
www.allitebooks.com

http://www.allitebooks.org

Klein ffirs.tex V2 - 12/13/2007 1:28pm Page i

Professional
LINQ

Acknowledgments xiii

Introduction xxiii

Part I: Introduction to Project LINQ 1
Chapter 1: Project LINQ . 3
Chapter 2: A Look at Visual Studio 2008 . 17
Chapter 3: LINQ Queries . 31
Chapter 4: LINQ Standard Query Operators . 53

Part II: LINQ to XML 93
Chapter 5: Understanding LINQ to XML . 95
Chapter 6: Programming with LINQ to XML . 123
Chapter 7: LINQ to XML and Other LINQ Data Models . 145
Chapter 8: Advanced LINQ to XML Programming Topics 153
Chapter 9: LINQ to XML and Visual Basic .NET . 179

Part III: LINQ to SQL 197
Chapter 10: LINQ to SQL Overview . 199
Chapter 11: LINQ to SQL Queries. 217
Chapter 12: Advanced Query Concepts . 245
Chapter 13: More about Entity Classes . 257
Chapter 14: LINQ to DataSet . 271
Chapter 15: Advanced LINQ to SQL Topics . 287

Appendixes 311
Appendix A: Case Study . 313
Appendix B: LINQ to Entities: The ADO.NET Entity Framework 329
Appendix C: LINQ to XSD . 345

Index . 359

www.allitebooks.com

http://www.allitebooks.org

Klein ffirs.tex V2 - 12/13/2007 1:28pm Page ii

www.allitebooks.com

http://www.allitebooks.org

Klein ffirs.tex V2 - 12/13/2007 1:28pm Page iii

Professional
LINQ

www.allitebooks.com

http://www.allitebooks.org

Klein ffirs.tex V2 - 12/13/2007 1:28pm Page iv

www.allitebooks.com

http://www.allitebooks.org

Klein ffirs.tex V2 - 12/13/2007 1:28pm Page v

Professional
LINQ

Scott Klein

Wiley Publishing, Inc.

Klein ffirs.tex V2 - 12/13/2007 1:28pm Page vi

Professional LINQ
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-04181-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Klein, Scott, 1966-
Professional LinQ / Scott Klein.

p. cm.
Includes index.
ISBN 978-0-470-04181-9 (pbk. : website)

1. Microsoft LINQ. 2. Query languages (Computer science) I. Title.
QA76.73.L228K53 2008
005.74’1--dc22

2007045810

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting,
or other professional services. If professional assistance is required, the services of a competent professional person
should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Website is referred to in this work as a citation and/or a potential source of further information
does not mean that the author or the publisher endorses the information the organization or Website may provide
or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may
have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and
other countries, and may not be used without written permission. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

www.wiley.com

Klein ffirs.tex V2 - 12/13/2007 1:28pm Page vii

To Lynelle, Sadie, Forrest, Allara, and Shayna

Klein ffirs.tex V2 - 12/13/2007 1:28pm Page viii

Klein fauth.tex V3 - 12/13/2007 1:35pm Page ix

About the Author
Scott Klein is an independent consultant with a passion for all things SQL Server, .NET, and XML. He
is the author of Professional SQL Server 2005 XML and Professional WCF Programming. He also writes the
biweekly feature article for the SQL PASS Community Connector, and has contributed articles to both Wrox
(www.Wrox.com) and TopXML (www.TopXML.com). He frequently speaks to SQL Server and .NET user
groups. Scott lives in Wellington, Florida, and when he is not sitting in front of a computer or spending
time with his family, he can usually be found aboard his Yamaha at the local motocross track. He can be
reached at ScottKlein@SqlXml.com.

Klein fauth.tex V3 - 12/13/2007 1:35pm Page x

Klein fcre.tex V3 - 12/13/2007 1:36pm Page xi

Credits
Executive Editor
Bob Elliott

Development Editor
Maryann Steinhart

Technical Editor
Carl Daniel

Production Editor
Daniel Scribner

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Candace English, Nancy Riddiough,
Amy Rasmussen and
Jeremy Bagai

Indexer
Robert Swanson

Klein fcre.tex V3 - 12/13/2007 1:36pm Page xii

Klein fack.tex V3 - 12/13/2007 1:37pm Page xiii

Acknowledgments

First and foremost I’d like to thank Neil Salkind and everyone at Studio B for being who they are and
for all that they do. They take care of all of the things I don’t want to have to worry about and let me do
what I like to do, which is working with the latest and greatest new technology. Without these people
and their contributions, this book wouldn’t be possible.

I’d like to give a huge thanks to the people at Wrox/Wiley for making this book happen. Maryann
Steinhart, my development editor, was a delight to work with. Many, many thanks to Carl Daniel, the
technical editor, for the time and energy he put into reviewing this book. His comments were invaluable.

Thanks to Jim Minatel, for accepting the book idea and letting me write it, and Bob Elliott for picking up
where Jim left off after Jim went on to bigger and better things within Wrox. I appreciate your support.

As with my other books, having that ‘‘one person’’ who you could go to for whatever reason made life so
much easier. Dave Remy, I cannot thank you enough! Your help was worth more than gold, and it sure
made writing this book much easier.

A large dose of gratitude also goes out to Dinesh Kulkarni, Eric White, Erick Thompson, Lance Olson,
Luca Bolognese, Mads Torgersen, Michael Blome, Ralf Lammel, Scott Guthrie, Luke Hoban, and Asad
Khan. A thank you to each of you for letting me ask questions and providing excellent feedback.

It has been said that you are only as good as those with whom you associate. So enough cannot be said
about the love and support of my family, for without them, this book, or anything else I do in life, would
not be possible. My wonderful wife, Lynelle, who during these times is an anchor for this family, held
the house together for the 8+ months I spent upstairs writing. And to my children, who were patient
with their father knowing that they soon would get their dad back. I love you all. When did my eldest
daughter turn old enough to start driving?

Klein fack.tex V3 - 12/13/2007 1:37pm Page xiv

Klein ftoc.tex V3 - 12/13/2007 1:37pm Page xv

Contents

Acknowledgments xiii
Introduction xxiii

Part I: Introduction to Project LINQ

Chapter 1: Project LINQ 3

LINQ Overview 7
Standard Query Operators 10
LINQ to XML Overview 12
LINQ to SQL Overview 14
Summary 16

Chapter 2: A Look at Visual Studio 2008 17

Visual Studio 2008 17
Language-Specific LINQ Features 21

Query Expressions 21
Implicitly Typed Variables 22
Anonymous Types 23
Initializers for Objects and Collections 23
Extension Methods 26
Lambda Expressions 28

Summary 30

Chapter 3: LINQ Queries 31

Introduction to LINQ Queries 31
Data Source 32
Query Creation 33
Query Execution 33
Likened to SQL Syntax 36
Query Concepts 37
Var versus IEnumerable 40
Common Query Terms 41
IQueryable and IQueryable(Of T) Interfaces 42

Klein ftoc.tex V3 - 12/13/2007 1:37pm Page xvi

Contents

Query Syntax versus Method Syntax 43
Which Do You Use? 44

Using Query and Method Syntaxes 45
Summary 51

Chapter 4: LINQ Standard Query Operators 53

Overview 53
Standard Query Operators 54

Projection Operators 55
Restriction Operator 57
Sorting Operators 57
Joining Operators 59
Grouping Operator 62
Concatenating Operator 63
Aggregating Operators 64
Set Operators 68
Generation Operators 71
Conversion Operators 73
Element Operators 77
Equality Operators 82
Quantifier Operators 83
Partitioning Operators 86

Putting Query Operators to Work 88
Summary 92

Part II: LINQ to XML

Chapter 5: Understanding LINQ to XML 95

LINQ to XML Overview 95
LINQ to XML Programming Fundamentals 96

LINQ to XML Classes 96
XElement Class 98
XAttribute Class 102
XDocument Class 104

LINQ to XML Programming Concepts 107
Working with Existing XML 107
Saving XML to LINQ to XML 109
Creating XML 110

xvi

Klein ftoc.tex V3 - 12/13/2007 1:37pm Page xvii

Contents

Traversing XML 111
Manipulating XML 112
Working with Attributes 117

LINQ to XML versus Other XML Technologies 120
LINQ to XML versus DOM 120
LINQ to XML versus XmlReader 121
LINQ to XML versus XSLT 121
LINQ to XML versus MSXML 121

Summary 122

Chapter 6: Programming with LINQ to XML 123

Creating Trees 123
Creating Trees in C# 124
Creating Trees in Visual Basic 128

Populating Trees from Text 130
Querying XML Trees 132
Modifying and Reshaping XML Trees 137
Serializing XML Trees 139
Namespaces 141
Summary 143

Chapter 7: LINQ to XML and Other LINQ Data Models 145

SQL to XML 145
XML to SQL 149

Insert 150
Update 151

Summary 152

Chapter 8: Advanced LINQ to XML Programming Topics 153

LINQ to XML Functional Construction 153
LINQ to XML Annotations 158
LINQ to XML Axis 161

Ancestors 161
Descendants 163
AncestorsAndSelf 164
DescendantsAndSelf 165
ElementsAfterSelf and ElementsBeforeSelf 166

LINQ to XML Events 167
Changing 168
Changed 170

xvii

Klein ftoc.tex V3 - 12/13/2007 1:37pm Page xviii

Contents

Streaming XML Documents 171
Streaming Large XML Documents 176
Summary 177

Chapter 9: LINQ to XML and Visual Basic .NET 179

Creating XML 179
Overview of XML Literals 180
Expressions 182
Embedding Queries 184
Understanding Whitespace in Visual Basic XML Literals 184

Accessing XML 185
Loading XML 188
Manipulating XML Using the Parse Method 189
LINQ to XML Visual Basic Example 191
Summary 194

Part III: LINQ to SQL

Chapter 10: LINQ to SQL Overview 199

Understanding LINQ to SQL 200
LINQ to SQL Object Model 201
Attribute-Based Mapping 202

Using the Database Attribute 202
Mapping Tables 203
Mapping Columns 203
Mapping Relationships 206
Mapping Stored Procedures 207
Mapping Functions 208
Using the Parameter Attribute 209

The Basics of Relational Data 209
Primary Keys 210
Foreign Keys 212

Summary 215

Chapter 11: LINQ to SQL Queries 217

Query Concepts 217
DataContext 219

xviii

Klein ftoc.tex V3 - 12/13/2007 1:37pm Page xix

Contents

Strongly Typed DataContext 220
Data Manipulation 221

Insert 222
Update 224
Delete 225

Working with Objects 225
Insert 225
Update 226
Delete 226

Stored Procedures and User-Defined Functions 227
Mapping and Calling Stored Procedures 227
Mapping and Calling User-Defined Functions 240

Summary 244

Chapter 12: Advanced Query Concepts 245

Database Relationships 245
Representing Relationships 245
Querying 250

Compiled Queries 251
Remote versus Local Query Execution 251

Remote Execution 252
Local Execution 252

Deferred versus Immediate Data Loading 252
DataShape Class 254
Turning Off Deferred Loading 254

Composite Keys 255
Read-Only Data 255
Summary 256

Chapter 13: More about Entity Classes 257

Tracking Entity Changes 258
Submitting Entity Changes 258
Concurrent Changes and Concurrency Conflicts 263

UpdateCheck 263
ConflictMode 264
ChangeConflictException 265
RefreshMode 265

Utilizing Transactions 267
Summary 269

xix

Klein ftoc.tex V3 - 12/13/2007 1:37pm Page xx

Contents

Chapter 14: LINQ to DataSet 271

Overview of LINQ to DataSet 272
Creating a LINQ to DataSet Project 272
Loading Data into a DataSet 273

Using the DataAdapater 273
LINQ to DataSet Queries 275

Querying a Single Table 275
Querying across Multiple Tables 277
Typed DataSets 278

Data Binding 279
Comparing DataRows 281
Summary 284

Chapter 15: Advanced LINQ to SQL Topics 287

Object Relational Designer 287
Creating and Opening the O/R Designer 288
Creating/Configuring the DataContext 288
Creating Entity Classes for Tables/View Mapping 290
DataContext Mapping for Stored Procedures/Functions 292
Calling Stored Procedures to Save Data Using Entity Classes 293

Extending O/R Designer-Generated Code 294
Pluralization of Classes in the O/R Designer 296
SQL Metal 296
External Mapping 299
Multi-Tier Operations 302
N-Tier Best Practices 303

Optimistic Concurrency 303
Insertion/Deletion 304
N-Tier Examples 304

Designer Example 305
Summary 310

Appendixes

Appendix A: Case Study 313

Appendix B: LINQ to Entities: The ADO.NET Entity Framework 329

Overview 329
Installing the ADO.NET Entity Framework 331

xx

Klein ftoc.tex V3 - 12/13/2007 1:37pm Page xxi

Contents

ADO.NET Entity Framework Example 332
Querying the Entity Data Model 340
Working with Objects 341
Entity Data Model Generator 342

Appendix C: LINQ to XSD 345

LINQ to XSD Overview 345
Installing LINQ to XSD 346
LINQ to XSD Example 346
Mapping Rules 354
LINQ to XSD-Generated API Class Methods 354

Load Method 355
Parse 355
Save 356
Clone 356
Default Values 357

Index 359

xxi

Klein ftoc.tex V3 - 12/13/2007 1:37pm Page xxii

Klein flast.tex V3 - 12/13/2007 1:45pm Page xxiii

I n t roduc t ion

It has been three years and I’m still trying to get the word ‘‘grok’’ into everyone’s mainstream vocabulary
(see the introductions to my last two books), and one of the things that I am ‘‘grokking’’ is the new LINQ
technology coming out of the Microsoft campus.

Microsoft is touting LINQ as a ‘‘groundbreaking innovation’’ that promises to ‘‘revolutionize the way
developers work with data.’’ Like you, I was somewhat skeptical about these promises because similar
comments have been funneled our way in the past, but these bold declarations would cause even the
casual developer to stop and take notice.

Let me just say right here that the more I got into LINQ, the more excited I became (and the more guilty I
felt about not believing the hype). And this isn’t just any mere excitement; this is on par with a 10-year-old
waking up Christmas morning to a pirate’s share of loot under the Christmas tree.

Why? Because LINQ introduces queries (the concept of a query) as a first-class language construct in
both C# and Visual Basic. No longer do you need to learn multiple technologies to query multiple data
sources. It is a single query syntax for querying XML, SQL databases, ADO.NET DataSets, and other data
sources.

LINQ simplifies how you will now write queries. If you use C# or Visual Basic, you will be able to start
writing LINQ queries immediately because you know most of what you need. LINQ is a set of features
built into Visual Studio 2008 that incorporates tremendous query capabilities directly into the language
syntax of Visual Basic and C#. This provides the benefits of IntelliSense, compile-time type checking, and
debugging support. How could life get any better?

Who This Book Is For
This book is for developers who want to learn about LINQ and how it can benefit and enhance their
applications. Equally, this book is for those individuals who have spent at least a little time looking at
LINQ, have done some experimental development with it, and want to delve deeper into the technology
to see how LINQ can improve their applications.

A good understanding of Visual Studio and the C# language will be useful when reading this book and
working with the examples, but it is not required. An understanding of SQL Server and T-SQL also
would be useful but is not required.

What This Book Covers
Part I provides on overview of LINQ and of Visual Studio 2008, a look at many of the new and existing
language-specific features that support LINQ, and a discussion of LINQ queries and the LINQ standard
query operators.

Klein flast.tex V3 - 12/13/2007 1:45pm Page xxiv

Introduction

❑ Chapter 1 provides an overview of LINQ and explains why there is a need for LINQ, and then
takes a brief introductory look at the other LINQ providers.

❑ Chapter 2 affords a brief history of Visual Studio, and then takes a good look at Visual
Studio 2008 and many of the .NET Framework language-specific features that will help you
better understand LINQ.

❑ Chapter 3 examines LINQ queries, their overall concepts, and the syntax to use when writing
LINQ queries.

❑ Chapter 4 provides a detailed discussion of the LINQ standard query operators.

Part II jumps right into LINQ to XML, providing an overview first and then showing you how to program
with LINQ to XML with both C# and Visual Basic, and how to use LINQ to XML with other data models.

❑ Chapter 5 provides an overview of LINQ to XML, discusses many of the LINQ to XML concepts,
and compares LINQ to XML with other XML technologies.

❑ Chapter 6 tackles many of the concepts, techniques, and programming fundamentals necessary
to program with LINQ to XML.

❑ Chapter 7 compares LINQ to XML with the other LINQ data models such as LINQ to SQL.

❑ Chapter 8 explores some advanced LINQ to XML programming topics such as functional
construction and working with events.

❑ Chapter 9 focuses solely on using LINQ to XML with Visual Basic .NET.

Part III focuses on LINQ to SQL, again providing an overview, and then tackling LINQ to SQL queries,
advanced query concepts, LINQ to Entities, and LINQ to DataSets. It also introduces you to the visual
tools provided by LINQ to automate many of the LINQ to SQL functions.

❑ Chapter 10 provides an overview of LINQ to SQL and its corresponding object model, as well as
a discussion of attribute-based mapping and an overview of relational basics.

❑ Chapter 11 discusses LINQ to SQL queries and concepts, how to work with the DataContext
class and entity objects, and how to manipulate data with LINQ to SQL.

❑ Chapter 12 explores concepts such as database relationships and LINQ query execution.

❑ Chapter 13 tackles many aspects of LINQ to SQL entities such as tracking changes and working
with transactions.

❑ Chapter 14 focuses on using LINQ to DataSet to query the contents of an ADO.NET DataSet, and
data binding with LINQ to DataSet.

❑ Chapter 15 discusses some advanced LINQ to SQL topics and tools such as multi-tier operations
and the Object-Relational Designer.

Part IV, ‘‘Appendixes,’’ provides a case study and a look at a couple of LINQ technologies that will be
available post–Visual Studio 2008 but are sure to make an impact on the market: LINQ to XSD and LINQ
to the ADO.NET Entity Framework.

❑ Appendix A walks you through building an application using LINQ and associated LINQ
providers.

xxiv

Klein flast.tex V3 - 12/13/2007 1:45pm Page xxv

Introduction

❑ Appendix B discusses the ADO.NET Entity Framework and associated objects as well as the
Entity Data Model Generator tool.

❑ Appendix C discusses LINQ to XSD, a beta technology that allows you to work directly with
XML in a typed manner.

What You Need to Use This Book
All of the examples in this book require the following:

❑ Visual Studio 2008 (Beta 2)

❑ .NET Framework 3.5 (Beta 2)

❑ LINQ to XSD Preview

❑ ADO.NET Entity Framework Beta 2

❑ ADO.NET Entity Framework Tools CTP

❑ SQL Server 2005 and the AdventureWorks sample database

Conventions
To help you get the most from the text and keep track of what’s happening, a number
of conventions are used throughout the book.

Boxes like this one hold important, not-to-be-forgotten information that is directly
relevant to the surrounding text.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ New terms and important words are highlighted when we introduce them.

❑ Keyboard strokes look like this: Ctrl+A.

❑ Filenames, URLs, and code within the text are shown like this: persistence.properties.

❑ Code is presented in two different ways:

A monofont type with no highlighting is used for most code examples.

Gray highlighting to emphasize code that’s particularly important in the present
context.

xxv

Klein flast.tex V3 - 12/13/2007 1:45pm Page xxvi

Introduction

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually or
to use the source code files that accompany the book. All of the source code used in this book is available
for downloading at www.wrox.com. Once at the site, simply locate the book’s title (either by using the
Search box or by using one of the title lists) and click the Download Code link on the book’s detail page
to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-04181-9.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see
the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list, including
links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot ‘‘your’’ error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to email you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

xxvi

Klein flast.tex V3 - 12/13/2007 1:45pm Page xxvii

Introduction

3. Complete the required information to join as well as any optional information you want to
provide, and click Submit.

4. You will receive an email with information describing how to verify your account and
complete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
emailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

xxvii

Klein flast.tex V3 - 12/13/2007 1:45pm Page xxviii

Klein p01.tex V3 - 12/13/2007 1:47pm Page 1

Part I

Introduction to Project LINQ

Chapter 1: Project LINQ

Chapter 2: A Look at Visual Studio 2008

Chapter 3: LINQ Queries

Chapter 4: LINQ Standard Query Operators

Klein p01.tex V3 - 12/13/2007 1:47pm Page 2

Klein c01.tex V3 - 12/13/2007 1:48pm Page 3

Project LINQ

I often hear the questions, ‘‘What is LINQ?,’’ ‘‘What does it do?,’’ and ’’Why do we need it?’’
The answer to the first question (and subsequently the other two questions) is that the Language
Integrated Query (LINQ) is a set of standard query operators that provide the underlying query
architecture for the navigation, filtering, and execution operations of nearly every kind of data
source, such as XML (using LINQ to XML, previously known as XLINQ), relational data (using
LINQ to SQL, previously known as DLINQ), ADO.NET DataSets (using LINQ to DataSet), and
in-memory collections.

The best way to begin understanding this wonderful new technology is to take a look at some
history and background on how and why LINQ came to be.

Although the public first became aware of LINQ early in the fall of 2005, LINQ had been in
development since early 2003. The overall LINQ goal was to make it easier for developers to interact
with SQL and XML, primarily because there exists a disconnect between relational data (databases),
XML, and the programming languages that communicate with (that is, work with) each of them.

Most developers understand the concept of object-oriented (OO) programming and its related
technologies and features, such as classes, methods, and objects. Object-oriented programming has
evolved tremendously over the past 10 years or so, but even in its current state, there’s still a gap
when using and integrating OO technology with information that is not natively defined or inherent
to it.

For example, suppose that you want to execute a T-SQL query from within your C# application. It
would look something like this:

private void Form1_Load(object sender, EventArgs e)
{

string ConnectionString = @"Data Source=(local);
Initial Catalog=AdventureWorks;UID=sa;PWD=yourpassword";

using (SqlConnection conn = new SqlConnection(ConnectionString))
{

conn.Open();
SqlCommand cmd = conn.CreateCommand();

Klein c01.tex V3 - 12/13/2007 1:48pm Page 4

Part I: Introduction to Project LINQ

cmd.CommandType = CommandType.Text;
cmd.CommandText = "SELECT LastName, FirstName FROM

Person.Contact";
using (SqlDataReader rdr = cmd.ExecuteReader())
{

/ / do something
}

}
}

If you wanted to use the same code to execute a stored procedure that takes one or more parameters, it
might look like this:

private void Form1_Load(object sender, EventArgs e)
{

string ConnectionString = @"Data Source=(local);
Initial Catalog=AdventureWorks;UID=sa;PWD=yourpassword";

using (SqlConnection conn = new SqlConnection(ConnectionString))
{

conn.Open();
SqlCommand cmd = conn.CreateCommand();
cmd.CommandType = CommandType.StoredProcedure;
cmd.CommandText = "uspGetBillOfMaterials";
cmd.Parameters.Add("@StartProductID", SqlDbType.Int).Value =

324;
cmd.Parameters.Add("@CheckDate", SqlDbType.DateTime).Value =

"07/10/2000";
using (SqlDataReader rdr = cmd.ExecuteReader())
{

// do something
}

}
}

While you and I have probably coded something like this many, many times, it isn’t ‘‘friendly’’ on several
levels. First, you are combining two languages into one. You have the language you are coding (in this
case C#), plus you have the SQL language in quotation marks, which is not understood in the context
of .NET. With the .NET language you have IntelliSense, but you don’t get IntelliSense in the embedded
SQL syntax.

More importantly, however, there is no compile-time type checking, which means you can’t tell if
something is broken until run time. Every line of code has to be QA’d just to see if it even begins
to work.

Microsoft also packed a lot of features into the .NET Framework that enable developers to work with
XML. The .NET Framework contains the System.Xml namespace and other supporting namespaces,
such as System.Xml.XPath, System.Xml.Xsl, and System.Xml.Schema, which provide a plethora of
functionality for working with XML. The namespaces contain many classes and methods that make up
the XML .NET API architecture. The main classes are the XmlDocument, XmlReader, and XmlWriter.

To add to the complexity of working with different technologies, parsing an XML document isn’t the eas-
iest thing to do, either. Your tools of choice to work with XML are the Document Object Model (DOM),

4

Klein c01.tex V3 - 12/13/2007 1:48pm Page 5

Chapter 1: Project LINQ

XQuery, or Extensible Stylesheet Language Transformations (XSLT). For example, to read an XML
document using existing technology, you would need to do something like the following:

XmlTextReader rdr = new XmlTextReader("C:\Employees.Xml");
while (rdr.Read())
{

XmlNodeType nt = rdr.NodeType;
Switch (nt)
{

case XmlNodeType.Element:
break;

case XmlNodeType.Attribute:
break;

case XmlNodeType.Comment:
break;

case XmlNodeType.Whitespace:
break;

}
}

That’s a lot of code just to read an XML document (and it isn’t even complete). Writing XML isn’t any
less confusing, as illustrated here:

XmlTextWriter wrt = new XmlTextWriter("C:\Employees.Xml");
wrt.WriteStartDocument;
wrt.WriteComment("This is an example");
wrt.WriteStartElement("Employees");
wrt.WriteStartElement("Employee");
wrt.WriteStartElement("FirstName");
wrt.WriteString("Scott");
wrt.WriteEndElement();
wrt.WriteEndElement();
wrt.WriteEndElement();

Visually, you don’t know if this will work until you compile the project. Likewise, it is hard to see what
the resulting XML will look like.

XML is great and its use continues to grow; you can expect it to be around for a long time. Yet, truth be
told, XML is still hard to work with.

In dealing with these hurdles, Microsoft considered two paths. The first path would have required the
company to build specific XML or relational data features into each programming language and run-time.
That would be a major undertaking and an even bigger hassle to maintain. The second option was to add
more general-purpose query capabilities into the .NET Framework—in other words, a framework of
all-purpose querying facilities built into the .NET Framework that both C# and VB.NET could easily take
advantage of.

Luckily, Microsoft chose the later option, creating a unified query experience across objects, XML,
collections, and data. It accomplished that by taking query set operations, transforms, and constructs and
bringing them to the surface, making them high-level concepts within the .NET Framework (for example,

5

Klein c01.tex V3 - 12/13/2007 1:48pm Page 6

Part I: Introduction to Project LINQ

on the same level as objects and classes). So, you can now enjoy the benefits of a single declarative pattern
that can be expressed in any .NET-based programming language.

The result of making these set operations, transforms, and constructs first-class operations is a set of
methods called the standard query operators. These operators provide query capabilities that include
sorting, filtering, aggregation, and projection over a large number of different data sources. The standard
query operators are the focus of Chapter 4, ‘‘LINQ Standard Query Operators.’’

Think about it for a minute. A single set of query operators that work within any .NET-based
programming language, enabling you to write a query against a database, XML, or an in-memory array
using the same syntax? How cool is that? And you get the added benefit of IntelliSense and compile-time
type checking! Somebody pinch me.

To illustrate this great technology, take a look at an example that queries the directories of your C drive
and writes them to a list box:

DirectoryInfo di = new DirectoryInfo("C:\\");
var dirQuery =

from dir in di.GetDirectories()
orderby di.Name
select new { dir.Name} ;

foreach {var item in dirQuery)
listBox1.Items.Add(item.Name);

This code uses some of the standard query operators to create a LINQ query. In essence, Microsoft has
taken the concept of query set operations and made them first-class operations within the
.NET Framework.

Here’s another example. This one queries all the system processes on your PC using the Process class,
but notice that it uses the same query syntax as the previous example:

var procQuery =
from proc in Process.GetProcesses()
orderby p.WorkingSet64 descending
select new { p.Id, p.ProcessName, p.WorkingSet64} ;

foreach (var item in procQuery)
ListBox1.Items.Add(item.Id + " " +

item.ProcessName + " " +
item.WorkingSet64);

When you run this code, all the processes on your system will be listed in descending order by
memory usage.

Simply put, LINQ enables you to query anything that implements the IEnumerable<T> interface. If you
can loop through the contents using the foreach statement, then you can query it using LINQ.

The following example illustrates how LINQ works querying relational data, using a database as the
source of data.

6

Klein c01.tex V3 - 12/13/2007 1:48pm Page 7

Chapter 1: Project LINQ

var conQuery =
from c in contact
where c.FirstName.StartsWith("S")
orderby c.LastName
select new { c.FirstName, c.LastName, c.EmailAddress} ;

foreach (var item in conQuery)
ListBox1.Items.Add(item.FirstName + " " +

item.LastName + " " +
item.EmailAddress);

This previous example queries the Person.Contact table in the AdventureWorks database for all contacts
whose first name starts with the letter ‘‘S’’.

The purpose of LINQ is to provide developers with the following benefits:

❑ A simplified way to write queries.

❑ Faster development time by removing run-time errors and catching errors at compile time.

❑ IntelliSense and debugging support for LINQ directly in the development language.

❑ Closing the gap between relational data and object-oriented development.

❑ A unified query syntax to use regardless of the source of data.

What is important to notice is the same syntax that you used to query the system processes was used
query a SQL data source. Both of these topics will be discussed in much more detail, including how to
easily connect and map to the source database.

So, with that primer, this chapter introduces the following topics:

❑ LINQ

❑ LINQ to XML

❑ LINQ to SQL

LINQ Overview
LINQ is a set of standard query operators that brings powerful query facilities right into the .NET
Framework language such as C# and VB.NET. The LINQ framework brings together the capability of
data access with the power of data manipulation. This section provides an overview of the
capabilities of LINQ and the standard query operators, but Chapters 3 and 4, respectively, will discuss in
great detail the LINQ query operators and language features that contribute to LINQ’s direct, declarative
style of queries.

The term Language Integrated Query signifies that the standard query facilities are architected directly
into the developer’s .NET-supported programming language of choice. These query facilities, known
as the standard query operators, expose general-purpose query mechanisms that can be applied to

7

Klein c01.tex V3 - 12/13/2007 1:48pm Page 8

Part I: Introduction to Project LINQ

many facets of information, such as in-memory constructs as well as information retrieved from external
sources such as relational data or XML.

These operators provide the capability to express query operations directly and declaratively within
any .NET-based programming language. What makes all of this possible is the simple application of the
query operators to an IEnumerable<T> source of information.

Found in the System.Collections.Generic namespace, the IEnumerable<T> interface, a new addition
in version 2.0 of the .NET Framework, supports a simple iteration over a collection of a given (specified)
type. The IEnumerable<T> interface provides a slick mechanism to iterate through an arbitrary collection
of strongly typed objects using the C# foreach statement or the Visual Basic FOR EACH statement. To
utilize the foreach semantics, this interface must be implemented.

So the question is, what does this mean for LINQ? It means that a query that implements this interface can
be a source for the corresponding query expression. You saw several examples of this at the beginning of
this chapter, and the best way to understand the LINQ technology is to see it in action.

The following example utilizes LINQ, a few standard query operators, and the IEnumerable<T> interface
to query and process the contents within a defined array:

private void ShowLINQ()
{

string[] firstnames = { "Scott", "Steve", "Ken", "Joe", "John",
"Alex", "Chuck", "Sarah"};

IEnumerable<string> val = from fn in firstnames
where fn.StartsWith("S")
select fn;

foreach (string name in val)
{
Console.WriteLine(name);

}
}

The first statement defines an array of first names. This should not be new to any developer. The next
statement, however, is new. A local variable, val in this case, is initialized with a Language Integrated
Query expression. The query expression contains two query operators taken from plethora of
standard query operators. In this example, two operators are used: where and select. The local variable
val exposes the IEnumerable<string> interface, which provides the capability to iterate through the
collection. The results are actually created as you start to iterate through them via the foreach statement.

From here, the query can be modified to add sorting or additional filtering as well as many other options,
but that will be expanded on in later chapters. For now, suffice it to say that via LINQ you can query
various source data types, such as XML and relational data, through a standard and consistent query
model and related query operators.

To illustrate this, let’s modify the directory example from earlier in this chapter. One of the great things
about LINQ is that it enables you easily to ‘‘map’’ object-oriented objects within your .NET programming
language to a database and the objects within a relational database. That means you can access those
relational objects in a strongly typed, object-oriented manner.

8

Klein c01.tex V3 - 12/13/2007 1:48pm Page 9

Chapter 1: Project LINQ

To do this, a mapping to the database needs to be made, and that is accomplished by creating and
declaring two classes. Those classes map the relational objects into the object-oriented world. The first
class maps the actual database:

[Database(Name="AdventureWorks")]
public class AdventureWorks : DataContext
{

public AdventureWorks(string connection) : base(connection) {}
public Table<DirectoryInformation> DirectoryInformation;

}

The second class maps the table and columns of the table you want to access:

[Table(Name="DirectoryInformation")]
public class DirectoryInformation
{

[Column(DbType="varchar(50)")]
public string DirectoryName;

[Column(DbType = "varchar(255)")]
public string DirectoryDescription;

}

The class name maps to the table in the database you want to access, and the columns are mapped by
adding metadata to a couple of variables.

This example is just to whet your appetite. There’s not a lot of explanation here because there
are more than a handful of chapters that discuss object mapping and querying in much
greater detail.

Once the mapping is complete, the data can be queried. And not just queried, but queried using
strongly typed syntax.

The first line of the following code accesses the database as an object, creating a new instance of the class
previously defined, a strongly typed connection. Once you have the connection, you can access the table
and data in a strongly typed fashion, as shown in the second and third lines. Notice that the columns in
the table are accessed via dot notation directly in C#.

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");

foreach (var item in db.DirectoryInformation)
listBox1.Items.Add(item.DirectoryName + " " +

item.DirectoryDescription);

Executing this code returns the data from the DirectoryInformation table and lists both the directory
name and description in a list box.

To make it more interesting, take the directory example from the beginning of the chapter and modify it
to join to this query. You’ll recall that the code in the earlier example simply queried the DirectoryInfo
class to return the directories on your local C drive. Combining it with this query, you join the Name
property of the DirectoryInfo class to the DirectoryName column from the DirectoryInformation

9

Klein c01.tex V3 - 12/13/2007 1:48pm Page 10

Part I: Introduction to Project LINQ

table to return the DirectoryDescription information from the table. Just add the following highlighted
code to the earlier query:

DirectoryInfo di = new DirectoryInfo("C:\\");

var query =
from dir in di.GetDirectories()
orderby di.Name

select new
{

dir.Name,
DirectoryDescription = (
from d in db.DirectoryInformation
where d.DirectoryName == di.Name
select d.DirectoryDescription).FirstOrDefault()

};

foreach (var item in query)
listBox1.Items.Add(item.Name + " " + item.DirectoryDescription);

}

To run this example, you first need to create a table in a database. The example used the AdventureWorks
database and the following code to create the table:

CREATE TABLE [dbo].[DirectoryInformation](
[DirectoryName] [varchar](50) NULL,
[DirectoryDescription] [varchar](255) NULL

) ON PRIMARY

GO

You can use the following INSERT statement to add data to the DirectoryInformation table:

INSERT INTO DirectoryInformation (DirectoryName, DirectoryDescription)
VALUES (’Windows’, ’My Windows Directory’)

GO

Before continuing, think about the amount of code you would have had to write to accomplish the same
type of query in pre-LINQ technology. In the space of about two dozen lines, you were able to access
data, query that data, and loop through that data simply and efficiently. In other technologies, you would
have had to create a connection to the database, create an instance of a SqlCommand object and any other
objects needed to execute a query, and write T-SQL code in your .NET code enclosed in quotation marks
And that’s not to mention all the work that has to be done once you get the data back—casting to the
appropriate data types, and so on.

The good news is that LINQ does all of that for you. Sweet! And we haven’t even covered XML yet.

Standard Query Operators
The LINQ standard query operators make up an API that provides the means of querying various
data sources, such as arrays, collections, and even XML and relational data. They are a set of methods
that are implemented by each specific LINQ provider (LINQ to SQL, LINQ to XML, LINQ to Objects,

10

Klein c01.tex V3 - 12/13/2007 1:48pm Page 11

Chapter 1: Project LINQ

and so on). The operators form a LINQ query pattern that operates on a sequence (an object that imple-
ments the IEnumerable<T> or IQueryable<T> interface).

There are two sets of standard query operators—one operates on objects of the IEnumerable<T> type
and the other operates on objects of the IQueryable<T> type. The operators are made up of methods
that are static members of the Enumerable and Queryable classes, allowing them to be called using static
method syntax of instance method syntax. You will learn all about this in Chapter 4.

The standard query operators can be categorized by their operation ‘‘type.’’ For example, there are
aggregate, projection, ordering, and grouping operators, among others. Take a look again at one of the
examples used earlier in the chapter (repeated here for your convenience):

private void ShowLINQ()
{

string [] firstnames = { "Scott", "Steve", "Ken", "Joe", "John",
"Alex", "Chuck", "Sarah"};

IEnumerable<string> val = from fn in firstnames
where fn.StartsWith("S")
select fn;

foreach (string name in val)
{
Console.WriteLine(name);

}
}

The actual LINQ query is the middle part:

val = from fn in firstnames
where fn.StartsWith("S")
select fn;

In this example, several query operators are utilized from different operation types. The select query
operator falls into the category of projection operators, and performs a projection over a sequence, an
object that implements the IEnumerable<T> for a given type. In this case, the select operator enumer-
ates the source sequence of first names.

select fn;

The where query operator is of the restriction operator type—in fact, it is the only operator of that type.
Just like T-SQL, the LINQ where operator filters a sequence. In the preceding example, it filters the
sequence by limiting the results returned to only those whose name begins with the letter S.

where fn.StartsWith("S")

If you are trying this example out yourself, create a new Windows Forms project and place a list box on
the form. In the Load event of the form, place the following code:

string [] firstnames = { "Scott", "Steve", "Ken", "Joe", "John",
"Alex", "Chuck", "Sarah"};

11

Klein c01.tex V3 - 12/13/2007 1:48pm Page 12

Part I: Introduction to Project LINQ

IEnumerable<string> val = from fn in firstnames
where fn.StartsWith("S")
select fn;

foreach (string name in val)
{

listbox1.Items.Add(name);
}

Press F5 to run the app. When the form loads and is displayed, the list box should be populated with the
names of Scott, Steve, and Sarah. Now try changing the where clause, change the capital S to a lowercase
s and rerun the app. Do you get results? Why not? If you haven’t figured out why, Chapter 3, ‘‘LINQ
queries,’’ will explain it.

Chapters 3 and 4 go deeper into LINQ and the standard query operators, so don’t worry about under-
standing everything there is to know about LINQ just yet. This section was simply to whet your appetite.
The following sections discuss LINQ to XML, which uses LINQ to query XML data, and LINQ to SQL,
which uses LINQ to query relational data.

LINQ to XML Overview
LINQ to XML, or XLINQ, is the XML integration of the Language Integrated Query. LINQ to XML
utilizes the standard query operators to provide the ability to query XML data. Also at your disposal are
operators that provide functionality akin to XPath, letting you navigate up and down and navigate XML
tree nodes such as descendants and siblings seamlessly and efficiently.

If you have ever used, and disliked, the DOM, you will love LINQ to XML. The great thing about LINQ
to XML is that it provides a small-footprint, in-memory version of the XML document that you are
querying. LINQ to XML utilizes the XML features of the System.Xml namespace, specifically the reader
and writer functionality exposed by the System.Xml namespace.

LINQ to XML exposes two classes that help LINQ integrate with XML: XElement and XAttribute. The
XElement class represents an XML element and is used in LINQ to XML to create XML element nodes or
even to filter out the data you really care about. XElement ties itself to the standard query operators by
enabling you to write queries against non-XML sources and even persist that data to other sources.

The XAttribute class is a name/value pair associated with an XML element. Each XElement contains a
list of attributes for that element, and the XAttribute class represents an XML attribute. Within LINQ,
both the XElement and XAttribute types support standard syntax construction, meaning that developers
can construct XML and XML expressions using the syntax that they already know.

The following example uses the XElement to construct a simple XML document. The first XElement
defines the outer node while the two inner XElement parameters define the two inner nodes of FirstName
and LastName.

var x = new XElement("Employee",
new XElement("FirstName", "Scott"),
new XElement("LastName","Klein"));

var s - x.ToString();

12

Klein c01.tex V3 - 12/13/2007 1:48pm Page 13

Chapter 1: Project LINQ

Here are the results of this code:

<Employee>

<FirstName>Scott</FirstName>

<LastName>Klein</LastName>

</Employee>

You’ll notice the use of var in the previous example. The var keyword tells the compiler to infer the type
of the variable from the expression on the right side of the statement. The var keyword will be discussed
in detail in Chapter 2, ‘‘A Look at Visual Studio 2008’’.

Also notice in the previous example how much easier the code is to read. The code actually follows the
structure of an XML document, so you can see what the resulting XML document will look like.

The next example uses the XAttribute type to add an attribute to the XML:

var x = new XElement("Employee",
new XAttribute("EmployeeID", "15"),
new XElement("FirstName", "Scott"),
new XElement("LastName","Klein"));

var s - x.ToString();

And here are the results from it:

<Employee Employee="15">

<FirstName>Scott</FirstName>

<LastName>Klein</LastName>

</Employee>

While the capability to easily define the contents of the XML is cool, the real power comes from the
ability to pass an argument that is not user-defined but in reality comes from an outside source, such as
a query, which can be enumerated and turned into XML via the standard query operators. For example,
the following takes the array of names from the first example and uses that as the source of the query for
which to construct XML:

string [] firstnames = { "Scott", "Steve", "Ken", "Joe", "John",
"Alex", "Chuck", "Sarah"};

var r = new XElement("Friends",
from fn in firstnames
where fn.StartsWith("S")
select new XElement("Name", fn))

textbox1.Text = rToString();

Here are the results from this code:

<Friends>

<Name>Scott</Name>

<Name>Steve</Name>

<Name>Sarah</Name>

</Friends>

13

Klein c01.tex V3 - 12/13/2007 1:48pm Page 14

Part I: Introduction to Project LINQ

This isn’t to say that I only have friends whose first names begin with the letter S, but you get the idea.
This query returns a sequence of XElements containing the names of those whose first name begins with
the letter S. The data comes not from a self-generated XML document but an outside source, in this
case the array of first names. However, the data could just as easily come from a relational database or
even another XML document.

What XElement enables you to do is query non-XML sources and produce XML results via the utilization
of the XElements in the body of the select clause, as shown earlier. Gnarly.

The object of these simple examples is to illustrate the basic concepts of LINQ to XML and the great
power, flexibility, and ease with which XML can be manipulated. Note that the same standard query
operators were used to generate the XML document in this example as in the first one. Nothing had to
be changed in the query really, other than using the types to help integrate LINQ with XML to build the
resulting XML. Yet the query operators remained the same, as did the overall syntax of the query expres-
sion. This way is much better than trying to figure out XQuery or XPath, working
with the DOM or even XSLT. Chapters 10 through 13 cover LINQ to XML in much
greater detail.

LINQ to SQL Overview
LINQ to SQL, or DLINQ, is another component in the LINQ technology ‘‘utility belt.’’ It provides a
mechanism for managing relational data via a run-time infrastructure. The great thing about this is that
LINQ still keeps its strong points, such as the ability to query. This is accomplished by translating the
Language Integrated Query into SQL syntax for execution on the database server. Once the query has
been executed, the tabular results are handed back to the client in the form of objects that you as a
developer have defined.

If you have been following the LINQ talk, you already know that LINQ to SQL is the next version of
ADO.NET. This is great news, and by the time you are done with this section and the section on LINQ
to SQL later in the book, you will surely know why. LINQ takes advantage of the information produced
by the SQL schema and integrates this information directly into the CLR (Common Language Runtime)
metadata. Because of this integration, the definitions of the SQL tables and views are compiled into CLR
types, making them directly accessible from within your programming language.

For example, the following defines a simple schema based on the Person.Contact table from the
AdventureWorks database:

[Table(Name="Person.Contact")]
public class Contact
{

[Column(DBType = "nvarchar(50) not null")]
public string FirstName;
[Column(DBType = "nvarchar(50) not null")]
public string LastName;

[Column(DBType = "nvarchar(50) not null")]
public string EmailAddress;

}

14

Klein c01.tex V3 - 12/13/2007 1:48pm Page 15

Chapter 1: Project LINQ

Once this schema is defined, a query can be issued. This is where LINQ comes in. Using the standard
query operators, LINQ translates the query from its original query expression form into a SQL query for
execution on the server:

private void button5_Click(object sender, EventArgs e)
{

DataContext context = new DataContext("Initial
Catalog=AdventureWorks;Integrated

Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

var query =
from c in contact
select new { c.FirstName, c.LastName, c.EmailAddress} ;

foreach (var item in query)
listBox1.Items.Add(item.FirstName + " " + item.LastName + " " +
item.EmailAddress);

}

Following are partial results from the query:

gustavo Achong gustavo0@adventure-works.com
catherine0@adventure-works.com
kim2@adventure-works.com
humberto0@adventure-works.com
pilar1@adventure-works.com
frances0@adventure-works.com
margaret0@adventure-works.com
carla0@adventure-works.com
jay1@adventure-works.com

Obviously there is much more to LINQ to SQL, but the examples here illustrate what it can do and the
basic features and fundamental concepts of LINQ to SQL.

If you were to query this table via SQL Query Analyzer or SQL Server Management Studio, you’d know
that the Person.Contact table in the AdventureWorks database is 28 rows shy of 20,000, so the preceding
list is only the first nine, but you get the idea. How would you filter this query to return only a specific
few rows?

Typically I like to wait until the third or fourth chapter to start handing out ‘‘homework assignments,’’
but with the background presented in this chapter you should be able to figure this out quite easily. The
Person.Contact table has some additional columns that you can use to filter the results. For example, it
has a column named Title, which contains values such as ‘‘Mr.’’ and ‘‘Ms.’’ It also has a column named
EmailPromotion, an int datatype with values of 0 through 2.

Your exercise for this chapter is to filter the query on either the Title column or the EmailPromotion
column, using a standard query operator, so that the results returned are much less that 20,000. FYI if
you are going to use the Title column: some of values of the column are null, so don’t query where
Title is null.

15

Klein c01.tex V3 - 12/13/2007 1:48pm Page 16

Part I: Introduction to Project LINQ

The goal of LINQ to SQL and its related tools is to drastically reduce the work of the database developer.
Chapters 9–13 will discuss LINQ to SQL in much more depth.

Summary
This chapter introduced you to the LINQ project, a set of .NET Framework extensions that extend the
C# and Visual Basic .NET programming languages with a native query language syntax that provides
standard query, set and manipulation operations.

This chapter began by discussing LINQ and the set of standard query operators that is a combination
of SQL query capabilities with the power and flexibility of data manipulation. From there, the
topics of LINQ to XML and LINQ to SQL were discussed, which take the power and flexibility of LINQ
and apply it to the querying of relational data and XML documents using the same syntax provided
by LINQ.

With this foundation, the next chapter will take a look at the next release of Visual Studio by looking at
the specific features LINQ supports for Visual Basic 9.0 and C#.

16

Klein c02.tex V3 - 12/13/2007 1:49pm Page 17

A Look at Visual
Studio 2008

Many of the new language features and enhancements in Visual Studio 2008—both in Visual C# and
Visual Basic .NET—make many of the LINQ features possible and enable you to take advantage of
some of the LINQ capabilities.

Included with the new Visual Studio release are a number of designers that can help developers
visually create many aspects of their SQL entity classes and associations. For example, the Object
Relational Designer (O/R Designer) provides a visual interface for creating and designing LINQ
to SQL entity classes and associations of database objects. The O/R Designer is discussed
in Chapter 15, ‘‘Advanced LINQ to SQL topics.’’

Visual Studio 2008 also comes with the DataSet Designer, a visual tool used for creating and
manipulating typed DataSets and the associated items of which the datasets are made, providing
a visual image of the objects within the DataSets.

LINQ will be released in the next version of Visual Studio and the .NET Framework, currently
slated for version 3.5. Because much of the LINQ functionality is based on the new features of the
.NET Framework, this chapter explores those features and enhancements that help support LINQ
and provide LINQ with the foundation it needs from a language perspective. It looks at the new
language-specific features in both C# and Visual Basic .NET.

Visual Studio 2008
Visual Studio has come a long way since its inception in 1997. Visual Studio 97 hit the street with
the goals of enabling developers to share and see large projects through a complete development
cycle regardless of the different languages and deployment schemes.

That was followed up by Visual Studio 6.0 with its integrated development environment and
built-in data designers for architecting large-scale and multi-tier applications, with the goals of
supporting distributed and heterogeneous environments and architectures.

Klein c02.tex V3 - 12/13/2007 1:49pm Page 18

Part I: Introduction to Project LINQ

Early 2002 saw the launch of the .NET Framework 1.0 and Visual Studio .NET, built on the foundation
of XML. Visual Studio .NET was a breath of fresh air with its tool integration, multiple languages, and
handful of services and tools all housed within a single development environment, all for the purpose
of building and delivering reliable, secure applications in distributed environments. One of the goals
with this release was to enable integration with legacy applications so that developers could embrace
new tasks while continuing to work and support old projects. With its emphasis on XML, Visual Studio
.NET focused extremely hard on gathering and massaging data from a variety of sources independent of
the platform.

Within 12 short months developers saw the release of Visual Studio .NET 2003 and the .NET Framework
1.1. This release included support for more data sources and new Internet protocols and an improved
framework for architecting and delivering mission-critical systems. New and improved features
supporting a myriad of access devices were also included to help solidify a ‘‘one-stop-shop’’ environment
for building large-scale applications.

Microsoft then went to work on the next version of Visual Studio, which was released to the public in
the fall of 2005. This release included the .NET Framework 2.0, which, together with Visual Studio 2005,
focused on developer productivity and flexibility by including tools and mechanisms for building web,
Windows, mobile, and Office applications faster and more efficiently than before.

Late in 2006 the .NET Framework 3.0 was released, which boasted a new managed code programming
model for Windows. The .NET Framework 3.0 combined the strength of the .NET Framework 2.0 with
four new technologies:

❑ WPF (Windows Presentation Foundation)—New technology for building rich content,
‘‘Windows Vista’’–type user interfaces, and experiences combining application UI and
media content.

❑ WCF (Windows Communication Foundation)—New technology for building and
deploying reliable, secure, and interoperable connected systems across distributed systems
and environments.

❑ WF (Windows Workflow Foundation)—A programming engine for building
workflow-enabled applications.

❑ WCS (Windows CardSpace)—Microsoft’s technology for managing digital identities.

Today, Visual Studio 2008 focuses on providing developers with a rich experience for Windows Vista, the
web, and Office 2008, while continuing to improve its development languages and innovations. Visual
Studio 2008 contains a number of new features, including C# and Visual Basic .NET language features,
improved data features such as multi-tier support for typed datasets and hierarchical update capabilities,
and a web application project model.

However, the most exciting new feature of Visual Studio 2008 (in my opinion) is LINQ, Microsoft’s
new Language Integrated Query, which extends powerful query capabilities into your favorite .NET
programming language.

When you first start Visual Studio 2008 (see Figure 2-1), it looks much like the previous versions of
Visual Studio.

On the surface, this might not be very impressive, but did previous versions of Visual Studio let you pick
which version of the .NET Framework you wanted to create your projects with? No!

18

Klein c02.tex V3 - 12/13/2007 1:49pm Page 19

Chapter 2: A Look at Visual Studio 2008

Figure 2-1

When you create a project in the new Visual Studio, you will notice something different in the New
Project dialog box (see Figure 2-2), the addition of a ‘‘version’’ button in the top right.

Figure 2-2

19

Klein c02.tex V3 - 12/13/2007 1:49pm Page 20

Part I: Introduction to Project LINQ

This button displays a small context menu that lets you select which version of the .NET Framework you
want to create your projects with, as shown in Figure 2-3. How cool is that! As you know, it is possible
to have multiple versions of the .NET Framework on your computer, and because different functionality
is provided within Visual Studio per the version of the .NET Framework, Microsoft decided it would be
extremely helpful to provide a single environment with which to create your applications.

Figure 2-3

Visual Studio 2008 targets .NET 2.0 and later, which means that you won’t have to open an instance
of Visual Studio 2005 to work with Visual Studio 2005 projects and another instance of Visual Studio
2008 to work with Visual Studio 2008 projects. You can use Visual Studio 2008 to work with both.

To work with .NET 1.1 applications, you will still need to use Visual Studio 2003, since it was targeted
for version 1.1 of the .NET Framework.

What is really nice about Visual Studio 2008 is that the appropriate templates change based on the version
of the .NET Framework you select. Figure 2-4 shows the templates listed when the .NET Framework 2.0
is selected.

Figure 2-4

As a help, the New Project dialog shows the project description and .NET Framework version directly
above the project name box and the list of Project types and Templates. For example, Figure 2-4 lists
templates for the .NET Framework 2.0 and lets you know that the Windows Forms Control Library

20

Klein c02.tex V3 - 12/13/2007 1:49pm Page 21

Chapter 2: A Look at Visual Studio 2008

for the .NET Framework 2.0 is selected. Compare that to Figure 2-2, which shows the Windows Forms
Application project template selected for the .NET Framework 3.5. Very helpful.

This chapter won’t discuss installing Visual Studio, but if you would like to download it and go through
the installation yourself, the latest Community Technology Preview (CTP) build can be found at the
following location:

http://msdn2.microsoft.com/en-us/vstudio/aa700831.aspx

Now let’s take a look at the new language specific features found in Visual Studio 2008.

Language-Specific LINQ Features
As stated previously, Visual Studio 2008 supports the Language Integrated Query, which is the
capability for C# and Visual Basic .NET to support query syntax and supported constructs directly in
the programming language. There are many benefits to this, including compile-time checking,
elimination of syntax errors, and type safety.

The new language constructs found in both the C# and Visual Basic .NET languages make a lot of the
LINQ functionality possible. Therefore, before this book really digs into the LINQ query language and
standard query operators, the rest of this chapter discusses these new language features to better help
you understand LINQ.

Query Expressions
Query expressions are the heart and soul of the LINQ technology. They are what describe the operations
on the data source. Chapter 3, ‘‘LINQ Queries,’’ tackles LINQ query expressions in great detail, so this
section provides an overview of query expressions so that you can understand the full breadth in the
next chapter.

Query expressions are the code that you write, using the standard query operators, to access, sort, and
filter data, regardless of where the data comes from. They are written using a declarative query syntax,
which was introduced in C# 3.0.

The data can come from an in-memory source, a relational database, or XML, as you saw in the examples
in Chapter 1, ‘‘Project LINQ.’’ If you’ve worked with SQL syntax, query expressions should look familiar
to you simply because declarative syntax looks very reminiscent of SQL syntax.

From the example in Chapter 1, look at the following highlighted query expression:

DataContext context =
new DataContext("Initial Catalog=AdventureWorks;Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

var query =
from c in contact
select new { c.FirstName, c.LastName, c.EmailAddress} ;

21

Klein c02.tex V3 - 12/13/2007 1:49pm Page 22

Part I: Introduction to Project LINQ

Query expressions must follow a specific format for specific reasons. Those reasons are explained in
detail in Chapter 3; for now, suffice it to say that a query expression must begin with a from clause and
end with either a select clause or a groupby clause.

C#
In C#, a query expression is written as follows:

IEnumerable<string> val = from fn in firstnames
where fn.StartsWith("S")
select fn;

In this example, the query expression starts with the from clause informing the query expression where
to retrieve its data. It includes a filter expression (the where clause), and ends with a select clause, which
projects (selects) the data gathered in the from clause.

Visual Basic
The following shows the previous example in Visual Basic .NET syntax:

Dim val As IEnumerable(Of String) = From fn in firstname _
Where fn.StartsWith("S") _
Select fn

Implicitly Typed Variables
Finally! Where has this been, I have to ask! Until now, you have had to explicitly specify a type when
declaring and initializing a variable. No more. Now you can infer the type assignment by simply using
the var keyword, as shown in the following examples.

C#
In C#, variables are implicitly typed as follows:

var firstname = "Scott";
var age = 28; //I wish!
var startdate = DateTime.Today;

So, why is this important, you ask? Because any variables declared as var are equally strongly typed as
their explicitly declared counterparts. And, even more importantly, this includes LINQ query
expressions. Stay tuned.

Visual Basic
Visual Basic also lets you implicitly type variables, but it does this by inferring the type of the variable
from the type of the initialization expression. This is called type inference, which lets Visual Basic 2008
determine the data type of variables that are declared without the As clause.

The following shows the previous example in Visual Basic .NET syntax:

Dim firstname = "Scott"
Dim age = 28
Dim startdate = DateTime.Today

22

Klein c02.tex V3 - 12/13/2007 1:49pm Page 23

Chapter 2: A Look at Visual Studio 2008

Anonymous Types
Anonymous types, class types made up of one or more public properties, provide a handy way to
temporarily group sets in a query result, eliminating the need to create a named type for each set. Anony-
mous types are built as you go, built by the compiler with the typed name available only to the compiler.

In LINQ, anonymous types come in handy in the select clause of a query expression, returning a subset
of properties from each element in the query sequence. They are created via the new operator with an
object initializer.

C#
This query expression uses the new operator along with an object initializer to initialize a new type
containing only three properties (FirstName, LastName, and EmailAddress) from the Contact object.

from c in Contact
select new { c.FirstName, c.LastName, c.EmailAddress};

Anonymous types derive directly from the Object class as reference types. A compiler assigns the
anonymous type a name, and it is not available at the source code level. Anonymous types are no
different from any other type as far as the CLR (Common Language Runtime) is concerned.

This might seem a little confusing, but it will all be cleared up when LINQ and query expressions are
discussed in detail in Chapter 3.

Visual Basic
Anonymous types, new to Visual Basic for 2008, let you create objects without needing to write a class
definition for the data type. In Visual Basic 2008, the compiler generates the class for you. A LINQ query
expression uses anonymous types to join or combine columns from a query.

The great thing about anonymous types is that they let you write queries that return any number of
columns in any order. The compiler has the responsibility of creating the data types that correspond to
the specified properties (columns).

Here’s the previous anonymous type example in Visual Basic .NET syntax:

From c In contact Select c.FirstName, c.LastName, c.EmailAddress

Initializers for Objects and Collections
Initializers for objects and collections provide the capability to initialize objects and collections without
the need to explicitly call a constructor. You can use initializers to assign values to an object’s properties
and fields when the object is created without needing to invoke a constructor first.

Object initializers can be utilized in various forms, including with anonymous types, named types, and
nullable types. Here is where LINQ comes into play because LINQ utilizes anonymous types greatly
for the simple reason that anonymous types can only be initialized with an object initializer. Why does
this come in handy? Because query expressions can manipulate objects of a sequence into an object of a
different shape and value.

23

Klein c02.tex V3 - 12/13/2007 1:49pm Page 24

Part I: Introduction to Project LINQ

C#
The following example, taken from Chapter 1, defines a simple schema based on the Person.Contact
table, consisting of five fields, from the AdventureWorks database.

[Table(Name="Person.Contact")]
public class Contact
{

[Column(DBType = "nvarchar(8) not null")]
public string Title;

[Column(DBType = "nvarchar(50) not null")]
public string FirstName;

[Column(DBType = "nvarchar(50) not null")]
public string MiddleName;

[Column(DBType = "nvarchar(50) not null")]
public string LastName;

[Column(DBType = "nvarchar(50) not null")]
public string EmailAddress;

}

With the schema defined, a query can be issued.

private void button1_Click(object sender, EventArgs e)
{

DataContext context = new DataContext("Initial Catalog=AdventureWorks;Integrated
Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

var query =
from c in contact
select new { c.FirstName, c.LastName, c.EmailAddress} ;

foreach (var item in query)
listBox1.Items.Add(item.FirstName + " " + item.LastName + " " +
item.EmailAddress);

}

What you want to notice is that although the object (c) contains five fields, the sequence being returned
contains only three fields: FirstName, LastName, and EmailAddress. That is the strength of anonymous
types, in that you can return a portion of the information in the object.

You can also rename a field in the sequence when using anonymous types. Here’s how:

var query =
from c in contact
select new { c.FirstName, c.LastName, Email = c.EmailAddress} ;

24

Klein c02.tex V3 - 12/13/2007 1:49pm Page 25

Chapter 2: A Look at Visual Studio 2008

foreach (var item in query)
listBox1.Items.Add(item.FirstName + " " + item.LastName + " " +
item.Email);

Chapter 3 discusses this in more detail.

Visual Basic
Object initializers in Visual Basic work the same way as C# initializers. They provide the ability to
specify properties for a complex object by using a single expression, and create instances of named
and anonymous types.

The following shows the previous anonymous type example in Visual Basic .NET syntax:

<Table(Name:="Person.Contact")> _
Public Class Contact

<Column(DbType:="nvarchar(8) not null")> _
Public Title As String

<Column(DbType:="nvarchar(50) not null")> _
Public FirstName As String

<Column(DbType:="nvarchar(50) not null")> _
Public MiddleName As String

<Column(DbType:="nvarchar(50) not null")> _
Public LastName As String

<Column(DbType:="nvarchar(50) not null")> _
Public EmailAddress As String

End Class

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Button2.Click

Dim context As DataContext = New DataContext("Initial
Catalog=AdventureWorks;Integrated Security=sspi")

Dim contact As Table(Of Contact) = context.GetTable(Of Contact)()

Dim query = From c In contact Select c.FirstName, c.LastName, Email =
c.EmailAddress

For Each item In query
ListBox1.Items.Add(item.FirstName & " " & item.LastName & " " & item.Email)

Next item

End Sub

25

Klein c02.tex V3 - 12/13/2007 1:49pm Page 26

Part I: Introduction to Project LINQ

You need to pay close attention to object initializers of named and anonymous types. Their declarations
look nearly the same, but they are indeed different and they have different effects. For example, the
following illustrates how to initialize a named instance:

Dim cont = new Contact with {.FirstName = "Scott"}

However, the initializer for an anonymous type cannot include a class name because it has no usable
name, as illustrated here:

Dim cont = New With {.FirstName = "Scott"}

These two declarations do not produce the same result. The first example has a Contact class that
contains a FirstName property that must already exist, and the declaration takes the step of creating
an instance of the Contact class. In the anonymous example, the compiler defines a new class containing
a string property called FirstName.

Extension Methods
Extension methods are new to C# 3.0. They provide the capability to extend existing types by adding
new methods with no modifications necessary to the type. Calling methods from objects of the extended
type within an application using instance method syntax is known as ‘‘extending’’ methods. Extension
methods are not instance members on the type.

The key point to remember is that extension methods, defined as static methods, are in scope only when
the namespace is explicitly imported into your application source code via the using directive. Even
though extension methods are defined as static methods, they are still called using instance syntax.

LINQ contains the most common extension methods, more appropriately known as the standard query
operators. The standard query operators extend the IEnumerable<T> and IQueryable<T> types.

Extension methods are invoked in your code by using instance method syntax. The intermediate
language (IL) generated by the compiler then translates your code into a call on the static method.

C#
To illustrate extension methods, open Visual Studio 2008 and create a new C# Windows project. On
Form1, which is shown by default, place a button and a text box. View the code behind the form and add
the following to the end of the existing form code:

namespace MyExtensionMethods
{

public static class MyExtensions
{

public static int GetWordCount(this System.String mystring)
{

return mystring.Split(null).Length;
}

}
}

26

Klein c02.tex V3 - 12/13/2007 1:49pm Page 27

Chapter 2: A Look at Visual Studio 2008

This code creates an extension method on the System.String class. The code is useless by itself because,
like other classes, it is not in scope. So, add the following directive to the top of the form:

using MyExtensionMethods;

Now you can access the extension method you created earlier. Add the following code to the button’s
Click() event:

string sentence = "This is an example of an extension method in .NET";
int wordcount = sentence.GetWordCount();
textbox1.text = wordcount.ToString();

Run the project and click the button. The text box shows the value 10.

Let’s expand this a little. In every application I’ve worked on, there’s been a need to validate email
addresses. Here’s how to do that easily with extension methods. Modify the extension method code by
adding the following highlighted code:

namespace MyExtensionMethods
{

public static class MyExtensions
{

public static int GetWordCount(this System.String mystring)
{

return mystring.Split(null).Length;
}

public static bool IsValidEmail(this string email)
{

Regex exp = new Regex(@"^[\w-\.]+@([\w-]+\.)+[\w-]{2,4}$");
return exp.IsMatch(email);

}

}
}

Next, replace the code behind the button with the following:

DataContext context =
new DataContext("Initial Catalog=AdventureWorks;Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

var query =
from c in contact
select new { c.EmailAddress} ;

foreach (var item in query)
if (item.EmailAddress.IsValidEmail())
{

listbox1.Items.Add(item.EmailAddress);
}

27

Klein c02.tex V3 - 12/13/2007 1:49pm Page 28

Part I: Introduction to Project LINQ

Just like the first example, this one simply adds a method onto the string class that validates email
addresses. Very slick.

Visual Basic
Extension methods are new to Visual Basic 2008. C# has had them for a while, and fortunately Visual
Basic .NET gets them this release. In Visual Basic .NET, extension methods are accessed via the
System.Runtime.CompilerServices namespace, so be sure to include the appropriate Imports state-
ment. Extension methods can be a Sub or a Function and must be tagged with the <Extension()>

attribute.

The following shows the extension method from the previous example in Visual Basic .NET syntax:

Namespace MyExtensionMethods
Public Class MyExtensions

<Extension()>_
Public Shared Function WordCount(Me ByVal str As System.String) As Integer

Return str.Split(Nothing).Length
End Function

<Extension()>_
Public Shared Function IsValidEmail(Me ByVal email As String) As Boolean

Dim exp As Regex = New Regex("^[\w-\.]+@([\w-]+\.)+[\w-]{2,4}$")
Return exp.IsMatch(email)

End Function
End Class

End Namespace

Best Practices
Try to implement extension methods only when absolutely necessary and even then, very judiciously.
Your best bet is to create a new type that is derived from an existing type. The reason to avoid creating
extension methods is that you might run into the scenario where the implementation of the type will
cause your extension method to break. That’s not good.

If you must implement extension methods, keep in mind the following:

❑ If you define an extension method with the same signature as an existing method defined in the
type, your extension method will never be called.

❑ Extension methods are brought into scope at the namespace level.

Lambda Expressions
Lambda expressions and anonymous methods are similar, except for the fact that lambda expressions are
much more flexible and provide a more succinct syntax than anonymous methods.

In LINQ, you run into lambda expressions when making a direct query call to the standard query
operators. Lambda expressions can be used in LINQ to create the delegates that will be invoked when

28

Klein c02.tex V3 - 12/13/2007 1:49pm Page 29

Chapter 2: A Look at Visual Studio 2008

the query is executed later. When writing LINQ queries and calling standard query operators directly,
you only need to use method syntax to write lambda expressions.

Lambda expressions use what is called the lambda operator, which is =>. This operator means ‘‘goes to,’’
and signifies that the left side of the lambda operator specifies any input parameters while the right side
contains the expression or statement block.

Here’s a simple C# example of a lambda expression:

y => y * 2

This reads as ‘‘y goes to y times 2.’’ The body of a lambda expression can consist of any number of
statements, but typically you want to keep it to two or three, mainly for readability and to keep it from
becoming overly complex. It is also often unnecessary to specify a type for input parameters because
the compiler will infer the type based on several factors, such as the body of the lambda expression and
the underlying delegate type.

To work with lambda expressions, it is best to follow these general rules:

❑ If the lambda expression returns a value, the return value must be implicitly convertible to the
return type of the delegate.

❑ Lambda expressions must contain the same number of parameters as the delegate type.

❑ Each input parameter must be implicitly convertible to the corresponding delegate parameter.

So, given that background, how do lambda expressions work with LINQ? With lambda expressions,
a LINQ query can be written as follows:

var prodQuery = context.Products.Single(p => p.ProductID == productID);

The query also could be written as follows:

var proQuery =
from con in Contacts
where con.ProductID == productID
select con;

Both of these queries return the same output, but lambda expressions enable you to write the query as an
inline expression using method syntax as shown in the first query. In a method-based query, the where
clause is now expressed as an instance method of the specified object, which in the previous example is
the Products object.

This example also uses the Single standard query operator to return a single element of the sequence.
The p on the left side of the operator is the input variable that corresponds to the p in the
query expression.

The return value of a lambda expression is simply the expression result.

29

Klein c02.tex V3 - 12/13/2007 1:49pm Page 30

Part I: Introduction to Project LINQ

Summary
This chapter introduced you to the interface for the new Visual Studio and explored the new features and
enhancements that help provide LINQ with the foundation it needs from a language perspective.

The new features and functionality included in version 3.5 of the .NET Framework—including query
expressions, implicitly typed variables, anonymous types, and object initializers—play an important role
for LINQ.

Chapter 3 discusses LINQ and the LINQ queries in great detail.

30

Klein c03.tex V3 - 12/13/2007 1:50pm Page 31

LINQ Queries

Chapter 1, ‘‘Project LINQ,’’ provided a few simple LINQ queries to give you a basic idea of how
LINQ queries are formatted and work with relational data, XML, and in-memory data, but to fully
grasp the power and flexibility of LINQ requires a real understanding of how LINQ queries work.

Therefore, this chapter and the next dive deep into LINQ queries and the standard query operators.
This chapter focuses on the LINQ queries, their overall concepts and syntax, as well as the many
options available to you as a developer when creating LINQ queries. Chapter 4, ‘‘LINQ Standard
Query Operators,’’ tackles the available standard query operators.

LINQ queries are discussed first because a knowledge of the standard query operators really
wouldn’t be beneficial if you didn’t know how to use them effectively in a LINQ query. Given
that, this chapter tackles the following:

❑ An introduction to LINQ queries

❑ Query concepts

❑ Query syntax options

Introduction to LINQ Queries
Hopefully, you know what a query is, and have written either a T-SQL query directly in SQL Server,
whether it be in a query window in SSMS (SQL Server Management Studio) or a stored procedure,
or an ‘‘in-line’’ T-SQL within the code of your application. A query retrieves data, plain and simple.
It is a written expression that obtains data from a predetermined data source. The data source could
be almost anything, such as a relational database or an XML document.

The problem is that there are many sources of data, and there are just as many query languages to
query those data sources. To query a relational database, the SQL query language is required,
but if you want to query an XML document, you need to learn the XQuery query language or XPath
as well. Wouldn’t it be nice to someday have in your possession a single query language with a set
of standard query operators that allows for the querying of multiple data sources?

Klein c03.tex V3 - 12/13/2007 1:50pm Page 32

Part I: Introduction to Project LINQ

Oh, wait; that day is already here because this is exactly what LINQ is and does. The difference between
LINQ and other query languages is in the query actions of a LINQ query operation. With LINQ you
work directly with technologies with which you’re already familiar (such as objects), and regardless of
where the data is coming from, the coding patterns used to create and execute the query remain the same.
This consistency is where much of the beauty of LINQ lies. The same standard query operators are used
to query and transform data from multiple sources such as XML, relational data, collections, and even
DataSets and entities.

The following sections explain the parts of a LINQ query and show you how they are put together and
executed. A LINQ query operation contains three distinct and separate actions:

❑ Acquiring the data source

❑ The creation of the query

❑ The execution of the query

Each of these actions is essential to the creation and execution of a LINQ query.

Data Source Acquisition
The data source identifies where the data is coming from in the query. A query is absolutely useless
without a data source. What is the use of selecting data if there is no data to select?

The great thing about LINQ is that it doesn’t care what the source of data for the query is. The key to
being a data source for a LINQ query is that it must support the IEnumerable interface. The following
example, taken from the first chapter, shows a string array of names that can be utilized as a data source:

string [] firstnames = { "Scott", "Steve", "Ken", "Joe", "John",
"Alex", "Chuck", "Sarah"};

Your source of data can also come in the form of XML, and if it is not already in memory as a queryable
form type, it can become so by being loaded into a queryable XElement type, like this:

XElement names = XElement.Load(@"c:\employees.xml");

LINQ to XML provides this functionality and, as you have seen previously, lets you query and manipu-
late XML with ease. You can also build your own XML to manipulate, as shown in the example below,
or even write back to the data source.

var x = new XElement("Employee", new XElement("FirstName", "Scott"),
new XElement("LastName","Klein"));

If the data source is relational data, LINQ to SQL provides a flexible mechanism to create a relational
mapping between it and your query objects. As shown in Chapter 1, an object-relational mapping must
first be created, against which your queries are written, but then LINQ to SQL handles all the database
communication. Here’s the object-relational mapping taken from the example in Chapter 1 to map the
Contact.Person table to the application object:

[Table(Name="Person.Contact")]
public class Contact
{

[Column(DBType = "nvarchar(50) not null")]

32

Klein c03.tex V3 - 12/13/2007 1:50pm Page 33

Chapter 3: LINQ Queries

public string FirstName;

[Column(DBType = "nvarchar(50) not null")]
public string LastName;

[Column(DBType = "nvarchar(50) not null")]
public string EmailAddress;

}

Query Creation
Once your data source is defined, the next step is to define the query that specifies the data or information
you want to retrieve from the data source. You can also specify how the data should be shaped when it
is returned, such as sorted or grouped. The capability to query and shape the data is provided through
the new query syntax that is built directly into both C# and Visual Basic.

The standard query operators are a set of methods that form the LINQ (Language Integrated Query)
pattern. These operators have dedicated syntax in both C# and Visual Basic that allow them to be called
as part of a query expression, a more readable form of writing or expressing a query. The standard query
operators, discussed in detail in Chapter 4, provide extensive querying capabilities, which include the
ability to sort, group, aggregate, and filter query results.

In LINQ, the query is stored in a variable. If the query returns data, then the query must be a queryable
type. Keep in mind that the query variable on its own does not execute the query, does not contain
any data, and does not take any other sort of action. It is simply a placeholder for the query, or more
accurately put, is an IEnumerable object that, when enumerated, executes the query.

The following query, which implements the IEnumerable interface, defines a variable called val contain-
ing a query that selects all first names that begin with the letter S. The data source for this query is the
string array mentioned in the previous section.

IEnumerable<string> val = from fn in firstnames
where fn.StartsWith("S")
select fn;

The query has not been executed at this point, nor does the variable val contain any data; it contains only
the query syntax. Here’s another example, taken from the LINQ to SQL example from Chapter 1:

var query =
from c in contact
select new { c.FirstName, c.LastName, c.EmailAddress} ;

Again, the query has not been executed, nor does the variable var contain any data.

The importance of the query creation action is to define the query expression and shape the data as you
would like it returned.

Query Execution
The last action of the LINQ query operations is query execution. Even though the query expression is
defined and stored in a query variable when the query is created, the execution of the query does not

33

Klein c03.tex V3 - 12/13/2007 1:50pm Page 34

Part I: Introduction to Project LINQ

typically take place until iteration over the query variable begins. I’ll explain ‘‘typically’’ momentarily,
but I first want to discuss how a query is executed. As the query is iterated through, only the work
necessary to bring back the current result is done. In other words, the entire query is not returned. Each
iteration of the query returns the next item in the result.

It has been said previously that neither the query expression itself nor the variable contains query results.
That is because the query is executed as you iterate through the variable. Here’s the string array
example from Chapter 1:

string [] firstnames = { "Scott", "Steve", "Ken", "Joe", "John",
"Alex", "Chuck", "Sarah"};

IEnumerable<string> val = from fn in firstnames
where fn.StartsWith("S")
select fn;

foreach (string name in val)
{

Console.WriteLine(name);
}

The first ‘‘action’’ defines the data source. The second ‘‘action’’ defines the query and assigns it to a
variable. The last ‘‘action,’’ the foreach loop (For Each in Visual Basic), executes the query by iterating
over the variable val in the foreach loop.

How does this work? Take a look at the foreach loop:

Foreach (string name in val)
Console.WriteLine(name);

The first time the foreach statement is executed, the first call to the MoveNext() method causes
three things:

1. The query is translated to SQL.

2. The query is executed.

3. The first row is fetched from the underlying DataReader.

For each iteration thereafter, the MoveNext() method is called, grabbing the next row from the underlying
DataReader, hydrating (queuing) the next object.

The best way to understand this is to see it in action. Take a look at Figure 3-1, which shows the preceding
example during code execution. I have stopped the execution of the code on the foreach statement on
the first iteration.

What you want to look at is the Watch window below the code where I have the query variable being
watched. Notice the value of the name-value pair named Results View. It states, ‘‘Expanding the Results
View will enumerate the IEnumerable.’’ This tells you that the query has not been executed, that even
the internal results have not been iterated through, and that expanding the node will be equivalent to
stepping through the foreach loop until all the results are received.

So what does typically mean? There are two types of query execution: deferred and immediate. In most
cases you want to use deferred; however, there are cases when immediate execution is necessary.

34

Klein c03.tex V3 - 12/13/2007 1:50pm Page 35

Chapter 3: LINQ Queries

The following sections discuss these types and when the use of each is appropriate.

Figure 3-1

Deferred Execution
So far all the examples in this book have shown deferred query execution, which executes the query only
when you start to loop through the query variable, such as in a foreach loop.

For instance, the following code loops through the variable val, which contains the query expression
taken from the earlier string array example:

foreach (string name in val)
{

Console.WriteLine(name);
}

Deferred execution is appropriate when returning a sequence (multiple values). Because the query (and
variable) don’t ever contain the query results, you are free to execute (iterate over) this query over
and over again with little overhead.

Immediate Execution
Any LINQ query that returns a single value is executed immediately. A single value is considered a
query that returns a Count or Max, for example. You can also force an immediate execution of a query by
calling the ToList or ToArray methods. The following example illustrates a query that returns a single
value, thus executing immediately:

var query = (from o in Order
where CustomerID = 2
select o).Count();

This query counts the number of orders from the Sales.SalesOrderHeader table in the AdventureWorks
database, where the CustomerID in that table is 2. Likewise, instead of getting a count of orders, you can
also send the query results to a list or array:

var query = (from o in Order
where CustomerID = 2
select o).ToList();

35

Klein c03.tex V3 - 12/13/2007 1:50pm Page 36

Part I: Introduction to Project LINQ

By returning a single value or returning values to an array or value list, you can force an immediate
execution of the query, which can be useful when you want the results of the query to be cached.

Likened to SQL Syntax
To help you understand the flow of the LINQ syntax, compare it to standard T-SQL syntax. If you have
written any T-SQL, you know the basic T-SQL query syntax and how it is written. For instance, a simple
query looks like this:

SELECT FirstName, LastName
FROM Person.Contact

This example queries the Person.Contact table in the AdventureWorks database and returns the First-
Name and LastName columns for each row in the table. Too simple really, so the following adds
a secondary table, applies a filter, and applies a sort:

SELECT E.EmployeeID,C.FirstName, C.LastName
FROM Person.Contact AS C
INNER JOIN HoumanResources.Employee AS E ON C.ContactID = E.ContactID
WHERE E.EmployeeID < 100
ORDER BY C.LastName

This is the syntax with which all T-SQL developers are familiar. At the very minimum the query begins
with a SELECT clause, which specifies the columns you want to be returned by the query, followed by a
FROM clause, which lists the tables and/or views containing the columns identified in the SELECT clause.

The query could include one or more joins such as an INNER JOIN or OUTER JOIN, followed by some filter-
ing using the WHERE clause and possibly a GROUP BY or HAVING clause, and quite possibly some ordering
using the ORDER BY clause.

How many developers have really stopped to think about how SQL Server processes these queries? Does
SQL Server execute the query from top to bottom, starting with the SELECT clause and working its way
down? You might think that, but that is not how a query is processed in SQL Server at all. SQL Server
logically processes a query in the following order:

(8) SELECT
(9) TOP
(1) FROM
(3) JOIN
(2) ON
(4) WHERE
(5) GROUP BY
(6) WITH
(7) HAVING
(10) ORDER BY

Notice that the FROM clause is processed first, while the SELECT clause is processed almost last. Any
clause that is not specified in the query is simply skipped by the query-processing engine. So, why is this
information important?

36

Klein c03.tex V3 - 12/13/2007 1:50pm Page 37

Chapter 3: LINQ Queries

It points out the similarities between a LINQ query syntax and how SQL Server processes a query. You
have seen many times now the basic syntax of a LINQ query:

from c in contact
where c.FirstName.StartsWith("S")
orderby c.LastName
select c

The LINQ query and the T-SQL query are executed similarly, although the T-SQL query syntax is differ-
ent. This same query in T-SQL would be the following:

SELECT FirstName, LastName, EmailAddress
FROM Contact
WHERE LEFT(FirstName, 1) = ‘S’
ORDER BY LastName

The differences are that in SQL this query would be executed internally, following the steps described
earlier. With LINQ, the query does not need to go through the rewriting process. Also, the same LINQ
operators work against other data sources.

With this in mind, the next section explores query operations and expressions to help you more fully
understand LINQ query concepts.

Query Concepts
You have seen multiple examples of LINQ queries so far in this book. Now you’ll explore the basic
layout and syntax, as well as the different kinds of operations that can take place in a query. (Chapter 4
discusses in detail the many standard query operators that are at your disposal when writing LINQ query
expressions.) For this discussion, the following query will be used:

from c in contact
where c.FirstName.StartsWith("S")
orderby c.LastName
select c

In a LINQ query, the first clause is from, which specifies the source of the data. It is called a generator,
and defines where the data will be coming from when the query is executed. It also specifies a range
variable that is used as a reference for each element in the data source. In the following example, contact
is the data source and c is the range variable:

from c in contact

The where clause enables you to filter the results being returned by the query. By applying a filter to the
query, you’re not only limiting the number of rows returned, but you are specifying the rows you want to
see, or exclude, from the returned results. For example, the following returns only those contacts whose
first name begins with the letter S:

where c.FirstName.StartsWith("S")

37

Klein c03.tex V3 - 12/13/2007 1:50pm Page 38

Part I: Introduction to Project LINQ

Recall from Chapter 1 that you selected all the rows from the Person.Contact table in the
AdventureWorks database—the table had nearly 20,000 rows. By simply applying this filter to the LINQ
query, the number of rows returned is just over 1,200—quite a difference.

It is possible to apply multiple filters by using the logical operators AND and OR. In C# using AND (&&)
looks like the following:

where c.FirstName.StartsWith("S")
&& c.LastName.StartsWith("A")

In Visual Basic, it looks like this:

Where c.FirstName.StartsWith("S")
AND c.LastName.StartsWith("A")

The OR (||) operator works the same way:

where c.FirstName.StartsWith("S")
|| c.LastName.StartsWith("A")

And in Visual Basic:

Where c.FirstName.StartsWith("S")
OR c.LastName.StartsWith("A")

The where clause is optional when writing a LINQ query, as is the orderby clause. The orderby clause
provides the capability to order (sort) the results returned by the execution of the query. The following
sorts the results by last name:

orderby c.LastName

By default, the sort is applied in ascending order. To reverse the sort (descending order), simply apply
the descending clause:

orderby c.LastName descending

You can sort by more than one property:

orderby c.LastName, c.FirstName

In Visual Basic, the orderby clause reads:

Order By c.LastName Descending

You can also group the results of the query based on one of the properties of the query. For example, the
following line groups the results of the query by contact country:

group c by c.Country

The final step is to project (select) the data using the select clause. By projecting the data, you are
defining the results as something other than a simple copy of the original source. For example, if the
data source returns FirstName, LastName, EmailAddress, Title, MiddleName, and City, but the select
clause only produces the FirstName and LastName properties in the results, that is a projection.

38

Klein c03.tex V3 - 12/13/2007 1:50pm Page 39

Chapter 3: LINQ Queries

The select clause enables you to determine the shape of each object that is returned by the query. Here’s
an example that returns the entire collection object:

from c in contact
where c.FirstName.StartsWith("S")
orderby c.LastName
select c

To select a single property, simply select that property, like this:

from c in contact
where c.FirstName.StartsWith("S")
orderby c.LastName
select c.LastName

Selecting a single result (column/property), in this case a string value, changes the result type from an
IEnumerable collection of type contact in the first example to an IEnumerable of String in this example
because only a single string value is being returned. In other words, just the LastName property (column)
is being returned in the collection.

To select multiple values (but not the entire collection), you can use one of two methods. The first is to
use IEnumerable by defining a named type and using that named type to create each source object in the
select clause. First, the named type must be created.

struct data
{

public string FN;
public string LN;
public string EA;

}

That named type is then used in the creation and initialization of the IEnumerable query:

IEnumberable<data> query = from c in contact
where c.FirstName.StartsWith("S")
&& c.LastName.StartsWith("A")
orderby c.LastName

select new data { LN = c.FirstName, FN = c.LastName, EA = c.EmailAddress}

At this point you can iterate through the query like this:

foreach (var item in query)
listbox1.Items.Add(item.FN + " " + item.LN + " " + item.EA);

The other option is to create an anonymous type using the var keyword:

var query = from c in contact
where c.FirstName.StartsWith("S")
orderby c.LastName
select new {FN = c.FirstName, LN = c.LastName, EA = c.EmailAddress}

This query can be iterated through as follows:

foreach (var item in query)
listbox1.Items.Add(item.FN + " " + item.LN + " " + item.EA);

39

Klein c03.tex V3 - 12/13/2007 1:50pm Page 40

Part I: Introduction to Project LINQ

You can also do the following, which defaults to creating an anonymous type using the same member
names as the properties that you reference in the query:

var query = from c in contact
where c.FirstName.StartsWith("S")
orderby c.LastName
select new {c.FirstName, c.LastName, c.EmailAddress}

This query can be iterated through as follows:

foreach (var item in query)
listbox1.Items.Add(item.FirstName + " " + item.LastName + " " + item.EmailAddres);

Basically, using

select new {c.FirstName, c.LastName, c.EmailAddress}

is a shortcut for

select new {FirstName = c.FirstName, LastName = c.LastName,
EmailAddress = c.EmailAddress}

This, then, begs the question, ‘‘What is the difference between a named type and an anonymous type?’’
Hang tight, because var and IEnumerable differences are explained in the next section.

First, what about join operations? That is certainly doable and is accomplished via the join clause:

from c in contact
join o in orders on c equals o.OrderID

where c.FirstName.StartsWith("S")
orderby c.LastName
select new {c.FirstName, c.LastName, c.EmailAddress, o.OrderDate}

OK, with all of that under your belt, the following section will clear up the confusion between var
and IEnumerable.

Var versus IEnumerable
The var keyword is new to C# 3.0 and enables you to implicitly declare variables at the method scope.
The great thing about it is that the implicitly typed variable is just as strongly typed as its explicitly
declared counterpart. For example, these variables

var blah = "S"
var moreblah = 50

are equivalent to the following:

string blah = "S"
int moreblah = 50

In the early days, the word ‘‘var’’ stood for variant. Today, that isn’t the case; in C# and VB.NET, var is a
specific keyword that, when used, tells the compiler to determine the exact type of the variable.

40

Klein c03.tex V3 - 12/13/2007 1:50pm Page 41

Chapter 3: LINQ Queries

The IEnumerable<T> interface, new in .NET Framework 2.0, supports a simple iteration over a
collection of a specified type. It exposes the IEnumerator<T> interface, which is the base interface for
all generic enumerators. LINQ takes advantage of this enumeration via the foreach statement, which
lets you iterate through an enumeration without the complexity of dealing with and manipulating the
enumerator directly.

IEnumerable is minimal in its functionality, however. It has forward-only movement in a collection, so
moving back and forth among data items is not possible with IEnumerable.

With LINQ, it is important is to know when to use var versus IEnumerable. As you saw earlier in this
section, var can be used to implicitly declare a variable. While this is optional, it can be overused. The best
time to use var is when a variable is initialized with an anonymous type, only because in that scenario
it’s required. Using var too many times can also make your source code less readable by developers who
come in after you. In other words, don’t overuse var.

To understand the difference between the two and when one should be used over the other, consider the
following two examples. The first query uses var, but it is not necessary because the query result type
can be explicitly stated as an IEnumerable<int>, meaning that the result types are known.

int[] nums = {5, 1, 9, 4, 8, 11, 6, 14, 2, 7};
var query =

from num in nums
where num % 2 == 1
select num;

The next example, however, must use var because the result types are not known. The result
is a collection of anonymous types. In these cases, the name of the type is not available until the
compiler creates it.

Var query =
from prod in Products
where prod.ProductID = 10021
select new {prod.ProductName, prod.Price};

Common Query Terms
Before you go any further, a few things need to be defined and explained in order to help you get the feel
for LINQ queries.

LINQ Providers
A LINQ Provider is a library that implements the functionality provided by the standard query
operators for a specific type of data source.

The responsibility of the LINQ Provider is to execute a given query or to hand it to another engine
for execution. LINQ has several providers: LINQ to XML, LINQ to Datasets, LINQ to Objects, and
LINQ to SQL.

LINQ to SQL is considered a LINQ Provider even though it does not have its own implementation of
the standard query operators. Why? As an implementation of the IQueryable interface, LINQ to SQL
implements the functionality of the standard query operators against relational databases.

41

Klein c03.tex V3 - 12/13/2007 1:50pm Page 42

Part I: Introduction to Project LINQ

Expression Trees
An expression tree is a representation of language-level code in the form of data. The data is stored in a
tree-like structure, hence the name.

Expression trees in LINQ are used for several reasons, one of which is to structure queries that utilize data
sources that implement IQueryable(Of T). At runtime, when a query is executed, the C# or Visual Basic
compiler translates the query expressions (and method-based queries) into code that is then converted
to an expression tree structure. The appropriate query provider then translates the structure into the
query language for the targeted data source.

As you learned in the previous section, the LINQ to SQL provider implements IQueryable(Of T) for
querying relational data stores.

The great thing about expression trees is that, as a developer, you don’t need to build one or even nego-
tiate through an expression tree. The traversal of an expression tree is done for you, unless you feel the
strong urge to create your own query provider or query language.

As a quick note, expression trees are also used to represent lambda expressions. When a lambda
expression is assigned to a variable, a field, or a parameter of type Expression(Of TDelegate), the
compiler generates an expression tree which represents the lambda expression. There are several
standard query operator methods that have parameters of type Expression(Of TDelegate). Thus, you
are able to pass lambda expressions when these methods are called. The compiler will then create an
expression tree.

IQueryable and IQueryable(Of T) Interfaces
The IQueryable and IQueryable(Of T) interfaces provide the functionality to evaluate queries for a
given data source. The IQueryable interface does this where the type of the data is not known, and the
IQueryable(Of T) interface does this where the type of the data is known.

The IQueryable and IQueryable(Of T) interfaces implement the IEnumerable and IEnumerable(Of T)
interface, respectively, providing the capability of enumeration over the results of the given query. As
you have learned previously, the enumeration causes the expression tree associated with an IQueryable
or IQueryable(Of T) object to be executed. Keep in mind that the term ‘‘executing an expression tree’’ is
specific to the query provider.

The difference between these two interfaces is that the IQueryable(Of T) interface enables queries
to be executed against different types of data sources. These queries are commonly referred to
as ‘‘polymorphic.’’

Keep in mind that both the IQueryable and IQueryable(Of T) interfaces are intended for
implementation only by query providers. Think of an IQueryable object as having an ADO.NET command
object. Having one (either an IQueryable object or a command object) does not insinuate that either the
LINQ query (or the command) was executed.

Let’s take a close look at each of these to help understand the IQueryable object. An ADO.NET
command object contains a property that holds a string that describes the query. The IQueryable
object is similar in that it contains a description of a query that is encoded as a data structure known
as an expression.

42

Klein c03.tex V3 - 12/13/2007 1:50pm Page 43

Chapter 3: LINQ Queries

The command object has an ExecuteReader() method that causes execution. The results are returned as
a DataReader. Likewise, the IQueryable object has a GetEnumerator method that causes the execution of
the query. The results of the query are returned as an IEnumerator.

Query Syntax versus Method Syntax
LINQ provides the ability to write queries using both query syntax and method syntax, and most
of the examples until now have used query syntax, which is writing the query as a query expression,
like this:

IEnumerable<string> query =
from c in contact
where c.FirstName.StartsWith("S")
select c;

This declarative syntax is easy to read and understand, but you also have the option of writing your
queries using method syntax. When a LINQ query is compiled, the query expression is translated into
method syntax because the .NET Common Language Runtime (CLR) really doesn’t understand query
syntax. Thus, at compile time, query expressions are translated into method calls because this is what the
CLR understands.

Here’s the method syntax version of the preceding query:

IEnumerable<string> query = contact.Where(c => c.FirstName.StartsWith("S"));

It is recommended that you use query syntax whenever possible simply because it is easier to read,
understand, and maintain. However, as you can see from the two preceding examples, there is no seman-
tic difference between method syntax and query syntax. Therefore, this section discusses both query
syntax and method syntax to provide you a good understanding of these syntaxes in queries and how to
use them in query expressions.

This next example gets a bit more complicated by adding an additional filter:

IEnumerable<string> query =
from c in contact
where c.FirstName.StartsWith("S")
&& c.LastName.StartsWith("A")
select c;

The method syntax of this is as follows:

IEnumerable<string> query = contact.Where(a => a.FirstName.StartsWith("S") @@ta
&& a.LastName.StartsWith("A"));

Let’s complicate things a bit more and add the Orderby clause:

IEnumerable<string> query =
from c in contact
where c.FirstName.StartsWith("S")
&& c.LastName.StartsWith("A")

43

Klein c03.tex V3 - 12/13/2007 1:50pm Page 44

Part I: Introduction to Project LINQ

Orderby c.LastName
select c;

This query expression would be written as method syntax as follows:

IEnumerable<string> query = contact.Where(c => c.FirstName.StartsWith("S")
&& c.LastName.StartsWith("A")).OrderBy(c => c.LastName);

Run both versions of these queries (method syntax and query syntax), and you’ll see that the output is
identical. What makes the method syntax possible is lambda expressions, which were discussed
in Chapter 2, ‘‘A Look at Visual Studio 2008.’’

Although query syntax is recommended over method syntax, there are times when method syntax is
preferred, such as in those queries that return the number of elements that match a specified condition.

Which Do You Use?
Given all of the information discussed in this chapter, the question might arise, ‘‘Which do I use, query
syntax or method syntax?’’ The general rule is to use whichever syntax will make your code most read-
able, which most often means using query syntax. However, even this might not be sufficient because
there are many reasons why query syntax may not be an option:

❑ Not all of the standard query operators are available in query syntax.

❑ Not all of the combinations of the standard query operators are available in query syntax.

❑ As you will read about later, it is possible to combine query syntax with method syntax, but
there may be times when using straight method syntax might be more readable.

It is a matter of learning which standard query operators can be used with which syntax option
(query syntax and method syntax) and going from there. However, your priority should always be
syntax readability.

For example, the following code snippet shows how to author a query using query syntax.

Int[] grades = { 67, 98, 72, 85, 92, 89, 78, 76, 88};

IEnumerable<int> topTwoGrades =
(from g in grades
orderby g
select g).Take(2);

The following code snippet shows the same query using method syntax.

Int[] grades = { 67, 98, 72, 85, 92, 89, 78, 76, 88};

IEnumerable<int> topTwoGrades =
grades.OrderByDescending (g => g).Take(2);

Both produce the same results; it is up to you to decide how you want to write the query.

Chapter 4 will discuss all of the standard query operators and provide examples using both query syntax
and method syntax where available.

44

Klein c03.tex V3 - 12/13/2007 1:50pm Page 45

Chapter 3: LINQ Queries

Using Query and Method Syntaxes
Here’s a project that utilizes much of the information found in this chapter, such as query syntax and
method syntax, to create queries that will be used throughout the rest of this book. To start, you need a
place to create the applications used for this chapter.

In the root of your C drive, create a directory called Wrox. Underneath that directory, create another
directory called Chapter 3. Now, fire up Visual Studio 2008 and within the Recent Projects window of the
Start page, create a new project. This opens the New Project dialog.

In the New Project dialog, make sure that you have selected the correct Framework version (3.5) via the
far-left icon in the top-right corner, then select a Windows project type and set the project name to LINQ
with the path you just created (\Wrox\Chapter 3). Figure 3-2 shows what the New Project dialog should
look like.

Figure 3-2

Click OK when you have everything set. Next, open the Solution Explorer and add the System.Data and
System.Data.Linq namespace references to your project. Then open Form1 in design view and add three
buttons and a list box. Align the list box on the left of the form and place two of the buttons next to the
list box, with the third button in the bottom-right corner of the form.

Set the properties of the first button to the following:

Property Value

Name cmdQuerySyntax

Text Query Syntax

45

Klein c03.tex V3 - 12/13/2007 1:50pm Page 46

Part I: Introduction to Project LINQ

Set the properties of the second button to the following:

Property Value

Name cmdMethodSyntax

Text Method Syntax

Set the properties of the third button to the following:

Property Value

Name cmdClose

Text Close

Figure 3-3 shows what the form should look like (with the appropriate component references included).

Figure 3-3

Double-click the form to display the code behind the form. In the declarations section, make sure that
you add the appropriate using statements for LINQ, including System.Data.Linq.

Next, underneath the class for Form1, add the following:

[Table(Name = "Person.Contact")]
public class Contact
{

[Column(DBType = "nvarchar(8) not null")]
public string Title;

46

Klein c03.tex V3 - 12/13/2007 1:50pm Page 47

Chapter 3: LINQ Queries

[Column(DBType = "nvarchar(50) not null")]
public string FirstName;

[Column(DBType = "nvarchar(50) not null")]
public string MiddleName;

[Column(DBType = "nvarchar(50) not null")]
public string LastName;

[Column(DBType = "nvarchar(50) not null")]
public string EmailAddress;

[Column(DBType = "int")]
public int EmailPromotion;

}

That defines the data source, the first of the three actions that makes up a query operation.

Your code behind Form1 should now look like this:

using System;
using System.Linq;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Data.Linq;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.Xml;

namespace LINQ
{

public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();
}

private void Form1_Load(object sender, EventArgs e)
{

}
}

[Table(Name = "Person.Contact")]
public class Contact
{

[Column(DBType = "nvarchar(8) not null")]
public string Title;

[Column(DBType = "nvarchar(50) not null")]
public string FirstName;

47

Klein c03.tex V3 - 12/13/2007 1:50pm Page 48

Part I: Introduction to Project LINQ

[Column(DBType = "nvarchar(50) not null")]
public string MiddleName;

[Column(DBType = "nvarchar(50) not null")]
public string LastName;

[Column(DBType = "nvarchar(50) not null")]
public string EmailAddress;

[Column(DBType = "int")]
public int EmailPromotion;

}
}

Place the following code in the click event for the Close button:

Application.Exit();

Next, in the click event for the Query Method button, place the following code:

DataContext context = new DataContext("Initial Catalog=AdventureWorks;@@ta
Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

var query =
from c in contact
where c.FirstName.StartsWith("S")
&& c.LastName.StartsWith("K")
orderby c.LastName
select c;

foreach (var item in query)
listBox1.Items.Add(item.FirstName + " " + item.LastName + " " +
item.EmailAddress);

This code creates a query expression filtering all contacts whose first name begins with the letter S and
whose last name begins with the letter K, all sorted by the contacts’ last name. You know this is an
anonymous query expression because of the use of the var keyword discussed previously.

A portion of the preceding code defines the second and third actions of a query operation. The query
expression (the second action) defines the information to be retrieved from the data source, while the
execution of the query (the iteration over the query variable) is the last action.

Press F5 to compile and run the application. When the form opens, click the Query Syntax button.
The list box will populate with the first names, last names, and email addresses of those contacts
who meet the criteria specified in the query expression. The results on your form should look like those
in Figure 3-4.

48

Klein c03.tex V3 - 12/13/2007 1:50pm Page 49

Chapter 3: LINQ Queries

Figure 3-4

In this example, the select clause in the query expression did not select individual properties from the
query results, but rather selected all the properties by simply stating select c. This is similar to stating
SELECT * FROM in T-SQL syntax. Because all the properties were selected to be returned, all properties are
available from IntelliSense, as shown in Figure 3-5.

Figure 3-5

49

Klein c03.tex V3 - 12/13/2007 1:50pm Page 50

Part I: Introduction to Project LINQ

Modify the following code, changing the select clause in the query expression as highlighted:

var query =
from c in contact
where c.FirstName.StartsWith("S")
&& c.LastName.StartsWith("K")
orderby c.LastName

select new { c.FirstName, c.LastName, c.EmailAddress};

Running this anonymous query produces the same results on the form when the application is run, but
in this code, specific properties are selected to be returned in the query. An anonymous query type is
created using the same names as the properties in the object initializer.

Thus, IntelliSense shows only those properties that are available for selection, as shown in Figure 3-6.

Figure 3-6

Next, add the following code to the Click() event behind the Method syntax button.

DataContext context = new DataContext("Initial Catalog=AdventureWorks;@@ta
Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

IEnumerable<Contact> query =
contact.Where(a => a.FirstName.StartsWith("S")

&& a.LastName.StartsWith("K")).OrderBy(a => a.LastName);
foreach (var item in query)

listBox1.Items.Add(item.FirstName + " " + item.LastName + " " +
item.EmailAddress);

Press F5 to compile and run the application. When the form opens, click the Method Syntax button. The
list box will be populated with the first names, last names, and email addresses of those contacts who

50

Klein c03.tex V3 - 12/13/2007 1:50pm Page 51

Chapter 3: LINQ Queries

meet the criteria specified in the query expression. The results on your form should look like the results
that were returned in the first example (shown in Figure 3-4).

This IEnumerable example can also be written to use automatic type deduction using the var keyword
as follows:

var query =
contact.Where(a => a.FirstName.StartsWith("S")
&& a.LastName.StartsWith("K")).OrderBy(a => a.LastName);

Each of these examples contains the three actions that make up a query operation. Those of you who
have read any of my previous books already know that I like to assign small ‘‘homework assignments,’’
which build on the examples of the current chapter.

Your homework assignment for this chapter is fairly simple. Start experimenting with the differences
between query syntax and method syntax, as well as with the different query expressions available. A lot
of this will be useful in the upcoming chapters.

Summary
This chapter gave you with a first-hand look at LINQ queries, their concepts, and the available syntax
options. You got a detailed look at the three actions that make up a query operation: the data source,
the query expression, and the execution of the query (and the different types of query execution, such as
deferred and immediate). Each is a distinct and separate action critical to the success of the LINQ query.

You also looked at SQL syntax and saw how its execution is likened to LINQ syntax. Then you explored
LINQ query concepts, from specifying the data source to filtering, grouping, and selecting (projecting) a
query expression. You also tackled the different query expressions, the use of var versus IEnumerable,
and the difference between query syntax and method syntax and how they are related and used.

In Chapter 4 you’ll take an in-depth look at the standard query operators, putting the final touches on
your basic understanding of LINQ.

51

Klein c03.tex V3 - 12/13/2007 1:50pm Page 52

Klein c04.tex V3 - 12/13/2007 1:51pm Page 53

LINQ Standard Query
Operators

Understanding the different parts of a query operation and how those parts work together provides
the foundation for constructing efficient queries to retrieve and transform data from many different
sources, such as XML documents, SQL databases, .NET collections, and ADO.NET datasets. This
chapter will outline those parts and their uses.

This chapter builds on the query operation information you examined in Chapter 3, ‘‘LINQ
Queries,’’ by exploring the standard query operators, a set of methods that form the LINQ pat-
tern, a standard way of creating query expressions to project, filter, group, and transform data. The
standard query operators provide the capability to query any object that implements the IEnumer-
able interface and IQueryable interface. You can think of the standard query operators much like
an API. In this case, the ‘‘API’’ is a set of methods.

This chapter begins with an overview of the standard query operators. It examines each operator in
detail, providing examples, and then ends with a full example using many of these operators.

Overview
Standard query operators are the building blocks of LINQ query expressions, providing many of
the query capabilities such as filtering and sorting. They are a set of methods that constitute a query
pattern and are implemented by their respective LINQ provider, such as LINQ to XML and LINQ
to Datasets.

As you learned in the last chapter, some operators return results immediately, while others have a
deferred execution. Those queries whose execution is immediate return a single value such as a Sum
or Count, while those queries that have a deferred execution return multiple values.

As stated earlier, the standard query operator is a set of methods. These methods operate on
sequences. A sequence is an object whose type implements either the IEnumerable<T> interface or

Klein c04.tex V3 - 12/13/2007 1:51pm Page 54

Part I: Introduction to Project LINQ

the IQueryable<T> interface. The IEnumerable<T> interface provides iteration over a collection
of a specified type.

The IQueryable<T> interface provides the ability to execute queries against a known and specific data
source whose type of data is known. Meaning, with the IQueryable interface and the IQueryable<T>

interface you get an object that can evaluate queries. The IQueryable interface is based on expressions.

One of the main differences between IEnumerable and IQueryable is that the IEnumerable interface pro-
vides forward-only iteration. It does not have the ability to move between items (except forward). With
IQueryable however, you have much more flexibility with your query operations. Remember, though
that the IQueryable interface implements IEnumerable, which provides IQueryable with iteration
capability.

There are two types of query operators. The first type operates on IEnumerable objects, while the other
operates on IQueryable objects. Each set of operators is implemented as static methods on the corre-
sponding types, meaning that the operators can be called using static method syntax as well as being
called as instance methods.

A lot of what makes this possible is the new features found in C# 3.0 and VB 9.0. Those features
include lambda expressions (a concise expression or statement block) and extension methods
(static methods associated with a type). These and other features new to C# 3.0 and VB 9.0 are
discussed in Chapter 2, ‘‘A Look at Visual Studio 2008.’’

Standard query operators are grouped based on their function, and that’s how we’ll tackle them in
this chapter.

Standard Query Operators
This section discusses the standard query operators. These operators have both C# and Visual
Basic syntax. The examples will be given in C#, but the syntax will be provided in both C# and
Visual Basic.

What you will find is that those standard query operators that are used more frequently have a
dedicated language and keyword syntax, which lets them be used and called as part of a query expression
(query syntax).

Standard QueryOperator C# Visual Basic

All (Of T) N/A Into All(. . .)

Any N/A Into Any()

Average N/A Into Averate()

Cast (Of T) An explicit range of variables From. . .As. . .

Count N/A Into count()

Distinct N/A Distinct

54

Klein c04.tex V3 - 12/13/2007 1:51pm Page 55

Chapter 4: LINQ Standard Query Operators

Standard QueryOperator C# Visual Basic

GroupBy group by Group By

GroupJoin join. . .in. . .on. . .into. . . Group Join

Join join. . .in. . .on. . .equals. . . Join. . .As..IN. . .On. . .

OR

From x In..y In..Where. . .

LongCount N/A Into LongCount()

Max N/A Into Max()

Min N/A Into Min()

OrderBy orderby Order By

OrderByDescending orderby desdending Order By. . .Descending

Select select Select

SelectMany Multiple from clauses Multiple from clauses

Skip N/A Skip

SkipWhile N/A Skip While

Sum N/A Into Sum

Take N/A Take

TakeWhile N/A Take While

ThenBy orderby Order By

ThenByDescending orderby descending Order By. . .Descending

Where where Where

Remember from the discussion in Chapter 3 that a query expression is a more readable form
of query over the method-based syntax version. At compile time, query expressions are translated
into query methods.

However, what you will find in this chapter is that it is very easy to combine these query expression
syntax operators with direct method calls. By doing this, you can use all of the various pieces of the
LINQ functionality.

Projection Operators
Projection refers to the act of transforming the elements of a sequence into a form defined by the devel-
oper. The projection operators—Select and SelectMany—select values given the appropriate function.
While both select values, the SelectMany operator can handle multiple collections.

55

Klein c04.tex V3 - 12/13/2007 1:51pm Page 56

Part I: Introduction to Project LINQ

Select
The Select operator (select in C#) projects values from a single sequence or collection. The following
example uses select to return the FirstName, LastName, and EmailAddress columns from the sequence:

var query =
from c in contact
where c.FirstName.StartsWith("S")
select new {c.FirstName, c.LastName, c.EmailAddress}

This operator returns an enumerable object. When the object is enumerated, it produces each element in
the selected results.

This same query can be written using method syntax as follows:

var query =
contact.Select(c => new {

c.FirstName, c.Lastname, c.EmailAddress}
).Where(c => c.FirstName.StartsWith("S"));

SelectMany
The SelectMany operation provides the capability to combine multiple from clauses, merging the results
of each object into a single sequence. Here’s an example:

string[] owners =
{ new name { FirstName = "Scott", "Chris",

Pets = new List<string>{"Yukon", "Fido"}},
new name { FirstName = "Jason", "Steve",
Pets = new List<string>{"Killer", "Fluffy"}},

new name { FirstName = "John", "Joe",
Pets = new List<string>{"Spike", "Tinkerbell"}}}

IEnumerable<string> query =
names.AsQueryable().SelectMany(own => own.Pets);

When this code is run, it produces the following:

Yukon
Fido
Killer
Fluffy
Spike
Tinkerbell

This same example could be written follows:

var query =
from o in owners
select o;

foreach (var pet in query.SelectMany(own => own.Pets))
listbox1.Items.Add(pet);

56

Klein c04.tex V3 - 12/13/2007 1:51pm Page 57

Chapter 4: LINQ Standard Query Operators

Restriction Operator
where is the restriction operator. It applies filter criteria on the sequence. The values of the sequence are
filtered based on a supplied predicate.

The where operator does not initiate the execution of the query. The query is executed when enumeration
over the object is initiated, at which point the filter is applied. Here’s an example that applies a filter to
the query expression, filtering the results so that only those contacts whose first name begins with the
letter S are returned:

IEnumerable<string> query =
from c in contact
where c.FirstName.StartsWith("S")
select new {c.FirstName, c.LastName, c.EmailAddress}

This example could also be written using method syntax as follows:

var query =
contact.Select(c => new {

c.FirstName, c.Lastname, c.EmailAddress}
).Where(c => c.FirstName.StartsWith("S"));

Sorting Operators
The sorting operators—OrderBy, OrderByDescending, ThenBy, ThenByDescending, and
Reverse—provide the capability to sort the results in an ascending or descending manner.
There are several sorting options that let you apply primary and secondary sorts as well. These
operators are explored in the following sections.

OrderBy
The OrderBy operator sorts the resulting values of the sequence in an ascending order. The following
example shows how to sort a sequence in ascending order:

var query =
from c in contact
where c.FirstName.StartsWith("S")

orderby c.LastName
select new {c.FirstName, c.LastName, c.EmailAddress}

You can also sort the sequence in ascending order by using a comparer. A comparer is an optional value
that is used to compare values. If no comparer is specified, a default is used, which comes from the
IComparer generic interface.

This example could also be written using method syntax as follows:

var query =
contact.Select(c => {

c.FirstName, c.LastName, c.EmailAddress }).Where(
c => c.FirstName.StartsWith("S")).OrderBy(
c => c.FirstName);

57

Klein c04.tex V3 - 12/13/2007 1:51pm Page 58

Part I: Introduction to Project LINQ

OrderByDescending
The OrderByDescending operator sorts the resulting values of the sequence in descending order. The
following shows how to sort a sequence in descending order:

IEnumerable<string> query =
from c in contact
where c.FirstName.StartsWith("S")
orderby c.LastName descending
select new {c.FirstName, c.LastName, c.EmailAddress}

This example could also be written using method syntax as follows:

var query =
contact.Select(c => {

c.FirstName, c.LastName, c.EmailAddress}).Where(
c => c.FirstName.StartsWith("S")).OrderByDescending(
c => c.FirstName);

ThenBy
The ThenBy operator applies a secondary, ascending sort order to the sequence. It is akin to
applying a secondary sort order in T-SQL, such as the italicized column in the following example:

SELECT FirstName, LastName, Address1, Address2, City
FROM Contacts
ORDER BY LastName, FirstName

In LINQ, the ThenBy operator lets you apply an equivalent secondary sort, like this:

IEnumerable<string> query =
from c in contact
where c.FirstName.StartsWith("S")
orderby c.LastName
thenby c.FirstName
select new {c.FirstName, c.LastName, c.EmailAddress}

This example could also be written using method syntax as follows:

var query =
contact.Select(c => {

c.FirstName, c.LastName, c.EmailAddress}).Where(
c => c.FirstName.StartsWith("S")).OrderBy(
c => c.FirstName).ThenBy(c => c.LastName);

ThenByDescending
The ThenByDescending operator sorts the resulting values of the sequence in descending order. The
following example shows how:

IEnumerable<string> query =
(from c in contact
where c.FirstName.StartsWith("S")
orderby c.LastName descending

58

Klein c04.tex V3 - 12/13/2007 1:51pm Page 59

Chapter 4: LINQ Standard Query Operators

select new {c.FirstName, c.LastName, c.EmailAddress}).@@ta
ThenByDescending(c => c.FirstName);

This example could also be written using method syntax as follows:

var query =
contact.Select(c => {

c.FirstName, c.LastName, c.EmailAddress}).Where(
c => c.FirstName.StartsWith("S")).OrderBy(
c => c.FirstName).ThenByDescending(c =>

c.LastName);

Reverse
You might think that the Reverse operator is equal to the OrderByDescending operator, but that’s not
the case. The Reverse operator does not look at the individual values to decide the sort order. It simply
returns the values in the opposite (reverse) order from which they were returned from the data source.
Here’s an example:

string[] names = {"Alex", "Chuck", "Dave", "Dinesh",
"Joe", "John", "Sarah", "Scott", "Steve"}

string[] reversednames = names.Reverse().ToArray();
foreach (string str in reversednames)

listbox1.Items.Add(chr)

The resulting output is:

Steve
Scott
Sarah
John
Joe
Dinesh
Dave
Chuck
Alex

The reverse() operator is limited, in that it is not supported by LINQ to SQL because LINQ to SQL
operates on tables that are unordered sets or multisets.

Joining Operators
Joining is the action of relating or associating one data source object with a second data source object. The
two data source objects are associated through a common value or attribute.

LINQ join operators match values from data sources that contain keys that match (or are equal). There
are two LINQ join operators, join and groupjoin.

join
The join operator is similar to the T-SQL inner join, which joins one data source to a second data
source, matching on equal values between the two data sources. For example, you can join a customer
database table and order database table, matching on equal keys from each side of the join.

59

Klein c04.tex V3 - 12/13/2007 1:51pm Page 60

Part I: Introduction to Project LINQ

In the following example, the join operator is used to join the Contact table to the Employee table using
the matching ContactID columns of each table.

from c in contact
join emp in employee on c.ContactID equals emp.ContactID
where c.FirstName.StartsWith("S")
orderby c.LastName
select new {emp.EmployeeID, c.FirstName, c.LastName,

c.EmailAddress, emp.Title, emp.HireDate}

Like relational database joins, joins can be performed on more than two sources. The preceding example
joins two tables or data sources, but you can just as easily join on more:

from c in contact
join emp in employee on c.ContactID equals emp.ContactID
join ind in individual on c.ContactID equals ind.ContactID
join cust in customer on ind.CustomerID equals cust.CustomerID
where c.FirstName.StartsWith("S")
orderby c.LastName
select new {emp.EmployeeID, c.FirstName, c.LastName, c.EmailAddress,

emp.Title, emp.HireDate, cust.AccountNumber}

Each additional join associates a new table or data source with the results of the previous join.

The first example could also be written using method syntax as follows:

var query =
contact.Join(employee, con => con.ContactID,
emp => emp.ContactID, (con, emp) => new
{ Contact = con.FirstName, Employee});

GroupJoin
The GroupJoin operator joins each value or element from the primary (first or left) data source with a set
of corresponding values from the secondary (right) data source. This type of join comes in handy when
you want to create a hierarchical data structure.

The following example uses GroupJoin to create a hierarchical structure from two different data
sources. The first data source lists motocross race teams, and the second data source lists the riders for
each of those teams. The GroupJoin operator is used join the two data sources together and produce an
output that lists the team and their associated riders.

List<Team> teams = new List<Team>{ new Team { name = "Yamaha"},
new Team { name = "Honda"} ,
new Team { name = "Kawasaki"} ,
new Team { name = "Suzuki"}} ;

List<Rider> riders = new List<Rider> {
new Rider { name = "Grant Langston", TeamName = "Yamaha"},
new Rider { name = "Andrew Short", TeamName = "Honda"},
new Rider { name = "James Steward", TeamName = "Kawasaki"},
new Rider { name = " Broc Hepler", TeamName = "Yamaha"},
new Rider { name = "Tommy Hahn", TeamName = "Honda"},

60

Klein c04.tex V3 - 12/13/2007 1:51pm Page 61

Chapter 4: LINQ Standard Query Operators

new Rider { name = "Tim Ferry", TeamName = "Kawasaki"},
new Rider { name = " Chad Reed", TeamName = "Yamaha"},
new Rider { name = "Davi Millsaps", TeamName = "Honda"},
new Rider { name = "Ricky Carmichael", TeamName = "Suzuki"},
new Rider { name = "Kevin Windham", TeamName = "Honda"}};

var teamsandriders = teams.GroupJoin(riders,
Team => Team.name,
Rider => Rider.TeamName,
(team, teamRiders) => new {Team = team.name,
riders = teamRiders.Select(rider => rider.name)});

foreach (var tar in teamsandriders)
{

listBox1.Items.Add(tar.Team);
foreach (string rider in tar.riders)
listBox1.Items.Add(" " + rider);

}

The results from this query look like this:

Yamaha
Grant Langston
Broc Hepler
Chad Reed

Honda
Andrew Short
Tommy Hahn
Davi Millsaps
Kevin Windham

Kawasaki
James Stewart
Tim Ferry

Suzuki
Ricky Carmichael

This example used an in-memory array to apply a Groupjoin, to help you understand the concept of the
operator. The same can be applied to a LINQ to SQL query:

private void cmdGroupJoin_Click(object sender, EventArgs e)
{

DataContext context = new DataContext("Initial Catalog=AdventureWorks;Integrated
Security=sspi");

Table<SalesPerson> salespeople = context.GetTable<SalesPerson>();
Table<SalesOrderHeader> orders = context.GetTable<SalesOrderHeader>();

var salespeopleandorders = salespeople.GroupJoin(orders,
SalesPerson => SalesPerson.SalesPersonID,
SalesOrderHeader => SalesOrderHeader.SalesPersonID,
(person, salesorder) => new { SalesPerson = person.SalesPersonID,
orders = salesorder.Select(order => order.CustomerID)});

foreach (var sao in salespeopleandorders)

61

Klein c04.tex V3 - 12/13/2007 1:51pm Page 62

Part I: Introduction to Project LINQ

{
listBox1.Items.Add(sao.SalesPerson);
foreach (int order in sao.orders)
listBox1.Items.Add(" " + order);

}

}

The results of this query list each salespersonid and the associated order customerid. Here’s a portion
of the output:

279
676
117
442
227

283
2

107
56
310
527
638
157

Grouping Operator
Grouping is the concept of grouping the values or elements of a sequence according to a specified value
(selector). LINQ contains a single grouping operator, GroupBy.

The following example uses the Sales.SalesOrderHeader table in the AdventureWorks database to
group together orders for each sales person using the SalesPersonID as the key value.

DataContext context = new DataContext("Initial
Catalog=AdventureWorks;Integrated Security=sspi");

Table<SalesOrderHeader> orders = context.GetTable<SalesOrderHeader>();

var query = orders.Where(ord => ord.SalesPersonID > 0).GroupBy(order =>

order.SalesPersonID,
order => order.CustomerID);

foreach (var o in query)
{

listBox1.Items.Add(o.Key);
foreach (int cust in o)

listBox1.Items.Add(" " + cust);
}

It can also be written as follows (given the same DataContext and table):

IEnumerable<IGrouping<int, int>> query = orders.Where(ord =>

ord.SalesPersonID > 0).GroupBy(order => order.SalesPersonID, order =>

order.CustomerID);

62

Klein c04.tex V3 - 12/13/2007 1:51pm Page 63

Chapter 4: LINQ Standard Query Operators

foreach (IGrouping<int, int> o in query)
{

listBox1.Items.Add(o.Key);
foreach (int cust in o)

listBox1.Items.Add(" " + cust);
}

Here are the results:

268
697
47
471
548
167
...

275
504
618
17
486
269

276
510
511
259
384
650

...

The first example could also be written using a mix of query syntax and method syntax as follows:

var query =
(from o in orders
where o.SalesPersonID > 0
select o).GroupBy(order => order.SalesPersonID,

order => order.CustomerID);

This makes the query somewhat easier to read, even though the example used a mix of the two
syntaxes. The reason for the mix of syntaxes in this example is that the GroupBy operator is not available
in query syntax.

This example also gives you an idea of the flexibility you have when using the standard query operators.

Concatenating Operator
Concatenating is the process of joining two objects together. In LINQ, concatenating joins two collections
into a single collection, and is accomplished via the Concat operator.

In the following example, contact last names are concatenated with CustomerIDs from the
Person.Contact table and Sales.SalesOrderHeader table:

DataContext context = new DataContext("Initial Catalog=@@ta
AdventureWorks;Integrated Security=sspi");

63

Klein c04.tex V3 - 12/13/2007 1:51pm Page 64

Part I: Introduction to Project LINQ

Table<Contact> contacts = context.GetTable<Contact>();
Table<SalesOrderHeader> orders = context.GetTable<SalesOrderHeader>();

var query = contacts.Select(con => con.LastName).Concat(orders.Select(order @@@ta
=> order.CustomerID.ToString()));

foreach (var item in query)
{

listBox1.Items.Add(item);
}

The results in the list box will first list all of the contacts’ last names, followed by all of the CustomerIDs.

Aggregating Operators
Aggregate functions perform calculations on a set of values and return a single value, such as perform-
ing a sum or count on values of a given element. There are seven LINQ aggregate query operators:
Aggregate; Average, Count, LongCount, Max, Min, and Sum.

Aggregate
The Aggregate operator gathers values from a given sequence or collection. It accumulates values
returned from a sequence and returns when the aggregation is complete. For instance, the following
example uses the Aggregate operator to build a new sentence in reverse from an array of strings.

string Names = "Steve, Scott, Joe, John, Chris, Jason";
string[] name = Names.Split(’, ’);
string newName = name.Aggregate(workingName, next) =>

next + " " + workingName);

listbox.Items.Add(newName);

Average
The Average operator computes the average from a sequence of numerical values. It works on many data
types, such as decimal, integers (Int32, Int64, and the like), and doubles.

In its simplest form, the Average operator works as follows:

List<int> quantity = new List<int> {99, 48, 120, 73, 101, 81, 56};
double average = quantity.Average();
listbox1.items.add(average);

This example computes the average of the seven numbers in the list and returns that value. This type of
calculation can be applied to the following example, in which the Average operator is used to calculate
the average unit price of all the products for a given order:

var query =
from od in orderdetail
where od.SalesOrderID == 43662

64

Klein c04.tex V3 - 12/13/2007 1:51pm Page 65

Chapter 4: LINQ Standard Query Operators

select od.UnitPrice;
listbox1.Items.Add(query.Average());

The query can also be written as follows:

var query =
from od in orderdetail
where od.SalesOrderID == 43662
select od;

listbox1.Items.Add(query.Average(orderDetail => orderDetail.UnitPrice));

This operator is applied to a sequence of values.

Count
The Count operator counts the number of elements in a given collection. It should be used if the expected
result is going to be less than Int32.MaxValue (the largest possible value of an Int32).

The following example shows the Count operator in its simplest form. The list contains seven numbers
and the count operator is applied to count the numbers in the list.

List<int> quantity = new List<int> {99, 48, 120, 73, 101, 81, 56};
int cnt = quantity.Count;
listbox1.items.add(cnt);

When run, this query returns 7. In the following example, the Count operator is used to count the number
of items for the specified sales order.

var query =
from od in orderdetail
where od.SalesOrderID == 43662
select od.UnitPrice;

listbox1.Items.Add(query.Count());

When this query is executed, the list box contains the value of 22, meaning that there are 22 items for the
specified order.

You can also specify a criterion for the Count operator. Here’s an example in which the Count operator is
applied but given a condition, where the unit price is less than 200.

var query =
from od in orderdetail
where od.SalesOrderID == 43662
select od;

listbox1.Items.Add(query.Count(orderDetail => orderDetail.UnitPrice < 200));

65

Klein c04.tex V3 - 12/13/2007 1:51pm Page 66

Part I: Introduction to Project LINQ

LongCount
The LongCount operator, which returns an Int64 (a 64-bit integer), is used to count the number of elements
in a large collection—one with more than Int32.MaxValue elements. You use LongCount the same way
you use the Count operator, as shown in the following example:

List<Int64> quantity = new List<Int64> {99, 48, 120, 73, 101, 81, 56};
Int64 cnt = quantity.LongCount();
listbox1.items.add(cnt);

Now count the number of items in an order:

var query =
from od in orderdetail
where od.SalesOrderID == 43662
select od.UnitPrice;

listbox1.Items.Add(query.LongCount());

And here’s the example specifying a specific condition:

var query =
from od in orderdetail
where od.SalesOrderID == 43662
select od;

listbox1.Items.Add(query.LongCount(orderDetail => orderDetail.UnitPrice < 200));

Max
The Max operator returns the maximum value within a sequence. Like the Average operator, Max works
on many data types, including decimals, integers, and doubles.

The following example returns the maximum value from the list of provided integers:

List<int> quantity = new List<int> {99, 48, 120, 73, 101, 81, 56};
int cnt = quantity.Max();
listbox1.items.add(cnt);

The value returned is 120. This operator can also be applied to the following example, which returns the
maximum unit price of all the items for a specific order.

var query =
from od in orderdetail
where od.SalesOrderID == 43662
select od.UnitPrice;

listbox1.Items.Add(query.Max());

The value returned is 2146.9620. This query can also be written as follows:

var query =
from od in orderdetail
where od.SalesOrderID == 43662

66

Klein c04.tex V3 - 12/13/2007 1:51pm Page 67

Chapter 4: LINQ Standard Query Operators

select od;

listbox1.Items.Add(query.Max(orderDetail => orderDetail.UnitPrice));

There is no performance advantage between the two queries; their use is a matter of user preference
and readability.

Min
On the flip side is the Min operator, which returns the minimum value from a sequence. It also works on
many data types, including decimals, integers, and doubles.

The following example returns the minimum value from the list of provided integers:

List<int> quantity = new List<int> {99, 48, 120, 73, 101, 81, 56};
int cnt = quantity.Min();
listbox1.items.add(cnt);

The value returned from this example is 48. Here’s an example that returns the minimum unit price of
all the items for a specific order:

var query =
from od in orderdetail
where od.SalesOrderID == 43662
select od.UnitPrice;

listbox1.Items.Add(query.Min());

The value returned from this query is 178.5808. The query can also be written like this:

var query =
from od in orderdetail
where od.SalesOrderID == 43662
select od;

listbox1.Items.Add(query.Min(orderDetail => orderDetail.UnitPrice));

Again, there’s no performance advantage between the two queries. It’s just a matter of preference
and readability.

Sum
The Sum operator calculates the sum of the selected values within a collection. It also works on many data
types, such as decimal, integers, and doubles.

The following example returns the sum of the given values from the list of provided integers:

List<int> quantity = new List<int> {99, 48, 120, 73, 101, 81, 56};
int cnt = quantity.Sum();
listbox1.items.add(cnt);

67

Klein c04.tex V3 - 12/13/2007 1:51pm Page 68

Part I: Introduction to Project LINQ

The value returned from this example is 578. Here’s an example that returns the sum of the unit prices
for all the items for a specific order:

var query =
from od in orderdetail
where od.SalesOrderID == 43662
select od.UnitPrice;

listbox1.Items.Add(query.Sum());

The value returned from this query is 12955.4816. This query can also be written as the following:

var query =
from od in orderdetail
where od.SalesOrderID == 43662
select od;

listbox1.Items.Add(query.Sum(orderDetail => orderDetail.UnitPrice));

Which query you use is a matter of preference. There’s no performance advantage between the two.

Set Operators
Set operators perform actions against elements or sequence sets, and then return a set. There are four
LINQ set query operators—Distinct, Union, Intersect, and Except.

Distinct
The Distinct operator removes duplicate values from a collection and returns distinct elements from
that collection (or sequence).

In the following example, the list contains 13 numbers ranging from 1 to 10; some of the numbers
(1, 7, and 9) repeat. Applying the distinct operator removes the duplicates and returns only the
distinct values.

List<int> quantity = new List<int> {1, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 9, 10};
IEnumerable<int> val = numbers.Distinct();
foreach (int num in val)

listbox1.Items.Add(num);

The results are

1
2
3
4
5
6
7
8
9
10

68

Klein c04.tex V3 - 12/13/2007 1:51pm Page 69

Chapter 4: LINQ Standard Query Operators

To test this using LINQ, open a new query window in SQL Server Management Studio and select the
AdventureWorks database. Execute the following query:

SELECT SalesOrderDetailID, ProductID, UnitPrice
FROM Sales.SalesOrderDetail
WHERE SalesOrderID = 43662
ORDER BY UnitPrice

Your results would look like this:

Salesordetailid productid unitprice
--------------- --------- ---------
44 722 178.5808
49 738 178.5808
47 726 183.9382
43 729 183.9382
32 730 183.9382
34 725 183.9382
41 732 356.898
48 733 356.898
50 766 419.4589
40 763 419.4589
46 760 419.4589
35 762 419.4589
36 765 419.4589
37 768 419.4589
30 764 419.4589
31 770 419.4589
33 754 874.794
39 756 874.794
42 758 874.794
51 755 874.794
45 749 2146.962
38 753 2146.962

Notice that the unitprice column contains some duplicate values. With LINQ, you can use the same
Distinct operator as used in the previous example. Here’s how:

var query =
from od in orderdetail
where od.SalesOrderID == 43662
select od.UnitPrice;

foreach (decimal num in query.Distinct())
listbox1.Items.Add(num);

Without the trailing decimal places, you get the following results:

178
183
356
419
874
2146

69

Klein c04.tex V3 - 12/13/2007 1:51pm Page 70

Part I: Introduction to Project LINQ

Union
The Union operator returns the unique elements from the results of a union of two sequences or collec-
tions. It is different from the concat operator in that it returns unique values, and the concat operator
returns all values.

The following example contains two lists (or data sources) that contain integer values. These lists do not
contain duplicate values. The Union operator is applied; it joins the two lists and returns only the unique
value in the resultset.

int[] numbers1 = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ;
int[] numbers2 = { 11, 12, 13, 14, 15, 16, 17, 18, 19, 20} ;
IEnumerable<int> union = numbers1.Union(numbers2);

foreach (int num in union)
listBox1.Items.Add(num);

The results from this query return the numbers 1 through 20. The next example also contains two lists of
numbers, but numbers that exist in the first list also exist in the second list, and the first list also contains
duplicate numbers (such as the numbers 1 and 9).

int[] numbers1 = { 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10} ;
int[] numbers2 = { 1, 3, 5, 7, 9} ;
IEnumerable<int> union = numbers1.Union(numbers2);

foreach (int num in union)
listBox1.Items.Add(num);

When the Union operator is applied in this example, the following results are returned:

1
2
3
4
5
6
7
8
9
10

Intersect
The intersect operator returns the intersection of two sequences—that is, those values that are common
between two sequences or collections.

The following example uses two lists (or data sources) that contain integer values. Again, you can see
that there are numbers in the first list that also exist in the second list. The intersect operator is applied;
it joins the two lists and returns only those values that are common to both sequences.

int[] numbers1 = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ;
int[] numbers2 = { 2, 4, 6, 8, 10} ;
IEnumerable<int> shared = numbers1.Intersect(numbers2);

70

Klein c04.tex V3 - 12/13/2007 1:51pm Page 71

Chapter 4: LINQ Standard Query Operators

foreach (int num in shared)
listBox1.Items.Add(num);

The output is as follows:

2
4
6
8
10

Except
The Except operator is the opposite of the intersect operator, in that it returns the difference between
two sequences—in other words, it returns values that are unique (not duplicated) in all of the values of
the sequences (values that appear in the first sequence but do not appear in the second). In other words,
it is ‘‘the elements of sequence A less the elements of sequence B.’’

int[] numbers1 = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ;
int[] numbers2 = { 2, 4, 6, 8, 10} ;
IEnumerable<int> shared = numbers1.Except(numbers2);

foreach (int num in shared)
listBox1.Items.Add(num);

The output is

1
3
5
7
9

Generation Operators
Generation operators create new sequences from the values of existing sequences. The element generation
operators are discussed in this section.

Empty
The Empty operator returns an empty collection that has a specified type. In the following example, three
lists of names are defined and added to an array list. The Aggregate operator is applied to gather values
from the array list if the array contains more than two elements. The Empty operator is then used to
provide an empty collection if the criteria is not met (that is, if no arrays have more than two elements).

string[] name1 = { "Scott", "Steve"} ;
string[] name2 = { "Joe", "John", "Jim", "Josh", "Joyce"} ;
string[] name3 = { "Dave", "Dinesh", "Doug", "Doyle"} ;

List<string[]> names = new List<string[]> { name1, name2, name3} ;

IEnumerable<string> namelist = names.Aggregate(Enumerable.Empty<string>(),
(current, next) => next.Length > 2 ? current.Union(next) : current);

71

Klein c04.tex V3 - 12/13/2007 1:51pm Page 72

Part I: Introduction to Project LINQ

foreach (string item in namelist)
listBox1.Items.Add(item);

When this query is run, the following results are returned because two of the arrays have more than two
elements:

Joe
John
Jim
Josh
Joyce
Dave
Dinesh
Doug
Doyle

Change the query so that it is looking for arrays that have more than five elements, as shown below:

IEnumerable<string> namelist = names.Aggregate(Enumerable.Empty<string>(),
(current, next) => next.Length > 5 ? current.Union(next) : current);

When the query is run now, nothing is returned. Or better said, an empty collection is returned. You can
tell this by placing a breakpoint on the foreach statement. When the query is run, the execution does
indeed step into the foreach statement, letting you know that an empty collection was returned, but the
line that adds items to the list box is not hit or executed.

The Empty operator is basically used as a seed value for the aggregate operator if the criteria is not met.

Range
The Range operator creates a collection that contains a sequence of numbers. It takes two parameters.
The first is the integer value at which to start the sequence, and the second is the number of sequential
integers to generate.

Here’s an example in which the Range operator is used to generate a sequence of numbers starting at 1
and stopping at 10:

var coolmath = Enumerable.Range(1, 10);
for each (int num in coolmath)

listbox1.Items.Add(num);

The results are

1
2
3
4
6
7
8
9
10

72

Klein c04.tex V3 - 12/13/2007 1:51pm Page 73

Chapter 4: LINQ Standard Query Operators

Other operators can be added to this as well. The following example generates a list of numbers from 1
to 10 but also uses the Reverse operator to generate them backward.

var coolmath = Enumerable.Range(1, 10).Reverse();
for each (int num in coolmath)

listbox1.Items.Add(num);

The results are

10
9
8
7
6
5
4
3
2
1

In the next example, the Range operator is used to create a sequence of numbers from 1 to 5 and then
multiply each number by 5:

var coolmath = Enumerable.Range(1, 5).Select(x => x * 5);
for each (int num in coolmath)

listbox1.Items.Add(num);

The results are as follows:

5
10
15
20
25

Repeat
The Repeat operator creates a single value sequence that repeats itself a specified number of
times. The following example creates a sequence of a single string value and repeats that string
10 times:

var coolphrase = Enumerable.Repeat("LINQ ROCKS!", 10);
for each (string phrase in coolphrase)

listbox1.Items.Add(phrase);

The result of this query is the phrase ‘‘LINQ ROCKS!’’ output 10 times to the list box.

Conversion Operators
Conversion refers to the act of changing the type of input objects to the sequence. The conversion
operators do just this, and they are discussed in this section.

73

Klein c04.tex V3 - 12/13/2007 1:51pm Page 74

Part I: Introduction to Project LINQ

AsEnumerable
The AsEnumerable operator returns the query input typed as IEnumerable(Of T), meaning that you can
change the data source from a type that implements IEnumerable(Of T) to IEnumerable(Of T) itself.

The following example uses the AsEnumerable operator to replace the type’s custom Where method with
that of the standard query operator Where.

DataContext context = new DataContext("Initial Catalog=AdventureWorks;@@ta
Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

IEnumerable<Contact> query =
contact.AsEnumerable().Where(con => con.FirstName.Contains("K"));

foreach (Contact item in query)
listBox1.Items.Add(item.FirstName);

The results of this query contain all the contact first names that contain the letter K. Here are
partial results:

Kim
Keyley
Karel
Karen
Kris
Kevin
...

In this example, the System.Query.Sequence implementation of Where is utilized, but in the next
example, the Where() method with a predicate is used:

IEnumerable<Contact> query = contact.Where(=> con.FirstName.Contains("K"));

Cast
The Cast operator casts the element of an IEnumerable collection to a specified type. The benefit of this
is that by supplying necessary type information, you can invoke standard query operators on nongeneric
collections.

The following example uses an ArrayList as a data source. An ArrayList does not implement
IEnumerable(Of T), but by using the Cast operator you can use the standard query operators, such
as Select, to query the sequence.

ArrayList names = new ArrayList();

names.Add("Alex");
names.Add("Chuck");
names.Add("Dave");
names.Add("Dinesh");
names.Add("Joe");
names.Add("John");
names.Add("Sarah");

74

Klein c04.tex V3 - 12/13/2007 1:51pm Page 75

Chapter 4: LINQ Standard Query Operators

names.Add("Steve");
IEnumerable<string> query = names.Cast<string>().Select(name => name);

foreach (string item in query)
listBox1.Items.Add(item);

OfType
The OfType operator enables you to filter elements of an IEnumerable object based on a specific type. In
the following example, the OfType operator returns only those elements in the sequence that can be cast
to a type of int:

ArrayList names = new ArrayList(7);

names.Add("Scott");
names.Add(1);
names.Add("Dave");
names.Add(2);
names.Add("Dave");
names.Add(3);
names.Add("Steve");
names.Add(4);
names.Add("Joe");

IEnumerable<int> query = names.OfType<int>();
foreach (int item in query)

listBox1.Items.Add(item);

Here are the query’s results:

1
2
3
4

By using the OfType operator on an IEnumerable object, you have the capability to apply and use stan-
dard query operators to query the sequence.

ToArray
The ToArray operator creates an array from an IEnumerable sequence. You may remember from pre-
vious chapters that the ToArray operator forces immediate execution of the query. In the following
example, ToArray is used to query the first names from the Person.Contact table and return the results
as an array:

DataContext context = new DataContext("Initial Catalog =
AdventureWorks;Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

var query = contact.Select(con => con.FirstName).ToArray();

foreach (string item in query)
listBox1.Items.Add(item);

75

Klein c04.tex V3 - 12/13/2007 1:51pm Page 76

Part I: Introduction to Project LINQ

The following lists partial results of running this query:

Gustavo
Catherine
Kim
Humberto
Pilar
Frances
Margeret
Carla
Jay

ToDictionary
The ToDictionary operator inserts all the elements returned in the sequence into a Dictionary(Of TKey,
TValue). The following example uses the ToDictionary operator to create and populate a Dictionary(Of
TKey, TValue)and then iterate through that dictionary to populate a list box.

DataContext context = new DataContext("Initial Catalog =
AdventureWorks;Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

Dictionary<string, Contact> dict = contact.ToDictionary(con => con.FirstName);

foreach (KeyValuePair<string, Contact> item in dict)
listBox1.Items.Add(item.Key + " " + item.Value.FirstName + " " +

item.Value.LastName);

The following list shows the partial results of running this query:

1 Gustavo Achong
2 Catherine Abel
3 Kim Abercrombie
4 Humberto Acevedo
5 Pilar Ackerman
6 Frances Adams
7 Margeret Smith
8 Carla Adams

ToList
The ToList operator converts an IEnumerable sequence collection to a List(Of T). It also forces imme-
diate execution of the query. The following code uses the ToList operator to query the first names from
the Person.Contact table and return the results as a List(Of T).

DataContext context = new DataContext("Initial Catalog =
AdventureWorks;Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

var query = (from c in contact
select c.FirstName).ToList();

76

Klein c04.tex V3 - 12/13/2007 1:51pm Page 77

Chapter 4: LINQ Standard Query Operators

foreach (string item in query)
listBox1.Items.Add(item);

ToLookup
The ToLookup operator puts the returned elements into a Lookup(Of Tkey, TElement), based on a speci-
fied key. A Lookup is a collection of keys, each of which is mapped to one or more values; you can think
of it as a one-to-many dictionary.

The following example uses the ToLookup operator to create and populate a Lookup(Of TKey,
TElement)and then iterate through that Lookup to populate a list box.

DataContext context = new DataContext("Initial Catalog =
AdventureWorks;Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();
Lookup<string, string> lkp = contact.ToLookup(con => con.FirstName,

con => con.MiddleName + " " + con.LastName);

foreach (IGrouping<string, string> lkpgrp in lkp)
{

listBox1.Items.Add(lkpgrp.Key);

foreach (string item in lkpgrp)
listBox1.Items.Add(" " + item);

}

In this example, a Lookup is created, and contacts’ first, middle, and last names are used to populate the
Lookup, using the contact’s last name as a key.

Contacts are then grouped by last name, selecting the contact first name and middle name (appended
together), and returned as the element values of the Lookup. An instance of the IGrouping object is then
created and used to iterate through in the Lookup, writing the key value (the last name), then iterating
though each value in the IGrouping and writing those values (the first and middle names).

Here’s a partial list of the results written to the list box:

Gustavo
Achong
Camargo

Catherine
R. Abel
M.Whitney
J Brooks
Kelly
Sanders
Peterson

...

Element Operators
Element operators return a single, specific element from a sequence. The element operators are discussed
in this section.

77

Klein c04.tex V3 - 12/13/2007 1:51pm Page 78

Part I: Introduction to Project LINQ

DefaultIfEmpty
The DefaultIfEmpty operator replaces an empty collection with collection that contains a default single-
ton value. It can be used to return a default value in case the sequence returned is empty and you still
need something returned.

The following example queries the Contact table looking for all contacts whose first name begins with
the letter Z. You know from previous examples that this query will return some values; however, the
DefaultIfEmpty operator is used in case an empty sequence is returned.

DataContext context = new DataContext("Initial Catalog = AdventureWorks;Integrated
Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

var query = from c in contact
where c.FirstName.StartsWith("Z")
select c.FirstName;

foreach (string item in query.DefaultIfEmpty())
listBox1.Items.Add(item);

When the query is executed, all first names that begin with the letter Z are returned. Modify the query,
changing the criteria to look for first names that begin with the letters ZZ:

var query = from c in contact
where c.FirstName.StartsWith("ZZ")
select c.FirstName;

foreach (string item in query.DefaultIfEmpty("none"))
listBox1.Items.Add(item);

When this query runs, it does not find any first names that begin with the letters ZZ, so nothing will be
returned, and the DefaultIfEmpty operator instructs the query to produce an empty sequence.

Just as a reminder: reference and nullable types have a default value of null.

ElementAt
The ElementAt operator returns an element at a given index from a collection. The collection is zero-based
and the return value is the element at the specified position in the source. In the following example, the
Contact table is queried looking for all contacts whose first name begins with the letter S. However, the
ElementAt operator is utilized to return the element at the first position by passing the value of 0 as a
parameter to the ElementAt operator.

DataContext context = new DataContext("Initial Catalog = AdventureWorks;Integrated
Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

var query = from c in contact
where c.FirstName.StartsWith("S")
select c.FirstName;

listBox1.Items.Add(query.ElementAt(0));

78

Klein c04.tex V3 - 12/13/2007 1:51pm Page 79

Chapter 4: LINQ Standard Query Operators

Running this query will return the following:

Zheng

Be careful not to pass an index that is out of range; otherwise, the method throws an index out of range
error. If you’re not sure of the index, use the ElementAtOrDefault. operator.

ElementAtOrDefault
The ElementAtOrDefault operator combines the ElementAt operator with some of the functionality of
the DefaultIfEmpty operator by returning the element at a specified index or a default value if the index
is out of range.

In the following example, the ElementAtOrDefault operator returns the element at index 50,000 (there
are slightly fewer the 20,000 contacts):

DataContext context = new DataContext("Initial Catalog = AdventureWorks;Integrated
Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

var query = from c in contact
where c.FirstName.StartsWith("S")
select c.FirstName;

listBox1.Items.Add(query.ElementAtOrDefault(50000));

When this query is executed, it tries to return the value at the specified index; when it does not find an
element at that index, it returns a default value of 0.

First
As its name suggests, the First operator returns the first element in a collection. Here’s an example that
queries the Contact table looking for all contacts whose first name begins with the letter S. The First
operator returns the first element from the resulting collection.

DataContext context = new DataContext("Initial Catalog = @@ta
AdventureWorks;Integrated Security=sspi");
Table<Contact> contact = context.GetTable<Contact>();

var query = from c in contact
where c.FirstName.StartsWith("S")
select c.FirstName;

listBox1.Items.Add(query.First());

This method throws an exception if the source sequence contains no elements. Use the FirstOrDefault
operator if there is a possibility that the source might be empty.

You can also add specific criteria when using this operator. The following code returns the first element
that satisfies a specific condition, the first name whose length is greater than 5.

listBox1.Items.Add(query.First(name => name.Length > 5));

79

Klein c04.tex V3 - 12/13/2007 1:51pm Page 80

Part I: Introduction to Project LINQ

Last
The opposite of the First operator, the Last operator returns the last element in a collection. Here the
Contact table is queried looking for all contacts whose first name begins with the letter S, and the Last
operator returns the last element from the returned collection:

DataContext context = new DataContext("Initial Catalog = @@ta
AdventureWorks;Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

var query = from c in contact
where c.FirstName.StartsWith("S")
select c.FirstName;

listBox1.Items.Add(query.Last());

You can also add specific criteria when using this operator. For instance, the following returns the last
element that satisfies a specific condition, the first name whose length is less than 5:

listBox1.Items.Add(query.Last(name => name.Length < 5));

FirstOrDefault
The FirstOrDefault operator returns the first element from a collection or, if no element is found, a
default value. The following example queries the Contact table looking for all contacts whose first name
begins with the letters ZZ, and the FirstOrDefault operator returns the first element from the returned
collection. If the element is not found, a default value is returned. The default value is defined as the first
element that is found that meets the query condition(s).

DataContext context = new DataContext("Initial Catalog=AdventureWorks;Integrated
Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();
var query = from c in contact

where c.FirstName.StartsWith("ZZ")
select c.FirstName;

listBox1.Items.Add(query.FirstOrDefault());

You can also add specific criteria when using this operator. The following, for instance, returns
the first element that satisfies a specific condition, the first name whose length is greater
than 5:

listBox1.Items.Add(query.FirstOrDefault(name => name.Length > 5));

LastOrDefault
The LastOrDefault operator returns the last element from a collection, or a default value if no element
is found. Here’s another example that queries the Contact table for all contacts whose first name begins
with the letters ZZ. It uses the LastOrDefault operator to return the last element from the returned
collection. If the element is not found then a default value is returned.

80

Klein c04.tex V3 - 12/13/2007 1:51pm Page 81

Chapter 4: LINQ Standard Query Operators

DataContext context = new DataContext("Initial Catalog=AdventureWorks;Integrated
Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

var query = from c in contact
where c.FirstName.StartsWith("ZZ")
select c.FirstName;

listBox1.Items.Add(query.LastOrDefault());

You can also add specific criteria when using this operator, such as the following, which returns the last
element that satisfies a specific condition, the first name whose length is less than 5.

listBox1.Items.Add(query.LastOrDefault(name => name.Length < 5));

Single
The Single operator returns a single element from a sequence, or the only element that meets a given
condition. This operator should be used if you know that your query will return a single element. If the
sequence returns multiple elements and this operator is used, an exception is thrown.

The following example queries the Contact table for all contacts whose last name equals ‘‘Kobylinski,’’
and if any are found, returns the contact’s first name. The Single operator returns the single element
from the returned collection.

DataContext context = new DataContext("Initial Catalog=AdventureWorks;Integrated
Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

var query = from c in contact
where c.LastName.Equals("Kobylinski")
select c.FirstName;

listBox1.Items.Add(query.Single());

When this query runs, the name Andrew is written to the list box, because that’s the only contact with
the last name of Kobylinski. Now change the query to the following and rerun it.

var query = from c in contact
where c.LastName.Equals("Kleinerman")
select c.FirstName;

When this query executes, you receive the error that the sequence contains more than one element
because there are two contacts whose last name equals ‘‘Kleinerman.’’

You can also specify criteria to this operator as a parameter, as shown in this example:

var query2 = from c in contact
select c.LastName;

listBox1.Items.Add(query2.Single(con => con.Equals("Kobylinski")));

81

Klein c04.tex V3 - 12/13/2007 1:51pm Page 82

Part I: Introduction to Project LINQ

SingleOrDefault
Similar to the Single operator, the SingleOrDefault operator returns a single element from a sequence,
but it also returns a default value if no element is found. Again, use this operator only if you know
that your query will return a single element or that the element will be null when returned. If you use
SingleOrDefault and the sequence returns multiple elements, an exception is thrown.

Here’s a query to the Contact table looking for all contacts whose last name equals ‘‘Kobylinski’’ and,
if any are found, returning the contact’s first name. The SingleOrDefault operator returns the single
element from the returned collection.

DataContext context = new DataContext("Initial Catalog=AdventureWorks;Integrated
Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

var query = from c in contact
where c.LastName.StartsWith("Kobylinski")
select c.FirstName;

listBox1.Items.Add(query.SingleOrDefault());

When this query runs, the name Andrew is written to the list box, because that’s the only contact who
has the last name of Kobylinski. Change the query to the following and rerun the query:

var query = from c in contact
where c.LastName.Equals("Kleinerman")
select c.FirstName;

When this query executes, you get an error stating that the sequence contains more than one element
because there are two contacts whose last name equals ‘‘Kleinerman.’’

You can also specify criteria to this operator as a parameter, as shown here:

var query2 = from c in contact
select c.LastName;

listBox1.Items.Add(query2.SingleOrDefault(con => con.Equals("Kobylinski")));

Equality Operators
Equality operators compare two sequences to check if their corresponding elements are equal. Sequences
are considered equal if they have the same number of elements and the values of the elements are
the same.

The SequenceEqual operator determines if two collections are equal. The determination is done by enu-
merating the two data sources in parallel and comparing elements. The return value is a Boolean—true
if the two collections are equal, false if they are not.

82

Klein c04.tex V3 - 12/13/2007 1:51pm Page 83

Chapter 4: LINQ Standard Query Operators

In the following example, the code returns true to the list box because the two integer arrays are defined
as equal:

int[] numbers1 = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ;
int[] numbers2 = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ;
bool eq = numbers1.SequenceEqual(numbers2);
listBox1.Items.Add(eq);

Change the second array to the following, and rerun the code:

int[] numbers1 = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ;
int[] numbers2 = { 2, 4, 6, 8, 10} ;
bool eq = numbers1.SequenceEqual(numbers2);
listBox1.Items.Add(eq);

This time a value of false is written to the list box because the comparison determined that the data
sources were not equal.

Quantifier Operators
Quantifier operators return a Boolean value that indicates whether some or all of the elements in a
sequence meet a specific condition.

The quantifier operators—All, Any, and Contains—are discussed in this section.

All
The All operator determines whether all the values in a collection satisfy a specified condition. The return
value is a Boolean—true if all the values satisfy the condition, false if they do not.

Here, for example, an array of names is defined and the All operator is applied, specifying the condition
that all the names begin with the letter J:

Names[] friends = {new Names { Name = "Steve"},
new Names { Name = "Dave"},
new Names { Name = "Joe"},
new Names { Name = "John"},
new Names { Name = "Bill"},

};

bool firstnames = friends.All(name => name.Name.StartsWith("J"));

listBox1.Items.Add(firstnames).ToString();

Obviously, not all names begin with the letter J, so the value of false is written to the list box. In the next
example, the same code and condition exist, except that the array contains only names that begin with
the letter J:

Names[] friends = {new Names { Name = "Jeff"},
new Names { Name = "Jordan"},
new Names { Name = "Joe"},
new Names { Name = "John"},

83

Klein c04.tex V3 - 12/13/2007 1:51pm Page 84

Part I: Introduction to Project LINQ

new Names { Name = "Jim"},
};

bool firstnames = friends.All(name => name.Name.StartsWith("J"));

listBox1.Items.Add(firstnames).ToString();

This time, true is written to the list box. The following example uses data retrieved from the
SalesOrderDetail table in the AdventureWorks database, applying the All operator to determine if
all of the unit prices in the table are greater than zero:

DataContext context = new DataContext("Initial Catalog = AdventureWorks;Integrated
Security=sspi");

Table<SalesOrderDetail> orderdetail = context.GetTable<SalesOrderDetail>();

var query =
from od in orderdetail
where od.SalesOrderID == 43662
select od.UnitPrice;

listBox1.Items.Add(query.All(orderDetail => orderDetail.UnitPrice > 0));

The value of true will be written to the list box because there are no rows in the table whose unitprice
column contains a value of 0.

Any
The Any operator determines if any of the values in a collection satisfy a specified condition or if the
sequence contains any elements. The return value is a Boolean—true if all the values satisfy the condi-
tion, false if they do not.

In the following example, the Contact table is queried, returning a sequence of first names whose last
name starts with the letter Z. The Any operator is applied to the sequence to determine if the sequence
contains any elements that meet the specified condition.

DataContext context = new DataContext("Initial Catalog=AdventureWorks;Integrated
Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

var query = from c in contact
where c.LastName.StartsWith("Z")
select c.FirstName;

listBox1.Items.Add(query.Any());

When this query is run, a value of true is written to the list box because there is at least one contact
whose last name starts with the letter Z.

84

Klein c04.tex V3 - 12/13/2007 1:51pm Page 85

Chapter 4: LINQ Standard Query Operators

This operator can also be used to determine if any element of a sequence satisfies a given condition:

//satisfies a condition
var query = from c in contact
select c.FirstName;

listBox1.Items.Add(query.Any(con => con.LastName.StartsWith("Z")));

Both of these queries return the same thing, as you can see. However, there is no performance benefit of
one over the other, except for better readability of the code.

When this query is run, a value of true is written to the list box because there is at least one contact
whose last name starts with the letter Z.

Contains
The Contains operator determines whether the returned collection contains a specific element. The return
value is a Boolean—true if all the values satisfy the condition, false if they do not.

The following example queries the Contact table, returning a sequence of last names. The
Contains operator is applied to determine if the sequence contains an element of
‘‘Kleinerman.’’

DataContext context = new DataContext("Initial Catalog=AdventureWorks;Integrated
Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

var query = from c in contact
select c.LastName;

listBox1.Items.Add(query.Contains("Kleinerman"));

Because the Contact table does contain at least one row whose last name is Kleinerman, the value of true
is returned and written to the list box.

You can also use a comparer as follows:

DataContext context = new DataContext("Initial Catalog=AdventureWorks;Integrated
Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

string name = "Kleinerman"

var query = from c in contact
select c.LastName;

listBox1.Items.Add(query.Contains(name));

85

Klein c04.tex V3 - 12/13/2007 1:51pm Page 86

Part I: Introduction to Project LINQ

Partitioning Operators
Partitioning is the act of dividing a single input sequence into two or more sections or sequences without
rearranging the incoming elements, then returning one of the newly formed sections.

The partitioning operators—skip, skipwhile, Take, and TakeWhile—are discussed in this section.

Skip
The Skip operator skips elements up to a specified location within a sequence. In other words, it bypasses
the specified number of elements and returns the remaining elements.

The following example defines a random set of numbers, orders them in ascending order, then uses the
Skip operator to skip the first four and return the remaining.

Int[] randomNumbers = {86, 2, 77, 94, 100, 65, 5, 22, 70};
IEnumerable<int> skipLowerFour =

randomNumbers.OrderBy(num => num).Skip(4);

foreach (int number in skipLowerFour)
listbox1.Items.Add(number);

When this query is run, the following numbers are returned:

70
77
86
94
100

This example could also be written using query syntax as follows:

IEnumerable<int> skipLowerFour =
(from n in randomNumbers
order by n
select n).Skip(4)

SkipWhile
The SkipWhile operator skips or bypasses elements based on a specified predicate function, and contin-
ues to bypass the elements as long as the specified condition is true (i.e., the condition is not met). The
remaining elements are then returned.

The following example skips all the values in the sequence that are less than 50 and returns the
remaining values.

Int[] randomNumbers = {86, 2, 77, 94, 100, 65, 5, 22, 70, 55, 81, 66, 45};

IEnumerable<int> skipLessThan50 =
randomNumbers.OrderBy(num => num).SkipWhile(num =>

num < 50);

foreach (int number in skipLowerFour)
listbox1.Items.Add(number);

86

Klein c04.tex V3 - 12/13/2007 1:51pm Page 87

Chapter 4: LINQ Standard Query Operators

When this query is run, the following numbers are returned:

55
65
66
70
77
81
86
94
100

Likewise, this example could also be written using query syntax as follows:

IEnumerable<int> skipLowerFour =
(from n in randomNumbers
order by n
select n).SkipWhile(num => num < 50);

Take
The Take operator returns contiguous elements within a sequence, starting at the beginning of the
sequence, up to the position specified.

The following example skips all the values in the sequence that are less than 50 and returns the
remaining values.

Int[] randomNumbers = {86, 2, 77, 94, 100, 65, 5, 22, 70, 55, 81, 66, 45};

IEnumerable<int> takeTopFour =
randomNumbers.OrderByDescending(num => num).Take(4);

foreach (int number in takeTopFour)
listbox1.Items.Add(number);

When this query is run, the following numbers are returned:

100
94
86
81

This example could also be written using query syntax as follows:

IEnumerable<int> takeTopFour =
(from n in randomNumbers
order by n descending
select n).Take(4);

TakeWhile
The TakeWhile operator returns elements based on a specified predicate function, and continues to take
the elements as long as the specified condition is true (i.e., the condition is not met). The remaining
elements are skipped.

87

Klein c04.tex V3 - 12/13/2007 1:51pm Page 88

Part I: Introduction to Project LINQ

The following example takes all the values in the sequence that are less than 50 and skips the
remaining values.

Int[] randomNumbers = {86, 2, 77, 94, 100, 65, 5, 22, 70, 55, 81, 66, 45};

IEnumerable<int> takeGreaterThan50 =
randomNumbers.OrderByDescending(num => num).TakeWhile(num => num > 50);

foreach (int number in takeGreaterThan50)
listbox1.Items.Add(number);

When this query is run, the following numbers are returned:

100
94
86
81
77
70
66
65
55

This example could also be written using query syntax as follows:

IEnumerable<int> takeGreaterThan50 =
(from n in randomNumbers
order by n descending
select n).TakeWhile(num => num > 50);

As an interesting experiment, try modifying the original query as follows and executing it:

IEnumerable<int> takeGreaterThan50 =
randomNumbers.OrderBy(num => num).TakeWhile(num =>

num > 50);

Was anything returned? Why not? As stated earlier, it returns elements based on a specified predicate
function, and continues to take the elements as long as the specified condition is true. If you order the
sequence in ascending order, the first element it finds does not meet the criteria and therefore the query
does not continue.

Putting Query Operators to Work
There was a ton of information in this chapter, so this section provides an example that enables you
to apply many of the operators you’ve seen and to begin experimenting with the great functionality
provided by the LINQ query operators.

Fire up an instance of Visual Studio 2008 and create a new C# Windows Forms Application project. In
the Solution Explorer, expand the References node, right-click on it, and select Add Reference from the
context menu. In the Add Reference dialog opens, make sure that the .NET tab is selected, and scroll
down the list until you see the System.Data.Linq component. Select that component and click OK.

88

Klein c04.tex V3 - 12/13/2007 1:51pm Page 89

Chapter 4: LINQ Standard Query Operators

Next, open Form1 in design view and place two buttons and a list box on the form. Name one of the
buttons cmdExecuteQuery and the other cmdClose. Then view the code behind the form and replace the
existing code with the following (this code can also be obtained from the Chapter 4 example in the file
download for this chapter):

using System;
using System.Linq;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Data.Linq;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.Xml;

namespace LINQ
{

public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();
}

private void Form1_Load(object sender, EventArgs e)
{
}

private void cmdClose_Click(object sender, EventArgs e)
{

Application.Exit();
}

private void cmdExecuteQuery_Click(object sender, EventArgs e)
{

DataContext context = new DataContext("Initial @@ta
Catalog=AdventureWorks;Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();
Table<Employee> employee = context.GetTable<Employee>();

var query =
from c in contact
join emp in employee on c.ContactID equals emp.ContactID
where c.FirstName.StartsWith("S")
&& emp.HireDate.Year > 1999
orderby c.LastName
orderby c.FirstName
select new { emp.EmployeeID, c.LastName, c.FirstName, @@ta

emp.Title, c.EmailAddress, emp.HireDate };//.Thenby(c => c.FirstName);

foreach (var item in query)
listBox1.Items.Add(item.FirstName

89

Klein c04.tex V3 - 12/13/2007 1:51pm Page 90

Part I: Introduction to Project LINQ

+ " " + item.LastName
+ " " + item.Title
+ " " + item.EmailAddress
+ " " + item.HireDate);

}

}

[Table(Name = "Person.Contact")]
public class Contact
{

[Column(DBType = "int not null")]
public int ContactID;

[Column(DBType = "nvarchar(8) not null")]
public string Title;

[Column(DBType = "nvarchar(50) not null")]
public string FirstName;

[Column(DBType = "nvarchar(50) not null")]
public string MiddleName;

[Column(DBType = "nvarchar(50) not null")]
public string LastName;

[Column(DBType = "nvarchar(50) not null")]
public string EmailAddress;

[Column(DBType = "int")]
public int EmailPromotion;

}

[Table(Name = "HumanResources.Employee")]
public class Employee
{

[Column(DBType = "int not null")]
public int ContactID;

[Column(DBType = "int")]
public int EmployeeID;

[Column(DBType = "nvarchar(50) not null")]
public string Title;

[Column(DBType = "datetime")]
public DateTime HireDate;

}
}

90

Klein c04.tex V3 - 12/13/2007 1:51pm Page 91

Chapter 4: LINQ Standard Query Operators

This example creates object-relational mappings to two tables in the AdventureWorks database from
which the data for the queries will be pulled. When the OK button is clicked, a connection is made to the
appropriate database, and the data sources are defined.

Several operators—join, restriction, and sorting operators, for instance—are used in the query expres-
sion. Once the query expression is defined, the query is executed by iterating through the sequence or
collection, and the results are written to the form’s list box.

The Employee and Contact tables are joined by creating a join on the ContactID column. Several columns
between the two tables are projected (selected as elements for return values) and a filter is applied looking
for all contacts whose first name begins with the letter S and whose hire date is after the year 1999. A sort
is applied, ordering the results by last name, sorted in ascending order.

When this query is run, the following results are returned (a portion of the data has been left out for
space considerations):

Sandeep Kaliyath Production Technician - WC40
Sharon Salavaria Design Engineer
Sheela Word Purchasing Manager
Shu Ito Sales Representative
Sootha Charncherngkha Quality Assurance Technician
Stephen Jiang North American Sales Manager
Stuart Macrae Janitor
Syed Abbas Pacific Sales Manager
Sylvester Valdez Production Technician - WC20

While this example is fairly simple, it does provide a great foundation. You can modify it by applying
many of the operators discussed in this chapter.

Let’s modify this example a little bit. Add a second button to the form, name it cmdMethodSyntax, and
place the following code in the Click() event of that button.

DataContext context = new DataContext("Initial @@ta
Catalog=AdventureWorks;Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();
Table<Employee> employee = context.GetTable<Employee>();

var query =
contact.Join(employee, con => con.ContactID,
emp => emp.ContactID, (con, emp) =>

new { con = con, emp = emp})
.Where(c => c.con.FirstName.StartsWith("S"))
.Where(c => c.emp.HireDate.Year > 1999)
.OrderBy(c => c.con.LastName)
.OrderBy(c => c.con.FirstName)
.Select(o => new
{ o.emp.EmployeeID, o.con.LastName, o.con.FirstName,

o.emp.Title, o.con.EmailAddress, o.emp.HireDate});

foreach (var item in query)

91

Klein c04.tex V3 - 12/13/2007 1:51pm Page 92

Part I: Introduction to Project LINQ

listBox1.Items.Add(item.FirstName
+ " " + item.LastName
+ " " + item.Title
+ " " + item.EmailAddress
+ " " + item.HireDate);

This code accomplishes the exact same thing as the preceding code, but uses method syntax. This example
is here to illustrate the different ways you can use the LINQ standard query operators.

Summary
This chapter introduced you to LINQ’s standard query operators. Without them, LINQ doesn’t happen.
The chapter provides you with a good foundation in and understanding of their functionality, which will
be helpful because the rest of this book utilizes the information found in this chapter.

The next four chapters take a look at LINQ to XML, a new approach to programming with XML.

92

Klein p02.tex V3 - 12/13/2007 1:53pm Page 93

Part II

LINQ to XML

Chapter 5: Understanding LINQ to XML

Chapter 6: Programming with LINQ to XML

Chapter 7: LINQ to XML and Other LINQ Data Models

Chapter 8: Advanced LINQ to XML Programming Topics

Chapter 9: LINQ to XML and Visual Basic .NET

Klein p02.tex V3 - 12/13/2007 1:53pm Page 94

Klein c05.tex V3 - 12/13/2007 1:54pm Page 95

Understanding LINQ to XML

XML is becoming more and more mainstream. It’s being used in databases (I love that!),
configuration files, and throughout the Web, and is becoming a more popular mechanism for
formatting your day-to-day data such as spreadsheets and documents.

Until now, working with XML has been somewhat frustrating because of the many different
technologies available to developers to work with XML. There’s the DOM (Document Object
Model), which provides a standardized interpretation of an XML document. You also have XPath
and XSLT, which afford the ability to query and format XML. Within the .NET Framework you
have the System.Xml namespace, which makes available a programmatic representation of XML
documents and mechanisms for manipulating XML documents, nodes, and XML fragments.

There is a need to improve the way developers work with XML, and LINQ to XML is the answer.
The first four chapters provided the foundation for the rest of this book, presenting the basic
principles of LINQ and its different components, such as the standard query operators. This
information is extremely vital to LINQ to XML because it helps developers work with and program
XML using LINQ to XML.

This chapter provides an introductory look at LINQ to XML, exploring the fundamentals and
concepts that programmers need to comprehend when working with LINQ to XML. It includes the
following:

❑ An overview of LINQ to XML

❑ Programming fundamentals of LINQ to XML

❑ Programming concepts of LINQ to XML

❑ A comparison of LINQ to XML and other XML technologies

LINQ to XML Overview
LINQ to XML is a new approach to working with XML. In essence, it takes many of the technologies
you use today to work with XML, such as the DOM and XPath, and combines them into a single
programming interface directly within the .NET Framework. LINQ to XML provides in-memory

Klein c05.tex V3 - 12/13/2007 1:54pm Page 96

Part II: LINQ to XML

document modification capabilities of the DOM, while providing querying capabilities equal to those of
XPath via LINQ query expressions.

Any programming language that supports the .NET Framework supports LINQ. LINQ to XML is ‘‘LINQ-
enabled,’’ meaning that you have access to all of the functionality of LINQ, such as the standard query
operators and the LINQ programming interface. Because of its integration into the .NET Framework,
LINQ to XML can take advantage of .NET Framework functionality, such as compile-time checking,
strong typing, and debugging.

As stated previously, LINQ to XML provides much of the functionality found in today’s XML
technologies, but it does so from within a single programming interface. Using LINQ to XML you can
easily load XML documents into memory and just as easily query and modify the documents. You can
also save in-memory XML documents to disk, as well as serialize them for routing over the wire.

The great thing about LINQ to XML (and LINQ in general) is that it makes working with XML much
simpler, and therefore developers who do not have a whole lot of experience with XML can jump right
in. LINQ to XML provides developers of all levels the capability to easily work with XML. For those who
are somewhat new to working with XML, LINQ to XML provides a simple but powerful query experience
(instead of their having to learn a more complex XML query language). More-advanced developers can
use LINQ to XML to enhance their XML programming by writing less code that is just as powerful,
easier to read, and much more expressive. The key is that LINQ to XML is not targeted to a specific level
of developer—it can be used by any developer who needs to work with XML.

LINQ to XML is provided via the System.Xml.Linq namespace, which contains all of the classes
necessary to work with XML. Add a reference to System.Xml.Linq.dll to your project, and then place
a using directive in the declarations section of your code, as follows:

using System.Xml.Linq;

Adding this directive enables the use of LINQ to XML types in the namespace. If you plan to work with
relational data, you need to use System.Data.Linq as well.

LINQ to XML Programming Fundamentals
As Chapter 2, ‘‘A Look at Visual Studio 2008,’’ explained, LINQ (and therefore LINQ to XML) utilizes
generic classes quite heavily. Therefore, it is quite helpful to have an understanding of generics and
delegates as you get into LINQ and LINQ to XML.

The component that gives LINQ to XML its power is the System.Xml.Linq namespace and its
corresponding classes. Those classes provide the capability to work with XML with ease, leaving behind
the need to work with complex and sometimes cumbersome technologies such as the DOM and XQuery.

The following sections provide an overview of the classes in the System.Xml.Linq namespace, and then
detailed discussions of the XDocument, XElement, and XAttribute classes.

LINQ to XML Classes
The System.Xml.Linq namespace contains 19 classes, which are described in the following table.

96

Klein c05.tex V3 - 12/13/2007 1:54pm Page 97

Chapter 5: Understanding LINQ to XML

Class Description

XAttribute Represents an XML attribute.

XCData Represents a CDATA text node.

XComment Represents an XML comment.

XContainer An abstract base class representing nodes that have
child nodes.

XDeclaration Represents an XML declaration.

XDocument Represents an XML document. This class is derived from the
XContainer class.

XDocumentType Represents an XML DTD (document type definition).

XElement Represents an XML element. This class is derived from the
XContainer class.

XName Represents the name of an XML element or attribute.

XNamespace Represents an XML namespace.

XNode An abstract class representing nodes of an XML element tree.

XNodeDocumentOrderComparer Provides mechanisms for node comparisons regarding their
order within the XML document.

XNodeEqualityComparer Provides mechanisms for node comparisons regarding their
equality value.

XObject An abstract class representing XNodes and XAttributes.

XObjectChange The event type when an XObject event is raised.

XObjectChangeEventArgs Provides information and data for the Changing and
Changed events.

XObjectChangeEventHandler The method that will handle the XObject’s Changed and
Changing events.

XProcessingInstruction Represents an XML processing instruction.

XText Represents an XML text node.

If you have done any programming with XML before, you are familiar with XML declarations. An
XML declaration specifies the XML version, the encoding of an XML document, and whether the XML
document is a standalone document. LINQ to XML lets you do this quite easily. The following example
uses the XDeclaration class to define an XML declaration:

XDocument myDoc = new XDocument
(

new XDeclaration("1.0","utf-8","yes"),
new XElement("Root","stuff"),

);

97

Klein c05.tex V3 - 12/13/2007 1:54pm Page 98

Part II: LINQ to XML

string str = myDoc.Declaration.ToString() + Environment.NewLine + myDoc.ToString();

textbox1.Text = str;

What you get is the following:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<Root>stuff</Root>

Very slick. As you start to use the LINQ to XML classes, you begin to get a feel for how much thought
Microsoft put into LINQ (including LINQ to XML and LINQ to SQL). One of the things it focused on is
names. Often the difficulty in working with XML is in dealing with XML names due to the simple fact of
XML prefixes.

In XML, prefixes can come in handy. The main concept behind them is to reduce the amount of typing
you have to do when creating XML. It also makes XML much easier to read. Yet prefixes are not required
and the problem they cause is that they shortcut the full XML namespace. LINQ to XML solves this
problem by automatically resolving prefixes to their XML namespace.

The following three sections detail the classes that you will typically use most when working with
XML: XElement, XAttribute, and XDocument. If you master those classes, LINQ to XML will become
second nature.

XElement Class
The XElement class represents an XML element. It is derived from the XContainer class, which derives
from the XNode class. An element is a node, so many times you will see these terms used interchangeably.
The XElement class is one of the most important and fundamental classes of LINQ to XML because it
contains all of the functionality necessary to create and manipulate XML elements. Via this class you can
create elements, add and modify attributes of elements, and even manipulate the content of an element
such as adding, deleting, or modifying child elements.

There are several ways to create XML documents with LINQ to XML, depending on the source of your
XML or if you are creating an XML document from scratch. The simplest and most common way to create
XML is to use the good ol’ XElement class of LINQ to XML as follows:

XDocument riders = new XDocument
(new XDeclaration("1.0", "utf-8", "yes"),
new XComment("Riders for the year 2007"),
new XElement("Riders",
new XElement("Rider",
new XElement("Name", "Ricky Carmichael"),
new XElement("Class", "450"),
new XElement("Brand", "Suzuki"),

new XElement("Sponsers",
new XElement("Name", "Makita")
)

),
new XElement("Rider",
new XElement("Name", "Chad Reed"),
new XElement("Class", "450"),

98

Klein c05.tex V3 - 12/13/2007 1:54pm Page 99

Chapter 5: Understanding LINQ to XML

new XElement("Brand", "Yamaha"),
new XElement("Sponsers",
new XElement("Name", "ProTaper")
)

),
new XElement("Rider",

new XElement("Name", "James Stewart"),
new XElement("Class", "450"),
new XElement("Brand", "Kawasaki"),
new XElement("Sponsers",
new XElement("Name", "Renthal")
)

)
)

);

The resulting XML looks like this:

<!--Riders for the year 2007-->

<Riders>

<Rider>

<Name>Ricky Carmichael</Name>

<Class>450</Class>

<Brand>Suzuki</Brand>

<Sponsers>

<Name>Makita</Name>

</Sponsers>

</Rider>

<Rider>

<Name>Chad Reed</Name>

<Class>450</Class>

<Brand>Yamaha</Brand>

<Sponsers>

<Name>ProTaper</Name>

</Sponsers>

</Rider>

<Rider>

<Name>James Stewart</Name>

<Class>450</Class>

<Brand>Kawasaki</Brand>

<Sponsers>

<Name>Renthal</Name>

</Sponsers>

</Rider>

</Riders>

You can also use a LINQ query to populate an XML tree. Create a directory called Wrox in the root
of your C drive, for example, and in your favorite text editor program, type the following, saving it as
Employees.xml:

<?xml version="1.0"?>

<Employees>

<Employee id="1">

<Name>Steve Kent</Name>

99

Klein c05.tex V3 - 12/13/2007 1:54pm Page 100

Part II: LINQ to XML

<Title>Mr. SciFi</Title>

<Department>Gaming</Department>

<HireDate>04/17/92</HireDate>

<Gender>M</Gender>

<MaritalStatus>M</MaritalStatus>

</Employee>

<Employee id="2">

<Name>Scott Klein</Name>

<Title>Geek</Title>

<Department>All things technical</Department>

<HireDate>02/05/94</HireDate>

<Gender>M</Gender>

<MaritalStatus>M</MaritalStatus>

</Employee>

</Employees>

The following code loads Employees.xml using the Load method of the XElement class. The results of
Load are then used to create and populate an XML tree, while adding two more elements to the tree.

XElement employees = XElement.Load(@"C:\Wrox\Employees.xml");

XElement tree = new XElement("Root",
new XElement("Manager", "Dave"),
new XElement("BirthDate", "01/01/1970"),
from el in employees.Elements()
select el);

textBox1.Text = tree.ToString();

When this code runs, the following output appears:

<Root>

<Manager>Dave</Manager>

<BirthDate>01/01/1970</BirthDate>

<Employee id="1">

<Name>Steve Kent</Name>

<Title>Mr. SciFi</Title>

<Department>Gaming</Department>

<HireDate>04/17/92</HireDate>

<Gender>M</Gender>

<MaritalStatus>M</MaritalStatus>

</Employee>

<Employee id="2">

<Name>Scott Klein</Name>

<Title>Geek</Title>

<Department>All things technical</Department>

<HireDate>02/05/94</HireDate>

<Gender>M</Gender>

<MaritalStatus>M</MaritalStatus>

</Employee>

</Root>

The XElement class contains a number of methods that make working with XML a breeze. The following
table describes the class’s methods.

100

Klein c05.tex V3 - 12/13/2007 1:54pm Page 101

Chapter 5: Understanding LINQ to XML

Method Description

AddAnnotation Adds an annotation to a given XElement. In general terms, this method
adds an object to the annotation of the corresponding XObject (the
current node or attribute in the tree).

AncestorsAndSelf Returns a collection of elements, in which the collection contains the
current element and all ancestors of the current element. An ancestor is
defined as the parent(s) of the current node (meaning, the parent of the
current node, and the parent’s parent, and so on up the chain).

Attribute Returns a single attribute, which is the XAttribute of the current
XElement of a given XName. In other words, this method returns the first
attribute it finds for a given element that has a specified name.

Attributes Returns all the attributes (a collection) for the current element. You can
also specify a name, in which case all attributes are returned for the
element that has the specified name.

CreateReader Creates an XmlReader (a fast, forward-only copy of the XML document)
of the current node.

CreateWriter Creates an XmlWriter of the XML document that provides the
capability to modify the XML document, such as adding nodes or
attributes. The XmlWriter is a fast, forward-only mechanism for
creating files of the in-memory XML document.

DescendantNodes Returns a collection of all descendant nodes of the entire document or
the current node/element.

DescendantNodesAndSelf Returns the same collection as the DescenantNodes method but also
includes the current node in the collection.

DescendantsAndSelf Returns a collection of elements that contain the current element plus
all descendant elements of the current element. You can also specify a
name that returns only those elements that match the specified name in
the collection.

Element In an ordered XML document, Element returns the first element that
matches the specified element name.

IsAfter Returns a Boolean value that specifies whether the current node
appears after a specified node.

IsBefore Returns a Boolean value that specifies whether the current node
appears before a specified node.

Load Provides multiple mechanisms for creating new XElements from an
external source. Sources can include a TextReader, String, or
XmlReader (each with an additional option to preserve whitespace).

Nodes Returns a collection of child nodes of the current element or document.

NodesAfterSelf Returns a collection of ordered nodes after (that follow) the
current node.

Continued on the next page

101

Klein c05.tex V3 - 12/13/2007 1:54pm Page 102

Part II: LINQ to XML

Method Description

NodesBeforeSelf Returns a collection of ordered nodes before the current node.

Parse Loads an XML document from a string containing XML. Can optionally
preserve whitespace.

Remove Removes the current node from its parent.

RemoveAll Removes all nodes and attributes from the current element.

RemoveAttributes Removes all attributes from the current element.

RemoveNodes Removes all nodes from the XML document or current element.

ReplaceAll Replaces all child nodes and attributes of the current element with the
specified content.

ReplaceAttributes Replaces all the attributes of the current element with the specified
content.

Save Serializes the current element’s XML tree to any of several destinations,
such as a file, XmlTextWriter, XmlWriter, or TextWriter.

SetAttributeValue Sets the value of the current attribute.

SetElementValue Sets the value of a child element.

SetValue Sets the value of the current element.

WriteTo Writes the current element to an XmlWriter.

These are powerful yet easy-to-use methods. You’ll use several of them in this chapter’s examples. For
instance, you can use the CreateReader method to load an XML tree into an XmlReader, like this:

XElement employees = null;
employee = XElement.Load(@"C:\Wrox\Employees.xml";
XmlReader rdr = employees.CreateReader();
rdr.MoveToContent();

The XmlReader can be used to quickly read nodes and its descendants.

There may be times when there are other components used by your existing application that are expecting
an XmlReader as input or as the source of data. The preceding example shows one way to use LINQ to
XML to provide XmlReader functionality.

XAttribute Class
The XAttribute class deals with attributes, plain and simple. Attributes are name/value pairs
associated with elements, but working with attributes is really no different from working with elements.
Attributes are similar to elements in many ways, such as their constructors and the methods in which
values and collections are returned. Writing a LINQ query expression to return a collection of attributes
is structurally and syntactically the same as writing a LINQ query expression for returning a collection
of elements.

102

Klein c05.tex V3 - 12/13/2007 1:54pm Page 103

Chapter 5: Understanding LINQ to XML

Elements and attributes also have their differences. For example, attributes are not nodes in an XML tree,
so they do not derive from the XNode class. Each attribute must have a qualified name that is unique
to the element. And attributes are maintained in the XML tree in the order that they are added to
the element.

The great thing, however, is that working with the XAttribute class is just like working with the
XElement class.

Here’s how to add an attribute to a simple XML tree during construction:

XElement employee = new XElement("Root",
new XElement("Employee",

new XAttribute("id", "1")
)

);

And here’s its output:

<Root>

<Employee id="1" />

</Root>

Just like elements, multiple attributes can be added at one time. For instance, you could add a phone
attribute along with the id attribute, like this:

XElement employee = new XElement("Root",
new XElement("Employee",

new XAttribute("id", "1"),
new XAttribute("phone", "555-555-5555")

)
);

And the output is as follows:

<Root>

<Employee id="1" phone="555-555-5555"/>

</Root>

The key to attributes is that they must have a qualified name that is unique to the particular element to
which they are being added.

Unlike the XElement class, the XAttribute class has only a small handful of methods. The methods are
similar to XElement’s, which makes working with them extremely easy. Here are descriptions of the
XAttribute class methods:

❑ AddAnnotation—Adds an annotation to a given attribute.

❑ Remove—Removes the attribute from its parent.

❑ SetValue—Sets the value of the current attribute.

103

Klein c05.tex V3 - 12/13/2007 1:54pm Page 104

Part II: LINQ to XML

The following example creates a simple XML tree with two attributes associated with the Employee node:

XElement employee = new XElement("Root",
new XElement("Employee",

new XAttribute("id", "1"),
new XAttribute("dept", "Dev")),

new XElement("Name", "Scott")
)

);

Here’s the resulting XML:

<Root>

<Employee id="1" dept="id" />

<Name>Scott</Name>

</Root>

Now Remove() is issued to remove the second attribute:

XAttribute attr = employee.Element("Employee").Attribute("dept");
attr.Remove();

Just for kicks, try removing the attribute this way:

XAttribute attr = employee.Attribute("dept");
attr.Remove();

Did it work? No, because you really haven’t identified where the attribute dept really is, or better said,
you haven’t identified the element to which the dept attribute belongs.

The first example illustrates how to ‘‘walk the XML tree’’ to denote the node you want to deal with.

XDocument Class
The XDocument class provides you with the means to work with valid XML documents, including
declarations, comments, and processing instructions.

The XDocument class derives from XContainer and, therefore, can have child nodes. But keep in mind
that XML standards limit an XDocument object to only a single child XElement node, which is the root
node or element.

An XDocument object can contain the following:

❑ One XDeclaration object—Specifies important parts of an XML declaration, such as the
document encoding and XML version.

❑ One XElement object—Specifies the root element of the document.

❑ One XDocumentType object—Represents an XML DTD (document typed definition).

104

Klein c05.tex V3 - 12/13/2007 1:54pm Page 105

Chapter 5: Understanding LINQ to XML

❑ Multiple XComment objects—Specifies an XML comment. A child of the root node, an XComment
object cannot be the first argument; a valid XML document cannot begin with a comment..

❑ Multiple XProcessingInstruction objects—Specify any information to the application that is
processing the XML.

A large portion of the functionality for working with nodes and elements can be obtained through the
XElement class, and the XDocument class should be used only when you absolutely need the capability to
work at the document level and need access to comments, processing instructions, and the declaration.
Basically, a declaration, comments, and processing instructions are not required for LINQ to XML to
work with XML; you need to use the XDocument class only if you need the functionality it provides.

For instance, the following example creates a simple XML document with several elements and an
attribute, as well as a processing instruction and comments.

XDocument doc = new XDocument(
new XProcessingInstruction("xml-stylesheet", "title=’EmpInfo’"),
new XComment("some comments"),
new XElement("Root",

new XElement("Employees",
new XElement("Employee",

new XAttribute("id" "1")
new XElement("Name", "Scott Klein"),
new XElement("Title", "Geek"),
new XElement("HireDate", "02/05/2007"),
new XElement("Gender", "M")

)
)

)
new XComment("more comments"),

);

This code produces the following:

<?xml-stylesheet title=’EmployeeInfo’?>

<!--some comments-->

<Root>

<Employees>

<Employee id="1">

<Name>Scott Klein</Name>

<Title>Geek</Title>

<HireDate>02/05/2007</HireDate>

<Gender>M</Gender>

</Employee>

</Employees>

</Root>

<!--more comments-->

Notice how simple it is to construct the XML document and place comments and other information
throughout it.

105

Klein c05.tex V3 - 12/13/2007 1:54pm Page 106

Part II: LINQ to XML

The XDocument class contains a number of methods that are identical to XElement class methods. They’re
described in the following table.

Method Description

AddAnnotation Adds an annotation to a given XElement. In general terms, this method
adds an object to the annotation of the corresponding XObject (the
current node or attribute in the tree).

CreateReader Creates an XmlReader (a fast, forward-only copy of the XML document)
of the current node.

CreateWriter Creates an XmlWriter of the XML document that provides the
capability to modify the XML document, such as adding nodes or
attributes. The XmlWriter is a fast, forward-only mechanism for
creating files of the in-memory XML document.

DescendantNodes Returns a collection of all descendant nodes of the entire document or
the current node/element.

Element In an ordered XML document, Element returns the first element that
matches the specified element name.

IsAfter Returns a Boolean value that specifies whether the current node
appears after a specified node.

IsBefore Returns a Boolean value that specifies whether the current node
appears before a specified node.

Load Provides multiple mechanisms for creating new XElement objects from
an external source. Sources can include a TextReader, String, or
XmlReader (each with an additional option to preserve whitespace).

Nodes Returns a collection of child nodes of the current element or document.

NodesAfterSelf Returns a collection of ordered nodes after (that follow) the current
node.

NodesBeforeSelf Returns a collection of ordered nodes before the current node.

Parse Loads an XML document from a string containing XML. Can optionally
preserve whitespace.

Remove Removes the current node from its parent.

RemoveNodes Removes all nodes from the XML document or current element.

Save Serializes the current element’s XmlTree to several output options, such
as a file, XmlTextWriter, XmlWriter, and TextWriter.

The following example creates an XML document that contains employee information along with
processing instructions and a comment, utilizing all of the classes previously discussed, including the
XDocument and XElement classes.

106

Klein c05.tex V3 - 12/13/2007 1:54pm Page 107

Chapter 5: Understanding LINQ to XML

Once the XML document is created, the NodesAfterSelf method of the XElement class is used to return
all the elements after the <Employee> element. Those elements are then iterated through and added to
the list box. This example requires a Using statement to System.Xml.

XElement doc = new XElement("Root",
new XElement("Employees",

new XElement("Employee",
new XAttribute("id" "1"),

new XElement("Name", "Scott Klein"),
new XElement("Title", "Geek"),
new XElement("HireDate", "02/05/2007"),
new XElement("Gender", "M")

)
)

);

XElement xele = xtree. Element("Employees").Element("Employee"). Element("Name");
IEnumerable<XNode> nodes =

from node in xele.NodesAfterSelf()
select node;

foreach (XNode inode in nodes)
listBox1.Items.Add(inode.NodeType == XmlNodeType.Element ?

(inode as XElement).Value : "");

Now you should be able to see how easy and efficient it is to work with XML in LINQ to XML, using the
available classes to create, query, and manipulate XML.

LINQ to XML Programming Concepts
This section explores LINQ to XML programming concepts such as how to load XML, create XML from
scratch, manipulate XML information, and traverse an XML document.

Working with Existing XML
Loading XML into a LINQ to XML tree is straightforward. You can load XML from a number of sources,
such as a string, XmlReader, TextReader, or file.

The following example illustrates how to load from a file:

XElement employees = null;
employees = XElement.Load(@"C:\Wrox\Employees.xml");

In this example, a variable called employees is declared as an XElement object (an instance of the
XElement class). The Load method of the XElement class is then used to load the raw XML from the
Employees.xml file into an XML tree and store the XML contents in the employees variable.

XML can also be loaded from a string, using the Parse method:

XElement employees = XElement.Parse(@"
<Employees>

107

Klein c05.tex V3 - 12/13/2007 1:54pm Page 108

Part II: LINQ to XML

<Employee id=’1’ phone=’555-555-5555’>

<Name>Steve Kent</Name>

<Title>Mr. SciFi</Title>

<Department>Gaming</Department>

<HireDate>04/17/92</HireDate>

<Gender>M</Gender>

<MaritalStatus>M</MaritalStatus>

</Employee>

<Employee id=’2’ phone=’555-555-5556’>

<Name>Scott Klein</Name>

<Title>Geek</Title>

<Department>All things technical</Department>

<HireDate>02/05/94</HireDate>

<Gender>M</Gender>

<MaritalStatus>M</MaritalStatus>

</Employee>

<Employee id=’3’ phone=’555-555-5557’>

<Name>Joe Walling</Name>

<Title>Head Geek</Title>

<Department>All things bleeding edge</Department>

<HireDate>06/15/93</HireDate>

<Gender>M</Gender>

<MaritalStatus>M</MaritalStatus>

</Employee>

</Employees>");

Parse has an optional Boolean overload that enables you to preserve whitespace. When using Parse,
your XML tree can contain only a single root node.

You can also load XML from a TextReader:

TextReader tr = new StringReader(@"
<Employees>

<Employee id=’1’ phone=’555-555-5555’>

<Name>Steve Kent</Name>

<Title>Mr. SciFi</Title>

<Department>Gaming</Department>

<HireDate>04/17/92</HireDate>

<Gender>M</Gender>

<MaritalStatus>M</MaritalStatus>

</Employee>

<Employee id=’2’ phone=’555-555-5556’>

<Name>Scott Klein</Name>

<Title>Geek</Title>

<Department>All things technical</Department>

<HireDate>02/05/94</HireDate>

<Gender>M</Gender>

<MaritalStatus>M</MaritalStatus>

</Employee>

<Employee id=’3’ phone=’555-555-5557’>

<Name>Joe Walling</Name>

<Title>Head Geek</Title>

108

Klein c05.tex V3 - 12/13/2007 1:54pm Page 109

Chapter 5: Understanding LINQ to XML

<Department>All things bleeding edge</Department>

<HireDate>06/15/93</HireDate>

<Gender>M</Gender>

<MaritalStatus>M</MaritalStatus>

</Employee>

</Employees>");
XElement xel = XElement.Load(tr);
tr.Close();

The output of both of these examples is the same XML.

Saving XML via LINQ to XML
Saving XML via LINQ to XML is just as easy as loading XML. For instance, the following example creates
a TextReader, populates it with an XML document, and then uses the XElement class’s Load method to
load the contents of the TextReader into the XML Element. The Save() method is subsequently called
to write the XML to a file.

TextReader tr = new StringReader(@"
<Employees>

<Employee id=’1’ phone=’555-555-5555’>

<Name>Steve Kent</Name>

<Title>Mr. SciFi</Title>

<Department>Gaming</Department>

<HireDate>04/17/92</HireDate>

<Gender>M</Gender>

<MaritalStatus>M</MaritalStatus>

</Employee>

<Employee id=’2’ phone=’555-555-5556’>

<Name>Scott Klein</Name>

<Title>Geek</Title>

<Department>All things technical</Department>

<HireDate>02/05/94</HireDate>

<Gender>M</Gender>

<MaritalStatus>M</MaritalStatus>

</Employee>

<Employee id=’3’ phone=’555-555-5557’>

<Name>Joe Walling</Name>

<Title>Head Geek</Title>

<Department>All things bleeding edge</Department>

<HireDate>06/15/93</HireDate>

<Gender>M</Gender>

<MaritalStatus>M</MaritalStatus>

</Employee>

</Employees>");
XElement xel = XElement.Load(tr);
tr.Close();
xel.Save(@"C:\Wrox\Employees2.xml");

Saving XML like this is commonly known as serializing. If the XML that is loaded into the XML class is
indented, the serialized XML keeps its formatting, thus maintaining the indentation of the XML, although
any insignificant whitespace is removed.

109

Klein c05.tex V3 - 12/13/2007 1:54pm Page 110

Part II: LINQ to XML

Creating XML
LINQ to XML provides a powerful yet easy approach to manually creating XML elements. You have seen
this method quite a bit throughout this chapter. The section ‘‘LINQ to XML Programming
Fundamentals’’ listed several classes available to you via LINQ to XML in which you can manually create
XML documents.

Here’s an example that creates a simple XML document consisting of elements and attributes:

XElement xdoc = new XElement("Riders",
new XElement("Rider",

new XElement("Name", "Ricky Carmichael"),
new XElement("NationalNumber", "4"),
new XElement("Mechanic", "Mike Gosselaar"),
new XElement("Nickname", "GOAT")
)

);

And here’s the output:

<Riders>

<Rider>

<Name>Ricky Carmichael</Name>

<NationalNumber>4</NationalNumber>

<Mechanic>Mike Gosselaar</Mechanic>

<Nickname>GOAT</Nickname>

</Rider>

</Riders>

The great thing about LINQ to XML in the .NET Framework is that indentation is automatically done for
you. That makes reading it much easier because it mimics the format and structure of XML. (Oh, by the
way, anyone who follows the supercross/motocross scene knows that Ricky Carmichael’s nickname is
not a reference to the animal, but to his achievements in the sport. GOAT: Greatest of All Time.)

Now modify the previous example by adding the highlighted line of code:

XElement xdoc = new XElement("Riders",
new XElement("Rider",

new XElement("Name", "Ricky Carmichael",

new XAttribute("Class", "450")),

new XElement("NationalNumber", "4"),
new XElement("Mechanic", "Mike Gosselaar"),
new XElement("Nickname", "GOAT")
)

);

Notice the results now show an attribute called Class on the Name element:

<Riders>

<Rider>

<Name Class="450">Ricky Carmichael</Name>

<NationalNumber>4</NationalNumber>

110

Klein c05.tex V3 - 12/13/2007 1:54pm Page 111

Chapter 5: Understanding LINQ to XML

<Mechanic>Mike Gosselaar</Mechanic>

<Nickname>GOAT</Nickname>

</Rider>

</Riders>

LINQ to XML also provides a simple yet powerful mechanism for creating an XML tree in a single
statement. This functionality is called functional construction, which will be discussed in Chapter 6,
‘‘Programming with LINQ to XML.’’

Traversing XML
So, you have your XML document in memory, whether you created it manually or loaded it using the
Load method of the XElement class. Now what do you do with it? Specifically, how do you navigate
the XML tree to get to the node/element you want to work with?

Traversing XML in an XML tree in LINQ to XML is quite simple. Just use the methods of the XElement
and XAttribute classes as necessary. Basically, the Elements and Element methods provide all of the
element children of an XContainer (an XElement or XDocument) object. Using the XName object, such as
Element(XName), you can return the elements of that specific XName.

Once you have your XML tree loaded as shown here:

employees = XElement.Load(@"C:\Wrox\Employees.xml");

you can start ‘‘walking the XML tree.’’ Here are a couple of examples:

employees.Element("Employees").Element("Employee")

employees.Element("Employees").Element("Employee").Element("Name")

Granted, there is much more you can do, but this is just to whet your appetite. Keep in mind you can do
the same with attributes. All of this is explained in more detail in Chapter 6.

The following is a simple example of returning elements of a particular node. It creates an XML document
containing several riders, with each rider containing one attribute.

XElement xdoc = new XElement("Riders",
new XElement("Rider",

new XElement("Name", "Ricky Carmichael",
new XAttribute("Class", "450")),

new XElement("NationalNumber", "4"),
new XElement("Brand", "Suzuki"),
new XElement("Nickname", "GOAT"),
new XElement("Mechanic", "Mike Gosselaar")
),

new XElement("Rider",
new XElement("Name", "Damon Bradshaw",

new XAttribute("Class", "450")),
new XElement("NationalNumber", "45"),
new XElement("Brand", "Yamaha"),
new XElement("Nickname", "Beast from the East"),
new XElement("Mechanic", "N/A")
),

111

Klein c05.tex V3 - 12/13/2007 1:54pm Page 112

Part II: LINQ to XML

new XElement("Rider",
new XElement("Name", "Chad Reed",

new XAttribute("Class", "450")),
new XElement("NationalNumber", "22"),
new XElement("Brand", "Yamaha"),
new XElement("Nickname", "N/A"),
new XElement("Mechanic", "N/A")
),

new XElement("Rider",
new XElement("Name", "James Stewart",

new XAttribute("Class", "450")),
new XElement("NationalNumber", "7"),
new XElement("Brand", "Kawasaki"),
new XElement("Nickname", "N/A"),
new XElement("Mechanic", "N/A")
),

new XElement("Rider",
new XElement("Name", "Kevin Windham",

new XAttribute("Class", "450")),
new XElement("NationalNumber", "14"),
new XElement("Brand", "Honda"),
new XElement("Nickname", "N/A"),
new XElement("Mechanic", "N/A")
)

);

textBox1.Text = xdoc.ToString();

foreach(XNode c in xdoc.Nodes())
listBox1.Items.Add(c);

To get all the elements of a specific name, you can use the following:

foreach(XElement c in xdoc.Elements("Rider"))
listBox1.Items.Add(c);

If you know that there is only a single element with a specific name, you can use the following:

listBox1.Items.Add(xdoc.Element(XName));

The thing to remember is that the Nodes(), Elements(), Element(Name), and Elements(Name) methods
provide the foundation and basic functionality of XML tree navigation.

Manipulating XML
The great thing about LINQ to XML is the capability to easily make changes to the XML tree, such as
adding, deleting, updating, and copying content within the XML document.

Changes to an XML tree are available via the many methods of the XNode class, which represents nodes
such as elements and comments in an XML tree. More often than not, you’ll be working at the node level,
manipulating elements and their contents or their attributes.

The next few sections discuss how to use many of the methods of the XNode class.

112

Klein c05.tex V3 - 12/13/2007 1:54pm Page 113

Chapter 5: Understanding LINQ to XML

Insert
Content can be added to an XML tree easily by using one of the add methods available via the XNode
class, depending on where you want to insert the XML:

❑ AddAfterSelf—Adds the specified content after the current node.

❑ AddBeforeSelf—Adds the specified content before the current node.

The following code defines an initial XML tree, then uses the AddAfterSelf() method to add an
additional node after the State element.

XElement employee = new XElement("Root",
new XElement("Employee",

new XElement("Name", "Scott"),
new XElement("Address", "555 Main St."),
new XElement("City", "Wellington"),
new XElement("State", "FL")
)

);
XElement zip = employee.Element("Employee").Element("State");
zip.AddAfterSelf(new XElement("Zip","33414"));

Here’s the resulting XML:

<Root>

<Employee>

<Name>Scott</Name>

<Address>555 Main St.</Address>

<City>Wellington</City>

<State>FL</State>

<Zip>33414</Zip>

</Employee>

</Root>

Notice that the <Zip> element follows the <State> element as you instructed.

The AddBeforeSelf() method functions the same way when you need to add an element before
a specific node.

Update
Updating XML is quite simple in LINQ to XML. There are several methods available, from deleting an
element and adding another to changing the content of an element.

The Replace method provides several options from which you can choose:

❑ ReplaceWith—Replaces the content of the current element with the specified content.

❑ ReplaceAll—Replaces the child nodes and associated attributes of the current element with the
specified content.

❑ ReplaceNodes—Replaces the child nodes of the document or current element with the
specified content.

113

Klein c05.tex V3 - 12/13/2007 1:54pm Page 114

Part II: LINQ to XML

In the following example, an initial XML tree is defined, then the ReplaceWith() method is used to
replace the contents of the <State> element with new content:

XElement employee = new XElement("Root",
new XElement("Employee",

new XElement("Name", "Scott"),
new XElement("Address", "555 Main St."),
new XElement("City", "Wellington"),
new XElement("State", "FL")
)

);

The result of this XML is as follows:

<Root>

<Employee>

<Name>Scott</Name>

<Address>555 Main St.</Address>

<City>Wellington</City>

<State>WA</State>

<Zip>33414</Zip>

</Employee>

</Root>

In the following code, the first line identifies the element whose contents will be replaced, and the second
line employs the ReplaceWith() method to specify the replacement content:

XElement st = employee.Element("Employee").Element("State");
st.ReplaceWith(new XElement("State", "FL"));

Here’s the resulting XML:

<Root>

<Employee>

<Name>Scott</Name>

<Address>555 Main St.</Address>

<City>Wellington</City>

<State>FL</State>

<Zip>33414</Zip>

</Employee>

</Root>

Notice that the value of the <State> element has been changed from WA to FL.

What happens if you use the following code to replace an element value?

st.ReplaceWith("FL");

ReplaceWith()deletes the specified node and replaces it with the specified content:

<Root>

<Employee>

<Name>Scott</Name>

114

Klein c05.tex V3 - 12/13/2007 1:54pm Page 115

Chapter 5: Understanding LINQ to XML

<Address>555 Main St.</Address>

<City>Wellington</City>FL
</Employee>

</Root>

The <State> element is deleted and simply replaced with the text FL and not a new node. Thus, you
must specify a new element to be created in the place of the old <State> element.

A similar operation can be done with attributes using the SetAttributeValue method. In the following
example, notice that the attribute id has a value of 1.

XElement employee = new XElement("Employees",
new XElement("Employee",

new XAttribute("id", "1"),
new XElement("Name", "Scott"),
new XElement("Address", "555 Main St."),
new XElement("City", "Wellington"),
new XElement("State", "FL")
)

);

When you execute the following statement, the attribute value is changed to 3.
The SetAttributeValue method changes the value of the id attribute to 3.

employee.Element("Employee").SetAttributeValue("id", "3");

The SetElementValue method is also available to you. It’s a method of the XElement class and provides
the capability to set the value of a child element, or to add or remove a child element. For example, the fol-
lowing creates a simple XML fragment and then uses the SetElementValue() method
to update the Address node value:

XElement employee = new XElement("Employees",
new XElement("Employee",

new XAttribute("id", "1"),
new XElement("Name", "Scott"),
new XElement("Address", "555 Main St."),
new XElement("City", "Wellington"),
new XElement("State", "FL")
)

);

employee.Element("Employee").SetElementValue("Address", "111 Main St.");

Running this code shows that the address has indeed been changed:

<Employees>

<Employee id="1">

<Name>Scott</Name>

<Address>111 Main St.</Address>

<City>Wellington</City>

<State>FL</State>

</Employee>

</Employees>

115

Klein c05.tex V3 - 12/13/2007 1:54pm Page 116

Part II: LINQ to XML

Delete
Deleting XML is as simple as navigating to the content you want to delete and calling the Remove() or
RemoveAll() method.

The following example creates an XML tree, and then adds an element that will be removed in the next
set of code:

XElement employee = new XElement("Root",
new XElement("Employee",

new XElement("Name", "Scott"),
new XElement("Address", "555 Main St."),
new XElement("City", "Wellington"),
new XElement("State", "FL")
)

);

XElement zip = new XElement("Zip", "33414");
employee.Add(zip);

Here’s the resulting XML tree:

<Root>

<Employee>

<Name>Scott</Name>

<Address>555 Main St.</Address>

<City>Wellington</City>

<State>FL</State>

<Zip>33414</Zip>

</Employee>

</Root>

Now, remove the node you just added:

employee.Remove(zip);

The XML tree now looks like this:

<Root>

<Employee>

<Name>Scott</Name>

<Address>555 Main St.</Address>

<City>Wellington</City>

<State>FL</State>

</Employee>

</Root>

Likewise, you can use the RemoveAll() method to remove all the nodes (including child nodes) and
attributes for the given element:

XElement employee = new XElement("Root",
new XElement("Employee",

new XElement("Name", "Scott"),

116

Klein c05.tex V3 - 12/13/2007 1:54pm Page 117

Chapter 5: Understanding LINQ to XML

new XElement("Address", "555 Main St."),
new XElement("City", "Wellington"),
new XElement("State", "FL")
)

);

Employee.RemoveAll();

Here’s the resulting XML:

<Root />

Working with Attributes
Attributes are name/value pairs that are associated an XML element. By now you know quite a bit about
dealing with elements via the XElement class, and the good news is that dealing with attributes via the
XAttribute class is not much different. The following sections explain how to work with attributes in an
XML tree, specifically adding, retrieving, and deleting attributes.

Adding
Adding attributes with LINQ to XML is similar to adding elements. You can add attributes using an XML
construction like the following:

XElement employee = new XElement("Root",
new XElement("Employee",

new XAttribute("id", "1"),
new XAttribute("EyeColor", "Blue"),
new XElement("Name", "Scott"),
new XElement("Address", "555 Main St."),
new XElement("City", "Wellington"),
new XElement("State", "FL")
)

);

You can also add an attribute as follows:

XAttribute dept = employee.Element("Employee").Attribute("EyeColor");

Retrieving
Retrieving attributes is also easy. It involves using the Attributes(XName) method of the XElement
class. For example, the following code defines an XML tree with several attributes defined on the
Employee node. The Attributes() method of the XElement class is then used to retrieve those attributes.

XElement employee = new XElement("Root",
new XElement("Employee",

new XAttribute("id", "1"),
new XAttribute("EyeColor", "Blue"),
new XElement("Name", "Scott"),
new XElement("Address", "555 Main St."),

117

Klein c05.tex V3 - 12/13/2007 1:54pm Page 118

Part II: LINQ to XML

new XElement("City", "Wellington"),
new XElement("State", "FL")
)

);

IEnumerable<XAttribute> atts =
from emp in employee.Elements("Employee").Attributes()
select emp;

foreach (XAttribute att in atts)
listBox1.Items.Add(att);

Running this code results in the following:

id="1"
EyeColor="Blue"

Notice that you get the attribute key/value pair. To get just the value, use the Value() property of the
XAttribute class:

foreach (XAttribute att in atts)
listBox1.Items.Add(att.Value.ToString());

And here’s the result:

1
Blue

In the preceding examples, the XML tree consisted of a single employee. Suppose that the XML tree
consists of multiple employees. The following XML tree contains two employees, and the code then
applies the First() property to get the attributes of the first employee.

XElement employee = new XElement("Root",
new XElement("Employee",

new XAttribute("id", "1"),
new XAttribute("EyeColor", "Green"),
new XElement("Name", "John"),
new XElement("Address", "444 Main St."),
new XElement("City", "Seattle"),
new XElement("State", "WA")
),

new XElement("Employee",
new XAttribute("id", "2"),
new XAttribute("EyeColor", "Blue"),
new XElement("Name", "Scott"),
new XElement("Address", "555 Main St."),
new XElement("City", "Wellington"),
new XElement("State", "FL")
),

new XElement("Employee",
new XAttribute("id", "3"),
new XAttribute("EyeColor", "Brown"),
new XElement("Name", "Joe"),

118

Klein c05.tex V3 - 12/13/2007 1:54pm Page 119

Chapter 5: Understanding LINQ to XML

new XElement("Address", "333 Main St."),
new XElement("City", "Greenville"),
new XElement("State", "SC")
)

);

IEnumerable<XAttribute> atts =
from emp in employee.Elements("Employee").First().Attributes()
select emp;

foreach (XAttribute att in atts)
listBox1.Items.Add(att);

You can see that retrieving attributes is powerful yet quite easy.

Deleting
You have two options for deleting attributes. The first is to use the Remove() method. The following
example creates an XML tree and then uses Remove()to delete the first attribute:

XElement employee = new XElement("Root",
new XElement("Employee",

new XAttribute("id", "1"),
new XAttribute("EyeColor", "Blue"),
new XElement("Name", "Scott"),
new XElement("Address", "555 Main St."),
new XElement("City", "Wellington"),
new XElement("State", "FL")
)

);

employee.Element("Employee").FirstAttribute.Remove();

In this example, the FirstAttribute property selects the first attribute found in the employee element,
on which Remove() was issued. Here’s the resulting XML:

<Root>

<Employee EyeColor="Blue">

<Name>Scott</Name>

<Address>555 Main St.</Address>

<City>Wellington</City>

<State>FL</State>

</Employee>

</Root>

You can also specify the attribute you want to remove:

employee.Element("Employee").Attributes("EyeColor").Remove();
The resulting XML shows that the EyeColor attribute was removed:
<Root>

<Employee id="1">

<Name>Scott</Name>

<Address>555 Main St.</Address>

<City>Wellington</City>

119

Klein c05.tex V3 - 12/13/2007 1:54pm Page 120

Part II: LINQ to XML

<State>FL</State>

</Employee>

</Root>

The second option is to use the SetAttributeValue method. When using it, you set the value of the
attribute (of the name/value pair) to null, like this:

employee.Element("Employee").SetAttributeValue("EyeColor", null);

In this example, the EyeColor attribute will be removed and the XML will be returned as in the
previous example.

LINQ to XML versus Other XML Technologies
The final section of this chapter briefly compares LINQ to XML to some of the other XML technologies in
use today, specifically weighing LINQ to XML against the following:

❑ DOM

❑ XmlReader

❑ XSLT

❑ MSMXL

LINQ to XML versus DOM
The difference between LINQ to XML and the DOM is in the way the document is created. In the DOM,
the XML tree is created from bottom to top, meaning that you create the document, create the elements,
and then add the elements to the document. This process takes multiple statements and is quite lengthy.

LINQ to XML simplifies the process by allowing the creation of an XML tree in a single statement, shaped
more like XML, and in significantly less, easier-to-read code. The reasoning behind this logic is simply
that when you are working with XML, you are typically working with elements and attributes, those
components that make up an XML tree. LINQ to XML facilitates this by letting you work with elements
and attributes without working with the document object.

One of the problems with the DOM is that you can’t change the name of a node directly. You must create
a new node and copy all the child nodes of the old node to the new node. In LINQ to XML, you can
simply rename the node.

Other differences between LINQ to XML and DOM include the following:

❑ LINQ to XML’s static methods simplify the loading of XML over the DOM’s instance methods.

❑ LINQ to XML supports annotations.

120

Klein c05.tex V3 - 12/13/2007 1:54pm Page 121

Chapter 5: Understanding LINQ to XML

❑ LINQ to XML provides better support for whitespace. LINQ to XML stores whitespace as XText
versus having a special Whitespace node in the DOM. Additionally, in LINQ to XML you can
specify xml:space="preserve" to always preserve the whitespace.

❑ XML programming is simplified in LINQ to XML by removing support for entities and entity
references because the management of entities is fairly complex, and truth be told, rarely used.
The benefit of this is increased performance.

LINQ to XML versus XmlReader
If you have worked with XML before, you have probably used the XmlReader class. The XmlReader
class is a fast way of dealing with XML. It is a forward-only, noncached XML parser. Unlike the pre-
vious comparison (LINQ to XML versus the DOM), in which LINQ to XML is a replacement for the
DOM, LINQ to XML is actually tightly integrated with the XmlReader. While you can still use the
XmlReader by itself, you can utilize LINQ to XML to take advantage of the XmlReader, overlapping
much of the functionality.

You need to determine when you would use the XmlReader in a standalone scenario and when you
would use LINQ to XML. XmlReader is best used when you want to process a large number of XML
documents whose XML tree structure rarely differs and quickly processing those XML documents is
necessary. LINQ to XML shines when the XML documents differ in XML tree structure.

LINQ to XML versus XSLT
The only similarity between LINQ to XML and XSLT is the capability to transform XML. XSLT
is a declarative language that implements a rule-based approach. It does not take advantage of the
.NET Framework, thus requiring developers to learn a completely new language. Yet, used correctly, it
produces wonderful results, and an existing managed XSLT engine can compile XSLT into
managed code.

LINQ to XML, however, overcomes all of the XSLT shortcomings. Through LINQ to XML query
expressions, you can easily transform XML using functional construction (discussed in Chapter 8) and
constructing XElement objects dynamically, thus creating a completely new XML tree. The benefits
of this approach include reduced development time.

LINQ to XML versus MSXML
The big difference between LINQ to XML and MSXML is that MSXML is COM-based and,
therefore, not recommended for use in managed code. It also contains a native implementation of the
DOM, and includes support for XSLT and XPath. It is primarily used in programming languages that
support COM.

In contrast, LINQ to XML is not COM-based and is designed specifically for use with managed code.
Thus, you get all the benefits of managed code, such as garbage collection, type safety, and object-oriented
design features.

121

Klein c05.tex V3 - 12/13/2007 1:54pm Page 122

Part II: LINQ to XML

Summary
This chapter introduced you LINQ to XML and many of the fundamental programming concepts that
LINQ to XML utilizes and that will be used throughout the remaining LINQ to XML chapters of
this book.

You explored the LINQ to XML programming fundamentals—that is, the many LINQ to XML classes
that the System.Xml.Linq namespace exposes. These classes are the backbone of LINQ to XML and
make working with XML much easier than using other XML tools. You also examined three of the more
common classes that you’ll use when working with XML, including XElement and XAttribute.

The chapter covered many of the programming concepts that you need to know when working with XML
using LINQ to XML, including how to traverse an XML tree, add and remove elements and attributes,
and manipulate the tree’s contents. You saw how to work with attributes in an XML document using
LINQ to XML, and learned that working with attributes is similar to working with elements due to the
architecture of LINQ and its integration into the .NET Framework.

Last, a comparison of LINQ to XML to other existing XML technologies was provided to give you an idea
of how LINQ to XML stacks up.

Chapter 6 discusses more in-depth programming features of LINQ to XML.

122

Klein c06.tex V3 - 12/13/2007 1:55pm Page 123

Programming with LINQ
to XML

LINQ to XML has many strengths, and one of the most valuable is its capability to quickly and
easily create XML documents and trees. LINQ to XML provides several different options through
which developers can create XML trees as well as modify and manipulate XML trees.

This chapter builds on what you learned in Chapter 5, ‘‘Understanding LINQ to XML’’—the pro-
gramming fundamentals and
concepts that are prevalent in working with XML documents and LINQ to XML, and how to work
with elements and attributes using the XElement and XAttribute classes.

This chapter, then, tackles the following:

❑ Constructing and creating XML trees

❑ Manipulating XML trees

❑ Serializing XML trees

Creating Trees
Programming with LINQ to XML, as you found out in the last chapter, is straightforward. Through
the many classes of the System.Xml.Linq namespace, developers can create and manipulate XML
trees with ease.

You can create XML trees in both C# and Visual Basic .NET, but the manner in which they are
created is quite different. The following sections examine the creation of XML trees in both
languages, and discuss the differences developers need to know for their respective language.

Klein c06.tex V3 - 12/13/2007 1:55pm Page 124

Part II: LINQ to XML

Creating Trees in C#
Creating XML trees in C# is done using the XElement class. This class provides all the necessary
functionality to create and manipulate XML documents and trees. In its simplest form, the XElement
class creates elements. Here’s an example that creates an empty element:

XElement emptyElement = new XElement("Employee");

This code produces the following:

<Employee />

Simple, but via the same XElement class you can create more complex XML trees, such as the following:

XElement employee = new XElement("Root",
new XElement("Employee",

new XElement("Name", "Scott"),
new XElement("Title", "All Things Techy"),
new XElement("HireDate", "02/05/2007"),
new XElement("Gender", "M")
),

new XElement("Employee",
new XElement("Name", "Steve"),
new XElement("Title", "Mr. SciFi"),
new XElement("HireDate", "05/14/2002"),
new XElement("Gender", "M")
),

new XElement("Employee",
new XElement("Name", "Joe"),
new XElement("Title", "All Things Bleeding Edge"),
new XElement("HireDate", "07/22/2004"),
new XElement("Gender", "M")
)

);

When this code is run, the resulting XML tree looks like this:

<Root>

<Employee>

<Name>Scott</Name>

<Title>All Things Techy</Title>

<HireDate>02/05/2007</HireDate>

<Gender>M</Gender>

</Employee>

<Employee>

<Name>Steve</Name>

<Title>Mr. SciFi</Title>

<HireDate>05/14/2002</HireDate>

<Gender>M</Gender>

</Employee>

<Employee>

<Name>Joe</Name>

<Title>All Things Bleeding Edge</Title>

<HireDate>07/22/2004</HireDate>

124

Klein c06.tex V3 - 12/13/2007 1:55pm Page 125

Chapter 6: Programming with LINQ to XML

<Gender>M</Gender>

</Employee>

</Root>

Take it a step further and add a couple of attributes to each employee via the XAttribute class:

XElement employee = new XElement("Root",
new XElement("Employee",

new XAttribute("id", "1"),
new XAttribute("Dept", "0001"),

new XElement("Name", "Scott"),
new XElement("Address",

new XElement("Street", "555 Main St."),
new XElement("City", "Wellington"),
new XElement("State", "FL")),

new XElement("Title", "All Things Techy"),
new XElement("HireDate", "02/05/2007"),
new XElement("Gender", "M")
),

new XElement("Employee",

new XAttribute("id", "2"),
new XAttribute("Dept", "0005"),

new XElement("Name", "Steve"),
new XElement("Address",

new XElement("Street", "444 Main St."),
new XElement("City", "Snohomish"),
new XElement("State", "WA")),

new XElement("Title", "Mr. SciFi"),
new XElement("HireDate", "05/14/2002"),
new XElement("Gender", "M")
),

new XElement("Employee",

new XAttribute("id", "3"),
new XAttribute("Dept", "0004"),

new XElement("Name", "Joe"),
new XElement("Address",

new XElement("Street", "222 Main St."),
new XElement("City", "Easley"),
new XElement("State", "SC")),

new XElement("Title", "All Things Bleeding Edge"),
new XElement("HireDate", "07/22/2004"),
new XElement("Gender", "M")
)

);

The results now show two attributes on each employee node:

<Root>

<Employee id="1" Dept="0001">

<Name>Scott</Name>

<Address>

<Street>555 Main St.</Street>

<City>Wellington</City>

125

Klein c06.tex V3 - 12/13/2007 1:55pm Page 126

Part II: LINQ to XML

<State>FL</State>

</Address>

<Title>All Things Techy</Title>

<HireDate>02/05/2007</HireDate>

<Gender>M</Gender>

</Employee>

<Employee id="2" Dept="0005">

<Name>Steve</Name>

<Address>

<Street>444 Main St.</Street>

<City>Snohomish</City>

<State>WA</State>

</Address>

<Title>Mr. SciFi</Title>

<HireDate>05/14/2002</HireDate>

<Gender>M</Gender>

</Employee>

<Employee id="3" Dept="0004">

<Name>Joe</Name>

<Address>

<Street>222 Main St.</Street>

<City>Easley</City>

<State>SC</State>

</Address>

<Title>All Things Bleeding Edge</Title>

<HireDate>07/22/2004</HireDate>

<Gender>M</Gender>

</Employee>

</Root>

One of the things that makes creating XML with LINQ to XML quite easy is the capability to structure the
XML directly in the programming language, formatting the source code just as it would be structured in
the XML document. Additionally, the many properties and methods of the XElement class make it easy
to efficiently structure and create XML documents dynamically.

The XElement class contains a handful of overloads that let developers create XML trees quickly within
a single statement. These constructor overloads allow you to create a new instance of the XElement class
with which to structure an XML document.

In its simplest form, the XElement class can be used to create a new element with a specific name, as
shown here in the basic syntax:

XElement(XName name)

For example, the following uses the basic syntax to create a single root element:

XElement employee = new XElement("Root");

This code produces the following XML:

<Root />

126

Klein c06.tex V3 - 12/13/2007 1:55pm Page 127

Chapter 6: Programming with LINQ to XML

Building on that, you use the XElement constructor to create a new instance of the XElement class
(creating a new element) from another XElement object. By doing so, you can nest elements, creating child
elements of the parent element. The following example illustrates this, using the XElement constructor
from the initial XElement class to create a child element below the root element:

XElement employee = new XElement("Root",
new XElement("Employee");

The code produces the following XML:

<Root>

<Employee />

</Root>

From here, another XElement constructor can be used to create a new element with a specified name and
content. Here’s the basic syntax:

XElement(XName name, object content)

The following example creates a new element with the specified name of "Name" and content of "Scott":

XElement = new XElement("Name", "Scott")

Here’s the XML this code produces:

<Name>Scott</Name>

You can combine this with the previous example to create a root element and child element with a value:

XElement employee = new XElement("Employee",
new XElement("Name", "Scott");

The code produces the following XML:

<Employee>

<Name>Scott</Scott>

</Employee>

Last, you can pass multiple instances of the XElement class to create multiple nodes. The basic syntax
for this is

XElement(XName name, params object[] content)
A pseudo-code example of this would be the following:
XElement employee = new XElement(XName,

new XElement(XName,
new XElement(XName name),
new XElement(XName name),
new XElement(XName name),
new XElement(XName name)

)

Here’s an example of the syntax using real data, passing more than one XElement for the content:

XElement employee = new XElement("Root",
new XElement("Employee",

new XElement("Name", "Scott"),

127

Klein c06.tex V3 - 12/13/2007 1:55pm Page 128

Part II: LINQ to XML

new XElement("Title", "All Things Techy"),
new XElement("HireDate", "02/05/2007"),
new XElement("Gender", "M")

)

As you have seen in previous examples in this chapter and the last chapter, this is the ideal way to
construct an XML tree.

Now take a look at how to do the same thing in Visual Basic .NET.

Creating Trees in Visual Basic
Creating XML trees in Visual Basic is accomplished through XML literals. XML literals enable you to
create and incorporate XML directly into our Visual Basic programs and code. Another way to say this is
that XML literals let you type XML directly into your Visual Basic code without the need for any special
formatting. What makes this possible is that the literal XML syntax represents the actual objects of LINQ
to XML. The benefit of this is that your XML code is easier to create, and your code is easier to read
because it has the same structure as the resulting XML.

An additional benefit of XML literals is that Visual Basic .NET compiles them into LNQ to XML objects,
providing a familiar LINQ object model for creating and manipulating XML.

XML can be created in Visual Basic by using XML literals directly in the VB code. You create LINQ to
XML objects simply by typing XML code directly into Visual Basic or by pasting existing XML into your
code. The following creates a single <Employee> node:

Dim emp As XElement = <Employee/>

Here’s the result of this code:

<Employee/>

You can also specify elements and their corresponding values:

Dim emp As XElement = <Name>Scott</Name>

Obviously, the following XML is produced:

<Name>Scott</Name>

One of the things that Visual Basic .NET developers have at their disposal is ‘‘embedded expressions.’’
Embedded expressions let you create XML literals that contain expressions. These expressions are eval-
uated at run time. Embedded expressions are enclosed within <% %> brackets (if you do any ASP.NET
development, you’re familiar with those).

The following creates a simple XML document using XML literals and an embedded expression:

Dim emp As XElement = <Employee>

<%= New XElement("Name", "Scott") %>

</Employee>

128

Klein c06.tex V3 - 12/13/2007 1:55pm Page 129

Chapter 6: Programming with LINQ to XML

Here are the results when the code runs:

<Employee>

<Name>Scott</Name>

</Employee>

XML literals can span multiple lines without the need of line continuation characters as shown in the
example below. The only time this would differ is when you have a multi-line expression in the
embedded expression.

Dim employee As XElement =
<Root>

<Employee id="1" Dept="0001">

<Name>Scott</Name>

<Address>

<Street>555 Main St.</Street>

<City>Wellington</City>

<State>FL</State>

</Address>

<Title>All Things Techy</Title>

<HireDate>02/05/2007</HireDate>

<Gender>M</Gender>

</Employee>

<Employee id="2" Dept="0005">

<Name>Steve</Name>

<Address>

<Street>444 Main St.</Street>

<City>Snohomish</City>

<State>WA</State>

</Address>

<Title>Mr. SciFi</Title>

<HireDate>05/14/2002</HireDate>

<Gender>M</Gender>

</Employee>

<Employee id="3" Dept="0004">

<Name>Joe</Name>

<Address>

<Street>222 Main St.</Street>

<City>Easley</City>

<State>SC</State>

</Address>

<Title>All Things Bleeding Edge</Title>

<HireDate>07/22/2004</HireDate>

<Gender>M</Gender>

</Employee>

</Root>

How does the compiler create objects from XML literals? The answer is simple, really. The Visual Basic
compiler translates XML literals into the equivalent LINQ to XML constructors, which are then used to
build the LINQ to XML object.

129

Klein c06.tex V3 - 12/13/2007 1:55pm Page 130

Part II: LINQ to XML

Populating Trees from Text
Populating XML trees from text can be accomplished a number of ways, and you saw a couple of them
in the last chapter. The easiest method is to use the Parse() method of the XElement class. This method
loads an XElement object from an XML string.

For example, the following code creates a string containing XML, parsing the string into an
XElement object:

XElement employees = XElement.Parse(@"
<Employees>

<Employee id=’1’ phone=’555-555-5555’>

<Name>Steve Kent</Name>

<Title>Mr. SciFi</Title>

<Department>Gaming</Department>

<HireDate>04/17/92</HireDate>

<Gender>M</Gender>

<MaritalStatus>M</MaritalStatus>

</Employee>

<Employee id=’2’ phone=’555-555-5556’>

<Name>Scott Klein</Name>

<Title>Geek</Title>

<Department>All things technical</Department>

<HireDate>02/05/94</HireDate>

<Gender>M</Gender>

<MaritalStatus>M</MaritalStatus>

</Employee>

<Employee id=’3’ phone=’555-555-5557’>

<Name>Joe Walling</Name>

<Title>Head Geek</Title>

<Department>All things bleeding edge</Department>

<HireDate>06/15/93</HireDate>

<Gender>M</Gender>

<MaritalStatus>M</MaritalStatus>

</Employee>

</Employees>");

There is a limitation to using the Parse() method, and that is that the XML can contain only a single
root node.

Another way is to populate a tree is to load the XML from an existing source. The following example
uses the Load() method to load an existing XML document from an external file source and creates
an XElement.

XElement employees = XElement.Load(@"C:\Wrox\Employees.xml");

Another overload of the Load method takes an additional Boolean parameter that specifies whether to
preserve whitespace.

employees = XElement.Load(@"C:\Wrox\Employees.xml", true);

This next example illustrates how to load XML from a TextReader. Any kind of TextReader can be used;
in this case, it’s a StringReader, but a StreamReader would work just the same.

130

Klein c06.tex V3 - 12/13/2007 1:55pm Page 131

Chapter 6: Programming with LINQ to XML

TextReader tr = new StringReader("<Employee><Name>Scott</Name></Employee");
XElement xtree = XElement.Load(tr);

As before, another overload of the Load method takes an additional Boolean parameter that specifies
whether to preserve whitespace.

XElement xtree = XElement.Load(tr, true);

The following example creates an XML tree from an XmlReader. It first creates an XmlReaderSettings
instance and sets a few optional settings. Then it creates an XmlReader and uses the Create() method to
load an XML file into the XElement object.

XmlReaderSettings xmlset = new XmlReaderSettings();
xmlset.ConformanceLevel = ConformanceLevel.Document;
xmlset.IgnoreWhitespace = true;
xmlset.IgnoreComments = true;
XmlReader rdr = XmlReader.Create(@"C:\Wrox\LINQ\Chapter
5\Employees.xml", xmlset);

XElement xtree = XElement.Load(rdr);

Once in the XmlReader, the XML can be read quickly. The XmlReader is an efficient way to access XML
data if all you want to do is read it.

This last example demonstrates how to load a DOM document into an LINQ to XML tree. First, an XML
DOM document is created, defining a root element and several child elements. The DOM document is
then loaded into the XElement object.

XmlDocument xdoc = new XmlDocument();
XmlElement ele1 = xdoc.CreateElement("Name");
ele1.InnerText = "Scott";
XmlElement ele2 = xdoc.CreateElement("Title");
ele2.InnerText = "Geek";
XmlElement ele3 = xdoc.CreateElement("HireDate");
ele3.InnerText = "02/05/2007";
XmlElement emp = xdoc.CreateElement("Employee");
emp.AppendChild(ele1);
emp.AppendChild(ele2);
emp.AppendChild(ele3);
xdoc.AppendChild(emp);

XmlNodeReader nr = new XmlNodeReader(xdoc);
nr.MoveToContent();

XElement xtree = XElement.Load(nr);

The resulting XML looks like this:

<Employee>

<Name>Scott</Name>

<Title>Geek</Title>

<HireDate>02/05/2007</HireDate>

</Employee>

131

Klein c06.tex V3 - 12/13/2007 1:55pm Page 132

Part II: LINQ to XML

Querying XML Trees
Once you have populated the tree, the next obvious step in most cases is to query its contents. If you think
about this for a minute, LINQ to XML provides an easy way to reshape XML. It combines the capability
to functionally construct your XML with the capability to query the XML tree. The result is a com-
pletely different XML tree shape than the original XML document. One of the primary things you should
know by now is that LINQ to XML is exceptional at both functional construction and querying. In this
section, you will quickly see that LINQ to XML is also very good at reshaping XML as compared to other
XML technologies.

This section explores LINQ to XML queries and how they can be used to effectively query
XML documents. To illustrate this point, the following XML document will be used. In your favorite
text editor, enter the following XML and save it as Employee.xml in your Wrox\Chapter6 directory:

<Employees>

<Employee id="1" Dept="0001">

<Name>Scott</Name>

<Address>

<Street>555 Main St.</Street>

<City>Wellington</City>

<State>FL</State>

</Address>

<Title>All Things Techy</Title>

<HireDate>02/05/2007</HireDate>

<Gender>M</Gender>

</Employee>

<Employee id="2" Dept="0005">

<Name>Steve</Name>

<Address>

<Street>444 Main St.</Street>

<City>Snohomish</City>

<State>WA</State>

</Address>

<Title>Mr. SciFi</Title>

<HireDate>05/14/2002</HireDate>

<Gender>M</Gender>

</Employee>

<Employee id="3" Dept="0004">

<Name>Joe</Name>

<Address>

<Street>222 Main St.</Street>

<City>Easley</City>

<State>SC</State>

</Address>

<Title>All Things Bleeding Edge</Title>

<HireDate>07/22/2004</HireDate>

<Gender>M</Gender>

</Employee>

</Employees>

Next, create a new C# Windows Forms project in Visual Studio, and on Form1 place a button and a text
box. In the Click() event for the button, add the following:

XElement employees = XElement.Load(@"C:\Wrox\Chapter6\Employees.Xml");

132

Klein c06.tex V3 - 12/13/2007 1:55pm Page 133

Chapter 6: Programming with LINQ to XML

You now have the XML document Employee.xml loaded into the employees variable, so you can work
with it.

Suppose that you want to return the first employee from the XML document. The following does
just that:

employees.Element("Employee")

Running this statement returns the first employee:

<Employee id="1" Dept="0001">

<Name>Scott</Name>

<Address>

<Street>555 Main St.</Street>

<City>Wellington</City>

<State>FL</State>

</Address>

<Title>All Things Techy</Title>

<HireDate>02/05/2007</HireDate>

<Gender>M</Gender>

</Employee>

However, an alternative would be to use the First() property to manually select the first
Employee element:

employees.Elements("Employee").First()

Another alternative is to use the ElementAt() method to specify which element to return. The following
example also returns the first Employee node:

employees.Elements("Employee").ElementAt(0)

The next example loops through all of the Employee elements, concatenates them, and returns them as a
single string:

foreach (XElement employee in employees.Elements("Employee")
textbox1.Text += employee;

This gives you everything but the <Employees> node:

<Employee id="1" Dept="0001">

<Name>Scott</Name>

<Address>

<Street>555 Main St.</Street>

<City>Wellington</City>

<State>FL</State>

</Address>

<Title>All Things Techy</Title>

<HireDate>02/05/2007</HireDate>

<Gender>M</Gender>

</Employee>

<Employee id="2" Dept="0005">

<Name>Steve</Name>

<Address>

133

Klein c06.tex V3 - 12/13/2007 1:55pm Page 134

Part II: LINQ to XML

<Street>444 Main St.</Street>

<City>Snohomish</City>

<State>WA</State>

</Address>

<Title>Mr. SciFi</Title>

<HireDate>05/14/2002</HireDate>

<Gender>M</Gender>

</Employee>

<Employee id="3" Dept="0004">

<Name>Joe</Name>

<Address>

<Street>222 Main St.</Street>

<City>Easley</City>

<State>SC</State>

</Address>

<Title>All Things Bleeding Edge</Title>

<HireDate>07/22/2004</HireDate>

<Gender>M</Gender>

</Employee>

What if you want to return the second employee? You can use the ElementAt() method, as shown here:

employees.Elements("Employee").ElementAt(1)

The values for this are zero-based, so the first employee node is 0. To return the second employee, you
simply pass a 1.

Another option is to use a query expression. The following returns the second employee node by filtering
on the id attribute where its value is 2:

XElement empnum2 = (from emp in employees.Elements("Employee")
where (int) emp.Attribute("id") == 2
select emp).First();

Notice that this example also uses the First() method. Why? What if your XML document had an
attribute of Dept for each employee, and your XML document had multiple employees with the same
department? The First() method helps make sure you grab the first employee that matches the criterion.
The query expression returns a sequence, and the First() method explicitly returns the first member of
that sequence.

The following example does the same, but uses the ElementAt() method:

XElement empnum2 = (from emp in employees.Elements("Employee")
where (int) emp.Attribute("id") == 2
select emp).ElementAt(0);

This next example digs a little deeper. It returns the values of all the Name elements for each employee. It
uses the Descendants() method to return a collection of all the descendants for the selected element.

IEnumerable<string> empNames =
from emp in employees.Descendants("Name")
orderby emp.Value
select emp.Value;

134

Klein c06.tex V3 - 12/13/2007 1:55pm Page 135

Chapter 6: Programming with LINQ to XML

foreach (string name in empNames)
listbox1.Items.Add(name);

This code returns the following values:

Joe
Scott
Steve

The following example does the same thing:

IEnumerable<string> empNames =
from emp in employees.Descendants("Name")
orderby (string) emp
select (string) emp;

The same iteration applies, and the results are the same. You can also ‘‘walk the tree’’ by using the
Elements() method (as many times as needed) to access the appropriate node.

IEnumerable<string> empNames =
from emp in employees.Elements("Employee").Elements("Name")
orderby (string) emp
select (string) emp;

Again, the same iteration applies, and the same results are returned.

The next few examples work with attributes, and to do so, the XML document Employee.xml created
earlier needs to be modified. Add an attribute to each employee node as highlighted in following XML:

<Employees>

<Employee id="1" Dept="0001" Geek="True">

<Name>Scott</Name>

<Address>

<Street>555 Main St.</Street>

<City>Wellington</City>

<State>FL</State>

</Address>

<Title>All Things Techy</Title>

<HireDate>02/05/2007</HireDate>

<Gender>M</Gender>

</Employee>

<Employee id="2" Dept="0005" Geek="False">

<Name>Steve</Name>

<Address>

<Street>444 Main St.</Street>

<City>Snohomish</City>

<State>WA</State>

</Address>

<Title>Mr. SciFi</Title>

<HireDate>05/14/2002</HireDate>

<Gender>M</Gender>

</Employee>

135

Klein c06.tex V3 - 12/13/2007 1:55pm Page 136

Part II: LINQ to XML

<Employee id="3" Dept="0004" Geek="True">

<Name>Joe</Name>

<Address>

<Street>222 Main St.</Street>

<City>Easley</City>

<State>SC</State>

</Address>

<Title>All Things Bleeding Edge</Title>

<HireDate>07/22/2004</HireDate>

<Gender>M</Gender>

</Employee>

</Employees>

The following example queries the XML document, looking at the Geek attribute of the Employee node
and returning only those with a value of True:

IEnumerable<XElement> empNames =
from emp in employees.Elements("Employee")
where (string)emp.Attribute("Geek") == "True"
select emp;

foreach (XElement name in empNames)
textbox1.Text = name.ToString();

The query expression returns the following values:

Scott
Joe

This last example demonstrates how to walk an XML tree looking for an element value several layers
deep. First, modify the XML and add a Zip element to the employee with an id of 2:

<Employee id="2" Dept="0005" Geek="False">

<Name>Steve</Name>

<Address>

<Street>444 Main St.</Street>

<City>Snohomish</City>

<State>WA</State>

<Zip>99999</Zip>

</Address>

<Title>Mr. SciFi</Title>

<HireDate>05/14/2002</HireDate>

<Gender>M</Gender>

</Employee>

In the following example, the query expression walks down to the <Address> element and looks for an
employee with a Zip value of 99999:

IEnumerable<XElement> empAddr =
from emp in employees.Elements("Employee").Elements("Address")
where (string)emp.Element("zip") == ("99999")

136

Klein c06.tex V3 - 12/13/2007 1:55pm Page 137

Chapter 6: Programming with LINQ to XML

select emp;

foreach (XElement address in empAddr)
textbox1.Text = address.ToString();

There was only a single employee that matched the query expression filter in this example, but nonethe-
less, the results were looped through, and the following XML was returned:

<Address>

<Street>444 Main St.</Street>

<City>Snohomish</City>

<State>WA</State>

<Zip>99999</Zip>

</Address>

This example returned the address information for the selected ZIP code. Modify the query as highlighted
here, and it will return the entire employee node for the selected ZIP code:

IEnumerable<XElement> empAddr =

from emp in employees.Elements("Employee")
where (string)emp.Element("Address").Element("zip") == ("99999")

select emp;

Now when you run this application and click the button, the following is displayed:

<Employee id="2" Dept="0005" Geek="False">

<Name>Steve</Name>

<Address>

<Address>444 Main St.</Address>

<City>Snohomish</City>

<State>WA</State>

<zip>99999</zip>

</Address>

<Title>Mr. SciFi</Title>

<HireDate>05/14/2002</HireDate>

<Gender>M</Gender>

</Employee>

Modifying and Reshaping XML Trees
You saw briefly in the last chapter how to modify XML trees using many of the methods and prop-
erties of the XElement and XAttribute classes. However, in today’s XML technologies, the common
approach for reshaping an XML document requires loading the document into data store and using an
XML-supported programming language for modify the contents and structure of that document, such as
adding or removing nodes.

For example, loading an XML document into the DOM, modifying its contents in place, and resaving the
document is one of the more familiar methods for current XML programmers.

LINQ to XML provides a second approach to XML reshaping and modification—one that is much
easier to maintain. This approach is called functional construction, and is the answer to the DOM’s

137

Klein c06.tex V3 - 12/13/2007 1:55pm Page 138

Part II: LINQ to XML

load/modify/save approach. Functional construction lets you easily reshape XML from one form to
another in a single statement.

As you saw in the last chapter, LINQ to XML provides the load/modify/save approach as well via the
many methods exposed by the XElement and XAttribute classes, and even this is still more efficient than
many of today’s XML tree modification methods due to the ability to visually view the structure of the
XML tree. Yet the functional approach, once understood, is easier to work with and maintain as a whole
because you can quickly identify the code that modifies each part of the tree.

Here’s an example illustrating how to take an attribute and make it an element. The code takes the id
attribute and adds it as an element. The attribute’s name and value are used when the element is added.

XElement employee = new XElement("Root",
new XElement("Employee",

new XAttribute("id", "1"),
new XAttribute("EyeColor", "Green"),
new XElement("Name", "Scott"),
new XElement("Address", "444 Main St."),
new XElement("City", "Wellington"),
new XElement("State", "FL"),
new XElement("Zip", "33414")
)

);

employee.Element("Employee").Add(
new XElement(employee.Element("Employee").Attribute("id").Name,
employee.Element("Employee").Attribute("id").Value));

employee.Element("Employee").Attribute("id").Remove();

This code produces the following XML:

<Root>

<Employee EyeColor="Green">

<Name>Scott</Name>

<Address>444 Main St.</Address>

<City>Wellington</City>

<State>FL</State>

<Zip>33414</Zip>

<id>1</id>

</Employee>

</Root>

If you wanted to, you could loop through all of the attributes and make them elements as follows:

foreach (XAttribute att in employee.Element("Employee").Attributes())
employee.Element("Employee").Add(new XElement(atts.Name, (string)att));

employee.Element("Employee").Attributes().Remove();

The code produces this XML:

<Root>

<Employee EyeColor="Green">

<Name>Scott</Name>

138

Klein c06.tex V3 - 12/13/2007 1:55pm Page 139

Chapter 6: Programming with LINQ to XML

<Address>444 Main St.</Address>

<City>Wellington</City>

<State>FL</State>

<Zip>33414</Zip>

<id>1</id>

<EyeColor>Green</EyeColor>

</Employee>

</Root>

The following example does the reverse. It takes an element (<id>) and adds it as an attribute (of the
Employee node):

XElement employee = new XElement("Root",
new XElement("Employee",

new XElement("Name", "Scott"),
new XElement("Address", "444 Main St."),
new XElement("City", "Wellington"),
new XElement("State", "FL"),
new XElement("Zip", "33414"),
new XElement("id", "1")
)

);

employee.Element("Employee").Add(new
XAttribute(employee.Element("Employee").Element("id").Name,
employee.Element("Employee").Element("id").Value));

employee.Element("Employee").Element("id").Remove();

The result is the following XML:

<Root>

<Employee id="1">

<Name>Scott</Name>

<Address>444 Main St.</Address>

<City>Wellington</City>

<State>FL</State>

<Zip>33414</Zip>

</Employee>

</Root>

Functional construction is discussed in more detail in Chapter 8, ‘‘Advanced LINQ to XML Program-
ming Topics.’’

Serializing XML Trees
Serialization is the process of saving an object to a storage medium such as a file or even to memory.
Serializing an XML tree is the process of generating XML text from the tree. The newly generated XML
can be serialized to a file or to an implementation of a TextWriter or an XmlWriter.

When serializing XML using LINQ to XML, nonsignificant whitespace in the XML tree is not preserved
by default. For example, reading indented XML with no whitespace text nodes and then serializing the
XML with indentation does not preserve whitespace.

139

Klein c06.tex V3 - 12/13/2007 1:55pm Page 140

Part II: LINQ to XML

When serializing XML via LINQ to XML, several methods are available, enabling you to decide how to
treat whitespace. The Save() method of the XElement class does not preserve whitespace by default. But
you can optionally provide a Boolean value that tells Save() to preserve whitespace, as in the following
example:

TextReader tr = new StringReader(@"
<Employees>

<Employee id=’1’ phone=’555-555-5555’>

<Name>Steve Kent</Name>

<Title>Mr. SciFi</Title>

<Department>Gaming</Department>

<HireDate>04/17/92</HireDate>

<Gender>M</Gender>

<MaritalStatus>M</MaritalStatus>

</Employee>

<Employee id=’2’ phone=’555-555-5556’>

<Name>Scott Klein</Name>

<Title>Geek</Title>

<Department>All things technical</Department>

<HireDate>02/05/94</HireDate>

<Gender>M</Gender>

<MaritalStatus>M</MaritalStatus>

</Employee>

<Employee id=’3’ phone=’555-555-5557’>

<Name>Joe Walling</Name>

<Title>Head Geek</Title>

<Department>All things bleeding edge</Department>

<HireDate>06/15/93</HireDate>

<Gender>M</Gender>

<MaritalStatus>M</MaritalStatus>

</Employee>

</Employees>");
XElement xel = XElement.Load(tr);
tr.Close();
xel.Save(@"C:\Wrox\Employees2.xml", true);

The same goes for the Save() method of the XDocument class.

Serializing can be done to a file (as the preceding example shows), a TextWriter, or an XmlWriter. The
following example shows how to serialize an XElement to an XmlWriter:

StringBuilder sb = new StringBuilder();
XmlWriterSettings xws = new XmlWriterSettings();
xws.OmitXmlDeclaration = true;
using (XmlWriter xw = XmlWriter.Create(sb , xws))
{

XElement employee = new XElement("Root",
new XElement("Employee",

new XAttribute("id", "1"),
new XAttribute("EyeColor", "Green"),
new XElement("Name", "Scott"),
new XElement("Address", "444 Main St."),
new XElement("City", "Wellington"),
new XElement("State", "FL"),

140

Klein c06.tex V3 - 12/13/2007 1:55pm Page 141

Chapter 6: Programming with LINQ to XML

new XElement("Zip", "33414")
)

);
employee.Save(xw);

}
textBox1.Text = sb.ToString();

You’ll notice that you don’t have an option of controlling the whitespace when serializing to an
XmlWriter via LINQ to XML. That is because the XmlWriter controls the behavior of the whitespace.

The following example serializes an XML tree to a TextWriter:

XElement employees = XElement.Parse(@"
<Employees>

<Employee id=’1’ debt=’Dev’>

<Name>Scott</Name>

<Title>Mr. SciFi</Title>

<Department>Gaming</Department>

<HireDate>04/17/92</HireDate>

<Gender>M</Gender>

<MaritalStatus>M</MaritalStatus>

</Employee>

</Employees>");

using (StringWriter sw = new StringWriter())
{

employees.Save(sw, true);
}

You have many serialization options when using LINQ to XML; it is simply a matter of selecting the right
options for your application.

Namespaces
One of the more difficult concepts of XML programming is XML names and namespaces. You can think of
XML namespace on the same level as that of a namespace in a .NET Framework application. A namespace
uniquely qualifies your class names within your application. By using namespaces, you can avoid the
naming conflicts between different parts of an XML document.

XML namespaces serve several purposes in XML, and maybe that’s the reason they seem to be so difficult
to understand. In addition to uniquely qualifying names, namespaces also serve the purpose of prefixes
within an XML document. Prefixes let you use shortcuts for XML namespaces, making the XML docu-
ment more readable and concise. The downside to prefixes is that they depend on their context for their
meaning. A prefix can be associated with different namespaces in different parts of the XML tree, making
the meaning much harder to understand.

LINQ to XML greatly simplifies programming with namespaces by removing the prefixes from the LINQ
API. When an XML document is loaded by LINQ to XML, prefixes are treated as shortcuts and resolved
to their corresponding namespaces (just like when XML is loaded by a DOM or SAX parser). Once the
XML document is loaded, namespaces are accessed via the namespace URI, not the prefix. Developers
work with XML names that are fully qualified.

141

Klein c06.tex V3 - 12/13/2007 1:55pm Page 142

Part II: LINQ to XML

Fully qualified names are represented by the XName class, and you have seen them throughout this book.
Whenever an XML name is required, you are dealing with the XName class, such as an XName param-
eter. Keep in mind that you are never really working with the XName class directly, but rather with a
string representation.

Throughout this book you’ve seen string arguments passed as parameters to constructors when creating
elements or attributes during XML tree construction, like this:

new XElements("Name", "Scott");

What happens is that the string is implicitly converted to an XName. That same concept can now be applied
to namespaces. The following creates a simple XML document with a default namespace:

XElement employee = new XElement("{http://wrox.com}Employee",
new XAttribute("id", "1"),
new XElement("{http://wrox.com}Name", "Scott"),
new XElement("{http://wrox.com}Title", "Developer")
);

This code produces the following XML:

<Employee id="1" xmlns="http://wrox.com">

<Name>Scott</Name>

<Title>Developer</Title>

</Employee>

Likewise, you can create an XML document that contains multiple namespaces:

XElement employee = new XElement("{http://wrox.com}Employee",
new XAttribute("id", "1"),
new XElement("{http://wrox.com}Name", "Scott"),

new XElement("{http://wrox.org}Title", "Developer")
);

This produces the following XML:

<Employee id="1" xmlns="http://wrox.com">

<Name>Scott</Name>

<Title xmlns="http://wrox.org">Developer</Title>

</Employee>

LINQ to XML also provides a class to assist in working with namespaces, and that class is the
XNamespace class. Namespaces can also be defined and created via the XNamespace class. This class rep-
resents an XML namespace and cannot be inherited. The following example defines a default namespace
that is used in the subsequent XML document:

XNamespace xn = "http://wrox.com";
XElement employee = new XElement(xn + "Employee",

new XAttribute("id", "1"),
new XElement(xn + "Name", "Scott"),

142

Klein c06.tex V3 - 12/13/2007 1:55pm Page 143

Chapter 6: Programming with LINQ to XML

new XElement(xn + "Title", "Developer")
);

This code produces the following XML:

<Employee id="1" xmlns="http://wrox.com">

<Name>Scott</Name>

<Title>Developer</Title>

</Employee>

You should begin to see that working with namespaces in LINQ to XML is quite easy. LINQ to XML
removes a lot of the frustration you experience with other XML technologies and makes working with
XML documents a pleasure.

Summary
This chapter provided you with the LINQ to XML programming techniques necessary to work with XML
documents; specifically it explained how to populate and query XML trees effectively and efficiently.

It showed you how to modify and reshape an existing XML document into another XML document
using many of the methods available in LINQ to XML, such as the XElement and XAttribute classes
and their associated methods. You also explored serialization in LINQ to XML. There are several serial-
ization options available, including to which technology to serialize the XML and whether to retain the
whitespace of the XML document.

Finally, you examined namespaces, specifically how they are handled and how to apply them to an XML
document in LINQ to XML, and learned how LINQ to XML removes many of the normal difficulties in
working with them.

Chapter 7, ‘‘LINQ to XML and other LINQ Data Models,’’ discusses how LINQ to XML works with other
data models.

143

Klein c06.tex V3 - 12/13/2007 1:55pm Page 144

Klein c07.tex V3 - 12/13/2007 1:56pm Page 145

LINQ to XML and Other
LINQ Data Models

One of the great things about LINQ is its flexibility. LINQ has many great strong points, not the least
of which is its capability to provide a query consistency across different data models (LINQ, LINQ
to XML, and LINQ to SQL) through the standard query operators and the .NET Framework’s new
lambda expressions. Lambda expressions, discussed in Chapter 2, ‘‘A Look at Visual Studio 2008,’’
are inline statement blocks or expressions that can be used wherever delegate types are expected.
Lambda expressions are written using a concise syntax and can be used anywhere anonymous
methods can be used—for example as arguments to a method call.

Another of LINQ’s significant qualities is the capability to easily interact with LINQ-based data
models, such as LINQ to SQL. This capability is provided via the LINQ APIs. It enables devel-
opers to combine LINQ data models to create single query expressions using components from
both models.

This chapter focuses on using LINQ to XML to interact with LINQ to SQL. It shows you how to
use data from a database to populate an XML tree, and how to take content from an XML tree
to populate a database.

SQL to XML
By combining LINQ to SQL with LINQ to XML, developers can easily read data from a database
and transform those records into XML, all within the same statement. This section walks you
through an example of reading data from a SQL Server database and using the data to create an
XML tree.

Open Visual Studio 2008 and create a new project. Make sure that .NET Framework version 3.5 is
selected on the New Project page. Under the Templates section, select a Windows Forms Applica-
tion and name the project LINQ-Chapter7. Click OK on the New Project form.

Klein c07.tex V3 - 12/13/2007 1:56pm Page 146

Part II: LINQ to XML

When the new project loads, Form1 is displayed. Place a text box, a label, and three buttons on the form,
and set their properties as follows.

Property Value

Textbox Location 12, 12

Multiline True

Size 187, 249

Button 1 Name cmdSqlToXml

Location 205, 12

Text SQL to XML

Button 2 Name cmdXmlToSql

Location 205, 41

Text XML to SQL

Button 3 Name cmdClose

Location 205, 238

Text Close

Label Location 205, 67

Text Insert successful.

Visible False

Figure 7-1 shows the form design when the project is run. The SQL to XML button will be used in this
example to read data from a database and transform that data into XML. The XML to SQL button will be
used in later examples to read XML from an XML tree and to use that data to insert and update a table in
the AdventureWorks database.

Figure 7-1

146

Klein c07.tex V3 - 12/13/2007 1:56pm Page 147

Chapter 7: LINQ to XML and Other LINQ Data Models

The examples combine LINQ to SQL and LINQ to XML to accomplish tasks easily and efficiently.

First, you want to add the proper references. In Solution Explorer, expand the References node. You’ll
see that a reference to System.Xml.Linq is already included, but you also need to add a reference to
System.Data.Linq. To do so, right-click the references node and select Add Reference. In the Refer-
ences dialog, select the .NET tab. Scroll down the list, select the System.Data.Linq component, and then
click OK.

With the form designed and the appropriate references added, the next step is to add code behind the
form. Right-click in the gray area of the form and select View Code from the context menu.

In the declarations section, add the following using statements after the existing using statements:

using System.Data.Linq;
using System.Data.Linq.Mapping;
using System.Xml.Linq;
using System.IO;
using System.Xml;

Those statements must be added before you can use the components.

Below the public partial class for Form1, add the following:

public class AdventureWorks : DataContext
{

public AdventureWorks(string connection) : base(connection) { }
public Table<Contact> Contact;

}

[Table(Name = "Person.Contact")]
public class Contact
{

[Column(DbType = "int")]
public int ContactID;
[Column(DbType = "bit not null")]
public byte NameStyle;

[Column(DbType = "nvarchar(8) not null")]
public string Title;

[Column(DbType = "nvarchar(50) not null")]
public string FirstName;

[Column(DbType = "nvarchar(50) not null")]
public string MiddleName;

[Column(DbType = "nvarchar(50) not null")]
public string LastName;

[Column(DbType = "nvarchar(50) not null")]
public string EmailAddress;

147

Klein c07.tex V3 - 12/13/2007 1:56pm Page 148

Part II: LINQ to XML

[Column(DbType = "int")]
public int EmailPromotion;

[Column(DbType = "varchar(40) not null")]
public string PasswordHash;

[Column(DbType = " varchar(10) not null ")]
public string PasswordSalt;

}

In design view for Form1, double-click the SQL to XML button to view the code behind it. In the code for
cmdSqlToXml, add the following:

DataContext context = new DataContext("Initial Catalog=@@>

AdventureWorks;Integrated Security=sspi");

Table<Contact> contact = context.GetTable<Contact>();

XElement contacts =
new XElement("Customers",

from c in contact
where c.FirstName.StartsWith("S")
&& c.LastName.StartsWith("K")
orderby c.LastName
select new XElement("Contact",

new XAttribute("ContactID", c.ContactID),
new XElement("FirstName", c.FirstName),
new XElement("LastName", c.LastName),
new XElement("Title", c.Title),
new XElement("EmailAddress", c.EmailAddress)
)

);

textBox1.Text = contacts.ToString();

Then press F5 to compile and run the project. When Form1 appears, click the SQL to XML button. The
text box should be populated with an XML tree that looks like the following XML:

To conserve page space, the XML tree is not displayed in its entirety. Only the first few and last few
elements are displayed.

<Customers>

<Contact ContactID="450">

<yomoma>Scott</yomoma>

<LastName>Kaffer</LastName>

<Title>Mr.</Title>

<EmailAddress>scott5@adventure-works.com</EmailAddress>

</Contact>

<Contact ContactID="453">

<yomoma>Sandeep</yomoma>

<LastName>Kaliyath</LastName>

148

Klein c07.tex V3 - 12/13/2007 1:56pm Page 149

Chapter 7: LINQ to XML and Other LINQ Data Models

<Title>Mr.</Title>

<EmailAddress>sandeep1@adventure-works.com</EmailAddress>

</Contact>

<Contact ContactID="1153">

<yomoma>Sandeep</yomoma>

<LastName>Kaliyath</LastName>

<Title />

<EmailAddress>sandeep0@adventure-works.com</EmailAddress>

</Contact>

...
<Contact ContactID="7718">

<yomoma>Sharon</yomoma>

<LastName>Kumar</LastName>

<Title />

<EmailAddress>sharon14@adventure-works.com</EmailAddress>

</Contact>

<Contact ContactID="2766">

<yomoma>Shawna</yomoma>

<LastName>Kumar</LastName>

<Title />

<EmailAddress>shawna8@adventure-works.com</EmailAddress>

</Contact>

</Customers>

In this example, LINQ to SQL was used to make a connection to the Person.Contact table in the Adven-
tureWorks database. LINQ and LINQ to XML were used to create a query expression to read the contents
of the table and format the results into an XML tree.

You can see that in roughly a dozen lines of code, an XML tree was created from data in a SQL
Server table.

XML to SQL
These next two examples illustrate the opposite; that is, taking data from an XML tree to insert a row into
the Person.Contact table, and then updating the newly inserted record. For this example, you need an
XML file, so in your favorite text editor, type in the following:

<Contacts>

<Contact>

<ContactID></ContactID>

<NameStyle>0</NameStyle>

<Title>Mr.</Title>

<FirstName>Scott</FirstName>

<MiddleName>L</MiddleName>

<LastName>Klein</LastName>

<EmailAddress>Geek@SqlXml.com</EmailAddress>

<EmailPromotion>1</EmailPromotion>

<PasswordHash> F57E03FEA2FD0F74684C20758110CC7860F67523</PasswordHash>
<PasswordSalt>/RPjvXw=</PasswordSalt>

</Contact>

</Contacts>

149

Klein c07.tex V3 - 12/13/2007 1:56pm Page 150

Part II: LINQ to XML

Yes, ContactID was left blank on purpose. That will be used in the ‘‘Insert’’ example. Save the file as
Contacts.Xml in your Wrox directory. The next example illustrates how to insert a new record.

Insert
With the XML file created, return to your Visual Studio LINQ project and double-click the XML to SQL
button. In the code behind the XML to SQL button, add the following:

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");

XElement xel = XElement.Load(@"C:\Wrox\Linq\Chapter5\Contacts.xml");

foreach (XElement xelem in xel.Elements("Contact"))
{

Contact con = new Contact();
con.NameStyle = 1;
con.Title = (string)xelem.Element("Title");
con.FirstName = (string)xelem.Element("FirstName");
con.MiddleName = (string)xelem.Element("MiddleName");
con.LastName = (string)xelem.Element("LastName");
con.EmailAddress = (string)xelem.Element("EmailAddress");
con.EmailPromotion = (int)xelem.Element("EmailPromotion");
con.PasswordHash = (string)con.Element("PasswordHash");
con.PassswordSalt = (string)con.Element("PasswordSalt");
db.Contact.Add(con);
db.SubmitChanges();

}

lable1.Visible = true;

Run the project and click the XML to SQL button. When the insertion is successful, the label on the form
displays the text ‘‘Insert successful.’’ To verify the results, open a new query window in SSMS (SQL
Server Management Studio). Select the AdventureWorks database and execute the following query:

SELECT ContactID, NameStyle, Title, FirstName, MiddleName, LastName,
EmailAddress, EmailPromotion, PasswordHash, PasswordSalt
FROM Person.Contact
WHERE ContactID > 19977

Figure 7-2 shows the results pane.

Figure 7-2

You have successfully read data from an XML file and inserted it into a database. Not difficult to do, was
it? By now you should be realizing how easy LINQ to XML and LINQ to SQL make working with XML
and SQL databases.

Next you’ll update the new record.

150

Klein c07.tex V3 - 12/13/2007 1:56pm Page 151

Chapter 7: LINQ to XML and Other LINQ Data Models

Update
This example continues the previous one by updating the record that was just inserted. First, though,
you’ll need to update the XML file Contacts.Xml with the following highlighted
code lines:

<Contacts>

<Contact>

<ContactID>19978</ContactID>
<NameStyle>0</NameStyle>

<Title>Geek</Title>
<FirstName>Scott</FirstName>

<MiddleName>Lindsey</MiddleName>
<LastName>Klein</LastName>

<EmailAddress>ScottKlein@SqlXml.com</EmailAddress>
<EmailPromotion>1</EmailPromotion>

<PasswordHash> F57E03FEA2FD0F74684C20758110CC7860F67523</PasswordHash>
<PasswordSalt>/RPjvXw=</PasswordSalt>

</Contact>

</Contacts>

Next, update the code behind the XML to SQL button of the form with the following highlighted code
lines:

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");

XElement xel = XElement.Load(@"C:\Wrox\Linq\Chapter5\Contacts.xml");

foreach (XElement xelem in xel.Elements("Contact"))
{

Contact
Contact con = db.contact.First(co => co.ContactID ==
(int)xelem.Element("ContactID"));
con.Title = (string)xelem.Element("Title");
con.MiddleName = (string)xelem.Element("MiddleName");
con.EmailAddress = (string)xelem.Element("EmailAddress");
db.SubmitChanges();

}
label1.Text = "Update successful";
lable1.Visible = true;

Run the project and click the XML to SQL button. When the update is successful, the label on the form will
display the text ‘‘Update successful.’’ To verify the results, open a new query window in SSMS. Select the
AdventureWorks database, and execute the same query you used in the last example. Figure 7-3 shows
the results.

Figure 7-3

You have successfully read data from an XML file and updated a record in a SQL table. In the preceding
highlighted code, a query for each contact element is executed against the database, returning the

151

Klein c07.tex V3 - 12/13/2007 1:56pm Page 152

Part II: LINQ to XML

corresponding ContactID. In this example, a single record is returned because the query is only looking
for a specific ContactID. Once that ContactID is found, the Title, MiddleName, and EmailAddress
fields are updated for that ContactID.

Summary
This chapter introduced you to mixing LINQ data models within a single query. You saw how to query a
SQL database and use the results to create an XML tree. This functionality is provided by the individual
data models and associated APIs.

You also learned how to query contents of an XML document and use that information to insert and
update a SQL Server table. Again, the LINQ APIs make it extremely easy to mix LINQ data models and
use XML to update a database.

The next chapter focuses on a few advanced topics of LINQ to XML.

152

Klein c08.tex V3 - 12/13/2007 1:57pm Page 153

Advanced LINQ to XML
Programming Topics

By now, you should have a fairly solid understanding of how LINQ to XML works, and how
you can use it to program with XML. Still, there are a few topics that are especially pertinent
for advanced developers, and this chapter focuses on those. In particular, this chapter covers
the following:

❑ Functional construction

❑ Annotations

❑ Axis

❑ Events

❑ Streaming documents and fragments

LINQ to XML Functional Construction
In the past few chapters, you’ve seen how easy it is to construct XML with LINQ to XML using a
variety of techniques, such as using the XElement and XAttribute classes. However, LINQ to XML
is much more versatile and provides another mechanism for creating XML documents that is called
functional construction.

Functional construction is the capability to construct an XML tree via a single statement. For the
most part, the last three chapters have shown how to construct XML trees manually using the
XElement and XAttribute classes. Those classes contain constructors that enable you to construct
XML trees easily and efficiently within a single statement. For example, the XElement constructor
enables you to pass other XElement objects or XAttribute objects to create child elements and
attributes such as the next example shows.

Klein c08.tex V3 - 12/13/2007 1:57pm Page 154

Part II: LINQ to XML

Each of these classes also has a constructor that takes a params array of type object[] so that you can
pass one or more objects to the constructor. The benefit of this is that you can create complex XML trees
quickly and within a single expression.

Another benefit of LINQ to XML is that objects consume the IEnumerable interface. Because the LINQ
objects are using the IEnumerable interface, the contents of the objects can be enumerated and used to
create contained nodes/attributes. In other words, the results of the LINQ query are used in the creation
of the XML tree.

For example, the following is a portion of code that builds an XML tree manually:

XElement employee = new XElement("Employees",
new XElement("Employee",

new XAttribute("id", "1"),
new XAttribute("Dept", "0001"),
new XElement("Name", "Scott"),
new XElement("Address",

new XElement("Street", "555 Main St."),
new XElement("City", "Wellington"),
new XElement("State", "FL"),
new XElement("Zip", "33414")),

new XElement("Title", "All Things Techy"),
new XElement("HireDate", "02/05/2007"),
new XElement("Gender", "M")
)

);

Through the use of the XElement and XAttribute classes, you can simply and easily construct XML.
Notice that as each new element or attribute is added to the tree during construction, the code automati-
cally is formatted to look like the resulting XML.

The preceding code produces the following XML:

<Employees>

<Employee id="1" Dept="0001">

<Name>Scott</Name>

<Address>

<Street>555 Main St.</Street>

<City>Wellington</City>

<State>FL</State>

<Zip>33414</Zip>

</Address>

<Title>All Things Techy</Title>

<HireDate>02/05/2007</HireDate>

<Gender>M</Gender>

</Employee>

</Employees>

Functional construction, however, enables you to do much more than just construct XML manually as
shown in the previous example. Functional construction takes a completely different approach when
modifying and manipulating XML. In today’s XML technology, manipulating and modifying XML usu-
ally means a significant and detailed modification of the XML data source. LINQ to XML treats XML

154

Klein c08.tex V3 - 12/13/2007 1:57pm Page 155

Chapter 8: Advanced LINQ to XML Programming Topics

modification as simply a transformation problem: you can take an XML data source and efficiently trans-
form it to another form.

The following example uses the employee XML tree from the previous example and constructs a new
XML tree, creating two new elements and selecting the name element from the employee tree:

XElement newXML = new XElement("Info",
new XElement("CurrentDate", DateTime.Today),
new XElement("Supervisor", "Jim"),
from el in employee.Element("Employee").Elements("Name")
where (string)el == "Scott"
select el);

When you run this code, the following XML tree is constructed:

<Info>

<CurrentDate>2007-06-02T00:00:00-04:00</CurrentDate>
<Supervisor>Jim<Supervisor>

<Name>Scott</Name>

</Info>

What makes functional construction great is that you can easily control the resulting XML tree through
the query expression. In this example, you could easily return the entire source XML by removing the
where clause, or you could add additional filters to the where clause to return additional elements of the
source XML tree.

Until the creation of LINQ (and LINQ to XML), the only approach a developer had for modifying an
XML tree was what you might call ‘‘in-place’’ modification, whereby the XML was loaded into a data
store such as the DOM, where it was then manipulated and modified. LINQ to XML provides this type
of XML modification by letting developers modify XML documents in place.

For the following examples, open your favorite text editor and paste in the results of the previous
example (shown here), and save it as Employees2.xml in the \Wrox\Chapter5 directory.

<Employees>

<Employee id="1" Dept="0001">

<Name>Scott</Name>

<Address>

<Street>555 Main St.</Street>

<City>Wellington</City>

<State>FL</State>

<Zip>33414</Zip>

</Address>

<Title>All Things Techy</Title>

<HireDate>02/05/2007</HireDate>

<Gender>M</Gender>

</Employee>

</Employees>

The following code loads the XML document you just created, creates a new element and appends it to
the source XML, and then saves the modified (new) XML document to a different file:

155

Klein c08.tex V3 - 12/13/2007 1:57pm Page 156

Part II: LINQ to XML

XmlDocument xdoc = new XmlDocument();
xdoc.Load(@"C:\Wrox\LINQ\Chapter 5\Employees2.xml");
XmlElement xel = xdoc.CreateElement("Location");
xel.InnerText = "SE";
xdoc.DocumentElement.AppendChild(xel);
xdoc.Save(@"C:\Wrox\LINQ\Chapter 5\Employees3.xml");

The following example uses a similar approach using functional construction:

XElement xel = XElement.Load(@"C:\Wrox\LINQ\Chapter 8\Employees2.xml");
XElement newXML = new XElement("Employee",

xel.Element("Employee").Element("Name"),
from atts in xel.Element("Employee").Attributes()
select new XElement(atts.Name, (string)atts)
);

}

newXML.Save(@"c:\wrox\LINQ\chapter5\employee4.xml");

This code loads an XML tree from a file, selecting a particular attribute of the Employee node and creat-
ing a new element from that attribute, and then removes the selected attribute. The code produces the
following XML tree:

<Employee>

<Name>Scott</Name>

<id>1</id>

<Dept>0001</Dept>

</Employee>

Functional construction provides a much more efficient and robust way of modifying XML trees and
documents because it treats the modification of data as a problem of transformation, not as a modification
or manipulation of the data source.

With functional construction you can create a new XML from the elements and attributes of the source
XML tree, transforming the shape of the XML as the new XML tree is created and as the elements and
attributes are added to the new tree, all within a single statement. The key to functional construction is
to pass the results of LINQ queries to XElement or XDocument constructors.

One of the benefits of functional construction is that it allows you to visualize more easily how the fin-
ished XML tree will look as you build it.

For example, the following code loads the same XML file from the previous example and uses functional
construction to build a new XML tree with a new root node and all the employee information from the
source XML tree. It also creates two new elements from the attributes of the Employee element.

XElement emp = XElement.Load(@"C:\Wrox\LINQ\Chapter 5\Employees2.xml");

XElement newXML = new XElement("Root",
emp.Element("Employee"),
from att in emp.Element("Employee").Attributes()
select new XElement(att.Name, (string)att));

textbox1.Text = newXML.ToString();

156

Klein c08.tex V3 - 12/13/2007 1:57pm Page 157

Chapter 8: Advanced LINQ to XML Programming Topics

The code produces the following XML tree:

<Root>

<Employee id="1" Dept="0001">

<Name>Scott</Name>

<Address>

<Address>555 Main St.</Address>

<City>Wellington</City>

<State>FL</State>

</Address>

<Title>All Things Techy</Title>

<HireDate>02/05/2007</HireDate>

<Gender>M</Gender>

</Employee>

<id>1</id>

<Dept>0001</Dept>

</Root>

By modifying the code, you can return more granular information. The highlighted line in the following
code illustrates how to return only the Address information from the loaded XML file:

XElement newXML = new XElement("Root",

emp.Element("Employee").Element("Address"),

from att in emp.Element("Employee").Attributes()
select new XElement(att.Name, (string)att));

The code produces the following XML tree:

<Root>

<Address>

<Address>555 Main St.</Address>

<City>Wellington</City>

<State>FL</State>

</Address>

<id>1</id>

<Dept>0001</Dept>

</Root>

One last example for this section: The following highlighted code uses functional construction to return
the Name element and the id attribute from the source tree to create a simple new XML tree:

XElement newXML = new XElement("Root",

emp.Element("Employee").Element("Name"),

from att in emp.Element("Employee").Attributes()

where att.Name == "id"
select new XElement(att.Name, (string)att));

It produces the following XML tree:

<Root>

<Name>Scott</Name>

<id>1</id>

</Root>

157

Klein c08.tex V3 - 12/13/2007 1:57pm Page 158

Part II: LINQ to XML

You’re beginning to see how efficient it is to use functional construction to modify and manipulate XML.
Although in some cases it may not be any easier, especially on much larger XML documents, the func-
tional construction approach still provides a number of benefits over other methods, such as the ability
to produce code that is easier to read and maintain. Functional construction lends itself to greater pro-
ductivity, regardless of the size of the XML document.

LINQ to XML Annotations
LINQ to XML supports the concept of annotations. In layman’s terms, an annotation is an explanatory
note associated with some text. An annotation in LINQ to XML is not that different—it is the capability
to add, or associate, an object to an XML node or attribute. It can be any object of any arbitrary type. In
LINQ to XML, annotations are provided linked lists of type Object on an XNode.

Annotations are added via the AddAnnotation method of an XElement or XAttribute. When the
AddAnnotation method is called, a new object is added to the corresponding XObject (element or
attribute) in the XML tree.

To utilize annotations, a mechanism for adding and defining annotations must first be created. For
example, the following code defines a mechanism for adding annotations of integer data types.

public class TestAnnotation
{

private int val1;
public int Val1 { get { return val1;} set { val1 = value;}}
public TestAnnotation(int val1)
{

this.val1 = val1;
}

}

With this class defined, any time you want to add an annotation of an integer type to an element or
attribute, you can simply call this class. For instance, the following code uses the TestAnnotation class
defined above to add an annotation to the root element. The code writes the new XML to a text box,
but be aware that the annotation is not visible. The last two lines of the following code illustrate how to
obtain the annotation from the element:

TestAnnotation ano1 = new TestAnnotation(500);
XElement root = new XElement("Root", "scott");
root.AddAnnotation(ano1);

textBox1.Text = root.ToString();

TestAnnotation ano2 = root.Annotation<TestAnnotation>();
textBox1.Text = ano2.Val1.ToString();

When you run this code, the text box should display the value 500.

158

Klein c08.tex V3 - 12/13/2007 1:57pm Page 159

Chapter 8: Advanced LINQ to XML Programming Topics

Of course, annotations can be of any type, so the preceding code could simply have been written
as follows:

XElement root = new XElement("Root", "scott");
root.AddAnnotation(500);

What happens if you want to add an annotation of another type? Fortunately, you don’t need to create
a new annotation class. The following is an example that uses the same original annotation class to add
another annotation type of string, as shown by the highlighted code. It does that by creating a new public
method of the same name as the original method:

public class TestAnnotation
{

private int val1;

private string val2;

public int Val1 { get { return val1;} set { val1 = value;}}

public string Val2 { get { return val2;} set { val2 = value;}}

public TestAnnotation(int val1)
{

this.val1 = val1;
}

public TestAnnotation(string val2)
{
this.val2 = val2;
}

}

Now you can use the overloaded methods to either add a string or integer annotation. Here’s an example
which creates an XML tree, adding an integer annotation to the root node and a string annotation to the
id attribute, as illustrated by the highlighted code:

TestAnnotation ano1 = new TestAnnotation(500);
TestAnnotation ano3 = new TestAnnotation("Scott");
XElement root = new XElement("Root", "scott",

new XAttribute("id","1")
);

root.AddAnnotation(ano1);
textBox1.Text = root.ToString();

root.Attribute("id").AddAnnotation(ano3);

TestAnnotation ano2 = root.Annotation<TestAnnotation>();
textBox1.Text = ano2.Val1.ToString();

TestAnnotation ano4 = root.Attribute("id").Annotation<TestAnnotation>();
textBox1.Text = ano4.Val1.ToString();

You’ll notice that the same class was used to define and add the annotations. The last four lines of code
print the annotation values to the text box.

159

Klein c08.tex V3 - 12/13/2007 1:57pm Page 160

Part II: LINQ to XML

Again, you could simply add the new annotation like this:

root.AddAnnotation("Scott");

The reason for walking you through the more lengthy example was to illustrate how LINQ to XML works
with annotations as arbitrary objects of any arbitrary type.

Multiple annotations can be added to an element or attribute, and you can use the Annotations method
to retrieve them all. Using the same TestAnnotation class created above, the example below defines
a simple XML tree and adds multiple annotations to the root node using two different ways. The first
method simply passes a string value as shown in the first three annotations added. The last two annota-
tions are added as an IEnumerable<T> of type TestAnnotation class.

XElement root = new XElement("Root", "scott");
root.AddAnnotation("1");
root.AddAnnotation("2");
root.AddAnnotation("3");
root.AddAnnotation(new TestAnnotation(500));
root.AddAnnotation(new TestAnnotation("Scooter"));

IEnumerable<string> stringList;
stringList = root.Annotations<string>();
foreach (string val in stringList)

listbox1.Items.Add(val);

IEnumerable<TextAnnotation> TestAnnoList;
int loopCount = 1;
TestAnnoList = root.Annotations<TestAnnotation>();
foreach (TestAnnotation val2 in TestAnnoList)
{

if (loopCount == 1)
{
listbox1.Items.Add(val2.Tag1);

}
else
{
listbox1.Items.Add(val2.Tag2);

}
loopCount += 1;

}

This code produces the following results:

1
2
3
500
Scooter

It’s just that easy to add annotations to elements and attributes of an XML tree, and to retrieve the
annotation values.

160

Klein c08.tex V3 - 12/13/2007 1:57pm Page 161

Chapter 8: Advanced LINQ to XML Programming Topics

LINQ to XML Axis
LINQ to XML provides the capability to query an XML to find elements and attributes and return their
respective values. You have seen in previous chapters how to ‘‘walk’’ an XML tree to find a specific value
of an element or attribute, but what if you want to return a value for more than one node? Suppose that
you want to return all the FirstName elements, for example. How would you do that?

LINQ to XML provides this capability through axis methods, which are methods on the XElement class,
each of which returns an IEnumerable collection. These methods can be used to return the structured, or
complex, content of a node such as child and ancestor elements.

LINQ to XML axis methods enable you to work with nodes instead of individual elements and attributes,
providing the capability to return collections of elements and attributes. This lets developers work at a
finer level of detail. This section explores a few of the main axis methods of the XElement class:

❑ Ancestors

❑ Descendants

❑ AncestorsAndSelf

❑ DescendantsAndSelf

❑ ElementsAfterSelf

❑ ElementsBeforeSelf

Ancestors
The Ancestors method returns the ancestor elements of the specified node. In the following example,
the ancestors (those elements above the specified element) of the Name element are returned. As stated
earlier, this method returns an IEnumerable of XElement, and the results can be enumerated through as
shown here:

XElement root = new XElement("Employees",
new XElement("Employee",

new XElement("Name", "Scott")
)

);

IEnumerable<XElement> anc = root.Descendants("Name");
foreach (XElement el in anc.Ancestors())

listBox1.Items.Add(el.Name);

The ancestor nodes of the specified node (in this case, the Name node) are returned:

Employee
Employees

The Descendants method, which will be discussed next, is also used in this example. It specifies the
starting point of the ancestor search. As you have learned in the last few chapters, you could have just as
easily done the following, but the question is, would the results be the same?

161

Klein c08.tex V3 - 12/13/2007 1:57pm Page 162

Part II: LINQ to XML

IEnumerable<XElement> anc = root.Element("Employee").Elements("Name");

foreach (XElement el in anc.Ancestors())
listBox1.Items.Add(el.Name);

There really is no advantage of using one approach over the other. The Ancestors method returns an
IEnumerable XEelement of all the ancestors of the current Element. As you will find out in the next
section, the Descendants method returns an IEnumerable XElement of all the descendants of the current
Element. So, it really depends on how you want to approach the problem.

The Ancestors method also has an overload that takes an element name, returning only those elements
in the collection that match the specified name. For example, the following returns a collection filtered by
the ancestor elements that have a matching XName (element name):

XElement root = new XElement("Employees",
new XElement("Employee",

new XElement("Name", "Scott")
)

);

IEnumerable<XElement> anc = root.Descendants("Name");
foreach (XElement el in anc.Ancestors("Employee"))

listBox1.Items.Add(el.Name);

The code returns the following value:

Employee

The same thing happens even if an additional employee is added, as shown here:

XElement root = new XElement("Employees",
new XElement("Employee",

new XElement("Name", "Scott")),
new XElement("Employee",

new XElement("Name", "Bob"))

);

IEnumerable<XElement> anc = root.Descendants("Name");
foreach (XElement el in anc.Ancestors("Employee"))

listBox1.Items.Add(el.Name);

Now the code returns the following values:

Employee
Employee

You are probably asking yourself, ‘‘How is this useful?’’ While these examples may seem trivial, the
methods (Ancestors, Descendants, and so on) return an IEnumerable collection—meaning that they
return a collection of elements, in this case a collection of Employee elements. These examples just

162

Klein c08.tex V3 - 12/13/2007 1:57pm Page 163

Chapter 8: Advanced LINQ to XML Programming Topics

displayed the name of the element, but you do so much more, such as grabbing the values of the elements
as you loop through the collection, like this:

foreach (XElement el in anc.Ancestors("Employee"))

listBox1.Items.Add(el.Value);

As you become more familiar with these methods, you will begin to understand the flexibility and use-
fulness of what they can do for you.

Descendants
Descendants are those elements below the specified element in an XML tree. The Descendants method
returns a collection of elements that are descendants of the specified element, as the following example
shows. As stated earlier, this method returns an IEnumerable of XElement, and the results can be enu-
merated.

XElement root = new XElement("Employees",
new XElement("Employee",

new XElement("Name", "Scott"))
);

IEnumerable<XElement> des =
from el in root.Descendants()
select el;

foreach (XElement el in des)
listBox1.Items.Add(el.Name);

This example simply asks for the descendants of the root node, returning the following:

Employee
Name

Another way to return the descendants, in less code, would be the following:

IEnumerable<XElement> des = root.Descendants();
foreach (XElement el in des)

listBox1.Items.Add(el.Name);

This returns the exact same results as the preceding example.

This method also takes an overload, which returns all of the descendants that have the specified name,
as this code illustrates:

IEnumerable<XElement> des =
from el in root.Descendants("Employeee")
select el;

foreach (XElement el in des)
listBox1.Items.Add(el.Name);

163

Klein c08.tex V3 - 12/13/2007 1:57pm Page 164

Part II: LINQ to XML

This example asks for the descendants of the Employee node, returning the following:

Name

Again, you could write the example as follows:

IEnumerable<XElement> des = root.Descendants("Employeee");
foreach (XElement el in des)

listBox1.Items.Add(el.Name);

Just to make things a bit more complicated, let’s add another employee and return the values of the
descendants of the employee node, which in essence is asking for the value of the Name node because it is
a descendant of the Employee node:

XElement root = new XElement("Employees",
new XElement("Employee",

new XElement("Name", "Scott"))
,
new XElement("Employee",

new XElement("Name", "Bob"))

);

textBox1.Text = root.ToString();

IEnumerable<XElement> des = root.Descendants("Employee");
foreach (XElement el in des)

listBox1.Items.Add(el.Value);

When run, this code produces the following output:

Scott
Bob

Hopefully, you are starting to see how easy it is to work with these axis methods.

AncestorsAndSelf
The AncestorsAndSelf method is almost identical to the Ancestors method, but it varies in the fact that
it returns the current element along with its ancestors. The following example constructs a simple XML
tree, and then queries the XML for the Employee node and its ancestor nodes:

XElement root = new XElement("Employees",
new XElement("Employee",

new XElement("Name", "Scott"))
);

textBox1.Text = root.ToString();

XElement ce = root.Element(("Employee");
IEnumerable<XElement> des =

164

Klein c08.tex V3 - 12/13/2007 1:57pm Page 165

Chapter 8: Advanced LINQ to XML Programming Topics

from el in ce.AncestorsAndSelf()
select el;

foreach (XElement el in des)
listBox1.Items.Add(el.Name);

An XElement variable is declared to specify the element at which to start the ancestor search. That vari-
able is then used to apply the AncestorsAndSelf() method.

Equally, you could also do the following:

IEnumerable<XElement> des =
root.Element("Employee").AncestorsAndSelf();
foreach (XElement el in des)

listBox1.Items.Add(el.Name);

Either way, the results are the same. The current node plus its ancestors are returned in the results.

Emmployee
Employees

Yep, pretty simple, but efficient.

DescendantsAndSelf
The DescendantsAndSelf method is almost identical to the Descendants method; it varies only in that it
returns the current element along with its descendants. The following example constructs a simple XML
tree, and then queries the XML for the Employee node and its descendant nodes.

XElement root = new XElement("Employees",
new XElement("Employee",

new XElement("Name", "Scott"))
);

textBox1.Text = root.ToString();

IEnumerable<XElement> des =
from el in root.Element("Employee").DescendantsAndSelf()
select el;

foreach (XElement el in des)
listBox1.Items.Add(el.Name);

Equally, you could also do the following:

IEnumerable<XElement> des = root.Element("Employee").DescendantsAndSelf();
foreach (XElement el in des)

listBox1.Items.Add(el.Name);

Both of these methods return the same results:

Employee
Name

165

Klein c08.tex V3 - 12/13/2007 1:57pm Page 166

Part II: LINQ to XML

Also, both the AncestorsAndSelf and DescendantsAndSelf methods have an overload that returns
an IEnumerable of only the elements of the name specified in the method, as shown below in the
following example:

IEnumerable<XElement> des =
from el in root.DescendantsAndSelf("Employee")
select el;

foreach (XElement el in des)
listBox1.Items.Add(el.Name);

In this case, only the Employee element would be returned.

ElementsAfterSelf and ElementsBeforeSelf
The ElementsAfterSelf and ElementsBeforeSelf methods return the elements that come after the
specified element and the elements that come before the specified element, respectively. Each method
takes an overload that returns the elements after, or before, the current element that match the specified
element name.

Here’s code that defines an XML tree with a root node and six child elements, and then queries the XML
tree for those elements whose elements are after Element4:

XElement root = new XElement("Root",
new XElement("Element1", "Value1"),
new XElement("Element2", "Value2"),
new XElement("Element3", "Value3"),
new XElement("Element4", "Value4"),
new XElement("Element5", "Value5"),
new XElement("Element6", "Value6")
);

textBox1.Text = root.ToString();

XElement re = root.Element("Element4");
IEnumerable<XElement> els = re.ElementsAfterSelf();
foreach (XElement el in els)

listBox1.Items.Add(el.Name);

The following is returned:

Element5
Element6

The following approach returns the same results:

IEnumerable<XElement> re = root.Element("Element4").ElementsAfterSelf();
foreach (XElement el in re)

listBox1.Items.Add(el.Name);

Using the same XML tree, the following code queries the XML tree for those elements that are
before Element4:

XElement re = root.Element("Element4");
IEnumerable<XElement> els = re.ElementsBeforeSelf();

166

Klein c08.tex V3 - 12/13/2007 1:57pm Page 167

Chapter 8: Advanced LINQ to XML Programming Topics

foreach (XElement el in els)
listBox1.Items.Add(el.Name);

Again, you could write it as follows:

IEnumerable<XElement> re = root.Element("Element4").ElementsBeforeSelf();
foreach (XElement el in re)

listBox1.Items.Add(el.Name);

In both cases, the following values are returned:

Element1
Element2
Element3

Last, the overloads for these two methods return the elements after or before the current element that
also match the specified element name:

XElement re = root.Element("Element4");
IEnumerable<XElement> els = re.ElementsAfterSelf("Element6");
foreach (XElement el in els)

listBox1.Items.Add(el.Name);

Just as before, you could write it as follows:

IEnumerable<XElement> re = root.Element("Element4").ElementsAfterSelf("Element6");
foreach (XElement el in re)

listBox1.Items.Add(el.Name);

Both approaches produce the same result: Element6.

While this example illustrated the ElementsAfterSelf() method, the same concept applies to the Ele-
mentsBeforeSelf() method as well.

LINQ to XML axis methods are best used when working with nodes of an XML tree; they enable
you to work at a finer level of detail. By efficiently using the axis methods, developers can quickly
and easily iterate through an XML tree working with collections, not just an individual element or
attribute.

LINQ to XML Events
LINQ to XML events provide notifications when a change is made to an XML tree. LINQ to XML provides
two events to handle changes to an XML tree: Changing and Changed. Both of these events are raised
when you modify the XML tree; they’re discussed in detail in the following sections.

To effectively work with events, LINQ to XML provides three types, described in the following table.

167

Klein c08.tex V3 - 12/13/2007 1:57pm Page 168

Part II: LINQ to XML

Type Description

XObjectChange Specifies an event type when an event is raised for an
XObject, such as an element or attribute.

XObjectChangeEventArgs Provides the necessary argument data for the
Changing and Changed events.

XObectChangeEventHandler Represents the methods that will handle the Changing
and Changed events of the specified XObject.

Changing
The Changing event occurs prior to applying any changes to the XObject or any of its descendants. In
other words, this event is fired when an element or attribute, or any of its descendants, is about to change.
When you request a change to an element of an XML tree, a Changing event is raised.

The best way to illustrate this is by example. The following code defines an XML tree, defines
an event, and applies the defined event to the root node. Finally, a new element is added to the XML
tree. Remember, events apply to an XObject or any of its descendants. By adding a new element to the
root node, the defined event is fired. LINQ to XML handles the event notifications when the XML tree is
altered.

XElement empXML = new XElement("Employees",
new XElement("Employee",

new XAttribute("id", "1"),
new XAttribute("Dept", "0001"),
new XElement("Name", "Scott"),
new XElement("Address",

new XElement("Street", "555 Main St."),
new XElement("City", "Wellington"),
new XElement("State", "FL"),
new XElement("Zip", "33414")),

new XElement("Title", "All Things Techy"),
new XElement("HireDate", "02/05/2007"),
new XElement("Gender", "M")

)
);

empXML.Changing += new XObjectChangeEventHandler(delegate(object xsender,
XObjectChangeEventArgs cea)

{
listBox1.Items.Add("Changing event raised");
XElement newEl = (XElement)xsender;
listBox1.Items.Add(" Sender: " + newEl.Name);
listBox1.Items.Add(" ObjectChange: " + cea.ObjectChange);

}
);

empXML.Element("Employee").Add(new XElement("Nickname", "scooter"));

168

Klein c08.tex V3 - 12/13/2007 1:57pm Page 169

Chapter 8: Advanced LINQ to XML Programming Topics

When this code runs, the following displays in the list box:

Changing event raised
Sender: Nickname
ObjectChanged: Add

The first item simply states that the Changing event was raised. More important, however, are the next
two: the actual name of the element that was affected, and the operation performed, in this case, an Add
(an element was added).

Because Changing was placed on the root node, any change to the XML tree would have fired it.

To really see how this works, modify the code as follows (highlighted lines), then place a breakpoint on
the empXML.Changing line. This example doesn’t add a new element; rather, it updates the value of an
existing element.

XElement empXML = new XElement("Employees",
new XElement("Employee",

new XAttribute("id", "1"),
new XAttribute("Dept", "0001"),
new XElement("Name", "Scott"),
new XElement("Address",

new XElement("Street", "555 Main St."),
new XElement("City", "Wellington"),
new XElement("State", "FL"),
new XElement("Zip", "33414")),

new XElement("Title", "All Things Techy"),
new XElement("HireDate", "02/05/2007"),
new XElement("Gender", "M")

)
);

empXML.Changing += new XObjectChangeEventHandler(delegate(object xsender,
XObjectChangeEventArgs cea)

{
listBox1.Items.Add("changing event raised");

//XElement newEl = (XElement)xsender;
//listBox1.Items.Add(" Sender: " + newEl.Name);

listBox1.Items.Add(" ObjectChange: " + cea.ObjectChange);
}

);

empXML.Element("Employee").Element("Title").Value = "Geek";

Execute the code, and then press F10 to step through it. You’ll notice that it executes the Changing event
as a whole, then it executes the last line, which updates the value of the Title element. When you press
F10 on the last line, the execution enters the Changing event and goes through it not once, but twice.
Why? Take a look at the output produced by the code in the event:

Changing event raised
ObjectChange: Remove

169

Klein c08.tex V3 - 12/13/2007 1:57pm Page 170

Part II: LINQ to XML

Changing event raised
ObjectChange: Add

There’s the answer: An update is really a delete with an Add and Insert. Slick.

Changed
The Changed event fires when a change is made to an XObject or any of its descendants. In other words,
it fires when a change on an element or attribute, or any of its descendants, is complete.

For example, the following code defines an XML tree, defines a Changing event and Changed event, and
applies both events to the root node. Last, like the previous example, the value of an existing element
is modified.

XElement empXML = new XElement("Employees",
new XElement("Employee",

new XAttribute("id", "1"),
new XAttribute("Dept", "0001"),
new XElement("Name", "Scott"),
new XElement("Address",

new XElement("Street", "555 Main St."),
new XElement("City", "Wellington"),
new XElement("State", "FL"),
new XElement("Zip", "33414")),

new XElement("Title", "All Things Techy"),
new XElement("HireDate", "02/05/2007"),
new XElement("Gender", "M")

)
);

empXML.Changing += new XObjectChangeEventHandler(delegate(object xsender,
XObjectChangeEventArgs cea)

{
listBox1.Items.Add("changing event raised");
//XElement newEl = (XElement)xsender;
//listBox1.Items.Add(" Sender: " + newEl.Name);
listBox1.Items.Add(" ObjectChange: " + cea.ObjectChange);

}
);

empXML.Changed += new XObjectChangeEventHandler(delegate(object xsender,
XObjectChangeEventArgs cea)

{
listBox1.Items.Add("changed event raised");
listBox1.Items.Add(" ObjectChange: " + cea.ObjectChange);

}
);

empXML.Element("Employee").Element("Title").Value = "Geek";

You can tell by the output that each of these events was called twice:

Changing event raised
ObjectChange: Remove

170

Klein c08.tex V3 - 12/13/2007 1:57pm Page 171

Chapter 8: Advanced LINQ to XML Programming Topics

Changed event raised
ObjectChange: Remove

Changing event raised
ObjectChange: Add

Changed event raised
ObjectChange: Add

The key to working with events is knowing when events are raised (what triggers an event) and how to
implement them. Here, events are raised only when modifying an existing XML tree and not when creat-
ing or constructing a new tree. The reasoning behind this is the order in which XML trees are constructed
and event handlers are applied:

❑ To be capable of receiving events, you must first add an event handler.

❑ To add an event handler, you must first have a reference to an XObject.

❑ To have a reference to an XObject, you must first construct an XML tree.

Therefore, it is not possible to receive events during functional construction.

A word of caution: Modifying an XML tree within the execution of the raised event is not recommended
because it can lead to unexpected results. You can, however, modify another XML tree from within the
event, and you can even modify another node of the same tree from within an event. But, the latter
is highly discouraged, especially if you are modifying the node from which the event is being raised,
because it may have a negative impact on the events being raised on that node.

Streaming XML Documents
All of the examples so far have worked with XML trees and XML documents that haven’t really been
that big. In the real world, however, XML documents and trees can be very large. And you know from
working with large XML documents and trees that they can be memory hogs.

LINQ to XML can help with this problem; you can use its streaming techniques and a lot of the function-
ality you have learned in this and previous chapters, such as the great LINQ to XML axis methods.

Streaming XML documents entails utilizing the XmlReader class to read from one XML source and cre-
ating a much smaller XML fragment in which you can then work. The result is a decrease in memory
usage.

The key is to use the XmlReader class to scour the XML document looking for the nodes it needs, and
then calling the ReadFrom() method to read the information from the source XML and populate the
target XML fragment.

Before you tackle streaming with large XML documents, take a look at streaming in general to control
memory usage in your application.

I love examples, so let’s start with one. Create the following XML document and save it as Orders.xml in
the Wrox\Chapter8 directory:

<Orders>

<SalesPerson>

<Name>Scott</Name>

171

Klein c08.tex V3 - 12/13/2007 1:57pm Page 172

Part II: LINQ to XML

<Order Date="1/14/2007">

<Amount>15.00</Amount>

</Order>

<Order Date="1/22/2007">

<Amount>98.00</Amount>

</Order>

<Order Date="2/3/2007">

<Amount>9.00</Amount>

</Order>

<Order Date="3/24/2007">

<Amount>39.00</Amount>

</Order>

<Order Date="4/5/2007">

<Amount>72.00</Amount>

</Order>

</SalesPerson>

<SalesPerson>

<Name>Dave</Name>

<Order Date="1/6/2007">

<Amount>112.00</Amount>

</Order>

<Order Date="3/28/2007">

<Amount>143.00</Amount>

</Order>

<Order Date="4/10/2007">

<Amount>98.00</Amount>

</Order>

<Order Date="5/9/2007">

<Amount>149.00</Amount>

</Order>

</SalesPerson>

<SalesPerson>

<Name>John</Name>

<Order Date="1/19/2007">

<Amount>62.00</Amount>

</Order>

<Order Date="3/17/2007">

<Amount>88.00</Amount>

</Order>

<Order Date="3/19/2007">

<Amount>151.00</Amount>

</Order>

<Order Date="4/11/2007">

<Amount>134.00</Amount>

</Order>

</SalesPerson>

<SalesPerson>

<Name>Steve</Name>

<Order Date="2/21/2007">

<Amount>999.00</Amount>

</Order>

<Order Date="3/30/2007">

<Amount>51.00</Amount>

</Order>

172

Klein c08.tex V3 - 12/13/2007 1:57pm Page 173

Chapter 8: Advanced LINQ to XML Programming Topics

<Order Date="4/01/2007">

<Amount>244.00</Amount>

</Order>

<Order Date="5/21/2007">

<Amount>333.00</Amount>

</Order>

</SalesPerson>

</Orders>

In Visual Studio, create the following private function, which uses the XmlReader to read the source XML
document and create a much smaller XML fragment with only the information you are looking for.

static IEnumerable<XElement> StreamSalesOrders(string uri)
{

using (XmlReader reader = XmlReader.Create(uri))
{

XElement name = null;
XElement order = null;

reader.MoveToContent();

while (reader.Read())
{

if (reader.NodeType == XmlNodeType.Element
&& reader.Name == "SalesPerson")

{
while (reader.Read())
{

if (reader.NodeType == XmlNodeType.Element
&& reader.Name == "Name")

{
name = XElement.ReadFrom(reader) as XElement;
break;

}
}

while (reader.Read())
{

if (reader.NodeType == XmlNodeType.EndElement)
break;

if (reader.NodeType == XmlNodeType.Element
&& reader.Name == "Order")

{
order = XElement.ReadFrom(reader) as XElement;
if (order != null)
{

XElement tempRoot = new XElement("TempRoot",
new XElement(name)
);

tempRoot.Add(order);
yield return order;

}
}

}

173

Klein c08.tex V3 - 12/13/2007 1:57pm Page 174

Part II: LINQ to XML

}
}

}
}

The last step is to write the code that calls the function and creates the resulting XML document. In your
Visual Studio application, add the following code:

XElement xmlTree = new XElement("Sales",
from el in StreamSalesOrders(@"C:\Wrox\LINQ\Chapter 8\Orders.xml")
where (decimal)el.Element("Amount") > 50 &&

(decimal)el.Element("Amount") < 150
select new XElement("Order",

new XElement("SalesPerson", (string)el.Parent.Element("Name")),
new XElement(el.Element("Amount"))

)
);

textBox1.Text = xmlTree.ToString();

In this code, the ‘‘large’’ XML document is loaded and quickly gone through using the XmlReader class.
A new XML fragment is created based on the query expression and the information that is being enumer-
ated. The code looks for all sales with amounts greater than 50 dollars and less than 150 dollars. Based
on those criteria, the following XML fragment is produced:

<Sales>

<Order>

<SalesPerson>Scott</SalesPerson>

<Amount>98.00</Amount>

</Order>

<Order>

<SalesPerson>Scott</SalesPerson>

<Amount>72.00</Amount>

</Order>

<Order>

<SalesPerson>Dave</SalesPerson>

<Amount>112.00</Amount>

</Order>

<Order>

<SalesPerson>Dave</SalesPerson>

<Amount>143.00</Amount>

</Order>

<Order>

<SalesPerson>Dave</SalesPerson>

<Amount>98.00</Amount>

</Order>

<Order>

<SalesPerson>Dave</SalesPerson>

<Amount>149.00</Amount>

</Order>

<Order>

<SalesPerson>John</SalesPerson>

<Amount>62.00</Amount>

</Order>

<Order>

174

Klein c08.tex V3 - 12/13/2007 1:57pm Page 175

Chapter 8: Advanced LINQ to XML Programming Topics

<SalesPerson>John</SalesPerson>

<Amount>88.00</Amount>

</Order>

<Order>

<SalesPerson>John</SalesPerson>

<Amount>134.00</Amount>

</Order>

<Order>

<SalesPerson>Steve</SalesPerson>

<Amount>51.00</Amount>

</Order>

</Sales>

Not too bad. The next example utilizes the date attribute on the XML document to build the XML frag-
ment. Modify the code in your Visual Studio application as follows:

DateTime startDate;
DateTime endDate;

DateTime.TryParse("02/01/2007", out startDate);
DateTime.TryParse("02/28/2007", out endDate);

XElement xmlTree = new XElement("Sales",
from el in StreamSalesOrders(@"C:\Wrox\LINQ\Chapter 8\Orders.xml")
where (DateTime)el.Attribute("Date") >= startDate
&& (DateTime)el.Attribute("Date") <= endDate

select new XElement("Order",
new XElement("SalesPerson",

(string)el.Parent.Element("Name")),
new XElement(el.Element("Amount"))
)

);

This example uses the date attribute of each order to filter the information. Based on this criterion, the
following results are produced:

<Sales>

<Order>

<SalesPerson>Scott</SalesPerson>

<Amount>9.00</Amount>

</Order>

<Order>

<SalesPerson>Steve</SalesPerson>

<Amount>999.00</Amount>

</Order>

</Sales>

One more modification: the following example takes the order date attribute and adds it to the resulting
XML tree as an element.

XElement xmlTree = new XElement("Sales",
from el in StreamSalesOrders(@"C:\Wrox\LINQ\Chapter 8\Orders.xml")
where (DateTime)el.Attribute("Date") >= startDate
&& (DateTime)el.Attribute("Date") <= endDate

175

Klein c08.tex V3 - 12/13/2007 1:57pm Page 176

Part II: LINQ to XML

select new XElement("Order",
new XElement("SalesPerson",

(string)el.Parent.Element("Name")),
new XElement(el.Element("Amount")),
new XElement("OrderDate", el.Attribute("Date"))

)
);

Your results should now look like the following:

<Sales>

<Order>

<SalesPerson>Scott</SalesPerson>

<Amount>9.00</Amount>

<OrderDate Date="2/3/2007" />

</Order>

<Order>

<SalesPerson>Steve</SalesPerson>

<Amount>999.00</Amount>

<OrderDate Date="2/21/2007" />

</Order>

</Sales>

In essence, by using the XmlWriter class and ReadFrom method, you are basically building your own axis
method. It enables you to work with large XML documents without sacrificing performance.

Streaming Large XML Documents
Now you’re ready to use the streaming technique to work with large XML documents. Take a look at the
following code. The XML fragment is now constructed utilizing an IEnumerable element. That provides
the flexibility to use LINQ to XML to enumerate the results and write them to an XmlWriter, as shown in
the highlighted code.

IEnumerable<XElement> xmlTree =

from el in StreamSalesOrders(@"C:\Wrox\LINQ\Chapter 8\Orders.xml")
where (DateTime)el.Attribute("Date") >= startDate
&& (DateTime)el.Attribute("Date") <= endDate
select new XElement("Order",

new XElement("SalesPerson",
(string)el.Parent.Element("Name")),

new XElement(el.Element("Amount")),
new XElement("OrderDate", el.Attribute("Date"))
)

);

XmlWriterSettings xws = new XmlWriterSettings();
xws.OmitXmlDeclaration = true;
xws.Indent = true;
using (XmlWriter xw = XmlWriter.Create(@"c:\Wrox\output.xml", xws))
{

xw.WriteStartElement("Root");

176

Klein c08.tex V3 - 12/13/2007 1:57pm Page 177

Chapter 8: Advanced LINQ to XML Programming Topics

foreach (XElement el in xmlTree)
el.WriteTo(xw);

xw.WriteEndElement();
}

You should get the same results as the previous example.

Summary
On the surface, LINQ to XML looks intimidating, but this and the previous three chapters should have
dispelled that vicious rumor. Hopefully, as you started working your way through this chapter, you
quickly realized that it really wasn’t as bad as you thought. Sure, working with annotations, events, and
axes can be tough, but the purpose of this chapter was to show you that working with them also can be
delightful and downright fun.

You first examined functional construction and the important role it plays in LINQ to XML. Functional
construction provides the capability to easily and efficiently construct an XML document within a single
statement. Then you saw how to add annotations to elements and attributes in an XML tree using the
AddAnnotation method, and how to read annotations once they are applied.

You explored LINQ to XML axis methods, which provide the capability to quickly and efficiently query
an XML tree to find elements and attributes and return their values. Knowing how to use these is abso-
lutely necessary to understanding and writing query expressions.

Finally, you saw how to stream XML documents using LINQ to XML and the benefits that streaming
provides, such as managing memory and controlling the size of your XML documents.

Chapter 9, the last chapter in this section, focuses on LINQ to XML in Visual Basic .NET.

177

Klein c08.tex V3 - 12/13/2007 1:57pm Page 178

Klein C09.tex V3 - 12/13/2007 5:49pm Page 179

LINQ to XML and Visual
Basic .NET

Visual Basic .NET wasn’t left behind when it comes to working with LINQ to XML. Visual
Basic provides profound support for LINQ to XML through XML literals and XML
Axis properties.

This chapter focuses on the LINQ to XML differences that apply to Visual Basic .NET. You’ll explore
the following topics in this chapter:

❑ How to create XML

❑ How to access XML

❑ How to load XML

❑ How to manipulate XML

Creating XML
You have to agree that LINQ to XML is powerful and flexible. One of the things you have seen is
the capability to call LINQ APIs directly, but what you are about to see makes LINQ to XML even
better. In Visual Basic, you can declare XML literals and write XML directly in your code. And you
also can access XML Axis properties from within your code.

However, it is important to understand what XML literals are so that you can have a better
appreciation, as well as for creating XML.

Klein C09.tex V3 - 12/13/2007 5:49pm Page 180

Part II: LINQ to XML

Overview of XML Literals
An XML Literal is a piece of XML, such as a complete XML document or XML fragment, that is
typed directly into the source code of a Visual Basic .NET module without the use of quotation
marks. Using XML literals lets you write XML directly within your Visual Basic code providing the
same structure and layout as the resulting XML. This means that you can create XML documents
and fragments easily and efficiently right in your code.

XML literal syntax is a representation of the LINQ to XML objects, with Visual Basic compiling the literals
into LINQ to XML objects. This functionality is provided via the LINQ to XML object model, which lets
you create and work with XML easily.

To get a feel for XML Literals, create a new Windows Forms Visual Basic project in Visual Studio.
When the project is created, add a reference to the System.Xml.Linq namespace. Open the form in
design view and add a few buttons and a text box. Set the Multiline property of the text box to True
and size the text box so that you can easily view an XML document or fragment.

Next, double-click on the form to view the code behind it, and add the following statement in the
declarations section:

Imports System.Xml.Linq

Next, behind button1, add the following highlighted code. Pay attention to what happens as you type
the code for the XML element.

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs)
Handles Button1.Click

Dim emp As XElement = _
<Employee>

<EmployeeID>1</EmployeeID>

<FirstName>Scott</FirstName>

<LastName>Klein</LastName>

<Title>Geek</Title>

</Employee>

Me.TextBox1.Text = emp.ToString

End Sub

Slick, isn’t it? The XML you typed into the Visual Basic code looks exactly like the XML fragment that
appears in the text box when you run the application and click button1:

<Employee>

<EmployeeID>1</EmployeeID>

<FirstName>Scott</FirstName>

<LastName>Klein</LastName>

<Title>Geek</Title>

</Employee>

How cool is that?

180

Klein C09.tex V3 - 12/13/2007 5:49pm Page 181

Chapter 9: LINQ to XML and Visual Basic .NET

You can even create XML documents using XML literals. To do so, simply add the highlighted code to
your XML from the previous example:

Dim emp As XElement = _

<?xml version="1.0"?>

<Employee>

<EmployeeID>1</EmployeeID>

<FirstName>Scott</FirstName>

<LastName>Klein</LastName>

<Title>Geek</Title>

</Employee>

When you run this code, you will receive an error stating "Value of type ’System.Xml.Linq.XDocument’
cannot be converted to ’System.Xml.Linq.XElement’." That’s because the compiler is smart enough
to know that this is an XML document literal, and you are trying to stuff an XML document into an XML
element, which won’t work.

To fix this, simply change the XElement to an XDocument as highlighted here:

Dim empDoc As XDocument = _
<?xml version="1.0"?>

<Employee>

<EmployeeID>1</EmployeeID>

<FirstName>Scott</FirstName>

<LastName>Klein</LastName>

<Title>Geek</Title>

</Employee>

How does the Visual Basic compiler create objects from these XML literals? When the compiler encoun-
ters an XML literal, it translates the literal into calls for the equivalent LINQ to XML constructors. Those
LINQ to XML constructors are used to construct the LINQ to XML object.

Depending on the XML literal, the XML literal will be translated into calls to one or several
constructors. At the least, it will be converted to a call to the XElement constructor, and if your XML lit-
eral contains attributes, then there will be calls to the XAttribute constructor as well. If your XML literal
contains version instructions, it will be translated into a call to the XProcessingInstruction constructor.

Each class, such as the XElement and XAttribute, has an overloaded New constructor. These constructors
are called for each type found, meaning that the XML literal will be translated into a call and passed
to the corresponding constructor. For example, if you have an element that contains two attributes, the
XElement constructor will be called once and the XAttribute constructor will be called twice.

Now that you understand how XML literals work, let’s look at some examples of creating XML.
The following example is taken from the first example in this chapter and illustrates the simple way
to create XML. It uses the XElement class to create a simple XML fragment containing employee
information.

You should be quite familiar with the XElement class by now. It’s used to represent an XML element.
The only difference here is the capability to use it to create XML literals in Visual Basic. For example,
the following code creates an XML fragment in Visual Basic .NET. Notice the exclusion of any quotes.
The XML is typed directly into the source code of the project.

181

Klein C09.tex V3 - 12/13/2007 5:49pm Page 182

Part II: LINQ to XML

Dim emp As XElement = _
<Employee>

<EmployeeID>1</EmployeeID>

<FirstName>Scott</FirstName>

<LastName>Klein</LastName>

<Title>Geek</Title>

</Employee>

The following example creates an XML document with a comment and version information. Again, this is
quite similar to the way the XDocument class was used in previous chapters, but it’s used in this example
in an XML literal.

Dim empDoc As XDocument = _
<?xml version="1.0" encoding="UTF-8"?>

<!-- Test -->

<Employee>

<EmployeeID>1</EmployeeID>

<FirstName>Scott</FirstName>

<LastName>Klein</LastName>

<Title>Geek</Title>

</Employee>

Expressions
There is so much more that XML literals can do, such as using embedded expressions. Visual Basic
supports the concept of embedded expressions. These expressions have the following syntax:

<%=expression%>

With Visual Basic you can place embedded expressions directly within your XML literals. These
expressions are then evaluated at runtime.

For example, the following code defines two variables, one that contains the employee ID, and the
other that contains the employee name. These two variables are then used as embedded expressions
in the creation of the XML literal to specify the value of the empID attribute value and the FirstName
element value.

Dim empID As Integer
Dim empName As String

empID = 1
empName = "Scott"

Dim emp As XElement = _
<Employee empID=<%= empID %>>

<FirstName>

<%= empName %>

</FirstName>

</Employee>

182

Klein C09.tex V3 - 12/13/2007 5:49pm Page 183

Chapter 9: LINQ to XML and Visual Basic .NET

When this code is run, you’ll get the following output:

<Employee empID = "1">

<FirstName>Scott</FirstName>

</Employee>

In this example, embedded expressions were used as an attribute value on the XML element and as XML
element content value. Likewise, you can use embedded expressions as names in the name/value pair,
as shown here:

Dim empID As String
Dim empName As String

empID = "ID"
empName = "FirstName"

Dim emp As XElement = _
<Employee <%= empID %>="1">

<<%= empName %>/>

</Employee>

When this code runs, you get the following output:

<Employee ID = "1">

<FirstName />

</Employee>

This can be taken one step further by including values for the name/value pair, like this:

Dim empID As String
Dim empName As String

empID = "ID"
empName = "FirstName"

Dim emp As XElement = _
<Employee <%= empID %>="1">

<<%= empName %>>Scott</>

</Employee>

This code produces the following:

<Employee ID = "1">

<FirstName>Scott</FirstName>

</Employee>

There are a couple of noteworthy items of which you should be aware. First, be careful how you use
Option Strict in this scenario. Option Strict will cause the compiler to check each type to ensure
that it has widened to the required type. This applies to everything except the root element of an XML
document. If you leave Option Strict off, expressions of type Object can be embedded, in which case
their type is verified at runtime.

183

Klein C09.tex V3 - 12/13/2007 5:49pm Page 184

Part II: LINQ to XML

Second, you will probably run into situations where content is optional. In those cases,
embedded expressions that contain Nothing are ignored. Thus, there is no need to check that
the values of elements or attributes are not Nothing as you use XML literals. In other words, required
values such as element and attribute names cannot be Nothing, but empty embedded expressions are
ignored. Sweet.

Embedding Queries
The fact that you can embed expressions within your XML literal should tell you that you can also
embed queries within your XML literal. When queries are embedded within the XML literal, all ele-
ments returned by the query are added to the XML. This lets you create and add dynamic content to
your XML literal.

In the following example, a standard LINQ query is embedded in the XML literal, which will create an
XML tree based on the value returned from the query.

Dim emp As XElement = _
<Employee>

<%= From con in Contact
Select <name><%= con.FirstName %></name>

%>

</Employee>

That gives you an idea of what is possible when LINQ queries are embedded in XML literals. However,
take it a step further and add an attribute to the XML. Modify the XML as highlighted:

Dim emp As XElement = _
<Employee>

<%= From con in Contact
Select <name id=<%= con.ContactID %>><%= con.FirstName %></name>

%>

</Employee>

Now you have a good understanding of how easy it is to dynamically create and add content
to your XML.

Understanding Whitespace in Visual Basic XML Literals
Only significant whitespace is included in an XML literal by the Visual Basic compiler when a LINQ to
XML object is created. Any insignificant whitespace is ignored.

To illustrate how whitespace is used, add the following code to the click event of one of the buttons
on your form:

Dim empID As String
Dim empName As String

empID = "ID"
empName = "FirstName"

Dim emp As XElement = _

184

Klein C09.tex V3 - 12/13/2007 5:49pm Page 185

Chapter 9: LINQ to XML and Visual Basic .NET

<Employee <%= empID %>="1">

<<%= empName %>>

Scott
</>

</Employee>

Me.Textbox1.Text = emp.ToString

Run the application and click the button. The text box on the form will be populated with the
following XML:

<Employee ID = "1">

<FirstName>

Scott
</FirstName>

</Employee>

Notice all of the whitespace to the left of ‘‘Scott’’ and to the left of the <FirstName> closing tag.
The output is like this because the inner element, <FirstName>, contains significant whitespace
and the output text, while the outer element, <Employee>, contains insignificant whitespace.

So, you are probably asking yourself, what is the difference between ‘‘significant’’ and ‘‘insignificant’’
whitespace? Whitespace in XML literals is considered significant when:

❑ It is in an attribute value.

❑ It is part of an element’s text content.

❑ It is in an embedded expression for an element’s text content.

You can add the xml:space attribute in the XML element literal, but it won’t change how the compiler
handles the whitespace.

Accessing XML
Creating XML is one thing, but accessing it is another, and this section shows you how to do that in
Visual Basic. Navigating XML structures in LINQ to XML is quite easy in Visual Basic. To illustrate, add
another button to your form and place the following code in its click event:

Dim employee As XElement = _
<Employees>

<Employee EmpID="1">

<Title>Geek</Title>

<FirstName>Scott</FirstName>

<MiddleName>L</MiddleName>

<LastName>Klein</LastName>

<EmailAddress>ScottKlein@SqlXml.com</EmailAddress>
<Address>

<Street>111 Main St.</Street>

<City>Wellington</City>

<State>FL</State>

<Zip>33414</Zip>

185

Klein C09.tex V3 - 12/13/2007 5:49pm Page 186

Part II: LINQ to XML

</Address>

</Employee>

</Employees>

Me.TextBox1.Text = employee...<City>.Value

Run the project and click the button. The text box should display the following value:

Wellington

Accessing element and attribute values is done through XML axis properties, which provide the capabil-
ity to navigate XML structures. These properties use a special syntax that helps access any element and
attribute by specifying XML names within your XML document.

Following are the available properties for accessing element and attribute values:

❑ Descendant axis—Returns all the child elements of the specified element regardless
how deep in the hierarchy the child elements are found. The preceding example illustrates
this point. The <City> element is several nodes deep in the XML fragment but through the
use of the descendant axis property you can easily access the value of that node, as
shown above.
Because it doesn’t matter how deep in the hierarchy the element is found, you can use the same
syntax to return the value of the <Title> as well as any other element.

❑ Child axis—Returns all the elements that are child elements of the specified element. This prop-
erty is used to return all the child elements of a specified element. For example:

employee.<FirstName>

❑ Attribute axis—Returns all the attributes of the specified element. From the preceding XML
fragment, this property can be used to return the EmpID attribute of <Employee> node:

Employee.<Employee>.@EmpID

❑ Value—Returns a string containing the object (value) for the first object found in the sequence.
It returns Nothing if the sequence is empty. As you have seen, this property returns the value of
the specified node(s), such as the value of the <City> element:

employee...<City>.Value

❑ Extension indexer—Returns the first element from the sequence. To illustrate this property,
modify the XML fragment at the beginning of this section by adding a second employee, as
shown in the following highlighted code:

Dim employee As XElement = _
<Employees>

<Employee EmpID="1">

<Title>Geek</Title>

<FirstName>Scott</FirstName>

<MiddleName>L</MiddleName>

<LastName>Klein</LastName>

<EmailAddress>ScottKlein@SqlXml.com</EmailAddress>

186

Klein C09.tex V3 - 12/13/2007 5:49pm Page 187

Chapter 9: LINQ to XML and Visual Basic .NET

<Address>

<Street>111 Main St.</Street>

<City>Wellington</City>

<State>FL</State>

<Zip>33414</Zip>

</Address>

</Employee>

<Employee EmpID="2">

<Title>Geek</Title>

<FirstName>Chris</FirstName>

<MiddleName>A</MiddleName>

<LastName>Klein</LastName>

<EmailAddress>Chris@SqlXml.com</EmailAddress>

<Address>

<Street>222 Main St.</Street>

<City>Portland</City>

<State>OR</State>

<Zip>88888</Zip>

</Address>

</Employee>

</Employees>

With the extension indexer, you can specify specific elements to return as shown in the
example below:

employee...<FirstName>(1).Value

The returned result would be Chris. The extension indexer is zero-based so had you passed a value of 0
to this property, it would have returned Scott.

You can also access XML using embedded queries, which you learned about earlier in the chapter. In the
example that follows, an XML literal is defined with three names. A second XML literal is then created,
using an embedded query to access the names from the first XML literal. The results of the second XML
literal are displayed in the text box.

Dim employee As XElement = _
<Employees>

<Name>Scott</Name>

<Name>Chris</Name>

<Name>Bill</Name>

</Employees>

Dim nameTypes As XElement = _
<Names>

<%= From name In employee.<Name> _
Select <FirstName><%= name.Value %></FirstName> _

%>

</Names>

Me.TextBox1.Text = nameTypes.ToString

187

Klein C09.tex V3 - 12/13/2007 5:49pm Page 188

Part II: LINQ to XML

Here are the results when this code is executed:

<Names>

<FirstName>Scott</FirstName>

<FirstName>Chris</FirstName>

<FirstName>Bill</FirstName>

</Names

The next example builds on the previous example by including an attribute on each <Name> element in
the first XML literal. The second XML literal is also modified, adding the necessary components to the
embedded query to access the attribute as well.

Dim employee As XElement = _
<Employees>

<Name empID="1">Scott</Name>

<Name empID="2">Chris</Name>

<Name empID="3">Bill</Name>

</Employees>

Dim nameTypes As XElement = _
<Names>

<%= From name In employee.<Name> _

Select <Employee ID=<%= name.Value %>><%= name.@empID %></Employee> _
%>

</Names>

Me.TextBox1.Text = nameTypes.ToString

The following results when this code is executed:

<Names>

<FirstName ID="1">Scott</FirstName>

<FirstName ID="2">Chris</FirstName>

<FirstName ID="3">Bill</FirstName>

</Names

Yes, this example puts the attribute back where it came from, but the purpose of this example is to illus-
trate how to access attributes and how you can utilize query expressions within your XML literals to
manipulate XML.

These examples should give you a good idea of how to access XML using XML literals and
query expressions.

Loading XML
Loading XML is quite easy. You’ll see just how easy in a minute. First, open your favorite text editor and
type in the following XML. Save it as employees.xml in your Wrox\Chapter 9 folder.

<Employees>

<Employee id="1" Dept="0001" Geek="True">

<Name>Scott</Name>

<Address>

<Address>555 Main St.</Address>

188

Klein C09.tex V3 - 12/13/2007 5:49pm Page 189

Chapter 9: LINQ to XML and Visual Basic .NET

<City>Wellington</City>

<State>FL</State>

</Address>

<Title>All Things Techy</Title>

<HireDate>02/05/2007</HireDate>

<Gender>M</Gender>

</Employee>

<Employee id="2" Dept="0005" Geek="False">

<Name>Steve</Name>

<Address>

<Address>444 Main St.</Address>

<City>Snahomish</City>

<State>WA</State>

<zip>99999</zip>

</Address>

<Title>Mr. SciFi</Title>

<HireDate>05/14/2002</HireDate>

<Gender>M</Gender>

</Employee>

<Employee id="3" Dept="0004" Geek="True">

<Name>Joe</Name>

<Address>

<Address>222 Main St.</Address>

<City>Easley</City>

<State>SC</State>

</Address>

<Title>All Things Bleeding Edge</Title>

<HireDate>07/22/2004</HireDate>

<Gender>M</Gender>

</Employee>

</Employees>

To load XML, the XElement class has a Load method that contains several overloads, one of which
is a path to an XML document. The following code shows how to load an element and display
its contents:

Dim emp As XElement = XElement.Load("c:\Wrox\Linq\Chapter9\employees.xml")

Me.Textbox1.Text = emp.ToString

As you know, once you have XML loaded into an XElement, as in the preceding example, you
are free to manipulate and query it. Your homework for this chapter is to use a query expression
within an XML literal to return XML containing the ID of the employee along with his
name and title.

Manipulating XML Using the Parse Method
There is a method on the XElement class called Parse, which loads a string containing XML into an
XElement. There is an overload on this method that enables you to specify options when parsing the
XML being loaded.

In the following example, a string variable is defined and loaded with an XML fragment. The
string is then passed to the Parse method of the XElement class. The additional parameter for

189

Klein C09.tex V3 - 12/13/2007 5:49pm Page 190

Part II: LINQ to XML

the load options specifies a value of None, meaning that no load options are being specified. Load options
are explained shortly.

Dim empInfo As String

empInfo = "<Employees><Employee ID=""1""><FirstName>Scott</FirstName>@@ta
</Employee></Employees>"

Dim emp As XElement = XElement.Parse(empInfo, LoadOptions.None)

Me.TextBox1.Text = emp.ToString

Here are the results of executing this code:

<Employees>

<Employee ID="1">

<FirstName>Scott</FirstName>

</Employee>

</Employees>

The optional parameter is the LoadOptions enumeration, which sets one of four load options for loading
and parsing XML:

❑ None—No options are specified.

❑ PreserveWhitespace—Preserve insignificant whitespace during the parsing
of the XML.

❑ SetBaseUri—Requests the base URI information from the XmlReader, making it available through
the BaseUri property.

❑ SetLineInfo—Requests the line information from the XmlReader, making it available through
XObject properties.

The following example illustrates the use of the PreserveWhitespace load option. Modify the code from
the previous example as follows:

Dim empInfo As String

empInfo = "<Employees><Employee ID=""1""><FirstName>Scott</FirstName>@@ta
</Employee></Employees>"

Dim emp As XElement = XElement.Parse(empInfo, LoadOptions.None)

Me.TextBox1.Text = emp.ToString

Here are the results:

<Employees>

<Employee ID="1">

<FirstName> Scott </FirstName>

</Employee>

</Employees>

190

Klein C09.tex V3 - 12/13/2007 5:49pm Page 191

Chapter 9: LINQ to XML and Visual Basic .NET

You can see that all of the insignificant whitespace has been ignored. Next, modify the load option
to this:

Dim emp As XElement = XElement.Parse(empInfo, LoadOptions.PreserveWhitespace)

When you run the code now, all the insignificant whitespace is preserved:

<Employees>

<Employee ID="1"> <FirstName> Scott </FirstName></Employee>

</Employees>

Specify multiple load options by using an And or Or operator, like this:

Dim emp As XElement = XElement.Parse(empInfo, LoadOptions.SetBaseUri And
LoadOptions.SetLineInfo)

These load options can assist you in your manipulation of the XML document, such as controlling how
the whitespace is preserved and tracking the line information for each element in the tree.

LINQ to XML Visual Basic Example
This example is going to use the XML document employees.xml that you created earlier, in the
section ‘‘Loading XML.’’ This example will load that document, manipulate it by making some changes
to the XML tree, and then display the results. As a refresher, the contents of the XML document
are as follows:

<Employees>

<Employee id="1" Dept="0001" Geek="True">

<Name>Scott</Name>

<Address>

<Address>555 Main St.</Address>

<City>Wellington</City>

<State>FL</State>

</Address>

<Title>All Things Techy</Title>

<HireDate>02/05/2007</HireDate>

<Gender>M</Gender>

</Employee>

<Employee id="2" Dept="0005" Geek="False">

<Name>Steve</Name>

<Address>

<Address>444 Main St.</Address>

<City>Snahomish</City>

<State>WA</State>

<zip>99999</zip>

</Address>

<Title>Mr. SciFi</Title>

<HireDate>05/14/2002</HireDate>

<Gender>M</Gender>

</Employee>

191

Klein C09.tex V3 - 12/13/2007 5:49pm Page 192

Part II: LINQ to XML

<Employee id="3" Dept="0004" Geek="True">

<Name>Joe</Name>

<Address>

<Address>222 Main St.</Address>

<City>Easley</City>

<State>SC</State>

</Address>

<Title>All Things Bleeding Edge</Title>

<HireDate>07/22/2004</HireDate>

<Gender>M</Gender>

</Employee>

</Employees>

So, to do this, create a new Visual Basic Windows Forms project. When the project is created, add two
buttons and a text box to the form. Set the properties of the controls as follows:

❑ Button1

❑ Name - cmdOK

❑ Text - OK

❑ Button2

❑ Name - cmdCancel

❑ Text - Cancel

❑ TextBox1

❑ Name - txtResults1

❑ Multiline - True

❑ ScrollBars - Vertical

❑ TextBox2

❑ Name - txtResults2

❑ Multiline - True

❑ ScrollBars - Vertical

❑ TextBox3

❑ Name - txtResults3

❑ Multiline - True

❑ ScrollBars - Vertical

In the Click() event of the Cancel button, enter the following code:

Application.Exit()

192

Klein C09.tex V3 - 12/13/2007 5:49pm Page 193

Chapter 9: LINQ to XML and Visual Basic .NET

Next, in the Click() event of the OK button, place the following code:

Dim emp As XElement = XElement.Load("c:\Wrox\Linq\Chapter 9\Employees.xml")

Dim tree As XElement = New XElement("Root", _
From el In emp.Elements() Select el)

’ Load these changes into the first text box
Me.txtResults1.Text = tree.ToString()

’ Next, let’s just grab the first employee
Dim empPart as XElement = (From treePart In _

tree.Eleemnts("Employees") Select treePart).First

Me.txtResults2.Text = empPart.ToString()

’ Next, let’s add an EmailAddress element to each Employee
tree.Element("Employee").Add(New XElement("EmailAddress"))

Me.txtResults.Text = emp.ToString()

The first query produces the following (only the first part of the results are shown):

<Root>

<Employee id="1" Dept="0001" Geek="True">

<Name>Scott</Name>

<Address>

<Address>555 Main St.</Address>

<City>Wellington</City>

<State>FL</State>

</Address>

<Title>All Things Techy</Title>

<HireDate>02/05/2007</HireDate>

<Gender>M</Gender>

</Employee>

...
</Root>

The second query produces the following results:

<Employee id="1" Dept="0001" Geek="True">

<Name>Scott</Name>

<Address>

<Address>555 Main St.</Address>

<City>Wellington</City>

<State>FL</State>

</Address>

<Title>All Things Techy</Title>

<HireDate>02/05/2007</HireDate>

<Gender>M</Gender>

</Employee>

193

Klein C09.tex V3 - 12/13/2007 5:49pm Page 194

Part II: LINQ to XML

And lastly, the final piece of code modifies the XML document and returns the following results, with
the addition of the EmailAddress element added to each Employee node:

<Root>

<Employee id="1" Dept="0001" Geek="True">

<Name>Scott</Name>

<Address>

<Address>555 Main St.</Address>

<City>Wellington</City>

<State>FL</State>

</Address>

<Title>All Things Techy</Title>

<HireDate>02/05/2007</HireDate>

<Gender>M</Gender>

<EmailAddress />

</Employee>

<Employee id="2" Dept="0005" Geek="False">

<Name>Steve</Name>

<Address>

<Address>444 Main St.</Address>

<City>Snahomish</City>

<State>WA</State>

<zip>99999</zip>

</Address>

<Title>Mr. SciFi</Title>

<HireDate>05/14/2002</HireDate>

<Gender>M</Gender>

<EmailAddress />

</Employee>

<Employee id="3" Dept="0004" Geek="True">

<Name>Joe</Name>

<Address>

<Address>222 Main St.</Address>

<City>Easley</City>

<State>SC</State>

</Address>

<Title>All Things Bleeding Edge</Title>

<HireDate>07/22/2004</HireDate>

<Gender>M</Gender>

<EmailAddress />

</Employee>

</Root>

You’ll notice that each email address node is not populated with data. This is on purpose. Your home-
work assignment for this chapter is to modify the code to add an email address. You don’t need to make
them different. Simply insert a default value. When you have done that, figure out a way to dynamically
enter an email address using the employee’s first name and last name.

Summary
This chapter focused on the LINQ to XML features in Visual Basic .NET, including the capability to create
XML literals and expressions directly within your VB.NET code.

194

Klein C09.tex V3 - 12/13/2007 5:49pm Page 195

Chapter 9: LINQ to XML and Visual Basic .NET

You learned to create XML using XML literals, and how to incorporate expressions and embedded
queries into your XML literals to create the XML you want.

From there, the topics of accessing and loading XML were discussed. Accessing XML is accomplished
through the XML Axis properties, which enable you to easily and efficiently navigate the XML tree
and retrieve the information you want. Loading XML is as simple as calling the Load method on the
XElement class.

You also explored using the Parse method to manipulate XML. It enables you to specify several load
options so that you can manipulate the XML as you parse it. For example, you can preserve the
whitespace or track individual element line item information.

In the next chapter, the focus turns to working with LINQ to SQL.

195

Klein C09.tex V3 - 12/13/2007 5:49pm Page 196

Klein p03.tex V3 - 12/13/2007 2:00pm Page 197

Part III

LINQ to SQL

Chapter 10: LINQ to SQL Overview

Chapter 11: LINQ to SQL Queries

Chapter 12: Advanced Query Concepts

Chapter 13: More about Entity Classes

Chapter 14: LINQ to DataSet

Chapter 15: Advanced LINQ to SQL Topics

Klein p03.tex V3 - 12/13/2007 2:00pm Page 198

Klein c10.tex V3 - 12/13/2007 2:01pm Page 199

LINQ to SQL Overview

LINQ to SQL is a component of LINQ and part of ADO.NET that provides a run-time infrastructure
for mapping relational data as objects. This chapter provides an overview of LINQ to SQL, and the
rest of the chapters in this section of the book then dig deeper into the individual aspects of LINQ
to SQL, including LINQ to SQL queries and LINQ over DataSets.

Today’s developers have access to many great technologies that afford management and
manipulation of database objects as well as data-querying capabilities. The .NET Framework
provides ADO.NET, a platform for accessing data sources such as XML (via the System.XML
namespace, which supplies a programmatic representation of XML documents and mechanisms for
manipulating XML documents, nodes, and XML fragments) and SQL Server (via the System.Data
namespace, which offers the primary data access methods for managed applications) as well as
other data sources exposed through ODBC and OLE DB.

Yet, all this great technology has its limitations, such as sometimes being overly complex (for
example, OLE DB is COM based and therefore does not work in the object-oriented paradigm, and
it also requires quite a bit of code to address data access functionality). While LINQ to SQL may
not offer any speed advantages over previous or existing technology, it does offer the capability to
build applications more quickly and efficiently.

This chapter discusses the fundamentals and concepts that programmers need to know to work
with LINQ to SQL, including the following:

❑ Overview of LINQ to SQL

❑ LINQ to SQL object model

❑ Attribute-based mapping

❑ Relational data basics

Klein c10.tex V3 - 12/13/2007 2:01pm Page 200

Part III: LINQ to SQL

Understanding LINQ to SQL
As mentioned, LINQ to SQL is a part of ADO.NET and a component of LINQ. As such, you get the benefit
of the unified programming model, standard query operators, and standard query facilities provided by
LINQ, plus the services provided by the ADO.NET provider model.

LINQ to SQL works by mapping the data model of a relational database object, such as a table, to an
object model defined in the developer’s chosen programming language. For example, the following code
maps the Person.Contact table of the Adventureworks database to a public class defined in C#. A public
class is defined, and mapped by annotating the class with the LINQ TableAttribute, passing it the name
of the SQL Server table to map to using the attribute’s Name parameter.

[Table(Name = "Person.Contact")]
public class Contact
{

[Column(DBType = "nvarchar(8)")]
public string Title;

[Column(DBType = "nvarchar(50) ")]
public string FirstName;

[Column(DBType = "nvarchar(50) ")]
public string MiddleName;

[Column(DBType = "nvarchar(50) ")]
public string LastName;

[Column(DBType = "nvarchar(50) ")]
public string EmailAddress;

[Column(DBType = "int")]
public int EmailPromotion;

}

At this point, the relational mapping is complete, having mapped a data model to an object model.

The next step is to build the channel by which the objects and data are retrieved from the database. The
channel is created via the DataContext class. The DataContext class is part of the System.Data.Linq
namespace, and its purpose is to translate your requests from .NET objects to SQL queries, and then
reassemble the query results back into objects.

The DataContext class is discussed in detail in Chapter 11.

Here’s an example that defines a DataContext that connects to the Adventureworks database using
integrated security:

DataContext context = new DataContext(
"Initial Catalog=AdventureWorks;Integrated Security=sspi");

200

Klein c10.tex V3 - 12/13/2007 2:01pm Page 201

Chapter 10: LINQ to SQL Overview

You use DataContext much the same way that you use an ADO.NET connection, in that it is initialized
with a connection or connection string.

Once the DataContext is created, a table variable is constructed using the Contact class created above.
This is done by using the Table class of the System.Data.Linq namespace, which provides the capability
to query a table and even add and delete objects. LINQ to SQL works with objects. Meaning, in LINQ to
SQL a relational database’s object model is directly mapped to an object model expressed in your selected
programming language. Thus, a translation takes place. LINQ to SQL translates the LINQ queries of
the object model into statements that SQL can understand and then sends them off to SQL Server for
execution. The reverse happens when the data is returned. The results are translated back to objects that
you can work with.

Access to the table is accomplished by using the GetTable method of the defined DataContext,
like this:

Table<Contact> contact = context.GetTable<Contact>();

Now you’re ready to query the database using the same LINQ query operators and query facilities that
you have come to love.

The following code queries the Person.Contact table of the Adventureworks database as defined in the
object mapping:

var query =
(from c in contact
where c.FirstName.StartsWith("S")
&& c.LastName.StartsWith("K")
orderby c.LastName
select c);

As with the other components of LINQ, LINQ to SQL works with both C# and Visual Basic. LINQ to
SQL also supports stored procedures and user-defined functions. However, to fully understand LINQ
to SQL, the LINQ to SQL object model and the concept of attribute-based mapping must be explored.

LINQ to SQL Object Model
The LINQ to SQL object model provides the fundamental elements for working with and managing
relational objects. It is via this model that a relational model is mapped to and expressed in the
developer’s programming language.

In the LINQ to SQL object model, database commands are not issued against the database directly. As a
developer, you simply change values and execute methods within the confines of the object model. LINQ
to SQL then translates those changes or methods into the appropriate SQL commands and funnels them
through to the database to be executed. The object model works through its relationship to the database
and the database model to perform given tasks. The following table shows the relationship between the
LINQ to SQL object model and the corresponding relational model.

201

Klein c10.tex V3 - 12/13/2007 2:01pm Page 202

Part III: LINQ to SQL

LINQ to SQL Object Relational Object

DataContext Database

Entity class Table

Class member Column

Association Foreign-key relationship

The following section explores LINQ to SQL object model mapping.

Attribute-Based Mapping
It is all about attributes when mapping SQL Server objects to the object model. This attribute-based
approach is utilized heavily by LINQ to SQL to effectively map database objects to an object model
defined in the user’s programming language.

There are three ways to create attribute mapping:

❑ The Object Relational Designer (ORD) tool

❑ The SQLMetal command-line tool

❑ By hand via code

So far, all the mapping has been done via code, but later chapters will discuss the other two options in
detail. You have seen several of the attribute-based mappings in action throughout this book, but the
following sections discuss the different attributes in more detail, including their associated properties
and descriptions.

Prior to Beta2, attribute-based mapping was supported via the System.Data.Linq namespace. If you
then installed Beta2 and tried to compile your code, you received a lot of compile errors. That is because
attribute-based mapping is now supported via the System.Data.Linq.Mapping namespace.

Using the Database Attribute
The Database attribute is used to specify the name of the database when defining a mapping between a
database and object. This attribute has one property, Name, which is used to hold the name of the database
to which you are defining a mapping.

Here’s an example of the Database attribute being applied to a class to define a mapping:

[Database(Name="AdventureWorks")]
public class AWDB

202

Klein c10.tex V3 - 12/13/2007 2:01pm Page 203

Chapter 10: LINQ to SQL Overview

{
//

}

The use of this attribute is optional, but if used, the Name property must be used. Typically, you would
use this property when a database name is not supplied in the connection string.

Mapping Tables
Database tables are represented by entity classes in LINQ to SQL. An entity class is a normal class like
one that you might define, except that it is annotated with a specific tag that maps, or associates, that
class with a specific database table.

The Table attribute is required by LINQ to SQL, and maps an entity class (a class that has been designated
as an entity) to a table or view. The Table attribute also has a single property, Name, which specifies the
name of the relational table or view.

The following is an example of the Table attribute being applied to a class to define a mapping between
the HumanResources.Employee table and the Employee class, and mapping a class named Contact with
the Person.Contact table in the Adventureworks database:

[Table(Name = "HumanResources.Employee")]
public class Employee
{

//
}
[Table(Name = "Person.Contact")]
public class Contact
{

//
}

Remember, only those entity classes that have been mapped to a table can be saved to the database. That
means that if you map the Person.Contact table to an entity class but don’t map the
HumanResources.Employee table to an entity class, you can only work with the Person.Contact
table (query data, save, and so on).

Keep in mind that classes marked with the [Table] attribute are treated as persistent classes by LINQ
to SQL.

Mapping Columns
Once the table is mapped to an entity class, table columns must be mapped to class properties. The
Column attribute maps a column of a database table to a member of an entity class. Fields or properties
are designated to represent database columns, and only those fields or properties that are mapped are
retrieved from the database.

The following table describes the Column attribute’s properties.

203

Klein c10.tex V3 - 12/13/2007 2:01pm Page 204

Part III: LINQ to SQL

Property Description
Default Value
(if any)

Name Name of the table column.

DbType Database type of the database column.

Storage The entity class storage field/variable.

IsPrimaryKey Specifies that the associated column is the primary
key of the corresponding table.

false

IsDbGenerated Specifies that the associated column auto-generates
its values.

false

CanBeNull Specifies that the associated column can contain
null values.

true

AutoSync Tells the runtime to get the column value after an
INSERT or UPDATE operation has been executed. It has
four options: Always—Always returns the column
value for an INSERT or UPDATE operation.
Never—Never returns the value for an INSERT or
UPDATE operation. OnUpdate: Only returns the column
value for UPDATE operations. OnInsert: Only returns
the column value for INSERT operations.

Never

Expression Defines a computed database column.

IsVersion Specifies that the associated column is either a
timestamp or version number column.

false

UpdateCheck Indicates how LINQ to SQL should handle optimistic
concurrency conflicts. Uses one of the following
values: Always, Never, WhenChanged.

IsDiscriminator Specifies that the column contains the discriminator
value for a LINQ to SQL inheritance hierarchy.

Here’s an example that shows how to use the Column attribute to map properties to specific
database columns:

[Column(DBType = "int", IsPrimaryKey=true, CanBeNull=false)]
public int EmployeeID;

[Column(DBType = "nvarchar(256)", CanBeNull=false)]
public string LoginID;

[Column(DBType = "nvarchar(15)", CanBeNull=false)]
public string NationalIDNUmber;

[Column(DBType = "int",CanBeNull=false)]
public int ManagerID;

204

Klein c10.tex V3 - 12/13/2007 2:01pm Page 205

Chapter 10: LINQ to SQL Overview

Those fields that are not tagged as columns are considered temporary information, meaning, they are
assumed to be nonpersistent and are not submitted back to the database.

The following example illustrates how to map a few properties with several columns of the
Person.Contact table in the Adventureworks database:

[Column(DBType = "nvarchar(8)")]
public string Title;

[Column(DBType = "nvarchar(50)")]
public string FirstName;

[Column(DBType = "nvarchar(50)")]
public string MiddleName;

[Column(DBType = "nvarchar(50)")]
public string LastName;

[Column(DBType = "nvarchar(50)")]
public string EmailAddress;

[Column(DBType = "int")]
public int EmailPromotion;

Add this to the Table mapping, and you have the following:

[Table(Name = "Person.Contact")]
public class Contact
{

[Column(DBType = "nvarchar(8) not null")]
public string Title;

[Column(DBType = "nvarchar(50) not null")]
public string FirstName;

[Column(DBType = "nvarchar(50) not null")]
public string MiddleName;

[Column(DBType = "nvarchar(50) not null")]
public string LastName;

[Column(DBType = "nvarchar(50) not null")]
public string EmailAddress;

[Column(DBType = "int")]
public int EmailPromotion;

}

Only those columns that are defined are used to persist data to the table and retrieve data from the
database. In the example, the entity class and associated column properties will persist the
Title, FirstName, MiddleName, LastName, EmailAddress, and EmailPromotion columns from the
Person.Contact table to and from the database. Any other columns in the table will not be persisted
and are considered transient.

205

Klein c10.tex V3 - 12/13/2007 2:01pm Page 206

Part III: LINQ to SQL

Mapping Relationships
Queries to the database generally require pulling information from multiple tables, not just a single table.
Those tables are typically joined via a primary key/foreign key relationship. LINQ to SQL’s Association
attribute can represent those database associations.

The Association attribute’s properties are described in the following table. They can be used to
customize the associations.

Property Description

Name The name of the association.

Storage Specifies the storage field/variable.

IsUnique Specifies whether the FK is a unique
constraint.

IsForeignKey Specifies whether the associa-
tion/constraint is a foreign key.

ThisKey Identifies members of the entity
class to represent the key values on
this side of the association.

OtherKey Identifies one or more members of
the target entity class as key values
on the other side of the association.

The following example shows how the Association attribute is used to define an association:

[Association(Name = "FK_Employee_Contact_ContactID",
Storage = "_Employee", ThisKey = "ContactID", IsForeignKey = true)]

public Employee Emp
{

get { return this._Employee.Entity; }
set { this._Employee.Entity = value; }

}

The association is applied to a table in which you need to reference the associated table.

In the following example, the Contact class contains an Employee property that’s tagged with the
Association attribute, providing the Contact class with a relationship to the Employee class:

[Table(Name = "Person.Contact")]
public class Contact
{

[Column(DBType = "nvarchar(8) not null")]
public string Title;

206

Klein c10.tex V3 - 12/13/2007 2:01pm Page 207

Chapter 10: LINQ to SQL Overview

[Column(DBType = "nvarchar(50) not null")]
public string FirstName;

[Column(DBType = "nvarchar(50) not null")]
public string MiddleName;

[Column(DBType = "nvarchar(50) not null")]
public string LastName;

[Column(DBType = "nvarchar(50) not null")]
public string EmailAddress;

[Column(DBType = "int")]
public int EmailPromotion;

private EntityRef<Employee> _Employee;

[Association(Name = "FK_Employee_Contact_ContactID",
Storage = "_Employee", ThisKey = "ContactID", IsForeignKey = true)]

public Employee Emp
{

get { return this._Employee.Entity; }
set { this._Employee.Entity = value; }

}

}

More about LINQ to SQL and database relationships is discussed in Chapter 12.

Mapping Stored Procedures
One of the many great qualities of LINQ to SQL is its support for stored procedures, which is
accomplished via the StoredProcedure attribute. That attribute is used to map a stored procedure in
the database to a client object. It has only a single property, Name, which specifies the name of the stored
procedure. Here’s the attribute’s general syntax:

[StoredProcedure(Name="OrdersBySalesPersonID")]
public IEnumerable OrdersBySalesPersonID([Parameter(DBType = "int")] String param1)
{

IExecuteResults results = this.ExecuteMethodCall<OrdersBySalesPersonID>
(this, ((MethodInfo)(MethodInfo.GetCurrentMethod())),
param1);

}

With LINQ to SQL, you can easily map each database object to a client object, providing
developers the capability to access the stored procedures through client code in a strongly typed
manner. Through this mapping, the client method signatures bear a resemblance to the signatures of
the procedure that is defined in the database, utilizing many of the programming language features
such as IntelliSense.

In the following example, the highlighted code shows how to implement a stored procedure mapping
into your client object class:

[Table(Name = "Person.Contact")]
public class Contact

207

Klein c10.tex V3 - 12/13/2007 2:01pm Page 208

Part III: LINQ to SQL

{
[Column(DBType = "nvarchar(8) not null")]
public string Title;

[Column(DBType = "nvarchar(50) not null")]
public string FirstName;

[Column(DBType = "nvarchar(50) not null")]
public string MiddleName;

[Column(DBType = "nvarchar(50) not null")]
public string LastName;

[Column(DBType = "nvarchar(50) not null")]
public string EmailAddress;

[Column(DBType = "int")]
public int EmailPromotion;

[StoredProcedure(Name="OrdersBySalesPersonID")]
public IEnumberable OrdersBySalesPersonID([Parameter(DBType =

"int")] String param1)
{

IExecuteResults results = this.ExecuteMethodCall<OrdersBySalesPersonID>
(this, ((MethodInfo)(MethodInfo.GetCurrentMethod())),
param1);

}

}

You’ll learn more about LINQ to SQL and stored procedure mapping in Chapter 11.

Mapping Functions
LINQ to SQL also supports user-defined functions. Client objects and user-defined functions are mapped
the same way stored procedures are—through an attribute. Here’s the general syntax of the Function
attribute:

[Function()]
Public IQueryable<ufnGetcontactInformation>

ufnGetcontactInformation(System.Nullable<int> ContactID)
{

//
}

This attribute has a single property, Name, which is used to specify the name of the user-defined function:

[Function(Name="ufnGetcontactInformation")]
Public IQueryable<ufnGetcontactInformation>

ufnGetcontactInformation(System.Nullable<int> ContactID)
{

//
}

208

Klein c10.tex V3 - 12/13/2007 2:01pm Page 209

Chapter 10: LINQ to SQL Overview

If you do not specify a Name value, as in the first example, the default value is the same string as the
user-defined function name, which in the example is ufnGetcontactInformation.

Using the Parameter Attribute
The Parameter attribute maps input parameters on stored procedure methods. It has two properties,
which are described in the following table.

Property Description Default Value (if any)

Name Name of the parameter The same string as the
parameter name in
the database

DbType Database data type

The Name property can be used two ways: with an input parameter and with an output or return
parameter. Both scenarios are shown in the following example. The first Parameter attribute specifies
the return parameter type, and the second specifies the input variable type.

[StoredProcedure(Name="OrdersBySalesPersonID")]
[return: Parameter(DbType = "numeric")]
public IEnumerable MaxOrderBySalesPersonID([Parameter(DbType = "int")]
String param1)
{

IExecuteResults results = this.ExecuteMethodCall<OrdersBySalesPersonID>
(this, ((MethodInfo)(MethodInfo.GetCurrentMethod())),
param1);

}

Stored procedure, user-defined function, and parameter mappings are discussed in more detail
in Chapter 11.

The Basics of Relational Data
LINQ to SQL is all about working with relational data. As you have learned, this is accomplished through
the mapping of the relational data model to an object model expressed in the developer’s programming
language. But regardless of the programming language and the object models, you are working with
data. It all boils down to CRUD operations; you are creating (inserting), reading, updating, or deleting
data—CRUD.

If you have no relational data knowledge or experience, this section is for you. If you are using LINQ to
SQL you will inevitably run into relational data environments (after all, that is what relational databases
are all about) and because you are mapping relational data objects (tables, and so on) to programming
language objects, you also need to take into account their relational data (primary keys and foreign keys).

There are, of course, complete books on how to effectively and efficiently design databases. For
example, the Wrox book Beginning Database Design covers design concepts including modeling and

209

Klein c10.tex V3 - 12/13/2007 2:01pm Page 210

Part III: LINQ to SQL

normalization. This section merely introduces the concepts of primary keys and foreign keys that are
used in relational databases.

Chapter 12 explores querying across relationships using LINQ to SQL in detail.

Primary Keys
A primary key is a column or a group of columns that uniquely identifies each individual row in a
database table. No columns included in the primary key can accept null values. A primary key enforces
the table’s integrity and can be defined when the table is created, or later when modifying the structure
of the table. A primary key can be defined on a single, or multiple columns.

A table can only have one primary key. The most common form of a primary key is an identity column
on SQL data types such as int and bigint.

Take a look at Figure 10-1, which shows the table design for the Person.Contact table in the Adventure-
Works database.

Figure 10-1

210

Klein c10.tex V3 - 12/13/2007 2:01pm Page 211

Chapter 10: LINQ to SQL Overview

There are several things to notice. First, you can tell which column, or columns, are defined as the primary
key by the gold key displayed in the row selector. In this example, the ContactID column is designated
as the primary key. Second, the data type for the primary key is defined as an int, and the column does
not accept null values (the Allow Nulls box is not checked), which means that a value must be entered
into that column whenever a new row is added to the table.

The properties of the selected column display in the bottom pane. In this instance, it’s the ColumnID
properties that are showing. The Identity Specification has been set to Yes, meaning that this is an identity
column, and you can set both an initial value (Identity Seed) and the value by which to increment each
new row (Identify Increment). Here, the initial seed value is 1, and each new value increments by 1.

The identity specification lets you specify both an identity number (an initial value for the column for the
first row inserted into the table) and the value in which to increment when new rows are added. The cool
thing about identity columns is that the database engine takes care of all of the work of automatically
incrementing the identity value and assigning the new value to the new row. Setting this property to
‘‘Yes’’ tells SQL Server to automatically manage the value of this column.

When a primary key is defined, a unique index is created on its columns. The index allows for quick
retrieval of records when the primary key is used in a query.

Define a primary key by clicking the Set Primary Key button (the gold key) on the Table Designer toolbar
when the table is in design mode. Figure 10-2 points out the button on the toolbar.

Figure 10-2

When mapping an object to a relational data object, you need to specify which column is the primary
key. The following code shows the mapping of the AdventureWorks table Sales.Contact. In it, the
ContactID column is mapped and annotated as a column to return. In the definition of the column,
several properties are set, identifying it as the primary key of the Person.Contact table, and enabling its
values to be generated automatically (via the IsDBGenerated property).

[Table(Name = "Person.Contact")]
public class Contact
{

[Column(DBType = "int", IsPrimaryKey = true, IsDBGenerated = true)]
public int ContactID;

[Column(DBType = "nvarchar(8)")]
public string Title;

[Column(DBType = "nvarchar(50) ")]
public string FirstName;

[Column(DBType = "nvarchar(50) ")]
public string MiddleName;

[Column(DBType = "nvarchar(50) ")]
public string LastName;

211

Klein c10.tex V3 - 12/13/2007 2:01pm Page 212

Part III: LINQ to SQL

[Column(DBType = "nvarchar(50) ")]
public string EmailAddress;

[Column(DBType = "int")]
public int EmailPromotion;

}

Any time you are mapping a relational table that has a primary key, and you plan on returning the
primary key column in your LINQ to SQL queries, you must identify the column as the primary key and
the identity by using the properties IsPrimaryKey and IsDBGenerated as this example shows.

Foreign Keys
Foreign keys define a relationship between two tables. A foreign key is a single column or a group of
columns that is used to create and impose a relationship, or link, between a parent table and a child table.

Foreign keys are created when the column or columns of the primary key (from the primary key table) are
referenced by the column or columns in another table (the foreign key table). As discussed in the previous
section, the ContactID column in the Person.Contact table is a primary key. Figure 10-3 shows that the
ContactID column has been included or added to the HumanResources.Employee table, becoming a
foreign key in this table.

Figure 10-4 shows the two tables, Person.Contact and HumanResources.Employee, with the primary
key/foreign key relationship defined. The line between the two tables does not create the relationship
but illustrates the association between the two tables.

However, simply adding a reference column in another table (such as the HumanResources.Employee
table) does not create a primary key/foreign key relationship. That’s only the first part. The last part is to
add a foreign key constraint on the second table. A constraint is a rule used to maintain data integrity of
a table.

To create the actual relationship you tell the HumanResources.Employee table that its ContactID column
is a foreign key to the ContactID column in the Person.Contact table. This can be accomplished by the
following:

ALTER TABLE [HumanResources].[Employee] ADD CONSTRAINT
[FK_Employee_Contact_ContactID]

FOREIGN KEY([ContactID])
REFERENCES [Person].[Contact] ([ContactID])

This T-SQL code creates a foreign key constraint on the ContactID column referencing the ContactID
column in the Person.Contact table. The constraint is used to determine the action on the values in the
related tables. For example, if a value that is used in one or more related tables is deleted, the constraint
determines whether the value in the related table is also deleted, left in, or set to null.

To see this in action, open SQL Server Management Studio and execute the following in a query window:

SELECT ContactID, FirstName, LastName
FROM Person.Contact
WHERE ContactID = 1172

212

Klein c10.tex V3 - 12/13/2007 2:01pm Page 213

Chapter 10: LINQ to SQL Overview

Figure 10-3

You should get the following results:

ContactID FirstName LastName
--------- --------- --------
1174 Scott Gode

Now, execute the following query:

SELECT EmployeeID, NationalIDNumber, ManagerID, Title
FROM HumanResources.Employee
WHERE ContactID = 174

213

Klein c10.tex V3 - 12/13/2007 2:01pm Page 214

Part III: LINQ to SQL

Figure 10-4

Here are the results:

EmployeeID NationalIDNumber ManagerID Title
---------- ---------------- --------- -----
98 199546871 197 Production Technician - WC45

You can see that the ContactID values in both the Person.Contact table and the HumanRe-
sources.Employee table match. The foreign key constraint ensures that any value inserted into the
ContactID column in the HumanResources.Employee table matches a value in the ContactID column
in the Person.Contact table. To test this, try to insert a row into the HumanResources.Employee table
using the value of 20000 for the ContactID. You should get an error from SQL Server because there is no
row in the Person.Contact table with ContactID = 20000.

When mapping an object to a foreign relational data object, you must specify which column is the foreign
key. You do so by defining a method within the table definition and annotating that method with the
Association attribute. This attribute tells the table that it is a foreign key table and identifies the column
that is the foreign key column. The following code shows how the HumanResources.Employee table is
mapped and the foreign key for the table identified:

[Table(Name = "HumanResources.Employee")]
public class Employee
{

[Column(DBType = "int", IsPrimaryKey=true, IsDBGenerated=true, CanBeNull=false)]
public int EmployeeID;

[Column(DBType = "int", CanBeNull=false)]
public int ContactID;

214

Klein c10.tex V3 - 12/13/2007 2:01pm Page 215

Chapter 10: LINQ to SQL Overview

[Column(DBType = "nvarchar(256) not null")]
public string LoginID;

[Column(DBType = "nvarchar(15) not null")]
public string NationalIDNUmber;

[Column(DBType="int")]
public int ManagerID;

private EntityRef<Contact> _Contact;

[Association(Name = "FK_Employee_Contact_ContactID",
Storage = "_Contact", ThisKey = "ContactID", IsForeignKey = true)]

public Employee Emp
{

get { return this._Employee.Entity; }
set { this._Employee.Entity = value; }

}

}

While identifying relational data relationships in LINQ to SQL might seem a bit overwhelming, clearly
it’s something you must understand.

Summary
LINQ to SQL is powerful and flexible. This chapter introduced you to LINQ to SQL, providing an
overview and some insight into the LINQ to SQL object model. You learned about attribute-based
mapping and how to effectively map relational data objects and object models expressed in the
developer’s programming language.

The last part of this chapter helped those who have no database design experience to understand database
relationships and how they apply to and are used in LINQ to SQL.

Chapter 11 introduces LINQ to SQL queries and tackles the many components and concepts used when
executing queries against a relational database.

215

Klein c10.tex V3 - 12/13/2007 2:01pm Page 216

Klein c11.tex V3 - 12/13/2007 2:02pm Page 217

LINQ to SQL Queries

LINQ to SQL is extensive, supporting many of the query aspects found in a relational database. But
even with its depth and profound technology, it is quite easy to use and understand because of its
use of the standard query facilities (standard query operators) found in LINQ and the many new
.NET features found in .NET Framework 3.0, including extension methods and anonymous types.

In this chapter, you will explore LINQ to SQL queries, including the following:

❑ LINQ to SQL query concepts

❑ The DataContext class

❑ Data manipulation via LINQ to SQL

❑ Working with entity objects

❑ Querying with stored procedures and user-defined functions

Query Concepts
By now you know that LINQ to SQL queries really are not any different from the other LINQ
queries you have seen and worked with throughout this book. They follow the same syntax format
as LINQ and LINQ to XML queries.

However, they vary in one area. In LINQ to XML you query an XML document tree or fragment
directly, but in LINQ to SQL you query mapped objects, meaning that the objects you are querying
are mapped to objects or items in a relational database, such as a table or stored procedure.

A LINQ to SQL query, like standard LINQ queries, has parts or actions of the query operation: the
obtaining of a data source, the query creation, and the query execution. It uses the same standard
query operators and query patterns because of its tight integration with LINQ. There are subtle
differences between some of the query items. For example, items such as filtering and grouping are
the same, but the variable of the return type for LINQ to SQL must be of IQueryable(of T) instead
of the IEnumerable that a standard LINQ query uses.

Klein c11.tex V3 - 12/13/2007 2:02pm Page 218

Part III: LINQ to SQL

The following table lists the similarities and differences between a standard LINQ query and a LINQ to
SQL query. Notice that most of the query items are identical, meaning that they follow the same syntax.
The only differences are the way joins are handled and the query variable return type.

Query Item LINQ LINQ to SQL

Query variable return type IEnumerable IQueryable

Data source specification From/from equivalent

Filtering Where/where equivalent

Grouping Goupby equivalent

Selecting Select/select equivalent

Joins join Association attribute

In LINQ to SQL joins, the recommended technique is to use the Association attribute, but as you saw in
Chapter 3, it is possible to use the join clause. However, the join clause does not have access to any of
the properties employed by the Association attribute, thus limiting its flexibility.

LINQ to SQL also employs the same rules of query execution as a standard LINQ query, meaning
deferred and immediate. You recall that a deferred execution query is one that produces a sequence
of values, and the query is not executed until you iterate through the results (that is, iterate over the
query variable). An immediate executed query is one that returns a single value (such as a query that
returns a MAX value, or COUNT). These types of queries are executed immediately because a sequence
must be produced first to generate the result.

There are several components involved when a query is executed:

❑ LINQ to SQL API

❑ LINQ to SQL Provider

❑ ADO Provider

Each of these components plays a pivotal role when executing a query. When a LINQ to SQL query is
executed, seven steps are taken to execute the query and return the results.

1. The LINQ to SQL API requests execution of the query on behalf of your application.

2. The LINQ to SQL API hands the query off to the LINQ to SQL Provider.

3. The LINQ to SQL Provider converts the LINQ query to T-SQL.

4. The LINQ to SQL Provider hands the new query off to the ADO Provider for execution on
the server.

5. The query is executed and the results are handed back to the ADO Provider in the form of
a DataReader.

6. The ADO Provider hands the DataReader back to the LINQ to SQL Provider.

7. The LINQ to SQL Provider converts the DataReader into an enumerable form of user objects.

218

Klein c11.tex V3 - 12/13/2007 2:02pm Page 219

Chapter 11: LINQ to SQL Queries

Realistically, a few of these steps could have been combined, but they are listed separately to provide a
detailed look at what happens when a LINQ to SQL query is executed. These steps also look like they
could take a while to process. On the contrary, LINQ to SQL was architected with performance in mind
from the get-go, and as you start working with LINQ and LINQ to SQL, you will notice that it indeed
works quickly.

To execute a query, a connection to the data source must first be established, and that is accomplished
through the DataContext class. The next section explains how.

DataContext
Before you can execute a LINQ to SQL query, a connection to the data source must be made. In LINQ
to SQL, database connections are made through the DataContext class. Think of the DataContext class
on the same level as you would the SqlConnection class of ADO.NET. DataContext is the medium in
which connections to a database are made, through which objects are retrieved from and submitted to
the database.

Like the SqlConnection class, the DataContext instance accepts a connection string. Once the connection
is made, data is read from, and changes are transmitted back to, the database through the DataContext.
However, there is one thing the DataContext does that the SqlConnection does not. Since LINQ to SQL
deals with objects, the DataContext also does the work of converting the objects into SQL queries and
then reassembling the results back into queryable objects.

The DataContext has several overloads, one of which is just a simple connection string specifying the
connection information, as shown in this code:

DataContext db = new DataContext(
"Initial Catalog=AdventureWorks;Integrated i

Security=sspi");

You can also pass an IDbConnection, which represents an open connection to a data source.
IDbConnection is an interface that is defined in the System.Data namespace and allows a class that
inherits from this interface to implement a Connection class, containing a unique session with a data
source. This interface takes a little more effort because classes that inherit from the IDbConnection
interface must also implement all inherited members. The trick is that the application doesn’t create
an instance of IDbConnection directly; instead, the application should create an instance of a class that
inherits from IDbConnection. In most cases, you are much better off instantiating an instance of the
DataContext and passing a string containing the necessary connection information.

The DataContext has several useful public methods, including CreateDatabase and DeleteDatabase, as
well as CreateQuery, ExecuteQuery, GetQueryText, and SubmitChanges.

The CreateDatabase and DeleteDatabase methods do exactly as their names imply. CreateDatabase
creates a database with the database name taken either from the connection string, the Database attribute,
the name of the file (if the DataContext has been created using a file), or the name of the DataContext
inheriting class if a strongly typed DataContext is used.

The strongly typed DataContext is discussed in the next section.

219

Klein c11.tex V3 - 12/13/2007 2:02pm Page 220

Part III: LINQ to SQL

The following example creates a new database using the name ScottWrox, which is specified in the
connection string:

DataContext db = new DataContext("Initial Catalog=ScottWrox;Integrated i
Security=sspi");
db.CreateDatabase();

The same criteria for database naming apply to the DeleteDatabase method.

db.DeleteDatabase();

The following example illustrates the use of the DatabaseExists method of the DataContext class, which
can be used to determine if a database already exists:

try
{

DataContext db = new DataContext("Initial Catalog=WroxScott;Integrated
Security=sspi");

bool_dbExists = db.DatabaseExists();

if (_dbExists == true)
db.DeleteDatabase();

else
{

db.CreateDatabase();
textBox1.Text = "Database created.";

}
}
catch (Exception ex)
{

MessageBox.Show(ex.Message);
}

The SubmitChanges method is the component that sends your data changes back to the database. Here’s
how to use it:

DataContext db = new DataContext("Initial Catalog=AdventureWorks;Integrated i
Security=sspi");
// Do some work on the data
db.SubmitChanges();

You’ll explore SubmitChanges in more detail later in the chapter.

Strongly Typed DataContext
Creating a strongly typed DataContext is quite simple. All you need to do is create a new class that
inherits from the DataContext class, as shown in the code example below:

public class AdventureWorks : DataContext
{

220

Klein c11.tex V3 - 12/13/2007 2:02pm Page 221

Chapter 11: LINQ to SQL Queries

public AdventureWorks(string connection) : base(connection) {}
// table definitions

}

Once the DataContext is created, you can use it to connect to the specified database, as shown in the
following example. In it, the preceding strongly typed DataContext is given the same name as the
database to use; in this case, AdventureWorks. Therefore, no database name needs to be specified in
the connection string.

AdventureWorks db = new AdventureWorks(Integrated Security=sspi");

bool _dbExists = db.DatabaseExists();

if (_dbExists == true)
textBox1.Text = "Yep, Exists!";

Creating strongly typed DataContext objects is preferred over non-strongly typed because utilizing
strongly typed table objects eliminates the need to use the GetTable method in your queries.

Each database table is represented as a Table collection, which is available through the GetTable method
of the DataContext class. GetTable gives you access to the table in an untyped fashion. For example, the
following code creates a connection to the AdventureWorks database and the Contact table by way of
the GetTable method, but it is not strongly typed:

DataContext context = new DataContext(
"Initial Catalog=AdventureWorks;Integrated Security=sspi");

Table<Contact> con = context.GetTable<Contact>();

The appropriate way to create a strongly typed DataContext is:

public class AdventureWorks : DataContext
{

public AdventureWorks(string connection) : base(connection) {}
public Table<Contact> Contact;

}

This example creates a new class that inherits from the DataContext class and then defines a table for
a specific type (in this case, the Contact table) in the underlying database. This provides access to the
database through a strongly typed DataContext and strongly typed table.

Data Manipulation
Now you’re ready to start querying, modifying, and sending data back to the database. This section of
the chapter walks you through a full example that updates, inserts, and deletes data using LINQ to SQL.

Fire up your copy of Visual Studio and create a new C# Windows project. On Form1, place three buttons
and a text box. Name the first button cmdInsert, the second button cmdUpdate, and the third button
cmdDelete. Make sure that the text box is long enough to hold and view 20 characters.

For this example, you need to add a reference to LINQ, so in Solution Explorer, right-click on References
and select Add Reference. When the Add Reference dialog appears, make sure that the .NET tab is

221

Klein c11.tex V3 - 12/13/2007 2:02pm Page 222

Part III: LINQ to SQL

selected and scroll down until you see the System.Data.Linq component name. Select that component
and click OK.

Next, right-click on Form1 and select View Code. Add the following line to the rest of the
using statements:

using System.Data.Linq;

Time to start adding the good stuff.

Insert
Let’s begin by discussing Insert operations. First, add the following to the form code below the partial
class for Form1:

public class AdventureWorks : DataContext
{

public AdventureWorks(string connection) : base(connection) {}
public Table<Contact> Contact;

}

This should look familiar—it’s the code from the strongly typed section a few pages ago. It strongly types
the DataContext and includes a reference to a strongly typed table.

The bulk of your form code should now look like this:

public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();
}

}

public class AdventureWorks : DataContext
{

public AdventureWorks(string connection) : base(connection) {}
public Table<Contact> Contact;

}

The strongly typed DataContext class references a strongly typed table, Contact, which has not been
created yet. The following code does that. Add it below the strongly typed DataContext class:

[Table(Name = "Person.Contact")]
public class Contact
{

[Column(DBType = "int not null")]
public int ContactID;

222

Klein c11.tex V3 - 12/13/2007 2:02pm Page 223

Chapter 11: LINQ to SQL Queries

[Column(DBType = "nvarchar(8) not null")]
public string Title;

[Column(DBType = "nvarchar(50) not null")]
public string FirstName;

[Column(DBType = "nvarchar(50) not null")]
public string MiddleName;

[Column(DBType = "nvarchar(50) not null")]
public string LastName;

[Column(DBType = "nvarchar(50) not null")]
public string EmailAddress;

[Column(DBType = "int")]
public int EmailPromotion;

[Column(DBType = "bit")]
public byte NameStyle;

[Column(DBType = "varchar(40)")]
public string PasswordHash;

[Column(DBType = "varchar(40)")]
public string PasswordSalt;

}

Next, add the following code to the Click event of the Insert button:

try
{

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");
Contact con = new Contact();
con.FirstName = "Scott";
con.MiddleName = "L";
con.LastName = "Klein";
con.Title = "Geek";
con.EmailAddress = "geek@email.com";
con.EmailPromotion = 1;
con.NameStyle = 0;
con.PasswordHash = "";
con.PasswordSalt = "";
db.Contact.Add(con);
db.SubmitChanges();
textBox1.Text = "Contact created.";

}
catch (Exception ex)
{

MessageBox.Show(ex.Message);
}

223

Klein c11.tex V3 - 12/13/2007 2:02pm Page 224

Part III: LINQ to SQL

You are ready to test it. Run the application and click the Insert button. Didn’t work, did it? The error
you should have received states that the table is read-only. This error is misleading (you’ll see why in a
minute), but the fix is simple. On the definition of the ContactID column, two ContactID properties need
to be set, as shown here:

[Table(Name = "Person.Contact")]
public class Contact
{

[Column(DBType = "int not null", IsPrimaryKey=true, IsDBGenerated=true)]
public int ContactID;

Now when you run the application and click the Insert button, the ‘‘Contact created’’ message appears
in the text box.

Why did the first insert fail? LINQ to SQL treats tables as read-only by default, and it needs to know
which column is the primary key. In fact, if you run this example and don’t specify the IsDBGenerated
property, it still won’t work, although you will get a different error, stating that it cannot insert an explicit
value for the identity column of the table when IDENTITY_INSERT is set to off. LINQ to SQL needs to
know that the table has a primary key, which column the primary key is, and that it is auto-generated.
At that point, LINQ to SQL won’t see the table as read-only.

Last, when the properties have been filled, the new object needs to be added to the Contact table in the
DataContext and the SubmitChanges method called to usher the changes back to the database.

Update
For an update, the code is going to query for a specific record and update a field of that record. Add
the following code behind the Update button. It queries for the record you inserted in the preceding
example and updates the email address. Keep in mind that when you run this code, the ContactID may
be different for you; be sure to use the correct ContactID.

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");
var con = db.Contact.Single(c => c.ContactID == 19980);
con.EmailAddress = "ScottKlein@SqlXml.com";
db.SubmitChanges();
textBox1.Text = "Contact updated.";

Run the application and click the Update button. When the text box displays ‘‘Contact updated,’’ you can
query the AdventureWorks database and verify that the email address for the new contact has indeed
been updated.

The preceding example updates a single row. Here’s how to update multiple rows:

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");

var queryContacts =
from names in db.Contact
where names.LastName == "Zwilling"
select names;

224

Klein c11.tex V3 - 12/13/2007 2:02pm Page 225

Chapter 11: LINQ to SQL Queries

foreach (var con in queryContacts)
{

con.EmailAddress = "ScottKlein@SqlXml.com";
}
db.SubmitChanges();
textBox1.Text = "Contact updated.";

This code returns a query that will yield two rows and updates the email address for each contact. It then
issues a single SubmitChanges to send the updates back to the database.

So far, so good, right? Good. Now let’s look at deleting.

Delete
Deleting is just as easy as inserting and updating. Place the following code behind the Delete
button, again making sure that you use the correct ContactID. The code simply uses the ID to delete the
desired record by calling the Remove method to delete the appropriate record. And, as you have learned,
SubmitChanges is called to send the statement to the database.

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");
var con = db.Contact.Single(c => c.ContactID == 19980);
db.Contact.Remove(con);
db.SubmitChanges();
textBox1.Text = "Contact deleted.";

To delete multiple records, your query would be built along the same lines as the update example for
multiple records.

Working with Objects
You can manipulate data using objects and object members, such as the Add(T) and Remove(T) methods.
It is not that different from what you have already learned in many of the examples in previous chapters.
The following sections show how to use objects to associate LINQ to SQL generic collections to database
objects for submission to the database for execution.

Insert
In the previous insert example, an empty Contact was created and then the individual column properties
were populated with data. Once the properties were filled, the populated Contact was added to the
strongly typed Contact table via the Add method. In other words, the previous example modified object
members directly.

There is another way, which is essentially the same as the last inset example but adds an object to the
LINQ to SQL collection (the Table(of T) collection) and hands that off for submission to the database.
The following example shows how this is accomplished:

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");
Contact con = new Contact

225

Klein c11.tex V3 - 12/13/2007 2:02pm Page 226

Part III: LINQ to SQL

{
FirstName = "Scott",
MiddleName = "L",
LastName = "Klein",
Title = "Geek",
EmailAddress = "geek@email.com",
EmailPromotion = 1,
NameStyle = 0,
PasswordHash = "",
PasswordSalt = ""

} ;
db.Contact.Add(con);
db.SubmitChanges();
textBox1.Text = "Contact created.";

The differences between this example and the previous Insert example are not that major. The results are
the same; it is just a matter of implementation.

Update
Rows can be updated by modifying the value members of the objects. Any object that is associated with a
Table(of T) collection can have its value members updated and the object submitted back to the database
for updating, as shown in the example below:

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");
var query = from con in db.Contact

where con.LastName == "Klein"
select con;

foreach (var cont in query)
{

cont.EmailAddress = "ScottKlein@SqlXml.com";
cont.Title = "Mr. Geek";

}

db.SubmitChanges();
textBox1.Text = "Contact updated.";

Delete
Rows can be deleted by removing the LINQ to SQL object. In the following example, a row is queried,
followed by the removal of the object from the returned collection. The object is removed by calling the
Remove(of T) method, T being the type of object to remove.

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");
var query = from con in db.Contact

where con.LastName == "Klein"
select con;

foreach (Contact del in query)
{

db.Contact.Remove(del);
}

226

Klein c11.tex V3 - 12/13/2007 2:02pm Page 227

Chapter 11: LINQ to SQL Queries

db.SubmitChanges();
textBox1.Text = "Contact deleted.";

As always, the changes are not applied until SubmitChanges is called, sending the changes back to
the database.

Stored Procedures and User-Defined Functions
Just like tables, stored procedures and functions are mapped, and they are mapped by creating class
methods with the StoredProcedure or Function attribute applied, respectively. The best way to learn
this is by example, so get comfy and ready to start writing code. The following examples illustrate how
to call stored procedures and user-defined functions (UDFs) in several scenarios. You will need to have
Visual Studio open as well as SQL Server Management Studio.

Mapping and Calling Stored Procedures
LINQ to SQL supports the mapping and calling of stored procedures via methods defined in your object
model that represent the stored procedure. Methods are designated as stored procedures by applying the
[Function] attribute and any associated [Parameter] attributes. Mapped stored procedures can return
rowsets and take parameters.

Returning a Single Result
In this first example, you will call a stored procedure that returns a single resultset. Open SQL Server
2005 Management Studio, and open a new query window. Type in the following and execute it:

CREATE PROCEDURE [dbo].[OrdersBySalesPersonID]
(

@salesPersonID int
)
AS
BEGIN

SELECT Production.Product.ProductID, Production.Product.Name, i
Sales.SalesPerson.SalesPersonID, Person.Contact.FirstName, i
Person.Contact.MiddleName,

Person.Contact.LastName, Sales.SalesOrderDetail.UnitPrice
FROM Production.Product
INNER JOIN Sales.SalesOrderDetail ON Production.Product.ProductID = i

Sales.SalesOrderDetail.ProductID
INNER JOIN Sales.SalesOrderHeader ON Sales.SalesOrderDetail.SalesOrderID i

= Sales.SalesOrderHeader.SalesOrderID
INNER JOIN Sales.SalesPerson ON Sales.SalesOrderHeader.SalesPersonID = i

Sales.SalesPerson.SalesPersonID
INNER JOIN Person.Contact ON Sales.SalesPerson.SalesPersonID = i

Person.Contact.ContactID
WHERE (Sales.SalesPerson.SalesPersonID = @salesPersonID)

END
GO

227

Klein c11.tex V3 - 12/13/2007 2:02pm Page 228

Part III: LINQ to SQL

This creates a new stored procedure called OrdersBySalesPersonID, which returns the product ID;
product name; the ID of the salesperson; the contact’s first, middle, and last name; and the unit price
of each product for a given salesperson. The SalesPersonID is passed in to the stored procedure as
a parameter.

Now turn your attention to LINQ and Visual Studio. Open Visual Studio and create a new C# project.
Once the project is created, add the reference to System.Data.Linq. Next, place a list box, a text box, and
five buttons on Form1. It doesn’t really matter how you lay everything out on the form, but make sure
that the list box is wide enough to display some data.

When the form is laid out, double-click the first button to display the code behind that button. Next, add
the using statement to System.Data.Linq, as shown in the following code:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Data.Linq;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace LINQ
{

public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();
}
private void Form1_Load(object sender, EventArgs e)
{

}

private void button1_Click(object sender, EventArgs e)
{

}
}

}

The next thing you want to do is create a class that derives from the DataContext class, which you learned
about earlier in this chapter. Creating a class that inherits from the DataContext class provides you with
all the connection processing functionality you need to work with LINQ to SQL and communicate
with SQL Server.

228

Klein c11.tex V3 - 12/13/2007 2:02pm Page 229

Chapter 11: LINQ to SQL Queries

Add a class called AdventureWorks that inherits from the DataContext class. Within that class, add the
highlighted code shown below:

namespace LINQ
{

public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();
}

private void Form1_Load(object sender, EventArgs e)
{

}

private void button1_Click(object sender, EventArgs e)
{

}
}

public class AdventureWorks : DataContext
{

public AdventureWorks(string connection) : base(connection) {}

}

}

Next, create a method and map it to the stored procedure created earlier. Underneath the DataContext
connection, add this highlighted code:

public class AdventureWorks : DataContext
{

public AdventureWorks(string connection) : base(connection) {}

[StoredProcedure(Name = "OrdersBySalesPersonID")]
public IEnumerable<OrdersBySalesPersonID> SalesOrders

([Parameter(DBType="int")] int salesPersonID)
{

return this.ExecuteMethodCall<OrdersBySalesPersonID>

(this, ((MethodInfo)(MethodInfo.GetCurrentMethod())),
salesPersonID);

}

}

229

Klein c11.tex V3 - 12/13/2007 2:02pm Page 230

Part III: LINQ to SQL

There’s just a little more work to do. You need to map a stored procedure because you need to
map the resultset coming in. In LINQ to SQL, the resultsets for a stored procedure, view, and user-defined
function are in the same form, basically in table format. Thus, you can map the stored procedure resultset
to a class tagged as a table.

As shown in the following highlighted code, add a partial class with the name OrdersBySales-
PersonID, and add the Table attribute. Within the attribute, pass the name of the stored procedure that
will be called.

namespace LINQ
{

public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();
}

private void Form1_Load(object sender, EventArgs e)
{
}

private void button1_Click(object sender, EventArgs e)
{

}
}

public class AdventureWorks : DataContext
{

public AdventureWorks(string connection) : base(connection) {}

[Function(Name = "OrdersBySalesPersonID")]
public IEnumerable<OrdersBySalesPersonID> SalesOrders

([Parameter(DBType="int")] int salesPersonID)
{

return this.ExecuteMethodCall<OrdersBySalesPersonID>

(this, ((MethodInfo)(MethodInfo.GetCurrentMethod())),
salesPersonID);

}
}

[Table(Name = "SalesPersonOrders")]
public partial class OrdersBySalesPersonID
{

}

}

Next, define the column properties that create a mapping for the columns being returned by the stored
procedure. Within the partial class, add the following code (you do not need to add the partial class
definition; it is included here as a reference). As you learned about earlier in this chapter, defining the

230

Klein c11.tex V3 - 12/13/2007 2:02pm Page 231

Chapter 11: LINQ to SQL Queries

columns is done by attributing a property with the Column attribute and adding parameters that define
the column name and data type.

[Table(Name = "SalesPersonOrders")]
public partial class OrdersBySalesPersonID
{

private int _productID;
private string _productName;
private int _salesPersonID;
private string _firstName;
private string _middleName;
private string _lastName;
private decimal _unitPrice;

[Column(Name = "ProductID", Storage = "_productID", DBType = "int")]
public int ProductID
{

get
{

return this._productID;
}
set
{

if ((this._productID != value))
{

this._productID = value;
}

}
}

[Column(Name = "Name", Storage = "_productName", DBType = "nvarchar(50)")]
public string ProductName
{

get
{

return this._productName;
}
set
{

if ((this._productName != value))
{

this._productName = value;
}

}
}

[Column(Name = "SalesPersonID", Storage = "_salesPersonID", DBType = "int")]
public int SalesPerson
{

get
{

return this._salesPersonID;
}
set
{

if ((this._salesPersonID != value))

231

Klein c11.tex V3 - 12/13/2007 2:02pm Page 232

Part III: LINQ to SQL

{
this._salesPersonID = value;

}
}

}

[Column(Name = "FirstName", Storage = "_firstName", DBType = "nvarchar(50)")]
public string FirstName
{

get
{

return this._firstName;
}
set
{

if ((this._firstName != value))
{

this._firstName = value;
}

}
}

[Column(Name = "MiddleName", Storage = "_middleName", DBType = "nvarchar(50)")]
public string MiddleName
{

get
{

return this._middleName;
}
set
{

if ((this._middleName != value))
{

this._middleName = value;
}

}
}
[Column(Name = "LastName", Storage = "_lastName", DBType = "nvarchar(50)")]
public string LastName
{

get
{

return this._lastName;
}
set
{

if ((this._lastName != value))
{

this._lastName = value;
}

}
}

[Column(Name = "UnitPrice", Storage = "_unitPrice", DBType = "decimal")]
public decimal UnitPrice

232

Klein c11.tex V3 - 12/13/2007 2:02pm Page 233

Chapter 11: LINQ to SQL Queries

{
get
{

return this._unitPrice;
}
set
{

if ((this._unitPrice != value))
{

this._unitPrice = value;
}

}
}

}

You are almost done. The last step is to add the code behind the button. Add the following code to the
click event of button1:

private void button1_Click(object sender, EventArgs e)
{

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");

IEnumerable<OrdersBySalesPersonID> result = db.SalesOrders(275);

foreach (OrdersBySalesPersonID ord in result)
{
listBox1.Items.Add(ord.ProductID + " " + ord.ProductName + " " +

ord.SalesPerson + " " + ord.UnitPrice);
}

}

That’s it! In Visual Studio, select Debug ➪ Start Debugging, or press the F5 key. Oops! You received some
compilation errors, didn’t you? They probably state something like the following:

The type or namespace ’MethodInfo’ could note be found.

To fix this, add the highlighted using statement to your code:

using System.Linq;
using System.Text;
using System.Windows.Forms;

using System.Reflection;

The System.Reflection namespace houses all of the types that are used to obtain information regarding
assemblies, modules, members, and other aspects of an assembly. LINQ to SQL uses this because the
MethodInfo class is part of the System.Reflection namespace, and the MethodInfo class is used to
identify the exact behavior of an operation.

Now press the F5 key to compile and run the project. You shouldn’t get any errors this time, so when the
form opens, click button1. This will execute the stored procedure you created earlier.

Just as an FYI, this example uses the SalesPersonID of 275 to pass in to the stored procedure. You are free
to select another SalesPersonID. When button1 is pressed, the DataContext passes the SalesPersonID

233

Klein c11.tex V3 - 12/13/2007 2:02pm Page 234

Part III: LINQ to SQL

to SQL Server and asks for the stored procedure to be executed. The DataContext then handles the
returned resultsets and passing of the results to LINQ for iteration through the results. Remember that
the DataContext is the avenue through which objects are sent to and retrieved from the database.

Here’s a sample of the results returned:

710 Mountain Bike Socks, L 275, 5.7000
709 Mountain Bike Socks, M 275, 5.7000
773 Mountain -100 Silver, 44 275, 2039.9940
776 Mountain -100 Black, 42 275, 2024.9940

Just for your edification, you might want to place a breakpoint on the first line of code and click button1
again, this time stepping through the execution of the code.

Passing Parameters to Mapped Stored Procedures
The next example illustrates how to call a stored procedure that also accepts a parameter but returns the
results via an OUTPUT parameter.

The first step is to create the stored procedure. In SQL Server, type the following into a query window
and execute it:

CREATE PROCEDURE [dbo].[MaxOrderBySalesPersonID]
(

@salesPersonID int,
@maxSalesTotal int OUTPUT

)
AS
BEGIN

SELECT @maxSalesTotal = MAX(TotalDue)
FROM sales.salesorderheader
WHERE SalesPersonID = @salesPersonID

END
GO

This stored procedure accepts two parameters. The first is an input parameter that is the ID of the sales-
person. The second is an OUPUT parameter, which will contain the maximum individual sales for the
given salesperson.

The next step is to create a mapping to that stored procedure and the associated parameters. In Visual
Studio, add the following code below the previous stored procedure mapping. Notice the additional
attribute, which is a Return attribute. It tells the mapping that a return value will be coming and the
data type of that value. Also notice that it defines the two parameters and the parameter types within
the method.

[Function(Name = "[MaxOrderBySalesPersonID]")]
[return: Parameter(DBType="int")]
public int MaxOrder

([Parameter(DBType = "int")] int salesPersonID,
[Parameter(DBType = "int")] ref int maxSalesTotal)

{
IExecuteResults results = this.ExecuteMethodCall(

this, ((MethodInfo)(MethodInfo.GetCurrentMethod())),

234

Klein c11.tex V3 - 12/13/2007 2:02pm Page 235

Chapter 11: LINQ to SQL Queries

salesPersonID, maxSalesTotal);
maxSalesTotal = ((int)(results.GetParameterValue(1)));
return ((int)(results.ReturnValue));

}

Unlike the first example, this example is returning a singleton value, so no table definition is required.
You do, however, need to add the code to call the stored procedure, so in the click event for button2, add
the following code:

private void button2_Click(object sender, EventArgs e)
{

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");

int bigOrder = 0;
db.MaxOrder(275, ref bigOrder);

listBox1.Items.Add(bigOrder);

}

This example defines an initial value for the returned parameter, and passes that along with the ID of the
salesperson to the stored procedure.

Run the project again and click button2. This time the list box will be populated with a value of 198628
(if you used ID 275). Pretty slick, isn’t it?

Mapped Stored Procedures for Multiple Results
The following example shows how to handle circumstances where you might not know the exact results
coming back. It creates a stored procedure that accepts a single parameter of data type int. Based on the
value of the parameter, one of two statements will be executed. One statement returns four columns,
the other returns three columns.

CREATE PROCEDURE [dbo].[ContactsOrProducts]
(

@whichone int
)
AS
BEGIN

if @whichone = 1
SELECT ContactID, Title, FirstName, LastName FROM Person.Contact

else
SELECT ProductID, Name, ProductNumber FROM Production.Product

END
GO

As you did earlier, you create a mapping to that stored procedure and the associated parameters. In
Visual Studio, add the following code below the previous stored procedure mapping. In this code, two
result types are defined as well as the parameter that will be passed to the stored procedure.

[Function(Name = "[ContactsOrProducts]")]
[ResultType(typeof(ContactsPart))]
[ResultType(typeof(ProductsPart))]

235

Klein c11.tex V3 - 12/13/2007 2:02pm Page 236

Part III: LINQ to SQL

public IMultipleResults whichone(
[Parameter(DBType = "int")] System.Nullable<int> whichone)

{
return this.ExecuteMethodCallWithMultipleResults(this,

((MethodInfo)(MethodInfo.GetCurrentMethod())), whichone);
}

The two result types, called ContactsPart and ProductsPart, identify the table mapping for the incom-
ing results. However, those mappings don’t exist yet, so create them now by adding the following code
below the table mapping from the first example. This code creates two mapping classes, one for the
contacts and the other for the products.

[Table(Name = "ContactPart")]
public partial class ContactsPart
{

private int _contactID;
private string _title;
private string _firstName;
private string _lastName;

[Column(Name = "ContactID", Storage = "_contactID", DBType = "int")]
public int ContactID
{

get
{

return this._contactID;
}
set
{

if ((this._contactID != value))
{

this._contactID = value;
}

}
}

[Column(Name = "Title", Storage = "_title", DBType = "nvarchar(50)")]
public string Title
{

get
{

return this._title;
}
set
{

if ((this._title != value))
{

this._title = value;
}

}
}

[Column(Name = "FirstName", Storage = "_firstName", DBType = "nvarchar(50)")]
public string FirstName

236

Klein c11.tex V3 - 12/13/2007 2:02pm Page 237

Chapter 11: LINQ to SQL Queries

{
get
{

return this._firstName;
}
set
{

if ((this._firstName != value))
{

this._firstName = value;
}

}
}

[Column(Name = "LastName", Storage = "_lastName", DBType = "nvarchar(50)")]
public string LastName
{

get
{

return this._lastName;
}
set
{

if ((this._lastName != value))
{

this._lastName = value;
}

}
}

}

[Table(Name = "ProductPart")]
public partial class ProductsPart
{

private int _productID;
private string _name;
private string _productNumber;

[Column(Name = "ProductID", Storage = "_productID", DBType = "int")]
public int ProductID
{

get
{

return this._productID;
}
set
{

if ((this._productID != value))
{

this._productID = value;
}

}
}

237

Klein c11.tex V3 - 12/13/2007 2:02pm Page 238

Part III: LINQ to SQL

[Column(Name = "Name", Storage = "_name", DBType = "nvarchar(50)")]
public string Name
{

get
{

return this._name;
}
set
{

if ((this._name != value))
{

this._name = value;
}

}
}

[Column(Name = "ProductNumber", Storage = "_productNumber", DBType = i
"nvarchar(50)")]

public string ProductNumber
{

get
{

return this._productNumber;
}
set
{

if ((this._productNumber != value))
{

this._productNumber = value;
}

}
}

}

In the Click event of button3, add the following code to call this stored procedure:

private void button3_Click(object sender, EventArgs e)
{

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");

int caseSwitch = int.Parse(textBox1.Text);

listBox1.Items.Clear();

switch (caseSwitch)
{

case 1:
IMultipleResults result1 = db.whichone(caseSwitch);

foreach (ContactsPart cp in result1.GetResult<ContactsPart>())
{

listBox1.Items.Add(cp.ContactID + " " + cp.Title + " " +
cp.FirstName + " " + cp.LastName);

}

238

Klein c11.tex V3 - 12/13/2007 2:02pm Page 239

Chapter 11: LINQ to SQL Queries

break;

default:
IMultipleResults result2 = db.whichone(caseSwitch);

foreach (ProductsPart pp in result2.GetResult<ProductsPart>())
{

listBox1.Items.Add(pp.ProductID + " " + pp.Name + " " +
pp.ProductNumber);

}
break;

}

}

This code takes the value that is entered in the text box and passes that to the stored procedure. Once you
have entered the code, press F5 to build and run the project.

Another compile error, right? This time the error should say something like this:

The type of namespace name ’IMultipleResults’ could not be found.

Again, that’s because you are missing a using directive. Add the highlighted using directive to
your code:

using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Reflection;

using System.Data.Ling.Provider;

You have to include this namespace because it provides the capability to handle multiple results. Now,
press F5 again, and when the application runs, enter either 1 or 2 in the text box. Based on the stored
procedure and the number you entered, you should get either a list of contacts or a list of products. If
you entered a value of 1, you get a list of contacts with four columns. If you entered a value of 2, you get
a list of products with three columns.

This is accomplished by passing either the ContactPart mapping or the ProductPart mapping when
calling the stored procedure.

OK, one last stored procedure example. The preceding was an ‘‘or’’ example, in that it returns the
contact result or the product result. This example returns both. In SQL Server, create the following
stored procedure:

CREATE PROCEDURE [dbo].[ContactsANDProducts]

AS
BEGIN

SELECT ContactID, Title, FirstName, LastName FROM Person.Contact
SELECT ProductID, Name, ProductNumber FROM Production.Product

END
GO

239

Klein c11.tex V3 - 12/13/2007 2:02pm Page 240

Part III: LINQ to SQL

This procedure accepts no parameter and returns two results.

Next, create a mapping to that stored procedure. In Visual Studio, add the following code below the
previous stored procedure mapping. Two result types are defined, but no parameter is defined because
the stored procedure does not accept one.

[StoredProcedure(Name = "[ContactsANDProducts]")]
[ResultType(typeof(ContactsPart))]
[ResultType(typeof(ProductsPart))]
public IMultipleResults TwoResultsets()
{

return this.ExecuteMethodCallWithMultipleResults(this,
((MethodInfo)(MethodInfo.GetCurrentMethod())));

}

The stored procedure returns the same results as the previous example (contacts and products), so this
example will use the same table mappings that were defined in the previous example. Therefore, the only
thing left to do is to add the code behind button4:

private void button4_Click(object sender, EventArgs e)
{

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");
IMultipleResults results = db.TwoResultsets();

foreach (ContactsPart cp in results.GetResult<ContactsPart>())
{

listBox1.Items.Add(cp.ContactID + " " + cp.Title + " " + cp.FirstName + "
" + cp.LastName);

}

foreach (ProductsPart pp in results.GetResult<ProductsPart>())
{

listBox1.Items.Add(pp.ProductID + " " + pp.Name + " " + pp.ProductNumber);
}

}

This example also requires the System.Data.Linq.Provider namespace because it is dealing with
multiple results. It handles the contacts first, and then processes the products.

Press F5 to compile and run the project. When the form appears, click button4. The list box should be
populated with a list of contacts first, followed by a list of products. To cut down on the number of items
returned, add a WHERE clause to each SELECT statement.

You have to love the fact that LINQ can handle multiple results so easily.

Mapping and Calling User-Defined Functions
LINQ to SQL supports the mapping and calling of user-defined functions via methods defined in your
object model that represent the user-defined function. Methods are designated as functions by applying
the [Function] attribute and any associated [Parameter] attributes.

240

Klein c11.tex V3 - 12/13/2007 2:02pm Page 241

Chapter 11: LINQ to SQL Queries

In the following example, a user-defined function will return table values. In SQL Server
Management Studio, create the following user-defined function, which accepts a parameter and returns a
resultset:

CREATE FUNCTION [dbo].[EmployeesByManagerID]
(

@ManagerID int
)
RETURNS TABLE
AS
RETURN
(

select pc.ContactID, pc.FirstName, pc.LastName, emp.Title
from Person.Contact pc
INNER JOIN HumanResources.Employee emp ON pc.ContactID = emp.ContactID
WHERE ManagerID = @ManagerID

)

Next, create a mapping to the UDF you just created. In Visual Studio, add the following code below
the previous stored procedure mapping. This method is annotated with the Function attribute, telling the
DataContext that a user-defined function will be called.

[Function(Name = "[EmployeeInfo]")]
public IQueryable<EmployeeInfo>

EmpInfo(System.Nullable<int> ManagerID)
{

MethodCallExpression mce = Expression.Call(Expression.Constant(this),
((MethodInfo)(MethodInfo.GetCurrentMethod())),
new Expression[]
{

Expression.Constant(ManagerID, typeof(System.Nullable<int>))
}
);
return this.CreateQuery<EmployeeInfo>(mce);

}

A table mapping must be created to define and map the results coming back. And the definition of the
table mapping is no different than that of calling a stored procedure as in the previous examples. Create
the table mapping by adding the code below:

[Table(Name = "EmployeeInfo")]
public partial class EmployeeInfo
{

private int _contactID;
private string _firstName;
private string _lastName;
private string _Title;

241

Klein c11.tex V3 - 12/13/2007 2:02pm Page 242

Part III: LINQ to SQL

[Column(Name = "ContactID", Storage = "_contactID", DBType = "int")]
public int ContactID
{

get
{

return this._contactID;
}
set
{

if ((this._contactID != value))
{

this._contactID = value;
}

}
}

[Column(Name = "FirstName", Storage = "_firstName", DBType = "nvarchar(50)")]
public string FirstName
{

get
{

return this._firstName;
}
set
{

if ((this._firstName != value))
{

this._firstName = value;
}

}
}

[Column(Name = "LastName", Storage = "_lastName", DBType = "nvarchar(50)")]
public string LastName
{

get
{

return this._lastName;
}
set
{

if ((this._lastName != value))
{

this._lastName = value;
}

}
}

[Column(Name = "Title", Storage = "_Title", DBType = "nvarchar(50)")]
public string Title
{

get
{

return this._Title;
}

242

Klein c11.tex V3 - 12/13/2007 2:02pm Page 243

Chapter 11: LINQ to SQL Queries

set
{

if ((this._Title != value))
{

this._Title = value;
}

}
}

}

Last, add the code behind button5:

private void button5_Click(object sender, EventArgs e)
{

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");
var result = from emp in db.EmpInfo(21)

select emp;

foreach (EmployeeInfo ei in result)
listBox1.Items.Add(ei.ContactID + " " + ei.FirstName

+ " " + ei.LastName + " " + ei.Title);

}

This code is not really that different from calling a stored procedure.

Press F5 to compile and run the project. One last ‘‘Oops!’’ This time the error says something
like this:

The type of namespace name ’MethodCallExpression’ could not be found.

Once again, that’s because you are missing a using directive. Add the highlighted using directive to
your code:

using System.Text;
using System.Windows.Forms;
using System.Reflection;
using System.Data.Ling.Provider;

using System.Linq.Expressions;

You need to include this namespace because it provides the capability to represent language-level
expressions as objects in the form of expression trees.

Press F5 again, and when the application runs, click button5. This time the list box should be populated
with the ContactID, FirstName, LastName, and Title of the employees whose manager has a ManagerID
of 21.

Whew! That was a lot, but you now have a good understanding of how LINQ to SQL is used to call stored
procedures and user-defined functions using input and output parameters, deal with multiple resultsets,
and return rows of data.

243

Klein c11.tex V3 - 12/13/2007 2:02pm Page 244

Part III: LINQ to SQL

Summary
This chapter introduced you to LINQ to SQL queries, providing an in-depth look at the components and
concepts that make LINQ to SQL queries possible. You first explored LINQ to SQL query concepts, the
key points that give LINQ to SQL queries their power.

Then you learned about the DataContext class, the important role it plays in LINQ to SQL, and the
functionality it provides when executing queries. In addition, you saw how to use LINQ to SQL and
the DataContext class to manipulate data, such as adding, updating, and deleting data in SQL Server.

Associating relational database objects to LINQ to SQL generic collections and submitting them to the
database for execution was also discussed, and you looked at several examples illustrating how to execute
stored procedures and user-defined functions using LINQ to SQL.

Chapter 12 tackles a few advanced LINQ to SQL query topics.

244

Klein c12.tex V3 - 12/13/2007 2:05pm Page 245

Advanced Query Concepts

There is so much that LINQ to SQL can do that applies to relational data and working with rela-
tional databases, that a chapter dedicated to the tight coupling of LINQ to SQL and relational data
is warranted. For example, LINQ to SQL supports transactions and composite keys, and these types
of topics are usually not found or discussed in an introductory-level chapter. Therefore, this chapter
focuses on the following topics, which are a bit more advanced:

❑ Database relationships

❑ Compiled queries

❑ Query execution location

❑ Deferred versus immediate

❑ Composite keys

❑ Read-only data

Transactions are discussed in Chapter 13.

Database Relationships
LINQ to SQL fully supports primary and foreign keys, and Chapter 10 provided a couple of code
examples to illustrate how they are implemented in LINQ to SQL. This section builds on that,
discussing how to define the keys in LINQ to SQL and showing you how to query across them.

Representing Relationships
As you know, relationships in databases are normally of the primary key/foreign key kind—that
is, the column or set of columns in one table that is referenced by the column or columns in another
table. In a relational database, the navigation between these two tables is done through a join

Klein c12.tex V3 - 12/13/2007 2:05pm Page 246

Part III: LINQ to SQL

operator or operation. In a join operation, the primary key table is referenced to the foreign key table
through a JOIN operator on the primary and foreign keys.

The following T-SQL query illustrates how the Person.Contact table and the HumanResources.Employee
table, which are joined through the ContactID column, are referenced together in a query:

SELECT pc.ContactID, pc.FirstName, pc.LastName, pc.EmailAddress,
hre.EmployeeID, hre.NationalIDNumber, hre.Title, hre.HireDate

FROM Person.Contact pc
INNER JOIN HumanResources.Employee hre ON pc.ContactID = hre.ContactID
ORDER BY pc.LastName

The key, then, is to apply this same join functionality in LINQ to SQL. You accomplish that through
types that assist in representing the primary key/foreign key relationships between tables within a
database. These two types are the EntitySet and EntityRef generic types, each of which is of type(of
TEntity). These types provide collections for the ‘‘many’’ part of a one-to-many relationship. Both the
EntitySet and EntityRef types are used in conjunction with the [Association] attribute, which helps
define and represent a relationship.

EntitySet (of TEntity)
The EntitySet type provides a collection for the results of the ‘‘many’’ side of a one-to-many relation-
ship. In other words, it signifies that the defined relationship is a one-to-many relationship. As stated
earlier, it is used together with the [Association] attribute to define and represent a relationship.

The OtherKey property is also used in the definition of the relationship. It specifies the name of the
property (column) in the related class (table) to which is compared the current class’s (table’s) property
(column).

The following example defines two classes, one for the Contacts table and one for the Employee table. In
the AdventureWorks database, you can see that there’s a relationship defined between these two tables
on the ContactID column. The code here maps these two classes to their respective relational database
counterparts, and also uses the [Association] attribute and the EntitySet type to define a one-to-many
relationship between the Contact class and the Employee class. The relationship is defined within the
context of the Contact class.

public class AdventureWorks : DataContext
{

public AdventureWorks(string connection) : base(connection) {}
public Table<Contact> Contacts;
public Table<Employee> Employees;

}

[Table(Name = "Person.Contact")]
public class Contact
{

[Column(DBType = "int not null", IsPrimaryKey = true, IsDBGenerated
= true)]

public int ContactID;

246

Klein c12.tex V3 - 12/13/2007 2:05pm Page 247

Chapter 12: Advanced Query Concepts

[Column(DBType = "nvarchar(8) not null")]
public string Title;

[Column(DBType = "nvarchar(50) not null")]
public string FirstName;

[Column(DBType = "nvarchar(50) not null")]
public string MiddleName;

[Column(DBType = "nvarchar(50) not null")]
public string LastName;

[Column(DBType = "nvarchar(50) not null")]
public string EmailAddress;

[Column(DBType = "int")]
public int EmailPromotion;

[Column(DBType = "bit")]
public byte NameStyle;

[Column(DBType = "varchar(40)")]
public string PasswordHash;

[Column(DBType = "varchar(40)")]
public string PasswordSalt;

private EntitySet<Employee> _employees;
[Association(Storage = "_employees", OtherKey = "ContactID")]
public EntitySet<Employee> Emps
{

get { return this._employees;}
set { this._employees.Assign(value);}

}
}

[Table(Name = "HumanResources.Employee")]
public class Employee
{

[Column(DBType = "int", IsPrimaryKey = true, IsDBGenerated = true,
CanBeNull = false)]

public int EmployeeID;

[Column(DBType = "int", CanBeNull = false)]
public int ContactID;

[Column(DBType = "nvarchar(256) not null")]
public string LoginID;

[Column(DBType = "nvarchar(15) not null")]
public string NationalIDNUmber;

[Column(DBType = "int")]
public int ManagerID;

}

247

Klein c12.tex V3 - 12/13/2007 2:05pm Page 248

Part III: LINQ to SQL

With the classes and relationship defined, you can now write a LINQ to SQL ‘‘join’’ query that utilizes
the relationship, like this:

IQueryable<Contact> conQuery =
from con in db.Contact
where con.Employee.ContactID == 19917

Or like this:

var conQuery =
from con in db.Contact
from emp in con.Emps
where con.FirstName == "Scott"
select new {con.FirstName, emp.ManagerID};

Think of the EntitySet type and the [Association] attribute (utilized in the table mapping above) as
equal to a SQL join.

EntityRef (of TEntity)

The EntityRef type defines a relationship between two tables, but does the opposite of the EntitySet,
in that it provides for the ‘‘one’’ side of a one-to-many relationship. It is also used together with the
[Association] attribute to define and represent a relationship.

Again, the ThisKey property is used in the definition of the relationship to specify the name of the
property (column) in the related class (table) to which the current class’s (table’s) property (column)
is compared.

The next example uses the same two classes—one for the Contacts table and one for the Employee
table—as in the previous example. The following code maps these two classes to their respective rela-
tional database counterparts, and also uses the [Association] attribute and the EntityRef type to define
a one-to-many relationship between the two classes. The relationship is defined within the context of the
Employee class.

public class AdventureWorks : DataContext
{

public AdventureWorks(string connection) : base(connection) {}
public Table<Contact> Contacts;
public Table<Employee> Employees;

}

[Table(Name = "Person.Contact")]
public class Contact
{

[Column(DBType = "int not null", IsPrimaryKey = true, IsDBGenerated
= true)]

public int ContactID;

248

Klein c12.tex V3 - 12/13/2007 2:05pm Page 249

Chapter 12: Advanced Query Concepts

[Column(DBType = "nvarchar(8) not null")]
public string Title;

[Column(DBType = "nvarchar(50) not null")]
public string FirstName;

[Column(DBType = "nvarchar(50) not null")]
public string MiddleName;

[Column(DBType = "nvarchar(50) not null")]
public string LastName;

[Column(DBType = "nvarchar(50) not null")]
public string EmailAddress;

[Column(DBType = "int")]
public int EmailPromotion;

[Column(DBType = "bit")]
public byte NameStyle;

[Column(DBType = "varchar(40)")]
public string PasswordHash;

[Column(DBType = "varchar(40)")]
public string PasswordSalt;

}

[Table(Name = "HumanResources.Employee")]
public class Employee
{

[Column(DBType = "int", IsPrimaryKey = true, IsDBGenerated = true,
CanBeNull = false)]

public int EmployeeID;

[Column(DBType = "int", CanBeNull = false)]
public int ContactID;

[Column(DBType = "nvarchar(256) not null")]
public string LoginID;

[Column(DBType = "nvarchar(15) not null")]
public string NationalIDNUmber;
[Column(DBType = "int")]
public int ManagerID;

private EntityRef<Contact> _Contact;
[Association(Storage = "_Contact", ThisKey = "ContactID")]
public Contact Contact
{

get { return this._Contact.Entity;}
set { this._Contact.Entity = value;}

}
}

249

Klein c12.tex V3 - 12/13/2007 2:05pm Page 250

Part III: LINQ to SQL

This example illustrates the relationship between a contact and employee. The EntityRef type is used to
define the relationship from Employee back to Contact.

With the classes and relationship defined, you can now write a query that utilizes the relationship, like
this:

IQueryable<Employee> empQuery =
from emp in db.Employee
where emp.Contact.FirstName.StartsWith("Scott")
select emp;

You can see that EntitySet and EntityRef are complementary and quite easy to use, and are powerful
for defining relationships.

Querying
You have two choices when querying across objects: join statements or dot notation. They are equally
effective, but the second offers better relationship checking than the first. The T-SQL statement at the
beginning of the chapter (repeated here) showed how to join two tables using join syntax.

SELECT pc.ContactID, pc.FirstName, pc.LastName, pc.EmailAddress,
hre.EmployeeID, hre.NationalIDNumber, hre.Title, hre.HireDate

FROM Person.Contact pc
INNER JOIN HumanResources.Employee hre ON pc.ContactID = hre.ContactID
WHERE hre.ManagerID = 275

You can accomplish the same type of join in LINQ to SQL using the LINQ join operator, like this:

IQueryable<Employee> joinQuery =
from emp in db.Employee
join con in db.Contact on emp.ContactID equals con.ContactID
where emp.ManagerID == 275
select con;

Notice how similar these two examples are. This syntax is beneficial when database relationships do not
exist between two tables, or when LINQ relationship properties do not exist (are not defined). In these
cases, you have to define them manually, as in this example.

The better option (the preferred method) is to define relationship properties and use the dot notation to
access them. This enables you to walk the relationship tree, navigating from one object to another easily,
as the following example shows:

IQueryable<Employee> empQuery =
from emp in db.Employee
where emp.Contact.FirstName.StartsWith("Scott")
select emp;

The benefits of using relationship properties include the capability to determine results of queries. For
example, you can use the relationship to determine whether contacts have employee records.

250

Klein c12.tex V3 - 12/13/2007 2:05pm Page 251

Chapter 12: Advanced Query Concepts

Compiled Queries
If you are a developer who works with SQL as well as with .NET, you know that there are many occasions
where you use the same query repeatedly. LINQ to SQL makes this easy to do by enabling you to create
a compiled query—a query that is stored in a static variable and is available for execution whenever you
need it.

Compiled queries are available via the CompiledQuery class of the System.Data.Linq namespace. This
class has a Compile method that creates a new delegate representing the compiled query.

The following example defines a compiled query using a static class:

public class AdventureWorks : DataContext
{

public AdventureWorks(string connection) : base(connection) {}
public Table<Contact> Contact;
public Table<Employee> Employee;

}
static class Queries
{

public static Func<AdventureWorks, string, IQueryable<Contact>>

ContactsByFirstName =
CompiledQuery.Compile((AdventureWorks db, string firstname) =>

from c in db.Contact
where c.FirstName == firstname
select c);

}

Now that the compiled query is defined, it can be used, as the following example shows:

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");

IEnumerable<Contact> conQuery = Queries.ContactsByFirstName(db, "scott");

foreach (Contact con in conQuery)
{

listBox1.Items.Add(con.FirstName + " " + con.LastName);
}

The primary benefit of a compiled query is that the query doesn’t need to be compiled each time it is
executed. It is compiled once (the first time it is executed) and then can be used multiple times. Even if
the parameters to the query changes, the query does not need recompiling.

Remote versus Local Query Execution
A query executed remotely is executed on the server; a query executed locally is executed against a local
cache. By default, queries are executed remotely, but you can choose to have them executed locally. The
following sections discuss remote and local query execution.

251

Klein c12.tex V3 - 12/13/2007 2:05pm Page 252

Part III: LINQ to SQL

Remote Execution
Although it depends on the query, remote execution is usually your most logical choice. It allows you to
take advantage of database engine benefits such as indexes. Executing queries remotely is also better if
your database has a large number of rows. For example, you don’t want to return all the contacts from
the Contacts table if you only need a small set of them.

You have two things going for you: the IQueryable interface and the EntitySet class. The EntitySet
class implements the IQueryable interface, and the IQueryable interface guarantees that queries can be
executed remotely. Therefore, the following query will be executed remotely:

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");

IEnumerable<Contact> conQuery =
from con in db.Contact
where con.FirstName == "Scott"
orderby con.LastName
select con;

foreach (Contact cont in conQuery)
listBox1.Items.Add(cont.FirstName + " " + cont.LastName);

One of the key benefits of remote execution is that you can take advantage of database table indexes,
which you can’t use when queries are executed locally. You also have the guarantee that needless data is
not returned.

Local Execution
In those cases where local execution is necessary, you have another option. The Load() method of the
EntitySet retrieves all the related entities into your local cache. In the following example, there is a
relationship between the Contact class and Employee class through the EntitySet. Therefore, when the
contacts are loaded, the corresponding employees are loaded as well.

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");

Contact con = db.Contact.Single(x => x.ContactID == 1146);
con.Employee.Load();

foreach (Employee emp in con.Employee.Where(y => y.ManagerID == 210))
listBox1.Items.Add(emp.ContactID + " " + con.FirstName);

Executing queries locally has two benefits. First, once the set of data is loaded locally, it can be queried
as often as necessary without the need of going to the database again for each subsequent query. Second,
the entire set can be serialized.

Deferred versus Immediate Data Loading
Earlier in the chapter you learned that when querying across relationships, only the objects you specif-
ically ask for are returned, and related objects are retrieved later, when you specifically request that
information. For example, the following code loads the necessary employee object, and then, based on

252

Klein c12.tex V3 - 12/13/2007 2:05pm Page 253

Chapter 12: Advanced Query Concepts

the results of the query, sends the Contacts object off for execution. This is known as deferred data
loading.

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");

IQueryable<Employee> empQuery =
from emp in db.Employees
where emp.ManagerID == 21
select emp;

foreach (Employee empObj in empQuery)
{

if (empObj.ContactID > 1100)
{

GiveBigPhatRaise(empObj.Contacts);
}

}

Immediate loading, on the other hand, retrieves both sets of data together. This is especially useful if
you need access to both sets of data immediately. To illustrate this, the following example uses the
SalesOrderHeader and SalesOrderDetail tables from the AdventureWorks database, and assumes
that mappings to each table and the associated [Association] and EntitySet references have been
defined.

The example queries the SalesOrderHeader table for all orders that were made by SalesPersonID 275,
and returns one set. The first foreach loop loops through that result set, while the inner foreach loops
through the corresponding order details, thus returning the second set of data. Remember that the results
are not returned until the iteration over the query variable takes place. Therefore, as each foreach loop
is iterated over, both sets of data are returned.

IQueryable<SalesOrderHeader> sohQuery =
from soh in db.SalesOrdersHeader
where soh.SalesPersonID == 275
select soh;

foreach (SalesOrdersHeader sohObj in sohQuery)
{

foreach (SalesOrdersDetail sodObj in sohObj.SalesOrdersHeader)
{

//Do something
}

}

Obviously, there are latency hits when you return large amounts of data, so you will want to use imme-
diate loading when you need access to both sets of data right out of the gate.

As you learned in Chapter 3, you can force immediate execution of a query that does not produce a
singleton value by using the ToList() or ToArray() methods.

Remember query execution this way: deferred execution should be used to produce a sequence of values.
Immediate execution is used to return a singleton value such a Count, or Average.

253

Klein c12.tex V3 - 12/13/2007 2:05pm Page 254

Part III: LINQ to SQL

The following example counts the number of order items for a specific order where the unit price of the
item is less than $200. Because the query is returning a singleton value, it is executed immediately.

Table<SalesOrderDetail> orderdetail = context.GetTable<SalesOrderDetail>();

var query =
from od in orderdetail
where od.SalesOrderID = 43662
select od;

listBox1.Items.Add(query.Count(orderdetail => orderdetail.UnitPrice < 200));

DataShape Class
LINQ to SQL provides a way to return related objects at the same time as your parent object with the
added benefit of returning only what you need. This is made possible by the DataShape class, which lets
you define a subtype that can be returned at the same time as the main query. This class has a LoadWith
method that lets you specify which sub-objects to return when a query is sent for execution.

Here’s an example:

DataShape ds = new DataShape();
ds.LoadWith<SalesOrderHeader>(soh => soh.SalesOrderDetail);
db.Shape = ds;

This code uses DataShape to say, ‘‘also give me the SalesOrderDetail for the corresponding SalesOrder-
Header.’’ Once the DataShape is defined, it’s handed off to the Shape property of the DataContext class,
which sets the DataShape associated with the current DataContext. Remember, the DataContext handles
the query execution and the data retrieval, so it needs to know the DataShape if there is one.

The query itself does not change, as shown here:

IQueryable<SalesOrderHeader> sohQuery =
from soh in db.SalesOrdersHeader
where soh.SalesPersonID == 275
select soh;

All of this information is pretty slick, but LINQ to SQL takes it one step farther by letting you control
deferred loading, which is discussed next.

Turning Off Deferred Loading
The DataContext class has a property that tells the framework not to delay the loading of one-to-many
or one-to-one relationships. This property is called DeferredLoadingEnabled and is used as shown here:

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");

db.DeferredLoadingEnabled = false;

254

Klein c12.tex V3 - 12/13/2007 2:05pm Page 255

Chapter 12: Advanced Query Concepts

Keep in mind that deferred loading is automatically turned off when object tracking (the ObjectTrackin-
gEnabled property of the DataContext) is turned off. Object tracking is discussed later in this chapter.

You might consider using this property when you want to return only a portion of the query and do
something with those results, such as sending the partial results to a web service.

Composite Keys
Occasionally, you need more than one attribute to uniquely identify an entity. That’s where composite
keys come in; they enable you to include multiple columns in a query when the operator accepts only a
single argument. In those cases, your best bet is to create an anonymous type that represents the combi-
nation of the multiple columns you need to pass.

The LINQ group operator (GroupBy in Visual Basic), for instance, takes a single argument, but you can
see in the following example that an anonymous type is created and used to pass in two columns instead
of the one:

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");

var conQuery =
from con in db.Contacts
where con.LastName.StartsWith("K")
group con.FirstName by new { last = con.LastName, middle = con.MiddleName} ;

foreach (var grp in conQuery)
{

listBox1.Items.Add(grp.Key);
foreach (var listing in grp)
{

listBox1.Items.Add(listing);
}

}

Very slick.

Read-Only Data
If you don’t plan to modify the data, you can get a pretty good performance increase by telling the
DataContext that you want the data returned as read-only, so this last section will discuss working with
read-only data.

To get read-only data, set the ObjectTrackingEnabled property to false. ObjectTrackingEnabled tells
the framework to track the original value. Setting it to false means that the framework doesn’t need to
track changes, which provides a performance increase.

The following example shows how to disable object tracking by setting the ObjectTrackingEnabled
property to false.

255

Klein c12.tex V3 - 12/13/2007 2:05pm Page 256

Part III: LINQ to SQL

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");
db.ObjectTracking = false;

var conQuery =
from con in db.Contacts
where con.FirstName = "Scott"
select con;

Several words of caution: If you set this property to false and then call SubmitChanges, an exception
will be thrown because there are no changes to submit. An exception also will be thrown if you set this
property to false after executing a query.

Summary
This chapter explored a few topics that are meant to enhance the performance and functionality of your
LINQ to SQL queries. The most important topic was that of database relationships—how to define them,
and then query across them.

The next topic covered was compiled queries, how they are created, and how they can be used in your
application. Compiled queries can save a lot of processing overhead if used correctly, since multiple calls
to the database do not need to be made.

You took a look at query execution location and how data is loaded, learning how to manage much of the
performance of your application by controlling where the queries are executed and whether the query
execution is done immediately or deferred.

Composite keys were discussed to help you overcome the problem of passing multiple arguments where
only one argument is accepted. This comes in handy when dealing with more complex queries.

Returning data in read-only form also was discussed. If you don’t plan to do any data modification, then
you’ll gain some performance increases by retrieving data read-only.

Chapter 13 tackles entity classes in detail.

256

Klein c13.tex V3 - 12/13/2007 2:06pm Page 257

More about Entity Classes

There’s more that can be said about LINQ to SQL entity classes because they provide a lot more
functionality than what you’ve explored so far in this book. LINQ to SQL is all about managing
entities, or objects, during their lifetime of service. As you’ve already seen, one of the primary
things about entities is that they provide a lot of functionality aimed at dealing with querying data
and, just as importantly, maintaining the integrity of your data through relationships.

More significantly, though, the LINQ to SQL entities (objects) used when executing queries can be
changed and manipulated as needed by the application during the lifetime of the query. The data
associated with those entities also can be changed. Modifications are then ushered back to the server
when the application is done with the objects.

There are a few key things to keep in mind:

❑ The objects used in executing queries can be reused until the application is done with the
retrieved data.

❑ After the data changes are sent back to the server and the objects are no longer needed, the
objects are reclaimed by the runtime.

❑ Although the object may no longer be in existence, any object that represents the same data
can still be accessed.

The focus of this chapter, then, is on the lifetime of an entity and on the actions an entity can perform
during its lifespan. The lifetime of an entity begins when the DataContext is notified of the entities
existence and ends when the DataContext is either closed or notified of the reclaimed entity.

Therefore, this chapter discusses the following topics:

❑ How changes to the entity are tracked

❑ Submitting changes back to the database

❑ Making simultaneous changes

❑ Working with transactions

Klein c13.tex V3 - 12/13/2007 2:06pm Page 258

Part III: LINQ to SQL

Tracking Entity Changes
As you know, LINQ to SQL works with objects defined within your object model. These objects can be
used to perform various operations, such as inserts and updates to the underlying database. By default,
LINQ to SQL keeps track of any changes made to these objects via the LINQ to SQL DataContext.

It’s important to remember that the changes are not tracked on the database side. They are tracked on the
client side, and no database resources are used while changes are tracked.

In Chapter 12 you saw that you could work with read-only results by setting the ObjectTrackingEnabled
property of the DataContext to false. This property also enables you to track changes made to objects and
to submit those changes to the underlying database.

Tracking changes is enabled by default, so changes made to objects within your object model are auto-
matically tracked. When the application is ready to send the changes back to the database, a simple call
to the DataContext SubmitChanges() method needs to take place. That method instructs LINQ to SQL
to execute the appropriate SQL code to make the necessary changes to update the database.

For example, the following code creates a new contact object, saves it to the database, updates an existing
contact object, and then saves the changes back to the database.

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");

//Add a new contact
Contact con = new Contact();
con.Firstname = "Sammy";
con.MiddleName = "T";
con.LastName = "Hagar";
con.NameStyle = 0;
con.EmailPromotion = 1;
con.EmailAddress = "RedRocker@Adventure-works.com";
con.Title = "Mr.";
db.Contacts.Add(con);

db.SubmitChanges();

//Update an existing contact
Contact cont = db.Contacts.Single(c => c.ContactID == 1280);
cont.EmailAddress = "christiank@adventure-works.com";
cont.NameStyle = 0;
db.SubmitChanges();

Keep in mind that only those properties that have changed are ushered back to the database. For instance,
if the NameStyle for Christian was already 0, then that change won’t be made in the database.

Submitting Entity Changes
Along with tracking changes, entity classes can be used to submit changes that have been made to the
entity, such as adding, updating, or deleting records. Manipulating data is one of the key aspects of
LINQ to SQL, and entity classes make those operations extremely easy. Changes can be made simply by
manipulating the objects in your object model.

258

Klein c13.tex V3 - 12/13/2007 2:06pm Page 259

Chapter 13: More about Entity Classes

To see how this works, fire up Visual Studio, create a new Windows project, and add the appropriate
references:

system.data.Linq

Next, view the code behind Form1 and add the following statements:

using System.Data.Linq
using System.Data.Linq.Mapping

Prior to Beta2, attribute-based mapping was supported via the System.Data.Linq namespace. If you
then installed Beta2 and tried to compile your code, you received a lot of compile errors. That is because
attribute-based mapping is now supported via the System.Data.Linq.Mapping namespace.

Next, underneath the partial class of Form1, add the following highlighted code:

namespace LINQ
{

public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();
}

private void Form1_Load(object sender, EventArgs e)
{

}
}

}

public class AdventureWorks : DataContext
{

public AdventureWorks(string connection) : base(connection) {}
public Table<Contact> Contacts;

}

[Table(Name = "Person.Contact")]
public class Contact
{

[Column(DbType = "int not null", IsPrimaryKey = true, IsDbGenerated = true)]
public int ContactID;

[Column(DbType = "nvarchar(8) not null")]
public string Title;

[Column(DbType = "nvarchar(50) not null")]
public string FirstName;

[Column(DbType = "nvarchar(50) not null")]
public string MiddleName;

259

Klein c13.tex V3 - 12/13/2007 2:06pm Page 260

Part III: LINQ to SQL

[Column(DbType = "nvarchar(50) not null")]
public string LastName;

[Column(DbType = "nvarchar(50) not null")]
public string EmailAddress;

[Column(DbType = "int")]
public int EmailPromotion;

[Column(DbType = "bit")]
public byte NameStyle;

[Column(DbType = "varchar(40)")]
public string PasswordHash;

[Column(DbType = "varchar(40)")]
public string PasswordSalt;

}

The rest of this code should look familiar—you have seen it throughout the last few chapters. Attribute-
based mapping is used to map a SQL Server database and table to a LINQ to SQL class.

For purposes of this example, create a small routine that will do a lot of the work for you. Add the
following code after the Load event of Form1. The code will be explained shortly.

private void InsertNames(string firstName, string title, string emailAddr)
{

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");

try
{

Contact con = new Contact();
con.FirstName = firstname;
con.LastName = "Klein";
con.MiddleName = "L";
con.NameStyle = 0;
con.EmailPromotion = 1;
con.EmailAddress = " emailAddr;
con.PasswordHash = "asdf";
con.PasswordSalt = "qwer";
con.Title = title;

db.Contacts.Add(con);
db.SubmitChanges();

}
catch (Exception ex)
{

MessageBox.Show(ex.Message);
}

}

260

Klein c13.tex V3 - 12/13/2007 2:06pm Page 261

Chapter 13: More about Entity Classes

In the InsertNames routine, a new instance of the Contact class is created, followed by the setting of
several of the class’s properties. Last, the object is inserted by calling the Add method on the object entity
and then calling the SubmitChanges method of the DataContext class.

The SubmitChanges method determines the changed data such as newly added data, as in this case, or
modifications to existing data, and then executes the correct commands to create and usher the changes
back to the database.

The InsertNames routine allows new contacts to be created simply and efficiently.

You are now ready to start adding modification code. Open Form1 in design mode and add three but-
tons and a text box. Behind button1, add the following highlighted code (you can use other names and
email addresses):

private void button1_Click(object sender, EventArgs e)
{

this.InsertNames("Scott", "Mr.", "ScottKlein@SqlXml.com");
this.InsertNames("Chris", "Mr.", "Chris@SomeCompany.com");
this.InsertNames("Jason", "Mr.", "Jason@SomeCompany.com");
this.InsertNames("Richard", "Mr.", "Dad@Home.com");
this.InsertNames("Courtney", "Mrs.", "Sis@SomeCompany.com");
this.InsertNames("Carolyn", "Mrs.", "Mom@Home.com");

textBox1.Text = "Contact added successfully";

}

Run the Visual Studio project you created by pressing F5, and when the form displays, click button1.
When the code behind button1 executes, it calls the InsertNames routine several times, passing a contact
first name, a title, and an email address to the routine. The InsertNames routine then uses those values
to insert the contacts.

When the code finishes executing, the text box on the form displays ‘‘Contact added successfully.’’ At
that point, you can query the Person.Contact table in the AdventureWorks database. The results should
look like those shown in Figure 13-1.

Figure 13-1

You can see how easy it is to perform Insert operations using LINQ to SQL and entity objects. Yet, you
are just skimming the surface. What about modifying existing records and sending the changes back?
Let’s do an update example next. Behind button2 of your form, add the following code:

private void button2_Click(object sender, EventArgs e)
{

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");

261

Klein c13.tex V3 - 12/13/2007 2:06pm Page 262

Part III: LINQ to SQL

try
{

var conQuery =
from con in db.Contacts
where con.FirstName == "Scott"
select con;

// there are 15 Scott’s in the table, so 15 changes should be made
foreach (Contact cont in conQuery)
{

cont.MiddleName = "L";
cont.NameStyle = 1;

}
db.SubmitChanges();

textBox1.Text = "Contacts modified successfully";

}
catch (Exception ex)
{

MessageBox.Show(ex.Message);
}

}

Before you run this code, spend a few minutes looking at what it’s doing. First, you have a standard
LINQ query that is populating the entity class with all contacts whose first name is Scott. Each contact is
then iterated over, changing the middle initial to ‘‘L’’.

Just like the previous example, the SubmitChanges() method is used to usher the changes to the object
back to the database.

What about deleting? The great thing about LINQ and LINQ to SQL is that all these operations are
extremely similar. To illustrate, add the following code behind button3 of your form:

private void button3_Click(object sender, EventArgs e)
{

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");

try
{

var conQuery =
from con in db.Contacts
where con.LastName == "Klein"
select con;

foreach (Contact cont in conQuery)
{

db.Contacts.Remove(cont);
}
db.SubmitChanges();

262

Klein c13.tex V3 - 12/13/2007 2:06pm Page 263

Chapter 13: More about Entity Classes

textBox1.Text = "Contacts removed successfully";

}
catch (Exception ex)
{

MessageBox.Show(ex.Message);
}

}

Like the update example, this code utilizes a standard LINQ query that is populating the entity class
with all contacts whose last name is ‘‘Klein’’ (essentialy all the names used in the Insert example above).
As with the update example, each contact returned in the query is then iterated over, calling the Remove
method on the object entity and then calling the SubmitChanges method of the DataContext class.

As you can see, manipulating data is easy, yet effective. LINQ to SQL offers a lot of flexibility for manip-
ulating, and maintaining, data, and changes to data.

Concurrent Changes and Concurrency
Conflicts

In LINQ to SQL, the DataContext has built-in support for optimistic concurrency. In optimistic concur-
rency mode, updates succeed only if the state of the database has not changed since you first retrieved
the data. Conflicts to this state can occur in the LINQ to SQL object when both of the following are true:

❑ The application tries to write changes back to the database.

❑ The data you requested has been changed in the database since you requested the data.

For example, you request contact information for Bob. Your entity class is populated with Bob’s infor-
mation. While the data sits in your entity class within your application, you begin to change some of
the information within the class, such as Bob’s address. However, while you are making those changes,
someone else has also changed Bob’s data and saved it back to the database. Now when you try to save
your changes to the database, you have a concurrency conflict.

How do you resolve this? You need to find out which members of the object are ‘‘in conflict’’ and then
decide how you want to resolve those conflicts.

The information that follows will help you with those decisions.

UpdateCheck
The UpdateCheck property is a property of the [Column] attribute. It tells LINQ to SQL how to handle
optimistic concurrency conflicts when conflicts are detected. Any members of a class that are attributed
with this property are included in update checks to primarily help detect concurrency conflicts.

263

Klein c13.tex V3 - 12/13/2007 2:06pm Page 264

Part III: LINQ to SQL

The UpdateCheck property is used as follows:

[Column(DbType = "nvarchar(50)", UpdateCheck = UpdateCheck.WhenChanged)]
public string LastName;

This property can take one of several values, which are described in the following table.

Value Description

Always Always use this member for detecting conflicts.

Never Don’t use this member to determine conflicts.

WhenChanged Use this member to detect conflicts when the value of this
member has been changed by the application.

The default value is Always.

There are several alternatives for resolving the conflicts. One key approach is to use the UpdateCheck
property effectively. By revising the UpdateCheck options within your object model, you can quickly
narrow down those specific members that are vital to the data. You don’t want to place UpdateCheck on
each member (column) because performance could be degraded. The solution is to place it on the more
important members.

Another option is to use the RefreshMode enumeration in a try/catch block. This enumerator gives
you great flexibility in deciding how you want to resolve conflicts. You also have the ConflictMode
enumeration and the ChangeConflictException class. These three enumerations are discussed in the
following sections.

ConflictMode
The ConflictMode enumeration can be used in conjunction with the SubmitChanges method of the
DataContext class. This enumeration lets you specify how you want conflicts to be reported when they
are detected. It has two values:

❑ ContinueOnConflict—All database updates are attempted; concurrency conflicts are collected
and returned at the end of the change process.

❑ FailOnFirstConflict—Update attempts should immediately stop when the first concurrency
conflict is found.

Using the ConflictMode enumeration is quite simple. The SubmitChanges method has an overload that
accepts the enumeration as shown in this code fragment:

Db.SubmitChanges(ConflictMode.ContinueOnConflict);

264

Klein c13.tex V3 - 12/13/2007 2:06pm Page 265

Chapter 13: More about Entity Classes

The ConflictMode enumeration has the following member values:

❑ FailOnFirstConflict—Attempts to update the database should cease immediately when the
first concurrency conflict is found.

❑ ContinueOnConflict—All updates to the database should be attempted. All concurrency con-
flicts are gathered and returned at the end of the update process.

The ConflictMode option is usually used in conjunction with the RefreshMode enumeration, which is
discussed shortly.

ChangeConflictException
Any time a conflict occurs, a ChangeConflictException is thrown. This exception is thrown because an
update to the database failed because the database values were updated since the client application last
accessed them.

In its simplest form, the ChangeConflictException is used as follows:

catch (ChangeConflictException ex)
{

Messagebox.Show(e.Message)
}

This class offers much of the same information as the normal Exception class, such as an exception
message and source. But it also offers the capability to trap change conflict exceptions and, when used
with the RefreshMode and ConflictMode enumerations, lets developers handle conflicts properly.

RefreshMode
The RefreshMode enumeration lets you define how your application should handle optimistic concur-
rency conflicts. The DataContext class has a Refresh method that refreshes the object state with the
original data in the database. The enumeration tells Refresh what to do in case of a conflict.

RefreshMode has three values:

❑ KeepChanges—Tells Refresh to keep the current changed values in the object but updates the
other values with the data from the database.

❑ KeepCurrentValues—Tells Refresh to replace the current object values with values from the
database.

❑ OverwriteCurrentValues—Tells Refresh to override all of the current object values with the
values from the database.

An example from earlier in the chapter illustrates the use of RefreshMode as well as the ConflictMode
enumeration and ChangeConflictException class. The highlighted lines point out the pertinent code.

265

Klein c13.tex V3 - 12/13/2007 2:06pm Page 266

Part III: LINQ to SQL

try
{

var conQuery =
from con in db.Contacts
where con.FirstName == "Scott"
select con;

// there are 15 Scott’s in the table, so 15 changes should be made
foreach (Contact cont in conQuery)
{

cont.MiddleName = "L";
cont.NameStyle = 1;

}

db.SubmitChanges(ConflictMode.ContinueOnConflict);

textBox1.Text = "Contacts modified successfully";

}

catch (ChangeConflictException ex)
{

foreach (ObjectChangeConflict oc in db.ChangeConflicts)
{

oc.Resolve(RefreshMode.KeepCurrentValues);
}

}

You also have at your disposal the MemberChangeConflict class that, when used with the ObjectChange-
Conflict class, enables you to iterate through the individual conflict members (database value/columns
that have been updated since the client application last accessed it).

foreach (ObjectChangeConflict oc in db.ChangeConflicts)
{

foreach(MemberChangeConflict mc in oc.MemberConflicts)
{

//
}

}

The MemberChangeConflict class gives you access to the original value, the current value, and the
database. For example:

mc.CurrentValue;
mc.OriginalValue;
mc.DatabaseValue;

With this information, you have all the data you need to effectively decide how you want to
handle conflicts.

266

Klein c13.tex V3 - 12/13/2007 2:06pm Page 267

Chapter 13: More about Entity Classes

Utilizing Transactions
LINQ to SQL supports three models of transactions:

❑ Explicit local

❑ Implicit

❑ Explicit distributable

The difference between these types of transactions is how the transactions are created (explicitly or
implicitly) and what LINQ to SQL does with the call.

In an explicit local transaction, you are responsible for committing and rolling back the transaction.
The connection of the transaction must match the connection used by the DataContext; otherwise, an
exception is thrown. If the Transaction property of the DataContext class is set to an IDbTransaction,
then SubmitChanges method, when called, will use that transaction for all database operations.

In an implicit transaction, LINQ to SQL looks for two things—if the operation call is within the scope of
a transaction, and if the Transaction property of the DataContext class is set to a user-started local
IDbTransaction transaction. When SubmitChanges is called, these two checks are performed. Sub-
mitChanges uses the first one it finds. If neither is present, an explicit local transaction is started. In
an implicit transaction, the database engine automatically starts a new transaction after the current trans-
action is committed or rolled back. The user has to either commit or rollback each transaction.

An explicit distributable transaction is one in which the SubmitChanges method looks to see if the oper-
ation call is within the scope of a transaction. If LINQ to SQL determines that a call is in the scope of a
transaction, a new transaction is not created. As with an explicit transaction, the user is responsible for
the creation, committing, and disposing of the transaction.

The following examples illustrate a couple of these transaction modes. In the first example, a spe-
cific transaction scope is created and several operation calls are executed within this scope. Because
a transaction scope is used within a using statement, a specific commit or rollback is not necessary.
In this example, a TransactionScope is created and several insert operations are performed and the
SubmitChanges method is called. The TransactionScope class, part of the System.Transactions names-
pace, marks a block of code as transactional by implicitly enlisting connections within its transaction.
As discussed earlier, an implicit transaction must be manually committed or rolled back by the user/-
application.

The following example explicitly creates a transaction using the TransactionScope class to mark a block
of code as included in a transaction:

AdventureWorks db = new AdventureWorks("Integrated Security=sspi");
try
{

using (TransactionScope ts = new TransactionScope())
{

Contact con = new Contact();
con.FirstName = "Scott";

267

Klein c13.tex V3 - 12/13/2007 2:06pm Page 268

Part III: LINQ to SQL

con.LastName = "Klein";
con.MiddleName = "L";
con.NameStyle = 0;
con.EmailPromotion = 1;
con.EmailAddress = "ScottKlein@SqlXml.com";
con.PasswordHash = "asdf";
con.PasswordSalt = "qwer";
con.Title = "Geek";

db.Contacts.Add(con);

Contact con1 = new Contact();
con1.FirstName = "Horacio";
con1.LastName = "Hornblower";
con1.MiddleName = "T";
con1.NameStyle = 0;
con1.EmailPromotion = 1;
con1.EmailAddress = "Hornblower@sailingrus.com";
con1.PasswordHash = "asdf";
con1.PasswordSalt = "qwer";
con1.Title = "Captain";

db.Contacts.Add(con1);
db.SubmitChanges();

textBox1.Text = "Transaction Successful!";

ts.Complete();
ts.Dispose();

}
}
catch (Exception ex)
{

MessageBox.Show(ex.Message);
}

Next is an example of an explicit local transaction. Here, the specific transaction connection is created
and controlled, as well as the need to specifically commit and/or roll back the transaction. Like the first
example, the SubmitChanges method is called and executed within the same transaction scope:

db.Connection.Open();
db.Transaction = db.Connection.BeginTransaction();
Contact con = new Contact();
con.FirstName = "Scott";
con.LastName = "Klein";
con.MiddleName = "L";
con.NameStyle = 0;
con.EmailPromotion = 1;
con.EmailAddress = "ScottKlein@SqlXml.com";
con.PasswordHash = "asdf";
con.PasswordSalt = "qwer";
con.Title = "Geek";

db.Contacts.Add(con);

268

Klein c13.tex V3 - 12/13/2007 2:06pm Page 269

Chapter 13: More about Entity Classes

Contact con1 = new Contact();
con1.FirstName = "Horacio";
con1.LastName = "Hornblower";
con1.MiddleName = "T";
con1.NameStyle = 0;
con1.EmailPromotion = 1;
con1.EmailAddress = "Hornblower@sailingrus.com";
con1.PasswordHash = "asdf";
con1.PasswordSalt = "qwer";
con1.Title = "Captain";

db.Contacts.Add(con1);

db.SubmitChanges();

textBox1.Text = "Transaction Successful!";

db.Transaction.Commit();
db.Transaction.Dispose();
db.Connection.Close();

The TransactionScope class lets you ‘‘bracket’’ your submissions to the database. ‘‘Bracketing’’ means
to make a block of code transactional. The TransactionScope class makes it easy to ‘‘bracket.’’

The recommendation for using transactions is to implicitly create transactions using the Transaction-
Scope class. The benefit of implicitly creating them is that the encompassing transaction context is
automatically managed. This is typically called an ambient transaction, and is defined as the transaction
in which your code is currently executing.

What is cool about using the TransactionScope is that the transaction manager determines the type of
transaction to use. The decision is based on two things: whether there is an existing transaction, and the
value of the TransactionScopeOption parameter in the TransactionScope constructor.

The TransactionScopeOption is an enumeration that provides additional options for creating a transac-
tion scope. It has the following member values:

❑ Required—A transaction is required. A current transaction is used if one already exists; other-
wise, a new transaction is created. This is the default value.

❑ RequiredNew—A new transaction is always created.

❑ Suppress—The current transaction context is suppressed when creating the scope.

Once the TransactionScope picks a transaction type, it always uses that transaction.

Summary
Sometimes working with a new technology can be intimidating and overwhelming. This need not be the
case with LINQ to SQL and entities. LINQ to SQL is flexible and powerful yet easy to use, as this chapter
showed, even when dealing with more complex topics.

269

Klein c13.tex V3 - 12/13/2007 2:06pm Page 270

Part III: LINQ to SQL

This chapter tackled transactions and concurrency conflicts. First, you saw how to track changes to the
entity object. (Knowing the state of your object and tracking its changes will come in handy.) Then you
explored inserting, updating, and deleting data via LINQ to SQL entities.

LINQ to SQL has great support for optimistic concurrency, and this chapter focused on several features
that will help you detect and appropriately handle concurrency conflicts, such as the ConflictMode and
ChangeConflictExpeption.

270

Klein c14.tex V3 - 12/13/2007 2:07pm Page 271

LINQ to DataSet

Most, if not all, .NET developers are familiar with the concept of a DataSet because it is one of the
most used components of ADO.NET. In simple terms, DataSets are objects that contain internal data
tables where data is temporarily stored and is available for use by your application. DataSets are,
in essence, a local in-memory cache of data that is typically retrieved from a database. This cache
lets you work in a disconnected mode, providing the capability to make changes to the data within
the DataSet, track those changes, and save those changes back to the database when the application
reconnects.

A DataSet is a representation of the tables and relationships found in the database, exposing a
hierarchical object model made of all the objects such as tables, rows, columns, constraints, and
relationships. Much of the functionality that populates the DataSet and saves the changes within
the DataSet back to the database is found in ADO.NET.

The DataSet itself is extremely flexible and powerful. It provides the capability for applications to
efficiently work with a subset of data found in a database and to manipulate the data as needed by
the application, all while in a disconnected state, and then usher the changes back to the database.

Yet, with all that flexibility there has not been, up to this point, a means or method for querying
data contained within a DataSet (there are a few methods on the DataTable class which will be
discussed below). This is where LINQ and LINQ to DataSets come in. With the querying power
of LINQ, LINQ to DataSets provides a full set of query capabilities for a developer to quickly and
easily query the contents of a DataSet.

This chapter deals specifically with how to work with LINQ to DataSets, and covers the following
topics:

❑ Loading data into a DataSet

❑ Querying DataSets with LINQ to DataSet

❑ Data binding

❑ Comparing rows in DataSets

Klein c14.tex V3 - 12/13/2007 2:07pm Page 272

Part III: LINQ to SQL

Overview of LINQ to DataSet
Perhaps the only thing that ADO.NET DataSets lack when it comes to functionality is an adequate query
capability. DataSets do everything else quite well, but from a query perspective, they are limited. Sure,
they have the Select, GetParentRow, and GetChildRows methods, but these provide only basic querying
features.

Microsoft recognized these shortcomings and has provided the capability to query the contents of a
DataSet through LINQ to DataSet. LINQ to DataSet utilizes the query features of LINQ, letting you
create queries in your programming language and eliminating the need to place query string literals
in your code. In essence, you get all the features and benefits of LINQ combined with all the features
and benefits of DataSets, such as IntelliSense, syntax checking, and static typing. For instance, how many
times have you had to run and rerun your application to test your inline string query because your syntax
was incorrect? With LINQ to DataSets, you know before your application ever runs whether your query
will execute.

Initially, Microsoft was looking at several options to give developers to populate DataSets using LINQ to
SQL. However, at the time of this writing, the only option available is to use the DataAdapter class. That
is not to say that other methods won’t be added later, but for now, the DataAdapter class is your only
option.

LINQ to SQL also adds several specific extensions to the DataSet that enable you to access DataRow
objects. Just as important, there are additional things you need to do to your Visual Studio project to
enable LINQ to DataSet functionality.

The following section shows you how to create a LINQ to DataSet project in Visual Studio, and the rest
of this chapter explains how to load data into a DataSet and then how to query that DataSet using LINQ
to DataSet.

Creating a LINQ to DataSet Project
A LINQ to DataSet project is created the same way any other normal project is created. The difference is
that you have to include a few additional references and using directives. Fire up Visual Studio 2008 and
create a new C# Windows project. Make sure that you target.NET Framework version 3.5.

By default, Visual Studio should include all the necessary references you need to work with LINQ and
LINQ to DataSet. But if you are upgrading an existing project from an earlier version of Visual Studio,
or even a project created in an early beta of Visual Studio, you will need to manually add the necessary
references.

At a minimum, a LINQ to DataSet project needs a reference to the System.Core namespace and
the System.Data.DataSetExtensions namespace. These two namespaces are in addition to the stan-
dard System.Data.Linq and System.Data namespaces that you are used to having in your project.
Figure 14-1 shows the necessary references needed to work with LINQ to DataSet.

Once you have the necessary references in place, you need to make sure that you have included the
appropriate using directives:

272

Klein c14.tex V3 - 12/13/2007 2:07pm Page 273

Chapter 14: LINQ to DataSet

using System;
using System.Data.Common;
using System.Data.SqlClient;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Data.Linq;
using System.Text;
using System.Windows.Forms;

Then you are ready to go.

Figure 14-1

Loading Data into a DataSet
Before you can query a DataSet, it must be populated with data. The most popular way to do that is to
use the DataAdapter class to retrieve the data from the database. This section shows via example how to
populate a DataSet using the DataAdapter class so that it can later be queried with LINQ to DataSet.

Using the DataAdapater
If you have done any database development with .NET, you are intimately familiar with how to populate
a DataSet using SqlDataAdapter. Here’s an example:

273

Klein c14.tex V3 - 12/13/2007 2:07pm Page 274

Part III: LINQ to SQL

try
{

int salesPersonID = Convert.ToInt32(textBox1.Text);

DataSet ds = new DataSet();

string connectionInfo = "Data Source=avalonserver;Initial Catalog=AdventureWorks;
Integrated Security=true";

SqlDataAdapter da = new SqlDataAdapter(
"SELECT SalesOrderID, OrderDate, " +

"SalesOrderNumber, SalesPersonID, ContactID, TotalDue " +
"FROM sales.salesorderheader " +
"WHERE SalesPersonID = @ID; " +

"SELECT od.SalesOrderID, od.SalesOrderDetailID, od.OrderQty, " +
"od.ProductID, od.UnitPrice, od.LineTotal " +
"FROM sales.salesorderdetail od " +
"INNER JOIN Sales.SalesOrderHeader oh ON od.SalesOrderID = oh.SalesOrderID " +
"WHERE oh.SalesPersonID = @ID; ", connectionInfo);

da.SelectCommand.Parameters.AddWithValue("@ID", salesPersonID);
da.TableMappings.Add("Table", "SalesOrderHeader");
da.TableMappings.Add("Table1", "SalesOrderDetail");

da.Fill(ds);

DataTable header = ds.Tables["SalesOrderHeader"];
DataTable detail = ds.Tables["SalesOrderDetail"];
DataRelation dr = new DataRelation("OrderHeaderDetail",

header.Columns["SalesOrderID"],
detail.Columns["SalesOrderID"], true);

ds.Relations.Add(dr);

textBox2.Text = ds.Tables[0].Rows.Count.ToString();
textBox3.Text = ds.Tables[1].Rows.Count.ToString();

}
catch (Exception ex)
{

MessageBox.Show(ex.Message);
}

First, you define a DataSet, followed by defining a connection to the database from which the data will
be pulled to populate the DataSet. Then you define a data adapter using several T-SQL statements from
which to query the database and populate the DataSet. Two data tables are defined and created within the
data adapter to hold the returned data. Next, the data adapter is filled with the data requested from
the two T-SQL statements. Last, a relationship is created between the two data tables.

At this point, the DataSet contains all the order header and order detail records that were requested. The
data can now be queried, modified, updated, and sent back to the original database. The purpose of this
example was to illustrate how to populate a DataSet using a DataAdapter. Now that the DataSet contains
data, it can now be queried using LINQ to DataSet.

274

Klein c14.tex V3 - 12/13/2007 2:07pm Page 275

Chapter 14: LINQ to DataSet

LINQ to DataSet Queries
Once DataSets are populated, they can be queried. That’s where LINQ to DataSets comes in. Querying
DataSets using LINQ to DataSet is not really that different from other LINQ queries you have worked
with throughout this book. There are basically two options when writing LINQ to DataSet queries: use
query expression syntax or method-based syntax. (Both query syntax and method syntax were discussed
in Chapter 3.)

As a refresher, query expressions use declarative query syntax, enabling developers to write queries in
‘‘SQL-like’’ language. The benefit is that you can create complex queries with minimal code. The .NET
CLR cannot read query expressions, so at compile time query expressions are translated to method calls,
commonly known as standard query operators.

Method syntax, on the other hand, provides direct access to the LINQ operator methods using lambda
expressions as parameters.

You can use either of these methods. The key to querying DataSets with LINQ to DataSet is that you are
querying an enumeration of DataRow objects. This has many benefits, including the capability to use all
of the DataRow class members in your LINQ queries.

Querying a Single Table
The following example uses a DataAdapter to populate a DataSet with sales order header information
for a particular salesperson. A LINQ query expression is then defined and used to query the DataSet for
all orders for the year 2003.

try
{

int salesPersonID = Convert.ToInt32(textBox3.Text);

DataSet ds = new DataSet();

string connectionInfo = "Data Source=avalonserver;Initial Catalog=AdventureWorks;
Integrated Security=true";

SqlDataAdapter da = new SqlDataAdapter(
"SELECT SalesOrderID, OrderDate, " +

"SalesOrderNumber, SalesPersonID, ContactID, TotalDue " +
"FROM sales.salesorderheader " +
"WHERE SalesPersonID = @ID; ", connectionInfo);

da.SelectCommand.Parameters.AddWithValue("@ID", salesPersonID);
da.TableMappings.Add("Table", "SalesOrderHeader");

da.Fill(ds);

DataTable header = ds.Tables["SalesOrderHeader"];

textBox1.Text = ds.Tables[0].Rows.Count.ToString();

var orderHeader = from oh in header.AsEnumerable()

275

Klein c14.tex V3 - 12/13/2007 2:07pm Page 276

Part III: LINQ to SQL

where oh.Field<DateTime>("OrderDate").Year == 2003
select new {SalesOrderID = oh.Field<int>("SalesOrderID"),

SalesOrderNumber = oh.Field<string>("SalesOrderNumber"),
OrderDate = oh.Field<DateTime>("OrderDate"),
Total = oh.Field<decimal>("TotalDue")};

foreach (var order in orderHeader)
{

listBox1.Items.Add(order.SalesOrderID + " " +
order.SalesOrderNumber + " " +
order.OrderDate + " " +
order.Total);

}
}
catch (Exception ex)
{

MessageBox.Show(ex.Message);
}

Notice in the query that the DataSet is not a typed DataSet because the Field method is used to access
the column values of the DataRow.

Figure 14-2 shows the results of running this code.

Figure 14-2

As you can see, querying a single table within a DataSet is quite simple, but what if there were multiple
tables within the DataSet?

276

Klein c14.tex V3 - 12/13/2007 2:07pm Page 277

Chapter 14: LINQ to DataSet

Querying across Multiple Tables
Cross-table queries in LINQ to DataSet is accomplished by using a join, an association of data source
with a secondary data source in which the two data sources share a common attribute. LINQ makes
object-oriented relationship navigation easy because each object has a property that references another
object.

However, external tables (such as those in a DataSet) do not have built-in relationships, which makes
relationship navigation difficult.

Luckily, the LINQ join operator can be used to link common attributes from each data source.

The following example illustrates how to query a DataSet that has multiple tables. A DataAdapter is cre-
ated and used to populate a DataSet with sales order header information and corresponding sales order
detail information for a particular SalesPersonID within the SalesOrderHeader table. A relationship is
defined to link the two tables together within the DataSet.

A LINQ query expression is then defined and used to query the DataSet for all orders for the year
2003. The query uses two columns from the SalesOrderDetail table as well as four columns from the
SalesOrderHeader table to display in the results.

try
{

int salesPersonID = Convert.ToInt32(textBox3.Text);

DataSet ds = new DataSet();

string connectionInfo = "Data Source=avalonserver;Initial Catalog=AdventureWorks;
Integrated Security=true";

SqlDataAdapter da = new SqlDataAdapter(
"SELECT SalesOrderID, OrderDate, " +

"SalesOrderNumber, SalesPersonID, ContactID, TotalDue " +
"FROM sales.salesorderheader " +
"WHERE SalesPersonID = @ID; " +

"SELECT od.SalesOrderID, od.SalesOrderDetailID, od.OrderQty, " +
"od.ProductID, od.UnitPrice, od.LineTotal " +
"FROM sales.salesorderdetail od " +
"INNER JOIN Sales.SalesOrderHeader oh ON od.SalesOrderID = oh.SalesOrderID " +
"WHERE oh.SalesPersonID = @ID; ", connectionInfo);

da.SelectCommand.Parameters.AddWithValue("@ID", salesPersonID);
da.TableMappings.Add("Table", "SalesOrderHeader");
da.TableMappings.Add("Table1", "SalesOrderDetail");

da.Fill(ds);

DataTable header = ds.Tables["SalesOrderHeader"];
DataTable detail = ds.Tables["SalesOrderDetail"];

DataRelation dr = new DataRelation("OrderHeaderDetail", header.Columns
["SalesOrderID"], detail.Columns["SalesOrderID"], true);

277

Klein c14.tex V3 - 12/13/2007 2:07pm Page 278

Part III: LINQ to SQL

ds.Relations.Add(dr);

textBox1.Text = ds.Tables[0].Rows.Count.ToString();
textBox2.Text = ds.Tables[1].Rows.Count.ToString();

var orderHeader = from oh in header.AsEnumerable()
join od in detail.AsEnumerable()
on oh.Field<int>("SalesOrderID")
equals od.Field<int>("SalesOrderID")
where oh.Field<DateTime>("OrderDate").Year == 2003
select new
{

SalesOrderID = oh.Field<int>("SalesOrderID"),
OrderQuantity = od.Field<Int16>("OrderQty"),
ProductID = od.Field<int>("ProductID"),
SalesOrderNumber = oh.Field<string>("SalesOrderNumber"),
OrderDate = oh.Field<DateTime>("OrderDate"),
Total = oh.Field<decimal>("TotalDue")

};

foreach (var order in orderHeader)
{

listBox1.Items.Add(order.SalesOrderID + " " +
order.SalesOrderNumber + " " +
order.ProductID + " " +
order.OrderQuantity + " " +
order.OrderDate + " " +
order.Total);

}

}
catch (Exception ex)
{

MessageBox.Show(ex.Message);
}

Just as in the previous example, the DataSet is not a typed DataSet because the schema of the DataSet is
not known at design time and the Field method is used to access the column values.

Figure 14-3 shows the results of running this code.
Instead of using untyped DataSets, the other option is to query a typed DataSet.

Typed DataSets
If you know the schema of the DataSet during the design of the application, it’s best to use a typed
DataSet. A typed DataSet is strongly typed, giving you can access to all the tables and columns by name
instead using the Field method shown in the two preceding examples. A typed DataSet
inherits from the DataSet class, providing access to all of the methods, properties, and events that a
normal DataSet has.

Typed DataSets can be created by using the Data Source Configuration Wizard or the DataSet Designer.
Both are in Visual Studio.

278

Klein c14.tex V3 - 12/13/2007 2:07pm Page 279

Chapter 14: LINQ to DataSet

Figure 14-3

LINQ to DataSet supports the querying of typed DataSets, so you can access the table and column names
by name. Just as important, columns are provided as the correct type, eliminating type mismatch errors.
The following code is an example of querying a typed DataSet:

var orderHeader = from oh in header.AsEnumerable()
join od in detail.AsEnumerable()
on oh.SalesOrderID
equals od.SalesOrderID
where oh.OrderDate == 2003
select new
{

SalesOrderID = oh.SalesOrderID,
OrderQuantity = od.OrderQty,
ProductID = od.ProductID,
SalesOrderNumber = oh.SalesOrderNumber,
OrderDate = oh.OrderDate,
Total = oh.TotalDue

};

A typed DataSet can be queried just like any other DataSet using LINQ to DataSet.

Data Binding
Data binding is the act of creating a link or connection between the user interface and the data. It’s been
around for quite a while and is not specific to LINQ to DataSet. The concept behind data binding is that
a user interface component can be bound to its corresponding field or column in the data layer such that
when the user changes the value in the user interface, the change is automatically reflected in the data
layer or database.

279

Klein c14.tex V3 - 12/13/2007 2:07pm Page 280

Part III: LINQ to SQL

LINQ to SQL lets you bind data to many of the common controls such as combo boxes, grid controls,
as well as a DataView. A DataView represents a customizable and bindable view of a DataTable,
providing searching, sorting, editing, and filtering capabilities. Once the DataView is created, it can
be bound to UI controls such as a DataGrid.

Keep in mind that a LINQ to DataSet query returns a DataRow enumeration, which is difficult
to bind. The CopyToDataTable method is valuable in those instances. CopyToDataTable returns
a DataTable that contains copies of the DataRow objects. The method is part of the DataTable-
Extensions class and takes an IEnumerable(Of T) object, where a parameter T is a generic
DataRow.

The following example populates DataSet with data from the SalesOrderHeader table and then queries
using a LINQ to DataSet query. The query returns an enumeration of DataRow objects that is used to pop-
ulate a DataTable via the CopyToDataTable method. Once the DataTable is populated, a new DataView
is created and populated with the DataTable. The DataView is then assigned to the DataSource property
of a DataGridView.

try
{

int salesPersonID = Convert.ToInt32(textBox3.Text);

DataSet ds = new DataSet();

string connectionInfo = "Data Source=avalonserver;Initial Catalog=AdventureWorks;
Integrated Security=true";

SqlDataAdapter da = new SqlDataAdapter(
"SELECT SalesOrderID, OrderDate, " +

"SalesOrderNumber, SalesPersonID, ContactID, TotalDue " +
"FROM sales.salesorderheader " +
"WHERE SalesPersonID = @ID; ", connectionInfo);

da.SelectCommand.Parameters.AddWithValue("@ID", salesPersonID);
da.TableMappings.Add("Table", "SalesOrderHeader");

da.Fill(ds);

DataTable header = ds.Tables["SalesOrderHeader"];

textBox1.Text = ds.Tables[0].Rows.Count.ToString();

IEnumerable<DataRow> orderHeader =
from oh in header.AsEnumerable()
where oh.Field<DateTime>("OrderDate").Year == 2003
select oh;

DataTable dt = orderHeader.CopyToDataTable<DataRow>();

DataView dv = new DataView(dt);
dataGridView1.DataSource = dv;

}

280

Klein c14.tex V3 - 12/13/2007 2:07pm Page 281

Chapter 14: LINQ to DataSet

catch (Exception ex)
{

MessageBox.Show(ex.Message);
}

You could just have easily set the DataSource of the DataGridView to the DataTable, as follows:

dataGridView1.DataSource = dt;

However, the DataView provides capabilities such as sorting and filtering the data stored in a DataTable.
For example, you can filter the data by state of the row or via a filter expression.

You can also implicitly bind data to controls by implementing the IListSource interface. This interface
provides an object the ability to return a list that is bindable to a data source.

For example, you can do the following:

var query =
(from c in contact
where c.FirstName.StartsWith("S")
&& c.LastName.StartsWith("K")
orderby c.LastName
select c);

dataGrid1.DataSource = query;

Likewise, you can bind data to a data source as follows (given the same query):

BindingSource bindsrc = new BindingSource();
bindsrc.DataSource = query;
dataGrid1.DataSource = bndsrc;

Implicit binding is available due to the fact that the Table<T> and DataQuery<T> classes have been
updated to implement the IListSource interface.

Comparing DataRows
The last topic to be discussed in this chapter is the ability to use LINQ to DataSet to compare rows. As you
learned in the early chapters of this book, LINQ provides several operators—Distinct, Union, Inter-
sect, and Except—that provide comparison capabilities. These set operators compare source elements,
checking for equality.

Elements can be compared for equality by calling the operators’ GetHashCode and Equals methods.
However, one of the things added to LINQ to DataSet is the DataRowComparer class. This class is used
to compare two row values for equality using value-based comparison. It overcomes the need to do
reference comparisons by executing value comparisons on the DataRow itself, enabling you to use this
class against set operators.

Using the DataRowComparer class is preferable to using the GetHashCode and Equals methods because
these operations perform reference comparisons, which is not ideal for set operations over tabular data.

281

Klein c14.tex V3 - 12/13/2007 2:07pm Page 282

Part III: LINQ to SQL

One of the key things to remember about the DataRowComparer class is that it cannot be instantiated
directly. The correct way to use this class is to use the Default property, which returns an instance of
the class. You then use the Equals method to compare two DataRow objects. The two objects are used
as parameters to the Equals method, which returns true if the two rows are equal, and false if they
are not.

This type of comparison is illustrated in the following code. A DataSet is populated, and then two rows
are identified for comparison. An instance of the DataRowComparer is then created, at which point the
Equals method is called, passing the two rows as parameters for comparison. If the first row is the same
as the second row, a message box displays a message indicating that they are equal; otherwise, a message
box displays stating they are not equal.

try
{

int salesPersonID = Convert.ToInt32(textBox3.Text);

DataSet ds = new DataSet();

string connectionInfo = "Data Source=avalonserver;Initial
Catalog=AdventureWorks;Integrated Security=true";

SqlDataAdapter da = new SqlDataAdapter(
"SELECT SalesOrderID, OrderDate, " +

"SalesOrderNumber, SalesPersonID, ContactID, TotalDue " +
"FROM sales.salesorderheader " +
"WHERE SalesPersonID = @ID; ", connectionInfo);

da.SelectCommand.Parameters.AddWithValue("@ID", salesPersonID);
da.TableMappings.Add("Table", "SalesOrderHeader");

da.Fill(ds);

DataTable header = ds.Tables["SalesOrderHeader"];

DataRow first = (DataRow)header.Rows[0];
DataRow second = (DataRow)header.Rows[1];

IEqualityComparer<DataRow> comp = DataRowComparer.Default;

bool isEqual = comp.Equals(first, second);
if (isEqual)

MessageBox.Show("they are equal");
else

MessageBox.Show("they are not equal");
}
catch (Exception ex)
{

MessageBox.Show(ex.Message);
}

When you run this example, you get a message box stating that the rows are not equal. This is a simple
example that compared the first row with the second row in the DataSet. This next example uses one of
the set operators to determine equality.

282

Klein c14.tex V3 - 12/13/2007 2:07pm Page 283

Chapter 14: LINQ to DataSet

try
{

dataGridView1.Visible = false;
listBox1.Visible = true;

int salesPersonID = Convert.ToInt32(textBox3.Text);

DataSet ds = new DataSet();

string connectionInfo = "Data Source=avalonserver;Initial
Catalog=AdventureWorks;Integrated Security=true";

SqlDataAdapter da = new SqlDataAdapter(
"SELECT SalesOrderID, OrderDate, " +

"SalesOrderNumber, SalesPersonID, ContactID, TotalDue, CustomerID " +
"FROM sales.salesorderheader " +
"WHERE SalesPersonID = @ID; ", connectionInfo);

da.SelectCommand.Parameters.AddWithValue("@ID", salesPersonID);
da.TableMappings.Add("Table", "SalesOrderHeader");

da.Fill(ds);

DataTable header = ds.Tables["SalesOrderHeader"];

IEnumerable<DataRow> query1 =
from oh in header.AsEnumerable()
where oh.Field<int>("SalesPersonID") == 288
select oh;

IEnumerable<DataRow> query2 =
from oh2 in header.AsEnumerable()
where oh2.Field<int>("CustomerID") == 555
select oh2;

DataTable dt1 = query1.CopyToDataTable();
DataTable dt2 = query2.CopyToDataTable();

var sales = dt1.AsEnumerable().Intersect(dt2.AsEnumerable(),
DataRowComparer.Default);

foreach (DataRow dr in sales)
{

listBox1.Items.Add(dr["SalesOrderID"] + " " +
dr["OrderDate"] + " " + dr["SalesOrderNumber"] + " " +
dr["TotalDue"]);

}

}
catch (Exception ex)
{

MessageBox.Show(ex.Message);
}

283

Klein c14.tex V3 - 12/13/2007 2:07pm Page 284

Part III: LINQ to SQL

In this example, the DataSet is filled with all records from the SalesOrderHeader table where the
SalesPersonID = 288. From there, two tables are generated that contain a subset of that data. The first
table contains those records from the DataSet whose ContactID = 30. The second table contains those
records from the DataSet whose CustomerID = 555. The Intersect comparison operator is then used to
return those records that are the same in each table. Those records are displayed in the list box.

When you run this example, the output should display three records, as shown Figure 14-4.

Figure 14-4

These comparison operators make it easy to compare elements and do set operations against data con-
tained within DataSets. As you can see, working with DataSets with LINQ to DataSet is quite simple,
whether you are comparing data, doing data binding, or just querying DataSets.

Summary
In ADO.NET programming, the DataSet is probably one of most commonly used components because
of the functionality it provides when dealing with data caching and disconnected data manipulation.
This chapter focused on the LINQ to DataSet features, the capability to query data cached in a DataSet
object. These capabilities enable Visual Studio and developers to work more efficiently due to the benefits
that the Visual Studio IDE provides, such as compile-time syntax checking, IntelliSense, and support for
LINQ.

In this chapter, you got an overview of LINQ to DataSet and a look at the features and benefits that LINQ
to DataSet provides. You also examined the steps necessary to create a LINQ to Dataset project in Visual
Studio, and how to load data into a DataSet using the familiar SqlDataAdapter class as well as new
approach using LINQ to SQL.

284

Klein c14.tex V3 - 12/13/2007 2:07pm Page 285

Chapter 14: LINQ to DataSet

The heart of the chapter tackled querying DataSets, and you learned how LINQ to DataSet also supports
data binding using DataSets. Finally, you saw how LINQ to DataSet supports the LINQ set operators
to effectively compare source elements within a DataSet, whether they are in the same table or multiple
tables within the DataSet.

So far, you’ve done everything in this book manually, such as create LINQ to SQL entity classes. The next
chapter discusses several tools that make working with LINQ even simpler.

285

Klein c14.tex V3 - 12/13/2007 2:07pm Page 286

Klein c15.tex V3 - 12/13/2007 2:08pm Page 287

Advanced LINQ
to SQL Topics

Visual Studio 2008 provides several tools to help facilitate the creation of entity classes and their
mapping to relational objects in a database. These tools also help define the entity associations
(database relationships) that the entity classes will use when working with two or more tables.

In essence, these tools help create an object model. The object model is defined within an application
that will then be mapped to database objects. It is a fully functional object model, one that supports
a mapping to stored procedures and user-defined functions as well as DataContext methods for
data transport.

Equally important is the discussion of using LINQ to SQL in a multi-tier environment and other
topics, such as external mapping with LINQ to SQL and entity classes.

Therefore, this chapter will discuss the following:

❑ Object Relational Designer

❑ SQL Metal tool

❑ External mapping

❑ Multi-tier operations

Object Relational Designer
The O/R Designer (Object Relational Designer) is a tool that provides the ability to create and man-
age LINQ to SQL entity classes, their associated relationships, and mappings through a graphical
user interface. Through the O/R Designer you create an object model that maps entity classes within
your application to objects within your database, such as tables and stored procedures. Instead of
creating and defining these mappings by hand as you have done in previous chapters, the O/R
Designer provides a graphical user interface in which you can accomplish these tasks.

Klein c15.tex V3 - 12/13/2007 2:08pm Page 288

Part III: LINQ to SQL

Creating and Opening the O/R Designer
The Object Relational Designer is created by adding a specific file type to your Visual Studio project.
Open Visual Studio, and create a new C# Windows project for .NET Framework 3.5. When the project
is created, right-click on the project and select Add ➪ New Item from the context menu. In the Add
New Item dialog, select the Data node under Categories, and then select the LINQ to SQL Classes under
Templates, as shown in Figure 15-1.

Figure 15-1

The LINQ to SQL classes are what define the Data (Entity) classes, such as the associations, mappings,
and DataContext methods.

Provide a name for the LINQ to SQL class (this example uses the name AdventureWorksSales.dbml),
and click the Add button. At this point, several files are added to the project:

❑ The .dbml file—The actual O/R Designer file.

❑ The .layout file—Contains the layout of the designer as you drag and drop objects onto it.

❑ The .cs file—Contains the designer code, such as the extensibility code definitions.

Figure 15-2 shows what the project should look like after the O/R Designer has been added to
your project.

At this point the DataContext can be configured.

Creating/Configuring the DataContext
When you add the O/R Designer by adding the LINQ to SQL Classes item to your project, the designer
opens in design mode automatically. Figure 15-3 shows what the O/R Designer looks like when it is
first created. The O/R Designer design surface has two areas with which to work and design your data
classes. The left pane is the Entities pane (or Entity Class pane), the main location where entity classes
will be defined. The right pane is the Methods pane where DataContext methods are mapped to stored
procedures and functions. The methods pane can be hidden; the entities pane cannot.

288

Klein c15.tex V3 - 12/13/2007 2:08pm Page 289

Chapter 15: Advanced LINQ to SQL Topics

Figure 15-2

Figure 15-3

When the O/R Designer is first opened, it is empty of any objects, as Figure 15-3 shows. It represents
an empty DataContext ready for configuration. Configuring the DataContext is as simple as dragging
objects from the Server Explorer in Visual Studio to the Entities pane in the O/R Designer and setting the
appropriate connection properties.

For example, the first time you drag a table from the Server Explorer to the Entities pane, you may receive
a message (see Figure 15-4) asking if you want to save the connection information corresponding to this
object and the Server Explorer Data Connection with the DataContext and the O/R Designer.

289

Klein c15.tex V3 - 12/13/2007 2:08pm Page 290

Part III: LINQ to SQL

Figure 15-4

You get this message because the connection string used by select objects contains sensitive information.
If you choose No, the connection string is stored as an application setting (except for the password) to be
used only for the duration of the design session. Once the designer is closed, the connection information
is no longer held.

Selecting Yes stores the connection string information as an application setting, such as the application
configuration file. This is not secure because connection information is stored as plain text.

The connection information is obtained by making a connection in the Server Explorer window. From the
View menu, select Server Explorer. In the Server Explorer window, you will see two nodes, one for Data
Connections and one for Servers. Right-click the Data Connections node and select Add Connection. In
the Add Connections dialog, enter the appropriate information to make a connection to your database
server.

This connection information will be stored with the DataContext and O/R Designer. When you first
drag an object from the Server Explorer onto the Entities pane, the information is used to provide the
O/R Designer the necessary information that it needs to configure the DataContext.

The next section explains how to define entity classes that will be used to map to database tables and
views, and you’ll be dragging a table onto the designer to configure the DataContext.

Creating Entity Classes for Tables/View Mapping
When you drag a table from Server Explorer to the O/R Designer’s Entities, you are creating an entity
class that maps to a database table or view. Figure 15-5 shows what the O/R Designer looks like once
you have dropped a table into that pane.

At this point you have created an entity class. The O/R Designer, behind the scenes, generates the appro-
priate classes and applies the appropriate LINQ to SQL attributes to those classes. This entity class now
has all the appropriate properties that map the columns in the selected table. Also, the data connection
information is provided to the designer and will be supplied to the DataContext.

These entity classes are updatable: They can save changes via the SubmitChanges() method of the
DataContext.

Relationships between tables are also supported in the O/R Designer, and it is actually smart enough
to pick them up automatically. For example, Figure 15-6 shows the defined relationship between the
SalesOrderHeader and SalesOrderDetail when the SalesOrderDetail table is dropped onto the O/R
Designer. Double-clicking the relationship line between the two tables opens the Association Editor
dialog, which enables you to change the relationship (association) if necessary.

290

Klein c15.tex V3 - 12/13/2007 2:08pm Page 291

Chapter 15: Advanced LINQ to SQL Topics

Figure 15-5

Figure 15-6

Keep in mind that the O/R Designer only reflects changes one way. That is, changes that you make via
the designer are reflected in the code, but any code changes you make do not show up in the designer.
This means that any code changes you make will be overwritten any time you make changes via the
designer.

If you want to add code, read the section entitled ‘‘Extending O/R Designer-Generated Code’’ later in
this chapter.

291

Klein c15.tex V3 - 12/13/2007 2:08pm Page 292

Part III: LINQ to SQL

DataContext Mapping for Stored Procedures/Functions
DataContext methods are those methods of the DataContext class that run stored procedures and
functions. In the context of the O/R Designer, the DataContext class is the LINQ to SQL class you just
created; it acts as a channel between the database and the entity classes mapped to the database.

When a stored procedure or function is dragged from the Server Explorer and dropped onto the O/R
Designer, it is displayed in the Methods pane, as shown in Figure 15-7. This pane lists all the DataContext
methods you have created via the O/R Designer.

Figure 15-7

The return type of the generated DataContext method can depend on where you place the item in the
O/R Designer:

❑ If you drop an item onto an existing entity class, the return type will be the type of that entity
class for that DataContext method.

❑ If you drop an item onto an empty entity class or an empty area of the designer, the return type
will be an auto-generated type for that DataContext method.

In other words, you can create DataContext methods that return auto-generated types by dragging
a stored procedure onto an empty area of the O/R Designer. Likewise, you can create DataContext
methods that return the type of the entity class by dropping a stored procedure on an existing entity
class in the designer.

The return type of the DataContext method can be changed by opening the Properties window and
changing the Return Type property for that method, as shown in Figure 15-8.

Once the DataContext method has been defined the method (stored procedure) can be called (which
executes the stored procedure) passing the necessary parameters and return the data.

292

Klein c15.tex V3 - 12/13/2007 2:08pm Page 293

Chapter 15: Advanced LINQ to SQL Topics

Figure 15-8

Calling Stored Procedures to Save Data Using Entity
Classes

By default, the LINQ to SQL runtime handles the INSERT, UPDATE, and DELETE functions of an entity class.
However, you can also use stored procedures to create DataContext methods to provide this functional-
ity. These stored procedures can also be added to the O/R Designer as standard DataContext methods
just like standard SELECT stored procedures.

Figure 15-9 shows the designer with the Properties page opened after clicking on the SalesOrderHeader
entity in the entity class pane. Notice that the Properties page has Delete, Insert, and Update properties.
The default value for these properties is Use Runtime.

Figure 15-9

To change the default behavior and assign a stored procedure to perform the insert, update, or delete
operation, drag and drop the stored procedure that performs the operation into the Methods pane on the
designer. Next, click on the entity in the entity class pane of the designer, and on the Properties page,

293

Klein c15.tex V3 - 12/13/2007 2:08pm Page 294

Part III: LINQ to SQL

click the ellipsis button for the appropriate property (Delete, Insert, or Update) to the Configure Behavior
dialog shown in Figure 15-10.

Figure 15-10

The Configure Behavior dialog enables you to override the default behavior by specifying the class in
which to override the behavior, the type of behavior (Insert, Update, or Delete), and the method (stored
procedure) to use to override the behavior. Select the Customize option to select the desired stored pro-
cedure (method), see the above figure. Once you have selected the appropriate information, click OK.

The Object Relational Designer currently supports a one-to-one (1:1) mapping relationship. It is a simple
mapper, so complex mappings such as mapping an entity class to a joined table are not supported in this
release.

Extending O/R Designer-Generated Code
LINQ to SQL realizes that there will always be a need for custom logic, so it provides a way to add vali-
dation logic to meet the demands of specific insert, update, and delete scenarios. The custom validation
is provided by the capability to add a partial class, extending the DataContext class. The cool thing about
this is that these custom methods are automatically called when the SubmitChanges() method is called.

When an entity is dropped onto the designer, partial classes are made available in which you can extend
the validation logic. Figure 15-11 shows these partial class definitions within the Extensibility Method
Definitions region.

You can easily add validation logic by implementing these classes. For example, to implement the custom
Insert method, simply add the following code to the public partial class:

partial void InsertSalesOrderHeader(SalesOrderHeader instance)
{

this.ExecuteDynamicInsert(instance);
}

294

Klein c15.tex V3 - 12/13/2007 2:08pm Page 295

Chapter 15: Advanced LINQ to SQL Topics

Figure 15-11

Notice that as you start typing, IntelliSense pops up and gives you the list of method definitions. Select
the one you want and just add the appropriate custom validation logic to this method. Then add the
appropriate call, such as the one shown in this example: this.ExecuteDynamicInsert():

As stated before, these methods are automatically called when you call the SubmitChanges() method on
your DataContext.

Figure 15-12

295

Klein c15.tex V3 - 12/13/2007 2:08pm Page 296

Part III: LINQ to SQL

Pluralization of Classes in the O/R Designer
You might notice that as you drag-and-drop database objects onto the O/R Designer, the object names
might change. This happens whenever your object name is a ‘‘plural,’’ such as Contacts, Employees, or
Categories. Any object name that ends in ‘‘s’’ or ‘‘ies’’ is automatically renamed from plural to singular.
Thus, Employees becomes Employee, and Categories becomes Category.

The reasoning behind this is that it more accurately shows that the entity class maps to one record of
data. That is, an Employee entity class contains data for a single employee.

However, object renaming can be turned off. To do so, in the Visual Studio EDI, select Tools ➪ Options
to open the Options dialog. Expand the Database Tools node, and select the O/R Designer option, shown
in Figure 15-12. Then set the Enabled property to False to turn off pluralization of names.

Pluralization is available only in the English-language version of Visual Studio.

SQL Metal
SQL Metal is a command-line tool that generates the LINQ to SQL mapping code and other components
necessary for LINQ to SQL. It performs a myriad of different functions, including the following:

❑ Generates source code and mapping attributes (or mapping file) from a database.

❑ Generates a custom DBML file from a database.

❑ Generates source code and mapping attributes (or mapping file) from a DBML file.

Because it’s a command-line tool, it is necessary to supply options (parameters) when executing it. The
following table lists the available options when using the SqlMetal tool.

Option Description

/server:name Denotes the database server name.

/database:name Denotes the database (catalog) name.

/user:name Denotes the logon user ID. By default, this option uses Windows
Authentication.

/password:password Denotes the logon password.

/timeout:timeout The time-out value when accessing the database.

/views Extracts database views.

/functions Extracts database functions.

/sprocs Extracts database stored procedures.

/dbml:file Returns output as DBML. Not available for use with the /map option.

/code:file Returns output as source code.

296

Klein c15.tex V3 - 12/13/2007 2:08pm Page 297

Chapter 15: Advanced LINQ to SQL Topics

Option Description

/map:file Generates an XML mapping file instead of attributes. Not available for
use with the /dbml option.

/language:language Denotes the source code language.

/namespace:name Denotes the namespace of the generated code. Default value:
no namespace.

/context:type Denotes the name of the data context class. Default value: Taken from
database name.

/entitybase:type Denotes the base class of the entity class.

/pluralize Pluralizes or singularizes the class and member names.

/serialization:option Generates serializable classes.

Inputfile Denotes a SQL Server Express .mdf file.

/? Outputs the most current option list.

The /language option has two available languages—C# and VB. If no value is specified, the default value
is taken from the extension on the code filename.

The /serialization option has the available values of None and Unidirectional. The default value
is None.

Using the SqlMetal tool is a two-step process:

1. Extract the database metadata into a specified .dbml file.

2. Generate the output code file using the appropriate options specified in the preceding table.

Here are a few notes of interest before you look at some examples:

❑ When you generate the code you can select C#, Visual Basic, or an XML mapping file.

❑ If the /server option is not specified, the default value of localhost/sqlexpress is used.

❑ Extracting metadata from an MDF file requires that the name of the MDF file be included after all
the other options.

The SqlMetal tool is located in the \Program Files\Microsoft SDKs\Windows\v6.0A\bin directory.

OK, now for some examples. Like the process outlined, the first step is to extract the metadata into a
.dbml file. So, the following example creates a .dbml file that contains extracted SQL metadata from the
AdventureWorks database, creating a file called aw.dbml. This is achieved by executing the following

sqlmetal /server:avalonserver /database:AdventureWorks /dbml:aw.dbml

Figure 15-13 shows how this is executed in a command window.

297

Klein c15.tex V3 - 12/13/2007 2:08pm Page 298

Part III: LINQ to SQL

Figure 15-13

After the command successfully executes, browse to the directory where the SqlMetal tool is located
(\Program Files\Microsoft SDKs\Windows\v6.0A\bin), and you should see in the directory a filed called
aw.dbml. You can also specify a location when generating the metadata, as illustrated in the following
code:

sqlmetal /server:avalonserver /database:AdventureWorks /dbml:C:\wrox\aw.dbml

The next step is to generate the code, which is shown in Figure 15-14. This example specifies the language
and the code file to generate.

sqlmetal /server:avalonserver /database:AdventureWorks /code:aw.cs /language:csharp

Figure 15-14 below shows how this is executed in a command window.

Figure 15-14

As with the previous example, after the command successfully executes, browse to the directory where
the SqlMetal tool is located, and you should see in the directory a filed called aw.cs. You can also specify
a location when generating the metadata, as shown here:

sqlmetal /server:avalonserver /database:AdventureWorks /code:@@ta
c:\wrox\aw.cs /language:csharp

Now that the two files are generated, you want to include them in the project. Right-click the project
name, and select Add ➪ Existing Item from the context menu. Because no directories were specified for
the generated files in the preceding examples, both files will be in the same directory as the SqlMetal.exe
file, which is \Program Files\Microsoft SDKs\Windows\v6.0A\bin.

Browse to that directory, and add both the aw.cs file and the aw.dbml file. You’ll notice that Visual
Studio creates the same file structure that you saw when you added the LINQ to SQL class manually.
Figure 15-15 shows this.

298

Klein c15.tex V3 - 12/13/2007 2:08pm Page 299

Chapter 15: Advanced LINQ to SQL Topics

Figure 15-15

Now you are ready to go—you don’t have to manually drag and drop tables onto the designer!

External Mapping
External mapping in LINQ to SQL is the act of utilizing an external file that contains the mapping infor-
mation between the data model and your object model.

A mapping file is an XML file, but not just any XML file. It must be well formed and validated against
the following schema definition (.xsd):

<?xml version="1.0" encoding="utf-16"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" @@ta
targetNamespace="http://schemas.microsoft.com/linqtosql/mapping/2007" @@ta
xmlns="http://schemas.microsoft.com/linqtosql/mapping/2007"
elementFormDefault="qualified" >

<xs:element name="Database" type="Database" />

<xs:complexType name="Database">

<xs:sequence>

<xs:element name="Table" type="Table" minOccurs="0" maxOccurs="unbounded" />

<xs:element name="Function" type="Function" minOccurs="0" @@ta
maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="Name" type="xs:string" use="optional" />

<xs:attribute name="Provider" type="xs:string" use="optional" />

</xs:complexType>

<xs:complexType name="Table">

<xs:sequence>

<xs:element name="Type" type="Type" minOccurs="1" maxOccurs="1" />

</xs:sequence>

299

Klein c15.tex V3 - 12/13/2007 2:08pm Page 300

Part III: LINQ to SQL

<xs:attribute name="Name" type="xs:string" use="optional" />

<xs:attribute name="Member" type="xs:string" use="optional" />

</xs:complexType>

<xs:complexType name="Type">

<xs:sequence>

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="Column" type="Column" minOccurs="0" @@ta
maxOccurs="unbounded" />

<xs:element name="Association" type="Association" minOccurs="0" @@ta
maxOccurs="unbounded" />

</xs:choice>

<xs:element name="Type" type="Type" minOccurs="0" maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="Name" type="xs:string" use="required" />

<xs:attribute name="InheritanceCode" type="xs:string" use="optional" />

<xs:attribute name="IsInheritanceDefault" type="xs:boolean" use="optional" />

</xs:complexType>

<xs:complexType name="Column">

<xs:attribute name="Name" type="xs:string" use="optional" />

<xs:attribute name="Member" type="xs:string" use="required" />

<xs:attribute name="Storage" type="xs:string" use="optional" />

<xs:attribute name="DbType" type="xs:string" use="optional" />

<xs:attribute name="IsPrimaryKey" type="xs:boolean" use="optional" />

<xs:attribute name="IsDbGenerated" type="xs:boolean" use="optional" />

<xs:attribute name="CanBeNull" type="xs:boolean" use="optional" />

<xs:attribute name="UpdateCheck" type="UpdateCheck" use="optional" />

<xs:attribute name="IsDiscriminator" type="xs:boolean" use="optional" />

<xs:attribute name="Expression" type="xs:string" use="optional" />

<xs:attribute name="IsVersion" type="xs:boolean" use="optional" />

<xs:attribute name="AutoSync" type="AutoSync" use="optional" />

</xs:complexType>

<xs:complexType name="Association">

<xs:attribute name="Name" type="xs:string" use="optional" />

<xs:attribute name="Member" type="xs:string" use="required" />

<xs:attribute name="Storage" type="xs:string" use="optional" />

<xs:attribute name="ThisKey" type="xs:string" use="optional" />

<xs:attribute name="OtherKey" type="xs:string" use="optional" />

<xs:attribute name="IsForeignKey" type="xs:boolean" use="optional" />

<xs:attribute name="IsUnique" type="xs:boolean" use="optional" />

<xs:attribute name="DeleteRule" type="xs:string" use="optional" />

<xs:attribute name="DeleteOnNull" type="xs:boolean" use="optional" />

</xs:complexType>

<xs:complexType name="Function">

<xs:sequence>

<xs:element name="Parameter" type="Parameter" minOccurs="0" @@ta
maxOccurs="unbounded" />

<xs:choice>

<xs:element name="ElementType" type="Type" minOccurs="0" @@ta
maxOccurs="unbounded" />

<xs:element name="Return" type="Return" minOccurs="0" maxOccurs="1" />

</xs:choice>

</xs:sequence>

<xs:attribute name="Name" type="xs:string" use="optional" />

<xs:attribute name="Method" type="xs:string" use="required" />

300

Klein c15.tex V3 - 12/13/2007 2:08pm Page 301

Chapter 15: Advanced LINQ to SQL Topics

<xs:attribute name="IsComposable" type="xs:boolean" use="optional" />

</xs:complexType>

<xs:complexType name="Parameter">

<xs:attribute name="Name" type="xs:string" use="optional" />

<xs:attribute name="Parameter" type="xs:string" use="required" />

<xs:attribute name="DbType" type="xs:string" use="optional" />

<xs:attribute name="Direction" type="ParameterDirection" use="optional" />

</xs:complexType>

<xs:complexType name="Return">

<xs:attribute name="DbType" type="xs:string" use="optional" />

</xs:complexType>

<xs:simpleType name="UpdateCheck">

<xs:restriction base="xs:string">

<xs:enumeration value="Always" />

<xs:enumeration value="Never" />

<xs:enumeration value="WhenChanged" />

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="ParameterDirection">

<xs:restriction base="xs:string">

<xs:enumeration value="In" />

<xs:enumeration value="Out" />

<xs:enumeration value="InOut" />

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="AutoSync">

<xs:restriction base="xs:string">

<xs:enumeration value="Never" />

<xs:enumeration value="OnInsert" />

<xs:enumeration value="OnUpdate" />

<xs:enumeration value="Always" />

<xs:enumeration value="Default" />

</xs:restriction>

</xs:simpleType>

</xs:schema>

Keep the following in mind when applying external mapping:

❑ External mapping overrides any attribute-based mapping.

❑ External mapping and attribute-based mapping cannot be combined.

❑ You can use external mapping with a specific database provider, something that you cannot do
with attribute-based mapping.

So how, then, do you generate a mapping file? The previous section discussed a tool that can be used just
for this. SqlMetal is perfect for generating an XML mapping file. To do this, simply execute the following
command:

SqlMetal /server:servername /database:databasename /map:mappingfile.xml

Figure 15-16 shows the first part of the result of this command run against the AdventureWorks database.

When is using external mapping useful? Typically, it’s useful when you want to separate the layers, such
as separating the mapping code from the application code.

301

Klein c15.tex V3 - 12/13/2007 2:08pm Page 302

Part III: LINQ to SQL

Figure 15-16

Multi-Tier Operations
All of the LINQ to SQL examples you have seen so far have used a single DataContext. This is fine for a
small, two-tier application but for larger applications where an n-tier approach is desired, you may need
a distinct DataContext instance for queries and data manipulation operations.

N-tier support in LINQ to SQL is accomplished via the Attach method of the Table(of TEntity) class.
This feature lets entities span different DataContexts. Why would you need different DataContexts? In a
two-tier application, the UI typically needs a subset of data within a table. However, in a multi-tier envi-
ronment, the BL (business logic) layer generally requires a large set of the data and thus a more complex
(populated) DataContext. The need, then, is to have the DataContexts span the different application tiers.

The Attach method makes this happen, letting entities cross tiers. Although they have this capability,
they can still be tracked and identified with the original DataContext instance. Typically, the purpose of
attaching an entity to a different DataContext is to manipulate the object.

When manipulating the objects, such as performing insert and update operations, you need to know how
each is handled. When inserting, you need to use the Add method; the Attach method is not supported
for insert operations. For update operations, the Attach method should be used. For delete operations,
the Attach and Remove methods are available.

Here’s how the Attach method works:

AdventureWorksSalesDataContext aw = new
AdventureWorksSalesDataContext();

Contact con = aw.Contacts.Single(c => c.ContactID == 483);

AdventureWorksSalesDataContext aw2 = new
AdventureWorksSalesDataContext();

Contact con2 = new Contact();

302

Klein c15.tex V3 - 12/13/2007 2:08pm Page 303

Chapter 15: Advanced LINQ to SQL Topics

con2.ContactID = con.ContactID;
con2.Title = "Head Geek";

aw2.Contacts.Attach(con2, false);

con2.MiddleName = "Calvin";

aw2.SubmitChanges();

This example creates two DataContexts. A single Contact is queried using the first DataContext, and a
new Contact is created with no association to either DataContext. Properties of the second DataContext
are set, one of which is the ContactID taken from the ContactID of the first DataContext. The Attach
method is used to attach the second Contact object to the second DataContext, and then the changes are
submitted back to the database via the second DataContext.

The previous example showed you how you can change an object using a different DataContext instance.

When working in a multi-tier environment, the entire identity is not usually sent across tiers for a number
of reasons, including performance, interoperability, and simplicity. For example, the client application
might show only a small portion of data of a Contact entity. So, before using the Attach method and
sending members between tiers, the member must meet one or more of the following criteria:

❑ The member must have the entity’s identity.

❑ The member must participate in an optimistic concurrency check.

❑ The member must be modified.

N-Tier Best Practices
This section details some of the important things to keep in mind when using n-tier operations.

Optimistic Concurrency
In optimistic concurrency, rows are not locked when being read. When a user wants to update a row, the
application must determine whether another user has changed the row since it was read. Optimistic con-
currency improves performance because no locking of records is required, and locking records requires
additional server resources. Also, a persistent connection to the database server is required to maintain
record locks. Because that’s not the case in an optimistic concurrency model, connections to the server
are free to serve a larger number of clients in less time.

The following items should be considered when you’re thinking about using optimistic concurrency:

❑ When using a timestamp or version number for a concurrency check, the corresponding member
needs to be set before the call to the Attach method is made.

❑ The shape of the data exchanged between tiers is not specified by LINQ to SQL.

❑ All of the original values that are used for concurrency checks can be kept using a number of
methods that are outside of the LINQ to SQL API scope, such as a view state in an ASP.NET
application.

303

Klein c15.tex V3 - 12/13/2007 2:08pm Page 304

Part III: LINQ to SQL

❑ Minimal updates are used for concurrency checks, meaning that any member that is not set or
that is not flagged for optimistic concurrency is ignored.

❑ Any table that used a timestamp or a version number data type must have those columns set
before calling the Attach method.

Insertion/Deletion
As explained earlier, the Attach method is not used for insert and delete operations. Instead, the Add and
Remove methods should be used. However, it is your responsibility to handle foreign-key constraints in a
two-tier update. That is, you must delete any child records before deleting the parent record.

N-Tier Examples
The AttachAll method enables you to attach many entities all at once instead of singularly using the
Attach method. The following example illustrates the use of the AttachAll method to take all of the
sales for one salesperson and, in one line of code, attach them to another salesperson.

First, open SQL Server Management Studio and query the Sales.SalesOrderHeader table to get a count
of the number sales for SalesPersonID 284 by executing the following query:

Select * FROM Sales.SalesOrderHeader WHERE SalesPersonID = 284

You should see roughly 39 rows returned. The following code assigns all of the sales orders for salesper-
son 284, returned in the previous query, to salesperson 276. It queries the SalesOrderHeader table for all
orders assigned to salespersonid 276. The AttachAll method is then used by a second instance of the
SalesOrderHeader table to take ownership of them. Once ownership has been transferred, a simple loop
needs to be performed to update the records to the new SalesPersonID.

AdventureWorksSalesDataContext db = new
AdventureWorksSalesDataContext();

var sohQuery =
from soh in db.SalesOrderHeader
where soh.SalesPersonID == 284
select soh;

List<SalesOrderHeader> sohList = sohQuery.ToList();

Using (AdventureWorksSalesDataContext db2 = new
AdventureWorksSalesDataContext)
{

db2.SalesOrderHeader.AttachAll(sohList, false);

foreach (SalesOrderHeader soh2 in sohList)
{

soh2.SalesPersonID = 276;
}
db2.SubmitChanges();

}

Slick. OK, here’s one more example. It shows how you can delete a SalesOrderHeader object. As stated
earlier, the Remove() method should be used for delete operations.

304

Klein c15.tex V3 - 12/13/2007 2:08pm Page 305

Chapter 15: Advanced LINQ to SQL Topics

Using (AdventureWorksSalesDataContext db = new
AdventureWorksSalesDataContext)
{

SalesOrderHeader soh = new SalesOrderHeader() {
CustomerID = 21768, ContactID = 13278} ;

db.SalesOrderHeader.Attach(soh);

db.SalesOrderHeader.Remove(soh);

db.SubmitChanges();
}

When this code executes, it removes two rows from the SalesOrderHeader table. Now modify the
Remove() statement so that it reads as follows:

db.Customer.Remove(soh);

When this code is executed, it will cause an error. Why? Because there is a foreign key constraint between
the Customer table and the SalesOrderHeader table on the CustomerID column.

Designer Example
Hopefully, the Visual Studio project that you created earlier is still open. In this example, you use the
O/R Designer to create a LINQ to SQL entity and bind that entity to a Windows form.

First, open the O/R Designer by double-clicking the AdventureWorksSales.dbml file in the Solution
Explorer. Now, as you learned previously, you can create entity classes based on objects in the database.
Open the Server Explorer and expand the connection to the AdventureWorks database you created
earlier. Expand the Tables node and drag the Contact table into the entity pane.

Next, from the Data menu on the main menu bar, select Add New Data Source. That opens the Data
Source Configuration Wizard dialog shown in Figure 15-17.

The wizard enables you to create entity classes as a data source. Entity classes can be used as object
data sources, and as such can be added to the Data Sources window and placed on forms like any other
Windows Forms controls. By placing an entity-based data source on a Windows form, you can create
databound controls.

On the first page of the wizard, choose a data source type (specify where your data for the data source
will come from). By default, Database is selected, but what you want to select is Object because the
data will be coming from an entity object. So, select Object and click Next.

The next page asks you to select the object that you would like to bind to. Listed on this page are those
objects in the current assembly. Your project is listed, and you need to expand that node to get to the
information you want. Expand the LINQ node and select the Contact object (see Figure 15-18).

Notice that all of the objects here are objects within your project plus entities you have defined in the
O/R Designer.

305

Klein c15.tex V3 - 12/13/2007 2:08pm Page 306

Part III: LINQ to SQL

Figure 15-17

Figure 15-18

306

Klein c15.tex V3 - 12/13/2007 2:08pm Page 307

Chapter 15: Advanced LINQ to SQL Topics

By default, the Hide Assemblies That Begin With Microsoft or System option at the bottom of the page is
checked. If you uncheck this box, the list above it is repopulated with all assemblies that are referenced
in your application.

Click Next.

The last step in the wizard is the summary page, which simply lists the objects that will be added to the
data source. In this example, there’s one object, Contact, as shown in Figure 15-19.

Figure 15-19

Click Finish. Your new data source is created. Open the Data Sources window (see Figure 15-20) to view
the new data source.

Open Form1 in design mode and from the Data Sources windows, drag the Contact node onto the form.
Although you’re dropping a single item on the form, you’ll notice that two items are added to the form,
as shown in Figure 15-21.

The control on the top of the form is a binding navigator control. The designer automatically names it
contactBindingNavigator. It inherits from the Windows Forms BindingNavigator control that pro-
vides means for users to search and change data on a Windows Form, and it’s composed of a tool
strip that contains a number of common data-related objects such as buttons and record navigation
objects.

A BindingSource component also was placed on the form. Typically, you will use a BindingNavigator
component together with a BindingSource component to provide users with quick and easy navigation
of data on a form. The BindingSource component encapsulates the data source for a form.

307

Klein c15.tex V3 - 12/13/2007 2:08pm Page 308

Part III: LINQ to SQL

Figure 15-20

Figure 15-21

Select the contactBindingSource control and then open the Properties window (see Figure 15-22). You’ll
notice that the data source for this component comes from the data source defined previously.

308

Klein c15.tex V3 - 12/13/2007 2:08pm Page 309

Chapter 15: Advanced LINQ to SQL Topics

Figure 15-22

As the form sits right now, it is useless. The good news, however, is that it’s easy to wire these controls.
Right-click any gray area of the form, and select View Code from the context menu.

As with all of the other LINQ to SQL examples, you still need a DataContext reference, so after the partial
class definition of Form1, add the following code:

private AdventureWorksSalesDataContext db = new
AdventureWorksSalesDataContext();

Next, in the Form1 Load() method, add the following code:

contactBindingSource.DataSource = db.Contacts

This code binds the data source of the BindingSource with the Contacts table, essentially providing the
LINQ.Contact data source with the data it needs.

OK, time to test. Press F5 to compile and run the project. When the form loads, it will automatically load
with data. You can use the navigation arrows on the navigator control (see Figure 15-23) to move between
records, and you can also use the Add and Remove buttons to add new rows and delete existing rows.

If you delete or add a row, is it saved back to the database? No. Why? Remember that behind all of this
is LINQ to SQL. You need to ‘‘submit changes’’ back to the database. Stop the project and select the Save
button on the navigation control. Open the Properties window, and set the Enabled property for the
Save button to True. Next, double-click the Save button to create a Click() event handler for the button.

Then, add the following code:

db.SubmitChanges();

Simple, isn’t it? Now run the project again, and add and delete data. To verify that data is truly added
and deleted, open a new query window in SQL Server Management Studio and execute the following
T-SQL statement:

SELECT * FROM Person.Contact WHERE ContactID > 19990

309

Klein c15.tex V3 - 12/13/2007 2:08pm Page 310

Part III: LINQ to SQL

Figure 15-23

Awesome. But wait, it gets better. Stop the project and modify the code in the Load() method of the form,
so that it looks like the following:

private void Form1_Load(object sender, EventArgs e)
{

var conQuery =
from con in db.Contacts
select con;

contactBindingSource.BindingSource = conQuery;
}

This illustrates that you can also bind a BindingSource directly to a LINQ to SQL query.

Summary
This chapter explored the Visual Studio O/R Designer and the associated SqlMetal utility. Each of these
provide a great service in that you can quickly and easily create and manage LINQ to SQL classes, their
associated relationships, and mappings. The purpose of doing things manually to begin with was to help
lay the foundation and show how things are created, so that when an entity is created, you know what is
going on behind the scenes.

This chapter also discussed external mappings with your object model. As stated earlier, external map-
ping provides the benefit of being able to separate the mapping code from the application code.

Last, the topic of building n-tier applications was discussed as used with LINQ to SQL. The key to using
LINQ to SQL in an n-tier environment is utilizing multiple DataContext instances and taking advantage
of the Attach method to efficiently span between the different DataContexts.

310

Klein p04.tex V3 - 12/13/2007 2:10pm Page 311

Appendixes

Appendix A: Case Study

Appendix B: LINQ to Entities: The ADO.NET Entity Framework

Appendix C: C LINQ to XSD

Klein p04.tex V3 - 12/13/2007 2:10pm Page 312

Klein bapp01.tex V3 - 12/13/2007 2:11pm Page 313

Case Study

Several years ago, Microsoft put out a demo application called Fabrikam (for the fictional
company Fabrikam Fine Furniture) that was used quite heavily. It was a reference application
for developers of Mobile PC applications and solutions, but it also had a server piece that tracked
products and orders.

Well, it’s time to dust off that old application and upgrade it to work with LINQ. If you have ever
used Fabrikam, you know it is quite large because it deals with mobile components, SQL replication,
and other technology components. This case study won’t upgrade all of the application but will
redo a portion that deals with Fabrikam’s fine products, such as tracking (adding, updating, and
deleting) products—enough to show you what you can do with a great new technology and a new
or existing application.

The original Fabrikam application and code was downloaded from the Microsoft web site and was
supplied ‘‘as is.’’ Any modifications have been made by the author, and Microsoft holds no
guarantees/warranties or support for this case study or sample, implied or explicit.

The first thing to do is to build the database. The script (Fabrikam.sql) to build the database
is available as part of the download for this book. (I thought about including the text here, but
once I saw it was 25 pages, I changed my mind. It’ll be much easier for you to simply use the
download file.)

So, run Fabrikam.sql in SQL Server Management Studio. This script creates the database, all the
necessary objects, and the data for this case study, so no extra work is needed. The following objects
are created.

Klein bapp01.tex V3 - 12/13/2007 2:11pm Page 314

Appendix A: Case Study

Object Type Name

Table Countries

Table Customers

Table Deliveries

Table DeliveryDetails

Table Employees

Table Manufacturers

Table OrderDetails

Table Orders

Table Products

Table ProductTypes

Table States

Stored Procedure GetActiveCustomers

Stored Procedure GetActiveDeliveries

Stored Procedure GetActiveEmployees

Stored Procedure GetActiveOrders

Stored Procedure GetActiveProducts

View vLoadMfrs

View vProducts

View vStates

Once the script finishes, you’re ready to build the Fabrikam demo. Let’s get started.

Open Visual Studio 2008 and create a new C# project; name it Fabrikam. When the project is created,
ensure that the necessary LINQ references are included in your project:

System.Data.DataSetExtensions
System.Data.Linq
System.Xml
System.Xml.Linq

Then you have to add an application configuration file. In Solution Explorer, right-click on the solution
and select Add ➪ New Item from the context menu. In the Add New Item dialog, select Application
Configuration File. Make sure the name is App.Config and click OK.

Next, right-click on the solution and select Properties. In the Fabrikam solution Properties window, select
the Settings tab along the left side of the window. Here you need to add a property for the Fabrikam
application to use. Enter the information in the following table.

314

Klein bapp01.tex V3 - 12/13/2007 2:11pm Page 315

Appendix A: Case Study

Setting Value

Name BusinessName

Type string

Scope Application

Value Fabrikam Fine Furniture

Figure A-1 shows what the Settings page should look like.

Figure A-1

This information will be stored in the application configuration file and you can change it to any value
you want at a later date. Save your changes to the Properties by using the Ctrl+S key combination or by
selecting Save from the File menu, and then close this window.

Now you create the mappings to the database objects (DataContext and associated entities), and the best
way to do that is use the built-in LINQ templates. In Solution Explorer, right-click on the solution and
select Add ➪ New Item from the context menu. In the Add New Item dialog, select the Data node under
Categories. The Templates section of the Add New Item dialog will display all available Data templates.
In the Templates section, select LINQ to SQL Classes and name it Fabrikam. Click Add.

The Fabrikam Dataset Designer opens and displays an empty designer. It’s time to add the server objects.
In the Server Explorer window, right-click on the DataConnections node and select Add Connection.
The Add Connection dialog displays. Enter the appropriate connection information to connect to your
instance of SQL Server and the Fabrikam database. Click the Test Connection button to ensure that the
connection information has been entered correctly and that Visual Studio can successfully connect to the
Fabrikam database. If the connection test is successful, click OK.

Expand the new connection node in Server Explorer, and then expand the Tables and Stored Procedures
nodes for the Fabrikam connection. Now drag and drop all the tables into the Entities pane of the O/R
Designer. Next, drag all the stored procedures into the Methods pane of the O/R designer. Figure A-2
shows what the O/R Designer should look like when you’re done.

Once you have added all of the objects, save the designer. As you know, the DataContext object and all
mappings have now been created and you can now start writing code to access these entities.

When you dropped the first object onto the O/R Designer, it asked you whether you wanted to store the
connection information. If you selected Yes, go back to the App.Config file and look at the information

315

Klein bapp01.tex V3 - 12/13/2007 2:11pm Page 316

Appendix A: Case Study

LINQ added. There is a new <connectionStrings> section in which the connection to the Fabrikam
database is stored. Pretty nifty.

Figure A-2

You are now ready to start designing the UI. The first step is to create the main application form. Form1
is already added to the project, so use that as the main form. On Form1, add the following (those blank
cells in the tables throughout this appendix are blank on purpose, because those objects on the form do
not require the object name to be changed or the Text values set).

Object Type Name Text

Panel

Panel

Button cmdOrders Orders

Button cmdCustomers Customers

Button cmdSynchronize Synchronize

Button cmdDeliveries Deliveries

Button cmdProducts Products

Label Manage orders

Label Manage customers

Label Merge local DB w/Central DB

Label Manage Deliveries

Label Manage product catalog entries

316

Klein bapp01.tex V3 - 12/13/2007 2:11pm Page 317

Appendix A: Case Study

You can place those objects anywhere on the form, but it should look something like Figure A-3. (Yeah, I
added a pretty picture but it is not necessary.)

The next step is to add the login form. Add a new form to the project and call it LoginForm. Add the
following objects to it.

Figure A-3

Object Type Name Text

Label Enter user name and password

Label Username:

Label Password

TextBox txtUsername

TextBox txtPassword

Button cmdOK OK

Button cmdCancel Cancel

317

Klein bapp01.tex V3 - 12/13/2007 2:11pm Page 318

Appendix A: Case Study

Figure A-4 shows what the login form should look like.

Figure A-4

Ready to start adding some code? Open Form1 in design mode and double-click on any gray area of the
form to view the code. That also creates the Load() method for the form, which is what you need. In the
Load() event for the main form, add the following code:

string s = System.Reflection.Assembly.GetExecutingAssembly().Location;
s = Path.GetDirectoryName(s);
Directory.SetCurrentDirectory(s);

string businessName = Properties.Settings.Default.BusinessName;

this.Text = "Switchboard = " + businessName;

LoginForm lf = new LoginForm();
if (lf.ShowDialog() != DialogResult.OK)
{

Application.Exit();
}

For now, you are done with the main form. Open the login form in design mode, and double-click on the
OK button. In the button’s Click() event, add the following code:

string username = txtUsername.Text.Trim();
string password = txtPassword.Text.Trim();

if ((username.Length > 0) && (password.Length > 0))
{

if (Authenticate(username, password))
{

DialogResult = DialogResult.OK;
}

318

Klein bapp01.tex V3 - 12/13/2007 2:11pm Page 319

Appendix A: Case Study

else
{

MessageBox.Show("Invalid username or password.", this.Text);
}

}
else
{

MessageBox.Show("Enter a valid username and password.", this.Text);
}

Below the Click() event of the OK button, add the following code. This code is what the Click() event
will call to authenticate the user entered on the login form.

private bool Authenticate(string un, string pwd)
{

bool isValid = false;

FabrikamDataContext context = new FabrikamDataContext("user id=username;
password=password");

IEnumerable<GetActiveEmployeesResult> result = context.GetActiveEmployees();
foreach (GetActiveEmployeesResult emp in result)

{
if (emp.LoginName.ToLower() == un.ToLower() && emp.Password == pwd)
{

isValid = true;
break;

}
}
return isValid;

}

Before proceeding, compile the application to make sure that everything compiles OK. If there are no
errors, press F5 to run the application. First, the login form will appear. For credentials, enter RussellK
for the username and password for the password.

The Authenticate routine uses LINQ to SQL to call a mapped stored procedure to return all the existing
employees. It then compares the usernames and passwords to those entered on the login form. Notice
how easy it is to call the stored procedure using IntelliSense and dot notation. Sweet.

If the login is successful, the main form is displayed (you saw that in Figure A-3). It doesn’t really do
anything right now, so stop the application and add a new form to the project, naming it SelectProduct.
On this form add the following controls (again, those blank cells in the tables throughout this appendix
are blank on purpose because those objects on the form do not require that the object name to be changed
or the Text value set).

Object Type Name Text

Label Product Category

Label Products in

Button cmdNew New

319

Klein bapp01.tex V3 - 12/13/2007 2:11pm Page 320

Appendix A: Case Study

Object Type Name Text

Button cmdEdit Edit

Button cmdDelete Delete

ComboBox cboProductType

DataViewGrid grdProducts

This form, when laid out, should look something like Figure A-5.

Figure A-5

Now add the following code to the Load() event of the new SelectProduct form. Be sure to use the
correct username and password in the DataContext connection string.

FabrikamDataContext context = new FabrikamDataContext("user idi
=username;password=password");

IEnumerable<ProductType> result =
from prod in context.ProductTypes
orderby prod.Name
select prod;

DataTable dt = new DataTable("ProductType");
DataColumn dc;
DataRow dr;

dc = new DataColumn();

320

Klein bapp01.tex V3 - 12/13/2007 2:11pm Page 321

Appendix A: Case Study

dc.DataType = System.Type.GetType("System.Int32");
dc.ColumnName = "ID";
dt.Columns.Add(dc);

dc = new DataColumn();
dc.DataType = System.Type.GetType("System.String");
dc.ColumnName = "Name";
dt.Columns.Add(dc);

foreach (ProductType product in result)
{

dr = dt.NewRow();
dr["ID"] = product.ProductTypeID;
dr["Name"] = product.Name;
dt.Rows.Add(dr);

}
cboProductType.DataSource = dt;
cboProductType.DisplayMember = "Name";
cboProductType.ValueMember = "ID";

Next, add the following code to the SelectedIndexChanged event of the cboProductType combo.

If (cboProductType.SelectedIndex > 0)
{

int ProductID = Convert.ToInt32(cboProductType.SelectedIndex);
DataSet ds = new DataSet();

string connectionInfo = "Data Source=avalonserver;Initial Catalog=Fabrikam;
user id=username;pwd=password";

SqlDataAdapter da = new SqlDataAdapter("select ProductID, Name,
Description, ManufacturerSKU, Cost, Price, QuantityOnHand FROM products
WHERE ProductTypeID = @ID", connectionInfo);

da.SelectCommand.Parameters.AddWithValue("@ID", ProductID);
da.TableMappings.Add("Table", "Products");

da.Fill(ds);

DataTable dt = ds.Tables["Products"];

IEnumerable<DataRow> prod =
from p in dt.AsEnumerable()
select p;

if (prod.Count() > 0)
{

DataTable dat = prod.CopyToDataTable<DataRow>(); i
grdProducts.DataSource = dat;

}
else

{
grdProducts.DataSource = null;

}
}

321

Klein bapp01.tex V3 - 12/13/2007 2:11pm Page 322

Appendix A: Case Study

When the user selects a new product type, the corresponding products are retrieved from the database
via a DataAdapter and used to fill a DataTable. A LINQ query is then executed to query the contents of
the DataTable, at which point the CopyToDataTable method is used to return a DataTable with copies
of the DataRow objects using an input IEnumerable<T> object.

The new DataTable is used as the data source for the products grid.

The SelectProduct form needs to be opened from the main form. To make that work, open the main
form and add the following highlighted code to Products button’s Click() event.

private void cmdProducts_Click(object sender, EventArgs e)
{

SelectProduct selectProd = new SelectProduct();
selectProd.Show();

}

To test what you have so far, compile the application to make sure that everything is good. Press F5 to
run the application, and log in using the same credentials as last time (RussellK and password). When
the main form appears, click the Products button, which opens the SelectProduct form (you saw it
in Figure A-5). Select a product category from the Product Category combo—for this example, select
the Chairs category. The grid is populated with two products associated with that product category, a
secretary chair and a casual easy chair).

Now stop the application and create a new form called ProductMain. Add the following controls to it (as
with the other forms, the same thing applies to the blank cells in the table below).

Object Type Name Text

Label Name:

Label Product ID:

Label Description:

Label Product Category:

Label Manufacturer:

Label Mfr.SKU (UPC):

Label Length:

Label Width:

Label Depth:

Label Height:

Label Cost:

Label Price:

Label Qty on Hand:

322

Klein bapp01.tex V3 - 12/13/2007 2:11pm Page 323

Appendix A: Case Study

Object Type Name Text

TextBox txtName

TextBox txtProductID

TextBox txtDescription

TextBox txtManufacturerSKU

TextBox txtLength

TextBox txtWidth

TextBox txtDepth

TextBox txtHeight

TextBox txtCost

TextBox txtPrice

TextBox txtQuantity

ComboBox cboProductCategory

ComboBox cboManufacturer

Button cmdOK OK

Button cmdCancel Cancel

Also, set the Enabled property of the txtProductID text box to False. When completed, the ProductMain
form should look something like Figure A-6.

Before this form can be used a few changes need to be made. Open the form in design mode and double-
click any gray area to view the code behind the form and to create the Load() event for this form. Next,
add the following line of code directly above the ProductMain form constructor:

private int _productID;

A new constructor needs to be added so that a ProductID can be passed in, so add the following code
below the default ProductMain constructor.

public ProductMain(int productID)
{

InitializeComponent();
_productID = productID;

}

Then, enter the following code in the ProductMain form’s Load() event. It populates the form’s two
lookup combos.

323

Klein bapp01.tex V3 - 12/13/2007 2:11pm Page 324

Appendix A: Case Study

Figure A-6

FabrikamDataContext context =
new FabrikamDataContext("user id=username;password=password");

//first, the producttypes
IEnumerable<ProductType> result =

from prod in context.ProductTypes
orderby prod.Name
select prod;

DataTable dt = new DataTable("ProductType");
DataColumn dc;
DataRow dr;

dc = new DataColumn();
dc.DataType = System.Type.GetType("System.Int32");
dc.ColumnName = "ID";
dt.Columns.Add(dc);

dc = new DataColumn();
dc.DataType = System.Type.GetType("System.String");

324

Klein bapp01.tex V3 - 12/13/2007 2:11pm Page 325

Appendix A: Case Study

dc.ColumnName = "Name";
dt.Columns.Add(dc);
foreach (ProductType product in result)
{

dr = dt.NewRow();
dr["ID"] = product.ProductTypeID;
dr["Name"] = product.Name;
dt.Rows.Add(dr);

}

cboProductCategory.DataSource = dt;
cboProductCategory.DisplayMember = "Name";
cboProductCategory.ValueMember = "ID";
//now, the manufacturer info...
IEnumerable<Manufacturer> result1 =

from manu in context.Manufacturers
orderby manu.Name
select manu;

DataTable dt2 = new DataTable("ProductType");
DataColumn dc2;
DataRow dr2;

dc2 = new DataColumn();
dc2.DataType = System.Type.GetType("System.Int32");
dc2.ColumnName = "ID";
dt2.Columns.Add(dc2);

dc2 = new DataColumn();
dc2.DataType = System.Type.GetType("System.String");
dc2.ColumnName = "Name";
dt2.Columns.Add(dc2);

foreach (Manufacturer man in result1)
{

dr2 = dt2.NewRow();
dr2["ID"] = product.ProductTypeID;
dr2["Name"] = product.Name;
dt2.Rows.Add(dr2);

}

cboManufacturer.DataSource = dt2;
cboManufacturer.DisplayMember = "Name";
cboManufacturer.ValueMember = "ID";
if (_productID > 0)
{

this.GetProduct(_productID, context);
}

This code also looks to see if a productID was passed in. If a productID was passed in, you know that
the user clicked the Edit button on the SelectProduct form and wants to display the product details
of the product he selected in the grid; you want to call the GetProduct() method.

325

Klein bapp01.tex V3 - 12/13/2007 2:11pm Page 326

Appendix A: Case Study

Well, the GetProduct() method has not been created yet, so add it now below the Load() event:

private void GetProduct(int productID, FabrikamDataContext context)
{

var prodQuery = context.Products.Single(p => p.ProductID == productID);

txtName.Text = prodQuery.Name;
txtProductID.Text = Convert.ToString(prodQuery.ProductID);
txtDescription.Text = prodQuery.Description;
cboProductCategory.SelectedValue = Convert.Int32(prodQuery.ProductTypeID);
cboManufacturer.SelectedValue = Convert.Int32(prodQuery.ManufacturerID);
txtManufacturerSKU.Text = prodQuery.ManufacturerSKU;
txtLength.Text = Convert.ToString(prodQuery.Length);
txtWidth.Text = Convert.ToString(prodQuery.Width);
txtDepth.Text = Convert.ToString(prodQuery.Depth);
txtHeight.Text = Convert.ToString(prodQuery.Height);
txtCost.Text = Convert.ToString(prodQuery.Cost);
txtPrice.Text = Convert.ToString(prodQuery.Price);
txtQuantity.Text = Convert.ToString(prodQuery.QuantityOnHand);

}

This code takes the productID that was passed in and uses LINQ to SQL to return a single product
record. It then populates the ProductMain combo controls with the corresponding data.

Now add the following code to the OK button’s Click() event. This code looks at the txtProductID
control to see if there is a value. If not, it is a new product and a new instance of the Product entity is
created, populated, and saved back to the database, all via LINQ to SQL. If there is an existing productID,
the current record is updated and the changes are saved back to the database.

try
{

FabrikamDataContext context =
new FabrikamDataContext("user id=username;password=password");

if (txtProductID.Text.Length == 0)
{

Product prod = new Product();
prod.Name = txtName.Text.Trim();
prod.Description = txtDescription.Text;
Prod.ProductTypeID = Convert.ToInt32(cboProductCategory.SelectedValue);
Prod.ManufacturerID = Convert.ToInt32(cboManufacturer.SelectedValue);
prod.ManufacturerSKU = txtManufacturerSKU.Text;
prod.Length = Convert.ToDecimal(txtLength.Text);
prod.Width = Convert.ToDecimal(txtWidth.Text);
prod.Depth = Convert.ToDecimal(txtDepth.Text);
prod.Height = Convert.ToDecimal(txtHeight.Text);
prod.Cost = decimal.Parse(this.txtCost.Text,

System.Globalization.NumberStyles.Currency);
prod.Price = decimal.Parse(this.txtPrice.Text,

System.Globalization.NumberStyles.Currency);
prod.QuantityOnHand = Convert.ToInt32(this.txtQuantity.Text);
context.Products.Add(prod);

}

326

Klein bapp01.tex V3 - 12/13/2007 2:11pm Page 327

Appendix A: Case Study

else
{

int productID = Convert.ToInt32(txtProductID.Text);

var prodQuery = context.Products.Single(p => p.ProductID == productID);
prodQuery.Name = txtName.Text.Trim();
prodQuery.Description = txtDescription.Text;
ProdQuery.ProductTypeID =

Convert.ToInt32(cboProductCategory.SelectedValue);
ProdQuery.ManufacturerID = Convert.ToInt32(cboManufacturer.SelectedValue);
prodQuery.ManufacturerSKU = txtManufacturerSKU.Text;
prodQuery.Length = Convert.ToDecimal(txtLength.Text);
prodQuery.Width = Convert.ToDecimal(txtWidth.Text);
prodQuery.Depth = Convert.ToDecimal(txtDepth.Text);
prodQuery.Height = Convert.ToDecimal(txtHeight.Text);
prodQuery.Cost = decimal.Parse(this.txtCost.Text,

System.Globalization.NumberStyles.Currency);
prodQuery.Price = decimal.Parse(this.txtPrice.Text,

System.Globalization.NumberStyles.Currency);
prodQuery.QuantityOnHand = Convert.ToInt32(this.txtQuantity.Text);

}
context.SubmitChanges();

}
catch (Exception ex)
{

MessageBox.Show(ex.Message.ToString());
}

Next you need to put code behind the New, Edit, and Delete buttons on the SelectProduct form that
will utilize the new ProductMain form. Open the SelectProduct form and add the following code to the
cmdNew button’s Click() event.

ProductMain prod = new ProductMain();
prod.Show();

This code opens the ProductMain form ready to add a new record.

Before you can add code behind the cmdEdit button, you have to declare a variable on the SelectProduct
form that will hold the row index of the row selected in the grid. Add the following line of code above
the SelectProduct() constructor on the SelectProduct form:

int selectedRow;

In the CellClick event of the Products grid, add the code that sets the variable declared you just declared:

private void grdProducts_CellClick(object sender, DataGridViewCellEventArgs e)
{

selectedRow = e.RowIndex;
}

327

Klein bapp01.tex V3 - 12/13/2007 2:11pm Page 328

Appendix A: Case Study

This code sets the row index so the application knows which row is selected.

Now add the following code to the cmdEdit button’s Click() event on the SelectProduct form. Here
is where the declared variable comes in because that variable is used to grab the ProductID value from
the row that has been selected. This code then passes that value to the new constructor created on the
ProductMain form, and opens the form.

int ProductID =
Convert.ToInt32(grdProducts.Rows[selectedRow].Cells["ProductID"].Value);
ProductMain prod = new ProductMain(ProductID);
prod.Show();

Last, wire the Delete button by adding the following code to the cmdDelete button’s Click() event:

int productID =
Convert.ToInt32(grdProducts.Rows[selectedRow].Cells["ProductID"].Value);

FabrikamDataContext context =
new FabrikamDataContext("user id=username;password=password");

var prodQuery = context.Products.Single(p => p.ProductID == productID);
context.Products.Remove(prodQuery);
context.SubmitChanges();

This code again gets the productID for the currently selected row in the Products grid and passes it to
a LINQ query to return the item for the selected product. The Remove() method is called to remove that
entity and then the SubmitChanges() is called to submit the changes back to the underlying database.
That removes that record from the Products table.

OK, compile the application to make sure there are no coding errors. Press F5 to run the app, and have at
it. The entire Products button on the main switchboard form has been wired up, and you can add, edit,
and delete products.

Your homework assignment is to do the same thing for the Deliveries button. If you get stuck, the down-
loaded code for this appendix contains a fully functional copy (except for the replication part).

From this example, you can see how easy and efficient it is to use LINQ and LINQ technologies to
upgrade an application.

328

Klein bapp02.tex V3 - 12/13/2007 2:57pm Page 329

LINQ to Entities: The
ADO.NET Entity Framework

A lot of hype and information has come out of Microsoft regarding a technology called the
ADO.NET Entity Framework. The ADO.NET Entity Framework is actually a set of technologies
aimed at helping the developer be more productive and efficient. It was designed from day one to
provide developers with the capability to create data access applications by programming against a
known model over the existing method of accessing the database directly.

The ADO.NET Entity Framework is still in its development stages and won’t be out until after the
initial release of Visual Studio 2008. Because there might be some changes between now and when it
is officially released, this appendix only introduces you to the technology and give you some insight
as to what to expect when it does come out. The appendix provides an overview of the ADO.NET
Entity Framework, including some background and some examples of how it can be used to benefit
today’s developers.

The ADO.NET Entity Framework has been scheduled to release after the release of Visual Studio 2008.
At the time of this writing the current release of the Entity Framework is the ADO.NET Entity
Framework Beta 2 dated August 27, 2007.

Overview
Today, the primary method of accessing data in a relational database is to write code that
accesses that data directly. This requires developers who are used to working in an OO (object-
oriented) environment to know the relational storage schema and takes much more code than is
really needed.

The goal of the ADO.NET Entity Framework is to give developers the capability to create
applications that access data in an OO fashion, meaning developers can now use a conceptual
model in which to work with objects and properties. The benefits of this are much less code to write
and developers who can work with technology that they know without needing to know the exact
schema (such as tables and columns) in the underlying database.

Klein bapp02.tex V3 - 12/13/2007 2:57pm Page 330

Appendix B: LINQ to Entities: The ADO.NET Entity Framework

ADO.NET Entity Framework addresses a number of developer issues that have been around for a while.
For some time, developers have been struggling with how to model entities and relationships and at
the same time work with the relational databases that store the data they need. It gets more difficult
if the data spans multiple data stores. Add the OO layer to this puzzle, and you have the complexity of
using OO technology to map to relational data stores, yet at the same time trying to make it easy (more
efficient) for the developer.

For example, you can model a class to a relational data table, but how often is that a one-to-one situation?
Typically, you have multiple tables that are mapped to a single class—and how do you represent
relationships? Relationships between classes are certainly not the same as relationships between tables.
You also have the problem of connecting objects with the data, meaning, how do you connect OO systems
to relational data?

The good news is that the ADO.NET Entity Framework overcomes all of these issues and affords
some additional features. To solve the problem of connecting OO systems to relational data, the Entity
Framework maps relation objects (tables, columns, and primary and foreign keys) to entities and
relationships in conceptual models.

The conceptual model comes from the division of the data model into three distinct parts:

❑ Conceptual—Defines the entities and relationships from the system being modeled.

❑ Logical—Normalizes the entities and relationships into ‘‘relational’’ tables and constraints.

❑ Physical—Handles the physical storage engine needs and capabilities of the particular data stor-
age engine.

A developer need not be concerned about the physical aspects of the model. That is primarily the
responsibility of a DBA. Today, developers typically focus their attention on the logical model by writing
queries to access the data. Conceptual models are generally used as a data capture tool to gather
requirements. Often you see developers completely skip the creation of the conceptual model by going
right to the creation of the relational objects.

The ADO.NET Entity Framework puts more emphasis on the conceptual model by letting developers
program directly against it. The ADO.NET Entity Framework conceptual model can be connected directly
to the logical model, providing developers access to the conceptual entities and relationships. It is the job
of the Entity Framework to map entity operations to their SQL counterparts. You can see the benefit of
this: One model can be used across multiple storage engines.

The creation of the mapping between the application and the storage engine is the responsibility of the
ADO.NET Entity Framework. The mapping requires the three parts discussed previously and are created
and used within the application. Three physical components are created in the mapping:

❑ The conceptual schema definition language (a file with an extension of .csdl).

❑ The logical storage schema definition language (a file with an extension of .ssdl).

❑ The mapping specification language (a file with an extension of .msl).

The developer has a couple of options for creating these files. A set of classes is created with the files;
the developer uses those classes to work directly with the conceptual model. Within Visual Studio

330

Klein bapp02.tex V3 - 12/13/2007 2:57pm Page 331

Appendix B: LINQ to Entities: The ADO.NET Entity Framework

2008, you can use a wizard-driven Visual Studio template that creates the files automatically with the
information you specify. The other option is a command-line tool the Entity Data Model Generator
(EdmGen) that accomplishes the same thing. You’ll look at the EdmGen tool later in this appendix, and
you’ll also see how to use the template.

Using the Entity Framework is quite simple because it consists of number of namespaces that construct
and maintain the metadata information needed for models and mapping. System.Data.Entity uses the
.NET Framework data provider and the EntityConnection class to accomplish this.

The great thing is that LINQ to Entities is fully supported by the Entity Framework. LINQ to Entities
provides query support against the conceptual objects and strongly typed LINQ queries.

Installing the ADO.NET Entity Framework
Entity Framework is not installed when you install any beta of Visual Studio. It is a completely separate
program, and there are actually two components that you need to install. The first is ADO.NET Entity
Framework Beta 2 which can be found at:

http://www.microsoft.com/downloads/details.aspx?FamilyID=F1ADC5D1-A42E-40A6-A68C-
A42EE11186F7&DisplayLang=en

The file is a mere 1.2 megabytes, so it is a quick download.

The second download is the ADO.NET Entity Framework Tools, which you can get from:

http://www.microsoft.com/downloads/details.aspx?FamilyId=09A36081-5ED1-4648-B995-
6239D0B77CB5&displaylang=en

This download is a bit larger, roughly 6.6 megabytes.

Install the Entity Framework first, and then install the Entity Framework Tools. (If you attempt to install
the Tools first, the install program tells you that you need to install the Entity Framework first and then
exits the install.)

To begin, double-click the Entity Framework install file called EFSetup-x86.exe. At the Welcome screen,
click Next. You’ll need to select the I Agree option on the License Agreement screen before you can
continue with the installation. Then click the Install button. Click Finish when the installation is complete.

The Tools installation (EFToolsSetup-x86.exe) is similar, but there are a couple of extra steps. At the
Welcome screen, click Next. Again, you’ll need to select the I Agree option on the License Agreement
screen before you can continue. Click Next. The next step asks for the destination where you would like
to install the product. Accept the default or enter a destination path, and then click the Install button.

Once the installation is complete, you’ll notice a new Start menu option called ADO.NET Entity Frame-
work Tools Preview. This new menu option includes several support documents along with a couple of
great ADO.NET Visual Studio example projects. Very nice.

331

Klein bapp02.tex V3 - 12/13/2007 2:57pm Page 332

Appendix B: LINQ to Entities: The ADO.NET Entity Framework

ADO.NET Entity Framework Example
The easiest way to get a feel for the ADO.NET Entity Framework and see what it can do is to run through
an example. Fire up Visual Studio and create a new C# Windows forms project. Name the project
ProductSales and click OK. Open the Solution Explorer, right-click on the solution name, and select
Add ➪ New Item from the context menu.

When the Add New Item dialog appears, select the ADO.NET Entity Data Model template
(see Figure B-1).

Figure B-1

Name the data model ProductSales and click Add. This launches the Entity Data Model Wizard. The
first page of the wizard asks you to select the source that the model contents will come from. You can
choose to generate a model from a database or to create an empty model.

If you choose to create an empty model, the Finish button appears. Click it, and an empty model is
created, in which you can build a model manually using XML.

This example, however, won’t put you through that, so select the Generate From Database option
(see Figure B-2) and click Next.

The next page of the wizard lets you choose or create your data connection to the data store. Because no
connection has been created, click the New Connection button to open the Connection Properties dialog
(see Figure B-3).

In this dialog, select the server from which the Entity Framework will make its connection. Next, select
how the Entity Framework will make its connection, via Windows Authentication or through SQL
Server Authentication. This example uses SQL Server Authentication, but feel free to select Windows
Authentication.

Next, choose the database from which the Entity Framework will connect to access the objects and create
the entities and relationships. Select the AdventureWorks database, and then click the Test Connection

332

Klein bapp02.tex V3 - 12/13/2007 2:57pm Page 333

Appendix B: LINQ to Entities: The ADO.NET Entity Framework

button to ensure that the connection information has been entered correctly and that a connection can be
made. Click OK.

Figure B-2

The top part of the Data Connection Wizard step should look like Figure B-4.

Choose whether you want to store sensitive connection information in the connection string. For this
example, select Yes.

Ensure that the Save Entity Connection Settings in the App.Config as check box is checked. The wizard
requires that you provide a name for the connection settings. The best practice in naming is to include
the word Entities at the end of the name. For this example, enter AdventureWorksEntities. Click Next.

The next page in the wizard asks you to select the database objects that you want to include in the model.
By default, all the objects are selected including tables, views, and stored procedures. For this project,
unselect all the objects, as shown in Figure B-5.

Now expand the Tables node, and select the following tables:

❑ Contact

❑ SalesOrderHeader

❑ SalesOrderDetail

333

Klein bapp02.tex V3 - 12/13/2007 2:57pm Page 334

Appendix B: LINQ to Entities: The ADO.NET Entity Framework

❑ SpecialOfferProduct

❑ Product

Figure B-3

334

Klein bapp02.tex V3 - 12/13/2007 2:57pm Page 335

Appendix B: LINQ to Entities: The ADO.NET Entity Framework

Figure B-4

Figure B-5

335

Klein bapp02.tex V3 - 12/13/2007 2:57pm Page 336

Appendix B: LINQ to Entities: The ADO.NET Entity Framework

At the bottom of the wizard page, name the Model Namespace. It is good practice to begin the name with
the same name you gave the entity on the previous page. For this exercise, use the name
AdventureWorksModel.

The Model Namespace name and the Entity Connection Settings name must be
different, like the ones in this example: AdventureWorksEntities and
AdventureWorksModel. Giving them the same name will result in compile errors.

Click Finish. The Entity Data Model Wizard begins creating the entity data model for the objects that
you selected. A mapping is created, and the mapping files and class definitions are generated. When the
mapping generation is complete, the entity classes display in the designer (see Figure B-6). This view
shows the entities that were created, the relationships between the entities that were created, and other
pertinent information such as relationship names and navigation properties.

Figure B-6

You can see what files were created by going to the Solution Explorer and looking at the contents of the
solution. Figure B-7 shows the files that were generated and added to the project.

In Solution Explorer, expand the ProductSales.edmx node. Underneath that node you’ll see two files: a
.cs file and a .diagram file. The .cs file contains the partial classes that contain the information that the
programmer will interact with on the conceptual model level.

Open the .cs file and scroll down a tad (see Figure B-8). You will see that ObjectContext is used as well
as the EntityConnection class (from the System.Data.EntityClient namespace).

You’ll see that these classes derive from the ObjectContext class. The ObectContext in the ADO.NET
Entity Framework represents the entity container in the conceptual model. Just like LINQ to SQL and
the DataContext, the ObjectContext class exposes the SaveChanges method, which ushers changes back

336

Klein bapp02.tex V3 - 12/13/2007 2:57pm Page 337

Appendix B: LINQ to Entities: The ADO.NET Entity Framework

to the underlying database. It is the primary class for interacting with data as objects, serving as the
pathway through which all CRUD (create, read, update, and delete) operations are passed and executed.

Figure B-7

Figure B-8

As you scroll through the .cs file, you will see that it contains all the code necessary to manipulate the
model-provided data, such as adding, deleting, and updating data.

Now you’re ready to start adding code to utilize the Entity Framework. Open Form1 in design mode and
add a button, a combo box, and a DataViewGrid to the form. Name the combo box salesPerson and
name the grid grdOrderDetail. Next, double-click on the form itself to view the code behind. Add the
following two statements to the top of the form:

using System.Data.Objects;
using AdventureWorksModel;

337

Klein bapp02.tex V3 - 12/13/2007 2:57pm Page 338

Appendix B: LINQ to Entities: The ADO.NET Entity Framework

Add the following line of code to the top of the partial class for the form:

private AdventureWorksEntities productSalesContext;

Add the following code to the Load event of the form:

productSalesContext = new AdventureWorksEntities();

grdProducts.Columns.Add("OrderID", "Order");
grdProducts.Columns.Add("OrderQty", "Quantity");
grdProducts.Columns.Add("ProductID", "Product");
grdProducts.Columns.Add("UnitPrice", "Price");
grdProducts.Columns.Add("LineTotal", "Total");

ObjectQuery<Contact> salesPerson = productSalesContext.Contact.Where("it
.MiddleName IS NOT NULL").OrderBy("it.LastName");

this.cbosalesPerson.DataSource = salesPerson.Include
("SalesOrderHeader.SalesOrderDetail");

this.cbosalesPerson.DisplayMember = "LastName";

Finally, add the following code to the SelectedIndexChanged event of the combo:

grdProducts.Rows.Clear();

Contact person = (Contact)cbosalesPerson.SelectedItem;

foreach (SalesOrderHeader soh in person.SalesOrderHeader)
{

object[] row = new object[4];

row[0] = soh.SalesOrderDetail.SalesOrderID;
row[1] = soh.SalesOrderDetail.OrderQty;
row[2] = soh.SalesOrderDetail.ProductID;
row[3] = soh.SalesOrderDetail.UnitPrice;
row[4] = soh.SalesOrderDetail.LineTotal;

grdOrderDetails.Rows.Add(row);

}

Compile the application to make sure everything is OK. Run the application, and when the form loads,
the combo box will be filled with a list of contacts. Selecting a contact will display the order detail for that
contact in the grid, as shown in Figure B-9.

Let’s take a look on how this works. In the Load method, four columns are defined on the grid, but that
is not the important code. The important code is the following lines:

private AdventureWorksEntities productSalesContext;

productSalesContext = new AdventureWorksEntities();

338

Klein bapp02.tex V3 - 12/13/2007 2:57pm Page 339

Appendix B: LINQ to Entities: The ADO.NET Entity Framework

ObjectQuery<Contact> salesPerson = productSalesContext.Contact.Wherei
("it.MiddleName IS NOT NULL").OrderBy("it.LastName");

this.cbosalesPerson.DataSource = salesPerson.Include
("SalesOrderHeader.SalesOrderDetail");

Figure B-9

The first line creates an instance of ObjectContext based on the defined entity. The second line initializes
a new instance of the ObjectContext class. The third line uses the defined and mapped entities to return
all contacts that have a middle name. The fourth line sets the data source of the combo box.

How about the IndexChanged event on the combo? The first line of the following code gets the selected
contact from the combo. Because the ADO.NET Entity Framework handles the relationships, the rest of
the code gets the sales order detail for the selected contact, and then populates the grid.

Contact person = (Contact)cbosalesPerson.SelectedItem;

foreach (SalesOrderHeader soh in person.SalesOrderHeader)
{

object[] row = new object[4];

row[0] = soh.SalesOrderDetail.OrderQty;
row[1] = soh.SalesOrderDetail.ProductID;
row[2] = soh.SalesOrderDetail.UnitPrice;
row[3] = soh.SalesOrderDetail.LineTotal;

grdOrderDetails.Rows.Add(row);

}

339

Klein bapp02.tex V3 - 12/13/2007 2:57pm Page 340

Appendix B: LINQ to Entities: The ADO.NET Entity Framework

This last example is a simple one that builds on the first example. The previous example returned the
ProductID from the SalesOrderDetail table. To return the actual product name instead of the just the
ID, Product must be included in the join:

this.cbosalesPerson.DataSource = salesPerson.Include("SalesOrderHeader
.SalesOrderDetail").Include("SalesOrderHeader.Product");

With that, you can grab the product name and display it in the grid.

row[1] = soh.SalesOrderDetail.Product.ProductName

The following sections provide an overview of how to query the entity model and how to work
with objects.

Querying the Entity Data Model
Querying the entity data model is really not that different from the work you did in LINQ to SQL. The
best form is the ObjectQuery class, which you saw earlier:

private AdventureWorksEntities productSalesContext;

productSalesContext = new AdventureWorksEntities();

ObjectQuery<Contact> salesPerson = productSalesContext.Contact.Where
("it.MiddleName IS NOT NULL").OrderBy("it.LastName");

You can also do something like the following, which returns an entity type:

private AdventureWorksEntities productSalesContext;

string qry = @"SELECT VALUE Contact FROM AdventureWorksEntities.Contact";
ObjectQuery<Contact> con = new ObjectQuery<Contact>(qry, productSalesContext);

Likewise, you can create and use an ObjectQueryclass with parameters:

private AdventureWorksEntities productSalesContext;

string qry = @"SELECT VALUE Contact FROM AdventureWorksEntities.Contact WHERE
Contact.LastName = @lastname AND Contat.FirstName = @fn";

ObjectQuery<Contact> con = new ObjectQuery<Contact>(qry, productSalesContext);

con.Parameters.Add(new ObjectParameter("ln","Klein"));
con.Parameters.Add(new ObjectParameter("fn","Jason"));

You can also use an ObjectQuery class to return primitive and anonymous types, and you can shape
the results:

private AdventureWorksEntities productSalesContext;

ObjectQuery<Contact> con = salesPerson.Include("SalesOrderHeader
.SalesOrderDetail");

340

Klein bapp02.tex V3 - 12/13/2007 2:57pm Page 341

Appendix B: LINQ to Entities: The ADO.NET Entity Framework

foreach (SalesOrderHeader order in query.First().SalesOrderHeader)
{

listbox1.Items.Add(String.Format("Order Date: {0}", order.PurchaseOrderNumber));
listbox1.Items.Add(String.Format("Total: {0}",order.TotalDue.ToString()));
foreach (SalesOrderDetail item in order.SalesOrderDetail)
{

listBox1.Items.Add(String.Format("Product: {0} "
+ "Quantity: {1}", item.Name.ToString(),
item.OrderQty.ToString()));

}
}

Querying the entity data model is quite easy and efficient.

Working with Objects
Let’s take a look at working with objects that represent entity types defined by an entity data model.

The following example illustrates how to use the entity data model to update and insert data:

string ln = "Kleinerman";

productSalesContext = new AdventureWorksEntities();

Contact con = productSalesContext.Contact.Where("it.LastName = @lastname",
new ObjectParameter("lastname", ln)).First();

con.EmailAddress = "";
con.EmailPromotion = 1;

Contact newcon = new Contact();

newcon.EmailAddress = "asdf";
newcon.EmailPromotion = 1;
newcon.FirstName = "Scott";
newcon.LastName = "Klein";
newcon.MiddleName = "L";
newcon.NameStyle = false;
newcon.PasswordHash = "asdf";
newcon.PasswordSalt = "adsf";
newcon.Phone = "555-555-5555";
newcon.Suffix = "Mr.";
newcon.Title = "Geek";

productSalesContext.SaveChanges();

As you saw earlier, you can also bind objects to controls, like this:

ObjectQuery<Contact> salesPerson = productSalesContext.Contact.Where
("it.ContactID < 5000").OrderBy("it.LastName");

this.cbosalesPerson.DataSource = salesPerson.Include("SalesOrderHeader

341

Klein bapp02.tex V3 - 12/13/2007 2:57pm Page 342

Appendix B: LINQ to Entities: The ADO.NET Entity Framework

.SalesOrderDetail");
this.cbosalesPerson.DisplayMember = "LastName";

A best practice is to detach objects from the ObjecContext when they are no longer needed. Object
Services lets you accomplish this via the Detach method. This decreases the amount of memory
being used.

Object Services, implemented via the System.Data.Objects and System.Data.Objects.DataClasses
namespaces, is a component of the .NET Entity Framework that enables you to perform CRUD operations
that are expressed as strongly typed CLR objects. These objects are instances of entity types. Supporting
both LINQ and Entity SQL queries, Object Services lets you query against defined types as well as track
changes and bind objects to controls.

productSalesContext.Detach(Contact.SalesOrderHeader);

Another good practice is to manage concurrency conflicts in an object context. Making changes back to
the database could cause conflicts, so those need to be handled. In the following example, the
SaveChanges() method is called to save any changes back to the database. If there are any conflicts,
they are caught, the object context is refreshed, and SaveChanges() reapplied.

try
{

//make changes..then save them
productSalesContext.SaveChanges();

}
catch (OptimisticConcurrencyException oce)
{

productSalesContext.Refresh(RefreshMode.ClientWins, Contact);
productSalesContext.SaveChanges();

}

Hopefully, you can see that working with objects is just as simple as working with LINQ to SQL.

Entity Data Model Generator
The Entity Data Model Generator tool is one of the options available to the developer for generating the
entity data model. It is a command-line tool that provides the following functionality:

❑ Create .csdl, .ssdl, and .msl files that are used by the entity data model.

❑ Validate existing models.

❑ Generate source code files containing object classes generated from a .csdl file.

❑ Generate source code files containing generated views from the .ssdl, .csdl, and .msl files.

The Entity Data Model Generator tool is located in \Windows\Microsoft.NET\Framework\v3.5.
Its general syntax is:

EdmGen /mode:choice [options]

The following table lists the available modes for the EdmGen tool. You must specify one of them.

342

Klein bapp02.tex V3 - 12/13/2007 2:57pm Page 343

Appendix B: LINQ to Entities: The ADO.NET Entity Framework

Mode Description

ValidateArtifacts Validates the .cdsl, .ssdl, and .msl files. Requires at least one
/inssdl or /incsdl argument. If /inmsl is specified, the /inssdl and
/incsdl arguments are also required.

FullGeneration Generates .cdsl, .ssdl, and .msl, object layer and view files. Updates
the database connection information in the /connectionstring option.
Requires a /connectionstring argument and either a /p argument or
/outssdl, /outcsdl, /outmsdl, /outobjectlayer, /outviews, and
/entitycontainer arguments.

FromSSDLGeneration Generates .cdsl, and .msl, files. Requires the /inssdl argument and
either a /p argument or /outcsdl, /outmsl, /outobjectlayer,
/outviews, and /entitycontainer arguments.

EntityClassGeneration Creates a source code file that contains generated classes from the
.csdl file. Requires the /incsdl argument and either a /p or
/outobjectlayer argument.

ViewGeneration Creates a source code file containing views generated from the .ssdl,
.csdl, and .msl files. Requires the /inssdl, /incsdl, /inmsl, and
either the /p or /outviews arguments.

Along with the modes, you can specify one or more of the following options.

Option Description

/p[roject]: String value that specifies the object name.

/prov[ider]: String value that specifies the name of the ADO.NET data provider. The
default is System.Data.Sqlclient (the .NET Framework Data Provider
for SQL Server).

/c[onnection]: String value that specifies the string used to connect to the data source.

/incsdl: Specifies the .csdl file or a directory where the .csdl files are located.
Argument can be specified multiple times.

/refcsdl: Specifies additional .csdl files used to resolve .csdl source file references
specified by the /incsdl option.

/inmsl: Specifies the .msl file or a directory where the .msl files are located.
Argument can be specified multiple times.

/inssdl: Specifies the .ssdl file or a directory where the .ssdl file is located.

/outcsdl: Specifies the name of the .csdl file to be created.

/outmsl: Specifies the name of the .msl file to be created.

/outssdl: Specifies the name of the .ssdl file to be created.

/outobjectlayer: Specifies the name of the source code file containing the generated objects
fro the .csdl file.

343

Klein bapp02.tex V3 - 12/13/2007 2:57pm Page 344

Appendix B: LINQ to Entities: The ADO.NET Entity Framework

Option Description

/outviews: Specifies the name of the source code file containing the generated views.

/language: Specifies the language for the generated source code files. Options are VB
and C#. Default is C#.

/namespace: Specifies the namespace to use and set in the .csdl file when running in
FullGeneration or FromSSDLGeneration mode. Not used in the
EntityClassGeneration mode.

/entitycontainer: Specifies the name to apply to the <EntityContainer> element in the
EDM file.

/nologo Hides the copyright message.

/help Displays command syntax and tool options.

The following examples show how the EdmGen tool can be used. The first example uses the
FullGeneration mode to generate all necessary files:

edmgen /mode:fullgeneration /c:"Data Source=AvalonServer;Initial
Catalog=AdventureWorks; Integrated Security=SSPI" /p:LINQProject

In this example, a C# object source code file is created from the .csdl:

edmgen /mode:entityclassgeneration /incsdl:c:\wrox\Appendix\LINQ\
AdventureWorksModel.csdl /outobjectlayer: c:\wrox\Appendix\LINQ\
AdventureWorksModel.cs /language:csharp

The ADO.NET Entity Framework clearly helps you work with relational databases as well as model
entities and relationships.

344

Klein bapp03.tex V3 - 12/13/2007 2:59pm Page 345

LINQ to XSD

Any programming language that supports the .NET Framework will support LINQ. LINQ to XML
is LINQ-enabled, meaning that you have access to all of the functionality of LINQ such as the
standard query operators and the LINQ programming interface. Because of the integration into the
.NET Framework, LINQ to XML can take advantage of functionality the .NET Framework provides,
such as compile-time checking, strong typing, and debugging.

LINQ to XML makes working with XML much easier by providing a simple way to work directly
with methods and properties, by programming against XML tree components such as elements and
attributes, but in an untyped manner. This is where LINQ to XSD comes in. LINQ to XSD lets you
work with typed XML.

Although LINQ to XSD is in its early stages, it’d be a shame not to include it in this book. It will
probably change somewhat, but the purpose of this appendix is to provide you with an introduction
to LINQ to XSD and show you some of its capabilities. This is a cool technology and makes working
with XML a pleasure.

LINQ to XSD has been scheduled to release after the release of Visual Studio 2008. At the time of this
writing the current release of LINQ to XSD is the LINQ to XSD Preview 0.2 that works with Beta 1
of Orcas. To work with the examples in this appendix, you need to install Beta 1 of Visual Studio
codenamed Orcas.

LINQ to XSD Overview
LINQ to XSD is a new technology aimed at enhancing the great LINQ to XML technology by
providing .NET developers support for typed XML programming. For example, in typical LINQ
to XML programming, you would work with an XML tree as follows:

var total = (from item in SalesOrderHeader.Elements("Item")
select (double)item.Element("UnitPrice")

* (int)item.Element("OrderQuantity")
).Sum();

Klein bapp03.tex V3 - 12/13/2007 2:59pm Page 346

Appendix C: LINQ to XSD

In this example, the developer is working with untyped XML, accessing the elements and attributes of
the XML directly. However, LINQ to XSD lets you work with typed XML, like this:

var total = (from item in SalesOrderHeader.Item
select item.UnitPrice * item.OrderQuantity
).Sum();

Working with typed XML is made possible by XML schemas that are mapped automatically to defined
object models. Through this mapping XML data can be manipulated just like other object-oriented
models. The result is that you are working directly with classes that can enforce validation through
the use of the schema, plus you are working with XML objects generated from the XML schemas that
provide a much more efficient XML development platform.

The benefit of working with typed XML is that it makes working with XML-related programming tasks
much easier and makes for much more efficient code.

Installing LINQ to XSD
For now, LINQ to XSD is not installed when you install any beta of Visual Studio. It is a completely
separate install and is currently found at the following location:

http://www.microsoft.com/downloads/details.aspx?FamilyID=e9c23715
-9e71-47a7-b4db-363c2a68fab4&DisplayLang=en

At a mere 1.6 megabytes, it’s a quick download. The install is simple. At the Welcome screen, click Next.
On the License Agreement screen, select the I Agree option to continue with the installation, then click
the Next button. The final screen of the installation wizard lets you know that the installer is ready to
install LINQ to XSD. Click Next to begin the install.

Once the installation is complete, you’ll notice a new Start menu option called LINQ to XSD Preview. You
can tell that Microsoft is serious about this technology because not only does the LINQ to XSD installation
install the necessary support files for LINQ to XSD, but it also installs several support documents along
with a couple of great LINQ to XSD Visual Studio example projects. How cool is that?

LINQ to XSD Example
The easiest way to get a feel for LINQ to XSD and to understand what it can do is to tackle an example.
You’re going to need Beta 1 as stated earlier, but before you fire up Visual Studio, a little prep work needs
to be done.

In the Wrox directory on your local hard drive, create a folder called AppendixC. Next, open your favorite
text editor and enter the following XML. Save the file as Orders.xml. The data that this XML uses comes
from the SalesOrderDetail table in the AdventureWorks database. Obviously it is not all the records
from that table, but only a small subset of orders from a specific customer.

<Order>

<OrderDetail>

<CustID>676</CustID>

346

Klein bapp03.tex V3 - 12/13/2007 2:59pm Page 347

Appendix C: LINQ to XSD

<OrderID>43659</OrderID>

<Item>

<ProductID>709</ProductID>

<UnitPrice>5.70</UnitPrice>

<OrderQuantity>6</OrderQuantity>

</Item>

<Item>

<ProductID>711</ProductID>

<UnitPrice>20.18</UnitPrice>

<OrderQuantity>4</OrderQuantity>

</Item>

<Item>

<ProductID>712</ProductID>

<UnitPrice>5.18</UnitPrice>

<OrderQuantity>2</OrderQuantity>

</Item>

<Item>

<ProductID>714</ProductID>

<UnitPrice>28.84</UnitPrice>

<OrderQuantity>3</OrderQuantity>

</Item>

<Item>

<ProductID>716</ProductID>

<UnitPrice>28.84</UnitPrice>

<OrderQuantity>1</OrderQuantity>

</Item>

<Item>

<ProductID>771</ProductID>

<UnitPrice>2039.99</UnitPrice>

<OrderQuantity>1</OrderQuantity>

</Item>

</OrderDetail>

</Order>

Once you have created the Orders.xml file, fire up Visual Studio and create a new C# Windows project.
In the Project types section, expand the C# node. Select the LINQ to XSD Preview project type, and then
choose the LINQ to XSD Windows Application from the list of project templates (see Figure C-1).

Name the project LINQ, specifying the appropriate location in which to create the project. Click OK.

Now open the Solution Explorer and expand the References node. Besides the typical LINQ reference of
System.Xml.Linq, you’ll see a new reference to Microsoft.Xml.Schema.Linq, shown in Figure C-2. This
namespace contains all the XML classes that provide the LINQ to XSD mapping functionality and XSD
schema definition support.

Next, open Form1 in design mode and drop a couple of buttons and a text box on the form. Set the Text
property of button1 to Untyped, and then double-click the button to view its Click event. Enter the
following code in the button1 Click event:

var order = XElement.Load("C:\\Wrox\\AppendixC\\Orders.xml");

var total = (from salesOrder in order.Elements("OrderDetail")
from item in salesOrder.Elements("Item")

347

Klein bapp03.tex V3 - 12/13/2007 2:59pm Page 348

Appendix C: LINQ to XSD

select (double)item.Element("UnitPrice")
* (int)item.Element("OrderQuantity")

).Sum();

textBox1.Text = total.ToString();

Figure C-1

Figure C-2

348

Klein bapp03.tex V3 - 12/13/2007 2:59pm Page 349

Appendix C: LINQ to XSD

From the Build menu, select Build Solution to ensure that the project compiles. Then run the application
and click the Untyped button. The text box should be populated with the value of 2280.63, as shown in
Figure C-3.

Figure C-3

This example is similar to the examples you worked with in the Chapters 5 through 9 in the LINQ to
XML section. It uses the Load method of the XElement method to load an XML document into memory.
A LINQ query expression is then executed against the XML document, using the sum() query operator to
sum all the order totals. The results are the displayed in the text box.

Notice that because the XML document is untyped, the use of the Elements method is needed to specify
the element you’re looking for. Because no mapping taking place, you have to physically specify the
element name.

Wouldn’t it be nice to be able to use typed XML programming? Ah, yes, you can. First, open the
Orders.xml file and add the following highlighted namespace to it:

<Order xmlns="http://www.AdventureWorks.com/Orders">

<OrderDetail>

<CustID>676</CustID>

<OrderID>43659</OrderID>

<Item>

<ProductID>709</ProductID>

<UnitPrice>5.70</UnitPrice>

<OrderQuantity>6</OrderQuantity>

</Item>

...
</Order>

349

Klein bapp03.tex V3 - 12/13/2007 2:59pm Page 350

Appendix C: LINQ to XSD

Next, highlight the entire XML tree and copy it to the Clipboard. Go back to your Visual Studio project,
and in the Solution Explorer window right-click the solution and select Add ➪ New Item from the context
menu. In the Add New Item dialog, select XML File in the Templates section (see Figure C-4).

Figure C-4

For the purposes of this example, you can keep the name of XMLFile1.xml. Click Add.

XMLFile1.xml opens in the IDE and contains a single header line. Delete the XML that is there, and paste
the XML that you copied from Orders.xml to the Clipboard. Save the new XMLFile.xml file.

Next, return to Solution Explorer and add a new item, this time selecting an XML Schema template
from the Add New Item dialog. When the schema opens, delete the default contents of the file, add the
following XML, and save it:

<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.AdventureWorks.com/Orders"
xmlns="http://www.AdventureWorks.com/Orders"
elementFormDefault="qualified">

<xs:element name="Order">

<xs:complexType>

<xs:sequence>

<xs:element ref="OrderDetail"
minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="OrderDetail">

<xs:complexType>

<xs:sequence>

<xs:element name="CustId" type="xs:string"/>

<xs:element ref="Item"
minOccurs="0" maxOccurs="unbounded"/>

350

Klein bapp03.tex V3 - 12/13/2007 2:59pm Page 351

Appendix C: LINQ to XSD

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Item">

<xs:complexType>

<xs:sequence>

<xs:element name="ProductID" type="xs:string"/>

<xs:element name="UnitPrice" type="xs:double"/>

<xs:element name="OrderQuantity" type="xs:int"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

You’re not quite done yet. Once you have created the schema, a property needs to be changed on it.
Return to the Solution Explorer window, right-click on the XMLSchema1.xsd file, and select Properties
from the context menu, as shown in Figure C-5.

Figure C-5

In the Properties window for the schema, select the property called Build Action. The default value for
this property is None; change it to LinqToXsdSchema, as shown in Figure C-6. This property informs the
project that the schema will be included in the project’s build process.

351

Klein bapp03.tex V3 - 12/13/2007 2:59pm Page 352

Appendix C: LINQ to XSD

Figure C-6

The final step is to add some code behind the form. Set the Text property of the second button to Typed,
and double-click the button to display the Click event code for that button.

Before you add the code to the Click event, scroll to the top of the code and add the following
using statement:

using www.AdventureWorks.com.Orders;

Finally, in the Click event for button2, add the following:

var ord = Order.Load("C:\\Wrox\\AppendixC\\Orders.xml");

var total = (from purchaseOrder in ord.OrderDetail
from item in purchaseOrder.Item
select item.UnitPrice * item.OrderQuantity
).Sum();

textBox1.Text = total.ToString();

Notice that as you type, IntelliSense kicks in and displays the mapping between the XML and the XSD.
You know typed XML programming is here, and now you only need to type order.OrderDetail.

Now, compile and run the application, and click the Typed button. You will get the same results in the
text box that you did when you click the Untyped button.

Cool, huh? But wait. What is this Order object in the first line that the Load method uses? Where did that
come from? Put your mouse cursor over the word Order and right-click. From the context menu, select
Go To Definition (see Figure C-7).

352

Klein bapp03.tex V3 - 12/13/2007 2:59pm Page 353

Appendix C: LINQ to XSD

A file called LinqToXsdSources opens, as shown in Figure C-8.

This file is an external mapping file created by LINQ to XSD when the project is compiled. As you can
see, it is a fairly lengthy file, but it contains all the necessary mapping information to effectively provide
typed XML programming.

Figure C-7

Figure C-8

It is recommended that the generated code not be modified because it is quite complex and any changes
made to the file would be lost during regeneration.

Instances of LINQ to XSD types are referred to as XML objects because the generated classes model typed
views on untyped XML trees. Another way to say it is that the generated classes use properties to access
the untyped XML trees.

An instance of LINQ to XSD is a set of classes that form wrappers around an instance of the LINQ to
XML XElement class.

353

Klein bapp03.tex V3 - 12/13/2007 2:59pm Page 354

Appendix C: LINQ to XSD

Mapping Rules
When a schema is mapped to an object type, LINQ to XSD requires that the mapping meet
several constraints:

❑ The mapping is understandable to the developer.

❑ The mapping does not rely on any customization by default.

❑ The mapping must derive classes that are close to the expectation of an OO programmer.

❑ The mapping covers all of the XML schema.

❑ The mapping facilitates round-tripping of instance data.

❑ The mapping conveys, where possible, most schema objectives into the object models.

This systematic rule mapping ensures a clean, precise mapping, and is assumed by LINQ to XSD. The
following is a list of most of the mapping rules that are utilized by LINQ to XSD to map XML schemas to
.NET object models:

❑ XML names are mapped to CLR names.

❑ XML namespaces are mapped to CLR namespaces.

❑ Global element declarations are mapped to classes.

❑ Complex-type definitions are mapped to classes.

❑ Local declarations of elements, attributes, and references are mapped to properties.

❑ Named and anonymous types by default are not mapped to classes.

❑ Simple-type references are mapped to CLR value types or strings.

❑ Anonymous complex types for local elements by default are mapped to inner classes.

❑ Simple-type restrictions are mapped to element property preconditions.

❑ Complex-type derivation is mapped to object-oriented subclassing via extension and restriction.

❑ Substitution grouping is mapped to object-oriented subclassing.

❑ Redefinitions are carried out before mapping as applied by System.Xml.Schema rules.

LINQ to XSD-Generated API Class Methods
This section briefly discusses the methods of the API classes that LINQ to XSD generates from XML
schemas. These methods should seem familiar because they are also methods within LINQ to XML.
However, they are the typed version of the methods.

The current release of LINQ to XSD is in its early stages, so these API methods could change.

354

Klein bapp03.tex V3 - 12/13/2007 2:59pm Page 355

Appendix C: LINQ to XSD

Load Method
You’ve seen the Load method used a couple of times in the example in this appendix. The first was the
LINQ to XML’s Load method on the XElement. The second time it was used was on the typed version of
a generated class.

Load creates an instance of the generated class, letting the newly created instance serve as a typed view on
an XElement instance. Take a look at the various overloads for the Load method. First, here’s an example
that takes a URI string as the data source:

public static val Load(string uri);

The next example is the same as the first, but it includes a parameter to control the preservation
of whitespace.

static val Load(string uri, bool preserveWhitespace);

Here’s how to use a TextReader as the data source:

static val Load(TextReader tr);

The following example is the same as the previous example except that it includes a parameter to control
the preservation of whitespace. Notice that this example also uses a TextReader as the data source.

static val Load(TextReader tr, bool preserveWhitespace);

Here’s how to use an XmlReader as the data source.

static val Load(XmlReader xr);

The following example, taken from earlier in the appendix, shows how the Load method is used on a
typed XElement.

var ord = Order.Load("C:\\Wrox\\AppendixC\\Orders.xml");

Keep in mind that these overloads may change in the actual release of LINQ to XSD.

Parse
The Parse method of a generated class is the typed version of the LINQ to XML XElement Parse method.
This method takes an XML string and parses it into an XElement instance, casting that instance into the
requested type of the static method call. Parse has two overloads. The first takes a string parameter, as
shown here:

public static XElement Parse(string text);

355

Klein bapp03.tex V3 - 12/13/2007 2:59pm Page 356

Appendix C: LINQ to XSD

An optional parameter can be passed to preserve the whitespace:

public static XElement Parse(string text, bool preserveWhitespace);

The following example shows how to use the typed version of the Parse method.

var ord = Order.Parse("C:\\Wrox\\AppendixC\\Orders.xml");

Save
The Save method of a generated class is the typed version of the LINQ to XML XElement Save method.
As with the LINQ to XML Save method, the typed version of the Save method takes the source XML tree
and forwards it to the wrapped XElement instance for saving.

Save has several overloads. This first example shows the syntax to save the output to a text file:

public void Save(string filename);

The following example is the same as the first example but includes a parameter to control the
preservation of whitespace:

public void Save(string filename, bool preserveWhitespace);

Here’s an example that shows the syntax to save the output to a TextWriter:

public void Save(TextWriter tw);

The following example from earlier in the appendix shows how the Save method is used on a typed
XElement.

public void Save(TextWriter tw, bool preserveWhitespace);

Here’s how to write the output to an XmlWriter:

public void Save(XmlWriter xw);

The following example shows how to use the typed version of the Save method to save the output to a
text file.

var ord = Order.Load("C:\\Wrox\\AppendixC\\Orders.xml");
// process the xml tree
order.Save("C:\\Wrox\\AppendixC\\Orders2.xml");

Clone
The Clone method clones the entire underlying untyped XML tree. The capability to clone is provided by
the generated classes’ base class, XTypedElement. The Clone method is quite simple to use, but the result
of a clone is weakly typed and therefore a cast must be used to access the intended type.

356

Klein bapp03.tex V3 - 12/13/2007 2:59pm Page 357

Appendix C: LINQ to XSD

For example, the following code shows the original XML tree being cloned into a second XML tree while
being cast to the original type. Once the cast and clone are executed, it can be used just like the original
XML tree.

var ord = Order.Load("C:\\Wrox\\AppendixC\\Orders.xml");
var ord2 = (Order)ord.Clone();

var total = (from purchaseOrder in ord2.OrderDetail
from item in purchaseOrder.Item
select item.UnitPrice * item.OrderQuantity
).Sum();

textBox1.Text = total.ToString();

Default Values
Default values affect the behavior of the getters for properties that implement declarations for elements
or attributes for defaults. That is, when the element or attribute is not found in the XML tree, the getter
for either the attribute or element returns the default value.

For example, the following XSD schema fragment contains an element declaration that also defines a
default value for the Department element.

<xs: ComplexType name="EmployeeInfo">

<xs:Sequence>

<xs:element name="NationalIDNumber" type="xs:string" />

<xs:element name="LoginID" type="xs:string" />

<xs:element name="Title" type="xs:string" />

<xs:element name="Name" type="xs:string" />

<xs:element name="EmailAddress" type="xs:string" />

</xs:Sequence>

<xs:attribute name="Department" type="xs:string" default="Dev"/>

</xs:ComplexType>

You can build an XML tree that intentionally excludes the definition of a Department element:

var emp = new EmployeeInfo
{

NationalIDNumber = "123456789",
LoginID = "adventure-works\scott",
Title = "Geek",
Name = "Scott",
EmailAddress = "scott@adventure-works.com"

};

When the getter for the Department element is called, the default defined by the schema is returned, as
shown here:

<EmployeeInfo Department="Dev">

<NationalIDNumber>123456789</NationalIDNumber>

357

Klein bapp03.tex V3 - 12/13/2007 2:59pm Page 358

Appendix C: LINQ to XSD

<LoginID>adventure-works\scott</LoginID>

<Title>Geek</Title>

<Name>Scott</Name>

<EmailAddress>scott@adventure-works.com</EmailAddress>

</EmployeeInfo>

Again, the current release of LINQ to XSD and the API of XML objects may, and probably will, change.
For example, the current release of LINQ to XSD does not support defaults for elements, but it does
support defaults for attributes (thus, the use of a default for an attribute in the previous example).

Also, the actual overloads for the API methods may differ.

358

Klein p05.tex V3 - 12/13/2007 3:00pm Page 359

Index

Klein p05.tex V3 - 12/13/2007 3:00pm Page 360

Klein bindex.tex V1 - 12/11/2007 7:53pm Page 361

In
de

x

Index

A
Add (T) method, 225
AddAfterSelf, 113
AddAnnotation method, 101, 103, 106, 158
AddBeforeSelf, 113
ADO Provider, 218
ADO.NET, 199. See also LINQ to SQL

command object, 42–43
DataSets, 3, 271, 272, 284

ADO.NET Entity Framework, 329–344
Entity Data Model Generator tool, 342–344
example, 332–340
installation, 331
overview, 329–331
querying entity data model, 340–341
working with objects, 341–342

Aggregate operator, 64
aggregating query operators, 64–68

Aggregate, 64
Average, 54, 64–65
Count, 54, 65
LongCount, 55, 66
Max, 55, 66–67
Min, 55, 67
Sum, 55, 67–68

All operator, 54, 83–84
Always value, 264
Ancestors method, 161–163
AncestorsAndSelf method, 101, 164–165
AND logical operator, 38
annotations, 158–160
anonymous types, 23

C#, 23
lambda expressions v., 28
named types v., 40
object initializers of, 26
Visual Basic, 23

Any operator, 54, 84–85

API class methods, LINQ to XSD, 354–358
APIs

LINQ, 145, 152
LINQ to SQL, 218
standard query operators v., 53

AsEnumerable operator, 74
Association attribute, 202, 206–207, 214

IsForeignKey property, 206
IsUnique property, 206
LINQ to SQL joins, 218
Name property, 206
OtherKey property, 206
properties, 206
Storage property, 206
ThisKey property, 206

Attach method, 302–303
AttachAll method, 304
Attribute axis property, 186
Attribute method, 101
attribute-based mapping, LINQ to SQL, 202–209

Database attribute, 202–203
mapping columns, 203–205
mapping functions, 208–209
mapping relationships, 206–207
mapping stored procedures, 207–208
mapping tables, 203
ORD tool, 202
Parameter attribute, 209
SqlMetal tool, 202

attributes, 102, 117–120
adding, 117
Association, 202, 206–207, 214

IsForeignKey property, 206
IsUnique property, 206
LINQ to SQL joins, 218
Name property, 206
OtherKey property, 206
properties, 206

Klein bindex.tex V1 - 12/11/2007 7:53pm Page 362

attributes (continued)

attributes (continued)
Storage property, 206
ThisKey property, 206

Column, 203–205
AutoSync property, 204
CanBeNull property, 204
DbType property, 204
Expression property, 204
IsDbGenerated property, 204, 212
IsDiscriminator property, 204
IsPrimaryKey property, 204, 212
IsVersion property, 204
Name property, 204
properties, 204
Storage property, 204
UpdateCheck property, 204

Database, 202–203
deleting, 119–120

Remove method, 119–120
SetAttributeValue method, 120
elements v., 102–103, 117
Parameter, 209

DbType property, 209
Name property, 209
properties, 209

Remove method
deleting attributes, 119–120

RemoveAttributes method, 102
ReplaceAttributes method, 102
retrieving, 117–119
SetAttributeValue method, 102,

115
deleting attributes, 120

Attributes method, 101
AutoSync property, 204
Average operator, 54, 64–65
aw.cs file, 298
aw.dbml file, 298
axis methods, 161–167

Ancestors, 161–163
AncestorsAndSelf, 164–165
Descendants, 163–164
DescendantsAndSelf, 165–166
ElementsAfterSelf, 166–167
ElementsBeforeSelf, 166–167
XML trees and, 167

B
binding data, LINQ to DataSets, 279–281

implicit, 281
BindingNavigator component, 307
BindingSource component, 307
bracketing, 269

C
C#

anonymous types, 23
creating XML trees

LINQ to XML, 124–128
extension methods, 26–28
implicitly typed variables, 22
lambda expressions, 29
object initializers, 24–25
query expressions, 22

CanBeNull property, 204
case study, Fabrikam, 313–328

application configuration file added,
314

designing user interface, 316–319
LINQ references, 314
login form, 317–318
mappings to database objects, 315
ProductMain form, 322–324
run Fabrikam.sql, 313–314

objects created, 314
SelectProduct form, 319–321
server objects added, 315

Cast operator, 54, 74–75
ChangeConflictException class, 265
Changed event, 170–171
Changing event, 168–170
Child axis property, 186
Class member, 202
classes

ChangeConflictException, 265
CompiledQuery, 251
DataAdapter, 272, 273, 274
DataContext, 200–201, 202,

219–220
creating/configuring, 288–290
LINQ to SQL queries, 219–220

362

Klein bindex.tex V1 - 12/11/2007 7:53pm Page 363

In
de

xContains operator

mapping for stored procedures/functions,
292–293

strongly typed, 220–221
DataRowComparer, 281–282
DataShape, 254
DataTableExtensions, 280
entity, LINQ to SQL, 202, 203, 257–270

creating for tables/view mapping, 290–291
EntitySet, 252
LINQ to SQL, 288
LINQ to XML, 96–107, 122

list, 97
XAttribute, 12, 13, 97, 102–104
XDocument, 97, 104–107
XElement, 12, 13, 14, 97, 98–102

MemberChangeConflict, 266
MethodInfo, 233
pluralization of, in O/R Designer, 296
Table (of TEntity), 302
TestAnnotation, 160
TransactionScope, 267, 269
XAttribute, 12, 97, 102–104

example, 13
methods, 103
XElement class v., 103

XCData, 97
XComment, 97
XContainer, 97
XDeclaration, 97–98
XDocument, 97, 104–107

methods, 106
objects in, 104–105

XElement, 12, 14, 97, 98–102
methods, 100, 101–102
XAttribute class v., 103
XML document construction, 12–13

XName, 97
names, 142
string representation, 142

XNamespace, 97
namespaces, 97, 142

XNode, 97, 112
XML manipulation in LINQ to XML, 112–117

XNodeDocumentOrderComparer, 97
XNodeEqualityComparer, 97
XObject, 97

XObjectChange, 97
XObjectChangeEventArgs, 97
XProcessingInstruction, 97
XText, 97

Clone method, LINQ to XSD, 356–357
CLR (Common Language Runtime), 14, 23

metadata, 14
/code:file, 296
Column attribute, 203–205

AutoSync property, 204
CanBeNull property, 204
DbType property, 204
Expression property, 204
IsDbGenerated property, 204, 212
IsDiscriminator property, 204
IsPrimaryKey property, 204, 212
IsVersion property, 204
Name property, 204
properties, 204
Storage property, 204
UpdateCheck property, 204

columns, mapping, 203–205
Common Language Runtime. See CLR
Community Technology Preview (CTP) build, 21
Compile method, 251
compiled queries, LINQ to SQL, 251
CompiledQuery class, 251
compile-time type checking, 4
composite keys, 255
Concat operator, 63–64
concatenating query operators, 63–64
concurrency, optimistic, 263, 303–304

conflicts, 263–266
ChangeConflictException, 265
ConflictMode enumeration, 264–265
RefreshMode enumeration, 265–266
UpdateCheck property, 263–264

Configure Behavior dialog box, 294
ConflictMode enumeration, 264–265

ContinueOnConflict value, 264
FailOnFirstConflict value, 264

/c[onnection]:, 343
contactBindingSource control, 308
ContactID column, 211, 212, 213, 214
ContactsPart, 236
Contains operator, 85

363

Klein bindex.tex V1 - 12/11/2007 7:53pm Page 364

/context:type

/context:type, 297
ContinueOnConflict value, 264
conversion query operators, 73–77

AsEnumerable, 74
Cast, 54, 74–75
OfType, 75
ToArray, 75–76
ToDictionary, 76
ToList, 76–77
ToLookup, 77

CopyToDataTable method, 280
Count operator, 54, 65
CreateDatabase method, 219
CreateQuery method, 219
CreateReader method, 101, 102, 106
CreateWriter method, 101, 106
CRUD operations, 209
.cs file, 288
CTP build. See Community Technology Preview

build

D
data binding, LINQ to DataSets, 279–281

implicit, 281
data loading

deferred, 252–253
turning off, 254–255

immediate, 252–253
data manipulation, via LINQ to SQL queries,

221–225
Data Source Configuration Wizard, 278,

305–307
data source, LINQ query, 32–33
DataAdapter class, 272, 273, 274
Database attribute, 202–203
database relationships, LINQ to SQL, 245–250

defining/representing, 245–250
querying across, 250

/database:name, 296
DataContext class, 200–201, 202, 219–220

creating/configuring, 288–290
LINQ to SQL queries, 219–220
mapping for stored procedures/functions,

292–293
strongly typed, 220–221

DataContext methods, 292
DataGridView, 280
DataReader, 43
DataRowComparer class, 281–282
DataRows, 272

comparing, 281–284
DataSet Designer, 17
DataSets. See also LINQ to DataSets

ADO.NET, 3, 271, 272, 284
defined, 271
typed, 278–279

DataShape class, 254
DataSource property, 280
DataTableExtensions class, 280
DataView, 280, 281
.dbml file, 288
/dbml:file, 296
DbType property, 204, 209
Decendants () method, 134–135
declarative query syntax, 7, 8, 21, 275
Default property, 282
DefaultIfEmpty operator, 78
deferred data loading, 252–253

turning off, 254–255
deferred query execution, 35

immediate v., 252–255
DeferredLoadingEnabled property, 254–255
DELETE function, 293
DeleteDatabase method, 219, 220
deleting data

entity objects, 226–227
LINQ to SQL queries, 225

Descendant axis property, 186
DescendantNodes method, 101, 106
DescendantNodesAndSelf method, 101
Descendants method, 163–164
DescendantsAndSelf method, 101, 165–166
descending clause, 38
DirectoryInformation table, 9

INSERT statement, 10
Distinct operator, 54, 68–69, 281
DLINQ. See LINQ to SQL
Document Object Model. See DOM
DOM (Document Object Model), 4, 12, 14, 95

limitations, 120
LINQ to XML v., 120–121

364

Klein bindex.tex V1 - 12/11/2007 7:53pm Page 365

In
de

xExtension indexer property

XML reshaping/modifying
load/modify/save approach, 137–138

dot notation, 250

E
element(s), 98

attributes v., 102–103, 117
Element method, 101, 106
element query operators, 77–82

DefaultIfEmpty, 78
ElementAt, 78–79
ElementAtOrDefault, 79
First, 79
FirstOrDefault, 80
Last, 80
LastOrDefault, 80–81
Single, 29, 81
SingleOrDefault, 82

ElementAt () method, 134
ElementAt operator, 78–79
ElementAtOrDefault operator, 79
Elements () method, 135
ElementsAfterSelf method, 166–167
ElementsBeforeSelf method, 166–167
embedded expressions, 128–129, 182–184

Visual Basic and, 182–184
in XML literals, 182–184

embedded queries, in XML literals, 184, 187
Empty operator, 71–72
entities management, 121
entity classes, LINQ to SQL, 202, 203,

257–270
creating for tables/view mapping, 290–291
entity changes

concurrent, 263–266
submitting, 258–263
tracking, 258

Entity Data Model Generator tool, 342–344
examples, 344
functionality, 342
modes, 343
options, 343–344

entity objects
deleting data, 226–227
inserting data, 225–226

LINQ to SQL queries, 225–227
updating data, 226

/entitybase:type, 297
EntityClassGeneration, 343
/entitycontainer:, 344
EntitySet class, 252
equality query operators, 82–83

SequenceEqual, 82–83
Equals method, 281
events, LINQ to XML, 167–171

Changed, 170–171
Changing, 168–170

ExcecuteQuery method, 219
ExcecuteReader () method, 43
Except operator, 71, 281
execution, query, 32, 33–36

deferred, 35
deferred v. immediate, 252–255
immediate, 35–36
local, 251, 252
remote, 251, 252

local v., 251–252
”Expanding the Results View will enumerate the

IEnumerable,” 34
explicit distributable transactions, 267
explicit local transactions, 267

example, 268–269
Expression(of TDelegate), 42
Expression property, 204
expression trees, 42

lambda expressions, 42
expressions, 128

embedded, 128–129, 182–184
Visual Basic and, 182–184
in XML literals, 182–184

lambda, 28–29, 54, 145
anonymous types v., 28
C# example, 29
expression trees, 42
LINQ with, 29
method syntax and, 44
rules for use, 29

ExtensibilityMethodDefinitions region,
294, 295

Extension indexer property, 186
illustration, 186–187

365

Klein bindex.tex V1 - 12/11/2007 7:53pm Page 366

extension methods

extension methods, 26–28, 54
best practices, 28
C#, 26–28
Visual Basic, 28

external mapping, LINQ to SQL, 299–302

F
Fabrikam case study, 313–328

application configuration file added, 314
designing user interface, 316–319
LINQ references, 314
login form, 317–318
mappings to database objects, 315
ProductMain form, 322–324
run Fabrikam.sql, 313–314

objects created, 314
SelectProduct form, 319–321
server objects added, 315

FailOnFirstConflict value, 264
Field method, 278
First () method, 134
First operator, 79
FirstOrDefault operator, 80
For Each loop, 34
FOR EACH statement, 8
foreach loop, 34, 35
foreach statement, 8
foreign keys, 212–215
from clause, 37
FromSSDLGeneration, 343
FullGeneration, 343
Function attribute, 208–209, 227
functional construction, 111, 137–139, 153–158

benefits, 156
functions

DataContext mapping for, 292–293
DELETE, 293
INSERT, 293
mapping

attribute-based, 208–209
DataContext class, 292–293

user-defined, 240–243
mapping/calling, 240–243

/functions, 296

G
generation query operators, 71–73

Empty, 71–72
Range, 72–73
repeat, 73

generator, 37
GetChildRows method, 272
GetEnumerator method, 43
GetHashCode method, 281
GetParentRow method, 272
GetQueryText method, 219
GetTable method, 221
group operator, 255
GroupBy operator, 55, 62–63, 255
grouping, 62
grouping operator, 62–63

GroupBy, 55, 62–63, 255
GroupJoin operator, 55, 59, 60–62

H
/help, 344

I
IDbConnection, 219
identity specification, 211
IEnumerable<T> interface, 8, 54

IQueryable<T> interface v., 54
var keyword v., 40–41

IEnumerator<T> interface, 41, 43
IGrouping, 77
immediate data loading, 252–253
immediate query execution, 35–36

deferred v., 252–255
implicit binding, 281
implicit transactions, 267
implicitly typed variables, 22

C#, 22
Visual Basic, 22

/incsdl:, 343
/inmsl:, 343
inner join, 59
Inputfile, 297
INSERT function, 293

366

Klein bindex.tex V1 - 12/11/2007 7:53pm Page 367

In
de

xLINQ to DataSets

INSERT statement, for DirectoryInformation
table, 10

inserting data
entity objects, 225–226
LINQ to SQL queries, 222–224

/inssdl:, 343
intersect operator, 70–71, 281, 284
IQueryable interface, 42–43, 252
IQueryable (Of T) interface, 42–43, 217, 218
IQueryable<T> interface, 11, 54

IEnumerable<T> interface v., 54
IsAfter method, 101, 106
IsBefore method, 101, 106
IsDbGenerated property, 204, 212
IsDiscriminator property, 204
IsForeignKey property, 206
IsPrimaryKey property, 204, 212
IsUnique property, 206
IsVersion property, 204

J
join clause, 40

LINQ to SQL joins, 218
join operator, 55, 59–60, 250
joining operators, 59–62

GroupJoin, 55, 59, 60–62
join, 55, 59–60, 250

joins, LINQ to SQL, 218
Association attribute, 218
join clause, 218

K
KeepChanges value, 265
KeepCurrentValues, 265
keys

composite, 255
foreign, 212–215
primary, 210–212

L
lambda expressions, 28–29, 54, 145

anonymous types v., 28
C# example, 29

expression trees, 42
LINQ with, 29
method syntax and, 44
rules for use, 29

lambda operator, 29
/language:, 344
Language Integrated Query. See LINQ
/language:language, 297
Last operator, 80
LastOrDefault operator, 80–81
.layout file, 288
LINQ (Language Integrated Query), 3

APIs, 145, 152
defined, 3, 7
features, 145
flexibility, 145
goal, 3
history/background, 3–6
illustrations, 6–7
lambda expressions with, 29
language specific features, in Visual Studio

2008, 21–29
overview, 7–10
Providers, 41

LINQ to SQL, 41
purpose, 7
queries, 31–51

actions, 32–36
common terms, 41–43
concepts, 37–43
data source, 32–33
LINQ to SQL queries v., 218
parts, 32–36
polymorphic, 42
query creation, 32, 33
syntax options, 43–51

strong points, 145
syntax v. SQL syntax, 36–37

LINQ to DataSets, 3, 41, 271–285
comparing DataRows, 281–284
data binding, 279–281

implicit, 281
loading data, 273–274
overview, 272
project creation, 272–273

367

Klein bindex.tex V1 - 12/11/2007 7:53pm Page 368

LINQ to DataSets (continued)

LINQ to DataSets (continued)
queries, 275–279

across multiple tables, 277–278
single table, 275–276
typed DataSets, 278–279

LINQ to Entities, 329–344. See also ADO.NET
Entity Framework

LINQ to Objects, 41
LINQ to SQL (DLINQ), 199–215

advanced topics, 287–310
API, 218
attribute-based mapping, 202–209

Database attribute, 202–203
mapping columns, 203–205
mapping functions, 208–209
mapping relationships, 206–207
mapping stored procedures, 207–208
mapping tables, 203
Parameter attribute, 209

classes, 288
concurrency conflicts, 263–266
external mapping, 299–302
joins, 218

Association attribute, 218
multi-tier operations, 302–310
n-tier operations, 302–310

best practices, 303–304
examples, 304–305
insertion/deletion, 304
optimistic concurrency, 303–304
O/R Designer example, 305–310

O/R Designer, 17, 287–296
attribute-based mapping, 202
creating/opening, 288
DataContext creation/configuration, 288–290
DataContext mapping for stored

procedures/functions, 292–293
entity class creation for tables/view mapping,

290–291
n-tier operations, 305–310
pluralization of classes in, 296
validation logic, 294–295

Provider, 218
queries, 217–244

advanced concepts, 245–256
compiled, 251

components involved, 218–219
composite keys, 255
concepts, 217–219
data manipulation via, 221–225
database relationships, 245–250
DataContext class, 219–220
DataShape class, 254
deferred v. immediate data loading, 252–255
deleting data, 225
entity objects, 225–227
goal, 16
illustrations, 14–15
inserting data, 222–224
LINQ Provider, 41
LINQ queries v., 218
object model, 201–202
overview, 14–16, 200–201
parts, 217–218
Person.Contact table and, 147–149
read-only data, 255–256
remote v. local execution, 251–252
stored procedures, 227–240
UDFs, 240–243
updating data, 224–225

relational data basics, 209–215
SQL Metal command-line tool, 296–299

/? option, 297
attribute-based mapping, 202
/code:file, 296
/context:type, 297
/database:name, 296
/dbml:file, 296
/entitybase:type, 297
/functions, 296
Inputfile, 297
/language:language, 297
location, 297
/map:file, 297
/namespace:name, 297
options, 296–297
/password:password, 296
/pluralize, 297
/serialization:option, 297
/server:name, 296
/sprocs, 296
/timeout:timeout, 296

368

Klein bindex.tex V1 - 12/11/2007 7:53pm Page 369

In
de

xload options

/user:name, 296
/views, 296

transactions, 267–269
explicit distributable, 267
explicit local, 267
illustrations, 267–269
implicit, 267

LINQ to XML (XLINQ), 95–122
adding attributes, 117
annotations, 158–160
axis methods, 161–167

Ancestors, 161–163
AncestorsAndSelf, 164–165
Descendants, 163–164
DescendantsAndSelf, 165–166
ElementsAfterSelf, 166–167
ElementsBeforeSelf, 166–167
XML trees and, 167

benefits, 154
classes, 96–107, 122

list, 97
XAttribute, 12, 13, 97, 102–104
XDocument, 97, 104–107
XElement, 12, 13, 14, 97, 98–102

creating XML elements, 110–111
deleting attributes, 119–120
deleting XML, 116–117
DOM v., 120–121
events, 167–171

Changed, 170–171
Changing, 168–170

features in Visual Basic.NET, 179–195
functional construction, 111, 137–139,

153–158
illustrations, 12–13
inserting XML, 113
LINQ enabled, 96, 345
loading XML, 107–109

from file, 107
from string, 107–108
from TextReader, 108–109

manipulating XML, 112–117
XNode class, methods of, 112–117

MSXML v., 121
overview, 12–14, 95–96
Person.Contact table and, 147–149

programming fundamentals, 96–107
programming techniques/topics, 123–143

advanced, 153–177
queries, 132–137
retrieving attributes, 117–119
saving XML, 109
single programming interface, 96
SQL data to XML tree, 145–149
streaming XML documents, 171–177

large, 176–177
traversing XML, 111–112
types, 167–168

XObjectChange, 168
XObjectChangeEventArgs, 168
XObjectChangeEventHandler, 168

updating XML, 113–115
whitespace, 121
XML namespaces, 141–143
XML trees

creating, 123–129
modifying/reshaping, 137–139
populating from text, 130–131
querying, 132–137
serializing, 139–141

XmlReader v., 121
XSLT v., 121

LINQ to XSD, 345–358
API class methods, 354–358
Clone method, 356–357
default values, 357–358
example, 346–353
installation, 346
Load method, 355
mapping rules, 354
overview, 345–346
Parse method, 355–356
Preview, 346
Save method, 356

LinqToXsdSchema, 351–352
LinqToXsdSources, 353
Load method, 101, 106

LINQ to XSD, 355
populating XML trees from text, 130–131

load options, 189–191
None, 190
PreserveWhitespace, 190

369

Klein bindex.tex V1 - 12/11/2007 7:53pm Page 370

load options (continued)

load options (continued)
SetBaseUri, 190
SetLineInfo, 190

LoadOptions enumeration, 190
LongCount operator, 55, 66
Lookup, 77

M
/map:file, 297
mapping, attribute-based

columns, 203–205
functions, 208–209
ORD tool, 202
relationships, 206–207
stored procedures, 207–208
tables, 203

mapping rules, LINQ to XSD, 354
Max operator, 55, 66–67
MemberChangeConflict class, 266
method(s)

Add (T), 225
AddAnnotation, 101, 103, 106, 158
Ancestors, 161–163
AncestorsAndSelf, 101, 164–165
API class, LINQ to XSD, 354–358
Attach, 302–303
AttachAll, 304
Attribute, 101
axis, 161–167

Ancestors, 161–163
AncestorsAndSelf, 101, 164–165
Descendants, 163–164
DescendantsAndSelf, 165–166
ElementsAfterSelf, 166–167
ElementsBeforeSelf, 166–167
XML trees and, 167

Clone, LINQ to XSD, 356–357
Compile, 251
CopyToDataTable, 280
CreateDatabase, 219
CreateQuery, 219
CreateReader, 101, 102, 106
CreateWriter, 101, 106
DataContext, 292
Decendants (), 134–135

DeleteDatabase, 219, 220
DescendantNodes, 101, 106
DescendantNodesAndSelf, 101
Descendants, 163–164
DescendantsAndSelf, 101, 165–166
Element, 101, 106
ElementAt (), 134
Elements (), 135
ElementsAfterSelf, 166–167
ElementsBeforeSelf, 166–167
Equals, 281
ExcecuteQuery, 219
ExcecuteReader (), 43
extension, 26–28, 54

best practices, 28
C#, 26–28
Visual Basic, 28

Field, 278
First (), 134
GetChildRows, 272
GetEnumerator, 43
GetHashCode, 281
GetParentRow, 272
GetQueryText, 219
GetTable, 221
IsAfter, 101, 106
IsBefore, 101, 106
Load, 101, 106

LINQ to XSD, 355
populating XML trees from text, 130–131

MoveNext (), 34
Nodes, 101, 106
NodesAfterSelf, 101, 106
NodesBeforeSelf, 102, 106
Parse, 102, 106

LINQ to XSD, 355–356
manipulating XML in Visual Basic, 189–191
populating XML trees from text, 130

ReadFrom (), 171
Remove, 102, 103, 106, 116, 304

deleting attributes, 119–120
Remove (T), 225
RemoveAll, 102, 116
RemoveAttributes, 102
RemoveNodes, 102, 106
Replace, 113

370

Klein bindex.tex V1 - 12/11/2007 7:53pm Page 371

In
de

xobject(s)

ReplaceAll, 102, 113
ReplaceAttributes, 102
ReplaceNodes, 113
ReplaceWith, 113, 114
Save, 102, 106

LINQ to XSD, 356
Select, 272
SetAttributeValue, 102, 115

deleting attributes, 120
SetElementValue, 102, 115
SetValue, 102, 103
SubmitChanges, 219, 220, 256
ToArray, 35
ToList, 35
WriteTo, 102
XAttribute class, 103
XDocument class, 106
XElement class, 100, 101–102
XNode class

XML manipulation in LINQ to XML, 112–117
method syntax, 45–51, 275

example, 44
lambda expressions and, 44
query syntax v., 43–44
using, 45–51

MethodInfo class, 233
Min operator, 55, 67
MoveNext () method, 34
MSXML, 121

LINQ to XML v., 121
multi-tier operations, LINQ to SQL, 302–310

N
Name property, 204, 206, 209
named types

anonymous types v., 40
object initializers of, 26

names, XML, 141, 142
XName class, 142

/namespace:, 344
/namespace:name, 297
namespaces, 141, 143

System.Core, 272
System.Data, 199
System.Data.DataSetExtensions, 272

System.Reflection, 233
System.Runtime.CompilerServices, 28
System.Transactions, 267
System.Xml, 12, 95, 199
System.Xml.Linq, 96, 122
XML, 141–143
XNamespace class, 97, 142

.NET Framework
3.5, 4, 17, 21, 30
1.0, 18
1.1, 18
3.0, 18

technologies, 18
2.0, 18
version choice for Visual Studio 2008, 20

Never value, 264
New Project dialog box, 19–20, 45
nodes, 98
Nodes method, 101, 106
NodesAfterSelf method, 101, 106
NodesBeforeSelf method, 102, 106
/nologo, 344
None load option, 190
n-tier operations, LINQ to SQL, 302–310

best practices, 303–304
examples, 304–305
insertion/deletion, 304
optimistic concurrency, 303–304
O/R Designer example, 305–310

O
OBDC, 199
object(s)

ADO.NET command, 42–43
in ADO.NET Entity Framework,

341–342
entity

deleting data, 226–227
inserting data, 225–226
LINQ to SQL queries, 225–227
updating data, 226

XComment, 105
XDeclaration, 104
in XDocument class, 104–105
XDocumentType, 104

371

Klein bindex.tex V1 - 12/11/2007 7:53pm Page 372

object(s) (continued)

object(s) (continued)
XElement, 104
XProcessingInstruction, 105

object initializers, 23–26
of anonymous types, 26
C#, 24–25
of named types, 26
Visual Basic, 25–26

object mapping
example, 8–9

Object Relational Designer (O/R Designer), 17,
287–296

attribute-based mapping, 202
creating/opening, 288
DataContext creation/configuration, 288–290
DataContext mapping for stored

procedures/functions, 292–293
entity class creation for tables/view mapping,

290–291
n-tier operations, 305–310
pluralization of classes in, 296
validation logic, 294–295

ObjectChangeConflict class, 266
object-oriented (OO) programming, 3
ObjectTrackingEnabled property, 255
OfType operator, 75
OLE DB, 199
OO programming. See object-oriented

programming
operators. See standard query operators
optimistic concurrency, 263, 303–304

conflicts, 263–266
ChangeConflictException, 265
ConflictMode enumeration, 264–265
RefreshMode enumeration, 265–266
UpdateCheck property, 263–264

n-tier operations, 303–304
O/R Designer. See Object Relational Designer
OR logical operator, 38
Orcas, Beta 1, 345
ORD tool. See Object Relational Designer
Orderby clause, 38, 43–44
OrderBy operator, 55, 57
OrderByDescending operator, 55, 58

Reverse operator v., 59
OtherKey property, 206

/outcsdl :, 343
/outms l:, 343
/outobjectlayer:, 343
OUTPUT parameter, 234
/outssdl :, 343
/outviews:, 344
OverwriteCurrentValues, 265

P
Parameter attribute, 209

DbType property, 209
Name property, 209
properties, 209

Parse method, 102, 106
LINQ to XSD, 355–356
manipulating XML in Visual Basic, 189–191
populating XML trees from text, 130

partitioning query operators, 86–88
Skip, 55, 86
SkipWhile, 55, 86–87
Take, 55, 87
TakeWhile, 55, 87–88

/password:password, 296
Person.Contact table

letter S contacts, 7
LINQ to SQL and, 147–149
LINQ to XML and, 147–149
query/query filter, 15
schema defined, 14
table design, 210–211

pluralization of classes, in O/R Designer, 296
/pluralize, 297
polymorphic queries, 42
prefixes, XML, 98, 141
PreserveWhitespace load option, 190
primary keys, 210–212
ProductsPart, 236
/p[roject]:, 343
projection query operators, 55–56

Select, 55–56
SelectMany, 55–56

projections, 38, 55
properties, 204

Association attribute, 206
AutoSync, 204

372

Klein bindex.tex V1 - 12/11/2007 7:53pm Page 373

In
de

xqueries

CanBeNull, 204
Column, 204
DataSource, 280
DbType, 204, 209
Default, 282
DeferredLoadingEnabled, 254–255
Descendant axis, 186
Expression, 204
Extension indexer, 186

illustration, 186–187
IsDbGenerated, 204, 212
IsDiscriminator, 204
IsForeignKey, 206
IsPrimaryKey, 204, 212
IsUnique, 206
IsVersion, 204
Name, 204, 206, 209
OtherKey, 206
relationship, 250
Storage, 204, 206
ThisKey, 206
UpdateCheck, 204

Always value, 264
concurrency conflicts, 263–264
Never value, 264
WhenChanged value, 264

Value, 186
/prov[ider]:, 343
Providers

ADO, 218
LINQ, 41

LINQ to SQL, 41
LINQ to SQL, 218

Q
quantifier query operators, 83–85

All, 54, 83–84
Any, 54, 84–85
Contains, 85

queries
creation, 32, 33

importance, 33
embedded in XML literals, 184, 187
execution, 32, 33–36

deferred, 35

deferred v. immediate, 252–255
immediate, 35–36
local, 251, 252
remote, 251, 252

expressions, 21–22, 55
C#, 22
Visual Basic, 22

LINQ, 31–51
actions, 32–36
common terms, 41–43
concepts, 37–43
data source, 32–33
LINQ to SQL queries v., 218
parts, 32–36
polymorphic, 42
query creation, 32, 33
syntax options, 43–51

LINQ to DataSets, 275–279
across multiple tables, 277–278
single table, 275–276
typed DataSets, 278–279

LINQ to SQL, 207–244
advanced concepts, 245–256
compiled, 251
components involved, 218–219
composite keys, 255
concepts, 217–219
data manipulation via, 221–225
database relationships, 245–250
DataContext class, 219–220
DataShape class, 254
deferred v. immediate data loading,

252–255
deleting data, 225
entity objects, 225–227
goal, 16
illustrations, 14–15
inserting data, 222–224
LINQ Provider, 41
LINQ queries v., 218
object model, 201–202
overview, 14–16, 200–201
Person.Contact table and, 147–149
read-only data, 255–256
remote v. local execution, 251–252
stored procedures, 227–240

373

Klein bindex.tex V1 - 12/11/2007 7:53pm Page 374

queries (continued)

queries (continued)
UDFs, 240–243
updating data, 224–225

LINQ to XML, 132–137
syntax, 43, 45–51, 275

example, 44
method syntax v., 43–44
using, 45–51

XML trees, 132–136
query operators. See standard query operators

R
Range operator, 72–73
range variable, 37
ReadFrom () method, 171
read-only data, 255–256
/refcsdl :, 343
RefreshMode enumeration, 265–266

KeepChanges value, 265
KeepCurrentValues, 265
OverwriteCurrentValues, 265

relational data, 209–215. See also LINQ to SQL
foreign keys, 212–215
primary keys, 210–212

relationship properties, 250
relationships, mapping, 206–207
Remove method, 102, 103, 106, 116, 304

deleting attributes, 119–120
Remove (T) method, 225
RemoveAll method, 102, 116
RemoveAttributes method, 102
RemoveNodes method, 102, 106
repeat operator, 73
Replace method, 113
ReplaceAll method, 102, 113
ReplaceAttributes method, 102
ReplaceNodes method, 113
ReplaceWith method, 113, 114
Required value, 269
RequiredNew value, 269
restriction operator, 57

where, 11, 57
Results View, 34
Reverse operator, 57, 59

OrderByDescending v., 59

S
Save method, 102, 106

LINQ to XSD, 356
select clause, 38, 39
Select method, 272
Select operator, 55–56
select query operator, 11
SelectMany operator, 55–56
SequenceEqual operator, 82–83
sequences, 53–54
serialization, 109, 139
/serialization:option, 297
serializing XML trees, 139–141, 143

whitespace and, 139, 140, 141
/server:name, 296
Set Primary Key button, 211
set query operators, 68–71

Distinct, 54, 68–69, 281
Except, 71, 281
intersect, 70–71, 281, 284
Union, 70, 281

SetAttributeValue method, 102, 115
deleting attributes, 120

SetBaseUri load option, 190
SetElementValue method, 102, 115
SetLineInfo load option, 190
SetValue method, 102, 103
Single operator, 29, 81
SingleOrDefault operator, 82
Skip operator, 55, 86
SkipWhile operator, 55, 86–87
sorting operators, 57–59

OrderBy, 55, 57
OrderByDescending, 55, 58

Reverse operator v., 59
Reverse, 57, 59

OrderByDescending v., 59
ThenBy, 55, 58
ThenByDescending, 55, 58–59

/sprocs, 296
SQL. See also LINQ to SQL

database, to XML tree, 145–149
Query Analyzer, 15
Server

query processing, 36

374

Klein bindex.tex V1 - 12/11/2007 7:53pm Page 375

In
de

xstandard query operators

Server Management Studio, 15
Server table, XML data to, 149–152
syntax, LINQ syntax v., 36–37

SQL Metal command-line tool, 296–299
/? option, 297
attribute-based mapping, 202
/code:file, 296
/context:type, 297
/database:name, 296
/dbml:file, 296
/entitybase:type, 297
/functions, 296
Inputfile, 297
/language:language, 297
location, 297
/map:file, 297
/namespace:name, 297
options, 296–297
/password:password, 296
/pluralize, 297
/serialization:option, 297
/server:name, 296
/sprocs, 296
/timeout:timeout, 296
/user:name, 296
/views, 296

SqlDataAdapter, 273–274
standard query operators, 6, 10–12, 33, 53–92

Aggregate, 64
aggregating, 64–68

Aggregate, 64
Average, 54, 64–65
Count, 54, 65
LongCount, 55, 66
Max, 55, 66–67
Min, 55, 67
Sum, 55, 67–68

All, 54, 83–84
Any, 54, 84–85
API v., 53
AsEnumerable, 74
Average, 54, 64–65
Cast, 54, 74–75
categorization, 11
Concat, 63–64
concatenating, 63–64

Contains, 85
conversion, 73–77

AsEnumerable, 74
Cast, 54, 74–75
OfType, 75
ToArray, 75–76
ToDictionary operator, 76
ToList, 76–77
ToLookup, 77

Count, 54, 65
DefaultIfEmpty, 78
defined, 53
Distinct, 54, 68–69, 281
element, 72–82

DefaultIfEmpty, 78
ElementAt, 78–79
ElementAtOrDefault, 79
First, 79
FirstOrDefault, 80
Last, 80
LastOrDefault, 80–81
Single, 29, 81
SingleOrDefault, 82

ElementAt, 78–79
ElementAtOrDefault, 79
Empty, 71–72
equality, 82–83

SequenceEqual, 82–83
example/illustration, 6, 88–92
Except, 71, 281
First, 79
FirstOrDefault, 80
generation, 71–73

Empty, 71–72
Range, 72–73
repeat, 73

GroupBy, 55, 62–63
grouped by function, 54–88
grouping, 62–63
GroupJoin, 55, 59, 60–62
illustration/example, 6, 88–92
intersect, 70–71, 281, 284
join, 55, 59–60, 250
joining, 59–62
Last, 80
LastOrDefault, 80–81

375

Klein bindex.tex V1 - 12/11/2007 7:53pm Page 376

standard query operators (continued)

standard query operators (continued)
LongCount, 55, 66
Max, 55, 66–67
Min, 55, 67
OfType, 75
OrderBy, 55, 57
OrderByDescending, 55, 58

Reverse operator v., 59
overview, 53–54
partitioning, 86–88

Skip, 55, 86
SkipWhile, 55, 86–87
Take, 55, 87
TakeWhile, 55, 87–88

projection, 55–56
Select, 55–56
SelectMany, 55–56

quantifier, 83–85
All, 54, 83–84
Any, 54, 84–85
Contains, 85

Range, 72–73
repeat, 73
restriction, 57
Reverse, 57, 59

OrderByDescending v., 59
Select, 55–56
select, 11
SelectMany, 55–56
SequenceEqual, 82–83
set, 68–71

Distinct, 54, 68–69, 281
Except, 71, 281
intersect, 70–71, 281, 284
Union, 70, 281

sets, 11
Single, 29, 81
SingleOrDefault, 82
Skip, 55, 86
SkipWhile, 55, 86–87
sorting, 57–59

OrderBy, 55, 57
OrderByDescending, 55, 58, 59
Reverse, 57, 59
ThenBy, 55, 58
ThenByDescending, 55, 58–59

Sum, 55, 67–68
syntax, 33
Take, 55, 87
TakeWhile, 55, 87–88
ThenBy, 55, 58
ThenByDescending, 55, 58–59
ToArray, 75–76
ToDictionary, 76
ToList, 76–77
ToLookup, 77
types, 54
Union, 70, 281
where, 11, 57

<State> element, 114, 115
Storage property, 204, 206
stored procedures

DataContext mapping for, 292–293
mapped, 207–208

for multiple results, 235–240
passing parameters to, 234–235

mapping/calling, 227–240
returning single result, 227–234

StoredProcedure attribute, 207–208, 227
streaming XML documents, 171–177

large, 176–177
XmlReader and, 171

string representation, XName class, 142
strongly typed DataContext, 220–221
SubmitChanges method, 219, 220, 256
Sum operator, 55, 67–68
Suppress value, 269
syntax

LINQ v. SQL, 36–37
method, 45–51, 275

example, 44
query syntax v., 43–44
using, 45–51

query, 43, 45–51, 275
example, 44
using, 45–51

readability, 44
standard query operators, 33

System.Core namespace, 272
System.Data namespace, 199
System.Data.DataSetExtensions namespace,

272

376

Klein bindex.tex V1 - 12/11/2007 7:53pm Page 377

In
de

xVisual Basic.NET

System.Data.Linq, 96
System.Reflection namespace, 233
System.Runtime.CompilerServices namespace,

28
System.Transactions namespace, 267
System.Xml namespace, 12, 95, 199
System.Xml.Linq namespace, 96, 122
System.Xml.Schema, 4
System.Xml.XPath, 4
System.Xml.Xsl, 4

T
Table (of TEntity) class, 302
Table collection, 221
tables, mapping, 203
Take operator, 55, 87
TakeWhile operator, 55, 87–88
TestAnnotation class, 160
TextReader, loading XML from, 108–109
ThenBy operator, 55, 58
ThenByDescending operator, 55, 58–59
ThisKey property, 206
/timeout:timeout, 296
ToArray method, 35
ToArray operator, 75–76
ToDictionary operator, 76
ToList method, 35
ToList operator, 76–77
ToLookup operator, 77
transactions, LINQ to SQL, 267–269

explicit distributable, 267
explicit local, 267

example, 268–269
illustrations, 267–269
implicit, 267

TransactionScope class, 267, 269
TransactionScopeOption enumeration, 269

Required value, 269
RequiredNew value, 269
Suppress value, 269

typed DataSets, 278–279
typed XML, 345, 346. See also LINQ to XSD
types, LINQ to XML, 167–168. See also events,

LINQ to XML
XObjectChange, 168

XObjectChangeEventArgs, 168
XObjectChangeEventHandler, 168

U
UDFs. See user-defined functions
Union operator, 70, 281
UPDATE function, 293
UpdateCheck property, 204

Always value, 264
concurrency conflicts, 263–264
Never value, 264
WhenChanged value, 264

updating data
entity objects, 226
LINQ to SQL queries, 224–225

user-defined functions (UDFs), 240–243
mapping/calling, 240–243

/user:name, 296
using directive, 239, 243
using statements, 107, 147

V
ValidateArtifacts, 343
Value property, 186
var keyword, 13, 22, 39

IEnumerable<T> interface v., 40–41
ViewGeneration, 343
/views, 296
Visual Basic.NET

anonymous types, 23
creating XML trees

LINQ to XML, 128–129
embedded expressions and, 182–184
extension methods, 28
implicitly typed variables, 22
LINQ to XML features in, 179–195

example, 191–194
object intializers, 25–26
query expressions, 22
XML in

accessing, 185–188
creating, 179–185
loading, 188–189
manipulating, with Parse method, 189–191

377

Klein bindex.tex V1 - 12/11/2007 7:53pm Page 378

Visual Studio (earlier versions)

Visual Studio (earlier versions)
.NET, 18
.NET 2003, 18
97, 17
6.0, 17
2005, 18

Visual Studio 2008, 17–30
download, 21
history/background, 17–18
language-specific LINQ features, 21–29
.NET Framework versions, 20
new features, 18
New Project dialog box, 19–20
start up, 18–19

W
WCF (Windows Communication Foundation),

18
WF (Windows Workflow Foundation), 18
WhenChanged value, 264
where clause, 37
where query operator, 11, 57
whitespace

LINQ to XML and, 121
serializing XML trees and, 139, 140, 141
in XML literals, 184–185

Windows Communication Foundation. See WCF
Windows Forms Control Library, 20, 21
Windows Presentation Foundation. See WPF
Windows Workflow Foundation. See WF
WPF (Windows Presentation Foundation), 18
WriteTo method, 102

X
XAttribute class, 12, 97, 102–104

example, 13
methods, 103
XElement class v., 103

XCData class, 97
XComment class, 97
XComment objects, 105
XContainer class, 97
XDeclaration class, 97–98
XDeclaration objects, 104

XDocument class, 97, 104–107
methods, 106
objects in, 104–105

XDocumentType class, 97
XDocumentType objects, 104
XElement class, 12, 14, 97, 98–102

methods, 100, 101–102
XAttribute class v., 103
XML document construction, 12–13

XElement objects, 104
XLINQ. See LINQ to XML
XML. See also LINQ to XML

accessing, in Visual Basic, 185–188
creating, in Visual Basic, 179–185
declarations, 97
document construction

XElement, 12–13
document parsing, 4–5
limitations, 4–5, 95, 98
prefixes, 98, 141
streaming documents, 171–177

large, 176–177
typed, 345, 346. See also LINQ to XSD

XML literals, 128, 129, 180–182
creating XML trees, 128–129
embedding expressions, 182–184
embedding queries in, 184, 187
overview, 180–182
whitespace in, 184–185

XML namespaces, 141–143
XML trees

axis methods and, 167
creating, 123–129

C#, 124–128
Visual Basic, 128–129
XML literals, 128–129

modifying/reshaping, 137–139
populating from text, 130–131

Load method, 130–131
Parse method, 130

querying, 132–137
serializing, 139–141
SQL database to, 145–149
to SQL server table, 149–152

insert, 150
update, 151–152

378

Klein bindex.tex V1 - 12/11/2007 7:53pm Page 379

In
de

xXText class

XmlDocument, 4
XmlReader, 4, 102, 131

LINQ to XML v., 121
streaming XML and, 171

XmlWriter, 4
XName class, 97

names, 142
string representation, 142

XNamespace class, 97
namespaces, 97, 142

XNode class, 97, 112
methods

XML manipulation in LINQ to XML, 112–117
XNodeDocumentOrderComparer class, 97
XNodeEqualityComparer class, 97

XObject class, 97
XObjectChange class, 97
XObjectChange type, 168
XObjectChangeEventArgs class, 97
XObjectChangeEventArgs type, 168
XObjectChangeEventHandler, 97
XObjectChangeEventHandler type,

168
XPath, 12, 14, 95
XProcessingInstruction class, 97
XProcessingInstruction objects, 105
XQuery, 4, 14
XSLT, 4, 14, 95

LINQ to XML v., 121
XText class, 97

379

Take your library
wherever you go.
Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

Programmer to ProgrammerTM

• ASP.NET
• C#/C++
• Database
• General
• Java
• Mac
• Microsoft Office

• .NET
• Open Source
• PHP/MySQL
• SQL Server
• Visual Basic
• Web
• XML

Find books on

www.wrox.com

wrox_24x7_BOB_ad_final.indd 1wrox_24x7_BOB_ad_final.indd 314 9/8/2007 4:26:08 PM9/8/2007 4:26:08 PM

	Professional LINQ
	About the Author
	Credits
	Acknowledgments
	Contents
	Introduction
	Part I Introduction to Project LINQ
	Chapter 1: Project LINQ
	Chapter 2: A Look at Visual Studio 2008
	Chapter 3: LINQ Queries
	Chapter 4: LINQ Standard Query Operators

	Part II LINQ to XML
	Chapter 5: Understanding LINQ to XML
	Chapter 6: Programming with LINQ to XML
	Chapter 7: LINQ to XML and Other LINQ Data Models
	Chapter 8: Advanced LINQ to XML Programming Topics
	Chapter 9: LINQ to XML and Visual Basic .NET

	Part III LINQ to SQL
	Chapter 10: LINQ to SQL Overview
	Chapter 11: LINQ to SQL Queries
	Chapter 12: Advanced Query Concepts
	Chapter 13: More about Entity Classes
	Chapter 14: LINQ to DataSet
	Chapter 15: Advanced LINQ to SQL Topics

	Appendixes
	Appendix A: Case Study
	Appendix B: LINQ to Entities: The ADO.NET Entity Framework
	Appendix C: LINQ to XSD

	Index

