
Developing
2D Games
with Unity

Independent Game Programming
with C#
—
Jared Halpern

www.allitebooks.com

http://www.allitebooks.org

Developing 2D Games
with Unity

Independent Game
Programming with C#

Jared Halpern

www.allitebooks.com

http://www.allitebooks.org

Developing 2D Games with Unity: Independent Game Programming with C#

ISBN-13 (pbk): 978-1-4842-3771-7		 ISBN-13 (electronic): 978-1-4842-3772-4
https://doi.org/10.1007/978-1-4842-3772-4

Library of Congress Control Number: 2018963589

Copyright © 2019 by Jared Halpern

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-3771-7.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Jared Halpern
New York, NY, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3772-4
http://www.allitebooks.org

iii

Table of Contents

Chapter 1: �Games and Game Engines��1

Game Engines—What Are They?���1

The First Way to Build a House���4

The Second Way to Build a House��4

About the First Approach��5

About the Second Approach���5

In conclusion …���6

Game Engines Historically���6

Game Engines Today��8

The Unity Game Engine��10

Summary���12

Chapter 2: �Introduction to Unity��13

Install Unity��13

Configure Unity��14

On Disk���15

In the Cloud��15

About the Author��xiii

About the Technical Reviewer���xv

Acknowledgments���xvii

Preface���xix

About This Book���xxi

www.allitebooks.com

http://www.allitebooks.org

iv

The Script Editor: Visual Studio��17

Navigating the Unity Interface���18

Understanding the Different Window Views���18

Configure and Customize the Layout���22

The Transform Toolset��23

Handle Position Controls��25

Play, Pause, and Step Controls���26

Unity Project Structure���28

Unity Documentation��29

Summary���29

Chapter 3: �Foundations���31

Game Objects: Our Container Entities��31

Entity-Component Design��33

Components: Building Blocks��35

Sprites��35

Animations���45

The Animator State Machine��49

Colliders���54

The Rigidbody Component���56

Tags and Layers���57

Tags��57

Layers���58

Sorting Layers��59

Introducing: Prefabs���63

Scripts: Logic for Components���65

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

v

State and Animations���75

More State Machines��75

Animation Parameters��78

Summary���90

Chapter 4: �World Building��91

Tilemaps and Tile Palettes���91

Creating Tile Palettes���93

Painting with Tile Palettes��96

The Tile Palette���97

Working with Multiple Tilemaps���101

Graphics Settings���106

The Camera��107

Using Cinemachine��111

Installing Cinemachine in Unity 2017���111

Installing Cinemachine in Unity 2018���112

After Installing Cinemachine��113

Virtual Cameras��114

Cinemachine Confiner��120

Stabilization���125

Materials��129

Colliders and Tilemaps���130

Tilemap Collider 2D��130

Composite Colliders��133

Editing Physics Shapes��137

Summary���141

Table of ContentsTable of Contents

vi

Chapter 5: �Assembling the Nuts and Bolts��143

Character Class��143

Player Class���145

Focus on Prefabs���147

Create a Coin Prefab���147

Set Up the Circle Collider 2D��148

Set Up a Custom Tag��149

Layer-Based Collision Detection��151

Triggers and Scripting��154

Scriptable Objects��156

Creating a Scriptable Object���157

Build the Consumable Script��161

Assembling Our Item��162

Player Collisions���164

Creating a Heart Power-Up���165

Summary��173

Chapter 6: �Health and Inventory��175

Creating a Health Bar���175

Canvas Objects���175

UI Elements��176

Building the Health Bar���176

Anchors��179

Adjusting the Anchor Points���181

UI Image Masks��184

Importing Custom Fonts���188

Adding Hit-Points Text��189

Scripting the Health Bar���192

Table of ContentsTable of Contents

vii

Scriptable Object: HitPoints��192

Update the Character Script���193

Update the Player Script���194

Create the HealthBar Script��198

Configure the Health Bar Component���202

Inventory��206

Import the Inventory Slot Image���209

Configure the Inventory Slot���210

Create the Inventory Script���218

Summary��231

Chapter 7: �Characters, Coroutines, and Spawn Points����������������������233

Create a Game Manager��233

Singletons��234

Creating the Singleton��235

Build a GameManager Prefab���238

Spawn Points���238

Build a Spawn Point Prefab��241

Configure the Player Spawn Point��245

Spawn the Player���246

In Summary��248

A Spawn Point for Enemies��249

Camera Manager���251

Using the Camera Manager��253

Character Class Design��256

The Virtual Keyword��256

Table of ContentsTable of Contents

viii

The Enemy Class��257

Refactoring���257

The Internal Access Modifier��258

Coroutines��259

Invoking Coroutines��260

Pausing or “Yielding” Execution���260

A Complete Coroutine���260

Coroutines with Time Intervals���261

The Abstract Keyword��261

Implementing the Enemy Class��263

The DamageCharacter() method���263

ResetCharacter()���266

Calling ResetCharacter() in OnEnable()���266

KillCharacter()���267

Updating the Player Class��267

Refactoring Prefab Instantiation���269

Review��270

Using What We’ve Built���271

OnCollisionEnter2D���272

OnCollisionExit2D���273

Configure the Enemy Script��274

Summary���275

Chapter 8: �Artificial Intelligence and Slingshots�������������������������������277

The Wander Algorithm��277

Getting Started���278

Create the Wander Script���279

Wander Variables��280

Table of ContentsTable of Contents

ix

Build Out Start()��282

The Wander Coroutine��283

Choosing a New Endpoint��285

Angles to Radians to Vectors!���287

Enemy Walk Animation���287

The Move() Coroutine���291

Configure Wander Script���294

OnTriggerEnter2D()���295

OnTriggerExit2D()��297

Gizmos��299

Self-Defense��302

Classes Needed��303

Ammo Class���303

Import the Assets���304

Add Components, Set Layers��304

Update the Layer Collision Matrix���305

Build the Ammo Script��306

Before We Forget ... Make the AmmoObject Prefab�������������������������������������308

Object Pooling��308

Building the Weapon Class���310

Stubbing-Out Methods���313

The SpawnAmmo Method��315

The Arc Class and Linear Interpolation���317

Screen Points and World Points��320

The FireAmmo Method���321

Configure the Weapon Script��323

Arcing���324

Table of ContentsTable of Contents

x

Animating the Slingshot���326

Animation and Blend Trees���326

Blend Trees��327

Clean Up the Animator��328

Build the Walking Blend Tree��329

Layers, All the Way Down���332

A Note About Blend Types���333

Animation Parameters��333

Use the Parameters��335

Ok, but Why?��337

Loop Time���339

Create the Transitions���339

Updating the Movement Controller��340

Import the Fight Sprites��342

Create Animation Clips���342

Build the Fighting Blend Tree��344

Exit Time���346

Update the Weapon Class���347

Add the Variables��347

Start()��349

Update Update()��350

Determining Direction��350

The Slope Method���353

Calculate the Slopes���354

Comparing y-Intercepts��355

HigherThanNegativeSlopeLine()���356

Table of ContentsTable of Contents

xi

The GetQuadrant() method���357

The UpdateState() Method��359

Flicker When Damaged��362

Update the Player and Enemy Classes���363

Building for Platforms��364

Exiting the Game��367

Summary���367

What’s Next��368

Communities��368

Learn More���369

Where to Find Help���369

Game Jams���370

News and Articles���371

Games and Assets��371

Beyond!��371

�Index��373

Table of ContentsTable of Contents

xiii

About the Author

Jared Halpern is a software developer with a background in Computer

Science and over 12 years of experience working in a wide range of

technologies. Lately he has specialized in Apple and Unity. Jared has built

many iPhone apps over the years, including games, augmented reality,

photography, eCommerce, video, and GIF apps. His interests include

Swift, Unity, AR, Game Development, and the creative application of these

technologies. He has an immense passion for the potential of games as an

interactive medium to tell stories and give experiences in ways that other

mediums cannot. He currently enjoys working as a freelance software

developer. Jared is on Twitter: @JaredEHalpern and his website: https://

JaredHalpern.com.

https://JaredHalpern.com
https://JaredHalpern.com

xv

About the Technical Reviewer

Jason Whitehorn is an experienced entrepreneur and software developer

and has helped many oil and gas companies automate and enhance

their oilfield solutions through field data capture, SCADA, and machine

learning. Jason obtained his bachelor of science in computer science from

Arkansas State University, but he traces his passion for development back

many years before then, having first taught himself to program BASIC on

his family’s computer while still in middle school.

When he is not mentoring and helping his team at work, writing, or

pursuing one of his many side projects, Jason enjoys spending time with

his wife and four children and living in the Tulsa, Oklahoma region. More

information about Jason can be found on his website: https://jason.

whitehorn.us.

https://jason.whitehorn.us/
https://jason.whitehorn.us/

xvii

Acknowledgments

Above all, I want to thank my wife Drew for her boundless support, love,

advice, patience, snacks, and encouragement over the past year while I

worked evenings and weekends on this book. I could never have done this

without you.

I would like to thank Apress Publishing for the opportunity to write

this book. The experience of working with editors Aaron Black and

Jessica Vakili was a true pleasure from start to finish. The impact of their

professionalism, insight, and assistance at every step of the way cannot

be overstated. This book benefited immensely from the guidance and

attention to detail from my technical reviewer Jason Whitehorn and

development editor James Markham. Thank you to Liz Arcury from the

Apress social team for all your help.

My programming knowledge has benefited greatly from the

community over at gamedev.stackexchange.com, especially moderator

Douglas Gregory. I also thank the folks at Unity who lent their expertise

during discussions in Unity Forums, in particular Gregory Labute.

I owe a tremendous debt to my parents, who have always supported

my interests in technology and writing, my sister Sam whose work ethic

inspires me, and my brother Zach who always has my back.

I also thank my friends and family, especially Derina and Justin

Man, Brian Wesnofske, George Peralta, Nelson Pereira, Jolene and Maris

Schwartz, Melissa Gordon, Constantinos Sevdinoglou, Ben Buckley, and

Gene Goykhman for their never-ending support, positivity, and

enthusiasm.

xix

Preface

My video game “history” started in the public library when I discovered a

series of beat-up, paperback books with titles resembling, “How to Write

Your Own Computer Games in BASIC.” By copying code from the book into

an editor, I was able to create rudimentary adventure games. In college, I

used C++ and Direct-X to create a Bejeweled clone with a Star Trek theme.

As an iOS Developer, I eventually worked on a virtual-pet game using

Apple’s SceneKit and SpriteKit frameworks. When I discovered the Unity

game engine, everything I had been attempting to do just came together.

Instead of spending half a week writing the code to parse and slice sprites,

Unity allowed me to drag and drop a spritesheet, click a button, then get

on with development. I could finally focus on making games, instead of

spending the majority of my time writing code.

It’s possible to create video games—great video games, without Unity

or any game engine. But it will take much, much longer than it needs to.

You’ll spend time and effort solving problems that aren’t necessary to solve

any more. It may take years to finish. Because life will also be happening

during those years, it’s possible, and in fact likely, that you’ll never finish

the game. Speaking from experience—I rarely finished any of the game

projects that I started before I was introduced to Unity.

Teddy Roosevelt once was quoted in his autobiography, “Do what you

can, with what you've got, where you are.” I subscribe to that mindset, and

I also believe that hard work alone won’t always help you accomplish your

goals. Success in life can often be about leverage: leveraging whatever

resources you have, where ever you are, for maximum impact. The trick for

making the most of your time is to find multipliers: things that allow you to

produce a multiple of what you’d otherwise be capable of producing. Unity

xx

is one such multiplier. Unity allows you to take whatever time you have—

nights, weekends, a 30-minute lunch break, and maximize the usage of

that time toward making games. By using Unity to get the most out of your

time, you’re more likely to actually finish your game.

When I set out to write this book, I wanted to write the type of book

I’d want to read if I were learning Unity for the first time. Hopefully I

succeeded. In the following pages, you’ll learn the fundamental skills

required to create your own video games in Unity, and perhaps leave your

own mark on the future of gaming. Let’s get started.

PrefacePreface

xxi

About This Book

�Who Is This Book For?
This book was written for programmers interested in making video games

with Unity. It’s not recommended that you learn to program for the first

time while reading this book.

The programming language used in this text is C#. Although this text

does not include a C# tutorial, the C# language is syntactically similar to

many other popular programming languages. If you’re already familiar

with a language such as Java, then the syntax of C# will come naturally to

you. Explanations of pertinent aspects of C# are included with the code

examples used while building the game in this book.

�What Are We Building?
This book is structured toward building a 2D RPG-style game in Unity over

the course of eight chapters. The game is in the style of those top-down

RPGs from the 1990s, but the concepts can be carried over to create other

types of games as well.

You should feel free to tinker with the code, break things, change

things around, and tweak values. If you break something and can’t figure

out how to fix it, refer to the source code from the Apress GitHub account

to fix things. As you’re working your way through this book, remember

that it can be helpful to have something explained a different way. If you’re

not content with an explanation in this book, or if you would benefit from

xxii

an alternate explanation, look to the Unity documentation online. Look

at gamedev.stackexchange.com and the official Unity forums and ask

questions. Make sure you understand what’s going on. Don’t settle for half

of an understanding—you’ll do yourself a disservice.

�What You Will Need for This Book
The hardware requirements for this book are minimal: a PC or MacBook

made in the past few years. The software requirements to run Unity 2018

are Windows 7 SP1+, 8, 10, 64-bit versions only; or macOS 10.11+. We’ll be

using the personal edition of the Unity software, which is free.

�Art Sources
The Enemy sprites in this book were created using a wonderful

procedural-generation sprite tool created by Robert Norenberg. The tool

can be found here: https://0x72.itch.io/pixeldudesmaker

The typeface used in this book’s sample game is called Silkscreen.

Silkscreen was created by Jason Kottke and can be found here: https://

www.1001fonts.com/silkscreen-font.html

The heart and coin sprites are sourced from the sprite set on

OpenGameArt.org created by user: ArMM1998 and licensed CC0, public-

domain.

The map tile artwork was created by the author, Jared Halpern,

based heavily on pixel-style art from the heart and coin sprite set on

OpenGameArt.org. The player sprites were all created from scratch by

the author as well. Both the map tile artwork and the player sprites are

licensed by CC0, public-domain.

About This BookAbout This Book

https://0x72.itch.io/pixeldudesmaker
https://www.1001fonts.com/silkscreen-font.html
https://www.1001fonts.com/silkscreen-font.html

1© Jared Halpern 2019
J. Halpern, Developing 2D Games with Unity, https://doi.org/10.1007/978-1-4842-3772-4_1

CHAPTER 1

Games and Game
Engines
In this introductory chapter, I’ll talk a bit about game engines: what they

are, and why they’re used. I’ll also discuss a few game engines of historical

significance, as well as introduce the high-level capabilities of Unity. If you

want to get straight to making games, feel free to skim or skip this chapter

and come back to it later.

�Game Engines—What Are They?
Game engines are software development tools designed to reduce the cost,

complexity, and time-to-market required in the development of video

games. These software tools create a layer of abstraction on top of the

most common tasks in developing video games. The layers of abstraction

are packaged together into tools designed to function as interoperable

components that can be replaced outright or extended with additional

third party components.

Game engines provide tremendous efficiency benefits by reducing

the depth of knowledge required to make games. They can be minimal in

their prebuilt functionality or full-featured, allowing game developers to

focus entirely on writing gameplay code. Game engines offer an incredible

advantage over starting from scratch for solo developers or teams who

just want to focus on making the best game possible. When building the

2

sample game in this book, you won’t need to build complex mathematical

libraries from the ground up or figure out how to render individual pixels

on-screen, because the developers who created Unity have already done

that work for you.

Well-designed modern game engines do a good job of separating

functionality internally. The game play code, which consists of code

describing the player and inventory, is kept separate from the code that

decompresses an .mp3 file and loads it into memory. Game play code will

call on well-defined engine API interfaces to request things like “draw this

sprite at this location” and so forth.

The component-based architecture of a well-designed game

engine allows for extensibility that encourages adoption, because the

development team is not locked into a predetermined set of engine

capabilities. This extensibility is especially important if the game engine

source code is not available as open-source or is prohibitively expensive

to license. The Unity game engine is purpose built to allow for third party

plug-ins. It even goes so far as to provide an Asset Store containing plug-

ins, accessible through the Unity Editor.

Many game engines allow for cross-platform compilation as well,

meaning that your game code is not constrained to a single platform.

The engine does this by not making assumptions about the underlying

computer architecture and letting the developer specify which platform

they’re using. If you wanted to release your game for console, desktop, and

mobile, the game engine allows you to flip a few switches to set the build

configuration to that platform.

There are caveats to the miracles of cross-platform compilation

though. Although cross-platform compilation is an amazing feature and

testament to how far game technology has come, keep in mind that if

you’re building a game for multiple platforms, you’ll need to provide

different image sizes and allow for the code reading in the controls to

accept different kinds of peripherals such as a keyboard. You might need to

Chapter 1 Games and Game Engines

3

adjust the layout of your game on-screen as well as numerous other tasks.

It can actually be a lot of work just to port a game from one platform to

another, but you probably won’t have to touch the game engine itself.

Some game engines are so visually oriented that they allow for the

creation of games without writing a single line of code. Unity has the

ability to customize user-interfaces that can be configured for use by

other nonprogrammer members of the development team such as level

designers, animators, art directors, and game designers.

There are many different types of game engines, and there are no

rules as to which functionality is absolutely required to be considered a

game engine. The most popular game engines contain some or all of the

following functionality:

•	 Graphics rendering engine, supporting 2D or 3D

graphics

•	 Physics engine that supports collision detection

•	 Audio engine to load and play sounds and music files

•	 Scripting support to implement gameplay logic

•	 A world object model defining the contents and

properties of the game world

•	 Animation handling to load animation frames and play

them

•	 Networking code to allow for multiplayer,

downloadable content, and leaderboards

•	 Multithreading to allow game logic to execute

simultaneously

•	 Memory management because no computer has

unlimited memory

•	 Artificial intelligence for pathfinding and computer

opponents

Chapter 1 Games and Game Engines

4

If you’re not fully sold yet on using a game engine, consider the

following analogy.

Say you want to build a house. To start with, this house will have a

concrete foundation, a nice wood floor, sturdy walls, and a weather-treated

wooden roof. There are two ways of going about building this house:

�The First Way to Build a House
Excavate the ground using a hand shovel until you’ve dug sufficiently deep

to plant the foundation. Make concrete by heating limestone and clay at

2,640 °F in a kiln, grind it, and mix in a bit of gypsum. Take the powdered

concrete you’ve created, mix it with water, crushed stone or fine sand, and

lay your foundation.

At the same time you lay the foundation, you’ll need steel rebars to

strengthen the concrete. Gather the iron ore required to make steel rebar

and smelt it in a blast furnace to make ingots. Melt and hot-roll those

ingots into sturdy reinforcement bars for the concrete foundation.

After that, it’s time to build the frame on which you’ll hang your walls.

Take your axe and start chopping down trees. Felling a few hundred or so

timber will be enough to supply the raw materials, but next you’ll need

to take each timber and mill them into lumber. When you’re done, don’t

forget to treat the lumber so it’s weatherproof and doesn’t rot or become

infested with insects. Build out your joists and girders on which you’ll lay

the floor, and are you exhausted yet? We’re just getting started!

�The Second Way to Build a House
Purchase bags of premixed concrete, steel rebar, treated lumber from a

mill, a dozen boxes of paper-tape galvanized nails, and a pneumatic nail

gun. Mix and pour your concrete to create your foundation, lay down the

premade steel rebar, let the concrete set, then build out your floor with the

treated lumber.

Chapter 1 Games and Game Engines

5

�About the First Approach
The first way of building a house requires tremendous amount of

knowledge simply to create the materials needed to begin building a

house. This approach requires that you know the precise ratio of raw

materials needed and techniques to make concrete and steel. You’ll need

to know how to fell trees without ending up pinned underneath one, and

you’ll have to know the proper chemicals required to treat the lumber,

which you’ve taken great pains to cut into hundreds of uniform beams.

Even if you possessed all the knowledge required to build a house this way,

it would still take you thousands of hours.

This first approach is analogous to sitting down to write a video game

without using a game engine. You must do everything from scratch: write

the math libraries, graphics rendering code, collision detection algorithms,

network code, asset loading libraries, audio player code, and much more.

Even if you knew how to do all these things from the get-go, it would

still take you a long time to write the game engine code and debug it. If

you aren’t familiar with linear algebra, rendering techniques, and how

to optimize culling algorithms, you should expect that it could take you

years before you have enough of a game engine that you can actually start

writing the game to go along with it.

�About the Second Approach
The second way of building a house assumes that you aren’t starting

entirely from scratch. It doesn’t require that you know how to work a

blast furnace, fell hundreds of timbers, or mill them to make lumber. The

second way allows you to focus entirely on building the house instead of

making the materials that you’ll need to build the house. Your house will

be constructed faster, cost less as a result, and probably be higher quality,

provided you carefully selected the materials and know how to use them.

Chapter 1 Games and Game Engines

6

The second approach is analogous to sitting down to write a video

game and using a prebuilt game engine. The game developers are able to

focus on the game’s content and don’t need to know how to do complex

calculations to figure out if two objects collided as they’re flying through

the air because the game engine will do that for them. There’s no need to

construct an asset-loading system, write low-level code to read user-input,

decompress sound files, or parse animation file formats. It’s unnecessary

to build this functionality common to all video games because the game

engine developers have already put thousands of hours into writing,

testing, debugging, and optimizing code to do these things already.

�In conclusion …
It is impossible to overstate the advantage that game engines give to

the independent developer or the big-studio team working on the next

hit game. Some developers want to write their own game engines as a

programming exercise to learn how everything works under the hood,

and they will learn a tremendous amount. But if your intention is to ship a

game, then you’re doing yourself a disservice by not using a premade game

engine.

�Game Engines Historically
Historically game engines have sometimes been closely tied to the

games themselves. In 1987, Ron Gilbert, along with some help from Chip

Morningstar, created the SCUMM, or Script Creation Utility for Maniac

Mansion game engine, while working at Lucasfilm Games. SCUMM is a

great example of a game engine that was custom-made for a specific type

of game. The “MM” in SCUMM stands for Maniac Mansion, which was a

critically acclaimed adventure game and the first to use the point-and-click

style interface, which Gilbert also invented.

Chapter 1 Games and Game Engines

7

The SCUMM game engine was responsible for converting scripts

consisting of human-readable tokenized words such as “walk character to

door” into byte-sized programs to be read by the game engine interpreter.

The interpreter was responsible for controlling the games’ actors on screen

and presenting the sound and graphics. The ability to script gameplay

instead of coding it, facilitated rapid prototyping and allowed the team to

begin building and focusing on the gameplay from an early stage. Although

the SCUMM engine was developed specifically for Maniac Mansion

(Figure 1-1), it also was used for other hit games such as Full Throttle, The

Secret of Monkey Island, Indiana Jones and the Last Crusade: The Graphic

Adventure, and more.

When compared with modern day game engines like Unity, the

SCUMM Engine lacks a great deal of flexibility, as it was custom-made

for point-and-click style games. However, like Unity, the SCUMM engine

allowed game developers to focus on gameplay instead of continuously

rewriting graphics and sound code for each game, saving untold amounts

of time and effort.

Figure 1-1.  Maniac Mansion, from Lucasfilm Games, uses the
SCUMM Engine

Chapter 1 Games and Game Engines

8

Sometimes game engines can have an enormous impact on the

industry as a whole. In mid-1991, a seismic shift in the industry occurred at

a company named id Software, when 21-year-old John Carmack built a 3D

game engine for a game called Wolfenstein 3D. Up until then, 3D graphics

were generally limited to slow-moving flight simulation games or games with

simple polygons, because the available computer hardware was too slow

to calculate and display the number of surfaces necessary for a fast-paced

3D action game. Carmack was able to work around the current hardware

limitations by using a graphics technique called raycasting. This allowed

for fast display of 3D environments by calculating and displaying only the

surfaces visible to the player, instead of the entire area around the player.

This unique approach allowed Carmack, along with John Romero,

designer Tom Hall, and artist Adrian Carmack to create a violent, fast-

paced game about mowing down Nazis that spawned the first-person

shooter (FPS) genre of video games. The Wolfenstein 3D engine was

licensed by id Software to several other titles. They have produced seven

game engines to date, which have been used in influential titles such as

Quake III Arena, a Doom reboot, and Wolfenstein II: The New Colossus.

These days, building a rough 3D FPS-game prototype is something an

experienced game developer can do in a few days using a powerful game

engine like Unity.

�Game Engines Today
Modern-day AAA game development studios such as Bethesda Game

Studios and Blizzard Entertainment often have their own in-house,

proprietary game engines. Bethesda’s in-house game engine is called:

Creation Engine and was used to create The Elder Scrolls V: Skyrim as well

as Fallout 4. Blizzard has their own proprietary game engine used to make

games such as World of Warcraft and Overwatch.

Chapter 1 Games and Game Engines

9

A proprietary in-house game engine may start out as built for a specific

game project. After that project is released, the game engine often finds a

new life when it’s reused for the next game coming out of that game studio.

The engine might require upgrades to stay current and take advantage of

the latest technology, but it doesn’t need to be rebuilt from the ground-up.

If a game development company doesn’t have an in-house engine,

they typically use an open-source engine, or license a third-party engine

such as Unity. To create a significant 3D game these days without the use

of a game engine would be an incredibly demanding task—financially as

well as technologically. In fact, game studios with in-house game engines

require separate programming teams dedicated entirely to building out

engine features and optimizing them.

Having said all of this, why would an AAA-studio choose not to use

a game engine like Unity, but instead elect to build their own in-house

engine? Companies such as Bethesda and Blizzard have an enormous

body of pre-existing code to draw from, financial resources, and a wealth

of deeply talented programmers. For certain types of projects, they want

complete control over every facet of their game and game engine.

Even having all of these advantages over the typical small game

studios, Bethesda still used Unity to develop the mobile game: Fallout

Shelter; and Blizzard used Unity to develop a little cross-platform

collectible card game: Hearthstone. When time equals money, a game

engine like Unity can be used to quickly prototype, build out, and iterate

on functionality. The time = money equation is especially relevant if your

plan is to release a game to multiple platforms. Porting an in-house engine

to specific platforms such as iOS and Android can be time consuming. If a

project doesn’t require the same level of control over the game engine that

you would need when developing a game like Overwatch, using a cross-

compatible game engine like Unity is a no-brainer.

Chapter 1 Games and Game Engines

10

�The Unity Game Engine
Unity is an extremely popular game engine that affords a huge number of

advantages over other game engines available in the market today. Unity

offers a visual workflow with drag-and-drop capabilities and supports

scripting with C#, a very popular programming language. Unity has long

supported 3D and 2D graphics, and the toolsets for both grow more

sophisticated and user-friendly with each release.

Unity has several tiers of licenses and is free for projects with revenues

up to $100k. It offers cross-platform support for 27 different platforms

and takes advantage of graphics APIs specific to the system architecture,

including Direct3D, OpenGL, Vulkan, Metal, and several others.

Unity Teams offers cloud-based project collaboration and continuous

integration.

Since its debut in 2005, Unity has been used to develop thousands of

desktop, mobile, and console games and applications. A small sampling

of some well-known titles developed over the years with Unity would

include: Thomas Was Alone (2010), Temple Run (2011), The Room (2012),

RimWorld (2013), Hearthstone (2014), Kerbal Space Program (2015),

Pokémon GO (2016), and Cuphead (2017), which is seen in Figure 1-2.

Chapter 1 Games and Game Engines

11

For game developers who want to customize their workflow, Unity

affords the ability to extend the default visual editor. This extremely

powerful mechanism allows for the creation of custom tools, editors, and

inspectors. Imagine creating a visual tool for your game designers to easily

tweak values for in-game objects like hit-points for a character class, skill-

trees, attack range, or item drops, without having to go into the code and

modify values or use an external database. This is all made possible and

straightforward by the Editor Extension functionality that Unity provides.

Another Unity advantage is the Unity Asset Store. The Asset Store is

an online storefront where artists, developers, and content creators can

upload content to be bought and sold. The Asset Store contains thousands

of free and paid Editor Extensions, models, scripts, textures, shaders, and

more, which teams can use to accelerate their development timelines and

enhance a final product.

Figure 1-2.  Cuphead, developed by StudioMDHR, uses the Unity
Game Engine

Chapter 1 Games and Game Engines

12

�Summary
In this chapter we learned about the many advantages to using a premade

game engine as opposed to writing your own. We touched on a couple of

interesting game engines of yesteryear and the impact they had on game

development as a whole. We also outlined the specific advantages that

Unity offers and mentioned some of the better-known games developed

using the Unity engine. Perhaps one day soon, someone will mention your

game as one of the better known games made with Unity!

Chapter 1 Games and Game Engines

13© Jared Halpern 2019
J. Halpern, Developing 2D Games with Unity, https://doi.org/10.1007/978-1-4842-3772-4_2

CHAPTER 2

Introduction to Unity
This chapter covers the Unity Editor—installing, configuring, navigating its

windows, using its toolset, and getting familiar with the project structure.

Not all of this material will be immediately relevant to your everyday work

in Unity, and you’ll probably have to refer back to this chapter a few times

in the future anyway, so don’t try to commit it all to memory on the first go.

�Install Unity
First thing’s first: head over to https://store.unity.com and download

Unity. Because we’re just learning to use Unity, get the Personal version,

which is free.

For our purposes in this book, the main difference between the free

version and the Plus tier is that the free version flashes the “Made with

Unity” on the splash screen, while the Plus version allows you to create a

custom splash screen. The Plus, Pro, and Enterprise versions get gradually

more expensive, but offer interesting benefits such as better analytics and

control over your data, multiplayer features, test builds using the Unity

Cloud service, and even access to the source code at the Enterprise level.

You should remember that these tiers your qualification for each tier is

determined by revenue. If you or your game company generate less than

$100k/year USD, you qualify to use Unity Personal Edition free of charge. If

your company generates less than $200k/year USD, you’re required to use

the Unity Plus tier. Finally, if your company generates more than $200k/

year USD you must use Unity Pro. Not a bad deal at all.

https://store.unity.com

14

While installing Unity, the Unity Download Assistant will prompt you

to select which components of the Unity Editor you want to install. Ensure

that the following components are checked off: Unity 2018 (or the most

recent version), Documentation, Standard Assets, and Example Project.

We’ll be building our sample game to run stand-alone on your desktop

(PC, Mac, or Linux) in this book. If you’d like, you can also check off boxes

to install the components for WebGL, iOS, or Android Build Support to

build for those platforms as well.

�Configure Unity
After installing Unity and running for the first time, you’ll be prompted to

sign in to your account (Figure 2-1). Creating and signing into an account

isn’t really necessary unless you want to take advantage of some more

advanced features such as Cloud Builds and Ads, but there’s no harm in

creating an account and signing in anyway. You’ll need an account if you

want to use anything from the Unity Asset Store.

Figure 2-1.  Unity sign in screen

Chapter 2 Introduction to Unity

15

Let’s go through Unity’s Projects and Learning screen, as seen in

Figure 2-2, and point out a few things. On the upper left, you’ll notice two

tabs—Projects and Learn.

Select Projects and let’s go through the options:

�On Disk
A history of the last six projects you’ve worked on will appear, and can be

opened by selecting them.

�In the Cloud
This refers to using cloud-based collaborative projects, which we won’t be

covering. Unity Teams has a feature called Unity Collaborate that allows

team members to update files in a project and publish those changes to

the cloud. Other team members can then view those changes and decide

Figure 2-2.  Unity Projects and Learning screen

Chapter 2 Introduction to Unity

16

whether to sync their local project with the changes or ignore them. If

you’ve ever worked with Git, Unity Collaborate is very similar, but whereas

Git has a bit of a learning curve, Unity Collaborate is intentionally designed

to be very visual and easy to use.

Now select the Learn tab.

The Learn section has a wealth of information and you could easily

spend a few weeks going through all the tutorials, sample projects,

resources, and links. Don’t be afraid to open up sample projects that look

well beyond the scope of what you already know. Poke around, tweak

things, and break things. That’s how learning happens. If you break

something and can’t fix it, you can always close and reload the sample

project.

Ok, let’s start creating our project.

Select “New” from the top right of the Projects and Learning Screen.

You’ll be presented with a screen, seen in Figure 2-3, containing a few

configuration options for setting up your new project.

The default name of a new Unity project is, “New Unity Project.”

Change the Project Name to be “RPG” or “Greatest RPG Ever”, as seen in

Figure 2-3. Select the radio button next to 2D to configure the project to

show a side view in 2D at all times. Don’t worry if you forget to set this—it’s

easy to switch once our project is created.

Note the file path in the Location text box. That’s where Unity will save

your project. I like to organize source code on my computer inside a parent

directory called “source” with Unity code inside a “Unity” subdirectory,

but you can organize your directory structure however you wish. If you’re

logged in, you’ll see a toggle switch to turn on Unity Analytics. You can

leave this setting turned off, as we won't be using it.

Chapter 2 Introduction to Unity

17

Hit the “Create Project” button to create a new project with these

settings and open it in the Unity Editor.

�The Script Editor: Visual Studio
As of Unity 2018.1, Visual Studio is now the default Script Editor for

developing C# scripts. Historically, the built-in Script Editor shipped with

Unity was MonoDevelop, but starting with Unity 2018.1, Unity ships with

Visual Studio for Mac instead of MonoDevelop on macOS. On Windows,

Unity ships with Visual Studio 2017 Community and no longer ships with

MonoDevelop.

Next up, we’ll get to know the Unity Editor.

Figure 2-3.  Project creation

Chapter 2 Introduction to Unity

18

�Navigating the Unity Interface
Stretching across the top of the Unity Editor is the Tool Bar, which consists

of the Transform Toolset, Tool Handle Controls, the Play, Pause, and Step

Controls, the Cloud Collaboration Selector, Services Button, Account

Selector, Layer Selector, and Layout Selector. We’ll go through all of these

at the appropriate time.

The Unity interface (Figure 2-4) is made up of a number of window

views, which we’ll review next.

Figure 2-4.  The Unity Editor

�Understanding the Different Window Views
Let’s go through the various views displayed in the Default Editor Layout.

There are many views available other than those we discuss below, and

we’ll cover some of them later in this book.

Chapter 2 Introduction to Unity

19

•	 Scene View

Scenes can be thought of as the foundation of Unity Projects, so you’ll have

the Scene View open most of the time while you’re working in the Unity

Editor. Everything that happens in your game takes place in a Scene. The

Scene View is where we’ll construct our game and do most of our work

with sprites and colliders. Scenes contain GameObjects and they hold

all the functionality relevant to that Scene. We’ll cover GameObjects in

more detail in Chapter 3, but for now just know that every object in a Unity

Scene is a GameObject.

•	 Game View

The Game View renders your game from the currently active camera’s

point of view. The Game View is also where you’ll view and play your

actual game while you’re working on it in Unity Editor. There are ways of

building and running your game outside of Unity Editor as well, such as a

stand-alone application, in a Web browser, or on a mobile phone, and we’ll

cover some of these platforms later in this book.

•	 Asset Store

A compelling factor when choosing Unity to build games is the Unity Asset

Store. As discussed in Chapter 1, the Unity Asset Store is an online storefront

where artists, developers, and content creators can upload content to be

bought and sold. The Unity Editor has a built-in tab that connects to the

Asset Store for convenience, but you can also access the Asset Store via

the Web at https://assetstore.unity.com. Although there’s no harm in

having this pane available in your Layout, there’s also no harm in hiding it

and only opening it when you need something from the Asset Store.

•	 Hierarchy Window

The Hierarchy Window displays a list of all objects in the current Scene in a

hierarchical format. The Hierarchy Window also allows for the creation of new

GameObjects via the “Create” drop-down menu in the top-left corner. The

search field allows a developer to search for specific GameObjects by name.

Chapter 2 Introduction to Unity

https://assetstore.unity.com

20

In Unity, GameObjects can contain other GameObjects in what’s called

a “parent–child” relationship. The Hierarchy Window will display these

relationships in a helpful nested format. Figure 2-5 portrays the Hierarchy

Window view in an example Scene.

Figure 2-5.  The Hierarchy Window

Here’s a brief explanation about what we mean by “parent–child”

relationships in the Hierarchy Window. The example Scene in Figure 2-5

is called GameScene, and it contains a GameObject called Environment.

Environment is a parent object to several GameObjects, including one

called Ground. Ground is a child object with respect to Environment.

However, Ground contains several child objects of its own, including Tree,

Bush, and Roads. Ground is the parent object with respect to these child

objects.

•	 Project Window

The Project Window gives an overview of all the content in the Assets

folder. It’s helpful to create folders in the Project Window to organize

items such as audio files, materials, models, textures, scenes, and scripts.

Throughout the lifetime of your project, you’ll spend a lot of time dragging

Chapter 2 Introduction to Unity

21

and rearranging assets in folders and selecting those assets to view them in

the Inspector Window. In this book, we’ll demonstrate a suggested project

folder structure, but you should feel free to rearrange things in a way that

makes logical sense to you and the way you like to work.

•	 Console View

The Console View will display errors, warnings, and other output from

your Unity application. There are C# scripting functions that can be used

to output information to the Console View at runtime to aid in debugging.

We’ll cover those later on when we discuss debugging. You can toggle the

various forms of output on and off via the three buttons in the top-right of

the Console View.

Tip  Sometimes you’ll get an error message that occurs with every
Unity frame update, and those messages will clog up your Console
View in a hurry. In situations like this, it’s helpful to hit the Collapse
toggle button to collapse all identical error messages into a single
message.

•	 Inspector Window

The Inspector Window is one of the most useful and important windows

in the Unity Editor; be sure to familiarize yourself with it. Scenes in

Unity are made up of GameObjects, which consist of Components

such as Scripts, Meshes, Colliders, and other elements. You can select

a GameObject and use the Inspector to view and edit the attached

Components and their respective properties. There are even techniques

to create your own properties on GameObjects that can then be modified.

We’ll cover this more in later chapters. You can also use the Inspector to

view and change properties on Prefabs, Cameras, Materials, and Assets

as well. If an Asset is selected, such as an audio file, the Inspector will

Chapter 2 Introduction to Unity

22

show details such as how the file was loaded, its imported size, and the

compression ratio. Assets such as Material Maps will allow you to inspect

the Rendering Mode and Shader.

Tip N otice that you can access many of the more commonly used
panes via the shortcut: Control (PC) or Cmd / ⌘ (Mac) + number. For
example, ⌘ + 1, and ⌘ + 2 to switch between the Scene View and
Game View, respectively on a Mac. This is a good way to save some
time and avoid having to use the mouse for more common pane
switching.

�Configure and Customize the Layout
Each pane can be rearranged by grabbing the tab on the top-left of the

pane and dragging it. Unity allows a user to create a custom Editor layout

by dragging around panes, locking them into place, resizing them to your

liking, and then saving that layout.

To save the layout, you have two options:

•	 Go to the menu option: Window ➤ Layouts ➤ Save

Layout. When prompted, give your custom layout a

name, and hit the Save button.

•	 Click the layout selector in the top-right-most corner of

the Unity Editor (Figure 2-6). It will say Default at first.

Then select Save Layout and give your custom layout a

name and hit the Save button.

You can load any layout in the future from the same menu: Window ➤

Layouts, or use the Layout selector. If you want to reset your layout, simply

select Default from the Layout selector.

Chapter 2 Introduction to Unity

23

�The Transform Toolset
Next, we’ll go through the different buttons and toggles that make up

the Tool Bar. The three things to note with the Tool Bar for now are: the

Transform Toolset; the Tool Handle Controls; and the Play, Pause, and

Step Controls. There are other controls on the Tool Bar but we’ll get to

those when we start to use them.

The Transform tools (Figure 2-7) allow a user to navigate around the

Scene View and interact with GameObjects.

Figure 2-6.  The Layout drop-down menu

Figure 2-7.  The Transform Toolset

Chapter 2 Introduction to Unity

24

The six Transform tools, from left to right, are:

•	 Hand

The Hand tool allows you to left-click and drag the mouse around the

screen to pan around the view. Note that you won’t be able to select any

objects when the Hand Tool is selected.

•	 Move

Selecting the Move tool and selecting a GameObject in either the

Hierarchy or Scene View will allow you to move that object around the

screen.

•	 Rotate

The Rotate tool rotates selected objects.

•	 Scale

The Scale tool scales selected objects.

•	 Rect

The Rect tool allows for the moving and resizing of selected objects

using 2D Handles, which will appear on the selected object.

•	 Move, Rotate, or Scale Selected Objects

This tool is a combination of the Move, Rotate, and Scale tools,

consolidated into one set of Handles.

At any time, you can temporarily switch to the Hand tool (only in 2D

projects) by pressing Option (Mac) or Alt (PC) and move around the Scene.

Chapter 2 Introduction to Unity

25

Tip T he six controls in the Transform toolset are individually
mapped to the following six keys: Q, W, E, R, T, Y. Use these hot-keys
to quickly switch between the tools.

A useful trick when using the Move tool (hot-key: W) is to have the
GameObject snap to specific increments by holding down Control
(PC) or Cmd / ⌘ (Mac). Adjust the snap increment settings in Edit ➤
Snap Settings menu.

�Handle Position Controls
To the right of the Transform Toolset you’ll find the handle position

controls, as seen in Figure 2-8.

Handles are the GUI controls on objects used to manipulate them in a

Scene. The Handle position controls allow you to adjust the position of the

Handles for selected objects and how they are oriented.

The first toggle button (see Figure 2-8) allows you to set the position of

the Handles.

The two options for position are:

•	 Pivot: this places the Handles at the selected object’s

pivot point.

•	 Center: this places the Handles at the center of the

selected object.

Figure 2-8.  The handle position controls

Chapter 2 Introduction to Unity

26

The second toggle button allows you to set the orientation of the

Handles. Note that the orientation button will be grayed out if the Scale

tool is selected, as orientation doesn’t pertain to scale. The two orientation

options are:

•	 Local: when selected, a Transform tools functionality

will be relative to the GameObject.

•	 Global: when selected, a Transform tools functionality

will be relative to the world space orientation.

Tip  It’s possible to change the pivot point of a Sprite by selecting
the Sprite in the Project window, switching the Sprite Mode to
Multiple in the Inspector, and clicking the Sprite Editor button. Tap
the Slice button in the Sprite Editor and select a Pivot point from the
drop-down menu.

�Play, Pause, and Step Controls
The Unity Editor has two modes: Play Mode and Edit Mode. When the Play

button is pressed, provided there are no bugs preventing the game from

building, the Unity Editor enters Play Mode and switches to the Game

View (see Figure 2-9). The shortcut to enter play mode is Control (PC) or

Cmd / ⌘ (Mac) + P.

Figure 2-9.  Play, Pause, and Step controls

Chapter 2 Introduction to Unity

27

While still in Play Mode, you can switch back to Scene View by

selecting the tab at the top of the Scene Pane if you want to inspect

GameObjects in the running Scene. This is helpful if you need to debug a

Scene. While in Play Mode, you also can press the Pause button at any time

to pause the running Scene. The shortcut to pause the scene is Control +

Shift + P on PC, and Cmd / ⌘ (Mac) + Shift + P on Mac.

The Step button allows Unity to advance a single frame, and then

pause again. This is helpful for debugging as well. The shortcut to Step

ahead by a single frame is Control + Alt + P on PC, and Cmd / ⌘ (Mac) +

Option + P on Mac.

Pressing the Play button again while in Play Mode will stop playing the

Scene, switch the Unity Editor back to Edit Mode, and switch back to Scene

View.

An important thing to always remember when working in Play Mode

is that any changes you make to objects will not be saved or reflected in

the Scene once the Editor switches back to Edit mode. It’s very easy to

forget about this while a Scene is running, make some changes and tweak

things until they’re perfect, only to have those changes lost when you stop

playing.

Tip T o make it super obvious that you’re in Play Mode, it’s useful
to configure Unity preferences to switch the background tint color
of the Editor automatically when entering Play Mode. To do so, go to
the menu option as seen in Figure 2-10: Unity ➤ Preferences. Select
Colors from the options on the left, and look for the section header,
“General.” Select your preferred background tint color and exit out.
Now hit the Play button to see the results. The background of the
Unity Editor should be tinted to your selected color.

Chapter 2 Introduction to Unity

28

�Unity Project Structure
The main two Unity project folders to know are the Assets/ folder and the

ProjectSettings/ folder. If you’re using any form of source version control,

these are the two folders you should check in.

Figure 2-10.  Unity Preferences menu

Chapter 2 Introduction to Unity

29

The Assets/ folder is where all game resources are located including

scripts, images, sound files, and so forth.

The ProjectSettings/ folder, as the name suggests, contains all types

of project settings pertaining to physics, audio, networking, tags, time,

meshes, and so on. Everything set from the menu Edit ➤ Project Settings is

stored in this folder.

There are other folders and files in the Unity project structure

but they’re all generated based off of the contents of Assets/ or

ProjectSettings/. The Library/ folder is a local cache for imported assets,

and Temp/ is used for temporary files generated during the build process.

Files ending with a .csproj extension are C# project files, and files ending

with .sln are solution files used for the Visual Studio IDE.

�Unity Documentation
Unity is very well documented, and the documentation available on

Unity’s website (https://docs.unity3d.com/) covers the scripting API

as well as working with the Unity Editor. Unity also has dozens of video

tutorials with content appropriate for all levels of developer experience

in the Learn portal (https://unity3d.com/learn). The Unity Forums

(https://forum.unity.com/) are the place for discussions about Unity

topics, and Unity Answers (https://answers.unity.com) is a great

resource to post questions and get help from fellow Unity developers in the

community.

�Summary
We’ve covered a lot of material in this chapter that will be relevant to your

future as a Unity Game Developer. We introduced the most commonly

used windows and views in the Unity Editor such as Scene View, where

you construct your game, and Game view, where you can view your game

Chapter 2 Introduction to Unity

https://docs.unity3d.com/
https://unity3d.com/learn
https://forum.unity.com/
https://answers.unity.com

30

running. We discussed how the Hierarchy Window gives an overview

of all GameObjects in the current scene, how to edit the properties of

these GameObjects in the Inspector, and how to manipulate them via

the Transform Toolset, and Handle Position controls. Along the way, we

discussed how to change the layout of these windows and views and save

that layout for future use. We learned how the console view will display

error messages and can be used for debugging when issues arise with

our game. We concluded the chapter by pointing out the extensive Unity

documentation, video tutorials, discussion forums, and Q&A resources.

Chapter 2 Introduction to Unity

31© Jared Halpern 2019
J. Halpern, Developing 2D Games with Unity, https://doi.org/10.1007/978-1-4842-3772-4_3

CHAPTER 3

Foundations
Now that we’re familiar with the Unity Editor, it’s time to starting making

our game. This chapter will walk you through how to construct the objects

and write the code that will comprise our game. We’ll talk about software

design patterns used in Unity, along with some higher-level principles in

Computer Science and how they’re relevant to making games. You’ll also

learn how to control the player on-screen and play the player animations.

�Game Objects: Our Container Entities
Games in Unity consist of Scenes, and everything in a Scene is called

a GameObject. You’ll encounter Scripts, Colliders, and other types of

elements in your Unity adventures, and all of these are GameObjects. It’s

helpful to think of GameObjects as a sort of container, composed of many

pieces of individually implemented functionalities. As we discussed in

Chapter 2, GameObjects can even contain other GameObjects in parent–

child relationships.

We’re going to create our first GameObject, then talk about why Unity

uses GameObjects as a fundamental aspect of building games.

In the Hierarchy view, select the Create button in the top-left (Figure 3-1),

and select Create Empty. This creates a new GameObject in the Hierarchy

view.

32

There are a few different ways to create GameObjects. You also

could have right-clicked on the Hierarchy view pane itself, or gone to the

GameObject ➤ Create Empty in the top menu.

Right-click the new GameObject and select Rename. Call it

“PlayerObject.” This PlayerObject will contain all the logic related to the

courageous player in our RPG!

Make a second GameObject and call it “EnemyObject.” This

EnemyObject will contain all the logic related to an enemy that our player

must defeat.

As we learn how to build a game in Unity, we’re also going to learn

Computer Science concepts that will make you a better programmer

overall, and how those concepts will make your life easier as a game

developer.

Figure 3-1.  One way of creating a new GameObject in the Hierarchy view

Chapter 3 Foundations

33

�Entity-Component Design
There is a concept in Computer Science known as “separation of

concerns.” Separation of concerns is a design principle that describes how

software is divided into modules based on the functionality they perform.

Each module is responsible for a single functional “concern” that should

be completely encapsulated by that module. When it comes down to

implementation, a concern can be a somewhat loose and interpretive

term—these concerns can be as broad as the responsibility for rendering

graphics on-screen, or as specific as calculating when one triangle in space

overlaps with another triangle.

One of the primary motivations for separating concerns in software

design is to reduce wastefulness seen when a developer writes duplicated

or overlapping functionality. For example, if you have code that renders

an image on-screen, you should only have to write that code once. A video

game will have dozens or hundreds of situations where rendering graphics

to screen is needed, but the developer only had to write that code once and

can reuse it everywhere.

Unity builds on the philosophy of separation of concerns with a very

popular design pattern in game programming called Entity-Component

design. Entity-Component design favors “composition over inheritance,”

which is the notion that objects or “entities” should encourage code reuse

by containing instances of classes that encapsulate specific functionality.

Entities gain access to functionality via instances of these component

classes. When used appropriately, composition can result in less code and

be easier to understand and maintain.

This is different from the common design approach in which an

object inherits functionality from a parent class. A disadvantage to using

inheritance is that it can lead to deep and wide inheritance trees, where

changing one small thing in a parent class can have ripple-down effects

with unintended consequences.

Chapter 3 Foundations

34

In Unity’s Entity-Component design, something called a GameObject

is the Entity and the Components are actually called “Components.”

Everything in a Unity Scene is considered a GameObject, but GameObjects

by themselves don’t do anything. We implement all of our functionality

in Components, then add these Components to our GameObjects to give

them the behaviors that we want. Adding functionality and behaviors to an

entity becomes as straightforward as adding a component to that entity.

The Components themselves can be thought of as distinct modules, only

focused on one thing, and decoupled from other concerns and code.

Take a look at the following diagram to get a better idea of how we

might use Entity-Component design in a hypothetical game setting. The

Components that provide behaviors are in the top x-axis, and the Entities

in our game are in the y-column on the left.

Graphics
Renderer

Collision
Detection

Physics
Integration

Audio Player

Player X X X X

Enemy X X X X

Spear (weapon) X X X

Tree X X

Villager X X X

As you can see, the player and the enemy will need all four component

functionalities. The spear weapon will need most of the functionality,

especially physics for when it’s thrown, but not audio. The tree doesn’t

require physics or audio—just graphics rendering and collision detection

to ensure that anything bumping into it cannot pass through it. The villager

in the preceding example requires graphics and collision detection, but

will just be walking around the scene, so they don’t need physics. They

might need audio though, if we want our game to play an audio track of the

villager interacting with the player.

Chapter 3 Foundations

35

The Unity Entity-Component design is not without its limitations,

especially for large projects, and after many years has begun to show its

age. It is due to be replaced in the future by a more data-oriented design.

Now let’s put this newfound knowledge to use.

�Components: Building Blocks
Select our PlayerObject in the Hierarchy view, and notice how the values

in the Inspector have changed. You should see something that looks like

Figure 3-2.

The one element universal to all GameObjects in Unity is the

Transform component, which is used to determine the position, rotation,

and scale of that GameObject in the scene. We will be using the Transform

component in our game when we want to move our Player character.

�Sprites
If you’re new to game development, you might be asking, “What’s a

sprite?” A sprite in the context of video game development is just a 2D

image. If you’ve ever seen Super Mario Brothers on Nintendo (Figure 3-3),

Figure 3-2.  The Transform component

Chapter 3 Foundations

36

or played a game like Stardew Valley (Figure 3-4), Celeste, Thimbleweed

Park, or Terraria, you’ve played games that used sprites.

Figure 3-3.  An individual sprite of Mario, the heroic plumber from
Super Mario Brothers, (Nintendo)

Figure 3-4.  The chickens, ducks, scarecrow, vegetables, trees, and all
the other images in this image of Stardew Valley are individual sprites

Chapter 3 Foundations

37

Animation effects in 2D games can be achieved using a technique

similar to how animated films, anime, or cartoons are made. Just like

individual cells (frames) of a cartoon, sprites are illustrated and saved to a

disk ahead of time. Displaying individual sprites in a rapid sequence can

convey the impression of motion, such as a character walking, fighting,

jumping, or inevitably dying.

To see the player character on screen, we need to display the images

using a Sprite Renderer Component. We will add this Sprite Renderer

Component to the Player GameObject. There are a few different ways of

adding a Component to a GameObject but we’re going to use the Add

Component button the first time.

Select the Add Component button from the Inspector, then type in

“sprite” and select Sprite Renderer (Figure 3-5). This adds the Component

to our Player GameObject. Instead we could have created a GameObject

with the Sprite Renderer already attached by going to the GameObject

menu, then selecting 2D Object ➤ Sprite.

Chapter 3 Foundations

38

Add a Sprite Renderer Component to the EnemyObject using the same

technique.

Saving the scene is a good habit to get into, so let’s save the Scene right

now. Type Control (PC) / CMD (Mac) + s, then create a new folder and

name it “Scenes”. Save the Scene as “LevelOne”. We’ve created a new folder

to hold this Scene and other Scenes that we’ll create for our game.

Next, create a folder called, “Sprites” in the Project view. As you might

have guessed, this will hold all the sprite assets for our project. Create

another folder underneath this Sprites folder called, “Player” and another

called “Enemies”. Select the Sprites folder in the Project view and then go

Figure 3-5.  Add a Sprite Renderer Component to the Player GameObject

Chapter 3 Foundations

39

to the folder in your Downloads directory, Desktop, or where ever you’ve

placed the unzipped folder with the downloaded game assets for this book.

In the downloaded assets for Chapter 3, select the file named Player.

png, EnemyWalk_1.png, and EnemyIdle_1.png, and drag them into the

Sprites folder in the Project view. Once they’re in the main Sprites folder,

drag them into their respective Player and Enemies folders. Your Project

view should resemble Figure 3-6.

Now select the Player sprite sheet in the Project view. Notice how

its properties have appeared in the Inspector on the right. We’re going

to configure the Asset Import Settings in the Inspector and then use the

Sprite Editor to slice up this sprite sheet into individual sprites.

Figure 3-6.  The Project view after adding the Player sprite sheet. The
Enemy sprite sheets are in the Enemies folder

Chapter 3 Foundations

40

Set the Texture Type to “Sprite (2D and UI)” and select the Sprite

Mode dropdown picker and select “Multiple.” This indicates that there are

multiple sprites in that sprite sheet asset.

Change the pixels per unit to 32. We’ll explain the pixels per unit, or

PPU, settings when we talk about cameras.

Change Filter Mode to “Point (no filter).” This will make the sprite

texture appear blocky up close, which is perfect for the pixelated look of

our artwork.

Toward the bottom, press the Default button, and select “None” for

Compression.

Double-check that the properties in the Inspector match Figure 3-7.

Press the Apply button to apply our changes, and then press the Sprite

Editor button in the Inspector. It’s time to slice our sprite sheet into sprites.

Chapter 3 Foundations

41

Figure 3-7.  Properties for the Player sprite sheet, as shown in the
Inspector

Chapter 3 Foundations

42

The Sprite Editor tool built into the Unity Engine is very convenient for

taking sprite sheets, consisting of many sprites, and slicing them up into

individual sprite assets.

Select “Slice” in the upper left, and choose “Grid By Cell Size” for Type.

This allows us to set the dimensions of the slicing. For Pixel Size, enter 32

and 32 for X and Y, respectively.

Press the “Slice” button. If you look closely at Figure 3-8 you’ll see

a faint white line outlining each of our Player sprites. This white line

indicates where the sprite sheet has been sliced.

Now press the “Apply” button to apply the slice to the sprite sheet.

Close the Sprite Editor.

We were able to enter the exact dimensions for this sprite sheet because

we knew them ahead of time. When you’re working on your own games,

you’ll encounter sprite sheets with sprites of various dimensions and you

might have to play around with the dimensions a bit to get them just right.

The Unity Sprite Editor also has the ability to automatically detect sprite

dimensions on an imported sprite sheet by selecting “Automatic” from Type

in the Sprite Editor ➤ Slice menu. You might get mixed results from this

technique, depending on what sprite sheets you use, but it’s a starting point.

What did all that slicing and dicing do for us? Click the little triangle

next to the Player sprite sheet and take a look at all the individual sprites

extracted from the sprite sheet (Figure 3-9). We’re going to create some

animations using our freshly cut player sprites.

Figure 3-8.  Setting the pixel size for the imported Player sprite sheet

Chapter 3 Foundations

43

Let’s put these sprites to work. Select the PlayerObject. In the Inspector

view, all the way to the right of the Sprite property you’ll see a little circle

(Figure 3-10). Click that circle to bring up the Sprite Selector screen as seen

in Figure 3-11.

In the Sprite Selector screen, double-click to select one of the Player

sprites to use as a stand-in for our PlayerObject in the Scene when we’re

editing our game (Figure 3-11).

Figure 3-9.  The resulting sliced sprites from the Player sprite sheet

Figure 3-10.  Press this button to bring up the Select Sprite screen

Chapter 3 Foundations

44

Now that we have all of our player sprites, let’s import the enemy sprite

sheets. Select the “EnemyIdle_1” sprite sheet and set its Import Settings in

the Inspector the same as our PlayerObject:

Texture Type: Sprite (2D and UI)

Sprite Mode: Multiple

Pixels Per Unit (PPU): 32

Filter Mode: Point (no filter)

Compression: None

Press the Apply button.

Use the Sprite Editor to slice the sprite sheet into individual 32 × 32

pixel sprites. Ensure the white slice lines appear in the right place, then

press the Apply button and close the Sprite Editor. Follow the same steps

for the “EnemyWalk_1” sprite sheet to slice it into individual sprites.

Figure 3-11.  Select one of the Player sprites to represent our player in
the Scene view when the game isn’t playing

Chapter 3 Foundations

45

�Animations
Let’s create a new folder to hold the animations we’re about to create. You

remember how to do that, right? Select Assets from the Project view, right

click, and then select Create ➤ Folder. Or you can click the Create button

in the top-left of the Project view. Call this folder, “Animations”. Select

the Animations folder and create another two subfolders within it, titled

“Animations” and “Controllers”.

Expand the Player sprites by clicking the little arrow next to it in the

Project view. Select the first Player sprite—this should be a sprite of the player

walking east. Hold down the shift-key to select the three sprites next to it.

Drag these four sprites together onto the PlayerObject as seen in Figure 3-12.

Figure 3-12.  Dragging sprites onto the PlayerObject to create a new
Animation

Chapter 3 Foundations

46

A screen prompting you to Create New Animation will appear

(Figure 3-13). Navigate to the Animations ➤ Animations subdirectory that

we created previously, and save this Animation as “player-walk-east”.

Now select the PlayerObject and look at the Inspector view. Notice

how we have two new components (Figure 3-14): Sprite Renderer and

Animator.

A Sprite Renderer component is responsible for displaying or

rendering a sprite. Unity also added an Animator component, which

contains an Animator Controller, which allows the playing of animations.

Figure 3-13.  Create and save a new Animation object

Chapter 3 Foundations

47

Dragging the sprites to the PlayerObject and creating a new Animation

resulted in these two components being added to the PlayerObject.

When we added an Animation to our PlayerObject, the Unity Editor

was smart enough to know that we would need some way of playing

and controlling that animation. So it automatically created an Animator

Figure 3-14.  Two new components have been automatically added:
Sprite Renderer and Animator

Chapter 3 Foundations

48

component to play the animation, and attached an Animation Controller

object, “PlayerObject”. We could have also pressed the Add Component

button in the Inspector, searched for “Animator,” and then added an

Animator manually.

The Animation Controller called, “PlayerObject”, will appear by default

in the folder where we saved the “player-walk-east” animation. The

default name for the Animation Controller is “PlayerObject” (Figure 3-15),

which is confusing because our main Player GameObject is also called

“PlayerObject.”

Let’s rename the Animation Controller to something slightly more

descriptive. Select the PlayerObject, and press the Enter-key, or right-click,

and rename the object to “PlayerController”.

Select, drag, and move that PlayerController object into the Controllers

folder we created.

Double-click on the PlayerController object to open the Animator

window.

Figure 3-15.  The automatically created Animation Controller:
PlayerObject, along with our first animation object: player-walk-east

Chapter 3 Foundations

49

�The Animator State Machine
The Animation Controller maintains a set of rules, called a State Machine,

used to determine which Animation Clip to play for an associated object

based on which state the Player is in. Some examples of states used by a

Player object might be: walk, attack, idle, eat, and die. We further divide

up these states into directions because our player might be facing north,

south, east, or west when they are in these states. A visual flow-like

representation of these states is displayed in the Animator window, as seen

in Figure 3-16.

It’s helpful to think of the Animation Controller as the “brain”

controlling the animation. Each state in the Animation State Machine is

represented by an Animation object attached to it. This Animation object

contains the actual Animation Clip to play for that state. The Animation

Controller also maintains the details of how to transition between the

animation states.

Figure 3-16.  The Animator window

Chapter 3 Foundations

50

As you can see in the Animator window, our Animation Controller has

the following states: Entry state, Any, Exit, and the state we just added:

player-walk-east. The “Any state” is used when you want to transition to a

state, such as “jump” from any other state.

If you don’t see the Exit state, you might need to scroll around the

window a bit to find it. You can also zoom in and zoom out with the scroll

button on your mouse or trackpad to get a better view of things, and hold

the Option / Alt-key while dragging the background, to move around the

Animator window. At any time, feel free to move around these Animation

objects and arrange them in a way that makes sense to you.

Let’s add the rest of our animations. Go back to the Sprites folder and

select the next four sprites. These are the sprites used when the player

walks west. Drag these four onto the PlayerObject, the same way we did

to create the previous walking animation. When prompted by the Create

New Animation save window, type “player-walk-west” and save to the

Animations ➤ Animations folder. You should see this new animation

appear in the Animator window.

Follow the same steps to create new animations for the other sprites.

Note that the walk south and walk north animations only have two frames,

not four. Call their animations “player-walk-south” and “player-walk-

north”, and save them to the Animations ➤ Animations folder.

Chapter 3 Foundations

51

At this point, your Animator window should resemble Figure 3-17 with

all four Animation objects shown. These four Animation objects represent

four different states of walking, and hold references to the Animation Clips

as well.

We’ve done all this work, but we still don’t have anything animating

on screen yet. There’s one last step—in the Hierarchy view, select the Main

Camera GameObject and set the size property to 1. This is temporary

so you can clearly see the player animating. We’ll explain more about

Cameras later on in the book.

Press the Play button in the toolbar. If all goes well, you should see our

intrepid Player frantically running in place as in Figure 3-18.

Figure 3-17.  The Animator window showing all four player walk
animations, after adding them to the PlayerObject

Chapter 3 Foundations

52

Let’s slow down our frantic Player. Open the Animator window by

double-clicking the PlayerObject Animator, or by selecting the Animator

window tab. Select the “player-walk-east” Animation and change the value

for Speed to 0.6 as in Figure 3-19.

Figure 3-18.  We have sampled the sweet taste of pixelated victory

Chapter 3 Foundations

53

Then press play again to see her walking at a more sustainable pace.

You can adjust this speed to whatever you feel looks natural.

Stop the Playing Scene by pressing the Play button again.

Now create and save the animations for our EnemyWalk_1 and

EnemyIdle_1 animations. Each of these animations contains five sprites

each. Name the animations: enemy-walk-1, and enemy-idle-1. Rename

the EnemyObject Animation Controller to EnemyController, and move it

to the Animations ➤ Controllers subfolder. Move the enemy animations to

the Animations ➤ Animations subfolder.

Figure 3-19.  Changing the Animation Speed

Chapter 3 Foundations

54

�Colliders
Next we’re going to learn about Colliders. Colliders are added to

GameObjects and used by the Unity Physics Engine to determine when

a collision has taken place between two objects. The shape of a Collider

is adjustable, and they’re usually shaped more or less like the outline of

the object they represent. It’s sometimes computationally prohibitive

to outline the exact shape of an object and often unnecessary, as an

approximation of an object’s shape is sufficient for collision purposes and

indistinguishable by the player during runtime. An approximation of the

objects shape using a type of Collider called a “Primitive Collider” is also

less processor intensive. There are two types of Primitive Colliders in Unity

2D: Box Collider 2D and Circle Collider 2D.

Select the PlayerObject and then select the Add Component button in

the Inspector. Search for and select “Box Collider 2D” to add a Box Collider

2D to the PlayerObject as seen in Figure 3-20.

Chapter 3 Foundations

55

We’ll need to know when the player collides with an enemy, so add a

Box Collider 2D to the EnemyObject as well.

Figure 3-20.  Adding a Box Collider 2D to the PlayerObject

Chapter 3 Foundations

56

�The Rigidbody Component
A Rigidbody Component added to a GameObject allows that GameObject

to interact with the Unity Physics Engine. It’s how Unity knows to apply

forces such as gravity to a GameObject. A Rigidbody also allows you to

apply forces to the GameObject via scripts. For example, your game may

have a GameObject called “car,” which contains a Rigidbody. You could

apply a certain amount of force to the car object to move it in the current

direction, depending on which button a player is pressing: gas or turbo.

With the PlayerObject selected, click the Add Component button in the

Inspector, search for “Rigidbody 2D,” and add it to the PlayerObject. In the

Body Type dropdown for the Rigidbody Component, select “Dynamic.”

Dynamic Rigidbody will interact and collide with other objects. Set the

following properties of the Rigidbody 2D to 0: Linear Drag, Angular Drag,

and Gravity Scale. Set Mass to 1.

The second type of Body Type in the drop-down menu is Kinematic.

Kinematic Rigidbody 2D Components aren’t affected by external physics

forces such as gravity. They do have a velocity but only move when we

move their Transform component, usually via a Script. This is a different

approach from applying forces to move a GameObject, as we described

previously. The third Body Type is Static, for the objects in the game that

won’t move at all.

Select the EnemyObject and add a Rigidbody 2D Component of type

Dynamic to it as well.

Now that we’ve added a Rigidbody 2D to our player and enemy,

they will be affected by gravity. Because our game uses a top-down

perspective, let’s turn off gravity so our player doesn’t go flying off the

screen. Go to Edit ➤ Project Settings ➤ Physics 2D and change the value

for Gravity Y from –9.81 to 0.

Chapter 3 Foundations

57

�Tags and Layers
�Tags
Tags allow us to label GameObjects for easy reference and comparison

while our game is running.

Select the PlayerObject. Under the Tag drop-down menu on the

very top left of the Inspector, select the Player tag to add a tag to our

PlayerObject, as seen in Figure 3-21.

The Player tag is a default tag that comes with every Scene in Unity but

you also can add tags as you need.

Create a new Tag called “Enemy” and use it to set the EnemyObject

Tag. We’ll add Tags for other items later as our game develops.

Figure 3-21.  Select the Player Tag in the Inspector to assign it to our
PlayerObject

Chapter 3 Foundations

58

�Layers
Layers are used to define collections of GameObjects. These collections

are used in collision detection to determine which layers are aware of

each other and thus can interact. We can then create logic in a Script to

determine what to do when two GameObjects collide. As we can see in

Figure 3-22, we want to create a new “User Layer” called “Blocking”. Type

“Blocking” into the User Layer 8 field.

Select the Layers drop-down menu and select, “Add Layer.” You should

see the Layers window appear as in Figure 3-22.

Now select the PlayerObject again to view its properties in the

Inspector. Select the Blocking Layer we just created from the drop-down

menu (see Figure 3-23) to add our PlayerObject to that Layer. Select the

EnemyObject and set the Layer to “Blocking” in the Inspector as well.

Figure 3-22.  The Layers window

Chapter 3 Foundations

59

Figure 3-23.  Select Blocking Layer from the drop-down menu

Later on, we’ll configure our game to enforce the condition that certain

GameObjects will not be able to pass through any object in the Blocking

Layer. For example the Player will be in the Blocking Layer, as will any

walls, trees, or enemies. Enemies should not be able to pass through the

player, and the player should not be able to pass through any walls, trees,

or enemies.

�Sorting Layers
Let’s look at a different type of Layer now: Sorting Layers. Sorting Layers

are different than regular Layers in that they allow us to tell the Unity

Engine what order our various 2D Sprites on the screen should be

“rendered” or drawn. Because the Sorting Layer relates to rendering,

you’ll always see the Sorting Layer drop-down menu inside the Renderer

component.

To get a better idea of what we mean by the “order” in which sprites

are rendered, take a look at the screenshot in Figure 3-24 of the point-

and-click adventure Thimbleweed Park. The screenshot shows two player

Chapter 3 Foundations

60

characters standing in a room. We can see various pieces of furniture in

the room such as a filing cabinet and a table. In the Thimbleweed Park

screenshot, the female detective, Agent Ray, appears to be standing in

front of the filing cabinet. This effect is accomplished by rendering the

sprite of Agent Ray after the game engine renders the filing cabinet.

Thimbleweed Park uses its own proprietary game engine instead of

Unity, but all engines must have some sort of logic describing the order in

which to render pixels.

In our RPG, we’re going to be looking from the top-down, in what’s

called an “orthographic” perspective. We’ll talk more about what that

means when we talk about cameras, but for now know that we want Unity

to draw pixels for the ground first, then any characters such as the player or

enemies on top of the ground, so the characters appear to be walking on it.

We’re going to add a Sorting Layer called “Characters” that we’ll use for

our player and all enemies.

Figure 3-24.  A screenshot of Thimbleweed Park showing characters
standing in front of objects

Chapter 3 Foundations

61

In the Sprite Renderer Component in the Inspector, select the Sorting

Layer dropdown and select “Add Sorting Layer” as seen in Figure 3-25. The

Sorting Layer that we create will be available throughout our game, even

though we’re creating it from the menu on the PlayerObject.

Add a Sorting Layer named, “Characters” (Figure 3-26), and then

click on the PlayerObject again to view its Inspector and select our new

Characters Sorting Layer from the Sorting Layer drop-down menu, as seen

in Figure 3-27.

Figure 3-25.  Adding a Sorting Layer

Chapter 3 Foundations

62

Select our EnemyObject and set its Sorting Layer to Characters,

because we want enemies to also be rendered on top of things like

ground tiles.

Figure 3-27.  Use the new Characters Sorting Layer in our
PlayerObject

Figure 3-26.  Add a new Sorting Layer called Characters

Chapter 3 Foundations

63

�Introducing: Prefabs
Unity allows you to construct GameObjects with embedded Components

and then create something called a “Prefab” out of that GameObject.

Prefabs can be thought of as pre-fabricated templates from which you can

create, or “instantiate,” new copies of already-made GameObjects. This

asset has a very useful feature that allows you to edit all of the Prefabs

at once by changing the Prefab template. On the other hand, you could

choose to change a single Prefab and leave the rest of them identical to the

original.

For example, imagine if you had a Scene where the player is inside a

tavern. There are numerous props inside this tavern such as chairs, tables,

and mugs of ale. If you created individual GameObjects for all of these

props, each one of them would be independently editable. If you should

ever want to change a single property on every table, for example, to make

them dark wood instead of light wood, you’d have to select and edit each

one of the tables and change that property. If the table objects were Prefab

instances, you’d only have to change the property on a single object—the

Prefab, then click the button to apply that change to all the instances

derived from that Prefab.

We’re going to use this straightforward technique of Prefabs constantly

throughout the process of building our game.

It’s really easy to create a Prefab out of a GameObject. First, create a

Prefabs folder under our Assets folder in the Project view. Then select our

PlayerObject from the Hierarchy view and simply drag it into our Prefabs

folder.

The screenshot in Figure 3-28 shows a Prefab after we’ve dropped our

PlayerObject into the Prefabs folder.

Chapter 3 Foundations

64

Take a look at the Hierarchy view in Figure 3-28. You’ll notice that the

PlayerObject text is light blue. This indicates that PlayerObject is based on

a Prefab. This also means that going forward, if you make any changes to

Figure 3-28.  Create a Prefab by dragging any GameObject into the
Prefabs folder

Chapter 3 Foundations

65

the PlayerObject Prefab and you want to apply the changes to all instances

of the Prefab, you need to press the Apply button in the Inspector while

that GameObject is selected in the Project view (see Figure 3-29).

You can now safely delete the PlayerObject from the Hierarchy view,

as we now have a Prefab PlayerObject which we can always use to recreate

the PlayerObject. If you want to edit all instances of the Prefab, simply drag

the Prefab object back into the Hierarchy view and make your changes,

then press Apply.

Do the same for the EnemyObject: drag it into the Prefabs folder and

delete the original EnemyObject from the Hierarchy view.

Now’s a good time to save our Scene again, so make sure to do that.

�Scripts: Logic for Components
So we have our PlayerObject and we have our EnemyObject. Let’s make

them move! Select our PlayerObject Prefab and drag it into the Hierarchy

view. You’ll notice that the Inspector has once again been populated with

the properties for the PlayerObject.

Figure 3-29.  Press the Apply button to apply any changes you make
to the PlayerObject, to all instances of the Prefab

Chapter 3 Foundations

66

Scroll to the bottom of the Inspector and press the Add Component

button. Type in the word, script and select “New Script”. Name the new

script, “MovementController” as seen in Figure 3-30.

Create a new folder called “Scripts” in the Project view. The new script

will have been created in the top-level Assets folder in the Project view.

Drag the MovementController script into the Scripts folder, and then

double-click it to open it in Visual Studio.

It’s time to program our first script. Scripts in Unity are written in a

language called C#. Once you’ve opened up our MovementController

script in Visual Studio, it should resemble Figure 3-31.

Figure 3-30.  Name the new Script: “MovementController”

Chapter 3 Foundations

67

Figure 3-31.  The MovementController script in Visual Studio

Note U p until relatively recently, Unity allowed developers to
write scripts in two different languages: C# as well as a language
resembling JavaScript called “UnityScript.” Starting with the Unity
2017.2 beta, Unity began the process of deprecating UnityScript, but
it’s possible you might find some UnityScript samples out there in the
wild. Going forward, you should only use C# to write scripts for Unity.
You can read more about the reasons for deprecation in Unity’s blog:
https://blogs.unity3d.com.

Let’s go through the structure of a typical Unity Script. All of the

following lines should be typed exactly as you see them, and every line

in C# should end with a semicolon. Programming languages are very

literal and don’t take kindly to omitted semicolons, returns, or extra

letters or numbers. The lines prefaced with // are comments, written only

for clarification, and you don’t have to type those. Comments in C# can

be written using two forward slashes: // or with a: /* followed by your

comment, and closed with: */

Chapter 3 Foundations

https://blogs.unity3d.com

68

// 1

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

// 2

public class MovementController : MonoBehaviour

{

// 3

 // Use this for initialization

 void Start()

 {

 }

// 4

 // Update is called once per frame

 void Update()

 {

 }

}

Here’s a breakdown of each preceding section:

// 1

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

Namespaces are used to organize and control the scope of classes in

a C# project to avoid conflicts as well as make the developers lives easier.

The keyword Using is used to describe a specific Namespace in the .NET

Framework, and saves the developer the trouble of having to type the fully

qualified name every time a method from that Namespace is used.

Chapter 3 Foundations

69

For example, if we include the System namespace, as in the following

example:

using System;

instead of having to type the cumbersome:

System.Console.WriteLine("Greatest RPG Ever!");

We can simply type the shorter version:

Console.WriteLine("Greatest RPG Ever!");

This is possible because the: using System; declaration clarifies that

code in this class file will be using the System namespace.

Namespaces in C# are also nestable. This means you can refer to

namespaces within namespaces like Collections, within System. This is

written as follows:

using System.Collections;

The UnityEngine Namespace contains many Unity-specific classes,

some of which we’ve already used in our Scene, such as MonoBehaviour,

GameObject, Rigidbody2D, and BoxCollider2D. By declaring the

UnityEngine Namespace, we can reference and work with these classes in

our C# script.

// 2

public class MovementController : MonoBehaviour

For a class to be attached to a GameObject within a Scene

as a Component, it needs to inherit from the UnityEngine class

MonoBehaviour. By inheriting from MonoBehaviour, a class gets

access to methods such as Awake(), Start(), Update(), LateUpdate(), and

OnCollisionEnter() along with guarantees that those methods will be

invoked at a certain point in Unity’s event function execution cycle.

Chapter 3 Foundations

70

// 3

void Start()

One of the methods provided by the parent MonoBehaviour class is

Start(). We’ll describe the event function execution cycle later but as you

can imagine from its name, the Start() function is one of the first methods

to be called as a script executes. The Start() method is called before the

first frame update provided a few conditions are met:

	 1.	 The script must inherit from MonoBehaviour.

Our MovementController does inherit from

MonoBehaviour.

	 2.	 The script must be enabled at initialization time. By

default, scripts will be enabled, but it is possible for

a script not to be enabled initialization time, which

could be a possible error source.

// 4

void Update()

The Update() method is called once per frame and is used to update

game behaviors. Because Update() is called once per frame, a game with a

24 frames-per-second rate will call Update() 24 times in a second, however

the time between update calls may vary. If you require a consistent time

between method calls, then use the FixedUpdate() method.

Now that we’re familiar with the default MonoBehaviour script, replace

the MovementController class with the following:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

Chapter 3 Foundations

71

public class MovementController : MonoBehaviour

{

 //1

 public float movementSpeed = 3.0f;

 // 2

 Vector2 movement = new Vector2();

 // 3

 Rigidbody2D rb2D;

 private void Start()

 {

 // 4

 rb2D = GetComponent<Rigidbody2D>();

 }

 private void Update()

 {

 // Keep this empty for now

 }

 // 5

 void FixedUpdate()

 {

 // 6

 movement.x = Input.GetAxisRaw(“Horizontal”);

 movement.y = Input.GetAxisRaw(“Vertical”);

 // 7

 movement.Normalize();

 // 8

 rb2D.velocity = movement * movementSpeed;

Chapter 3 Foundations

72

 }

}

// 1

public float movementSpeed = 3.0f;

Declare a public float that we’ll use to adjust and set the characters

movement speed. By declaring it public, we allow this variable

movementSpeed to appear in the Inspector when the GameObject to

which it is attached is selected.

Take a look at Figure 3-32 to see how the public variable appears in

the Inspector, in the Movement Controller (Script) section. Unity will

automatically capitalize the first letter of a public variable, and add a space

right before the first uppercase letter. That means “movementSpeed” will

appear as “Movement Speed” in the Inspector.

Figure 3-32.  The public variable movementSpeed appears
capitalized and with a space

Chapter 3 Foundations

73

// 2

Vector2 movement = new Vector2();

A Vector2 is a built-in data structure that holds 2D vectors or points.

We’re going to use it to represent a Player or Enemy character’s location in

2D space or where the character is moving to.

// 3

Rigidbody2D rb2D;

Declare a variable to hold a reference to the Rigidbody2D.

// 4

rb2D = GetComponent<Rigidbody2D>();

The method GetComponent takes a parameter of Type, and will

return the component attached to the current object of that type, if one is

attached. We call GetComponent<Rigidbody2D> to grab a reference to the

Rigidbody2D component that we attached to the PlayerObject in the Unity

Editor. We’re going to use this component to move the player around.

// 5

FixedUpdate()

As we discussed a few pages earlier, FixedUpdate() is called at fixed

intervals by the Unity Engine. This contrasts with the Update() method that

is called once per frame. On slower hardware devices, a games framerate

could slow down, in which case Update() may be called less frequently.

// 6

movement.x = Input.GetAxisRaw("Horizontal");

movement.y = Input.GetAxisRaw("Vertical");

The Input class gives us several ways to capture user input. We capture

user input using the method GetAxisRaw() and assign the values

to the x and y values of our Vector2 structure. The GetAxisRaw() method

Chapter 3 Foundations

74

takes a parameter specifying which 2D axis we are interested in, horizontal

or vertical, and retrieves a -1, 0, or 1 from the Unity Input Manager and

returns it.

A "1" indicates that the right key, or "d" (using the common w, a, s, d

input configuration) was pressed, while a "-1" indicates that the left key

or "a" was pressed. A "0" indicates that no key was pressed. This input key

mapping is configurable via the Unity Input Manager, which we’ll explain

later.

// 7

movement.Normalize();

This will “normalize” our vector and keep the player moving at the

same rate of speed whether they’re moving diagonally, vertically, or

horizontally.

// 8

rb2D.velocity = movement * movementSpeed;

Multiplying the movementSpeed by the movement Vector will set the

velocity of the Rigidbody2D attached to the PlayerObject and move it.

Go back to the Unity Editor and ensure that you see our PlayerObject

in the Hierarchy view. If not, drag the PlayerObject from the Prefabs folder

into the Hierarchy view.

There’s one last very important step: we need to add the script to the

PlayerObject.

To add the script to our PlayerObject, drag the MovementController

script from the Scripts folder, onto the PlayerObject in the Hierarchy

view, or drag it into the Inspector when the PlayerObject is selected.

This is how we can attach a script to an object in the Unity Editor. The

MovementController script gets access to the other components in the

PlayerObject when it is attached to a specific object.

Chapter 3 Foundations

75

Now press the play button. You should see our player character

walking in place. Press either the arrow keys or W, A, S, D on your keyboard

and watch her move around.

Congratulations! You’ve just breathed life into what was once just

electronic impulses. You know what they say about what comes with great

power...

�State and Animations
�More State Machines
Now that we know how to move our character around the screen, we’re

going to talk about how to switch between animations based on the

current player state.

Go to the Animations ➤ Controllers folder and double-click the

PlayerController object. You should be looking at the Animator window,

displaying the State Machine we set up earlier. As we discussed earlier,

Unity’s Animation State machine allows us to view all the various player

states and their associated animation clips.

Click and drag your Animation State objects around until it resembles

the screen in Figure 3-33, with the player-idle off to the side, and the

player-walk animations grouped together. There’s no need to get too

precise when lining them up, as the only thing that really matters is the

directional arrows between the Animation State objects.

Chapter 3 Foundations

76

In Figure 3-33, you can see how the player-walk-east Animation State

is orange. The orange color indicates that it’s the default state for this

Animator. Select then right-click on the “player-idle” Animation State and

select “Set as Layer Default State” as seen in Figure 3-34. The color should

change to orange.

Figure 3-33.  Organization of the Animations in the Animator
window

Figure 3-34.  Right-click and select Set as Layer Default State to set
the player-idle animation as the default

Chapter 3 Foundations

77

Now do the same for the rest of the Animation States: right-click Any

State, Create Transition, and select each one of the Animation States to

create a transition. As we mentioned earlier, the “Any State” is used when

you want to transition to a state, such as “jump” from any other state.

You should create a total of five white transition arrows pointing from

Any State to all four player-walk Animation States and the player-idle

Animation State. There also should be a orange-colored default-state

arrow from the Entry Animation State, leading to the player-idle Animation

State, as seen in Figure 3-36.

We want player-idle to be the default state because when we’re not

touching a directional key, we want the player facing south toward the user

in an idle state. This will look as if the player character is awaiting the user.

Now select and right-click on the “Any State” and select “Make

Transition.” A line with an arrow will appear, attached to and following

around your mouse. Click on “player-walk-east” to create a transition

between the Any State object and player-walk-east.

If you’ve done this correctly, it should look like Figure 3-35.

Figure 3-35.  Create a transition from Any State to player-walk-east

Chapter 3 Foundations

78

�Animation Parameters
To use these transitions and states, we want to create something called an

Animation Parameter. Animation Parameters are variables defined in the

Animation Controller and are used by scripts to control the Animation

State Machine.

We’re going to use this Animation Parameter that we create in

our Transitions and in our MovementController script to control the

PlayerObject and make her walk around the screen.

Select the Parameters tab (Figure 3-37) on the left side of the

Animator window. Press the plus symbol and select “Int” from the

drop-down (Figure 3-38). Rename the created Animation Parameter to

“AnimationState” (Figure 3-39).

Figure 3-36.  Create transitions from Any State to all the Animation
States

Chapter 3 Foundations

79

Figure 3-38.  Select Int from the drop-down menu

Figure 3-37.  The Parameters tab in the Animator window

Chapter 3 Foundations

80

We’re going to set the Animation Parameter in each Transition to a

specific condition. If during gameplay this condition is ever true, then the

Animator will transition to that Animation State and the corresponding

Animation Clip will play. Because this Animator component is attached to

the PlayerObject, the Animation Clips will be displayed at the Transform

component’s location in the Scene. We use a script to set this Animation

Parameter condition to be true and trigger the state transition.

Select the white Transition line connecting Any State to the player-

walk-east state. In the Inspector, change the settings so that they match

Figure 3-40.

Figure 3-39.  Name the Animation Parameter: AnimationState

Chapter 3 Foundations

81

Figure 3-40.  Configuring the Transition in the Inspector

Chapter 3 Foundations

82

We want to uncheck boxes such as Exit Time, Fixed Duration, and

Can Transition to Self. Make sure to set Transition Duration (%) to 0, and

Interruption Source to “Current State Then Next State.”

Uncheck Has Exit Time because we want to interrupt an animation if

our user presses a different key. If we left Has Exit Time checked, then the

animation would have to finish playing up until the % entered in the Exit

Time box, before the next one could begin, and that would result in poor

player experience.

On the bottom of the inspector, you’ll see an area titled, “Conditions.”

Click the plus symbol in the lower-right and select AnimationState, Equals,

and enter 1 (Figure 3-41). We’ve just created a condition that says: if the

Animation Parameter called “AnimationState” equals 1, then enter this

Animation State and play the Animation. This is how we will trigger state

changes from the script we’re about to write.

Note I t’s really easy to accidentally leave the AnimationState drop-
down box as “Greater” instead of “Equals” so watch out for that. Our
transitions won’t work properly if we don’t set the condition to Equals.

The next item we’re going to do is actually set that AnimationState

parameter equal to 1 in our script. Go back to Visual Studio and our

MovementController.cs script.

Figure 3-41.  Setting the condition of the Animation Parameter:
AnimationState

Chapter 3 Foundations

83

Replace the MovementController class with:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class MovementController : MonoBehaviour

{

 public float movementSpeed = 3.0f;

 Vector2 movement = new Vector2();

// 1

 Animator animator;

// 2

 string animationState = "AnimationState";

 Rigidbody2D rb2D;

// 3

 enum CharStates

 {

 walkEast = 1,

 walkSouth = 2,

 walkWest = 3,

 walkNorth = 4,

 idleSouth = 5

 }

 private void Start()

 {

// 4

 animator = GetComponent<Animator>();

 rb2D = GetComponent<Rigidbody2D>();

 }

Chapter 3 Foundations

84

 private void Update()

 {

// 5

 UpdateState();

 }

 void FixedUpdate()

 {

// 6

 MoveCharacter();

 }

 private void MoveCharacter()

 {

 movement.x = Input.GetAxisRaw("Horizontal");

 movement.y = Input.GetAxisRaw("Vertical");

 movement.Normalize();

 rb2D.velocity = movement * movementSpeed;

 }

 private void UpdateState()

 {

// 7

 if (movement.x > 0)

 {

 �animator.SetInteger(animationState, (int)

CharStates.walkEast);

 }

Chapter 3 Foundations

85

 else if (movement.x < 0)

 {

 �animator.SetInteger(animationState, (int)

CharStates.walkWest);

 }

 else if (movement.y > 0)

 {

 �animator.SetInteger(animationState, (int)

CharStates.walkNorth);

 }

 else if (movement.y < 0)

 {

 �animator.SetInteger(animationState, (int)

CharStates.walkSouth);

 }

 else

 {

 �animator.SetInteger(animationState, (int)

CharStates.idleSouth);

 }

 }

}

// 1

Animator animator;

We create a variable called “animator” that we’ll use later on to store

a reference to the Animator component in the GameObject to which this

script is attached.

// 2

string animationState = "AnimationState";

Chapter 3 Foundations

86

Typing a string directly into the code where it will be used is called

“hard-coding” the value. It’s also a common source of bugs when the

inevitable typos happen, so let’s avoid the possibility altogether by only

typing it once, then using the variable when we need to refer to the string.

// 3

enum CharStates

The data type “enum” is used to declare a set of enumerated constants.

Each enumerated constant corresponds to an underlying typed value, such

as int (integer), and you can reference the enum to get the corresponding

value.

Here we declare an enum called CharStates and use it to map the

various states of a character (walk east, walk south, etc.) along with a

corresponding int. We’ll use this int value to set our Animation State soon.

// 4

animator = GetComponent<Animator>();

Grab a reference to the Animator component in the GameObject to

which this script is attached. We want to save this component reference so

we can quickly access it later on via this variable, and don’t have to retrieve

it every time we need it. Using GetComponent is most common way of

accessing other components from within a script. You can even use it to

access other scripts.

// 5

UpdateState();

Call a method that we’ve written to update the animation state

machine. We’ve moved this logic into a separate method to keep the

codebase clean and easily readable. The more code you have in a single

method, the harder it is to read. Harder to read code is harder to debug,

test, and maintain.

Chapter 3 Foundations

87

// 6

MoveCharacter();

We’ve moved the code to move the player into another method to keep

the code clean and readable.

// 7

This series of if-else-if statements will determine if our call to

Input.GetAxisRaw() returns a -1, 0, or 1, and move the character

accordingly.

For example:

 if (movement.x > 0)

 {

 animator.SetInteger(animationState, (int)

CharStates.walkEast);

 }

If movement along the x axis is greater than 0, then the player is

pressing the key to go right.

We want to tell the Animator object that it should change the state

to walk-east, so we call the SetInteger() method to set the value of the

Animation Parameter we created earlier and trigger the transition of states.

SetInteger() takes two parameters: a string, and an int value. The first

value is the Animation Parameter (Figure 3-42) we created earlier in the

Unity Editor called, “AnimationState.”

Figure 3-42.  We set this Animation Parameter from our script

Chapter 3 Foundations

88

We’ve conveniently stored the name of this Animation Parameter in a

string called “animationState” in our script and we’ll pass that as the first

parameter to SetInteger().

The second parameter to SetInteger() is the actual value to set for

AnimationState. Because each value in our CharStates enum corresponds

with an int value, when we type:

CharStates.walkEast

We are actually using whatever value walkEast corresponds with in the

enum. In this case, walkEast corresponds with 1. We still need to explicitly

cast (or convert) this to an int by writing (int) to the left of the variable. The

reason why we need to cast the enum is beyond the scope of this book but

has to do with the way the C# language is implemented under the hood.

Save your script and switch back to the Unity Editor so we can put all of

this to use. Select the white transition arrows leading to player-walk-south,

and in the Conditions area, click that plus symbol. Select AnimationState,

Equals, and enter the value 2. This value 2 corresponds with the value 2 in

the enum in the script we just wrote.

Now select each white transition arrow one-by-one for player-walk-

west, player-walk-north, and all of the player-idle state transition arrows.

Add a Condition to each of them via the Inspector window and enter the

corresponding value from the CharStates enum:

enum CharStates

 {

 walkEast = 1,

 walkSouth = 2,

 walkWest = 3,

 walkNorth = 4,

 idleSouth = 5

 }

Chapter 3 Foundations

89

As you’re going through each transition arrow, remember to uncheck

boxes such as Exit Time, Fixed Duration, Can Transition to Self, and set

Transition Duration (%) to 0.

One last thing, I promise! Select each player-walk Animation State

object and adjust the speed to 0.6, and adjust each idle animation to 0.25.

This will make our player animations look just right.

You’ve now set up a large portion of the player animations required for

our game. Press the Play button and move our character around the screen

with the arrow keys or W, A, S, D.

Go on and stretch your pixelated legs.

Tip I f you forget the exact parameters for a method in C#, Visual
Studio will show a helpful pop-up with this information (Figure 3-43).
You can press return to auto-complete the method call.

Figure 3-43.  Visual Studio displays a pop-up with the methods
parameter names and types

Chapter 3 Foundations

90

�Summary
In this chapter we’ve covered a lot of the core knowledge required to make

games in Unity. We covered some of the design philosophy and computer

science principles behind how Unity works. We covered how games in

Unity are made of Scenes, and everything in a Scene is a GameObject. We

learned about how Colliders and Rigidbody components work together to

determine when two GameObjects collide and how Unity’s physics engine

should handle the interaction. We learned how Tags are just labels used

to refer to GameObjects, such as the PlayerObject, from Scripts while our

game is running. Another useful tool we added to our toolkit is Layers,

which are used to group together GameObjects. We can then impose logic

onto these Layers via Scripts.

One of the most useful concepts we learned in this chapter was

Prefabs, which we think of as premade asset templates which we use

to create new copies of these assets. For example, our game might have

hundreds of enemy objects appear over the course of the game, or even

at once (if you really want to kill the player). Instead of creating hundreds

of individual enemy GameObjects, we create one enemy prefab and

instantiate new copies of the enemy GameObject from that prefab. We’ve

started the process of learning how to write Unity scripts, and we’ll

continue building on that knowledge throughout this book. We even

wrote our first script to walk the player around the screen by moving the

PlayerObject Transform component. Our script also set the Animation

Parameters used by the Animator state machine to control the transitions

between player states and animation clips. We covered a lot in this chapter,

but we’re really just getting started!

Chapter 3 Foundations

91© Jared Halpern 2019
J. Halpern, Developing 2D Games with Unity, https://doi.org/10.1007/978-1-4842-3772-4_4

CHAPTER 4

World Building
Now that we’ve learned how to create basic character animations and

change the state between them, it’s time to create a world for these

characters to inhabit. Two-dimensional (2D) worlds are often created by

placing a series of tiles together to paint a background, then placing other

tiles on top of that background to create the illusion of depth. These tiles

are really just sprites that have been segmented or “sliced” into convenient

dimensions and usually placed using a Tile Palette. The designer or

developer can build up multiple layers of these Tilemaps to create effects

such as trees, birds flying overhead, or even mountains in the distance.

We’re going to learn how to do many of these things in this chapter. You’ll

even get to create your own custom Tilemaps for our RPG game. You’ll also

learn how the Unity Camera works, and how to create behavior to follow

the player as she walks around the level.

�Tilemaps and Tile Palettes
With the introduction of the Tilemap feature, Unity took a significant step

forward with their 2D workflow toolchain. Unity Tilemaps make it easy to

create levels natively within the Unity Editor, instead of relying on outside

tools. Unity also has a number of tools that augment the Tilemap feature,

some of which we’ll get into in this chapter.

92

Tilemaps are data structures that store sprites in a particular

arrangement. Unity abstracts away the details of the underlying data

structure and makes it easy for the developer to focus on working with the

Tilemap.

To get started, we’ll need to import the Tilemap assets, just as we

imported the sprite assets used for our player and enemy in Chapter 3.

Before we start importing, let’s get organized: create new folders in the

Sprites directory called: “Objects” and “Outdoors.” We’ll use these folders

to hold the spritesheets and sliced sprites used for our outdoor Tilemap

and various objects we’ll place in our world.

From the downloaded book assets, in the Chapter 4 folder, find the

spritesheet titled “OutdoorsGround.png”. Drag the spritesheet into the

Sprites ➤ Outdoors folder. The Outdoors Import Settings in the Inspector

should be set to the following:

Texture Type: Sprite (2D and UI)

Sprite Mode: Multiple

Pixels Per Unit: 32

Filter Mode: Point (no filter)

Ensure the Default button is selected at the bottom

and set Compression to: None

Press the Apply button.

Now we want to slice the spritesheet that we’ve just imported. Go into

the Sprite Editor by clicking its respective button in the Inspector. Press the

Slice button in the upper-left and then the Grid by Cell Size from the Type

menu. Use 32 × 32 for the X and Y pixel size. Press the Slice button.

Check that the resulting slice lines look good, and then press the

Apply button in the top-right corner of the Sprite Editor. We now have our

outdoor tile set.

Chapter 4 World Building

93

Next we want to create our Tilemap. In the Hierarchy view, right-click

and Select 2D Object ➤ Tilemap to create a Tilemap GameObject. You

should see a GameObject appear called “Grid” with a child GameObject

called, “Tilemap.” This Grid object is used to configure the layout of

its child Tilemaps. The child Tilemaps are made up of a Transform

component just like all GameObjects, a Tilemap component, and a

Tilemap Renderer component.

This Tilemap component is where we actually “paint” our tiles.

�Creating Tile Palettes
Before we can paint, we need to create a tile palette, which is made of

individual tiles. Go to the menu Window ➤ Tile Palette to show the Tile

Palette pane. Dock the Tile Palette pane in the same area as the Inspector.

We want our project to stay organized, so create a folder in our Project

view under the main Assets folder called “TilePalettes,” then create another

folder called “Tiles” under the Sprites folder. In the Tiles folder, create

two folders called, “Outdoors” and “Objects.” Your Project view should

resemble Figure 4-1.

Chapter 4 World Building

94

Select the “Create New Palette” button in the Tile Palette window.

Name the Palette, “Outdoor Tiles” and leave the Grid and Cell Size settings

as shown in Figure 4-2.

Figure 4-1.  Project View after creating folders

Chapter 4 World Building

95

Press “Create” and save the Tile Palette to the newly created

TilePalettes folder. This will create a TilePalette GameObject.

Select the Sprites ➤ Outdoors folder in the Project view, then select the

Tile Palette view from wherever you’ve docked it. We’re going to create a

Tile Palette using the Outdoors spritesheet we imported and sliced earlier.

Select the Outdoors spritesheet and drag it into the Tile Palette area to

where it says, “Drag Tile, Sprite or Sprite Texture assets here.”

When prompted to “Generate Tiles into folder”, navigate to the Sprites

➤ Tiles ➤ Outdoor Tiles folder we created earlier, and press the Choose

button. Unity will now generate the TilePalette tiles from the individually

sliced sprites. In a few moments, you should see the tiles from our

Outdoors spritesheet appear in the Tile Palette.

Figure 4-2.  Create a new Tile Palette

Chapter 4 World Building

96

�Painting with Tile Palettes
Now comes the fun part: we’re going to use our Tile Palette to paint a

Tilemap.

Select the paintbrush tool from the Tile Palette, and then select a tile

from the Tile Palette. Use the paintbrush to paint on the Tilemap in the

Scene view. If you make a mistake, you can hold down the Shift key to use

the tile paintbrush as an eraser. When the paintbrush is selected, you can

hold down Option (Mac)/Alt (PC) + the left mouse button to pan around

the Tilemap.

Use Option (Mac)/Alt (PC) + left mouse button to pan around the Tile

Palette, left-click to select a tile, and left-click and drag to select a group of

tiles. If your mouse has a scroll wheel, you can use that to zoom in and out

on the Tile Palette, or you can hold down Option / Alt + swipe up/down on

a touchpad to zoom in and out. These same keys and gestures will work for

the Tile Map as well.

Paint your Tilemap and have fun! You can make your Tilemap

look however you’d like, but here’s a suggestion for how to get started

(Figure 4-3).

Chapter 4 World Building

97

Now that we’ve done a little bit of painting, let’s take a closer look at the

tools in the Tile Palette.

�The Tile Palette

  Select—Select areas of the grid or

specific tiles

  Move Selection—Move around

selected areas

Figure 4-3.  The beginnings of a Tilemap

Chapter 4 World Building

98

  Paintbrush—Select a tile from the Tile

Palette then use the Paintbrush to paint on the

Tilemap

  Box Fill—Paint a filled area using the

actively selected tile

  Pick New Brush—Use an existing tile

from the Tilemap as a new brush

  Erase—Remove a painted tile from

the Tilemap (Shortcut: hold down Shift)

  Flood Fill—Fill an area with the

actively selected tile

Let’s get back to building our level.

From the assets you downloaded for this book, drag the file titled,

“OutdoorsObjects.png” into the Sprites ➤ Objects folder. The Import

Settings in the Inspector should be set to the following:

Texture Type: Sprite (2D and UI)

Sprite Mode: Multiple

Pixels Per Unit: 32

Chapter 4 World Building

99

Filter Mode: Point (no filter)

Ensure the Default button is selected at the bottom

and set Compression to: None

Press the Apply button.

Now go into the Sprite Editor by clicking its respective button in the

Inspector. Press the Slice button in the upper-left and then Grid by Cell

Size from the Type menu. Use 32 × 32 for the X and Y pixel size. We are

reusing the Sprite slicing techniques we learned in Chapter 3.

Press the Slice button and check that the resulting white slice lines look

like they’re dividing the sprite sheet in the right positions. Press the Apply

button in the top-right corner of the Sprite Editor. We now have a set of

outdoor-themed object sprites to place in our scene.

Now we’re going to create a Tile Palette to paint with these object

sprites. Go back to our Tile Palette and select Create New Palette from the

drop-down. Name the new palette, “Outdoor Objects” and press the Create

button. When prompted, save this Palette to the TilePalettes folder where

we saved our Outdoor Tiles Palette earlier.

Now we’ll do the same as we did for the Outdoor Tiles: select the

Outdoor Objects spritesheet and drag it into the Tile Palette area where it

says, “Drag Tile, Sprite or Sprite Texture assets here.”

When prompted to “Generate Tiles into folder”, navigate to the Sprites

➤ Tiles ➤ Objects folder we created and press the Choose button. Unity

will now generate the Tile Palette tiles from the individually sliced sprites.

In a few moments, you should see the tiles from our Objects spritesheet

appear in the Tile Palette.

Chapter 4 World Building

100

Tip  Sometimes sprites are made of multiple tiles. To select multiple
tiles at once, make sure the Paintbrush tool is chosen then click and
drag a rectangle around the tiles you want to use. Then you can just
paint normally with the paintbrush. The large rock in the Objects
spritesheet is made of four separate sprite tiles.

Select one of the rocks from the Outdoor Objects Tile Palette by

clicking and dragging a rectangle around all four tiles. Use the paintbrush

to place a single rock on your Tilemap. You’ll immediately notice that

something looks wrong: you can actually see the background of the Unity

Scene view around the outline of the rock sprite (Figure 4-4).

Figure 4-4.  Transparent border around the placed rock object sprite

Chapter 4 World Building

101

When we painted the rock tiles on the same Tilemap as the ground

tiles, we didn’t actually paint on top of the existing tiles. Instead, we

replaced the existing tiles with new tiles. Because the rock sprites we

painted with contain some transparent pixels, we can see the background

of the Scene view. To avoid this, we’ll use multiple Tilemaps and Sorting

Layers.

�Working with Multiple Tilemaps
Let’s get our Tilemaps organized. Click on the Tilemap object in the

Hierarchy view and rename it: “Layer_Ground.”

We’re going to create multiple Tilemaps and stack them on top of each

other in layers. Right-click on the Grid object in the Hierarchy view and go

to: 2D Object ➤ Tilemap to create a new Tilemap. Select this new Tilemap

and rename it: “Layer_Trees_and_Rocks.” As you may have guessed from

the name, we’re going to paint trees, bushes, shrubs, and rocks on this

Tilemap.

At this point, if you started to paint, you’d notice that have run into the

same transparency issue again. There are two things we have to do to fix

this issue.

To paint on a specific Tilemap, it must be selected as the Active
Tilemap in the Tile Palette view. In the Tile Palette window, you’ll notice

the drop-down menu for Active Tilemap (Figure 4-5). Use it to select our

new layer, Layer_Trees_and_Rocks.

Chapter 4 World Building

102

If you recall our earlier discussion, the Sprite Renderer uses Sorting

Layers to determine the order in which to render sprites. Before we can

paint on our Layer_Trees_and_Rocks Tilemap, we need to set up the

Sorting Layers for our Tilemaps. This will ensure that when we paint our

trees and rocks, they will appear on top of the ground tiles.

Select Layer_Ground and find the Tilemap Renderer Component in

the Inspector.

Press the Add Sorting Layer button in the Tilemap Renderer and create

two layers: call the first layer “Ground” and the second layer “Objects”.

Rearrange these Sorting Layers by clicking and dragging them so that

Ground is above Objects in the listing as seen in Figure 4-6.

Figure 4-5.  Select Layer_Trees_and Rocks to make it the Active Tilemap

Figure 4-6.  Be sure the Ground Layer is above the Objects Layer

Chapter 4 World Building

103

Select the Layer_Ground Tilemap in the Hierarchy view again, to see its

properties in the Inspector. In the Tilemap Renderer component, change

the Sorting Layer to “Ground.” Select the Layer_Trees_and_Rocks Tilemap

and change its Sorting Layer to “Objects.”

Delete the rock tiles we painted earlier by setting the Active Layer to

Layer_Ground, and then select the Erase tool from the Tile Palette toolset.

You also can delete items using the paintbrush by holding down shift and

painting. Fill in the erased spot with some grass or whatever ground tile

you like from the Outdoor Objects palette.

Now we’re ready to paint. When you want to paint ground tiles, be

sure that the Active Tilemap is set to Layer_Ground, and when you want to

paint trees, rocks, and shrubs, be sure the Active Tilemap is Layer_Trees_

and_Rocks.

Tip U se the square-bracket keys, “[“ and “]” to rotate a selected
tile before using it to paint. You can also rotate tiles directly on the
palette this way.

Then set the Active Tilemap to Layer_Trees_and_Rocks and paint

some rocks and bushes using the Outdoor Objects Tile Palette (Figure 4-7).

Chapter 4 World Building

104

Now our map is starting to look like a map. There are a few things we

have to do before our player can go exploring though.

We want to make sure the player is rendered in front of the ground

and rocks. We’ll accomplish this by setting the player’s sorting layer.

Select the PlayerObject, then look for the Sorting Layer property in the

Sprite Renderer Component and press the Add Sorting Layer button. Add

a Sorting Layer called “Characters” and move it to the bottom, after the

Ground and Objects layers. Now we’ve told the Sprite Renderer to render

objects in order from the first Sorting Layer, “Ground” to the last Sorting

Layer, “Characters.”

Your Sorting Layers should look like Figure 4-8.

Figure 4-7.  Paint some rocks and bushes onto the Layer_Trees_and_
Rocks Tilemap

Chapter 4 World Building

105

Select the PlayerObject and set its Sorting Layer to the Characters

layer that we just created. This will render the player on top of the ground

and any objects on the ground and give the appearance of the characters

walking on top of the ground.

We’ll explain how the camera works later in this chapter but for now,

select the camera object and change the Size property to 3.75.

Press the Play button and take our Player for a walk around the

little island.

You’ll notice a few things immediately:

•	 The camera doesn’t follow the Player. In fact, you can

walk right off the screen and keep walking forever if you

wanted to.

•	 The player can walk right through objects on the map.

•	 You might see a few strange-looking lines or “tears”

on the Tilemap. If they appear, they will be located

between where two tiles meet.

We’re going to address all of these points in this chapter.

Figure 4-8.  Add the Characters Sorting Layer

Chapter 4 World Building

106

We’ll learn to use Colliders to prevent the Player from walking

through everything, and we’ll use a tool called Cinemachine to make the

Camera follows the Player as he walks. We’ll also make sure the Camera is

configured properly. We’ll configure the graphic settings to ensure we get

a crisp edge, which is important for pixel art and we’ll use a Material to get

rid of the tears.

Tip I f you have multiple Tilemap layers but would like to focus on
just one, use the Tilemap focus mode in the lower-right of the Scene
view. This will allow you to gray-out the other Tilemap layers and
focus working on a specific layer.

�Graphics Settings
Let’s tweak the Unity Engine graphics settings so that our pixel art looks

as good as possible. Unity uses an algorithm called anti-aliasing when

the graphics output of the current device isn’t powerful enough to render

the edges of objects into perfectly smooth lines. Instead of rendering

smooth lines, the edges of objects appear jagged or aliased. The anti-

aliasing algorithm runs over the edges of an object and gives it a smooth

appearance to compensate for the jagged graphics output.

Anti-aliasing is turned on by default in the Unity Editor regardless of

the power of the device you’re using. To turn off anti-aliasing, go to the Edit

Menu ➤ Project Settings ➤ Quality, and set Anti-Aliasing to Disabled. As

we’ve learned, the Unity Engine can be used for both 3D and 2D games,

but we don’t need anti-aliasing for our pixel-art style 2D game.

From within that same menu, Edit ➤ Project Settings ➤ Quality, also

disable Anisotropic Textures. Anisotropic filtering is a way of enhancing

image quality when using a specific type of camera perspective. It isn’t

relevant to what we’re doing here with our project, so we should turn it off.

Chapter 4 World Building

107

�The Camera
All 2D projects in Unity use something called an Orthographic camera.

Orthographic cameras render objects that are both near and far, the same

size. By rendering all objects the same size, it appears to the onlooker as

though everything is the same distance from the camera. This is different

from how 3D projects render objects. In 3D projects, objects are rendered

with different sizes to give the illusion of distance and perspective. We

configured our Unity project to use an Orthographic camera in the very

beginning, when we set up a 2D project.

To get the best results when rendering 2D graphics, it’s important to

understand how the camera works in a 2D game. Orthographic cameras

have a property called Size that determines how many vertical “world
units” can fit into half of the screen’s height. World units are determined

by setting the PPU or pixels per unit setting in Unity. As you may suspect

from the name, the pixels per unit setting describes how many pixels the

Unity Engine should render in a single world unit, that is, pixels per unit.

PPU can be set during the import assets process. PPU is important because

when you’re creating art for your game, you’ll want to make sure it all looks

good at the same PPU.

The equation for camera size is:

(Vertical resolution / PPU) * 0.5 = Camera Size
Let’s use a few simple examples to clarify this concept.

Given a screen resolution of 960 × 640, the vertical screen height is 640

pixels. Let’s use a PPU of 64, to make our calculations simple: 640 divided

by 64 equals 10. That means 10 world units stacked on top of each other

would take up the entire vertical screen height and 5 world units would

take up half of the vertical screen height. Thus, the camera size is 5, as seen

in Figure 4-9.

Chapter 4 World Building

108

Let’s do another example. If your game uses a screen resolution of

1280 × 1024, then the vertical screen height is 1024. Using a PPU of 32,

we divide 1024 by 32 to get 32. That means 32 world units stacked on

top of each other would take up the entire vertical screen height and 16

world units would take up half of the vertical screen height. Thus, the

orthographic camera size is 16.

Here’s one last example to reinforce the equation. Using a screen

resolution of 1280 × 720, the vertical screen height would be 720. Using

a PPU of 32, we divide 720 by 32 to get 22.5. That means 22.5 world units

stacked on top of each other would fit into the vertical screen height:

22.5 divided by 2 equals 11.25, which is half of the screen height and our

orthographic camera size.

Starting to get the hang of this? Orthographic size can seem bizarre at

first but really, it’s a pretty simple equation.

Figure 4-9.  Resolution of 960 × 640 and PPU of 64, results in a
Camera Size of 5

Chapter 4 World Building

109

Here’s that equation again:

(Vertical resolution / PPU) * 0.5 = Camera Size

The trick to getting a good-looking pixel art game is to pay attention to

the orthographic camera size with respect to the resolution, and make sure

the artwork looks good at a certain PPU.

In our game, we’re going to use a resolution of 1280 × 720 but we’ll use

a trick to scale up the art a bit. We’re going to multiply the PPU by a scaling

factor of 3.

Our modified equation will look like this:

(Vertical resolution / (PPU * Scaling factor)) * 0.5 = Camera Size

Using a resolution of 1280 × 720 and a PPU of 32:

(720 / (32 PPU * 3)) * 0.5 = 3.75 Camera Size

This is why we set our camera size to be 3.75 earlier.

Now that we have a better understanding of how the camera works

in Orthographic games, let’s set our screen resolution. Unity comes

with several screen resolution choices out of the box, but sometimes it’s

beneficial to set your own. We’re going to set a resolution of 1280 × 720,

which is considered “Standard HD” and should be sufficient for the style of

game we are making.

Click on the Game window and look for the Screen Resolution drop-

down menu. By default, it will probably be set to Free Aspect as seen in

Figure 4-10.

Figure 4-10.  The drop-down menu

Chapter 4 World Building

110

At the bottom of the drop-down menu, press the plus sign to open a

window where you can enter new resolution. Create a custom resolution of

1280 × 720, as seen in Figure 4-11.

Figure 4-11.  Create a new custom resolution

Press the play button and walk the character around the map to see

our new resolution and camera in action.

Exciting stuff! Our game is starting to look like ... well, a game!

We’ve created a map for the player to walk around, but as you may

have noticed, the camera stays in one place. This is fine for certain types

of games such as puzzle games, but for an RPG, we’ll need the camera

to follow the player around. It’s possible to write a C# script to direct the

camera to follow the player, but we’re going to use a Unity tool called

Cinemachine instead.

Note  Cinemachine was originally created by Adam Myhill and sold
in the Unity Asset Store. Unity eventually acquired Cinemachine and
made it part of their free offerings. As mentioned in Chapter 2, you
can create your own tools, artwork, and content, and sell them in the
Unity Asset Store.

Chapter 4 World Building

111

�Using Cinemachine
Cinemachine is a powerful suite of Unity tools for procedural in-game

cameras, cinematics, and cutscenes. Cinemachine can automate all

types of camera movements, blend and cut from camera to camera

automatically, and automate all types of complex behaviors, many of them

well beyond the scope of this book. We’re going to use Cinemachine to

automatically track the player as she walks around the map.

Cinemachine was made available through the Asset Store for Unity

2017.1, but starting with Unity 2018.1, Cinemachine was made available

through the new Unity Package Manager. Earlier versions of Unity can still

use Cinemachine from the Asset Store, but that version is no longer being

updated and will contain no new features.

We’ll talk about how to install Cinemachine in both Unity 2017 and

Unity 2018 later. Refer to the instructions for the version of Unity that

you’re running.

�Installing Cinemachine in Unity 2017
Go to the Window menu and select Asset Store to open the Asset Store tab.

At the top of screen in the search field, type in, “Cinemachine” and press

enter. You should get a result that looks like Figure 4-12.

Figure 4-12.  The Cinemachine Unity Package in the Asset Store

Chapter 4 World Building

112

Press on the Cinemachine icon to go to the asset page. On the asset

page, press the Import button to import the Cinemachine Unity Package

into your current project. Unity will present you with a pop-up screen as

seen in Figure 4-13 showing all the assets inside the package. Press the

Import button.

Importing the Cinemachine package should have created a new folder

called, “Cinemachine”.

�Installing Cinemachine in Unity 2018
From the menus, select Window ➤ Package Manager. You should see

the Unity Package Manager window appear. Select the All tab, as seen in

Figure 4-14, then select Cinemachine.

Figure 4-13.  Import the Cinemachine Unity Package

Chapter 4 World Building

113

Click the Install button in the upper-right to install Cinemachine.

After Cinemachine is finished installing, close out the Package Manager

window. You should see a new Packages folder in the Project view.

�After Installing Cinemachine
Regardless of which version of Unity you’re running, when Cinemachine

is done installing, you should see a Cinemachine menu at the top of the

screen, between Component and Window.

Note U nity Packages are collections of files that can be dropped
into a project and will simply work out of the box. Packages come
as modular, version, and automatically resolve dependencies. In May
2018, Unity announced that packages are the future and they intend
to distribute many of their new features via packages.

Figure 4-14.  Select the All Tab

Chapter 4 World Building

114

�Virtual Cameras
Go to the Cinemachine menu and select Create 2D Camera. This should

create two objects: a Cinemachine Brain, attached to the main Camera,

and a Cinemachine Virtual Camera GameObject called “CM vcam1”.

What is a Virtual Camera? The Cinemachine documentation uses

a great analogy — a Virtual Camera can be thought of as a cameraman.

This cameraman controls the position and lens settings of the Main

Camera but is not actually a camera. A Virtual Camera can be thought of

as a lightweight controller that directs the Main Camera and tells it how

to move. We can set a target for the Virtual Camera to follow, move the

virtual camera along a path, blend from one path into another, and adjust

all types of parameters around these behaviors. Virtual cameras are a very

powerful tool to have in your Unity game development toolbox.

The Cinemachine Brain is the actual link between the Main Camera

and the Virtual Cameras in a Scene. The Cinemachine Brain monitors for

the currently active Virtual Camera, and then applies its state to the Main

Camera. Switching on and off Virtual Cameras during runtime allows the

Cinemachine Brain to blend together cameras for some pretty amazing

results.

Select the virtual camera and drag the PlayerObject into the property

called, “Follow” as seen in Figure 4-15.

Chapter 4 World Building

115

This tells the Cinemachine Virtual Camera to follow and track the

Transform component of the Player GameObject as she moves across the

map.

Press play and watch the camera follow the player around. Pretty neat!

With Cinemachine, we get some pretty sophisticated camera behaviors out

of the box with just a few mouse clicks.To get a better idea of the hidden

Figure 4-15.  Set the Virtual Camera Follow target to the PlayerObject

Chapter 4 World Building

116

parameters governing camera movement, let’s hide the ground layer.

Select the Layer_Ground Tilemap object from the Project view. Uncheck

the box next to the Tilemap’s Tilemap Renderer component to deactivate

it. Now Unity won’t render the Layer_Ground Tilemap. Your Scene should

resemble Figure 4-16, with all the ground tiles hidden.

Now click on the Main Camera object in the Hierarchy view and press

the colored box that says Background. Change the background color to

white (Figure 4-17). This will make it easier to see the Cinemachine follow

frame in the next step.

Figure 4-16.  After unchecking the box to the left of “Tilemap
Renderer” to deactivate it

Chapter 4 World Building

117

Last, select the virtual camera and ensure that the “Game Window

Guides” checkbox is checked. You’ll see what Game Window Guides are in

the next step.

Press the play button again. Notice how there’s a white box in the

middle encircling the player, surrounded by a light blue colored area, and

a red area encompassing all of it (Figure 4-18). This white box is called

the “Dead Zone.” There’s a yellow point inside the Dead Zone called the

Tracking Point that will move directly with the player.

Figure 4-17.  Change the Camera background color to white

Figure 4-18.  The Dead Zone around the player contains a yellow
tracking point

Chapter 4 World Building

118

The Dead Zone surrounding the player is the area in which the

tracking point can move, and the camera won’t move to follow. When the

tracking point moves outside of the Dead Zone and into the blue area,

the camera will move and begin to track. Cinemachine will add a bit of

damping to the movement as well. If you’re somehow able to move fast

enough to get the player into the red area, the camera will track the player

1:1 and follow every movement with no delay.

Make sure the Game view is visible and click on the edge of the white

box. Drag the white box out a bit, to resize the tracking area and make it

a bit bigger. Now the player can walk a little further without the camera

moving. You can play around with the size of these guides to get camera

behavior that feels natural in your game.

With the Cinemachine object still selected in the Hierarchy view, look

at the Cinemachine Virtual Camera component. You’ll see an arrow to

expand the “Body” section. Inside the Body section, (Figure 4-19) there

are options to adjust the X and Y Damping for the virtual camera body.

Damping is how quickly the Virtual Camera Dead Zone will move to catch

up with the tracking point.

Chapter 4 World Building

119

The best way to understand Damping is to adjust the X and Y Damping

as you walk the player around the map. Press Play and experiment with the

Damping values.

If you walk the player to the edge of the map, you’ll see the camera

moves with the target and things don't look too bad. But we can do better.

Stop play and select the Layer_Ground object in the Hierarchy view.

Check the box to the left of “Tilemap Renderer” to make the layer visible

again.

Figure 4-19.  The Damping properties from the Virtual Camera Body
properties section

Chapter 4 World Building

120

�Cinemachine Confiner
Now that we know how to make the camera track the player as they walk

around, we’re going to learn how to prevent the camera from moving

when the player gets close to the edge of the screen. We’ll use a component

called a Cinemachine Confiner to confine the Camera to a certain area.

The Cinemachine Confiner will use a Collider 2D object, which we’ve

preconfigured to surround the area in which we want to constrain the camera.

Before we get into the implementation details, let’s visualize how

the Confiner will affect camera movement. Keep in mind that the virtual

camera is actually directing the active scene camera, telling it where to

move and at what speed.

In Figure 4-20, we have the player in a Scene, about to walk east.

Figure 4-20.  The player is about to walk east

Chapter 4 World Building

121

The area in white is the visible viewport of the currently active camera.

The area in gray is the rest of the map, outside of the camera’s viewport and

not currently visible. The perimeter of the area in gray is surrounded by a

Collider 2D.

As the player walks east, the virtual camera directs the camera to

move east and track the player as she walks through the scene, as seen in

Figure 4-21.

The virtual camera movement will take into account player movement

speed, the size of the Dead Zone, and the amount of Damping applied to

the camera body.

The key thing to keep in mind is that we’ve encircled the perimeter of

the area in gray with a Polygon Collider 2D and set the bounding shape of

the Confiner to point to this Collider. When the Confiner edge hits the edge

Figure 4-21.  The player is walking east

Chapter 4 World Building

122

of that bounding shape, it will interact and tell the virtual camera to direct

the active camera to stop moving, as seen in Figure 4-22.

As you can see in the earlier figures, the Confiner edge has hit the edge

of the bounding shape which is the Collider 2D, surrounding the level. The

Virtual Camera has stopped moving, and the player continues to walk to

the edge of the map.

Let’s build a Cinemachine Confiner.

Select our Virtual Camera from the Hierarchy view. In the Inspector,

next to Add Extension, select CinemachineConfiner from the drop-

down menu. This will add a Cinemachine Confiner component to our

Cinemachine 2D Camera.

The CinemachineConfiner requires either a Composite Collider 2D,

or a Polygon Collider 2D to determine where the edges of the confinement

begin. Select the Layer_Ground object and add a Polygon Collider 2D via

Figure 4-22.  The Confiner has hit the edge of the Polygon Collider 2D
and the camera has stopped moving

Chapter 4 World Building

123

the Add Components button. Click the Edit Collider button on the collider

component and edit the collider so that it surrounds the edges of our

Layer_Ground level as seen in Figure 4-23.

The arrows in Figure 4-23 are there to remind you to leave a little bit

of a space between the collider and the edge of the map. This is so the

camera will show a bit of water and won’t be confined strictly to the edge

of the land mass. Don’t forget to press the Edit Collider button again when

you’re finished editing the collider. Check the “Is Trigger” property on

the collider component and then select our Cinemachine Camera again.

We want to use this Collider as a trigger because if we didn’t, the player

would be forcefully pushed out of the collider when the player’s Collider

and Tilemap Collider interacted. This is because two objects with Colliders

can’t occupy the same place unless one of them is being used as a Trigger.

Select and drag the Layer_Ground object into the Bounding Shape 2D

field of the Cinemachine Confiner as seen in Figure 4-24.

Figure 4-23.  Drag the corners of the Polygon Collider 2D to match
the outline of Layer_Ground

Chapter 4 World Building

124

The Confiner will take the Collider 2D from the Layer_Ground object and

use it as the Confiner’s bounding shape. Make sure to check the “Confine

Screen Edges” box to tell the Confiner to stop at the Polygon 2D edges.

Press the play button and walk toward the edge of the screen. If

everything is set up properly, you’ll see the Virtual Camera’s Dead Zone

stop moving as soon as the camera reaches the edge where we placed the

Polygon Collider 2D earlier. The arrow in Figure 4-25 points to the edge of

the Polygon Collider 2D. As you can see, the player has walked far out of

the Dead Zone, and while the Tracking Point has continued moving with

the Player, the Camera has stopped.

Figure 4-24.  The Polygon Collider 2D from the Layer_Ground will be
used for the Bounding Shape 2D

Figure 4-25.  The Dead Zone has stopped moving along with the player

Chapter 4 World Building

125

To review, the three steps to setting up a Cinemachine Confiner:

	 1.	 Add a CinemachineConfiner Extension to the

Virtual Camera.

	 2.	 Create a Polygon Collider 2D on a Tilemap, edit its

shape to determine the confinement edges, and set

the “Is Trigger” property.

	 3.	 Use this Polygon Collider 2D as the Bounding Shape

2D field of the Cinemachine Confiner.

Forcing the camera to stop moving at the edge of the screen, while

allowing the player to continue walking, is a common effect that you’ve

probably seen in dozens of 2D games.

Note that using a Confiner won’t prevent the player from walking off

the map—just the camera from tracking them. We’ll set up some logic soon

to keep the player from walking off the map.

�Stabilization
As you walk the player around the map, you may notice a slight jittering

effect. The jittering is especially pronounced when you stop walking and

the virtual camera damping slowly brings the tracking to a halt. This

jittering effect is due to overly precise camera coordinates. The camera is

tracking the player but it’s moving to subpixel positions, whereas the player

is only moving around from pixel to pixel. We made sure of that when we

did the calculations for the Orthographic Camera size earlier.

To fix this jittering, we want to force the final Cinemachine Virtual

Camera position to stay within pixel boundaries. We’re going to script a

simple “extension” component that we’ll add to the Cinemachine Virtual

Camera. Our extension component will grab the last coordinates of the

Cinemachine Virtual Camera and round them to a value that lines up with

our PPU.

Chapter 4 World Building

126

Create a new C# Script called RoundCameraPos and open it up in

Visual Studio. Type in the following script and refer to the following

comments to better understand it. This is certainly one of the more

advanced scripts you’ll be writing, but if having your game look good is

important to you, it pays to understand it.

using UnityEngine;

// 1

using Cinemachine;

// 2

public class RoundCameraPos : CinemachineExtension

{

 // 3

 public float PixelsPerUnit = 32;

 // 4

 protected override void PostPipelineStageCallback(

 CinemachineVirtualCameraBase vcam,

 �CinemachineCore.Stage stage, ref CameraState state,

float deltaTime)

 {

 // 5

 if (stage == CinemachineCore.Stage.Body)

 {

 // 6

 Vector3 pos = state.FinalPosition;

 // 7

 �Vector3 pos2 = new Vector3(Round(pos.x),

Round(pos.y), pos.z);

Chapter 4 World Building

127

 // 8

 state.PositionCorrection += pos2 - pos;

 }

 }

 // 9

 float Round(float x)

 {

 return Mathf.Round(x * PixelsPerUnit) / PixelsPerUnit;

 }

}

And the explanation for the earlier code:

// 1

using Cinemachine;

Import the Cinemachine framework to write an extension component

that we’ll attach to the Cinemachine Virtual Camera.

// 2

public class RoundCameraPos : CinemachineExtension

Components that hook into Cinemachine’s processing pipeline must

inherit from CinemachineExtension

// 3

public float PixelsPerUnit = 32;

The Pixels Per Unit, or PPU. As we discussed earlier when we talked

about the Camera, we’re displaying 32 pixels in one world unit.

// 4

protected override void PostPipelineStageCallback(Cinemachine

VirtualCameraBase vcam, CinemachineCore.Stage stage, ref

CameraState state, float deltaTime)

Chapter 4 World Building

128

This method is required by all classes that inherit from

CinemachineExtension. It’s called by Cinemachine after the Confiner is

done processing.

// 5

if (stage == CinemachineCore.Stage.Body)

The Cinemachine Virtual Camera has a post-processing pipeline

consisting of several stages. We perform this check to see what stage of the

camera’s post-processing we’re in. If we’re in the “Body” stage then we’re

permitted to set the Virtual Camera's position in space.

// 6

Vector3 finalPos = state.FinalPosition;

Retrieve the Virtual Camera’s final position

// 7

Vector3 newPos = new Vector3(Round(finalPos.x),

Round(finalPos.y), finalPos.z);

Call the Rounding method we wrote (following) to round the position,

and then create a new Vector with the results. This will be our new, pixel-

bounded position.

// 8

state.PositionCorrection += newPos - finalPos;

Set the VC's new position to the difference between the old position

and the new rounded position that we just calculated.

// 9

A method that rounds the input value. We use this method to make

sure the camera always stays on a pixel position.

Chapter 4 World Building

129

�Materials
As you walk the player around the map, you may notice some lines or

“tears” between the tiles. That’s because they aren’t snapping precisely to

a pixel-perfect location. To fix this, we’ll use something called a Material to

tell Unity how we want our sprites rendered.

Create a new folder called, “Materials” then right-click and Create ➤

Material. Call this material, “Sprite2D.”

Set the properties on the material as follows:

Shader: Sprites/Default

Ensure Pixel Snap is checked.

The new Material properties should look like Figure 4-26.

We want the Renderer component in our GameObjects to use this

Material instead of the default Material.

Select our Layer_Ground Tilemap and change the material in the

Tilemap Renderer by clicking the dot next to the Material property. When

you’ve selected the Sprite2D material, the Renderer component should

look like Figure 4-27.

Figure 4-26.  Configure the new material

Chapter 4 World Building

130

Do this for all of our Tilemap layers, and then press the Play button and

the tears should have disappeared.

�Colliders and Tilemaps
�Tilemap Collider 2D
Now we’re going to solve the problem where the player can walk through

everything on the Tilemap. Remember how we added a Box Collider 2D

to our PlayerObject back in Chapter 3? There is a component specially

tailored for Tilemaps called a Tilemap Collider 2D. When a Tilemap

Collider 2D is added to a Tilemap, Unity will automatically detect and add

a Collider 2D to each sprite tile it detects on that Tilemap. We are going to

use these Tilemap colliders to determine when the PlayerObject collider

comes in contact with a tile collider and prevent the player from walking

through it.

Select Layer_Trees_and_Rocks from the Hierarchy view then press the

Add Component button in the Inspector. Search for and add a component

called “Tilemap Collider 2D”.

You’ll notice that all the sprites on your Layers_Objects Tilemap now

have a thin green line surrounding them, indicating a Collider component,

similar to Figure 4-28.

Figure 4-27.  Use the Sprite2D Material in our Tilemap Renderer
component

Chapter 4 World Building

131

Note I f you see a box surrounding every tile on the Tilemap,
then you had the wrong Tilemap (Layer_Ground) selected. This is
a common mistake. Remove the Tilemap Collider 2D Component
by clicking the gear icon in the top right of the Component in the
Inspector, then select Remove Component from the menu as seen in
Figure 4-29.

Figure 4-28.  The Tilemap Collider 2D added Colliders to the rocks,
as shown by the arrow

Chapter 4 World Building

132

Now select the desired Tilemap: Layer_Trees_and_Rocks in the

Hierarchy view and add a Tilemap Collider 2D Component to it.

We’ve just added a Collider 2D to every tile sprite on Layer_Objects.

Take a look at Figure 4-30 and notice how the bushes around the garden

have seven separate colliders. The problem with this is that it’s pretty

inefficient for Unity to be keeping track of all these colliders.

Figure 4-29.  Removing the misplaced Tilemap Collider 2D Component

Figure 4-30.  Every sprite in the Layer_Trees_and_Rocks now has its
own Collider

Chapter 4 World Building

133

�Composite Colliders
Fortunately, Unity comes with a tool called a Composite Collider that

will combine all of these separate colliders into one large collider,

which is more efficient. Keeping the Layer_Trees_and_Rocks Tilemap

Layer selected in the Hierarchy view, select Add Component and add a

Composite Collider 2D component to Layer_Trees_and_Rocks. You can

leave all the default settings as they are. Now check the box in the Tilemap

Collider 2D that says, “Used By Composite” and watch how all the separate

Colliders for the bushes are merged together like magic.

When we added a Composite Collider 2D to the Tilemap layer, Unity

automatically added a Rigidbody 2D component. Set this Rigidbody 2D

component Body Type to Static because it won’t be moving.

Before we press Play, let’s make sure that when the player collides

with something, she doesn’t rotate around, as seen in Figure 4-31.

Because the PlayerObject has a Dynamic Rigidbody 2D component, it is

subject to forces imposed by the physics engine when it interacts with

other colliders.

Chapter 4 World Building

134

Select the PlayerObject and in the attached Rigidbody 2D component,

check the “Freeze Rotation Z” checkbox as seen in Figure 4-32.

Figure 4-31.  This ridiculous-looking rotation is due to Rigidbody 2D
collisions

Chapter 4 World Building

135

Press the Play button and walk the Player around the map. You’ll

notice that she can no longer walk through shrubbery, rocks, or anything

you placed on the Layer_Trees_and_Rocks level. This is because the

collider that we added to the PlayerObject in Chapter 3 is colliding with the

Tilemap collider we added just a few moments ago.

You’ll also notice that for some objects there is a noticeable gap

between where the Player has stopped and the object on the Tilemap. To

better view the bounds of each Collider, keep the game running and switch

to Scene view by selecting the Scene tab.

Zoom in to the Player using the scroll-wheel on your mouse or

touchpad. Pan around the scene if you need to by pressing Alt (PC)

or Option (Mac) then clicking and dragging the Tilemap. Select the

PlayerObject from the Hierarchy view to see its Box Collider. Then hold

down Control (PC) or Cmd / ⌘ (Mac) and select the Layer_Trees_and_

Rocks TileMap, without deselecting the PlayerObject.

Figure 4-32.  Freeze the Z axis rotation to prevent the Player from
spinning

Chapter 4 World Building

136

Both GameObjects should now be selected, and you should see a

collider around the Player and another collider around the tile in the

Tilemap. Depending on how you’ve painted your Tilemap, the exact Tiles

will differ, but as you can see in Figure 4-33, the collider boxes show up as

thin green lines for each object.

The colliders for the rock and the player have collided, preventing

the player from moving any closer. Because the collider isn’t hugging the

rock very closely, there’s a noticeable gap between where the player has

stopped and the rock. We can fix this by editing the Physics Shape for each

type of sprite.

Figure 4-33.  The gap between the Player and objects around her are
due to the collider boxes—the thin green box

Chapter 4 World Building

137

�Editing Physics Shapes
To edit the Physics Shape for sprites in a spritesheet, select the Outdoor

Objects spritesheet in the Project view and open the Sprite Editor in the

Inspector. Go to the Sprite Editor drop-down menu on the top-left and

select Edit Physics shape, as seen in Figure 4-34.

Select a sprite that you want to edit and press the update button next to

“Outline Tolerance” to see the physics shape outline around the sprite.

Drag the boxes to match the outline of your object however you wish

(Figure 4-35). There’s no need to get ultra-precise with the Physics Shape

unless your game mechanics really depend on it. You can create additional

points by clicking on the line itself and delete points by selecting a point

and hitting Control (PC) or Cmd / ⌘ (Mac) + delete.

Figure 4-34.  Select the Edit Physics Shape in the Sprite Editor

Figure 4-35.  Matching the Physics Shape to the sprite

Chapter 4 World Building

138

When you’re satisfied with the Physics Shape, press the Apply button

and close the Sprite Editor. To use this new Physics Outline in the scene,

be sure the relevant Tilemap is selected and press the Reset button from

the gear icon drop-down menu on the Tilemap Collider 2D component,

as seen in Figure 4-36. This will force the Unity Editor to read the updated

Physics Shape information.

Now press the play button and see how your new and improved

colliders are working out.

Tip U nity takes its best guess in terms of merging the colliders
when it makes a Composite Collider so it’s possible that if you left
gaps around sprites when you adjusted their Physics Outlines in the
Tile Editor, you won’t see all the tiles merged into one giant collider.
You can either adjust the Physics Outlines in the Tile Editor again
or leave it if there aren’t many gaps. Remember: if you adjust the
Physics Outlines for objects, you’ll need to reset the component each
time to get the updated Physics Outline.

Figure 4-36.  Reset the Tilemap Collider 2D component to use the
new Physics Shape

Chapter 4 World Building

139

Because you’re an expert on colliders now, you may also want to adjust

the Box Collider 2D on our player to be a bit smaller, as seen in Figure 4-37.

Now that we’re familiar with Tilemap Colliders, let’s use them to create

a boundary around the land mass in our map so that the player can’t walk

into the water. Your game might have different requirements—it’s possible

that you’ll want the player to walk into the water for some reason. But what

follows is one of several different techniques to prevent the player from

walking into areas you don’t want them in.

Select your Layer_Ground and remove any tiles from the area that you

don’t want the player to walk into. In the sample map we’ve created, we’ll

remove the water tiles because we don’t want the player walking into the

water. We’re removing these tiles because we’re going to paint them onto

a different layer. Now create a new Tilemap layer called, “Layer_Water”.

Make sure to set the Sorting Layer on the new layer to Ground, just to stay

consistent.

Figure 4-37.  Adjust the collider size on our player for a better fit

Chapter 4 World Building

140

Make sure to select the newly created layer as your Active Tilemap in

the Tile Palette screen. Paint the area that you would like to keep the player

out of, such as the water, as seen in Figure 4-38. Note that in Figure 4-38,

we have the Focus On setting set to the Tilemap, so we can see only the

tiles from the currently selected Tilemap layer.

We want to add a Tilemap Collider 2D and a Composite Collider

2D to the Layer_Water Tilemap. Adding the Composite Collider 2D will

automatically add a Rigidbody 2D component as well. Set the Rigidbody

2D Body Type to Static, because we don’t want the ocean tiles moving

anywhere when they collide with the player. Last, check the “Used by

Composite” box in the Tilemap Collider 2D to combine all the individual

tile colliders into one efficient collider.

Press the Play button and notice how the player can no longer walk

into the water. What we’ve done here with Colliders is really nothing new.

You’ve done this sort of thing earlier in this chapter when we worked with

Tilemap Colliders.

Figure 4-38.  Turn Focus On to see the new Tilemap Layer clearer

Chapter 4 World Building

141

�Summary
In this chapter we’ve covered some core concepts in making 2D games

with Unity. We learned how to turn sprites into Tile Palettes and used them

to paint Tilemaps. We’ve used colliders to prevent the player from walking

through objects and how to tweak them for a better player experience.

We learned how to configure the Camera to achieve a balance between

scaling, art size, and resolution, which is very important in 2D pixel-art

style games. One of the most valuable tools we covered in this chapter

was Cinemachine—a powerful tool for automating camera movements. If

you’re interested in learning more about Cinemachine, https://forum.

unity.com is a great place to ask questions and learn from the people who

created it! In Chapter 5, you’re going to see all of what we’ve learned so far

come together and you’ll start to feel as if you’re really making a game.

Chapter 4 World Building

https://forum.unity.com
https://forum.unity.com

143© Jared Halpern 2019
J. Halpern, Developing 2D Games with Unity, https://doi.org/10.1007/978-1-4842-3772-4_5

CHAPTER 5

Assembling the Nuts
and Bolts
We’ve learned a lot so far about the tools Unity provides to build games,

and now we’re going to start putting it all together. In this chapter, we’ll

build the C# class structure used for the Player, Enemies, and any other

characters that might pop up in a game. We’ll also create a few prefabs

that the player can pick up, including coins and power-ups, and learn how

to specify which object collisions our game logic cares about and which

it doesn’t. We’ll review an important Unity-specific tool called Scriptable

Objects, as well as cover techniques for leveraging them to build a clean,

scalable game architecture.

�Character Class
In this section, we’re going to lay the groundwork for the class structure

used for every character, enemy, or player in our game. There are certain

traits that every “living” character in our game will have, such as the

concept of health.

Health points or “hit-points” are used to measure how much damage

a character can take before dying. Hit-points is a carry-over term from the

old days of tabletop war gaming, but present-day games of every genre

typically have a concept of hit-points or health points.

144

In Figure 5-1, a screenshot from the game Castle Crashers, developed

by The Behemoth, demonstrates an example of how many games choose

to visually represent a characters remaining hit-points. This screenshot

shows a common technique: a red hit-point or health-bar, underneath

each character name on the top of the screen.

For now, we’re just going to keep track of hit-points, but eventually

we’ll build our own health bar to visually represent our player’s remaining

health.

Create a new folder under Scripts called MonoBehaviours. Because

we’ll be creating more MonoBehaviours, it makes sense to give them their

own folder. Move the MovementController script into this folder, because

it inherits from MonoBehaviour.

Inside the MonoBehaviours folder, create a new C# script called

Character. Double-click the Character script to open it in our Editor.

Figure 5-1.  Hit-points are indicated as red bars of varying length on
top of the screen

Chapter 5 Assembling the Nuts and Bolts

145

We’re going to build a generic Character class from which our

Player and Enemy classes will inherit. This Character class will contain

functionality and properties common to all character types in our game.

Enter the following code and don’t forget to save when you’re finished.

As usual, don’t type in the line comments.

using UnityEngine;

// 1

public abstract class Character : MonoBehaviour {

// 2

 public int hitPoints;

 public int maxHitPoints;

}

// 1

We’ll use the Abstract modifier in C# to indicate that this class cannot

be instantiated and must be inherited by a subclass.

// 2

Track the characters current hitPoints as well as the maximum

number of hit-points. There is a limit to how “healthy” a character can get.

Make sure to save this script when you’re finished.

�Player Class
Next we’re going to create the basic Player class. In our MonoBehaviours

folder, create a new C# script called Player. This Player class will start out

extremely simple, but we’ll add functionality to it as we go along.

Chapter 5 Assembling the Nuts and Bolts

146

Enter the following code. We’ve removed the Start() and Update()

functions.

 using UnityEngine;

 // 1

 public class Player : Character

 {

 // Empty, for now.

 }

// 1

All we want to do for now is inherit from the Character class to gain

properties like hitPoints.

Save the script then switch back to the Unity Editor.

Select the Player prefab. Drag and drop the Player script into the Player

object and set its properties as seen in Figure 5-2. Give the player 5 hit-

points and 10 maximum hit-points to start with.

We’re starting the player with less than their max hit-points because

later in this chapter, we’re going to build the functionality where the player

can pick up heart power-ups to increase their health.

Figure 5-2.  Configure our Player script

Chapter 5 Assembling the Nuts and Bolts

147

�Focus on Prefabs
Life isn’t all fun and games for our adventurer and even intrepid heroes

need to make a living somehow. Let’s create some coins in the scene for

her to pick up.

From the downloaded game assets folder for this book, select the

spritesheet titled, “hearts-and-coins32x32.png”, which totally sounds like

an 1980s glam-rock metal band, and drag it into the Assets ➤ Sprites ➤

Objects folder.

The Import Settings in the Inspector should be set to the following:

Texture Type: Sprite (2D and UI)

Sprite Mode: Multiple

Pixels Per Unit: 32

Filter Mode: Point (no filter)

Ensure the Default button is selected at the bottom

and set Compression to: None

Press the Apply button, and then open the Sprite Editor.

From the Slice menu, select Grid By Cell Size and set the Pixel Size to

width: 32, height: 32. Press Apply and close the Sprite Editor.

�Create a Coin Prefab
In this section, we’re going to create the Coin prefab itself.

Create a new GameObject in the project view and rename it to

CoinObject. Select the four individual coin sprites from the sliced heart-

coin-fire spritesheet and drag them onto the CoinObject to create a new

animation. Follow the same steps from Chapter 3 when we created the

Player and Enemy animations. Rename the animation clip to “coin-spin”

and save it to the Animations ➤ Animations folder. Rename the generated

Controller, “CoinController” and move it to the Controllers folder.

Chapter 5 Assembling the Nuts and Bolts

148

In the Sprite Renderer component, click the little dot next to the

“Sprite” form and select a Sprite to use when previewing this component

in the Scene view.

Create a new Sorting Layer by selecting the Sorting Layer drop-down

menu in the Sprite Renderer component, click “Add Sorting Layer”, then

add a new layer called, “Objects” between the Ground and Characters

layers.

Select the CoinObject again and set its Sorting Layer to: Objects.

To allow the player to pick up coins, we need to configure two aspects

of the CoinObject:

	 1.	 Some way to detect that the player has collided with

the coin

	 2.	 A custom Tag on the coin that says it can be picked up

�Set Up the Circle Collider 2D
Select the CoinObject again and add a Circle Collider 2D component to it.

A Circle Collider 2D is a type of primitive collider that we’ll use to detect

when a player runs into the coin. Set the Radius of the Circle Collider 2D

to: 0.17, so it’s approximately the same size as the Sprite.

The script logic we’re about to write requires the player to move

through the coin to pick it up. To allow this, we’ll use the Circle Collider

2D a bit differently than we’ve used other Colliders. If we simply added a

Circle Collider 2D to the CoinObject, the player wouldn’t be able to walk

through it. We want the Circle Collider 2D on the CoinObject to act as a

sort of “trigger” and detect when another Collider interacts with it. We

don’t want the Circle Collider 2D to stop the other Collider from moving

through it.

To use the Circle Collider 2D as a trigger, we need to ensure the “Is

Trigger” property is checked as seen in Figure 5-3.

Chapter 5 Assembling the Nuts and Bolts

149

�Set Up a Custom Tag
We also want to add a Tag to the CoinObject that a script can use to detect

if another object can be picked up.

Let’s create a new tag from the Tags & Layers menu called,

“CanBePickedUp”:

	 1.	 Select the CoinObject from the Project view

	 2.	 On the top-left of the Inspector, select “Add Tag”

from the Tags menu.

	 3.	 Create the CanBePickedUp tag

	 4.	 Select the CoinObject again and set its Tag to:

CanBePickedUp

We’re ready to create the prefab.

Create a prefab from the CoinObject by dragging it into the prefabs

folder. You can delete the CoinObject from the Project view after you’ve

created the prefab.

Figure 5-3.  Check the Is Trigger box on the Circle Collider

Chapter 5 Assembling the Nuts and Bolts

150

In summary, the steps to create an interactable prefab:

	 1.	 Create a GameObject and rename it.

	 2.	 Add sprites for the prefab animation. This will attach

a Sprite Renderer Component to the GameObject.

	 3.	 Set the prefab’s Sprite property. This sprite will be

used to represent the prefab in the Scene.

	 4.	 Set the Sorting Layer so the prefab is visible and

rendered in the correct order.

	 5.	 Add a Collider 2D component appropriate to the

shape of the sprite.

	 6.	 Depending on type of prefab you’re creating, set: Is

Trigger on the Collider.

	 7.	 Create tag called CanBePickedUp and set tag of

object to CanBePickedUp.

	 8.	 Change the Layer if needed.

	 9.	 Drag GameObject to prefabs folder to use as prefab.

	 10.	 Delete the original GameObject from the Hierarchy

view.

Tip D rag and Drop a Coin prefab into the scene then select it.
Uncheck the Is Trigger box on the Coin prefabs for a second. Notice
how the text “Is Trigger” turns a bold blue. This is Unity’s way of
reminding us that this value has only been changed on this instance
of the prefab. If we want to save this setting for all instances of
the prefab, press the Apply button at the top-right of the Inspector.
Make sure to check Is Trigger when you’re done, so the coin prefab
behaves properly.

Chapter 5 Assembling the Nuts and Bolts

151

�Layer-Based Collision Detection
We want to give the player in our RPG the ability to pick up coins by

walking into them. Our game will also have enemies walking around the

map, but we want the enemies to walk right through the coins without

picking them up.

As we discussed in Chapter 3, Layers are used to define collections of

GameObjects. Collider components that are attached to GameObjects on

the same Layer will be aware of each other and can interact. We can create

logic based off of these interactions to do things such as pick up objects.

There’s also a technique to make Collider components on different

layers aware of each other. This approach uses a Unity feature called

Layer-Based Collision Detection.

We’ll use this feature so that the player and coin colliders, despite

being on different layers, are aware of each other. We’ll also configure

things so that the enemy colliders aren’t aware of the coins because they

can’t pick them up. If two colliders aren’t aware of each other, they won’t

interact. The enemy will walk right through the coins without picking

them up.

To see this feature in action, first we need to create and assign Layers to

the relevant GameObjects.

We learned how to create new Layers in Chapter 3, but if you need a

refresher:

	 1.	 Select the CoinObject in the Hierarchy

	 2.	 In the Inspector, select the Layer drop-down menu

	 3.	 Select: “Add Layer”

	 4.	 Create a new Layer called: “Consumables”

	 5.	 Create another Layer called: “Enemies”

Chapter 5 Assembling the Nuts and Bolts

152

The Consumables layer will be used for items such as coins, hearts,

and other objects that we want the player to consume. The Enemies layer

will be used for: you guessed it—enemies.

After creating the two new Layers, the Inspector should look like

Figure 5-4.

Go to the Edit menu ➤ Project Settings ➤ Physics 2D. Look at the

Layer Collision Matrix on the bottom of the Physics2DSettings view.

This is where we’ll configure the layers to allow the enemies to walk right

through coins, power-ups, and whatever else we choose.

Figure 5-4.  Add an Enemies Layer

Chapter 5 Assembling the Nuts and Bolts

153

By checking and unchecking boxes in the intersection of a column

and a row, we can configure which layers are aware of each other and will

interact. Colliders on objects from different layers can interact if the box at

the intersection of the two layers is checked.

We want to configure the player and coin objects so their colliders are

aware of each other. We want the enemy colliders to be unaware of the

coin colliders.

Uncheck the box at the intersection between Consumables and

Enemies so it resembles Figure 5-5. Objects in the Enemies layer will no

longer have an interaction triggered by colliding with an object on the

Consumables layer. The two different layers are now unaware of each

other. We haven’t scripted the enemies to walk around the level yet—that

comes later. But when we do, the enemies won’t be aware of the coins

because the two layers are not configured to interact.

Figure 5-5.  The Layer Collision Matrix allows us to configure layer
interactions

Chapter 5 Assembling the Nuts and Bolts

154

Select the CoinObject prefab and change its layer to be: Consumables.

While we’re at it, select the EnemyObject prefab in the Prefabs folder and

change its layer to be: Enemies.

Now drag a CoinObject prefab somewhere onto the scene.

Press play and walk the character over to the coin. You’ll notice that the

player can walk through the coin. The CoinObject is on the Consumables

layer, and the Player is on the Blocking layer. Because we left the box

for these layers checked in the Collision Matrix, the layers are aware of

each other when their respective objects collide. We’re going to use this

awareness to script logic allowing the player to pick up coins.

�Triggers and Scripting
As we touched on earlier, Colliders aren’t used only to detect that two

objects have run into one another. Colliders also can be used to define

a range around an object and to detect that another GameObject has

entered that range. When another GameObject is within range, scripted

behaviors can be triggered accordingly.

The “Is Trigger” property is used to detect when another

object has entered the range defined by the Collider. When the

player’s collider touches the coin’s circle collider, the method: void

OnTriggerEnter2D(Collider2D collision) is automatically called

on both objects attached to the colliders. We can use this method to

customize the behavior that should occur when two objects collide.

Because we’re setting Is Trigger, the colliders do not prevent the player

from walking through the coin any more.

Open the Player.cs script and add the following method toward the

bottom.

// 1

void OnTriggerEnter2D(Collider2D collision)

{

Chapter 5 Assembling the Nuts and Bolts

155

// 2

 if (collision.gameObject.CompareTag("CanBePickedUp"))

 {

// 3

 collision.gameObject.SetActive(false);

 }

}

Let’s go through this method implementation.

// 1

OnTriggerEnter2D() is called whenever this object overlaps with a

trigger collider.

// 2

Use the collision to retrieve the gameObject that the player has

collided with. Examine the tag of the collided gameObject. If that tag is

“CanBePickedUp” then continue execution inside the if-statement.

// 3

We know that the other GameObject can be picked up, so we’ll create

the impression that the object has been picked up and hide it in the scene.

We’re not actually scripting the functionality to pick the object up yet—that

comes later.

Press Save in Visual Studio, then go back to the Unity Editor and press

play. Walk the player over to the coin in your scene and watch as the coin

disappears when the player touches it.

To summarize, when the player collides with the coin, the Colliders

detect the interaction, the script logic determines if this object can be

picked up, and if so, we set the coin to be inactive. Pretty neat!

Chapter 5 Assembling the Nuts and Bolts

156

Tip M ake sure to press Save whenever you make changes to a
script, or the changes won’t be compiled in the Unity Editor and won’t
be reflected in your game. It’s very common to make a quick change
then flip back to Unity and wonder why you don’t see anything
different happening.

�Scriptable Objects
Scriptable Objects are an important concept to learn for any Unity game

developer looking to build a clean game architecture. Scriptable Objects

can be thought of reusable data containers that are defined via C# script,

generated via the Asset menu, and saved in a Unity project as Assets.

There are two primary use cases for Scriptable Objects:

•	 Reducing memory usage by storing a reference to a

single instance of the Scriptable Object asset. This is

done instead of making a copy of all the values of each

object every time you use it and thereby increasing the

memory usage.

•	 Predefined pluggable data sets.

To explain the first use case, let’s think about a contrived example:

Imagine that we created a prefab with a string property containing

the entire text of this book. Each time we created another instance of that

prefab, we would also create a new copy of the entire text of this book.

As you can imagine, this approach would start to use up memory in your

game rather quickly.

If we used a Scriptable Object inside that prefab to hold the entire text

of this book, then each time we created a new instance of the prefab, it

would in turn reference the same exact copy of this book text. We could

Chapter 5 Assembling the Nuts and Bolts

157

spawn as many copies of the prefab as we’d like, and the memory used by

the book text would remain the same.

Regarding the first use case, an important item to remember when

using Scriptable Objects is that each time we reference a Scriptable

Object asset, we are referring to the same Scriptable Object in memory.

A consequence of this approach is that if we change any data in this

Scriptable Object reference, we would change the data in the Scriptable

Object asset itself, and those changes would remain when we stopped

running our game. If we wanted to change any values on the Scriptable

Object asset during runtime without permanently changing the original

data, then we should make a copy of it in memory first.

Unity developers also frequently use Scriptable Objects in their game

architecture to define pluggable data sets. Data sets can be defined to

describe items that a player may find in a store or inventory system.

Scriptable Objects also can be used to define properties such as attack and

defense levels in a digital version of a card game.

Scriptable Objects inherit from the ScriptableObject class, (which in

turn inherits from Object), not MonoBehaviour, so we don’t have access

to the Start() and Update() methods. These methods wouldn’t really

make sense to use anyway because Scriptable Objects are used to store

data. Because Scriptable Objects don’t inherit from MonoBehaviour, they

can’t be attached to GameObjects. Instead of attaching to GameObjects,

a common way to use Scriptable Objects is to create a reference to them

from inside Unity scripts that do inherit from MonoBehaviour.

�Creating a Scriptable Object
We’re going to create a Scriptable Object called “Item” to hold data about

objects that the player can consume or pick up. We’ll reference this

Scriptable Object in a script that derives from MonoBehaviour and attach

that script to the Item’s prefab. When a player collides with the prefab, we’ll

grab a reference to the Scriptable Object and give the impression that the

Chapter 5 Assembling the Nuts and Bolts

158

item has been picked up by deactivating it. Eventually we will add these

objects to an Inventory we’ll build.

Create a folder in the Scripts directory called, “Scriptable Objects”.

Then right-click and create a new script called Item.

Type the following into Item.cs, and don’t forget to save when you’re

done. As usual, we’ll explain what the code does in detail.

using UnityEngine;

// 1

[CreateAssetMenu(menuName = "Item")]

// 2

public class Item : ScriptableObject {

// 3

 public string objectName;

// 4

 public Sprite sprite;

// 5

 public int quantity;

// 6

 public bool stackable;

// 7

 public enum ItemType

 {

 COIN,

 HEALTH

 }

Chapter 5 Assembling the Nuts and Bolts

159

// 8

 public ItemType itemType;

}

Let’s go through the Item script:

// 1

CreateAssetMenu creates an entry in the Create submenu, as seen in

Figure 5-6. This allows us to easily create instances of the Item Scriptable

Object.

These Scriptable Object instances are actually stored in the project as

separate asset files and their properties can be modified on the object itself

via the Inspector.

Figure 5-6.  Instantiate instances of Item from the Create Submenu

Chapter 5 Assembling the Nuts and Bolts

160

// 2

Inherit from ScriptableObject, not Monobehaviour.

// 3

The field: objectName, can serve a few different purposes. It will certainly

come in handy for debugging, and perhaps your game will display the name

of an Item in a storefront, or another game character will mention it.

// 4

Store a reference to the Item’s Sprite, so we can display it in the game.

// 5

Keep track of the quantity of this specific Item.

// 6

Stackable is a term used to describe how multiple copies of identical

items can be stored in the same place and can be interacted with by the

player at the same time. Coins are an example of a Stackable item. We

set the Boolean Stackable property to indicate if an item is Stackable.

If an item is not Stackable, then multiple copies of that item cannot be

interacted with simultaneously.

// 7

Define an enum used to indicate the type of an item. Although

objectName may be displayed to the player at points within the game,

properties of ItemType will never be shown to the player and will only be

used by game logic to internally identify the object. Continuing with our

Coin item example, your game may have different types of coins, but they

will all be classified as the ItemType: Coin.

// 8

Create a property called itemType using the ItemType enum.

Chapter 5 Assembling the Nuts and Bolts

161

�Build the Consumable Script
Scriptable Objects don’t inherit from MonoBehaviour so they can’t be

attached to GameObjects. We’re going to write a small script that inherits

from MonoBehaviour with a property holding a reference to Item. Because

this script will inherit from MonoBehaviour, it can be attached to a

GameObject. In the MonoBehaviours folder, right-click and create a new

C# script called, “Consumable”.

using UnityEngine;

// 1

public class Consumable : MonoBehaviour {

//2

 public Item item;

}

// 1

Inherit from MonoBehaviour so we can attach this script to a

GameObject.

// 2

When the Consumable script is added to a GameObject, we’ll assign

an Item to the item property. This will store a reference to the Scriptable

Object asset in the Consumable script. Because we’ve declared it public,

it’s still accessible from other scripts.

As mentioned earlier, if we change any data in this Scriptable Object

reference, we would change the data in the Scriptable Object asset itself,

and those changes would remain when we stopped running our game. If

we wanted to change any values on the Scriptable Object during runtime

without changing the original data, then we should make a copy of it first.

Save the Consumable script and switch back to the Unity Editor.

Chapter 5 Assembling the Nuts and Bolts

162

�Assembling Our Item
Select the CoinObject prefab and drag the Consumable script onto it. We

need to set the Consumable Item property seen in Figure 5-7 to an Item

Scriptable Object. We’re going to create an Item Scriptable Object to attach.

In the Scriptable Objects folder, right-click and Select Create ➤ Item, at

the very top of the Asset menu to create an Item Scriptable Object. If you’d

prefer to use the menu bar at the top of the Unity Editor, you can select

Assets ➤ Create ➤ Item.

Rename the Scriptable Object, “Item”. Ensure the Item Scriptable

Object is selected, and then examine the Unity Inspector. Change the

settings for the Item to Figure 5-8. Name the object, “coin”, check off

Stackable and select COIN from the Item Type drop down.

Figure 5-7.  Consumable Item is of type Item, which is a Scriptable Object

Figure 5-8.  Set the properties of the Coin Item

Chapter 5 Assembling the Nuts and Bolts

163

Set the sprite property to the sprite named: “hearts-and-coins32x32_4”,

as seen in Figures 5-8 and 5-9. This sprite is a clear representation of the

Item and will be used when we want to show the Item in a static context,

such as in an inventory toolbar. This is different from how we’ve been

displaying animated sprites when they appear in a Scene.

Go back to the Consumable script in the Coin prefab, and set

Consumable Item to our Coin Item, as seen in Figure 5-10.

Figure 5-9.  Select a sprite to represent the Coin Item

Figure 5-10.  Set Consumable Item to our new Coin Item

Chapter 5 Assembling the Nuts and Bolts

164

�Player Collisions
Our Player class already has logic for detecting a collision with a Coin

prefab, but now we want to grab a reference to the Scriptable object, so

we can hide it when the player runs into it. This will serve as the effect of

adding the Coin to the player's inventory.

Inside the Player class, in the OnTriggerEnter2D method, change the

existing if-statement we wrote earlier, to resemble the following:

if (collision.gameObject.CompareTag("CanBePickedUp"))

{

// 1

// Note: This should all be on a single line

 �Item hitObject = collision.gameObject.

GetComponent<Consumable>().item;

// 2

 if (hitObject != null)

 {

// 3

 print("it: " + hitObject.objectName);

 collision.gameObject.SetActive(false);

 }

}

There’s a lot going on here, so we’ll cover it piece by piece. Overall, our

goal is to retrieve a reference to the Item (a Scriptable Object) inside the

Consumable class and assign it to hitObject.

// 1

First we grab a reference to the gameObject attached to the collision.

Remember that every collision will have a GameObject that it collided

Chapter 5 Assembling the Nuts and Bolts

165

with attached to the collision. At this point in our game, the gameObject

will be a coin, but later on it might be any type of GameObject with the tag,

“CanBePickedUp”.

We call GetComponent() on the gameObject and pass in the Script

name, “Consumable” to retrieve the attached Consumable script component.

We attached the Consumable script earlier. Finally we retrieve the property

called item from the Consumable component and assign it to hitObject.

// 2

Check to see if the hitObject is null. If the hitObject is not null, then

we’ve managed to successfully retrieve the hitObject. If the hitObject is

null, do nothing. Safety checks like this help to avoid bugs down the road.

// 3

To ensure that we’ve retrieved the item, print out the objectName

property, which we set earlier in the Inspector.

Save the script and switch back to the Unity Editor. Press the play button

and walk the player into a coin. You should see the text in Figure 5-11 print

out in the console.

�Creating a Heart Power-Up
Now that we know how to create Scriptable Objects, let’s create another

object that the player can pick up: a heart power-up. Use the sprites that

we sliced earlier from the “hearts-and-coins32x32.png” sprite-sheet.

Figure 5-11.  The collision with the coin has been properly detected

Chapter 5 Assembling the Nuts and Bolts

166

Let’s review the steps to create a prefab.

	 1.	 Create a GameObject and rename it to

“HeartObject”.

	 2.	 Add sprites for the prefab animation. Use the sprites

titled: “hearts-and-coins32x32” ending in 0, 1, 2, and

3. Name the newly created animation, “heart-spin”

and save it to the Animations ➤ Animations folder.

	 3.	 Create a prefab out of the HeartObject by dragging

it into the prefabs folder, then deleting the original

object out of the Hierarchy.

	 4.	 Select the Heart prefab in the folder and set the

prefab’s Sprite property. This property is used when

previewing in the Scene.

	 5.	 On the Sprite Renderer component, set the Sorting

Layer to Objects so the prefab is visible.

	 6.	 Add a Collider 2D component. We can use a Circle

Collider, Box, or Polygon 2D, but for the heart

shaped sprite, a Polygon 2D will work best. Edit the

collider shape if needed.

	 7.	 Depending on type of prefab you’re creating, set: Is

Trigger on the Collider.

	 8.	 Set the Tag on the GameObject. We’ll use:

CanBePickedUp, for this prefab.

	 9.	 Change Layer to, “Consumables.”

	 10.	 Drag GameObject to prefabs folder to use as prefab.

	 11.	 Delete the original GameObject from the Hierarchy

view.

Chapter 5 Assembling the Nuts and Bolts

167

Tip I f you select multiple sprites for an animation at the same time,
you can preview them in the Inspector. We’ve selected all four heart
sprites at the same time in Figure 5-12.

Figure 5-12.  Preview multiple sprites at a time in the Inspector

Chapter 5 Assembling the Nuts and Bolts

168

Click and drag a heart prefab somewhere onto the scene (Figure 5-13).

We’re going to set up the Heart prefab so that it contains a reference

to a Scriptable Object the same way the Coin prefab does. Add the

Consumable script to the Heart prefab by selecting the prefab, then

pressing the “Add Component” button and typing, “Consumable”.

Now we need to create a new instance of the Item Scriptable Object.

This new instance will be its own asset, to be stored in the Project view,

along with all the other assets in our project.

Open the Scriptable Objects folder in the Project view. Right-click, then

select Create ➤ Item, and then rename the created Item, “Heart”. Select the

Heart Item and change the settings to what we have in Figure 5-14.

Figure 5-13.  A heart prefab, waiting to be picked up

Chapter 5 Assembling the Nuts and Bolts

169

We’ve named the new Heart Item, “heart”, given it a sprite that we’ll

use when displaying in the inventory later on, and set its quantity to 1. This

value will be used to increment the player’s hit-points when the player

picks up the heart. We’re also setting the Item Type to HEALTH. Don’t click

Stackable, because hearts won’t be stored in the player’s inventory and will

instead be immediately consumed.

Because we have the Consumable Script on the Heart prefab, we can

press the circle next to the Consumable Item property and add our new

Heart Item, as seen in Figure 5-15.

That’s it! If you press play and walk the player into the heart prefab on

screen, you should see the text in Figure 5-16 print out in the console.

Figure 5-14.  Settings for the Heart Scriptable Object

Figure 5-15.  Assign the Heart Item to the Consumable Item property

Chapter 5 Assembling the Nuts and Bolts

170

We want to increment the player’s hitPoints every time she picks up a

heart. Switch back to Visual Studio and open up the Player class.

Change the OnTriggerEnter2D() method to the following. Some of this

code has been discussed earlier in this chapter, so we won’t cover it again.

void OnTriggerEnter2D(Collider2D collision)

 {

 if (collision.gameObject.CompareTag("CanBePickedUp"))

 {

 �Item hitObject = collision.gameObject.

GetComponent<Consumable>().item;

 if (hitObject != null)

 {

 print("Hit: " + hitObject.objectName);

// 1

 switch (hitObject.itemType)

 {

// 2

 case Item.ItemType.COIN:

 break;

// 3

 case Item.ItemType.HEALTH:

Figure 5-16.  Logging confirmation that the player ran into the heart
prefab

Chapter 5 Assembling the Nuts and Bolts

171

 AdjustHitPoints(hitObject.quantity);

 break;

 default:

 break;

 }

 collision.gameObject.SetActive(false);

 }

 }

 }

// 4

 public void AdjustHitPoints(int amount)

 {

// 5

 hitPoints = hitPoints + amount;

 �print("Adjusted hitpoints by: " + amount + ". New

value: " + hitPoints);

 }

Let’s go through this code.

// 1

Use a switch statement to pattern match the hitObject property:

itemType, with the ItemType enum defined in the Item class. This allows

us script specific behaviors when colliding with each ItemType.

// 2

In the case where the hitObject is of type COIN, don’t do anything just

yet. We’re going to learn how to pick up coins when we build an Inventory.

// 3

Chapter 5 Assembling the Nuts and Bolts

172

In the case where the player runs into an item of type HEALTH, call

the method AdjustHitPoints(int amount) that we’re about to write. This

method takes a parameter of type int, which we’ll get from the hitObject

property quantity.

// 4

This method will adjust the player’s hit-points by the amount in

the parameter. There are two main advantages in putting the hit-point

adjustment logic into a separate function, rather than placing the logic

inside the switch statement.

The first advantage is clarity. Clear code is easier to read and

understand, and thus tends to be less buggy. We want to keep the intention

and organization of our code as clear as possible at all times.

The second advantage is that by putting the logic into a function, we

can easily invoke it from other places. In theory there may be situations

when a player’s hit-points are adjusted by things other than running into a

HEALTH Item.

// 5

Add the amount parameter to the existing hit-point count, and then

assign the result to hitPoints. This method also can be used to decrement

hitPoints by passing in a negative number for the amount parameter. We’ll

use this when the Player takes damage.

Save the Player script and switch back to the Unity Editor.

Press Play and make the Player run into the Heart prefab. You should

see the message in Figure 5-17 output in the console.

Chapter 5 Assembling the Nuts and Bolts

173

�Summary
In this chapter, we’ve started to assemble the various Unity elements into

working game mechanics. We’ve built the foundational C# scripts that

will be used for all character types in our game, as well as created several

types of prefabs that the player can interact with. Collision detection is

a fundamental aspect of game development, and we’ve learned about

the tools the Unity Engine provides to detect and customize collision

detection. We’ve also learned about Scriptable Objects, which are reusable

data containers that make our game architecture cleaner.

Figure 5-17.  Adjust the Player’s hitPoints

Chapter 5 Assembling the Nuts and Bolts

175© Jared Halpern 2019
J. Halpern, Developing 2D Games with Unity, https://doi.org/10.1007/978-1-4842-3772-4_6

CHAPTER 6

Health and Inventory
This chapter is a big one. We’ll tie everything we’ve learned so far together

to build a health bar to track the players’ hit-points. Besides leveraging

Game Objects, Scriptable Objects, and Prefabs, we’ll learn about some new

Unity component types, such as the Canvas and UI Elements.

No RPG would be complete without an inventory system, so we’ll

build one, along with an on-screen inventory bar that will display all the

objects the player is holding. This will be an intense chapter, with lots of

scripting and prefabs, but by the end of it you’ll feel much more confident

in building out your own game components.

�Creating a Health Bar
As we discussed in the Character Class section of Chapter 5, many video

games have the concept of character hit-points and a health bar to track

health. We’re going build a health bar to track the health levels of our

intrepid player.

�Canvas Objects
Our health bar will use something called a Canvas as the main Game

Object. What is a Canvas? A Canvas is specific type of Unity Object

responsible for rendering user-interface, or “UI” Elements in a Unity

Scene. Every UI Element in a Unity scene needs to be the child object of a

176

Canvas object. A scene may have multiple Canvas objects, and if a Canvas

does not exist when a new UI Element is created, then one will be created

and the new UI Element will be added as a child of that Canvas.

�UI Elements
UI Elements are game objects that encapsulate specific, commonly needed

user-interface functionality such as buttons, sliders, labels, a scroll bar, or

input field. Unity allows developers to build out custom user-interfaces

quickly by offering premade UI Elements instead of requiring that the

developer create them from scratch.

One thing to note about UI Elements is that they use a Rect Transform

instead of a regular Transform component. Rect Transforms are identical

to regular Transforms except that in addition to position, rotation, and

scale, they also have width and height. Width and Height are used to

specify the dimensions of the rectangle.

�Building the Health Bar
Right-click anywhere in the Hierarchy view and select UI ➤ Canvas. This

creates two objects automatically: a Canvas and an EventSystem. Rename

the Canvas object, “HealthBarObject”.

The EventSystem is a way for the user to interact directly with Objects

using the Mouse or other input devices. We don’t need it at the moment, so

you can delete it.

Select the HealthBarObject and look for the Canvas component. Be

sure that Render Mode is set to Screen Space Overlay and check the box

that says Pixel Perfect.

Setting Render Mode to Screen Space Overlay ensures that Unity

renders UI Elements on top of the scene. If the screen is resized, the

Canvas containing the UI Elements will automatically resize itself. The

Canvas component sets its own Rect Transform settings and cannot be

Chapter 6 Health and Inventory

177

changed. If you need a UI Element to be smaller, you resize the element

itself, not the Canvas.

Now that we’ve created a Canvas object, let’s make sure that all the

UI Elements, such as the health bar we’re building, always have the same

relative size on the screen.

Select the HealthBarObject and look for the Canvas Scaler component.

Set the UI Scale Mode to: Scale With Screen Size, as seen in Figure 6-1 and

set the Reference Pixels Per Unit to 32.

This ensures that the Canvas size scales appropriately with the screen

size.

It’s time to import the sprites that we’ll use for the Health Bar. Create a

new subfolder in the Sprites folder called, “Health Bar”. We’ll put all of our

Health Bar related sprites in this folder. Now drag the spritesheet called,

“HealthBar.png” into the folder we just created.

Select the HealthBar spritesheet and use the following import settings

in the Inspector:

Texture Type: Sprite (2D and UI)

Sprite Mode: Multiple

Pixels Per Unit: 32

Figure 6-1.  Setting UI Scale Mode

Chapter 6 Health and Inventory

178

Filter Mode: Point (no filter)

Ensure the Default button is selected at the bottom

and set Compression to: None

Press the Apply button, and then open the Sprite Editor.

From the Slice menu, be sure that “Type” is set to: Automatic. We’re

going to let the Unity Editor detect the boundaries of these sprites.

Press Apply to slice the sprites, and then close the Sprite Editor.

Next we’re going to add an Image object, which is a UI Element, to the

HealthBarObject. Select the HealthBarObject, right-click, and go to UI ➤

Image object to create an Image.

This Image object will act as the background Image for our HealthBar.

Rename the object, “Background”. Click on the dot next to Source Image

and select the sliced image titled, “HealthBar_4”. As you can see in

Figure 6-2, the image will initially look square.

With the Background object selected, change the Rect Transform

Width to: 250 and Height to: 50.

Press “W” to use the Toolbar shortcut for the Move tool. Using the

handles, move the Background object to the top-right corner of the Canvas

as seen in Figure 6-3.

Figure 6-2.  The Background image before adjusting the size

Chapter 6 Health and Inventory

179

�Anchors
You may have noticed the star-like symbol in the center of Figure 6-2 and

in Figure 6-4. This symbol is made up of four small triangular handles

representative of a property specific to UI Elements called the Anchor

Points.

Figure 6-3.  After resizing and moving the health bar

Figure 6-4.  The Anchor Points for the selected UI Element

Chapter 6 Health and Inventory

180

As designated by the blue lines in Figure 6-5, each diamond in the

Anchor Points corresponds to a corner of the Rect Transform of the UI

Element. The top-left Anchor Point diamond corresponds to the top-left

corner of the UI Element, and so forth.

Each corner of a UI Element will always be rendered with the same

distance relative to its respective Anchor Point. This ensures that UI

Elements are always in the same location, scene to scene. The ability to set

a consistent distance between Anchor Points and UI Elements becomes

especially helpful when the size of the Canvas scales along with the size of

the screen.

By adjusting the location of the Anchor Points, we can be sure that

the health bar always appears in the top-right corner of the screen. We’ll

position the Anchor Points to show a small margin between the screen

edges and the health bar, irrespective of how big the screen is.

Figure 6-5.  The four Anchor Points correspond to the four corners of
the UI Element

Chapter 6 Health and Inventory

181

Pressing on the icon should give you a menu of Anchor Presets, as seen

in Figure 6-7. By default, the middle-center is selected. This explains why

the Background object’s Anchors appear in the middle of the Canvas.

�Adjusting the Anchor Points
Select the Background object. In the Rect Transform component, press on

the Anchor Presets icon highlighted in Figure 6-6.

Figure 6-6.  The Anchor Presets button

Chapter 6 Health and Inventory

182

We want to anchor the Health Bar relative to the top-right corner of the

screen at all times. Select the Anchor Preset setting in the column titled,

“right” and the row titled, “top”. You’ll see a white box surrounding the

selected Anchor Preset, as seen in Figure 6-8.

Figure 6-7.  The default Anchor Presets are: middle-center

Chapter 6 Health and Inventory

183

Press the Anchor Preset icon to close it and notice how the Anchor

Points have now moved to the top-right corner of the Canvas (Figure 6-9).

Figure 6-8.  Select top-right Anchor Presets

Chapter 6 Health and Inventory

184

We’ve left a little bit of space between the health bar and the corner

of the Canvas, and the Anchor Points are all collected in the top-right.

Regardless of how much we scale the screen size, the health bar will always

be situated in that exact spot.

Tip T he Anchor Points will not appear if the Rect Transform
component is collapsed in the Inspector. If you don’t see Anchor
Points when a UI Element is selected, make sure to click the little
arrow to the left of “Rect Transform” to expand the component if it’s
collapsed.

�UI Image Masks
Right-click on the Background object and create another Image object.

Because we’re creating this Image object while selecting the Background

object, it will be created as a “child” object. It’s the same type of object as

the Background Image object, but we’ll be using it a bit differently. The

child Image object will act as a mask. This mask works a bit differently than

a mask you might wear on Halloween. In fact, it works exactly the opposite

of a Halloween mask. Instead of hiding what’s underneath it, this mask will

Figure 6-9.  Anchor Presets are now in the top-right of the Canvas

Chapter 6 Health and Inventory

185

only show portions of any underlying child images that fit the shape of the

mask. The underlying image in this case will be the health meter and will

be added as a child object.

Select the Image object and rename it, “BarMask”. Set the Source

Image to: HealthBar_3. It should look like Figure 6-10.

As you can see in Figure 6-10, child objects that are UI Elements also

have Anchor Points, but these Anchor Points are relative to their parent

object. The Anchor Points of the BarMask are centered by default with

respect to the Background object.

With the BarMask object selected, resize the Rect Transform to Width:

240 and Height: 30. We want to make the BarMask a bit smaller than the

health bar dimensions to show a margin around the actual health meter.

Press “W” to use the Toolbar shortcut for the Move tool. Move the

BarMask into position as seen in Figure 6-11. If you prefer to enter the

location manually on the Rect Transform, you can set Pos X: 0, Pos Y: 6.

Figure 6-10.  After setting the Source Image for the HealthBar Mask

Chapter 6 Health and Inventory

186

With the BarMask object still selected, click the Add Component button

in the Inspector and add a “Mask” component, as seen in Figure 6-12.

Figure 6-11.  Move the BarMask into position

Figure 6-12.  Add a Mask component to the BarMask object

Chapter 6 Health and Inventory

187

This is the component that will do the actual masking. Any child object

of a parent containing a Mask will be masked automatically.

Right-click on BarMask and add a child UI Element of type: Image.

This is the same process we followed earlier when we created the BarMask.

Call this child Image Object: “Meter”. Set its Source Image to: HealthBar_0

as seen in Figure 6-13 and change the Width to: 240 and Height to: 30.

Because Meter is the same size as BarMask and was created as a child

object, you won’t have to reposition it.

The spritesheet images included with the assets for this book include

several alternate meter images. We’re using the solid green meter in this

example, but feel free to choose your favorite.

Select the Meter object and on the Image component, change the

Image Type to: Filled. Then change the Fill Method to: Horizontal, and the

Fill Origin to: Left. These settings will ensure that the health bar fills from

the left to the right, horizontally.

With the Meter object selected, slide the Fill Amount slider to the left

slowly. As seen in Figure 6-14, you should see the meter slowly shrink in

size, indicating that the player is losing hit-points.

Figure 6-13.  Set the dimensions for the Meter Image object

Chapter 6 Health and Inventory

188

We will write code to update the Meter’s Fill Amount programmatically

to indicate the remaining number of hit-points.

Tip  It’s important to understand how UI Elements are rendered.
The order in which objects appear in the Hierarchy view is the order
in which they’ll be rendered. The top-most objects in the Hierarchy
will be rendered first and the bottom last, resulting in the top-most
objects appearing in the background.

�Importing Custom Fonts
It’s very likely that you’ll want to use custom fonts in your project. Luckily,

it’s very simple to import and use custom fonts in Unity. This project

includes a freely available custom font with a retro style called Silkscreen.

Silkscreen is a typeface created by Jason Kottke.

Right-click on the Assets folder in the Project view and create a new

folder called, “Fonts”.

Figure 6-14.  Move the Fill Amount to the left to simulate that the
Player is losing hit-points

Chapter 6 Health and Inventory

189

Open the directory on your local computer where you saved the Assets

files for this chapter and look in the Fonts folder. Locate the .zip file titled,

“silkscreen.zip” and double-click it to unzip it. Unzipping it will have

created another folder called, “silkscreen” and inside that folder, you’ll see

a file called, “slkscr.ttf”.

Drag and drop that font file, “slkscr.ttf”, into the Fonts folder in your

Unity project to import it. Unity will detect the file type and make the font

available in any relevant Unity components.

�Adding Hit-Points Text
Right-click on the Background object and select from the menu: UI ➤ Text,

to add a Text UI Element as a child of the Background. Rename the object

to, “HPText”. This Text object will show the number of remaining hit-points.

On the Rect Transform component of HPText, set the Width to: 70, and

Height to: 16. On the Text component of HPText, change the Font Size to

16, and the Color to white. Change the Font to “slkscr”, which is the custom

silkscreen font we just imported. Set the Paragraph Horizontal and Vertical

Alignment to left and center, respectively, as seen in Figure 6-15.

Chapter 6 Health and Inventory

190

Change the HPText Anchor Points to be bottom-left, as seen in

Figure 6-17.

The health bar image has a little tray on the bottom that provides a

backdrop and improves the visibility of the text. Move the HPText object

onto the tray so that it resembles Figure 6-16.

Figure 6-15.  Configuring the Text component

Figure 6-16.  Move the HPText object into the tray

Chapter 6 Health and Inventory

191

We want to make sure the HPText remains the same distance from the

left and bottom of its parent object.

Drag the HealthBarObject into the prefabs folder to create a prefab and

rename the prefab: HealthBarObject. Do not delete the HealthBarObject

from the Hierarchy view—we’ll be working with it later.

Eventually we’re going to create a reference to the HealthBarObject

prefab inside the Player object, so that the Player script can easily find it.

But first we have to build the Health Bar Script.

Figure 6-17.  Set the HPText Anchor Points to bottom-left

Chapter 6 Health and Inventory

192

�Scripting the Health Bar
The Player class inherits the property: hitPoints, from the Character class.

Right now, hitPoints is just a regular type: integer. We’re going to leverage

the power of Scriptable Objects to share hit-points data between the health

bar and the player class.

The plan is to create an instance of this HitPoints Scriptable Object

and save the asset to the ScriptableObjects folder. We’ll add a HitPoints

property to the Player class and create a separate HealthBar script

containing a HitPoints property as well. Because both scripts contain a

reference to the same Scriptable Object asset: HitPoints, the hit-points

data will be shared between both of these scripts automatically.

As we build this functionality, keep in mind that we are making changes to

sections of the code that will temporarily break things and cause the game not

to compile. This is normal—think of it as taking apart a car engine to upgrade

a part, then putting the engine back together again. The engine won’t run

while disassembled, but once it’s put back together, it’ll run better than before.

In the Scriptable Objects folder, right-click and create a new script

called, HitPoints, and update it to use the following code.

�Scriptable Object: HitPoints
using UnityEngine;

// 1

[CreateAssetMenu(menuName = "HitPoints")]

public class HitPoints : ScriptableObject

{

// 2

 public float value;

}

// 1

Chapter 6 Health and Inventory

193

We used the same technique in Chapter 5. CreateAssetMenu creates an

entry in the Create submenu, which allows us to easily create instances of

the HitPoints Scriptable Object. These instances are saved as assets in the

Unity Project.

// 2

Use a float to hold the hit-points. We’ll need to assign a float to the

Image object property: Fill Amount, in the Meter object of our health bar,

so it makes our lives a bit easier to start with a float.

�Update the Character Script
We need to make a small change to the Character script to utilize the

HitPoints script that we just created. In the Character script, change the line:

public int hitPoints;

To:

public HitPoints hitPoints;

We’ve changed the type from: int, to our newly created Scriptable

Object: HitPoints.

And change the type of maxHitPoints from int to float:

public float maxHitPoints;

Because we’re using a float inside the HitPoints object to store the

current value, we’ve changed maxHitPoints in the Character script to

float as well.

Add the following additional property:

public float startingHitPoints;

We’ll use this property to set the number of hit-points a character

starts with.

Chapter 6 Health and Inventory

194

�Update the Player Script
Add the following two properties anywhere above the Start() method.

// 1

public HealthBar healthBarPrefab;

// 2

HealthBar healthBar;

// 1

Used to store a reference to the HealthBar prefab. We’ll use this

reference as a parameter to Instantiate() we instantiate a copy of the

HealthBar prefab.

// 2

Used to store a reference to the instantiated HealthBar.

Inside the existing Start() method, add the following lines:

// 1

hitPoints.value = startingHitPoints;

// 2

healthBar = Instantiate(healthBarPrefab);

// 1

The Start() method will only be called once—when the script is

enabled. We want to start the player off with startingHitPoints, so we

assign it to the current hitPoints.value.

// 2

Instantiate a copy of the Health Bar prefab and store a reference to it in

memory.

Chapter 6 Health and Inventory

195

There’s one important thing that we didn’t do when we scripted the

logic to pick up hearts and increment a player’s hit-points. The player’s

current hit-points should never exceed their maximum allowable hit-

points. We’ll add that logic now.

Change the OnTriggerEnter2D() method to:

void OnTriggerEnter2D(Collider2D collision)

{

 if (collision.gameObject.CompareTag("CanBePickedUp"))

 {

 �Item hitObject = collision.gameObject.

GetComponent<Consumable>().item;

 if (hitObject != null)

 {

// 1

 bool shouldDisappear = false;

 switch (hitObject.itemType)

 {

 case Item.ItemType.COIN:

// 2

 shouldDisappear = true;

 break;

 case Item.ItemType.HEALTH:

// 3

 �shouldDisappear =

AdjustHitPoints(hitObject.quantity);

 break;

 default:

 break;

 }

// 4

Chapter 6 Health and Inventory

196

 if (shouldDisappear)

 {

 collision.gameObject.SetActive(false);

 }

 }

 }

}

// 5

public bool AdjustHitPoints(int amount)

{

// 6

 if (hitPoints.value < maxHitPoints)

 {

// 7

 hitPoints.value = hitPoints.value + amount;

// 8

 �print("Adjusted HP by: " + amount + ". New value: " +

hitPoints.value);

// 9

 return true;

 }

// 10

 return false;

}

// 1

This value will be set to indicate that the object in the collision should

disappear.

// 2

Chapter 6 Health and Inventory

197

Any coins the player collides with should disappear by default, to give

the illusion that they’ve been picked up and added to a player’s inventory.

We’ll be creating a player inventory in the next section so this line will

suffice for now.

// 3

We’re about to add additional logic to “cap” the hit-point quantity

at: maximumHitPoints—a property that the Player class inherits from

Character class. The AdjustHitPoints() method, referred to in the

following, will return true if the hit-points were adjusted, and false if they

were not.

Although a player’s health bar is full, AdjustHitPoints() will return

false and any hearts that they’ve run into won’t be “picked up” and will

remain active in the Scene.

// 4

If AdjustHitPoints() returned true, then the prefab object should

disappear. The way that we’ve designed this logic, any new items that we

add to the switch statement in the future can also set the shouldDisappear

value to make the object disappear.

// 5

The AdjustHitPoints() method will return type: bool, indicating if

hitPoints was successfully adjusted.

// 6

Check if the current hit-points are less than the maximum allowed hit-

points.

// 7

Adjust the player’s current hitPoints by amount. This approach will

also allow for negative adjustments.

Chapter 6 Health and Inventory

198

// 8

Print out a method to help in debugging. This is optional.

// 9

Return true to indicate that the hit-points were adjusted.

// 10

Return false to indicate that the player’s hit-points were not adjusted.

�Create the HealthBar Script
Right-click in the MonoBehaviours folder HealthBar:script, creation and

create a new C# called HealthBar. Use the following code to create the

health bar script.

using UnityEngine;

// 1

using UnityEngine.UI;

public class HealthBar : MonoBehaviour

{

// 2

 public HitPoints hitPoints;

// 3

 [HideInInspector]

 public Player character;

// 4

 public Image meterImage;

Chapter 6 Health and Inventory

199

// 5

 public Text hpText;

// 6

 float maxHitPoints;

 void Start()

 {

// 7

 maxHitPoints = character.maxHitPoints;

 }

 void Update()

 {

// 8

 if (character != null)

 {

// 9

 �meterImage.fillAmount = hitPoints.value /

maxHitPoints;

// 10

 hpText.text = "HP:" + (meterImage.fillAmount * 100);

 }

 }

}

// 1

Importing the UnityEngine.UI namespace is required to work with UI

Elements.

// 2

Chapter 6 Health and Inventory

200

A reference to the same HitPoints asset (a Scriptable Object) that the

player prefab refers to. This data container allows us to share data between

the two objects automatically.

// 3

We’ll need a reference to the current Player object to retrieve the

maxHitPoints. This reference will be set programmatically instead of via

the Unity Editor, so it makes sense to hide it in the Inspector to eliminate

confusion.

We use [HideInInspector] to hide this public property in the

Inspector. The brackets syntax for [HideInInspector] indicates that it’s an

Attribute. Attributes allow additional behaviors to methods and variables.

// 4

We created this property for convenience and simplicity, so that we

don’t have to search through various child objects to find the Meter Image

object. We’ll set this in the Unity Editor by dragging and dropping the

Meter object into this property, once the HealthBar script is attached.

// 5

This is another property created for convenience and simplicity. We’ll

set this in the Unity Editor by dragging and dropping the HPText object

into this field.

// 6

Because the maximum number of hit-points won’t be changing in our

current game design, we’ll cache it in a local variable.

// 7

Chapter 6 Health and Inventory

201

Retrieve and store the maximum hit-points for the Character.

// 8

Check to make sure the reference to character is not null before we try

to do anything with it.

// 9

The Fill Amount property of the Image requires that the value be

between 0 and 1. We convert the current hit-points into a percentage by

dividing the current hit-points by the maximum hit-points, and then assign

the result to the Meter’s Fill Amount property.

// 10

Modify the HPText Text property to show the hit-points remaining as a

whole number. Multiply the fillAmount by 100 (e.g., .40 = HP: 40, or .80 =

HP: 80).

Tip A s you’re building out the architecture for your game, think
about whether a public variable needs to be visible in the Unity Editor,
or if it will be set programmatically. If it will be set programmatically,
use the [HideInInspector] attribute to save yourself some
confusion down the road when you inspect a prefab and can’t recall if
a property needs to be set.

There’s one last bit we need to add. Go back to the Player script and

inside the existing Start() method, add the following line:

healthBar.character = this;

Chapter 6 Health and Inventory

202

This line sets the Player character property inside healthBar

to the instantiated Player. We’ve saved this for last so that you can see

the connection between the code we just added to HealthBar and the

Player script. The HealthBar script uses this player object to retrieve the

maxHitPoints property.

�Configure the Health Bar Component
Switch back to the Unity Editor and select the HealthBarObject from

the Prefabs folder in the Project view. Add the Health Bar script to the

HealthBar object.

The properties we’ve just created should be blank, as shown in

Figure 6-18.

In the Scriptable Objects folder, right-click and use the menu option

we created: Create ➤ HitPoints to create a new instance of the HitPoints

object. Rename it: “HitPoints”, as shown in Figure 6-19. This HitPoints

object is an actual asset, saved in the project folder.

Figure 6-18.  Health Bar script before setting the properties

Chapter 6 Health and Inventory

203

With the HealthBarObject selected, drag the HitPoints object onto the

Hit Points property, as shown in Figure 6-20.

As you can see, the HitPoints property is now bold. As we discussed

earlier, this is the Unity Editor’s way of reminding us that we’ve only changed

this specific instance of a prefab. If we want to apply the change to all

instances of the prefab, we must press the Apply button on the upper right of

the Inspector. Keep in mind that there may be circumstances in the future,

in which you wouldn’t want to apply a change to every existing prefab.

We’re about to set the properties we created in the Health Bar script,

which was added to HealthBarObject. The properties such as HitPoints

hitPoints and Text hpText in the script will actually be set to reference

some of the child objects of HealthBarObject.

Select the HealthBarObject and click the little dots next to each of the

properties in the Health Bar script. Select the appropriate value for each

property, as seen in Figure 6-21. When you’re done, press the Apply button

in the Inspector.

Figure 6-19.  Creating a HitPoints asset from a Scriptable Object

Figure 6-20.  Drag the HitPoints object to the property

Chapter 6 Health and Inventory

204

Select the PlayerObject prefab in the Prefabs folder. Drag the HitPoints

Scriptable Object that we created into the Hit Points property on the Player

script. Remember that we’re using this same HitPoints object in the Health

Bar object. Hit-points data is being shared between two separate objects

like magic.

Set the properties in the Player script as follows: Starting Hit Points to

6, Max Hit Points to 10, and drag the HealthBarObject to set the Health Bar

Prefab property as shown in Figure 6-22.

Let’s summarize what we’ve just built.

•	 When the player collides with a heart,

AdjustHitPoints() increments the value inside the

HitPoints object.

Figure 6-21.  Set the Meter Image and Hp Text using the respective
objects on the health bar

Figure 6-22.  Setting the Health Bar Prefab property to the
HealthBarObject prefab

Chapter 6 Health and Inventory

205

•	 The HealthBar script also has a property called

hitPoints that references the same HitPoints object

as the Player. HealthBar inherits from MonoBehaviour,

which means it calls the Update() method with every

frame.

•	 In the Update() method of the HealthBar script, we

check the current value inside HitPoints and set the

Fill Amount on the Meter Image. This adjusts the visual

appearance of the health meter.

It’s time to test out the Health Bar. Make sure you’ve saved all of

the Unity Scripts, and press apply on the HealthBarObject to apply the

changes. Delete the HealthBarObject to delete it from the Hierarchy.

Press Play and walk the player around to pick up hearts. The health bar

should add up 10 points each time the player picks up a heart, as seen in

Figure 6-23.

Figure 6-23.  The health bar will add points every time the player
collects a heart

Chapter 6 Health and Inventory

206

Congratulations! You’ve built a health bar!

Tip  If you need to work with an object in the Hierarchy or Project
view but want to keep a different object visible in the Inspector,
click the lock icon as seen in Figure 6-24 to keep the original object
visible. Locking an object makes it a bit easier to work when you
need to drag and set other objects as properties. To unlock the object,
simply press the lock icon again.

�Inventory
Many video games have the concept of an inventory—a place to store

things that the player picks up. In this section, we’re going to create an

Inventory Bar containing several Item Slots to hold items. A script will be

attached to the Inventory Bar that will manage the players’ inventory as

well as the appearance of the Inventory Bar itself. We’ll turn the Inventory

Bar into a prefab and store a reference to it in the Player object, just as we

did with the Health Bar.

Right-click anywhere in the Hierarchy view and select UI ➤ Canvas;

this will create two objects: a Canvas and an EventSystem. Rename the

Canvas object, “InventoryObject” and delete the EventSystem.

Figure 6-24.  Use the lock button to keep the object open in the
Inspector

Chapter 6 Health and Inventory

207

With InventoryObject selected, check: Pixel Perfect in the Canvas

component, and set the UI Scale Mode property to: Scale with Screen Size,

just as we did earlier for the Health Bar.

Right-click InventoryObject again and select Create Empty.

This will create an empty UI Element. Rename the empty Element:

“InventoryBackground”.

Tip  If you can’t see the object you’re working with, double-click
it in the Hierarchy view to center it in the Scene. Double-click the
InventoryBackground object to center it.

Be sure InventoryBackground is selected and press the Add

Component button. Search for and add the Horizontal Layout Group, as

seen in Figure 6-25.

The Horizontal Layout Group component will automatically arrange

for all of its subviews to be placed alongside each other horizontally.

With InventoryObject selected, create an empty GameObject child and

rename it: “Slot”.

A Slot object will display a single Item, or a quantity of “Stackable”

Items. When our game is running, we’re going to programmatically

instantiate five copies of the Slot prefab.

Figure 6-25.  Add a Horizontal Layout Group

Chapter 6 Health and Inventory

208

Each Slot parent object will contain four child objects: a background

Image, a tray Image, an item Image, and a Text object.

Select the Slot object and set its Width and Height in the Rect

Transform component to 80 and 80 as seen in Figure 6-26.

The Pos X and Pos Y of your Slot element will probably differ

from Figure 6-26 and that’s fine because we’ll be instantiating these

programmatically anyway.

Right-click the Slot object and select UI ➤ Image to create an Image

child object. Rename the child object: “Background”. Right-click the Slot

object and create another Image named: “ItemImage”. Background and

ItemImage should both be children of Slot.

Now we are going to add a little “tray” in which we’ll place the

Stackable items quantity text. Select the Background object and create

an Image child object. Rename the Image object: “Tray”. Right-click on

Tray and select UI ➤ Text to create a Text child object, rename this object:

“QtyText”.

When you’re done, the Slot structure should look like Figure 6-27.

Figure 6-26.  Set the Slot element dimensions to 80 × 80

Chapter 6 Health and Inventory

209

It’s important that all of these objects are in the correct order in the

Hierarchy. Ordering them as we see Figure 6-27 will ensure that the

background renders first, and the ItemImage, Tray, and QtyText render

on top of it. If you’ve accidentally created an object with the wrong parent

object, just click and drag it onto the correct parent.

�Import the Inventory Slot Image
Create a new folder under Sprites called, “Inventory”. In the local directory

where you downloaded the assets for this chapter, select the spritesheet

called, “InventorySlot.png” from the Spritesheets folder. Drag it into the

Sprites/Inventory folder in the Project view.

Select the InventorySlot spritesheet and use the following import

settings in the Inspector:

Texture Type: Sprite (2D and UI)

Sprite Mode: Multiple

Pixels Per Unit: 32

Filter Mode: Point (no filter)

Ensure the Default button is selected at the bottom

and set Compression to: None

Press the Apply button, and then open the Sprite Editor.

Figure 6-27.  Setting up the Tray and QtyText children

Chapter 6 Health and Inventory

210

From the Slice menu, be sure that “Type” is set to: Automatic. We’ll let

the Unity Editor detect the boundaries of these sprites.

Press Apply to slice the sprites and close the Sprite Editor.

�Configure the Inventory Slot
The Inventory Slot consists of a few different items, each with their own

configuration. Once configured, we’ll turn the Inventory Slot into its own

prefab and detach it from the main InventoryObject.

�Configure the ItemImage

Select the ItemImage object in the Slot. In the Rect Transform component,

change the Width and Height to 80.

Disable the Image by checking the box in the upper-left of the

component in the Inspector. We’re going to enable it once we place an

image in the slot. The Image component of ItemImage should resemble

Figure 6-28.

We disable the image because if no source image is provided to an

Image component, the Image component will default to the default color.

We don’t want to show a giant empty white box, so instead we disable the

Image component until we have a Source Image to show.

Figure 6-28.  Disable the Image component of ItemImage

Chapter 6 Health and Inventory

211

�Configure the Background

Select the Background object and ensure the Image component settings

are set up as seen in Figure 6-29. Use “InventorySlot_0” as the Source

Image and make sure Image Type is set to Simple.

Set the Width and Height of the Background’s Rect Transform

component to 80 and 80, as seen in Figure 6-30.

Figure 6-29.  Configure the Slot’s Background

Figure 6-30.  Setting the Width and Height of the Background

Chapter 6 Health and Inventory

212

�Configure the Tray

Select the Tray object and change its Width and Height to 48 × 32. Set

the Image component’s Source Image to: “InventorySlot_1” as seen in

Figure 6-31.

Because the Tray was added as a child object of Background, it was

automatically set to a Pos X and Pos Y of 0 and 0, as seen in Figure 6-32.

Figure 6-31.  Setting the Tray image

Figure 6-32.  Default placement of the Tray

Chapter 6 Health and Inventory

213

Set the Tray’s Anchor Points to bottom-right, then change the Pos X and

Pos Y to 0 and 0 again. This should result in the Tray’s center being moved

to the bottom-right corner of its parent object, as seen in Figure 6-33.

�Configure QtyText—the Quantity Text

Text objects are used to display noninteractable text to the user. They’re

helpful for displaying text in-game, debugging, and designing custom

GUI controls. The Text object in our Inventory will be used to display the

quantity of Stackable Items, such as coins, in a Slot.

Select the Text component and change its Width to 25 and Height to

20. In the Text (Script) component, change the text to “00”. We’re changing

the text to 00 to help us see the location of the text. Set the font to “slkscr”

(our custom Silkscreen font) and leave the Font Style as Normal. Change

the Font Size to 16, the color to White, and the alignment to what we see in

Figure 6-34.

Figure 6-33.  Anchor Points set to bottom-right, and Pos X, Y to: 0, 0

Chapter 6 Health and Inventory

214

Because the QtyText object is a child of Tray, we’ll leave the Anchor

Points at their default: middle-center. There’s no need to move them.

Once you’re satisfied with the placement of the Text, disable the Text

component by unchecking the box in the top-left of the Text component

on the Text object. We’re disabling the Text because we don’t want to show

a quantity until we have multiple stackable items occupying the same Slot.

We’ll enable the component programmatically.

�Create the Prefabs

Now that all the child elements are in place, we’re going to make a prefab

out of just the Slot. We’ll programmatically instantiate copies of this prefab

and use them to populate the Inventory Bar.

Select the highlighted item: Slot, as seen in Figure 6-35 and drag that

into the prefabs folder to create a Slot prefab. Make sure you don’t select

the entire InventoryObject—we just want to create a prefab out of the Slot.

We’ll come back and use this prefab in just a little while.

Figure 6-34.  Configuring the Text component inside the Text object

Chapter 6 Health and Inventory

215

Once you’ve created a prefab out of the Slot, delete the Slot

from the Hierarchy view, so that only the InventoryObject and

InventoryBackground remain. It should resemble Figure 6-36.

Last but not least, click and drag the InventoryObject into the prefabs

folder to create a prefab, and then delete it from the Hierarchy.

�Build the Slot Script

We’re going to build a simple script to hold a reference to the Text object

inside the Slot. This script will be attached to each Slot object.

Select the Slot prefab in the Project view and add a new script to it

called: “Slot”. Use the following code in the script:

using UnityEngine;

using UnityEngine.UI;

Figure 6-35.  Select and drag Slot into the prefabs folder to create a
prefab

Figure 6-36.  After creating a Slot prefab and removing the Slot from
its parent

Chapter 6 Health and Inventory

216

// 1

public class Slot : MonoBehaviour {

// 2

 public Text qtyText;

}

// 1

Inherit from MonoBehaviour so that we can attach this script to the

Slot object.

// 2

A reference to the Text object inside the Slot. We’ll set this in the Unity

Editor.

Save this script and switch back to the Unity Editor. We want to set

the Qty Text property that we just created on the Slot script. The problem

is, if we select the Slot prefab in the Project view, we can only see the

Background and ItemImage children, as seen in Figure 6-37.

Figure 6-37.  We cannot see the Tray or QtyText child objects when
selected in the Project view

Chapter 6 Health and Inventory

217

This limitation was deliberately put in place by the Unity designers to

discourage a developer from making references to objects deep inside the

nested parent–child hierarchy.

To see all of the child objects of a prefab in the Unity Editor, we need

to temporarily instantiate a copy. Drag the Slot prefab onto the Hierarchy

view or into the Scene to create an instance of the Slot temporarily.

If we select the newly instantiated copy in the Project view, we can see

all of the Slot’s child objects once again as seen in Figure 6-38.

You won’t be able to actually view the Slot prefab in the Scene because

it’s not the child of a Canvas object at the moment. That’s okay—all we

need right now is to be able to access the QtyText object

Set the Qty Text property on the Slot script by clicking the little dot next

to it, as seen in Figure 6-39.

Having a reference to the QtyText object in the script makes it much

easier to find later without having to keep track of indexes. Referencing an

object by a specific index is also a somewhat fragile way of doing things. If

the order was to change, or an additional component was added, the index

would change and the script would no longer work properly.

Figure 6-38.  View of all of the Slot prefabs children

Figure 6-39.  Setting the Qty Text property of the Slot script

Chapter 6 Health and Inventory

218

Press the Apply button in the top-right corner of the Inspector to apply

the changes to the Slot prefab, then delete the prefab from the Hierarchy view.

�Create the Inventory Script
The next step is to write a script to manage the player’s inventory, as well

as the appearance of the Inventory Bar. This script will be attached to

the InventoryObject. The Inventory script is going to be more complex

than any of the classes we’ve worked on so far but think of this as an

opportunity to learn a lot and practice your scripting skills.

We’ll also create a script to hold a reference to the QtyText and attach

that script to the Slot prefab.

In the Project view, in the MonoBehaviours folder, create a new subfolder

called, “Inventory”. Inside the Inventory folder, right-click and create a new

C# Script called, “Inventory”. Double-click to open in Visual Studio.

Replace the default code inside Inventory with the following.

�Set-Up Properties

First, we want to set up the properties for the Inventory class.

using UnityEngine;

using UnityEngine.UI;

public class Inventory : MonoBehaviour

{

// 1

 public GameObject slotPrefab;

// 2

 public const int numSlots = 5;

// 3

 Image[] itemImages = new Image[numSlots];

Chapter 6 Health and Inventory

219

// 4

 Item[] items = new Item[numSlots];

// 5

 GameObject[] slots = new GameObject[numSlots];

 public void Start()

 {

 // Empty for now

 }

}

// 1

Store a reference to the Slot prefab, which we’ll attach in the Unity

Editor. Our Inventory script will instantiate multiple copies of this prefab to

use as the Inventory Slots.

// 2

The Inventory Bar will contain five slots. We use the const keyword

because we should not dynamically modify this number at runtime

because several instance variables in the script rely on it.

// 3

Instantiate an array called itemImages of size numSlots (5). This

array will hold Image components. Each Image component has a Sprite

property. When the player adds an Item to their Inventory, we set this

Sprite property to the Sprite referenced in the Item. The Sprite will be

displayed in the Slot in the Inventory Bar. Remember that Items in our

game are really just Scriptable Objects, or data containers, bundling

together information.

Chapter 6 Health and Inventory

220

// 4

The items array will hold references to the actual Item, of type

Scriptable Objects, that the player has picked up.

//5

Each index in the slots array will reference a single Slot prefab. These

Slot prefabs were dynamically instantiated at runtime. We’ll use these

references to find the Text object inside a Slot.

�Instantiate the Slot Prefabs

Add the following method to the Inventory class. This method is

responsible for dynamically creating the Slot objects from the prefab.

public void CreateSlots()

{

// 1

 if (slotPrefab != null)

 {

// 2

 for (int i = 0; i < numSlots; i++)

 {

// 3

 GameObject newSlot = Instantiate(slotPrefab);

 newSlot.name = "ItemSlot_" + i;

// 4

 �newSlot.transform.SetParent(gameObject.transform.

GetChild(0).transform);

// 5

 slots[i] = newSlot;

Chapter 6 Health and Inventory

221

// 6

 �itemImages[i] = newSlot.transform.GetChild(1).

GetComponent<Image>();

 }

 }

}

// 1

Check to make sure that we’ve set the Slot prefab via the Unity Editor,

before we try to use it programmatically.

// 2

Loop through the number of slots.

// 3

Instantiate a copy of the Slot prefab and assign it to newSlot. Change

the name of the instantiated GameObject to “ItemSlot_” and append the

index number to the end. Name is a property intrinsic to every GameObject.

// 4

This script will be attached to InventoryObject. The InventoryObject

prefab has a single child object: Inventory.

Set the Parent of the instantiated Slot to the child object at index 0

of InventoryObject. The child object at index 0 is: Inventory, as seen in

Figure 6-40.

Figure 6-40.  Inventory is a child object of InventoryObject at index: 0

Chapter 6 Health and Inventory

222

// 5

Assign this new Slot object to the slots array at the current index.

// 6

The child object at index 1 of the Slot is an ItemImage. We retrieve

the Image component from that ItemImage child and assign it to the

itemImages array. The Source Image of this Image component is what will

appear in the Inventory Slot when the player picks up the item. Figure 6-41

illustrates how ItemImage is at index: 1.

�Fill in the Start() Method

Let’s fill in the Start() method. This is a short one.

public void Start()

{

// 1

 CreateSlots();

}

// 1

Call the method we wrote earlier to instantiate the Slot prefabs and set

up the Inventory Bar.

Figure 6-41.  ItemImage is a child object of Slot at index: 1

Chapter 6 Health and Inventory

223

�The AddItem Method

Next we’ll build out the method to actually add an item to the Inventory.

// 1

public bool AddItem(Item itemToAdd)

{

// 2

 for (int i = 0; i < items.Length; i++)

 {

// 3

 �if (items[i] != null && items[i].itemType == itemToAdd.

itemType && itemToAdd.stackable == true)

 {

 // Adding to existing slot

// 4

 items[i].quantity = items[i].quantity + 1;

// 5

 �Slot slotScript = slots[i].gameObject.

GetComponent<Slot>();

// 6

 Text quantityText = slotScript.qtyText;

// 7

 quantityText.enabled = true;

// 8

 quantityText.text = items[i].quantity.ToString();

// 9

 return true;

 }

Chapter 6 Health and Inventory

224

// 10

 if (items[i] == null)

 {

 // Adding to empty slot

// Copy item & add to inventory. copying so we don’t change

original Scriptable Object

// 11

 items[i] = Instantiate(itemToAdd);

// 12

 items[i].quantity = 1;

// 13

 itemImages[i].sprite = itemToAdd.sprite;

// 14

 itemImages[i].enabled = true;

 return true;

 }

 }

// 15

 return false;

}

Because this is a longer method, the individual lines of code are

included above each explanation, so you don’t have to keep flipping pages

back and forth.

// 1

public bool AddItem(Item itemToAdd)

The method AddItem will take a single parameter of type Item. This

is the item to be added to the Inventory. This method also returns a bool

indicating if the item was successfully added to the Inventory.

Chapter 6 Health and Inventory

225

// 2

for (int i = 0; i < items.Length; i++)

Loop through all the indexes in the items array.

// 3

These three conditions pertain to Stackable Items. Let’s go through this

if-statement:

items[i] != null

Check if the current index is not null.

items[i].itemType == itemToAdd.itemType

Check if the itemType of the Item is equal to the itemType of the Item

we want to add to the Inventory.

itemToAdd.stackable == true

Check if the item to add is Stackable.

These three conditions combined will have the effect of checking to see

if the current item in the index, if one exists, is of the same type the player

wants to add. If it is the same type, and it’s a Stackable item, then we want

to add the new item to the stack of existing items.

// 4

items[i].quantity = items[i].quantity + 1;

Because we are stacking this Item, increment the quantity at the

current index in the items array.

// 5

Slot slotScript = slots[i].GetComponent<Slot>();

Chapter 6 Health and Inventory

226

When we instantiate a Slot prefab, what we’re really doing is creating

a GameObject with the Slot script attached to it. This line will grab a

reference to the Slot script. The Slot script contains a reference to the

QtyText child Text object.

// 6

Text quantityText = slotScript.qtyText;

Grab a reference to the Text object.

// 7

quantityText.enabled = true;

Because we’re adding a stackable object to a slot already containing a

stackable object, we now have multiple objects in a Slot. Enable the Text

object that we’ll use to display the quantity.

// 8

quantityText.text = items[i].quantity.ToString();

Each Item object has a quantity property of type int. ToString() will

convert the type: int, into the type: String, so that it can be used to set the

text property of the Text object.

// 9

return true;

Because we were able to add an object to the inventory, return true to

indicate success.

// 10

if (items[i] == null)

Check if the current index of the items array contains an item. If it’s

null, then we’re going to add newItem to this slot.

Chapter 6 Health and Inventory

227

Because we’re looping through the items array linearly each time,

once we hit an index with a null item, that means we’ve looped through all

the already held items. So we’re either adding the first item of a particular

itemType, or the item we’re trying to add isn’t Stackable.

Note that if we want to add the functionality to drop objects in the

future, we’ll have to modify this logic slightly. We would add the logic that

says: when removing object from a Slot, shift all remaining objects left and

leave no null Slots.

// 11

items[i] = Instantiate(itemToAdd);

Instantiate a copy of the itemToAdd and assign it to the items array.

// 12

items[i].quantity = 1;

Set the quantity on the Item object to 1.

// 13

itemImages[i].sprite = itemToAdd.sprite;

Assign the Sprite from the itemToAdd, to the Image object in the

itemImages array. Note that this is the sprite we assigned earlier with the

following line, when we set up the slots in CreateSlots(): itemImages[i]

= newSlot.transform.GetChild(1).GetComponent<Image>();

// 14

itemImages[i].enabled = true;

return true;

Enable the itemImage and return true to indicate the itemToAdd

was successfully added. Recall that we had originally disabled the image

because if no source image is provided to an Image component, the Image

component will default to the default color. Because we have assigned a

Sprite, we enabled the Image component.

Chapter 6 Health and Inventory

228

// 15

return false;

If neither of the two if-statements resulted in adding the itemToAdd to

the Inventory, then the Inventory must be full. Return false to indicate the

itemToAdd was not added.

Save the Inventory script and go back to the Unity Editor.

Select the InventoryObject and attach the Inventory Script to it via the

Inspector. Drag the Slot prefab into the Slot Prefab property in the Inventory

Script. There’s no need to press the Apply button because we’re modifying

the InventoryObject prefab directly, instead of an instance of the prefab.

�Update the Player Script

We’ve built this great inventory system but the player object is completely

unaware that it exists. Open the Player script and add the following

properties: inventoryPrefab and inventory, then add the Instantiate(i

nventoryPrefab) line anywhere inside the existing Start() method:

// 1

public Inventory inventoryPrefab;

// 2

Inventory inventory;

public void Start()

{

// 3

 inventory = Instantiate(inventoryPrefab);

 hitPoints.value = startingHitPoints;

 healthBar = Instantiate(healthBarPrefab);

 healthBar.character = this;

}

Chapter 6 Health and Inventory

229

// 1

Store a reference to the Inventory prefab. We’re going to use this in the

Unity Editor in just a moment.

// 2

Used to store a reference to the Inventory once it’s instantiated.

// 3

Instantiate the Inventory prefab. This line will store a reference to the

prefab in the inventory variable. We store this reference so that we don’t

have to search for the Inventory each time we want to use it.

�One Last Thing …

Inside the existing OnTriggerEnter2D(Collider2D collision) method,

change the switch statement to look like the following:

switch (hitObject.itemType)

{

 case Item.ItemType.COIN:

// 1

 shouldDisappear = inventory.AddItem(hitObject);

// 2

 shouldDisappear = true;

 break;

 case Item.ItemType.HEALTH:

 shouldDisappear = AdjustHitPoints(hitObject.quantity);

 break;

 default:

 break;

}

Chapter 6 Health and Inventory

230

// 1

Call the AddItem() method on the local inventory instance and pass

it hitObject as a parameter. Assign the result to shouldDisappear. If you

recall back when we updated the Player script while building the Health

Bar, if shouldDisappear is true, then the gameObject the player collided

with will be set to inactive. Thus, if the object was added to the inventory,

then the original object will disappear from the Scene.

// 2

Remove this line, as we no longer need it.

Save the Player script and switch back to the Unity Editor.

Select the Player prefab and drag the newly created InventoryObject

prefab into the Inventory Prefab property of the Player script. It should

look like Figure 6-42.

Figure 6-42.  Assign the InventoryObject to the Inventory Prefab
property

Add a few more Coins for the player to pick up by dragging and

dropping the CoinObject prefab onto the Scene.

Now press the play button. Walk the player around the map and pick

up coins. Notice how the quantity counter text appears when you’re

holding more than one coin, as seen in Figure 6-43.

Chapter 6 Health and Inventory

231

Figure 6-43.  The player is officially rich … so very rich

�Summary
Whew! Well that was quite a lot to take in but think about how much

we’ve accomplished. We’ve put Scriptable Objects and prefabs to use,

and even learned about the Canvas and UI Elements. This chapter had us

writing more C# than ever, and we learned a few tricks to keep our game

architecture clean. We have a functioning Inventory and Health Bar, and

our game is starting to look like a proper RPG.

Chapter 6 Health and Inventory

233© Jared Halpern 2019
J. Halpern, Developing 2D Games with Unity, https://doi.org/10.1007/978-1-4842-3772-4_7

CHAPTER 7

Characters,
Coroutines,
and Spawn Points
This chapter will see us building some central components important to

any video game. We’ll build a Game Manager responsible for coordinating

and running the game logic, such as spawning the player when she dies.

We’ll also build a Camera Manager to ensure the camera is always set up

properly. We’ll be getting deeper into Unity and learning how to do things

programmatically instead of relying on the Unity Editor. Doing things

programmatically can make your game architecture more flexible and save

you time in the long run. Throughout this chapter, you’ll also learn some

useful features of C# and the Unity Editor that will make your life easier

and your code cleaner.

�Create a Game Manager
Up until this point we’ve been creating bits and pieces of the game without

any coordinating logic between these pieces. We’re going to create a Game

Manager script or “class” that will be responsible for running the game

logic such as spawning the player if she is killed by her enemies.

234

�Singletons
Before we start writing the RPGGameManager script, let’s learn about

a software design pattern called the Singleton. Singletons are used in

situations where your application needs one and only one instance of a

particular class to be created for the lifetime of the application. Singletons

can be helpful when you have a single class that provides functionality

used by several other classes in your game, such as coordinating game

logic in a Game Manager class. Singletons can provide a public unified

point of access to this class and its functionality. They also offer lazy

instantiation, meaning they are created the first time they are accessed.

Before we start thinking about Singletons as the savior to our game

development architecture, let's touch on some of the downsides of

Singletons.

Although Singletons can provide a unified access point to

functionality, this also means that the Singleton holds globally accessible

values with indeterminate state. Any piece of code in your entire game

can access and set the data inside the Singleton. Although this might seem

like a good thing, imagine trying to figure out which one of the 20 different

classes accessing a Singleton was setting a specific property to an incorrect

value. That’s the stuff of nightmares.

Another downside to using a Singleton is that we have far less control

over the precise timing of the Singletons instantiation. For example

imagine that our game is in the middle of a very graphically oriented

section of code, when all of a sudden a Singleton that we’d hoped was

created earlier in the game, is instantiated. The game stutters, affecting the

end-users experience.

There are several other well-argued pros and cons for Singletons, and

you should read up on them and make your own decisions about when to

use them. When used sparingly, a Singleton can certainly make your life

easier.

Chapter 7 Characters, Coroutines, and Spawn Points

235

It makes sense to implement our RPGGameManager class as

a Singleton because at any point in time, we’ll only want one class

coordinating the game logic. We won’t have any performance issues

because we’re accessing and initializing the RPGGameManager when the

Scene loads.

Every Singleton contains logic to prevent other instances of the

Singleton from being created, thus maintaining its status as a single

unique instance. We’ll review some of that logic later when we create the

RPGGameManager class.

�Creating the Singleton
Create a new GameObject in the Hierarchy and rename it:

“RPGGameManager”. Then create a new folder under Scripts called:

“Managers”.

Create a new C# script called “RPGGameManager” and move it to the

Managers folder. Add the script to the RPGGameManager object.

Open the RPGGameManager script in Visual Studio and use the

following code to build out the RPGGameManager class:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class RPGGameManager : MonoBehaviour

{

// 1

 public static RPGGameManager sharedInstance = null;

 void Awake()

 {

Chapter 7 Characters, Coroutines, and Spawn Points

236

// 2

 if (sharedInstance != null && sharedInstance != this)

 {

// 3

 Destroy(gameObject);

 }

 else

 {

// 4

 sharedInstance = this;

 }

 }

 void Start()

 {

// 5

 SetupScene();

 }

// 6

 public void SetupScene()

 {

 // empty, for now

 }

}

// 1

A static variable: sharedInstance is used to access the Singleton

object. The singleton should only be accessed through this property.

It’s important to understand that static variables belong to the

class itself (RPGGameManager), not a specific instance of the class. A

consequence of belonging to the Class itself is that only one copy of

RPGGameManager.sharedInstance exists in memory.

Chapter 7 Characters, Coroutines, and Spawn Points

237

If we create two RPGGameManager objects in the Hierarchy view, the

second one to be initialized would share the same sharedInstance with the

first RPGGameManager. This scenario would be inherently confusing, so

we’ll take steps to prevent it from happening.

The syntax for retrieving a reference to sharedInstance:

RPGGameManager gameManager = RPGGameManager.sharedInstance;

// 2

We only ever want one instance of the RPGGameManager to exist at a

time. Check if sharedInstance is already initialized and not equal to this

current instance. It’s possible for this scenario to occur if you somehow

create multiple copies of the RPGGameManager in the Hierarchy, or if you

programmatically instantiate copies of the RPGGameManager prefab.

// 3

If sharedInstance is initialized and not equal to the current instance,

then destroy it. There should be only one instance of RPGGameManager.

// 4

If this is the only instance, then assign the sharedInstance variable to

the current object.

// 5

Consolidate all the logic to setup a scene inside a single method.

This makes it easier to call again in the future from places other than the

Start() method.

// 6

The SetupScene() method is empty for the time being, but that will

soon change.

Chapter 7 Characters, Coroutines, and Spawn Points

238

�Build a GameManager Prefab
Let’s create a RPGGameManager prefab. Follow the same process we’ve

always used to create prefabs out of GameObjects:

	 1.	 Drag the RPGGameManager GameObject from the

Hierarchy view into the prefabs folder in the Project

view, to create a prefab.

	 2.	 Normally we would delete the original

RPGGameManager object from the Hierarchy View.

This time, keep it in the Hierarchy view because

we’re not finished working with it.

We’ve created a centralized management class responsible for running

the game. Because it’s a singleton, there will only be one instance of the

RPGGameManager class in existence at a time.

�Spawn Points
We want to be able to create or “spawn” characters—a player, or an enemy,

at a specific location in the scene. If we’re spawning enemies, then we may

also want to spawn them at a regular interval as well. To accomplish this,

we’re going to create a Spawn Point prefab and attach a script to it with the

spawning logic.

Right-click in the Hierarchy view, create an empty GameObject, and

rename it: “SpawnPoint”.

Add a new C# script to the SpawnPoint object we just created called:

“SpawnPoint”. Move the script to the MonoBehaviours folder.

Chapter 7 Characters, Coroutines, and Spawn Points

239

Open the SpawnPoint script in Visual Studio and use the following code:

using UnityEngine;

public class SpawnPoint : MonoBehaviour

{

// 1

 public GameObject prefabToSpawn;

// 2

 public float repeatInterval;

 public void Start()

 {

// 3

 if (repeatInterval > 0)

 {

// 4

 InvokeRepeating("SpawnObject", 0.0f, repeatInterval);

 }

 }

// 5

 public GameObject SpawnObject()

 {

// 6

 if (prefabToSpawn != null)

 {

// 7

 �return Instantiate(prefabToSpawn, transform.

position, Quaternion.identity);

 }

Chapter 7 Characters, Coroutines, and Spawn Points

240

// 8

 return null;

 }

}

// 1

This could be any prefab that we want to spawn once or at a consistent

interval. We’ll set this to be the player or enemy prefab in the Unity Editor.

// 2

If we want to spawn the prefab at a regular interval, we’ll set this

property in the Unity Editor.

// 3

If the repeatInterval is greater than 0 then we’re indicating that the

object should be spawned repeatedly at some preset interval.

// 4

Because the repeatInterval is greater than 0, we use

InvokeRepeating() to spawn the object at regular, repeated intervals.

The method signature for InvokeRepeating() takes three parameters: the

method to call, the time to wait before invoking the first time, and the time

interval to wait between invocations.

// 5

SpawnObject() is responsible for actually instantiating the prefab and

“spawning” the object. The method signature indicates that it will return

a result of type: GameObject, which will be an instance of the spawned

object. We set the access modifier of this method to: public, so that it can

be called externally.

Chapter 7 Characters, Coroutines, and Spawn Points

241

// 6

Check to make sure we’ve set the prefab in the Unity Editor before we

instantiate a copy to avoid errors.

// 7

Instantiate the prefab at the location of the current SpawnPoint object.

There are a few different types of Instantiate methods used to instantiate

prefabs. The specific method we’re using takes a prefab, a Vector3

indicating the position, and a special type of data structure called a

Quaternion. Quaternions are used to represent rotations, and Quaternion.

identity represents “no rotation.” So we instantiate the prefab at the

position of the SpawnPoint and without a rotation. We won’t be getting

into Quaternions as they can get pretty complex and are beyond the scope

of this book.

Return a reference to the new instance of the prefab.

// 8

If the prefabToSpawn is null, then this Spawn Point was probably not

configured properly in the editor. Return null;

�Build a Spawn Point Prefab
Here’s the plan: we’ll set up a SpawnPoint for the player first, just to see

how all the pieces fit together, and then we’ll set up a SpawnPoint for

enemies. To build a generic SpawnPoint, add the script we just wrote to the

SpawnPoint GameObject, and then create a prefab out of it.

Chapter 7 Characters, Coroutines, and Spawn Points

242

Follow the following process to create a prefab out of the SpawnPoint

GameObject:

	 1.	 Drag the SpawnPoint GameObject from the

Hierarchy view into the prefabs folder in the Project

view, to create a prefab.

	 2.	 Delete the original SpawnPoint object from the

Hierarchy View.

Drag the SpawnPoint prefab onto the Scene where you’d like the Player

to appear. Rename the new instance of Spawn Point, “PlayerSpawnPoint”

as seen in Figure 7-1. Do not press the Apply button, as we don’t want to

apply this change to the prefab itself—only this instance.

As you can see in Figure 7-2, the location of the Spawn Point is barely

visible in the Scene. Because there is no Sprite attached to the GameObject

instance, it’s difficult to see.

Figure 7-1.  Rename the Spawn Point

Chapter 7 Characters, Coroutines, and Spawn Points

243

Tip T o make Spawn Points easier to locate in the Scene while the
game isn’t running, select the Spawn Point then press the Icon at the
top-left of the inspector as seen in Figure 7-3.

Figure 7-2.  GameObjects without a Sprite are sometimes difficult to
see in the Scene view

Chapter 7 Characters, Coroutines, and Spawn Points

244

Choose an icon to visually represent the selected object in the Scene.

You should see the selected icon appear over the object in the scene, as

seen in Figure 7-4.

Figure 7-3.  Select the icon in the Inspector

Figure 7-4.  Using an icon to make an object easier to find in a Scene

Chapter 7 Characters, Coroutines, and Spawn Points

245

These icons also can be made visible during runtime by selecting the

Gizmos button in the upper-right corner of the Game window, as seen in

Figure 7-5.

�Configure the Player Spawn Point
We still have to configure the Spawn Point so it knows what prefab to

spawn. Set the “Prefab To Spawn” property in the attached Spawn Point

script to the PlayerObject prefab by dragging the PlayerObject prefab to the

respective property as seen in Figure 7-6. Leave the Repeat Interval set to 0

because we only want to spawn the player once.

Figure 7-5.  Use the Gizmos button to set the icon visible during
runtime

Chapter 7 Characters, Coroutines, and Spawn Points

246

Because the plan is to use the PlayerSpawnPoint to spawn the player,

delete the Player instance from the Hierarchy view.

Press Play and you’ll immediately notice that nothing happens. The

player is nowhere to be seen. This is because we’re not actually calling the

SpawnObject() method of the SpawnPoint class anywhere yet. Let’s modify

the RPGGameManager to call SpawnObject().

Switch back to the Unity Editor and open the RPGGameManager class.

�Spawn the Player
Add the following property to the top of the class:

public class RPGGameManager : MonoBehaviour

{

// 1

 public SpawnPoint playerSpawnPoint;

 // ...Existing code from the RPGGameManager class...

}

// 1

The playerSpawnPoint property will hold a reference to the Spawn

Point specifically designated for the player. We’re keeping a reference to

this specific Spawn Point because we’ll want the ability to re-spawn the

player when they meet an untimely demise

Figure 7-6.  Configure the Spawn Point script

Chapter 7 Characters, Coroutines, and Spawn Points

247

Add the following method:

public void SpawnPlayer()

{

// 1

 if (playerSpawnPoint != null)

 {

// 2

 GameObject player = playerSpawnPoint.SpawnObject();

 }

}

// 1

Check if the playerSpawnPoint property is not null before we try to use it.

// 2

Call the SpawnObject() method on the playerSpawnPoint.

SpawnObject to Spawn the player. Store a local reference to the instantiated

player, which we’ll be using shortly.

In the SetupScene() method of RPGGameManager, add a single line:

public void SetupScene()

{

// 1

 SpawnPlayer();

}

// 1

This will invoke the SpawnPlayer() method we just wrote.

Chapter 7 Characters, Coroutines, and Spawn Points

248

Finally we need to configure the RPGGameManager instance in the

Hierarchy view with a reference to the Player Spawn Point. Drag and drop

the PlayerSpawnPoint from the Hierarchy view, into the Player Spawn

Point property in the RPGGameManager instance, as seen in Figure 7-7.

Press Play and you should see the Player object appear in the scene at

the location of the Player Spawn Point.

�In Summary

	 1.	 Spawn Points are used to determine what type of

object to spawn and the location to spawn in. We’ve

configured the Player Spawn Point instance to

reference the PlayerObject prefab.

	 2.	 Configure a reference to the Player Spawn Point in

the RPGGameManager instance.

	 3.	 In the SetupScene() method of RPGGameManager,

call the SpawnObject() method of the Player Spawn

Point class.

Figure 7-7.  Set the Player Spawn Point property to the
PlayerSpawnPoint instance

Chapter 7 Characters, Coroutines, and Spawn Points

249

�A Spawn Point for Enemies
Let’s build a Spawn Point to spawn enemies. Because we’ve already built a

Spawn Point prefab, this will be quick.

	 1.	 Drag and Drop a SpawnPoint prefab into the Scene.

	 2.	 Rename it EnemySpawnPoint.

–– (Optional) Change the icon to red, so we can view it

easily in the Scene view

	 3.	 Set the “Prefab to Spawn” property to the Enemy

prefab.

	 4.	 Set the Repeat Interval to 10 (seconds), to spawn an

Enemy every 10 seconds.

After configuring the Enemy Spawn Point, the Scene should resemble

Figure 7-8.

Chapter 7 Characters, Coroutines, and Spawn Points

250

Press Play and watch as Enemies spawn every 10 seconds. We haven’t

written any artificial intelligence yet to make the Enemies move around or

attack, so the player is safe for the time being.

As you walk the player around the map, you may have noticed

that something is off. The camera no longer follows the player around!

Catastrophe! This is because we’re now spawning the Player dynamically,

instead of setting the Player prefab instance in the Cinemachine Virtual

Camera—follow property. The Virtual Camera has no follow target and

thus remains in the same place.

Figure 7-8.  An instance of SpawnPoint configured to spawn Enemies
with a custom red icon to make it easily visible

Chapter 7 Characters, Coroutines, and Spawn Points

251

�Camera Manager
To restore the behavior where the camera follows the player as she walks

around the map, we’re going to create a Camera Manager class and have

the Game Manager use it to ensure the Virtual Camera is properly set up.

This Camera Manager will be useful in the future as a centralized place for

configuring camera behavior instead of embedding that camera code in

various places throughout our app.

Create a new GameObject in the Hierarchy and rename it:

RPGCameraManager. Create a new script called RPGCameraManager and

add it to the RPGCameraManager object. Open the script in Visual Studio.

We’ll use the Singleton pattern again, just as we did for the

RPGGameManager earlier in this chapter.

Use the following code for the RPGCameraManager class:

using UnityEngine;

// 1

using Cinemachine;

public class RPGCameraManager : MonoBehaviour {

 public static RPGCameraManager sharedInstance = null;

// 2

 �[HideInInspector]

 public CinemachineVirtualCamera virtualCamera;

// 3

 void Awake()

 {

 if (sharedInstance != null && sharedInstance != this)

 {

 Destroy(gameObject);

 }

Chapter 7 Characters, Coroutines, and Spawn Points

252

 else

 {

 sharedInstance = this;

 }

// 4

 �GameObject vCamGameObject = GameObject.

FindWithTag("VirtualCamera");

//5

 �virtualCamera = vCamGameObject.GetComponent<Cinemachine

VirtualCamera>();

 }

}

// 1

Import the Cinemachine namespace so the RPGCameraManager gains

access to the Cinemachine classes and data types.

// 2

Store a reference to the Cinemachine Virtual Camera. Make it

public so that other classes can access it. Because we’ll be setting it

programmatically, use the [HideInInspector] attribute so that it doesn’t

appear in the Unity Editor.

// 3

Implement the Singleton pattern.

// 4

Find the VirtualCamera GameObject in the current Scene. In the

following line, we’ll get a reference to its Virtual Camera component. We’ll

also need to create this tag in the Unity Editor and configure the Virtual

Camera to use it.

Chapter 7 Characters, Coroutines, and Spawn Points

253

Remember that GameObjects can have multiple components attached

to them, with each component providing different functionality. This is

known as the “Composition” design pattern.

// 5

All of the Virtual Camera’s properties such as the Follow target and

Orthographic Size can be configured via script as well as the Unity Editor.

Save a reference to the Virtual Camera Component, so we can control

these Virtual Camera properties programmatically.

Create a prefab out of the RPGCameraManager but keep an instance in

the Hierarchy view.

�Using the Camera Manager
In the RPGGameManager class, add the following property to the top of

the class:

public RPGCameraManager cameraManager;

We’re making this property public because we’re going to set it via

the Unity Editor. The RPGGameManager will use this reference to the

RPGCameraManager when it spawns the player, as you’ll see in the

following code.

Still inside the RPGGameManager class, change the SpawnPlayer()

method to the following:

public void SpawnPlayer()

{

 if (playerSpawnPoint != null)

 {

 GameObject player = playerSpawnPoint.SpawnObject();

Chapter 7 Characters, Coroutines, and Spawn Points

254

// 1

 cameraManager.virtualCamera.Follow = player.transform;

 }

}

// 1

We’ve added this line to SpawnPlayer(). Set the Follow property of the

virtualCamera to the transform of the player object. This will instruct the

Cinemachine Virtual Camera to follow the player once again as she walks

around the map.

Switch back to the Unity Editor and select the RPGGameManager

instance in the Hierarchy. We’re going to configure the Game Manager to

use the Camera Manager.

Drag the RPGCameraManager instance into the Camera Manager

property of the RPGGameManager in the Hierarchy, as seen in Figure 7-9.

There’s one last thing to do before our Virtual Camera will follow the

player again: set the Tag on the Virtual Camera so the RPGCameraManager

script can find it.

Select the Virtual Camera object in the Hierarchy view. By default, the

Virtual Camera will be named: CM vcam1. Click the Tag drop-down menu

in the Inspector. If you need a refresher on the location of the Tag drop-

down menu, take a look at Figure 7-10.

Figure 7-9.  Set the Camera Manager property

Chapter 7 Characters, Coroutines, and Spawn Points

255

Add a Tag called, “VirtualCamera” to the Tag listing. Then select

the Virtual Camera object again in the Hierarchy and set the Tag to the

VirtualCamera Tag you just created (Figure 7-11).

Press Play again and walk the player around the map. The camera

should once again follow the player as she walks around the map.

Figure 7-10.  The Tag drop-down menu

Figure 7-11.  Set the Tag to VirtualCamera so the
RPGCameraManager script can find it

Chapter 7 Characters, Coroutines, and Spawn Points

256

�Character Class Design
If you recall back in Chapter 6, we designed a class called: Character. At the

moment, only the Player class inherits from Character, but in the future

every class that inherits from Character will require the ability to inflict

damage on other Characters, have damage inflicted on it, and even die.

The remainder of this chapter will involve designing and augmenting the

Character, Player, and Enemy classes.

�The Virtual Keyword
The “virtual” keyword in C# is used to declare that classes, methods,

or variables will be implemented in the current class but can also be

overridden in an inheriting class if the current implementation is not

sufficient.

In the following code, we’re building the basic functionality to kill a

Character but inheriting classes may require additional functionality on

top of this.

Because all Characters in our game are mortal, we’ll provide a method

to kill them in the parent class. Add the following to the bottom of the

Character class:

// 1

public virtual void KillCharacter()

{

// 2

 Destroy(gameObject);

}

// 1

This method will be called when the characters hit-points reach zero.

// 2

Chapter 7 Characters, Coroutines, and Spawn Points

257

Calling Destroy(gameObject) will Destroy the current GameObject

and remove it from the Scene when the Character is killed.

�The Enemy Class
Part of being a hero is facing adversity and possibly danger. In this section,

we’re going to build out an Enemy Class and give it the ability to harm our

player.

In Chapter 6, we used a neat trick with Scriptable Objects to build

a Scriptable Object called HitPoints that shares data instantly with the

Player’s Health Bar. The Character class contains a property of a type of

HitPoints that is used by the Player class that inherits from Character.

Because the enemies in our game won’t have on-screen health bars,

they don’t require a HitPoints ScriptableObject. Only the Player, who has

a Health Bar, needs access to a HitPoints ScriptableObject. Thus we can

simplify the way we keep track of hit-points in the Enemy class by simply

using a regular float variable to track hit-points instead.

�Refactoring
To simplify our class architecture, we’re going to refactor some code.

Refactoring code is simply a term for restructuring existing code without

changing its behavior.

Open the Character class and Player class in Visual Studio. Move the

hitPoints variable from the Character class to the Player class, toward the

top where we have the existing properties:

public HitPoints hitPoints;

Select the EnemyObject prefab and add a script to it called: Enemy.

Open the Enemy script in Visual Studio. Remove the default code inside

the Enemy class and replace it with the following.

Chapter 7 Characters, Coroutines, and Spawn Points

258

using UnityEngine;

// 1

public class Enemy : Character

{

// 2

 float hitPoints;

}

// 1

Our Enemy class inherits from Character, which means it gets access to

public properties and methods in the Character class.

// 2

A simplified hitPoints variable of type float.

After these code changes, our Player class will continue to use the

HitPoints ScriptableObject we created in Chapter 6. We’ve also created an

Enemy class containing a simplified way of keeping track of hit-points. The

Enemy class also gained access to the existing properties in the Character

class pertaining to hit-points: startingHitPoints and maxHitPoints.

Tip W hen refactoring code, it’s best to keep the changes small
then test to ensure correct behavior so as to minimize the chance of
incorporating new bugs. An iterative cycle of making small changes,
then testing, is a good way to maintain your sanity.

�The Internal Access Modifier
Notice that we’ve omitted any access modifier keyword (public, private)

in front of the hitPoints variable in the Enemy class. In C# the absence

of an access modifier means the internal access modifier will be used by

Chapter 7 Characters, Coroutines, and Spawn Points

259

default. The internal access modifier restricts access to the variable or

method to within the same “assembly.” Assembly is a term used in C# that

can be thought of as encompassing the C# project.

�Coroutines
We’re going to pause for a moment from building out the Character and

Enemy class to talk about an important and useful feature of Unity. When

calling a method in Unity, the method runs until completion then returns

to the original point of invocation. Everything that happens inside a

regular method must happen within a single frame in the Unity Engine.

If your game calls a method that would ideally run longer than a single

frame, Unity will actually force the entire method to be called within that

frame. When that happens, you won’t get the result you’re looking for. It’s

even possible that the results of a method that should run over the space

of several seconds won’t even be visible to the user because it’ll run and be

completed within a single frame.

To solve this dilemma, Unity offers something called: Coroutines.

Coroutines can be thought of as functions that can be paused mid-way

through execution, and then resume executing in the next frame. Long-

running methods that are intended to execute over the course of multiple

frames are often implemented as Coroutines.

Declaring Coroutines is as straightforward as using the return type:

IEnumerator and including a line instructing the Unity engine to pause

or “yield” somewhere within the method body. It is this yield line that

tells the engine to pause execution and return to the same spot in the

subsequent frame.

Chapter 7 Characters, Coroutines, and Spawn Points

260

�Invoking Coroutines
A hypothetical Coroutine called RunEveryFrame() can be started by

enclosing it in the method StartCoroutine() as follows:

StartCoroutine(RunEveryFrame());

�Pausing or “Yielding” Execution
RunEveryFrame() will run up until it reaches a yield statement, at which

point it will pause until the next frame, then resume execution. A yield

statement could look like:

yield return null;

�A Complete Coroutine
The following RunEveryFrame() method is just an example of a Coroutine.

Don’t add it to your code anywhere but make sure that you understand

how it works:

public IEnumerator RunEveryFrame()

{

// 1

 while(true)

 {

 print("I will print every Frame.");

 yield return null;

 }

}

// 1

Chapter 7 Characters, Coroutines, and Spawn Points

261

We’re enclosing the print and yield statement in a while() loop to

keep the method running indefinitely, that is, to make it long-running and

span multiple frames.

�Coroutines with Time Intervals
Coroutines also can be used to call code at regular time intervals, such as

every 3 seconds, instead of every frame. Instead of using yield return

null to pause, we use yield return new WaitForSeconds() and pass a

time-interval parameter in this next example:

public IEnumerator RunEveryThreeSeconds()

{

 while (true)

 {

 print("I will print every three seconds.");

 yield return new WaitForSeconds(3.0f);

 }

}

When this sample Coroutine reaches the yield statement, execution

will pause for 3 seconds, then resume. The print statement will be invoked

and print every three seconds indefinitely, due to the while() loop.

We’re going to write some Coroutines to build out the functionality in

the Character, Player, and Enemy classes.

�The Abstract Keyword
The “abstract” keyword in C# is used to declare that classes, methods,

or variables cannot be implemented in the current class and must be

implemented by an inheriting class.

Chapter 7 Characters, Coroutines, and Spawn Points

262

The Enemy and Player class both inherit from the Character class. By

putting the definition of the following methods in the Character class, we

require the Enemy and Player class to implement them before the game

will compile and run.

Add the following "using" statement to the top of the Character class.

We’ll need to import System.Collections to work with Coroutines.

using System.Collections;

Then add the following underneath the KillCharacter() method:

// 1

public abstract void ResetCharacter();

// 2

public abstract IEnumerator DamageCharacter(int damage, float

interval);

// 1

Set the character back to its original starting state, so it can be used again.

// 2

Called by other Characters to damage the current character. Takes an

amount to damage the character by and a time interval. The time interval

can be used in situations when damage is recurring.

As discussed earlier, the return type: IEnumerator is required in a

Coroutine. IEnumerator is part of the System.Collections namespace

that is why we had to add the import line: using System.Collections

earlier.

Remember that all abstract methods must be implemented before the

code will compile and run. Because the method is in the parent class of

both Player and Enemy, we’ll have to implement both methods in both

classes.

Chapter 7 Characters, Coroutines, and Spawn Points

263

�Implementing the Enemy Class
Now that we’re experts in Coroutines and we’ve built out the Character

class, we’re going to implement the abstract methods starting with the

DamageCharacter() Coroutine.

Imagine a scenario in our game where an enemy runs into the

player, and the player doesn’t move out of the way. Our game logic says

that as long as the enemy keeps in contact with the player, the enemy

will continue to damage her. Another scenario where damage would be

applied at regular intervals is if the player walked over molten lava. That’s

just science.

To implement this scenario, we’ve declared the DamageCharacter()

method as a Coroutine to allow the method to apply damage at regular

intervals. In the implementation of DamageCharacter() we will leverage:

yield return new WaitForSeconds() to pause execution for a specified

amount of time.

�The DamageCharacter() method
Add the following import to the top of the class:

using System.Collections;

We need to import System.Collections to work with Coroutines.

Implement the DamageCharacter() method inside the Enemy class:

// 1

public override IEnumerator DamageCharacter(int damage, float

interval)

{

// 2

 while (true)

 {

Chapter 7 Characters, Coroutines, and Spawn Points

264

// 3

 hitPoints = hitPoints - damage;

// 4

 if (hitPoints <= float.Epsilon)

 {

// 5

 KillCharacter();

 break;

 }

// 6

 if (interval > float.Epsilon)

 {

 yield return new WaitForSeconds(interval);

 }

 else

 {

// 7

 break;

 }

 }

}

// 1

When implementing an abstract method in a derived (inheriting)

class, use the override keyword to indicate the method is overriding the

KillCharacter() method from the base (parent) class.

This method takes two parameters: damage and interval. Damage is

the amount of damage to inflict on the Character, and interval is the time

to wait between inflicting damage. Passing an interval = 0, as we’ll see, will

inflict damage a single time then return.

Chapter 7 Characters, Coroutines, and Spawn Points

265

// 2

This while() loop will continue inflicting damage until the character

dies, or if the interval = 0, it will break and return.

// 3

Subtract the amount of damage inflicted from the current hitPoints

and set the result to hitPoints.

// 4

After adjusting the Enemy’s hitPoints, we’d like to check if the

hitPoints are less than 0. However, hitPoints is of type: float, and

floating-point arithmetic is prone to rounding errors due to the way

floats are implemented under the hood. For this reason, in some cases

it’s better to compare a float value to: float.Epsilon, which is defined as

the “smallest positive value greater than zero” on the current system. For

purposes of enemy life and death, if the hitPoints are less than float.

Epsilon, then the character has “zero” health.

// 5

If hitPoints is less than float.Epsilon (effectively 0), then the enemy

has been vanquished. Call KillCharacter() then break out of the while()

loop.

// 6

If interval is greater than float.Epsilon, then we want to yield

execution, wait for interval seconds, then resume executing the while()

loop. In this scenario, the loop will only exit when the character dies.

Chapter 7 Characters, Coroutines, and Spawn Points

266

// 7

If interval is not greater than float.Epsilon (effectively equal to 0),

then this break statement will be hit, the while() loop will be broken, and

the method will return. The parameter interval will be zero in situations

where damage is not continuous, such as a single hit.

Let’s implement the rest of the abstract methods declared in the

Character class.

In the Enemy class:

�ResetCharacter()
Lets build out the method to set the Character variables back to their

original state. It's important to do this if we want to use the Character

object again after it dies. This method can also be used to set up the

variables when the Character is first created.

// 1

public override void ResetCharacter()

{

// 2

 hitPoints = startingHitPoints;

}

// 1

Because the Enemy class inherits from the Character class, we

override the ResetCharacter() declaration in the parent class.

// 2

When resetting the character, set the current hit-points to

startingHitPoints. We set startingHitPoints on the prefab itself in the

Unity Editor.

Chapter 7 Characters, Coroutines, and Spawn Points

267

�Calling ResetCharacter() in OnEnable()
The Enemy class inherits from Character, which inherits from

MonoBehaviour. The OnEnable() method is part of the MonoBehaviour

class. If OnEnable() is implemented in a class, it will be called every time

an object becomes both enabled and active. We will use OnEnable() to

ensure that certain things occur every time an Enemy object becomes both

enabled and active.

private void OnEnable()

{

// 1

 ResetCharacter();

}

// 1

Call the method we just wrote to reset the enemy. At the moment,

“resetting” the enemy just means setting it’s hitPoints to startingHitPoints,

but we could also include other things in ResetCharacter() as well.

�KillCharacter()
Because we’ve implemented KillCharacter() as a virtual method in

the Character class, and Enemy inherits from Character, there’s no need

to implement it in the Enemy class. Enemy doesn’t require any additional

functionality beyond what the Character implementation provides.

�Updating the Player Class
Next we’ll implement the abstract methods in the Player class. Open the

Player class in Visual Studio and use the following code to implement the

abstract methods from the Character parent class.

Chapter 7 Characters, Coroutines, and Spawn Points

268

Add the following import to the top of the class:

using System.Collections;

Then add the following method to the Player class:

// 1

public override IEnumerator DamageCharacter(int damage, float

interval)

{

 while (true)

 {

 hitPoints.value = hitPoints.value - damage;

 if (hitPoints.value <= float.Epsilon)

 {

 KillCharacter();

 break;

 }

 if (interval > float.Epsilon)

 {

 yield return new WaitForSeconds(interval);

 }

 else

 {

 break;

 }

 }

}

// 1

Chapter 7 Characters, Coroutines, and Spawn Points

269

Implement the DamageCharacter() method, as we did in the Enemy class.

public override void KillCharacter()

{

// 1

 base.KillCharacter();

// 2

 Destroy(healthBar.gameObject);

 Destroy(inventory.gameObject);

}

// 1

Use the base keyword to refer to the parent or “base” class that

the current class inherits from. Calling base.KillCharacter() calls

the KillCharacter() method inside the parent class. The parent

KillCharacter() method destroys the current gameObject associated with

the player.

// 2

Destroy the health bar and inventory associated with the Player.

�Refactoring Prefab Instantiation
In Chapter 6, we were initializing instances of the health bar and inventory

prefabs inside the Start() method. This was before we had the method:

ResetCharacter(). Remove the following three lines from Start() and

place them inside ResetCharacter() as seen in the following:

Remove these three lines from Start():

inventory = Instantiate(inventoryPrefab);

healthBar = Instantiate(healthBarPrefab);

healthBar.character = this;

Chapter 7 Characters, Coroutines, and Spawn Points

270

Then create the method ResetCharacter() as in the following,

overriding the abstract method in the Character parent class:

public override void ResetCharacter()

{

// 1

 inventory = Instantiate(inventoryPrefab);

 healthBar = Instantiate(healthBarPrefab);

 healthBar.character = this;

// 2

 hitPoints.value = startingHitPoints;

}

// 1

The three lines we removed from the Start() method. These three lines

initialize and set up the health bar and inventory.

// 2

Set the hit-points of the Player to the starting hit-points value.

Remember—because the starting hit-points is public, we can set it in the

Unity Editor.

�Review
Let’s review what we’ve just built:

•	 The Character class provides basic functionality for all

the various character types in our game including the

Player and her Enemies.

Chapter 7 Characters, Coroutines, and Spawn Points

271

•	 Character class functionality includes:

–– Basic functionality for killing a character

–– An abstract method definition for resetting a character

–– An abstract method definition for damaging a character

�Using What We’ve Built
We’ve built out some pretty core functionality but we’re not actually using

it yet. The enemy has methods that can damage the player, but they’re

not being invoked at the moment. To see the DamageCharacter() and

KillCharacter() methods in action, we’re going to add functionality to

the Enemy class that will invoke the DamageCharacter() method when the

Player runs into it.

In the Enemy class, add these two variables to the top of the class:

// 1

public int damageStrength;

// 2

Coroutine damageCoroutine;

// 1

Set in the Unity Editor, this variable will determine how much damage

the enemy will do when it runs into the Player.

// 2

References to running Coroutines can be saved to a variable and

stopped at a later time. We’ll use damageCoroutine to store a reference to

the DamageCharacter() Coroutine so we can stop it later on.

Chapter 7 Characters, Coroutines, and Spawn Points

272

�OnCollisionEnter2D
OnCollisionEnter2D() is a method included with all MonoBehaviours

and is called by the Unity Engine whenever the current objects Collider2D

makes contact with another Collider2D.

// 1

void OnCollisionEnter2D(Collision2D collision)

{

// 2

 if(collision.gameObject.CompareTag("Player"))

 {

// 3

 �Player player = collision.gameObject.

GetComponent<Player>();

// 4

 if (damageCoroutine == null)

 {

 �damageCoroutine = StartCoroutine(player.

DamageCharacter(damageStrength, 1.0f));

 }

 }

}

// 1

The collision details are passed as the parameter: collision, into

OnCollisionEnter2D().

// 2

We want to write game logic such that Enemies can only damage the

Player. Compare the Tag on the object that the enemy has collided with to

see if it’s the Player object.

Chapter 7 Characters, Coroutines, and Spawn Points

273

// 3

At this point we’ve determined that the other object is the Player, so

retrieve a reference to the Player component.

// 4

Check to see if this Enemy is already running the DamageCharacter()

Coroutine. If it is not, then start the Coroutine on the player object. Pass

into DamageCharacter() the damageStrength and the interval, because

the enemy will continue to damage the player for as long as they are in

contact.

We’re doing something here that we haven’t seen before. We’re storing

a reference to the running Coroutine in the variable damageCoroutine. We

can call StopCoroutine() and pass it the parameter: damageCoroutine, to

stop the Coroutine at any time.

�OnCollisionExit2D
OnCollisionExit2D() is called when another object’s Collider2D stops

touching the current MonoBehaviour object’s Collider2D.

// 1

void OnCollisionExit2D(Collision2D collision)

{

// 2

 if (collision.gameObject.CompareTag("Player"))

 {

// 3

 if (damageCoroutine != null)

 {

Chapter 7 Characters, Coroutines, and Spawn Points

274

// 4

 StopCoroutine(damageCoroutine);

 damageCoroutine = null;

 }

 }

}

// 1

The collision details are passed as the parameter: collision, into

OnCollisionEnter2D().

// 2

Check the Tag on the object that the enemy has stopped colliding with,

to see if it’s the Player object.

// 3

If damageCoroutine is not null, that means the coroutine is running

and should be stopped, then set to null.

// 4

Stop the damageCoroutine that is actually DamageCharacter() and set

it to null. This stops the Coroutine immediately.

�Configure the Enemy Script
Flip back to the Unity Editor and configure the Enemy script as seen in

Figure 7-12. Remember that the Damage Strength is how much damage

the Enemy will cause to the Player when it runs into her.

Chapter 7 Characters, Coroutines, and Spawn Points

275

Figure 7-12.  Configure the Enemy Script

Press Play and walk the Player over to an Enemy Spawn Point. Run the

Player into an Enemy and you’ll notice that the Player takes some damage,

but also pushes the Enemy away. This is because both the Player and the

Enemy have RigidBody2D components attached to them and are under

the control of Unity’s Physics Engine.

Eventually the Enemy will chase after the Player, but for now, push the

Enemy into the corner and maintain contact with it. Watch as the health

bar decreases down to 0 until the inventory, health bar, and the player

disappear off the screen.

�Summary
Our sample game is really starting to come together. We’ve created an

architecture for the various types of characters throughout the game and

picked up a few pointers on using C# in the process. Our game now has a

central game manager responsible for setting up a Scene, spawning the

player, and ensuring the camera is set up properly. We’ve learned how to

write code to control the Camera programmatically, where we previously

had to set up the Camera via the Unity Editor. We built a Spawn Point

to spawn different character types, and learned about Coroutines, an

important tool in the Unity developer’s toolbox.

Chapter 7 Characters, Coroutines, and Spawn Points

277© Jared Halpern 2019
J. Halpern, Developing 2D Games with Unity, https://doi.org/10.1007/978-1-4842-3772-4_8

CHAPTER 8

Artificial Intelligence
and Slingshots
This chapter covers a lot but by the end, you’ll have a functioning

prototype of a game. We’ll build some interesting features such as a

reusable artificial intelligence component with chasing behavior. Our

courageous Player also will finally receive her weapon of choice: a

slingshot, to defend herself with. You’ll learn a widely used optimization

technique in game programming called Object Pooling, as well as put

some of that high-school math to use that you never thought you’d need.

This chapter also demonstrates the usage of Blend Trees, which are a more

efficient way of doing animations and better for your game architecture in

the long-term. We’ll wrap things up by showing you how to compile your

game to run outside of Unity and talk a little bit about what’s next in your

game programming adventures.

�The Wander Algorithm
In this section we’ll leverage what we’ve learned about Coroutines to write

a script that makes an enemy wander randomly around the board. If the

enemy detects that the Player is close-by, the enemy will pursue her until

she runs away, kills the enemy, or the player dies.

278

The Wander algorithm may sound complicated but when we break it

down step-by-step, you’ll see that it’s all very achievable.

Figure 8-1 is a diagram of the Wander algorithm. We’ll implement each

part in stages and explain as we go along, so you won’t feel overwhelmed.

�Getting Started
Select the Enemy prefab and drag it into the scene to make our lives easier.

Select the EnemyObject and add a CircleCollider2D component to it.

Check the Is Trigger box on the Circle Collider and set the radius of the

collider to be: 1. The Circle Collider should look like Figure 8-2.

Figure 8-1.  The Wander algorithm

Chapter 8 Artificial Intelligence and Slingshots

279

This Circle Collider represents how far the Enemy can “see.” In other

words, when the Player’s collider crosses the Circle Collider, the Enemy

can see the Player. Remember how trigger colliders work: because we’ve

checked the Is Trigger box on the Circle Collider, it can pass through other

objects. The Enemy will “see” the Player cross the collider, then change

course and pursue her.

�Create the Wander Script
We’ll create the Wander script as a MonoBehaviour so it can be re-used

and attached to other GameObjects in the future besides the Enemy.

Add a new Script called: “Wander”. Open the script in Visual Studio

and add the following:

// 1

using System.Collections;

using UnityEngine;

Figure 8-2.  Set Is Trigger and Radius

Chapter 8 Artificial Intelligence and Slingshots

280

// 2

[RequireComponent(typeof(Rigidbody2D))]

[RequireComponent(typeof(CircleCollider2D))]

[RequireComponent(typeof(Animator))]

public class Wander : MonoBehaviour

{

}

// 1

We’ll be using Coroutines and IEnumerator in the Wander algorithm.

As mentioned in Chapter 7, IEnumerator is part of the System.Collections

namespace, so we import it here.

// 2

Ensure that whatever GameObject we attach the Wander script to in

the future has a Rigidbody2D, a CircleCollider2D, and an Animator. All

three of these components are necessary for the Wander script.

By using RequireComponent, any script that this script is attached to will

automatically have the required component added if it is not already present.

�Wander Variables
Next we’re going to sketch out the variables needed for the Wander

algorithm. Add the following variables to the Wander class:

// 1

 public float pursuitSpeed;

 public float wanderSpeed;

 float currentSpeed;

// 2

 public float directionChangeInterval;

Chapter 8 Artificial Intelligence and Slingshots

281

// 3

 public bool followPlayer;

// 4

 Coroutine moveCoroutine;

// 5

 Rigidbody2D rb2d;

 Animator animator;

// 6

 Transform targetTransform = null;

// 7

 Vector3 endPosition;

// 8

 float currentAngle = 0;

// 1

These three variables will be used to set the speed at which the Enemy

pursues the Player, the general wandering speed when not in pursuit, and

the current speed that will be one of the previous two speeds.

// 2

The directionChangeInterval is set via the Unity Editor and will be

used to determine how often the Enemy should change wandering direction.

// 3

This script can be attached to any Character in the game to add

wandering behavior. You may want to eventually create a type of Character

that doesn’t chase the player and only wanders about. The followPlayer

flag can be set to turn on and off the player-chasing behavior.

Chapter 8 Artificial Intelligence and Slingshots

282

// 4

The variable moveCoroutine is where we’ll save a reference to

the currently running movement Coroutine. This Coroutine will be

responsible for moving the Enemy a little bit each frame, toward the

destination. We need to save a reference to the Coroutine because at some

point we’ll need to stop it, and to do that we need a reference.

// 5

The RigidBody2D and Animator attached to the GameObject.

// 6

We use targetTransform when the Enemy is pursuing the Player. The

script will retrieve the transform from the PlayerObject and assign it to

targetTransform.

// 7

The destination where the Enemy is wandering.

// 8

When choosing a new direction to wander, a new angle is added to the

existing angle. That angle is used to generate a vector, which becomes the

destination.

�Build Out Start()
Now that we have all the variables we’ll need for the moment, let’s build

the Start() method.

 void Start()

 {

// 1

 animator = GetComponent<Animator>();

Chapter 8 Artificial Intelligence and Slingshots

283

// 2

 currentSpeed = wanderSpeed;

// 3

 rb2d = GetComponent<Rigidbody2D>();

// 4

 StartCoroutine(WanderRoutine());

 }

// 1

Grab and cache the Animator component attached to the current

GameObject.

// 2

Set the current speed to wanderSpeed. The Enemy starts off wandering

at a leisurely pace.

// 3

We'll need a reference to the Rigidbody2D to actually move the enemy.

Store a reference instead of retrieving it every time we need it.

// 4

Start the WanderRoutine() Coroutine, the entry point into the Wander

algorithm. We’ll write WanderRoutine() next.

�The Wander Coroutine
The WanderRoutine() Coroutine contains all of the high-level logic from

the Wander Algorithm described in Figure 8-1 seen earlier in this chapter,

aside from the pursuit logic. We’ll still need to write some of the methods

called from within WanderRoutine() but this Coroutine is the brains of the

Wander Algorithm.

Chapter 8 Artificial Intelligence and Slingshots

284

// 1

public IEnumerator WanderRoutine()

{

// 2

 while (true)

 {

// 3

 ChooseNewEndpoint();

//4

 if (moveCoroutine != null)

 {

// 5

 StopCoroutine(moveCoroutine);

 }

// 6

 �moveCoroutine = StartCoroutine(Move(rb2d,

currentSpeed));

// 7

 yield return new WaitForSeconds(directionChangeInterval);

 }

}

// 1

This method is a Coroutine because it’ll doubtlessly run over multiple

frames.

Chapter 8 Artificial Intelligence and Slingshots

285

// 2

We want the Enemy to wander indefinitely, so we’ll use while(true) to

loop through the steps indefinitely.

// 3

The ChooseNewEndpoint() method does exactly what it sounds like.

It chooses a new endpoint but doesn’t start the Enemy moving toward it.

We’ll write this method next.

// 4

Check if the Enemy is already moving by checking if moveCoroutine

is null or has a value. If it has a value then the Enemy may be moving, so

we’ll need to stop it first before moving in a new direction.

// 5

Stop the currently running movement Coroutine.

// 6

Start the Move() Coroutine and save a reference to it in moveCoroutine.

The Move() Coroutine is responsible for actually moving the Enemy. We’ll

write it shortly.

// 7

Yield execution of the Coroutine for directionChangeInterval

seconds, then start the loop over again and choose a new endpoint.

�Choosing a New Endpoint
We’ve written out the starting point and the Wander Coroutine, so it’s

time to start filling in the methods called by the WanderCoroutine(). The

ChooseNewEndpoint() method is responsible for choosing a new endpoint

at random for the Enemy to travel to.

Chapter 8 Artificial Intelligence and Slingshots

286

// 1

void ChooseNewEndpoint()

{

// 2

 currentAngle += Random.Range(0, 360);

// 3

 currentAngle = Mathf.Repeat(currentAngle, 360);

// 4

 endPosition += Vector3FromAngle(currentAngle);

}

// 1

Make this method private by omitting the access modifier, because it’ll

only be needed inside the Wander class.

// 2

Choose a random value between 0 and 360 to represent a new

direction to travel toward. This direction is represented as an angle, in

degrees. We add it to the current angle.

// 3

The method Mathf.Repeat(currentAngle, 360) will loop the value:

currentAngle so that it’s never smaller than 0, and never bigger than 360.

We’re effectively keeping the new angle in the range of degrees: 0 to 360,

then replacing the currentAngle with the result.

// 4

Call a method to convert an Angle to a Vector3 and add the result to

the endPosition. The variable endPosition will be used by the Move()

Coroutine, as we’ll soon see.

Chapter 8 Artificial Intelligence and Slingshots

287

�Angles to Radians to Vectors!
This method takes an angle parameter in degrees, converts it to radians,

and returns a directional Vector3 used by the ChooseNewEndpoint().

Vector3 Vector3FromAngle(float inputAngleDegrees)

{

// 1

 float inputAngleRadians = inputAngleDegrees * Mathf.Deg2Rad;

// 2

 �return new Vector3(Mathf.Cos(inputAngleRadians),

Mathf.Sin(inputAngleRadians), 0);

}

// 1

Convert the input angle from degrees to radians by multiplying by the

degrees-to-radians conversion constant. Unity provides this constant so

we can do quick conversions.

// 2

Use the input angle in radians to create a normalized directional vector

for the enemy direction.

�Enemy Walk Animation
Up until this point, the Enemy only had one animation: idle. It’s time to

utilize the Enemy walking animation clip we created way back in Chapter 3.

Select the Enemy prefab then open the Animation window as seen in

Figure 8-3.

Chapter 8 Artificial Intelligence and Slingshots

288

If the Idle state is the default state, it will be colored Orange. If it isn’t

the default state, right-click on the “enemy-idle-1” state and select: Set as

Layer Default State.

As you can see, the enemy-walk-1 state exists, with an animation clip,

but isn’t being used at the moment. The plan is to create an Animation

Parameter and use that parameter to switch between the idle and walking

state.

Click on the plus-symbol in the Parameters section of the Animator

and select Bool, as seen in Figure 8-4.

Figure 8-3.  The Animator window with the EnemyObject selected

Chapter 8 Artificial Intelligence and Slingshots

289

Name this parameter: “isWalking”, as seen in Figure 8-5.

Our Wander script will use this parameter to switch the Enemy’s

animation state between idle and walking. To keep things simple, the

walking animation will serve as a stand-in for running, when in pursuit of

the Player, as well as leisurely walking.

Right-click on enemy-idle-1 state and select: Make Transition. Create

a transition between the idle state and the walking state. Then create

another transition between the walking state and the idle state. When

you’re done, the Animator State window should look like Figure 8-6.

Figure 8-4.  Select Bool to create an Animation Parameter of type:
Bool

Figure 8-5.  Create the isWalking Bool parameter

Chapter 8 Artificial Intelligence and Slingshots

290

Click on the transition state going from enemy-idle-1 to enemy-walk-1,

and use the following settings, as seen in Figure 8-7.

Click on the transition from enemy-walk-1 to enemy-idle-1 and

configure it using the same settings from Figure 8-7 as well.

Set up each transition to use the Animation Parameter: isWalking, that

we just created. Set the condition: isWalking to true, in the transition from

enemy-idle-1 to enemy-walk-1 as seen in Figure 8-8.

Figure 8-6.  Create transitions between the idle and walk states

Figure 8-7.  Transition settings

Chapter 8 Artificial Intelligence and Slingshots

291

Set isWalking to false, in the enemy-walk-1 to enemy-idle-1 transition.

That’s it! The Enemy walking animation is set up. To use the new

animation state, we just need to change isWalking to true, in our Move()

Coroutine, as you’ll soon see.

Press Apply in the Inspector to apply these changes to all the Enemy

prefabs.

�The Move() Coroutine
The Move() Coroutine is responsible for moving a RigidBody2D at a given

speed from its current location to the endPosition variable.

Add the following method to the Wander script.

public IEnumerator Move(Rigidbody2D rigidBodyToMove, float

speed)

{

// 1

 �float remainingDistance = (transform.position -

endPosition).sqrMagnitude;

// 2

 while (remainingDistance > float.Epsilon)

 {

Figure 8-8.  If isWalking == true, this condition is met

Chapter 8 Artificial Intelligence and Slingshots

292

// 3

 if (targetTransform != null)

 {

 endPosition = targetTransform.position;

 }

// 4

 if (rigidBodyToMove != null)

 {

// 5

 animator.SetBool("isWalking", true);

// 6

 �Vector3 newPosition = Vector3.

MoveTowards(rigidBodyToMove.position, endPosition,

speed * Time.deltaTime);

// 7

 rb2d.MovePosition(newPosition);

// 8

 �remainingDistance = (transform.position -

endPosition).sqrMagnitude;

 }

// 9

 yield return new WaitForFixedUpdate();

 }

// 10

 animator.SetBool("isWalking", false);

}

Chapter 8 Artificial Intelligence and Slingshots

293

// 1

The equation: (transform.position – endPosition) results in a

Vector3. We use a property called: sqrMagnitude, which is available on the

Vector3 type, to retrieve the rough distance remaining between the current

position of the Enemy and the destination. Using the sqrMagnitude

property is a Unity-provided approach to performing quick Vector

magnitude calculations.

// 2

Check that the remaining distance between the current location

and the endPosition is greater than float.Epsilon, which is effectively

equivalent to zero.

// 3

When the Enemy is in pursuit of the Player, the value targetTransform

will be set to the Players transform instead of null. We then overwrite

the original value of the endPosition to use targetTransform instead.

When the Enemy moves, it will move toward the Player, instead of toward

the original endPosition. Because the targetTransform is actually the

Player’s transform, it will be constantly updated with the Players new

position. This allows the Enemy to dynamically follow the Player.

// 4

The Move() method requires a RigidBody2D and uses it to move

the Enemy. Before we go any further, ensure that we actually have a

RigidBody2D to move.

// 5

Set the Animation Parameter: isWalking, of type Bool, to true. This

will initiate the state transition to the walking state and play the Enemy

walking animation.

Chapter 8 Artificial Intelligence and Slingshots

294

// 6

The Vector3.MoveTowards method is used to calculate the movement

for a RigidBody2D. It doesn’t actually move the RigidBody2D. The

method takes three parameters: a current position, an end position, and

the distance to move in the frame. Remember that the variable: speed

will change, depending on whether the Enemy is in pursuit or leisurely

wandering around the Scene. That value will be changed in the pursuit

code, which we haven’t written yet.

// 7

Use MovePosition() to move the RigidBody2D to the newPosition,

calculated in the previous line.

// 8

Use the sqrMagnitude property to update the distance remaining.

// 9

Yield execution until the next Fixed Frame update.

// 10

The Enemy has reached endPosition and waiting for a new direction

to be selected, so change the Animation State to idle.

Save this script and switch back to the Unity Editor.

�Configure Wander Script
Select the Enemy prefab and configure the Wander script to look like

Figure 8-9. Set the Pursuit Speed to a slightly faster speed than the Wander

Speed. The Direction Change Interval is how often the Wander Algorithm

will call ChooseNewEndpoint() to choose a new direction to wander in.

Chapter 8 Artificial Intelligence and Slingshots

295

Press Apply in the Inspector then delete the EnemyObject out of the

Hierarchy view.

Now press play. Notice how the enemy wanders around the scene. If

the Player walks up close to an enemy they won’t pursue her yet. We’re

going to add the Pursuit logic next.

�OnTriggerEnter2D()
So we’ve implemented nearly all of the Wander algorithm except for the

Pursuit logic. In this section we’ll write some simple logic to plug into the

Wander algorithm to make the Enemy pursue the Player.

The Pursuit logic hinges on the OnTriggerEnter2D() method, which is

provided with every MonoBehaviour. As we learned in Chapter 5, Trigger

Colliders (colliders with the Is Trigger property set) can be used to detect

that another GameObject has entered the collider. When this occurs, the

OnTriggerEnter2D() method is called on the MonoBehaviours involved in

the collision.

When the Player enters the CircleCollider2D attached to the Enemy,

the Enemy can “see” the Player and should pursue her.

Figure 8-9.  Use these settings in the Wander script

Chapter 8 Artificial Intelligence and Slingshots

296

Let’s write that logic.

void OnTriggerEnter2D(Collider2D collision)

{

// 1

 �if (collision.gameObject.CompareTag("Player") &&

followPlayer)

 {

// 2

 currentSpeed = pursuitSpeed;

// 3

 targetTransform = collision.gameObject.transform;

// 4

 if (moveCoroutine != null)

 {

 StopCoroutine(moveCoroutine);

 }

// 5

 �moveCoroutine = StartCoroutine(Move(rb2d,

currentSpeed));

 }

}

// 1

Check the tag on the object in the collision to see if it’s the

PlayerObject. Also check that followPlayer is current true. This variable is

set via the Unity Editor and used to turn on and off the pursuit behavior.

// 2

At this point, we’ve determined that the collision is with the Player,

so change the currentSpeed to the pursuitSpeed.

Chapter 8 Artificial Intelligence and Slingshots

297

// 3

Set targetTransform equal to the Player’s transform. The Move()

coroutine will check if targetTransform is not null, and then use it as the

new value of endPosition. This is how the Enemy continuously pursues the

Player instead of wandering aimlessly.

// 4

If the Enemy is currently moving, the moveCoroutine will not be null. It

needs to be stopped before started again.

// 5

Because endPosition is now set to the PlayerObject’s transform,

calling Move() will move the Enemy toward the player.

�OnTriggerExit2D()
Provided the Enemy pursuitSpeed is less than the Player movementSpeed,

the Player can outrun any Enemy. As the Player runs away from the Enemy,

she will exit the Enemy Trigger Collider, causing the OnTriggerExit2D() to

be called. When this occurs, the Enemy effectively loses sight of the Player

and resumes wandering aimlessly.

This method is nearly identical to OnTriggerEnter2D() with just a few

tweaks.

void OnTriggerExit2D(Collider2D collision)

{

// 1

 if (collision.gameObject.CompareTag("Player"))

 {

// 2

 animator.SetBool("isWalking", false);

Chapter 8 Artificial Intelligence and Slingshots

298

// 3

 currentSpeed = wanderSpeed;

// 4

 if (moveCoroutine != null)

 {

 StopCoroutine(moveCoroutine);

 }

// 5

 targetTransform = null;

 }

}

// 1

Check the tag to see if the Player is leaving the collider.

// 2

The Enemy is confused after losing sight of the Player and pauses for a

moment. Set isWalking to false, to change the animation to idle.

// 3

Set the currentSpeed to the wanderSpeed, to be used the next time the

Enemy starts moving.

// 4

Because we want the Enemy to stop pursuing the Player, we need to

stop the moveCoroutine.

// 5

The Enemy is no longer following the Player, so set the

targetTransform to null.

Save this script and flip back to Unity Editor. Press Play.

Chapter 8 Artificial Intelligence and Slingshots

299

Move the Player into sight of the Enemy and notice how the Enemy will

pursue her until she runs out of sight.

�Gizmos
Unity supports the creation of visual debugging and setup tools called

Gizmos. These tools are created via a set of methods and only appear in

the Unity Editor. They won’t appear in your game when it’s compiled and

running on a user’s hardware.

We’re going to create two Gizmos to aid in visually debugging the

Wander algorithm. The first Gizmo we’ll create will show a wire outline of

the Circle Collider 2D, used to detect when the Player is within sight of the

Enemy. This Gizmo will make it easier to see when the pursuit behavior is

supposed to begin.

Add the following variable toward the top of the Wander class, where

we have the other variables:

CircleCollider2D circleCollider;

Then add the following line to Start(). It can be placed anywhere

within the method:

circleCollider = GetComponent<CircleCollider2D>();

This line retrieves the CircleCollider2D component of the current

Enemy object. We’ll use it to draw a circle on-screen to visually represent

the current circle collider.

To implement the Gizmo, implement the method provided by

MonoBehaviour called OnDrawGizmos():

void OnDrawGizmos()

{

// 1

 if (circleCollider != null)

 {

Chapter 8 Artificial Intelligence and Slingshots

300

// 2

 �Gizmos.DrawWireSphere(transform.position,

circleCollider.radius);

 }

}

// 1

Be sure that we have a reference to the Circle Collider before we try to

use it.

// 2

Call Gizmos.DrawWireSphere() and provide a position and a radius for

it, to draw a sphere.

Save the script and flip back to the Unity Editor. Be sure the Gizmos

button is pressed, and then press Play. Notice the Enemy Gizmo surrounding

the Enemy as it wanders about, as seen in Figure 8-10. The circumference

and position of this Gizmo corresponds to the CircleCollider2D.

Figure 8-10.  A Gizmo representing the CircleCollider2D
surrounding the Enemy

Chapter 8 Artificial Intelligence and Slingshots

301

If you don’t see the Circle Gizmo appear, make sure you have Gizmos

enabled in the upper-right corner of the Game window, as seen in

Figure 8-11.

It would be easier to see how the Wander algorithm moves an Enemy

toward a location if we had a line showing an Enemy’s destination. Let’s

draw a line on-screen from the current Enemy position to the end position.

We’ll use the Update() method so the line is draw with every frame.

void Update()

{

// 1

 Debug.DrawLine(rb2d.position, endPosition, Color.red);

}

Figure 8-11.  Enable Gizmos

Chapter 8 Artificial Intelligence and Slingshots

302

// 1

The result of the method Debug.DrawLine() is visible when Gizmos are

enabled. The method takes a current position, an end position, and a line

color.

As we can see in Figure 8-12, a red line is drawn from the center of the

Enemy to the destination (endPosition).

�Self-Defense
Our brave player will be armed with nothing more than her wits to guide

her and a slingshot for defense. Each press of the mouse button will have

our player fire off a single round of slingshot ammo toward the location

of the mouse click. We’ll script the behavior of the ammo so that as it

flies through the air, it travels along an arc toward the target instead of a

straight line.

Figure 8-12.  A red line is drawn from the Enemy position to the end
point

Chapter 8 Artificial Intelligence and Slingshots

303

�Classes Needed
We’ll need a combination of three different classes to give the player the

ability to defend herself.

The Weapon class will encapsulate the slingshot functionality. This

class will be attached to the Player prefab and will be responsible for a few

different things:

•	 Determining when the mouse button is pressed and

using the location of the button press as the target

•	 Switching from the current animation to the firing

animation

•	 Creating ammunition and moving it toward the target

We’ll need a class to represent the ammunition fired from the

slingshot. This Ammo class will be responsible for:

•	 Determining when the attached Ammo GameObject

collides with an Enemy

•	 Keeping track of how much damage it causes when it

collides with an Enemy

We’ll also build an Arc class responsible for moving the Ammo

GameObject in an exaggerated arc from the starting position to the end

position. Otherwise the ammo would travel in a straight line.

�Ammo Class
At the moment, we want the Ammo in our game to only damage Enemies,

but you could just as easily extend the functionality in the future to damage

other things as well. Each AmmoObject will expose a property in the

Unity Editor describing the amount of damage it causes. We’ll turn the

AmmoObject into a prefab. If you ever wanted to provide the player with

Chapter 8 Artificial Intelligence and Slingshots

304

two different types of Ammo, it’s a simple task to create a second Ammo

prefab, change the Sprite on it and the damage done.

Create a new GameObject in the Project hierarchy and rename it,

“AmmoObject”. We’re going to create the AmmoObject, configure it, write

the script, and then turn it into a prefab.

�Import the Assets
From the assets you’ve downloaded to accompany this book, drag the

spritesheet titled, “Ammo.png” into the Assets ➤ Sprites ➤ Objects folder.

Select the Ammo spritesheet and use the following import settings in

the Inspector:

Texture Type: Sprite (2D and UI)

Sprite Mode: Single

Pixels Per Unit: 32

Filter Mode: Point (no filter)

Be sure the Default button is selected at the bottom

and set Compression to: None

Press the Apply button.

The Unity Editor will automatically detect the sprite boundaries, so

there’s no need to open the Sprite Editor or slice the sprite.

�Add Components, Set Layers
Add a Sprite Renderer component to AmmoObject.

On the Sprite Renderer, set the Sorting Layer to: Characters, and set the

Sprite property to: Ammo. Ammo is the sprite we just imported.

Add a CircleCollider2D to the AmmoObject. Be sure the “Is Trigger”

setting is checked and set the Radius to 0.2. If you need to adjust the

Chapter 8 Artificial Intelligence and Slingshots

305

Collider, click the Edit Collider button and move the handles until you’re

satisfied that the collider surrounds the Ammo sprite.

Create a new Layer called, “Ammo” and use it to set the Layer on

AmmoObject as seen in Figure 8-13.

�Update the Layer Collision Matrix
If you recall back in Chapter 5, we learned about Layer-Based Collision

Detection. To summarize, two colliders in different Layers will only interact

if the Layer Collision Matrix is configured so that they’re aware of each other.

Go to the Edit Menu ➤ Project Settings ➤ Physics 2D and configure the

Layer Collision Matrix to look like Figure 8-14.

Figure 8-13.  Set the Layer to: Ammo

Figure 8-14.  Configure the Ammo Layer

Chapter 8 Artificial Intelligence and Slingshots

306

We want to allow an Ammo collider to interact with an Enemy collider,

but not interact with any other colliders. Back in Chapter 5, we configured

Enemies to use the Enemies Layer, and we’ve configured AmmoObject to

use the Ammo Layer.

�Build the Ammo Script
Add a new Script to AmmoObject called, “Ammo”. Open the Ammo script

in Visual Studio.

Use the following code to build out the Ammo class.

using UnityEngine;

public class Ammo : MonoBehaviour

{

// 1

 public int damageInflicted;

// 2

 void OnTriggerEnter2D(Collider2D collision)

 {

// 3

if (collision is BoxCollider2D)

 {

// 4

 �Enemy enemy = collision.gameObject.

GetComponent<Enemy>();

// 5

 �StartCoroutine(enemy.DamageCharacter(damageInflict

ed, 0.0f));

Chapter 8 Artificial Intelligence and Slingshots

307

// 6

 gameObject.SetActive(false);

 }

 }

}

// 1

The amount of damage the ammunition will inflict on an Enemy.

// 2

Called when another object enters the Trigger Collider attached to

the Ammo GameObject. A Trigger Collider is simply a Collider with the: Is

Trigger property set. In this case, it’s a CircleCollider2D.

// 3

It’s important to check if we hit the BoxCollider2D inside the enemy.

Remember that the Enemy also has a CircleCollider2D that is used in the

Wander script to detect if the Player is nearby. The BoxCollider2D is the

collider we use to detect objects that actually collide with the Enemy.

// 4

Retrieve the Enemy script component of the gameObject from the

collision.

// 5

Start the Coroutine to damage the Enemy. If you recall from Chapter 7,

the method signature for DamageCharacter() looks like this:

DamageCharacter(int damage, float interval)

The first parameter: damage, is the amount of damage to inflict on the

Enemy. The second parameter: interval, is the time to wait between

inflicting damage. Passing interval = 0 will inflict damage a single time.

Chapter 8 Artificial Intelligence and Slingshots

308

We pass the variable damageInflicted, an instance variable on the Ammo

class that will be set via the Unity Editor, as the first parameter.

// 6

Because the ammo has struck the Enemy, set the gameObject of the

AmmoObject to be inactive.

Why are we are setting the gameObject to be inactive instead of calling

Destroy(gameObject) and getting rid of it altogether?

Good question—glad you asked. We’re setting AmmoObject to be

inactive so we can use a technique called Object Pooling to maintain good

performance in our game.

�Before We Forget ... Make the AmmoObject
Prefab
One last thing before we get into Object Pooling—let’s turn the

AmmoObject into a prefab. Follow the same process we’ve always used to

create prefabs out of GameObjects:

	 1.	 Drag AmmoObject from the Hierarchy view into the

prefabs folder to create a prefab.

	 2.	 Delete the original AmmoObject from the Hierarchy

View.

�Object Pooling
If your game has a large number of objects being instantiated then

destroyed in a short amount of time, you might see pauses in gameplay,

slowdowns, and overall poor performance. This is because Instantiating

and Destroying objects in Unity is more performance intensive than

simply activating and deactivating objects. Destroying an object will invoke

Chapter 8 Artificial Intelligence and Slingshots

309

Unity’s internal memory cleanup process. Invoking this process repeatedly

in short succession, especially in memory constrained environments such

as mobile devices or the web, can affect performance. These effects on

performance won’t show up with a small number of objects, but if your

game involves spawning a large number of enemies or bullets, you’ll want

to consider a more optimized approach.

To avoid the performance issues associated with object creation and

destruction, we’ll use an optimization technique called Object Pooling.

To use Object Pooling, pre-instantiate multiple copies of an object for the

Scene ahead of time, de-activate them, and add them to an object pool.

When the Scene requires an object, loop through the object pool and

return the first inactive object found. When the Scene is finished using the

object, place it inactive, and return it to the object pool to be re-used by the

Scene in the future.

Simply put, Object Pooling reuses objects, minimizing performance

degradation due to runtime memory allocation and cleanup. Objects will

initially be set to inactive, and only activated when used. When the scene is

done using an object, the object is set inactive once again, signaling that it

can be re-used when needed.

By clicking the mouse button repeatedly, the slingshot weapon will

fire multiple rounds in quick succession. This is a textbook scenario where

object pooling would improve runtime performance.

The following are the three key steps in using Object Pooling in Unity:

•	 Pre-instantiate a collection (a “pool”) of objects ahead

of time before they’re needed and set them inactive

•	 When gameplay needs an object, instead of

instantiating a new object, grab an inactive object from

the pool and activate it

•	 When finished using the object, simply place it inactive

to return it to the pool

Chapter 8 Artificial Intelligence and Slingshots

310

�Building the Weapon Class
We’re going to create and store the Ammo object pool inside the Weapon

class. As described earlier, this class will encompass the slingshot

functionality as well as eventually control the animations showing the

Player firing the slingshot.

We’ll start off building the basic slingshot functionality by creating the

Object Pool to hold Ammo.

Select the PlayerObject prefab and add a new script called, “Weapon”.

Open this script in Visual Studio. Use the following code to begin building

the Weapon class.

// 1

using System.Collections.Generic;

using UnityEngine;

// 2

public class Weapon : MonoBehaviour

{

// 3

 public GameObject ammoPrefab;

// 4

 static List<GameObject> ammoPool;

// 5

 public int poolSize;

// 6

 void Awake()

 {

Chapter 8 Artificial Intelligence and Slingshots

311

// 7

 if (ammoPool == null)

 {

 ammoPool = new List<GameObject>();

 }

// 8

 for (int i = 0; i < poolSize; i++)

 {

 GameObject ammoObject = Instantiate(ammoPrefab);

 ammoObject.SetActive(false);

 ammoPool.Add(ammoObject);

 }

 }

}

// 1

We’ll need to import System.Collections.Generic so we can use the

List data structure. A variable of type: List, will be used to represent the

object pool—the collection of pre-instantiated objects.

// 2

Weapon inherits from MonoBehaviour and thus can be attached to a

GameObject.

// 3

The property ammoPrefab will be set via the Unity Editor and used to

instantiate copies of the AmmoObject. These copies will be added to a

pool of objects in the Awake() method.

// 4

The property ammoPool of type: List is used to represent the object

pool.

Chapter 8 Artificial Intelligence and Slingshots

312

A List in C# is an ordered collection of strongly typed objects. Because

they’re strongly typed, you must declare ahead of time what type of object

the List will hold. Attempting to insert any other type of object will result

in an error when compiling, and your game will not run. This List is

declared to hold only GameObjects.

The variable ammoPool is a static variable. If you recall from Chapter 7,

static variables belong to the class itself, and only one copy exists in memory.

// 5

The poolSize property allows us to set the number of objects to be

pre-instantiated in the object pool. Because this property is public, it can

be set and easily tweaked via the Unity Editor.

// 6

The code to create the Object Pool and pre-initialize the AmmoObjects

will be contained in the Awake() method. Awake() is called one time in the

lifetime of a script: when the script is being loaded.

// 7

Check to see if the ammoPool object pool has been initialized already.

If it has not been initialized, create a new ammoPool of type: List to hold

GameObjects.

// 8

Create a loop using poolSize as the upper limit. On each iteration of

the loop, instantiate a new copy of ammoPrefab, set it to be inactive, and

add it to the ammoPool.

The Object Pool (ammoPool) has been created and is ready for use in

a Scene. As you’ll soon see, whenever the Player uses her slingshot to fire

ammo, we’ll grab an inactive AmmoObject from ammoPool and activate

it. When the Scene is done using the AmmoObject, it’s deactivated and

returned to ammoPool.

Chapter 8 Artificial Intelligence and Slingshots

313

�Stubbing-Out Methods
Method stubs are substitutes for code that hasn’t been developed yet.

They also can be helpful for figuring out the required methods for specific

functionality. Let’s stub-out the various methods we’ll need for the rest of

the basic weapon functionality.

Add the following code to the Weapon class.

// 1

 void Update()

 {

// 2

 if (Input.GetMouseButtonDown(0))

 {

// 3

 FireAmmo();

 }

 }

// 4

 GameObject SpawnAmmo(Vector3 location)

 {

 // Blank, for now...

 }

// 5

 void FireAmmo()

 {

 // Blank, for now...

 }

Chapter 8 Artificial Intelligence and Slingshots

314

// 6

 void OnDestroy()

 {

 ammoPool = null;

 }

// 1

Inside the Update() method, check every frame to see if the user has

clicked the mouse to fire the slingshot.

// 2

The GetMouseButtonDown() method is part of the Input class and takes

a single parameter. This method will check if the left mouse button has

been clicked and released. The method parameter, 0, indicates that we are

interested in the first (left) mouse button. If we were interested in the right

mouse button, we would pass the value: 1 instead.

// 3

Because the left mouse button has been clicked, call the FireAmmo()

method, which we’re about to write.

// 4

The SpawnAmmo() method will be responsible for retrieving and

returning an AmmoObject from the object pool. The method takes

a single parameter: location, indicating where to actually place the

retrieved AmmoObject. SpawnAmmo() returns a GameObject—the activated

AmmoObject retrieved from the ammoPool Object Pool.

// 5

FireAmmo() will be responsible for moving the AmmoObject from

the starting location where it was spawned in SpawnAmmo(), to the end-

position where the mouse button was clicked.

Chapter 8 Artificial Intelligence and Slingshots

315

// 6

Set the ammoPool = null to destroy the Object Pool and free up

memory. The OnDestroy() method comes with MonoBehaviour and will be

called when the attached GameObject is destroyed.

�The SpawnAmmo Method
The SpawnAmmo method will loop through the collection or “pool” of pre-

instantiated AmmoObjects and find the first inactive object. It will then

activate the AmmoObject, set the transform.position, then return the

AmmoObject. If no inactive AmmoObjects exist, it returns null. Because

the ammo pool was initialized with a set number of AmmoObjects, there

is an inherent limit on the number of AmmoObjects that can be on-screen

at once. This limitation can be tweaked via changing the poolSize in the

Unity Editor.

Tip T he best way to figure out the ideal number of Objects to
pre-instantiate in the Object Pool is by playing your game a lot, then
tweaking the number accordingly.

Let’s implement the SpawnAmmo() method in the Weapon class.

 public GameObject SpawnAmmo(Vector3 location)

 {

// 1

 foreach (GameObject ammo in ammoPool)

 {

// 2

 if (ammo.activeSelf == false)

 {

Chapter 8 Artificial Intelligence and Slingshots

316

// 3

 ammo.SetActive(true);

// 4

 ammo.transform.position = location;

// 5

 return ammo;

 }

 }

// 6

 return null;

 }

// 1

Loop through the pool of pre-instantiated objects.

// 2

Check if the current object is inactive.

// 3

We’ve found an inactive object, so set it to be active.

// 4

Set the transform.position on the object to the parameter: location.

When we call SpawnAmmo(), we’ll pass a location to make it appear as

though the AmmoObject was fired from the slingshot.

// 5

Return the active object.

// 6

No inactive object was found, so all objects from the pool are currently

being used. Return null.

Chapter 8 Artificial Intelligence and Slingshots

317

�The Arc Class and Linear Interpolation
The Arc script will be responsible for actually moving the AmmoObject.

We want the ammunition to travel in an arc toward the target. We’ll create

a new MonoBehaviour called, “Arc” to contain this functionality. Because

we’re creating Arc as a separate MonoBehaviour, we can attach this script

to other GameObjects in the future to make them travel in an arc as well.

To keep things simple, we’ll implement the Arc script to travel in a

straight line at first. After we have things working, we’ll add a small tweak

to make the Ammo travel in a nice-looking arc.

Select the AmmoObject prefab in the Project view and add a new

script called: “Arc” to it. Open the Arc script in Visual Studio and write the

following code:

using System.Collections;

using UnityEngine;

// 1

public class Arc : MonoBehaviour

{

// 2

 �public IEnumerator TravelArc(Vector3 destination, float

duration)

 {

// 3

 var startPosition = transform.position;

// 4

 var percentComplete = 0.0f;

// 5

 while (percentComplete < 1.0f)

 {

Chapter 8 Artificial Intelligence and Slingshots

318

// 6

 percentComplete += Time.deltaTime / duration;

// 7

 �transform.position = Vector3.Lerp(startPosition,

destination, percentComplete);

// 8

 yield return null;

 }

// 9

 gameObject.SetActive(false);

 }

}

// 1

Because Arc is a MonoBehaviour, it can be attached to GameObjects.

// 2

TravelArc() is the method that will move the gameObject along an arc.

It makes sense to design TravelArc() as a Coroutine because it will execute

over the course of several frames. TravelArc() takes two parameters:

destination and duration. The definitions are as follows: destination is

the end position and duration is the desired amount of time to move the

attached gameObject from the starting position to destination.

// 3

Grab the current gameObject’s transform.position and assign it to

startPosition. We will use startPosition in the position calculation.

// 4

The percentComplete is used in the Lerp, or Linear Interpolation,

calculation used later in this method. We’ll explain its usage then.

Chapter 8 Artificial Intelligence and Slingshots

319

// 5

Check that the percentComplete is less than 1.0. Think of 1.0

as the decimal form of 100%. We only want this loop to run until

percentComplete is 100%. This will make sense when we explain Linear

Interpolation in the next line.

// 6

We want to move the AmmoObject smoothly toward its destination.

The distance the Ammo will travel each frame is dependent on the

duration we want the movement to take place over, and the time already

elapsed.

The amount of time elapsed since the last frame, divided by the

total desired duration of the movement, equals a percentage of the total

duration.

Take a look at this line again: percentComplete += Time.

deltaTime / duration;

Time.deltaTime is the amount of time elapsed since the last frame

was drawn. The result in that line: percentageComplete, is what we get

when we add the percentage of total duration, to the previous percentage

complete, to get the total percentage of the duration that has been

completed thus far.

We’ll use this total percentage complete in the next line to move the

AmmoObject smoothly.

// 7

To achieve the effect where the AmmoObject appears to move

smoothly between two points at a constant speed, we use a widely

used technique in game programming called Linear Interpolation.

Linear Interpolation requires a starting position, an end position, and

a percentage. When we use Linear Interpolation to determine the

distance to travel per frame, the percentage parameter of the Linear

Chapter 8 Artificial Intelligence and Slingshots

320

Interpolation method: Lerp(), is the percentage of duration completed

(percentComplete).

Using the duration percentComplete in the Lerp() method means that

no matter where we fire the AmmoObject, it will take the same amount of

time to get there. This is obviously unrealistic for a real-world simulation

but for a video game we can suspend the real-world rules.

The Lerp() method will return a point between the start and end,

based on this percentage. We assign the result to the transform.position

of the AmmoObject.

// 8

Pause execution of the Coroutine until the next frame.

// 9

If the arc has reached its destination, deactivate the attached

gameObject.

Don’t forget to save this script!

�Screen Points and World Points
Before we write the next method, we should talk about Screen Points and

World Points.

Screen Space is the space that is actually visible on-screen and is

defined in pixels. For example, our Screen Space is currently 1280 × 720 or

1280 pixels horizontally by 720 pixels vertically.

World Space is the actual game world and has no limitations in terms of

size. Its size is theoretically infinite and defined in units. We configured the

camera to map world units to screen units when we set the PPU in Chapter 4.

When we move objects around our game, because they can move

anywhere and aren’t limited to only moving on screen, we move them with

respect to World Space. Unity provides some handy methods to convert

from Screen to World Space.

Chapter 8 Artificial Intelligence and Slingshots

321

�The FireAmmo Method
Now that we’ve built out the Arc component to move the AmmoObject,

switch back to the Weapon class and let’s implement the FireAmmo()

method using the following code.

First, add the following variable to the top of the Weapon class, after

the poolSize variable. This variable will be used to set the velocity of the

ammo fired from the slingshot:

public float weaponVelocity;

Then use the following code to implement the FireAmmo() method:

 void FireAmmo()

 {

// 1

 �Vector3 mousePosition = Camera.main.

ScreenToWorldPoint(Input.mousePosition);

// 2

 GameObject ammo = SpawnAmmo(transform.position);

// 3

 if (ammo != null)

 {

// 4

 Arc arcScript = ammo.GetComponent<Arc>();

// 5

 float travelDuration = 1.0f / weaponVelocity;

Chapter 8 Artificial Intelligence and Slingshots

322

// 6

 �StartCoroutine(arcScript.TravelArc(mousePosition,

travelDuration));

 }

 }

// 1

Because the mouse uses Screen Space, we convert the mouse position

from Screen Space to World Space.

// 2

Retrieve an activated AmmoObject from the Ammo Object Pool via the

SpawnAmmo() method. Pass the current weapon’s transform.position as

the starting position for the retrieved AmmoObject.

// 3

Check to make sure SpawnAmmo() returned an AmmoObject.

Remember, it’s possible that SpawnAmmo() returns null if all the pre-

instantiated objects are already in use.

// 4

Retrieve a reference to the Arc component of the AmmoObject and

save it to the variable arcScript.

// 5

The value weaponVelocity will be set in the Unity Editor. Dividing 1.0

by weaponVelocity results in a fraction that we’ll use as the travel duration

for an AmmoObject. For example, 1.0 / 2.0 = 0.5, so the Ammo will take

half a second to travel across the screen to its destination.

This formula results in speeding up the velocity of ammunition when

the destination is further away. Imagine a scenario where the Player was

Chapter 8 Artificial Intelligence and Slingshots

323

firing at something close-by. If we didn’t ensure that the travel time always

took 0.5 seconds regardless of distance to travel, it’s possible that the

ammo would fire from the slingshot to the enemy so quickly that you really

wouldn’t see it. If we were making a first-person shooter, that might be ok.

But in our RPG, we’d like to visibly see the ammo fired from the slingshot at

all times. It simply seems more “fun” this way.

// 6

Call the TravelArc method we wrote earlier on arcScript. Recall the

method signature: TravelArc(Vector3 destination, float duration).

For the destination parameter, pass the location of the mouse-click. For

the duration parameter, pass travelDuration that we calculated in the

previous line:

float travelDuration = 1.0f / weaponVelocity;

Recall that duration parameter in TravelArc() is used to

determine how long it will take for the AmmoObject to travel from the

starting location to the destination. We’re going to set the value of

weaponVelocity when we configure the Weapon Script in the next step.

�Configure the Weapon Script
We’re nearly done! Just a few more things to tidy up before the player can

use the slingshot. Save the Weapon script, switch to the Unity Editor, and

select the PlayerObject. Because we’ve already added the Weapon script

to the PlayerObject, drag the AmmoObject prefab into the Ammo Prefab

property on the Weapon script. Set the Pool Size to 7, and the Weapon

Velocity to 2 as seen in Figure 8-15.

Chapter 8 Artificial Intelligence and Slingshots

324

We’ve chosen to use 0.5 for the Weapon Velocity because it feels like

a natural amount of time for a slingshot bullet to travel. Feel free to tweak

this value to something that seems natural and fun to you.

We’re ready to go. Press Play and click on an Enemy to fire the slingshot

and rain down pixelated death.

Fantastic! The slingshot fires ammo, but it doesn’t travel in an arc. Let’s

fix that.

�Arcing
Switch back to the Arc script in Visual Studio. We’re going to tweak the

script a bit to make the Arc script live up to its name and actually travel in

an arc trajectory.

Revise the while() loop in the Arc script to resemble the following:

 while (percentComplete < 1.0f)

 {

 // Leave this existing line alone.

 percentComplete += Time.deltaTime / duration;

// 1

 �var currentHeight = Mathf.Sin(Mathf.PI *

percentComplete);

Figure 8-15.  Configure the Weapon script

Chapter 8 Artificial Intelligence and Slingshots

325

// 2

 �transform.position = Vector3.Lerp(startPosition,

destination, percentComplete) + Vector3.up *

currentHeight;

 // Leave these existing lines alone.

 percentComplete += Time.deltaTime / duration;

 yield return null;

 }

// 1

To understand what’s happening here, we’ll need a tiny bit of high-

school trigonometry. The “period” of a wave is the time it takes to

complete one complete cycle. The period of a sine wave is (2 * π), and half

the period of a sine wave is just (π) as per Figure 8-16.

By passing the result of (percentComplete × Mathf.PI) to the sine

function, we are effectively traveling PI distance down the sine curve every

duration second. The result is assigned to currentHeight.

Figure 8-16.  The sine curve

Chapter 8 Artificial Intelligence and Slingshots

326

// 2

Vector3.up is a Unity-provided variable representing Vector3(0, 1, 0).

Adding Vector3.up * currentHeight to the result of Vector3.Lerp()

adjusts the position so that instead of traveling in a straight line, the

AmmoObject moves up then down along the Y axis toward the endPosition.

Save the script, return to the Unity Editor, and press Play. Fire the

slingshot and notice how it travels in an arc.

You’ll notice that we’re not actually playing any type of firing animation

as the Player shoots her slingshot. We’ll fix that in the next section.

�Animating the Slingshot
We’ve created a weapon and written the code to fire it, but the Player

looks a bit odd because she just stands there as the ammo mysteriously

materializes and goes flying at the target. In this section, we’re going to

build functionality to play the animations of the player firing the slingshot.

You’ll also learn a new approach to simplifying the animation state

management.

To keep things simple, we’ll start by applying this new state

management approach to the walking animations because we’re already

familiar with how that state machine works, and how the animations

should look. Once we’re comfortable with the new approach, we’ll apply it

to firing the slingshot.

�Animation and Blend Trees
Back in Chapter 3 we set up an Animation State Machine for the Player

consisting of animation states containing animation clips. These states

were connected by transitions, which we controlled by setting animation

parameters on the Animator component.

The state machine for the player currently resembles Figure 8-17.

Chapter 8 Artificial Intelligence and Slingshots

327

Because the player can walk in four different directions, it stands to

reason that she can fire the slingshot in four different directions as well. If

we added another four animations states for the four firing directions, this

state machine would start to look rather crowded. If we eventually wanted

to add even more states to the state machine, things would quickly become

difficult to manage, visually confusing, and slow down development overall.

Fortunately, Unity provides us with a solution—enter: Blend Trees.

�Blend Trees
Game programming frequently requires blending between two animations,

such as when a character is walking, then gradually begins to run. Blend

Trees can be used to smoothly blend multiple animations into one smooth

animation. Although we won’t be blending multiple animations in our

game, Blend Trees also have a secondary use that we’ll be using.

When used as part of an Animation State Machine, Blend Trees can be

used to transition smoothly from one animation state to another. The Blend

Tree can bundle together various animations into a single node, making your

game architecture cleaner and more manageable. A Blend Tree is controlled

by variables that are configured in the Unity Editor and set in code.

Figure 8-17.  The Player Animation State Machine

Chapter 8 Artificial Intelligence and Slingshots

328

We’re going to create two Blend Trees. As we’re already familiar with

the walking animation state machine, the first Blend Tree we create will

be used to re-create the walking states. We’ll also update the Player’s

MovementController code to use this Blend Tree. Rebuilding something

familiar will be a good way to get comfortable with Blend Trees.

Once we have the walking Blend Tree working, we’ll add the four firing

states as their own Firing Blend Tree and update the Weapon class to use

the Firing Blend Tree.

�Clean Up the Animator
It’s time to say goodbye to the old way of managing animation state.

With the PlayerObject selected, open the Animator view. Delete the four

original player walking states from the Animation State Machine. Remove

the transition between Any State and Idle State, as we won’t need that

anymore either.

When you’re done, the Animator view should look like Figure 8-18.

Figure 8-18.  The Animator view with the old player walking states
removed

Chapter 8 Artificial Intelligence and Slingshots

329

We’re going to create a Blend Tree node that will act as a sort of

container for the various walking animation states within it. The Blend

Tree node containing all four walking animations will appear as a single

node in the Animator view. As you can imagine, this approach makes it

much easier for the developer to visualize and manage the states as their

number grows.

�Build the Walking Blend Tree

	 1.	 Right-click in the Animator window and select:

Create State ➤ from New Blend Tree.

	 2.	 Select the created Blend Node and change its name

in the Inspector to: “Walk Tree”.

	 3.	 Double-click the Walk Tree node to view the Blend

Tree Graph.

The Blend Tree should look like Figure 8-19.

	 4.	 Select the Blend Tree node and change the Blend
Type in the Inspector to: 2D Simple Diectional.

We’ll talk more about Blend Types after we finish

configuring the Blend Tree.

Figure 8-19.  An empty Blend Tree Graph

Chapter 8 Artificial Intelligence and Slingshots

330

	 5.	 Select the Blend Tree node, right-click, and select:

Add Motion. A Motion holds a reference to an

animation clip and corresponding input parameters.

When we use a Blend Tree for Transitions, the input

parameters are used to determine what motion

should be played.

	 6.	 In the Inspector, click the dot (Figure 8-20) next to

the Motion we just added to open the Select Motion

selector.

	 7.	 With the Select Motion selector open, select the

player-walk-east animation clip. The Motion should

now look like Figure 8-21.

Figure 8-20.  Click the dot to open the Select Motion selector

Chapter 8 Artificial Intelligence and Slingshots

331

	 8.	 Add three more motions and add the following

animation clips: player-walk-south, player-walk-

west, and player-walk-north, as seen in Figure 8-22.

The Animator window should look like Figure 8-23 when all four

motions have been added. Each motion appears as a child node of the

Blend Tree node.

Figure 8-21.  Use the player-walk-east animation clip in the Motion

Figure 8-22.  Four Motions with four animation clips in the Blend
Tree

Chapter 8 Artificial Intelligence and Slingshots

332

�Layers, All the Way Down
What we’ve done here is wrap up all four animation states into a

container—a Blend Tree node. This Blend Tree node sits inside a sublayer

of the Base Layer. If you click the Base Layer button in the top-left of the

Animator view, as seen in Figure 8-24, the Animator view will return to the

“Base Layer” and show a single Blend Tree node. When working with the

Animator, you can nest layers inside layers inside layers, if it serves your

architecture.

Figure 8-23.  Blend Tree with four Motion nodes, containing
animation clips

Figure 8-24.  Click the Base Layer button to go back to the base
Animator view

Chapter 8 Artificial Intelligence and Slingshots

333

As we can see in Figure 8-25, this simplified approach to managing

state will keep your game architecture clean and manageable in the future.

The Walk Blend Tree is a single node in the Animator.

�A Note About Blend Types
Blend Types are used to describe how the Blend Tree should blend motions.

As you know, we’re not actually blending motions so the term Blend Type is

a bit misleading. We’re transitioning between them, so we’ve configured the

Blend Tree to use the 2D Simple Directional Blend. This blend type takes

two parameters, and works best with animations that represent different

directions, such as walk north, walk south, and so forth. Because we’re

using the Blend Tree to transition between walking north, south, east, and

west, the 2D Simple Directional Blend is perfect for our use case.

�Animation Parameters
We’ve worked with Animation Parameters in the past, when we first

configured the Animation State Machine for the Player and created the

“AnimationState” parameter.

Figure 8-25.  The Base Layer in the Animator with a single Blend Tree
(Walk Tree) node

Chapter 8 Artificial Intelligence and Slingshots

334

Delete the AnimationState parameter on the left of the Animator

window. We’ve already deleted the animation transitions that depend on

it. We’re going to replace this parameter and the associated states with a

Blend Tree and its own parameters. These parameters will be used in the

code we’ll write in the Weapon class.

Create these three Animation Parameters. Capitalization matters,

because we’ll be referring to these in code:

•	 isWalking of type: Bool

•	 xDir of type: Float

•	 yDir of type: Float

The parameter: Blend was created when the Animator was created.

Feel free to delete that parameter, as we won’t be needing it.

The Animation Parameters section of the Animator should look like

Figure 8-26.

Tip  When creating Animation Parameters, a common source of
error is to create them with the wrong data type.

Figure 8-26.  New animation parameters for the walking blend tree

Chapter 8 Artificial Intelligence and Slingshots

335

�Use the Parameters
With the Blend Tree selected, select the xDir and yDir parameters from the

dropdown in the Inspector as seen in Figure 8-27. We’re about to use these

two parameters in the next step.

With the Blend Tree node selected, look at the Visualization Window

in the Inspector, underneath the Parameters. The Visualization Window

will automatically appear once you’ve added more than one motion to the

Blend Tree.

Imagine a Cartesian coordinates plane with (0, 0) running through the

center of the window (Figure 8-28). The four coordinates (1,0), (0, -1), (-1,

0), and (0, 1) can be mapped accordingly to the ends of the dotted lines

in the following. The purpose of the Visualization Window is to help the

developer visualize the configuration.

Figure 8-27.  Choose the parameters: xDir and yDir from the drop-
down menu

Chapter 8 Artificial Intelligence and Slingshots

336

In Figure 8-28, there are four blue dots clustered together at 0, 0 that

you can’t see because they’re covered by the red center dot. Each one of

those dots represents one of the four motions that we added earlier.

Set the Pos X and Pos Y for the first motion so that the blue dot

representing the player-walk-east motion is located at Position: (1, 0), as

seen in Figure 8-29.

Figure 8-28.  Imagine a Cartesian coordinate plane

Chapter 8 Artificial Intelligence and Slingshots

337

We also want to set the X and Y positions for the other three motions

accordingly. For example, the player-walk-south motion positions should

be set to (0, -1). Set the positions for all four motions as seen in Figure 8-29.

�Ok, but Why   ?
So we’ve set up the Blend Tree to use our animation parameters, and taken

care to set the Pos X and Pos Y for each motion, but what’s it all for?

As we mentioned at the beginning of this section, we can manage 2D

state transitions in a Blend Tree by setting the variables on the animator

Figure 8-29.  Set the positions X and Y for all four motions

Chapter 8 Artificial Intelligence and Slingshots

338

component. This is just like when we set the variables on the Animation

State Machine in Chapter 3.

In other words, to use the Blend Tree, we’ll write code similar to the

following. Don’t write this code in any class at the moment—it’s just for

illustrative purposes.

// 1

movement.x = Input.GetAxisRaw("Horizontal");

movement.y = Input.GetAxisRaw("Vertical");

// 2

animator.SetBool("isWalking", true);

// 3

animator.SetFloat("xDir", movement.x);

animator.SetFloat("yDir", movement.y);

// 1

Grab the input values from the user. The variable: movement is of type:

Vector2.

// 2

Set the Animation Parameter: isWalking, to signify the Player is

walking. This will transition to the Walking Blend Tree.

// 3

Set the Animation Parameters used by the Blend Tree to transition into

a specific Motion. These are of type: Float because the movement Vector2

contains Floats.

When the user presses to the right, the input values will be (0, 1). We

set this on the Animator, and the Blend Tree plays the player-walk-right

animation clip.

Chapter 8 Artificial Intelligence and Slingshots

339

�Loop Time
Select each one of the four child nodes of the blend tree and if it is not

checked by default, check the Loop Time property as seen in Figure 8-30.

This property tells the Animator to continuously loop the animation clip

when in this state.

If we didn’t check this box, the animation would play through once

and then stop.

�Create the Transitions
Last but not least, we need to create the transitions between the Idle state

and the new Walking Blend Tree.

Right-click on the Idle State node in the Animator and select: Make

Transition. Connect the transition to the Walking Blend Tree. Select the

transition and use the following settings:

Has Exit Time: unchecked

Fixed Duration: unchecked

Transition Duration: 0

Figure 8-30.  Check the Loop Time property

Chapter 8 Artificial Intelligence and Slingshots

340

Transition Offset: 0

Interruption Source: None

Create a Condition using the isWalking variable we created. Set it to: true.

Create another transition between the Walking Blend Tree and the

Idle state. Select the transition and use the same settings as earlier, except

when you create the isWalking condition, set it to: false.

�Updating the Movement Controller
It’s time to put the Walking Blend Tree to use. Open the

MovementController class.

Remove all of the following code from MovementController, as we

won’t need it anymore:

string animationState = "AnimationState";

And also remove the entire CharStates enum:

enum CharStates

{

 walkEast = 1,

 walkSouth = 2,

 // etc

}

Replace the existing UpdateState() method with:

void UpdateState()

{

// 1

 �if (Mathf.Approximately(movement.x, 0) && Mathf.

Approximately(movement.y, 0))

 {

Chapter 8 Artificial Intelligence and Slingshots

341

// 2

 animator.SetBool("isWalking", false);

 }

 else

 {

// 3

 animator.SetBool("isWalking", true);

 }

// 4

 animator.SetFloat("xDir", movement.x);

 animator.SetFloat("yDir", movement.y);

}

// 1

Check if the movement vector is approximately equal to 0, indicating

the player is standing still.

// 2

Because the player is standing still, set isWalking to false.

// 3

Otherwise movement.x, movement.y, or both, are non-zero numbers,

which means the player is moving.

// 4

Update the animator with the new movement values.

Save this script and switch back to the Unity Editor. Press play and walk

the Player around the scene. You’ve gotten rid of the old animation states

and rebuilt the walking animations using a Blend Tree.

Chapter 8 Artificial Intelligence and Slingshots

342

�Import the Fight Sprites
The first step is to import the sprites used for the Player fight animations.

Drag the spritesheet called, “PlayerFight32x32.png” into the Sprites ➤

Player folder.

Select the Player Fight spritesheet and use the following import

settings in the Inspector:

Texture Type: Sprite (2D and UI)

Sprite Mode: Multiple

Pixels Per Unit: 32

Filter Mode: Point (no filter)

Be sure the Default button is selected at the bottom

and set Compression to: None

Press the Apply button, then open the Sprite Editor.

From the Slice menu, select Grid By Cell Size and set the Pixel Size to 32.

Press Apply and close the Sprite Editor.

�Create Animation Clips
The next step is to create the animation clips. In previous chapters, we

created animation clips by selecting the sprites for each frame of the

animation, then dragging them onto the GameObject. Unity would

automatically create an animation clip and add an animation controller if

one didn’t already exist.

We’re going to create animation clips a little differently this time

because we’ll be creating a Blend Tree to manage the animations.

Go to the Sprites ➤ Player folder and expand the spritesheet that we

just sliced. Select the first four frames, as seen in Figure 8-31. These sprites

correspond with the Player pulling back the slingshot and firing it.

Chapter 8 Artificial Intelligence and Slingshots

343

Right-click and select Create ➤ Animation as seen in Figure 8-32.

Rename the created animation: “player-fire-east”. Select the next four

sprites and follow the same steps. Name the resulting animation: “player-

fire-west”.

Figure 8-31.  Select the first four player fight sprites in the Project view

Figure 8-32.  Creating an animation manually

Chapter 8 Artificial Intelligence and Slingshots

344

The firing north animation only has two frames: “PlayerFight32x32_8”

and “PlayerFight32x32_9”. Use those frames to create “player-fire-north”.

The firing south animation has three frames: “PlayerFight32x32_10”,

“PlayerFight32x32_11”, and “PlayerFight32x32_12”. Use those frames to

create “player-fire-south”.

Move all the animation clips we just created to the Animations ➤

Animations folder.

�Build the Fighting Blend Tree

	 1.	 Right-click in the Animator window and select:

Create State ➤ From New Blend Tree.

	 2.	 Select the created Blend Node and change its name

in the Inspector to: “Fire Tree”.

	 3.	 Double-click Fire Tree to view the Blend Tree Graph

on its own layer.

	 4.	 Select the Blend Tree node and change the Blend

Type in the Inspector to: 2D Simple Directional.

	 5.	 Select the Blend Tree node, right-click, and select:

Add Motion.

	 6.	 In the Inspector, click the dot next to the Motion we

just added to open the Select Motion selector.

	 7.	 Select the player-fire-east animation clip.

	 8.	 Add 3 more motions and add the animation clips for

player-fire-south, player-fire-west, and player-fire-

north.

Chapter 8 Artificial Intelligence and Slingshots

345

	 9.	 Create the following Animation Parameters:

isFiring (type: Bool), fireXDir (type: Float),

fireYDir (type: Float), and delete the Blend

parameter.

	 10.	 Configure the Blend Tree to use the Animation

Parameters in the drop-down box, as seen in

Figure 8-33.

	 11.	 Set Pos X and Pos Y for each Motion as seen in

Figure 8-34.

	 12.	 Do not check the loop time box in the Blend Tree

child nodes. We want to play a firing animation only

once.

Figure 8-33.  Configure the Animation Parameters

Figure 8-34.  Set Pos X and Pos Y for each Motion

Chapter 8 Artificial Intelligence and Slingshots

346

	 13.	 Create the transition between the Idle state and the

new Fire Blend Tree. Select the transition and use

the following settings:

–– Has Exit Time: unchecked

–– Fixed Duration: unchecked

–– Transition Duration: 0

–– Transition Offset: 0

–– Interruption Source: None

Create a Condition in the transition using the isFiring variable we

created. Set it to: true.

	 14.	 Create another transition between the Fire Blend

Tree and the Idle state. Select the transition and

use the same settings as earlier, except for two

differences:

–– When you create the isFiring condition, set it to: false.

–– Check the Exit Time property and set the value for Exit

Time to: 1.

�Exit Time
The Exit Time property on a transition is used to tell the animator after

what percentage of the animation has played should the transition take

effect. By setting the Exit Time property on the fire ➤ idle transition to:

1, we are saying we want 100% of the firing animation to play before

transitioning.

Chapter 8 Artificial Intelligence and Slingshots

347

�Update the Weapon Class
The next step is to update the Weapon class to take advantage of the Fire

Blend Tree we just built.

Add the RequireComponent attribute to the top of the Weapon class:

[RequireComponent(typeof(Animator))]

public class Weapon : MonoBehaviour

The code we’re about to add requires an Animator component, so

make sure there’s always one available.

�Add the Variables
We’ll need a few additional variables to animate the player. Add the

following variables to the top of the Weapon class.

// 1

bool isFiring;

// 2

[HideInInspector]

public Animator animator;

// 3

Camera localCamera;

// 4

float positiveSlope;

float negativeSlope;

Chapter 8 Artificial Intelligence and Slingshots

348

// 5

enum Quadrant

{

 East,

 South,

 West,

 North

}

// 1

A bool to describe if the Player currently firing the slingshot.

// 2

Use the [HideInInspector] attribute along with the public accessor

so the animator can be accessed from outside this class but won’t show

up in the Inspector. There’s no reason to show animator in the Inspector

because we plan to programmatically retrieve a reference to the Animator

component.

// 3

Use localCamera to store a reference to the Camera so we don’t have to

retrieve it each time we need it.

// 4

Store the slope of the two lines used in the quadrant calculation we’ll

do later in this chapter.

// 5

An enum used to describe the direction the Player is firing in.

Chapter 8 Artificial Intelligence and Slingshots

349

�Start()
Add the Start() method, which we’ll use to initialize and set variables that

we’ll need throughout the Weapon class.

void Start()

{

// 1

 animator = GetComponent<Animator>();

// 2

 isFiring = false;

// 3

 localCamera = Camera.main;

}

// 1

Optimize by grabbing a reference to the Animator component so we

don’t have to retrieve it every time we need it.

// 2

Set the isFiring variable to false to start with.

// 3

Grab and save a reference to the local Camera so we don’t have to

retrieve it each time it’s needed.

Chapter 8 Artificial Intelligence and Slingshots

350

�Update Update()
Make two small changes to the Update() method as seen in the following:

void Update()

{

 if (Input.GetMouseButtonDown(0))

 {

// 1

 isFiring = true;

 FireAmmo();

 }

// 2

 UpdateState();

}

// 1

When the left mouse button has been pressed and lifted, set the

isFiring variable to true. This variable will be checked inside the

UpdateState() method.

// 2

The UpdateState() method will update the animation state every

frame, regardless of whether the user has pressed the mouse button or not.

We’ll write this method shortly.

�Determining Direction
To determine which animation clip to play, we need to determine the

direction that the user clicked relative to the Player. It wouldn’t look very

good if the user clicked west of the player, only to play the animation firing

the slingshot east.

Chapter 8 Artificial Intelligence and Slingshots

351

To determine the direction the user clicked in, we will divide the

screen into four quadrants: North, South, East, and West. We should think

of all user clicks as being relative to the player, so these four quadrants are

centered on the player as seen in Figure 8-35.

We can check which quadrant the user clicked in to determine the

direction the player fires the slingshot, and the proper animation clip to play.

Dividing the screen into quadrants based on the player location

makes sense, but how do we actually programmatically determine which

quadrant the user clicked in?

Think back to the slope-intercept form for a line from your high-school

math days:

y = mx + b,

where:

m = slope (can be a positive slope or a negative slope)

x and y are the coordinates of a point

b = is the y-intercept, or the point where the line crosses the y-axis.

Figure 8-35.  Four quadrants based on the current player location

Chapter 8 Artificial Intelligence and Slingshots

352

This form allows us to find any point along a line. As we saw in

Figure 8-35, we’ve created two lines by dividing the screen into quadrants.

If we think about the user clicking the mouse on any point in the screen,

we can imagine another set of two lines emerging from that clicked point.

Here’s the trick: we can determine what quadrant the user clicked in

based on whether or not the positive sloped line from the mouse-click is

above or below the player’s positive sloped line. Likewise, we check if the

negative sloped line from the mouse-click is above or below the player's

negative sloped line.

Take a look at Figure 8-36 for help in visualizing this. Remember that

lines slanting upward have a positive slope, and lines slanting downward

have a negative slope.

Two lines with equivalent slopes mean that the lines run parallel to

each other.

Figure 8-36.  Clicking in the west quadrant

Chapter 8 Artificial Intelligence and Slingshots

353

To check if one line is above another line with an equivalent slope, we

simply compare their y-intercepts. As seen in Figure 8-36, if the y-intercept

of the mouse-click line is below the negative player line but above the

positive player line, then the user clicked in the west quadrant.

There’s a few things you should internalize about this approach. If the

player were standing in the exact center of the screen, each line would

go from corner to corner. As the player moves around the scene, the lines

move with her. The visible size of the quadrants change, but the slopes

of the two lines dividing the screen remain the same. The slope of each

line remains constant because the screen size never changes—only her

location changes.

When we write the code, we’ll rearrange the slope-intercept form

y = mx + b to make it easier to compare the y-intercepts. Because we’re

comparing y-intercepts, we need to solve for b. So the rearranged form is:

b = y – mx.

Let’s continue writing the code.

�The Slope Method
Given two points in a line, the standard equation for calculating the slope

of a line is: (y2 – y1) / (x2 – x1) = m, where m = slope.

Written out, that’s: the second y-coordinate minus the first y-

coordinate, divided by the second x-coordinate minus the first x-

coordinate.

Add the following method to the Weapon class to calculate the slope of

a line:

float GetSlope(Vector2 pointOne, Vector2 pointTwo)

{

 return (pointTwo.y - pointOne.y) / (pointTwo.x - pointOne.x);

}

Chapter 8 Artificial Intelligence and Slingshots

354

�Calculate the Slopes
Let’s put the GetSlope() method to use. Add the following to the Start()

method.

// 1

Vector2 lowerLeft = localCamera.ScreenToWorldPoint(new

Vector2(0, 0));

Vector2 upperRight = localCamera.ScreenToWorldPoint(new

Vector2(Screen.width, Screen.height));

Vector2 upperLeft = localCamera.ScreenToWorldPoint(new

Vector2(0, Screen.height));

Vector2 lowerRight = localCamera.ScreenToWorldPoint(new

Vector2(Screen.width, 0));

// 2

positiveSlope = GetSlope(lowerLeft, upperRight);

negativeSlope = GetSlope(upperLeft, lowerRight);

// 1

Create four Vectors to represent the four corners of the Screen. Unity

Screen Coordinates (which are different from the GUI coordinates we used

to create the Inventory and Health Bars) start with (0,0) in the lower-left.

We also convert each point from Screen to World Coordinates before

assigning it. We do this because the slopes we’re about to calculate will be

used in relation to the Player. The Player moves around in World Space,

which uses World Coordinates. As we described earlier in this chapter, the

World Space is the actual game world, and has no limitations in terms of size.

// 2

Use the GetSlope() method to get the slope of each line. One line goes

from the lower-left to the upper-right, and the other line goes from the

upper-left to the lower-right. Because the screen size will remain the same,

Chapter 8 Artificial Intelligence and Slingshots

355

so too will the slope. We calculate the slope and save the result to a variable

so we don’t have to recalculate it each time we need it.

�Comparing y-Intercepts
The HigherThanPositiveSlopeLine() method is where we calculate if the

mouse-click is higher than the positive-sloped line running through the

Player. Add the following to the Weapon class.

bool HigherThanPositiveSlopeLine(Vector2 inputPosition)

{

// 1

 Vector2 playerPosition = gameObject.transform.position;

// 2

 �Vector2 mousePosition = localCamera.ScreenToWorldPoint(input

Position);

// 3

 �float yIntercept = playerPosition.y - (positiveSlope *

playerPosition.x);

// 4

 �float inputIntercept = mousePosition.y - (positiveSlope *

mousePosition.x);

// 5

 return inputIntercept > yIntercept;

}

// 1

Save a reference to the current transform.position for clarity. This

script is attached to the Player object, so this will be the Players position.

Chapter 8 Artificial Intelligence and Slingshots

356

// 2

Convert the inputPosition, which is the mouse position, to World

Space and save a reference.

// 3

Rearrange y = mx + b a bit to solve for b. This will make it easy to

compare the y-intercept of each line. The form on this line is: b = y – mx.

// 4

Using the rearranged form: b = y – mx, find the y-intercept for the

positive sloped line created by the inputPosition (the mouse).

// 5

Compare the y-intercept of the mouse-click to the y-intercept of the

line running through the player and return if the mouse-click was higher.

�HigherThanNegativeSlopeLine()
The HigherThanNegativeSlopeLine() method is identical to

HigherThanPositiveSlopeLine() except we compare the y-intercept of

the mouse-click to the negative-sloped line running through the Player.

Add the following to the Weapon class.

bool HigherThanNegativeSlopeLine(Vector2 inputPosition)

{

 �Vector2 playerPosition = gameObject.transform.position;

 �Vector2 mousePosition = localCamera.ScreenToWorldPoint(inpu

tPosition);

 �float yIntercept = playerPosition.y - (negativeSlope *

playerPosition.x);

Chapter 8 Artificial Intelligence and Slingshots

357

 �float inputIntercept = mousePosition.y - (negativeSlope *

mousePosition.x);

 return inputIntercept > yIntercept;

}

We’ll forgo the explanation of the HigherThanNegativeSlopeLine()

method because it’s nearly identical to the previous method.

�The GetQuadrant() method
The GetQuadrant() method is responsible for determining which

of the four quadrants the user has tapped in and returning a

Quadrant. It utilizes the HigherThanPositiveSlopeLine() and

HigherThanNegativeSlopeLine() methods that we wrote earlier.

// 1

Quadrant GetQuadrant()

{

// 2

 Vector2 mousePosition = Input.mousePosition;

 Vector2 playerPosition = transform.position;

// 3

 �bool higherThanPositiveSlopeLine = HigherThanPositiveSlopeL

ine(Input.mousePosition);

 �bool higherThanNegativeSlopeLine = HigherThanNegativeSlopeL

ine(Input.mousePosition);

// 4

 �if (!higherThanPositiveSlopeLine &&

higherThanNegativeSlopeLine)

 {

Chapter 8 Artificial Intelligence and Slingshots

358

// 5

 return Quadrant.East;

 }

 �else if (!higherThanPositiveSlopeLine &&

!higherThanNegativeSlopeLine)

 {

 return Quadrant.South;

 }

 �else if (higherThanPositiveSlopeLine &&

!higherThanNegativeSlopeLine)

 {

 return Quadrant.West;

 }

 else

 {

 return Quadrant.North;

 }

}

// 1

Return a Quadrant describing where the user clicked.

// 2

Grab references to where the user clicked and the current player

position.

// 3

Check if the user clicked above (higher than) the positive sloped and

negative sloped lines.

Chapter 8 Artificial Intelligence and Slingshots

359

 // 4

If the user’s click is not higher than the positive sloped line, but is

higher than the negative sloped line, the user clicked in the east quadrant.

If this doesn’t quite make sense yet, refer back to Figure 8-36.

// 5

Return the Quadrant.East enum.

The rest of the if-statements check the remaining three quadrants and

return their respective Quadrant values.

�The UpdateState() Method
The UpdateState() method checks if the Player is firing, checks which

quadrant the user clicked in, and updates the Animator so the Blend Tree

can show the correct animation clip.

void UpdateState()

{

// 1

 if (isFiring)

 {

// 2

 Vector2 quadrantVector;

// 3

 Quadrant quadEnum = GetQuadrant();

// 4

 switch (quadEnum)

 {

Chapter 8 Artificial Intelligence and Slingshots

360

// 5

 case Quadrant.East:

 quadrantVector = new Vector2(1.0f, 0.0f);

 break;

 case Quadrant.South:

 quadrantVector = new Vector2(0.0f, -1.0f);

 break;

 case Quadrant.West:

 quadrantVector = new Vector2(-1.0f, 1.0f);

 break;

 case Quadrant.North:

 quadrantVector = new Vector2(0.0f, 1.0f);

 break;

 default:

 quadrantVector = new Vector2(0.0f, 0.0f);

 break;

 }

// 6

 animator.SetBool("isFiring", true);

// 7

 animator.SetFloat("fireXDir", quadrantVector.x);

 animator.SetFloat("fireYDir", quadrantVector.y);

// 8

 isFiring = false;

 }

 else

 {

Chapter 8 Artificial Intelligence and Slingshots

361

// 9

 animator.SetBool("isFiring", false);

 }

}

// 1

Inside the Update() method, we check if the user clicked the mouse

button. If so, the isFiring variable is set equal to true.

// 2

Create a Vector2 to save the values that we’ll pass to the Blend Tree.

// 3

Call GetQuadrant() to determine which quadrant the user clicked in

and assign the result to quadEnum.

// 4

Switch on the quadrant (quadEnum).

// 5

If the quadEnum is East, assign the quadrantVector the values (1, 0) in a

new Vector2.

// 6

Set the isFiring parameter inside the animator to true, so it

transitions to the Fire Blend Tree.

// 7

Set the fireXDir and fireYDir variables in the animator, to the

corresponding value for the quadrant the user clicked in. These variables

will be picked up by the Fire Blend Tree.

Chapter 8 Artificial Intelligence and Slingshots

362

// 8

Set isFiring back to false. The animation will play all the way through

before stopping, because we set Exit Time in the transition to 1.

// 9

If isFiring is false, set the isFiring parameter inside the animator to

false as well.

Save the Weapon script and return to the Unity Editor.

Press the Play button and click the mouse in various places around

the scene to fire the slingshot. Notice how the Player animation shows her

firing the slingshot in a specific direction, then returning to the idle state.

�Flicker When Damaged
When a character is damaged in a video game, it’s helpful to have a visual

effect signifying that they’ve been damaged. To add a bit of polish to our

game, let’s create an effect to tint any character red for just a moment,

perhaps one-tenth of a second, to show that they’ve been injured. This

flickering effect will take place over several frames so it makes sense to

implement as a Coroutine.

Open the Character class and add the following code to the bottom:

public virtual IEnumerator FlickerCharacter()

{

// 1

 GetComponent<SpriteRenderer>().color = Color.red;

// 2

 yield return new WaitForSeconds(0.1f);

Chapter 8 Artificial Intelligence and Slingshots

363

// 3

 GetComponent<SpriteRenderer>().color = Color.white;

}

// 1

Assigning Color.red to the SpriteRenderer component will tint the

sprite red.

// 2

Yield execution for 0.1 seconds.

// 3

By default, the SpriteRenderer uses a tint color of white. Change the

SpriteRenderer tint back to the default color.

�Update the Player and Enemy Classes
Open the Player and Enemy class and update the DamageCharacter()

method in each class to look like the following. When updating

DamageCharacter(), be sure to add the StartCoroutine call to the top of

the while() loop.

public override IEnumerator DamageCharacter(int damage, float

interval)

{

 while (true)

 {

Chapter 8 Artificial Intelligence and Slingshots

364

// 1

 StartCoroutine(FlickerCharacter());

 //... Pre-existing code

// 1

Start the FlickerCharacter() Coroutine to tint momentarily tint the

Character red.

That’s it! Press Play and fire the slingshot at an Enemy. It should flash

red momentarily when hit. If an Enemy manages to catch up to the Player

and damage her, she’ll flicker red as well.

�Building for Platforms
In this section, we’re going to learn how to compile your game to run on

several platforms outside of the Unity Editor.

Go to File ➤ Build Settings in the Menu Bar. You should be presented

with a screen that looks like Figure 8-37.

Chapter 8 Artificial Intelligence and Slingshots

365

The Build Settings screen allows you to choose a target Platform, adjust

a few settings, choose which Scenes to include in the build, and then

create the build. If your game consists of multiple scenes, click the Add

Open Scenes button to add them.

We’ll select Mac OS X but if you’re working on a PC, that should

already be selected.

Press the Build button. Choose a name for the binary and a location to

save it, then press the Save button. Unity will create the build and let you

know when it’s successful.

Figure 8-37.  The Build Settings screen

Chapter 8 Artificial Intelligence and Slingshots

366

To play your game, go to the location you saved it in and double-click

the icon. When presented with the screen shown in Figure 8-38, be sure

you select the correct resolution for the computer you’re using. If you use

the wrong resolution, your game may appear choppy.

Figure 8-38.  Select the resolution for your computer

Chapter 8 Artificial Intelligence and Slingshots

367

This screen also allows the user to select the graphics quality, which is

important if they have an older machine.

Press the Play! button to play your game!

�Exiting the Game
All good things must come to an end, and at some point, the user will want

to quit your game. In this section, we’ll learn how to build functionality

that allows the user to press the Escape key to exit your game.

This game-ending functionality will not work when playing the game

inside the Unity Editor—it’s only meant for when you’ve built your game to

run outside the editor.

Open the RPGGameManager class and add the following:

void Update()

{

 if (Input.GetKey("escape"))

 {

 Application.Quit();

 }

}

The Update() method will check with every frame to see if the user has

pressed the escape key. If so, quit the application.

�Summary
Whew—we’ve covered a lot in this chapter. You’ve used Coroutines to

build intelligent chasing behavior and in doing so, constructed the first

real challenge for the gamer. The player can die now and needs to be

able to defend herself, so we built a slingshot that fires ammunition at

the Enemies. The slingshot utilizes a widely used optimization technique

Chapter 8 Artificial Intelligence and Slingshots

368

called Object Pooling. We took advantage of some high-school level

trigonometry for the trajectory arc. We learned about Blend Trees and how

they can help us to better organize our game architecture and streamline

the state machine if we want to add additional animations in the future.

We also learned how simple it is to build our game for the PC or Mac and

run it outside of Unity.

You probably have some ideas about how to change around and

improve your game. The great thing is: you now have the skills to do so!

Experiment, break things, tinker with the scripts, read the documentation,

and examine other people’s code to learn from it. The only limitations to

what you can build is how much effort you’re willing to put into it.

�What’s Next
You may be wondering what’s next—how do you advance your game

development knowledge and build better games. A great place to start is by

engaging with the game developer community.

�Communities
No one is born an expert at anything. The key to becoming a better

developer is learning from more experienced developers. You never want

to be the best developer in the room. And if you are, make sure the other

developers are great as well so you can learn from them.

Meetup.com is a great place to find monthly game developer

gatherings. Meetup also has listings for the Official Unity User Group

Meetups. It’s possible that your city has a Unity Meetup and you didn’t

know about it. There are Official Unity Users Groups all over the world. If

there isn’t a local Unity Meetup in your city or town, consider starting one!

Chapter 8 Artificial Intelligence and Slingshots

369

Discord is a voice and text chat application designed specifically for

gamers. It’s also a great place to virtually meet developers as well. Discord

communities can answer questions as well as provide helpful interactions

with the community. Sometimes game developers will create their own

Discord server dedicated to their game, where they gather feedback, gather

bug reports, and distribute early builds.

Any discussion of community would be remiss without mentioning

Twitter. Twitter can be helpful for getting the word out and marketing your

game as well as connecting with other Unity developers.

Reddit maintains two active sub-reddits of use to game developers: /r/

unity2d and /r/gamedev. These sub-reddits can be a great place to post

demos of your work and gather feedback, as well as engage in discussion

with other passionate game developers. The /r/gamedev sub-reddit also

has its own Discord server.

�Learn More
Unity hosts a wide range of frequently updated educational content on

their site at: https://unity3d.com/learn/. The content ranges from

absolute beginner to advanced, so you should definitely check it out.

This website: https://80.lv, has great articles on a wide variety of

subjects that are of interest to game developers. Some articles are Unity-

specific while others are more generic techniques.

YouTube also can be helpful for learning new techniques, though the

quality of content can vary widely. Many talks from past Unity conferences

can be easily found on YouTube.

�Where to Find Help
Everyone at some point will run into a problem that no matter what, they

just can’t seem to solve. For that situation, there are several important

resources to know about.

Chapter 8 Artificial Intelligence and Slingshots

https://unity3d.com/learn/
https://80.lv

370

Unity Answers (https://answers.unity.com) is a helpful resource,

structured for questions and answers (Q&A) instead of extended

discussions. For example, a question might be titled: “Trouble debugging

this movement script.”

The Unity Forums (https://forum.unity.com) are active message-

boards frequented by Unity employees and other game developers. The

Forums are designed for discussions around topics rather than straight-up

Q&A interactions. You’ll find plenty of helpful “What are some techniques

for optimizing this” discussions, with more back and forth than you’d find

in Unity Answers.

Last but not least, https://gamedev.stackexchange.com is part of the

Stack Exchange network of Q&A websites. It’s not as busy as the Unity sites,

but absolutely worth your time if you run into an issue.

�Game Jams
Game Jams are hackathons for building video games. They usually

have a time constraint such as 48 hours, which is meant to put pressure

on participants to focus on only what is necessary in a game as well as

encourage creativity. Game jams need all types of participants: artists,

programmers, game designers, sound designers, and writers. Sometimes

game jams have a specific theme, which is usually kept secret ahead of time.

Game jams can be a fantastic way to meet local (or remote) game

developers, push yourself, expand your knowledge, and walk away

with (hopefully) a finished game. The Global Game Jam (https://

globalgamejam.org) is a yearly global game jam with various sites around

the world and hundreds of participants. Ludum Dare (https://ldjam.com)

is a weekend-long game jam that runs every four months. Both of these

game jams are great to participate in if you want to see and make some

amazing games. Another good place to find online game jams is itch.io/

jams.

Chapter 8 Artificial Intelligence and Slingshots

https://answers.unity.com
https://forum.unity.com
https://gamedev.stackexchange.com
https://globalgamejam.org
https://globalgamejam.org
https://ldjam.com

371

�News and Articles
Gamasutra.com is the standard bearer as far as game news, jobs, and

industry happenings. Another good site is indiegamesplus.com with news,

reviews, and interviews with indie game developers.

�Games and Assets
As we mentioned way back in Chapter 1, the Unity Asset Store contains

thousands of free and paid game assets, as well as scripts, textures, and

shaders. The common criticism that you should be aware of with regards

to the Asset Store is that games made strictly with assets from the store

tend to look “same-y.”

Itch.io is a widely known community for publishing indie games

as well as assets. You can upload games you’ve made, play other indie

games for free, or support other developers by purchasing their games.

Itch.io is also a great place to buy art or sound assets for your game.

Gamejolt.com is similar to itch.io, but focuses entirely on indie games,

and doesn’t have assets.

OpenGameArt.org has a tremendous amount of user-posted game art

that is available under a variety of licenses.

�Beyond!
If you’ve stuck with me this long, then you have the tenacity to read

through a several hundred page programming book. This tenacity will

serve you well in game programming, because although there are plenty

of examples and books out there teaching the fundamentals of game

programming, the really unique and fun games often involve elements for

which there is no tutorial. Building interesting and fun games can be very

Chapter 8 Artificial Intelligence and Slingshots

372

difficult, but there are few other creative ventures as rewarding. The most

important thing to remember about getting better at game programming

is to keep making games! Game development is just like any other

discipline—if you keep practicing, one day you’ll look back to where you

started and amaze yourself.

Chapter 8 Artificial Intelligence and Slingshots

373© Jared Halpern 2019
J. Halpern, Developing 2D Games with Unity, https://doi.org/10.1007/978-1-4842-3772-4

Index

A
AAA game development studios, 8
Ammo class

Ammo layer, configuration, 305
AmmoObject, 308
import assets, 304
layer collision matrix (see

Layer-based collision
detection)

script, build, 306–307
Sprite Renderer

component, 304–305
Animation

Can Transition to Self, 82
clips, creation, 342–344
components, 46, 47
conditions, 82
creation, 46
dragging sprites,

PlayerObjects, 45
Exit Time, 82, 346
Fixed Duration, 82
Has Exit Time, 82
parameter, 78, 288

AnimationState, 80
animator window, 79
CharStates, 86
condition, settings, 82

hard-coding, 86
inspector window, 88
MovementController.cs

script, 82–85
names and types,

displaying, 89
SetInteger() method, 87
transition, configuration, 81
trigger state changes, 82

SetInteger() method, 87
state objects, 75

player-idle, default, 76
transition, creation, 77–78
window organization, 76

transition duration, 82
Animation Controller, 46, 48–49
Animator State Machine

Any state, 50, 77
controller, 49
Entry state, 50
Layer Default State, 76
Make Transition, 77
speed, changing, 53
window, 49

Anisotropic filtering, 106
Anti-aliasing, 106
Arcing, 324–326
Awake() method, 312

https://doi.org/10.1007/978-1-4842-3772-4

374

B
Bethesda Game Studios, 8
Blend trees

animation
parameters, 333–334, 338

animator view, 328
base layer, 332–333
build, walking blend tree, 329
coding, 338
creation, 328
2D state transitions, 337
loop time property, 339
MovementController class

(see Movement Controller)
parameters, 335–337
player-walk-right

animation clip, 338
transitions, creation, 327, 339–340
types, 333
walking animation states, 329

Blend types, 333
Blizzard Entertainment, 8
Boolean stackable property, 160

C
C#, 10, 17, 66

abstract keyword, 145, 261, 270
base keyword, 269
casting, 88
comments, 67
const keyword, 219
enumerated constants, 86
internal access modifier, 258

List, data structure, 312
namespaces, 68
override keyword, 264, 270
using keyword, 68

Camera manager
character class design, 256
property, 254
RPGCameraManager

class, 251–253, 255
virtual keyword, 256

Canvas, 175
Canvas Scaler, 177
Pixel Perfect, 207
Reference Pixels Per Unit, 177
Render Mode, 176
UI Scale Mode, 177, 207

Character class, 144–145, 271
ChooseNewEndpoint() method, 285

angles to radians, 287
directional vector, 287
enemy walk animation, 287
Gizmos, 299–302
Move() Coroutine, 291, 293–294
OnTriggerEnter2D(), 295–297
OnTriggerExit2D(), 297–298
Wander script, 294–295

Cinemachine
Adam Myhill, 110
installation

component, 113
unity 2017, 111–112
unity 2018, 112–113

virtual camera (see Virtual
camera)

Index

375

Circle collider 2D, 148–149
Colliders, 54–55, 106, 130–132,

151, 153–155
Communities, 368–369
Composite collider, 134–136
Console view, 21
Consumable script, 161
Consumables layer, 154
Coroutines

abstract methods, 262
DamageCharacter()

method, 263, 265–266
Enemy class, 263
explanation, 259
IEnumerator, 262, 280
KillCharacter(), 267
OnEnable() method, 267
ResetCharacter() declaration, 266
return type, 259
RunEveryFrame(), 260
StopCoroutine(), 273
storing references, 271
time intervals, 261
while() loop, 261
yield statement, 260

Cross-platform compilation, 2
Custom Editor, 22
Custom Fonts, 188

D
DamageCharacter()

method, 263, 265–266,
271, 363

Data-oriented design, 35
Dynamic rigidbody, 56

E
Edit Mode, 26–27
Enemy class

access modifier
keyword, 258

DamageCharacter(), 263
HitPoints, 257
player’s health bar, 257
refactoring code, 257–258

Entity-Component design, 33–35
EventSystem, 176
Exiting game, 367
Exit Time property, 346

F
FireAmmo()

method, 314, 321–323
First-person shooter (FPS), 8
FixedUpdate() method, 70, 73
Flickering effect, 362
float.Epsilon, 265
Framerate, 73

G
Game engines

Adrian Carmack, 8
advantages, 1
blast furnace, 5

Index

376

Chip Morningstar, 6
component-based

architecture, 2
cross-platform compilation, 2
description, 1
functionality, 3
historically, 6–7
impact, 8
John Carmack, 8
John Romero, 8
Maniac Mansion, 7
proprietary in-house game

engine, 9
Ron Gilbert, 6
SCUMM game engine, 7
Tom Hall, 8
types, 3
Wolfenstein 3D engine, 8

Game jams, 370
Game manager, 233
GameObject, 19–20, 24, 31

add script, 74
Animation Controller, 46, 48–49
entity-component

design, 33–35
hierarchy view, 32
icons for visibility, 244
“parent–child”

relationship, 19–20
Prefabs

folder, 63–64
instances, 65

transform component, 35

Game play code, 2
Game View, 19
GetAxisRaw() method, 73, 87
GetComponent()

method, 73, 165
GetMouseButtonDown()

method, 314
GetQuadrant() method, 357–359
GetSlope() method, 354
Git, 16
Gizmos, 245, 299–302

OnDrawGizmos(), 299

H
Handle position controls, 24–26
Health bar

anchor points, 179–184
building, 176

background image,
adjusting, 178

resizing, 179
UI Scale Mode,

setting, 177
canvas object, 175–176
character script, 193
component, 202–206
custom fonts, 188
Fill Amount, 201
hit-points, 189

HPText anchor object, 191
HPText object, 190
text component,

configuration, 190

Game engines (cont.)

Index

377

image masks, 184
BarMask, 185
components, 186
meter object, 187
source image, 185

player script
AdjustHitPoints()

method, 197
Start() method, 194

scriptable objects, 192–193
script, creation, 198–202
UI elements, 176

HealthBarObject, 176–178, 191,
202, 203

Health points, 143
HideInInspector

attribute, 200, 348
Hierarchy Window, 19–20
HigherThanNegativeSlopeLine()

method, 356
HigherThanPositiveSlopeLine()

method, 355
hitObject property, 171
Hit-points, 144–145
HitPoints script, 192

I
IEnumerator, see Coroutines
Image component, 210
Inspector window, 21

locking, 206
preview multiple

sprites, 167

Inventory script
AddItem() method, 223–226,

230–231
Player Script, updation, 228–229
properties, 218–219
slot Prefabs, 220–222
Start() method, 222

Inventory slot
configuration

background, 211
ItemImage, 210
QtyText, 213–214
tray object, 212–213

Prefabs, creation, 214–215
script, building, 215, 217

Is Trigger property, 123, 154, 278, 304

J
Jittering effect, 125

K
Kinematic rigidbody, 56

L
Layer-based collision

detection, 305
collider components, 151
configuration, 153
enemies layer, addition, 152
layer, creation, 151
usage, 151

Index

378

Layer collision matrix, 305
Layers

blocking, 59
collision detection, 58
drop-down menu, 58
sorting, 59, 148

addition, 61
characters, 62
orthographic

perspective, 60
window, 58

Lerp() method, 320
Linear Interpolation, 319
Lucasfilm Games, 7

M, N
Materials, Sprite2D, 129–130
Method stubs, 313
MonoBehaviour, 69, 144
MonoDevelop, 17
Move() Coroutine, 291, 293–294
Movement Controller, 82

animation clips,
creation, 342–344

CharStates enum, 340
direction determination,

350, 352–353
Exit Time property, 346
fighting blend tree,

build, 344–346
GetQuadrant()

method, 357–359, 361
GetSlope() method, 354

HigherThanNegative
SlopeLine() method, 356

HigherThanPositive
SlopeLine() method, 355

movement vector, 341
player fight spritesheet, 342
quadrants, player location, 351
slope method, 353
Start() method, 349
Update() method, 350
UpdateState()

method, 340, 359–362
variables to animate player, 347
y-intercept, 355–356
Weapon class, update, 347

Move() method, 293
MovePosition(), 294

O
Object pooling, 308–309

ammoPool, 312
description, 308
poolSize (see Weapon class)

OnCollisionEnter2D() method, 272
OnCollisionExit2D() method, 273
OnDestroy() method, 315
OnTriggerEnter2D()

method, 154, 295–297
OnTriggerExit2D()

method, 297–298
Orthographic cameras

custom resolution, 110
3D projects, 107

Index

379

screen resolution, 107, 109
size, 107

Orthographic size, 253

P, Q
Pixels Per Unit (PPU), 40, 127
Platforms, building, 364–366
Player animation state

machine, 327
Player class, 145–146

DamageCharacter()
methods, 271

enemy script,
configuration, 274–275

OnCollisionEnter2D()
method, 272–273

OnCollisionExit2D()
method, 273–274

ResetCharacter(), 269–270
updation, 267, 269

Play Mode, 26–27
Play, Pause, and Step

controls, 26
Prefabs, 64, 147, 227, 228

advantages, 63
circle collider 2D, set up,

148–149
coin, creation, 147–148
custom tag, set up, 149–150
import settings, 147
SpawnPoint GameObject, 242

Primitive collider, 54
Project Window, 20

R
Raycasting, 8
Refactoring, 257
Renderer component, 102
RequireComponent attribute, 347
ResetCharacter(), 269
Rigidbody 2D component, 140

dynamic, 56
Freeze Rotation, 134
kinematic, 56
static, 56

RPGCameraManager, see Camera
manager

RPGGameManager, see Singletons

S
Scene, 31, 38

Saving, 38
Scene view, 19
Screen Coordinates, 354
Screen Space, 320
Script

GetAxisRaw() method, 74
MonoBehaviour class, 70
MovementController, 66–67
movementSpeed, 72
UnityEngine namespace, 69

Scriptable objects
consumable item, 162–163
consumable script, build, 161
CreateAssetMenu, 158–159
creation, 157, 159, 160

Index

380

heart power-up,
creation, 165–166

heart prefab, 168
multiple sprites, 168
OnTriggerEnter2D()

method, 170–171
player’s hit-points, 172
prefab settings, 169

player collisions, 164–165
ScriptableObject class, 157
string property, 156
use cases, 156

Script Editor, 17
SCUMM game engine, 7
Separation of concerns, 33
Singletons

benefits, 234
creation, 235–236

SetupScene() method, 237
Start() method, 237

downsides, 234
GameManager prefab,

build, 238
rationale, 234
RPGGameManager class, 235
software design pattern, 234
unified access point, 234

Slingshots
animations, 326
defense, 302–303
Weapon class (see Weapon

class)
Sorting layers, 101, 102

SpawnAmmo() method,
314–316, 322

Spawn points
configuration, 245
InvokeRepeating() method, 240
MonoBehaviours, 238–240
playerSpawnPoint

property, 246
prefab, build, 241

Gizmos button, 245
icon, selection, 244
renaming, 242
scene view, 243

quaternion, 241
repeatInterval, 240
spawn enemies, 249–250
SpawnObject() method, 247
SpawnPlayer() method, 247

Sprite Editor tool
grid by cell size, 42
pixel size, 42
slice button, 42

Sprite Renderer, 37, 46, 102
Sprites, 35

add component, 37
import settings, 39

compression, 40
filter mode, 40
texture type, 40

physics shape, 138–140
Player GameObject, 38–40

pixel size, 42
properties, 41
resulting sliced sprites, 43

Scriptable objects (cont.)

Index

381

scene view, 44
Sprite Selector screen, 43

Stardew Valley, 36
Stabilization, 125–126
Start() method, 70, 349

T
Tags, 57
Text object

alignment, 213
Font Style, 213

Tilemap Collider 2D, 130–132
Tilemap Renderer, 93, 102, 103,

116, 119, 129, 130
Tilemaps, 106

Active Tilemap, 101
characters sorting layer, 105
component, 93
ground layer, 102
material properties, 129
multiple, 101
organization, 92
outdoor objects tile palette, 103
pixel-perfect location, 129
Sprite2D material, 130
Sprite Import Settings, 92

Tile palettes
creation, 93–95
Erase tool, 103
navigating, 96
organization, 93
painting, 96–101
rotate tiles, 103

Transform component, 35, 80
Transform tools, 23–24
TravelArc() method, 318, 323
Triggers and scripting, 154–155

U
UI Elements

Anchor Points, 179–184
BarMask, 184–187
Fill Amount, 187
Fill Method, 187, 188
Rect Transform, 176
render order, 188

Unity
configuration, 14–15, 17
cross-platform support, 10
documentation, 29
drag-and-drop, 10
Editor Extension

functionality, 11
game engine, 10–11
graphics APIs, 10
installation, 13–14
interface, 18
licenses, 10
preferences menu, 28
project structure, 28–29
script editor, 17

Unity Asset Store, 11, 19
Unity Meetup, see Communities
Unity Package Manager, 111, 112
Unity Physics Engine, 54, 56
Unity Screen Coordinates, 354

Index

382

UnityScript, 67
Unity Teams, 15
Unity Users Groups, 368
Update() method, 70, 73, 314,

350, 367
UpdateState() method, 359–362

V
Vector2, 73
Vector3

sqrMagnitude, 293
up keyword, 326

Virtual camera, 252
background color, 117
Body section, 118
Cinemachine Brain, 114
Cinemachine Confiner, 120–122

Bounding Shape 2D, 123
Composite Collider 2D, 122
dead zone, 117–118, 124
polygon collider

2D, 121–123
damping properties, 119
Game Window Guides, 117
post-processing pipeline, 128
target, 115
tracking point, 117

Visual Studio, 17
auto-completion, pop-up, 89
MovementController

script, 66–67

W, X, Y, Z
Wander algorithm

ChooseNewEndpoint()
method, 285

Circle Collider, 278
Move() Coroutine, 285
pursuit logic, 295
script, creation, 279–280
Start() method, 282–283
trigger and radius, 279
variables, 280–282
WanderRoutine()

Coroutine, 283, 285
Weapon class

ammoPool and
ammoPrefab, 311

Arc class, 317
Arc script, 324–325
Awake() method, 312
code, build, 310–311
FireAmmo() method, 321–323
Lerp() method, 320
linear interpolation, 319
screen points and

world points, 320
SpawnAmmo

method, 315–316
stubbing-out

methods, 314–315
Weapon script,

configuration, 323–324

Index

383

Window views
asset store, 19
console, 21
game view, 19
hierarchy view, 19
inspector window, 21

project, 20
scene view, 19

Wolfenstein 3D
engine, 8

World Space, 320, 354
World units, 107, 108

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	About This Book
	Chapter 1: Games and Game Engines
	Game Engines—What Are They?
	The First Way to Build a House
	The Second Way to Build a House
	About the First Approach
	About the Second Approach
	In conclusion …

	Game Engines Historically
	Game Engines Today
	The Unity Game Engine
	Summary

	Chapter 2: Introduction to Unity
	Install Unity
	Configure Unity
	On Disk
	In the Cloud

	The Script Editor: Visual Studio
	Navigating the Unity Interface
	Understanding the Different Window Views
	Configure and Customize the Layout
	The Transform Toolset
	Handle Position Controls
	Play, Pause, and Step Controls
	Unity Project Structure
	Unity Documentation
	Summary

	Chapter 3: Foundations
	Game Objects: Our Container Entities
	Entity-Component Design
	Components: Building Blocks
	Sprites
	Animations
	The Animator State Machine

	Colliders
	The Rigidbody Component
	Tags and Layers
	Tags
	Layers
	Sorting Layers

	Introducing: Prefabs
	Scripts: Logic for Components
	State and Animations
	More State Machines
	Animation Parameters

	Summary

	Chapter 4: World Building
	Tilemaps and Tile Palettes
	Creating Tile Palettes
	Painting with Tile Palettes
	The Tile Palette

	Working with Multiple Tilemaps
	Graphics Settings
	The Camera
	Using Cinemachine
	Installing Cinemachine in Unity 2017
	Installing Cinemachine in Unity 2018
	After Installing Cinemachine

	Virtual Cameras
	Cinemachine Confiner

	Stabilization
	Materials
	Colliders and Tilemaps
	Tilemap Collider 2D
	Composite Colliders
	Editing Physics Shapes

	Summary

	Chapter 5: Assembling the Nuts and Bolts
	Character Class
	Player Class
	Focus on Prefabs
	Create a Coin Prefab
	Set Up the Circle Collider 2D
	Set Up a Custom Tag

	Layer-Based Collision Detection
	Triggers and Scripting
	Scriptable Objects
	Creating a Scriptable Object
	Build the Consumable Script
	Assembling Our Item
	Player Collisions
	Creating a Heart Power-Up
	Summary

	Chapter 6: Health and Inventory
	Creating a Health Bar
	Canvas Objects
	UI Elements
	Building the Health Bar
	Anchors
	Adjusting the Anchor Points
	UI Image Masks
	Importing Custom Fonts
	Adding Hit-Points Text
	Scripting the Health Bar
	Scriptable Object: HitPoints
	Update the Character Script
	Update the Player Script
	Create the HealthBar Script
	Configure the Health Bar Component

	Inventory
	Import the Inventory Slot Image
	Configure the Inventory Slot
	Configure the ItemImage
	Configure the Background
	Configure the Tray
	Configure QtyText—the Quantity Text
	Create the Prefabs
	Build the Slot Script

	Create the Inventory Script
	Set-Up Properties
	Instantiate the Slot Prefabs
	Fill in the Start() Method
	The AddItem Method
	Update the Player Script
	One Last Thing …

	Summary

	Chapter 7: Characters, Coroutines, and Spawn Points
	Create a Game Manager
	Singletons
	Creating the Singleton
	Build a GameManager Prefab

	Spawn Points
	Build a Spawn Point Prefab
	Configure the Player Spawn Point
	Spawn the Player
	In Summary
	A Spawn Point for Enemies

	Camera Manager
	Using the Camera Manager
	Character Class Design
	The Virtual Keyword

	The Enemy Class
	Refactoring
	The Internal Access Modifier

	Coroutines
	Invoking Coroutines
	Pausing or “Yielding” Execution
	A Complete Coroutine
	Coroutines with Time Intervals
	The Abstract Keyword
	Implementing the Enemy Class
	The DamageCharacter() method
	ResetCharacter()
	Calling ResetCharacter() in OnEnable()
	KillCharacter()

	Updating the Player Class
	Refactoring Prefab Instantiation
	Review
	Using What We’ve Built
	OnCollisionEnter2D
	OnCollisionExit2D
	Configure the Enemy Script

	Summary

	Chapter 8: Artificial Intelligence and Slingshots
	The Wander Algorithm
	Getting Started
	Create the Wander Script
	Wander Variables
	Build Out Start()
	The Wander Coroutine

	Choosing a New Endpoint
	Angles to Radians to Vectors!
	Enemy Walk Animation
	The Move() Coroutine
	Configure Wander Script
	OnTriggerEnter2D()
	OnTriggerExit2D()
	Gizmos

	Self-Defense
	Classes Needed

	Ammo Class
	Import the Assets
	Add Components, Set Layers
	Update the Layer Collision Matrix
	Build the Ammo Script
	Before We Forget ... Make the AmmoObject Prefab

	Object Pooling
	Building the Weapon Class
	Stubbing-Out Methods
	The SpawnAmmo Method
	The Arc Class and Linear Interpolation
	Screen Points and World Points
	The FireAmmo Method
	Configure the Weapon Script
	Arcing

	Animating the Slingshot
	Animation and Blend Trees

	Blend Trees
	Clean Up the Animator
	Build the Walking Blend Tree
	Layers, All the Way Down
	A Note About Blend Types
	Animation Parameters
	Use the Parameters
	Ok, but Why ?
	Loop Time
	Create the Transitions

	Updating the Movement Controller
	Import the Fight Sprites
	Create Animation Clips
	Build the Fighting Blend Tree
	Exit Time
	Update the Weapon Class
	Add the Variables
	Start()
	Update Update()
	Determining Direction
	The Slope Method
	Calculate the Slopes
	Comparing y-Intercepts
	HigherThanNegativeSlopeLine()
	The GetQuadrant() method
	The UpdateState() Method

	Flicker When Damaged
	Update the Player and Enemy Classes

	Building for Platforms
	Exiting the Game
	Summary
	What’s Next
	Communities
	Learn More
	Where to Find Help
	Game Jams
	News and Articles
	Games and Assets

	Beyond!

	Index

