the <configuration> section of the
web.config file:

<runtime>
<assemblyBinding ➥
xmlns=”urn:schemas-microsoft-com:asm.v1”>
<dependentAssembly>
<assemblyIdentity name=”Microsoft.SharePoint” ➥
publicKeyToken=”71e9bce111e9429c” />
<bindingRedirect oldVersion=”11.0.0.0” ➥
newVersion=”12.0.0.0”/>

</dependentAssembly>
</assemblyBinding>

</runtime>

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 417

3. To be able to browse to the web service page (BTSharePointAdapterWS.asmx) of the WSS
adapter for testing purposes, you should comment out the <protocols> section, like so:

<!—
<protocols>
<remove name=”Documentation”/>

</protocols>
—>

4. Open a command prompt and type iisreset.

Now, you should be able to open a browser and browse to http://[server name:port number]/
BTSharePointAdapterWS/BTSharePointAdapterWS.asmx. After installing and configuring the Windows
SharePoint Services adapter, you are able to use it within your BizTalk 2006 solutions to communi-
cate with SharePoint 2007.

Message Processing Overview
To understand how the integration between BizTalk Server 2006 and SharePoint 2007 works, you
will have to take a closer look at the way BizTalk Server 2006 processes messages. Figure 8-38 shows
the message-processing architecture. This figure will be explained in the rest of this section.

Figure 8-38. Message processing overview

BizTalk Server 2006 receives messages in some way via some channel. For example, a message
might be delivered via FTP or e-mail. If you want to support this, you will need to create an FTP or e-
mail channel that can handle such messages. Messages might be posted to a channel manually by an

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT418

end user or automatically by another application. A BizTalk receive adapter picks up the message
from the channel. For instance, imagine some application is posting a message to a Microsoft Mes-
sage Queuing (MSMQ) queue. An MSMQ queue supports transactions and is able to store messages
in a reliable way. The BizTalk MSMQ receive adapter picks up this message. The adapter passes the
message to the receive pipeline. Pipelines consist of one or several components where every compo-
nent in the pipeline decides whether its message-processing wants to do something with the
message. For instance, the receive pipeline can validate or transform the message.

After the receive pipeline is done processing the message, the message is stored in the
MessageBox, a SQL Server database. Once a message is stored in the MessageBox, it can, but does
not have to, be processed by an orchestration. An orchestration is an XML representation of a busi-
ness process and is expressed in an XML language called Business Process Execution Language for
Web Services (BPEL4WS). If you want to process a message via an orchestration, the result message
of the receive pipeline needs to be XML, because orchestrations are only able to work with XML.
Orchestrations can be used to express complex business rules and optionally interact with the
BizTalk Server Business Rule Engine (BRE) to enable people to express simple business rules in a
simple manner. The BRE lets information workers adjust a subset of the total set of business rules
without needing the assistance of IT personnel.

The result of any manipulation executed by an orchestration or business rule is stored in the
MessageBox database. The Send pipeline picks up the message and is able to convert it to any
required format. When the Send pipeline has completed its job, it passes the message to the Send
adapter. The Send adapter makes sure the message arrives at some endpoint via some channel.
Optionally, the Send adapter uses the Single Sign-on server to retrieve user credentials that will be
used to authenticate itself at the destination point for the message. For instance, if you want to call
a web service of a third-party application, the BizTalk Server SOAP send adapter makes sure the
message gets there.

Windows SharePoint Services Adapter Overview
The Windows SharePoint Services adapter is an optional component of BizTalk Server 2006. It con-
sists of two parts: a send adapter and a receive adapter. Basically, the Windows SharePoint Services
receive adapter is able to pick up messages from SharePoint; the Windows SharePoint Services send
adapter is able to send messages to SharePoint. To be precise, the Windows SharePoint Services
adapter can do the following:

• Receive messages from Windows SharePoint Services document libraries and form libraries,
optionally filtered by SharePoint views.

• Send messages to document libraries, form libraries, and SharePoint lists.

• Promote message properties.

The Windows SharePoint Services adapter architecture consists of three important compo-
nents: the SharePoint adapter web service, the Windows SharePoint Services receive adapter, and
the Windows SharePoint Services send adapter.

Although SharePoint offers a rich web service interface, the interface is not very friendly when
it comes to managing documents. For instance, it won’t let you upload a document and set its prop-
erties at the same time.

■Note If you want to upload a document and set its properties at the same time, use FrontPage RPC. An example
of a client that uses FrontPage RPC is Word. More information about FrontPage RPC can be found at the following
location: http://msdn2.microsoft.com/en-us/library/ms954084.aspx.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 419

To get around this problem, the BizTalk team created its own SharePoint adapter web service
called BTSharePointAdapterWS. The BTSharePointAdapterWS web service uses the SharePoint
object model, and it can be used to upload and set properties of batches of files. The Windows
SharePoint Services send adapter and receive adapter use this web service to communicate with
SharePoint.

The Windows SharePoint Services receive adapter uses a polling mechanism to retrieve mes-
sages from SharePoint. This is less efficient when compared to an event-driven architecture, but it is
also far easier to manage. At the time the BizTalk Server Windows SharePoint Services receive
adapter was created, only the 2003 version of SharePoint existed. During those days, if you wanted
to use the SharePoint event model instead of polling for information, all document and form
libraries had to be reconfigured so they would refer to event-handling assemblies.

■Note In SharePoint 2007, enabling document library events has become considerably easier through the use of
SharePoint features. We will have to wait and see if the use of SharePoint features proves to be compelling enough
for the BizTalk team to change the architecture of the Windows SharePoint Services adapter.

The current Windows SharePoint Services adapter architecture is very nonintrusive; SharePoint
sites do not have to be aware of the fact that BizTalk Server 2006 is using them.

The Windows SharePoint Services adapter uses SharePoint versioning to provide transaction
support. Whenever a receive adapter retrieves a document from SharePoint, it checks out the docu-
ment before it is inserted into the BizTalk Server MessageBox database to prevent conflicts caused
by duplicate insertions. The Windows SharePoint Services receive adapter performs destructive
reads (the adapter removes a document after it has been read), which makes it possible to retrieve a
document from a folder in a document library, process it in BizTalk Server 2006, and publish it back
to the same document library folder.

Working with the Windows SharePoint Services Adapter
If you want to try out the examples in this section, you will need to have access to a computer
with BizTalk Server 2006, Visual Studio 2005, InfoPath 2007, and SharePoint 2007 (either Windows
SharePoint Services 3.0 or Microsoft Office SharePoint Server 2007) installed on it. The examples
in this section will demonstrate how to retrieve messages from SharePoint document libraries
and form libraries. We will also show how to filter messages via SharePoint views. In addition, we
will discuss how to send messages to document libraries, form libraries, and SharePoint lists, and
how to promote message properties.

Creating an XSD Schema
In the first part of this section, you will create an XSD schema that describes the message format.
You will use a BizTalk Server project to create the schema. The BizTalk schema editor helps to create
XSD schemas in a developer-friendly way. The XSD schema will be used later as the basis for an
InfoPath form.

■Note BizTalk schemas are no different from any other XSD. The BizTalk schema editor is just a user-friendly
tool that makes creating XSD schemas easy.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT420

Follow these steps to create a BizTalk project and an XSD schema describing the message format:

1. Start Visual Studio 2005 and choose File ➤ New ➤ Project ➤ BizTalk Projects ➤ Empty
BizTalk Server Project, as shown in Figure 8-39.

Figure 8-39. Creating an empty BizTalk project

2. Right-click the MyTestProject project and choose Add ➤ New Item ➤ Schema Files ➤
Schema. Enter the name StatusReport.xsd.

3. Rename the root element to StatusReport by selecting it, then right-clicking the root ele-
ment and choosing Rename.

4. Right-click the StatusReport root element ➤ Insert Schema Node ➤ Child Field Element
and call this item Date. Select the Properties window and set the Base Data Type of the Date
child field element to xs:dateTime.

5. Right-click the StatusReport root element ➤ Insert Schema Node ➤ Child Field Element
and call this item Name. Select the Properties window and set the Base Data Type of the
Name child field element to xs:string.

6. Right-click the StatusReport root element ➤ Insert Schema Node ➤ Child Field Element
and call this item EmailAddress. Select the Properties window and set the Base Data Type of
the EmailAddress child field element to xs:string.

7. Right-click the StatusReport root element ➤ Insert Schema Node ➤ Child Field Element
and call this item Project. Select the Properties window and set the Base Data Type of the
Project child field element to xs:string.

8. Right-click the StatusReport root element ➤ Insert Schema Node ➤ Child Field Element,
and call this item ManagerName. Select the Properties window and set the Base Data Type
of the ManagerName child field element to xs:string.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 421

9. Right-click the StatusReport root element ➤ Insert Schema Node ➤ Child Field Element,
and call this item BillingCode. Select the Properties window and set the Base Data Type of
the BillingCode child field element to xs:string.

10. Right-click the StatusReport root element ➤ Insert Schema Node ➤ Child Field Element,
and call this item Department. Select the Properties window and set the Base Data Type of
the Department child field element to xs:string.

11. Right-click the StatusReport root element ➤ Insert Schema Node ➤ Child Field Element,
and call this item Summary. Select the Properties window and set the Base Data Type of the
Summary child field element to xs:string.

Figure 8-40 shows the way the StatusReport.xsd schema looks in the BizTalk 2006 development
environment.

Figure 8-40. StatusReport schema

Creating an Orchestration
BizTalk orchestrations allow you to define a business process in a visual way in Visual Studio 2005
via the BizTalk Orchestration Designer. The BizTalk Orchestration Designer allows you to define
complex workflows. In this section, you will use the BizTalk Orchestration Designer to create a

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT422

simple orchestration that receives a message via a logical receive port that will be bound to a physi-
cal receive port later. The logical receive port indicates the starting point of the workflow; this is
where the message enters the business process. By itself, the logical receive port does not tell you
where a message is coming from. A logical receive port needs to be tied to a physical receive port that
defines exactly where a message is coming from, which communication protocol is used to retrieve a
message, and other metadata concerning communication. In this example, the physical receive port
will be connected to a SharePoint document library so that the Windows SharePoint Services adapter
knows where to retrieve messages. Normally an orchestration would process the message. However,
for this example you will just pass the message to a logical send port. The logical send port defines
the point where a message leaves the workflow. The logical send port needs to be associated to a
physical send port that defines specifics about the location the message needs to be send to. In this
example, the send port will be connected to a SharePoint document library (via a physical send port)
so that the Windows SharePoint Services adapter knows where to send the messages.

1. Right-click the project MyTestProject ➤ Add ➤ New Item ➤ Orchestration Files ➤ Biztalk
Orchestration, and name the orchestration MyTestOrchestration.odx.

2. Open the Toolbox window and drag a Receive shape to the orchestration surface in the Drop
a Shape from the Toolbox Here area.

3. Drag a Send shape from the Toolbox below the Receive shape on the orchestration surface.

4. Drag a Port shape from the Toolbox to the upper left Port Surface. This starts the Port Con-
figuration Wizard. Click Next on the welcome screen.

5. On the Port Properties window of the Port Configuration Wizard, enter the name
TestReceivePort. Click Next.

6. On the Select a Port Type window of the Port Configuration Wizard, choose Create a New
Port Type. Type the name TestReceivePortType as the Port Type Name. Make sure the Com-
munication Pattern is set to One-Way. Make sure the Access Restrictions are set to Public —
No Limit. Click Next.

7. On the Port Binding window of the Port Configuration Wizard, go to the Port Direction of
Communication setting and select I’ll Always Be Receiving Messages on This Port. For the
Port Binding setting, select Specify Later. Click Next.

8. Click Finish on the Completing the Port Wizard page.

At this point, you have successfully configured a receive port. Now you are ready to configure a
send port:

1. Drag a Port shape from the Toolbox to the right Port Surface. This starts a new instance of
the Port Configuration Wizard. Click Next.

2. On the Port Properties window, enter the following name: TestSendPort. Click Next.

3. On the Select a Port Type window, select the following port type to be used for this port:
Create a New Port Type. Enter the following Port Type Name: SendPortType. Make sure the
communication pattern is set to One-Way. Set Access Restrictions to Public—No Limit.

4. On the Port Binding window, choose the following Port Direction of Communication: I’ll
Always Be Receiving Messages on This Port. Choose the following Port Binding: Specify
Later. Click Next.

5. On the Completing the Port Wizard window, click Finish.

Now you have also configured a send port. Specify which message types can be handled by the
MyTestOrchestration orchestration:

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 423

1. Go to the Orchestration View window ➤ Messages ➤ New Message.

2. Go to the Properties window and name the Identifier property StatusReportMessage.

3. Choose Message Type ➤ Schemas ➤ MyTestProject.StatusReport.

4. Go back to the orchestration design surface and select the Receive_1 Receive shape.
Set its Activate property to True in the Properties window. Set its Message property to
StatusReportMessage.

5. Select the Send_1 Send shape on the orchestration design surface. Set its Message property
to StatusReportMessage.

The orchestration is almost ready. Drag a line from the TestReceivePort port shape to the
Receive_1 Receive shape by keeping the left mouse button pressed. Then drag a line from the
Send_1 Send shape to the TestSendPort Send port. The StatusReport orchestration should look like
Figure 8-41.

Figure 8-41. StatusReport orchestration

BizTalk orchestrations are compiled into .NET assemblies that are ultimately added to the
Global Assembly Cache (GAC). In order to be able to do so, the MyTestProject project needs to be
strong named.

Unfortunately, in BizTalk 2006 projects you do not have the ability to create strong-named key
files directly via the Visual Studio 2005 user interface. In the following steps, you will strong-name
the MyTestProject project:

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT424

1. Open a Visual Studio 2005 command prompt and generate a strong-named key file manually
by typing sn –k c:\MyKey.snk.

2. Go to the Solution Explorer ➤ Properties ➤ Common Properties ➤ Assembly ➤ Assembly
Key File and enter the path to the strong-name key file: c:\MyKey.snk.

3. Click Apply.

4. Select Configuration Properties ➤ Deployment, and set Redeploy to True. Click OK.

5. Build the MyTestProject project. After that, right-click the MyTestProject project and choose
Deploy. You should see a status message indicating that the deploy succeeded.

In the test orchestration, you have defined two logical ports: a send and a receive port. In time,
the logical BizTalk ports will be bound to physical BizTalk ports. We will connect the physical ports
to actual locations in SharePoint sites.

Before we can bind physical ports to locations in SharePoint sites, we need to create two docu-
ment libraries. First, we need to define a SharePoint document library that we will call Source. This
document library will be connected to a BizTalk receive port. This document library will contain
messages that will be picked up by the Windows SharePoint Services receive adapter. Second, we
need to define a SharePoint document library that we will call Destination. This document library
will be connected to a BizTalk send port. The Windows SharePoint Services send adapter will send
all messages to this document library.

In the next step, you will create the Source and Destination document libraries and set the
security settings of those libraries in such a way that the Windows SharePoint Services adapter will
be able to read from and write to those document libraries. On our computer, we have used the
local administrator account as our BizTalk service account. This is fine for a development server,
but in a production environment, you should consider using a user account that has less privileges.
You will need to add the BizTalk service account to the SharePoint Enabled Hosts group that is cre-
ated during the installation of BizTalk Server 2006. Only members of the SharePoint Enabled Hosts
are allowed to call the BTSharePointAdapterWS adapter Web service. This web service executes
under the identity of the BizTalk service account. Because of that, you will need to make sure that
the SharePoint Enabled Hosts group has contributor rights so that the adapter web service will be
able to retrieve and add items from and to SharePoint lists.

After adding the BizTalk service account to the SharePoint Enabled Hosts group, the
BizTalkServerApplication host instance needs to be restarted because group membership will
only take place after you log off and log in again. Failing to do this will lead to “HTTP 401 —
unauthorized errors” at a later stage.

■Tip The Windows Event Viewer is a valuable aid when troubleshooting BizTalk solutions.

The next procedure explains how to add the BizTalk service account to the SharePoint Enabled
Hosts group:

1. Go to Start ➤ Administrative Tools ➤ Computer Management.

2. Expand Local Users and Groups. Go to Groups. Locate the SharePoint Enabled Hosts group
and double-click it. Click Add. Add the BizTalk service account to the group. In our example,
this is the Pluto\Administrator account.

3. Open the BizTalk Server 2006 Administrator Console (Start ➤ All Programs ➤ Microsoft
BizTalk Server 2006 ➤ BizTalk Server Administration).

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 425

4. In the BizTalk Server 2006 Administration Console, choose Console Root ➤ BizTalk Server
2006 Administration ➤ BizTalk Group [server name: database name] BizTalk Group [server
name: database name] ➤ Platform Settings ➤ Host Instances and right-click BizTalkServer-
Application ➤ Restart. Now the new security settings will be in effect.

5. Add two document libraries to a top-level SharePoint site called Test and call them Source
and Destination.

6. On the Test SharePoint site, choose Site Actions ➤ Site Settings. This opens the Site Settings
page for the Test SharePoint site.

7. In the section Site Collection Administration, click the Go to top level site settings link.
This opens the Site Settings page for the Site Collection.

8. In the section Users and Permissions, click the People and groups link. This opens the
People and Groups: [name site collection] page.

9. Click New ➤ Add Users. This opens the Add Users: [name site collection] page.

10. In the section Add Users, in the Users/Groups text area, type:[domain name]\
SharePoint Enabled Hosts group.

11. In the section Give Permission, in the Add users to a SharePoint group drop-down list,
choose [name site collection] Members [Contribute].

12. Click OK.

In the following steps, you will create a physical BizTalk send port that will be connected to the
Destination document library of our SharePoint site called Test:

1. Open the BizTalk Server 2006 Administration Console via Start ➤ All Programs ➤ Microsoft
BizTalk Server 2006 ➤ BizTalk Server Administration.

2. Expand BizTalk Server 2006 Administration ➤ BizTalk Group [ServerName:BizTalkMgmtDb]
➤ Applications ➤ BizTalk Application 1.

3. Right-click Send Ports ➤ New ➤ Static One-Way Send Port.

4. Right-click the Send Ports node under the BizTalk Application 1 node and choose New ➤
Static One-Way Send Port. This opens the SendPort 1 — Send Port Properties screen.

5. In the SendPort1 — Send Port Properties window, type the name WSSSendPort.

6. In the Transport section, choose the following type: Windows SharePoint Services.

7. Choose the following Send Handler: BizTalkServerApplication.

8. Choose the following Send Pipeline: PassThruTransmit. This can be seen in the
WSSSendPort — Send Port Properties window in Figure 8-42.

9. Click Configure. On the Windows SharePoint Services Transport Properties window in the
General section, choose the following SharePoint Site URL: http://localhost/sites/Test.

10. In the General section, choose the following Destination Folder URL: Destination.

11. In the General section, choose the following Filename: %MessageID%.xml. This can be seen
in Figure 8-43.

12. Click OK twice.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT426

Figure 8-42. Send Port Properties window

Figure 8-43. Windows SharePoint Services Transport Properties window

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 427

After that, you will create a physical BizTalk receive port that will be connected to the Source
document library of our SharePoint site called Test:

1. Go to the BizTalk Server 2006 Administration Console. Right-click the Receive Ports node
under the BizTalk Application 1 node and choose New ➤ One-Way Receive Port.

2. On the ReceivePort1 - Receive Port Properties window choose the following name:
WSSReceivePort.

3. Click Receive Locations ➤ New. In the General window, choose the following name:
WSSReceiveLocation.

4. Choose the following type: Windows SharePoint Services.

5. Choose the following receive handler: BizTalkServerApplication.

6. Choose the following receive pipeline: XMLReceive.

7. Click Configure.

8. In the Windows SharePoint Services Transport Properties window in the General section,
choose the following SharePoint Site URL: http://localhost/sites/Test.

9. In the General section, choose the following Source Document Library URL: Source.

10. Click OK three times.

Now that you have created physical send and receive ports that are tied to the Destination and
Source SharePoint document libraries, you should bind the logical ports defined in our test orches-
tration called MyTestProject.MyTestOrchestration to the physical ports:

1. Go to the BizTalk Server 2006 Administration Console.

2. Click the Orchestrations node under the default BizTalk Application 1 BizTalk application.

3. Right-click the MyTestProject.MyTestOrchestration orchestration ➤ Properties.

4. Click Bindings and set the Receive Port to WSSReceivePort.

5. Set the Send Port to WSSSendPort.

6. Click OK.

The result of binding the orchestration to send and receive ports is shown in Figure 8-44.
All you have to do now is start the orchestration, as shown in the following steps, and wait until

new messages are placed in the Source document library.

1. Open Console Root ➤ BizTalk Server 2006 Administration ➤ BizTalk Group [Server
name:BizTalkMgmtDb] ➤ Applications. On the Applications pane, right-click BizTalk
Application 1 and choose Start to start the application.

2. Open the BizTalk MyTestProject project in Visual Studio 2005 and locate StatusReport.xsd.

3. Right-click StatusReport ➤ Properties.

4. Choose the following Output Instance Filename (under the General section):
C:\Message\Template\StatusReportTemplate.xml. Click OK.

5. Right-click ReportStatus.xsd ➤ Generate Instance.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT428

Figure 8-44. Orchestration properties

■Note The orchestration will start performing its task as soon as new messages arrive in the Source docu-
ment library, although it will not respond to any kind of message. It looks for XML messages that adhere to our
ReportStatus.xsd schema. In order to test the orchestration, you need to create an XML message that is compli-
ant with this schema. The BizTalk Server 2006 Visual Studio 2005 add-in makes it easy to do this. It allows you to
generate an XML file based on a given XSD schema.

You now have access to an XML document that adheres to the ReportStatus XSD schema. This
message type can be understood by your test orchestration. If you upload this XML message to the
Source document library, it will be picked up by the Windows SharePoint Services receive adapter.
Then it will be processed by the MyTestOrchestration orchestration. Finally, the Windows SharePoint
Services send adapter will save it in the Destination document library. Figure 8-45 shows the Desti-
nation document library after three test XML messages have been uploaded to the Source document
library and have been processed by the orchestration.

Figure 8-45. Destination document library

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 429

Form Libraries
It is possible to bind the physical send and receive ports to form libraries instead of document
libraries. This is most useful if you create an InfoPath form template and associate it with a
form library. In the next part, you will create an InfoPath form template that is based on the
ReportStatus.xsd schema that was created earlier. Then you will associate the InfoPath form tem-
plate to a SharePoint form library called ReportSource. After that, you will use InfoPath to add
test data to the ReportSource form library. To show that the Windows SharePoint Services adapter
is able to filter messages based on SharePoint views, you will also add a custom view to the Share-
Point form library. The next procedure explains how to create an InfoPath form and publish it to a
SharePoint form library:

1. Start InfoPath 2007.

2. Choose File ➤ Design a Form Template. This opens the Design a Form Template window.

3. In the Template section, select the XML or Schema template.

4. Click OK. This opens the Data Source Wizard.

5. Enter the following location for the XML data file or XML schema: [path to your
ReportStatus.xsd schema]. In our case this is C:\Projects\MyTestProject\MyTestProject\
ReportStatus.xsd. Click Next.

6. Specify that you do not want to add another XML Schema or document to the main data
source and click Finish.

7. Drag all StatusReport elements (Date, Name, EmailAddress, Project, ManagerName, Billing-
Code, Department, and Summary) to the InfoPath form. After doing some layout work, the
InfoPath form might look like Figure 8-46.

Figure 8-46. Status Report InfoPath template

8. Publish the InfoPath template to a SharePoint form library by choosing File ➤ Publish. This
starts the Publishing Wizard.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT430

9. Choose to publish InfoPath Form to a SharePoint server with or without InfoPath Forms
Services. Click Next.

10. Enter the location of the SharePoint site where you want to publish the InfoPath form. For
our example, we will use a test SharePoint site located at the following location: http://
pluto/sites/test/.

11. In this step, you can choose whether you want to create a document library, site content
type, or form template. Select the Document Library radio button. Click Next.

12. In this step, you can choose whether you want to create a new document library or update
the form template in an existing document library. Select the create a new Document
Library radio button. Click Next.

13. Type the following name for the form library: ReportSource. Type the following description:
ReportSource Description. Then, click Next.

14. Click Add, and add the following fields: Name, Project, ManagerName, Department. This
ensures that all fields will be promoted as form library columns on the SharePoint site. You
need to promote these fields because we will use those fields in later examples in this chap-
ter. Click Finish.

15. Click Publish.

16. Select the Open this document library check box (which opens the form library you just cre-
ated) and click Close.

17. Close InfoPath.

■Note When the Publishing Wizard uses the term document library, it actually refers to form libraries.

Click New ➤ New Document to create some test data. We created some InfoPath forms that
contain test status reports about the fictional projects A and B, as can be seen in Figure 8-47.

Figure 8-47. Form library with test data

In a later stage, you will define the Windows SharePoint Services receive adapter to pick up
messages filtered by a SharePoint view. You will create a SharePoint view called ProjectView. The
next procedure explains how to create this view.

1. Go to ReportSource Form Library, and select Create View from the View drop-down list. This
opens the Create View: Report Source page.

2. Click Standard View.

3. Choose the following View name: ProjectView.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 431

4. Go to the Filter section. Click the Show Items Only When the Following Is True radio button.

5. Choose the following: Show the Items When Column Value. Set its value to Project.

6. Choose the following comparison value: Is Equal To.

7. In the empty TextBox, type Project A.

8. Click OK.

9. Click the ProjectView option in the View drop-down list in the upper right of the page.
Check that the view shows all the forms related to Project A. This can be seen in Figure 8-48.

Figure 8-48. ProjectView view

At this point, you have created a ReportSource form library that can be used by the Windows
SharePoint Services receive adapter to retrieve InfoPath forms. The InfoPath forms will be processed
by your test orchestration and eventually they will be published to another form library. Next, you
will create a form library called ReportDestination. The Windows SharePoint Services send adapter
will use this form library as the end point to send its messages. The next procedure explains how to
create the ReportDestination form library:

1. Click Site Actions ➤ Create. This opens the Create page.

2. In the Libraries section, click the Form Library link. This opens the New page.

3. Give the new form library the following name: ReportDestination.

4. Accept the other default values and click Create.

During the following steps, you will reconfigure the physical BizTalk send and receive ports to
the ReportDestination and ReportSource form libraries. You will also configure the Windows Share-
Point Services receive adapter in such a manner that it will only retrieve InfoPath forms that can be
seen in the ProjectView SharePoint view:

1. Go back to the BizTalk Server 2006 Administration Console. Locate the Send Ports node
under BizTalk Application 1. Right-click the WSSSendPort Send Port ➤ Properties ➤
Configure.

2. In the Windows SharePoint Services Transport Properties window, in the General section,
change the Destination Folder URL to ReportDestination. Click OK twice.

3. Go to the Receive Ports node. Right-click WSSReceivePort Receive Port ➤ Properties ➤
Receive Locations ➤ Properties ➤ Configure.

4. In the Windows SharePoint Services Transport Properties window, in the General section,
change the Source Document Library URL to ReportSource.

5. Specify the following View name: ProjectView.

6. Click OK three times.

7. Stop and start BizTalk Application 1.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT432

After a little while, all forms related to the project Project A will disappear from the Report-
Source form library. They should reappear in the ReportDestination form library. This can be seen
in Figure 8-49.

Figure 8-49. ReportDestination form library

■Note In this example, we have created a form library called ReportDestination that is not associated with a
form template. Because of this, the forms published to this library open as regular XML. In this example, the forms
have been renamed using GUIDs, a default action taken by BizTalk. The GUID refers to the message ID that is used
internally by BizTalk. Later, in the section “Property Promotion,” you will learn how to preserve the original name of
a form or how to create other user friendly names.

Property Promotion
You can take InfoPath form properties and copy their values to the metadata of SharePoint libraries.
This is known as property promotion.

You can create a ReportSource form library without associating it with an InfoPath form tem-
plate. In such cases, if you let BizTalk add InfoPath forms to the form library and open them, a
regular XML file opens with a schema that is compliant with the ReportStatus.xsd schema. If you
have created a ReportSource form library and associated it with a template, InfoPath will be opened
whenever you click the InfoPath forms in the destination document library, displaying a form that
looks like the form template.

The following XML shows an example of the XML data found in our ReportDestination form
library. Please notice that the namespace of this XML is http:// MyTestProject.ReportStatus.

<ns1:ReportStatus xmlns:ns1=”http://MyTestProject.ReportStatus” ➥
xmlns:b=”http://schemas.microsoft.com/BizTalk/2003” ➥
xmlns:ns0=”http://MyTestProject.PropertySchema.PropertySchema”>
<Date />
<Name>Richter, Gumball</Name>
<EmailAddress>info@lcbridge.nl</EmailAddress>
<Project>Project A</Project>
<ManagerName>Vuuren van, Casey</ManagerName>
<BillingCode />
<Department>Department I</Department>
<Summary />

</ns1:ReportStatus>

Take a look at Figure 8-50. If you look at the Windows SharePoint Services Integration section,
you will see a number of columns, such as Column 01 and Column 02. Columns refer to the name
of a SharePoint library property. Column values contain XPath expressions that refer to the internal
structure of an XML message. The result of the XPath expression will become the value of the library
property.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 433

Figure 8-50. Property promotion

■Note You have to type in the column values yourself; the Windows SharePoint Services adapter does not pro-
vide any help.

For example, if you want to retrieve the value of the Project element, use //Project. // is a
shortcut for descendant-or-self, which retrieves all nodes with the name Project located some-
where in the XML document. So if you want to promote the value of the <Project> element in the
XML document to a library property called MyProperty, you would need to set Column 01 to
MyProperty and set Column 01 Value to %XPATH=//Project%.

If you do not want to use the descendant-or-self shortcut, you can also use explicit XPath
expressions. Since our XML contains a namespace, http://MyTestProject.ReportStatus, you will
have to define the namespace alias in the General section of the Windows SharePoint Services
Transport Properties.

Enter the following value for Namespace Aliases: ns0=”http://
TestWindows SharePoint ServicesAdapterProject.RequestSchema”.

This enables you to define XPath queries such as the following: %XPATH=/ns0:MyParent/
MyChild/MyGrandChild%.

If you want to define multiple namespaces, you can do so by separating them with a comma.
You can also use literal values in column values or combine XPath expressions and literal values.
You could add the following column value: My title: %XPATH=/ns0:Request/Item/Name%’.

It is also possible to use predefined macros. For example, a %MessageID% macro is replaced at
run time by a GUID. If you want, you can combine literal values with XPath expressions and macros.
For example, you could define the following Filename property in the Windows SharePoint Services
Transport Properties screen: MyFilename %XPATH=//Project%%MessageID%.xml.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT434

■Note If you leave the Filename property empty on the Windows SharePoint Services Transport Properties
screen, the file name on the destination end point will be identical to the file name of the source file. You can also
use the %FileName% and %Extension% macros to re-create the original file name.

SharePoint List
You can send InfoPath forms to document and form libraries. It is also possible to publish message
metadata to SharePoint lists. You cannot send messages themselves to a list; only promoted proper-
ties will be published to the list. It is impossible to receive messages from a SharePoint list. The
following procedure explains how to create a SharePoint list and send message metadata coming
from an InfoPath forms to it:

1. Go to the SharePoint Test site and choose Site Actions ➤ Create. This opens the Create page.

2. In the Custom Lists section, click the Custom List link. This opens the New page.

3. Type the following name: DestinationList.

4. Click Create. This opens the newly created DestinationList list.

5. Click Settings ➤ Create Column. This opens the Create Column: DestinationList page.

6. Add the following columns: Project Name, Manager, and Department. All columns have the
same column type: Single Line of Text.

7. Click Go Back to DestinationList. The SharePoint list should look like Figure 8-51.

Figure 8-51. DestinationList SharePoint list

8. Go back to the BizTalk Server 2006 Administration Console. Go to Send Ports and double-
click WSSSendPort Send Port ➤ Configure.

9. Change the SharePoint Site URL to http://pluto/sites/Test.

10. Change the Destination Folder URL to DestinationList.

11. Leave the FileName empty.

12. Copy the transport properties as seen in Figure 8-52. Click OK twice.

13. Stop and Start BizTalk Application 1.

■Note The FileName property is ignored when you are publishing messages to SharePoint lists, so it does not
matter which value is entered here.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 435

Figure 8-52. SharePoint list transport properties

If everything goes well, the SharePoint list DestinationList should look like Figure 8-53.

Figure 8-53. DestinationList list item

Moving Binary Content
All the examples related to the Windows SharePoint Services adapter you have seen so far involve
InfoPath forms. We want to show that you can also use BizTalk Server 2006 to move other types of
content, such as Word 97–2003–compliant documents. Orchestrations only handle XML messages,
so it is impossible to implement a complex business process in an orchestration and apply that to
binary content. However, it is possible to send a message via BizTalk Server 2006 without using
orchestrations.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT436

In such a scenario, messages will be processed by the receive and send ports without the inter-
vention of any orchestration. You can define a filter on a send port that subscribes to messages that
originate from a given location. In our example, we will configure the send port in such a way that it
will process all messages originating from the Source document library (created earlier). We will use
a Word document that is stored in a proprietary binary format to demonstrate this technique. Since
a Word (*.doc) document is not XML, you need to make sure that the pipelines used by the receive
and send ports are set to PassThru pipeline, not to XMLReceive pipeline.

The XML pipeline checks whether a message type is known. This means that the pipeline
checks that an XSD schema is defined for the message. The XML pipeline will also check whether a
message contains valid XML. The XML pipeline does not validate the message against the XSD
schema itself. If the pipeline validation fails, it will lead to message suspension. So if you use the
XML pipeline, all Word-compliant documents will be suspended. The PassThru pipeline does not
perform any validation whatsoever, which makes it a very suitable choice for processing binary
messages such as Word documents.

The following procedure explains how to configure a PassThru pipeline that processes binary
messages. In this example, we will use Word 97–2003–compliant documents to demonstrate that the
PassThru pipeline works:

1. Go back to the BizTalk Server 2006 Administration Console, right-click BizTalk Application
1, and choose Stop.

2. Go to Receive Locations. Double-click WSSReceiveLocation and set Receive Pipeline to
PassThruReceive.

3. Click Configure. Set Source Document Library URL to Source.

4. Set the View name to Empty.

5. Click OK twice.

6. Go to Send Ports ➤ WSSSendPort ➤ Properties. Ensure the Send pipeline is set to
PassThruTransmit.

7. Click Configure. Change the SharePoint site URL to http://pluto/sites/Test/.

8. Set the Destination Folder URL to Destination. Click OK.

9. Set Namespace Aliases to Empty.

10. Make sure the Windows SharePoint Services Integration section is entirely empty.

11. Click the Filters tab. Add the WSS.InListName property. Choose the == operator. Choose the
following value: Source. Click OK.

12. Go to BizTalk Application 1 and choose Start. This time, click the Options button. Make sure
the following four check boxes are checked: Enlist and Start All Send Ports; Enable All
Receive Locations; Start All Associated Host Instances; and Resume Suspended Instances.
Make sure Enlist and Start All Orchestrations is not checked. Click Start.

13. Upload a test document to the Source document library.

The result of using BizTalk Server 2006 to route a Word document from the Source document
library to the Destination document library is shown in Figure 8-54.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT 437

Figure 8-54. Destination document library

Summary
In this chapter, you have learned how to create and publish InfoPath forms. You have learned what
InfoPath trust levels are and how to publish an InfoPath form as a site content type. After that, you
saw how to create a central repository holding data connections and how to consume those con-
nections within an InfoPath form. Then, you saw how to display data coming from a SharePoint list
in an InfoPath form. You also saw how to programmatically update an InfoPath form and save it in
SharePoint. Next, you learned how to add a Submit button to a form that submits the form to a
SharePoint library. After that, we showed you how to import a Word form into InfoPath. Then, the
chapter discussed how to configure and use Forms Server 2007. Finally, we went into detail dis-
cussing how to use the combination of InfoPath, BizTalk Server 2006, and SharePoint 2007.

CHAPTER 8 ■ WORKING WITH INFOPATH IN A MOSS 2007 ENVIRONMENT438

Deep Traversal of SQL
Full-Text Extensions

Microsoft Office SharePoint Server 2007 is an ideal repository for storing all types of content. It
helps to get a grip on the unstructured information within organizations, because Microsoft Office
SharePoint Server 2007 ships with a powerful search service called Microsoft Office SharePoint
Server 2007 Enterprise Search. Because of this powerful search service, you can store content and
find it again, solving a problem that most information workers face on a regular basis. Microsoft
Office SharePoint Server 2007 Enterprise Search searches and indexes information and stores it in
full-text indexes that can be retrieved later, fast and easily.

A custom Structured Query Language (SQL) was created to support full-text searching. This
language is called SQL Full-Text extensions. SQL Full-Text extensions has been used for years now
within a wide range of Microsoft products such as Site Server, Indexing Service, SQL Server,
Exchange Server, and various SharePoint technologies. Most versions of those products support
small variations in syntax, which can make the language a bit complicated to use. The different SQL
Full-Text extensions dialects have been known under different exotic names such as WSS SQL,
Enterprise Search SQL, and DAV:sql.

■Note The WSS part of WSS SQL does not refer to Windows SharePoint Services; it refers to Web Storage
System, the name of the data repository in SharePoint Portal Server 2001.

Out of the box, Microsoft Office SharePoint Server 2007 ships with a powerful set of search-
related web parts. Despite this fact, you are missing out on a lot of the power that is included in
the SharePoint Enterprise Search service if you only stick to using these web parts. SQL Full-Text
extensions is the key to accessing this power; this chapter will focus on how to use SQL Full-Text
extensions in Microsoft Office SharePoint Server 2007. In this chapter, we will look at the architec-
ture of Enterprise Search and discuss how to programmatically use the SharePoint Search service.
Finally, you will learn the ins and outs of SQL Full-Text extensions.

Search Architecture
Since this chapter talks about SQL Full-Text extensions, it makes sense to have a high level of under-
standing of the Microsoft Office SharePoint Server 2007 Enterprise Search architecture. Figure 9-1
shows an overview of the search architecture and its components.

439

C H A P T E R 9

Figure 9-1. Search architecture overview

Let’s take a look at Figure 9-1, starting from the right and working our way to the left. A query
has to be written in SQL Full-Text extensions syntax and submitted to the Enterprise Search Ser-
vice. The search engine runs these queries against the full-text index and property store. The
full-text index contains all text content; the property store contains the properties retrieved from
documents.

The index engine processes text content and properties filtered from content sources and
determines what is written to the full-text index and what goes into the property store. The index
engine creates an inverse index of content. The inverse index is a data structure with a row for
each term. This row contains information about the documents in which the term appears, along
with the number of occurrences and relative position of the term within each document. The
inverse index allows probabilistic ranking and fast retrieval of information.

Word breakers and stemmers are used by both the search engine and the index engine. Word
breakers determine where the word boundaries lie: they break up compound words and phrases.
Stemmers generate inflected forms of a word (“run,” “running,” “ran”).

The Gatherer manages the content-crawling process and has rules that determine what con-
tent is crawled. You can determine which content stores are crawled by configuring SharePoint
Portal Server content sources. The Gatherer maintains a queue of URLs to access.

The Gatherer is responsible for accessing documents that are stored in a content source.
The Gatherer defers this responsibility to the Filter Daemon. The Gatherer (via the Filter Dae-
mon) fetches the stream of content via a protocol handler and passes it on to the appropriate
filter. These filters are also called IFilters (because that is the name of the interface that needs to
be implemented by every filter). Every document type is associated with its own IFilter. IFilters
extract textual information from a specific document format. Probably the most important IFilter
is the Microsoft Office filter, which can extract terms from Office formats such as Word, Excel, and
PowerPoint documents. If you do not have an IFilter for a specific file type, you will not be able to
search within such documents. If you want, you can create your own custom IFilters.

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS440

■Note There are several commercial vendors that specialize in building IFilters that can be used within Microsoft
Office SharePoint Server 2007 environments. The IFilterShop (http://www.ifiltershop.com/) is an example of
such a commercial vendor.

The Persisted Query Service or PQS (not shown explicitly in Figure 9-1) is a part of the
Gatherer. The PQS is a reverse query processor that evaluates a large set of queries against a single
document to determine which queries match the document. During the gathering process, the PQS
determines which subscriptions match content.

As stated before, the Filter Daemon handles requests from the Gatherer. The Filter Daemon
uses protocol handlers to access content sources and IFilters to filter files. Protocol handlers access
data over a particular protocol or from a particular store. Examples of common protocol handlers
are file protocol, HTTP, MAPI, and HTTPDAV. By default, content store types such as external web
sites, SharePoint sites, Network shares, and Exchange folders are supported. It’s possible to add or
create custom protocol handlers.

Content sources are collections of data that must be crawled by the Enterprise Search Service.
It is possible to define specific rules for crawling items within a content source. A URL identifies
every item within a content source. The protocol portion determines the type of content source and
thus determines which protocol handler must be used.

Working with SQL Full-Text Extensions
In this chapter, you will learn how to create a basic SQL Full-Text extensions search query and fire it
at the SharePoint Search service. In this section, we will demonstrate a basic search query and use
this query to demonstrate various techniques for interacting with the SharePoint Search service. In
this section, you will learn how to use the SharePoint object model and the SharePoint Search web
service, and finally, you will learn about a community tool that makes creating and executing SQL
Full-Text extensions queries easier.

Probabilistic Ranking
The SharePoint Search engine uses probabilistic ranking to determine what item is most likely to
match with whatever the end user is looking for. The SharePoint Search engine uses a complex
series of algorithms to determine the ranking of indexed items. It is also possible to influence prob-
abilistic ranking yourself; you will learn more about this throughout this chapter.

■Note In this chapter, you will see more of the algorithms that influence probabilistic ranking. If you want to
learn more about the probability formula, you should read the white papers listed on the following location:
http://research.microsoft.com/users/robertson/papers/trec_papers.htm.

When end users search for documents, all matching documents are assigned a rank value.
Rank values are relative to the other documents matching the query. Rank values range from 0 to
1000: the higher the rank value, the more likely that a document matches the search conditions.
There are a couple of factors that influence the probability calculation: for example, the number of
documents in the index, the length of the document, the frequency of the query term, and the num-
ber of documents that contain the query term. The section “Rank Factors” later in this chapter takes
a detailed look at these factors.

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS 441

A Basic SQL Full-Text Extensions Query
The structure of a basic SQL Full-Text extensions query is not much different from a normal SQL
query, so it helps if you are familiar with this. The body of an SQL Full-Text extensions query con-
sists of several parts, as described in Table 9-1.

Table 9-1. Basic Anatomy of an SQL Full-Text Extensions Search Query

Name Description

SELECT Determines which columns are returned by the query.

FROM Sets the search location.

WHERE Determines which document set matches the query.

RANK BY Influences the rank value to your liking.

ORDER BY Specifies the sort order of the result set.

The following query is a simple query that searches a SharePoint portal and returns some infor-
mation about the items located in the portal. The results that are most relevant are shown first.

SELECT Title, Rank, Size, Description, Write, Path
FROM portal..scope()
WHERE ORDER BY “Rank” DESC

If the scope part of the query confuses you, do not worry; this is explained later in the section
“Scope.”

Firing a Query via the SharePoint Object Model
Before we delve deeper into the syntax of SQL Full-Text extensions, we will take the simple query
described in the previous section and use the SharePoint object model to fire it. To be able to follow
this example, you need to create a Console Application in Visual Studio 2005 and add references to
the Windows SharePoint Services, Microsoft Office Server, and Microsoft Office SharePoint Server
Search components.

At this point, you have added references to all the SharePoint assemblies you need. Next, add
some using directives that import .NET namespaces for types that are used a lot. This makes work-
ing with the SharePoint object model easier. Add the following code fragment to the top of the
Program.cs class file:

using System.Data;
using Microsoft.SharePoint;
using Microsoft.Office.Server.Search.Query;

Listing 9-1 uses the SharePoint object model to fire a simple SQL Full-Text extensions search
query (as described in the previous section). First, it uses a FullTextSqlQuery object that is able to
query the SharePoint Search Service. Then, the QueryText property of the FullTextSqlQuery object is
set to a SQL Full-Text extensions search query. We have also set the EnableStemming property to true.
This is not really useful in this example, but later on, when we discuss stemming, it will be good to
have this property enabled. After the search query is executed, you normally would do something
useful with the search results. In this case, we load the result set in a flexible data container, the
DataTable found in the System.Data namespace. We use the DataTable because you are probably
familiar with it. Add the code from Listing 9-1 to the body of the Main() method in the Program.cs
class file:

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS442

Listing 9-1. Body of the Main() Method in the Program.cs Class

string strSiteCollUrl = “http://[server]/sites/SearchPlayground”;
SPSite objSite = new SPSite(strSiteCollUrl);

FullTextSqlQuery objQuery = new FullTextSqlQuery(objSite);
string strQuery = “SELECT Title, Rank, Size, Description, Write, Path ➥
FROM portal..scope() ➥
ORDER BY \”Rank\” DESC”;

objQuery.QueryText = strQuery;
objQuery.ResultTypes = ResultType.RelevantResults;
objQuery.EnableStemming = true;
ResultTableCollection collResult = objQuery.Execute();

ResultTable objResult = null;
DataTable objData = new DataTable();
if (collResult.Count > 0)
{
objResult = collResult[ResultType.RelevantResults];

// Load query results in datatable for further processing.
// The LoadOption parameter indicates how rows that are
// already in the datatable are combined with incoming rows
// with the same primary key.
//
// Since the DataTable is empty, the LoadOption parameter
// does not matter in this case.
objData.Load(objResult, LoadOption.OverwriteChanges);

}

If you execute this code, the SQL Full-Text extensions query is fired at the SharePoint search
service and the result is loaded in an ADO.NET DataTable object. Figure 9-2 shows what the result
looks like in the Visual Studio 2005 DataSet Visualizer.

Figure 9-2. Firing a query via the SharePoint object model

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS 443

Firing a Query via the SharePoint Web Service API
In this section, you will learn how to fire a simple query using the web service API. The next proce-
dure explains how to create a .NET console application that uses the SharePoint web service API to
fire a simple query.

1. Use the same console application described in the previous section and delete (or comment
out) the code in the body of the Main() method of the Program.cs class file.

2. Right-click References and choose Add Web Reference.

3. In the URL text field, enter the following path: http://[site name]/_vti_bin/search.asmx.

4. In the Web reference text field, enter the following name: SearchHost.SearchService.

5. Click Add Reference. This adds a reference to the SharePoint Search web service.

You cannot pass SQL Full-Text extensions search queries directly to the Search web service;
every query that is passed to the Search web service needs to be valid XML that adheres to the
Microsoft.Search.Query schema. Listing 9-2 shows the search query described in the earlier section “A
Basic SQL Full-Text Extensions Query” in XML form, adhering to the Microsoft.Search.Query schema:

Listing 9-2. A Search Query in CAML Format

<?xml version=”1.0” encoding=”utf-8” ?>
<QueryPacket xmlns=”urn:Microsoft.Search.Query” Revision=”1000”>

<Query domain=”QDomain”>
<SupportedFormats>
<Format>urn:Microsoft.Search.Response.Document.Document</Format>

</SupportedFormats>
<Context>
<QueryText language=”en-US” type=”MSSQLFT”>
<![CDATA[
SELECT Title, Rank, Size, Description, Write, Path
FROM portal..scope()
ORDER BY “Rank” DESC
]]>
</QueryText>

</Context>
<Range>
<StartAt>1</StartAt>
<Count>100</Count>

</Range>
</Query>

</QueryPacket>

■Tip Do not worry about the Microsoft.Search.Query schema syntax. The MOSS Query Tool discussed in the sec-
tion “Firing a Query via the MOSS Query Tool” is able to take an SQL Full-Text extensions query and generate the
required XML for you.

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS444

At this point, you have added a reference to the SharePoint Search web service. To make pro-
gramming the SharePoint Search web service easier, add the following code to the top of the
Program.cs class file:

using System.Net;

The code in Listing 9-3 needs to be placed in the body of the Main() method of the Program.cs
class file and uses the SharePoint Search web service to fire a simple SQL Full-Text extensions
search query (as described in the section “A Basic SQL Full-Text Extensions Query”). First, a new
instance of the Query web service is created. To authenticate the user correctly, the Credentials
property of the Search service is set. After that, a search query is formulated that adheres to the
Microsoft.Search.Query schema. Finally, the QueryEx() method is used to execute the query. The
QueryEx() method returns an ADO.NET DataSet object. You can also use the Query() method, which
returns a string containing XML. Listing 9-3 contains the code you need to fire an SQL Full-Text
extensions query at the Search web service:

Listing 9-3. Executing a Query via the Search Service

SearchHost.SearchService.QueryService svcSearch = new ➥
SearchHost.SearchService.QueryService();
svcSearch.Credentials = CredentialCache.DefaultCredentials;
string strQuery = “<?xml version=\”1.0\” encoding=\”utf-8\” ?> ➥
<QueryPacket xmlns=\”urn:Microsoft.Search.Query\” Revision=\”1000\”> ➥
<Query domain=\”QDomain\”> ➥
<SupportedFormats> ➥
<Format>urn:Microsoft.Search.Response.Document.Document</Format> ➥
</SupportedFormats> ➥
<Context><QueryText language=\”en-US\” type=\”MSSQLFT\”> ➥
<![CDATA[➥
SELECT Title, Rank, Size, Description, Write, Path ➥
FROM portal..scope() ➥
ORDER BY \”Rank\” DESC ➥
]]> ➥
</QueryText> ➥
</Context> ➥
<Range> ➥
<StartAt>1</StartAt> ➥
<Count>100</Count> ➥
</Range> ➥
</Query> ➥
</QueryPacket>”;
DataSet dsResult = svcSearch.QueryEx(strQuery);

If you execute this code, the SharePoint Search web service is called, which returns a result
wrapped in an ADO.NET DataSet object. Figure 9-3 shows what the result looks like in the Visual
Studio 2005 DataSet Visualizer.

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS 445

Figure 9-3. Firing a query via the SharePoint Search web service

Firing a Query via the MOSS Query Tool
If you have used SQL Server to some extent, you have probably used its Query Analyzer a lot.
This tool allows you to create SQL Full-Text extensions queries and fire them at an SQL Server
relational database. One of the first things looked for when planning to build SQL Full-Text exten-
sions queries was a tool like the SQL Server Query Analyzer. Luckily, we found such a tool: it is
called the Microsoft Office SharePoint Server 2007 query tool, a free community tool that can be
downloaded from the following location: http://www.gotdotnet.com/Community/UserSamples/
Details.aspx?SampleGuid=89b3cda7-aad9-4919-8faf-34ef9b28c57b. We advise you to
download and install it.

■Note At the time of writing, GotDotNet is going to be phased out, although the web site promises that the User
Samples will not be phased out until an alternative is available. If you cannot find the Microsoft Office SharePoint
Server 2007 query tool and cannot find an alternative, send an e-mail to news@lcbridge.nl and we will send you a
copy. Since we did not create this tool, we feel uncomfortable offering the tool via our web site, as this suggests
we were somehow involved with the creation of the tool.

In this section, you will learn how to fire a simple query using the MOSS Query Tool. We will
use the tool to fire the query described in the section “A Basic SQL Full-Text Extensions Query” of
this chapter at the SharePoint Search service. The next procedure explains how to use the MOSS
Query Tool.

1. Start the MOSS Query Tool.

2. In the Server Url text box, enter the name of your SharePoint site.

3. Click the Get Properties button. This retrieves the properties that are available at a given
level. This is shown in Figure 9-4.

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS446

Figure 9-4. The MOSS Query Tool

4. Click the Make SQL button. This generates a basic search query (a query that should look
quite familiar by now).

5. Locate the Results Format section and select the Dataset radio button.

■Note Please make sure you have selected the Dataset radio button. If you select the Xml radio button, the tool
only allows queries that include at least the following properties: Title, Rank, Size, Description, Write, and Path. If
you fail to include these properties in a query, you will receive an error message indicating that your query is miss-
ing required properties.

6. Click the Run Query button. This executes the query and opens the Query Results #2 win-
dow. This window is shown in Figure 9-5.

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS 447

Figure 9-5. A result set as shown by the MOSS Query Tool

■Note The Query part of the Query Results window shows a SQL Full-Text extensions query wrapped in XML
that adheres to the Microsoft.Search.Query schema. This XML can be passed directly to the SharePoint
Search Service, as is discussed in the section “Firing a Simple Query via the SharePoint Web Service API.”

SQL Full-Text Extensions Syntax
This section is dedicated to the intricacies of the SQL Full-Text extensions syntax. In the section “A
Basic SQL Full-Text Extensions Query” earlier in this chapter, you saw what the body of an SQL Full-
Text extensions query looks like. We will assume you have a basic working knowledge of standard
ANSI SQL Full-Text extensions and will discuss topics that are specific to the SQL Full-Text exten-
sions dialect instead.

■Tip The Microsoft Windows SharePoint Services 3.0 SDK contains information about SQL Full-Text extensions.

SELECT *
As you may have seen in Figure 9-4, the set of properties that is available in Microsoft Office Share-
Point Server 2007 is considerable. Therefore, it would not be feasible to try a SELECT * statement. In
previous versions of SQL Full-Text extensions, there were circumstances when executing a SELECT *
statement was possible; in the current version, you will simply receive an error stating that your
query is malformed.

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS448

Item Properties
The set of properties that can be used in the SELECT part of an SQL Full-Text extensions query is
quite large; the MOSS Query Tool discussed earlier in the section “Firing a Query via the MOSS
Query Tool” can be used to determine which properties are available. The following query uses a
couple of the most-often-used properties. The query looks for a document with the word Chiron in
it, which is the name of a poem by the Greek poet Bacchylides.

SELECT Title, Size, Rank, Created, LastModifiedTime, Path, ➥
CreatedBy, ModifiedBy, ContentType, FileExtension, FileName
FROM portal..scope()
WHERE CONTAINS (Contents, ‘chiron’)

Table 9-2 explains the meaning of the properties in the SELECT part of this query.

Table 9-2. Common Item Properties

Name Description

Title Item title.

Size Size of file in bytes.

Rank Value ranging from 0 to 1000 indicating how closely this item matches
the search criteria.

Created Date and time when the item was created.

LastModifiedTime Date and time when the item was modified for the last time.

Path Physical path to the file, including the file name.

CreatedBy Item author.

ModifiedBy Name of the last person who has edited the item.

ContentType Indicates what kind of content the item is. For instance, a ContentType
value of application/msword indicates the item is a Word document.

FileExtension Suffix of item. For instance, the suffix for a Word document is doc.

FileName The file name (including the file extension) of an item.

Scope
If you know how to use standard ANSI SQL Full-Text extensions but are unfamiliar with SQL
Full-Text extensions, you probably were a bit surprised to see the FROM part of an SQL Full-Text
extensions query. This part contains the scope() keyword, like this:

FROM portal..scope()

The scope allows you to define a limited range in which queries are executed. In older versions
of SQL Full-Text extensions, the ability to specify search scopes was a really valuable concept. It used
to indicate the name of a workspace catalog that contained the full-text index. Also, you could spec-
ify whether you wanted a deep or shallow search, indicating the search depth. In Microsoft Office
SharePoint Server 2007, specifying such search scopes is no longer supported. Scope prefixes, or if
you will, catalog names, are simply being ignored. The previous code fragment can be rewritten as

FROM scope()

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS 449

■Note We have a couple of reasons why we are still using the portal.. prefix, even though it is meaningless
nowadays. First, we do it for old time’s sake. Second, the MOSS Query Tool generates the portal.. prefix auto-
matically, and we did not bother to remove it (we are assuming the tool does this for old time’s sake as well). Third,
we like its communicative value. If another developer does not have a clue what the scope() keyword is used for,
portal..scope() is a hint that apparently the scope of the query is the entire portal. If you do not like any of
those arguments, just omit the prefix part of the scope() keyword.

The fact that the ability to specify catalog names in search scopes is no longer supported does
not mean that defining scopes has become useless. The syntax has just changed a bit. For instance,
this query is used to search only for people:

SELECT Title, Rank
FROM portal..scope()
WHERE ((“SCOPE” = ‘People’))
ORDER BY “Rank” DESC

The following query searches for content located in SharePoint sites:

SELECT Title, Rank, Size, Description, Write, Path
FROM portal..scope()
WHERE ((“SCOPE” = ‘All Sites’))
ORDER BY “Rank” DESC

In the final example, we will search for content in rank-demoted sites. Rank-demoted sites are
sites that are considered to contain information that is less valuable compared to normal or author-
itative sites. Rank-demoted sites are discussed in more detail in the section “Rank Factors” later in
this chapter. The query looks like this:

SELECT Title, Rank, Size, Description, Write, Path
FROM portal..scope()
WHERE ((“SCOPE” = ‘Rank Demoted Sites’))
ORDER BY “Rank” DESC

WHERE
WHERE clauses define filters for search results. They are simple to use and look exactly like their stan-
dard ANSI SQL counterpart. The following query looks for the word “shaida”, a word taken from a
poem by the American poet David Zindell:

SELECT Title, Rank, Size, Description, Write, Author
FROM portal..scope()
WHERE Title = ‘shaida’

Retrieving Folders and Files
If you want to retrieve a folder, you can use the ContentType property to determine whether an item
is a folder. The following query retrieves a list of folders:

SELECT Title
FROM portal..scope()
WHERE ContentType = ‘Folder’

You can use the FileExtension property if you are looking for a certain type of content. The fol-
lowing query retrieves a list of Word documents:

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS450

SELECT Title, Rank, Path
FROM portal..scope()
WHERE FileExtension = ‘doc’

■Tip If you click the Get Properties button of the Microsoft Office SharePoint Server 2007 Query Tool, you will find
a list of all available columns.

Date Comparison
If you want to search for a document that was created on a given date, you might be tempted to try
something like this:

SELECT Title, Rank, Description, Path, Created
FROM portal..scope()
WHERE Created = ‘4-3-2007’

■Note The meaning of the Created property is rather tricky, and its importance rather dubious. If you upload a
document to a SharePoint document library, the creation date is the date the document is added to the document
library. There are certain migration tools that are able to preserve the original creation date of a document when
it is migrated to a SharePoint environment, such as the Tzunami K-Wise Deployer for SharePoint Portal or Syntergy
Bulk Loader. Be that as it may, we would advise you not to place to much emphasis on the meaning of the
Created property.

This will not work, because the data type of the Created property is not a String; it is a DateTime.
Instead, you should use the DATEADD function to use DateTime properties in comparisons. The follow-
ing query shows how to search for documents that have been modified within the last 10 days:

SELECT Title, Rank, Description, Path, Created
FROM portal..scope()
WHERE LastModifiedTime <= DATEADD(DAY, -10, GETGMTDATE())

LIKE
Most filters are a bit more complex than the one described in the previous section. If you need
more advanced filters, the first tool available to you in SQL Full-Text extensions is the LIKE predi-
cate, which is also well known in standard ANSI SQL Full-Text extensions. It can be used to perform
pattern-matching comparisons on a given property. The “%” (percentage) wildcard matches zero
or more characters. The following query will match any document with the word “world” in the title:

SELECT Title
FROM portal..scope()
WHERE Title LIKE ‘%world%’

■Note You cannot use the “%” wildcard within a word. A predicate such as “w%d” will not work.

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS 451

You can also use the “_” (underscore) character to indicate you want to match any single char-
acter. The following query still matches any document with the word “world” in the title, and
matches other words that look like “world” but do not contain the letter “r”:

SELECT Title
FROM portal..scope()
WHERE Title LIKE ‘%wo_ld%’

Instead of allowing any character, you can also specify a narrow range. The following query
accepts either “o”, “u”, or “i”:

SELECT Title
FROM portal..scope()
WHERE Title LIKE ‘%w[oui]rld%’

Alternatively, you can be more liberal and accept a broader range. The following query accepts
every letter in the alphabet:

SELECT Title
FROM portal..scope()
WHERE Title LIKE ‘%w[a-z]rld%’

■Note Previous versions of SQL Full-Text extensions allowed you to use the MATCHES predicate instead of the
LIKE predicate. The MATCHES predicate allowed the use of regular expressions to apply advanced pattern match-
ing. The MATCHES predicate has been removed from the version of SQL Full-Text extensions that is used in
Microsoft Office SharePoint Server 2007, and thus the availability of regular expressions within LIKE predicates is
gone too.

Group Alias
The group alias predicate is simple to use and very useful. You can use the group alias predicate to
provide a shorter name instead of the name of a property or a group of properties. To demonstrate
the group alias predicate, we have created a document called “Carmen XL.doc,” which is the title of
a poem by the Roman poet Claudius Catullus. If the name Catullus is present in either the Title,
BestBetKeywords, Description, or Keywords properties, the query will find the poem. The following
code fragment shows how to define a group alias:

SELECT Title, Rank, Description, ContentType
FROM portal..scope()
WHERE
WITH
(
“Title”,
“BestBetKeywords”,
“Description”,
“Keywords”

) AS #CustomGroup
FREETEXT (#CustomGroup, ‘“catullus” ‘)
ORDER BY “Rank” DESC

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS452

■Tip If you want to learn more about the FREETEXT predicate, please refer to the “FREETEXT” section later in
this chapter.

CONTAINS
The CONTAINS predicate can be used to search for words or phrases in text columns, for instance, in
the document body. The CONTAINS predicate provides similar functionality to the FREETEXT predicate
(described in the “FREETEXT” section later in this chapter), the difference being that the CONTAINS
predicate is better suited for exact matches. In order to show you some examples using the CONTAINS
predicate, we have created a document that contains a poem written by the American author David
Zindell. All example queries in this section will search the contents of this document.

In the example query, you will learn how you can use the CONTAINS predicate to look for the
presence of a complete sentence:

SELECT Title, Rank
FROM portal..scope()
WHERE CONTAINS(‘“it is shaida for a man to die too soon”’)

* Wildcard
The following query uses the “*” (asterisk) wildcard to find a word that starts with “shai”. We are
looking for a document with the word “shaida” in it. The “*” wildcard can only be added at the end
of the word or phrase. This is necessary to provide optimal use of the inverse index. (The inverse
index was discussed in the section “Search Architecture” earlier in this chapter.) The query looks
like this:

SELECT Title, Rank
FROM portal..scope()
WHERE CONTAINS(‘“shai*”’)

ISABOUT
The ISABOUT predicate matches documents with a set of terms specified within the ISABOUT predi-
cate and ranks the documents according to how closely each document matches the set of terms in
the query.

To test the ISABOUT predicate, we have added two identical documents containing a part of the
poem Muerto de amor by the Spanish poet Federico Lorca. In the second document, we have added
two additional lines from the poem that contain the word “noche” once. The following query only
finds the second document:

SELECT Title, Rank, Description, Path
FROM portal..scope()
WHERE CONTAINS(‘ISABOUT (“noche”, “amor”)’)
ORDER BY Title

You can also use the ISABOUT term to search properties. The following query shows an example:

SELECT Title, Rank, Description, Path
FROM portal..scope()
WHERE CONTAINS(Title, ‘ISABOUT (“noche”, “amor”)’)
ORDER BY Title

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS 453

FORMSOF
The CONTAINS predicate can be used in combination with the FORMSOF term, which allows you to
specify word matching based on other linguistic forms of a word. You can use the FORMSOF term in
two ways, using either the INFLECTIONAL or THESAURUS generation type. In this section, we will show
you how to use the INFLECTIONAL generation type. (Use of the THESAURUS generation type is shown in
the section “Thesaurus” later in this chapter.) The INFLECTIONAL generation type chooses alternative
inflection forms for any of the matching words. This is also known as stemming, which was dis-
cussed previously in the section “Search Architecture.”

The example query searches for the word “swam”, but the only word that is present in the docu-
ment we are looking for is “swimming”. Because we’re using the FORMSOF term in conjunction with
the INFLECTIONAL generation type, we will find this document anyway. The following query finds
documents that contain inflections of “swam”:

SELECT Title, Rank
FROM portal..scope()
WHERE CONTAINS(‘FORMSOF (INFLECTIONAL, “swam”) ‘)

NEAR
Another nice element of the SQL Full-Text extensions query language is the NEAR term. This lets you
search for words that must be relatively close to each other, at least within 50 words. The rank value
of the result will be higher the closer the words are.

We have created a document containing the names “Danlo” and “Hanuman”. Danlo and
Hanuman are two characters from the book The Broken God, which was written by David Zindell.
After creating this document, we started experimenting with placing different numbers of words
between Danlo and Hanuman. The following query returns documents that contain the names
Danlo and Hanuman when those names are placed within at least 50 words of each other:

SELECT Title, Rank
FROM portal..scope()
WHERE CONTAINS(‘Danlo NEAR Hanuman’)

Table 9-3 shows the result of our experiments.

Table 9-3. Influence of the NEAR term on Probabilistic Ranking

Rank Words Between “Danlo” and “Hanuman”

4 0

3 5

2 10

1 30

1 49

0 50

As you can see, the rank value drops down rapidly. With only five words between the names
“Danlo” and “Hanuman”, the rank value is down to three, which is not very high.

■Note Even the first rank value, when the words are situated right next to each other, is surprisingly low. The last
time we executed this test, years ago using SharePoint Portal Server 2001, the first rank value was 24, which is
significantly higher.

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS454

You can use the RANK BY clause together with the COERCION function to adjust the rank value
more to your liking if you are not satisfied with the rankings found when using the NEAR term. The
section “Probabilistic Ranking” earlier in this chapter showed you how to influence rank values.

FREETEXT
The FREETEXT predicate can be used to search for words or phrases in text columns, for instance, in
the document body. The FREETEXT predicate provides similar functionality to the CONTAINS predi-
cate, but the FREETEXT predicate is better suited for finding combinations of search terms.

In the next example, we will look for the presence of any of the words “shaida”, “die”, or “soon”
in the sentence “It is shaida for a man to die too soon;”. The order of the words in the query is not
relevant. The following query will return our document:

SELECT Title, Rank, Size, Description, Write, Author
FROM portal..scope()
WHERE FREETEXT(‘shaida die soon’)

■Note This would not have worked if you had used the CONTAINS predicate, because the CONTAINS predicate
tries to find exact matches.

LCID
If you are working in a portal environment that targets audiences of multiple nationalities,
chances are that document languages become an issue when executing search queries. SQL Full-
Text extensions allows you to specify the language that is used in SQL search queries. You can do
this by providing a numeric locale identifier, using the LCID (locale id) keyword in the CONTAINS or
FREETEXT predicate.

■Note A country’s LCID can be found in MSDN by searching for “LCID reference”.

In the next example, we will use two different LCIDs: 1033 for the United States and 1043 for
the Netherlands. The LCID influences many settings, including date format and currency format.
The syntax is as follows:

CONTAINS | FREETEXT
([<column_identifier> ,] ‘<content_search_condition>’ [, LCID])

A country’s LCID can either be a decimal value or a hexadecimal value. The hexadecimal value
for the United States is 0x0409.

We have created a folder called “‘LCID Test” that contains one document containing the follow-
ing text:

Io – for the Athenians
Duizendmaal

The first sentence is the title of a poem written by the Greek poet Bacchylides; “duizendmaal” is
the Dutch word for “a thousand times.” The second sentence is important in this example because it
is a part of the default Dutch noise word list called noisenld.txt.

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS 455

To understand this example, you need to understand that noise words are filtered twice: once
during indexing and once when queries are processed. At the end of the example, we will show two
queries that demonstrate how to specify the LCID that is used within the query. We will also show
which effect the LCID has on the noise word list as it is applied at query time.

The locale settings of our index server are set to United States. The appropriate IFilter that
processes the document during indexing reports the language to the content indexer so that the
protocol handler can apply the appropriate noise word list (see the section “Search Architecture”
earlier in this chapter for more information about IFilters and protocol handlers).

Since Office documents contain locale information and since our document contains US locale
information, the word “duizendmaal” will be indexed because this word is not in the list of English
noise words. The next query looks for the word “duizendmaal” using the United States LCID:

SELECT Title, Rank, Path
FROM portal..scope()
WHERE CONTAINS(Contents, ‘duizendmaal’, 1033)

If you execute this query, you will see that our document is returned, because “duizendmaal” is
not a part of the English noise word list. As a result, this word is not discarded from the query. The
next query looks for the word “duizendmaal” using the LCID of the Netherlands:

SELECT Title, Rank, Path
FROM portal..scope()
WHERE CONTAINS(Contents, ‘duizendmaal ‘, 1043)

This query returns nothing, because the Dutch noise word list is applied. You will see a mes-
sage stating that your query only included common words. Finally, you do not have to specify the
LCID if you just want to use the default LCID use the following query:

SELECT Title, Rank, Path
FROM portal..scope()
WHERE CONTAINS(Contents, ‘duizendmaal ‘)

Noise Words
Noise words are words that do not improve the relevancy of a matching document, and therefore are
not considered useful in a search query. Words such as “and”, “the”, or the company name are very
common and will be found in almost any document, and are therefore useless in a search query.

If you want to see which words are considered noise words, or if you want to add your own
noise words to the list, you can find the default set of noise word lists at the following location:
[drive letter]:\Program Files\Microsoft Office Servers\12.0\Data\Config. This folder contains noise
word lists for a wide range of languages, such as English (noiseeng.txt) and Dutch (noisenld.txt).
If there is not a noise word list for your language, you can add noise words to the neutral noise
word file (noiseneu.txt).

Every Shared Service Provider (SSP) uses its own copy of the noise word files, taken from
the default set of noise word lists ([drive letter]:\Program Files\Microsoft Office Servers\12.0\
Data\Config). The set of noise word files related to an SSP can be found at the following location:
[drive letter]:\Program Files\Microsoft Office Servers\12.0\Data\Applications\[application GUID]\
Config. If you only have one SSP, this location is easy to find. If you have multiple SSPs, finding the
correct location might be tricky. Other than trial and error, we have not found a way to link the
application GUID (corresponding to the name of the gatherer application) to an SSP. The following
VBScript code fragment can be used to determine the correct application GUID for an SSP, although
it does not give you a handle that can be linked back to the SSP:

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS456

Set objGatherAdmin = WScript.CreateObject(“oSearch.GatherMgr.1”)

For Each objApplication in objGatherAdmin.GatherApplications
WScript.echo “ “
WScript.echo “application name: “ & objApplication.Name

Next

The output looks like this:

application name: [guid]

If you want to try out this code, you need to save it in a file called GetApplicationGUID.vbs.
Open a command prompt and type cscript GetApplicationGUID.vbs. This displays a list of all avail-
able applications.

If you want to change the noise word list, you need to take a couple of steps. The following pro-
cedure explains how to add the word “test” to the English noise word list:

1. Determine which folder holds the noise word list of your choice. The list is located in
[drive letter]:\Program Files\Microsoft Office Servers\12.0\Data\Applications\
[application GUID] \Config.

2. Open a noise word list file in Notepad. In this example, we will open the noise word list
noiseeng.txt and add the word “test” to it.

3. Save the noise word list and close Notepad. Make sure to save the file using the ANSI
encoding type.

■Note Saving noise word lists using the Unicode encoding type has been known to cause errors. You should also
ensure that you add a carriage return after each noise word. Finally, if adding a noise word does not seem to work,
you should be aware of the fact that the word breaker, which is a part of the search architecture, might break up a
single noise word into separate words.

4. Open a command prompt and type services.msc. This opens the Services window.

5. Locate the search service for Microsoft Office SharePoint Server 2007 and restart it. This
service is called Office SharePoint Server Search. Right-click its name and choose Restart.

6. Open SharePoint Central Administration and perform a full crawl of the content index.

■Note You will also find an entry for the Windows SharePoint Services 3.0 search service, called Windows
SharePoint Services Search. If you have installed SQL Server including the optional Full Text search component,
you will also find an entry for that search service, called Microsoft Search.

Only after a full update of the content index will any changes you have made to the noise word
lists take effect. Noise words are filtered twice, the first time during the indexing phase. During
indexing, any noise words found in the indexed document will not be included in the content
index. The IFilter responsible for processing the document reports the document language to the
protocol handler that applies the appropriate noise word list.

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS 457

■Note If you want to find more information about the status of the indexing process, you can use Search
Settings in SharePoint Central Administration to take a look at the available crawl logs. Alternatively, you can look
in the folder [drive letter]:\Program Files\Microsoft Office Servers\12.0\Data\Applications\[application GUID]\
Projects\Search\Indexer\CiFiles to see if the content index files have been updated.

Noise words are filtered for the second time during query time. You can programmatically alter
the LCID that is used within the search query; otherwise the locale of the search server is used.

If you want to check that adjusting the noise word list has had the desired effect, you can take a
shortcut that does not require you to perform a full update of the content index. The following pro-
cedure explains how:

1. Start the Microsoft Office SharePoint Server 2007 Query Tool (for more information, see the
earlier section “Firing a Query via the MOSS Query Tool”).

2. In the Server Url text box, enter the URL of a SharePoint site collection.

3. In the Query Editor text box, enter the following query (you should adjust the keyword and
LCID according to your needs):

select rank, author, path , title, “DAV:getlastmodified”
from scope()
where freetext(*,’the’,1033)
order by rank desc

If you have successfully added the noise word to the noise word list, the response will indicate
the following: “Your query included only common words and / or characters, which were removed.
No results are available. Try to add query terms.”

As discussed previously in this section, the set of noise word files related to an SSP can be
found at the following location: [drive letter]:\Program Files\Microsoft Office Servers\12.0\
Data\Applications\[application GUID]\Config. If you want, you can define a central location for all
noise words (and thesaurus files, which are discussed in the next section). This means that you can
share one set of noise words (and thesaurus files) for all SSPs you might have. You can do this by
locating the following key in the registry: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
Office Server\12.0\Search\Setup\ContextIndexCommon LanguageResources\Override\
[Application name]\[Language]. The NoiseFile string value contains the path of the noise word
file for the given language and SSP; the TsaurusFile (not a misspelling) string value contains the
location of the thesaurus file.

Thesaurus
SharePoint Enterprise Search service is very good at full-text searching, but that does not help you
much if you have a document containing something like the following address: 46097 Airport Road.
You will find that some people try to look for “Rd.”, while others for “rd” or every possible variation
you can think of. Word stemming and experimenting with INFLECTIONAL forms of the FORMSOF predi-
cate will not solve this problem for you. What you really want is to expand these abbreviations to
“Road”. You need the SharePoint thesaurus functionality to do this.

■Note Thesaurus files are located in the same folder as noise word list files, as described in the previous
section. If you need more information about configuring thesaurus files, you can refer to the Knowledge Base
article “How to customize SharePoint Server by using IFilters, noise word files, and thesaurus files” located at
http://support.microsoft.com/kb/837847.

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS458

The thesaurus chooses words that have the same meaning, taken from a thesaurus dictionary.
Different locales use a different thesaurus, which is stored in XML. For instance, the US LCID uses
the thesaurus file tsenu.xml. You can adjust this file according to your needs. Ours looks like this:

<XML ID=”Microsoft Search Thesaurus”>
<thesaurus xmlns=”x-schema:tsSchema.xml”>

<expansion>
_{North}
_{N.}

</expansion>
<expansion>

_{Rd.}
_{Road}

</expansion>
</thesaurus>

</XML>

This thesaurus indicates that “Rd.” can be used as a substitute for “Road”. In the next example,
you will learn how to use the CONTAINS predicate in combination with the FORMSOF predicate to indi-
cate that you want to use the thesaurus. The following query looks for “Rd.” and finds documents
that contains “Road”.

SELECT Title, Rank, Path
FROM portal..scope()
WHERE CONTAINS(‘FORMSOF(THESAURUS, “Rd.”, 1033)’)

■Note Make sure that you spell “Rd.” correctly because it is case sensitive: “rd.” will not give you any results
unless you add that to the thesaurus as well.

Using the FREETEXT predicate automatically activates the thesaurus. So, the following query
retrieves documents that contain the word “Road” as well.

SELECT Title, Rank, Path
FROM portal..scope()
WHERE FREETEXT(‘Rd.’, 1033)

The thesaurus is only applied at query time; the locale of the browser is used to determine
which thesaurus file is used. Server settings are created when it comes to choosing the correct the-
saurus file.

■Note Make sure the noise word list does not contain any of the thesaurus entries.

Some Array
According to the documentation, you can use the ARRAY comparison predicate to check for values in
a series of properties. In our experience, this predicate does not work anymore. We will briefly dis-
cuss how the ARRAY predicate worked in the past, in the hope that you will have more luck with the
use of this predicate in the current version of SQL Full-Text extensions than we did.

The ARRAY comparison predicate can be used within a WHERE clause. WHERE clauses use the fol-
lowing syntax:

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS 459

... WHERE <column> <comp_op> [<quantifier>] <comparison_list>

The ARRAY comparison predicate uses the following syntax:

ARRAY [<literal> [, <literal>]]

The ARRAY comparison predicate can be used to rewrite the following query:

SELECT Title, Rank, Path
FROM portal..scope()
WHERE Title = ‘zindell.doc’
OR Title = ‘enigma’
OR Title = ‘catullus’

Using the ARRAY comparison predicate, the previous query can be rewritten in a more com-
pact way:

SELECT Title, Rank, Path
FROM portal..scope()
WHERE Title = SOME ARRAY [‘zindell.doc’, ‘enigma’, ‘catullus’]

The SOME keyword indicates that only one match has to be found. You could also use the ANY
keyword.

■Note The Microsoft Office SharePoint Server 2007 version of Enterprise Search has shown improvements
when it comes to ranking rules. These are discussed in the section “Rank Factors” later in this chapter. On the
other hand, some functionality has been removed from it as well. This will be discussed in more detail in the
section “Removed from Enterprise Search.” Although the feature is still documented, we fear the ARRAY predicate
has also been removed from the current version of Enterprise Search.

RANKMETHOD
In this section, you will be introduced to a new predicate: the RANKMETHOD predicate. The RANKMETHOD
predicate can be used to influence which statistical algorithm is used to rank the documents. The
following statistical algorithms are available:

• JACCARD COEFFICIENT: This algorithm excludes words that do not match the search terms and
calculates rank results based on the relative proportion of matching words. This is the
default rank method.

• DICE COEFFICIENT: This algorithm compares matching words that are found in isolation to
the frequency of multiple matching words that are found together.

• INNER PRODUCT: This algorithm uses the inner product of ranks of individual matching
documents.

• MINIMUM: This algorithm calculates ranking results based on the lowest rank score from all the
matching documents.

• MAXIMUM: This algorithm calculates ranking results based on the highest rank score from all
the matching documents.

■Note Unless you feel very strongly about any of those algorithms, we suspect you will not use this feature at all.

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS460

The next query demonstrates how to specify a ranking algorithm:

SELECT Title, Rank, Description, Path
FROM portal..scope()
WHERE CONTAINS
(
Title, ‘ISABOUT (“noche”, “amor”)
RANKMETHOD JACCARD COEFFICIENT’

)
ORDER BY Title

RANK BY COERCION
The section “RANKMETHOD” showed you how to choose between ranking algorithms. This can
influence the rank values of items matching a query. If you really want to influence the rank value of
items, you can use the COERCION function, which can be used in conjunction with the RANK BY
clause. The COERCION function comes in three flavors:

* ABSOLUTE: This assigns an absolute number to the given rank value of a matching item.

* ADD: This adds a number to or subtracts a number from the given rank value of a matching
item.

* MULTIPLY: This multiplies a number with the given rank value of a matching item.

The next example demonstrates how to use the COERCION function. Again, we have borrowed a
poem from the Spanish poet Federico Lorca and created two documents. The first document con-
tains the word “amor”; the second the word “dio”. In our query, we will assign an absolute rank value
of 500 to the document that contains the word “amor”, and we will subtract 100 from the rank value
found for the document that contains the word “dio”.

■Note The maximum rank value is 1000. It is possible to specify a higher value via absolute coercion without
getting an error message, but this does not have any effect: the maximum rank value of a matching item still
remains 1000.

The query in the next example assigns a rank value of 500 to every document that contains the
word “amor” in the Title property, and subtracts 100 points of the rank value of every document that
contains the word “dio” in it. The query looks like this:

SELECT Title, Rank, Description, Path
FROM portal..scope()
WHERE CONTAINS(Title, ‘amor’)
RANK BY COERCION(ABSOLUTE, 500)
OR CONTAINS(Contents, ‘dio’)
RANK BY COERCION(ADD, -100)
ORDER BY Title

Rank Factors
Matching items that have the highest-ranking value are shown first in the search results; this is also
known as probabilistic ranking. In this section, you will learn about the most important ranking values,
and we will demonstrate the effects of these algorithms. To do so, we have created a folder called Rank-
ing that contains three documents that are identical at first. Figure 9-6 shows a screenshot of this folder.

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS 461

Figure 9-6. Rank folder

The three documents all share the same content, namely the text “Muerto de amor”, which is
the title of a poem by the Spanish poet Federico Lorca. In the next experiments, we execute the fol-
lowing query:

SELECT Title, Rank, Path
FROM portal..scope()
WHERE FREETEXT(‘muerto de amor)
ORDER BY Rank Desc

■Note This is the query we will be using throughout this section. Whenever we refer to “the query,” we are
referring to this query.

Because all documents are identical, this query returns a result set of three matching docu-
ments that contain the same rank value. This is shown in Table 9-4.

Table 9-4. Ranking of Three Identical Documents

Document I Document II Document III

875 875 875

For the first experiment, we add a lot of random content to document I. The size of a document
influences probabilistic ranking, which can be verified by executing the query again. The result is
shown in Table 9-5.

Table 9-5. Document Size Influences Ranking

Document I Document II Document III

819 875 875

The frequency of the query term in a document influences ranking. We will demonstrate this by
adding the word “Muerto” to document II five times. As you can see in Table 9-6, this improves doc-
ument II’s rank value.

URL surf depth influences ranking. Content that is located toward the top of a site hierarchy is
considered more relevant than content that is nested deep in the site or folder hierarchy. Every “/”
(forward slash) is considered to add a bit to the URL surf depth, which lowers the relevance of a
document.

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS462

Table 9-6. Term Frequency Improves Ranking

Document I Document II Document III

819 884 875

To test the influence of URL surf depth, we have added identical documents to a parent site
(document I), a child site (document II), and a grandchild site (document III). We have also added a
child folder to the parent site and added a document (document IV) and a grandchild folder (con-
taining document V). The structure of these test documents is as follows:

• Parent site\document I

• Parent site\child site\document II

• Parent site\child site\grandchild site\document III

• Parent site\child folder\document IV

• Parent site\child folder\grandchild folder\document V

When we fire the query again, we can see the influence of URL surf depth on relevance ranking.
The result is shown in Table 9-7.

Table 9-7. Influence of URL Surf Depth

Document I Document II Document III Document IV Document V

875 875 873 873 871

Click distance is a variation on URL surf depth. Click distance means that Microsoft Office
SharePoint Server 2007 allows you to define authoritative sites that contain information that is
deemed important, as well as non-authoritative sites that contain information that is deemed less
important. This influences the ranking values found for documents. In the next experiment, we will
add the root site to the authoritative pages list, and add the grandchild site to the non-authoritative
list. The following procedure explains how to add the root site and grandchild sites to these lists:

1. Open SharePoint 3.0 Central Administration.

2. Locate the Shared Services Administration section and click the name of the Shared Service
Provider. This opens the Home page of the Shared Services Administration: [name of SSP]
page.

3. Locate the Search section, and click the Search settings link. This opens the Configure
Search Settings page.

4. Locate the Authoritative Pages section at the bottom of the page and click the Specify
authoritative pages link. This opens the Specify Authoritative Pages page.

5. Locate the Authoritative Web Pages section and add the URL of the root site to the Most
authoritative pages text area.

6. Locate the Non-authoritative Sites section and add the URL of the grandchild site to the
Sites to demote text area.

7. Ensure that the Refresh now check box is selected and click OK.

After completing the procedure, the ranking values are recalculated. Once the computation has
completed, execute the query again. The result is shown in Table 9-8.

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS 463

Table 9-8. Influence of Click Distance

Document I Document II Document III Document IV Document V

881 881 871 879 877

URL SIZE LIMITS

There are limits when it comes to working with SharePoint URLs. A site name is allowed to consist of a maximum
length of 128 characters. You can create multiple subsites to such a site, but the maximum URL length of such a
subsite is 237 characters. This length does not include the part of the URL that is reserved for SharePoint system
files and folders. For example, you can create a valid SharePoint URL of 260 characters by creating a subsite of 237
characters. Upon site creation, the system path /_layouts/newsbweb.aspx is added to the URL, which makes a total
of 260 characters.

After reaching the URL site limit of 237 characters, you can still add lists and have subfolders in those lists.
The maximum length of a document library is 255 characters. The maximum length of a folder name is 123 charac-
ters. The maximum length of a SharePoint URL including lists and folders is 256, excluding system files (for
example, /Forms/AllItems.aspx).

The maximum length of a SharePoint URL does not include the QueryString portion (the part of the URL after
the “?” [question mark] character). The maximum limit of the QueryString portion depends on browser limitations.
For example, MSIE 6 supports a total of 2047 characters (almost 2K); Firefox does not really seem to have a limit.

If you want to test SharePoint URL size limits yourself, we have created a small test tool that suits our own
test scenarios. We call the tool the URL Length Checker. It requires the presence of the .NET 2.0 framework and you
are welcome to download it from the following location: http://www.lcbridge.nl/UrlLengthChecker/
UrlLengthChecker.zip. The source code can downloaded from the following location: http://www.
lcbridge.nl/UrlLengthChecker/UrlLengthCheckerSource.zip.

Another ranking algorithm looks at the relevance of a file type. Some file types are considered
to be more relevant than others. For instance, according to this algorithm, a Word document is
probably more relevant than a text file. In the next example, we will show that this is so. We will add
two documents, a Word document (document I) and a text file (document II), and put the same
content in both files. Table 9-9 shows what happens when the test query is executed.

Table 9-9. Influence of File Type Relevancy Biasing

Document I Document II

875 856

The relevancy ranking of a document also depends on the language used within the document.
If it is the same language used by the end user (based on the language header sent by the end user’s
browser), the ranking of a document is increased. If the language of the document is English, its rel-
evancy is always increased, even if the end user uses a different language.

In our next experiment, we have created two documents. The first document (document I)
contains the phrase “muerto de amor” as well as 20 English words. The second document (docu-
ment II) contains the phrase “muerto de amor” as well as 20 Dutch words. Table 9-10 shows what
happens to the ranking of these documents.

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS464

Table 9-10. Influence of Automatic Language Detection

Document I Document II

868 867

We consider the ranking algorithms discussed so far to be the most important ones. A few oth-
ers are not demonstrated in this chapter:

• Hyperlink anchor text: If the tooltip of a hyperlink matches the search term, this increases
the relevancy of a document.

• URL text matching: If a portion of the document URL matches the search term, this
increases the relevancy of a document.

• Automated metadata extraction: Certain types of documents contain special metadata that
enhances the relevancy of a document. For instance, if the name of the title slide of a Power-
Point presentation matches a search term, its relevancy is increased.

At this point, you have learned about different ranking algorithms used by the SharePoint
Search service. You have gained some insight into the ways the search service tries to determine
which documents are most relevant.

Removed from Enterprise Search
Not all parts of SQL Full-Text extensions have been improved. Some of the features of the language
have been removed. In this section, we provide a small overview of those features:

• COALESCE_TABLE: Queries that include this function will not work anymore.

• Term weighting: Will be ignored if present in a query.

• Field weighting: Will be ignored if present in a query.

• UNION ALL: Will be ignored if present in a query.

• MATCHES: Queries that include this function will not work anymore.

• [prefix]..scope(): The prefix part will be ignored if present in a query.

■Note Of the removed features, we miss term and field weighting and the MATCHES predicate the most. We
would like to have the weighting features back, because they allow you fine-grained influence over document
ranking values. The MATCHES predicate is ideal for defining advanced filters using regular expressions; as such, it
has been a valuable tool for information retrieval.

Common Pitfalls and Questions
This section lists common pitfalls and questions that seem to arise repeatedly when people start
working with SQL Full-Text extensions. If you read the following section, you can avoid these
problems.

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS 465

Where Is the Document?
A common pitfall for developers is to create an SQL Full-Text extensions query that does not seem
to work and find out later that the latest changes to the test document were not checked in and
published. This is an easy mistake to make, and a pain to discover, because the index process only
indexes the last version of a document that has been checked in. Also, make sure the content index
is up to date.

ACL Support
The indexer uses a default content access account to crawl and index all content. This does not
mean that every user will find all information the default content access account is allowed to see.
The Security Identifier (SID) of the user making the query is evaluated against the Access Control
Lists (ACLs) of the items or folders in the result sets. If a user does not have sufficient rights, items
are removed from the result set before being returned to the end user.

Column Identifiers
Identifiers are used to specify the names of property names and aliases. Identifiers can contain up
to 128 characters. Identifiers should only contain alphabetical characters, numbers, or underscores,
and begin with a letter (regular identifier), unless they are surrounded by double quotation marks
(delimited identifiers). For example, the following property name is invalid: urn:schemas-
microsoft-com:office:office#Title. But if this property name is enclosed by double quotation
marks, it is valid, like so: “urn:schemas-microsoft-com:office:office#Title”.

Sensitivity
Language keywords are not case sensitive. Microsoft Office SharePoint Server 2007 also supports
accent-insensitive searching (by default). The following three code fragments show equivalent
queries, although the casing that is used is different. The first query looks for a document with the
title “test”:

SELECT Title, Rank, Size, Description, Write, Path
FROM portal..scope()
WHERE title = ‘test’

This query is equivalent to the following code fragment:

SELECT Title, Rank, Size, Description, Write, Path
FROM portal..scope()
WHERE title = ‘tESt’

Finally, this query is equivalent to

select Title, Rank, Size, Description, Write, Path
from portal..scope()
where title = ‘test’

The FREETEXT and CONTAINS predicates are case insensitive and accent insensitive. The follow-
ing query looks for a document with the word “test” in its metadata:

SELECT Title, Rank, Size, Description, Write, Path
FROM portal..scope()
WHERE FREETEXT(DefaultProperties, ‘test’)
ORDER BY “Rank” DESC

The next query is equivalent to the previous one:

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS466

SELECT Title, Rank, Size, Description, Write, Path
FROM portal..scope()
WHERE FREETEXT(DefaultProperties, ‘tèst’)
ORDER BY “Rank” DESC

Noise Words as Placeholders
When using full-text predicates (CONTAINS and FREETEXT), you should remember that noise words
are discarded from the search terms and are treated as placeholders that match any single word, as
long as the search phrase has the same number of words as the matching phrase. This can lead to
rather unexpected results.

Performance Monitor
If you want to find out more about the performance of the SharePoint Search service, you can use
Performance Monitor to find extensive information about search metrics. The following perform-
ance objects are of particular interest:

• Process

• Microsoft Gatherer

• Microsoft Search

TREC
The SharePoint Search service is an impressive product that took many years of research and
development time. If you are interested in this process, you can find more information at http://
research.microsoft.com. A good place to start would be the home page of Stephen Robertson, head
of the MS Information Retrieval and Analysis group. His home page is located at http://research.
microsoft.com/users/robertson/.

We do not have to take Microsoft’s word when it comes to the quality of their search product,
because it is always interesting to compare this product to other search engines. The National Insti-
tute of Standards and Technology (NIST) holds an annual event during which search engines are
compared to each other. This event is called the annual Text REtrieval Conference (TREC). TREC is
an event in which organizations with an interest in information retrieval take part in a coordinated
series of experiments using the same experimental data and queries. The results of these individual
experiments are presented at a workshop where tentative comparisons may be made.

The TREC proceedings are in the Publications section of the TREC web site (http://trec.
nist.gov). You can also find an overview of TREC-related whitepapers at http://research.
microsoft.com/users/robertson/papers/trec_papers.htm.

Other Search Engines That Work with SharePoint
There is a wide range of other commercially available search engines or products that enhance the
search experience that are able to use SharePoint as a content source. Although this list is continu-
ally growing, we have included a list of several search engines that currently have support for
SharePoint. The following search engines are listed alphabetically:

• Autonomy (http://www.autonomy.com/content/News/Releases/2007/0607.en.html)

• Coveo (http://www.coveo.com/en/Products/default.aspx)

• dtSearch (http://www.dtsearch.com/WhatsNew.html)

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS 467

• Endeca (http://endeca.com/byIndustry/media/intranet_km.html)

• FAST (http://gilbane.com/news/2007/07/fast_connector_for_microsoft_o.html)

• ISYS (http://search.isys-search.com/isysquery/8d62c21f-d919-4e68-90e3-
4d2efddb8838/1/doc/)

• Longitude from BA-Insight (http://www.ba-insight.net/enterprise-search.html)

• Ontolica from Mondosoft (http://www.ontolica.com/)

• OpenText (http://www.opentext.com/news/pr.html?id=1653)

• Oracle (http://www.oracle.com/newsletters/information-indepth/content-
management/jun-07/hot-pluggable.html)

• Recommind (http://gilbane.com/news/2007/01/recommind_updates_mindserver_p.html)

• SchemaLogic (http://www.schemalogic.com/media/pdf/Datasheet-EntSuite_for_SP.pdf)

• Vivisimo (http://vivisimo.com/html/sharepoint)

• X1 (http://www.x1.com/products/sharepoint.html)

Summary
SQL Full-Text extensions and SharePoint content databases are not replacements for standard
ANSI-SQL and relational databases. However, they do offer an opportunity to get a grip on semi-
structured information within organizations and offer you more ways to prevent data redundancy
and weak data integrity.

In this chapter, you have seen an overview of the search architecture used by Microsoft Office
SharePoint Server 2007. You have learned what probabilistic ranking is, and how to use SQL Full-
Text extensions queries using the SharePoint object model, the SharePoint Search web service, and
a community search tool. We have taken a detailed look at SQL Full-Text extensions syntax. Finally,
we discussed some common questions and pitfalls regarding SQL Full-Text extensions.

CHAPTER 9 ■ DEEP TRAVERSAL OF SQL FULL-TEXT EXTENSIONS468

■Symbols
% (percentage) wildcard, SQL, 451
* (asterisk) wildcard, SQL, 453
_ (underscore) wildcard, SQL, 452

■A
abort method, 75
Absence Request form, creating, 406
access, denying file, 344–345
Access Control Lists (ACLs), SQL, 466
action safe list, adding activities to, 227
actions, GAT, 38
activities

adding to action safe list, 227
adding to web.config file, 227
composite, 181
creating, 224
custom, 188, 192, 224–228
dependency properties, 224–225
event handlers, creating, 91, 209
logic/data, 182
out of the box, 181–182
rule, 181
simple, 181

Add method (AppSettingsSection), 354
Add method (IDataParameterCollection

interface), 171
Add method (RootFolder object’s Files

collection), 17
AddQuickLaunchNode method, 366
Adleman, Leonard, 353
Administrators tool, 34–35, 141, 220
ADO.NET DataView, 101
adsutil.vbs utility, 368
AdventureWorks database, 134–136, 148
Agile Software Development (Martin), 20
Ajax, ASP.NET

advantages/drawbacks, 56
described, 55, 56, 58–59
frameworks, 58–59
information sources, 59, 116
installing, 80
script manager, 84
SharePoint 2007 support, 80, 87
toolkit, 80
UpdatePanels, 56, 113–114, 116
in web parts, 55, 87, 89–91, 105–121

Ajax Setup Wizard, 80
alternate views, communicating between web

parts, 234
Ammerlaan, Mike, 97, 116
ANY keyword, SQL, 460
AOP (aspect-oriented programming), 230
application domain, 183
application pools, 15, 362, 371
application settings, getting/adding, 354
ApplyChanges method (EditorPart), 27
Approval workflow, 186
AppSettings, accessing, 354
arguments, GAT, 39
ARRAY comparison predicate, SQL, 459–460
aspect-oriented programming (AOP), 230
ASP.NET

behavior, 3
client/server communication, 116
encryption support, 354
request handling, 2
server controls, 16
SharePoint Products and Technologies 2003,

configuring, 1–2
virtual path providers, 2–3
web parts in, 3–8, 16, 87, 89–91

ASP.NET 2.0 Wizard control, 31–32
ASP.NET AJAX Control Toolkit, 80
ASP.NET Ajax script manager, 84
ASP.NET Control Extenders library, 56
ASP.NET forms, 198
aspnet_regiis tool, 354–355
.aspx pages, parsing, 2
assemblies, 31, 52, 70, 197
Assemblies section, web.config file, 89
assembly directive, 307
assembly.info file, 43
assignee string (workflow class), 214
association form, 198, 219
<Association_FormURN> element, 219
asterisk (*) wildcard, SQL, 453
authentication, 65, 168, 368–369, 399
auto-attaching to processes, 15
AutoCompleteExtender control, 103–104
autocompletion web part, 100–104
AutoFillRequest function, 99
automated metadata extraction ranking

algorithm, 465
Autonomy search engine, 467
Avalon, 179, 370

Index

469

■B
base activity library, 183
BeginTransaction method, 162
behaviors, 76
BindingRecipe, 44
BizTalk 2006 Configuration Wizard, 416
BizTalk Orchestration Designer, 422–423
BizTalk Server

Human Workflow Services and, 415
message-processing, 418–419
orchestrations, 422–429
projects, creating, 421–422
schemas, 420, 422
SharePoint and InfoPath, integration,

415–416
troubleshooting, 425
Windows SharePoint Services adapter, 419,

420
Windows Workflow Foundation, compared,

415–416, 419, 420
BizTalk Server 2006 Administration Console,

428
BizTalk Server Business Rule Engine (BRE), 419
Blank Site Definition project template, 10
BookmarkID command, 138
Break method, 309
browscap.ini file, 138
browsers, client callback support, 117
BrowserType object, 138
BTSharePointAdapterWS adapter Web service,

420, 425
Bugs list, SharePoint, 161
build, experimental, 294
BulletedList control, 19
Business Data Catalog technology, 315
business intelligence, defined, 123
Business Intelligence Development Studio, 128,

133–136, 147–150, 152–153
Business Intelligence suite, Microsoft, 123
business transactions, 180–181

■C
C# class library, creating, 161
Cancel method, 166
CAS (Code Access Security), 31, 352
Cascading Style Sheets (CSS), 319, 329
Central Administration tool, deploying

solutions, 35–37
child web part, communicating with parent

web part, 234
class diagram templates, 284–285
class library, creating C#, 161
ClassFeature block type, 308
ClassResource element, 24
click distance, 463–464
clickthrough reports, 154

client callback technology, 116–120
clients, test, 83–86, 375–376
ClientScript property, 68
ClientScriptManager class, 68
client-side applications, 315
client-side verbs, 24–26
client-side web parts and Ajax, 105–121
clonePortlet method, 324, 329
Close method, 162
CloseHandle method, 346
CLR (Common Language Runtime), assembly

loading by, 70
COALESCE_TABLE function, SQL, 465
Code Access Security (CAS), 31, 352
code access security policy files, deploying, 31
CodeActivity activity, 181
CodeToRunElevated delegate, 366–367
COERCION function, SQL, 455, 461
collaboration portals, 146
Collect Feedback workflow, 186
Collect Signatures workflow, 186
ComfortASP.NET, as framework for ASP.NET, 58
Command class, 162, 166–169
Command command, 138
CommandText property, 166–167
CommandTimeout property, 167
CommandType property, 167
comments string (workflow class), 214
Common Language Runtime (CLR), assembly

loading by, 70
Common-Closure principle, 20
communication service, workflow runtime

services, 184
company contact web part, 94–95, 97–100
compilation section, web.config file, 89
CompleteTask activity, 207, 213–214
completionSetCount behavior,

minimumPrefixLength attribute, 103
complex producers, 314
component models templates, 284–285
composite activities, 181
ConditionedActivityGroup activity, 181
configSections section, web.config file, 88
Configuration object, 354
configuration section, web.config file, 90–91
connectable web parts, 105, 108–109, 111–113,

233–236, 242
Connection class, 162–166
Connection element, 274
Connection Manager, 148–149
connection provider methods, creating, 247
connection strings, format, 135
connections, web part, 105, 108–109, 111–113,

233–236, 242
ConnectionString property, 162–163
ConnectionTimeout property, 163
connector maps, 293
consumer portlet URLs, 326–327

■INDEX470

■INDEX 471

Find
itfasterathttp://superindex.apress.com

/

consumer web parts
creating, 238–239, 245
described, 234
field, 249–250
interface association, 304
parameter, 261, 266–267, 269
providers, connections to, 234, 240–241
row, 251, 253–255
SharePoint WSRP, 317
table, 256, 259–260

consumer-configured portlets, 329
CONTAINS predicate, SQL, 453–455, 459, 467
content editor web part, adding JavaScript, 66
content sources for search, 441
Content Type item template, 10
content types, InfoPath, 390–392
ContentType property, SQL, 450
controls section, web.config file, 88–89
Cotton, Laurent, 116
Coveo search engine, 467
Create Field radio button control, 213
Create Property radio button control, 213
CreateChildControls method, 8, 91
CreateCommand method, 162
Created property, 451
CreateEditorPart method, 7, 28–29
CreateParameter method, 166
CreateTask activity, 207, 209, 211
createTask1_MethodInvoking method, 215
CreateTaskWithContentType activity, 207
credential caching system, 356
credential parameters, 138
credential-less impersonation, 361, 362–367
credential-mapping database, 332, 356, 360–361
Credentials class, 360
cscript tool, 457
CSS (Cascading Style Sheets), 319, 329
custom activities, 224–228
custom application pools, 371
custom controls, InfoPath, 381
custom data extension, 161–171, 172–174
custom Document Information Panels, 383
custom editor parts, 26–29
custom interfaces, WPCL, 274–276, 282
custom resources, storing, 19
custom task forms, 223–224
custom web part verbs, 25–26
customized pages, 2, 3

■D
Dallet, Nick, 396
Dashboard web part files, 52–54
dashboards, report, 146
data binding, InfoPath, 399–402
data connection files, 393–399
data connection libraries, 393

Data Connection Wizard, 398, 400, 406–407
data connections, sharing, 393–399
data entry and filtering, communicating

between web parts, 234
Data processing extensions, 159–161. See also

custom data extension
Data Protection API (DPAPI), 352–353, 355
Data Source task, 381
DataParameterCollection class, code listing,

171–172
DataProtectionConfigurationProvider, 354
DataProtectionScope, 353
DataReader class, 170
DataTable.Select method, 101
DataView, ADO.NET, 101
DATEADD function, 451
DDSC (Digital Dashboard Services

Component), 233
Debugger, SharePoint, 15
Debugger, Windows Workflow Foundation, 194,

222
Debugger class, 309
debugging

DSL tools, 232
JavaScript, 72
SharePoint, 15
SharePoint Designer, 186, 187–188, 194,

222–223
text templates, 309
web parts, 14–15, 72, 222–223
Windows Workflow Foundation, 194, 222
workflows, 222–223

“Debugging web parts - a full explanation of the
requirements” (Prather), 15

decision making, Business Intelligence, 123
declarative languages, 231
decryption, DPAPI, 353
DelayActivity activity, 181
DelayFor activity, 207
DelayUntil activity, 207
delegation, 339, 366–367, 368–370. See also

impersonation
DeleteTask activity, 207
Delivery extensions, 158
dependency properties, activity, 224–225
deregister method (WSRP Registration

interface), 322
Design Checker task, 410
destroyPortlets method, 324
detail web part, communicating with master

web part, 234
device information settings commands, 137
Dibble, Jonathan, 15
DICE COEFFICIENT ranking algorithm, 460
Digital Dashboard Services Component

(DDSC), 233
directive block types, 307
directive processors, 306

directives, 306–308
DISCO protocol, 62–63
disco.exe tool, 62–63
discovery element, 64
Disposition Approval workflow, 186
DllImport attribute, 345
DocLibExtender web service, 103
DocMap viewer parameter, 137
DocMapID viewer parameter, 137
document converters, InfoPath forms, 408–410
Document Information Panels, custom, 383
document libraries, 221, 223, 435, 436–438
domain model

creating, 283
DSL solution, configuring, 287–288
DSL templates, choosing, 283–286
existing relationships, creating look and feel,

292–293
IConnectable interfaces, adding, 295,

296–297
interface items, adding visual

representations, 297–299
interface shapes, making visible, 299
web parts, 289, 290
WPCL, generating, 300
WPCL, testing first version, 294
WPCL toolbox, changing, 291

DomainModel projects, 232
domain-specific language (DSL), 197, 229,

230–231, 232, 269
downcasts, 27
DPAPI (Data Protection API), 352–353, 355
DragPanel control, 56
DSL (domain-specific language), 197, 229,

230–231, 232, 269
DSL Designer projects, 283–286
DSL Designer Wizard, 286
Dsl project, 288
DSL Toolkit, features, 232
DslPackage project, 288
dsp credential parameter, 139
dsu credential parameter, 139
dtSearch search engine, 467
Duynstee, Teun, 161
.dwp files, 52–54

■E
editor, BizTalk Server schema, 420
editor parts, 26–31, 66
EditorPart class, 7
editors, DSL tools, 232
elevation, 339, 341
e-mail, 208, 383, 387–388
embedded client-side applications, reuse, 315
embedded web part resources, 19, 20–22,

23–24, 86
Empty project template, 10
empty workflow project, 196

EnableWorkflowModification activity, 207
encryption, 353–355
Endeca search engine, 468
EndFind viewer parameter, 137
Enterprise Application Definitions, 356–361
Enterprise Search, SharePoint Server 2007, 439,

440–441
entropy parameter, 353
error messages, web part, 15
eval function, 70
event handlers, creating, 91, 209
EventHandlingScopeActivity activity, 181
events, 91, 209, 302
ExampleRelationship relationship, 289
Excel Services, 393
Exctrlst.exe, 81
ExecuteReader method, 166, 168
experimental build, 294
experimental hive, 294
ExportMode property, web part, 344
expression blocks, 308
Extensible Performance Counter List tool, 81

■F
FallbackPage viewer parameter, 137
FAST search engine, 468
FastPage, as framework for ASP.NET, 59
FBA (Forms Based Authentication), 399
feature definition file, 197
feature.xml file, 208, 217–220
field consumer web parts, creating, 249–250
Field Control item template, 11
field provider web parts, 247–248, 252
field weighting, SQL, 465
file access, denying, 344–345
file type relevancy biasing algorithm, 464–465
FileExtension property, SQL, 450
FileName attribute, 24
files

Dashboard web part, 52–54
data connection, 393–399
denying access to, 344–345
.dwp, 52–54
installable, forms in, 383
key, 12
manifest, 33–34
retrieving, 450–451
schema, 201
.snk, 12
solution, 24, 31, 33–35
thesaurus, SQL, 458–459
.tt, 272
Universal Data Connection, 393–399
uploading, 16–17, 19
.webpart, 38, 52
.wsp, 24, 31, 33–35

FileUpload control, 16–17, 19
Filter Daemon, 440–441

■INDEX472

filter web parts, 247
filters, SQL, 450–452, 455–456, 458, 467
FindString viewer parameter, 137
folders, retrieving, 450–451
form libraries, 379, 430–433, 435
Format command, 138
forms. See also InfoPath forms

ASP.NET, 198
association, 198, 219
deployment, 220
initiation, 198–200, 201, 223
in installable files, 383
instantiation, 219
modification, 207, 223
in network folders, 383
publication to SharePoint, 383
security, 200, 205
task, 202–206, 223–224
verifying uploading, 221
workflow modification, 207, 223

Forms Based Authentication (FBA), 399
Forms Services 2007, 379, 383, 387, 410–414
FORMSOF predicate, SQL, 454, 459
FREETEXT predicate, SQL, 453, 455, 459, 467
FrontPage RPC, 419
FrontPage Server Extensions, 61
full-text searching, 439–440, 442–448, 458,

465–467. See also SQL syntax
Function function, 78

■G
GAC (Global Assembly Cache), 23, 38, 52,

217–218, 226–227
gacutil tool, 218
GAT (Guidance Automation Toolkit), 38–39,

40–44, 46, 47–49
Gatherer, 440–441
general purpose languages (GPL), 230
generation types, SQL, 454
GetCallbackResult method, 117
GetCredentialEntryUrl method, 361
GetCredentials method, 360
GetCurrent method, 346
GetDataTableFromWSS method, code listing,

168
GetFieldValue method, 248
GetImage viewer parameter, 137
GetLastError method, 345
GetListCollection method, 168
GetLists method, 103
GetListsItems method, 169
getMarkup method, 323, 327–328
GetParameters method, 266
GetParametersData method, 263
getPortletDescription method, 324
getPortletProperties method, 324
getPortletPropertyDescription method, 324
GetProcessTime method, 84

GetProperties method, 247
GetRowData method, 252, 256
getServiceDescription method, 322, 335
GetTable method, 259
GetTableData method, 257
GetToolParts method, 7
GetWebResourceUrl method, 22
ghosted pages, 2–3
Global Assembly Cache (GAC), 23, 38, 52,

217–218, 226–227
global unique identifiers (GUIDs), 5, 218, 395
GotDotNet site, 446
GPL (general purpose languages), 230
graphical DSLs, 230
Group accounts, 357
group alias predicate, SQL, 452
Group Approval workflow, 186
GUID class attributes, web part deployment

and, 5
Guidance Automation Extensions, limitations,

47
Guidance Automation Toolkit (GAT), 38–39,

40–44, 46, 47–49
Guidance package Manager, 39
guidance packages, 39, 40, 46, 47
guidgen.exe tool, 218
GUIDs (global unique identifiers), 5, 218, 395

■H
Hamza, Adrian, 416
HandleExternalEventActivity activity, 181
Hillier, Scot, 2, 15
History List, workflow, 207
hive, experimental, 294
horizontal transformations, DSL, 230
hosts, text template, 306
Hover Menu control, 57
href attribute, mso-infoPathSolution tag, 403
HTML viewer parameters, viewing a report, 137
HTMLFragment command, 138
HTTP request handling, 2
HTTP status codes, 75
HTTP User Agent Header, 138
httpHandlers section, web.config file, 89
httpModules section, web.config file, 89
Human Workflow Services (HWS), 415
human-oriented workflow style, 185
hyperlink anchor text ranking algorithm, 465

■I
ICallbackEventHandler interface, 117
Icon viewer parameter, 137
IDataParameterCollection interface, 171
IDataReader interface, 166
IDbCommand interface, 166–167
IDbConnection interface, 162–163

■INDEX 473

Find
itfasterathttp://superindex.apress.com

/

IDbConnectionExtension interface, 163–164
identity, getting current Windows, 346
IEntityInstanceProvider interface, 246
IEventActivity interface, activities

implementing, 206–208
IExtension interface, 162, 163
IfElseActivity activity, 181
IFilters, 440–441
IFilterShop, 441
IFilterValues interface, 246
IIS (Internet Information Services) Manager, 2,

59, 334, 369
IIS Metabase Explorer, 368
IIS web site, extending default with SharePoint

functionality, 16
iisapp command, 15
iisreset command, 220, 369
IL (Intermediate Language), compilation within

assemblies, 70
images, 19, 20–22, 314
imperative languages, 231
Impersonate method, 346
Impersonate property, 164
impersonation

account types, 357
changes from SharePoint 2003 object model, 341
credential-less, 361, 362–367
described, 339
example, 345
security policies, 352
types, 339
user accounts, 344

Implements element (WPCL), 275
import directive, 307
include directive, 308
index engine, 440
Indigo, 179, 370–377
Individual accounts, 357
inetmgr, 2, 59, 334, 369
INFLECTIONAL generation type, SQL, 454
InfoCard, 179, 194, 370
InfoPath

content types, 390–392
control naming, 386
custom controls, 381
data binding, 399–402
described, 379
InfoPath 2003, changes from, 410
message processing, 418–419
security, 343, 389–390
SharePoint and BizTalk Server, integration

with, 415–416, 419, 420
Submit button, 405–408
templates, 201

InfoPath forms
ASP.NET forms, compared, 198
authentication, 399
browser-compatible, 382–383, 387, 411–414
data connections, 393–399
design/development, 379–383

document converters, 408–410
document libraries, adding to, 435
in e-mail, 383, 387–388
importing, 408, 409–410
in installable files, 383
naming, 433
in network folders, 383
property promotion, 433–435
publishing, 383–387, 390–391
sending to libraries, 435
SharePoint Services 3.0 and, 411
submitting, 406–408
templates, 411
updating and saving, 221, 402–405
verifying, 382
Word forms, importing, 408–410
workflow interaction, 198–206, 214, 223–224
XML content, 403–404

InfoPath Forms Services, 379, 383, 387, 410–414
InformationObject element, 275–278
initCookie method, 323
InitializeWorkflow activity, 207
initiation form, 198–200, 201, 223
InitiationData property, 214
inline frames, reuse, 314
INNER PRODUCT ranking algorithm, 460
installable files, forms in, 383
instantiation forms, 219
<Instantiation_FormURN> element, 219
instructions string (workflow class), 214
IntegratedSecurity property, 163
interaction state, portlet, 324–325
Interface elements, 274–275
interface provider/consumer pairs, 234, 241
interface shapes, making visible, 299
interfaces, 241–243, 275, 297–299
Intermediate Language (IL), compilation within

assemblies, 70
Internet Information Services (IIS) Manager, 2,

59, 334, 369
inverse index of content, 440
InvokeWebServiceActivity activity, 181
IPersonalizable interface, described, 7
ISABOUT predicate, SQL, 453
ISAPI filter, SharePoint, 1–2
IsClientScriptBlockRegistered method, 68
Issue Tracking workflow, 186
ISYS search engine, 468
item properties, SQL, 449
item retrieval, DDSC features, 233
item templates, 43–44
ItemMetadata.xml file, 204
ITransformableFilterValues interface, 246–247
IWebPartField interface, 241, 246, 250, 276,

278–279
IWebPartParameters interface, 242, 246, 261,

269, 276, 281
IWebPartRow interface, 241, 251, 269, 276,

279–280
IWebPartTable interface, 242, 276, 280

■INDEX474

■J
JACCARD COEFFICIENT ranking algorithm, 460
Java Portlet specification (Sun Microsystems),

314
JavaScript

ASP.NET, APIs for, 56
information sources, 76
JSON messages, converting to, 78
libraries compared to dynamic code, 68
re-entrant, 76
support features, Visual Studio, 73
unescape function, 395
in web parts, 66–67, 68–72
WSRP support, 319

JavaScript command, 138
JavaScript libraries, 21, 68
JavaScript Object Notation, 78–80, 94–95, 96,

97–100
JavaScript proxy, example, 87
JSON, 78–80, 94–95, 96, 97–100
JSON script library, parseJSON function, 79, 108
JSR 168 specification, described, 314

■K
Kerberos authentication protocol, 368–369
key files, 12

■L
language, SQL filtering, 450–452, 455–456, 458,

467
language processors, DSL tools, 232
Larson, Daniel, 116
Layout task pane, 381
_layouts folder, storing custom resources in, 19
LCID (locale ID) keyword, SQL, 455–456, 458
libraries

data connection, 393
document, 221, 223, 435, 436–438
form, 379, 430–433, 435
JavaScript, 21, 68
report, 146
web part, 11–12, 13, 47–52

LIKE predicate, SQL, 451–452
LinkTarget command, 138
List Definition from Content Type item

template, 11
List Definition item template, 10
List Definition project template, 10
Lists web service, 161, 162
ListViewWebPart, reasons for use, 233
locale ID (LCID) keyword, SQL, 455–456, 458
LocalizedName property, 163
Location attribute, 24
LogError method, 303
LogonProviders type, 345–346

LogonTypes type, 345–346
LogonUser method, 342, 344, 345–346, 347–349
LogonUser token, 67
LogToHistoryListActivity activity, 207
Longitude from BA-Insight search engine, 468

■M
MagicAjax.NET, as framework for ASP.NET, 59
Management Studio, 128
manifest files, 33–34
manifest.xml file, 208, 222
Mann, David, 217
Markup, WSRP, 321, 323, 327–328
Martin, Robert C., 20
master pages, 3
master web part, communicating with detail

web part, 234
MATCHES predicate, SQL, 452, 465
MAXIMUM ranking algorithm, 460
menus, web part, 24–26
Microsoft DSL Toolkit, 232
Microsoft .NET Framework, 70, 179, 194
Microsoft Office SharePoint Server 2007 Query

Tool, 451
Microsoft Search, 457
Microsoft SharePoint: Building Office 2007

Solutions in C3 2005 (Hillier), 2
Microsoft Silverlight, 315
Microsoft Windows Workflow Foundation. See

Windows Workflow Foundation
Microsoft.ReportingServices.DataProcessing

namespace, 159
Microsoft.ReportingServices.Interfaces

assembly, referencing, 161
Microsoft.ReportingServices.Interfaces

namespace, 159
Microsoft.ReportingServices.ReportRendering

namespace, 159
Microsoft.SharePoint namespace, 62
Microsoft.SharePoint.ApplicationRuntime.

SPHttpHandler, 2
Microsoft.SharePoint.WebControls namespace,

61
Microsoft.SharePoint.WebPartPages.

Communication namespace, 234, 241
MinimalLanguage template, 285, 289
MINIMUM ranking algorithm, 460
minimumPrefixLength attribute, 103
model-driven development, 230–231
ModelHasElements relationship, 289
modeling languages, approaches, 231
modification forms, workflow, 207, 223
modifyRegistration method (WSRP Registration

interface), 322
Module item template, 11
MOSS Query Tool, 444, 446–448, 449
mso-infoPathSolution tag, 403

■INDEX 475

Find
itfasterathttp://superindex.apress.com

/

■N
namespaces, strong-named, 12
navigational state, portlet, 324–325
NEAR term, SQL, 454
.NET Framework, 70, 179, 194
NetUnity WSRP framework, 320, 331, 334–335
network folders, forms in, 383
Network Service account, 362
NewItemClass recipe, 45
NextValue method, 81
noise words, filtering, 456–458, 467
notification, DDSC features, 233
NTLM authentication model, 368, 369

■O
Object Model, query firing via SharePoint,

442–443
oblique transformations, DSL, 230
Office Business Scorecard Manager, 123
Office SharePoint Server Enterprise Web

Application features, 411
Office SharePoint Server Search, 457, 467. See

also Enterprise Search, SharePoint
Server 2007

OnAutoFillResponse function, 99
on-demand loading, 70–72
OnInit method, web parts and, 8
OnLoad method, web parts and, 8
OnResponse event handler, 74
OnTaskChanged activity, 207, 212–213
onTaskChanged1_Invoked method, 215
OnTaskCreated activity, 207
OnTaskDeleted activity, 207
Ontolica from Mondosoft search engine, 468
OnWorkflowActivated activity, 207, 209–210
OnWorkflowItemChanged activity, 208
OnWorkflowItemDeleted activity, 208
OnWorkflowModified activity, 208
Open method, IDbConnection interface, 163
Open method, XMLHttpRequest class, 74
OpenText search engine, 468
OpenWebConfiguration method, 354
Oracle search engine, 468
Orcas, 73, 194, 370, 372
orchestrations, BizTalk, 422–429
Outpost, as framework for ASP.NET, 59
output directive, 308

■P
Page class, ClientScript property, 68
Page.IsCallback property, 117
pages, 2–3, 219, 313
pages element, web.config file, 89
ParallelActivity activity, 182
parameter consumers web parts, 261, 266–267,

269

parameter providers web parts, 261–264, 269
ParameterLanguage command, 138
Parameters property, 167, 263
Parameters viewer parameter, 137
parent web part, communicating with child

web part, 234
parseJSON function, 79, 108
part discovery, DDSC features, 233
Password property, 164
passwords, 352–355, 356, 361
People Picker control, SharePoint, 117–120
PeopleEditor control, 117–118
percentage (%) wildcard, SQL, 451
performance counter web part, 80–86, 92–94
Performance Monitor, 467
Performance Review sample form, 382, 384–387
PerformanceCounter class, 81
PerformanceService web service,

communication with, 84–85
performBlockingInteraction method, 323,

327–328
permissions, 340–341
Persisted Query Service (PQS), 441
persistence service, workflow runtime services,

184
persistent state, portlet, 324–325
Personalizable attribute, 7, 16–17, 344
PopupControl, 57
Port Configuration Wizard, 423
portal pages, described, 313
portal prefix, SQL, 450
portals, 313, 314, 316
Portlet Management, WSRP, 321, 324
portlets. See web parts
postbacks, determining cause, 117
postbuildactions.bat file, 208, 222
PQS (Persisted Query Service), 441
Prather, Maurice, 15
PreAuthenticate property, 168
PreRender event, registering event handler for,

68
PreRender method, web parts and, 8
presentation-oriented web services, 314, 321,

331–332, 334–337
Pro SharePoint 2003 Development Techniques

(Bruggeman & Bruggeman), 283
probabalistic ranking, 461–464
processes, auto-attaching to, 15
producer portlet URLs, 327–328
producer-offered portlets, 329
Products and Technologies 2003, SharePoint,

1–2
project templates, 41–42
properties, determining available, 451
property promotion, 433–435
property store, 440
proprietary remoting, reuse, 315
Protect method, 353
ProtectedData class, 352–353
ProtectSection method, 354

■INDEX476

protocol handlers, 441
provider web parts, 234, 236–238, 240–241, 244
proxy addresses in WSRP producers, 332
Publish task, 383–387
Publishing Wizard, 384–387, 430–431

■Q
Query Analyzer, 446
Query method, 445
Query String portion of URL, 464
query tool, Microsoft Office SharePoint Server

2007, 451
QueryEx method, 445

■R
RaiseCallbackEvent method, 117
RANK BY clause, SQL, 455
rank-demoted sites, 450
ranking search results, 450, 454–455, 460–465
RANKMETHOD predicate, SQL, 460–461
Read method, DataReader class, 170
readystate property, 74
Really Simple Syndication (RSS), 315, 320
recipes, GAT, 38–39
Recommind search engine, 468
re-entrant code, JavaScript, 76
register method, 322
RegisterClientScriptBlock method, 68
RegisterClientScriptInclude method, 70
Registration, WSRP, 321–322
relational databases, report models compared,

150
releaseSessions method, 323
remote calls prior to Ajax, 73–77
Render method, web parts and, 8
RenderBeginTag method, web parts and, 8
RenderContents method, web parts and, 8, 38
RenderEndTag method, web parts and, 8
Rendering extensions, 159
Reorder List control, 57
ReplacementRoot command, 138
ReplaceTokens method, 67
ReplicatorActivity activity, 182
Report Builder, 154, 156–157
Report Center, 146–147, 157–158
report dashboards, 146
Report Designer tool, 136
Report Explorer web part, 127, 140–141, 143, 144
Report Manager, 128, 139–140, 143
Report Model Project template, 134
report models

building, 147–150, 152–153
components, 148
deploying, 153–154
described, 147
generation rules, 150–151

options, 154–155
relational databases, compared, 150

Report parameters, 137
Report processing extensions, 159
Report server architecture, 160
report server commands, 138
report server database, 123
Report Server Project template, 134
Report Server Project Wizard, 134, 174–177
Report Viewer web part, 127, 140–141, 143–145
Report Wizard, 176
Reporting Services

architecture, 123–124
data processing API, 159
deployment, 127–133
extensions, 126, 158–159
installing, 125
Report Manager, 128, 139–140, 143
reports, building, 133–136
reports, viewing, 137–139, 140–141
security, 126
SharePoint reporting web parts, 141–144
SharePoint Server 2007 integration, 125–128,

130–133
SOAP, 126
tools, 127

Reporting Services Add-in for Microsoft
SharePoint Technologies, 125–127, 132,
141

Reporting Services Configuration Manager, 127
Reporting Services Extension Library,

namespaces, 159
reports, SharePoint, 136–137, 147, 154, 157–158,

174–177
reports libraries, 146
ReportServerTempDB database, 123
Request.Browser.SupportsCallback property,

117
resources, in web parts, 19, 20–22, 23–24, 86
responseText property, 75, 78
responseXML property, 78
Restricted Group accounts, 357
reuse

application, 314–315, 316, 320
portal content, 318
remote options, 314–316

RevertToSelf method, 342, 362–364, 367
Rhodes, Travis, 396
Rivest, Ron, 353
Robertson, Stephen, 467
RollbackTask activity, 208
rollup-type web parts, 339
row consumer web parts, 251, 253–255
row provider web parts, 251–252, 256, 269
RowToFieldTransformer, 242, 250, 256
RowToParametersTransformer, 242, 256
RSA, 355
Rsconfig.exe tool, 125
Rs.exe tool, 125
Rskeymgmt.exe tool, 125

■INDEX 477

Find
itfasterathttp://superindex.apress.com

/

RSS (Really Simple Syndication), 315, 320
rule activities, 181
rules, workflow, 187
runtime engine, 183–184
RunWithElevatedPrivileges method, 342, 362,

364–365, 367

■S
SafeControls section, web.config file, 52, 89, 142
SafeMode parser features, 1, 3
schema files, 201
SchemaLogic search engine, 468
Schoonover, Eric, 116
scope keyword, SQL, 449–450, 465
screen scraping reuse, 315
script element, src attribute, 86
script manager, described, 84
Scripting element, web.config file, 89
scriptlets, 39
ScriptManager, 91–92, 96–97
ScriptResource.axd file, 87
search, 439–441, 450, 454–455, 460–465
search engines, SharePoint-compatible,

467–468
search service, SharePoint, 457, 467. See also

Enterprise Search, SharePoint Server
2007

searching, full-text, 439–440, 442–448, 458,
465–467

Section viewer parameter, 137
sectionGroup section, web.config file, 87–89
security

extensions, 158
forms, 200, 205
impersonation, 352
InfoPath, 389–390
Reporting Services, 126
SQL Full-Text extensions, 466
SQL Server Express, 362
web service client authentication, 65
Web Services for Remote Portlets protocol,

319–320
Windows Communication Foundation, 377

Security extensions, 158
SELECT SQL statement, 448–449
send method, 74
SendEmail activity, 208
SequenceActivity activity, 182
sequential workflows, 184–185, 195–196
server controls, ASP.NET, 16
server farms, WSRP in, 316, 318
server-side verbs, 24–26
Service Description, WSRP, 321–322, 335
service principal names (SPN), 369
service virtualization, 62–63, 65
services.msc tool, 457
Session object, storing PerformanceCounter

instance, 81

session state management, DDSC features, 233
session state, portlet, 324–325
SetConfiguration method, 163
SetConsumerSchema method, 263
SetLastError method, 345
setPortletProperties method, 324
setspn.exe tool, 369
SetState activity, 208
SetStateActivity activity, 182
Setup project, 288
Shamir, Adi, 353
Shared Service Providers (SSPs), noise words

for, 456, 458
SharePoint Administrators tool, 34–35, 141, 220
SharePoint Bugs list, creating report based on,

161
SharePoint Designer. See also Workflow

Designer
actions, workflow, 188–189
activities, custom, 226
creating, 189–193
described, 315
errors, workflow, 193
list/library attachment, 186
pages, customizing, 3
rules, 187
workflow features, 179–180

SharePoint ISAPI filter, 1–2
SharePoint Object Model, query firing via,

442–443
SharePoint People Picker control, 117–120
SharePoint Products and Technologies 2003,

1–2
SharePoint Search service, 457, 467. See also

Enterprise Search, SharePoint Server
2007

SharePoint Server 2003, 105, 108–109, 111–113,
233, 415

SharePoint Server 2007, described, 15, 315
SharePoint Server 2007 Enterprise Search, 439,

440–441
SharePoint Server, history, 1
SharePoint Server Sequential Workflow Library,

196
SharePoint Server State Machine Workflow

Library, 196
SharePoint Single Sign-on (SSO), 332, 356,

360–361. See also Enterprise
Application Definitions

SharePoint Solution Generator, 15–16
SharePoint Virtual Path Provider, described, 2–3
SharePoint web applications, ASP.NET Ajax-

enabling, 87
SharePoint Web Service API, query firing via,

444–446, 448
SharePoint WSRP Consumer web part, 317
SharePointHandler, forwarding by, 1
SharePointSequentialWorkflowActivity activity,

208
Silverlight, Microsoft, 315

■INDEX478

simple producers, 314
SingleSignOnCredsNotFoundException

exception, 361
SingleSignOnLocator class, 361
site definitions/features, deploying, 31
site templates, Report Center, 146–147, 157–158
Snapshot command, 138
snippets, loading into Visual Studio, 218
.snk files, 12
SOAP messages, WSRP interfaces described, 321
software factories, 229–230, 231
Software Factories: Assembling Applications

with Patterns, Models, Frameworks, and
Tools (Greenfield et al.), 229

solution files, 24, 31, 33–35
solution templates, 41, 284–286
solutions, SharePoint, 33–35, 37
solutions, Visual Studio, 5–6
SOME keyword, SQL, 460
_spFormOnSubmitWrapper method, 114
SPHttpHandler, 2
SPN (service principal names), 369
SPPropertyDescriptor type, 256
SPSite objects, 351
SPUser objects, 351
SPUserToken, 342, 344, 349–352
SPVirtualPathProvider, 2–3
SQL Full-Text extensions, 439–440, 442–448,

458, 465–467
SQL Server 2005 AdventureWorks database,

134–136, 148
SQL Server 2005 Service Pack 2.0, 125–127
SQL Server Analysis Services, 123
SQL Server Express, application pool security,

362
SQL Server Query Analyzer, 446
SQL Server Reporting Services. See Reporting

Services
SQL Server Reporting Services Report Viewer

web part, 127
SQL syntax

ANY keyword, 460
ARRAY comparison predicate, 459–460
case sensitivity, 466
COERCION function, 455, 461
CONTAINS predicate, 453–455, 459, 467
ContentType property, 450
features removed, 465
FileExtension property, 450
filtering, 450–452, 455–456, 458, 467
FORMSOF predicate, 454, 459
FREETEXT predicate, 453, 455, 459, 467
generation types, 454
group alias predicate, 452
identifier names, 466
INFLECTIONAL generation type, 454
information sources, 448
ISABOUT predicate, 453
item properties, 449
LCID keyword, 455–456, 458

LIKE predicate, 451–452
MATCHES predicate, 452, 465
NEAR term, 454
noise words, 456–458, 467
portal prefix, 450
RANK BY clause, 455
RANKMETHOD predicate, 460–461
scope keyword, 449–450, 465
SELECT statement, 448–449
SOME keyword, 460
thesaurus files, 458–459
THESAURUS generation type, 454
UNION ALL term, 465
WHERE clauses, 450–451
wildcards, 451–453

src attribute, 86
SSO (SharePoint Single Sign-on), 332, 356,

360–361. See also Enterprise
Application Definitions

SSPs (Shared Service Providers), noise words
for, 456, 458

StartFind viewer parameter, 137
State Machine Workflow Library, 196
state machine workflows, 185, 195–196
state management, DDSC features, 233
StateActivity activity, 182
StateFinalizationActivity activity, 182
StateInitializationActivity activity, 182
statement blocks, 308
<StatusPageUrl> element, 219
stemmers, 440
stemming options, 442
StreamRoot command, 138
strong naming, 12, 52, 424–425
stsadmin tool, 34–35, 141, 220
style sheets, 319, 329
Stylesheet viewer parameter, 137
StyleStream command, 138
Submit command for InfoPath forms, 406–408
surf depth, URL, 462–463
SuspendActivity activity, 182
SyncChanges method, 27
Syntergy Bulk Loader, 451
Sys.CultureInfo object, 87
System accounts, 341, 342
System.Diagnostics namespace, 81, 309
system.web.extensions section, web.config file,

90
system.webServer element, web.config file, 90

■T
T4 Text Templating Engine, 39, 306–307
table consumer web parts, 256, 259–260
table provider web parts, 256, 257–258
Task base content type, 219
task flow templates, 286
task forms, 202–206, 223–224
<TaskListContentTypeId> element, 219

■INDEX 479

Find
itfasterathttp://superindex.apress.com

/

tasks, SharePoint, 207–209, 211–214, 215
Team Site Definition project template, 10
template directive, 308
template pointer location, 403
templates

Blank Site Definition project, 10
class diagram, 284–285
component models, 284–285
Content Type item, 10
debugging text, 309
deploying, 31
DSL, 283–286
Empty project, 10, 196
Field Control item, 11
hosts, text, 306
InfoPath, 201, 411
item, 43–44
List Definition, 10, 11
MinimalLanguage, 285, 289
Module item, 11
producer URL, 328
project, 41–42
report, 154
Report Model Project, 134
Report Server Project, 134
reverting to original, 3
site, 146–147, 157–158
software factory, 231
solution, 41, 284–286
task flow, 286
Team Site Definition project, 10
text, 39, 272, 288, 305–309, 310
Visual Studio, 10–11, 38, 39, 40–44, 46
Web Part Connection Language, 282,

283–286, 305
Web Part item, 11
web part library, 38, 40–44, 46, 47–49
Web Part project, 10–14
workflow project, 196

term weighting, SQL, 465
TerminateActivity activity, 182
test clients, creating, 83–86, 375–376
text blocks, 308
Text Box Watermark control, 58
Text REtrieval Conference (TREC), 467
text template generator tool, 309
Text Template Transformation Engine, 39,

306–307
Text Template Transformation Toolkit, 306
text templates, 272, 288, 305–306, 307–309, 310
thesaurus files, SQL, 458–459
THESAURUS generation type, SQL, 454
threading service, 184
Three-state workflow, 186
ThrowActivity activity, 182
timer service, 184
Toggle Button control, 58
toJSONString function, 80
Toolbar viewer parameter, 137
tracking service, 184

Transaction property, 167
transaction service, 184
Transform method, 243
TransformableFilterValuesToEntityInstance-

Transformer, 246
TransformableFilterValuesToFieldTransformer,

246
TransformableFilterValuesToFilterValues-

Transformer, 246
TransformableFilterValuesToParameters-

Transformer, 246
transformations, DSL, 230
transformations, text template, 39, 306–307
transformers, 234–235, 242–243, 244, 246, 304
Translation Management workflow, 186
TREC (Text REtrieval Conference), 467
Treeview control, 117
trust levels, InfoPath, 343, 389–390
.tt files, 272
Type command, 138
Tzunami K-Wise Deployer, 451

■U
Udc (Universal Data Connection) files, 393–399
UDC File Authoring Tool, 394, 396
UML (Unified Modeling Language) flaws, 230
uncustomized pages, 2–3
underscore (_) wildcard, SQL, 452
Undo method, 346
unescape function, 395
unghosted pages, 2, 3
Unified Modeling Language (UML) flaws, 230
UNION ALL, SQL, 465
Universal Data Connection (Udc) files, 393–399
Unload method, 8
UpdateAllTasks activity, 208
UpdatePanels, 56, 113–114, 116
UpdateTask activity, 208
URL Length Checker, 464
URLs, 22, 324–328, 462–465
user accounts, 340–341, 344, 359
user credentials, 352–355, 356, 361
user identity, assumption. See impersonation
user principal names, 369
UserName property, 164
UserToken properties, 351
useServer method, web services referenced by,

77
useService function, 76–77

■V
validation, 301, 302, 303–305
ValidationContext object, LogError method, 303
value propagation, 39
verbs, web part menu, 24–26
Vermeer Technologies Incorporated, 60, 61

■INDEX480

vertical transformations, DSL, 230
Views task, 381
virtual directories, 417
Virtual Directory Creation Wizard, 417
virtual path providers, described, 2–3
virtualization, service, 62–63, 65
visual representations, adding for interfaces,

297–299
Visual Studio 2005

Business Intelligence Development Studio,
128, 133–136, 147–150, 152–153

creating web services, 60
extensions for .NET Framework, 194, 370
extensions for Windows SharePoint Services,

9, 10–11, 15–16, 37–38
loading snippets, 218
referencing web services, 64
SDK, obtaining, 270
Workflow Designer, 186, 187–188, 194,

222–223
workflow project templates, 196
workflow project types, 195–196
WSRP producer creation in, 334–335

Visual Studio 2005 Designer
actions, creating, 188, 192
features, 194, 196–197
preparing, 194
tools, 206–207
workflow features, 179–180, 183, 195
workflows, developing, 197

Visual Studio 2008, 73, 194, 370, 372
Visual Studio templates, GAT, 39
Vivisimo search engine, 468
VSeWSS (Visual Studio 2005 extensions for

Windows SharePoint Services 3.0), 9,
10–11, 15–16, 37–38

_vti_bin folder, storing web services, 60

■W
W3C XML Signature Standard (XMLDSIG), 404
WCF (Windows Communication Foundation),

179, 370–377
WCS (Windows CardSpace), 179, 194, 370
web part class, rebasing, 6
Web Part Connection Language (WPCL)

applications, creating, 270–272
code templates, 282
connections, creating, 278–282
custom interfaces, 274–276, 282
deploying, 310–311
described, 269–270, 282
designer canvas, 273
domain model, creating, 283, 301
DSL configuration, 287–289
DSL creation, 286
DSL template, choosing, 283–286
General tools, 273
generating, 300–301

IConnectable Interfaces, adding, 295–297
installing, 270
Interface tools, 273
interfaces, adding visual representations,

297–300
language elements, 273–278, 305
limitations, 283
look and feel, 290–293
model, 273
multiple interface support, lack, 278
namespace value, 273
preliminary steps, 283
properties, making editable, 293–294
resources on, 270, 282, 305
testing, 294–295
text templates, 305
toolbox, 291–293, 298–299
uninstalling, 311
uses, 269
validation rules, 274, 301–305
web part support, 289–290

web part connections, 105, 108–109, 111–113,
233–236, 242

Web Part item template, 11
web part libraries, 11–12, 13, 47–52
Web Part project template, 10–14
Web Part Services Component (WPSC), 234
web parts. See also Web Services for Remote

Portlets protocol
adding to, 13–14
Ajax in, 55, 105–121
ASP.NET, 3–8, 16, 87, 89–91
autocompletion example, 100–104
caching framework, 7
client-side, 105–121
cloning, 329
communicating between, 234
company contact example, 94–95, 97–100
configuring, 16, 28
connections, 105, 108–109, 111–113, 233–236,

242
consumer, generally, 234
consumer-configured, 329
consumer/provider connections, 7, 234,

240–241
consuming resources within, 22
CreateChildControls method, 8, 91
creating, 31–32, 236–239, 245, 247–255,

257–260, 270, 335–337
custom image example, 22–23
debugging, 14–15, 222–223
deploying, 13, 31
described, 313
detail, 234
domain model, 289, 290
editor, 26–31, 66
error messages, 15
example environments, 316–318
field consumer, 249–250
field provider, 247–248, 252

■INDEX 481

Find
itfasterathttp://superindex.apress.com

/

filter, 247
gallery, site collection, 37
hybrid, 7
importing, 239–240
interaction state, 324–325
interface association, 304
JavaScript in, 66–67, 68–72
menus, 24–26
navigational state, 324–325
OnInit method, 8
OnLoad method, 8
packaging as SharePoint features, 12
parameter consumer, 261, 266–267, 269
parameter providers, 261–264, 269
People Picker, adding, 119–120
performance counter example, 80–83, 86,

92–94
persistent state, 324–325
PreRender method, 8
producer URLs, 327–328
producer-offered, 329
properties, export, 344
provider, 234, 236–238, 240–241, 244, 275
Render method and, 8
RenderBeginTag method, 8
RenderContents method, 8, 38
RenderEndTag method, 8
Report Explorer, 127, 140–141, 143, 144
resources, 19, 20–22, 23–24, 86
rollup-type, 339
row consumer, 251, 253–255
row provider, 251–252, 256, 269
search-related, 439
server controls used in, 16–17, 19
session state, 324–325
SharePoint legacy, 4–7
SharePoint reporting, 141–144
SharePoint WSRP, 317
SQL Server Reporting Services Report Viewer,

127
support for, 3
table consumer, 256, 259–260
table provider, 256, 257–258
templates, 10–14, 38, 40–44, 46–49, 282–286,

305
templates, library, 38, 40–44, 46, 47–49
testing, 83–86
text file, reading, 345
tokens, 68
tool parts, returning, 7
transformers, 304
Unload method, 8
using, 37
using JavaScript, 66–72
validation rules, 304, 305
Visual Studio 2005 solutions, 5–6
web services, using, 315

web proxy, reuse, 315
web resources, 19, 20–22, 23–24, 86

web services
calls, 73–74, 75
client authentication, 65
communication with, 87
creating, 59–65
JavaScript, corresponding, 84
Lists, 161, 162
message types, 77, 78–80
presentation-oriented, 314, 321, 331–332,

334–337
referencing, 64, 77
reuse, 315
user interfaces, products to consume and

create, 315
virtual directory, 59
virtualization, 62–63, 65

Web Services Description Language (WSDL),
62–63

Web Services for Interactive Applications
(WSIA), described, 314

Web Services for Remote Portlets (WSRP)
protocol

2.0 specification, 330–331
advantages, 318–319
consumers, 314, 331–333, 337–338
described, 313–314
disadvantages, 319–320
history, 313
information sources, 313, 330
interfaces, 316, 318, 321
JavaScript support, 319
limitations, 316
markup, HTML, 326, 330
Microsoft perspective, 317
modes, portlet, 325
namespace encoding, 329–330
portals including producers of, 318
portlet cloning, 329
portlet types, 329
producers, 314, 321, 331–332, 334–337
reuse, 316, 320
in server farms, 316, 318
Service Description, 321–322, 335
specification, 320–330
state tracking, 324–325
toolkit, 334
usage scenarios, 316–318
version differences, 319
window state, 325–326

Web Services Interoperability Organization
(WSI) Basic Profile, 62

Web Storage System Structured Query
Language (WSS SQL), 439

WebBrowsable attribute, 17
web.config file, 2, 142, 227
WebConfigurationManager, uses, 354
WebDescription attribute, 17
WebDisplayName attribute, 17
WebLocaleID token, 67

■INDEX482

WebPart element, 274
.webpart file, 38, 52
WebPartLibrary.xml file, 44–45
WebPartTransformers class, 243
WebPartTransformer attribute, 243
WebPartVerb class, 24
WebResource attribute, 20
WebResource.axd HTTP handler, 86
WebService behavior, 76–77
WF. See Windows Workflow Foundation
WHERE clauses, SQL, 450–451
While activity, 212, 215
WhileActivity activity, 182
Windows CardSpace (WCS), 179, 194, 370
Windows Communication Foundation (WCF),

179, 370–377
Windows Event Viewer, 425
Windows Explorer, creating destination folder

for web services, 59–60
Windows identity, getting current, 346
Windows Installer package, 47
Windows Presentation Foundation (WPF), 179,

370
Windows SharePoint Services

adapter, 416–418
creating orchestrations, 422–429
creating XSD schema, 420–422
form libraries, 430–433
moving binary content, 436–437
overview, 419–420
property promotion, 433–435
SharePoint list, 435
working with, 420

Windows SharePoint Services 3.0: Software
Development Kit, 194–195

Windows SharePoint Services, described, 59–65,
161

Windows SharePoint Services Search, 457
Windows SharePoint Services workflows. See

workflows, Microsoft Office SharePoint
Server

Windows Workflow Foundation Debugger, 194,
222

Windows Workflow Foundation (WF)
activities, 181–182
activities, creating, 224
compared to Biztalk, 415–416
components, 183–184
debugging, 194, 222
features, 179
history, 179, 370
tools, 183
workflow styles, 184–185

WindowsIdentity class, 346
WindowsImpersonationContext class, 346
WinFX, 179
wizards

Ajax Setup, 80
ASP.NET, 31–32
BizTalk 2006 Configuration, 416

Data Connection, 398, 400, 406–407
DSL Designer, 286
GAT, 39
Port Configuration, 423
Publishing, 384–387, 430–431
Report, 176
Report Server Project, 134, 174–177
Virtual Directory Creation, 417
Workflow Designer, 186, 187–188, 194,

222–223
word breakers, 440, 457
Word forms, importing to InfoPath, 408–410
Workflow Designer wizard, 186, 187–188, 194,

222–223
Workflow Developer Starter Kit, 194
Workflow Foundation. See Windows Workflow

Foundation
Workflow in the 2007 Microsoft Office System

(Mann), 217
workflow projects, 206, 207, 208–209
workflow runtime engine, 183–184
<Workflow> element, 219
workflow1.cs file, 208
workflows, Microsoft Office SharePoint Server

activities, adding, 209
activities display, 209–210
activity library, 195
adding to document libraries, 221, 223
adding to lists, libraries, or content type, 223
Approval, 186
assemblies, 197
audit information, logging, 207
basic, example, 183
capabilities, 209
code, 214–215
Collect Feedback, 186
Collect Signatures, 186
debugging, 222–223
default, 185–186
definition file, 197, 208, 217, 219–220
delay activities, 207
deploying, 208, 217–222
described, 180
designing, 186, 197
Disposition Approval, 186
document libraries, adding to, 221, 223
empty project, 196
example, 209, 211–217
Group Approval, 186
History List, 207
human-oriented style, 185
initializing, 207
Issue Tracking, 186
modification forms, 207, 223
release mode building, 222
rules, 187
sequential, 184–185, 195–196
SharePoint Designer actions, 188–189
state, activities setting, 208
state machine, 185, 195–196

■INDEX 483

Find
itfasterathttp://superindex.apress.com

/

status page, 219
styles, 184–185
templates, 196
Three-state, 186
types, 195
user interaction, 198–206, 214, 223–224
Visual Studio 2005 project templates, 10

workflow.xml file, 197, 208, 217, 219–220
WPCL. See Web Part Connection Language
WPF (Windows Presentation Foundation), 179,

370
WPID token, 67
WPQ token, 66, 68
WPR token, 66
WPSC (Web Part Services Component), 234
WPSRR token, 67
WSDL (Web Services Description Language),

62–63
WSI (Web Services Interoperability

Organization) Basic Profile, 62
WS-I Basic Profile 1.1, 335
WSIA (Web Services for Interactive

Applications), described, 314
.wsp files, 24, 31, 33–35
wsp_structure.ddf file, 208, 222
WSRP. See Web Services for Remote Portlets
WSRP consumer web part (Microsoft Office

SharePoint Server 2007), configuring,
331–333

WSRP Registration, 321–322
WSRP web service toolkit for SharePoint

Products and Technologies 2003, 334
WSS File provider, 2–3
WSS SQL (Web Storage System Structured

Query Language), 439
WSS.actions file, 227

■X
X1 search engine, 468
XMLDSIG (W3C XML Signature Standard), 404
XMLHttpRequest class, 73–75, 78
XmlNamespaceManager class, 404
XSD schemas, creating, 420–422
xsd.exe tool, 201

■Z
Zoom viewer parameter, 137

■INDEX484

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

