
PyTorch
Recipes

A Problem-Solution Approach
—
Pradeepta Mishra

www.allitebooks.com

http://www.allitebooks.org

PyTorch Recipes
A Problem-Solution Approach

Pradeepta Mishra

www.allitebooks.com

http://www.allitebooks.org

PyTorch Recipes

ISBN-13 (pbk): 978-1-4842-4257-5 ISBN-13 (electronic): 978-1-4842-4258-2
https://doi.org/10.1007/978-1-4842-4258-2

Library of Congress Control Number: 2018968538

Copyright © 2019 by Pradeepta Mishra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karkal
Development Editor: Matthew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.
apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-4257-5. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Pradeepta Mishra
Bangalore, Karnataka, India

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4258-2
http://www.allitebooks.org

I would like to dedicate this book to my dear parents,
my lovely wife, Prajna, and my daughter, Priyanshi (Aarya).

This work would not have been possible without
their inspiration, support, and encouragement.

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: Introduction to PyTorch, Tensors, and
Tensor Operations ���1

What Is PyTorch? ���6

PyTorch Installation ���7

Recipe 1-1� Using Tensors ��9

Problem ���9

Solution ���10

How It Works ���10

Conclusion ��27

Chapter 2: Probability Distributions Using PyTorch����������������������������29

Recipe 2-1� Sampling Tensors ��30

Problem ���30

Solution ���30

How It Works ���30

Recipe 2-2� Variable Tensors ���33

Problem ���33

Solution ���34

How It Works ���35

About the Author ���xiii

About the Technical Reviewer ��xv

Acknowledgments ��xvii

Introduction ���xix

www.allitebooks.com

http://www.allitebooks.org

vi

Recipe 2-3� Basic Statistics ��36

Problem ���36

Solution ���36

How It Works ���36

Recipe 2-4� Gradient Computation ��38

Problem ���38

Solution ���38

How It Works ���39

Recipe 2-5� Tensor Operations ��41

Problem ���41

Solution ���41

How It Works ���41

Recipe 2-6� Tensor Operations ��42

Problem ���42

Solution ���42

How It Works ���43

Recipe 2-7� Distributions ��45

Problem ���45

Solution ���45

How It Works ���45

Conclusion ��48

Chapter 3: CNN and RNN Using PyTorch ���49

Recipe 3-1� Setting Up a Loss Function ��49

Problem ���49

Solution ���50

How It Works ���50

Table of ConTenTsTable of ConTenTs

vii

Recipe 3-2� Estimating the Derivative of the Loss Function �������������������������������53

Problem ���53

Solution ���53

How It Works ���53

Recipe 3-3� Fine-Tuning a Model ��59

Problem ���59

Solution ���59

How It Works ���60

Recipe 3-4� Selecting an Optimization Function ���62

Problem ���62

Solution ���62

How It Works ���62

Recipe 3-5� Further Optimizing the Function ��67

Problem ��� 67

Solution ���67

How It Works ���67

Recipe 3-6� Implementing a Convolutional Neural Network (CNN) ���������������������71

Problem ���71

Solution ���71

How It Works ���71

Recipe 3-7� Reloading a Model ���77

Problem ���77

Solution ��� 77

How It Works ���77

Table of ConTenTsTable of ConTenTs

viii

Recipe 3-8� Implementing a Recurrent Neural Network (RNN) ���������������������������80

Problem ���80

Solution ���80

How It Works ���80

Recipe 3-9� Implementing a RNN for Regression Problems �������������������������������85

Problem ���85

Solution ���86

How It Works ���86

Recipe 3-10� Using PyTorch Built-in Functions ���87

Problem ���87

Solution ���87

How It Works ���88

Recipe 3-11� Working with Autoencoders ���91

Problem ���91

Solution ���91

How It Works ���91

Recipe 3-12� Fine-Tuning Results Using Autoencoder ��95

Problem ���95

Solution ���95

How It Works ���95

Recipe 3-13� Visualizing the Encoded Data in a 3D Plot �������������������������������������98

Problem ���98

Solution ���98

How It Works ���98

Table of ConTenTsTable of ConTenTs

ix

Recipe 3-14� Restricting Model Overfitting ���99

Problem ���99

Solution ���99

How It Works ���100

Recipe 3-15� Visualizing the Model Overfit ���102

Problem ���102

Solution ���102

How It Works ���102

Recipe 3-16� Initializing Weights in the Dropout Rate ���������������������������������������104

Problem ���104

Solution ���104

How It Works ���105

Recipe 3-17� Adding Math Operations ��106

Problem ���106

Solution ���106

How It Works ���106

Recipe 3-18� Embedding Layers in RNN ���108

Problem ���108

Solution ���108

How It Works ���108

Conclusion ��109

Chapter 4: Introduction to Neural Networks Using PyTorch �������������111

Recipe 4-1� Working with Activation Functions���112

Problem ���112

Solution ���112

How It Works ���112

Table of ConTenTsTable of ConTenTs

x

Recipe 4-2� Visualizing the Shape of Activation Functions �������������������������������119

Problem ���119

Solution ���119

How It Works ���119

Recipe 4-3� Basic Neural Network Model ���122

Problem ���122

Solution ���122

How It Works ���122

Recipe 4-4� Tensor Differentiation ��125

Problem ���125

Solution ���125

How It Works ���125

Conclusion ��126

Chapter 5: Supervised Learning Using PyTorch ��������������������������������127

Introduction to Linear Regression ���129

Recipe 5-1� Data Preparation for the Supervised Model �����������������������������������133

Problem ���133

Solution ���133

How It Works ���133

Recipe 5-2� Forward and Backward Propagation ���135

Problem ���135

Solution ���135

How It Works ���136

Recipe 5-3� Optimization and Gradient Computation ��139

Problem ���139

Solution ���139

How It Works ���140

Table of ConTenTsTable of ConTenTs

xi

Recipe 5-4� Viewing Predictions ���141

Problem ���141

Solution ���141

How It Works ���141

Recipe 5-5� Supervised Model Logistic Regression ��145

Problem ���145

Solution ���145

How It Works ���145

Conclusion ��149

Chapter 6: Fine-Tuning Deep Learning Models Using PyTorch ���������151

Recipe 6-1� Building Sequential Neural Networks ��153

Problem ���153

Solution ���153

How It Works ���153

Recipe 6-2� Deciding the Batch Size ���155

Problem ���155

Solution ���155

How It Works ���155

Recipe 6-3� Deciding the Learning Rate ���158

Problem ���158

Solution ���158

How It Works ���158

Recipe 6-4� Performing Parallel Training ��162

Problem ���162

Solution ���163

How It Works ���163

Conclusion ��164

Table of ConTenTsTable of ConTenTs

xii

Chapter 7: Natural Language Processing Using PyTorch ������������������165

Recipe 7-1� Word Embedding ��168

Problem ���168

Solution ���169

How It Works ���169

Recipe 7-2� CBOW Model in PyTorch ���172

Problem ���172

Solution ���173

How It Works ���173

Recipe 7-3� LSTM Model ���175

Problem ���175

Solution ���175

How It Works ���175

Index ���179

Table of ConTenTsTable of ConTenTs

xiii

About the Author

Pradeepta Mishra is a data scientist and

artificial intelligence architect. He currently

heads NLP, ML, and AI initiatives at Lymbyc,

a leading-edge innovator in AI and machine

learning based out of Bangalore, India.

He has expertise in designing artificial

intelligence systems for performing tasks

such as understanding natural language and

recommendations based on natural language

processing. He has filed three patents as an inventor and has authored and

co-authored two books: R Data Mining Blueprints (Packt Publishing, 2016)

and R: Mining Spatial, Text, Web, and Social Media Data (Packt Publishing,

2017). There are two courses available on Udemy based on these books.

Pradeepta presented a keynote talk on the application of bidirectional

LSTM for time series forecasting at the 2018 Global Data Science Conference

2018. He delivered a TEDx talk titled “Can Machines Think?”, a session on

the power of artificial intelligence in transforming industries and changing

job roles across industries. He has also delivered more than 150 tech talks

on data science, machine learning, and artificial intelligence at various

meetups, technical institutions, universities, and community forums.

He is on LinkedIn at www.linkedin.com/in/pradeepta/.

http://www.linkedin.com/in/pradeepta/

xv

About the Technical Reviewer

Shivendra Upadhyay has more than eight

years of experience working for consulting

and software firms. He has worked in data

science with KPMG for more than three years,

and has a firm grasp of machine learning and

data science tools and technologies.

xvii

Acknowledgments

I would like to thank my wife, Prajna, for her continuous inspiration and

support, and sacrificing her weekends just to sit alongside me to help me

in completing the book; my daughter, Aarya, for being patient all through

my writing time; my father, for his eagerness to know how many chapters

I had completed.

A big thank you to Nikhil, Celestin, and Divya, for fast-tracking the

whole process and helping me and guiding me in the right direction.

I would like to thank my bosses, Ashish and Saty, for always being

supportive of my initiatives in the AI and ML journey, and their continuous

motivation and inspiration in writing in the AI space.

xix

Introduction

Development of artificial intelligent products and solutions has

recently become a norm; hence, the demand for graph theory–based

computational frameworks is on the rise. Making the deep learning models

work in real-life applications is possible when the modeling framework is

dynamic, flexible, and adaptable to other frameworks.

PyTorch is a recent entrant to the league of graph computation

tools/programming languages. Addressing the limitations of previous

frameworks, PyTorch promises a better user experience in the deployment

of deep learning models, and the creation of advanced models using a

combination of convolutional neural networks, recurrent neural networks,

LSTMs, and deep neural networks.

PyTorch was created by Facebook’s Artificial Intelligence Research

division, which seeks to make the model development process simple,

straightforward, and dynamic, so that developers do not have to worry

about declaring objects before compiling and executing the model. It is

based on the Torch framework and is an extension of Python.

This book is intended for data scientists, natural language processing

engineers, artificial intelligence solution developers, existing practitioners

working on graph computation frameworks, and researchers of graph

theory. This book will get you started with understanding tensor basics,

computation, performing arithmetic-based operations, matrix algebra,

and statistical distribution-based operations using the PyTorch framework.

Chapters 3 and 4 provide detailed descriptions on neural network

basics. Advanced neural networks, such as convolutional neural networks,

recurrent neural networks, and LSTMs are explored. Readers will be able

to implement these models using PyTorch functions.

xx

Chapters 5 and 6 discuss fine-tuning the models, hyper parameter

tuning, and the refinement of existing PyTorch models in production.

Readers learn how to choose the hyper parameters to fine-tune the model.

In Chapter 7, natural language processing is explained. The deep

learning models and their applications in natural language processing

and artificial intelligence is one of the most demanding skill sets in

the industry. Readers will be able to benchmark the execution and

performance of PyTorch implementation in deep learning models to

execute and process natural language. They will be able to compare

PyTorch with other graph computation–based deep learning

programming tools.

InTroduCTIonInTroduCTIon

1© Pradeepta Mishra 2019
P. Mishra, PyTorch Recipes, https://doi.org/10.1007/978-1-4842-4258-2_1

CHAPTER 1

Introduction to
PyTorch, Tensors, and
Tensor Operations
PyTorch has been evolving as a larger framework for writing dynamic

models. Because of that, it is very popular among data scientists and data

engineers deploying large-scale deep learning frameworks. This book

provides a structure for the experts in terms of handling activities while

working on a practical data science problem. As evident from applications

that we use in our day-to-day lives, there are layers of intelligence

embedded with the product features. Those features are enabled to

provide a better experience and better services to the user.

The world is moving toward artificial intelligence. There are two

main components of it: deep learning and machine learning. Without

deep learning and machine learning, it is impossible to visualize

artificial intelligence.

PyTorch is the most optimized high-performance tensor library for

computation of deep learning tasks on GPUs (graphics processing units)

and CPUs (central processing units). The main purpose of PyTorch is

to enhance the performance of algorithms in large-scale computing

2

environments. PyTorch is a library based on Python and the Torch tool

provided by Facebook’s Artificial Intelligence Research group, which

performs scientific computing.

NumPy-based operations on a GPU are not efficient enough to process

heavy computations. Static deep learning libraries are a bottleneck for

bringing flexibility to computations and speed. From a practitioner’s

point of view, PyTorch tensors are very similar to the N-dimensional

arrays of a NumPy library based on Python. The PyTorch library provides

bridge options for moving a NumPy array to a tensor array, and vice

versa, in order to make the library flexible across different computing

environments.

The use cases where it is most frequently used include natural

language processing, image processing, computer vision, social media

data analysis, and sensor data processing. Although PyTorch provides a

large collection of libraries and modules for computation, three modules

are very prominent.

• Autograd. This module provides functionality for

automatic differentiation of tensors. A recorder class in

the program remembers the operations and retrieves

those operations with a trigger called backward to

compute the gradients. This is immensely helpful in the

implementation of neural network models.

• Optim. This module provides optimization techniques

that can be used to minimize the error function for a

specific model. Currently, PyTorch supports various

advanced optimization methods, which includes

Adam, stochastic gradient descent (SGD), and more.

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

3

• NN. NN stands for neural network model.

Manually defining the functions, layers, and further

computations using complete tensor operations is very

difficult to remember and execute. We need functions

that automate the layers, activation functions, loss

functions, and optimization functions and provides a

layer defined by the user so that manual intervention

can be reduced. The NN module has a set of built-

in functions that automates the manual process of

running a tensor operation.

Industries in which artificial intelligence is applied include banking,

financial services, insurance, health care, manufacturing, retail, clinical

trials, and drug testing. Artificial intelligence involves classifying objects,

recognizing the objects to detecting fraud, and so forth. Every learning

system requires three things: input data, processing, and an output layer.

Figure 1-1 explains the relationship between these three topics. If the

performance of any learning system improves over time by learning from

new examples or data, it is called a machine learning system. When a

machine learning system becomes too difficult to reflect reality, it requires

a deep learning system.

In a deep learning system, more than one layer of a learning algorithm

is deployed. In machine learning, we think of supervised, unsupervised,

semisupervised, and reinforcement learning systems. A supervised

machine-learning algorithm is one where the data is labeled with classes

or tagged with outcomes. We show the machine the input data with

corresponding tags or labels. The machine identifies the relationship with

a function. Please note that this function connects the input to the labels

or tags.

In unsupervised learning, we show the machine only the input data

and ask the machine to group the inputs based on association, similarities

or dissimilarities, and so forth.

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

4

In semisupervised learning, we show the machine input features and

labeled data or tags; however we ask the machine to predict the untagged

outcomes or labels.

In reinforcement learning, we introduce a reward and penalty

mechanism, where every correct action is rewarded and every incorrect

action is penalized.

In all of these examples of machine learning algorithms, we assume

that the dataset is small, because getting massive amounts of tagged data

is a challenge, and it takes a lot of time for machine learning algorithms to

process large-scale matrix computations. Since machine learning algorithms

are not scalable for massive datasets, we need deep learning algorithms.

Figure 1-1 shows the relationships among artificial intelligence,

machine learning, and deep learning. Natural language is an important

part of artificial intelligence. We need to develop systems that understand

natural language and provide responses to the agent. Let’s take an example

of machine translation, where a sentence in language 1 (French) can

be converted to language 2 (English), and vice versa. To develop such a

system, we need a large collection of English-French bilingual sentences.

The corpus requirement is very large, as all the language nuances need to

be covered by the model.

Deep
Learning

Machine
Learning

Artificial
Intelligence

Figure 1-1. Relationships among ML, DL, and AI

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

5

After preprocessing and feature creation, you can observe hundreds of

thousands of features that need to be computed to produce output. If we

train a machine learning supervised model, it would take months to run

and to produce output. To achieve scalability in this task, we need deep

learning algorithms, such as a recurrent neural network. This is how the

artificial intelligence is connected to deep learning and machine learning.

There are various challenges in deploying deep learning models that

require large volumes of labeled data, faster computing machines, and

intelligent algorithms. The success of any deep learning system requires

good labeled data and better computing machines because the smart

algorithms are already available.

The following are various use cases that require deep learning

implementation:

• Speech recognition

• Video analysis

• Anomaly detection from videos

• Natural language processing

• Machine translation

• Speech-to-text conversion

The development of the NVIDIA GPU computing for processing

large-scale data is another path-breaking innovation. The programming

language that is required to run in a GPU environment requires a different

programming framework. Two major frameworks are very popular for

implementing graphical computing: TensorFlow and PyTorch. In this

book, we discuss PyTorch as a framework to implement data science

algorithms and make inferences.

The major frameworks for graph computations include PyTorch,

TensorFlow, and MXNet. PyTorch and TensorFlow compete with each

other in neurocomputations. TensorFlow and PyTorch are equally good

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

6

in terms of performance; however, the real differences are known only

when we benchmark a particular task. Concept-wise there are

certain differences.

• In TensorFlow, we have to define the tensors, initialize

the session, and keep placeholders for the tensor

objects; however, we do not have to do these operations

in PyTorch.

• In TensorFlow, let’s consider sentiment analysis as

an example. Input sentences are tagged with positive

or negative tags. If the input sentence’s length is not

equal, then we set the maximum sentence length and

add zero to make the length of other sentences equal,

so that the recurrent neural network can function;

however, this is a built-in functionality in PyTorch, so

we do not have to define the length of the sentences.

• In PyTorch, the debugging is much easier and simpler,

but it is a difficult task in TensorFlow.

• In terms of data visualization, model deployment

definitely better in TensorFlow; however, PyTorch is

evolving and we expect to eventually see the same

functionality in the future.

TensorFlow has definitely undergone many changes to reach a stable

state. PyTorch is just entering the game, so it will take some time to realize

the full potential of this tool.

 What Is PyTorch?
PyTorch is a machine learning and deep learning tool developed by

Facebook’s artificial intelligence division to process large-scale image

analysis, including object detection, segmentation and classification. It is

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

7

not limited to these tasks, however. It can be used with other frameworks

to implement complex algorithms. It is written using Python and the C++

language. To process large-scale computations in a GPU environment,

the programming languages should be modified accordingly. PyTorch

provides a great framework to write functions that automatically run in a

GPU environment.

 PyTorch Installation
Installing PyTorch is quite simple. In Windows, Linux, or macOS, it is

very simple to install if you are familiar with the Anaconda and Conda

environments for managing packages. The following steps describe how to

install PyTorch in Windows/macOS/Linux environments.

 1. Open the Anaconda navigator and go to the

environment page, as displayed in the screenshot

shown in Figure 1-2.

Figure 1-2. Relationships among ML, DL, and AI

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

8

 2. Open the terminal and terminal and type the

following:

conda install -c peterjc123 pytorch

 3. Launch Jupyter and open the IPython Notebook.

 4. Type the following command to check whether the

PyTorch is installed or not.

from __future__ import print_function

import torch

 5. Check the version of the PyTorch.

This installation process was done using a Microsoft Windows

machine. The process may vary by operating system, so please use the

following URLs for any issue regarding installation and errors.

There are two ways to install it: Conda (Anaconda) library

management or the Pip3 package management framework. Also,

installations for a local system (such as macOS, Windows, or Linux) and

a cloud machine (such as Microsoft Azure, AWS, and GCP) are different.

To set up according to your platform, please follow the official PyTorch

installation documents at https://PyTorch.org/get-started/cloud-

partners/.

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

https://pytorch.org/get-started/cloud-partners/
https://pytorch.org/get-started/cloud-partners/

9

PyTorch has various components.

• Torch has functionalities similar to NumPy with GPU

support.

• Autograd’s torch.autograd provides classes,

methods, and functions for implementing automatic

differentiation of arbitrary scalar valued functions. It

requires minimal changes to the existing code. You only

need to declare class:'Tensor's, for which gradients

should be computed with the requires_grad=True

keyword.

• NN is a neural network library in PyTorch.

• Optim provides optimization algorithms that are used

for the minimization and maximization of functions.

• Multiprocessing is a useful library for memory sharing

between multiple tensors.

• Utils has utility functions to load data; it also has other

functions.

Now we are ready to proceed with the chapter.

 Recipe 1-1. Using Tensors
 Problem
The data structure used in PyTorch is graph based and tensor based, therefore,

it is important to understand basic operations and defining tensors.

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

10

 Solution
The solution to this problem is practicing on the tensors and its operations,

which includes many examples that use various operations. Though it

is assumed that the user is familiar with PyTorch and Python basics, a

refresher on PyTorch is essential to create interest among new users.

 How It Works
Let’s have a look at the following examples of tensors and tensor operation

basics, including mathematical operations.

The x object is a list. We can check whether an object in Python is

a tensor object by using the following syntax. Typically, the is_tensor

function checks and the is_storage function checks whether the object is

stored as tensor object.

Now, let’s create an object that contains random numbers from Torch,

similar to NumPy library. We can check the tensor and storage type.

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

11

The y object is a tensor; however, it is not stored. To check the total

number of elements in the input tensor object, the numerical element

function can be used. The following script is another example of creating

zero values in a 2D tensor and counting the numerical elements in it.

Like NumPy operations, the eye function creates a diagonal matrix, of

which the diagonal elements have ones, and off diagonal elements have

zeros. The eye function can be manipulated by providing the shape option.

The following example shows how to provide the shape parameter.

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

12

Linear space and points between the linear space can be created using

tensor operations. Let’s use an example of creating 25 points in a linear

space starting from value 2 and ending with 10. Torch can read from a

NumPy array format.

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

13

Like linear spacing, logarithmic spacing can be created.

Random number generation is a common process in data science to

generate or gather sample data points in a space to simulate structure in

the data. Random numbers can be generated from a statistical distribution,

any two values, or a predefined distribution. Like NumPy functions, the

random number can be generated using the following example. Uniform

distribution is defined as a distribution where each outcome has equal

probability of happening; hence, the event probabilities are constant.

The following script shows how the random number from two values,

0 and 1, are selected. The result tensor can be reshaped to create a (4,5)

matrix. The random numbers from a normal distribution with arithmetic

mean 0 and standard deviation 1 can also be created, as follows.

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

14

To select random values from a range of values using random

permutation requires defining the range first. This range can be created

by using the arrange function. When using the arrange function, you must

define the step size, which places all the values in an equal distance space.

By default, the step size is 1.

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

15

To find the minimum and maximum values in a 1D tensor, argmin and

argmax can be used. The dimension needs to be mentioned if the input is

a matrix in order to search minimum values along rows or columns.

If it is either a row or column, it is a single dimension and is called a

1D tensor. If the input is a matrix, in which rows and columns are present,

it is called a 2D tensor. If it is more than two-dimensional, it is called a

multidimensional tensor.

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

16

Now, let’s create a sample 2D tensor and perform indexing and

concatenation by using the concat operation on the tensors.

The sample x tensor can be used in 3D as well. Again, there are two

different options to create three-dimensional tensors; the third dimension

can be extended over rows or columns.

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

17

A tensor can be split between multiple chunks. Those small chunks

can be created along dim rows and dim columns. The following example

shows a sample tensor of size (4,4). The chunk is created using the third

argument in the function, as 0 or 1.

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

18

The gather function collects elements from a tensor and places it in

another tensor using an index argument. The index position is determined

by the LongTensor function in PyTorch.

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

19

The LongTensor function or the index select function can be used to

fetch relevant values from a tensor. The following sample code shows two

options: selection along rows and selection along columns. If the second

argument is 0, it is for rows. If it is 1, then it is along the columns.

It is a common practice to check non-missing values in a tensor, the

objective is to identify non-zero elements in a large tensor.

Restructuring the input tensors into smaller tensors not only fastens

the calculation process, but also helps in distributed computing. The split

function splits a long tensor into smaller tensors.

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

20

Now, let’s have a look at examples of how the input tensor can be

resized given the computational difficulty. The transpose function is

primarily used to reshape tensors. There are two ways of writing the

transpose function: .t and .transpose.

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

21

The unbind function removes a dimension from a tensor. To remove

the dimension row, the 0 value needs to be passed. To remove a column,

the 1 value needs to be passed.

Mathematical functions are the backbone of implementing any

algorithm in PyTorch; therefore, it is needed to go through functions that

help perform arithmetic-based operations. A scalar is a single value, and

a tensor 1D is a row, like NumPy. The scalar multiplication and addition

with a 1D tensor are done using the add and mul functions.

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

22

The following script shows scalar addition and multiplication with

a tensor.

Combined mathematical operations, such as expressing linear

equations as tensor operations can be done using the following sample

script. Here we express the outcome y object as a linear combination of

beta values times the independent x object, plus the constant term.

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

23

Output = Constant + (beta * Independent)

Like NumPy operations, the tensor values must be rounded up by

using either the ceiling or the flooring function, which is done using the

following syntax.

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

24

Limiting the values of any tensor within a certain range can be done

using the minimum and maximum argument and using the clamp

function. The same function can apply minimum and maximum in

parallel or any one of them to any tensor, be it 1D or 2D; 1D is the far

simpler version. The following example shows the implementation in

a 2D scenario.

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

25

How do we get the exponential of a tensor? How do we get the

fractional portion of the tensor if it has decimal places and is defined as a

floating data type?

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

26

The following syntax explains the logarithmic values in a tensor. The

values with a negative sign are converted to nan. The power function

computes the exponential of any value in a tensor.

To compute the transformation functions (i.e., sigmoid, hyperbolic

tangent, radial basis function, and so forth, which are the most commonly

used transfer functions in deep learning), you must construct the tensors.

The following sample script shows how to create a sigmoid function and

apply it on a tensor.

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

27

 Conclusion
This chapter is a refresher for people who have prior experience in PyTorch

and Python. It is a basic building block for people who are new to the

PyTorch framework. Before starting the advanced topics, it is important to

become familiar with the terminology and basic syntaxes. The next chapter

is on using PyTorch to implement probabilistic models, which includes the

creation of random variables, the application of statistical distributions,

and making statistical inferences.

Chapter 1 IntroduCtIon to pytorCh, tensors, and tensor operatIons

29© Pradeepta Mishra 2019
P. Mishra, PyTorch Recipes, https://doi.org/10.1007/978-1-4842-4258-2_2

CHAPTER 2

Probability
Distributions Using
PyTorch
Probability and random variables are an integral part of computation in

a graph-computing platform like PyTorch. Understanding probability

and associated concepts are essential. This chapter covers probability

distributions and implementation using PyTorch, and interpreting the

results from tests.

In probability and statistics, a random variable is also known as a

stochastic variable, whose outcome is dependent on a purely stochastic

phenomenon, or random phenomenon. There are different types of

probability distributions, including normal distribution, binomial

distribution, multinomial distribution, and Bernoulli distribution. Each

statistical distribution has its own properties.

The torch.distributions module contains probability distributions

and sampling functions. Each distribution type has its own importance

in a computational graph. The distributions module contains binomial,

Bernoulli, beta, categorical, exponential, normal, and Poisson

distributions.

30

 Recipe 2-1. Sampling Tensors
 Problem
Weight initialization is an important task in training a neural network and

any kind of deep learning model, such as a convolutional neural network

(CNN), a deep neural network (DNN), and a recurrent neural network

(RNN). The question always remains on how to initialize the weights.

 Solution
Weight initialization can be done by using various methods, including

random weight initialization. Weight initialization based on a distribution

is done using uniform distribution, Bernoulli distribution, multinomial

distribution, and normal distribution. How to do it using PyTorch is

explained next.

 How It Works
To execute a neural network, a set of initial weights needs to be passed to

the backpropagation layer to compute the loss function (and hence, the

accuracy can be calculated). The selection of a method depends on the

data type, the task, and the optimization required for the model. Here we

are going to look at all types of approaches to initialize weights.

If the use case requires reproducing the same set of results to maintain

consistency, then a manual seed needs to be set.

Chapter 2 probability Distributions using pytorCh

31

The seed value can be customized. The random number is generated

purely by chance. Random numbers can also be generated from a

statistical distribution. The probability density function of the continuous

uniform distribution is defined by the following formula.

f x b a
a x b

x a or x b
() = -

£ £

< >

ì
í
ï

îï

1

0

for

for

,

The function of x has two points, a and b, in which a is the starting

point and b is the end. In a continuous uniform distribution, each number

has an equal chance of being selected. In the following example, the start

is 0 and the end is 1; between those two digits, all 16 elements are selected

randomly.

Chapter 2 probability Distributions using pytorCh

32

In statistics, the Bernoulli distribution is considered as the discrete

probability distribution, which has two possible outcomes. If the event

happens, then the value is 1, and if the event does not happen, then the

value is 0.

For discrete probability distribution, we calculate probability mass

function instead of probability density function. The probability mass

function looks like the following formula.

q p k

p k

= -() =
=

ì
í
î

1 0

1

for

for

From the Bernoulli distribution, we create sample tensors by

considering the uniform distribution of size 4 and 4 in a matrix format,

as follows.

The generation of sample random values from a multinomial

distribution is defined by the following script. In a multinomial

distribution, we can choose with a replacement or without a replacement.

By default, the multinomial function picks up without a replacement and

returns the result as an index position for the tensors. If we need to run it

with a replacement, then we need to specify that while sampling.

Chapter 2 probability Distributions using pytorCh

33

Sampling from multinomial distribution with a replacement returns

the tensors’ index values.

The weight initialization from the normal distribution is a method

that is used in fitting a neural network, fitting a deep neural network, and

CNN and RNN. Let’s have a look at the process of creating a set of random

weights generated from a normal distribution.

 Recipe 2-2. Variable Tensors
 Problem
What is a variable in PyTorch and how is it defined? What is a random

variable in PyTorch?

Chapter 2 probability Distributions using pytorCh

34

 Solution
In PyTorch, the algorithms are represented as a computational graph.

A variable is considered as a representation around the tensor object,

corresponding gradients, and a reference to the function from where it was

created. For simplicity, gradients are considered as slope of the function.

The slope of the function can be computed by the derivative of the

function with respect to the parameters that are present in the function.

For example, in linear regression (Y = W*X + alpha), representation of the

variable would look like the one shown in Figure 2-2.

Basically, a PyTorch variable is a node in a computational graph, which

stores data and gradients. When training a neural network model, after

each iteration, we need to compute the gradient of the loss function with

respect to the parameters of the model, such as weights and biases. After

that, we usually update the weights using the gradient descent algorithm.

Figure 2-1 explains how the linear regression equation is deployed under

the hood using a neural network model in the PyTorch framework.

In a computational graph structure, the sequencing and ordering

of tasks is very important. The one-dimensional tensors are X, Y, W,

and alpha in Figure 2-2. The direction of the arrows change when we

implement backpropagation to update the weights to match with Y, so that

the error or loss function between Y and predicted Y can be minimized.

Y W

X

X
B =W*X

alpha

+

Figure 2-1. A sample computational graph of a PyTorch
implementation

Chapter 2 probability Distributions using pytorCh

35

 How It Works
An example of how a variable is used to create a computational graph is

displayed in the following script. There are three variable objects around

tensors— x1, x2, and x3—with random points generated from a = 12 and

b = 23. The graph computation involves only multiplication and addition,

and the final result with the gradient is shown.

The partial derivative of the loss function with respect to the weights

and biases in a neural network model is achieved in PyTorch using the

Autograd module. Variables are specifically designed to hold the changed

values while running a backpropagation in a neural network model when

the parameters of the model change. The variable type is just a wrapper

around the tensor. It has three properties: data, grad, and function.

Chapter 2 probability Distributions using pytorCh

36

 Recipe 2-3. Basic Statistics
 Problem
How do we compute basic statistics, such as mean, median, mode, and so

forth, from a Torch tensor?

 Solution
Computation of basic statistics using PyTorch enables the user to apply

probability distributions and statistical tests to make inferences from data.

Though the Torch functionality is like that of Numpy, Torch functions have

GPU acceleration. Let’s have a look at the functions to create basic statistics.

 How It Works
The mean computation is simple to write for a 1D tensor; however, for a 2D

tensor, an extra argument needs to be passed as a mean, median, or mode

computation, across which the dimension needs to be specified.

Chapter 2 probability Distributions using pytorCh

37

Median, mode, and standard deviation computation can be written in

the same way.

Standard deviation shows the deviation from the measures of central

tendency, which indicates the consistency of the data/variable. It shows

whether there is enough fluctuation in data or not.

Chapter 2 probability Distributions using pytorCh

38

 Recipe 2-4. Gradient Computation
 Problem
How do we compute basic gradients from the sample tensors using

PyTorch?

 Solution
We are going to consider a sample datase0074, where two variables (x and y)

are present. With the initial weight given, can we computationally get the

gradients after each iteration? Let’s take a look at the example.

Chapter 2 probability Distributions using pytorCh

39

 How It Works
x_data and y_data both are lists. To compute the gradient of the two data

lists requires computation of a loss function, a forward pass, and running

the stuff in a loop.

The forward function computes the matrix multiplication of the weight

tensor with the input tensor.

Chapter 2 probability Distributions using pytorCh

40

The following program shows how to compute the gradients from a

loss function using the variable method on the tensor.

Chapter 2 probability Distributions using pytorCh

41

 Recipe 2-5. Tensor Operations
 Problem
How do we compute or perform operations based on variables such as

matrix multiplication?

 Solution
Tensors are wrapped within the variable, which has three properties: grad,

volatile, and gradient.

 How It Works
Let’s create a variable and extract the properties of the variable. This is

required to weight update process requires gradient computation. By using

the mm module, we can perform matrix multiplication.

Chapter 2 probability Distributions using pytorCh

42

The following program shows the properties of the variable, which is a

wrapper around the tensor.

 Recipe 2-6. Tensor Operations
 Problem
How do we compute or perform operations based on variables such

as matrix-vector computation, and matrix-matrix and vector-vector

calculation?

 Solution
One of the necessary conditions for the success of matrix-based operations

is that the length of the tensor needs to match or be compatible for the

execution of algebraic expressions.

Chapter 2 probability Distributions using pytorCh

43

 How It Works
The tensor definition of a scalar is just one number. A 1D tensor is a

vector, and a 2D tensor is a matrix. When it extends to an n dimensional

level, it can be generalized to only tensors. When performing algebraic

computations in PyTorch, the dimension of a matrix and a vector or scalar

should be compatible.

Chapter 2 probability Distributions using pytorCh

44

Since the mat1 and the mat2 dimensions are different, they are not

compatible for matrix addition or multiplication. If the dimension remains

the same, we can multiply them. In the following script, the matrix

addition throws an error when we multiply similar dimensions—mat1 with

mat1. We get relevant results.

Chapter 2 probability Distributions using pytorCh

45

 Recipe 2-7. Distributions
 Problem
Knowledge of statistical distributions is essential for weight normalization,

weight initialization, and computation of gradients in neural network–

based operations using PyTorch. How do we know which distributions to

use and when to use them?

 Solution
Each statistical distribution follows a pre-established mathematical

formula. We are going to use the most commonly used statistical

distributions, their arguments in scenarios of problems.

 How It Works
Bernoulli distribution is a special case of binomial distribution, in which

the number of trials can be more than one; but in a Bernoulli distribution,

the number of experiment or trial remains one. It is a discrete probability

distribution of a random variable, which takes a value of 1 when there is

probability that an event is a success, and takes a value of 0 when there is

probability that an event is a failure. A perfect example of this is tossing a

coin, where 1 is heads and 0 is tails. Let’s look at the program.

Chapter 2 probability Distributions using pytorCh

46

The beta distribution is a family of continuous random variables

defined in the range of 0 and 1. This distribution is typically used for

Bayesian inference analysis.

The binomial distribution is applicable when the outcome is twofold

and the experiment is repetitive. It belongs to the family of discrete

probability distribution, where the probability of success is defined as

1 and the probability of failure is 0. The binomial distribution is used to

model the number of successful events over many trials.

In probability and statistics, a categorical distribution can be defined

as a generalized Bernoulli distribution, which is a discrete probability

distribution that explains the possible results of any random variable that

may take on one of the possible categories, with the probability of each

category exclusively specified in the tensor.

Chapter 2 probability Distributions using pytorCh

47

A Laplacian distribution is a continuous probability distribution

function that is otherwise known as a double exponential distribution.

A Laplacian distribution is used in speech recognition systems to

understand prior probabilities. It is also useful in Bayesian regression for

deciding prior probabilities.

A normal distribution is very useful because of the property of central

limit theorem. It is defined by mean and standard deviations. If we know

the mean and standard deviation of the distribution, we can estimate the

event probabilities.

Chapter 2 probability Distributions using pytorCh

48

 Conclusion
This chapter discussed sampling distribution and generating random

numbers from distributions. Neural networks are the primary focus in

tensor-based operations. Any sort of machine learning or deep learning

model implementation requires gradient computation, updating weight,

computing bias, and continuously updating the bias.

This chapter also discussed the statistical distributions supported by

PyTorch and the situations where each type of distribution can be applied.

The next chapter discusses deep learning models in detail. Those deep

learning models include convolutional neural networks, recurrent neural

networks, deep neural networks, and autoencoder models.

68.26%

95.44%

99.73%

-3 -2 -1 1 2 3

Figure 2-2. Normal probability distribution

Chapter 2 probability Distributions using pytorCh

49© Pradeepta Mishra 2019
P. Mishra, PyTorch Recipes, https://doi.org/10.1007/978-1-4842-4258-2_3

CHAPTER 3

CNN and RNN
Using PyTorch
Probability and random variables are an integral part of computation in

a graph-computing platform like PyTorch. Understanding probability

and the associated concepts are essential. This chapter covers

probability distributions and implementation using PyTorch, as well

as how to interpret the results of a test. In probability and statistics,

a random variable is also known as a stochastic variable, whose

outcome is dependent on a purely stochastic phenomenon, or random

phenomenon. There are different types of probability distribution,

including normal distribution, binomial distribution, multinomial

distribution, and the Bernoulli distribution. Each statistical distribution

has its own properties.

 Recipe 3-1. Setting Up a Loss Function
 Problem
How do we set up a loss function and optimize it? Choosing the right loss

function increases the chances of model convergence.

50

 Solution
In this recipe, we use another tensor as the update variable, and introduce

the tensors to the sample model and compute the error or loss. Then we

compute the rate of change in the loss function to measure the choice of

loss function in model convergence.

 How It Works
In the following example, t_c and t_u are two tensors. This can be

constructed from any NumPy array.

The sample model is just a linear equation to make the calculation

happen and the loss function defined if the mean square error (MSE)

shown next. Going forward in this chapter, we will increase the

complexity of the model. For now, this is just a simple linear equation

computation.

Let’s now define the model. The w parameter is the weight tensor,

which is multiplied with the t_u tensor. The result is added with a constant

tensor, b, and the loss function chosen is a custom-built one; it is also

Chapter 3 CNN aNd rNN UsiNg pytorCh

51

available in PyTorch. In the following example, t_u is the tensor used, t_p

is the tensor predicted, and t_c is the precomputed tensor, with which the

predicted tensor needs to be compared to calculate the loss function.

The formula w * t_u + b is the linear equation representation of a

tensor-based computation.

The initial loss value is 1763.88, which is too high because of the

initial round of weights chosen. The error in the first round of iteration

is backpropagated to reduce the errors in the second round, for which

the initial set of weights needs to be updated. Therefore, the rate of

change in the loss function is essential in updating the weights in the

estimation process.

Chapter 3 CNN aNd rNN UsiNg pytorCh

52

There are two parameters to update the rate of loss function: the

learning rate at the current iteration and the learning rate at the previous

iteration. If the delta between the two iterations exceeds a certain

threshold, then the weight tensor needs to be updated, else model

convergence could happen. The preceding script shows the delta and

learning rate values. Currently, these are static values that the user has the

option to change.

This is how a simple mean square loss function works in a two-

dimensional tensor example, with a tensor size of 10,5.

Let’s look at the following example. The MSELoss function is within the

neural network module of PyTorch.

Chapter 3 CNN aNd rNN UsiNg pytorCh

53

When we look at the gradient calculation that is used for

backpropagation, it is shown as MSELoss.

 Recipe 3-2. Estimating the Derivative
of the Loss Function
 Problem
How do we estimate the derivative of a loss function?

 Solution
Using the following example, we change the loss function to two times

the differences between the input and the output tensors, instead of

MSELoss function. The following grad_fn, which is defined as a custom

function, shows the user how the final output retrieves the derivative of

the loss function.

 How It Works
Let’s look at the following example. In the previous recipe, the last line

of the script shows the grad_fn as an object embedded in the output

object tensor. In this recipe, we explain how this is computed. grad_fn is a

derivative of the loss function with respect to the parameters of the model.

This is exactly what we do in the following grad_fn.

Chapter 3 CNN aNd rNN UsiNg pytorCh

54

The parameters are the input, bias settings, and the learning rate, and

the number of epochs for the model training. The estimation of these

parameters provides values to the equation.

This is what the initial result looks like. Epoch is an iteration that

produces a loss value from the loss function defined earlier. The params

vector is about coefficients and constants that need to be changed to

minimize the loss function. The grad function computes the feedback

value to the next epoch. This is just an example. The number of epochs

chosen is an iterative task depending on the input data, output data, and

choice of loss and optimization functions.

Chapter 3 CNN aNd rNN UsiNg pytorCh

55

If we reduce the learning rate, we are able to pass relevant values to the

gradient, the parameter updates in a better way, and model convergence

becomes quicker.

The initial results look like as the following. The results are at epoch 5

and the loss value is 29.35, which is much lower than 1763.88 at epoch 0, and

corresponding to the epoch, the estimated parameters are 0.24 and –.01, at

epoch 100. These parameter values are optimal.

Chapter 3 CNN aNd rNN UsiNg pytorCh

56

If we reduce the learning rate a bit, then the process of weight updating

will be a little slower, which means that the epoch number needs to be

increased in order to find a stable state for the model.

Chapter 3 CNN aNd rNN UsiNg pytorCh

57

The following are the results that we observe.

If we increase the number of epochs, then what happens to the loss

function and parameter tensor can be viewed in the following script, in

which we print the loss value to find the minimum loss corresponding to

the epoch. Then we can extract the best parameters from the model.

Chapter 3 CNN aNd rNN UsiNg pytorCh

58

The following are the results.

The following is the final loss value at the final epoch level.

At epoch 5000, the loss value is 2.92, which is not going down further;

hence, at this iteration level, the tensor output displays 5.36 as the final

weight and –17.30 as the final bias. These are the final parameters from

the model.

Chapter 3 CNN aNd rNN UsiNg pytorCh

59

To fine-tune this model in estimating parameters, we can redefine the

model and the loss function and apply it to the same example.

Set up the parameters. After completing the training process, we

should reset the grad function to None.

 Recipe 3-3. Fine-Tuning a Model
 Problem
How do we find the gradients of the loss function by applying an

optimization function to optimize the loss function?

 Solution
We’ll use the backward() function.

Chapter 3 CNN aNd rNN UsiNg pytorCh

60

 How It Works
Let’s look at the following example. The backward() function calculates the

gradients of a function with respect to its parameters. In this section, we

retrain the model with new set of hyperparameters.

Reset the parameter grid. If we do not o reset the parameters in an

existing session, the error values accumulated from any other session

become mixed, so it is important to reset the parameter grid.

After redefining the model and the loss function, let’s retrain the model.

Chapter 3 CNN aNd rNN UsiNg pytorCh

61

We have taken 5000 epochs. We train the parameters in a backward

propagation method and get the following results. At epoch 0, the loss

value is 80.36. We try to minimize the loss value as we proceed with

the next iteration by adjusting the learning rate. At the final epoch, we

observe that the loss value is 2.92, which is same result as before but with a

different loss function and using backpropagation.

The final model parameters are 5.3671 with a bias of –17.3012.

Chapter 3 CNN aNd rNN UsiNg pytorCh

62

 Recipe 3-4. Selecting an Optimization
Function
 Problem
How do we optimize the gradients with the function in Recipe 3-3?

 Solution
There are certain functions that are embedded in PyTorch, and there are

certain optimization functions that the user has to create.

 How It Works
Let’s look at the following example.

Each optimization method is unique in solving a problem. We will

describe it later.

Chapter 3 CNN aNd rNN UsiNg pytorCh

63

The Adam optimizer is a first-order, gradient-based optimization of

stochastic objective functions. It is based on adaptive estimation of lower-

order moments. This is computationally efficient enough for deployment

on large datasets. To use torch.optim, we have to construct an optimizer

object in our code that will hold the current state of the parameters and

will update the parameters based on the computed gradients, moments,

and learning rate. To construct an optimizer, we have to give it an iterable

containing the parameters and ensure that all the parameters are variables

to optimize. Then, we can specify optimizer-specific options, such as the

learning rate, weight decay, moments, and so forth.

Adadelta is another optimizer that is fast enough to work on large

datasets. This method does not require manual fine-tuning of the learning

rate; the algorithm takes care of it internally.

Chapter 3 CNN aNd rNN UsiNg pytorCh

64

Now let’s call the model and loss function out once again and apply

them along with the optimization function.

Let’s look at the gradient in a loss function. Using the optimization

library, we can try to find the best value of the loss function.

Chapter 3 CNN aNd rNN UsiNg pytorCh

65

The example has two custom functions and a loss function. We have

taken two small tensor values. The new thing is that we have taken the

optimizer to find the minimum value.

In the following example, we have chosen Adam as the optimizer.

In the preceding code, we computed the optimized parameters and

computed the predicted tensors using the actual and predicted tensors.

We can display a graph that has a line shown as a regression line.

Chapter 3 CNN aNd rNN UsiNg pytorCh

66

Let’s visualize the sample data in graphical form using the actual and

predicted tensors.

Chapter 3 CNN aNd rNN UsiNg pytorCh

67

 Recipe 3-5. Further Optimizing the Function
 Problem
How do we optimize the training set and test it with a validation set using

random samples?

 Solution
We’ll go through the process of further optimization.

 How It Works
Let’s look at the following example. Here we set the number of samples,

then we take 20% of the data as validation samples using shuffled_indices.

We took random samples of all the records. The objective of the train and

validation set is to build a model in a training set, make the prediction on

the validation set, and check the accuracy of the model.

Chapter 3 CNN aNd rNN UsiNg pytorCh

68

Now let’s run the train and validation process. We first take the

training input data and multiply it by the parameter’s next line. We make

a prediction and compute the loss function. Using the same model in

third line, we make predictions and then we evaluate the loss function for

the validation dataset. In the backpropagation process, we calculate the

gradient of the loss function for the training set, and using the optimizer,

we update the parameters.

Chapter 3 CNN aNd rNN UsiNg pytorCh

69

The following are the last 10 epochs and their results.

In the previous step, the gradient was set to true. In the following set,

we disable gradient calculation by using the torch.no_grad() function. The

rest of the syntax remains same. Disabling gradient calculation is useful

for drawing inferences, when we are sure that we will not call Tensor.

backward(). This reduces memory consumption for computations that

would otherwise be requires_grad=True.

Chapter 3 CNN aNd rNN UsiNg pytorCh

70

The last rounds of epochs are displayed in other lines of code, as

follows.

The final parameters are 5.44 and –18.012.

Chapter 3 CNN aNd rNN UsiNg pytorCh

71

 Recipe 3-6. Implementing a Convolutional
Neural Network (CNN)
 Problem
How do we implement a convolutional neural network using PyTorch?

 Solution
There are various built-in datasets available on torchvision. We are

considering the MNIST dataset and trying to build a CNN model.

 How It Works
Let’s look at the following example. As a first step, we set up the

hyperparameters. The second step is to set up the architecture. The last

step is to train the model and make predictions.

In the preceding code, we are importing the necessary libraries for

deploying the convolutional neural network model using the digits dataset.

The MNIST digits dataset is the most popular dataset in deep learning for

computer vision and image processing.

Chapter 3 CNN aNd rNN UsiNg pytorCh

72

Chapter 3 CNN aNd rNN UsiNg pytorCh

73

Let’s load the dataset using the loader functionality.

In convolutional neural network architecture, the input image is

converted to a feature set as set by color times height and width of the

image. Because of the dimensionality of the dataset, we cannot model it to

predict the output. The output layer in the preceding graph has classes such

as car, truck, van, and bicycle. The input bicycle image has features that the

CNN model should make use of and predict it correctly. The convolution

layer is always accompanied by the pooling layer, which can be max pooling

and average pooling. The different layers of pooling and convolution

continue until the dimensionality is reduced to a level where we can use

fully connected simple neural networks to predict the correct classes.

Chapter 3 CNN aNd rNN UsiNg pytorCh

74

Chapter 3 CNN aNd rNN UsiNg pytorCh

75

In the preceding graph, if we look at the number 4, it is scattered

throughout the graph. Ideally, all of the 4s are closer to each other. This is

because the test accuracy was very low.

In this iteration, the training loss is reduced from 0.4369 to 0.1482 and

the test accuracy improves from 16% to 94%. The digits with the same color

are placed closely on the graph.

Chapter 3 CNN aNd rNN UsiNg pytorCh

76

In the next epoch, the test accuracy on the MNIST digits dataset the

accuracy increases to 95%.

In the final step/epoch, the digits with similar numbers are placed

together. After training a model successfully, the next step is to make use of

the model to predict. The following code explains the predictions process.

The output object is numbered as 0, 1, 2, and so forth. The following shows

the real and predicted numbers.

Chapter 3 CNN aNd rNN UsiNg pytorCh

77

 Recipe 3-7. Reloading a Model
 Problem
How do we store and re-upload a model that has already been trained?

Given the nature of deep learning models, which typically require a

larger training time, the computational process creates a huge cost to the

company. Can we retrain the model with new inputs and store the model?

 Solution
In the production environment, we typically cannot train and predict

at the same time because the training process takes a very long time.

The prediction services cannot be applied until the training process

using epoch is completed, the prediction services cannot be applied.

Disassociating the training process from the prediction process is required;

therefore, we need to store the application’s trained model and continue

until the next phase of training is done.

 How It Works
Let’s look at the following example, where we are creating the save

function, which uses the Torch neural network module to create the model

and the restore_net() function to get back the neural network model that

was trained earlier.

Chapter 3 CNN aNd rNN UsiNg pytorCh

78

The preceding script contains a dependent Y variable and an

independent X variable as sample data points to create a neural network

model. The following save function stores the model. The net1 object is

the trained neural network model, which can be stored using two different

protocols: (1) save the entire neural network model with all the weights

and biases, and (2) save the model using only the weights. If the trained

model object is very heavy in terms of size, we should save only the

parameters that are weights; if the trained object size is low, then the entire

model can be stored.

The prebuilt neural network model can be reloaded to the existing

PyTorch session by using the load function. To test the net1 object and

make predictions, we load the net1 object and store the model as net2.

By using the net2 object, we can predict the outcome variable. The

following script generates the graph as a dependent and an independent

variable. prediction.data.numpy() in the last line of the code shows the

predicted result.

Chapter 3 CNN aNd rNN UsiNg pytorCh

79

Loading the pickle file format of the entire neural network is relatively

slow; however, if we are only making predictions for a new dataset, we can

only load the parameters of the model in a pickle format rather than the

whole network.

Reuse the model. The restore function makes sure that the trained

parameters can be reused by the model. To restore the model, we can use

the load_state_dict() function to load the parameters of the model. If we

see the following three models in the graph, they are identical, because

net2 and net3 are copies of net1.

Chapter 3 CNN aNd rNN UsiNg pytorCh

80

 Recipe 3-8. Implementing a Recurrent
Neural Network (RNN)
 Problem
How do we set up a recurrent neural network using the MNIST dataset?

 Solution
The recurrent neural network is considered as a memory network. We will

use the epoch as 1 and a batch size of 64 samples at a time to establish the

connection between the input and the output. Using the RNN model, we

can predict the digits present in the images.

 How It Works
Let’s look at the following example. The recurrent neural network takes a

sequence of vectors in the input layer and produces a sequence of vectors in

the output layer. The information sequence is processed through the internal

state transfer in the recurrent layer. Sometimes the output values have a long

dependency in past historical values. This is another variant of the RNN

model: the long short-term memory (LSTM) model. This is applicable for

Chapter 3 CNN aNd rNN UsiNg pytorCh

81

any sort of domain where the information is consumed in a sequential

manner; for example, in a time series where the current stock price is

decided by the historical stock price, where the dependency can be short

or long. Similarly, the context prediction using the long and short range

of textual input vectors. There are other industry use cases, such as noise

classification, where noise is also a sequence of information.

The following piece of code explains the execution of RNN model

using PyTorch module.

There are three sets of weights: U, V and W. The set of weights vector,

represented by W, is for passing information among the memory cells

in the network that display communication among the hidden state.

RNN uses an embedding layer using the Word2vec representation. The

embedding matrix is the size of the number of words by the number of

neurons in the hidden layer. If you have 20,000 words and 1000 hidden

units, for example, the matrix has a 20,000×1000 size of the embedding

layer. The new representations are passed to LSTM cells, which go to a

sigmoid output layer.

The RNN models have hyperparameters, such as the number of

iterations (EPOCH); batch size dependent on the memory available in a

single machine; a time step to remember the sequence of information;

input size, which shows the vector size; and learning rate. The selection of

Chapter 3 CNN aNd rNN UsiNg pytorCh

82

these values is indicative; we cannot depend on them for other use cases.

The value selection for hyperparameter tuning is an iterative process;

either you can choose multiple parameters and decide which one is

working, or do parallel training of the model and decide which one is

working fine.

Using the dsets.MINIST() function, we can load the dataset to the

current session. If you need to store the dataset, then download it locally.

The preceding script shows what the sample image dataset would

look like. To train the deep learning model, we need to convert the whole

training dataset into mini batches, which help us with averaging the final

accuracy of the model. By using the data loader function, we can load the

training data and prepare the mini batches. The purpose of the shuffle

selection in mini batches is to ensure that the model captures all the

variations in the actual dataset.

Chapter 3 CNN aNd rNN UsiNg pytorCh

83

The preceding script prepares the training dataset. The test data is

captured with the flag train=False. It is transformed to a tensor using the

test data random sample of 2000 each at a time is picked up for testing the

model. The test features set is converted to a variable format and the test

label vector is represented in a NumPy array format.

In the preceding RNN class, we are training an LSTM network, which

is proven effective for holding memory for a long time, and thus helps in

learning. If we use the nn.RNN() model, it hardly learns the parameters,

because the vanilla implementation of RNN cannot hold or remember

the information for a long period of time. In the LSTM network, the image

width is considered the input size, hidden size is decided as the number of

neurons in the hidden layer, num_layers shows the number of RNN layers

in the network.

Chapter 3 CNN aNd rNN UsiNg pytorCh

84

The RNN module, within the LSTM module, produces the output as

a vector size of 64×10 because the output layer has digits to be classified

as 0 to 9. The last forward function shows how to proceed with forward

propagation in an RNN network.

The following script shows how the LSTM model is processed under

the RNN class. In the LSTM function, we pass the input length as 28 and

the number of neurons in the hidden layer as 64, and from the hidden 64

neurons to the output 10 neurons.

To optimize all RNN parameters, we use the Adam optimizer. Inside

the function, we use the learning rate as well. The loss function used in this

example is the cross-entropy loss function. We need to provide multiple

epochs to get the best parameters.

In the following script, we are printing the training loss and the test

accuracy. After one epoch, the test accuracy increases to 95% and the

training loss reduces to 0.24.

Chapter 3 CNN aNd rNN UsiNg pytorCh

85

Once the model is trained, then the next step is to make predictions

using the RNN model. Then we compare the actual vs. real output to assess

how the model is performing.

 Recipe 3-9. Implementing a RNN for
Regression Problems
 Problem
How do we set up a recurrent neural network for regression-based

problems?

Chapter 3 CNN aNd rNN UsiNg pytorCh

86

 Solution
The regression model requires a target function and a feature set, and then

a function to establish the relationship between the input and the output.

In this example, we are going to use the recurrent neural network (RNN)

for a regression task. Regression problems seem to be very simple; they do

work best but are limited to data that shows clear linear relationships. They

are quite complex when predicting nonlinear relationships between the

input and the output.

 How It Works
Let’s look at the following example that shows a nonlinear cyclical

pattern between input and output data. In the previous recipe, we looked

at an example of RNN in general for classification-related problems,

where predicted the class of the input image. In regression, however, the

architecture of RNN would change, because the objective is to predict the

real valued output. The output layer would have one neuron in regression-

related problems.

RNN time step implies that the last 10 values predict the current value,

and the rolling happens after that.

Chapter 3 CNN aNd rNN UsiNg pytorCh

87

The following script shows some sample series in which the target cos

function is approximated by the sin function.

 Recipe 3-10. Using PyTorch Built-in
Functions
 Problem
How do we set up an RNN module and call the RNN function using

PyTorch?

 Solution
By using the built-in function available in the neural network module, we

can implement an RNN model.

Chapter 3 CNN aNd rNN UsiNg pytorCh

88

 How It Works
Let’s look at the following example. The neural network module in the

PyTorch library contains the RNN function. In the following script, we use

the input matrix size, the number of neurons in the hidden layer, and the

number of hidden layers in the network.

After creating the RNN class function, we need to provide the

optimization function, which is Adam, and this time, the loss function

is the mean square loss function. Since the objective is to make

predictions of a continuous variable, we use MSELoss function in the

optimization layer.

Chapter 3 CNN aNd rNN UsiNg pytorCh

89

Now we iterate over 60 steps to predict the cos function generated from

the sample space, and have it predicted by a sin function. The iterations

take the learning rate defined as before, and backpropagate the error to

reduce the MSE and improve the prediction.

Chapter 3 CNN aNd rNN UsiNg pytorCh

90

Chapter 3 CNN aNd rNN UsiNg pytorCh

91

 Recipe 3-11. Working with Autoencoders
 Problem
How do we perform clustering using the autoencoders function?

 Solution
Unsupervised learning is a branch of machine learning that does not have

a target column or the output is not defined. We only need to understand

the unique patterns existing in the data. Let’s look at the autoencoder

architecture in Figure 3-1. The input feature space is transformed into a

lower dimensional tensor representation using a hidden layer and mapped

back to the same input space. The layer that is precisely in the middle

holds the autoencoder’s values.

Input

Autoencoder

Input

Figure 3-1. Autoencoder architecture

 How It Works
Let’s look at the following example. The torchvision library contains

popular datasets, model architectures, and frameworks. Autoencoder

is a process of identifying latent features from the dataset; it is used for

classification, prediction, and clustering. If we put the input data in the

input layer and the same dataset in the output layer, then we add multiple

Chapter 3 CNN aNd rNN UsiNg pytorCh

92

layers of hidden layers with many neurons, and then we pass through a

series of epochs. We get a set of latent features in the innermost hidden

layer. The weights or parameters in the central hidden layer are known as

the autoencoder layer.

We again use the MNIST dataset to experiment with autoencoder

functionality. This time we are taking 10 epochs, a batch size 64 to be

passed to the network, a learning rate of 0.005, and 5 images for testing.

Chapter 3 CNN aNd rNN UsiNg pytorCh

93

The following plot shows the dataset uploaded from the torchvision

library and displayed as an image.

Chapter 3 CNN aNd rNN UsiNg pytorCh

94

Let’s discuss the autoencoder architecture. The input has 784

features. It has a height of 28 and a width of 28. We pass the 784 neurons

from the input layer to the first hidden layer, which has 128 neurons in it.

Then we apply the hyperbolic tangent function to pass the information

to the next hidden layer. The second hidden layer contains 128 input

neurons and transforms it into 64 neurons. In the third hidden layer, we

apply the hyperbolic tangent function to pass the information to the next

hidden layer. The innermost layer contains three neurons, which are

considered as three features, which is the end of the encoder layer. Then

the decoder function expands the layer back to the 784 features in the

output layer.

Once we set the architecture, then the normal process of making the

loss function minimize corresponding to a learning rate and optimization

function happens. The entire architecture passes through a series of

epochs in order to reach the target output.

Chapter 3 CNN aNd rNN UsiNg pytorCh

95

 Recipe 3-12. Fine-Tuning Results Using
Autoencoder
 Problem
How do we set up iterations to fine-tune the results?

 Solution
Conceptually, an autoencoder works the same as the clustering model.

In unsupervised learning, the machine learns patterns from data and

generalizes it to the new dataset. The learning happens by taking a

set of input features. Autoencoder functions are also used for feature

engineering.

 How It Works
Let’s look at the following example. The same MNIST dataset is used as

an example, and the objective is to understand the role of the epoch in

achieving a better autoencoder layer. We increase the epoch size to reduce

errors to a minimum; however, in practice, increasing the epoch has many

challenges, including memory constraints.

Chapter 3 CNN aNd rNN UsiNg pytorCh

96

Chapter 3 CNN aNd rNN UsiNg pytorCh

97

By using the encoder function, we can represent the input features

into a set of latent features. By using the decoder function, however, we

can reconstruct the image. Then we can match how image reconstruction

is done by using the autoencoder functions. From the preceding set of

graphs, it is clear that as we increase the epoch, the image recognition

becomes transparent.

Chapter 3 CNN aNd rNN UsiNg pytorCh

98

 Recipe 3-13. Visualizing the Encoded Data
in a 3D Plot
 Problem
How do we visualize the MNIST data in a 3D plot?

 Solution
We use the autoencoder function to get the encoded features and then use

the dataset to represent it in a 3D plane.

 How It Works
Let’s look at the following example. This recipe is about how to

represent the autoencoder function derived from the preceding recipe

in the three- dimensional space, because we have three neurons in

the innermost hidden layer. The following display shows a three-

dimensional neuron.

Chapter 3 CNN aNd rNN UsiNg pytorCh

99

 Recipe 3-14. Restricting Model Overfitting
 Problem
When we fit many neurons and layers to predict the target class or output

variable, the function usually overfits the training dataset. Because of

model overfitting, we cannot make a good prediction on the test set.

The test accuracy is not the same as training accuracy. There would be

deviations in training and test accuracy.

 Solution
To restrict model overfitting, we consciously introduce dropout rate,

which means randomly delete (let’s say) 10% or 20% of the weights in the

network, and check the model accuracy at the same time. If we are able

to match the same model accuracy after deleting the 10% or 20% of the

weights, then our model is good.

Chapter 3 CNN aNd rNN UsiNg pytorCh

100

 How It Works
Let’s look at the following example. Model overfitting is occurs when

the trained model does not generalize to other test case scenarios. It is

identified when the training accuracy becomes significantly different from

the test accuracy. To avoid model overfitting, we can introduce the dropout

rate in the model.

Chapter 3 CNN aNd rNN UsiNg pytorCh

101

The dropout rate introduction to the hidden layer ensures that

weights less than the threshold defined are removed from the architecture.

A typical threshold for an application’s dropout rate is 20% to 50%.

A 20% dropout rate implies a smaller degree of penalization; however,

the 50% threshold implies heavy penalization of the model weights.

In the following script, we apply a 50% dropout rate to drop the weights

from the model. We applied the dropout rate twice.

The selection of right dropout rate requires a fair idea about the

business and domain.

Chapter 3 CNN aNd rNN UsiNg pytorCh

102

 Recipe 3-15. Visualizing the Model Overfit
 Problem
Assess model overfitting.

 Solution
We change the model hyperparameters and iteratively see if the model is

overfitting data or not.

 How It Works
Let’s look at the following example. The previous recipe covered two

types of neural networks: overfitting and dropout rate. When the model

parameters estimated from the data come closer to the actual data, for

the training dataset and the same models differs from the test set, it is a

clear sign of model overfit. To restrict model overfit, we can introduce

the dropout rate, which deletes a certain percentage of connections (as

in weights from the network) to allow the trained model to come to the

real data.

In the following script, the iterations were taken 500 times. The

predicted values are generated from the base model, which shows

overfitting, and from the dropout model, which shows the deletion of

some weights. In the same fashion, we create the two loss functions,

backpropagation, and implementation of the optimizer.

Chapter 3 CNN aNd rNN UsiNg pytorCh

103

Chapter 3 CNN aNd rNN UsiNg pytorCh

104

The initial round of plotting includes the overfitting loss and dropout

loss and how it is different from the actual training and test data points

from the preceding graph.

After many iterations, the preceding graph was generated by using

the two functions with the actual model and with the dropout rate. The

takeaway from this graph is that actual training data may get closer to the

overfit model; however, the dropout model fits the data really well.

 Recipe 3-16. Initializing Weights in the
Dropout Rate
 Problem
How do we delete the weights in a network? Should we delete randomly or

by using any distribution?

 Solution
We should delete the weights in the dropout layer based on probability

distribution, rather than randomly.

Chapter 3 CNN aNd rNN UsiNg pytorCh

105

 How It Works
Let’s look at the following example. In the previous recipe, three layers of

a dropout rate were introduced: one after the first hidden layer and two

after the second hidden layer. The probability percentage was 0.50, which

meant randomly delete 50% of the weights. Sometimes, random selection

of weights from the network deletes relevant weights, so an alternative

idea is to delete the weights in the network generated from statistical

distribution.

The following script shows how to generate the weights from a uniform

distribution, then we can use the set of weights in the network architecture.

Chapter 3 CNN aNd rNN UsiNg pytorCh

106

 Recipe 3-17. Adding Math Operations
 Problem
How do we set up the broadcasting function and optimize the convolution

function?

 Solution
The script snippet shows how to introduce batch normalization when

setting up a convolutional neural network model, and then further setting

up a pooling layer.

 How It Works
Let’s look at the following example. To introduce batch normalization in

the convolutional layer of the neural network model, we need to perform

tensor-based mathematical operations that are functionally different from

other methods of computation.

Chapter 3 CNN aNd rNN UsiNg pytorCh

107

Chapter 3 CNN aNd rNN UsiNg pytorCh

108

The following piece of script shows how the batch normalization using

a 2D layer is resolved before entering into the 2D max pooling layer.

 Recipe 3-18. Embedding Layers in RNN
 Problem
The recurrent neural network is used mostly for text processing. An

embedded feature offers more accuracy on a standard RNN model than

raw features. How do we create embedded features in an RNN?

 Solution
The first step is to create an embedding layer, which is a fixed dictionary

and fixed-size lookup table, and then introduce the dropout rate after than

create gated recurrent unit.

 How It Works
Let’s look at the following example. When textual data comes in as a

sequence, the information is processed in a sequential way; for example,

when we describe something, we use a set of words in sequence to convey

the meaning. If we use the individual words as vectors to represent the

data, the resulting dataset would be very sparse. But if we use a phrase-

based approach or a combination of words to represent as feature vector,

Chapter 3 CNN aNd rNN UsiNg pytorCh

109

then the vectors become a dense layer. Dense vector layers are called word

embeddings, as the embedding layer conveys a context or meaning as the

result. It is definitely better than the bag-of-words approach.

 Conclusion
This chapter covered using the PyTorch API, creating a simple neural

network mode, and optimizing the parameters by changing the

hyperparameters (i.e., learning rate, epochs, gradients drop). We looked at

recipes on how to create a convolutional neural network and a recurrent

neural network, and introduced the dropout rate in these networks to

control model overfitting.

We took small tensors to follow what exactly goes on behind the

scenes with calculations and so forth. We only need to define the problem

statement, create features, and apply the recipe to get results. In the next

chapter, we implement many more examples with PyTorch.

Chapter 3 CNN aNd rNN UsiNg pytorCh

111© Pradeepta Mishra 2019
P. Mishra, PyTorch Recipes, https://doi.org/10.1007/978-1-4842-4258-2_4

CHAPTER 4

Introduction to
Neural Networks
Using PyTorch
Deep neural network–based models are gradually becoming the backbone

for artificial intelligence and machine learning implementations. The

future of data mining will be governed by the usage of artificial neural

network–based advanced modeling techniques. One obvious question is

why neural networks are only now gaining so much importance, because it

was invented in 1950s.

Borrowed from the computer science domain, neural networks can

be defined as a parallel information processing system where all the

input relates to each other, like neurons in the human brain, to transmit

information so that activities like face recognition, image recognition, and

so forth, can be performed. In this chapter, you learn about the application

of neural network-based methods on various data mining tasks, such as

classification, regression, forecasting, and feature reduction. An artificial

neural network (ANN) functions in a way that is similar to the way that the

human brain functions, in which billions of neurons link to each other for

information processing and insight generation.

112

 Recipe 4-1. Working with Activation
Functions
 Problem
What are the activation functions and how do they work in real projects?

How do you implement an activation function using PyTorch?

 Solution
Activation function is a mathematical formula that transforms a vector

available in a binary, float, or integer format to another format based

on the type of mathematical transformation function. The neurons

are present in different layers—input, hidden, and output, which are

interconnected through a mathematical function called an activation

function. There are different variants of activation functions, which are

explained next. Understanding the activation function helps in accurately

implementing a neural network model.

 How It Works
All the activation functions that are part of a neural network model can be

broadly classified as linear functions and nonlinear functions. The PyTorch

torch.nn module creates any type of a neural network model. Let’s look at

some examples of the deployment of activation functions using PyTorch

and the torch.nn module.

The core differences between PyTorch and TensorFlow is the way a

computational graph is defined, the way the two frameworks perform

calculations, and the amount of flexibility we have in changing the script

and introducing other Python-based libraries in it. In TensorFlow, we need

to define the variables and placeholders before we initialize the model.

Chapter 4 IntroduCtIon to neural networks usIng pytorCh

113

We also need to keep track of objects that we need later, and for that we

need a placeholder. In TensorFlow, we need to define the model first, and

then compile and run; however, in PyTorch, we can define the model as

we go—we don’t have to keep placeholders in the code. That’s why the

PyTorch framework is dynamic.

 Linear Function

A linear function is a simple functions typically used to transfer

information from the demapping layer to the output layer. We use the

linear function in places where variations in data are lower. In a deep

learning model, practitioners typically use a linear function in the last

hidden layer to the output layer. In the linear function, the output is always

confined to a specific range; because of that, it is used in the last hidden

layer in a deep learning model, or in linear regression–based tasks, or in

a deep learning model where the task is to predict the outcome from the

input dataset. The following is the formula.

y x= +a b

 Bilinear Function

A bilinear function is a simple functions typically used to transfer

information. It applies a bilinear transformation to incoming data.

y x A x b= * * +1 2

Chapter 4 IntroduCtIon to neural networks usIng pytorCh

114

 Sigmoid Function

A sigmoid function is frequently used by professionals in data mining and

analytics because it is easier to explain and implement. It is a nonlinear

function. When we pass weights from the input layer to the hidden layer

in a neural network, we want our model to capture all sorts of nonlinearity

present in the data; hence, using the sigmoid function in the hidden layers

of a neural network is recommended. The nonlinear functions help with

generalizing the dataset. It is easier to compute the gradient of a function

using a nonlinear function.

The sigmoid function is a specific nonlinear activation function. The

sigmoid function output is always confined within 0 and 1; therefore,

it is mostly used in performing classification-based tasks. One of the

limitations of the sigmoid function is that it may get stuck in local minima.

An advantage is that it provides probability of belonging to the class. The

following is its equation.

f x
e x() =

+ -

1

1 b

Chapter 4 IntroduCtIon to neural networks usIng pytorCh

115

 Hyperbolic Tangent Function

A hyperbolic tangent function is another variant of a transformation

function. It is used to transform information from the mapping layer to

the hidden layer. It is typically used between the hidden layers of a neural

network model. The range of the tanh function is between –1 and +1.

tanh x
e e

e e

x x

x x() = -
+

-

-

Chapter 4 IntroduCtIon to neural networks usIng pytorCh

116

 Log Sigmoid Transfer Function

The following formula explains the log sigmoid transfer function, which

is used in mapping the input layer to the hidden layer. If the data is not

binary, and it is a float type with a lot of outliers (as in large numeric values

present in the input feature), then we should use the log sigmoid transfer

function.

f x
e x() =

+
æ
è
ç

ö
ø
÷-log

1

1 b

Chapter 4 IntroduCtIon to neural networks usIng pytorCh

117

 ReLU Function

The rectified linear unit (ReLu) is another activation function. It is used in

transferring information from the input layer to the output layer. ReLu is

mostly used in a convolutional neural network model. The range in which

this activation function operates is from 0 to infinity. It is mostly used

between different hidden layers in a neural network model.

Chapter 4 IntroduCtIon to neural networks usIng pytorCh

118

The different types of transfer functions are interchangeable in a neural

network architecture. They can be used in different stages, such as the

input to the hidden layer, the hidden layer to the output layer, and so forth,

to improve the model’s accuracy.

 Leaky ReLU

In a standard neural network model, a dying gradient problem is common.

To avoid this issue, leaky ReLU is applied. Leaky ReLU allows a small and

non-zero gradient when the unit is not active.

Chapter 4 IntroduCtIon to neural networks usIng pytorCh

119

 Recipe 4-2. Visualizing the Shape
of Activation Functions
 Problem
How do we visualize the activation functions? The visualization of activation

functions is important in correctly building a neural network model.

 Solution
The activation functions translate the data from one layer into another

layer. The transformed data can be plotted against the actual tensor to

visualize the function. We have taken a sample tensor, converted it to a

PyTorch variable, applied the function, and stored it as another tensor.

Represent the actual tensor and the transformed tensor using matplotlib.

 How It Works
The right choice of an activation function will not only provide better

accuracy but also help with extracting meaningful information.

Chapter 4 IntroduCtIon to neural networks usIng pytorCh

120

In this script, we have an array in the linear space between –10 and

+10, and we have 1500 sample points. We converted the vector to a Torch

variable, and then made a copy as a NumPy variable for plotting the graph.

Then, we calculated the activation functions. The following images show

the activation functions.

Chapter 4 IntroduCtIon to neural networks usIng pytorCh

121

Chapter 4 IntroduCtIon to neural networks usIng pytorCh

122

 Recipe 4-3. Basic Neural Network Model
 Problem
How do we build a basic neural network model using PyTorch?

 Solution
A basic neural network model in PyTorch requires six steps: preparing

training data, initializing weights, creating a basic network model,

calculating the loss function, selecting the learning rate, and optimizing

the loss function with respect to the model’s parameters.

 How It Works
Let’s follow a step-by-step approach to create a basic neural network model.

To show a sample neural network model, we prepare the dataset and

change the data type to a float tensor. When we work on a project, data

preparation for building it is a separate activity. Data preparation should

be done in the proper way. In the preceding step, train x and train y are two

NumPy vectors. Next, we change the data type to a float tensor because

it is necessary for matrix multiplication. The next step is to convert it to

variable, because a variable has three properties that help us fine-tune the

object. In the dataset, we have 17 data points on one dimension.

Chapter 4 IntroduCtIon to neural networks usIng pytorCh

123

The set_weight() function initializes the random weights that the

neural network model will use in forward propagation. We need two

tensors weights and biases. The build_network() function simply

multiplies the weights with input, adds the bias to it, and generates the

predicted values. This is a custom function that we built. If we need to

implement the same thing in PyTorch, then it is much simpler to use

nn.Linear() when we need to use it for linear regression.

Chapter 4 IntroduCtIon to neural networks usIng pytorCh

124

Once we define a network structure, then we need to compare the

results with the output to assess the prediction step. The metric that

tracks the accuracy of the system is the loss function, which we want to

be minimal. The loss function may have a different shape. How do we

know exactly where the loss is at a minimum, which corresponds to which

iteration is providing the best results? To know this, we need to apply the

optimization function on the loss function; it finds the minimum loss

value. Then we can extract the parameters corresponding to that iteration.

Median, mode and standard deviation computation can be written

in the sa

Standard deviation shows the deviation from the measures of central

tendency, which indicates the consistency of the data/variable. It shows

whether there is enough fluctuation in data or not.

Chapter 4 IntroduCtIon to neural networks usIng pytorCh

125

 Recipe 4-4. Tensor Differentiation
 Problem
What is tensor differentiation, and how is it relevant in computational

graph execution using the PyTorch framework?

 Solution
The computational graph network is represented by nodes and connected

through functions. There are two different kinds of nodes: dependent and

independent. Dependent nodes are waiting for results from other nodes

to process the input. Independent nodes are connected and are either

constants or the results. Tensor differentiation is an efficient method to

perform computation in a computational graph environment.

 How It Works
In a computational graph, tensor differentiation is very effective because

the tensors can be computed as parallel nodes, multiprocess nodes, or

multithreading nodes. The major deep learning and neural computation

frameworks include this tensor differentiation.

Autograd is the function that helps perform tensor differentiation,

which means calculating the gradients or slope of the error function,

and backpropagating errors through the neural network to fine-tune the

weights and biases. Through the learning rate and iteration, it tries to

reduce the error value or loss function.

To apply tensor differentiation, the nn.backward() method needs to

be applied. Let’s take an example and see how the error gradients are

backpropagated. To update the curve of the loss function, or to find where

the shape of the loss function is minimum and in which direction it is

moving, a derivative calculation is required. Tensor differentiation is a way

to compute the slope of the function in a computational graph.

Chapter 4 IntroduCtIon to neural networks usIng pytorCh

126

In this script, the x is a sample tensor, for which automatic gradient

calculation needs to happen. The fn is a linear function that is created

using the x variable. Using the backward function, we can perform a

backpropagation calculation. The .grad() function holds the final output

from the tensor differentiation.

 Conclusion
This chapter discussed various activation functions and the use of the

activation functions in various situations. The method or system to select

the best activation function is accuracy driven; the activation function that

gives the best results should always be used dynamically in the model. We

also created a basic neural network model using small sample tensors,

updated the weights using optimization, and generated predictions. In the

next chapter, we see more examples.

Chapter 4 IntroduCtIon to neural networks usIng pytorCh

127© Pradeepta Mishra 2019
P. Mishra, PyTorch Recipes, https://doi.org/10.1007/978-1-4842-4258-2_5

CHAPTER 5

Supervised Learning
Using PyTorch
Supervised machine learning is the most sophisticated branch of

machine learning. It is in use in almost all fields, including artificial

intelligence, cognitive computing, and language processing. Machine

learning literature broadly talks about three types of learning: supervised,

unsupervised, and reinforcement learning. In supervised learning, the

machine learns to recognize the output; hence, it is task driven and the

task can be classification or regression.

In unsupervised learning, the machine learns patterns from data;

thus, it generalizes the new dataset and the learning happens by taking a

set of input features. In reinforcement learning, the learning happens in

response to a system that reacts to situations.

This chapter covers regression techniques in detail with a machine

learning approach and interprets the output from regression methods in

the context of a business scenario. The algorithmic classification is shown

in Figure 5-1.

128

Each object or row represents one event and each event is categorized

into groups. Identifying which level group a record belongs to is

called classification, in which the target variable has specific labels

or tags attached to the events. For example, in a bank database, each

customer is tagged as either a loyal customer or not a loyal customer.

In a medical records database, each patient’s disease is tagged. In the

telecom industry, each subscriber is tagged as a churn or non-churn

customer. These are examples in which a supervised algorithm performs

classification. The word classification comes from the classes available in

the target column.

ML Models

Classifica�on

Logis�c
Regression

Support Vector
Machine

Decision Tree

Bagging

Boos�ng

Stacking

Regression

Linear

Ridge

Lasso

SVR

GBM

Unsupervised
Learning

Clustering

Model
Selec�on

Grid Search

Cross
Valida�on

Dimension
Reduc�on

PCA

SVD

NMF

Figure 5-1. Algorithmic classification

Chapter 5 SuperviSed Learning uSing pytorCh

129

In regression learning, the objective is to predict the value of a

continuous variable; for example, given the features of a property, such as

the number of bedrooms, square feet, nearby areas, the township, and so

forth, the asking price for the house is determined. In such scenarios, the

regression models can be used. Similar examples include predicting stock

prices or the sales, revenue, and profit of a business.

In an unsupervised learning algorithm, we do not have an outcome

variable, and tagging or labeling is not available. We are interested in

knowing the natural grouping of the observations, or records, or rows in a

dataset. This natural grouping should be in such a way that within groups,

similarity should be at a maximum and between groups similarity should

be at a minimum.

In real-world scenarios, there are cases where regression does not

help predict the target variable. In supervised regression techniques, the

input data is also known as training data. For each record, there is a label

that has a continuous numerical value. The model is prepared through a

training process that predicts the right output, and the process continues

until the desired level of accuracy is achieved. We may need advanced

regression methods to understand the pattern existing in the dataset.

 Introduction to Linear Regression
Linear regression analysis is known as the most reliable, easy to apply, and

most widely used among all statistical techniques. This assumes linear,

additive relationships between dependent and independent variables. The

objective of linear regression is to predict the dependent or target variable

through independent variables. The specification of the linear regression

model is as follows.

Y = α + βX

This formula has a property in which the prediction for Y is a straight-

line function of each of the X variables, keeping all others fixed, and the

contributions of different X variables for the predictions are additive.

Chapter 5 SuperviSed Learning uSing pytorCh

130

The slopes of their individual straight-line relationships with Y are the

coefficients of the variables. The coefficients and intercept are estimated

by least squares (i.e., setting them equal to the unique values that

minimize the sum of squared errors within the sample of data to which the

model is fitted).

The model’s prediction errors are typically assumed to be

independently and identically normally distributed. When the beta

coefficient becomes zero, the input variable X has no impact on the

dependent variable. The OLS method attempts to minimize the sum of the

squared residuals. The residuals are defined as the difference between the

points on the regression line to the actual data points in the scatterplot.

This process seeks to estimate the beta coefficients in a multiple linear

regression model.

Let’s take a sample dataset of 15 people. We capture the height

and weight for each of them. By taking only their heights, can we

predict the weight of a person using a linear regression technique?

The answer is yes.

Person 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Height 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

Weight 115 117 120 123 126 129 132 135 139 142 146 150 154 159 164

To represent this graphically, we measure height on the x axis, and

we measure weight on the y axis. The linear regression equation is on

the graph where the intercept is 87.517 and the coefficient is 3.45. The

data points are represented by dots and the connecting line shows linear

relationship (see Figure 5-2).

Chapter 5 SuperviSed Learning uSing pytorCh

131

Why do we assume that a linear relationship exists between the

dependent variable and a set of independent variables, when most o

real-life scenarios reflect any other type of relationship than a linear

relationship? The reasons why we stick to linear relationship are

described next.

It is easy to understand and interpret. There are ways to transform an

existing deviation from linearity and make it linear. It is simple to generate

prediction.

The field of predictive modeling is mainly concerned with minimizing

the errors in a predictive model, or making the most accurate predictions

possible. Linear regression was developed in the field of statistics. It

is studied as a model for understanding the relationship between the

input and the output of numerical variables, but it has been borrowed by

machine learning. It is both a statistical algorithm and a machine learning

algorithm. The linear regression model depends on the following set of

assumptions.

y = 3.45x - 87.517
R² = 0.991

100

110

120

130

140

150

160

170

50 55 60 65 70 75

W
ei
gh

t

Height

weight

weight

Linear (weight)

Figure 5-2. Height and weight relationships

Chapter 5 SuperviSed Learning uSing pytorCh

132

• The linear relationship between dependent and

independent variables.

• There should not be any multicollinearity among the

predictors. If we have more than two predictors in the

input feature space, the input features should not be

correlated.

• There should not be any autocorrelation.

• There should not be any heteroscedasticity. The

variance of the error term should be constant, along

the predictors on another axis, which means the error

variance should be constant.

• The error term should be normally distributed.

The error term is basically defined as the difference

between an actual and a predicted variable.

Within linear regression, there are different variants but in machine

learning we consider them as one method. For example, if we are using

one explanatory variable to predict the dependent variable, it is called a

simple linear regression model. If we are using more than one explanatory

variable, then the model is called a multiple linear regression model.

The ordinary least square is a statistical technique to predict the linear

regression model; hence, sometimes the linear regression model is also

known as an ordinary least square model.

Linear regression is very sensitive to missing values and outliers

because the statistical method of computing a linear regression depends

on the mean, standard deviation, and covariance between the variables.

Mean is sensitive to outlier values; therefore, it is expected that we need

to clear out the outliers before proceeding toward forming the linear

regression model.

Chapter 5 SuperviSed Learning uSing pytorCh

133

In machine learning literature, the method for getting optimum beta

coefficients that minimize the error in a regression model is achieved

by a method called a gradient descent algorithm. How does the gradient

descent algorithm work? It starts with an initial value, preferably from zero,

and updates the scaling factor by a learning rate regularly iteratively to

minimize the error term.

Understanding linear regression based on a machine learning

approach requires special data preparation that avoids assumptions by

keeping the original data intact. Data transformation is required to make

your model more robust.

 Recipe 5-1. Data Preparation for the
Supervised Model
 Problem
How do we perform data preparation for creating a supervised learning

model using PyTorch?

 Solution
We take an open source dataset, mtcars.csv, which is a regression dataset,

to test how to create an input and output tensor.

 How It Works
First, the necessary library needs to be imported.

Chapter 5 SuperviSed Learning uSing pytorCh

134

The predictor for the supervised algorithm is qsec, which is used to

predict the mileage per gallon provided by the car. What is important here

is the data type. First, we import the data, which is in NumPy format, into

a PyTorch tensor format. The default tensor format is a float. Using the

tensor float format would cause errors when performing the optimization

function, so it is important to change the tensor data type. We can reformat

the tensor type by using the unsqueeze function and specifying that the

dimension is equal to 1.

Chapter 5 SuperviSed Learning uSing pytorCh

135

To reproduce the same result, a manual seed needs to be set; so torch.

manual_seed(1234) was used. Although we see that the data type is a

tensor, if we check the type function, it will show as double, because a

tensor type double is required for the optimization function.

 Recipe 5-2. Forward and Backward
Propagation
 Problem
How do we build a neural network torch class function so that we can

build a forward propagation method?

 Solution
Design the neural network class function, including the hidden layer from

the input layer and from the hidden layer to the output layer. In the neural

network architecture, the number of neurons in the hidden layer also

needs to be specified.

Chapter 5 SuperviSed Learning uSing pytorCh

136

 How It Works
In the class Net() function, we first initialize the feature, hidden, and

output layers. Then we introduce the back-propagation function using the

rectified linear unit as the activation function in the hidden layer.

The following image shows the ReLU activation function. It is

popularly used across different neural network models; however, the

choice of the activation function should be based on accuracy. If we get

more accuracy in a sigmoid function, we should consider that.

Now the network architecture is mentioned in the supervised learning

model. The n_feature shows the number of neurons in the input layer.

Since we have one input variable, qsec, we will use 1. The number of

neurons in the hidden layer can be decided based on the input and the

Chapter 5 SuperviSed Learning uSing pytorCh

137

degree of accuracy required in the learning model. We use the n_hidden

equal to 20, which means 20 neurons in the hidden layer 1, and the output

neuron is 1.

The role of the optimization function is to minimize the loss function

defined with respect to the parameters and the learning rate. The learning

rate chosen here is 0.2. We also pass the neural network parameters into

the optimizer. There are various optimization functions.

• SGD. Implements stochastic gradient descent

(optionally with momentum). The parameters could be

momentum, learning rate, and weight decay.

• Adadelta. Adaptive learning rate. Has five

different arguments, parameters of the network, a

coefficient used for computing a running average

of the squared gradients, the addition of a term

for achieving numerical stability of the model, the

learning rate, and a weight decay parameter to apply

regularization.

• Adagrad. Adaptive subgradient methods for online

learning and stochastic optimization. Has arguments

such as iterable of parameter to optimize the learning

rate and learning rate decay with weight decay.

Chapter 5 SuperviSed Learning uSing pytorCh

138

• Adam. A method for stochastic optimization. This

function has six different arguments, an iterable of

parameters to optimize, learning rate, betas (known as

coefficients used for computing running averages of

the gradient and its square), a parameter to improve

numerical stability, and so forth.

• ASGD. Acceleration of stochastic approximation by

averaging. It has five different arguments, iterable of

parameters to optimize, learning rate, decay term,

weight decay, and so forth.

• RMSprop algorithm. Uses a magnitude of gradients that

are calculated to normalize the gradients.

• SparseAdam. Implements a lazy version of the Adam

algorithm suitable for sparse tensors. In this variant,

only moments that show up in the gradient are

updated, and only those portions of the gradient are

applied to the parameters.

Apart from the optimization function, a loss function needs to be

selected before running the supervised learning model. Again, there are

various loss functions; let’s look at the error functions.

• MSELoss. Creates a criterion that measures the mean

squared error between elements in the input variable

and target variable. For regression-related problems,

this is the best loss function.

Chapter 5 SuperviSed Learning uSing pytorCh

139

After running the supervised learning model, which is a regression

model, we need to print the actual vs. predicted values and represent them

in a graphical format; therefore, we need to turn on the interactive feature

of the model.

 Recipe 5-3. Optimization and Gradient
Computation
 Problem
How do we build a basic supervised neural network training model using

PyTorch with different iterations?

 Solution
The basic neural network model in PyTorch requires six different steps:

preparing training data, initializing weights, creating a basic network

model, calculating loss function, selecting the learning rate, and

optimizing the loss function with respect to the parameters of the model.

Chapter 5 SuperviSed Learning uSing pytorCh

140

 How It Works
Let’s follow a step-by-step approach to create a basic neural network

model.

The final prediction result from the model with the first iteration and

the last iteration is now represented in the following graph.

Chapter 5 SuperviSed Learning uSing pytorCh

141

In the initial step, the loss function was 276.91. After optimization, the

loss function became 35.1890. The fitted regression line and the way it is

fitted to the dataset are represented.

 Recipe 5-4. Viewing Predictions
 Problem
How do we extract the best results from the PyTorch-based supervised

learning model?

 Solution
The computational graph network is represented by nodes and connected

through functions. Various techniques can be applied to minimize the

error function and get the best predictive model. We can increase the

iteration numbers, estimate the loss function, optimize the function, print

actual and predicted values, and show it in a graph.

 How It Works
To apply tensor differentiation, the nn.backward() method needs to

be applied. Let’s take an example to see how the error gradients are

backpropagated. The grad() function holds the final output from the tensor

differentiation.

Chapter 5 SuperviSed Learning uSing pytorCh

142

The tuning parameters that can increase the accuracy of the

supervised learning model, which is a regression use case, can be achieved

with the following methods.

• Number of iterations

• Type of loss function

• Selection of optimization method

• Selection of loss function

• Learning rate

• Decay in the learning rate

• Momentum require for optimization

Chapter 5 SuperviSed Learning uSing pytorCh

143

The real dataset looks like the following.

The following script explains reading the mpg and qsec columns from

the mtcars.csv dataset. It converts those two variables to tensors using the

unsqueeze function, and then uses it inside the neural network model for

prediction.

After 1000 iterations, the model converges.

Chapter 5 SuperviSed Learning uSing pytorCh

144

The neural networks in the torch library are typically used with the nn

module. Let’s take a look at that.

Neural networks can be constructed using the torch.nn package, which

provides almost all neural network related functionalities, including the

following.

• Linear layers: nn.Linear, nn.Bilinear

• Convolution layers: nn.Conv1d, nn.Conv2d,

nn.Conv3d, nn.ConvTranspose2d

• Nonlinearities: nn.Sigmoid, nn.Tanh, nn.ReLU,

nn.LeakyReLU

• Pooling layers: nn.MaxPool1d, nn.AveragePool2d

• Recurrent networks: nn.LSTM, nn.GRU

• Normalization: nn.BatchNorm2d

• Dropout: nn.Dropout, nn.Dropout2d

• Embedding: nn.Embedding

• Loss functions: nn.MSELoss, nn.CrossEntropyLoss,

nn.NLLLoss

Chapter 5 SuperviSed Learning uSing pytorCh

145

The standard classification algorithm is another version of a

supervised learning algorithm, in which the target column is a class

variable and the features could be numeric and categorical.

 Recipe 5-5. Supervised Model Logistic
Regression
 Problem
How do we deploy a logistic regression model using PyTorch?

 Solution
The computational graph network is represented by nodes and connected

through functions. Various techniques can be applied to minimize the

error function and get the best predictive model. We can increase the

iteration numbers, estimate the loss function, optimize the function, print

actual and predicted values, and show it in a graph.

 How It Works
To apply tensor differentiation, the nn.backward() method needs to be

applied. Let’s look at an example.

Chapter 5 SuperviSed Learning uSing pytorCh

146

The following shows data preparation for a logistic regression model.

Let’s look at the sample dataset for classification.

Set up the neural network module for the logistic regression model.

Chapter 5 SuperviSed Learning uSing pytorCh

147

Check the neural network configuration.

Run iterations and find the best solution for the sample graph.

The first iteration provides almost 99% accuracy, and subsequently,

the model provides 100% accuracy on the training data (see Figures 5-3

and 5-4).

Chapter 5 SuperviSed Learning uSing pytorCh

148

Figure 5-3. Initial accuracy

Figure 5-4. Final accuracy

Final accuracy shows 100, which is a clear case of overfitting, but we

can control this by introducing the dropout rate, which is covered in the

next chapter.

Chapter 5 SuperviSed Learning uSing pytorCh

149

 Conclusion
This chapter discussed two major types of supervised learning

algorithms—linear regression and logistic regression—and their

implementation using sample datasets and the PyTorch program. Both

algorithms are linear models, one for predicting real valued output and the

other for separating one class from another class. Although we considered

a two-class classification in the logistic regression example, it can be

extended to a multiclass classification model.

Chapter 5 SuperviSed Learning uSing pytorCh

151© Pradeepta Mishra 2019
P. Mishra, PyTorch Recipes, https://doi.org/10.1007/978-1-4842-4258-2_6

CHAPTER 6

Fine-Tuning Deep
Learning Models
Using PyTorch
Deep learning models are becoming very popular. They have very

deep roots in the way biological neurons are connected and the way

they transmit information from one node to another node in a network

model.

Deep learning has a very specific usage, particularly when the single

function–based machine learning techniques fail to approximate real-

life challenges. For example, when the data dimension is very large

(in the thousands), then standard machine learning algorithms fail to

predict or classify the outcome variable. This is also not very efficient

computationally. It consumes a lot of resources and model convergence

never happens. Most prominent examples are object detection, image

classification, and image segmentation.

152

The most commonly used deep learning algorithms can be classified

into three groups.

• Convolutional neural network. Mostly suitable for

highly sparse datasets, image classification, image

recognition, object detection, and so forth.

• Recurrent neural network. Applicable to processing

sequential information, if there is any internal

sequential structure in the way data is generated. This

includes music, natural language, audio, and video,

where the information is consumed in a sequence.

• Deep neural network. Typically applicable when a

single layer of a machine learning algorithm cannot

classify or predict correctly. There are three variants.

• Deep network, where the number of neurons

present in each hidden layer is usually more than

the previous layer

• Wide network, where the number of hidden layers

are more than a usual neural network model

• Both deep and wide network, where the number of

neurons and the number of layers in the network

are very high

This chapter discusses how to fine-tune deep learning models

using hyperparameters. There is a difference between the parameters

and hyperparameters. Usually in the deep learning models, we are not

interested in estimating the parameters because they are the weights

and keep changing based on the initial values, learning rate, and number

of iterations. What is important is deciding on the hyperparameters to

fine- tune the models, as discussed in Chapter 3, so that optimum results

can be derived.

Chapter 6 Fine-tuning Deep Learning MoDeLs using pytorCh

153

 Recipe 6-1. Building Sequential Neural
Networks
 Problem
Is there any way to build sequential neural network models, as we do in

Keras in PyTorch, instead of declaring the neural network models?

 Solution
If we declare the entire neural network model, line by line, with the

number of neurons, number of hidden layers and iterations, choice of loss

functions, optimization functions, and the selection of weight distribution,

and so forth, it will be extremely cumbersome to scale the model. And, it

is not foolproof—errors could crop up in the model. To avoid the issues in

declaring the entire model line by line, we can use a high-level function

that assumes certain default parameters in the back end and returns the

result to the user with minimum hyperparameters. Yes, it is possible to not

have to declare the neural network model.

 How It Works
Let’s look at how to create such models. In the Torch library, the neural

network module contains a functional API (application programming

interface) that contains various activation functions, as discussed in earlier

chapters.

Chapter 6 Fine-tuning Deep Learning MoDeLs using pytorCh

154

In the following lines of script, we create a simple neural network

model with linear function as the activation function for input to the

hidden layer, and the hidden layer to the output layer.

The following function requires declaring class Net, declaring the

features, hidden neurons, and activation functions, which can be easily

replaced by the sequential module.

Instead of using this script, we can change the class function and

replace it with the sequential function. The Keras functions replace the

TensorFlow functions, which means that many lines of TensorFlow code

can be replaced by a few lines of Keras script. The same thing is possible

in PyTorch without requiring any external modules. As an example, in

the following, net2 explains the sequential model and net1 explains the

preceding script. From a readability perspective, net2 is much better

than net1.

If we simply print both the net1 and net2 model architectures, it does

the same thing.

Chapter 6 Fine-tuning Deep Learning MoDeLs using pytorCh

155

 Recipe 6-2. Deciding the Batch Size
 Problem
How do we perform batch data training for a deep learning model using

PyTorch?

 Solution
Training a deep learning model requires a large amount of labeled data.

Typically, it is the process of finding a set of weights and biases in such a

way that the loss function becomes minimal with respect to matching the

target label. If the training process approximates well to the function, the

prediction or classification becomes robust.

 How It Works
There are two methods for training a deep learning network: batch training

and online training. The choice of training algorithm dictates the method

of learning. If the algorithm is backpropagation, then online learning

is better. For a deep and wide network model with various layers of

backpropagation and forward propagation, then batch training is better.

Chapter 6 Fine-tuning Deep Learning MoDeLs using pytorCh

156

In the training process, the batch size is 5; we can change the batch size

to 8 and see the results. In online training process, the weights and biases

are updated for every training example based on the variations between

predicted result and actual result. However, in the batch training process,

the differences between actual and predicted values which is error gets

accumulated and computed as a single number over the batch size, and

reported at the final layer.

After training the dataset for five iterations, we can print the batch and

step. If we compare the online training and batch training, batch training

has many more advantages than online training. When the requirement

is to train a huge dataset, there are memory constraints. When we cannot

process a huge dataset in a CPU environment, batch training comes to the

rescue. In a CPU environment, we can process large amounts of data with

a smaller batch size.

Chapter 6 Fine-tuning Deep Learning MoDeLs using pytorCh

157

We take the batch size as 8 and retrain the model.

Chapter 6 Fine-tuning Deep Learning MoDeLs using pytorCh

158

 Recipe 6-3. Deciding the Learning Rate
 Problem
How do we identify the best solution based on learning rate and the

number of epochs?

 Solution
We take a sample tensor and apply various alternative models and print

model parameters. The learning rate and epoch number are associated

with model accuracy. To reach the global minimum state of the loss

function, it is important to keep the learning rate to a minimum and

the epoch number to a maximum so that the iteration can take the loss

function to the minimum state.

 How It Works
First, the necessary library needs to be imported. To find the minimum loss

function, gradient descent is typically used as the optimization algorithm,

which is an iterative process. The objective is to find the rate of decline of

the loss function with respect to the trainable parameters.

Chapter 6 Fine-tuning Deep Learning MoDeLs using pytorCh

159

The sample dataset taken for the experiment includes the following.

The sample dataset and the first five records would look like the

following.

Chapter 6 Fine-tuning Deep Learning MoDeLs using pytorCh

160

Using the PyTorch utility function, let’s load the tensor dataset,

introduce the batch size, and test out.

Declare the neural network module.

Now, let’s look at the network architecture.

Chapter 6 Fine-tuning Deep Learning MoDeLs using pytorCh

161

While performing the optimization, we can include many options;

select the best among the best.

Chapter 6 Fine-tuning Deep Learning MoDeLs using pytorCh

162

 Recipe 6-4. Performing Parallel Training
 Problem
How do we perform parallel data training that includes a lot of models

using PyTorch?

Chapter 6 Fine-tuning Deep Learning MoDeLs using pytorCh

163

 Solution
The optimizers are really functions that augment the tensor. The process of

finding a best model requires parallel training of many models. The choice

of learning rate, batch size, and optimization algorithms make models

unique and different from other models. The process of selecting the best

model requires hyperparameter optimization.

 How It Works
First, the right library needs to be imported. The three hyperparameters

(learning rate, batch size, and optimization algorithm) make it possible

to train multiple models in parallel, and the best model is decided by

the accuracy of the test dataset. The following script uses the stochastic

gradient descent algorithm, momentum, RMS prop, and Adam as the

optimization method.

Let’s look at the chart and epochs.

Chapter 6 Fine-tuning Deep Learning MoDeLs using pytorCh

164

 Conclusion
In this chapter, we looked at various ways to make the deep learning model

learn from the training dataset. The training process can be made effective

by using hyperparameters. The selection of the right hyperparameter is the

key. The deep learning models (convolutional neural network, recurrent

neural network, and deep neural network) are different in terms of

architecture, but the training process and the hyperparameters remain the

same. The choice of hyperparameters and selection process is much easier

in PyTorch than any other framework.

Chapter 6 Fine-tuning Deep Learning MoDeLs using pytorCh

165© Pradeepta Mishra 2019
P. Mishra, PyTorch Recipes, https://doi.org/10.1007/978-1-4842-4258-2_7

CHAPTER 7

Natural Language
Processing Using
PyTorch
Natural language processing is an important branch of computer science.

It is the study of human language by computers performing various tasks.

Natural language study is also known as computational linguistics. There

are two different components of natural language processing: natural

language understanding and natural language generation. Natural

language understanding involves analysis and knowledge of the input

language and responding to it. Natural language generation is the process

of creating language from input text. Language can be used in various

ways. One word may have different meanings, so removing ambiguity is an

important part of natural language understanding.

The ambiguity level can be of three types.

• Lexical ambiguity is based on parts of speech; deciding

whether a word is a noun, verb, adverb, and so forth.

• Syntactic ambiguity is where one sentence can have multiple

interpretations; the subject and predicate are neutral.

• Referential ambiguity is related to an event or scenario

expressed in words.

166

Text analysis is a precursor to natural language processing and

understanding. Text analysis means corpus creation creating a collected

set of documents, and then removing white spaces, punctuation, stop

words, junk values such as symbols, emojis, and so forth, which have no

textual meaning. After clean up, the net task is to represent the text in

vector form. This is done using the standard Word2vec model, or it can be

represented in term frequency and inverse document frequency format

(tf- idf). In today’s world, we see a lot of applications that use natural

language processing; the following are some examples.

• Spell checking applications—online and on

smartphones. The user types a particular word and the

system checks the meaning of the word and suggests

whether the spelling needs to be corrected.

• Keyword search has been an integral part of our lives

over the last decade. Whenever we go to a restaurant,

buy something, or visit some place, we do an online

search. If the keyword typed is wrong, no match is

retrieved; however, the search engine systems are

so intelligent that they predict the user’s intent and

suggest pages that user actually wants to search.

• Predictive text is used in various chat applications.

The user types a word, and based on the user’s writing

pattern, a choice of next words appear. The user is

prompted to select any word from the list to frame his

sentence.

• Question-and-answering systems like Google Home,

Amazon Alexa, and so forth, allow users to interact with

the system in natural language. The system processes

that information, does an intelligent search, and

retrieves the best results for the user.

Chapter 7 Natural laNguage proCessiNg usiNg pytorCh

167

• Alternate data extraction is when actual data is not

available to the user, but the user can use the Internet

to fetch data that is publicly available, and search for

relevant information. For example, if I want to buy a

laptop, I want to compare the price of the laptop on

various online portals. I have one system scrape the

price information from various websites and provide

a summary of the prices to me. This process is called

alternate data collection using web scraping, text

processing and natural language processing.

• Sentiment analysis is a process of analyzing the mood

of the customer, user, or agent from the text that they

express. Customer reviews, movie reviews, and so forth.

The text presented needs to be analyzed and tagged as

a positive sentiment or a negative sentiment. Similar

applications can be built using sentiment analysis.

• Topic modeling is the process of finding distinct topics

presented in the corpus. For example, if we take text

from science, math, English, and biology, and jumble

all the text, then ask the machine to classify the text

and tell us how many topics exist in the corpus, and

the machine correctly separates the words present in

English from biology, biology from science, and so on

so forth. This is called a perfect topic modeling system.

• Text summarization is the process of summarizing the

text from the corpus in a shorter format. If we have a

two-page document that is 1000 words, and we need

to summarize it in a 200-word paragraph, then we can

achieve that by using text summarization algorithms.

Chapter 7 Natural laNguage proCessiNg usiNg pytorCh

168

• Language translation is translating one language to

another, such as English to French, French to German,

and so on so forth. Language translation helps the

user understand another language and make the

communication process effective.

The study of human language is discrete and very complex. The same

sentence may have many meanings, but it is specifically constructed for an

intended audience. To understand the complexity of natural language, we

not only need tools and programs but also the system and methods. The

following five-step approach is followed in natural language processing to

understand the text from the user.

• Lexical analysis identifies the structure of the word.

• Syntactic analysis is the study of English grammar and

syntax.

• Semantic analysis is the meaning of a word in a context.

• PoS (point of sale) analysis is the understanding and

parsing parts of speech.

• Pragmatic analysis is understanding the real meaning

of a word in context.

In this chapter, we use PyTorch to implement the steps that are most

commonly used in natural language processing tasks.

 Recipe 7-1. Word Embedding
 Problem
How do we create a word-embedding model using PyTorch?

Chapter 7 Natural laNguage proCessiNg usiNg pytorCh

169

 Solution
Word embedding is the process of representing the words, phrases, and

tokens in a meaningful way in a vector structure. The input text is mapped

to vectors of real numbers; hence, feature vectors can be used for further

computation by machine learning or deep learning models.

 How It Works
The words and phrases are represented in real vector format. The words

or phrases that have similar meanings in a paragraph or document have

similar vector representation. This makes the computation process

effective in finding similar words. There are various algorithms for creating

embedded vectors from text. Word2vec and GloVe are known frameworks

to execute word embeddings. Let’s look at the following example.

Chapter 7 Natural laNguage proCessiNg usiNg pytorCh

170

The following sets up an embedding layer.

Let’s look at the sample text. The following text has two paragraphs,

and each paragraph has several sentences. If we apply word embedding

on these two paragraphs, then we will get real vectors as features from the

text. Those features can be used for further computation.

Tokenization is the process of splitting sentences into small chunks of

tokens, known as n-grams. This is called a unigram if it is a single word, a

bigram if it is two words, a trigram if it is three words, so on and so forth.

Chapter 7 Natural laNguage proCessiNg usiNg pytorCh

171

The PyTorch n-gram language modeler can extract relevant key words.

The n-gram extractor has three arguments: the length of the

vocabulary to extract, a dimension of embedding vector, and context size.

Let’s look at the loss function and the model specification.

Chapter 7 Natural laNguage proCessiNg usiNg pytorCh

172

Apply the Adam optimizer.

Context extraction from sentences is also important. Let’s look at the

following function.

 Recipe 7-2. CBOW Model in PyTorch
 Problem
How do we create a CBOW model using PyTorch?

Chapter 7 Natural laNguage proCessiNg usiNg pytorCh

173

 Solution
There are two different methods to represent words and phrases in vectors:

continuous bag of words (CBOW) and skip gram. The bag-of-words

approach learns embedding vectors by predicting the word or phrase in

context. Context means the words before and after the current word. If

we take a context of size 4, this implies that the four words to the left of

the current word and the four words to the right of it are considered for

context. The model tries to find those eight words in another sentence to

predict the current word.

 How It Works
Let’s look at the following example.

Chapter 7 Natural laNguage proCessiNg usiNg pytorCh

174

Graphically, the bag-of-words model looks like what is shown in

Figure 7-1. It has three layers: input, which are the embedding vectors that

take the words and phrases into account; the output vector, which is the

relevant word predicted by the model; and the projection layer, which is a

computational layer provided by the neural network model.

INPUT

w(t-2)

w(t+2)

w(t-1)

w(t+1)

w(t)

PROJECTION

SUM

OUTPUT

Figure 7-1. CBOW model representation

Chapter 7 Natural laNguage proCessiNg usiNg pytorCh

175

 Recipe 7-3. LSTM Model
 Problem
How do we create a LSTM model using PyTorch?

 Solution
The long short-term memory (LSTM) model, also known as the specific

form of recurrent neural network model, is commonly used in the natural

language processing field. Text and sentences come in sequences to make

a meaningful sentence, so we need a model that remembers the long and

short sequences of text to predict a word or text.

 How It Works
Let’s look at the following example.

Chapter 7 Natural laNguage proCessiNg usiNg pytorCh

176

Prepare a sequence of words as training data to form the LSTM

network.

Chapter 7 Natural laNguage proCessiNg usiNg pytorCh

177

Chapter 7 Natural laNguage proCessiNg usiNg pytorCh

178

Chapter 7 Natural laNguage proCessiNg usiNg pytorCh

179© Pradeepta Mishra 2019
P. Mishra, PyTorch Recipes, https://doi.org/10.1007/978-1-4842-4258-2

Index

A
Activation functions

bilinear function, 113
definition, 112
hyperbolic tangent function, 115
leaky ReLU, 118
linear function, 113
log sigmoid transfer

function, 116
PyTorch vs. TensorFlow, 112
ReLU, 117–118
sigmoid function, 114
visualization, shape of, 119

Adadelta, 137
Adagrad, 137
Adam optimizer, 138, 172
Algorithmic classification, 127–128
Alternate data collection, 167
Artificial neural

network (ANN), 111
Autoencoders

architecture, 91, 94
clustering model, 95
encoded data, 3D plot, 98
features, 97
hyperbolic tangent function, 94
layer, 92

MNIST dataset, 92, 95
torchvision library, 91, 93

Autograd, 2, 9

B
Bernoulli distribution, 29–30,

32, 45–46, 49
Beta distribution, 29, 46
Bilinear function, 113
Binomial distribution, 29, 45–46, 49

C
Central processing units (CPUs), 1
Computational graph, 29, 34–35
Computational linguistics, 165
Continuous bag of words (CBOW)

example, 173
representation, 174
vectors embedding, 173

Continuous uniform distribution, 31
Convolutional neural

network (CNN), 30, 33, 152
architecture, 73
computational process, 77
hyperparameters, 71
loader functionality, 73

https://doi.org/10.1007/978-1-4842-4258-2

180

MNIST dataset, 71
net1 object, 78
pickle file format, 79
pooling layer, 73
prediction services, 77
predictions process, 76
restore function, 79
restore_net() function, 77
save function, 78
test accuracy, 75–76
training loss, 75

D, E
Data mining, 111
Deep learning models, 1–6, 26, 151

batch size
batch training, 156
CPU environment, 156
loss function, 155
online training, 155

hyperparameters, 163
learning rate, 158
parallel data training, 162
sequential neural

network, 153–154
Deep neural network

(DNN), 30, 33, 152
Discrete probability

distribution, 32, 45–46
Double exponential

distribution, 47

F
Facebook’s artificial

intelligence, 6

G
GloVe, 169
Gradient computation,

34, 38–41, 45
Gradient descent algorithm, 133
Graphics processing units

(GPUs), 1–2, 5, 7, 9

H
Hyperbolic tangent function, 115

I, J
Implementation, deep

learning, 5
Installation, PyTorch, 7–9

K
Keyword search application, 166

L
Language translation, 168
Laplacian distribution, 47
Leaky ReLU, 118
Lexical ambiguity, 165
Linear function, 113

Convolutional neural
network (CNN) (cont.)

Index

181

Linear regression
assumptions, 131–132
formula, 129
gradient descent algorithm, 133
height and weight, 130–131
mean, standard deviation and

covariance, 132
multiple linear regression

model, 132
OLS method, 130
ordinary least square

model, 132
prediction errors, 130
predictive modeling, 131
simple linear regression

model, 132
specification of, 129

Logistic regression model, 145–148
Log sigmoid transfer function, 116
Long short-term memory (LSTM)

model, 80–81, 83–84, 175
Loss function, 49

backward() function, 59–60
epochs, 54, 57
estimated parameters, 55
final loss value, 58
grad function, 53, 59
hyperparameters, 60
initial value, 51
iteration level, 58
learning rate, 52, 55–56, 61
linear equation

computation, 50
mean square error (MSE), 50, 52

MSELoss, 52–53
parameter grid, 54, 60
weight tensor, 50

M
Machine learning, 1, 3–6, 127
Mean computation, 36
Multidimensional tensor, 15
Multinomial distribution, 29–30,

32–33, 49
Multiple linear regression

model, 132
Multiprocessing, 9

N
Natural language generation, 165
Natural language processing

applications, 166–168
five-step approach, 168

Natural language
understanding, 165

Network architecture, 160
Neural network (NN), 122

activation (see Activation
functions)

architecture, 135
data mining, 111
data preparation, 122
definition, 111
design, 135
error functions, 138
functionalities, 144

Index

182

median, mode and standard
deviation, 124

module, 2–3, 5–6, 9, 30, 33–35,
45, 160

Net() function, 136
network architecture, 136
optimization functions

Adadelta, 137
Adagrad, 137
Adam, 138
ASGD, 138
RMSprop algorithm, 138
SGD, 137
SparseAdam, 138

ReLU activation function, 136
set_weight() function, 123
step-by-step approach, 122
structure, 124
tensor differentiation, 125–126
torch.nn package, 144

n-gram language modeler, 171
Normal distribution, 29–30,

33, 47–49
NumPy-based operations, 2

O
Optim module, 2, 9
Optimization function

Adadelta, 63
Adam, 63, 65
backpropagation process, 68
epochs, 69–70

gradients, 62, 64
loss function, 64, 68
parameters, 70
predicted tensors, 65
regression line, 65
Tensor.backward(), 69
tensor values, 65
torch.no_grad(), 69
training set, 67
validation dataset, 67–68

Ordinary least square model, 132

P
Predictive text, 166
Probability distribution

autoencoders (see
Autoencoders)

CNN, 71, 73, 75–79
loss function (see Loss function)
math operations, 106, 108
model overfitting

dropout rate, 99, 101, 104
hyperparameters, 102
overfitting loss and dropout

loss, 104
parameters, 102
predicted values, 102
training accuracy, 100
training dataset, 99

optimization function, 62–70
RNN, 80–89
types, 49
weights, dropout rate, 104–105

Neural network (NN) (cont.)

Index

183

Q
Question-and-answering

systems, 166

R
Rectified linear unit

(ReLu), 117–118
Recurrent neural network

(RNN), 30, 33, 152
Adam optimizer, 84
built-in functions, 87–90
dsets.MINIST() function, 82
embedding layers, 108–109
hyperparameters, 81
image dataset, 82
LSTM model, 80–81, 83–84
memory network, 80
MNIST dataset, 80
predictions, 85
regression problems, 86

cos function, 87
nonlinear cyclical

pattern, 86
output layer, 86

test accuracy, 84
test data, 83
time series, 81
weights, 81
Word2vec, 81

Referential ambiguity, 165
Regression learning, 129
RMSprop algorithm, 138

S
Sentiment analysis, 167
Sequential neural network

class Net, 154
functional API, 153
hyperparameters, 153
Keras functions, 154
model architectures, 154

Sigmoid function, 114
Simple linear regression

model, 132
Skip gram, 173
SparseAdam, 138
Standard deviation, 37, 47
Statistical distribution, 29, 31,

36, 45
Statistics, 32, 36, 46
Stochastic gradient

descent (SGD), 2, 137
Stochastic variable, 29, 49
Supervised learning

computational graph
network, 141

data preparation, 133–135
forward and backward

propagation (see Neural
network (NN))

grad() function, 141
linear regression (see Linear

regression)
logistic regression

model, 145–148
methods, 142

Index

184

mtcars.csv dataset, 143
nn.backward() method, 141
optimization and gradient

computation, 139–141
training data, 129

Syntactic ambiguity, 165

T
Tensor differentiation, 125–126
TensorFlow functions, 5–6, 154
Tensors

arrange function, 14–15
clamp function, 24
data structure, 9
dimensions, 15–17
is_storage function, 10
is_tensor function, 10
logarithmic values, 26
LongTensor/index select

function, 18–19
mathematical functions, 21–22
NumPy functions, 10–13, 23
1D, 15, 36, 43
split function, 19

transformation functions, 26
2D, 15, 24–25, 36, 43
unbind function, 21
uniform distribution, 13

Text analysis, 166
Text summarization, 167
Tokenization, 170
Topic modeling, 167
Training data, 129

U, V
Unsupervised learning, 127, 129
Utility function, 160
Utils, 9

W, X, Y, Z
Weight initialization, 30, 33, 45
Word2vec, 166, 169
Word embeddings, 109

context extraction, 172
defined, 169
example, 169–170
n-gram extractor, 171
vector format, 169

Supervised learning (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to PyTorch, Tensors, and Tensor Operations
	What Is PyTorch?
	PyTorch Installation
	Recipe 1-1. Using Tensors
	Problem
	Solution
	How It Works

	Conclusion

	Chapter 2: Probability Distributions Using PyTorch
	Recipe 2-1. Sampling Tensors
	Problem
	Solution
	How It Works

	Recipe 2-2. Variable Tensors
	Problem
	Solution
	How It Works

	Recipe 2-3. Basic Statistics
	Problem
	Solution
	How It Works

	Recipe 2-4. Gradient Computation
	Problem
	Solution
	How It Works

	Recipe 2-5. Tensor Operations
	Problem
	Solution
	How It Works

	Recipe 2-6. Tensor Operations
	Problem
	Solution
	How It Works

	Recipe 2-7. Distributions
	Problem
	Solution
	How It Works

	Conclusion

	Chapter 3: CNN and RNN Using PyTorch
	Recipe 3-1. Setting Up a Loss Function
	Problem
	Solution
	How It Works

	Recipe 3-2. Estimating the Derivative of the Loss Function
	Problem
	Solution
	How It Works

	Recipe 3-3. Fine-Tuning a Model
	Problem
	Solution
	How It Works

	Recipe 3-4. Selecting an Optimization Function
	Problem
	Solution
	How It Works

	Recipe 3-5. Further ­Optimizing the Function
	Problem
	Solution
	How It Works

	Recipe 3-6. Implementing a Convolutional Neural Network (CNN)
	Problem
	Solution
	How It Works

	Recipe 3-7. Reloading a Model
	Problem
	Solution
	How It Works

	Recipe 3-8. Implementing a Recurrent Neural Network (RNN)
	Problem
	Solution
	How It Works

	Recipe 3-9. Implementing a RNN for Regression Problems
	Problem
	Solution
	How It Works

	Recipe 3-10. Using PyTorch Built-in Functions
	Problem
	Solution
	How It Works

	Recipe 3-11. Working with Autoencoders
	Problem
	Solution
	How It Works

	Recipe 3-12. Fine-Tuning Results Using Autoencoder
	Problem
	Solution
	How It Works

	Recipe 3-13. Visualizing the Encoded Data in a 3D Plot
	Problem
	Solution
	How It Works

	Recipe 3-14. Restricting Model Overfitting
	Problem
	Solution
	How It Works

	Recipe 3-15. Visualizing the Model Overfit
	Problem
	Solution
	How It Works

	Recipe 3-16. Initializing Weights in the Dropout Rate
	Problem
	Solution
	How It Works

	Recipe 3-17. Adding Math Operations
	Problem
	Solution
	How It Works

	Recipe 3-18. Embedding Layers in RNN
	Problem
	Solution
	How It Works

	Conclusion

	Chapter 4: Introduction to Neural Networks Using PyTorch
	Recipe 4-1. Working with Activation Functions
	Problem
	Solution
	How It Works
	Linear Function
	Bilinear Function
	Sigmoid Function
	Hyperbolic Tangent Function
	Log Sigmoid Transfer Function
	ReLU Function
	Leaky ReLU

	Recipe 4-2. Visualizing the Shape of Activation Functions
	Problem
	Solution
	How It Works

	Recipe 4-3. Basic Neural Network Model
	Problem
	Solution
	How It Works

	Recipe 4-4. Tensor Differentiation
	Problem
	Solution
	How It Works

	Conclusion

	Chapter 5: Supervised Learning Using PyTorch
	Introduction to Linear Regression
	Recipe 5-1. Data Preparation for the Supervised Model
	Problem
	Solution
	How It Works

	Recipe 5-2. Forward and Backward Propagation
	Problem
	Solution
	How It Works

	Recipe 5-3. Optimization and Gradient Computation
	Problem
	Solution
	How It Works

	Recipe 5-4. Viewing Predictions
	Problem
	Solution
	How It Works

	Recipe 5-5. Supervised Model Logistic Regression
	Problem
	Solution
	How It Works

	Conclusion

	Chapter 6: Fine-Tuning Deep Learning Models Using PyTorch
	Recipe 6-1. Building Sequential Neural Networks
	Problem
	Solution
	How It Works

	Recipe 6-2. Deciding the Batch Size
	Problem
	Solution
	How It Works

	Recipe 6-3. Deciding the Learning Rate
	Problem
	Solution
	How It Works

	Recipe 6-4. Performing Parallel Training
	Problem
	Solution
	How It Works

	Conclusion

	Chapter 7: Natural Language Processing Using PyTorch
	Recipe 7-1. Word Embedding
	Problem
	Solution
	How It Works

	Recipe 7-2. CBOW Model in PyTorch
	Problem
	Solution
	How It Works

	Recipe 7-3. LSTM Model
	Problem
	Solution
	How It Works

	Index

