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Introduction

Development of artificial intelligent products and solutions has 

recently become a norm; hence, the demand for graph theory–based 

computational frameworks is on the rise. Making the deep learning models 

work in real-life applications is possible when the modeling framework is 

dynamic, flexible, and adaptable to other frameworks.

PyTorch is a recent entrant to the league of graph computation 

tools/programming languages. Addressing the limitations of previous 

frameworks, PyTorch promises a better user experience in the deployment 

of deep learning models, and the creation of advanced models using a 

combination of convolutional neural networks, recurrent neural networks, 

LSTMs, and deep neural networks.

PyTorch was created by Facebook’s Artificial Intelligence Research 

division, which seeks to make the model development process simple, 

straightforward, and dynamic, so that developers do not have to worry 

about declaring objects before compiling and executing the model. It is 

based on the Torch framework and is an extension of Python.

This book is intended for data scientists, natural language processing 

engineers, artificial intelligence solution developers, existing practitioners 

working on graph computation frameworks, and researchers of graph 

theory. This book will get you started with understanding tensor basics, 

computation, performing arithmetic-based operations, matrix algebra, 

and statistical distribution-based operations using the PyTorch framework.

Chapters 3 and 4 provide detailed descriptions on neural network 

basics. Advanced neural networks, such as convolutional neural networks, 

recurrent neural networks, and LSTMs are explored. Readers will be able 

to implement these models using PyTorch functions.
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Chapters 5 and 6 discuss fine-tuning the models, hyper parameter 

tuning, and the refinement of existing PyTorch models in production. 

Readers learn how to choose the hyper parameters to fine-tune the model.

In Chapter 7, natural language processing is explained. The deep 

learning models and their applications in natural language processing 

and artificial intelligence is one of the most demanding skill sets in 

the industry. Readers will be able to benchmark the execution and 

performance of PyTorch implementation in deep learning models to 

execute and process natural language. They will be able to compare 

PyTorch with other graph computation–based deep learning 

programming tools.

InTroduCTIonInTroduCTIon
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CHAPTER 1

Introduction to 
PyTorch, Tensors, and 
Tensor Operations
PyTorch has been evolving as a larger framework for writing dynamic 

models. Because of that, it is very popular among data scientists and data 

engineers deploying large-scale deep learning frameworks. This book 

provides a structure for the experts in terms of handling activities while 

working on a practical data science problem. As evident from applications 

that we use in our day-to-day lives, there are layers of intelligence 

embedded with the product features. Those features are enabled to 

provide a better experience and better services to the user.

The world is moving toward artificial intelligence. There are two 

main components of it: deep learning and machine learning. Without 

deep learning and machine learning, it is impossible to visualize 

artificial intelligence.

PyTorch is the most optimized high-performance tensor library for 

computation of deep learning tasks on GPUs (graphics processing units) 

and CPUs (central processing units). The main purpose of PyTorch is 

to enhance the performance of algorithms in large-scale computing 
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environments. PyTorch is a library based on Python and the Torch tool 

provided by Facebook’s Artificial Intelligence Research group, which 

performs scientific computing.

NumPy-based operations on a GPU are not efficient enough to process 

heavy computations. Static deep learning libraries are a bottleneck for 

bringing flexibility to computations and speed. From a practitioner’s 

point of view, PyTorch tensors are very similar to the N-dimensional 

arrays of a NumPy library based on Python. The PyTorch library provides 

bridge options for moving a NumPy array to a tensor array, and vice 

versa, in order to make the library flexible across different computing 

environments.

The use cases where it is most frequently used include natural 

language processing, image processing, computer vision, social media 

data analysis, and sensor data processing. Although PyTorch provides a 

large collection of libraries and modules for computation, three modules 

are very prominent.

• Autograd. This module provides functionality for 

automatic differentiation of tensors. A recorder class in 

the program remembers the operations and retrieves 

those operations with a trigger called backward to 

compute the gradients. This is immensely helpful in the 

implementation of neural network models.

• Optim. This module provides optimization techniques 

that can be used to minimize the error function for a 

specific model. Currently, PyTorch supports various 

advanced optimization methods, which includes 

Adam, stochastic gradient descent (SGD), and more.

Chapter 1  IntroduCtIon to pytorCh, tensors, and tensor operatIons
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• NN. NN stands for neural network model. 

Manually defining the functions, layers, and further 

computations using complete tensor operations is very 

difficult to remember and execute. We need functions 

that automate the layers, activation functions, loss 

functions, and optimization functions and provides a 

layer defined by the user so that manual intervention 

can be reduced. The NN module has a set of built- 

in functions that automates the manual process of 

running a tensor operation.

Industries in which artificial intelligence is applied include banking, 

financial services, insurance, health care, manufacturing, retail, clinical 

trials, and drug testing. Artificial intelligence involves classifying objects, 

recognizing the objects to detecting fraud, and so forth. Every learning 

system requires three things: input data, processing, and an output layer. 

Figure 1-1 explains the relationship between these three topics. If the 

performance of any learning system improves over time by learning from 

new examples or data, it is called a machine learning system. When a 

machine learning system becomes too difficult to reflect reality, it requires 

a deep learning system.

In a deep learning system, more than one layer of a learning algorithm 

is deployed. In machine learning, we think of supervised, unsupervised, 

semisupervised, and reinforcement learning systems. A supervised 

machine-learning algorithm is one where the data is labeled with classes 

or tagged with outcomes. We show the machine the input data with 

corresponding tags or labels. The machine identifies the relationship with 

a function. Please note that this function connects the input to the labels 

or tags.

In unsupervised learning, we show the machine only the input data 

and ask the machine to group the inputs based on association, similarities 

or dissimilarities, and so forth.

Chapter 1  IntroduCtIon to pytorCh, tensors, and tensor operatIons
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In semisupervised learning, we show the machine input features and 

labeled data or tags; however we ask the machine to predict the untagged 

outcomes or labels.

In reinforcement learning, we introduce a reward and penalty 

mechanism, where every correct action is rewarded and every incorrect 

action is penalized.

In all of these examples of machine learning algorithms, we assume 

that the dataset is small, because getting massive amounts of tagged data 

is a challenge, and it takes a lot of time for machine learning algorithms to 

process large-scale matrix computations. Since machine learning algorithms 

are not scalable for massive datasets, we need deep learning algorithms.

Figure 1-1 shows the relationships among artificial intelligence, 

machine learning, and deep learning. Natural language is an important 

part of artificial intelligence. We need to develop systems that understand 

natural language and provide responses to the agent. Let’s take an example 

of machine translation, where a sentence in language 1 (French) can 

be converted to language 2 (English), and vice versa. To develop such a 

system, we need a large collection of English-French bilingual sentences. 

The corpus requirement is very large, as all the language nuances need to 

be covered by the model.

Deep 
Learning

Machine 
Learning

Artificial 
Intelligence

Figure 1-1. Relationships among ML, DL, and AI

Chapter 1  IntroduCtIon to pytorCh, tensors, and tensor operatIons
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After preprocessing and feature creation, you can observe hundreds of 

thousands of features that need to be computed to produce output. If we 

train a machine learning supervised model, it would take months to run 

and to produce output. To achieve scalability in this task, we need deep 

learning algorithms, such as a recurrent neural network. This is how the 

artificial intelligence is connected to deep learning and machine learning.

There are various challenges in deploying deep learning models that 

require large volumes of labeled data, faster computing machines, and 

intelligent algorithms. The success of any deep learning system requires 

good labeled data and better computing machines because the smart 

algorithms are already available.

The following are various use cases that require deep learning 

implementation:

• Speech recognition

• Video analysis

• Anomaly detection from videos

• Natural language processing

• Machine translation

• Speech-to-text conversion

The development of the NVIDIA GPU computing for processing 

large-scale data is another path-breaking innovation. The programming 

language that is required to run in a GPU environment requires a different 

programming framework. Two major frameworks are very popular for 

implementing graphical computing: TensorFlow and PyTorch. In this 

book, we discuss PyTorch as a framework to implement data science 

algorithms and make inferences.

The major frameworks for graph computations include PyTorch, 

TensorFlow, and MXNet. PyTorch and TensorFlow compete with each 

other in neurocomputations. TensorFlow and PyTorch are equally good 

Chapter 1  IntroduCtIon to pytorCh, tensors, and tensor operatIons
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in terms of performance; however, the real differences are known only 

when we benchmark a particular task. Concept-wise there are  

certain differences.

• In TensorFlow, we have to define the tensors, initialize 

the session, and keep placeholders for the tensor 

objects; however, we do not have to do these operations 

in PyTorch.

• In TensorFlow, let’s consider sentiment analysis as 

an example. Input sentences are tagged with positive 

or negative tags. If the input sentence’s length is not 

equal, then we set the maximum sentence length and 

add zero to make the length of other sentences equal, 

so that the recurrent neural network can function; 

however, this is a built-in functionality in PyTorch, so 

we do not have to define the length of the sentences.

• In PyTorch, the debugging is much easier and simpler, 

but it is a difficult task in TensorFlow.

• In terms of data visualization, model deployment 

definitely better in TensorFlow; however, PyTorch is 

evolving and we expect to eventually see the same 

functionality in the future.

TensorFlow has definitely undergone many changes to reach a stable 

state. PyTorch is just entering the game, so it will take some time to realize 

the full potential of this tool.

 What Is PyTorch?
PyTorch is a machine learning and deep learning tool developed by 

Facebook’s artificial intelligence division to process large-scale image 

analysis, including object detection, segmentation and classification. It is 

Chapter 1  IntroduCtIon to pytorCh, tensors, and tensor operatIons
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not limited to these tasks, however. It can be used with other frameworks 

to implement complex algorithms. It is written using Python and the C++ 

language. To process large-scale computations in a GPU environment, 

the programming languages should be modified accordingly. PyTorch 

provides a great framework to write functions that automatically run in a 

GPU environment.

 PyTorch Installation
Installing PyTorch is quite simple. In Windows, Linux, or macOS, it is 

very simple to install if you are familiar with the Anaconda and Conda 

environments for managing packages. The following steps describe how to 

install PyTorch in Windows/macOS/Linux environments.

 1. Open the Anaconda navigator and go to the 

environment page, as displayed in the screenshot 

shown in Figure 1-2.

Figure 1-2. Relationships among ML, DL, and AI

Chapter 1  IntroduCtIon to pytorCh, tensors, and tensor operatIons
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 2. Open the terminal and terminal and type the 

following:

conda install -c peterjc123 pytorch

 3. Launch Jupyter and open the IPython Notebook.

 4. Type the following command to check whether the 

PyTorch is installed or not.

from __future__ import print_function

import torch

 5. Check the version of the PyTorch.

 

This installation process was done using a Microsoft Windows 

machine. The process may vary by operating system, so please use the 

following URLs for any issue regarding installation and errors.

There are two ways to install it: Conda (Anaconda) library 

management or the Pip3 package management framework. Also, 

installations for a local system (such as macOS, Windows, or Linux) and 

a cloud machine (such as Microsoft Azure, AWS, and GCP) are different. 

To set up according to your platform, please follow the official PyTorch 

installation documents at https://PyTorch.org/get-started/cloud- 

partners/.

Chapter 1  IntroduCtIon to pytorCh, tensors, and tensor operatIons
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PyTorch has various components.

• Torch has functionalities similar to NumPy with GPU 

support.

• Autograd’s torch.autograd provides classes, 

methods, and functions for implementing automatic 

differentiation of arbitrary scalar valued functions. It 

requires minimal changes to the existing code. You only 

need to declare class:'Tensor's, for which gradients 

should be computed with the requires_grad=True 

keyword.

• NN is a neural network library in PyTorch.

• Optim provides optimization algorithms that are used 

for the minimization and maximization of functions.

• Multiprocessing is a useful library for memory sharing 

between multiple tensors.

• Utils has utility functions to load data; it also has other 

functions.

Now we are ready to proceed with the chapter.

 Recipe 1-1. Using Tensors
 Problem
The data structure used in PyTorch is graph based and tensor based, therefore, 

it is important to understand basic operations and defining tensors.

Chapter 1  IntroduCtIon to pytorCh, tensors, and tensor operatIons



10

 Solution
The solution to this problem is practicing on the tensors and its operations, 

which includes many examples that use various operations. Though it 

is assumed that the user is familiar with PyTorch and Python basics, a 

refresher on PyTorch is essential to create interest among new users.

 How It Works
Let’s have a look at the following examples of tensors and tensor operation 

basics, including mathematical operations.

The x object is a list. We can check whether an object in Python is 

a tensor object by using the following syntax. Typically, the is_tensor 

function checks and the is_storage function checks whether the object is 

stored as tensor object.

 

Now, let’s create an object that contains random numbers from Torch, 

similar to NumPy library. We can check the tensor and storage type.

Chapter 1  IntroduCtIon to pytorCh, tensors, and tensor operatIons
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The y object is a tensor; however, it is not stored. To check the total 

number of elements in the input tensor object, the numerical element 

function can be used. The following script is another example of creating 

zero values in a 2D tensor and counting the numerical elements in it.

 

Like NumPy operations, the eye function creates a diagonal matrix, of 

which the diagonal elements have ones, and off diagonal elements have 

zeros. The eye function can be manipulated by providing the shape option. 

The following example shows how to provide the shape parameter.

Chapter 1  IntroduCtIon to pytorCh, tensors, and tensor operatIons
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Linear space and points between the linear space can be created using 

tensor operations. Let’s use an example of creating 25 points in a linear 

space starting from value 2 and ending with 10. Torch can read from a 

NumPy array format.

 

 

Chapter 1  IntroduCtIon to pytorCh, tensors, and tensor operatIons
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Like linear spacing, logarithmic spacing can be created.

 

Random number generation is a common process in data science to 

generate or gather sample data points in a space to simulate structure in 

the data. Random numbers can be generated from a statistical distribution, 

any two values, or a predefined distribution. Like NumPy functions, the 

random number can be generated using the following example. Uniform 

distribution is defined as a distribution where each outcome has equal 

probability of happening; hence, the event probabilities are constant.

 

The following script shows how the random number from two values, 

0 and 1, are selected. The result tensor can be reshaped to create a (4,5) 

matrix. The random numbers from a normal distribution with arithmetic 

mean 0 and standard deviation 1 can also be created, as follows.

Chapter 1  IntroduCtIon to pytorCh, tensors, and tensor operatIons
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To select random values from a range of values using random 

permutation requires defining the range first. This range can be created 

by using the arrange function. When using the arrange function, you must 

define the step size, which places all the values in an equal distance space. 

By default, the step size is 1.
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To find the minimum and maximum values in a 1D tensor, argmin and 

argmax can be used. The dimension needs to be mentioned if the input is 

a matrix in order to search minimum values along rows or columns.

 

If it is either a row or column, it is a single dimension and is called a 

1D tensor. If the input is a matrix, in which rows and columns are present, 

it is called a 2D tensor. If it is more than two-dimensional, it is called a 

multidimensional tensor.
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Now, let’s create a sample 2D tensor and perform indexing and 

concatenation by using the concat operation on the tensors.

 

The sample x tensor can be used in 3D as well. Again, there are two 

different options to create three-dimensional tensors; the third dimension 

can be extended over rows or columns.
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A tensor can be split between multiple chunks. Those small chunks 

can be created along dim rows and dim columns. The following example 

shows a sample tensor of size (4,4). The chunk is created using the third 

argument in the function, as 0 or 1.
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The gather function collects elements from a tensor and places it in 

another tensor using an index argument. The index position is determined 

by the LongTensor function in PyTorch.
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The LongTensor function or the index select function can be used to 

fetch relevant values from a tensor. The following sample code shows two 

options: selection along rows and selection along columns. If the second 

argument is 0, it is for rows. If it is 1, then it is along the columns.

 

 

It is a common practice to check non-missing values in a tensor, the 

objective is to identify non-zero elements in a large tensor.

 

Restructuring the input tensors into smaller tensors not only fastens 

the calculation process, but also helps in distributed computing. The split 

function splits a long tensor into smaller tensors.
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Now, let’s have a look at examples of how the input tensor can be 

resized given the computational difficulty. The transpose function is 

primarily used to reshape tensors. There are two ways of writing the 

transpose function: .t and .transpose.
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The unbind function removes a dimension from a tensor. To remove 

the dimension row, the 0 value needs to be passed. To remove a column, 

the 1 value needs to be passed.

 

Mathematical functions are the backbone of implementing any 

algorithm in PyTorch; therefore, it is needed to go through functions that 

help perform arithmetic-based operations. A scalar is a single value, and 

a tensor 1D is a row, like NumPy. The scalar multiplication and addition 

with a 1D tensor are done using the add and mul functions.
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The following script shows scalar addition and multiplication with 

a tensor.

 

 

Combined mathematical operations, such as expressing linear 

equations as tensor operations can be done using the following sample 

script. Here we express the outcome y object as a linear combination of 

beta values times the independent x object, plus the constant term.
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Output = Constant + (beta * Independent)

 

Like NumPy operations, the tensor values must be rounded up by 

using either the ceiling or the flooring function, which is done using the 

following syntax.
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Limiting the values of any tensor within a certain range can be done 

using the minimum and maximum argument and using the clamp 

function. The same function can apply minimum and maximum in 

parallel or any one of them to any tensor, be it 1D or 2D; 1D is the far 

simpler version. The following example shows the implementation in  

a 2D scenario.
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How do we get the exponential of a tensor? How do we get the 

fractional portion of the tensor if it has decimal places and is defined as a 

floating data type?
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The following syntax explains the logarithmic values in a tensor. The 

values with a negative sign are converted to nan. The power function 

computes the exponential of any value in a tensor.

 

To compute the transformation functions (i.e., sigmoid, hyperbolic 

tangent, radial basis function, and so forth, which are the most commonly 

used transfer functions in deep learning), you must construct the tensors. 

The following sample script shows how to create a sigmoid function and 

apply it on a tensor.
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 Conclusion
This chapter is a refresher for people who have prior experience in PyTorch 

and Python. It is a basic building block for people who are new to the 

PyTorch framework. Before starting the advanced topics, it is important to 

become familiar with the terminology and basic syntaxes. The next chapter 

is on using PyTorch to implement probabilistic models, which includes the 

creation of random variables, the application of statistical distributions, 

and making statistical inferences.
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CHAPTER 2

Probability 
Distributions Using 
PyTorch
Probability and random variables are an integral part of computation in 

a graph-computing platform like PyTorch. Understanding probability 

and associated concepts are essential. This chapter covers probability 

distributions and implementation using PyTorch, and interpreting the 

results from tests.

In probability and statistics, a random variable is also known as a 

stochastic variable, whose outcome is dependent on a purely stochastic 

phenomenon, or random phenomenon. There are different types of 

probability distributions, including normal distribution, binomial 

distribution, multinomial distribution, and Bernoulli distribution. Each 

statistical distribution has its own properties.

The torch.distributions module contains probability distributions 

and sampling functions. Each distribution type has its own importance 

in a computational graph. The distributions module contains binomial, 

Bernoulli, beta, categorical, exponential, normal, and Poisson 

distributions.
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 Recipe 2-1. Sampling Tensors
 Problem
Weight initialization is an important task in training a neural network and 

any kind of deep learning model, such as a convolutional neural network 

(CNN), a deep neural network (DNN), and a recurrent neural network 

(RNN). The question always remains on how to initialize the weights.

 Solution
Weight initialization can be done by using various methods, including 

random weight initialization. Weight initialization based on a distribution 

is done using uniform distribution, Bernoulli distribution, multinomial 

distribution, and normal distribution. How to do it using PyTorch is 

explained next.

 How It Works
To execute a neural network, a set of initial weights needs to be passed to 

the backpropagation layer to compute the loss function (and hence, the 

accuracy can be calculated). The selection of a method depends on the 

data type, the task, and the optimization required for the model. Here we 

are going to look at all types of approaches to initialize weights.

If the use case requires reproducing the same set of results to maintain 

consistency, then a manual seed needs to be set.
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The seed value can be customized. The random number is generated 

purely by chance. Random numbers can also be generated from a 

statistical distribution. The probability density function of the continuous 

uniform distribution is defined by the following formula.
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The function of x has two points, a and b, in which a is the starting 

point and b is the end. In a continuous uniform distribution, each number 

has an equal chance of being selected. In the following example, the start 

is 0 and the end is 1; between those two digits, all 16 elements are selected 

randomly.
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In statistics, the Bernoulli distribution is considered as the discrete 

probability distribution, which has two possible outcomes. If the event 

happens, then the value is 1, and if the event does not happen, then the 

value is 0.

For discrete probability distribution, we calculate probability mass 

function instead of probability density function. The probability mass 

function looks like the following formula.
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From the Bernoulli distribution, we create sample tensors by 

considering the uniform distribution of size 4 and 4 in a matrix format, 

as follows.

 

The generation of sample random values from a multinomial 

distribution is defined by the following script. In a multinomial 

distribution, we can choose with a replacement or without a replacement. 

By default, the multinomial function picks up without a replacement and 

returns the result as an index position for the tensors. If we need to run it 

with a replacement, then we need to specify that while sampling.
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Sampling from multinomial distribution with a replacement returns 

the tensors’ index values.

 

The weight initialization from the normal distribution is a method 

that is used in fitting a neural network, fitting a deep neural network, and 

CNN and RNN. Let’s have a look at the process of creating a set of random 

weights generated from a normal distribution.

 

 Recipe 2-2. Variable Tensors
 Problem
What is a variable in PyTorch and how is it defined? What is a random 

variable in PyTorch?
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 Solution
In PyTorch, the algorithms are represented as a computational graph. 

A variable is considered as a representation around the tensor object, 

corresponding gradients, and a reference to the function from where it was 

created. For simplicity, gradients are considered as slope of the function. 

The slope of the function can be computed by the derivative of the 

function with respect to the parameters that are present in the function. 

For example, in linear regression (Y = W*X + alpha), representation of the 

variable would look like the one shown in Figure 2-2.

Basically, a PyTorch variable is a node in a computational graph, which 

stores data and gradients. When training a neural network model, after 

each iteration, we need to compute the gradient of the loss function with 

respect to the parameters of the model, such as weights and biases. After 

that, we usually update the weights using the gradient descent algorithm. 

Figure 2-1 explains how the linear regression equation is deployed under 

the hood using a neural network model in the PyTorch framework.

In a computational graph structure, the sequencing and ordering 

of tasks is very important. The one-dimensional tensors are X, Y, W, 

and alpha in Figure 2-2. The direction of the arrows change when we 

implement backpropagation to update the weights to match with Y, so that 

the error or loss function between Y and predicted Y can be minimized.

Y W

X

X
B =W*X

alpha

+

Figure 2-1. A sample computational graph of a PyTorch 
implementation
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 How It Works
An example of how a variable is used to create a computational graph is 

displayed in the following script. There are three variable objects around 

tensors— x1, x2, and x3—with random points generated from a = 12 and 

b = 23. The graph computation involves only multiplication and addition, 

and the final result with the gradient is shown.

The partial derivative of the loss function with respect to the weights 

and biases in a neural network model is achieved in PyTorch using the 

Autograd module. Variables are specifically designed to hold the changed 

values while running a backpropagation in a neural network model when 

the parameters of the model change. The variable type is just a wrapper 

around the tensor. It has three properties: data, grad, and function.
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 Recipe 2-3. Basic Statistics
 Problem
How do we compute basic statistics, such as mean, median, mode, and so 

forth, from a Torch tensor?

 Solution
Computation of basic statistics using PyTorch enables the user to apply 

probability distributions and statistical tests to make inferences from data. 

Though the Torch functionality is like that of Numpy, Torch functions have 

GPU acceleration. Let’s have a look at the functions to create basic statistics.

 How It Works
The mean computation is simple to write for a 1D tensor; however, for a 2D 

tensor, an extra argument needs to be passed as a mean, median, or mode 

computation, across which the dimension needs to be specified.
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Median, mode, and standard deviation computation can be written in 

the same way.

 

Standard deviation shows the deviation from the measures of central 

tendency, which indicates the consistency of the data/variable. It shows 

whether there is enough fluctuation in data or not.
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 Recipe 2-4. Gradient Computation
 Problem
How do we compute basic gradients from the sample tensors using 

PyTorch?

 Solution
We are going to consider a sample datase0074, where two variables (x and y)  

are present. With the initial weight given, can we computationally get the 

gradients after each iteration? Let’s take a look at the example.
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 How It Works
x_data and y_data both are lists. To compute the gradient of the two data 

lists requires computation of a loss function, a forward pass, and running 

the stuff in a loop.

The forward function computes the matrix multiplication of the weight 

tensor with the input tensor.
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The following program shows how to compute the gradients from a 

loss function using the variable method on the tensor.
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 Recipe 2-5. Tensor Operations
 Problem
How do we compute or perform operations based on variables such as 

matrix multiplication?

 Solution
Tensors are wrapped within the variable, which has three properties: grad, 

volatile, and gradient.

 How It Works
Let’s create a variable and extract the properties of the variable. This is 

required to weight update process requires gradient computation. By using 

the mm module, we can perform matrix multiplication.
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The following program shows the properties of the variable, which is a 

wrapper around the tensor.

 

 Recipe 2-6. Tensor Operations
 Problem
How do we compute or perform operations based on variables such 

as matrix-vector computation, and matrix-matrix and vector-vector 

calculation?

 Solution
One of the necessary conditions for the success of matrix-based operations 

is that the length of the tensor needs to match or be compatible for the 

execution of algebraic expressions.
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 How It Works
The tensor definition of a scalar is just one number. A 1D tensor is a 

vector, and a 2D tensor is a matrix. When it extends to an n dimensional 

level, it can be generalized to only tensors. When performing algebraic 

computations in PyTorch, the dimension of a matrix and a vector or scalar 

should be compatible.
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Since the mat1 and the mat2 dimensions are different, they are not 

compatible for matrix addition or multiplication. If the dimension remains 

the same, we can multiply them. In the following script, the matrix 

addition throws an error when we multiply similar dimensions—mat1 with 

mat1. We get relevant results.
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 Recipe 2-7. Distributions
 Problem
Knowledge of statistical distributions is essential for weight normalization, 

weight initialization, and computation of gradients in neural network–

based operations using PyTorch. How do we know which distributions to 

use and when to use them?

 Solution
Each statistical distribution follows a pre-established mathematical 

formula. We are going to use the most commonly used statistical 

distributions, their arguments in scenarios of problems.

 How It Works
Bernoulli distribution is a special case of binomial distribution, in which 

the number of trials can be more than one; but in a Bernoulli distribution, 

the number of experiment or trial remains one. It is a discrete probability 

distribution of a random variable, which takes a value of 1 when there is 

probability that an event is a success, and takes a value of 0 when there is 

probability that an event is a failure. A perfect example of this is tossing a 

coin, where 1 is heads and 0 is tails. Let’s look at the program.
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The beta distribution is a family of continuous random variables 

defined in the range of 0 and 1. This distribution is typically used for 

Bayesian inference analysis.

 

The binomial distribution is applicable when the outcome is twofold 

and the experiment is repetitive. It belongs to the family of discrete 

probability distribution, where the probability of success is defined as 

1 and the probability of failure is 0. The binomial distribution is used to 

model the number of successful events over many trials.

 

In probability and statistics, a categorical distribution can be defined 

as a generalized Bernoulli distribution, which is a discrete probability 

distribution that explains the possible results of any random variable that 

may take on one of the possible categories, with the probability of each 

category exclusively specified in the tensor.
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A Laplacian distribution is a continuous probability distribution 

function that is otherwise known as a double exponential distribution.  

A Laplacian distribution is used in speech recognition systems to 

understand prior probabilities. It is also useful in Bayesian regression for 

deciding prior probabilities.

 

A normal distribution is very useful because of the property of central 

limit theorem. It is defined by mean and standard deviations. If we know 

the mean and standard deviation of the distribution, we can estimate the 

event probabilities.
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 Conclusion
This chapter discussed sampling distribution and generating random 

numbers from distributions. Neural networks are the primary focus in 

tensor-based operations. Any sort of machine learning or deep learning 

model implementation requires gradient computation, updating weight, 

computing bias, and continuously updating the bias.

This chapter also discussed the statistical distributions supported by 

PyTorch and the situations where each type of distribution can be applied.

The next chapter discusses deep learning models in detail. Those deep 

learning models include convolutional neural networks, recurrent neural 

networks, deep neural networks, and autoencoder models.

68.26%

95.44%

99.73%

-3 -2 -1 1 2 3

Figure 2-2. Normal probability distribution
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CHAPTER 3

CNN and RNN  
Using PyTorch
Probability and random variables are an integral part of computation in 

a graph-computing platform like PyTorch. Understanding probability 

and the associated concepts are essential. This chapter covers 

probability distributions and implementation using PyTorch, as well 

as how to interpret the results of a test. In probability and statistics, 

a random variable is also known as a stochastic variable, whose 

outcome is dependent on a purely stochastic phenomenon, or random 

phenomenon. There are different types of probability distribution, 

including normal distribution, binomial distribution, multinomial 

distribution, and the Bernoulli distribution. Each statistical distribution 

has its own properties.

 Recipe 3-1. Setting Up a Loss Function
 Problem
How do we set up a loss function and optimize it? Choosing the right loss 

function increases the chances of model convergence.
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 Solution
In this recipe, we use another tensor as the update variable, and introduce 

the tensors to the sample model and compute the error or loss. Then we 

compute the rate of change in the loss function to measure the choice of 

loss function in model convergence.

 How It Works
In the following example, t_c and t_u are two tensors. This can be 

constructed from any NumPy array.

 

The sample model is just a linear equation to make the calculation 

happen and the loss function defined if the mean square error (MSE) 

shown next. Going forward in this chapter, we will increase the 

complexity of the model. For now, this is just a simple linear equation 

computation.

 

Let’s now define the model. The w parameter is the weight tensor, 

which is multiplied with the t_u tensor. The result is added with a constant 

tensor, b, and the loss function chosen is a custom-built one; it is also 
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available in PyTorch. In the following example, t_u is the tensor used, t_p 

is the tensor predicted, and t_c is the precomputed tensor, with which the 

predicted tensor needs to be compared to calculate the loss function.

 

The formula w * t_u + b is the linear equation representation of a 

tensor-based computation.

 

The initial loss value is 1763.88, which is too high because of the 

initial round of weights chosen. The error in the first round of iteration 

is backpropagated to reduce the errors in the second round, for which 

the initial set of weights needs to be updated. Therefore, the rate of 

change in the loss function is essential in updating the weights in the 

estimation process.
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There are two parameters to update the rate of loss function: the 

learning rate at the current iteration and the learning rate at the previous 

iteration. If the delta between the two iterations exceeds a certain 

threshold, then the weight tensor needs to be updated, else model 

convergence could happen. The preceding script shows the delta and 

learning rate values. Currently, these are static values that the user has the 

option to change.

 

 

This is how a simple mean square loss function works in a two- 

dimensional tensor example, with a tensor size of 10,5.

Let’s look at the following example. The MSELoss function is within the 

neural network module of PyTorch.
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When we look at the gradient calculation that is used for 

backpropagation, it is shown as MSELoss.

 

 Recipe 3-2. Estimating the Derivative 
of the Loss Function
 Problem
How do we estimate the derivative of a loss function?

 Solution
Using the following example, we change the loss function to two times 

the differences between the input and the output tensors, instead of 

MSELoss function. The following grad_fn, which is defined as a custom 

function, shows the user how the final output retrieves the derivative of 

the loss function.

 How It Works
Let’s look at the following example. In the previous recipe, the last line 

of the script shows the grad_fn as an object embedded in the output 

object tensor. In this recipe, we explain how this is computed. grad_fn is a 

derivative of the loss function with respect to the parameters of the model. 

This is exactly what we do in the following grad_fn.
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The parameters are the input, bias settings, and the learning rate, and 

the number of epochs for the model training. The estimation of these 

parameters provides values to the equation.

 

This is what the initial result looks like. Epoch is an iteration that 

produces a loss value from the loss function defined earlier. The params 

vector is about coefficients and constants that need to be changed to 

minimize the loss function. The grad function computes the feedback 

value to the next epoch. This is just an example. The number of epochs 

chosen is an iterative task depending on the input data, output data, and 

choice of loss and optimization functions.
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If we reduce the learning rate, we are able to pass relevant values to the 

gradient, the parameter updates in a better way, and model convergence 

becomes quicker.

 

The initial results look like as the following. The results are at epoch 5 

and the loss value is 29.35, which is much lower than 1763.88 at epoch 0, and 

corresponding to the epoch, the estimated parameters are 0.24 and –.01, at 

epoch 100. These parameter values are optimal.
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If we reduce the learning rate a bit, then the process of weight updating 

will be a little slower, which means that the epoch number needs to be 

increased in order to find a stable state for the model.
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The following are the results that we observe.

 

If we increase the number of epochs, then what happens to the loss 

function and parameter tensor can be viewed in the following script, in 

which we print the loss value to find the minimum loss corresponding to 

the epoch. Then we can extract the best parameters from the model.
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The following are the results.

 

The following is the final loss value at the final epoch level.

 

At epoch 5000, the loss value is 2.92, which is not going down further; 

hence, at this iteration level, the tensor output displays 5.36 as the final 

weight and –17.30 as the final bias. These are the final parameters from 

the model.
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To fine-tune this model in estimating parameters, we can redefine the 

model and the loss function and apply it to the same example.

 

 

Set up the parameters. After completing the training process, we 

should reset the grad function to None.

 

 Recipe 3-3. Fine-Tuning a Model
 Problem
How do we find the gradients of the loss function by applying an 

optimization function to optimize the loss function?

 Solution
We’ll use the backward() function.
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 How It Works
Let’s look at the following example. The backward() function calculates the 

gradients of a function with respect to its parameters. In this section, we 

retrain the model with new set of hyperparameters.

 

Reset the parameter grid. If we do not o reset the parameters in an 

existing session, the error values accumulated from any other session 

become mixed, so it is important to reset the parameter grid.

 

After redefining the model and the loss function, let’s retrain the model.
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We have taken 5000 epochs. We train the parameters in a backward 

propagation method and get the following results. At epoch 0, the loss 

value is 80.36. We try to minimize the loss value as we proceed with 

the next iteration by adjusting the learning rate. At the final epoch, we 

observe that the loss value is 2.92, which is same result as before but with a 

different loss function and using backpropagation.

 

 

The final model parameters are 5.3671 with a bias of –17.3012.
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 Recipe 3-4. Selecting an Optimization 
Function
 Problem
How do we optimize the gradients with the function in Recipe 3-3?

 Solution
There are certain functions that are embedded in PyTorch, and there are 

certain optimization functions that the user has to create.

 How It Works
Let’s look at the following example.

 

Each optimization method is unique in solving a problem. We will 

describe it later.
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The Adam optimizer is a first-order, gradient-based optimization of 

stochastic objective functions. It is based on adaptive estimation of lower- 

order moments. This is computationally efficient enough for deployment 

on large datasets. To use torch.optim, we have to construct an optimizer 

object in our code that will hold the current state of the parameters and 

will update the parameters based on the computed gradients, moments, 

and learning rate. To construct an optimizer, we have to give it an iterable 

containing the parameters and ensure that all the parameters are variables 

to optimize. Then, we can specify optimizer-specific options, such as the 

learning rate, weight decay, moments, and so forth.

Adadelta is another optimizer that is fast enough to work on large 

datasets. This method does not require manual fine-tuning of the learning 

rate; the algorithm takes care of it internally.
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Now let’s call the model and loss function out once again and apply 

them along with the optimization function.

 

 

Let’s look at the gradient in a loss function. Using the optimization 

library, we can try to find the best value of the loss function.
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The example has two custom functions and a loss function. We have 

taken two small tensor values. The new thing is that we have taken the 

optimizer to find the minimum value.

In the following example, we have chosen Adam as the optimizer.

 

 

In the preceding code, we computed the optimized parameters and 

computed the predicted tensors using the actual and predicted tensors. 

We can display a graph that has a line shown as a regression line.
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Let’s visualize the sample data in graphical form using the actual and 

predicted tensors.
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 Recipe 3-5. Further  Optimizing the Function
 Problem
How do we optimize the training set and test it with a validation set using 

random samples?

 Solution
We’ll go through the process of further optimization.

 How It Works
Let’s look at the following example. Here we set the number of samples, 

then we take 20% of the data as validation samples using shuffled_indices. 

We took random samples of all the records. The objective of the train and 

validation set is to build a model in a training set, make the prediction on 

the validation set, and check the accuracy of the model.
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Now let’s run the train and validation process. We first take the 

training input data and multiply it by the parameter’s next line. We make 

a prediction and compute the loss function. Using the same model in 

third line, we make predictions and then we evaluate the loss function for 

the validation dataset. In the backpropagation process, we calculate the 

gradient of the loss function for the training set, and using the optimizer, 

we update the parameters.
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The following are the last 10 epochs and their results.

 

In the previous step, the gradient was set to true. In the following set, 

we disable gradient calculation by using the torch.no_grad() function. The 

rest of the syntax remains same. Disabling gradient calculation is useful 

for drawing inferences, when we are sure that we will not call Tensor.

backward(). This reduces memory consumption for computations that 

would otherwise be requires_grad=True.
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The last rounds of epochs are displayed in other lines of code, as 

follows.

 

The final parameters are 5.44 and –18.012.

Chapter 3  CNN aNd rNN UsiNg pytorCh 



71

 Recipe 3-6. Implementing a Convolutional 
Neural Network (CNN)
 Problem
How do we implement a convolutional neural network using PyTorch?

 Solution
There are various built-in datasets available on torchvision. We are 

considering the MNIST dataset and trying to build a CNN model.

 How It Works
Let’s look at the following example. As a first step, we set up the 

hyperparameters. The second step is to set up the architecture. The last 

step is to train the model and make predictions.

 

In the preceding code, we are importing the necessary libraries for 

deploying the convolutional neural network model using the digits dataset. 

The MNIST digits dataset is the most popular dataset in deep learning for 

computer vision and image processing.
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Let’s load the dataset using the loader functionality.

 

In convolutional neural network architecture, the input image is 

converted to a feature set as set by color times height and width of the 

image. Because of the dimensionality of the dataset, we cannot model it to 

predict the output. The output layer in the preceding graph has classes such 

as car, truck, van, and bicycle. The input bicycle image has features that the 

CNN model should make use of and predict it correctly. The convolution 

layer is always accompanied by the pooling layer, which can be max pooling 

and average pooling. The different layers of pooling and convolution 

continue until the dimensionality is reduced to a level where we can use 

fully connected simple neural networks to predict the correct classes.
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In the preceding graph, if we look at the number 4, it is scattered 

throughout the graph. Ideally, all of the 4s are closer to each other. This is 

because the test accuracy was very low.

 

In this iteration, the training loss is reduced from 0.4369 to 0.1482 and 

the test accuracy improves from 16% to 94%. The digits with the same color 

are placed closely on the graph.
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In the next epoch, the test accuracy on the MNIST digits dataset the 

accuracy increases to 95%.

 

In the final step/epoch, the digits with similar numbers are placed 

together. After training a model successfully, the next step is to make use of 

the model to predict. The following code explains the predictions process. 

The output object is numbered as 0, 1, 2, and so forth. The following shows 

the real and predicted numbers.
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 Recipe 3-7. Reloading a Model
 Problem
How do we store and re-upload a model that has already been trained? 

Given the nature of deep learning models, which typically require a 

larger training time, the computational process creates a huge cost to the 

company. Can we retrain the model with new inputs and store the model?

 Solution
In the production environment, we typically cannot train and predict 

at the same time because the training process takes a very long time. 

The prediction services cannot be applied until the training process 

using epoch is completed, the prediction services cannot be applied. 

Disassociating the training process from the prediction process is required; 

therefore, we need to store the application’s trained model and continue 

until the next phase of training is done.

 How It Works
Let’s look at the following example, where we are creating the save 

function, which uses the Torch neural network module to create the model 

and the restore_net() function to get back the neural network model that 

was trained earlier.
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The preceding script contains a dependent Y variable and an 

independent X variable as sample data points to create a neural network 

model. The following save function stores the model. The net1 object is 

the trained neural network model, which can be stored using two different 

protocols: (1) save the entire neural network model with all the weights 

and biases, and (2) save the model using only the weights. If the trained 

model object is very heavy in terms of size, we should save only the 

parameters that are weights; if the trained object size is low, then the entire 

model can be stored.

 

The prebuilt neural network model can be reloaded to the existing 

PyTorch session by using the load function. To test the net1 object and 

make predictions, we load the net1 object and store the model as net2. 

By using the net2 object, we can predict the outcome variable. The 

following script generates the graph as a dependent and an independent 

variable. prediction.data.numpy() in the last line of the code shows the 

predicted result.
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Loading the pickle file format of the entire neural network is relatively 

slow; however, if we are only making predictions for a new dataset, we can 

only load the parameters of the model in a pickle format rather than the 

whole network.

 

Reuse the model. The restore function makes sure that the trained 

parameters can be reused by the model. To restore the model, we can use 

the load_state_dict() function to load the parameters of the model. If we 

see the following three models in the graph, they are identical, because 

net2 and net3 are copies of net1.
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 Recipe 3-8. Implementing a Recurrent 
Neural Network (RNN)
 Problem
How do we set up a recurrent neural network using the MNIST dataset?

 Solution
The recurrent neural network is considered as a memory network. We will 

use the epoch as 1 and a batch size of 64 samples at a time to establish the 

connection between the input and the output. Using the RNN model, we 

can predict the digits present in the images.

 How It Works
Let’s look at the following example. The recurrent neural network takes a 

sequence of vectors in the input layer and produces a sequence of vectors in 

the output layer. The information sequence is processed through the internal 

state transfer in the recurrent layer. Sometimes the output values have a long 

dependency in past historical values. This is another variant of the RNN 

model: the long short-term memory (LSTM) model. This is applicable for  
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any sort of domain where the information is consumed in a sequential 

manner; for example, in a time series where the current stock price is 

decided by the historical stock price, where the dependency can be short 

or long. Similarly, the context prediction using the long and short range 

of textual input vectors. There are other industry use cases, such as noise 

classification, where noise is also a sequence of information.

The following piece of code explains the execution of RNN model 

using PyTorch module.

There are three sets of weights: U, V and W. The set of weights vector, 

represented by W, is for passing information among the memory cells 

in the network that display communication among the hidden state. 

RNN uses an embedding layer using the Word2vec representation. The 

embedding matrix is the size of the number of words by the number of 

neurons in the hidden layer. If you have 20,000 words and 1000 hidden 

units, for example, the matrix has a 20,000×1000 size of the embedding 

layer. The new representations are passed to LSTM cells, which go to a 

sigmoid output layer.

 

The RNN models have hyperparameters, such as the number of 

iterations (EPOCH); batch size dependent on the memory available in a 

single machine; a time step to remember the sequence of information; 

input size, which shows the vector size; and learning rate. The selection of 
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these values is indicative; we cannot depend on them for other use cases. 

The value selection for hyperparameter tuning is an iterative process; 

either you can choose multiple parameters and decide which one is 

working, or do parallel training of the model and decide which one is 

working fine.

 

Using the dsets.MINIST() function, we can load the dataset to the 

current session. If you need to store the dataset, then download it locally.

 

The preceding script shows what the sample image dataset would 

look like. To train the deep learning model, we need to convert the whole 

training dataset into mini batches, which help us with averaging the final 

accuracy of the model. By using the data loader function, we can load the 

training data and prepare the mini batches. The purpose of the shuffle 

selection in mini batches is to ensure that the model captures all the 

variations in the actual dataset.
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The preceding script prepares the training dataset. The test data is 

captured with the flag train=False. It is transformed to a tensor using the 

test data random sample of 2000 each at a time is picked up for testing the 

model. The test features set is converted to a variable format and the test 

label vector is represented in a NumPy array format.

 

In the preceding RNN class, we are training an LSTM network, which 

is proven effective for holding memory for a long time, and thus helps in 

learning. If we use the nn.RNN() model, it hardly learns the parameters, 

because the vanilla implementation of RNN cannot hold or remember 

the information for a long period of time. In the LSTM network, the image 

width is considered the input size, hidden size is decided as the number of 

neurons in the hidden layer, num_layers shows the number of RNN layers 

in the network.
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The RNN module, within the LSTM module, produces the output as 

a vector size of 64×10 because the output layer has digits to be classified 

as 0 to 9. The last forward function shows how to proceed with forward 

propagation in an RNN network.

The following script shows how the LSTM model is processed under 

the RNN class. In the LSTM function, we pass the input length as 28 and 

the number of neurons in the hidden layer as 64, and from the hidden 64 

neurons to the output 10 neurons.

 

To optimize all RNN parameters, we use the Adam optimizer. Inside 

the function, we use the learning rate as well. The loss function used in this 

example is the cross-entropy loss function. We need to provide multiple 

epochs to get the best parameters.

In the following script, we are printing the training loss and the test 

accuracy. After one epoch, the test accuracy increases to 95% and the 

training loss reduces to 0.24.
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Once the model is trained, then the next step is to make predictions 

using the RNN model. Then we compare the actual vs. real output to assess 

how the model is performing.

 

 Recipe 3-9. Implementing a RNN for 
Regression Problems
 Problem
How do we set up a recurrent neural network for regression-based 

problems?
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 Solution
The regression model requires a target function and a feature set, and then 

a function to establish the relationship between the input and the output. 

In this example, we are going to use the recurrent neural network (RNN) 

for a regression task. Regression problems seem to be very simple; they do 

work best but are limited to data that shows clear linear relationships. They 

are quite complex when predicting nonlinear relationships between the 

input and the output.

 How It Works
Let’s look at the following example that shows a nonlinear cyclical 

pattern between input and output data. In the previous recipe, we looked 

at an example of RNN in general for classification-related problems, 

where predicted the class of the input image. In regression, however, the 

architecture of RNN would change, because the objective is to predict the 

real valued output. The output layer would have one neuron in regression- 

related problems.

 

RNN time step implies that the last 10 values predict the current value, 

and the rolling happens after that.
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The following script shows some sample series in which the target cos 

function is approximated by the sin function.

 

 Recipe 3-10. Using PyTorch Built-in 
Functions
 Problem
How do we set up an RNN module and call the RNN function using 

PyTorch?

 Solution
By using the built-in function available in the neural network module, we 

can implement an RNN model.
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 How It Works
Let’s look at the following example. The neural network module in the 

PyTorch library contains the RNN function. In the following script, we use 

the input matrix size, the number of neurons in the hidden layer, and the 

number of hidden layers in the network.

 

After creating the RNN class function, we need to provide the 

optimization function, which is Adam, and this time, the loss function 

is the mean square loss function. Since the objective is to make 

predictions of a continuous variable, we use MSELoss function in the 

optimization layer.
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Now we iterate over 60 steps to predict the cos function generated from 

the sample space, and have it predicted by a sin function. The iterations 

take the learning rate defined as before, and backpropagate the error to 

reduce the MSE and improve the prediction.
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 Recipe 3-11. Working with Autoencoders
 Problem
How do we perform clustering using the autoencoders function?

 Solution
Unsupervised learning is a branch of machine learning that does not have 

a target column or the output is not defined. We only need to understand 

the unique patterns existing in the data. Let’s look at the autoencoder 

architecture in Figure 3-1. The input feature space is transformed into a 

lower dimensional tensor representation using a hidden layer and mapped 

back to the same input space. The layer that is precisely in the middle 

holds the autoencoder’s values.

Input

Autoencoder

Input

Figure 3-1. Autoencoder architecture

 How It Works
Let’s look at the following example. The torchvision library contains 

popular datasets, model architectures, and frameworks. Autoencoder 

is a process of identifying latent features from the dataset; it is used for 

classification, prediction, and clustering. If we put the input data in the 

input layer and the same dataset in the output layer, then we add multiple 
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layers of hidden layers with many neurons, and then we pass through a 

series of epochs. We get a set of latent features in the innermost hidden 

layer. The weights or parameters in the central hidden layer are known as 

the autoencoder layer.

 

We again use the MNIST dataset to experiment with autoencoder 

functionality. This time we are taking 10 epochs, a batch size 64 to be 

passed to the network, a learning rate of 0.005, and 5 images for testing.
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The following plot shows the dataset uploaded from the torchvision 

library and displayed as an image.
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Let’s discuss the autoencoder architecture. The input has 784 

features. It has a height of 28 and a width of 28. We pass the 784 neurons 

from the input layer to the first hidden layer, which has 128 neurons in it. 

Then we apply the hyperbolic tangent function to pass the information 

to the next hidden layer. The second hidden layer contains 128 input 

neurons and transforms it into 64 neurons. In the third hidden layer, we 

apply the hyperbolic tangent function to pass the information to the next 

hidden layer. The innermost layer contains three neurons, which are 

considered as three features, which is the end of the encoder layer. Then 

the decoder function expands the layer back to the 784 features in the 

output layer.

 

Once we set the architecture, then the normal process of making the 

loss function minimize corresponding to a learning rate and optimization 

function happens. The entire architecture passes through a series of 

epochs in order to reach the target output.
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 Recipe 3-12. Fine-Tuning Results Using 
Autoencoder
 Problem
How do we set up iterations to fine-tune the results?

 Solution
Conceptually, an autoencoder works the same as the clustering model. 

In unsupervised learning, the machine learns patterns from data and 

generalizes it to the new dataset. The learning happens by taking a 

set of input features. Autoencoder functions are also used for feature 

engineering.

 How It Works
Let’s look at the following example. The same MNIST dataset is used as 

an example, and the objective is to understand the role of the epoch in 

achieving a better autoencoder layer. We increase the epoch size to reduce 

errors to a minimum; however, in practice, increasing the epoch has many 

challenges, including memory constraints.
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By using the encoder function, we can represent the input features 

into a set of latent features. By using the decoder function, however, we 

can reconstruct the image. Then we can match how image reconstruction 

is done by using the autoencoder functions. From the preceding set of 

graphs, it is clear that as we increase the epoch, the image recognition 

becomes transparent.
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 Recipe 3-13. Visualizing the Encoded Data 
in a 3D Plot
 Problem
How do we visualize the MNIST data in a 3D plot?

 Solution
We use the autoencoder function to get the encoded features and then use 

the dataset to represent it in a 3D plane.

 How It Works
Let’s look at the following example. This recipe is about how to 

represent the autoencoder function derived from the preceding recipe 

in the three- dimensional space, because we have three neurons in 

the innermost hidden layer. The following display shows a three-

dimensional neuron.
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 Recipe 3-14. Restricting Model Overfitting
 Problem
When we fit many neurons and layers to predict the target class or output 

variable, the function usually overfits the training dataset. Because of 

model overfitting, we cannot make a good prediction on the test set. 

The test accuracy is not the same as training accuracy. There would be 

deviations in training and test accuracy. 

 Solution
To restrict model overfitting, we consciously introduce dropout rate, 

which means randomly delete (let’s say) 10% or 20% of the weights in the 

network, and check the model accuracy at the same time. If we are able 

to match the same model accuracy after deleting the 10% or 20% of the 

weights, then our model is good.
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 How It Works
Let’s look at the following example. Model overfitting is occurs when 

the trained model does not generalize to other test case scenarios. It is 

identified when the training accuracy becomes significantly different from 

the test accuracy. To avoid model overfitting, we can introduce the dropout 

rate in the model.
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The dropout rate introduction to the hidden layer ensures that  

weights less than the threshold defined are removed from the architecture. 

A typical threshold for an application’s dropout rate is 20% to 50%.  

A 20% dropout rate implies a smaller degree of penalization; however,  

the 50% threshold implies heavy penalization of the model weights.

In the following script, we apply a 50% dropout rate to drop the weights 

from the model. We applied the dropout rate twice.

 

 

 

The selection of right dropout rate requires a fair idea about the 

business and domain.
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 Recipe 3-15. Visualizing the Model Overfit
 Problem
Assess model overfitting.

 Solution
We change the model hyperparameters and iteratively see if the model is 

overfitting data or not.

 How It Works
Let’s look at the following example. The previous recipe covered two 

types of neural networks: overfitting and dropout rate. When the model 

parameters estimated from the data come closer to the actual data, for 

the training dataset and the same models differs from the test set, it is a 

clear sign of model overfit. To restrict model overfit, we can introduce 

the dropout rate, which deletes a certain percentage of connections (as 

in weights from the network) to allow the trained model to come to the 

real data.

In the following script, the iterations were taken 500 times. The 

predicted values are generated from the base model, which shows 

overfitting, and from the dropout model, which shows the deletion of 

some weights. In the same fashion, we create the two loss functions, 

backpropagation, and implementation of the optimizer.
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The initial round of plotting includes the overfitting loss and dropout 

loss and how it is different from the actual training and test data points 

from the preceding graph.

 

After many iterations, the preceding graph was generated by using 

the two functions with the actual model and with the dropout rate. The 

takeaway from this graph is that actual training data may get closer to the 

overfit model; however, the dropout model fits the data really well.

 Recipe 3-16. Initializing Weights in the 
Dropout Rate
 Problem
How do we delete the weights in a network? Should we delete randomly or 

by using any distribution?

 Solution
We should delete the weights in the dropout layer based on probability 

distribution, rather than randomly.
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 How It Works
Let’s look at the following example. In the previous recipe, three layers of 

a dropout rate were introduced: one after the first hidden layer and two 

after the second hidden layer. The probability percentage was 0.50, which 

meant randomly delete 50% of the weights. Sometimes, random selection 

of weights from the network deletes relevant weights, so an alternative 

idea is to delete the weights in the network generated from statistical 

distribution.

The following script shows how to generate the weights from a uniform 

distribution, then we can use the set of weights in the network architecture.
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 Recipe 3-17. Adding Math Operations
 Problem
How do we set up the broadcasting function and optimize the convolution 

function?

 Solution
The script snippet shows how to introduce batch normalization when 

setting up a convolutional neural network model, and then further setting 

up a pooling layer.

 How It Works
Let’s look at the following example. To introduce batch normalization in 

the convolutional layer of the neural network model, we need to perform 

tensor-based mathematical operations that are functionally different from 

other methods of computation.
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The following piece of script shows how the batch normalization using 

a 2D layer is resolved before entering into the 2D max pooling layer.

 

 Recipe 3-18. Embedding Layers in RNN
 Problem
The recurrent neural network is used mostly for text processing. An 

embedded feature offers more accuracy on a standard RNN model than 

raw features. How do we create embedded features in an RNN?

 Solution
The first step is to create an embedding layer, which is a fixed dictionary 

and fixed-size lookup table, and then introduce the dropout rate after than 

create gated recurrent unit.

 How It Works
Let’s look at the following example. When textual data comes in as a 

sequence, the information is processed in a sequential way; for example, 

when we describe something, we use a set of words in sequence to convey 

the meaning. If we use the individual words as vectors to represent the 

data, the resulting dataset would be very sparse. But if we use a phrase- 

based approach or a combination of words to represent as feature vector, 
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then the vectors become a dense layer. Dense vector layers are called word 

embeddings, as the embedding layer conveys a context or meaning as the 

result. It is definitely better than the bag-of-words approach.

 

 

 Conclusion
This chapter covered using the PyTorch API, creating a simple neural 

network mode, and optimizing the parameters by changing the 

hyperparameters (i.e., learning rate, epochs, gradients drop). We looked at 

recipes on how to create a convolutional neural network and a recurrent 

neural network, and introduced the dropout rate in these networks to 

control model overfitting.

We took small tensors to follow what exactly goes on behind the 

scenes with calculations and so forth. We only need to define the problem 

statement, create features, and apply the recipe to get results. In the next 

chapter, we implement many more examples with PyTorch.
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CHAPTER 4

Introduction to  
Neural Networks 
Using PyTorch
Deep neural network–based models are gradually becoming the backbone 

for artificial intelligence and machine learning implementations. The 

future of data mining will be governed by the usage of artificial neural 

network–based advanced modeling techniques. One obvious question is 

why neural networks are only now gaining so much importance, because it 

was invented in 1950s.

Borrowed from the computer science domain, neural networks can 

be defined as a parallel information processing system where all the 

input relates to each other, like neurons in the human brain, to transmit 

information so that activities like face recognition, image recognition, and 

so forth, can be performed. In this chapter, you learn about the application 

of neural network-based methods on various data mining tasks, such as 

classification, regression, forecasting, and feature reduction. An artificial 

neural network (ANN) functions in a way that is similar to the way that the 

human brain functions, in which billions of neurons link to each other for 

information processing and insight generation.
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 Recipe 4-1. Working with Activation 
Functions
 Problem
What are the activation functions and how do they work in real projects? 

How do you implement an activation function using PyTorch?

 Solution
Activation function is a mathematical formula that transforms a vector 

available in a binary, float, or integer format to another format based 

on the type of mathematical transformation function. The neurons 

are present in different layers—input, hidden, and output, which are 

interconnected through a mathematical function called an activation 

function. There are different variants of activation functions, which are 

explained next. Understanding the activation function helps in accurately 

implementing a neural network model.

 How It Works
All the activation functions that are part of a neural network model can be 

broadly classified as linear functions and nonlinear functions. The PyTorch 

torch.nn module creates any type of a neural network model. Let’s look at 

some examples of the deployment of activation functions using PyTorch 

and the torch.nn module.

The core differences between PyTorch and TensorFlow is the way a 

computational graph is defined, the way the two frameworks perform 

calculations, and the amount of flexibility we have in changing the script 

and introducing other Python-based libraries in it. In TensorFlow, we need 

to define the variables and placeholders before we initialize the model.  
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We also need to keep track of objects that we need later, and for that we 

need a placeholder. In TensorFlow, we need to define the model first, and 

then compile and run; however, in PyTorch, we can define the model as 

we go—we don’t have to keep placeholders in the code. That’s why the 

PyTorch framework is dynamic.

 Linear Function

A linear function is a simple functions typically used to transfer 

information from the demapping layer to the output layer. We use the 

linear function in places where variations in data are lower. In a deep 

learning model, practitioners typically use a linear function in the last 

hidden layer to the output layer. In the linear function, the output is always 

confined to a specific range; because of that, it is used in the last hidden 

layer in a deep learning model, or in linear regression–based tasks, or in 

a deep learning model where the task is to predict the outcome from the 

input dataset. The following is the formula.

y x= +a b

 Bilinear Function

A bilinear function is a simple functions typically used to transfer 

information. It applies a bilinear transformation to incoming data.

y x A x b= * * +1 2
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 Sigmoid Function

A sigmoid function is frequently used by professionals in data mining and 

analytics because it is easier to explain and implement. It is a nonlinear 

function. When we pass weights from the input layer to the hidden layer 

in a neural network, we want our model to capture all sorts of nonlinearity 

present in the data; hence, using the sigmoid function in the hidden layers 

of a neural network is recommended. The nonlinear functions help with 

generalizing the dataset. It is easier to compute the gradient of a function 

using a nonlinear function.

The sigmoid function is a specific nonlinear activation function. The 

sigmoid function output is always confined within 0 and 1; therefore, 

it is mostly used in performing classification-based tasks. One of the 

limitations of the sigmoid function is that it may get stuck in local minima. 

An advantage is that it provides probability of belonging to the class. The 

following is its equation.

f x
e x( ) =

+ -

1

1 b
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 Hyperbolic Tangent Function

A hyperbolic tangent function is another variant of a transformation 

function. It is used to transform information from the mapping layer to 

the hidden layer. It is typically used between the hidden layers of a neural 

network model. The range of the tanh function is between –1 and +1.

tanh x
e e

e e

x x

x x( ) = -
+

-

-

 

Chapter 4  IntroduCtIon to neural networks usIng pytorCh 



116

 

 Log Sigmoid Transfer Function

The following formula explains the log sigmoid transfer function, which 

is used in mapping the input layer to the hidden layer. If the data is not 

binary, and it is a float type with a lot of outliers (as in large numeric values 

present in the input feature), then we should use the log sigmoid transfer 

function.

f x
e x( ) =

+
æ
è
ç

ö
ø
÷-log

1

1 b
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 ReLU Function

The rectified linear unit (ReLu) is another activation function. It is used in 

transferring information from the input layer to the output layer. ReLu is 

mostly used in a convolutional neural network model. The range in which 

this activation function operates is from 0 to infinity. It is mostly used 

between different hidden layers in a neural network model.
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The different types of transfer functions are interchangeable in a neural 

network architecture. They can be used in different stages, such as the 

input to the hidden layer, the hidden layer to the output layer, and so forth, 

to improve the model’s accuracy.

 Leaky ReLU

In a standard neural network model, a dying gradient problem is common. 

To avoid this issue, leaky ReLU is applied. Leaky ReLU allows a small and 

non-zero gradient when the unit is not active.

 

 

Chapter 4  IntroduCtIon to neural networks usIng pytorCh 



119

 Recipe 4-2. Visualizing the Shape 
of Activation Functions
 Problem
How do we visualize the activation functions? The visualization of activation 

functions is important in correctly building a neural network model.

 Solution
The activation functions translate the data from one layer into another 

layer. The transformed data can be plotted against the actual tensor to 

visualize the function. We have taken a sample tensor, converted it to a 

PyTorch variable, applied the function, and stored it as another tensor. 

Represent the actual tensor and the transformed tensor using matplotlib.

 How It Works
The right choice of an activation function will not only provide better 

accuracy but also help with extracting meaningful information.
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In this script, we have an array in the linear space between –10 and 

+10, and we have 1500 sample points. We converted the vector to a Torch 

variable, and then made a copy as a NumPy variable for plotting the graph. 

Then, we calculated the activation functions. The following images show 

the activation functions.
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 Recipe 4-3. Basic Neural Network Model
 Problem
How do we build a basic neural network model using PyTorch?

 Solution
A basic neural network model in PyTorch requires six steps: preparing 

training data, initializing weights, creating a basic network model, 

calculating the loss function, selecting the learning rate, and optimizing 

the loss function with respect to the model’s parameters.

 How It Works
Let’s follow a step-by-step approach to create a basic neural network model.

 

To show a sample neural network model, we prepare the dataset and 

change the data type to a float tensor. When we work on a project, data 

preparation for building it is a separate activity. Data preparation should 

be done in the proper way. In the preceding step, train x and train y are two 

NumPy vectors. Next, we change the data type to a float tensor because 

it is necessary for matrix multiplication. The next step is to convert it to 

variable, because a variable has three properties that help us fine-tune the 

object. In the dataset, we have 17 data points on one dimension.
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The set_weight() function initializes the random weights that the 

neural network model will use in forward propagation. We need two 

tensors weights and biases. The build_network() function simply 

multiplies the weights with input, adds the bias to it, and generates the 

predicted values. This is a custom function that we built. If we need to 

implement the same thing in PyTorch, then it is much simpler to use 

nn.Linear() when we need to use it for linear regression.
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Once we define a network structure, then we need to compare the 

results with the output to assess the prediction step. The metric that 

tracks the accuracy of the system is the loss function, which we want to 

be minimal. The loss function may have a different shape. How do we 

know exactly where the loss is at a minimum, which corresponds to which 

iteration is providing the best results? To know this, we need to apply the 

optimization function on the loss function; it finds the minimum loss 

value. Then we can extract the parameters corresponding to that iteration.

 

 

Median, mode and standard deviation computation can be written 

in the sa

Standard deviation shows the deviation from the measures of central 

tendency, which indicates the consistency of the data/variable. It shows 

whether there is enough fluctuation in data or not.
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 Recipe 4-4. Tensor Differentiation
 Problem
What is tensor differentiation, and how is it relevant in computational 

graph execution using the PyTorch framework?

 Solution
The computational graph network is represented by nodes and connected 

through functions. There are two different kinds of nodes: dependent and 

independent. Dependent nodes are waiting for results from other nodes 

to process the input. Independent nodes are connected and are either 

constants or the results. Tensor differentiation is an efficient method to 

perform computation in a computational graph environment.

 How It Works
In a computational graph, tensor differentiation is very effective because 

the tensors can be computed as parallel nodes, multiprocess nodes, or 

multithreading nodes. The major deep learning and neural computation 

frameworks include this tensor differentiation.

Autograd is the function that helps perform tensor differentiation, 

which means calculating the gradients or slope of the error function, 

and backpropagating errors through the neural network to fine-tune the 

weights and biases. Through the learning rate and iteration, it tries to 

reduce the error value or loss function.

To apply tensor differentiation, the nn.backward() method needs to 

be applied. Let’s take an example and see how the error gradients are 

backpropagated. To update the curve of the loss function, or to find where 

the shape of the loss function is minimum and in which direction it is 

moving, a derivative calculation is required. Tensor differentiation is a way 

to compute the slope of the function in a computational graph.
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In this script, the x is a sample tensor, for which automatic gradient 

calculation needs to happen. The fn is a linear function that is created 

using the x variable. Using the backward function, we can perform a 

backpropagation calculation. The .grad() function holds the final output 

from the tensor differentiation.

 Conclusion
This chapter discussed various activation functions and the use of the 

activation functions in various situations. The method or system to select 

the best activation function is accuracy driven; the activation function that 

gives the best results should always be used dynamically in the model. We 

also created a basic neural network model using small sample tensors, 

updated the weights using optimization, and generated predictions. In the 

next chapter, we see more examples.
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CHAPTER 5

Supervised Learning 
Using PyTorch
Supervised machine learning is the most sophisticated branch of 

machine learning. It is in use in almost all fields, including artificial 

intelligence, cognitive computing, and language processing. Machine 

learning literature broadly talks about three types of learning: supervised, 

unsupervised, and reinforcement learning. In supervised learning, the 

machine learns to recognize the output; hence, it is task driven and the 

task can be classification or regression.

In unsupervised learning, the machine learns patterns from data; 

thus, it generalizes the new dataset and the learning happens by taking a 

set of input features. In reinforcement learning, the learning happens in 

response to a system that reacts to situations.

This chapter covers regression techniques in detail with a machine 

learning approach and interprets the output from regression methods in 

the context of a business scenario. The algorithmic classification is shown 

in Figure 5-1.
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Each object or row represents one event and each event is categorized 

into groups. Identifying which level group a record belongs to is 

called classification, in which the target variable has specific labels 

or tags attached to the events. For example, in a bank database, each 

customer is tagged as either a loyal customer or not a loyal customer. 

In a medical records database, each patient’s disease is tagged. In the 

telecom industry, each subscriber is tagged as a churn or non-churn 

customer. These are examples in which a supervised algorithm performs 

classification. The word classification comes from the classes available in 

the target column.

ML Models

Classifica�on

Logis�c 
Regression

Support Vector 
Machine

Decision Tree

Bagging

Boos�ng

Stacking

Regression

Linear

Ridge

Lasso

SVR

GBM

Unsupervised 
Learning

Clustering

Model 
Selec�on

Grid Search

Cross 
Valida�on

Dimension 
Reduc�on

PCA

SVD

NMF

Figure 5-1. Algorithmic classification
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In regression learning, the objective is to predict the value of a 

continuous variable; for example, given the features of a property, such as 

the number of bedrooms, square feet, nearby areas, the township, and so 

forth, the asking price for the house is determined. In such scenarios, the 

regression models can be used. Similar examples include predicting stock 

prices or the sales, revenue, and profit of a business.

In an unsupervised learning algorithm, we do not have an outcome 

variable, and tagging or labeling is not available. We are interested in 

knowing the natural grouping of the observations, or records, or rows in a 

dataset. This natural grouping should be in such a way that within groups, 

similarity should be at a maximum and between groups similarity should 

be at a minimum.

In real-world scenarios, there are cases where regression does not 

help predict the target variable. In supervised regression techniques, the 

input data is also known as training data. For each record, there is a label 

that has a continuous numerical value. The model is prepared through a 

training process that predicts the right output, and the process continues 

until the desired level of accuracy is achieved. We may need advanced 

regression methods to understand the pattern existing in the dataset.

 Introduction to Linear Regression
Linear regression analysis is known as the most reliable, easy to apply, and 

most widely used among all statistical techniques. This assumes linear, 

additive relationships between dependent and independent variables. The 

objective of linear regression is to predict the dependent or target variable 

through independent variables. The specification of the linear regression 

model is as follows.

Y = α + βX

This formula has a property in which the prediction for Y is a straight- 

line function of each of the X variables, keeping all others fixed, and the 

contributions of different X variables for the predictions are additive. 
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The slopes of their individual straight-line relationships with Y are the 

coefficients of the variables. The coefficients and intercept are estimated 

by least squares (i.e., setting them equal to the unique values that 

minimize the sum of squared errors within the sample of data to which the 

model is fitted).

The model’s prediction errors are typically assumed to be 

independently and identically normally distributed. When the beta 

coefficient becomes zero, the input variable X has no impact on the 

dependent variable. The OLS method attempts to minimize the sum of the 

squared residuals. The residuals are defined as the difference between the 

points on the regression line to the actual data points in the scatterplot. 

This process seeks to estimate the beta coefficients in a multiple linear 

regression model.

Let’s take a sample dataset of 15 people. We capture the height 

and weight for each of them. By taking only their heights, can we 

predict the weight of a person using a linear regression technique? 

The answer is yes.

Person 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Height 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

Weight 115 117 120 123 126 129 132 135 139 142 146 150 154 159 164

To represent this graphically, we measure height on the x axis, and 

we measure weight on the y axis. The linear regression equation is on 

the graph where the intercept is 87.517 and the coefficient is 3.45. The 

data points are represented by dots and the connecting line shows linear 

relationship (see Figure 5-2).
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Why do we assume that a linear relationship exists between the 

dependent variable and a set of independent variables, when most o 

real-life scenarios reflect any other type of relationship than a linear 

relationship? The reasons why we stick to linear relationship are 

described next.

It is easy to understand and interpret. There are ways to transform an 

existing deviation from linearity and make it linear. It is simple to generate 

prediction.

The field of predictive modeling is mainly concerned with minimizing 

the errors in a predictive model, or making the most accurate predictions 

possible. Linear regression was developed in the field of statistics. It 

is studied as a model for understanding the relationship between the 

input and the output of numerical variables, but it has been borrowed by 

machine learning. It is both a statistical algorithm and a machine learning 

algorithm. The linear regression model depends on the following set of 

assumptions.

y = 3.45x - 87.517
R² = 0.991
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Figure 5-2. Height and weight relationships
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• The linear relationship between dependent and 

independent variables.

• There should not be any multicollinearity among the 

predictors. If we have more than two predictors in the 

input feature space, the input features should not be 

correlated.

• There should not be any autocorrelation.

• There should not be any heteroscedasticity. The 

variance of the error term should be constant, along 

the predictors on another axis, which means the error 

variance should be constant.

• The error term should be normally distributed. 

The error term is basically defined as the difference 

between an actual and a predicted variable.

Within linear regression, there are different variants but in machine 

learning we consider them as one method. For example, if we are using 

one explanatory variable to predict the dependent variable, it is called a 

simple linear regression model. If we are using more than one explanatory 

variable, then the model is called a multiple linear regression model. 

The ordinary least square is a statistical technique to predict the linear 

regression model; hence, sometimes the linear regression model is also 

known as an ordinary least square model.

Linear regression is very sensitive to missing values and outliers 

because the statistical method of computing a linear regression depends 

on the mean, standard deviation, and covariance between the variables. 

Mean is sensitive to outlier values; therefore, it is expected that we need 

to clear out the outliers before proceeding toward forming the linear 

regression model.
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In machine learning literature, the method for getting optimum beta 

coefficients that minimize the error in a regression model is achieved 

by a method called a gradient descent algorithm. How does the gradient 

descent algorithm work? It starts with an initial value, preferably from zero, 

and updates the scaling factor by a learning rate regularly iteratively to 

minimize the error term.

Understanding linear regression based on a machine learning 

approach requires special data preparation that avoids assumptions by 

keeping the original data intact. Data transformation is required to make 

your model more robust.

 Recipe 5-1. Data Preparation for the 
Supervised Model
 Problem
How do we perform data preparation for creating a supervised learning 

model using PyTorch?

 Solution
We take an open source dataset, mtcars.csv, which is a regression dataset, 

to test how to create an input and output tensor.

 How It Works
First, the necessary library needs to be imported.
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The predictor for the supervised algorithm is qsec, which is used to 

predict the mileage per gallon provided by the car. What is important here 

is the data type. First, we import the data, which is in NumPy format, into 

a PyTorch tensor format. The default tensor format is a float. Using the 

tensor float format would cause errors when performing the optimization 

function, so it is important to change the tensor data type. We can reformat 

the tensor type by using the unsqueeze function and specifying that the 

dimension is equal to 1.
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To reproduce the same result, a manual seed needs to be set; so torch.

manual_seed(1234) was used. Although we see that the data type is a 

tensor, if we check the type function, it will show as double, because a 

tensor type double is required for the optimization function.

 

 Recipe 5-2. Forward and Backward 
Propagation
 Problem
How do we build a neural network torch class function so that we can 

build a forward propagation method?

 Solution
Design the neural network class function, including the hidden layer from 

the input layer and from the hidden layer to the output layer. In the neural 

network architecture, the number of neurons in the hidden layer also 

needs to be specified.

Chapter 5  SuperviSed Learning uSing pytorCh



136

 How It Works
In the class Net() function, we first initialize the feature, hidden, and 

output layers. Then we introduce the back-propagation function using the 

rectified linear unit as the activation function in the hidden layer.

 

The following image shows the ReLU activation function. It is 

popularly used across different neural network models; however, the 

choice of the activation function should be based on accuracy. If we get 

more accuracy in a sigmoid function, we should consider that.

 

Now the network architecture is mentioned in the supervised learning 

model. The n_feature shows the number of neurons in the input layer. 

Since we have one input variable, qsec, we will use 1. The number of 

neurons in the hidden layer can be decided based on the input and the 
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degree of accuracy required in the learning model. We use the n_hidden 

equal to 20, which means 20 neurons in the hidden layer 1, and the output 

neuron is 1.

 

The role of the optimization function is to minimize the loss function 

defined with respect to the parameters and the learning rate. The learning 

rate chosen here is 0.2. We also pass the neural network parameters into 

the optimizer. There are various optimization functions.

• SGD. Implements stochastic gradient descent 

(optionally with momentum). The parameters could be 

momentum, learning rate, and weight decay.

• Adadelta. Adaptive learning rate. Has five 

different arguments, parameters of the network, a 

coefficient used for computing a running average 

of the squared gradients, the addition of a term 

for achieving numerical stability of the model, the 

learning rate, and a weight decay parameter to apply 

regularization.

• Adagrad. Adaptive subgradient methods for online 

learning and stochastic optimization. Has arguments 

such as iterable of parameter to optimize the learning 

rate and learning rate decay with weight decay.
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• Adam. A method for stochastic optimization. This 

function has six different arguments, an iterable of 

parameters to optimize, learning rate, betas (known as 

coefficients used for computing running averages of 

the gradient and its square), a parameter to improve 

numerical stability, and so forth.

• ASGD. Acceleration of stochastic approximation by 

averaging. It has five different arguments, iterable of 

parameters to optimize, learning rate, decay term, 

weight decay, and so forth.

• RMSprop algorithm. Uses a magnitude of gradients that 

are calculated to normalize the gradients.

• SparseAdam. Implements a lazy version of the Adam 

algorithm suitable for sparse tensors. In this variant, 

only moments that show up in the gradient are 

updated, and only those portions of the gradient are 

applied to the parameters.

Apart from the optimization function, a loss function needs to be 

selected before running the supervised learning model. Again, there are 

various loss functions; let’s look at the error functions.

• MSELoss. Creates a criterion that measures the mean 

squared error between elements in the input variable 

and target variable. For regression-related problems, 

this is the best loss function.
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After running the supervised learning model, which is a regression 

model, we need to print the actual vs. predicted values and represent them 

in a graphical format; therefore, we need to turn on the interactive feature 

of the model.

 Recipe 5-3. Optimization and Gradient 
Computation
 Problem
How do we build a basic supervised neural network training model using 

PyTorch with different iterations?

 Solution
The basic neural network model in PyTorch requires six different steps: 

preparing training data, initializing weights, creating a basic network 

model, calculating loss function, selecting the learning rate, and 

optimizing the loss function with respect to the parameters of the model.
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 How It Works
Let’s follow a step-by-step approach to create a basic neural network 

model.

 

The final prediction result from the model with the first iteration and 

the last iteration is now represented in the following graph.
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In the initial step, the loss function was 276.91. After optimization, the 

loss function became 35.1890. The fitted regression line and the way it is 

fitted to the dataset are represented.

 Recipe 5-4. Viewing Predictions
 Problem
How do we extract the best results from the PyTorch-based supervised 

learning model?

 Solution
The computational graph network is represented by nodes and connected 

through functions. Various techniques can be applied to minimize the 

error function and get the best predictive model. We can increase the 

iteration numbers, estimate the loss function, optimize the function, print 

actual and predicted values, and show it in a graph.

 How It Works
To apply tensor differentiation, the nn.backward() method needs to 

be applied. Let’s take an example to see how the error gradients are 

backpropagated. The grad() function holds the final output from the tensor 

differentiation.
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The tuning parameters that can increase the accuracy of the 

supervised learning model, which is a regression use case, can be achieved 

with the following methods.

• Number of iterations

• Type of loss function

• Selection of optimization method

• Selection of loss function

• Learning rate

• Decay in the learning rate

• Momentum require for optimization
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The real dataset looks like the following.

 

The following script explains reading the mpg and qsec columns from 

the mtcars.csv dataset. It converts those two variables to tensors using the 

unsqueeze function, and then uses it inside the neural network model for 

prediction.

 

After 1000 iterations, the model converges.

Chapter 5  SuperviSed Learning uSing pytorCh



144

 

The neural networks in the torch library are typically used with the nn 

module. Let’s take a look at that.

Neural networks can be constructed using the torch.nn package, which 

provides almost all neural network related functionalities, including the 

following.

• Linear layers: nn.Linear, nn.Bilinear

• Convolution layers: nn.Conv1d, nn.Conv2d, 

nn.Conv3d, nn.ConvTranspose2d

• Nonlinearities: nn.Sigmoid, nn.Tanh, nn.ReLU, 

nn.LeakyReLU

• Pooling layers: nn.MaxPool1d, nn.AveragePool2d

• Recurrent networks: nn.LSTM, nn.GRU

• Normalization: nn.BatchNorm2d

• Dropout: nn.Dropout, nn.Dropout2d

• Embedding: nn.Embedding

• Loss functions: nn.MSELoss, nn.CrossEntropyLoss, 

nn.NLLLoss
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The standard classification algorithm is another version of a 

supervised learning algorithm, in which the target column is a class 

variable and the features could be numeric and categorical.

 Recipe 5-5. Supervised Model Logistic 
Regression
 Problem
How do we deploy a logistic regression model using PyTorch?

 Solution
The computational graph network is represented by nodes and connected 

through functions. Various techniques can be applied to minimize the 

error function and get the best predictive model. We can increase the 

iteration numbers, estimate the loss function, optimize the function, print 

actual and predicted values, and show it in a graph.

 How It Works
To apply tensor differentiation, the nn.backward() method needs to be 

applied. Let’s look at an example.
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The following shows data preparation for a logistic regression model.

 

Let’s look at the sample dataset for classification.

 

Set up the neural network module for the logistic regression model.
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Check the neural network configuration.

 

Run iterations and find the best solution for the sample graph.

 

The first iteration provides almost 99% accuracy, and subsequently, 

the model provides 100% accuracy on the training data (see Figures 5-3 

and 5-4).
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Figure 5-3. Initial accuracy

Figure 5-4. Final accuracy

Final accuracy shows 100, which is a clear case of overfitting, but we 

can control this by introducing the dropout rate, which is covered in the 

next chapter.
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 Conclusion
This chapter discussed two major types of supervised learning 

algorithms—linear regression and logistic regression—and their 

implementation using sample datasets and the PyTorch program. Both 

algorithms are linear models, one for predicting real valued output and the 

other for separating one class from another class. Although we considered 

a two-class classification in the logistic regression example, it can be 

extended to a multiclass classification model.
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CHAPTER 6

Fine-Tuning Deep 
Learning Models 
Using PyTorch
Deep learning models are becoming very popular. They have very 

deep roots in the way biological neurons are connected and the way 

they transmit information from one node to another node in a network 

model.

Deep learning has a very specific usage, particularly when the single 

function–based machine learning techniques fail to approximate real- 

life challenges. For example, when the data dimension is very large 

(in the thousands), then standard machine learning algorithms fail to 

predict or classify the outcome variable. This is also not very efficient 

computationally. It consumes a lot of resources and model convergence 

never happens. Most prominent examples are object detection, image 

classification, and image segmentation.
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The most commonly used deep learning algorithms can be classified 

into three groups.

• Convolutional neural network. Mostly suitable for 

highly sparse datasets, image classification, image 

recognition, object detection, and so forth.

• Recurrent neural network. Applicable to processing 

sequential information, if there is any internal 

sequential structure in the way data is generated. This 

includes music, natural language, audio, and video, 

where the information is consumed in a sequence.

• Deep neural network. Typically applicable when a 

single layer of a machine learning algorithm cannot 

classify or predict correctly. There are three variants.

• Deep network, where the number of neurons 

present in each hidden layer is usually more than 

the previous layer

• Wide network, where the number of hidden layers 

are more than a usual neural network model

• Both deep and wide network, where the number of 

neurons and the number of layers in the network 

are very high

This chapter discusses how to fine-tune deep learning models 

using hyperparameters. There is a difference between the parameters 

and hyperparameters. Usually in the deep learning models, we are not 

interested in estimating the parameters because they are the weights 

and keep changing based on the initial values, learning rate, and number 

of iterations. What is important is deciding on the hyperparameters to 

fine- tune the models, as discussed in Chapter 3, so that optimum results 

can be derived.
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 Recipe 6-1. Building Sequential Neural 
Networks
 Problem
Is there any way to build sequential neural network models, as we do in 

Keras in PyTorch, instead of declaring the neural network models?

 Solution
If we declare the entire neural network model, line by line, with the 

number of neurons, number of hidden layers and iterations, choice of loss 

functions, optimization functions, and the selection of weight distribution, 

and so forth, it will be extremely cumbersome to scale the model. And, it 

is not foolproof—errors could crop up in the model. To avoid the issues in 

declaring the entire model line by line, we can use a high-level function 

that assumes certain default parameters in the back end and returns the 

result to the user with minimum hyperparameters. Yes, it is possible to not 

have to declare the neural network model.

 How It Works
Let’s look at how to create such models. In the Torch library, the neural 

network module contains a functional API (application programming 

interface) that contains various activation functions, as discussed in earlier 

chapters.
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In the following lines of script, we create a simple neural network 

model with linear function as the activation function for input to the 

hidden layer, and the hidden layer to the output layer.

The following function requires declaring class Net, declaring the 

features, hidden neurons, and activation functions, which can be easily 

replaced by the sequential module.

 

Instead of using this script, we can change the class function and 

replace it with the sequential function. The Keras functions replace the 

TensorFlow functions, which means that many lines of TensorFlow code 

can be replaced by a few lines of Keras script. The same thing is possible 

in PyTorch without requiring any external modules. As an example, in 

the following, net2 explains the sequential model and net1 explains the 

preceding script. From a readability perspective, net2 is much better 

than net1.

 

If we simply print both the net1 and net2 model architectures, it does 

the same thing.
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 Recipe 6-2. Deciding the Batch Size
 Problem
How do we perform batch data training for a deep learning model using 

PyTorch?

 Solution
Training a deep learning model requires a large amount of labeled data. 

Typically, it is the process of finding a set of weights and biases in such a 

way that the loss function becomes minimal with respect to matching the 

target label. If the training process approximates well to the function, the 

prediction or classification becomes robust.

 How It Works
There are two methods for training a deep learning network: batch training 

and online training. The choice of training algorithm dictates the method 

of learning. If the algorithm is backpropagation, then online learning 

is better. For a deep and wide network model with various layers of 

backpropagation and forward propagation, then batch training is better.
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In the training process, the batch size is 5; we can change the batch size 

to 8 and see the results. In online training process, the weights and biases 

are updated for every training example based on the variations between 

predicted result and actual result. However, in the batch training process, 

the differences between actual and predicted values which is error gets 

accumulated and computed as a single number over the batch size, and 

reported at the final layer.

 

 

After training the dataset for five iterations, we can print the batch and 

step. If we compare the online training and batch training, batch training 

has many more advantages than online training. When the requirement 

is to train a huge dataset, there are memory constraints. When we cannot 

process a huge dataset in a CPU environment, batch training comes to the 

rescue. In a CPU environment, we can process large amounts of data with 

a smaller batch size.
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We take the batch size as 8 and retrain the model.
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 Recipe 6-3. Deciding the Learning Rate
 Problem
How do we identify the best solution based on learning rate and the 

number of epochs?

 Solution
We take a sample tensor and apply various alternative models and print 

model parameters. The learning rate and epoch number are associated 

with model accuracy. To reach the global minimum state of the loss 

function, it is important to keep the learning rate to a minimum and 

the epoch number to a maximum so that the iteration can take the loss 

function to the minimum state.

 How It Works
First, the necessary library needs to be imported. To find the minimum loss 

function, gradient descent is typically used as the optimization algorithm, 

which is an iterative process. The objective is to find the rate of decline of 

the loss function with respect to the trainable parameters.
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The sample dataset taken for the experiment includes the following.

The sample dataset and the first five records would look like the 

following.
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Using the PyTorch utility function, let’s load the tensor dataset, 

introduce the batch size, and test out.

 

Declare the neural network module.

 

Now, let’s look at the network architecture.
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While performing the optimization, we can include many options; 

select the best among the best.
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 Recipe 6-4. Performing Parallel Training
 Problem
How do we perform parallel data training that includes a lot of models 

using PyTorch?
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 Solution
The optimizers are really functions that augment the tensor. The process of 

finding a best model requires parallel training of many models. The choice 

of learning rate, batch size, and optimization algorithms make models 

unique and different from other models. The process of selecting the best 

model requires hyperparameter optimization.

 How It Works
First, the right library needs to be imported. The three hyperparameters 

(learning rate, batch size, and optimization algorithm) make it possible 

to train multiple models in parallel, and the best model is decided by 

the accuracy of the test dataset. The following script uses the stochastic 

gradient descent algorithm, momentum, RMS prop, and Adam as the 

optimization method.

 

Let’s look at the chart and epochs.
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 Conclusion
In this chapter, we looked at various ways to make the deep learning model 

learn from the training dataset. The training process can be made effective 

by using hyperparameters. The selection of the right hyperparameter is the 

key. The deep learning models (convolutional neural network, recurrent 

neural network, and deep neural network) are different in terms of 

architecture, but the training process and the hyperparameters remain the 

same. The choice of hyperparameters and selection process is much easier 

in PyTorch than any other framework.
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CHAPTER 7

Natural Language 
Processing Using 
PyTorch
Natural language processing is an important branch of computer science. 

It is the study of human language by computers performing various tasks. 

Natural language study is also known as computational linguistics. There 

are two different components of natural language processing: natural 

language understanding and natural language generation. Natural 

language understanding involves analysis and knowledge of the input 

language and responding to it. Natural language generation is the process 

of creating language from input text. Language can be used in various 

ways. One word may have different meanings, so removing ambiguity is an 

important part of natural language understanding.

The ambiguity level can be of three types.

• Lexical ambiguity is based on parts of speech; deciding 

whether a word is a noun, verb, adverb, and so forth.

• Syntactic ambiguity is where one sentence can have multiple 

interpretations; the subject and predicate are neutral.

• Referential ambiguity is related to an event or scenario 

expressed in words.
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Text analysis is a precursor to natural language processing and 

understanding. Text analysis means corpus creation creating a collected 

set of documents, and then removing white spaces, punctuation, stop 

words, junk values such as symbols, emojis, and so forth, which have no 

textual meaning. After clean up, the net task is to represent the text in 

vector form. This is done using the standard Word2vec model, or it can be 

represented in term frequency and inverse document frequency format  

(tf- idf). In today’s world, we see a lot of applications that use natural 

language processing; the following are some examples.

• Spell checking applications—online and on 

smartphones. The user types a particular word and the 

system checks the meaning of the word and suggests 

whether the spelling needs to be corrected.

• Keyword search has been an integral part of our lives 

over the last decade. Whenever we go to a restaurant, 

buy something, or visit some place, we do an online 

search. If the keyword typed is wrong, no match is 

retrieved; however, the search engine systems are 

so intelligent that they predict the user’s intent and 

suggest pages that user actually wants to search.

• Predictive text is used in various chat applications. 

The user types a word, and based on the user’s writing 

pattern, a choice of next words appear. The user is 

prompted to select any word from the list to frame his 

sentence.

• Question-and-answering systems like Google Home, 

Amazon Alexa, and so forth, allow users to interact with 

the system in natural language. The system processes 

that information, does an intelligent search, and 

retrieves the best results for the user.
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• Alternate data extraction is when actual data is not 

available to the user, but the user can use the Internet 

to fetch data that is publicly available, and search for 

relevant information. For example, if I want to buy a 

laptop, I want to compare the price of the laptop on 

various online portals. I have one system scrape the 

price information from various websites and provide 

a summary of the prices to me. This process is called 

alternate data collection using web scraping, text 

processing and natural language processing.

• Sentiment analysis is a process of analyzing the mood 

of the customer, user, or agent from the text that they 

express. Customer reviews, movie reviews, and so forth. 

The text presented needs to be analyzed and tagged as 

a positive sentiment or a negative sentiment. Similar 

applications can be built using sentiment analysis.

• Topic modeling is the process of finding distinct topics 

presented in the corpus. For example, if we take text 

from science, math, English, and biology, and jumble 

all the text, then ask the machine to classify the text 

and tell us how many topics exist in the corpus, and 

the machine correctly separates the words present in 

English from biology, biology from science, and so on 

so forth. This is called a perfect topic modeling system.

• Text summarization is the process of summarizing the 

text from the corpus in a shorter format. If we have a 

two-page document that is 1000 words, and we need 

to summarize it in a 200-word paragraph, then we can 

achieve that by using text summarization algorithms.
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• Language translation is translating one language to 

another, such as English to French, French to German, 

and so on so forth. Language translation helps the 

user understand another language and make the 

communication process effective.

The study of human language is discrete and very complex. The same 

sentence may have many meanings, but it is specifically constructed for an 

intended audience. To understand the complexity of natural language, we 

not only need tools and programs but also the system and methods. The 

following five-step approach is followed in natural language processing to 

understand the text from the user.

• Lexical analysis identifies the structure of the word.

• Syntactic analysis is the study of English grammar and 

syntax.

• Semantic analysis is the meaning of a word in a context.

• PoS (point of sale) analysis is the understanding and 

parsing parts of speech.

• Pragmatic analysis is understanding the real meaning 

of a word in context.

In this chapter, we use PyTorch to implement the steps that are most 

commonly used in natural language processing tasks.

 Recipe 7-1. Word Embedding
 Problem
How do we create a word-embedding model using PyTorch?
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 Solution
Word embedding is the process of representing the words, phrases, and 

tokens in a meaningful way in a vector structure. The input text is mapped 

to vectors of real numbers; hence, feature vectors can be used for further 

computation by machine learning or deep learning models.

 How It Works
The words and phrases are represented in real vector format. The words 

or phrases that have similar meanings in a paragraph or document have 

similar vector representation. This makes the computation process 

effective in finding similar words. There are various algorithms for creating 

embedded vectors from text. Word2vec and GloVe are known frameworks 

to execute word embeddings. Let’s look at the following example.
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The following sets up an embedding layer.

 

Let’s look at the sample text. The following text has two paragraphs, 

and each paragraph has several sentences. If we apply word embedding 

on these two paragraphs, then we will get real vectors as features from the 

text. Those features can be used for further computation.

 

Tokenization is the process of splitting sentences into small chunks of 

tokens, known as n-grams. This is called a unigram if it is a single word, a 

bigram if it is two words, a trigram if it is three words, so on and so forth.
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The PyTorch n-gram language modeler can extract relevant key words.

 

The n-gram extractor has three arguments: the length of the 

vocabulary to extract, a dimension of embedding vector, and context size. 

Let’s look at the loss function and the model specification.
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Apply the Adam optimizer.

 

Context extraction from sentences is also important. Let’s look at the 

following function.

 

 Recipe 7-2. CBOW Model in PyTorch
 Problem
How do we create a CBOW model using PyTorch?
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 Solution
There are two different methods to represent words and phrases in vectors: 

continuous bag of words (CBOW) and skip gram. The bag-of-words 

approach learns embedding vectors by predicting the word or phrase in 

context. Context means the words before and after the current word. If 

we take a context of size 4, this implies that the four words to the left of 

the current word and the four words to the right of it are considered for 

context. The model tries to find those eight words in another sentence to 

predict the current word.

 How It Works
Let’s look at the following example.
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Graphically, the bag-of-words model looks like what is shown in 

Figure 7-1. It has three layers: input, which are the embedding vectors that 

take the words and phrases into account; the output vector, which is the 

relevant word predicted by the model; and the projection layer, which is a 

computational layer provided by the neural network model.

INPUT

w(t-2)

w(t+2)

w(t-1)

w(t+1)

w(t)

PROJECTION

SUM

OUTPUT

Figure 7-1. CBOW model representation
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 Recipe 7-3. LSTM Model
 Problem
How do we create a LSTM model using PyTorch?

 Solution
The long short-term memory (LSTM) model, also known as the specific 

form of recurrent neural network model, is commonly used in the natural 

language processing field. Text and sentences come in sequences to make 

a meaningful sentence, so we need a model that remembers the long and 

short sequences of text to predict a word or text.

 How It Works
Let’s look at the following example.
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Prepare a sequence of words as training data to form the LSTM 

network.
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