Wrox Programmer to Programmerm™

Professional

LINQ

Scott Klein

Updates. source code, and Wrox technical support at www.wrox.com

http://www.allitebooks.org

Professional

LINQ

Acknowledgments Xiii
Introduction xxiii
Part I: Introduction to Project LINQ 1
Chapter L:ProjectLINQc.cciiiiiiiiiiiiit e ccssnnsnnnnsnnnnnnnnnnnnns 3
Chapter 2: ALook at Visual Studio2008cciiiiiiiiiiiicnnnnnns 17
Chapter 3: LINQQUEKHEeScvcivviennrannnncnnrnansnnsnsnnnnsnnnnnnnnsns 31
Chapter 4: LINQ Standard QueryOperatorscciiiiiiiiiiiicnnnnnns 53
Part I1I: LINQ to XML 93
Chapter 5: Understanding LINQto XIMILccciiiiiiiiiiiiinnnnnnnnnns 95
Chapter 6: Programming withLINQto XML..............ccciiiiiiiiiinnnns 123
Chapter 7: LINQ to XML and Other LINQDataModelscccveuunn. 145
Chapter 8: Advanced LINQ to XML Programming TOpiCSccvveeuunns 153
Chapter 9: LINQto XML and VisualBasic .NETccivvvcnnnnnnnnns 179
Part 11I: LINQ to SQL 197
Chapter 10: LINQtoSQLOVerviewcovveeverennnrnnnsnnnnsnnsnsnnnnns 199
Chapter11:LINQtoSQLQuUereS........cciiiiiiiiccansnnnnncnnssnnnnnnnns 217
Chapter 12: Advanced QueryConceptsccecieeiinrrnnnnsnnnnnnnnns 245
Chapter 13: More about Entity Classescccvvrcnnrccnnncnnnnnnnnns 257
Chapter14:LINQtoDataSetccvviiiiirinnnrnnrennnnnnnnnnnnnns 271
Chapter 15: Advanced LINQto SQLTOPICSccciiiiiiiiiiinnnnnnnnnnns 287
Appendixes 311
Appendix A:Case Studycoiiiiiiiiiiinrnnrrrr s 313
Appendix B: LINQ to Entities: The ADO.NET Entity Framework 329
AppendiX C:LINQtoXSDccciiiiiiiiiinnncnnnccnnrannnsnnnnnnnnnns 345
1T = 359

Iwww . al litebooks.cond

http://www.allitebooks.org

Iwww . al litebooks.cond

http://www.allitebooks.org

Professional

LINQ

Iwww . al litebooks.cond

http://www.allitebooks.org

Iwww . al litebooks.cond

http://www.allitebooks.org

Professional

LINQ

Scott Klein

WILEY
Wiley Publishing, Inc.

Professional LINQ

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-04181-9

Manufactured in the United States of America

10987654321

Library of Congress Cataloging-in-Publication Data

Klein, Scott, 1966-
Professional LinQ / Scott Klein.
p. cm.
Includes index.
ISBN 978-0-470-04181-9 (pbk. : website)
1. Microsoft LINQ. 2. Query languages (Computer science) L. Title.
QA76.73.1.228K53 2008
005.74’1--dc22
2007045810

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting,
or other professional services. If professional assistance is required, the services of a competent professional person
should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Website is referred to in this work as a citation and/or a potential source of further information
does not mean that the author or the publisher endorses the information the organization or Website may provide
or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may
have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and
other countries, and may not be used without written permission. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

www.wiley.com

To Lynelle, Sadie, Forrest, Allara, and Shayna

About the Author

Scott Klein is an independent consultant with a passion for all things SQL Server, .NET, and XML. He
is the author of Professional SQL Server 2005 XML and Professional WCF Programming. He also writes the
biweekly feature article for the SQL PASS Community Connector, and has contributed articles to both Wrox
(www . Wrox.com) and TopXML (www . TopXML. com). He frequently speaks to SQL Server and .NET user
groups. Scott lives in Wellington, Florida, and when he is not sitting in front of a computer or spending
time with his family, he can usually be found aboard his Yamaha at the local motocross track. He can be
reached at ScottKlein@SqglXml.com.

Executive Editor
Bob Elliott

Development Editor
Maryann Steinhart

Technical Editor
Carl Daniel

Production Editor
Daniel Scribner

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Credits

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreader

Candace English, Nancy Riddiough,
Amy Rasmussen and

Jeremy Bagai

Indexer
Robert Swanson

Acknowledgments

First and foremost I'd like to thank Neil Salkind and everyone at Studio B for being who they are and
for all that they do. They take care of all of the things I don’t want to have to worry about and let me do
what I like to do, which is working with the latest and greatest new technology. Without these people
and their contributions, this book wouldn’t be possible.

I'd like to give a huge thanks to the people at Wrox/Wiley for making this book happen. Maryann
Steinhart, my development editor, was a delight to work with. Many, many thanks to Carl Daniel, the
technical editor, for the time and energy he put into reviewing this book. His comments were invaluable.

Thanks to Jim Minatel, for accepting the book idea and letting me write it, and Bob Elliott for picking up
where Jim left off after Jim went on to bigger and better things within Wrox. I appreciate your support.

As with my other books, having that “one person” who you could go to for whatever reason made life so
much easier. Dave Remy, I cannot thank you enough! Your help was worth more than gold, and it sure
made writing this book much easier.

A large dose of gratitude also goes out to Dinesh Kulkarni, Eric White, Erick Thompson, Lance Olson,
Luca Bolognese, Mads Torgersen, Michael Blome, Ralf Lammel, Scott Guthrie, Luke Hoban, and Asad
Khan. A thank you to each of you for letting me ask questions and providing excellent feedback.

It has been said that you are only as good as those with whom you associate. So enough cannot be said
about the love and support of my family, for without them, this book, or anything else I do in life, would
not be possible. My wonderful wife, Lynelle, who during these times is an anchor for this family, held
the house together for the 84+ months I spent upstairs writing. And to my children, who were patient
with their father knowing that they soon would get their dad back. I love you all. When did my eldest
daughter turn old enough to start driving?

Contents

Acknowledgments xiii
Introduction xxiii

Part I: Introduction to Project LINQ

Chapter 1: Project LINQ 3
LINQ Overview 7
Standard Query Operators 10
LINQ to XML Overview 12
LINQ to SQL Overview 14
Summary 16
Chapter 2: A Look at Visual Studio 2008 17
Visual Studio 2008 17
Language-Specific LINQ Features 21
Query Expressions 21
Implicitly Typed Variables 22
Anonymous Types 23
Initializers for Objects and Collections 23
Extension Methods 26
Lambda Expressions 28
Summary 30
Chapter 3: LINQ Queries 31
Introduction to LINQ Queries 31
Data Source 32
Query Creation 33
Query Execution 33
Likened to SQL Syntax 36
Query Concepts 37
Var versus IEnumerable 40
Common Query Terms 41

IQueryable and IQueryable(Of T) Interfaces 42

Contents

Query Syntax versus Method Syntax 43
Which Do You Use? 44
Using Query and Method Syntaxes 45
Summary 51
Chapter 4: LINQ Standard Query Operators 53
Overview 53
Standard Query Operators 54
Projection Operators 55
Restriction Operator 57
Sorting Operators 57
Joining Operators 59
Grouping Operator 62
Concatenating Operator 63
Aggregating Operators 64
Set Operators 68
Generation Operators 71
Conversion Operators 73
Element Operators 77
Equality Operators 82
Quantifier Operators 83
Partitioning Operators 86
Putting Query Operators to Work 88
Summary 92

Part II: LINQ to XML

Chapter 5: Understanding LINQ to XML 95
LINQ to XML Overview 95
LINQ to XML Programming Fundamentals 96

LINQ to XML Classes 96
XElement Class 98
XAttribute Class 102
XDocument Class 104
LINQ to XML Programming Concepts 107
Working with Existing XML 107
Saving XML to LINQ to XML 109
Creating XML 110

XVi

Contents

Traversing XML 111
Manipulating XML 112
Working with Attributes 117
LINQ to XML versus Other XIVIL Technologies 120
LINQ to XML versus DOM 120
LINQ to XML versus XmIReader 121
LINQ to XML versus XSLT 121
LINQ to XML versus MSXML 121
Summary 122
Chapter 6: P . ith LINQ to XML 123
Creating Trees 123
Creating Trees in C# 124
Creating Trees in Visual Basic 128
Populating Trees from Text 130
Querying XML Trees 132
Modifying and Reshaping XML Trees 137
Serializing XML Trees 139
Namespaces 141
Summary 143
Chapter 7: LINQ to XML and Other LINQDataModels 145
SQL to XML 145
XML to SQL 149
Insert 150
Update 151
Summary 152
Chapter 8: Advanced LINQ to XML Programming Topics —
LINQ to XML Functional Construction 153
LINQ to XML Annotations 158
LINQ to XML Axis 161
Ancestors 161
Descendants 163
AncestorsAndSelf 164
DescendantsAndSelf 165
ElementsAfterSelf and ElementsBeforeSelf 166
LINQ to XML Events 167
Changing 168
Changed 170

xvii

Contents

Streaming XML Documents 171
Streaming Large XML Documents 176
Summary 177
Chapter 9: LINQ to XML and Visual Basic .NET 179
Creating XML 179

Overview of XML Literals 180

Expressions 182

Embedding Queries 184

Understanding Whitespace in Visual Basic XML Literals 184
Accessing XML 185
Loading XML 188
Manipulating XIVIL Using the Parse Method 189
LINQ to XML Visual Basic Example 191
Summary 194

Part IlI: LINQ to SQL

Chapter 10:; LINQ to SQL Overview === 199

Understanding LINQ to SQL 200
LINQ to SQL Object Model 201
Attribute-Based Mapping 202
Using the Database Attribute 202
Mapping Tables 203
Mapping Columns 203
Mapping Relationships 206
Mapping Stored Procedures 207
Mapping Functions 208
Using the Parameter Attribute 209
The Basics of Relational Data 209
Primary Keys 210
Foreign Keys 212
Summary 215
Chapter 11: LINQ to SQL Queries 217
Query Concepts 217
DataContext 219

xviii

Contents

Strongly Typed DataContext 220
Data Manipulation 221
Insert 222
Update 224
Delete 225
Working with Objects 225
Insert 225
Update 226
Delete 226
Stored Procedures and User-Defined Functions 227
Mapping and Calling Stored Procedures 227
Mapping and Calling User-Defined Functions 240
Summary 244
Chapter 12: Advanced Query Concepts 245
Database Relationships 245
Representing Relationships 245
Querying 250
Compiled Queries 251
Remote versus Local Query Execution 251
Remote Execution 252
Local Execution 252
Deferred versus Inmediate Data Loading 252
DataShape Class 254
Turning Off Deferred Loading 254
Composite Keys 255
Read-Only Data 255
Summary 256
Chapter 13: More about Entity Classes 257
Tracking Entity Changes 258
Submitting Entity Changes 258
Concurrent Changes and Concurrency Conflicts 263
UpdateCheck 263
ConflictMode 264
ChangeConflictException 265
RefreshMode 265
Utilizing Transactions 267
Summary 269

Xix

Contents

Chapter 14: LINQ to DataSet 271
Overview of LINQ to DataSet 272
Creating a LINQ to DataSet Project 272
Loading Data into a DataSet 273
Using the DataAdapater 273
LINQ to DataSet Queries 275
Querying a Single Table 275
Querying across Multiple Tables 277
Typed DataSets 278
Data Binding 279
Comparing DataRows 281
Summary 284
Chapter 15: Advanced LINQ to SQL Topics 287
Object Relational Designer 287
Creating and Opening the O/R Designer 288
Creating/Configuring the DataContext 288
Creating Entity Classes for Tables/View Mapping 290
DataContext Mapping for Stored Procedures/Functions 292
Calling Stored Procedures to Save Data Using Entity Classes 293
Extending O/R Designer-Generated Code 294
Pluralization of Classes in the O/R Designer 296
SQL Metal 296
External Mapping 299
Multi-Tier Operations 302
N-Tier Best Practices 303
Optimistic Concurrency 303
Insertion/Deletion 304
N-Tier Examples 304
Designer Example 305
Summary 310
Appendixes
Appendix A: Case Study 313

: lix B: LINQ to Entities: The ADO.NET Entity F I 329

Overview
Installing the ADO.NET Entity Framework

XX

329
331

Contents

ADO.NET Entity Framework Example 332
Querying the Entity Data Model 340
Working with Objects 341
Entity Data Model Generator 342
Appendix C: LINQ to XSD 345
LINQ to XSD Overview 345
Installing LINQ to XSD 346
LINQ to XSD Example 346
Mapping Rules 354
LINQ to XSD-Generated API Class Methods 354
Load Method 355
Parse 355
Save 356
Clone 356
Default Values 357
Index 359

Introduction

It has been three years and I'm still trying to get the word ““grok” into everyone’s mainstream vocabulary
(see the introductions to my last two books), and one of the things that I am ““grokking” is the new LINQ
technology coming out of the Microsoft campus.

Microsoft is touting LINQ as a “groundbreaking innovation” that promises to ““revolutionize the way
developers work with data.” Like you, I was somewhat skeptical about these promises because similar
comments have been funneled our way in the past, but these bold declarations would cause even the
casual developer to stop and take notice.

Let me just say right here that the more I got into LINQ, the more excited I became (and the more guilty I
felt about not believing the hype). And this isn’t just any mere excitement; this is on par with a 10-year-old
waking up Christmas morning to a pirate’s share of loot under the Christmas tree.

Why? Because LINQ introduces queries (the concept of a query) as a first-class language construct in
both C# and Visual Basic. No longer do you need to learn multiple technologies to query multiple data
sources. It is a single query syntax for querying XML, SQL databases, ADO.NET DataSets, and other data
sources.

LINQ simplifies how you will now write queries. If you use C# or Visual Basic, you will be able to start
writing LINQ queries immediately because you know most of what you need. LINQ is a set of features
built into Visual Studio 2008 that incorporates tremendous query capabilities directly into the language
syntax of Visual Basic and C#. This provides the benefits of IntelliSense, compile-time type checking, and
debugging support. How could life get any better?

Who This Book Is For

This book is for developers who want to learn about LINQ and how it can benefit and enhance their
applications. Equally, this book is for those individuals who have spent at least a little time looking at
LINQ, have done some experimental development with it, and want to delve deeper into the technology
to see how LINQ can improve their applications.

A good understanding of Visual Studio and the C# language will be useful when reading this book and
working with the examples, but it is not required. An understanding of SQL Server and T-SQL also
would be useful but is not required.

What This Book Covers

Part I provides on overview of LINQ and of Visual Studio 2008, a look at many of the new and existing
language-specific features that support LINQ, and a discussion of LINQ queries and the LINQ standard
query operators.

Introduction

a

a

a

a

Chapter 1 provides an overview of LINQ and explains why there is a need for LINQ, and then
takes a brief introductory look at the other LINQ providers.

Chapter 2 affords a brief history of Visual Studio, and then takes a good look at Visual
Studio 2008 and many of the .NET Framework language-specific features that will help you
better understand LINQ.

Chapter 3 examines LINQ queries, their overall concepts, and the syntax to use when writing
LINQ queries.

Chapter 4 provides a detailed discussion of the LINQ standard query operators.

Part IT jumps right into LINQ to XML, providing an overview first and then showing you how to program
with LINQ to XML with both C# and Visual Basic, and how to use LINQ to XML with other data models.

Q

a

Chapter 5 provides an overview of LINQ to XML, discusses many of the LINQ to XML concepts,
and compares LINQ to XML with other XML technologies.

Chapter 6 tackles many of the concepts, techniques, and programming fundamentals necessary
to program with LINQ to XML.

Chapter 7 compares LINQ to XML with the other LINQ data models such as LINQ to SQL.

Chapter 8 explores some advanced LINQ to XML programming topics such as functional
construction and working with events.

Chapter 9 focuses solely on using LINQ to XML with Visual Basic .NET.

Part III focuses on LINQ to SQL, again providing an overview, and then tackling LINQ to SQL queries,
advanced query concepts, LINQ to Entities, and LINQ to DataSets. It also introduces you to the visual
tools provided by LINQ to automate many of the LINQ to SQL functions.

a

Chapter 10 provides an overview of LINQ to SQL and its corresponding object model, as well as
a discussion of attribute-based mapping and an overview of relational basics.

Chapter 11 discusses LINQ to SQL queries and concepts, how to work with the DataContext
class and entity objects, and how to manipulate data with LINQ to SQL.

Chapter 12 explores concepts such as database relationships and LINQ query execution.

Chapter 13 tackles many aspects of LINQ to SQL entities such as tracking changes and working
with transactions.

Chapter 14 focuses on using LINQ to DataSet to query the contents of an ADO.NET DataSet, and
data binding with LINQ to DataSet.

Chapter 15 discusses some advanced LINQ to SQL topics and tools such as multi-tier operations
and the Object-Relational Designer.

Part IV, “’Appendixes,” provides a case study and a look at a couple of LINQ technologies that will be
available post—Visual Studio 2008 but are sure to make an impact on the market: LINQ to XSD and LINQ
to the ADO.NET Entity Framework.

Q

XXiv

Appendix A walks you through building an application using LINQ and associated LINQ
providers.

Introduction

Appendix B discusses the ADO.NET Entity Framework and associated objects as well as the
Entity Data Model Generator tool.

Appendix C discusses LINQ to XSD, a beta technology that allows you to work directly with
XML in a typed manner.

What You Need to Use This Book

All of the examples in this book require the following:

Q

U0 U 0o

Visual Studio 2008 (Beta 2)

NET Framework 3.5 (Beta 2)

LINQ to XSD Preview

ADO.NET Entity Framework Beta 2

ADO.NET Entity Framework Tools CTP

SQL Server 2005 and the AdventureWorks sample database

Conventions

To help you get the most from the text and keep track of what’s happening, a number
of conventions are used throughout the book.

Boxes like this one hold important, not-to-be-forgotten information that is directly
relevant to the surrounding text.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

Qa

a
a
a

New terms and important words are highlighted when we introduce them.
Keyboard strokes look like this: Ctrl+A.
Filenames, URLs, and code within the text are shown like this: persistence.properties.

Code is presented in two different ways:

Amonofont type withno highlighting is used for most code examples.

Gray highlighting to emphasize code that's particularly important in the present
context.

Introduction

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually or
to use the source code files that accompany the book. All of the source code used in this book is available
for downloading at www.wrox.com. Once at the site, simply locate the book’s title (either by using the
Search box or by using one of the title lists) and click the Download Code link on the book’s detail page
to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-04181-9.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see
the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list, including
links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We'll check the information

and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to email you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

Athttp://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

XXVi

Introduction

3. Complete the required information to join as well as any optional information you want to
provide, and click Submit.

4. You will receive an email with information describing how to verify your account and
complete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
emailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing,.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to

questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXVii

Part |
Introduction to Project LINQ

Chapter 1: Project LINQ
Chapter 2: A Look at Visual Studio 2008
Chapter 3: LINQ Queries

Chapter 4: LINQ Standard Query Operators

Project LINQ

I often hear the questions, “What is LINQ?,” “What does it do?,” and “Why do we need it?”
The answer to the first question (and subsequently the other two questions) is that the Language
Integrated Query (LINQ) is a set of standard query operators that provide the underlying query
architecture for the navigation, filtering, and execution operations of nearly every kind of data
source, such as XML (using LINQ to XML, previously known as XLINQ), relational data (using
LINQ to SQL, previously known as DLINQ), ADO.NET DataSets (using LINQ to DataSet), and
in-memory collections.

The best way to begin understanding this wonderful new technology is to take a look at some
history and background on how and why LINQ came to be.

Although the public first became aware of LINQ early in the fall of 2005, LINQ had been in
development since early 2003. The overall LINQ goal was to make it easier for developers to interact
with SQL and XML, primarily because there exists a disconnect between relational data (databases),
XML, and the programming languages that communicate with (that is, work with) each of them.

Most developers understand the concept of object-oriented (OO) programming and its related
technologies and features, such as classes, methods, and objects. Object-oriented programming has
evolved tremendously over the past 10 years or so, but even in its current state, there’s still a gap
when using and integrating OO technology with information that is not natively defined or inherent
to it.

For example, suppose that you want to execute a T-SQL query from within your C# application. It
would look something like this:

private void Forml_Load(object sender, EventArgs e)
{
string ConnectionString = @"Data Source=(local);
Initial Catalog=AdventureWorks;UID=sa;PWD=yourpassword";
using (SglConnection conn = new SglConnection (ConnectionString))
{
conn.Open () ;
SglCommand cmd = conn.CreateCommand() ;

Part I: Introduction to Project LINQ

cmd . CommandType

cmd . CommandText
Person.Contact";

using (SglDataReader rdr = cmd.ExecuteReader())

{

CommandType . Text;
"SELECT LastName, FirstName FROM

/ / do something
}

}

If you wanted to use the same code to execute a stored procedure that takes one or more parameters, it
might look like this:

private void Forml_Load(object sender, EventArgs e)
{
string ConnectionString = @"Data Source=(local);
Initial Catalog=AdventureWorks;UID=sa;PWD=yourpassword";
using (SglConnection conn = new SglConnection (ConnectionString))
{
conn.Open () ;
SglCommand cmd = conn.CreateCommand() ;
cmd . CommandType = CommandType.StoredProcedure;
cmd.CommandText = "uspGetBillOfMaterials";
cmd.Parameters.Add ("@StartProductID", SqglDbType.Int) .Value =

324;

cmd. Parameters.Add ("@CheckDate", SglDbType.DateTime) .Value =
"07/10/2000";

using (SglDataReader rdr = cmd.ExecuteReader ())

{

// do something
}

}

While you and I have probably coded something like this many, many times, it isn’t “friendly’” on several
levels. First, you are combining two languages into one. You have the language you are coding (in this
case C#), plus you have the SQL language in quotation marks, which is not understood in the context
of .NET. With the .NET language you have IntelliSense, but you don’t get IntelliSense in the embedded
SQL syntax.

More importantly, however, there is no compile-time type checking, which means you can’t tell if
something is broken until run time. Every line of code has to be QA’d just to see if it even begins
to work.

Microsoft also packed a lot of features into the .NET Framework that enable developers to work with
XML. The .NET Framework contains the System.xml namespace and other supporting namespaces,
such as System.Xml.XPath, System.Xml.Xsl, and System.Xml.Schema, which provide a plethora of
functionality for working with XML. The namespaces contain many classes and methods that make up
the XML .NET API architecture. The main classes are the XmlDocument, XmlReader, and XmlWriter.

To add to the complexity of working with different technologies, parsing an XML document isn’t the eas-
iest thing to do, either. Your tools of choice to work with XML are the Document Object Model (DOM),

Chapter 1: Project LINQ

XQuery, or Extensible Stylesheet Language Transformations (XSLT). For example, to read an XML
document using existing technology, you would need to do something like the following:

XmlTextReader rdr = new XmlTextReader ("C:\Employees.Xml");
while (rdr.Read())
{
XmlNodeType nt = rdr.NodeType;
Switch (nt)
{
case XmlNodeType.Element:
break;

case XmlNodeType.Attribute:
break;

case XmlNodeType.Comment :
break;

case XmlNodeType.Whitespace:
break;

}

That’s a lot of code just to read an XML document (and it isn’t even complete). Writing XML isn’t any
less confusing, as illustrated here:

XmlTextWriter wrt = new XmlTextWriter ("C:\Employees.Xml");
wrt.WriteStartDocument;

wrt.WriteComment ("This is an example");
wrt.WriteStartElement ("Employees") ;

wrt.WriteStartElement ("Employee") ;

wrt.WriteStartElement ("FirstName") ;
wrt.WriteString("Scott");

wrt.WriteEndElement () ;

wrt.WriteEndElement () ;

wrt.WriteEndElement () ;

Visually, you don’t know if this will work until you compile the project. Likewise, it is hard to see what
the resulting XML will look like.

XML is great and its use continues to grow; you can expect it to be around for a long time. Yet, truth be
told, XML is still hard to work with.

In dealing with these hurdles, Microsoft considered two paths. The first path would have required the
company to build specific XML or relational data features into each programming language and run-time.
That would be a major undertaking and an even bigger hassle to maintain. The second option was to add
more general-purpose query capabilities into the .NET Framework—in other words, a framework of
all-purpose querying facilities built into the .NET Framework that both C# and VB.NET could easily take
advantage of.

Luckily, Microsoft chose the later option, creating a unified query experience across objects, XML,

collections, and data. It accomplished that by taking query set operations, transforms, and constructs and
bringing them to the surface, making them high-level concepts within the NET Framework (for example,

5

Part I: Introduction to Project LINQ

on the same level as objects and classes). So, you can now enjoy the benefits of a single declarative pattern
that can be expressed in any .NET-based programming language.

The result of making these set operations, transforms, and constructs first-class operations is a set of
methods called the standard query operators. These operators provide query capabilities that include
sorting, filtering, aggregation, and projection over a large number of different data sources. The standard
query operators are the focus of Chapter 4, “LINQ Standard Query Operators.”

Think about it for a minute. A single set of query operators that work within any .NET-based
programming language, enabling you to write a query against a database, XML, or an in-memory array
using the same syntax? How cool is that? And you get the added benefit of IntelliSense and compile-time
type checking! Somebody pinch me.

To illustrate this great technology, take a look at an example that queries the directories of your C drive
and writes them to a list box:

DirectoryInfo di = new DirectoryInfo("C:\\");
var dirQuery =

from dir in di.GetDirectories()

orderby di.Name

select new { dir.Name} ;

foreach {var item in dirQuery)
listBoxl.Items.Add (item.Name) ;

This code uses some of the standard query operators to create a LINQ query. In essence, Microsoft has
taken the concept of query set operations and made them first-class operations within the
.NET Framework.

Here’s another example. This one queries all the system processes on your PC using the Process class,
but notice that it uses the same query syntax as the previous example:

var procQuery =
from proc in Process.GetProcesses()
orderby p.WorkingSet64 descending
select new { p.Id, p.ProcessName, p.WorkingSet64} ;

foreach (var item in procQuery)
ListBoxl.Items.Add(item.Id + " " +
item.ProcessName + " " +
item.WorkingSet64) ;

When you run this code, all the processes on your system will be listed in descending order by
memory usage.

Simply put, LINQ enables you to query anything that implements the IEnumerable<T> interface. If you
can loop through the contents using the foreach statement, then you can query it using LINQ.

The following example illustrates how LINQ works querying relational data, using a database as the
source of data.

Chapter 1: Project LINQ

var conQuery =
from ¢ in contact
where c.FirstName.StartswWith("S")
orderby c.LastName
select new { c.FirstName, c.LastName, c.EmailAddress} ;

foreach (var item in conQuery)
ListBoxl.Items.Add(item.FirstName + " " +
item.LastName + " " +
item.EmailAddress) ;

This previous example queries the Person.Contact table in the AdventureWorks database for all contacts
whose first name starts with the letter “/S”’.

The purpose of LINQ is to provide developers with the following benefits:

Q A simplified way to write queries.
0 Faster development time by removing run-time errors and catching errors at compile time.

Q IntelliSense and debugging support for LINQ directly in the development language.

Q Closing the gap between relational data and object-oriented development.

0 A unified query syntax to use regardless of the source of data.

What is important to notice is the same syntax that you used to query the system processes was used

query a SQL data source. Both of these topics will be discussed in much more detail, including how to
easily connect and map to the source database.

So, with that primer, this chapter introduces the following topics:

Q LINQ
O LINQ to XML
Q0 LINQ to SQL

LINQ Overview

LINQ is a set of standard query operators that brings powerful query facilities right into the .NET
Framework language such as C# and VB.NET. The LINQ framework brings together the capability of
data access with the power of data manipulation. This section provides an overview of the
capabilities of LINQ and the standard query operators, but Chapters 3 and 4, respectively, will discuss in
great detail the LINQ query operators and language features that contribute to LINQ’s direct, declarative
style of queries.

The term Language Integrated Query signifies that the standard query facilities are architected directly
into the developer’s .NET-supported programming language of choice. These query facilities, known
as the standard query operators, expose general-purpose query mechanisms that can be applied to

Part I: Introduction to Project LINQ

many facets of information, such as in-memory constructs as well as information retrieved from external
sources such as relational data or XML.

These operators provide the capability to express query operations directly and declaratively within
any .NET-based programming language. What makes all of this possible is the simple application of the
query operators to an IEnumerable<T> source of information.

Found in the System.Collections.Generic namespace, the IEnumerable<T> interface, a new addition
in version 2.0 of the NET Framework, supports a simple iteration over a collection of a given (specified)
type. The IEnumerable<T> interface provides a slick mechanism to iterate through an arbitrary collection
of strongly typed objects using the C# foreach statement or the Visual Basic FOR EACH statement. To
utilize the foreach semantics, this interface must be implemented.

So the question is, what does this mean for LINQ? It means that a query that implements this interface can
be a source for the corresponding query expression. You saw several examples of this at the beginning of
this chapter, and the best way to understand the LINQ technology is to see it in action.

The following example utilizes LINQ, a few standard query operators, and the IEnumerable<T> interface
to query and process the contents within a defined array:

private void ShowLINQ ()
{
string[] firstnames = { "Scott", "Steve", "Ken", "Joe", "John",
"Alex", "Chuck", "Sarah"};

IEnumerable<string> val = from fn in firstnames
where fn.StartsWith("s")
select fn;

foreach (string name in val)
{
Console.WriteLine (name) ;
}
}

The first statement defines an array of first names. This should not be new to any developer. The next
statement, however, is new. A local variable, val in this case, is initialized with a Language Integrated
Query expression. The query expression contains two query operators taken from plethora of
standard query operators. In this example, two operators are used: where and select. The local variable
val exposes the IEnumerable<string> interface, which provides the capability to iterate through the
collection. The results are actually created as you start to iterate through them via the foreach statement.

From here, the query can be modified to add sorting or additional filtering as well as many other options,
but that will be expanded on in later chapters. For now, suffice it to say that via LINQ you can query
various source data types, such as XML and relational data, through a standard and consistent query
model and related query operators.

To illustrate this, let’s modify the directory example from earlier in this chapter. One of the great things
about LINQ is that it enables you easily to ““map”’ object-oriented objects within your .NET programming
language to a database and the objects within a relational database. That means you can access those
relational objects in a strongly typed, object-oriented manner.

Chapter 1: Project LINQ

To do this, a mapping to the database needs to be made, and that is accomplished by creating and
declaring two classes. Those classes map the relational objects into the object-oriented world. The first
class maps the actual database:

[Database (Name="AdventureWorks")]
public class AdventureWorks : DataContext

{
public AdventureWorks (string connection) : base(connection) {}
public Table<DirectoryInformation> DirectoryInformation;

The second class maps the table and columns of the table you want to access:

[Table (Name="DirectoryInformation")]
public class DirectoryInformation
{
[Column (DbType="varchar (50)")]
public string DirectoryName;

[Column (DbType = "varchar (255)")]
public string DirectoryDescription;

The class name maps to the table in the database you want to access, and the columns are mapped by
adding metadata to a couple of variables.

This example is just to whet your appetite. There’s not a lot of explanation here because there
are more than a handful of chapters that discuss object mapping and querying in much
greater detail.

Once the mapping is complete, the data can be queried. And not just queried, but queried using
strongly typed syntax.

The first line of the following code accesses the database as an object, creating a new instance of the class
previously defined, a strongly typed connection. Once you have the connection, you can access the table
and data in a strongly typed fashion, as shown in the second and third lines. Notice that the columns in
the table are accessed via dot notation directly in C#.

AdventureWorks db = new AdventureWorks ("Integrated Security=sspi");

foreach (var item in db.DirectoryInformation)
listBoxl.Items.Add(item.DirectoryName + " " +
item.DirectoryDescription) ;

Executing this code returns the data from the DirectoryInformation table and lists both the directory
name and description in a list box.

To make it more interesting, take the directory example from the beginning of the chapter and modify it
to join to this query. You'll recall that the code in the earlier example simply queried the DirectoryInfo
class to return the directories on your local C drive. Combining it with this query, you join the Name
property of the DirectoryInfo class to the DirectoryName column from the DirectoryInformation

Part I: Introduction to Project LINQ

table to return the DirectoryDescription information from the table. Just add the following highlighted
code to the earlier query:

DirectoryInfo di = new DirectoryInfo("C:\\");

var query =

from dir in di.GetDirectories()

orderby di.Name

select new

{

dir.Name,
DirectoryDescription = (
from d in db.DirectoryInformation
where d.DirectoryName == di.Name
select d.DirectoryDescription) .FirstOrDefault ()

Vg

foreach (var item in query)
listBoxl.Items.Add(item.Name + " " + item.DirectoryDescription);

}

To run this example, you first need to create a table in a database. The example used the AdventureWorks
database and the following code to create the table:

CREATE TABLE [dbo].[DirectoryInformation] (
[DirectoryName] [varchar] (50) NULL,
[DirectoryDescription] [varchar] (255) NULL

) ON PRIMARY

GO

You can use the following INSERT statement to add data to the DirectoryInformation table:

INSERT INTO DirectoryInformation (DirectoryName, DirectoryDescription)
VALUES ('Windows', 'My Windows Directory')
GO

Before continuing, think about the amount of code you would have had to write to accomplish the same
type of query in pre-LINQ technology. In the space of about two dozen lines, you were able to access
data, query that data, and loop through that data simply and efficiently. In other technologies, you would
have had to create a connection to the database, create an instance of a SqlCommand object and any other
objects needed to execute a query, and write T-SQL code in your .NET code enclosed in quotation marks
And that’s not to mention all the work that has to be done once you get the data back—casting to the
appropriate data types, and so on.

The good news is that LINQ does all of that for you. Sweet! And we haven’t even covered XML yet.

Standard Query Operators

The LINQ standard query operators make up an API that provides the means of querying various
data sources, such as arrays, collections, and even XML and relational data. They are a set of methods
that are implemented by each specific LINQ provider (LINQ to SQL, LINQ to XML, LINQ to Objects,

10

Chapter 1: Project LINQ

and so on). The operators form a LINQ query pattern that operates on a sequence (an object that imple-
ments the ITEnumerable<T> or IQueryable<T> interface).

There are two sets of standard query operators—one operates on objects of the IEnumerable<T> type
and the other operates on objects of the IQueryable<T> type. The operators are made up of methods
that are static members of the Enumerable and Queryable classes, allowing them to be called using static
method syntax of instance method syntax. You will learn all about this in Chapter 4.

The standard query operators can be categorized by their operation “type.”” For example, there are
aggregate, projection, ordering, and grouping operators, among others. Take a look again at one of the
examples used earlier in the chapter (repeated here for your convenience):

private void ShowLINQ ()
{
string [] firstnames = { "Scott", "Steve", "Ken", "Joe", "John",
"Alex", "Chuck", "Sarah"};

IEnumerable<string> val = from fn in firstnames
where fn.StartsWith("sS")
select fn;

foreach (string name in val)
{
Console.WriteLine (name) ;

}

The actual LINQ query is the middle part:

val = from fn in firstnames
where fn.StartsWith("s")
select fn;

In this example, several query operators are utilized from different operation types. The select query
operator falls into the category of projection operators, and performs a projection over a sequence, an
object that implements the IEnumerable<T> for a given type. In this case, the select operator enumer-
ates the source sequence of first names.

select fn;

The where query operator is of the restriction operator type—in fact, it is the only operator of that type.
Just like T-SQL, the LINQ where operator filters a sequence. In the preceding example, it filters the
sequence by limiting the results returned to only those whose name begins with the letter S.

where fn.StartsWith("s")

If you are trying this example out yourself, create a new Windows Forms project and place a list box on
the form. In the Load event of the form, place the following code:

string [] firstnames = { "Scott", "Steve", "Ken", "Joe", "John",
"Alex", "Chuck", "Sarah"};

11

Part I: Introduction to Project LINQ

IEnumerable<string> val = from fn in firstnames
where fn.StartsWith("s")
select fn;

foreach (string name in val)
{

listboxl.Items.Add (name) ;
}

Press F5 to run the app. When the form loads and is displayed, the list box should be populated with the
names of Scott, Steve, and Sarah. Now try changing the where clause, change the capital S to a lowercase
s and rerun the app. Do you get results? Why not? If you haven’t figured out why, Chapter 3, “LINQ
queries,” will explain it.

Chapters 3 and 4 go deeper into LINQ and the standard query operators, so don’t worry about under-
standing everything there is to know about LINQ just yet. This section was simply to whet your appetite.
The following sections discuss LINQ to XML, which uses LINQ to query XML data, and LINQ to SQL,
which uses LINQ to query relational data.

LINQ to XML Overview

12

LINQ to XML, or XLINQ, is the XML integration of the Language Integrated Query. LINQ to XML
utilizes the standard query operators to provide the ability to query XML data. Also at your disposal are
operators that provide functionality akin to XPath, letting you navigate up and down and navigate XML
tree nodes such as descendants and siblings seamlessly and efficiently.

If you have ever used, and disliked, the DOM, you will love LINQ to XML. The great thing about LINQ
to XML is that it provides a small-footprint, in-memory version of the XML document that you are
querying. LINQ to XML utilizes the XML features of the System.Xml namespace, specifically the reader
and writer functionality exposed by the System.xml namespace.

LINQ to XML exposes two classes that help LINQ integrate with XML: XxElement and XAttribute. The
XElement class represents an XML element and is used in LINQ to XML to create XML element nodes or
even to filter out the data you really care about. xElement ties itself to the standard query operators by
enabling you to write queries against non-XML sources and even persist that data to other sources.

The xAttribute class is a name/value pair associated with an XML element. Each XElement contains a
list of attributes for that element, and the xAttribute class represents an XML attribute. Within LINQ,
both the xElement and XAttribute types support standard syntax construction, meaning that developers
can construct XML and XML expressions using the syntax that they already know.

The following example uses the XElement to construct a simple XML document. The first XElement
defines the outer node while the two inner XxElement parameters define the two inner nodes of FirstName
and LastName.

var x = new XElement ("Employee",
new XElement ("FirstName", "Scott"),
new XElement ("LastName", "Klein"));

var s - x.ToString();

Chapter 1: Project LINQ

Here are the results of this code:

<Employee>
<FirstName>Scott</FirstName>
<LastName>Klein</LastName>
</Employee>

You'll notice the use of var in the previous example. The var keyword tells the compiler to infer the type
of the variable from the expression on the right side of the statement. The var keyword will be discussed
in detail in Chapter 2, ““A Look at Visual Studio 2008”.

Also notice in the previous example how much easier the code is to read. The code actually follows the
structure of an XML document, so you can see what the resulting XML document will look like.

The next example uses the xattribute type to add an attribute to the XML:

var x = new XElement ("Employee",
new XAttribute ("EmployeeID", "15"),
new XElement ("FirstName", "Scott"),
new XElement ("LastName", "Klein"));

var s - x.ToString();

And here are the results from it:

<Employee Employee="15">
<FirstName>Scott</FirstName>
<LastName>Klein</LastName>
</Employee>

While the capability to easily define the contents of the XML is cool, the real power comes from the
ability to pass an argument that is not user-defined but in reality comes from an outside source, such as
a query, which can be enumerated and turned into XML via the standard query operators. For example,
the following takes the array of names from the first example and uses that as the source of the query for
which to construct XML:

string [] firstnames = { "Scott", "Steve", "Ken", "Joe", "John",
"Alex", "Chuck", "Sarah"};

var r = new XElement ("Friends",

from fn in firstnames

where fn.Startswith("sS")

select new XElement ("Name", fn))
textboxl.Text = rToString();

Here are the results from this code:

<Friends>
<Name>Scott</Name>
<Name>Steve</Name>
<Name>Sarah</Name>

</Friends>

13

Part I: Introduction to Project LINQ

This isn’t to say that I only have friends whose first names begin with the letter S, but you get the idea.
This query returns a sequence of XElements containing the names of those whose first name begins with
the letter S. The data comes not from a self-generated XML document but an outside source, in this
case the array of first names. However, the data could just as easily come from a relational database or
even another XML document.

What XElement enables you to do is query non-XML sources and produce XML results via the utilization
of the XElements in the body of the select clause, as shown earlier. Gnarly.

The object of these simple examples is to illustrate the basic concepts of LINQ to XML and the great
power, flexibility, and ease with which XML can be manipulated. Note that the same standard query
operators were used to generate the XML document in this example as in the first one. Nothing had to
be changed in the query really, other than using the types to help integrate LINQ with XML to build the
resulting XML. Yet the query operators remained the same, as did the overall syntax of the query expres-
sion. This way is much better than trying to figure out XQuery or XPath, working

with the DOM or even XSLT. Chapters 10 through 13 cover LINQ to XML in much

greater detail.

LINQ to SQL Overview

14

LINQ to SQL, or DLINQ), is another component in the LINQ technology ““utility belt.” It provides a
mechanism for managing relational data via a run-time infrastructure. The great thing about this is that
LINQ still keeps its strong points, such as the ability to query. This is accomplished by translating the
Language Integrated Query into SQL syntax for execution on the database server. Once the query has
been executed, the tabular results are handed back to the client in the form of objects that you as a
developer have defined.

If you have been following the LINQ talk, you already know that LINQ to SQL is the next version of
ADO.NET. This is great news, and by the time you are done with this section and the section on LINQ
to SQL later in the book, you will surely know why. LINQ takes advantage of the information produced
by the SQL schema and integrates this information directly into the CLR (Common Language Runtime)
metadata. Because of this integration, the definitions of the SQL tables and views are compiled into CLR
types, making them directly accessible from within your programming language.

For example, the following defines a simple schema based on the Person.Contact table from the
AdventureWorks database:

[Table (Name="Person.Contact")]

public class Contact

{
[Column (DBType = "nvarchar (50) not null")]
public string FirstName;
[Column (DBType = "nvarchar (50) not null")]
public string LastName;

[Column (DBType = "nvarchar (50) not null")]
public string EmailAddress;

Chapter 1: Project LINQ

Once this schema is defined, a query can be issued. This is where LINQ comes in. Using the standard
query operators, LINQ translates the query from its original query expression form into a SQL query for
execution on the server:

private void button5_Click(object sender, EventArgs e)
{
DataContext context = new DataContext ("Initial
Catalog=AdventureWorks; Integrated
Security=sspi");

Table<Contact> contact = context.GetTable<Contact> () ;

var query =
from ¢ in contact
select new { c.FirstName, c.LastName, c.EmailAddress} ;

foreach (var item in query)
listBoxl.Items.Add(item.FirstName + " " + item.LastName + " " +
item.EmailAddress) ;

Following are partial results from the query:

gustavo Achong gustavoO@adventure-works.com
catherineO@adventure-works.com
kim2@adventure-works.com
humbertoO@adventure-works.com
pilarl@adventure-works.com
francesO@adventure-works.com
margaret0@adventure-works.com
carlalO@adventure-works.com
jayl@adventure-works.com

Obviously there is much more to LINQ to SQL, but the examples here illustrate what it can do and the
basic features and fundamental concepts of LINQ to SQL.

If you were to query this table via SQL Query Analyzer or SQL Server Management Studio, you’d know
that the Person. Contact table in the AdventureWorks database is 28 rows shy of 20,000, so the preceding
list is only the first nine, but you get the idea. How would you filter this query to return only a specific
few rows?

Typically I like to wait until the third or fourth chapter to start handing out “homework assignments,”
but with the background presented in this chapter you should be able to figure this out quite easily. The
Person.Contact table has some additional columns that you can use to filter the results. For example, it
has a column named Title, which contains values such as “Mr.”” and ““Ms.”” It also has a column named
EmailPromotion, an int datatype with values of 0 through 2.

Your exercise for this chapter is to filter the query on either the Title column or the EmailPromotion
column, using a standard query operator, so that the results returned are much less that 20,000. FYT if
you are going to use the Title column: some of values of the column are null, so don’t query where
Title is null

15

Part I: Introduction to Project LINQ

The goal of LINQ to SQL and its related tools is to drastically reduce the work of the database developer.
Chapters 9-13 will discuss LINQ to SQL in much more depth.

Summary

16

This chapter introduced you to the LINQ project, a set of NET Framework extensions that extend the
C# and Visual Basic .NET programming languages with a native query language syntax that provides
standard query, set and manipulation operations.

This chapter began by discussing LINQ and the set of standard query operators that is a combination
of SQL query capabilities with the power and flexibility of data manipulation. From there, the

topics of LINQ to XML and LINQ to SQL were discussed, which take the power and flexibility of LINQ
and apply it to the querying of relational data and XML documents using the same syntax provided
by LINQ.

With this foundation, the next chapter will take a look at the next release of Visual Studio by looking at
the specific features LINQ supports for Visual Basic 9.0 and C#.

|

A Look at Visual
Studio 2008

Many of the new language features and enhancements in Visual Studio 2008—both in Visual C# and
Visual Basic NET—make many of the LINQ features possible and enable you to take advantage of
some of the LINQ capabilities.

Included with the new Visual Studio release are a number of designers that can help developers
visually create many aspects of their SQL entity classes and associations. For example, the Object
Relational Designer (O/R Designer) provides a visual interface for creating and designing LINQ
to SQL entity classes and associations of database objects. The O/R Designer is discussed

in Chapter 15, “Advanced LINQ to SQL topics.”

Visual Studio 2008 also comes with the DataSet Designer, a visual tool used for creating and
manipulating typed DataSets and the associated items of which the datasets are made, providing
a visual image of the objects within the DataSets.

LINQ will be released in the next version of Visual Studio and the .NET Framework, currently
slated for version 3.5. Because much of the LINQ functionality is based on the new features of the
.NET Framework, this chapter explores those features and enhancements that help support LINQ
and provide LINQ with the foundation it needs from a language perspective. It looks at the new
language-specific features in both C# and Visual Basic .NET.

Visual Studio 2008

Visual Studio has come a long way since its inception in 1997. Visual Studio 97 hit the street with
the goals of enabling developers to share and see large projects through a complete development
cycle regardless of the different languages and deployment schemes.

That was followed up by Visual Studio 6.0 with its integrated development environment and
built-in data designers for architecting large-scale and multi-tier applications, with the goals of
supporting distributed and heterogeneous environments and architectures.

Part I: Introduction to Project LINQ

18

Early 2002 saw the launch of the NET Framework 1.0 and Visual Studio .NET, built on the foundation
of XML. Visual Studio .NET was a breath of fresh air with its tool integration, multiple languages, and
handful of services and tools all housed within a single development environment, all for the purpose
of building and delivering reliable, secure applications in distributed environments. One of the goals
with this release was to enable integration with legacy applications so that developers could embrace
new tasks while continuing to work and support old projects. With its emphasis on XML, Visual Studio
.NET focused extremely hard on gathering and massaging data from a variety of sources independent of
the platform.

Within 12 short months developers saw the release of Visual Studio .NET 2003 and the .NET Framework
1.1. This release included support for more data sources and new Internet protocols and an improved
framework for architecting and delivering mission-critical systems. New and improved features
supporting a myriad of access devices were also included to help solidify a “one-stop-shop”” environment
for building large-scale applications.

Microsoft then went to work on the next version of Visual Studio, which was released to the public in
the fall of 2005. This release included the .NET Framework 2.0, which, together with Visual Studio 2005,
focused on developer productivity and flexibility by including tools and mechanisms for building web,
Windows, mobile, and Office applications faster and more efficiently than before.

Late in 2006 the .NET Framework 3.0 was released, which boasted a new managed code programming
model for Windows. The .NET Framework 3.0 combined the strength of the .NET Framework 2.0 with
four new technologies:

O WPF (Windows Presentation Foundation)—New technology for building rich content,
“Windows Vista”’—type user interfaces, and experiences combining application Ul and
media content.

0 WCF (Windows Communication Foundation)—New technology for building and
deploying reliable, secure, and interoperable connected systems across distributed systems
and environments.

0 WF (Windows Workflow Foundation)—A programming engine for building
workflow-enabled applications.

O WCS (Windows CardSpace)—Microsoft’s technology for managing digital identities.

Today, Visual Studio 2008 focuses on providing developers with a rich experience for Windows Vista, the
web, and Office 2008, while continuing to improve its development languages and innovations. Visual
Studio 2008 contains a number of new features, including C# and Visual Basic .NET language features,
improved data features such as multi-tier support for typed datasets and hierarchical update capabilities,
and a web application project model.

However, the most exciting new feature of Visual Studio 2008 (in my opinion) is LINQ, Microsoft’s
new Language Integrated Query, which extends powerful query capabilities into your favorite .NET
programming language.

When you first start Visual Studio 2008 (see Figure 2-1), it looks much like the previous versions of
Visual Studio.

On the surface, this might not be very impressive, but did previous versions of Visual Studio let you pick
which version of the NET Framework you wanted to create your projects with? No!

Chapter 2: A Look at Visual Studio 2008

[=tmo-m

| MSDH: Visu

How Available: The March Visual Studio Community Proview ..
b, U2 Mar 004 2102ss GMT - The March CIF 12 novw avadeible for
downicad ag & reguiar Instal and &z & virtual PC, & video thet serves as
&n Introduction to the CTP s also avalable,

Curstonm Heratm s

Wed, 17 Jan 2007 00:46:51 GMT - Learn from top seling author Dil
Wignes how to create buiding blocks for your program using custom
Eczabors and the vickd stabement.

ASKHED Uata Tutorial 11: Custom Formatting Baeed Upon Data...
Frl, 23 Fet 2007 D000 53 GMT - Adjusting the Tormat of Gridview,

TARALE R 0 CF A
Crooke Your First Application
Uz o Stordor Ki

Howr Dol .. 2

L rann Wisal X

ot Wilh the Conmmnity
Downlosd Addtional Content

. ur Furniview besed upon data buad b i v be
smxampibecheerd in mulipde wenys Thiss lubveeal knks: sl ba o sccompls
s twnanud frmlliog throngh She s of DelaFod
RovwDiatallnund mvent handlers.

Andera Heil on LING and F il r

s, 2 Jan 2007 21:U8SE GMI - Anders Heflsherg, the chist archtact
of ¥, digcugeas th impact of upcomng changes 1o the NEl plattorm,
LING and Deferred Execution

Tase, ¥0.dnn FT 37 7014 GMT - I this viden Wies Dyer, & developer on
the C# compiler feam, provides an insider's view of LING queriss.
Register for Microsoft ASPHET, Visual Studio & HET 3.0 Conn...
T, 25 Jan 2UUS TE1ESE GMI - Join us 10r thes pramier event tiled
Wit o diys of IN depti training, exciting keynotes and cool networking

\ parties at the Marriol Oriando Workd Center In Orlando, FL.

Figure 2-1

When you create a project in the new Visual Studio, you will notice something different in the New

Project dialog box (see Figure 2-2), the addition of a ““version”” button in the top right.

New Project

Figure 2-2

Wigual Studio ingtalled templates

o S el
WIF Application QL WIPF Browser Application
W cuveule Apation [Enpy Projent
[Bvindows Serace am Custom Contenl | ibeary

G MRF User Control Library (EWindows Forms Control Librsry
(ARepuLs Appication

Ky Iemplates

hsearch Unine | mpiates

19

Part I: Introduction to Project LINQ

This button displays a small context menu that lets you select which version of the .NET Framework you
want to create your projects with, as shown in Figure 2-3. How cool is that! As you know, it is possible
to have multiple versions of the NET Framework on your computer, and because different functionality
is provided within Visual Studio per the version of the .NET Framework, Microsoft decided it would be
extremely helpful to provide a single environment with which to create your applications.

MET Frameweark 3.5

MET Frameswark 2.0

MET Framewwark 3.0
B MET Framewark 5.5
Figure 2-3

Visual Studio 2008 targets .NET 2.0 and later, which means that you won’t have to open an instance
of Visual Studio 2005 to work with Visual Studio 2005 projects and another instance of Visual Studio
2008 to work with Visual Studio 2008 projects. You can use Visual Studio 2008 to work with both.

To work with .NET 1.1 applications, you will still need to use Visual Studio 2003, since it was targeted
for version 1.1 of the .NET Framework.

What is really nice about Visual Studio 2008 is that the appropriate templates change based on the version

of the NET Framework you select. Figure 2-4 shows the templates listed when the .NET Framework 2.0
is selected.

New Project

MLT Mramevork 2.0

Vigual Studio inztalled templates
Eclan Library
Conzole Application (S Empty Project
A Widers Service EAwiwduers Furmis Control Library

My Templates

E5earch Online Tamplates

Figure 2-4

As a help, the New Project dialog shows the project description and .NET Framework version directly
above the project name box and the list of Project types and Templates. For example, Figure 2-4 lists
templates for the .NET Framework 2.0 and lets you know that the Windows Forms Control Library

20

Chapter 2: A Look at Visual Studio 2008

for the .NET Framework 2.0 is selected. Compare that to Figure 2-2, which shows the Windows Forms
Application project template selected for the .NET Framework 3.5. Very helpful.

This chapter won’t discuss installing Visual Studio, but if you would like to download it and go through
the installation yourself, the latest Community Technology Preview (CTP) build can be found at the
following location:

http://msdn2.microsoft.com/en-us/vstudio/aa700831.aspx

Now let’s take a look at the new language specific features found in Visual Studio 2008.

Language-Specific LINQ Features

As stated previously, Visual Studio 2008 supports the Language Integrated Query, which is the
capability for C# and Visual Basic .NET to support query syntax and supported constructs directly in
the programming language. There are many benefits to this, including compile-time checking,
elimination of syntax errors, and type safety.

The new language constructs found in both the C# and Visual Basic .NET languages make a lot of the
LINQ functionality possible. Therefore, before this book really digs into the LINQ query language and
standard query operators, the rest of this chapter discusses these new language features to better help
you understand LINQ.

Query Expressions

Query expressions are the heart and soul of the LINQ technology. They are what describe the operations
on the data source. Chapter 3, “LINQ Queries,” tackles LINQ query expressions in great detail, so this
section provides an overview of query expressions so that you can understand the full breadth in the
next chapter.

Query expressions are the code that you write, using the standard query operators, to access, sort, and
filter data, regardless of where the data comes from. They are written using a declarative query syntax,
which was introduced in C# 3.0.

The data can come from an in-memory source, a relational database, or XML, as you saw in the examples
in Chapter 1, “Project LINQ.” If you've worked with SQL syntax, query expressions should look familiar
to you simply because declarative syntax looks very reminiscent of SQL syntax.

From the example in Chapter 1, look at the following highlighted query expression:

DataContext context =
new DataContext ("Initial Catalog=AdventureWorks;Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact> () ;
var query =

from ¢ in contact
select new { c.FirstName, c.LastName, c.EmailAddress} ;

21

Part I: Introduction to Project LINQ

Query expressions must follow a specific format for specific reasons. Those reasons are explained in
detail in Chapter 3; for now, suffice it to say that a query expression must begin with a from clause and
end with either a select clause or a groupby clause.

C#

In C#, a query expression is written as follows:

IEnumerable<string> val = from fn in firstnames
where fn.Startswith("S")
select fn;

In this example, the query expression starts with the from clause informing the query expression where
to retrieve its data. It includes a filter expression (the where clause), and ends with a select clause, which
projects (selects) the data gathered in the from clause.

Visual Basic
The following shows the previous example in Visual Basic .NET syntax:
Dim val As IEnumerable(Of String) = From fn in firstname _

Where fn.StartsWith("s") _
Select fn

Implicitly Typed Variables

Finally! Where has this been, I have to ask! Until now, you have had to explicitly specify a type when
declaring and initializing a variable. No more. Now you can infer the type assignment by simply using
the var keyword, as shown in the following examples.

C#

In C#, variables are implicitly typed as follows:

var firstname = "Scott";
var age = 28; //I wish!
var startdate = DateTime.Today;

So, why is this important, you ask? Because any variables declared as var are equally strongly typed as
their explicitly declared counterparts. And, even more importantly, this includes LINQ query
expressions. Stay tuned.

Visual Basic

Visual Basic also lets you implicitly type variables, but it does this by inferring the type of the variable
from the type of the initialization expression. This is called type inference, which lets Visual Basic 2008
determine the data type of variables that are declared without the As clause.

The following shows the previous example in Visual Basic .NET syntax:
Dim firstname = "Scott"

Dim age = 28
Dim startdate = DateTime.Today

22

Chapter 2: A Look at Visual Studio 2008

Anonymous Types

Anonymous types, class types made up of one or more public properties, provide a handy way to
temporarily group sets in a query result, eliminating the need to create a named type for each set. Anony-
mous types are built as you go, built by the compiler with the typed name available only to the compiler.

In LINQ, anonymous types come in handy in the select clause of a query expression, returning a subset
of properties from each element in the query sequence. They are created via the new operator with an
object initializer.

C#

This query expression uses the new operator along with an object initializer to initialize a new type
containing only three properties (FirstName, LastName, and EmailAddress) from the Contact object.

from ¢ in Contact
select new { c.FirstName, c.LastName, c.EmailAddress};

Anonymous types derive directly from the Object class as reference types. A compiler assigns the
anonymous type a name, and it is not available at the source code level. Anonymous types are no
different from any other type as far as the CLR (Common Language Runtime) is concerned.

This might seem a little confusing, but it will all be cleared up when LINQ and query expressions are
discussed in detail in Chapter 3.

Visual Basic

Anonymous types, new to Visual Basic for 2008, let you create objects without needing to write a class
definition for the data type. In Visual Basic 2008, the compiler generates the class for you. A LINQ query
expression uses anonymous types to join or combine columns from a query.

The great thing about anonymous types is that they let you write queries that return any number of
columns in any order. The compiler has the responsibility of creating the data types that correspond to
the specified properties (columns).

Here’s the previous anonymous type example in Visual Basic .NET syntax:

From ¢ In contact Select c.FirstName, c.LastName, c.EmailAddress

Initializers for Objects and Collections

Initializers for objects and collections provide the capability to initialize objects and collections without
the need to explicitly call a constructor. You can use initializers to assign values to an object’s properties
and fields when the object is created without needing to invoke a constructor first.

Object initializers can be utilized in various forms, including with anonymous types, named types, and
nullable types. Here is where LINQ comes into play because LINQ utilizes anonymous types greatly
for the simple reason that anonymous types can only be initialized with an object initializer. Why does
this come in handy? Because query expressions can manipulate objects of a sequence into an object of a
different shape and value.

23

Part I: Introduction to Project LINQ

C#

The following example, taken from Chapter 1, defines a simple schema based on the Person.Contact

table, consisting of five fields, from the AdventureWorks database.

[Table (Name="Person.Contact")]

public class Contact

{
[Column (DBType = "nvarchar (8) not null")]
public string Title;

[Column (DBType = "nvarchar (50) not null")]
public string FirstName;

[Column (DBType = "nvarchar (50) not null")]
public string MiddleName;

[Column (DBType = "nvarchar (50) not null")]
public string LastName;

[Column (DBType = "nvarchar (50) not null")]
public string EmailAddress;

With the schema defined, a query can be issued.

private void buttonl_Click(object sender, EventArgs e)

{

DataContext context = new DataContext ("Initial Catalog=AdventureWorks;Integrated

Security=sspi");
Table<Contact> contact = context.GetTable<Contact> () ;

var query =
from ¢ in contact
select new { c.FirstName, c.LastName, c.EmailAddress} ;

foreach (var item in query)
listBoxl.Items.Add(item.FirstName + " " + item.LastName + " " +
item.EmailAddress) ;

What you want to notice is that although the object (c) contains five fields, the sequence being returned
contains only three fields: FirstName, LastName, and EmailAddress. That is the strength of anonymous

types, in that you can return a portion of the information in the object.

You can also rename a field in the sequence when using anonymous types. Here’s how:
var query =

from ¢ in contact
select new { c.FirstName, c.LastName, Email = c.EmailAddress} ;

24

Chapter 2: A Look at Visual Studio 2008

foreach (var item in query)
listBoxl.Items.Add(item.FirstName + " " + item.LastName + " " +

item.Email) ;

Chapter 3 discusses this in more detail.

Visual Basic

Object initializers in Visual Basic work the same way as C# initializers. They provide the ability to
specify properties for a complex object by using a single expression, and create instances of named
and anonymous types.

The following shows the previous anonymous type example in Visual Basic .NET syntax:

<Table (Name:="Person.Contact")> _
Public Class Contact

<Column (DbType:="nvarchar (8) not null")> _
Public Title As String

<Column (DbType:="nvarchar (50) not null")>
Public FirstName As String

<Column (DbType:="nvarchar (50) not null")>
Public MiddleName As String

<Column (DbType:="nvarchar (50) not null")>
Public LastName As String

<Column (DbType:="nvarchar (50) not null")>
Public EmailAddress As String

End Class

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Button2.Click

Dim context As DataContext = New DataContext ("Initial
Catalog=AdventureWorks; Integrated Security=sspi")

Dim contact As Table(Of Contact) = context.GetTable (0Of Contact) ()

Dim query = From ¢ In contact Select c.FirstName, c.LastName, Email =
c.EmailAddress

For Each item In query
ListBoxl.Items.Add(item.FirstName & " " & item.LastName & " " & item.Email)

Next item

End Sub

25

Part I: Introduction to Project LINQ

You need to pay close attention to object initializers of named and anonymous types. Their declarations
look nearly the same, but they are indeed different and they have different effects. For example, the
following illustrates how to initialize a named instance:

Dim cont = new Contact with {.FirstName = "Scott"}

However, the initializer for an anonymous type cannot include a class name because it has no usable
name, as illustrated here:

Dim cont = New With {.FirstName = "Scott"}

These two declarations do not produce the same result. The first example has a Contact class that
contains a FirstName property that must already exist, and the declaration takes the step of creating
an instance of the Contact class. In the anonymous example, the compiler defines a new class containing
a string property called FirstName.

Extension Methods

Extension methods are new to C# 3.0. They provide the capability to extend existing types by adding
new methods with no modifications necessary to the type. Calling methods from objects of the extended
type within an application using instance method syntax is known as “extending’” methods. Extension
methods are not instance members on the type.

The key point to remember is that extension methods, defined as static methods, are in scope only when
the namespace is explicitly imported into your application source code via the using directive. Even
though extension methods are defined as static methods, they are still called using instance syntax.

LINQ contains the most common extension methods, more appropriately known as the standard query
operators. The standard query operators extend the IEnumerable<T> and IQueryable<T> types.

Extension methods are invoked in your code by using instance method syntax. The intermediate
language (IL) generated by the compiler then translates your code into a call on the static method.

C#

26

To illustrate extension methods, open Visual Studio 2008 and create a new C# Windows project. On
Form1, which is shown by default, place a button and a text box. View the code behind the form and add
the following to the end of the existing form code:

namespace MyExtensionMethods
{
public static class MyExtensions
{
public static int GetWordCount (this System.String mystring)
{
return mystring.Split(null) .Length;
}

Chapter 2: A Look at Visual Studio 2008

This code creates an extension method on the System. String class. The code is useless by itself because,
like other classes, it is not in scope. So, add the following directive to the top of the form:

using MyExtensionMethods;

Now you can access the extension method you created earlier. Add the following code to the button’s
Click() event:

string sentence = "This is an example of an extension method in .NET";
int wordcount = sentence.GetWordCount () ;
textboxl.text = wordcount.ToString() ;

Run the project and click the button. The text box shows the value 10.

Let’s expand this a little. In every application I've worked on, there’s been a need to validate email
addresses. Here’s how to do that easily with extension methods. Modify the extension method code by
adding the following highlighted code:

namespace MyExtensionMethods

{

public static class MyExtensions

{
public static int GetWordCount (this System.String mystring)

{
return mystring.Split(null).Length;

}

public static bool IsValidEmail (this string email)

{
Regex exp = new Regex (@"~[\w-\.1+@([\w-1+\.)+[\w-1{2,4}$");
return exp.IsMatch(email) ;

Next, replace the code behind the button with the following;:

DataContext context =
new DataContext ("Initial Catalog=AdventureWorks;Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact> () ;

var query =
from ¢ in contact
select new { c.EmailAddress} ;

foreach (var item in query)
if (item.EmailAddress.IsValidEmail())

{
listboxl.Items.Add(item.EmailAddress) ;

27

Part I: Introduction to Project LINQ

Just like the first example, this one simply adds a method onto the string class that validates email
addresses. Very slick.

Visual Basic

Extension methods are new to Visual Basic 2008. C# has had them for a while, and fortunately Visual
Basic .NET gets them this release. In Visual Basic .NET, extension methods are accessed via the
System.Runtime.CompilerServices namespace, so be sure to include the appropriate Imports state-
ment. Extension methods can be a Sub or a Function and must be tagged with the <Extension()>
attribute.

The following shows the extension method from the previous example in Visual Basic .NET syntax:

Namespace MyExtensionMethods
Public Class MyExtensions
<Extension()>
Public Shared Function WordCount (Me ByVal str As System.String) As Integer
Return str.Split (Nothing) .Length
End Function

<Extension()>_
Public Shared Function IsValidEmail (Me ByVal email As String) As Boolean
Dim exp As Regex = New Regex ("~ [\w-\.]+@([\w-]+\.)+[\w-1{2,4}$")
Return exp.IsMatch(email)
End Function
End Class
End Namespace

Best Practices

Try to implement extension methods only when absolutely necessary and even then, very judiciously.
Your best bet is to create a new type that is derived from an existing type. The reason to avoid creating
extension methods is that you might run into the scenario where the implementation of the type will
cause your extension method to break. That’s not good.

If you must implement extension methods, keep in mind the following:

Q If you define an extension method with the same signature as an existing method defined in the
type, your extension method will never be called.

0 Extension methods are brought into scope at the namespace level.

Lambda Expressions

Lambda expressions and anonymous methods are similar, except for the fact that lambda expressions are
much more flexible and provide a more succinct syntax than anonymous methods.

In LINQ, you run into lambda expressions when making a direct query call to the standard query
operators. Lambda expressions can be used in LINQ to create the delegates that will be invoked when

28

Chapter 2: A Look at Visual Studio 2008

the query is executed later. When writing LINQ queries and calling standard query operators directly,
you only need to use method syntax to write lambda expressions.

Lambda expressions use what is called the lambda operator, which is =>. This operator means “goes to,”
and signifies that the left side of the lambda operator specifies any input parameters while the right side
contains the expression or statement block.

Here’s a simple C# example of a lambda expression:
y =>y * 2

This reads as ““y goes to y times 2.” The body of a lambda expression can consist of any number of
statements, but typically you want to keep it to two or three, mainly for readability and to keep it from
becoming overly complex. It is also often unnecessary to specify a type for input parameters because
the compiler will infer the type based on several factors, such as the body of the lambda expression and
the underlying delegate type.

To work with lambda expressions, it is best to follow these general rules:
Q If the lambda expression returns a value, the return value must be implicitly convertible to the
return type of the delegate.
0O Lambda expressions must contain the same number of parameters as the delegate type.
Q Eachinput parameter must be implicitly convertible to the corresponding delegate parameter.

So, given that background, how do lambda expressions work with LINQ? With lambda expressions,
a LINQ query can be written as follows:

var prodQuery = context.Products.Single(p => p.ProductID == productID);

The query also could be written as follows:

var proQuery =
from con in Contacts
where con.ProductID == productID
select con;

Both of these queries return the same output, but lambda expressions enable you to write the query as an
inline expression using method syntax as shown in the first query. In a method-based query, the where
clause is now expressed as an instance method of the specified object, which in the previous example is
the Products object.

This example also uses the Single standard query operator to return a single element of the sequence.
The p on the left side of the operator is the input variable that corresponds to the p in the

query expression.

The return value of a lambda expression is simply the expression result.

29

Part I: Introduction to Project LINQ

Summary

30

This chapter introduced you to the interface for the new Visual Studio and explored the new features and
enhancements that help provide LINQ with the foundation it needs from a language perspective.

The new features and functionality included in version 3.5 of the NET Framework—including query
expressions, implicitly typed variables, anonymous types, and object initializers—play an important role
for LINQ.

Chapter 3 discusses LINQ and the LINQ queries in great detail.

-

LINQ Queries

Chapter 1, “Project LINQ,” provided a few simple LINQ queries to give you a basic idea of how
LINQ queries are formatted and work with relational data, XML, and in-memory data, but to fully
grasp the power and flexibility of LINQ requires a real understanding of how LINQ queries work.

Therefore, this chapter and the next dive deep into LINQ queries and the standard query operators.
This chapter focuses on the LINQ queries, their overall concepts and syntax, as well as the many
options available to you as a developer when creating LINQ queries. Chapter 4, “LINQ Standard
Query Operators,” tackles the available standard query operators.

LINQ queries are discussed first because a knowledge of the standard query operators really
wouldn’t be beneficial if you didn’t know how to use them effectively in a LINQ query. Given
that, this chapter tackles the following;:

QO Anintroduction to LINQ queries
QO Query concepts
0 Query syntax options

Introduction to LINQ Queries

Hopefully, you know what a query is, and have written either a T-SQL query directly in SQL Server,
whether it be in a query window in SSMS (SQL Server Management Studio) or a stored procedure,
or an “in-line” T-SQL within the code of your application. A query retrieves data, plain and simple.
It is a written expression that obtains data from a predetermined data source. The data source could
be almost anything, such as a relational database or an XML document.

The problem is that there are many sources of data, and there are just as many query languages to
query those data sources. To query a relational database, the SQL query language is required,

but if you want to query an XML document, you need to learn the XQuery query language or XPath
as well. Wouldn't it be nice to someday have in your possession a single query language with a set
of standard query operators that allows for the querying of multiple data sources?

Part I: Introduction to Project LINQ

Oh, wait; that day is already here because this is exactly what LINQ is and does. The difference between
LINQ and other query languages is in the query actions of a LINQ query operation. With LINQ you
work directly with technologies with which you're already familiar (such as objects), and regardless of
where the data is coming from, the coding patterns used to create and execute the query remain the same.
This consistency is where much of the beauty of LINQ lies. The same standard query operators are used
to query and transform data from multiple sources such as XML, relational data, collections, and even
DataSets and entities.

The following sections explain the parts of a LINQ query and show you how they are put together and
executed. A LINQ query operation contains three distinct and separate actions:

0O Acquiring the data source
Q The creation of the query
0 The execution of the query

Each of these actions is essential to the creation and execution of a LINQ query.

Data Source Acquisition

32

The data source identifies where the data is coming from in the query. A query is absolutely useless
without a data source. What is the use of selecting data if there is no data to select?

The great thing about LINQ is that it doesn’t care what the source of data for the query is. The key to
being a data source for a LINQ query is that it must support the IEnumerable interface. The following
example, taken from the first chapter, shows a string array of names that can be utilized as a data source:

string [] firstnames = { "Scott", "Steve", "Ken", "Joe", "John",
"Alex", "Chuck", "Sarah"};

Your source of data can also come in the form of XML, and if it is not already in memory as a queryable
form type, it can become so by being loaded into a queryable XElement type, like this:

XElement names = XElement.Load(@"c:\employees.xml");

LINQ to XML provides this functionality and, as you have seen previously, lets you query and manipu-
late XML with ease. You can also build your own XML to manipulate, as shown in the example below,
or even write back to the data source.

var x = new XElement ("Employee", new XElement ("FirstName", "Scott"),
new XElement ("LastName", "Klein"));

If the data source is relational data, LINQ to SQL provides a flexible mechanism to create a relational
mapping between it and your query objects. As shown in Chapter 1, an object-relational mapping must
first be created, against which your queries are written, but then LINQ to SQL handles all the database
communication. Here’s the object-relational mapping taken from the example in Chapter 1 to map the
Contact. Person table to the application object:

[Table (Name="Person.Contact")]
public class Contact
{
[Column (DBType = "nvarchar (50) not null")]

Chapter 3: LINQ Queries

public string FirstName;

[Column (DBType = "nvarchar(50) not null")]
public string LastName;

[Column (DBType = "nvarchar (50) not null")
public string EmailAddress;

Query Creation

Once your data source is defined, the next step is to define the query that specifies the data or information
you want to retrieve from the data source. You can also specify how the data should be shaped when it
is returned, such as sorted or grouped. The capability to query and shape the data is provided through
the new query syntax that is built directly into both C# and Visual Basic.

The standard query operators are a set of methods that form the LINQ (Language Integrated Query)
pattern. These operators have dedicated syntax in both C# and Visual Basic that allow them to be called
as part of a query expression, a more readable form of writing or expressing a query. The standard query
operators, discussed in detail in Chapter 4, provide extensive querying capabilities, which include the
ability to sort, group, aggregate, and filter query results.

In LINQ, the query is stored in a variable. If the query returns data, then the query must be a queryable
type. Keep in mind that the query variable on its own does not execute the query, does not contain
any data, and does not take any other sort of action. It is simply a placeholder for the query, or more
accurately put, is an IEnumerable object that, when enumerated, executes the query.

The following query, which implements the IEnumerable interface, defines a variable called val contain-
ing a query that selects all first names that begin with the letter S. The data source for this query is the
string array mentioned in the previous section.

IEnumerable<string> val = from fn in firstnames
where fn.StartsWith("sS")
select fn;

The query has not been executed at this point, nor does the variable val contain any data; it contains only
the query syntax. Here’s another example, taken from the LINQ to SQL example from Chapter 1:

var query =

from ¢ in contact
select new { c.FirstName, c.LastName, c.EmailAddress} ;

Again, the query has not been executed, nor does the variable var contain any data.

The importance of the query creation action is to define the query expression and shape the data as you
would like it returned.

Query Execution

The last action of the LINQ query operations is query execution. Even though the query expression is
defined and stored in a query variable when the query is created, the execution of the query does not

33

Part I: Introduction to Project LINQ

34

typically take place until iteration over the query variable begins. I'll explain “typically”” momentarily,
but I first want to discuss how a query is executed. As the query is iterated through, only the work
necessary to bring back the current result is done. In other words, the entire query is not returned. Each
iteration of the query returns the next item in the result.

It has been said previously that neither the query expression itself nor the variable contains query results.
That is because the query is executed as you iterate through the variable. Here’s the string array
example from Chapter 1:

string [] firstnames = { "Scott", "Steve", "Ken", "Joe", "John",
"Alex", "Chuck", "Sarah"};
IEnumerable<string> val = from fn in firstnames

where fn.Startswith("s")
select fn;

foreach (string name in val)

{

Console.WriteLine (name) ;

}

The first “action” defines the data source. The second ““action” defines the query and assigns it to a
variable. The last ““action,” the foreach loop (For Each in Visual Basic), executes the query by iterating
over the variable val in the foreach loop.

How does this work? Take a look at the foreach loop:

Foreach (string name in val)
Console.WriteLine (name) ;

The first time the foreach statement is executed, the first call to the MoveNext () method causes
three things:

1. The queryis translated to SQL.
2. The query is executed.
3. Thefirst row is fetched from the underlying DataReader.

For each iteration thereafter, the MoveNext () method is called, grabbing the next row from the underlying
DataReader, hydrating (queuing) the next object.

The best way to understand this is to see it in action. Take a look at Figure 3-1, which shows the preceding
example during code execution. I have stopped the execution of the code on the foreach statement on
the first iteration.

What you want to look at is the Watch window below the code where I have the query variable being
watched. Notice the value of the name-value pair named Results View. It states, “Expanding the Results
View will enumerate the IEnumerable.” This tells you that the query has not been executed, that even
the internal results have not been iterated through, and that expanding the node will be equivalent to
stepping through the foreach loop until all the results are received.

So what does typically mean? There are two types of query execution: deferred and immediate. In most
cases you want to use deferred; however, there are cases when immediate execution is necessary.

Chapter 3: LINQ Queries

The following sections discuss these types and when the use of each is appropriate.

=%
I 45D Foem =] [¥emacuerytintn_Cicitobpet sender, Lyertasgs) =l
private void cmdQuerySyntax Click{vbject sender, Eventligs e} j
'
Lt vontext = pew Datalontest ("Initial Catalog=AdventureWocks:Integrated Sec

var gquecy =

from © in contact

where ©.Firsthame. Startavith(=u"]
LastName . SractaWith({"A"}
rhy &.LastHame

=lect new {o.FirstName, c.Lastlame, o.Imailiddress 1:

= 4 foreach (var item in guery.Reverse(})
2 Trema. Add {ivem. Firachnme

* 4+ item. Lasthame

4 + 4+ item.Emalliddress): »l
ol |]

5 @ MorePublec members
B Resuks View E 1 the

Figure 3-1

Deferred Execution

So far all the examples in this book have shown deferred query execution, which executes the query only
when you start to loop through the query variable, such as in a foreach loop.

For instance, the following code loops through the variable val, which contains the query expression
taken from the earlier string array example:

foreach (string name in val)
{
Console.WriteLine (name) ;

}

Deferred execution is appropriate when returning a sequence (multiple values). Because the query (and
variable) don’t ever contain the query results, you are free to execute (iterate over) this query over
and over again with little overhead.

Immediate Execution

Any LINQ query that returns a single value is executed immediately. A single value is considered a
query that returns a Count or Max, for example. You can also force an immediate execution of a query by
calling the ToList or ToArray methods. The following example illustrates a query that returns a single
value, thus executing immediately:

var query = (from o in Order
where CustomerID = 2
select o) .Count();

This query counts the number of orders from the Sales.SalesOrderHeader table in the AdventureWorks
database, where the CustomerID in that table is 2. Likewise, instead of getting a count of orders, you can
also send the query results to a list or array:

var query = (from o in Order
where CustomerID = 2
select o) .ToList();

35

Part I: Introduction to Project LINQ

By returning a single value or returning values to an array or value list, you can force an immediate
execution of the query, which can be useful when you want the results of the query to be cached.

Likened to SQL Syntax

To help you understand the flow of the LINQ syntax, compare it to standard T-SQL syntax. If you have
written any T-SQL, you know the basic T-SQL query syntax and how it is written. For instance, a simple
query looks like this:

SELECT FirstName, LastName
FROM Person.Contact

This example queries the Person.Contact table in the AdventureWorks database and returns the First-
Name and LastName columns for each row in the table. Too simple really, so the following adds
a secondary table, applies a filter, and applies a sort:

SELECT E.EmployeelID,C.FirstName, C.LastName

FROM Person.Contact AS C

INNER JOIN HoumanResources.Employee AS E ON C.ContactID = E.ContactID
WHERE E.EmployeeID < 100

ORDER BY C.LastName

This is the syntax with which all T-SQL developers are familiar. At the very minimum the query begins
with a SELECT clause, which specifies the columns you want to be returned by the query, followed by a
FROM clause, which lists the tables and/or views containing the columns identified in the SELECT clause.

The query could include one or more joins such as an INNER JOIN or OUTER JOIN, followed by some filter-
ing using the WHERE clause and possibly a GROUP BY or HAVING clause, and quite possibly some ordering
using the ORDER BY clause.

How many developers have really stopped to think about how SQL Server processes these queries? Does
SQL Server execute the query from top to bottom, starting with the SELECT clause and working its way
down? You might think that, but that is not how a query is processed in SQL Server at all. SQL Server
logically processes a query in the following order:

(8) SELECT

(9) TOP

(1) FROM

(3) JOIN

(2) oN

(4) WHERE

(5) GROUP BY

(6) WITH

(7) HAVING

(10) ORDER BY

Notice that the FrROM clause is processed first, while the SELECT clause is processed almost last. Any
clause that is not specified in the query is simply skipped by the query-processing engine. So, why is this
information important?

36

Chapter 3: LINQ Queries

It points out the similarities between a LINQ query syntax and how SQL Server processes a query. You
have seen many times now the basic syntax of a LINQ query:

from ¢ in contact

where c.FirstName.StartsWith("s")
orderby c.LastName

select ¢

The LINQ query and the T-SQL query are executed similarly, although the T-SQL query syntax is differ-
ent. This same query in T-SQL would be the following:

SELECT FirstName, LastName, EmailAddress
FROM Contact

WHERE LEFT (FirstName, 1) = 'S’

ORDER BY LastName

The differences are that in SQL this query would be executed internally, following the steps described
earlier. With LINQ, the query does not need to go through the rewriting process. Also, the same LINQ
operators work against other data sources.

With this in mind, the next section explores query operations and expressions to help you more fully
understand LINQ query concepts.

Query Concepts

You have seen multiple examples of LINQ queries so far in this book. Now you'll explore the basic
layout and syntax, as well as the different kinds of operations that can take place in a query. (Chapter 4
discusses in detail the many standard query operators that are at your disposal when writing LINQ query
expressions.) For this discussion, the following query will be used:

from ¢ in contact

where c.FirstName.Startswith("sS")
orderby c.LastName

select ¢

In a LINQ query, the first clause is from, which specifies the source of the data. It is called a generator,
and defines where the data will be coming from when the query is executed. It also specifies a range
variable that is used as a reference for each element in the data source. In the following example, contact
is the data source and c is the range variable:

from ¢ in contact

The where clause enables you to filter the results being returned by the query. By applying a filter to the
query, you're not only limiting the number of rows returned, but you are specifying the rows you want to
see, or exclude, from the returned results. For example, the following returns only those contacts whose
first name begins with the letter S:

where c.FirstName.StartsWith("s")

37

Part I: Introduction to Project LINQ

38

Recall from Chapter 1 that you selected all the rows from the Person.Contact table in the
AdventureWorks database—the table had nearly 20,000 rows. By simply applying this filter to the LINQ
query, the number of rows returned is just over 1,200—quite a difference.

It is possible to apply multiple filters by using the logical operators AND and OR. In C# using AND (&&)
looks like the following;:

where c.FirstName.Startswith("S")
&& c.LastName.StartsWith("A")

In Visual Basic, it looks like this:

Where c.FirstName.StartswWith("S")
AND c.LastName.StartsWith("A")

The ORr (| |) operator works the same way:

where c.FirstName.Startswith("S")
|| c.LastName.StartsWith("A")

And in Visual Basic:

Where c.FirstName.StartswWith("S")
OR c.LastName.StartsWith("A")

The where clause is optional when writing a LINQ query, as is the orderby clause. The orderby clause
provides the capability to order (sort) the results returned by the execution of the query. The following
sorts the results by last name:

orderby c.LastName

By default, the sort is applied in ascending order. To reverse the sort (descending order), simply apply
the descending clause:

orderby c.LastName descending
You can sort by more than one property:

orderby c.LastName, c.FirstName
In Visual Basic, the orderby clause reads:

Order By c.LastName Descending

You can also group the results of the query based on one of the properties of the query. For example, the
following line groups the results of the query by contact country:

group ¢ by c.Country

The final step is to project (select) the data using the select clause. By projecting the data, you are
defining the results as something other than a simple copy of the original source. For example, if the
data source returns FirstName, LastName, EmailAddress, Title, MiddleName, and City, but the select
clause only produces the FirstName and LastName properties in the results, that is a projection.

Chapter 3: LINQ Queries

The select clause enables you to determine the shape of each object that is returned by the query. Here’s
an example that returns the entire collection object:

from ¢ in contact

where c.FirstName.StartsWith("S")
orderby c.LastName

select ¢

To select a single property, simply select that property, like this:

from ¢ in contact

where c.FirstName.StartsWith("s")
orderby c.LastName

select c.LastName

Selecting a single result (column/property), in this case a string value, changes the result type from an
IEnumerable collection of type contact in the first example to an IEnumerable of String in this example
because only a single string value is being returned. In other words, just the LastName property (column)
is being returned in the collection.

To select multiple values (but not the entire collection), you can use one of two methods. The first is to
use IEnumerable by defining a named type and using that named type to create each source object in the
select clause. First, the named type must be created.

struct data

{
public string FN;
public string LN;
public string EA;

}

That named type is then used in the creation and initialization of the IEnumerable query:

IEnumberable<data> query = from ¢ in contact
where c.FirstName.StartswWith("S")

&& c.LastName.StartsWith("A")

orderby c.LastName

select new data { LN = c.FirstName, FN = c.LastName, EA = c.EmailAddress}
At this point you can iterate through the query like this:

foreach (var item in query)
listboxl.Items.Add(item.FN + " " + item.ILN + " " + item.EA);

The other option is to create an anonymous type using the var keyword:
var query = from ¢ in contact
where c.FirstName.StartsWith("s")

orderby c.LastName
select new {FN = c.FirstName, LN = c.LastName, EA = c.EmailAddress}

This query can be iterated through as follows:

foreach (var item in query)
listboxl.Items.Add(item.FN + " " + item.LN + " " + item.EA);

39

Part I: Introduction to Project LINQ

You can also do the following, which defaults to creating an anonymous type using the same member
names as the properties that you reference in the query:

var query = from c in contact
where c.FirstName.StartswWith("S")

orderby c.LastName
select new {c.FirstName, c.LastName, c.EmailAddress}

This query can be iterated through as follows:

foreach (var item in query)
listboxl.Items.Add(item.FirstName + " " + item.LastName + " " + item.EmailAddres);

Basically, using
select new {c.FirstName, c.LastName, c.EmailAddress}
is a shortcut for

select new {FirstName = c.FirstName, LastName = c.LastName,
EmailAddress = c.EmailAddress}

This, then, begs the question, “What is the difference between a named type and an anonymous type?”’
Hang tight, because var and IEnumerable differences are explained in the next section.

First, what about join operations? That is certainly doable and is accomplished via the join clause:

from ¢ in contact

join o in orders on c¢ equals o.0rderID

where c.FirstName.Startswith("S")

orderby c.LastName

select new {c.FirstName, c.LastName, c.EmailAddress, o.OrderDate}

OK, with all of that under your belt, the following section will clear up the confusion between var
and IEnumerable

Var versus IEnumerable

40

The var keyword is new to C# 3.0 and enables you to implicitly declare variables at the method scope.
The great thing about it is that the implicitly typed variable is just as strongly typed as its explicitly
declared counterpart. For example, these variables

var blah = "g"
var moreblah = 50

are equivalent to the following;:

string blah = "g"
int moreblah = 50

In the early days, the word ““var” stood for variant. Today, that isn’t the case; in C# and VB.NET, var is a
specific keyword that, when used, tells the compiler to determine the exact type of the variable.

Chapter 3: LINQ Queries

The IEnumerable<T> interface, new in .NET Framework 2.0, supports a simple iteration over a
collection of a specified type. It exposes the IEnumerator<T> interface, which is the base interface for
all generic enumerators. LINQ takes advantage of this enumeration via the foreach statement, which
lets you iterate through an enumeration without the complexity of dealing with and manipulating the
enumerator directly.

IEnumerable is minimal in its functionality, however. It has forward-only movement in a collection, so
moving back and forth among data items is not possible with IEnumerable.

With LINQ, it is important is to know when to use var versus IEnumerable. As you saw earlier in this
section, var can be used to implicitly declare a variable. While this is optional, it can be overused. The best
time to use var is when a variable is initialized with an anonymous type, only because in that scenario
it’s required. Using var too many times can also make your source code less readable by developers who
come in after you. In other words, don’t overuse var.

To understand the difference between the two and when one should be used over the other, consider the
following two examples. The first query uses var, but it is not necessary because the query result type
can be explicitly stated as an IEnumerable<int>, meaning that the result types are known.

int[] nums = {5, 1, 9, 4, 8, 11, 6, 14, 2, 7};
var query =

from num in nums

where num % 2 == 1

select num;

The next example, however, must use var because the result types are not known. The result
is a collection of anonymous types. In these cases, the name of the type is not available until the
compiler creates it.

Var query =
from prod in Products
where prod.ProductID = 10021
select new {prod.ProductName, prod.Price};

Common Query Terms

Before you go any further, a few things need to be defined and explained in order to help you get the feel
for LINQ queries.

LINQ Providers

A LINQ Provider is a library that implements the functionality provided by the standard query
operators for a specific type of data source.

The responsibility of the LINQ Provider is to execute a given query or to hand it to another engine
for execution. LINQ has several providers: LINQ to XML, LINQ to Datasets, LINQ to Objects, and
LINQ to SQL.

LINQ to SQL is considered a LINQ Provider even though it does not have its own implementation of

the standard query operators. Why? As an implementation of the IQueryable interface, LINQ to SQL
implements the functionality of the standard query operators against relational databases.

41

Part I: Introduction to Project LINQ

Expression Trees

An expression tree is a representation of language-level code in the form of data. The data is stored in a
tree-like structure, hence the name.

Expression trees in LINQ are used for several reasons, one of which is to structure queries that utilize data
sources that implement IQueryable (Of T). At runtime, when a query is executed, the C# or Visual Basic
compiler translates the query expressions (and method-based queries) into code that is then converted
to an expression tree structure. The appropriate query provider then translates the structure into the
query language for the targeted data source.

As you learned in the previous section, the LINQ to SQL provider implements IQueryable (0f T) for
querying relational data stores.

The great thing about expression trees is that, as a developer, you don’t need to build one or even nego-
tiate through an expression tree. The traversal of an expression tree is done for you, unless you feel the
strong urge to create your own query provider or query language.

As a quick note, expression trees are also used to represent lambda expressions. When a lambda
expression is assigned to a variable, a field, or a parameter of type Expression (Of TDelegate), the
compiler generates an expression tree which represents the lambda expression. There are several
standard query operator methods that have parameters of type Expression (0f TDelegate). Thus, you
are able to pass lambda expressions when these methods are called. The compiler will then create an
expression tree.

IQueryable and IQueryable(Of T) Interfaces

42

The IQueryable and IQueryable (Of T) interfaces provide the functionality to evaluate queries for a
given data source. The IQueryable interface does this where the type of the data is not known, and the
IQueryable (Of T) interface does this where the type of the data is known.

The IQueryable and IQueryable (Of T) interfaces implement the IEnumerable and IEnumerable (Of T)
interface, respectively, providing the capability of enumeration over the results of the given query. As
you have learned previously, the enumeration causes the expression tree associated with an IQueryable
or IQueryable(Of T) object to be executed. Keep in mind that the term “executing an expression tree”” is
specific to the query provider.

The difference between these two interfaces is that the IQueryable (0f T) interface enables queries
to be executed against different types of data sources. These queries are commonly referred to
as “polymorphic.”

Keep in mind that both the IQueryable and IQueryable (0f T) interfaces are intended for
implementation only by query providers. Think of an IQueryable object as having an AD0.NET command
object. Having one (either an IQueryable object or a command object) does not insinuate that either the
LINQ query (or the command) was executed.

Let’s take a close look at each of these to help understand the IQueryable object. An ADO.NET
command object contains a property that holds a string that describes the query. The IQueryable
object is similar in that it contains a description of a query that is encoded as a data structure known
as an expression.

Chapter 3: LINQ Queries

The command object has an ExecuteReader() method that causes execution. The results are returned as
a DataReader. Likewise, the IQueryable object has a GetEnumerator method that causes the execution of
the query. The results of the query are returned as an IEnumerator.

Query Syntax versus Method Syntax

LINQ provides the ability to write queries using both query syntax and method syntax, and most
of the examples until now have used query syntax, which is writing the query as a query expression,
like this:

IEnumerable<string> query =
from ¢ in contact
where c.FirstName.StartsWith("S")
select c;

This declarative syntax is easy to read and understand, but you also have the option of writing your
queries using method syntax. When a LINQ query is compiled, the query expression is translated into
method syntax because the .NET Common Language Runtime (CLR) really doesn’t understand query
syntax. Thus, at compile time, query expressions are translated into method calls because this is what the
CLR understands.

Here’s the method syntax version of the preceding query:

IEnumerable<string> query = contact.Where(c => c.FirstName.StartsWith("S"));

It is recommended that you use query syntax whenever possible simply because it is easier to read,
understand, and maintain. However, as you can see from the two preceding examples, there is no seman-
tic difference between method syntax and query syntax. Therefore, this section discusses both query
syntax and method syntax to provide you a good understanding of these syntaxes in queries and how to
use them in query expressions.

This next example gets a bit more complicated by adding an additional filter:

IEnumerable<string> query =
from ¢ in contact
where c.FirstName.StartsWith("S")
&& c.LastName.StartsWith("A")
select c;

The method syntax of this is as follows:

IEnumerable<string> query = contact.Where(a => a.FirstName.StartsWith("S") @@ta
&& a.LastName.StartswWith("aA"));

Let’s complicate things a bit more and add the orderby clause:

IEnumerable<string> query =
from ¢ in contact
where c.FirstName.StartsWith("s")
&& c.LastName.StartsWith("A")

43

Part I: Introduction to Project LINQ

Orderby c.LastName
select c;

This query expression would be written as method syntax as follows:

IEnumerable<string> query = contact.Where(c => c.FirstName.StartsWith("sS")
&& c.LastName.StartsWith("A")).OrderBy(c => c.LastName) ;

Run both versions of these queries (method syntax and query syntax), and you’'ll see that the output is
identical. What makes the method syntax possible is lambda expressions, which were discussed
in Chapter 2, ““A Look at Visual Studio 2008.”

Although query syntax is recommended over method syntax, there are times when method syntax is
preferred, such as in those queries that return the number of elements that match a specified condition.

Which Do You Use?

44

Given all of the information discussed in this chapter, the question might arise, “Which do I use, query
syntax or method syntax?”” The general rule is to use whichever syntax will make your code most read-
able, which most often means using query syntax. However, even this might not be sufficient because
there are many reasons why query syntax may not be an option:

O Notall of the standard query operators are available in query syntax.

O Notall of the combinations of the standard query operators are available in query syntax.

O Asyou will read about later, it is possible to combine query syntax with method syntax, but

there may be times when using straight method syntax might be more readable.

It is a matter of learning which standard query operators can be used with which syntax option
(query syntax and method syntax) and going from there. However, your priority should always be
syntax readability.

For example, the following code snippet shows how to author a query using query syntax.
Int[] grades = { 67, 98, 72, 85, 92, 89, 78, 76, 88};
IEnumerable<int> topTwoGrades =
(from g in grades
orderby g
select g) .Take(2);
The following code snippet shows the same query using method syntax.

Int[] grades = { 67, 98, 72, 85, 92, 89, 78, 76, 88};

IEnumerable<int> topTwoGrades =
grades.OrderByDescending (g => g).Take(2);

Both produce the same results; it is up to you to decide how you want to write the query.

Chapter 4 will discuss all of the standard query operators and provide examples using both query syntax
and method syntax where available.

Chapter 3: LINQ Queries

Using Query and Method Syntaxes

Here’s a project that utilizes much of the information found in this chapter, such as query syntax and
method syntax, to create queries that will be used throughout the rest of this book. To start, you need a
place to create the applications used for this chapter.

In the root of your C drive, create a directory called Wrox. Underneath that directory, create another
directory called Chapter 3. Now, fire up Visual Studio 2008 and within the Recent Projects window of the
Start page, create a new project. This opens the New Project dialog.

In the New Project dialog, make sure that you have selected the correct Framework version (3.5) via the
far-left icon in the top-right corner, then select a Windows project type and set the project name to LINQ
with the path you just created (\wrox\Chapter 3). Figure 3-2 shows what the New Project dialog should
look like.

New Project [71}
Brnject types: Lempistes: g
- Wisual C¥ Visial Studin installed templates
e
Wigh [Fass Lawary B Conznie Applicaton
= Offica [Empty Project [_Reports (*rdic)* rdic
Smart Device Wt Condrul Library
Drallakrzse _:Eu‘lnnnhws Formes Conteol | ibrary CAvandms Service
lest CWWPF Application [_WWPF Broweer Application
Windows Communication Found -_o’\PF Lkser Cunlrul Lirary
Wiorkflow
(= Cther Languages My Templates
Dislribuled Syslems
- Cther Project Types [Jsearch Onine 1emplates
[Test Projects

e ¥

[A pruject fur cresling s sppbcstion with o Windwes Furnes user ler face (NET Franework 3.5

dame: |una
Location, |C:anmmra =] Bowse.. |
Sokfion Name: | LING ¥ Cresle direclury for sudion
T
Figure 3-2

Click OK when you have everything set. Next, open the Solution Explorer and add the System.Data and
System.Data.Ling namespace references to your project. Then open Forml in design view and add three
buttons and a list box. Align the list box on the left of the form and place two of the buttons next to the
list box, with the third button in the bottom-right corner of the form.

Set the properties of the first button to the following:

Property Value

Name cmdQuerySyntax

Text Query Syntax

45

Part I: Introduction to Project LINQ

Set the properties of the second button to the following:

Property Value

Name cmdMethodSyntax

Text Method Syntax

Set the properties of the third button to the following:

Property Value

Name cmdClose

Text Close

Figure 3-3 shows what the form should look like (with the appropriate component references included).

@9 LINU - Microsoit Visual Studio
Ede Edd Mew Project Buid Debug Workfliow Data Toole Tegt ‘Window Community Help
Sl e S b | B G- - B b Ueoua - AnyCrU 24
P e & & | _-».'- sl | 53 4] H5 i | epe 30 0 ; : i.
s Fnrm‘l.l:n[ﬂﬂthn]ifmi - 3 u
g (B 2EIEE4 El
3 | (2] Solution LING' (1 project) g
il e i B 3 Lma 13
listtiox1 Quary Syntax i [| Properties
- | References
Method Syntas -3 System
i 3 System Core
-3 System Data
[+LJ System Data Ling
5 «2 Syslem Deployne il
[-3 System Drawing
<3 System ¥Windows Forms
-3 System Xmil
o =
'] Form1 Desigrer es
i =] rorm1 resx
i | i] Program.cs
o b |
| 223 Ernor List |] Tesk List| =] Outpout| 5 P Resuits 1] Commpand vindowe |
Heady £
Figure 3-3

Double-click the form to display the code behind the form. In the declarations section, make sure that
you add the appropriate using statements for LINQ, including System.Data.Ling.

Next, underneath the class for Form1, add the following:

[Table (Name = "Person.Contact")]
public class Contact

{
[Column (DBType = "nvarchar (8) not null")]

public string Title;

46

Chapter 3: LINQ Queries

[Column (DBType = "nvarchar(50) not null")]
public string FirstName;

[Column (DBType = "nvarchar (50) not null")
public string MiddleName;

[Column (DBType = "nvarchar(50) not null")]
public string LastName;

[Column (DBType = "nvarchar (50) not null")
public string EmailAddress;

[Column (DBType = "int")]
public int EmailPromotion;

That defines the data source, the first of the three actions that makes up a query operation.

Your code behind Forml should now look like this:

using System;

using System.Ling;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Data.Ling;

using System.Drawing;

using System.Text;

using System.Windows.Forms;
using System.Xml;

namespace LINQ
{
public partial class Forml : Form
{
public Forml ()
{

InitializeComponent () ;

private void Forml_Load(object sender, EventArgs e)

{

[Table (Name = "Person.Contact")]

public class Contact

{
[Column (DBType = "nvarchar(8) not null")]
public string Title;

[Column (DBType = "nvarchar (50) not null")]
public string FirstName;

47

Part I: Introduction to Project LINQ

48

[Column (DBType = "nvarchar (50) not null")]
public string MiddleName;

[Column (DBType = "nvarchar (50) not null")]
public string LastName;

[Column (DBType = "nvarchar (50) not null")]
public string EmailAddress;

[Column (DBType = "int")]
public int EmailPromotion;

}

Place the following code in the click event for the Close button:

Application.Exit();
Next, in the click event for the Query Method button, place the following code:

DataContext context = new DataContext ("Initial Catalog=AdventureWorks;@@ta
Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact> () ;

var query =
from ¢ in contact
where c.FirstName.StartsWith("S")
&& c.LastName.StartsWith("K")
orderby c.LastName
select c;

foreach (var item in query)
listBoxl.Items.Add(item.FirstName + " " + item.LastName + " " +
item.EmailAddress) ;

This code creates a query expression filtering all contacts whose first name begins with the letter S and
whose last name begins with the letter K, all sorted by the contacts’ last name. You know this is an
anonymous query expression because of the use of the var keyword discussed previously.

A portion of the preceding code defines the second and third actions of a query operation. The query
expression (the second action) defines the information to be retrieved from the data source, while the
execution of the query (the iteration over the query variable) is the last action.

Press F5 to compile and run the application. When the form opens, click the Query Syntax button.
The list box will populate with the first names, last names, and email addresses of those contacts
who meet the criteria specified in the query expression. The results on your form should look like those
in Figure 3-4.

Chapter 3: LINQ Queries

LING - Chapter 3 o=

Scott Kaffer scuttE@advaﬂ
Sandeep Falivath zandeef
Sandeep Falivath zandeep
Summer K.apoor summer] &
Sergio K.apoor sergin’ (2ac
Shane K.apoar shanebEa
Steven Kastner steven e
Sandeep Katyal zandeep?
Sydney Kelly zpdnep2] g
Stephanie Eelly stephanie
Sean kel zeand@advent
Steven Felly steven] 2i@a
Seth Felly seth7aiE@adven
Sara Felly zaradSadvent.
Savannah Felly zavannah
Shelby Kelly shelby2i@ady
Sheena Kennedy sheenak
Shane Kim shanel@adve ™

Method Syntas |

Cloze |

Figure 3-4

In this example, the select clause in the query expression did not select individual properties from the
query results, but rather selected all the properties by simply stating select c. This is similar to stating
SELECT * FROM in T-SQL syntax. Because all the properties were selected to be returned, all properties are
available from IntelliSense, as shown in Figure 3-5.

41 MG Fanmd

private wvoid cmeu::vSynt,ax_CLickic‘ﬁ;‘u‘::c't sender, Cventhco

L
2HT CONCEXT =

new Dacacor

itext (TInicial

able<Contact> contact = context.fetTable<Contac

VAL gquery =
L © in vontmet

re c.FirstHame.StartsWith("3™)

114 LootNome . Startabith (TK")

orderoy o.Lastiame

select o;
torcach (var item 1n QUECY)
listBoxl.Items. Add(item. Firsciame

+ " " 4 item. LasuName

+ " " 4 item.):

W Copsals
privace vaid cmdWethod & Freoiame

i @ Gt lashCnde

jeek
it contex @ Getlyps text ("initial
@ | asthame
lesCamtarty con @ MddeMame
@ Tk
¥ lotinng

Get.Tahle<Cont

mrnder,

| [4% ematnmrySyrts_Clickinbinct aender, Cuantings &)

catalog=hdvenctureWorks: Integr:

txil:

irom ey
Catalog=AdventureWorks; Int

rx{):

e)

B

egr:

Figure 3-5

49

Part I: Introduction to Project LINQ

50

Modify the following code, changing the select clause in the query expression as highlighted:

var query =
from ¢ in contact
where c.FirstName.StartsWith("sS")
&& c.LastName.StartsWith("K")
orderby c.LastName

select new { c.FirstName, c.LastName, c.EmailAddress};
Running this anonymous query produces the same results on the form when the application is run, but
in this code, specific properties are selected to be returned in the query. An anonymous query type is

created using the same names as the properties in the object initializer.

Thus, IntelliSense shows only those properties that are available for selection, as shown in Figure 3-6.

4 LING Form ﬂ |g""cmnuewsynax_cn:x[onject zender, Eventargs e) -
1) privare vnid emdguerysyntax Click(nhjert sender, Fvsncirgs @) |
‘ =
DECaCOntext Context = new DacaContext ("Initial Catalog=idvencureVorks;I
ablediontactd contact = context.GetTablediontactd>()!

var query =
from ¢ in contact
where c.FirstName.S5tartaWith("s")
£E£ c.LastName.StarceWich ("K")
orderby o.Lastclame
gelect new { c.FirstMame, c.lastlame, c.Emailliddress);

forcach (var item in query)
liatBox1l. Itemo. Add (itcm. FiraotHame
1™ "4 icem.LaotNome
I ™" b item.Ewailiddreas
+ " " + item.};

(=] private void cudMethod @ GetHashiode ject sender, Ev = e}
{ W CelTye
DataCuntexl contex = Lusdhane Lexl ("Initial Catalug=AdventureVorks: Ig
W ToString —
< LS T— | i

Figure 3-6

Next, add the following code to the c1ick() event behind the Method syntax button.

DataContext context = new DataContext ("Initial Catalog=AdventureWorks;@@ta
Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact> () ;

IEnumerable<Contact> query =
contact.Where(a => a.FirstName.StartsWith("s")
&& a.LastName.StartsWith("K")).OrderBy(a => a.LastName) ;
foreach (var item in query)
listBoxl.Items.Add(item.FirstName + " " + item.LastName + " " +
item.EmailAddress) ;

Press F5 to compile and run the application. When the form opens, click the Method Syntax button. The
list box will be populated with the first names, last names, and email addresses of those contacts who

Chapter 3: LINQ Queries

meet the criteria specified in the query expression. The results on your form should look like the results
that were returned in the first example (shown in Figure 3-4).

This IEnumerable example can also be written to use automatic type deduction using the var keyword
as follows:

var query =
contact.Where(a => a.FirstName.StartsWith("S")
&& a.LastName.StartsWith("K")).OrderBy(a => a.LastName) ;

Each of these examples contains the three actions that make up a query operation. Those of you who
have read any of my previous books already know that I like to assign small “homework assignments,”’
which build on the examples of the current chapter.

Your homework assignment for this chapter is fairly simple. Start experimenting with the differences
between query syntax and method syntax, as well as with the different query expressions available. A lot
of this will be useful in the upcoming chapters.

Summary

This chapter gave you with a first-hand look at LINQ queries, their concepts, and the available syntax
options. You got a detailed look at the three actions that make up a query operation: the data source,
the query expression, and the execution of the query (and the different types of query execution, such as
deferred and immediate). Each is a distinct and separate action critical to the success of the LINQ query.

You also looked at SQL syntax and saw how its execution is likened to LINQ syntax. Then you explored
LINQ query concepts, from specifying the data source to filtering, grouping, and selecting (projecting) a
query expression. You also tackled the different query expressions, the use of var versus IEnumerable,
and the difference between query syntax and method syntax and how they are related and used.

In Chapter 4 you'll take an in-depth look at the standard query operators, putting the final touches on
your basic understanding of LINQ.

51

LINQ Standard Query
Operators

Understanding the different parts of a query operation and how those parts work together provides
the foundation for constructing efficient queries to retrieve and transform data from many different
sources, such as XML documents, SQL databases, .NET collections, and ADO.NET datasets. This
chapter will outline those parts and their uses.

This chapter builds on the query operation information you examined in Chapter 3, “LINQ
Queries,” by exploring the standard query operators, a set of methods that form the LINQ pat-
tern, a standard way of creating query expressions to project, filter, group, and transform data. The
standard query operators provide the capability to query any object that implements the IEnumer-
able interface and IQueryable interface. You can think of the standard query operators much like
an API. In this case, the ““API” is a set of methods.

This chapter begins with an overview of the standard query operators. It examines each operator in
detail, providing examples, and then ends with a full example using many of these operators.

Overview

Standard query operators are the building blocks of LINQ query expressions, providing many of
the query capabilities such as filtering and sorting. They are a set of methods that constitute a query
pattern and are implemented by their respective LINQ provider, such as LINQ to XML and LINQ
to Datasets.

As you learned in the last chapter, some operators return results immediately, while others have a
deferred execution. Those queries whose execution is immediate return a single value such as a Sum
or Count, while those queries that have a deferred execution return multiple values.

As stated earlier, the standard query operator is a set of methods. These methods operate on
sequences. A sequence is an object whose type implements either the IEnumerable<T> interface or

Part I: Introduction to Project LINQ

the IQueryable<T> interface. The IEnumerable<T> interface provides iteration over a collection
of a specified type.

The IQueryable<T> interface provides the ability to execute queries against a known and specific data
source whose type of data is known. Meaning, with the IQueryable interface and the IQueryable<T>
interface you get an object that can evaluate queries. The IQueryable interface is based on expressions.

One of the main differences between IEnumerable and IQueryable is that the IEnumerable interface pro-
vides forward-only iteration. It does not have the ability to move between items (except forward). With
IQueryable however, you have much more flexibility with your query operations. Remember, though
that the TQueryable interface implements IEnumerable, which provides IQueryable with iteration
capability.

There are two types of query operators. The first type operates on IEnumerable objects, while the other
operates on IQueryable objects. Each set of operators is implemented as static methods on the corre-
sponding types, meaning that the operators can be called using static method syntax as well as being
called as instance methods.

A lot of what makes this possible is the new features found in C# 3.0 and VB 9.0. Those features
include lambda expressions (a concise expression or statement block) and extension methods
(static methods associated with a type). These and other features new to C# 3.0 and VB 9.0 are
discussed in Chapter 2, A Look at Visual Studio 2008.”

Standard query operators are grouped based on their function, and that’s how we’ll tackle them in
this chapter.

Standard Query Operators

54

This section discusses the standard query operators. These operators have both C# and Visual
Basic syntax. The examples will be given in C#, but the syntax will be provided in both C# and
Visual Basic.

What you will find is that those standard query operators that are used more frequently have a
dedicated language and keyword syntax, which lets them be used and called as part of a query expression
(query syntax).

Standard QueryOperator C# Visual Basic
All (Of T) N/A Into AlI(. . .)
Any N/A Into Any()
Average N/A Into Averate()
Cast (Of T) An explicit range of variables From...As...
Count N/A Into count()
Distinct N/A Distinct

Chapter 4: LINQ Standard Query Operators

Standard QueryOperator C# Visual Basic
GroupBy group by Group By
Group]Join join...in...on...into... Group Join
Join join...in...on...equals... Join...As.IN...On...
OR
From x In..y In.. Where. ...
LongCount N/A Into LongCount()
Max N/A Into Max()
Min N/A Into Min()
OrderBy orderby Order By
OrderByDescending orderby desdending Order By. . .Descending
Select select Select
SelectMany Multiple from clauses Multiple from clauses
Skip N/A Skip
SkipWhile N/A Skip While
Sum N/A Into Sum
Take N/A Take
TakeWhile N/A Take While
ThenBy orderby Order By
ThenByDescending orderby descending Order By. . .Descending
Where where Where

Remember from the discussion in Chapter 3 that a query expression is a more readable form
of query over the method-based syntax version. At compile time, query expressions are translated

into query methods.

However, what you will find in this chapter is that it is very easy to combine these query expression
syntax operators with direct method calls. By doing this, you can use all of the various pieces of the

LINQ functionality.

Projection Operators

Projection refers to the act of transforming the elements of a sequence into a form defined by the devel-
oper. The projection operators—Select and SelectMany—select values given the appropriate function.
While both select values, the SelectMany operator can handle multiple collections.

55

Part I: Introduction to Project LINQ

Select

The Select operator (select in C#) projects values from a single sequence or collection. The following
example uses select to return the FirstName, LastName, and Emailaddress columns from the sequence:

var query =
from ¢ in contact
where c.FirstName.StartsWith("sS")
select new {c.FirstName, c.LastName, c.EmailAddress}

This operator returns an enumerable object. When the object is enumerated, it produces each element in
the selected results.

This same query can be written using method syntax as follows:

var query =
contact.Select(c => new {
c.FirstName, c.Lastname, c.EmailAddress}
) .Where(c => c.FirstName.Startswith("S"));

SelectMany

The selectMany operation provides the capability to combine multiple from clauses, merging the results
of each object into a single sequence. Here’s an example:

string[] owners =

{ new name { FirstName = "Scott", "Chris",

Pets = new List<string>{"Yukon", "Fido"}},
new name { FirstName = "Jason", "Steve",

Pets = new List<string>{"Killer", "Fluffy"}},
new name { FirstName = "John", "Joe",

Pets = new List<string>{"Spike", "Tinkerbell"}}}

IEnumerable<string> query =
names.AsQueryable () .SelectMany (own => own.Pets) ;

When this code is run, it produces the following:

Yukon
Fido
Killer
Fluffy
Spike
Tinkerbell

This same example could be written follows:
var query =
from o in owners

select o;

foreach (var pet in query.SelectMany (own => own.Pets))
listboxl.Items.Add (pet);

56

Chapter 4: LINQ Standard Query Operators

Restriction Operator

where is the restriction operator. It applies filter criteria on the sequence. The values of the sequence are
filtered based on a supplied predicate.

The where operator does not initiate the execution of the query. The query is executed when enumeration
over the object is initiated, at which point the filter is applied. Here’s an example that applies a filter to
the query expression, filtering the results so that only those contacts whose first name begins with the
letter S are returned:

IEnumerable<string> query =
from ¢ in contact
where c.FirstName.StartswWith("S")
select new {c.FirstName, c.LastName, c.EmailAddress}

This example could also be written using method syntax as follows:

var query =
contact.Select(c => new {
c.FirstName, c.Lastname, c.EmailAddress}
) .Where(c => c.FirstName.StartsWith("S"));

Sorting Operators

The sorting operators—OrderBy, OrderByDescending, ThenBy, ThenByDescending, and
Reverse—provide the capability to sort the results in an ascending or descending manner.
There are several sorting options that let you apply primary and secondary sorts as well. These
operators are explored in the following sections.

OrderBy

The OrderBy operator sorts the resulting values of the sequence in an ascending order. The following
example shows how to sort a sequence in ascending order:

var query =
from ¢ in contact
where c.FirstName.Startswith("S")
orderby c.LastName
select new {c.FirstName, c.LastName, c.EmailAddress}

You can also sort the sequence in ascending order by using a comparer. A comparer is an optional value
that is used to compare values. If no comparer is specified, a default is used, which comes from the
IComparer generic interface.

This example could also be written using method syntax as follows:

var query =
contact.Select(c => {
c.FirstName, c.LastName, c.EmailAddress }).Where(
¢ => c.FirstName.StartsWith("S")) .OrderBy (
¢ => c.FirstName) ;

57

Part I: Introduction to Project LINQ

OrderByDescending

The OrderByDescending operator sorts the resulting values of the sequence in descending order. The
following shows how to sort a sequence in descending order:

IEnumerable<string> query =
from ¢ in contact
where c.FirstName.StartsWith("sS")
orderby c.LastName descending

select new {c.FirstName, c.LastName, c.EmailAddress}

This example could also be written using method syntax as follows:

var query =
contact.Select (c => {

c.FirstName, c.LastName,

c.EmailAddress}) .Where(
c

=> c.FirstName.StartsWith("S")) .OrderByDescending (
c => c.FirstName) ;

ThenBy

The ThenBy operator applies a secondary, ascending sort order to the sequence. It is akin to
applying a secondary sort order in T-SQL, such as the italicized column in the following example

SELECT FirstName, LastName,
FROM Contacts
ORDER BY LastName,

Addressl, Address2, City

FirstName

In LINQ, the ThenBy operator lets you apply an equivalent secondary sort, like this:

IEnumerable<string> query =
from ¢ in contact

where c.FirstName.Startswith("S")
orderby c.LastName
thenby c.FirstName

select new {c.FirstName, c.LastName, c.EmailAddress}

This example could also be written using method syntax as follows:

var query =
contact.Select(c => {

c.FirstName, c.LastName,
c

e}

c.EmailAddress}) .Where(
=> c.FirstName.StartsWith("S")) .OrderBy (

=> c.FirstName).ThenBy(c => c.LastName) ;

ThenByDescending

The ThenByDescending operator sorts the resulting values of the sequence in descending order. The
following example shows how:

IEnumerable<string> query =
(from ¢ in contact
where c.FirstName.Startswith("S")

orderby c.LastName descending

58

Chapter 4: LINQ Standard Query Operators

select new {c.FirstName, c.LastName, c.EmailAddress}).@@ta
ThenByDescending (¢ => c.FirstName) ;

This example could also be written using method syntax as follows:

var query =
contact.Select(c => {
c.FirstName, c.LastName, c.EmailAddress}) .Where(
¢ => c.FirstName.StartsWith("S")) .OrderBy (
¢ => c.FirstName) .ThenByDescending(c =>
c.LastName) ;

Reverse

You might think that the Reverse operator is equal to the OrderByDescending operator, but that’s not
the case. The Reverse operator does not look at the individual values to decide the sort order. It simply
returns the values in the opposite (reverse) order from which they were returned from the data source.
Here’s an example:

string[] names = {"Alex", "Chuck", "Dave", "Dinesh",
"Joe", "John", "Sarah", "Scott", "Steve"}

string[] reversednames = names.Reverse().ToArray();
foreach (string str in reversednames)
listboxl.Items.Add (chr)

The resulting output is:

Steve
Scott
Sarah
John
Joe
Dinesh
Dave
Chuck
Alex

The reverse () operator is limited, in that it is not supported by LINQ to SQL because LINQ to SQL
operates on tables that are unordered sets or multisets.

Joining Operators

Joining is the action of relating or associating one data source object with a second data source object. The
two data source objects are associated through a common value or attribute.

LINQ join operators match values from data sources that contain keys that match (or are equal). There
are two LINQ join operators, join and groupjoin.

join
The join operator is similar to the T-SQL inner join, which joins one data source to a second data

source, matching on equal values between the two data sources. For example, you can join a customer
database table and order database table, matching on equal keys from each side of the join.

59

Part I: Introduction to Project LINQ

In the following example, the join operator is used to join the Contact table to the Employee table using
the matching ContactID columns of each table.

from ¢ in contact

join emp in employee on c.ContactID equals emp.ContactID

where c.FirstName.Startswith("S")

orderby c.LastName

select new {emp.EmployeeID, c.FirstName, c.LastName,
c.EmailAddress, emp.Title, emp.HireDate}

Like relational database joins, joins can be performed on more than two sources. The preceding example
joins two tables or data sources, but you can just as easily join on more:

from ¢ in contact

join emp in employee on c.ContactID equals emp.ContactID

join ind in individual on c.ContactID equals ind.ContactID

join cust in customer on ind.CustomerID equals cust.CustomerID

where c.FirstName.StartsWith("sS")

orderby c.LastName

select new {emp.EmployeeID, c.FirstName, c.LastName, c.EmailAddress,
emp.Title, emp.HireDate, cust.AccountNumber}

Each additional join associates a new table or data source with the results of the previous join.

The first example could also be written using method syntax as follows:

var query =
contact.Join(employee, con => con.ContactID,
emp => emp.ContactID, (con, emp) => new
{ Contact = con.FirstName, Employee});

GroupJoin

The GroupJdoin operator joins each value or element from the primary (first or left) data source with a set
of corresponding values from the secondary (right) data source. This type of join comes in handy when
you want to create a hierarchical data structure.

The following example uses GroupJoin to create a hierarchical structure from two different data
sources. The first data source lists motocross race teams, and the second data source lists the riders for
each of those teams. The GroupJoin operator is used join the two data sources together and produce an
output that lists the team and their associated riders.

List<Team> teams = new List<Team>{ new Team { name = "Yamaha"},
new Team { name = "Honda"} ,
new Team { name = "Kawasaki"}
new Team { name = "Suzuki"}} ;

List<Rider> riders = new List<Rider> {

new Rider { name = "Grant Langston", TeamName = "Yamaha"},
new Rider { name = "Andrew Short", TeamName = "Honda"},
new Rider { name = "James Steward", TeamName = "Kawasaki"},
new Rider { name = " Broc Hepler", TeamName = "Yamaha"},
new Rider { name = "Tommy Hahn", TeamName = "Honda"},

60

Chapter 4: LINQ Standard Query Operators

new Rider { name = "Tim Ferry", TeamName = "Kawasaki"},

new Rider { name = " Chad Reed", TeamName = "Yamaha"},

new Rider { name = "Davi Millsaps", TeamName = "Honda"},
new Rider { name = "Ricky Carmichael", TeamName = "Suzuki"},
new Rider { name = "Kevin Windham", TeamName = "Honda"}};

var teamsandriders = teams.GroupJoin(riders,
Team => Team.name,
Rider => Rider.TeamName,
(team, teamRiders) => new {Team = team.name,
riders = teamRiders.Select(rider => rider.name)});

foreach (var tar in teamsandriders)

{
listBoxl.Items.Add (tar.Team) ;
foreach (string rider in tar.riders)
listBoxl.Items.Add(" " + rider);

The results from this query look like this:

Yamaha
Grant Langston
Broc Hepler
Chad Reed
Honda
Andrew Short
Tommy Hahn
Davi Millsaps
Kevin Windham
Kawasaki
James Stewart
Tim Ferry
Suzuki
Ricky Carmichael

This example used an in-memory array to apply a Groupjoin, to help you understand the concept of the
operator. The same can be applied to a LINQ to SQL query:

private void cmdGroupJdoin_Click(object sender, EventArgs e)

{
DataContext context = new DataContext ("Initial Catalog=AdventureWorks;Integrated
Security=sspi");

Table<SalesPerson> salespeople = context.GetTable<SalesPerson> () ;
Table<SalesOrderHeader> orders = context.GetTable<SalesOrderHeader> () ;

var salespeopleandorders = salespeople.GroupJoin(orders,
SalesPerson => SalesPerson.SalesPersonID,
SalesOrderHeader => SalesOrderHeader.SalesPersonID,
(person, salesorder) => new { SalesPerson = person.SalesPersonlD,
orders = salesorder.Select(order => order.CustomerID)});

foreach (var sao in salespeopleandorders)

61

Part I: Introduction to Project LINQ

listBoxl.Items.Add(sao.SalesPerson) ;
foreach (int order in sao.orders)
listBoxl.Items.Add (" " + order);

The results of this query list each salespersonid and the associated order customerid. Here’s a portion
of the output:

279
676
117
442
227

283
2

107

56

310

527

638

157

Grouping Operator

Grouping is the concept of grouping the values or elements of a sequence according to a specified value
(selector). LINQ contains a single grouping operator, GroupBy.

The following example uses the Sales.SalesOrderHeader table in the AdventureWorks database to
group together orders for each sales person using the salesPersonID as the key value.

DataContext context = new DataContext ("Initial
Catalog=AdventureWorks; Integrated Security=sspi");

Table<SalesOrderHeader> orders = context.GetTable<SalesOrderHeader> () ;

var query = orders.Where(ord => ord.SalesPersonID > 0).GroupBy (order =>
order.SalesPersonlID,
order => order.CustomerID);

foreach (var o in query)

{
listBoxl.Items.Add(o.Key) ;
foreach (int cust in o)
listBoxl.Items.Add(" " + cust);

It can also be written as follows (given the same DataContext and table):

IEnumerable<IGrouping<int, int>> query = orders.Where(ord =>
ord.SalesPersonID > 0).GroupBy(order => order.SalesPersonID, order =>
order.CustomerID) ;

62

Chapter 4: LINQ Standard Query Operators

foreach (IGrouping<int, int> o in query)
{
listBoxl.Items.Add(o.Key) ;
foreach (int cust in o)
listBoxl.Items.Add (" " + cust);

Here are the results:

268
697
47
471
548
167

275
504
618
17
486
269

276
510
511
259
384
650

The first example could also be written using a mix of query syntax and method syntax as follows:

var query =
(from o in orders
where o.SalesPersonID > 0
select o) .GroupBy(order => order.SalesPersonID,
order => order.CustomerID) ;

This makes the query somewhat easier to read, even though the example used a mix of the two
syntaxes. The reason for the mix of syntaxes in this example is that the GroupBy operator is not available
in query syntax.

This example also gives you an idea of the flexibility you have when using the standard query operators.

Concatenating Operator

Concatenating is the process of joining two objects together. In LINQ, concatenating joins two collections
into a single collection, and is accomplished via the Concat operator.

In the following example, contact last names are concatenated with CustomerIDs from the
Person.Contact table and Sales.SalesOrderHeader table

DataContext context = new DataContext ("Initial Catalog=@@ta
AdventureWorks; Integrated Security=sspi");

63

Part I: Introduction to Project LINQ

Table<Contact> contacts = context.GetTable<Contact> () ;
Table<SalesOrderHeader> orders = context.GetTable<SalesOrderHeader> () ;

var query = contacts.Select(con => con.LastName) .Concat (orders.Select (order @RGta
=> order.CustomerID.ToString()));

foreach (var item in query)
{
listBoxl.Items.Add(item) ;

The results in the list box will first list all of the contacts” last names, followed by all of the CustomerIDs.

Aggregating Operators

Aggregate functions perform calculations on a set of values and return a single value, such as perform-
ing a sum or count on values of a given element. There are seven LINQ aggregate query operators:
Aggregate; Average, Count, LongCount, Max, Min, and Sum.

Aggregate

The Aggregate operator gathers values from a given sequence or collection. It accumulates values
returned from a sequence and returns when the aggregation is complete. For instance, the following
example uses the Aggregate operator to build a new sentence in reverse from an array of strings.

string Names = "Steve, Scott, Joe, John, Chris, Jason";

string[] name = Names.Split(', ');

string newName = name.Aggregate (workingName, next) =>
next + " " + workingName) ;

listbox.Items.Add (newName) ;

Average

The Average operator computes the average from a sequence of numerical values. It works on many data
types, such as decimal, integers (Int32, Int64, and the like), and doubles.

In its simplest form, the Average operator works as follows:

List<int> quantity = new List<int> {99, 48, 120, 73, 101, 81, 56};
double average = quantity.Average();
listboxl.items.add (average) ;

This example computes the average of the seven numbers in the list and returns that value. This type of
calculation can be applied to the following example, in which the Average operator is used to calculate
the average unit price of all the products for a given order:

var query =

from od in orderdetail
where od.SalesOrderID == 43662

64

Chapter 4: LINQ Standard Query Operators

select od.UnitPrice;
listboxl.Items.Add (query.Average()) ;

The query can also be written as follows:

var query =
from od in orderdetail
where od.SalesOrderID == 43662
select od;

listboxl.Items.Add (query.Average (orderDetail => orderDetail.UnitPrice));

This operator is applied to a sequence of values.

Count

The Count operator counts the number of elements in a given collection. It should be used if the expected
result is going to be less than Int32.MaxValue (the largest possible value of an Int32).

The following example shows the Count operator in its simplest form. The list contains seven numbers
and the count operator is applied to count the numbers in the list.

List<int> quantity = new List<int> {99, 48, 120, 73, 101, 81, 56};
int cnt = quantity.Count;
listboxl.items.add(cnt) ;

When run, this query returns 7. In the following example, the Count operator is used to count the number
of items for the specified sales order.

var query =
from od in orderdetail
where od.SalesOrderID == 43662
select od.UnitPrice;

listboxl.Items.Add (query.Count());

When this query is executed, the list box contains the value of 22, meaning that there are 22 items for the
specified order.

You can also specify a criterion for the Count operator. Here’s an example in which the Count operator is
applied but given a condition, where the unit price is less than 200.

var query =
from od in orderdetail
where od.SalesOrderID == 43662
select od;

listboxl.Items.Add (query.Count (orderDetail => orderDetail.UnitPrice < 200));

65

Part I: Introduction to Project LINQ

LongCount

The LongCount operator, which returns an Int64 (a 64-bit integer), is used to count the number of elements
in a large collection—one with more than Int32.MaxValue elements. You use LongCount the same way
you use the Count operator, as shown in the following example:

List<Int64> quantity = new List<Int64> {99, 48, 120, 73, 101, 81, 56};
Int64 cnt = quantity.LongCount () ;
listboxl.items.add (cnt);

Now count the number of items in an order:

var query =
from od in orderdetail
where od.SalesOrderID == 43662
select od.UnitPrice;

listboxl.Items.Add (query.LongCount());

And here’s the example specifying a specific condition:

var query =
from od in orderdetail
where od.SalesOrderID == 43662
select od;

listboxl.Items.Add (query.LongCount (orderDetail => orderDetail.UnitPrice < 200));

Max

The Max operator returns the maximum value within a sequence. Like the Average operator, Max works
on many data types, including decimals, integers, and doubles.

The following example returns the maximum value from the list of provided integers:

List<int> quantity = new List<int> {99, 48, 120, 73, 101, 81, 56};
int cnt = quantity.Max();
listboxl.items.add (cnt) ;

The value returned is 120. This operator can also be applied to the following example, which returns the
maximum unit price of all the items for a specific order.

var query =
from od in orderdetail
where od.SalesOrderID == 43662

select od.UnitPrice;

listboxl.Items.Add (query.Max());
The value returned is 2146.9620. This query can also be written as follows:
var query =

from od in orderdetail
where od.SalesOrderID == 43662

66

Chapter 4: LINQ Standard Query Operators

select od;

listboxl.Items.Add (query.Max (orderDetail => orderDetail.UnitPrice));

There is no performance advantage between the two queries; their use is a matter of user preference
and readability.

Min
On the flip side is the Min operator, which returns the minimum value from a sequence. It also works on
many data types, including decimals, integers, and doubles.

The following example returns the minimum value from the list of provided integers:

List<int> quantity = new List<int> {99, 48, 120, 73, 101, 81, 56};
int cnt = quantity.Min();
listboxl.items.add(cnt) ;

The value returned from this example is 48. Here’s an example that returns the minimum unit price of
all the items for a specific order:

var query =
from od in orderdetail
where od.SalesOrderID == 43662
select od.UnitPrice;

listboxl.Items.Add (query.Min()) ;

The value returned from this query is 178.5808. The query can also be written like this:

var query =
from od in orderdetail
where od.SalesOrderID == 43662
select od;

listboxl.Items.Add (query.Min (orderDetail => orderDetail.UnitPrice));

Again, there’s no performance advantage between the two queries. It’s just a matter of preference
and readability.

Sum

The Sum operator calculates the sum of the selected values within a collection. It also works on many data
types, such as decimal, integers, and doubles.

The following example returns the sum of the given values from the list of provided integers:

List<int> quantity = new List<int> {99, 48, 120, 73, 101, 81, 56};
int cnt = quantity.Sum();
listboxl.items.add(cnt) ;

67

Part I: Introduction to Project LINQ

The value returned from this example is 578. Here’s an example that returns the sum of the unit prices
for all the items for a specific order:

var query =
from od in orderdetail
where od.SalesOrderID == 43662
select od.UnitPrice;

listboxl.Items.Add (query.Sum()) ;

The value returned from this query is 12955.4816. This query can also be written as the following;:

var query =
from od in orderdetail
where od.SalesOrderID == 43662
select od;
listboxl.Items.Add (query.Sum(orderDetail => orderDetail.UnitPrice));

Which query you use is a matter of preference. There’s no performance advantage between the two.

Set Operators

Set operators perform actions against elements or sequence sets, and then return a set. There are four
LINQ set query operators—Distinct, Union, Intersect, and Except.

Distinct

The Distinct operator removes duplicate values from a collection and returns distinct elements from
that collection (or sequence).

In the following example, the list contains 13 numbers ranging from 1 to 10; some of the numbers
(1, 7, and 9) repeat. Applying the distinct operator removes the duplicates and returns only the
distinct values.

List<int> quantity = new List<int> {1, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 9, 10};
IEnumerable<int> val = numbers.Distinct();
foreach (int num in val)

listboxl.Items.Add (num) ;

The results are

P WO oo Jo Ul i WDN B

68

Chapter 4: LINQ Standard Query Operators

To test this using LINQ, open a new query window in SQL Server Management Studio and select the
AdventureWorks database. Execute the following query:

SELECT SalesOrderDetailID, ProductID, UnitPrice
FROM Sales.SalesOrderDetail

WHERE SalesOrderID = 43662

ORDER BY UnitPrice

Your results would look like this:

Salesordetailid productid unitprice

44 722 178.5808
49 738 178.5808
47 726 183.9382
43 729 183.9382
32 730 183.9382
34 725 183.9382
41 732 356.898
48 733 356.898
50 766 419.4589
40 763 419.4589
46 760 419.4589
35 762 419.4589
36 765 419.4589
37 768 419.4589
30 764 419.4589
31 770 419.4589
33 754 874.794
39 756 874.794
42 758 874.794
51 755 874.794
45 749 2146.962
38 753 2146.962

Notice that the unitprice column contains some duplicate values. With LINQ, you can use the same
Distinct operator as used in the previous example. Here’s how:

var query =
from od in orderdetail
where od.SalesOrderID == 43662
select od.UnitPrice;

foreach (decimal num in query.Distinct())
listboxl.Items.Add (num) ;

Without the trailing decimal places, you get the following results:

178
183
356
419
874
2146

69

Part I: Introduction to Project LINQ

Union

The Union operator returns the unique elements from the results of a union of two sequences or collec-
tions. It is different from the concat operator in that it returns unique values, and the concat operator
returns all values.

The following example contains two lists (or data sources) that contain integer values. These lists do not
contain duplicate values. The Union operator is applied; it joins the two lists and returns only the unique
value in the resultset.

int[] numbersl = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ;
int[] numbers2 = { 11, 12, 13, 14, 15, 16, 17, 18, 19, 20} ;
IEnumerable<int> union = numbersl.Union (numbers2) ;

foreach (int num in union)
listBoxl.Items.Add (num) ;

The results from this query return the numbers 1 through 20. The next example also contains two lists of
numbers, but numbers that exist in the first list also exist in the second list, and the first list also contains
duplicate numbers (such as the numbers 1 and 9).

int[] numbersl = { 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10} ;
int[] numbers2 = { 1, 3, 5, 7, 9} ;

IEnumerable<int> union = numbersl.Union (numbers2) ;

foreach (int num in union)
listBoxl.Items.Add (num) ;

When the Union operator is applied in this example, the following results are returned:

P wW oo Jo Ul W

Intersect

70

The intersect operator returns the intersection of two sequences—that is, those values that are common
between two sequences or collections.

The following example uses two lists (or data sources) that contain integer values. Again, you can see
that there are numbers in the first list that also exist in the second list. The intersect operator is applied;
it joins the two lists and returns only those values that are common to both sequences.

int[] numbersl = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ;
int[] numbers2 = { 2, 4, 6, 8, 10} ;
IEnumerable<int> shared = numbersl.Intersect (numbers2) ;

Chapter 4: LINQ Standard Query Operators

foreach (int num in shared)
listBoxl.Items.Add (num) ;

The output is as follows:

= o o N

Except

The Except operator is the opposite of the intersect operator, in that it returns the difference between
two sequences—in other words, it returns values that are unique (not duplicated) in all of the values of
the sequences (values that appear in the first sequence but do not appear in the second). In other words,
it is ““the elements of sequence A less the elements of sequence B.”

int[] numbersl = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ;
int[] numbers2 = { 2, 4, 6, 8, 10} ;

IEnumerable<int> shared numbersl.Except (numbers?2) ;

foreach (int num in shared)
listBoxl.Items.Add (num) ;

The output is

O J Ul W

Generation Operators

Generation operators create new sequences from the values of existing sequences. The element generation
operators are discussed in this section.

Empty
The Empty operator returns an empty collection that has a specified type. In the following example, three
lists of names are defined and added to an array list. The Aggregate operator is applied to gather values

from the array list if the array contains more than two elements. The Empty operator is then used to
provide an empty collection if the criteria is not met (that is, if no arrays have more than two elements).

string[] namel = { "Scott", "Steve"} ;
string[] name2 = { "Joe", "John", "Jim", "Josh", "Joyce"}
string[] name3 = { "Dave", "Dinesh", "Doug", "Doyle"}

List<string[]> names = new List<string[]> { namel, name2, name3} ;

IEnumerable<string> namelist = names.Aggregate (Enumerable.Empty<string> (),
(current, next) => next.Length > 2 ? current.Union(next) : current);

71

Part I: Introduction to Project LINQ

foreach (string item in namelist)
listBoxl.Items.Add(item) ;

When this query is run, the following results are returned because two of the arrays have more than two
elements:

Joe
John
Jim
Josh
Joyce
Dave
Dinesh
Doug
Doyle

Change the query so that it is looking for arrays that have more than five elements, as shown below:

IEnumerable<string> namelist = names.Aggregate (Enumerable.Empty<string> (),
(current, next) => next.Length > 5 ? current.Union(next) : current);

When the query is run now, nothing is returned. Or better said, an empty collection is returned. You can
tell this by placing a breakpoint on the foreach statement. When the query is run, the execution does
indeed step into the foreach statement, letting you know that an empty collection was returned, but the
line that adds items to the list box is not hit or executed.

The Empty operator is basically used as a seed value for the aggregate operator if the criteria is not met.

Range

72

The Range operator creates a collection that contains a sequence of numbers. It takes two parameters.
The first is the integer value at which to start the sequence, and the second is the number of sequential
integers to generate.

Here’s an example in which the Range operator is used to generate a sequence of numbers starting at 1
and stopping at 10:

var coolmath = Enumerable.Range(l, 10);

for each (int num in coolmath)
listboxl.Items.Add (num) ;

The results are

WO oo ~Jo i WN P

Chapter 4: LINQ Standard Query Operators

Other operators can be added to this as well. The following example generates a list of numbers from 1
to 10 but also uses the Reverse operator to generate them backward.

var coolmath = Enumerable.Range(l, 10).Reverse();

for each (int num in coolmath)
listboxl.Items.Add (num) ;

The results are

o

PN W U1l oy J 0 WO

In the next example, the Range operator is used to create a sequence of numbers from 1 to 5 and then
multiply each number by 5:

var coolmath = Enumerable.Range(l, 5).Select(x => x * 5);
for each (int num in coolmath)
listboxl.Items.Add (num) ;

The results are as follows:

10
15
20
25

Repeat

The Repeat operator creates a single value sequence that repeats itself a specified number of
times. The following example creates a sequence of a single string value and repeats that string
10 times:

var coolphrase = Enumerable.Repeat ("LINQ ROCKS!", 10);

for each (string phrase in coolphrase)
listboxl.Items.Add (phrase) ;

The result of this query is the phrase “LINQ ROCKS!"” output 10 times to the list box.

Conversion Operators

Conversion refers to the act of changing the type of input objects to the sequence. The conversion
operators do just this, and they are discussed in this section.

73

Part I: Introduction to Project LINQ

AsEnumerable

The AsEnumerable operator returns the query input typed as IEnumerable (Of T), meaning that you can
change the data source from a type that implements IEnumerable (Of T) to IEnumerable (Of T) itself.

The following example uses the AsEnumerable operator to replace the type’s custom Where method with
that of the standard query operator ihere.

DataContext context = new DataContext ("Initial Catalog=AdventureWorks;@@ta
Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

IEnumerable<Contact> query =
contact.AsEnumerable () .Where(con => con.FirstName.Contains ("K"));

foreach (Contact item in query)
listBoxl.Items.Add(item.FirstName) ;

The results of this query contain all the contact first names that contain the letter K. Here are
partial results:

Kim
Keyley
Karel
Karen
Kris
Kevin

In this example, the System.Query.Sequence implementation of where is utilized, but in the next
example, the where () method with a predicate is used:

IEnumerable<Contact> query = contact.Where(=> con.FirstName.Contains("K"));

Cast

74

The cast operator casts the element of an IEnumerable collection to a specified type. The benefit of this
is that by supplying necessary type information, you can invoke standard query operators on nongeneric
collections.

The following example uses an ArrayList as a data source. An ArrayList does not implement
IEnumerable (Of T), but by using the Cast operator you can use the standard query operators, such
as Select, to query the sequence.

ArrayList names = new ArrayList();

names.Add ("Alex") ;
names.Add ("Chuck") ;
names.Add ("Dave") ;
names.Add ("Dinesh") ;
names.Add ("Joe") ;
names.Add ("John") ;
names.Add ("Sarah") ;

Chapter 4: LINQ Standard Query Operators

names.Add ("Steve") ;
IEnumerable<string> query = names.Cast<string> ().Select(name => name) ;

foreach (string item in query)
listBoxl.Items.Add(item) ;

OfType

The 0fType operator enables you to filter elements of an IEnumerable object based on a specific type. In
the following example, the 0fType operator returns only those elements in the sequence that can be cast

to a type of int:
ArraylList names = new ArrayList(7);
names .Add ("Scott") ;
names.Add (1) ;
names .Add ("Dave") ;
names.Add (2) ;
names .Add ("Dave") ;
(
(
(
(

i

names .Add (3

)
names.Add ("Steve") ;
names.Add (4) ;
names.Add ("Joe") ;

IEnumerable<int> query = names.OfType<int>();
foreach (int item in query)
listBoxl.Items.Add(item) ;

Here are the query’s results:

(=SOSR SO I

By using the 0fType operator on an IEnumerable object, you have the capability to apply and use stan-
dard query operators to query the sequence.

ToArray

The ToArray operator creates an array from an IEnumerable sequence. You may remember from pre-
vious chapters that the ToArray operator forces immediate execution of the query. In the following
example, ToArray is used to query the first names from the Person.Contact table and return the results
as an array:

DataContext context = new DataContext("Initial Catalog =
AdventureWorks; Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact> () ;
var query = contact.Select(con => con.FirstName) .ToArray () ;

foreach (string item in query)
listBoxl.Items.Add(item) ;

75

Part I: Introduction to Project LINQ

The following lists partial results of running this query:

Gustavo
Catherine
Kim
Humberto
Pilar
Frances
Margeret
Carla
Jay

ToDictionary

The ToDictionary operator inserts all the elements returned in the sequence into a Dictionary (Of TKey,
TValue). The following example uses the ToDictionary operator to create and populate a Dictionary (0f
TKey, TValue)and then iterate through that dictionary to populate a list box.

DataContext context = new DataContext("Initial Catalog =
AdventureWorks; Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact> () ;
Dictionary<string, Contact> dict = contact.ToDictionary(con => con.FirstName) ;

foreach (KeyValuePair<string, Contact> item in dict)
listBoxl.Items.Add(item.Key + " " + item.Value.FirstName + " " +
item.Value.LastName) ;

The following list shows the partial results of running this query:

Gustavo Achong
Catherine Abel
Kim Abercrombie
Humberto Acevedo
Pilar Ackerman
Frances Adams
Margeret Smith
Carla Adams

0o ~J o Ul W N

TolList

The ToList operator converts an IEnumerable sequence collection to a List (0f T). It also forces imme-
diate execution of the query. The following code uses the ToList operator to query the first names from
the Person.Contact table and return the results as a List (0f T).

DataContext context = new DataContext("Initial Catalog =
AdventureWorks; Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact> () ;

var query = (from ¢ in contact
select c.FirstName).ToList();

76

Chapter 4: LINQ Standard Query Operators

foreach (string item in query)
listBoxl.Items.Add(item) ;

ToLookup

The ToLookup operator puts the returned elements into a Lookup (0f Tkey, TElement), based on a speci-
fied key. A Lookup is a collection of keys, each of which is mapped to one or more values; you can think
of it as a one-to-many dictionary.

The following example uses the ToLookup operator to create and populate a Lookup (Of TKey,
TElement)and then iterate through that Lookup to populate a list box.

DataContext context = new DataContext ("Initial Catalog =
AdventureWorks; Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact> () ;
Lookup<string, string> lkp = contact.ToLookup(con => con.FirstName,
con => con.MiddleName + " " + con.LastName) ;

foreach (IGrouping<string, string> lkpgrp in 1lkp)
{
listBoxl.Items.Add (lkpgrp.Key) ;

foreach (string item in lkpgrp)
listBoxl.Items.Add (" "+ item);

In this example, a Lookup is created, and contacts’ first, middle, and last names are used to populate the
Lookup, using the contact’s last name as a key.

Contacts are then grouped by last name, selecting the contact first name and middle name (appended
together), and returned as the element values of the Lookup. An instance of the IGrouping object is then
created and used to iterate through in the Lookup, writing the key value (the last name), then iterating
though each value in the IGrouping and writing those values (the first and middle names).

Here’s a partial list of the results written to the list box:

Gustavo
Achong
Camargo

Catherine
R. Abel
M.Whitney
J Brooks
Kelly
Sanders
Peterson

Element Operators

Element operators return a single, specific element from a sequence. The element operators are discussed
in this section.

77

Part I: Introduction to Project LINQ

DefaultifEmpty

The DefaultIfEmpty operator replaces an empty collection with collection that contains a default single-
ton value. It can be used to return a default value in case the sequence returned is empty and you still
need something returned.

The following example queries the Contact table looking for all contacts whose first name begins with
the letter Z. You know from previous examples that this query will return some values; however, the
DefaultIfEmpty operator is used in case an empty sequence is returned.

DataContext context = new DataContext ("Initial Catalog = AdventureWorks;Integrated
Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

var query = from c in contact
where c.FirstName.StartsWith("z")
select c.FirstName;

foreach (string item in query.DefaultIfEmpty())
listBoxl.Items.Add(item) ;

When the query is executed, all first names that begin with the letter Z are returned. Modify the query,
changing the criteria to look for first names that begin with the letters ZZ:

var query = from c in contact
where c.FirstName.StartsWith("zz")
select c.FirstName;

foreach (string item in query.DefaultIfEmpty ("none"))
listBoxl.Items.Add(item) ;

When this query runs, it does not find any first names that begin with the letters ZZ, so nothing will be
returned, and the DefaultIfEmpty operator instructs the query to produce an empty sequence.

Just as a reminder: reference and nullable types have a default value of null.

ElementAt

The ElementAt operator returns an element at a given index from a collection. The collection is zero-based
and the return value is the element at the specified position in the source. In the following example, the
Contact table is queried looking for all contacts whose first name begins with the letter S. However, the
ElementAt operator is utilized to return the element at the first position by passing the value of 0 as a
parameter to the ElementAt operator.

DataContext context = new DataContext ("Initial Catalog = AdventureWorks;Integrated
Security=sspi");

Table<Contact> contact = context.GetTable<Contact> () ;

var query = from c¢ in contact
where c.FirstName.StartsWith("S")
select c.FirstName;

listBoxl.Items.Add (query.ElementAt (0));

78

Chapter 4: LINQ Standard Query Operators

Running this query will return the following;:

Zheng

Be careful not to pass an index that is out of range; otherwise, the method throws an index out of range
error. If you're not sure of the index, use the ElementAtOrDefault. operator.

ElementAtOrDefault

The ElementAtOrDefault operator combines the ElementAt operator with some of the functionality of
the DefaultIfEmpty operator by returning the element at a specified index or a default value if the index
is out of range.

In the following example, the ElementAtOrDefault operator returns the element at index 50,000 (there
are slightly fewer the 20,000 contacts):

DataContext context = new DataContext ("Initial Catalog = AdventureWorks;Integrated
Security=sspi");

Table<Contact> contact = context.GetTable<Contact> () ;
var query = from ¢ in contact
where c.FirstName.Startswith("S")

select c.FirstName;

listBoxl.Items.Add (query.ElementAtOrDefault (50000)) ;

When this query is executed, it tries to return the value at the specified index; when it does not find an
element at that index, it returns a default value of 0.

First

As its name suggests, the First operator returns the first element in a collection. Here’s an example that
queries the Contact table looking for all contacts whose first name begins with the letter S. The First
operator returns the first element from the resulting collection.

DataContext context = new DataContext ("Initial Catalog = @@ta
AdventureWorks; Integrated Security=sspi");
Table<Contact> contact = context.GetTable<Contact> () ;
var query = from c in contact
where c.FirstName.StartswWith("S")

select c.FirstName;

listBoxl.Items.Add(query.First());

This method throws an exception if the source sequence contains no elements. Use the FirstOrDefault
operator if there is a possibility that the source might be empty.

You can also add specific criteria when using this operator. The following code returns the first element
that satisfies a specific condition, the first name whose length is greater than 5.

listBoxl.Items.Add(query.First (name => name.Length > 5));

79

Part I: Introduction to Project LINQ

Last

The opposite of the First operator, the Last operator returns the last element in a collection. Here the
Contact table is queried looking for all contacts whose first name begins with the letter S, and the Last
operator returns the last element from the returned collection:

DataContext context = new DataContext ("Initial Catalog = @@ta
AdventureWorks; Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact> () ;

var query = from ¢ in contact
where c.FirstName.StartsWith("S")
select c.FirstName;

listBoxl.Items.Add(query.Last());

You can also add specific criteria when using this operator. For instance, the following returns the last
element that satisfies a specific condition, the first name whose length is less than 5:

listBoxl.Items.Add(query.Last (name => name.Length < 5));

FirstOrDefault

The FirstOrDefault operator returns the first element from a collection or, if no element is found, a
default value. The following example queries the Contact table looking for all contacts whose first name
begins with the letters ZZ, and the FirstOrDefault operator returns the first element from the returned
collection. If the element is not found, a default value is returned. The default value is defined as the first
element that is found that meets the query condition(s).

DataContext context = new DataContext ("Initial Catalog=AdventureWorks;Integrated
Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();
var query = from c in contact

where c.FirstName.StartsWith("zZz")

select c.FirstName;

listBoxl.Items.Add(query.FirstOrDefault());

You can also add specific criteria when using this operator. The following, for instance, returns
the first element that satisfies a specific condition, the first name whose length is greater
than 5:

listBoxl.Items.Add (query.FirstOrDefault (name => name.Length > 5));

LastOrDefault

The LastOrDefault operator returns the last element from a collection, or a default value if no element
is found. Here’s another example that queries the Contact table for all contacts whose first name begins
with the letters ZZ. It uses the LastOrDefault operator to return the last element from the returned
collection. If the element is not found then a default value is returned.

80

Chapter 4: LINQ Standard Query Operators

DataContext context = new DataContext ("Initial Catalog=AdventureWorks;Integrated
Security=sspi");

Table<Contact> contact = context.GetTable<Contact> () ;
var query = from c in contact
where c.FirstName.StartsWith("zz")

select c.FirstName;

listBoxl.Items.Add (query.LastOrDefault());

You can also add specific criteria when using this operator, such as the following, which returns the last
element that satisfies a specific condition, the first name whose length is less than 5.

listBoxl.Items.Add (query.LastOrDefault (name => name.Length < 5));

Single

The single operator returns a single element from a sequence, or the only element that meets a given
condition. This operator should be used if you know that your query will return a single element. If the
sequence returns multiple elements and this operator is used, an exception is thrown.

The following example queries the Contact table for all contacts whose last name equals “’Kobylinski,”
and if any are found, returns the contact’s first name. The Single operator returns the single element
from the returned collection.

DataContext context = new DataContext ("Initial Catalog=AdventureWorks;Integrated
Security=sspi");

Table<Contact> contact = context.GetTable<Contact> () ;
var query = from ¢ in contact
where c.LastName.Equals ("Kobylinski")

select c.FirstName;

listBoxl.Items.Add (query.Single());

When this query runs, the name Andrew is written to the list box, because that’s the only contact with
the last name of Kobylinski. Now change the query to the following and rerun it.

var query = from c¢ in contact

where c.LastName.Equals("Kleinerman")
select c.FirstName;

When this query executes, you receive the error that the sequence contains more than one element
because there are two contacts whose last name equals “Kleinerman.”

You can also specify criteria to this operator as a parameter, as shown in this example:

var query2 = from c¢ in contact
select c.LastName;

listBoxl.Items.Add (query2.Single(con => con.Equals ("Kobylinski")));

81

Part I: Introduction to Project LINQ

SingleOrDefault

Similar to the single operator, the SingleOrDefault operator returns a single element from a sequence,
but it also returns a default value if no element is found. Again, use this operator only if you know
that your query will return a single element or that the element will be null when returned. If you use
SingleOrDefault and the sequence returns multiple elements, an exception is thrown.

Here’s a query to the Contact table looking for all contacts whose last name equals “Kobylinski”” and,
if any are found, returning the contact’s first name. The singleOrDefault operator returns the single
element from the returned collection.

DataContext context = new DataContext ("Initial Catalog=AdventureWorks;Integrated
Security=sspi");

Table<Contact> contact = context.GetTable<Contact> () ;
var query = from c in contact
where c.LastName.StartsWith ("Kobylinski")

select c.FirstName;

listBoxl.Items.Add(query.SingleOrDefault());

When this query runs, the name Andrew is written to the list box, because that’s the only contact who
has the last name of Kobylinski. Change the query to the following and rerun the query:

var query = from c in contact
where c.LastName.Equals ("Kleinerman")
select c.FirstName;

When this query executes, you get an error stating that the sequence contains more than one element
because there are two contacts whose last name equals “’Kleinerman.”

You can also specify criteria to this operator as a parameter, as shown here:

var query2 = from c in contact
select c.LastName;

listBoxl.Items.Add(query2.SingleOrDefault (con => con.Equals("Kobylinski")));

Equality Operators

82

Equality operators compare two sequences to check if their corresponding elements are equal. Sequences
are considered equal if they have the same number of elements and the values of the elements are
the same.

The sequenceEqual operator determines if two collections are equal. The determination is done by enu-
merating the two data sources in parallel and comparing elements. The return value is a Boolean—true
if the two collections are equal, false if they are not.

Chapter 4: LINQ Standard Query Operators

In the following example, the code returns true to the list box because the two integer arrays are defined

as equal:
int[] numbersl = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ;
int[] numbers2 = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ;
bool eqg = numbersl.SequenceEqual (numbers?2) ;

listBoxl.Items.Add(eq) ;

Change the second array to the following, and rerun the code:
int[] numbersl = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ;
int[] numbers2 = { 2, 4, 6, 8, 10} ;

bool eqg = numbersl.SequenceEqual (numbers2) ;
listBoxl.Items.Add(eq) ;

This time a value of false is written to the list box because the comparison determined that the data
sources were not equal.

Quantifier Operators

Quantifier operators return a Boolean value that indicates whether some or all of the elements in a
sequence meet a specific condition.

The quantifier operators—a11, Any, and Contains—are discussed in this section.

All

The 211 operator determines whether all the values in a collection satisfy a specified condition. The return
value is a Boolean—true if all the values satisfy the condition, false if they do not.

Here, for example, an array of names is defined and the 211 operator is applied, specifying the condition
that all the names begin with the letter J:

Names[] friends = {new Names { Name = "Steve"},
new Names { Name = "Dave"},
new Names { Name = "Joe"},
new Names { Name = "John"},
new Names { Name = "Bill"},

Y
bool firstnames = friends.All (name => name.Name.StartsWith("J"));
listBoxl.Items.Add(firstnames) .ToString() ;

Obviously, not all names begin with the letter], so the value of false is written to the list box. In the next
example, the same code and condition exist, except that the array contains only names that begin with
the letter J:

Names[] friends = {new Names { Name = "Jeff"}
new Names { Name = "Jordan"},
new Names { Name = "Joe"},
new Names { Name = "John"},

83

Part I: Introduction to Project LINQ

new Names { Name = "Jim"},

Y
bool firstnames = friends.All (name => name.Name.StartsWith("J"));

listBoxl.Items.Add(firstnames) .ToString() ;

This time, true is written to the list box. The following example uses data retrieved from the
SalesOrderDetail table in the AdventureWorks database, applying the A11 operator to determine if
all of the unit prices in the table are greater than zero:

DataContext context = new DataContext ("Initial Catalog = AdventureWorks;Integrated
Security=sspi");

Table<SalesOrderDetail> orderdetail = context.GetTable<SalesOrderDetail> () ;
var query =

from od in orderdetail

where od.SalesOrderID == 43662

select od.UnitPrice;

listBoxl.Items.Add(query.All (orderDetail => orderDetail.UnitPrice > 0));

The value of true will be written to the list box because there are no rows in the table whose unitprice
column contains a value of 0.

Any

The Any operator determines if any of the values in a collection satisfy a specified condition or if the
sequence contains any elements. The return value is a Boolean—true if all the values satisfy the condi-
tion, false if they do not.

In the following example, the Contact table is queried, returning a sequence of first names whose last
name starts with the letter Z. The Any operator is applied to the sequence to determine if the sequence
contains any elements that meet the specified condition.

DataContext context = new DataContext ("Initial Catalog=AdventureWorks;Integrated
Security=sspi");

Table<Contact> contact = context.GetTable<Contact> () ;
var query = from c¢ in contact
where c.LastName.StartsWith("zZ")

select c.FirstName;

listBoxl.Items.Add (query.Any());

When this query is run, a value of true is written to the list box because there is at least one contact
whose last name starts with the letter Z.

84

Chapter 4: LINQ Standard Query Operators

This operator can also be used to determine if any element of a sequence satisfies a given condition:
//satisfies a condition
var query = from c¢ in contact

select c.FirstName;

listBoxl.Items.Add(query.Any(con => con.LastName.StartsWith("z")));

Both of these queries return the same thing, as you can see. However, there is no performance benefit of
one over the other, except for better readability of the code.

When this query is run, a value of true is written to the list box because there is at least one contact
whose last name starts with the letter Z.

Contains

The Contains operator determines whether the returned collection contains a specific element. The return
value is a Boolean—true if all the values satisfy the condition, false if they do not.

The following example queries the Contact table, returning a sequence of last names. The
Contains operator is applied to determine if the sequence contains an element of
“Kleinerman.”

DataContext context = new DataContext ("Initial Catalog=AdventureWorks;Integrated
Security=sspi");

Table<Contact> contact = context.GetTable<Contact> () ;

var query = from ¢ in contact
select c.LastName;

listBoxl.Items.Add(query.Contains ("Kleinerman")) ;

Because the contact table does contain at least one row whose last name is Kleinerman, the value of true
is returned and written to the list box.

You can also use a comparer as follows:

DataContext context = new DataContext ("Initial Catalog=AdventureWorks;Integrated
Security=sspi");

Table<Contact> contact = context.GetTable<Contact> () ;
string name = "Kleinerman"

var query = from ¢ in contact
select c.LastName;

listBoxl.Items.Add (query.Contains (name)) ;

85

Part I: Introduction to Project LINQ

Partitioning Operators

Partitioning is the act of dividing a single input sequence into two or more sections or sequences without
rearranging the incoming elements, then returning one of the newly formed sections.

The partitioning operators—skip, skipwhile, Take, and TakeWhile—are discussed in this section.

Skip
The Skip operator skips elements up to a specified location within a sequence. In other words, it bypasses
the specified number of elements and returns the remaining elements.

The following example defines a random set of numbers, orders them in ascending order, then uses the
Skip operator to skip the first four and return the remaining.

Int[] randomNumbers = {86, 2, 77, 94, 100, 65, 5, 22, 70};
IEnumerable<int> skipLowerFour =
randomNumbers .OrderBy (num => num) .Skip(4) ;

foreach (int number in skipLowerFour)
listboxl.Items.Add (number) ;

When this query is run, the following numbers are returned:

70
77
86
94
100

This example could also be written using query syntax as follows:

IEnumerable<int> skipLowerFour =
(from n in randomNumbers
order by n
select n).Skip(4)

SkipWhile

The skipwhile operator skips or bypasses elements based on a specified predicate function, and contin-
ues to bypass the elements as long as the specified condition is true (i.e., the condition is not met). The
remaining elements are then returned.

The following example skips all the values in the sequence that are less than 50 and returns the
remaining values.

Int[] randomNumbers = {86, 2, 77, 94, 100, 65, 5, 22, 70, 55, 81, 66, 45};
IEnumerable<int> skipLessThan50 =
randomNumbers .OrderBy (num => num) .SkipWhile (num =>

num < 50);

foreach (int number in skipLowerFour)
listboxl.Items.Add (number) ;

86

Chapter 4: LINQ Standard Query Operators

When this query is run, the following numbers are returned:

55
65
66
70
77
81
86
94
100

Likewise, this example could also be written using query syntax as follows:

IEnumerable<int> skipLowerFour =
(from n in randomNumbers
order by n
select n).SkipWhile (num => num < 50);

Take

The Take operator returns contiguous elements within a sequence, starting at the beginning of the
sequence, up to the position specified.

The following example skips all the values in the sequence that are less than 50 and returns the
remaining values.

Int[] randomNumbers = {86, 2, 77, 94, 100, 65, 5, 22, 70, 55, 81, 66, 45};

IEnumerable<int> takeTopFour =
randomNumbers .OrderByDescending (num => num) .Take (4) ;

foreach (int number in takeTopFour)
listboxl.Items.Add (number) ;

When this query is run, the following numbers are returned:

100
94
86
81

This example could also be written using query syntax as follows:

IEnumerable<int> takeTopFour =
(from n in randomNumbers
order by n descending
select n).Take(4);

TakeWhile

The Takewhile operator returns elements based on a specified predicate function, and continues to take
the elements as long as the specified condition is true (i.e., the condition is not met). The remaining
elements are skipped.

87

Part I: Introduction to Project LINQ

The following example takes all the values in the sequence that are less than 50 and skips the
remaining values.

Int[] randomNumbers = {86, 2, 77, 94, 100, 65, 5, 22, 70, 55, 81, 66, 45};

IEnumerable<int> takeGreaterThan50 =
randomNumbers .OrderByDescending (num => num) .TakeWhile (num => num > 50);

foreach (int number in takeGreaterThan50)
listboxl.Items.Add (number) ;

When this query is run, the following numbers are returned:

100
94
86
81
77
70
66
65
55

This example could also be written using query syntax as follows:

IEnumerable<int> takeGreaterThan50 =
(from n in randomNumbers
order by n descending
select n).TakeWhile (num => num > 50);

As an interesting experiment, try modifying the original query as follows and executing it:

IEnumerable<int> takeGreaterThan50 =
randomNumbers .OrderBy (num => num) .TakeWhile (num =>
num > 50);

Was anything returned? Why not? As stated earlier, it returns elements based on a specified predicate
function, and continues to take the elements as long as the specified condition is true. If you order the
sequence in ascending order, the first element it finds does not meet the criteria and therefore the query
does not continue.

Putting Query Operators to Work

88

There was a ton of information in this chapter, so this section provides an example that enables you
to apply many of the operators you've seen and to begin experimenting with the great functionality
provided by the LINQ query operators.

Fire up an instance of Visual Studio 2008 and create a new C# Windows Forms Application project. In
the Solution Explorer, expand the References node, right-click on it, and select Add Reference from the
context menu. In the Add Reference dialog opens, make sure that the .NET tab is selected, and scroll
down the list until you see the System.Data.Ling component. Select that component and click OK.

Chapter 4: LINQ Standard Query Operators

Next, open Forml in design view and place two buttons and a list box on the form. Name one of the
buttons cmdExecuteQuery and the other cmdclose. Then view the code behind the form and replace the
existing code with the following (this code can also be obtained from the Chapter 4 example in the file
download for this chapter):

using System;

using System.Ling;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Data.Ling;

using System.Drawing;

using System.Text;

using System.Windows.Forms;
using System.Xml;

namespace LINQ
{
public partial class Forml : Form
{
public Forml ()
{

InitializeComponent () ;

private void Forml_Load(object sender, EventArgs e)
{
}

private void cmdClose_Click(object sender, EventArgs e)

{
Application.Exit();

private void cmdExecuteQuery_Click(object sender, EventArgs e)
{
DataContext context = new DataContext ("Initial @@ta
Catalog=AdventureWorks; Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact> () ;
Table<Employee> employee = context.GetTable<Employee> () ;

var query =
from ¢ in contact
join emp in employee on c.ContactID equals emp.ContactID
where c.FirstName.StartsWith("sS")
&& emp.HireDate.Year > 1999
orderby c.LastName
orderby c.FirstName
select new { emp.EmployeeID, c.LastName, c.FirstName, @@ta
emp.Title, c.EmailAddress, emp.HireDate };//.Thenby(c => c.FirstName) ;

foreach (var item in query)
listBoxl.Items.Add(item.FirstName

89

Part I: Introduction to Project LINQ

+ " " + item.LastName
+ " " + item.Title
+ " " + item.EmailAddress
+ " " + item.HireDate) ;
}
}
[Table (Name = "Person.Contact")]

public class Contact

{
[Column (DBType = "int not null")]
public int ContactID;

[Column (DBType = "nvarchar (8) not null")]
public string Title;

[Column (DBType = "nvarchar(50) not null")]
public string FirstName;

[Column (DBType = "nvarchar (50) not null")
public string MiddleName;

[Column (DBType = "nvarchar(50) not null")]
public string LastName;

[Column (DBType = "nvarchar (50) not null")]
public string EmailAddress;

[Column (DBType = "int")]
public int EmailPromotion;

[Table (Name = "HumanResources.Employee")]
public class Employee
{
[Column (DBType = "int not null")]
public int ContactID;

[Column (DBType = "int")]
public int EmployeelD;

[Column (DBType = "nvarchar (50) not null")]
public string Title;

[Column (DBType = "datetime")]
public DateTime HireDate;

20

Chapter 4: LINQ Standard Query Operators

This example creates object-relational mappings to two tables in the AdventureWorks database from
which the data for the queries will be pulled. When the OK button is clicked, a connection is made to the
appropriate database, and the data sources are defined.

Several operators—join, restriction, and sorting operators, for instance—are used in the query expres-
sion. Once the query expression is defined, the query is executed by iterating through the sequence or
collection, and the results are written to the form’s list box.

The Employee and Contact tables are joined by creating a join on the ContactID column. Several columns
between the two tables are projected (selected as elements for return values) and a filter is applied looking
for all contacts whose first name begins with the letter S and whose hire date is after the year 1999. A sort
is applied, ordering the results by last name, sorted in ascending order.

When this query is run, the following results are returned (a portion of the data has been left out for
space considerations):

Sandeep Kaliyath Production Technician - WC40
Sharon Salavaria Design Engineer

Sheela Word Purchasing Manager

Shu Ito Sales Representative

Sootha Charncherngkha Quality Assurance Technician
Stephen Jiang North American Sales Manager

Stuart Macrae Janitor

Syed Abbas Pacific Sales Manager

Sylvester Valdez Production Technician - WC20

While this example is fairly simple, it does provide a great foundation. You can modify it by applying
many of the operators discussed in this chapter.

Let’s modify this example a little bit. Add a second button to the form, name it cmdMethodSyntax, and
place the following code in the c1lick () event of that button.

DataContext context = new DataContext ("Initial @@ta
Catalog=AdventureWorks; Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();
Table<Employee> employee = context.GetTable<Employee> () ;

var query =

contact.Join(employee, con => con.ContactID,

emp => emp.ContactID, (con, emp) =>

new { con = con, emp = emp})

.Where(c => c.con.FirstName.StartsWith("S"))

.Where(c => c.emp.HireDate.Year > 1999)

.OrderBy (c => c.con.LastName)

.OrderBy(c => c.con.FirstName)

.Select (o => new

{ o.emp.EmployeeID, o.con.LastName, o.con.FirstName,
o.emp.Title, o.con.EmailAddress, o.emp.HireDate});

foreach (var item in query)

921

Part I: Introduction to Project LINQ

listBoxl.

+

+
+
+

Items.Add (item.FirstName

+

+
+
+

item
item
item
item

.LastName
.Title
.EmailAddress
.HireDate) ;

This code accomplishes the exact same thing as the preceding code, but uses method syntax. This example
is here to illustrate the different ways you can use the LINQ standard query operators.

Summary

This chapter introduced you to LINQ’s standard query operators. Without them, LINQ doesn’t happen.
The chapter provides you with a good foundation in and understanding of their functionality, which will
be helpful because the rest of this book utilizes the information found in this chapter.

The next four chapters take a look at LINQ to XML, a new approach to programming with XML.

92

Part Il
LINQ to XML

Chapter 5: Understanding LINQ to XML

Chapter 6: Programming with LINQ to XML

Chapter 7: LINQ to XML and Other LINQ Data Models
Chapter 8: Advanced LINQ to XML Programming Topics

Chapter 9: LINQ to XML and Visual Basic .NET

Understanding LINQ to XML

XML is becoming more and more mainstream. It's being used in databases (I love that!),
configuration files, and throughout the Web, and is becoming a more popular mechanism for
formatting your day-to-day data such as spreadsheets and documents.

Until now, working with XML has been somewhat frustrating because of the many different
technologies available to developers to work with XML. There’s the DOM (Document Object
Model), which provides a standardized interpretation of an XML document. You also have XPath
and XSLT, which afford the ability to query and format XML. Within the .NET Framework you
have the system.xml namespace, which makes available a programmatic representation of XML
documents and mechanisms for manipulating XML documents, nodes, and XML fragments.

There is a need to improve the way developers work with XML, and LINQ to XML is the answer.
The first four chapters provided the foundation for the rest of this book, presenting the basic
principles of LINQ and its different components, such as the standard query operators. This
information is extremely vital to LINQ to XML because it helps developers work with and program
XML using LINQ to XML.

This chapter provides an introductory look at LINQ to XML, exploring the fundamentals and
concepts that programmers need to comprehend when working with LINQ to XML. It includes the
following:

Q An overview of LINQ to XML

QO Programming fundamentals of LINQ to XML

0O Programming concepts of LINQ to XML

QO A comparison of LINQ to XML and other XML technologies

LINQ to XML Overview

LINQ to XML is a new approach to working with XML. In essence, it takes many of the technologies
you use today to work with XML, such as the DOM and XPath, and combines them into a single
programming interface directly within the .NET Framework. LINQ to XML provides in-memory

Part 1l: LINQ to XML

document modification capabilities of the DOM, while providing querying capabilities equal to those of
XPath via LINQ query expressions.

Any programming language that supports the NET Framework supports LINQ. LINQ to XML is “LINQ-
enabled,” meaning that you have access to all of the functionality of LINQ, such as the standard query
operators and the LINQ programming interface. Because of its integration into the .NET Framework,
LINQ to XML can take advantage of .NET Framework functionality, such as compile-time checking,
strong typing, and debugging.

As stated previously, LINQ to XML provides much of the functionality found in today’s XML
technologies, but it does so from within a single programming interface. Using LINQ to XML you can
easily load XML documents into memory and just as easily query and modify the documents. You can
also save in-memory XML documents to disk, as well as serialize them for routing over the wire.

The great thing about LINQ to XML (and LINQ in general) is that it makes working with XML much
simpler, and therefore developers who do not have a whole lot of experience with XML can jump right
in. LINQ to XML provides developers of all levels the capability to easily work with XML. For those who
are somewhat new to working with XML, LINQ to XML provides a simple but powerful query experience
(instead of their having to learn a more complex XML query language). More-advanced developers can
use LINQ to XML to enhance their XML programming by writing less code that is just as powerful,
easier to read, and much more expressive. The key is that LINQ to XML is not targeted to a specific level
of developer—it can be used by any developer who needs to work with XML.

LINQ to XML is provided via the System.Xml.Ling namespace, which contains all of the classes
necessary to work with XML. Add a reference to System.Xml.Ling.dl1 to your project, and then place
a using directive in the declarations section of your code, as follows:

using System.Xml.Ling;

Adding this directive enables the use of LINQ to XML types in the namespace. If you plan to work with
relational data, you need to use System.Data.Ling as well.

LINQ to XML Programming Fundamentals

As Chapter 2, “A Look at Visual Studio 2008, explained, LINQ (and therefore LINQ to XML) utilizes
generic classes quite heavily. Therefore, it is quite helpful to have an understanding of generics and
delegates as you get into LINQ and LINQ to XML.

The component that gives LINQ to XML its power is the System.Xml.Ling namespace and its
corresponding classes. Those classes provide the capability to work with XML with ease, leaving behind

the need to work with complex and sometimes cumbersome technologies such as the DOM and XQuery.

The following sections provide an overview of the classes in the System.Xml.Ling namespace, and then
detailed discussions of the XxDocument, XElement, and XAttribute classes.

LINQ to XML Classes

The system.xml.Ling namespace contains 19 classes, which are described in the following table.

96

Chapter 5: Understanding LINQ to XML

Class Description

XAttribute Represents an XML attribute.

XCData Represents a CDATA text node.

XComment Represents an XML comment.

XContainer An abstract base class representing nodes that have
child nodes.

XDeclaration Represents an XML declaration.

XDocument Represents an XML document. This class is derived from the
XContainer class.

XDocumentType Represents an XML DTD (document type definition).

XElement Represents an XML element. This class is derived from the
XContainer class.

XName Represents the name of an XML element or attribute.

XNamespace Represents an XML namespace.

XNode An abstract class representing nodes of an XML element tree.

XNodeDocumentOrderComparer

XNodeEqualityComparer

XObject

XObjectChange

XObjectChangeEventArgs

XObjectChangeEventHandler

XProcessingInstruction

XText

Provides mechanisms for node comparisons regarding their
order within the XML document.

Provides mechanisms for node comparisons regarding their
equality value.

An abstract class representing XNodes and xAttributes.
The event type when an XObject event is raised.

Provides information and data for the Changing and
Changed events.

The method that will handle the XObject’s Changed and
Changing events.

Represents an XML processing instruction.

Represents an XML text node.

If you have done any programming with XML before, you are familiar with XML declarations. An
XML declaration specifies the XML version, the encoding of an XML document, and whether the XML
document is a standalone document. LINQ to XML lets you do this quite easily. The following example
uses the XDeclaration class to define an XML declaration:

XDocument myDoc

(

new XDocument

new XDeclaration("1.0","utf-8","yes"),
new XElement ("Root", "stuff"),

)

97

Part 1l: LINQ to XML

string str = myDoc.Declaration.ToString() + Environment.NewLine + myDoc.ToString();

textboxl.Text = str;

What you get is the following:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<Root>stuff</Root>

Very slick. As you start to use the LINQ to XML classes, you begin to get a feel for how much thought
Microsoft put into LINQ (including LINQ to XML and LINQ to SQL). One of the things it focused on is
names. Often the difficulty in working with XML is in dealing with XML names due to the simple fact of
XML prefixes.

In XML, prefixes can come in handy. The main concept behind them is to reduce the amount of typing
you have to do when creating XML. It also makes XML much easier to read. Yet prefixes are not required
and the problem they cause is that they shortcut the full XML namespace. LINQ to XML solves this
problem by automatically resolving prefixes to their XML namespace.

The following three sections detail the classes that you will typically use most when working with
XML: XElement, XAttribute, and XDocument. If you master those classes, LINQ to XML will become
second nature.

XElement Class

98

The XElement class represents an XML element. It is derived from the XContainer class, which derives
from the XNode class. An element is a node, so many times you will see these terms used interchangeably.
The XElement class is one of the most important and fundamental classes of LINQ to XML because it
contains all of the functionality necessary to create and manipulate XML elements. Via this class you can
create elements, add and modify attributes of elements, and even manipulate the content of an element
such as adding, deleting, or modifying child elements.

There are several ways to create XML documents with LINQ to XML, depending on the source of your
XML or if you are creating an XML document from scratch. The simplest and most common way to create
XML is to use the good ol” XxElement class of LINQ to XML as follows:

XDocument riders = new XDocument
(new XDeclaration("1.0", "utf-8", "yes"),
new XComment ("Riders for the year 2007"),
new XElement ("Riders",
new XElement ("Rider",
new XElement ("Name", "Ricky Carmichael"),
new XElement ("Class", "450"),
new XElement ("Brand", "Suzuki"),
new XElement ("Sponsers",
new XElement ("Name", "Makita")
)
)
new XElement ("Rider",
new XElement ("Name", "Chad Reed"),
new XElement ("Class", "450"),

Chapter 5:

Understanding LINQ to XML

new XElement ("Brand", "Yamaha"),
new XElement ("Sponsers",
new XElement ("Name", "ProTaper")

)
).

new XElement ("Rider",

new XElement ("Name", "James Stewart"),
new XElement ("Class", "450"),
new XElement ("Brand", "Kawasaki"),
new XElement ("Sponsers",

new XElement ("Name", "Renthal")

)

)
The resulting XML looks like this:

<!--Riders for the year 2007-->
<Riders>
<Rider>
<Name>Ricky Carmichael</Name>
<Class>450</Class>
<Brand>Suzuki</Brand>
<Sponsers>
<Name>Makita</Name>
</Sponsers>
</Rider>
<Rider>
<Name>Chad Reed</Name>
<Class>450</Class>
<Brand>Yamaha</Brand>
<Sponsers>
<Name>ProTaper </Name>
</Sponsers>
</Rider>
<Rider>
<Name>James Stewart</Name>
<Class>450</Class>
<Brand>Kawasaki</Brand>
<Sponsers>
<Name>Renthal </Name>
</Sponsers>
</Rider>
</Riders>

You can also use a LINQ query to populate an XML tree. Create a directory called Wrox in the root
of your C drive, for example, and in your favorite text editor program, type the following, saving it as

Employees.xml:

<?xml version="1.0"?>
<Employees>
<Employee id="1">
<Name>Steve Kent</Name>

929

Part 1l: LINQ to XML

<Title>Mr. SciFi</Title>
<Department >Gaming</Department>
<HireDate>04/17/92</HireDate>
<Gender>M</Gender>
<MaritalStatus>M</MaritalStatus>

</Employee>

<Employee id="2">
<Name>Scott Klein</Name>
<Title>Geek</Title>
<Department>All things technical</Department>
<HireDate>02/05/94</HireDate>
<Gender>M</Gender>
<MaritalStatus>M</MaritalStatus>

</Employee>

</Employees>

The following code loads Employees.xml using the Load method of the XElement class. The results of
Load are then used to create and populate an XML tree, while adding two more elements to the tree.

XElement employees = XElement.Load(@"C:\Wrox\Employees.xml");

XElement tree = new XElement ("Root",
new XElement ("Manager", "Dave"),
new XElement ("BirthDate", "01/01/1970"),
from el in employees.Elements()
select el);
textBoxl.Text = tree.ToString();

When this code runs, the following output appears:

<Root>

<Manager>Dave</Manager>

<BirthDate>01/01/1970</BirthDate>

<Employee id="1">
<Name>Steve Kent</Name>
<Title>Mr. SciFi</Title>
<Department >Gaming</Department>
<HireDate>04/17/92</HireDate>
<Gender>M</Gender>
<MaritalStatus>M</MaritalStatus>

</Employee>

<Employee id="2">
<Name>Scott Klein</Name>
<Title>Geek</Title>
<Department>All things technical</Department>
<HireDate>02/05/94</HireDate>
<Gender>M</Gender>
<MaritalStatus>M</MaritalStatus>

</Employee>

</Root>

The xElement class contains a number of methods that make working with XML a breeze. The following
table describes the class’s methods.

100

Chapter 5: Understanding LINQ to XML

Method

Description

AddAnnotation

AncestorsAndSel f

Attribute

Attributes

CreateReader

CreateWriter

DescendantNodes

DescendantNodesAndSelf

DescendantsAndSelf

Element

IsAfter

IsBefore

Load

Nodes

NodesAfterSelf

Adds an annotation to a given XElement. In general terms, this method
adds an object to the annotation of the corresponding xobject (the
current node or attribute in the tree).

Returns a collection of elements, in which the collection contains the
current element and all ancestors of the current element. An ancestor is
defined as the parent(s) of the current node (meaning, the parent of the
current node, and the parent’s parent, and so on up the chain).

Returns a single attribute, which is the XAttribute of the current
XElement of a given XName. In other words, this method returns the first
attribute it finds for a given element that has a specified name.

Returns all the attributes (a collection) for the current element. You can
also specify a name, in which case all attributes are returned for the
element that has the specified name.

Creates an xmlReader (a fast, forward-only copy of the XML document)
of the current node.

Creates an xmlwriter of the XML document that provides the
capability to modify the XML document, such as adding nodes or
attributes. The xmlwriter is a fast, forward-only mechanism for
creating files of the in-memory XML document.

Returns a collection of all descendant nodes of the entire document or
the current node/element.

Returns the same collection as the DescenantNodes method but also
includes the current node in the collection.

Returns a collection of elements that contain the current element plus
all descendant elements of the current element. You can also specify a
name that returns only those elements that match the specified name in
the collection.

In an ordered XML document, Element returns the first element that
matches the specified element name.

Returns a Boolean value that specifies whether the current node
appears after a specified node.

Returns a Boolean value that specifies whether the current node
appears before a specified node.

Provides multiple mechanisms for creating new XElements from an
external source. Sources can include a TextReader, String, or
xmlReader (each with an additional option to preserve whitespace).

Returns a collection of child nodes of the current element or document.

Returns a collection of ordered nodes after (that follow) the
current node.

Continued on the next page

101

Part 1l: LINQ to XML

Method Description

NodesBeforeSelf Returns a collection of ordered nodes before the current node.

Parse Loads an XML document from a string containing XML. Can optionally
preserve whitespace.

Remove Removes the current node from its parent.

RemoveAll Removes all nodes and attributes from the current element.

RemoveAttributes Removes all attributes from the current element.

RemoveNodes Removes all nodes from the XML document or current element.

ReplaceAll Replaces all child nodes and attributes of the current element with the
specified content.

ReplaceAttributes Replaces all the attributes of the current element with the specified
content.

Save Serializes the current element’s XML tree to any of several destinations,
such as a file, Xm1TextWriter, XmlWriter, or TextWriter.

SetAttributeValue Sets the value of the current attribute.

SetElementValue Sets the value of a child element.

Setvalue Sets the value of the current element.

WriteTo Writes the current element to an xmluiriter.

These are powerful yet easy-to-use methods. You'll use several of them in this chapter’s examples. For
instance, you can use the CreateReader method to load an XML tree into an xmlReader, like this:

XElement employees = null;

employee = XElement.Load(@"C:\Wrox\Employees.xml";
XmlReader rdr = employees.CreateReader() ;
rdr.MoveToContent () ;

The xm1Reader can be used to quickly read nodes and its descendants.
There may be times when there are other components used by your existing application that are expecting

an XmlReader as input or as the source of data. The preceding example shows one way to use LINQ to
XML to provide xmlReader functionality.

XAttribute Class

The xattribute class deals with attributes, plain and simple. Attributes are name/value pairs
associated with elements, but working with attributes is really no different from working with elements.
Attributes are similar to elements in many ways, such as their constructors and the methods in which
values and collections are returned. Writing a LINQ query expression to return a collection of attributes
is structurally and syntactically the same as writing a LINQ query expression for returning a collection
of elements.

102

Chapter 5: Understanding LINQ to XML

Elements and attributes also have their differences. For example, attributes are not nodes in an XML tree,
so they do not derive from the xNode class. Each attribute must have a qualified name that is unique

to the element. And attributes are maintained in the XML tree in the order that they are added to

the element.

The great thing, however, is that working with the xAttribute class is just like working with the
XElement class.

Here’s how to add an attribute to a simple XML tree during construction:

XElement employee = new XElement ("Root",
new XElement ("Employee",
new XAttribute("id", "1")
)
)

And here’s its output:

<Root>
<Employee id="1" />
</Root>

Just like elements, multiple attributes can be added at one time. For instance, you could add a phone
attribute along with the id attribute, like this:

XElement employee = new XElement ("Root",
new XElement ("Employee",
new XAttribute("id", "1"),
new XAttribute("phone", "555-555-5555")

)
)

And the output is as follows:

<Root>
<Employee id="1" phone="555-555-5555"/>
</Root>

The key to attributes is that they must have a qualified name that is unique to the particular element to
which they are being added.

Unlike the XElement class, the xattribute class has only a small handful of methods. The methods are
similar to XElement’s, which makes working with them extremely easy. Here are descriptions of the
XAttribute class methods:

0 Addannotation—Adds an annotation to a given attribute.

QO Remove—Removes the attribute from its parent.

Q setvalue—Sets the value of the current attribute.

103

Part 1l: LINQ to XML

The following example creates a simple XML tree with two attributes associated with the Employee node:

XElement employee = new XElement ("Root",
new XElement ("Employee",

new XAttribute("id", "1"),
new XAttribute("dept", "Dev")),
new XElement ("Name", "Scott")

)
)

Here’s the resulting XML:
<Root>
<Employee id="1" dept="id" />

<Name>Scott</Name>
</Root>

Now Remove () is issued to remove the second attribute:

XAttribute attr = employee.Element ("Employee") .Attribute("dept");
attr.Remove () ;

Just for kicks, try removing the attribute this way:

XAttribute attr = employee.Attribute("dept");
attr.Remove () ;

Did it work? No, because you really haven't identified where the attribute dept really is, or better said,
you haven’t identified the element to which the dept attribute belongs.

The first example illustrates how to “walk the XML tree” to denote the node you want to deal with.

XDocument Class

The xDocument class provides you with the means to work with valid XML documents, including
declarations, comments, and processing instructions.

The xDocument class derives from XContainer and, therefore, can have child nodes. But keep in mind
that XML standards limit an XDocument object to only a single child XElement node, which is the root
node or element.

An XDocument object can contain the following;:

O One xpeclaration object—Specifies important parts of an XML declaration, such as the
document encoding and XML version.
0O One xElement object—Specifies the root element of the document.

0 One XDocumentType object—Represents an XML DTD (document typed definition).

104

Chapter 5: Understanding LINQ to XML

Q Multiple XComment objects—Specifies an XML comment. A child of the root node, an XComment
object cannot be the first argument; a valid XML document cannot begin with a comment..

Q Multiple XProcessingInstruction objects—Specify any information to the application that is
processing the XML.

A large portion of the functionality for working with nodes and elements can be obtained through the
XElement class, and the XDocument class should be used only when you absolutely need the capability to
work at the document level and need access to comments, processing instructions, and the declaration.
Basically, a declaration, comments, and processing instructions are not required for LINQ to XML to
work with XML; you need to use the XxDocument class only if you need the functionality it provides.

For instance, the following example creates a simple XML document with several elements and an
attribute, as well as a processing instruction and comments.

XDocument doc = new XDocument (

new XProcessingInstruction("xml-stylesheet", "title='EmpInfo'"),

new XComment ("some comments"),

new XElement ("Root",

new XElement ("Employees",
new XElement ("Employee",
new XAttribute("id" "1")

new XElement ("Name", "Scott Klein"),
new XElement ("Title", "Geek"),
new XElement ("HireDate", "02/05/2007"),
new XElement ("Gender", "M")

)

)

new XComment ("more comments"),

)i
This code produces the following:

<?xml-stylesheet title='EmployeeInfo'?>
<!--some comments-->
<Root>
<Employees>
<Employee id="1">
<Name>Scott Klein</Name>
<Title>Geek</Title>
<HireDate>02/05/2007</HireDate>
<Gender>M</Gender>
</Employee>
</Employees>
</Root>
<!--more comments-->

Notice how simple it is to construct the XML document and place comments and other information
throughout it.

105

Part 1l: LINQ to XML

The xDocument class contains a number of methods that are identical to XElement class methods. They’re
described in the following table.

Method Description

AddAnnotation Adds an annotation to a given XElement. In general terms, this method
adds an object to the annotation of the corresponding xobject (the
current node or attribute in the tree).

CreateReader Creates an xmlReader (a fast, forward-only copy of the XML document)
of the current node.

Createlriter Creates an xmluriter of the XML document that provides the
capability to modify the XML document, such as adding nodes or
attributes. The xmlwriter is a fast, forward-only mechanism for
creating files of the in-memory XML document.

DescendantNodes Returns a collection of all descendant nodes of the entire document or
the current node/element.

Element In an ordered XML document, Element returns the first element that
matches the specified element name.

IsAfter Returns a Boolean value that specifies whether the current node
appears after a specified node.

IsBefore Returns a Boolean value that specifies whether the current node
appears before a specified node.

Load Provides multiple mechanisms for creating new XElement objects from
an external source. Sources can include a TextReader, String, or
xmlReader (each with an additional option to preserve whitespace).

Nodes Returns a collection of child nodes of the current element or document.

NodesAfterSelf Returns a collection of ordered nodes after (that follow) the current
node.

NodesBeforeSelf Returns a collection of ordered nodes before the current node.

Parse Loads an XML document from a string containing XML. Can optionally
preserve whitespace.

Remove Removes the current node from its parent.

RemoveNodes Removes all nodes from the XML document or current element.

Save Serializes the current element’s xmlTree to several output options, such

as a file, XmlTextWriter, XmlWriter, and TextWriter.

The following example creates an XML document that contains employee information along with
processing instructions and a comment, utilizing all of the classes previously discussed, including the
XDocument and XElement classes.

106

Chapter 5: Understanding LINQ to XML

Once the XML document is created, the NodesAfterSelf method of the XElement class is used to return
all the elements after the <Employee> element. Those elements are then iterated through and added to
the list box. This example requires a Using statement to System.Xml.

XElement doc = new XElement ("Root",
new XElement ("Employees",
new XElement ("Employee",
new XAttribute("id" "1"),

new XElement ("Name", "Scott Klein"),

new XElement ("Title", "Geek"),

new XElement ("HireDate", "02/05/2007"),
(

new XElement ("Gender", "M")

)
)
XElement xele = xtree. Element ("Employees").Element ("Employee"). Element ("Name") ;
IEnumerable<XNode> nodes =
from node in xele.NodesAfterSelf ()
select node;
foreach (XNode inode in nodes)

listBoxl.Items.Add (inode.NodeType == XmlNodeType.Element ?
(inode as XElement).Value : "");

Now you should be able to see how easy and efficient it is to work with XML in LINQ to XML, using the
available classes to create, query, and manipulate XML.

LINQ to XML Programming Concepts

This section explores LINQ to XML programming concepts such as how to load XML, create XML from
scratch, manipulate XML information, and traverse an XML document.

Working with Existing XML

Loading XML into a LINQ to XML tree is straightforward. You can load XML from a number of sources,
such as a string, xm1Reader, TextReader, or file.

The following example illustrates how to load from a file:

XElement employees = null;
employees = XElement.Load(@"C:\Wrox\Employees.xml") ;

In this example, a variable called employees is declared as an XElement object (an instance of the
XElement class). The Load method of the XElement class is then used to load the raw XML from the

Employees.xml file into an XML tree and store the XML contents in the employees variable.

XML can also be loaded from a string, using the Parse method:

XElement employees = XElement.Parse(@"
<Employees>

107

Part 1l: LINQ to XML

<Employee id='1l' phone='555-555-5555">
<Name>Steve Kent</Name>
<Title>Mr. SciFi</Title>
<Department >Gaming</Department>
<HireDate>04/17/92</HireDate>
<Gender>M</Gender>
<MaritalStatus>M</MaritalStatus>

</Employee>

<Employee i1d='2' phone='555-555-5556">
<Name>Scott Klein</Name>
<Title>Geek</Title>
<Department>All things technical</Department>
<HireDate>02/05/94</HireDate>
<Gender>M</Gender>
<MaritalStatus>M</MaritalStatus>

</Employee>

<Employee id='3' phone='555-555-5557">
<Name>Joe Walling</Name>
<Title>Head Geek</Title>
<Department>All things bleeding edge</Department>
<HireDate>06/15/93</HireDate>
<Gender>M</Gender>
<MaritalStatus>M</MaritalStatus>

</Employee>

</Employees>") ;

parse has an optional Boolean overload that enables you to preserve whitespace. When using Parse,
your XML tree can contain only a single root node.

You can also load XML from a TextReader:

TextReader tr = new StringReader (@"
<Employees>

<Employee id='1l' phone='555-555-5555">
<Name>Steve Kent</Name>
<Title>Mr. SciFi</Title>
<Department >Gaming</Department>
<HireDate>04/17/92</HireDate>
<Gender>M</Gender>
<MaritalStatus>M</MaritalStatus>

</Employee>

<Employee id='2' phone='555-555-5556"'>
<Name>Scott Klein</Name>
<Title>Geek</Title>
<Department>All things technical</Department>
<HireDate>02/05/94</HireDate>
<Gender>M</Gender>
<MaritalStatus>M</MaritalStatus>

</Employee>

<Employee id='3' phone='555-555-5557">
<Name>Joe Walling</Name>
<Title>Head Geek</Title>

108

Chapter 5: Understanding LINQ to XML

<Department>All things bleeding edge</Department>
<HireDate>06/15/93</HireDate>
<Gender>M</Gender>
<MaritalStatus>M</MaritalStatus>
</Employee>
</Employees>") ;
XElement xel = XElement.Load(tr);
tr.Close();

The output of both of these examples is the same XML.

Saving XML via LINQ to XML

Saving XML via LINQ to XML is just as easy as loading XML. For instance, the following example creates
a TextReader, populates it with an XML document, and then uses the XElement class’s Load method to
load the contents of the TextReader into the XML Element. The Save () method is subsequently called
to write the XML to a file.

TextReader tr = new StringReader (@"
<Employees>
<Employee id='1l' phone='555-555-5555">
<Name>Steve Kent</Name>
<Title>Mr. SciFi</Title>
<Department>Gaming</Department>
<HireDate>04/17/92</HireDate>
<Gender>M</Gender>
<MaritalStatus>M</MaritalStatus>
</Employee>
<Employee id='2' phone='555-555-5556">
<Name>Scott Klein</Name>
<Title>Geek</Title>
<Department>All things technical</Department>
<HireDate>02/05/94</HireDate>
<Gender>M</Gender>
<MaritalStatus>M</MaritalStatus>
</Employee>
<Employee id='3"' phone='555-555-5557">
<Name>Joe Walling</Name>
<Title>Head Geek</Title>
<Department>All things bleeding edge</Department>
<HireDate>06/15/93</HireDate>
<Gender>M</Gender>
<MaritalStatus>M</MaritalStatus>
</Employee>
</Employees>") ;
XElement xel = XElement.Load(tr);
tr.Close();
xel.Save (@"C:\Wrox\Employees2.xml") ;

Saving XML like this is commonly known as serializing. If the XML that is loaded into the xML class is

indented, the serialized XML keeps its formatting, thus maintaining the indentation of the XML, although
any insignificant whitespace is removed.

109

Part 1l: LINQ to XML

Creating XML

LINQ to XML provides a powerful yet easy approach to manually creating XML elements. You have seen
this method quite a bit throughout this chapter. The section “LINQ to XML Programming
Fundamentals” listed several classes available to you via LINQ to XML in which you can manually create
XML documents.

Here’s an example that creates a simple XML document consisting of elements and attributes:

XElement xdoc = new XElement ("Riders",
new XElement ("Rider",

new XElement ("Name", "Ricky Carmichael"),
new XElement ("NationalNumber", "4"),

new XElement ("Mechanic", "Mike Gosselaar"),
new XElement ("Nickname", "GOAT")

)

And here’s the output:

<Riders>
<Rider>
<Name>Ricky Carmichael</Name>
<NationalNumber>4</NationalNumber>
<Mechanic>Mike Gosselaar</Mechanic>
<Nickname>GOAT< /Nickname>
</Rider>
</Riders>

The great thing about LINQ to XML in the .NET Framework is that indentation is automatically done for
you. That makes reading it much easier because it mimics the format and structure of XML. (Oh, by the
way, anyone who follows the supercross/motocross scene knows that Ricky Carmichael’s nickname is
not a reference to the animal, but to his achievements in the sport. GOAT: Greatest of All Time.)

Now modify the previous example by adding the highlighted line of code:

XElement xdoc = new XElement ("Riders",
new XElement ("Rider",

new XElement ("Name", "Ricky Carmichael",
new XAttribute("Class", "450")),

new XElement ("NationalNumber", "4"),

new XElement ("Mechanic", "Mike Gosselaar"),

new XElement ("Nickname", "GOAT")
)
Notice the results now show an attribute called Class on the Name element:
<Riders>
<Rider>

<Name Class="450">Ricky Carmichael</Name>
<NationalNumber>4</NationalNumber>

110

Chapter 5: Understanding LINQ to XML

<Mechanic>Mike Gosselaar</Mechanic>
<Nickname>GOAT< /Nickname>
</Rider>
</Riders>

LINQ to XML also provides a simple yet powerful mechanism for creating an XML tree in a single
statement. This functionality is called functional construction, which will be discussed in Chapter 6,
“Programming with LINQ to XML.”

Traversing XML

So, you have your XML document in memory, whether you created it manually or loaded it using the
Load method of the xElement class. Now what do you do with it? Specifically, how do you navigate
the XML tree to get to the node/element you want to work with?

Traversing XML in an XML tree in LINQ to XML is quite simple. Just use the methods of the xElement
and XAttribute classes as necessary. Basically, the Elements and Element methods provide all of the
element children of an XContainer (an XElement or XDocument) object. Using the XName object, such as
Element (XName), you can return the elements of that specific XName.

Once you have your XML tree loaded as shown here:
employees = XElement.Load(@"C:\Wrox\Employees.xml") ;

you can start “walking the XML tree.”” Here are a couple of examples:
employees.Element ("Employees") .Element ("Employee")
employees.Element ("Employees") .Element ("Employee") .Element ("Name")

Granted, there is much more you can do, but this is just to whet your appetite. Keep in mind you can do
the same with attributes. All of this is explained in more detail in Chapter 6.

The following is a simple example of returning elements of a particular node. It creates an XML document
containing several riders, with each rider containing one attribute.

XElement xdoc = new XElement ("Riders",
new XElement ("Rider",

new XElement ("Name", "Ricky Carmichael",
new XAttribute("Class", "450")),

new XElement ("NationalNumber", "4"),

new XElement ("Brand", "Suzuki"),

new XElement ("Nickname", "GOAT"),

new XElement ("Mechanic", "Mike Gosselaar")

),

new XElement ("Rider",

new XElement ("Name", "Damon Bradshaw",
new XAttribute("Class", "450")),
new XElement ("NationalNumber", "45"),
new XElement ("Brand", "Yamaha"),
new XElement ("Nickname", "Beast from the East"),
new XElement ("Mechanic", "N/A")

111

Part 1l: LINQ to XML

new XElement ("Rider",

new XElement ("Name", "Chad Reed",
new XAttribute("Class", "450")),
new XElement ("NationalNumber", "22"),
new XElement ("Brand", "Yamaha"),
new XElement ("Nickname", "N/A"),
(

new XElement

),

new XElement ("Rider",

"Mechanic", "N/A")

new XElement ("Name", "James Stewart",
new XAttribute("Class", "450")),
new XElement ("NationalNumber", "7"),
new XElement ("Brand", "Kawasaki"),
new XElement ("Nickname", "N/A"),
(

new XElement

),

new XElement ("Rider",

"Mechanic", "N/A")

new XElement ("Name", "Kevin Windham",
new XAttribute("Class", "450")),
new XElement ("NationalNumber", "14"),
new XElement ("Brand", "Honda"),
new XElement ("Nickname", "N/A"),
(

new XElement ("Mechanic", "N/A")
)
textBoxl.Text = xdoc.ToString();

foreach(XNode c¢ in xdoc.Nodes())
listBoxl.Items.Add(c);

To get all the elements of a specific name, you can use the following;:

foreach (XElement ¢ in xdoc.Elements ("Rider"))
listBoxl.Items.Add(c) ;

If you know that there is only a single element with a specific name, you can use the following:

listBoxl.Items.Add (xdoc.Element (XName)) ;

The thing to remember is that the Nodes (), Elements (), Element (Name), and Elements (Name) methods
provide the foundation and basic functionality of XML tree navigation.

Manipulating XML

The great thing about LINQ to XML is the capability to easily make changes to the XML tree, such as
adding, deleting, updating, and copying content within the XML document.

Changes to an XML tree are available via the many methods of the XNode class, which represents nodes
such as elements and comments in an XML tree. More often than not, you’ll be working at the node level,

manipulating elements and their contents or their attributes.

The next few sections discuss how to use many of the methods of the XNode class.

112

Chapter 5: Understanding LINQ to XML

Insert

Content can be added to an XML tree easily by using one of the add methods available via the xNode
class, depending on where you want to insert the XML:

O Addafterself—Adds the specified content after the current node.

0 AddBeforeself—Adds the specified content before the current node.

The following code defines an initial XML tree, then uses the AddafterSelf () method to add an
additional node after the State element.

XElement employee = new XElement ("Root",
new XElement ("Employee",
new XElement ("Name", "Scott"),
new XElement ("Address", "555 Main St."),
new XElement ("City", "Wellington"),
new XElement ("State", "FL")
)
)
XElement zip = employee.Element ("Employee").Element ("State");
zip.AddAfterSelf (new XElement ("Zip", "33414"));

Here’s the resulting XML:

<Root>
<Employee>
<Name>Scott</Name>
<Address>555 Main St.</Address>
<City>Wellington</City>
<State>FL</State>
<Zip>33414</Zip>
</Employee>
</Root>

Notice that the <zip> element follows the <State> element as you instructed.

The AddBeforeself () method functions the same way when you need to add an element before
a specific node.

Update
Updating XML is quite simple in LINQ to XML. There are several methods available, from deleting an
element and adding another to changing the content of an element.

The Replace method provides several options from which you can choose:

0 Replacewith—Replaces the content of the current element with the specified content.

O Replaceall—Replaces the child nodes and associated attributes of the current element with the
specified content.

O ReplaceNodes—Replaces the child nodes of the document or current element with the
specified content.

113

Part 1l: LINQ to XML

In the following example, an initial XML tree is defined, then the Replacewith () method is used to
replace the contents of the <state> element with new content:

XElement employee = new XElement ("Root",

new XElement ("Employee",
new XElement ("Name", "Scott"),
new XElement ("Address", "555 Main St."),
new XElement ("City", "Wellington"),
new XElement ("State", "FL")
)

) ;

The result of this XML is as follows:

<Root>
<Employee>
<Name>Scott</Name>
<Address>555 Main St.</Address>
<City>Wellington</City>
<State>WA</State>
<Zip>33414</Zip>
</Employee>
</Root>

In the following code, the first line identifies the element whose contents will be replaced, and the second
line employs the Replacewith () method to specify the replacement content:

XElement st = employee.Element ("Employee") .Element ("State") ;
st.ReplaceWith (new XElement ("State", "FL"));

Here’s the resulting XML:

<Root>
<Employee>
<Name>Scott</Name>
<Address>555 Main St.</Address>
<City>Wellington</City>
<State>FL</State>
<Zip>33414</Zip>
</Employee>
</Root>

Notice that the value of the <State> element has been changed from WA to FL.

What happens if you use the following code to replace an element value?

st.ReplaceWith("FL") ;

ReplaceWith () deletes the specified node and replaces it with the specified content:

<Root>
<Employee>
<Name>Scott</Name>

114

Chapter 5: Understanding LINQ to XML

<Address>555 Main St.</Address>
<City>Wellington</City>FL
</Employee>
</Root>

The <State> element is deleted and simply replaced with the text FL and not a new node. Thus, you
must specify a new element to be created in the place of the old <State> element.

A similar operation can be done with attributes using the SetAttributevalue method. In the following
example, notice that the attribute id has a value of 1.

XElement employee = new XElement ("Employees",

new XElement ("Employee",
new XAttribute("id", "1")
new XElement ("Name", "Scott"),
new XElement ("Address", "555 Main St."),
new XElement ("City", "Wellington"),
new XElement ("State", "FL")
)

)

When you execute the following statement, the attribute value is changed to 3.
The setAttributevalue method changes the value of the id attribute to 3.

employee.Element ("Employee") .SetAttributevalue("id", "3");

The setElementValue method is also available to you. It’s a method of the XElement class and provides
the capability to set the value of a child element, or to add or remove a child element. For example, the fol-
lowing creates a simple XML fragment and then uses the SetElementValue() method

to update the Address node value:

XElement employee = new XElement ("Employees",

new XElement ("Employee",
new XAttribute("id", "1"),
new XElement ("Name", "Scott"),
new XElement ("Address", "555 Main St."),
new XElement ("City", "Wellington"),
new XElement ("State", "FL")
)

)i

employee.Element ("Employee") .SetElementValue ("Address", "111 Main St.");

Running this code shows that the address has indeed been changed:

<Employees>
<Employee id="1">
<Name>Scott</Name>
<Address>111 Main St.</Address>
<City>Wellington</City>
<State>FL</State>
</Employee>
</Employees>

115

Part 1l: LINQ to XML

Delete

Deleting XML is as simple as navigating to the content you want to delete and calling the Remove () or
RemoveAll () method.

The following example creates an XML tree, and then adds an element that will be removed in the next
set of code:

XElement employee = new XElement ("Root",

new XElement ("Employee",
new XElement ("Name", "Scott"),
new XElement ("Address", "555 Main St."),
new XElement ("City", "Wellington"),
new XElement ("State", "FL")
)

)

XElement zip = new XElement ("Zip", "33414");
employee.Add (zip) ;

Here’s the resulting XML tree:

<Root>
<Employee>
<Name>Scott</Name>
<Address>555 Main St.</Address>
<City>Wellington</City>
<State>FL</State>
<Zip>33414</Zip>
</Employee>
</Root>

Now, remove the node you just added:

employee.Remove (zip) ;

The XML tree now looks like this:

<Root>
<Employee>
<Name>Scott</Name>
<Address>555 Main St.</Address>
<City>Wellington</City>
<State>FL</State>
</Employee>
</Root>

Likewise, you can use the Removeall () method to remove all the nodes (including child nodes) and
attributes for the given element:

XElement employee = new XElement ("Root",

new XElement ("Employee",
new XElement ("Name", "Scott"),

116

Chapter 5: Understanding LINQ to XML

new XElement ("Address", "555 Main St."),
new XElement ("City", "Wellington"),
new XElement ("State", "FL")

)

Employee.RemoveAll () ;

Here’s the resulting XML:

<Root />

Working with Attributes

Attributes are name/value pairs that are associated an XML element. By now you know quite a bit about
dealing with elements via the XElement class, and the good news is that dealing with attributes via the
XAttribute class is not much different. The following sections explain how to work with attributes in an
XML tree, specifically adding, retrieving, and deleting attributes.

Adding

Adding attributes with LINQ to XML is similar to adding elements. You can add attributes using an XML
construction like the following:

XElement employee = new XElement ("Root",
new XElement ("Employee",

new XAttribute("id", "1"),
new XAttribute("EyeColor", "Blue"),
new XElement ("Name", "Scott"),

new XElement ("Address", "555 Main St."),
new XElement ("City", "Wellington"),
new XElement ("State", "FL")
)
)

You can also add an attribute as follows:

XAttribute dept = employee.Element ("Employee") .Attribute("EyeColor");

Retrieving

Retrieving attributes is also easy. It involves using the Attributes (XName) method of the XElement
class. For example, the following code defines an XML tree with several attributes defined on the
Employee node. The Attributes () method of the XElement class is then used to retrieve those attributes.

XElement employee = new XElement ("Root",
new XElement ("Employee",

new XAttribute("id", "1"),

new XAttribute("EyeColor", "Blue"),

new XElement ("Name", "Scott"),

new XElement ("Address", "555 Main St."),

117

Part 1l: LINQ to XML

new XElement ("City", "Wellington"),
new XElement ("State", "FL")
)

)

IEnumerable<XAttribute> atts =
from emp in employee.Elements ("Employee") .Attributes()

select emp;

foreach (XAttribute att in atts)
listBoxl.Items.Add(att);

Running this code results in the following:

id: "1 n
EyeColor="Blue"

Notice that you get the attribute key/value pair. To get just the value, use the Value () property of the
XAttribute class:

foreach (XAttribute att in atts)
listBoxl.Items.Add(att.Value.ToString()) ;

And here’s the result:

1
Blue

In the preceding examples, the XML tree consisted of a single employee. Suppose that the XML tree
consists of multiple employees. The following XML tree contains two employees, and the code then
applies the First () property to get the attributes of the first employee.

XElement employee = new XElement ("Root",
new XElement ("Employee",

new XAttribute("id", "1")
new XAttribute("EyeColor", "Green"),
new XElement ("Name", "John"),

"Address", "444 Main St."),
"City", "Seattle"),
"State", uWAu)

new XElement (
new XElement (
new XElement (
)

new XElement ("Employee",
new XAttribute("id", "2"),
new XAttribute("EyeColor", "Blue"),
new XElement ("Name", "Scott"),
new XElement ("Address", "555 Main St."),
new XElement ("City", "Wellington"),
new XElement ("State", "FL")
)

new XElement ("Employee",

new XAttribute("id", "3"),
new XAttribute("EyeColor", "Brown"),
new XElement ("Name", "Joe"),

118

Chapter 5: Understanding LINQ to XML

new XElement ("Address", "333 Main St."),
new XElement ("City", "Greenville"),
new XElement ("State", "SC")

)
)

IEnumerable<XAttribute> atts =
from emp in employee.Elements ("Employee") .First().Attributes()

select emp;

foreach (XAttribute att in atts)
listBoxl.Items.Add(att);

You can see that retrieving attributes is powerful yet quite easy.

Deleting

You have two options for deleting attributes. The first is to use the Remove () method. The following
example creates an XML tree and then uses Remove () to delete the first attribute:

XElement employee = new XElement ("Root",
new XElement ("Employee",

new XAttribute("id", "1"),
new XAttribute("EyeColor", "Blue"),
new XElement ("Name", "Scott"),

new XElement ("Address", "555 Main St."),
new XElement ("City", "Wellington"),
new XElement ("State", "FL")
)
)

employee.Element ("Employee") .FirstAttribute.Remove () ;

In this example, the FirstAttribute property selects the first attribute found in the employee element,
on which Remove () was issued. Here’s the resulting XML:

<Root>
<Employee EyeColor="Blue">
<Name>Scott</Name>
<Address>555 Main St.</Address>
<City>Wellington</City>
<State>FL</State>
</Employee>
</Root>

You can also specify the attribute you want to remove:

employee.Element ("Employee") .Attributes ("EyeColor") .Remove () ;
The resulting XML shows that the EyeColor attribute was removed:
<Root>
<Employee id="1">
<Name>Scott</Name>
<Address>555 Main St.</Address>
<City>Wellington</City>

119

Part 1l: LINQ to XML

<State>FL</State>
</Employee>
</Root>

The second option is to use the SetAttributevValue method. When using it, you set the value of the
attribute (of the name/value pair) to null, like this:

employee.Element ("Employee") .SetAttributeValue ("EyeColor", null);

In this example, the EyeColor attribute will be removed and the XML will be returned as in the
previous example.

LINQ to XML versus Other XML Technologies

The final section of this chapter briefly compares LINQ to XML to some of the other XML technologies in
use today, specifically weighing LINQ to XML against the following:

a DOM

4 XmlReader
Q XSLT

a MSMXL

LINQ to XML versus DOM

The difference between LINQ to XML and the DOM is in the way the document is created. In the DOM,
the XML tree is created from bottom to top, meaning that you create the document, create the elements,
and then add the elements to the document. This process takes multiple statements and is quite lengthy.

LINQ to XML simplifies the process by allowing the creation of an XML tree in a single statement, shaped
more like XML, and in significantly less, easier-to-read code. The reasoning behind this logic is simply
that when you are working with XML, you are typically working with elements and attributes, those
components that make up an XML tree. LINQ to XML facilitates this by letting you work with elements
and attributes without working with the document object.

One of the problems with the DOM is that you can’t change the name of a node directly. You must create
a new node and copy all the child nodes of the old node to the new node. In LINQ to XML, you can

simply rename the node.

Other differences between LINQ to XML and DOM include the following;:

0O LINQ to XML's static methods simplify the loading of XML over the DOM'’s instance methods.
QO LINQ to XML supports annotations.

120

Chapter 5: Understanding LINQ to XML

Q LINQ to XML provides better support for whitespace. LINQ to XML stores whitespace as XText
versus having a special whitespace node in the DOM. Additionally, in LINQ to XML you can
specify xml:space="preserve" to always preserve the whitespace.

QO XML programming is simplified in LINQ to XML by removing support for entities and entity
references because the management of entities is fairly complex, and truth be told, rarely used.
The benefit of this is increased performance.

LINQ to XML versus XmiIReader

If you have worked with XML before, you have probably used the XmlReader class. The xmlReader
class is a fast way of dealing with XML. It is a forward-only, noncached XML parser. Unlike the pre-
vious comparison (LINQ to XML versus the DOM), in which LINQ to XML is a replacement for the
DOM, LINQ to XML is actually tightly integrated with the XmlReader. While you can still use the
xmlReader by itself, you can utilize LINQ to XML to take advantage of the xmlReader, overlapping
much of the functionality.

You need to determine when you would use the xmlReader in a standalone scenario and when you
would use LINQ to XML. XmlReader is best used when you want to process a large number of XML
documents whose XML tree structure rarely differs and quickly processing those XML documents is
necessary. LINQ to XML shines when the XML documents differ in XML tree structure.

LINQ to XML versus XSLT

The only similarity between LINQ to XML and XSLT is the capability to transform XML. XSLT

is a declarative language that implements a rule-based approach. It does not take advantage of the
NET Framework, thus requiring developers to learn a completely new language. Yet, used correctly, it
produces wonderful results, and an existing managed XSLT engine can compile XSLT into
managed code.

LINQ to XML, however, overcomes all of the XSLT shortcomings. Through LINQ to XML query
expressions, you can easily transform XML using functional construction (discussed in Chapter 8) and
constructing XxElement objects dynamically, thus creating a completely new XML tree. The benefits
of this approach include reduced development time.

LINQ to XML versus MSXML

The big difference between LINQ to XML and MSXML is that MSXML is COM-based and,
therefore, not recommended for use in managed code. It also contains a native implementation of the
DOM, and includes support for XSLT and XPath. It is primarily used in programming languages that
support COM.

In contrast, LINQ to XML is not COM-based and is designed specifically for use with managed code.

Thus, you get all the benefits of managed code, such as garbage collection, type safety, and object-oriented
design features.

121

Part 1l: LINQ to XML

Summary

This chapter introduced you LINQ to XML and many of the fundamental programming concepts that
LINQ to XML utilizes and that will be used throughout the remaining LINQ to XML chapters of
this book.

You explored the LINQ to XML programming fundamentals—that is, the many LINQ to XML classes
that the System.Xml.Ling namespace exposes. These classes are the backbone of LINQ to XML and
make working with XML much easier than using other XML tools. You also examined three of the more
common classes that you'll use when working with XML, including XElement and XaAttribute.

The chapter covered many of the programming concepts that you need to know when working with XML
using LINQ to XML, including how to traverse an XML tree, add and remove elements and attributes,
and manipulate the tree’s contents. You saw how to work with attributes in an XML document using
LINQ to XML, and learned that working with attributes is similar to working with elements due to the
architecture of LINQ and its integration into the .NET Framework.

Last, a comparison of LINQ to XML to other existing XML technologies was provided to give you an idea
of how LINQ to XML stacks up.

Chapter 6 discusses more in-depth programming features of LINQ to XML.

122

Programming with LINQ
to XML

LINQ to XML has many strengths, and one of the most valuable is its capability to quickly and
easily create XML documents and trees. LINQ to XML provides several different options through
which developers can create XML trees as well as modify and manipulate XML trees.

This chapter builds on what you learned in Chapter 5, “Understanding LINQ to XML"”—the pro-

gramming fundamentals and
concepts that are prevalent in working with XML documents and LINQ to XML, and how to work
with elements and attributes using the xElement and XAttribute classes.

This chapter, then, tackles the following:

Q Constructing and creating XML trees
Q Manipulating XML trees
Q Serializing XML trees

Creating Trees

Programming with LINQ to XML, as you found out in the last chapter, is straightforward. Through
the many classes of the System.Xml.Ling namespace, developers can create and manipulate XML
trees with ease.

You can create XML trees in both C# and Visual Basic .NET, but the manner in which they are
created is quite different. The following sections examine the creation of XML trees in both
languages, and discuss the differences developers need to know for their respective language.

Part Il: LINQ to XML

Creating Trees in C#

Creating XML trees in C# is done using the XElement class. This class provides all the necessary
functionality to create and manipulate XML documents and trees. In its simplest form, the XElement
class creates elements. Here’s an example that creates an empty element:

XElement emptyElement = new XElement ("Employee");

This code produces the following:

<Employee />

Simple, but via the same xElement class you can create more complex XML trees, such as the following:

XElement employee = new XElement ("Root",
new XElement ("Employee",

new XElement
)
new XElement ("Employee",
new XElement ("Name", "Steve"),
new XElement ("Title", "Mr. SciFi"),
new XElement ("HireDate", "05/14/2002"),
new XElement ("Gender", "M")
)
new XElement ("Employee",
new XElement ("Name", "Joe"),
new XElement ("Title", "All Things Bleeding Edge"),
new XElement ("HireDate", "07/22/2004"),
new XElement ("Gender", "M")

)

new XElement ("Name", "Scott"),
new XElement ("Title", "All Things Techy"),
new XElement ("HireDate", "02/05/2007"),

(

"Gender", "M")

)i
When this code is run, the resulting XML tree looks like this:

<Root>

<Employee>
<Name>Scott</Name>
<Title>All Things Techy</Title>
<HireDate>02/05/2007</HireDate>
<Gender>M</Gender>

</Employee>

<Employee>
<Name>Steve</Name>
<Title>Mr. SciFi</Title>
<HireDate>05/14/2002</HireDate>
<Gender>M</Gender>

</Employee>

<Employee>
<Name>Joe< /Name>
<Title>All Things Bleeding Edge</Title>
<HireDate>07/22/2004</HireDate>

124

Chapter 6: Programming with LINQ to XML

<Gender>M</Gender>
</Employee>
</Root>

Take it a step further and add a couple of attributes to each employee via the XAttribute class:

XElement employee = new XElement ("Root",
new XElement ("Employee",

new XAttribute("id", "1"),

new XAttribute("Dept", "0001"),

new XElement ("Name", "Scott"),

new XElement ("Address",
new XElement ("Street", "555 Main St."),
new XElement ("City", "Wellington"),
new XElement ("State", "FL")),

new XElement ("Title", "All Things Techy"),

new XElement ("HireDate", "02/05/2007"),

new XElement ("Gender", "M")

),

new XElement ("Employee",

new XAttribute("id", "2"),
new XAttribute("Dept", "0005"),

new XElement ("Name", "Steve"),
new XElement ("Address",
new XElement ("Street", "444 Main St."),
new XElement ("City", "Snohomish"),
new XElement ("State", "WA")),
new XElement ("Title", "Mr. SciFi"),
new XElement ("HireDate", "05/14/2002"),
new XElement ("Gender", "M")

)

new XElement ("Employee",

new XAttribute("id", "3"),
new XAttribute("Dept", "0004"),

new XElement ("Name", "Joe"),
new XElement ("Address",
new XElement ("Street", "222 Main St."),
new XElement ("City", "Easley"),
new XElement ("State", "SC")),
new XElement ("Title", "All Things Bleeding Edge"),
new XElement ("HireDate", "07/22/2004"),
new XElement ("Gender", "M")

)
The results now show two attributes on each employee node:

<Root>
<Employee id="1" Dept="0001">
<Name>Scott</Name>
<Address>
<Street>555 Main St.</Street>
<City>Wellington</City>

125

Part Il: LINQ to XML

<State>FL</State>
</Address>
<Title>All Things Techy</Title>
<HireDate>02/05/2007</HireDate>
<Gender>M</Gender>
</Employee>
<Employee id="2" Dept="0005">
<Name>Steve</Name>
<Address>
<Street>444 Main St.</Street>
<City>Snohomish</City>
<State>WA</State>
</Address>
<Title>Mr. SciFi</Title>
<HireDate>05/14/2002</HireDate>
<Gender>M</Gender>
</Employee>
<Employee id="3" Dept="0004">
<Name>Joe< /Name>
<Address>
<Street>222 Main St.</Street>
<City>Easley</City>
<State>SC</State>
</Address>
<Title>All Things Bleeding Edge</Title>
<HireDate>07/22/2004</HireDate>
<Gender>M</Gender>
</Employee>
</Root>

One of the things that makes creating XML with LINQ to XML quite easy is the capability to structure the
XML directly in the programming language, formatting the source code just as it would be structured in
the XML document. Additionally, the many properties and methods of the XElement class make it easy
to efficiently structure and create XML documents dynamically.

The xElement class contains a handful of overloads that let developers create XML trees quickly within
a single statement. These constructor overloads allow you to create a new instance of the XElement class

with which to structure an XML document.

In its simplest form, the XElement class can be used to create a new element with a specific name, as
shown here in the basic syntax:

XElement (XName name)
For example, the following uses the basic syntax to create a single root element:

XElement employee = new XElement ("Root");

This code produces the following XML:

<Root />

126

Chapter 6: Programming with LINQ to XML

Building on that, you use the XElement constructor to create a new instance of the XxElement class
(creating a new element) from another XElement object. By doing so, you can nest elements, creating child
elements of the parent element. The following example illustrates this, using the XElement constructor
from the initial XElement class to create a child element below the root element:

XElement employee = new XElement ("Root",
new XElement ("Employee");

The code produces the following XML:

<Root>
<Employee />
</Root>

From here, another XElement constructor can be used to create a new element with a specified name and
content. Here’s the basic syntax:

XElement (XName name, object content)

The following example creates a new element with the specified name of "Name" and content of "Scott":

XElement = new XElement ("Name", "Scott")

Here’s the XML this code produces:

<Name>Scott</Name>

You can combine this with the previous example to create a root element and child element with a value:

XElement employee = new XElement ("Employee",
new XElement ("Name", "Scott");

The code produces the following XML:

<Employee>
<Name>Scott</Scott>
</Employee>

Last, you can pass multiple instances of the XElement class to create multiple nodes. The basic syntax
for this is

XElement (XName name, params object[] content)
A pseudo-code example of this would be the following:
XElement employee = new XElement (XName,
new XElement (XName,
new XElement (XName name),
new XElement (XName name),
new XElement (XName name)
new XElement (XName name)

’

Here’s an example of the syntax using real data, passing more than one XElement for the content:
XElement employee = new XElement ("Root",

new XElement ("Employee",
new XElement ("Name", "Scott"),

127

Part Il: LINQ to XML

new XElement ("Title", "All Things Techy"),
new XElement ("HireDate", "02/05/2007"),
new XElement ("Gender", "M")

)

As you have seen in previous examples in this chapter and the last chapter, this is the ideal way to
construct an XML tree.

Now take a look at how to do the same thing in Visual Basic .NET.

Creating Trees in Visual Basic

Creating XML trees in Visual Basic is accomplished through XML literals. XML literals enable you to
create and incorporate XML directly into our Visual Basic programs and code. Another way to say this is
that XML literals let you type XML directly into your Visual Basic code without the need for any special
formatting. What makes this possible is that the literal XML syntax represents the actual objects of LINQ
to XML. The benefit of this is that your XML code is easier to create, and your code is easier to read
because it has the same structure as the resulting XML.

An additional benefit of XML literals is that Visual Basic .NET compiles them into LNQ to XML objects,
providing a familiar LINQ object model for creating and manipulating XML.

XML can be created in Visual Basic by using XML literals directly in the VB code. You create LINQ to
XML objects simply by typing XML code directly into Visual Basic or by pasting existing XML into your
code. The following creates a single <Employee> node:

Dim emp As XElement = <Employee/>
Here’s the result of this code:
<Employee/>
You can also specify elements and their corresponding values:
Dim emp As XElement = <Name>Scott</Name>
Obviously, the following XML is produced:

<Name>Scott</Name>

One of the things that Visual Basic .NET developers have at their disposal is ““embedded expressions.”
Embedded expressions let you create XML literals that contain expressions. These expressions are eval-
uated at run time. Embedded expressions are enclosed within <% %> brackets (if you do any ASP.NET
development, you're familiar with those).

The following creates a simple XML document using XML literals and an embedded expression:
Dim emp As XElement = <Employee>

<%= New XElement ("Name", "Scott") %>
</Employee>

128

Chapter 6: Programming with LINQ to XML

Here are the results when the code runs:

<Employee>
<Name>Scott</Name>
</Employee>

XML literals can span multiple lines without the need of line continuation characters as shown in the
example below. The only time this would differ is when you have a multi-line expression in the
embedded expression.

Dim employee As XElement =
<Root>
<Employee id="1" Dept="0001">
<Name>Scott</Name>
<Address>
<Street>555 Main St.</Street>
<City>Wellington</City>
<State>FL</State>
</Address>
<Title>All Things Techy</Title>
<HireDate>02/05/2007</HireDate>
<Gender>M</Gender>
</Employee>
<Employee 1d="2" Dept="0005">
<Name>Steve</Name>
<Address>
<Street>444 Main St.</Street>
<City>Snohomish</City>
<State>WA</State>
</Address>
<Title>Mr. SciFi</Title>
<HireDate>05/14/2002</HireDate>
<Gender>M</Gender>

</Employee>
<Employee i1d="3" Dept="0004">
<Name>Joe< /Name>
<Address>
<Street>222 Main St.</Street>
<City>Easley</City>
<State>SC</State>
</Address>

<Title>All Things Bleeding Edge</Title>
<HireDate>07/22/2004</HireDate>
<Gender>M</Gender>
</Employee>
</Root>

How does the compiler create objects from XML literals? The answer is simple, really. The Visual Basic
compiler translates XML literals into the equivalent LINQ to XML constructors, which are then used to
build the LINQ to XML object.

129

Part Il: LINQ to XML

Populating Trees from Text

Populating XML trees from text can be accomplished a number of ways, and you saw a couple of them
in the last chapter. The easiest method is to use the Parse () method of the XElement class. This method
loads an xElement object from an XML string.

For example, the following code creates a string containing XML, parsing the string into an
XElement object:

XElement employees = XElement.Parse(@"
<Employees>
<Employee id='1l' phone='555-555-5555">
<Name>Steve Kent</Name>
<Title>Mr. SciFi</Title>
<Department >Gaming</Department >
<HireDate>04/17/92</HireDate>
<Gender>M</Gender>
<MaritalStatus>M</MaritalStatus>
</Employee>
<Employee i1d='2' phone='555-555-5556"'>
<Name>Scott Klein</Name>
<Title>Geek</Title>
<Department>All things technical</Department>
<HireDate>02/05/94</HireDate>
<Gender>M< /Gender>
<MaritalStatus>M</MaritalStatus>
</Employee>
<Employee i1d='3"' phone='555-555-5557"'>
<Name>Joe Walling</Name>
<Title>Head Geek</Title>
<Department>All things bleeding edge</Department>
<HireDate>06/15/93</HireDate>
<Gender>M</Gender>
<MaritalStatus>M</MaritalStatus>
</Employee>
</Employees>") ;

There is a limitation to using the Parse () method, and that is that the XML can contain only a single
root node.

Another way is to populate a tree is to load the XML from an existing source. The following example
uses the Load () method to load an existing XML document from an external file source and creates
an XElement.

XElement employees = XElement.Load(@"C:\Wrox\Employees.xml");

Another overload of the Load method takes an additional Boolean parameter that specifies whether to
preserve whitespace.

employees = XElement.Load(@"C:\Wrox\Employees.xml", true);

This next example illustrates how to load XML from a TextReader. Any kind of TextReader can be used;
in this case, it’s a StringReader, but a StreamReader would work just the same.

130

Chapter 6: Programming with LINQ to XML

TextReader tr = new StringReader ("<Employee><Name>Scott</Name></Employee");
XElement xtree = XElement.Load(tr);

As before, another overload of the Load method takes an additional Boolean parameter that specifies
whether to preserve whitespace.

XElement xtree = XElement.Load(tr, true);

The following example creates an XML tree from an XmlReader. It first creates an xmlReaderSettings
instance and sets a few optional settings. Then it creates an XmlReader and uses the Create () method to
load an XML file into the XElement object.

XmlReaderSettings xmlset = new XmlReaderSettings();
xmlset.ConformanceLevel = ConformanceLevel.Document;
xmlset.IgnoreWhitespace = true;

xmlset.IgnoreComments = true;

XmlReader rdr = XmlReader.Create (@"C:\Wrox\LINQ\Chapter
5\Employees.xml", xmlset);

XElement xtree = XElement.Load(rdr) ;

Once in the XmlReader, the XML can be read quickly. The XmlIReader is an efficient way to access XML
data if all you want to do is read it.

This last example demonstrates how to load a DOM document into an LINQ to XML tree. First, an XML
DOM document is created, defining a root element and several child elements. The DOM document is
then loaded into the XElement object.

XmlDocument xdoc = new XmlDocument () ;
XmlElement elel = xdoc.CreateElement ("Name") ;

elel.InnerText = "Scott";
XmlElement ele2 = xdoc.CreateElement ("Title");
ele2.InnerText = "Geek";

XmlElement ele3 = xdoc.CreateElement ("HireDate");
ele3.InnerText = "02/05/2007";

XmlElement emp = xdoc.CreateElement ("Employee") ;

emp . AppendChild(elel) ;

emp . AppendChild(ele2)

emp . AppendChild(ele3) ;
xdoc.AppendChild (emp)

7

7

XmlNodeReader nr = new XmlNodeReader (xdoc) ;
nr .MoveToContent () ;

XElement xtree = XElement.Load(nr);

The resulting XML looks like this:

<Employee>
<Name>Scott</Name>
<Title>Geek</Title>
<HireDate>02/05/2007</HireDate>
</Employee>

131

Part Il: LINQ to XML

Querying XML Trees

Once you have populated the tree, the next obvious step in most cases is to query its contents. If you think
about this for a minute, LINQ to XML provides an easy way to reshape XML. It combines the capability
to functionally construct your XML with the capability to query the XML tree. The result is a com-
pletely different XML tree shape than the original XML document. One of the primary things you should
know by now is that LINQ to XML is exceptional at both functional construction and querying. In this
section, you will quickly see that LINQ to XML is also very good at reshaping XML as compared to other
XML technologies.

This section explores LINQ to XML queries and how they can be used to effectively query
XML documents. To illustrate this point, the following XML document will be used. In your favorite
text editor, enter the following XML and save it as Employee.xml in your Wrox\Chapteré6 directory:

<Employees>
<Employee id="1" Dept="0001">
<Name>Scott</Name>
<Address>
<Street>555 Main St.</Street>
<City>Wellington</City>
<State>FL</State>
</Address>
<Title>All Things Techy</Title>
<HireDate>02/05/2007</HireDate>
<Gender>M</Gender>
</Employee>
<Employee id="2" Dept="0005">
<Name>Steve</Name>
<Address>
<Street>444 Main St.</Street>
<City>Snohomish</City>
<State>WA</State>
</Address>
<Title>Mr. SciFi</Title>
<HireDate>05/14/2002</HireDate>
<Gender>M</Gender>
</Employee>
<Employee 1d="3" Dept="0004">
<Name>Joe< /Name>
<Address>
<Street>222 Main St.</Street>
<City>Easley</City>
<State>SC</State>
</Address>
<Title>All Things Bleeding Edge</Title>
<HireDate>07/22/2004</HireDate>
<Gender>M</Gender>
</Employee>
</Employees>

Next, create a new C# Windows Forms project in Visual Studio, and on Form1 place a button and a text
box. In the click() event for the button, add the following:

XElement employees = XElement.Load(@"C:\Wrox\Chapter6\Employees.Xml");

132

Chapter 6: Programming with LINQ to XML

You now have the XML document Employee.xml loaded into the employees variable, so you can work
with it.

Suppose that you want to return the first employee from the XML document. The following does
just that:

employees.Element ("Employee")

Running this statement returns the first employee:

<Employee id="1" Dept="0001">
<Name>Scott</Name>
<Address>
<Street>555 Main St.</Street>
<City>Wellington</City>
<State>FL</State>
</Address>
<Title>All Things Techy</Title>
<HireDate>02/05/2007</HireDate>
<Gender>M</Gender>
</Employee>

However, an alternative would be to use the First() property to manually select the first
Employee element:

employees.Elements ("Employee") .First ()

Another alternative is to use the Elementat () method to specify which element to return. The following
example also returns the first Employee node:

employees.Elements ("Employee") .ElementAt (0)

The next example loops through all of the Employee elements, concatenates them, and returns them as a
single string:

foreach (XElement employee in employees.Elements ("Employee")
textboxl.Text += employee;

This gives you everything but the <Employees> node:

<Employee id="1" Dept="0001">
<Name>Scott</Name>
<Address>
<Street>555 Main St.</Street>
<City>Wellington</City>
<State>FL</State>
</Address>
<Title>All Things Techy</Title>
<HireDate>02/05/2007</HireDate>
<Gender>M</Gender>
</Employee>
<Employee 1d="2" Dept="0005">
<Name>Steve</Name>
<Address>

133

Part Il: LINQ to XML

<Street>444 Main St.</Street>
<City>Snohomish</City>
<State>WA</State>
</Address>
<Title>Mr. SciFi</Title>
<HireDate>05/14/2002</HireDate>
<Gender>M</Gender>
</Employee>
<Employee 1d="3" Dept="0004">
<Name>Joe< /Name>
<Address>
<Street>222 Main St.</Street>
<City>Easley</City>
<State>SC</State>
</Address>
<Title>All Things Bleeding Edge</Title>
<HireDate>07/22/2004</HireDate>
<Gender>M</Gender>
</Employee>

What if you want to return the second employee? You can use the ElementAt () method, as shown here:

employees.Elements ("Employee") .ElementAt (1)

The values for this are zero-based, so the first employee node is 0. To return the second employee, you
simply pass a 1.

Another option is to use a query expression. The following returns the second employee node by filtering
on the id attribute where its value is 2:

XElement empnum?2 = (from emp in employees.Elements ("Employee")
where (int) emp.Attribute("id") == 2
select emp) .First();

Notice that this example also uses the First () method. Why? What if your XML document had an
attribute of Dept for each employee, and your XML document had multiple employees with the same
department? The First () method helps make sure you grab the first employee that matches the criterion.
The query expression returns a sequence, and the First () method explicitly returns the first member of
that sequence.

The following example does the same, but uses the ElementAt () method:

XElement empnum2 = (from emp in employees.Elements ("Employee")
where (int) emp.Attribute("id") == 2
select emp) .ElementAt (0);

This next example digs a little deeper. It returns the values of all the Name elements for each employee. It
uses the Descendants () method to return a collection of all the descendants for the selected element.

IEnumerable<string> empNames =
from emp in employees.Descendants ("Name")
orderby emp.Value
select emp.Value;

134

Chapter 6: Programming with LINQ to XML

foreach (string name in empNames)
listboxl.Items.Add (name) ;

This code returns the following values:

Joe
Scott
Steve

The following example does the same thing:

IEnumerable<string> empNames =
from emp in employees.Descendants ("Name")
orderby (string) emp
select (string) emp;

The same iteration applies, and the results are the same. You can also “walk the tree” by using the
Elements () method (as many times as needed) to access the appropriate node.

IEnumerable<string> empNames =
from emp in employees.Elements ("Employee").Elements ("Name")
orderby (string) emp
select (string) emp;

Again, the same iteration applies, and the same results are returned.

The next few examples work with attributes, and to do so, the XML document Employee.xml created
earlier needs to be modified. Add an attribute to each employee node as highlighted in following XML:

<Employees>
<Employee id="1" Dept="0001" Geek="True">

<Name>Scott</Name>
<Address>
<Street>555 Main St.</Street>
<City>Wellington</City>
<State>FL</State>
</Address>
<Title>All Things Techy</Title>
<HireDate>02/05/2007</HireDate>
<Gender>M</Gender>
</Employee>
<Employee 1d="2" Dept="0005" Geek="False">
<Name>Steve</Name>
<Address>
<Street>444 Main St.</Street>
<City>Snohomish</City>
<State>WA</State>
</Address>
<Title>Mr. SciFi</Title>
<HireDate>05/14/2002</HireDate>
<Gender>M</Gender>
</Employee>

135

Part Il: LINQ to XML

<Employee id="3" Dept="0004" Geek="True">
<Name>Joe< /Name>
<Address>
<Street>222 Main St.</Street>
<City>Easley</City>
<State>SC</State>
</Address>
<Title>All Things Bleeding Edge</Title>
<HireDate>07/22/2004</HireDate>
<Gender>M</Gender>
</Employee>
</Employees>

The following example queries the XML document, looking at the Geek attribute of the Employee node
and returning only those with a value of True:

IEnumerable<XElement> empNames =
from emp in employees.Elements ("Employee")
where (string)emp.Attribute("Geek") == "True"
select emp;

foreach (XElement name in empNames)
textboxl.Text = name.ToString();

The query expression returns the following values:

Scott
Joe

This last example demonstrates how to walk an XML tree looking for an element value several layers
deep. First, modify the XML and add a zip element to the employee with an id of 2:

<Employee 1d="2" Dept="0005" Geek="False">
<Name>Steve</Name>
<Address>
<Street>444 Main St.</Street>
<City>Snohomish</City>
<State>WA</State>
<Zip>99999</Zip>
</Address>
<Title>Mr. SciFi</Title>
<HireDate>05/14/2002</HireDate>
<Gender>M</Gender>
</Employee>

In the following example, the query expression walks down to the <aAddress> element and looks for an
employee with a zip value of 99999:

IEnumerable<XElement> empAddr =

from emp in employees.Elements ("Employee") .Elements ("Address")
where (string)emp.Element("zip") == ("99999")

136

Chapter 6: Programming with LINQ to XML

select emp;

foreach (XElement address in empAddr)
textboxl.Text = address.ToString();

There was only a single employee that matched the query expression filter in this example, but nonethe-
less, the results were looped through, and the following XML was returned:

<Address>
<Street>444 Main St.</Street>
<City>Snohomish</City>
<State>WA</State>
<Zip>99999</Zip>

</Address>

This example returned the address information for the selected ZIP code. Modify the query as highlighted
here, and it will return the entire employee node for the selected ZIP code:

IEnumerable<XElement> empAddr =
from emp in employees.Elements ("Employee")
where (string)emp.Element ("Address").Element ("zip") == ("99999")
select emp;

Now when you run this application and click the button, the following is displayed:

<Employee id="2" Dept="0005" Geek="False">
<Name>Steve</Name>
<Address>
<Address>444 Main St.</Address>
<City>Snohomish</City>
<State>WA</State>
<zip>99999</zip>
</Address>
<Title>Mr. SciFi</Title>
<HireDate>05/14/2002</HireDate>
<Gender>M</Gender>
</Employee>

Modifying and Reshaping XML Trees

You saw briefly in the last chapter how to modify XML trees using many of the methods and prop-
erties of the XElement and XAttribute classes. However, in today’s XML technologies, the common
approach for reshaping an XML document requires loading the document into data store and using an
XML-supported programming language for modify the contents and structure of that document, such as
adding or removing nodes.

For example, loading an XML document into the DOM, modifying its contents in place, and resaving the
document is one of the more familiar methods for current XML programmers.

LINQ to XML provides a second approach to XML reshaping and modification—one that is much
easier to maintain. This approach is called functional construction, and is the answer to the DOM’s

137

Part Il: LINQ to XML

load/modify /save approach. Functional construction lets you easily reshape XML from one form to
another in a single statement.

As you saw in the last chapter, LINQ to XML provides the load/modify /save approach as well via the
many methods exposed by the xElement and XAttribute classes, and even this is still more efficient than
many of today’s XML tree modification methods due to the ability to visually view the structure of the
XML tree. Yet the functional approach, once understood, is easier to work with and maintain as a whole
because you can quickly identify the code that modifies each part of the tree.

Here’s an example illustrating how to take an attribute and make it an element. The code takes the id
attribute and adds it as an element. The attribute’s name and value are used when the element is added.

XElement employee = new XElement ("Root",
new XElement ("Employee",

new XAttribute("id", "1"),
new XAttribute("EyeColor", "Green"),
new XElement ("Name", "Scott"),

new XElement
new XElement
new XElement
new XElement

)

"Address", "444 Main St."),
"City", "Wellington"),
"State", "FL"),

"Zip", "33414")

)

employee.Element ("Employee") .Add (
new XElement (employee.Element ("Employee") .Attribute("id") .Name,
employee.Element ("Employee") .Attribute("id") .Value)) ;

employee.Element ("Employee") .Attribute("id") .Remove () ;

This code produces the following XML:

<Root>
<Employee EyeColor="Green">
<Name>Scott</Name>
<Address>444 Main St.</Address>
<City>Wellington</City>
<State>FL</State>
<Zip>33414</Zip>
<id>1l</id>
</Employee>
</Root>

If you wanted to, you could loop through all of the attributes and make them elements as follows:

foreach (XAttribute att in employee.Element ("Employee") .Attributes())
employee.Element ("Employee") .Add (new XElement (atts.Name, (string)att));

employee.Element ("Employee") .Attributes () .Remove() ;
The code produces this XML:
<Root>

<Employee EyeColor="Green">
<Name>Scott</Name>

138

Chapter 6: Programming with LINQ to XML

<Address>444 Main St.</Address>
<City>Wellington</City>
<State>FL</State>
<Zip>33414</Zip>
<id>1l</id>
<EyeColor>Green</EyeColor>
</Employee>
</Root>

The following example does the reverse. It takes an element (<id>) and adds it as an attribute (of the
Employee node):

XElement employee = new XElement ("Root",
new XElement ("Employee",
new XElement ("Name", "Scott"),
new XElement ("Address", "444 Main St."),
new XElement ("City", "Wellington"),
new XElement ("State", "FL"),
new XElement ("Zip", "33414"),
new XElement ("id", "1")
)
)

employee.Element ("Employee") .Add (new
XAttribute (employee.Element ("Employee") .Element ("id") .Name,
employee.Element ("Employee") .Element ("id") .Value)) ;

employee.Element ("Employee") .Element ("id") .Remove () ;

The result is the following XML:

<Root>
<Employee id="1">
<Name>Scott</Name>
<Address>444 Main St.</Address>
<City>Wellington</City>
<State>FL</State>
<Zip>33414</Zip>
</Employee>
</Root>

Functional construction is discussed in more detail in Chapter 8, *’Advanced LINQ to XML Program-
ming Topics.”

Serializing XML Trees

Serialization is the process of saving an object to a storage medium such as a file or even to memory.
Serializing an XML tree is the process of generating XML text from the tree. The newly generated XML
can be serialized to a file or to an implementation of a TextWriter or an XmlWriter.

When serializing XML using LINQ to XML, nonsignificant whitespace in the XML tree is not preserved
by default. For example, reading indented XML with no whitespace text nodes and then serializing the
XML with indentation does not preserve whitespace.

139

Part Il: LINQ to XML

When serializing XML via LINQ to XML, several methods are available, enabling you to decide how to
treat whitespace. The Save () method of the XElement class does not preserve whitespace by default. But
you can optionally provide a Boolean value that tells Save () to preserve whitespace, as in the following
example:

TextReader tr = new StringReader (@"
<Employees>
<Employee id='1l' phone='555-555-5555">
<Name>Steve Kent</Name>
<Title>Mr. SciFi</Title>
<Department>Gaming</Department>
<HireDate>04/17/92</HireDate>
<Gender>M</Gender>
<MaritalStatus>M</MaritalStatus>
</Employee>
<Employee i1d='2' phone='555-555-5556"'>
<Name>Scott Klein</Name>
<Title>Geek</Title>
<Department>All things technical</Department>
<HireDate>02/05/94</HireDate>
<Gender>M</Gender>
<MaritalStatus>M</MaritalStatus>
</Employee>
<Employee i1d='3"' phone='555-555-5557"'>
<Name>Joe Walling</Name>
<Title>Head Geek</Title>
<Department>All things bleeding edge</Department>
<HireDate>06/15/93</HireDate>
<Gender>M</Gender>
<MaritalStatus>M</MaritalStatus>
</Employee>
</Employees>") ;
XElement xel = XElement.Load(tr);
tr.Close();
xel.Save (@"C:\Wrox\Employees2.xml", true);

The same goes for the save () method of the XDocument class.

Serializing can be done to a file (as the preceding example shows), a TextWriter, or an XmlWriter. The
following example shows how to serialize an XElement to an XmlWriter:

StringBuilder sb = new StringBuilder () ;
XmlWriterSettings xws = new XmlWriterSettings();
xws.OmitXmlDeclaration = true;
using (XmlWriter xw = XmlWriter.Create(sb , xws))
{
XElement employee = new XElement ("Root",
new XElement ("Employee",

new XAttribute("id", "1"),
new XAttribute("EyeColor", "Green"),
new XElement ("Name", "Scott"),

new XElement ("Address", "444 Main St."),
new XElement ("City", "Wellington"),
new XElement ("State", "FL"),

140

Chapter 6: Programming with LINQ to XML

new XElement ("Zip", "33414")
)
);
employee. Save (xw) ;

}
textBoxl.Text = sb.ToString();

You'll notice that you don’t have an option of controlling the whitespace when serializing to an
XmlIWriter via LINQ to XML. That is because the XmlWriter controls the behavior of the whitespace.

The following example serializes an XML tree to a TextWriter:

XElement employees = XElement.Parse(@"
<Employees>
<Employee id='1l' debt='Dev'>
<Name>Scott</Name>
<Title>Mr. SciFi</Title>
<Department>Gaming</Department>
<HireDate>04/17/92</HireDate>
<Gender>M< /Gender>
<MaritalStatus>M</MaritalStatus>
</Employee>
</Employees>") ;

using (StringWriter sw = new StringWriter())

{

employees.Save (sw, true);

}

You have many serialization options when using LINQ to XML; it is simply a matter of selecting the right
options for your application.

Namespaces

One of the more difficult concepts of XML programming is XML names and namespaces. You can think of
XML namespace on the same level as that of a namespace in a NET Framework application. A namespace
uniquely qualifies your class names within your application. By using namespaces, you can avoid the
naming conflicts between different parts of an XML document.

XML namespaces serve several purposes in XML, and maybe that’s the reason they seem to be so difficult
to understand. In addition to uniquely qualifying names, namespaces also serve the purpose of prefixes
within an XML document. Prefixes let you use shortcuts for XML namespaces, making the XML docu-
ment more readable and concise. The downside to prefixes is that they depend on their context for their
meaning. A prefix can be associated with different namespaces in different parts of the XML tree, making
the meaning much harder to understand.

LINQ to XML greatly simplifies programming with namespaces by removing the prefixes from the LINQ
APIL. When an XML document is loaded by LINQ to XML, prefixes are treated as shortcuts and resolved
to their corresponding namespaces (just like when XML is loaded by a DOM or SAX parser). Once the
XML document is loaded, namespaces are accessed via the namespace URI, not the prefix. Developers
work with XML names that are fully qualified.

141

Part Il: LINQ to XML

Fully qualified names are represented by the xName class, and you have seen them throughout this book.
Whenever an XML name is required, you are dealing with the XName class, such as an XName param-
eter. Keep in mind that you are never really working with the xName class directly, but rather with a
string representation.

Throughout this book you’ve seen string arguments passed as parameters to constructors when creating
elements or attributes during XML tree construction, like this:

new XElements ("Name", "Scott");

What happens is that the string is implicitly converted to an xName. That same concept can now be applied
to namespaces. The following creates a simple XML document with a default namespace:

XElement employee = new XElement ("{http://wrox.com}Employee",
new XAttribute("id", "1"),
new XElement ("{http://wrox.com}Name", "Scott"),
new XElement ("{http://wrox.com}Title", "Developer")

)i
This code produces the following XML:

<Employee id="1" xmlns="http://wrox.com">
<Name>Scott</Name>
<Title>Developer</Title>

</Employee>

Likewise, you can create an XML document that contains multiple namespaces:

XElement employee = new XElement ("{http://wrox.com}Employee",
new XAttribute("id", "1"),
new XElement ("{http://wrox.com}Name", "Scott"),
new XElement ("{http://wrox.org}Title", "Developer")
)

This produces the following XML:

<Employee id="1" xmlns="http://wrox.com">
<Name>Scott</Name>
<Title xmlns="http://wrox.org">Developer</Title>
</Employee>

LINQ to XML also provides a class to assist in working with namespaces, and that class is the
XNamespace class. Namespaces can also be defined and created via the XNamespace class. This class rep-
resents an XML namespace and cannot be inherited. The following example defines a default namespace
that is used in the subsequent XML document:

XNamespace xn = "http://wrox.com";

XElement employee = new XElement(xn + "Employee",
new XAttribute("id", "1"),
new XElement(xn + "Name", "Scott"),

142

Chapter 6: Programming with LINQ to XML

new XElement (xn + "Title", "Developer")

)i
This code produces the following XML:

<Employee id="1" xmlns="http://wrox.com">
<Name>Scott</Name>
<Title>Developer</Title>

</Employee>

You should begin to see that working with namespaces in LINQ to XML is quite easy. LINQ to XML
removes a lot of the frustration you experience with other XML technologies and makes working with
XML documents a pleasure.

Summary

This chapter provided you with the LINQ to XML programming techniques necessary to work with XML
documents; specifically it explained how to populate and query XML trees effectively and efficiently.

It showed you how to modify and reshape an existing XML document into another XML document
using many of the methods available in LINQ to XML, such as the XElement and XAttribute classes
and their associated methods. You also explored serialization in LINQ to XML. There are several serial-
ization options available, including to which technology to serialize the XML and whether to retain the
whitespace of the XML document.

Finally, you examined namespaces, specifically how they are handled and how to apply them to an XML
document in LINQ to XML, and learned how LINQ to XML removes many of the normal difficulties in

working with them.

Chapter 7, “LINQ to XML and other LINQ Data Models,” discusses how LINQ to XML works with other
data models.

143

LINQ to XML and Other
LINQ Data Models

One of the great things about LINQ is its flexibility. LINQ has many great strong points, not the least
of which is its capability to provide a query consistency across different data models (LINQ, LINQ
to XML, and LINQ to SQL) through the standard query operators and the .NET Framework’s new
lambda expressions. Lambda expressions, discussed in Chapter 2, ““A Look at Visual Studio 2008,”
are inline statement blocks or expressions that can be used wherever delegate types are expected.
Lambda expressions are written using a concise syntax and can be used anywhere anonymous
methods can be used—for example as arguments to a method call.

Another of LINQ’s significant qualities is the capability to easily interact with LINQ-based data
models, such as LINQ to SQL. This capability is provided via the LINQ APIs. It enables devel-
opers to combine LINQ data models to create single query expressions using components from
both models.

This chapter focuses on using LINQ to XML to interact with LINQ to SQL. It shows you how to
use data from a database to populate an XML tree, and how to take content from an XML tree
to populate a database.

SQL to XML

By combining LINQ to SQL with LINQ to XML, developers can easily read data from a database
and transform those records into XML, all within the same statement. This section walks you
through an example of reading data from a SQL Server database and using the data to create an
XML tree.

Open Visual Studio 2008 and create a new project. Make sure that NET Framework version 3.5 is
selected on the New Project page. Under the Templates section, select a Windows Forms Applica-
tion and name the project LINQ-Chapter?. Click OK on the New Project form.

Part Il: LINQ to XML

When the new project loads, Form1 is displayed. Place a text box, a label, and three buttons on the form,
and set their properties as follows.

Property Value
Textbox Location 12, 12
Multiline True
Size 187, 249
Buttonl Name cmdSglToXml
Location 205, 12
Text SQL to XML
Button 2 Name cmdXmlToSqgl
Location 205, 41
Text XML to SQL
Button 3 Name cmdClose
Location 205, 238
Text Close
Label Location 205, 67
Text Insert successful.
Visible False

Figure 7-1 shows the form design when the project is run. The SQL to XML button will be used in this
example to read data from a database and transform that data into XML. The XML to SQL button will be
used in later examples to read XML from an XML tree and to use that data to insert and update a table in
the AdventureWorks database.

= Form1

Figure 7-1

146

Chapter 7: LINQ to XML and Other LINQ Data Models

The examples combine LINQ to SQL and LINQ to XML to accomplish tasks easily and efficiently.

First, you want to add the proper references. In Solution Explorer, expand the References node. You'll
see that a reference to System.Xml.Ling is already included, but you also need to add a reference to
System.Data.Ling. To do so, right-click the references node and select Add Reference. In the Refer-
ences dialog, select the .NET tab. Scroll down the list, select the System.Data.Ling component, and then

click OK.

With the form designed and the appropriate references added, the next step is to add code behind the
form. Right-click in the gray area of the form and select View Code from the context menu.

In the declarations section, add the following using statements after the existing using statements:

using
using
using
using
using

System.
System.
System.
System.
System.

Data.Ling;
Data.Ling.Mapping;
Xml.Ling;

I0;

Xml;

Those statements must be added before you can use the components.

Below the public partial class for Forml, add the following;:

public class AdventureWorks : DataContext

{

public AdventureWorks (string connection) : base(connection) { }
public Table<Contact> Contact;

}

[Table (Name = "Person.Contact")]
public class Contact

{

[Column (DbType = "int")]

public int ContactID;

[Column (DbType = "bit not null")]
public byte NameStyle;

[Column (DbType = "nvarchar(8) not null")]
public string Title;

[Column (DbType = "nvarchar (50) not null")
public string FirstName;

[Column (DbType = "nvarchar (50) not null")]
public string MiddleName;

[Column (DbType = "nvarchar (50) not null")
public string LastName;

[Column (DbType = "nvarchar(50) not null")]
public string EmailAddress;

147

Part Il: LINQ to XML

[Column (DbType = "int")]
public int EmailPromotion;

[Column (DbType = "varchar (40) not null")]
public string PasswordHash;

[Column (DbType = " varchar(10) not null ")]
public string PasswordSalt;

In design view for Form1, double-click the SQL to XML button to view the code behind it. In the code for
cmdSqglToxml, add the following:

DataContext context = new DataContext ("Initial Catalog=@@>
AdventureWorks; Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact> () ;

XElement contacts =
new XElement ("Customers",

from ¢ in contact

where c.FirstName.StartsWith("s")

&& c.LastName.StartsWith("K")

orderby c.LastName

select new XElement ("Contact",
new XAttribute("ContactID", c.ContactID),
new XElement ("FirstName", c.FirstName),
new XElement ("LastName", c.LastName),
new XElement ("Title", c.Title),
new XElement ("EmailAddress", c.EmailAddress)
)

)

textBoxl.Text = contacts.ToString();

Then press F5 to compile and run the project. When Forml appears, click the SQL to XML button. The
text box should be populated with an XML tree that looks like the following XML:

To conserve page space, the XML tree is not displayed in its entirety. Only the first few and last few
elements are displayed.

<Customers>

<Contact ContactID="450">
<yomoma>Scott</yomoma>
<LastName>Kaffer</LastName>
<Title>Mr.</Title>
<EmailAddress>scott5@adventure-works.com</EmailAddress>

</Contact>

<Contact ContactID="453">
<yomoma>Sandeep< /yomoma>
<LastName>Kaliyath</LastName>

148

Chapter 7: LINQ to XML and Other LINQ Data Models

<Title>Mr.</Title>

<EmailAddress>sandeepl@adventure-works.com</EmailAddress>
</Contact>
<Contact ContactID="1153">

<yomoma>Sandeep < /yomoma>

<LastName>Kaliyath</LastName>

<Title />

<EmailAddress>sandeepO@adventure-works.com</EmailAddress>
</Contact>

<Contact ContactID="7718">
<yomoma>Sharon</yomoma>
<LastName>Kumar</LastName>
<Title />
<EmailAddress>sharonl4@adventure-works.com</EmailAddress>
</Contact>
<Contact ContactID="2766">
<yomoma>Shawna< /yomoma>
<LastName>Kumar < /LastName>
<Title />
<EmailAddress>shawna8@adventure-works.com</EmailAddress>
</Contact>
</Customers>

In this example, LINQ to SQL was used to make a connection to the Person.Contact table in the Adven-
tureWorks database. LINQ and LINQ to XML were used to create a query expression to read the contents
of the table and format the results into an XML tree.

You can see that in roughly a dozen lines of code, an XML tree was created from data in a SQL
Server table.

XML to SQL

These next two examples illustrate the opposite; that is, taking data from an XML tree to insert a row into
the Person.Contact table, and then updating the newly inserted record. For this example, you need an
XML file, so in your favorite text editor, type in the following:

<Contacts>
<Contact>
<ContactID></ContactID>
<NameStyle>0</NameStyle>
<Title>Mr.</Title>
<FirstName>Scott</FirstName>
<MiddleName>L</MiddleName>
<LastName>Klein</LastName>
<EmailAddress>Geek@SglXml.com</EmailAddress>
<EmailPromotion>1</EmailPromotion>
<PasswordHash> F57E03FEA2FDOF74684C20758110CC7860F67523</PasswordHash>
<PasswordSalt>/RPjvXw=</PasswordSalt>
</Contact>
</Contacts>

149

Part Il: LINQ to XML

Yes, ContactID was left blank on purpose. That will be used in the “Insert” example. Save the file as
Contacts.xml in your Wrox directory. The next example illustrates how to insert a new record.

Insert

With the XML file created, return to your Visual Studio LINQ project and double-click the XML to SQL
button. In the code behind the XML to SQL button, add the following:

AdventureWorks db = new AdventureWorks ("Integrated Security=sspi");
XElement xel = XElement.Load(@"C:\Wrox\Ling\Chapter5\Contacts.xml");

foreach (XElement xelem in xel.Elements("Contact"))

{
Contact con = new Contact();
con.NameStyle = 1;
con.Title = (string)xelem.Element ("Title");
con.FirstName = (string)xelem.Element ("FirstName") ;
con.MiddleName = (string)xelem.Element ("MiddleName") ;
con.LastName = (string)xelem.Element ("LastName") ;
con.EmailAddress = (string)xelem.Element ("EmailAddress");
con.EmailPromotion = (int)xelem.Element ("EmailPromotion") ;
con.PasswordHash = (string)con.Element ("PasswordHash");
con.PassswordSalt = (string)con.Element ("PasswordSalt") ;
db.Contact.Add (con) ;
db.SubmitChanges () ;

}

lablel.Visible = true;

Run the project and click the XML to SQL button. When the insertion is successful, the label on the form
displays the text ““Insert successful.” To verify the results, open a new query window in SSMS (SQL
Server Management Studio). Select the AdventureWorks database and execute the following query:

SELECT ContactID, NameStyle, Title, FirstName, MiddleName, LastName,
EmailAddress, EmailPromotion, PasswordHash, PasswordSalt

FROM Person.Contact

WHERE ContactID > 19977

Figure 7-2 shows the results pane.

DIUF F4GHL20/50 TULL UG Libed

Figure 7-2

You have successfully read data from an XML file and inserted it into a database. Not difficult to do, was
it? By now you should be realizing how easy LINQ to XML and LINQ to SQL make working with XML
and SQL databases.

Next you'll update the new record.

150

Chapter 7: LINQ to XML and Other LINQ Data Models

Update

This example continues the previous one by updating the record that was just inserted. First, though,
you'll need to update the XML file Contacts.xml with the following highlighted
code lines:

<Contacts>
<Contact>
<ContactID>19978</ContactID>
<NameStyle>0</NameStyle>
<Title>Geek</Title>
<FirstName>Scott</FirstName>
<MiddleName>Lindsey</MiddleName>
<LastName>Klein</LastName>
<EmailAddress>ScottKlein@SqglXml.com</EmailAddress>
<EmailPromotion>1</EmailPromotion>
<PasswordHash> F57E03FEA2FDOF74684C20758110CC7860F67523</PasswordHash>
<PasswordSalt>/RPjvXw=</PasswordSalt>
</Contact>
</Contacts>

Next, update the code behind the XML to SQL button of the form with the following highlighted code
lines:

AdventureWorks db = new AdventureWorks ("Integrated Security=sspi");
XElement xel = XElement.Load(@"C:\Wrox\Ling\Chapter5\Contacts.xml");

foreach (XElement xelem in xel.Elements ("Contact"))

{
Contact
Contact con = db.contact.First(co => co.ContactID ==
(int)xelem.Element ("ContactID")) ;
con.Title = (string)xelem.Element ("Title");
con.MiddleName = (string)xelem.Element ("MiddleName") ;
con.EmailAddress = (string)xelem.Element ("EmailAddress") ;
db. SubmitChanges () ;

}

labell.Text = "Update successful";

lablel.Visible = true;

Run the project and click the XML to SQL button. When the update is successful, the label on the form will
display the text “Update successful.” To verify the results, open a new query window in SSMS. Select the
AdventureWorks database, and execute the same query you used in the last example. Figure 7-3 shows
the results.

Seollkisr@S0LMLcom | 1 FO7EOFEAZFDOFTAE34C20758110CCTEE0FETSZY | /RPw

Figure 7-3

You have successfully read data from an XML file and updated a record in a SQL table. In the preceding
highlighted code, a query for each contact element is executed against the database, returning the

151

Part Il: LINQ to XML

corresponding ContactID. In this example, a single record is returned because the query is only looking
for a specific ContactID. Once that ContactID is found, the Title, MiddleName, and EmailAddress
fields are updated for that ContactIb.

Summary

This chapter introduced you to mixing LINQ data models within a single query. You saw how to query a
SQL database and use the results to create an XML tree. This functionality is provided by the individual
data models and associated APIs.

You also learned how to query contents of an XML document and use that information to insert and
update a SQL Server table. Again, the LINQ APIs make it extremely easy to mix LINQ data models and
use XML to update a database.

The next chapter focuses on a few advanced topics of LINQ to XML.

152

Advanced LINQ to XML
Programming Topics

By now, you should have a fairly solid understanding of how LINQ to XML works, and how
you can use it to program with XML. Still, there are a few topics that are especially pertinent
for advanced developers, and this chapter focuses on those. In particular, this chapter covers
the following:

d Functional construction
4 Annotations
a Axis

4 Events

a

Streaming documents and fragments

LINQ to XML Functional Construction

In the past few chapters, you've seen how easy it is to construct XML with LINQ to XML using a
variety of techniques, such as using the XElement and xAttribute classes. However, LINQ to XML
is much more versatile and provides another mechanism for creating XML documents that is called
functional construction.

Functional construction is the capability to construct an XML tree via a single statement. For the
most part, the last three chapters have shown how to construct XML trees manually using the
XElement and xAttribute classes. Those classes contain constructors that enable you to construct
XML trees easily and efficiently within a single statement. For example, the XElement constructor
enables you to pass other XElement objects or XAttribute objects to create child elements and
attributes such as the next example shows.

Part 1l: LINQ to XML

Each of these classes also has a constructor that takes a params array of type object[] so that you can
pass one or more objects to the constructor. The benefit of this is that you can create complex XML trees
quickly and within a single expression.

Another benefit of LINQ to XML is that objects consume the IEnumerable interface. Because the LINQ
objects are using the IEnumerable interface, the contents of the objects can be enumerated and used to
create contained nodes/attributes. In other words, the results of the LINQ query are used in the creation

of the XML tree.

For example, the following is a portion of code that builds an XML tree manually:

XElement employee =

new XElement ("Employees",

new XElement ("Employee",

new
new
new
new

new
new
new

)

XAttribute("id", "1"),
XAttribute ("Dept", "0001"),
XElement ("Name", "Scott"),

XElement ("Address",

new XElement ("Street", "555 Main St.

new XElement ("City", "Wellington"),
new XElement ("State", "FL"),

new XElement ("Zip", "33414")),
XElement ("Title", "All Things Techy"),
XElement ("HireDate", "02/05/2007"),

XElement ("Gender", "M")

Through the use of the XElement and XAttribute classes, you can simply and easily construct XML.
Notice that as each new element or attribute is added to the tree during construction, the code automati-

cally is formatted to look like the resulting XML.

The preceding code produces the following XML:

<Employees>
<Employee id="1" Dept="0001">
<Name>Scott</Name>
<Address>
<Street>555 Main St.</Street>
<City>Wellington</City>
<State>FL</State>
<Zip>33414</Zip>
</Address>
<Title>All Things Techy</Title>
<HireDate>02/05/2007</HireDate>
<Gender>M</Gender>
</Employee>
</Employees>

Functional construction, however, enables you to do much more than just construct XML manually as
shown in the previous example. Functional construction takes a completely different approach when
modifying and manipulating XML. In today’s XML technology, manipulating and modifying XML usu-
ally means a significant and detailed modification of the XML data source. LINQ to XML treats XML

154

Chapter 8: Advanced LINQ to XML Programming Topics

modification as simply a transformation problem: you can take an XML data source and efficiently trans-
form it to another form.

The following example uses the employee XML