
Reactive
Streams in
Java

Concurrency with RxJava,
Reactor, and Akka Streams
—
Adam L. Davis

www.allitebooks.com

http://www.allitebooks.org

Reactive Streams
in Java

Concurrency with RxJava,
Reactor, and Akka Streams

Adam L. Davis

www.allitebooks.com

http://www.allitebooks.org

Reactive Streams in Java: Concurrency with RxJava, Reactor,
and Akka Streams

ISBN-13 (pbk): 978-1-4842-4175-2 ISBN-13 (electronic): 978-1-4842-4176-9
https://doi.org/10.1007/978-1-4842-4176-9

Library of Congress Control Number: 2018965180

Copyright © 2019 by Adam L. Davis

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
9781484241752. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Adam L. Davis
Oviedo, FL, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4176-9
http://www.allitebooks.org

iii

Table of Contents

Chapter 1: Introduction to Reactive Streams ���������������������������������������1

Java 9+ ���2

Flow ��2

Code for This Book ��3

Chapter 2: Existing Models of Concurrency in Java �����������������������������5

Prominent Models for Concurrency���5

Synchronize in Java ��6

Java Futures ���6

Drawbacks of the Future Interface ��7

CompletableFuture ��7

STM in Clojure ���10

Actors ��11

Groovy GPars ���12

Reactive Streams ��12

Chapter 3: Common Concepts ��15

Streams ���15

Hot and Cold ��15

Backpressure ��16

About the Author ���ix

About the Technical Reviewer ���xi

Preface ��xiii

www.allitebooks.com

http://www.allitebooks.org

iv

Filter ��16

Any/All ���17

Map ���18

FlatMap/ConcatMap ��18

Delay ���19

Buffer ��19

Window ���20

Take While ���21

Latest ��22

Debounce ��22

Throttle First ���23

Chapter 4: RxJava���25

Getting Started ��25

Flowable ��26

Parallel Computing ��27

Schedulers ��28

Publishers ���30

Backpressure ��34

Handling Errors ���36

Testing ���37

Chapter 5: Reactor ��41

Getting Started ��41

Flux ���42

Mono ���43

Creating a Flux or Mono ��44

Schedulers ��46

Pull Events ��49

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

v

Handling Backpressure ���50

Context ��51

Testing���53

StepVerifier ��53

TestPublisher ���55

Chapter 6: Akka Streams ��57

Getting Started ��58

ActorMaterializer ���60

Sinks, Flows, and Graphs ��61

Backpressure ��64

Interoperation with Reactive Streams API ��64

MergeHub, BroadcastHub, and PartitionHub ���65

Testing���66

Chapter 7: Android and RxJava ��71

Getting Started ��71

Android SDK ��74

Android Schedulers ���75

RxBinding ��76

RxLifecycle ��78

Putting It Together ���80

Using RxJava ���81

Testing���81

Chapter 8: Spring Boot and Reactor ���83

Getting Started ��83

Gradle Plugin ���84

Tasks ���86

Table of ConTenTsTable of ConTenTs

vi

SpringBootApplication ��87

Auto-Configuration ��88

Our Domain Model ��89

ReactiveMongoRepository ��90

Controllers ���92

View Templates ���94

RESTful API��95

Further Configuration ��98

Testing���102

Chapter 9: Akka HTTP and Akka Streams ���105

Getting Started ��106

Routes ���110

WebSockets ��112

Our Domain ���114

Our Repository ��115

ChatServer ��115

MergeHub and Publisher ���117

The WebSocket Flow ���118

The Web Client ��122

Testing���125

Chapter 10: Conclusions ���129

RxJava���129

Reactor ��130

Akka Streams ��130

Conclusion ��130

Table of ConTenTsTable of ConTenTs

vii

 Appendix A: Java 10 and 11 ��� 131

 Local Variable Types ��131

 Lambda Expression Local Variable Types ��133

 Index ���135

Table of ConTenTsTable of ConTenTs

ix

About the Author

Adam L. Davis (@adamldavis) makes software.

He’s spent many years developing in Java

(since Java 1.2) and has enjoyed using Spring

and Hibernate. Since 2006 he’s been using

Groovy and Grails in addition to Java to create

SaaS web applications that help track finances

for large institutions (among other things).

Adam has a master’s and a bachelor’s degree

in computer science from Georgia Tech.

For more, visit http://adamldavis.com.

http://adamldavis.com/

xi

About the Technical Reviewer

Manuel Jordan Elera is an autodidactic

developer and researcher who enjoys learning

new technologies for his own experiments and

creating new integrations. Manuel won the

Springy Award – Community Champion and

Spring Champion 2013. In his little free time,

he reads the Bible and composes music on his

guitar. Manuel is known as dr_pompeii. He

has tech reviewed numerous books for Apress,

including Pro Spring, 4th Edition (2014);

Practical Spring LDAP (2013); Pro JPA 2, Second Edition (2013); and Pro

Spring Security (2013). Read his 13 detailed tutorials about many Spring

technologies, contact him through his blog at www.manueljordanelera.

blogspot.com, and follow him on his Twitter account, @dr_pompeii.

http://www.manueljordanelera.blogspot.com/
http://www.manueljordanelera.blogspot.com/

xiii

Preface

 Who Is the Target Audience?
This book is intended for Java developers of beginning or intermediate

skill who wish to learn more about reactive programming. If you are still

reading this, then that probably means you!

 Why You Should Read This Book
You should read this book to learn the basic of reactive programming

with Reactive Streams and understand what they are good for, when

they should be used, and the principles behind them. This book uses

straightforward examples and introduces concepts gradually so as not to

overwhelm the reader. It will refer to existing models of concurrency from

time to time only as reference points and will not assume any advanced

knowledge on the topic.

After reading this book, you should have a firm understanding of

Reactive Streams, including three different implementations, and how to

integrate them into real software projects. You will understand when to use

Reactive Streams, how to write tests, and how to build a whole project.

xiv

 What Is Not in This Book
This book assumes you have a basic background of programming in Java,

so it will not cover the basics.

For more of an introduction on basic Java concepts, please check out

my other books: Modern Programming Made Easy, Modern Java, and

What’s New in Java 8.

PrefaCePrefaCe

1© Adam L. Davis 2019
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9_1

CHAPTER 1

Introduction to
Reactive Streams

Reactive Streams is an initiative to provide a standard for
asynchronous stream processing with non-blocking back
pressure. This encompasses efforts aimed at runtime envi-
ronments (JVM and JavaScript) as well as network
protocols.

—reactive-streams.org

At their core, Reactive Streams are an effort to provide highly responsive

applications able to handle many requests per second with the ability

to manage backpressure (the ability to skip or queue data that is coming

too fast to be processed). Asynchronous means processing can take

place in many threads, without stopping to read data from a file or a web

request for example. Although many implementations already exist for

asynchronous processing, such as Java’s Future, CompletableFuture,

and parallel streams, most of them do not have standard support for

asynchronous handling of backpressure.

Reactive Streams are a unifying standard that abstracts existing

methods of concurrency. Also, by having one standard, different Reactive

Streams implementations can interoperate in one application.

http://www.reactive-streams.org/

2

 Java 9+
Java 9 was an important release of Java and includes Project Jigsaw which

represents a huge restructuring of the core JDK (Java Development Kit)

as well as a new and improved way of defining code dependencies.

This provides compile-time errors when dependencies are missing as

opposed to runtime errors, which is a vast improvement for software

development efficiency. Java 9 also introduced a unified interface for

Reactive Streams.

Java 9 includes the following key features:

• Language updates

• Support for Reactive Streams

• Modularity (Project Jigsaw)

• Java REPL (jshell)

For the purposes of this book, we will focus on the second item and

cover what Reactive Streams are and how they should be used. Although

at the time of writing this is not the case, all implementations of Reactive

Streams in Java are expected to implement the Java 9 API in the near

future. We will cover changes in Java 10 and 11 in how they affect our code

going forward.

 Flow
Support for Reactive Streams has been added to the JDK. Several interfaces

have been added in the java.util.concurrent.Flow class:

• Publisher<T>: A producer of items (and related

control messages) received by Subscribers

• Subscriber<T>: A receiver of messages

Chapter 1 IntroduCtIon to reaCtIve StreamS

3

• Processor<T,R>: A component that acts as both a

Subscriber and Publisher

• Subscription: Message control linking a Publisher

and Subscriber

No actual implementation is included in the JDK; however, several

implementations already exist. Current notable implementations of

the Reactive Streams specification on the Java virtual machine (JVM)

are Project Reactor (which is integrated in Spring 5), Akka Streams, and

RxJava, all of which we will cover in this book.

 Code for This Book
The code examples used in this book are available on my repository on

GitHub. Feel free to download this code which is open source and play

around with it. If you do not already have a GitHub account, you can create

one completely for free. It helps to have Git installed on your own machine.

Then use the git clone command, as specified on the GitHub landing

page, and use whatever Integrated Development Environment (IDE) you

feel is compatible with you – even a text editor will do.

Chapter 1 IntroduCtIon to reaCtIve StreamS

http://www.reactive-streams.org/
https://projectreactor.io/
https://doc.akka.io/docs/akka/2.5.16/stream/index.html
https://github.com/ReactiveX/RxJava
https://github.com/adamldavis/reactive-streams-in-java

5© Adam L. Davis 2019
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9_2

CHAPTER 2

Existing Models of
Concurrency in Java
As multicore processors become more and more standard, different

models of concurrent programming have become more popular in Java.

Although the core model of concurrency in Java is the Thread, multiple

levels of abstraction have been built to enable simpler development.

Each of these models has a different approach toward protecting

values from being modified by more than one thread at one time as we will

cover in this chapter.

 Prominent Models for Concurrency
There are several tried and true models of concurrency in Java and the

JVM. Over time, higher level models have been introduced to make

concurrency simpler. Some of these models are the following:

• Synchronize and suffer (using synchronize keyword

in Java)

• Futures and the ExecutorService

• Software transactional memory (STM) (Clojure)

• Actor-based model (Akka)

• Reactive Streams (RxJava, Reactor, etc.)

6

 Synchronize in Java
The original style of concurrent programming in Java involves using the

synchronized keyword whenever shared resources are modified. The

runtime behavior of this style of programming is very unpredictable and

difficult to test. You must deal with the following problems:

• No warnings or errors are given at compile time.

• Deadlocks can occur if you’re not careful.

• It’s very difficult to make sure you’ve done everything

right, and errors can occur randomly.

In conclusion, the synchronize keyword is too low level to use (just

don’t use it!).1

 Java Futures
You may have heard of the java.util.concurrent.Future interface in

Java. Maybe you’ve even used it. This interface was added in Java 1.5, and

it holds the result of an asynchronous computation. It contains methods

to check if the asynchronous computation is complete or still in progress,

to wait for the completion of the computation, to block the call until the

completion of the computation (with optional timeout), and to retrieve the

result of the computation.

1 I would also categorize the volatile keyword similarly in that it is a low-level
construct that should be avoided.

Chapter 2 existing Models of ConCurrenCy in Java

7

 Drawbacks of the Future Interface
There are tons of problems with this interface:

• When using Java’s Future, we tend to loop on isDone(),

which ties up the thread, or call get() which blocks the

thread completely.

• ExecutorService#submit(...) is used the most

(which returns a Future with a get() method that

returns null).

• Generally when “going asynchronous”, we don’t

care about the result, or we want to do something

with the result (thus we want something like a

continuation).

• We need a callback – removes the need for polling

(isDone) and blocking. (Guava’s ListenableFuture

provides this.)

• Asynchronous methods should always return void.

For these reasons, if you do any concurrent programming, you should

use the CompletableFuture introduced in Java 8 (which is covered next),

the Java 7 concurrency API (ForkJoinPool and ForkJoinTask), or another

concurrency framework.

 CompletableFuture
The CompletableFuture<T> implements the Future<T> interface as well

as a CompletionStage<T> interface that fills in many of the deficiencies

of Future<T>. These methods follow the functional style, allowing the

developer to chain method calls rather than declaring a step-by-step

process.

Chapter 2 existing Models of ConCurrenCy in Java

https://docs.oracle.com/javase/10/docs/api/index.html?java/util/concurrent/Future.html

8

CompletionStage includes the following methods (generic types

omitted for brevity) which each have the return type of CompletionStage

to allow chaining:

• acceptEither(CompletionStage, Consumer):

Executes the given consumer when either this stage

(the current Future) or the given stage completes.

• applyToEither(CompletionStage, Function): Similar

to acceptEither but uses a Function to convert a value

into another value.

• exceptionally(Function): If the stage throws an

exception, the given function is given the exception to

process and return a value.

• handle(BiFunction): Uses the given function to

handle both the success and failure conditions and

returns a value.

• runAfterBoth(CompletionStage, Runnable): Runs

the given Runnable after both this stage (the current

Future) and the given stage complete.

• runAfterEither(CompletionStage, Runnable):

Similar to acceptEither except using a Runnable.

• thenAccept(Consumer): Runs the given consumer after

this stage (the current Future) completes normally. This

is similar to “then” in Promise models of concurrency if

you’re familiar with Promises.

Chapter 2 existing Models of ConCurrenCy in Java

9

• thenAcceptBoth(CompletionStage, BiConsumer):

Runs the given biconsumer with both outputs after

both this stage (the current Future) and the given stage

complete normally.

• thenApply(Function): Transforms a value using the

given function after the stage completes normally.

• thenCombine(CompletionStage, BiFunction):

Transforms two values using the given function after

both stages complete normally.

• thenRun(Runnable): Runs the given Runnable after this

stage completes.

• whenComplete(BiConsumer): Uses the given consumer

to handle both the success and failure conditions.

Asynchronous versions of these methods are also available with

“Async” added to the method name. For the “Async” versions, the

standard execution model of the given Future will be used instead of the

current Thread.

You can create an instance using any of the following static methods

on CompletableFuture:

• CompletableFuture completedFuture(value):

Returns a new CompletableFuture that is already

completed with the given value.

• CompletableFuture runAsync(Runnable): Returns

a new CompletableFuture that is asynchronously

completed by a task running in the ForkJoinPool.

commonPool().

Chapter 2 existing Models of ConCurrenCy in Java

10

• CompletableFuture runAsync(Runnable,

Executor): Returns a new CompletableFuture that is

asynchronously completed by a task running in the

given executor after it runs the given action.

• CompletableFuture supplyAsync(Supplier): Returns

a new CompletableFuture that is asynchronously

completed by a task running in the ForkJoinPool.

commonPool() with the value obtained by calling the

given Supplier.

For more details, please see the documentation.

 STM in Clojure
Java doesn’t have great support for concurrency built-in. Other languages

for the JVM (Java virtual machine), like Scala and Clojure, have been built

from the ground up with concurrency in mind. However, we can use the

concurrency models from Scala and Clojure straight in Java.

STM (software transactional memory) results in a separation of state

and identity. For example, the stock price at a given time is immutable. In

STM you must use a transaction to modify anything. We can include the

Clojure jars and use them within Java. For example, in the following code,

referenceToAmount can only be modified inside of a transaction:

import clojure.lang.*

Ref referenceToAmount;

LockingTransaction.runInTransaction(new Callable() {

 referenceToAmount.set(value);

});

Now you will get an error if you try to modify the Ref outside of

a transaction. This makes concurrent programming easier because

modifying data outside of a synchronized block is impossible.

Chapter 2 existing Models of ConCurrenCy in Java

https://docs.oracle.com/javase/10/docs/api/java/util/concurrent/CompletableFuture.html
https://en.wikipedia.org/wiki/Software_transactional_memory

11

 Actors
The Scala-based actor framework Akka can also be used from Java.

Akka is also used by the Play Framework. It includes the concept of Actors.

Actors can receive and process messages and are guaranteed to receive

messages sent to them. They process each message one at a time so their

state is shielded from the rest of the system.

The following code shows a simple example using the Akka framework

with one Actor:

import akka.actor.*

public class XActor extends UntypedActor {

 public void onReceive(Object message) throws Exception {

 if (message instanceof String)

 System.out.println((String) message);

 }

 }

 public static void main(String... args) {

 ActorSystem system = ActorSystem.create("MySystem");

 ActorRef actor = system.actorOf(new Props(XActor.class),

"actor");

 // the message could be anything implementing Serializable

 actor.tell("Message String");

}

An Actor conceptually runs in a dedicated thread, so it can only do

one thing at a time. This makes concurrency much easier to implement.

Messages are passed around to Actors and wait in a queue until the

given Actor is ready to process it. A message can be any Serializable

object.

Chapter 2 existing Models of ConCurrenCy in Java

http://www.playframework.org/

12

 Groovy GPars
It’s worth noting that the Actor and STM concurrency patterns are not

limited to Scala and Clojure.

Groovy’s GPars library implements these patterns as well and is also

usable from Java. It also has Domain Specific Languages (DSLs) that wrap

the JSR-166 features of Java, such as the Fork-Join framework, making them

easier to use.

You can use GPars to do filter, map, and reduce an array in the

following way:

GParsPool.withPool {

 // a map-reduce functional style (students is a Collection)

 def bestGpa = students.parallel

 .filter{ s -> s.graduationYear == 2017 }

 .map{ s -> s.gpa }

 .max()

}

In this example, Student is a class with a graduationYear and gpa.

This code finds the highest GPA for 2017. The static method GParsPool.

withPool takes in a closure and augments any Collection with several

methods (using Groovy’s category mechanism). The parallel method

actually creates a ParallelArray (JSR-166) from the given Collection and

uses it with a thin wrapper around it.

 Reactive Streams
Reactive Streams provide an abstraction for highly concurrent,

asynchronous applications with support for backpressure.

While they can be used along with any of the preceding models

of concurrency, they attempt to provide enough functionality to be

fully sufficient for any implementation (over and above the other

Chapter 2 existing Models of ConCurrenCy in Java

http://www.gpars.org/

13

models of concurrency). However, since they run in a multithreaded

way, you must ensure thread safety in your code if you modify

shared state. Try to avoid using other methods (e.g., using a

LockingTransaction or synchronize block) and instead stay within

the Reactive Streams model. Reactive Streams use the concepts of

publisher and subscriber, along with various strategies for backpressure

to model concurrency. We will cover these concepts.

• A publisher emits events at some rate.

• A subscriber observes those events on possibly a

different thread and does something with them.

• Some frameworks use other words (such as Source

and Sink) to mean the same thing as publisher and

subscriber.

As we will see, many Reactive Streams frameworks allow

interoperation with other existing models of concurrency, such as futures,

to allow a smooth transition between the two.

Chapter 2 existing Models of ConCurrenCy in Java

15© Adam L. Davis 2019
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9_3

CHAPTER 3

Common Concepts
Every Reactive Streams framework uses common concepts forming the

backbone of reactive streams. You can use method chaining to perform

complex conversions of streams in a simple and terse syntax once you

know the function of standard methods like filter, map, delay, and buffer.

This chapter attempts to illustrate the most important of these

concepts. It does not cover all available methods.

 Streams
The word Observable is used to mean a reactive stream of data. Although

Observable is a type in RxJava, this and the other Reactive Streams libraries

have other types, such as Flux in Reactor and Source in Akka Streams, that

represent streams of data. Everything in Reactive Streams starts with a

stream.

 Hot and Cold
When you begin using Reactive Streams, you need to master the concept

of hot vs. cold Observables. It’s not always obvious which type you are

dealing with and the interactions between them cause problems.

A hot Observable is one that cannot be repeated. It starts creating data

immediately regardless of whether it has subscribers. Typically it involves

interacting with data from the outside world such as mouse inputs, data

readings, or web requests.

16

A cold Observable is one that can be repeated and does not start until

subscribed to. This could be things like a range, file data, or a cached

recording of data from a hot Observable.

Hot Observables typically are candidates for using backpressure flow

control strategies such as throttling, buffers, or windows.

 Backpressure
Backpressure is what happens when there are too many events/data in

a stream than the downstream can handle. As an analogy, think of what

happens in some cities at rush hour when traffic grinds to a halt – or when

subway trains are filled to capacity. When this happens in your application,

it can cause big problems like OutOfMemory exceptions or starved threads

and timeouts. Backpressure strategies help you deal with these problems

proactively to avoid these problems.

There are multiple backpressure strategies, but the main ones are

throttling, windows, buffers, and dropping. The simplest to understand is

dropping: you simply drop the items above what can be handled (using

some criteria such as oldest or newest). The other strategies (throttling,

windows, and buffers) are also listed in this chapter.

 Filter
Filter takes only those elements that match a given predicate.

Chapter 3 Common ConCepts

17

 Any/All
Any returns a Boolean value which is true if any elements in the stream

match the given predicate. All returns true if all the elements match. These

two only make sense for terminating (noninfinite) streams.

Chapter 3 Common ConCepts

18

 Map
Map converts data from one form into another. This is useful for any basic

operations on data elements.

 FlatMap/ConcatMap
FlatMap maps data from one form into a stream of other forms and then

weaves the resulting streams together. This is useful when you want

to convert one data stream into a new stream based on the results of

substreams. For example, you might want to convert a stream of sports

teams into a stream of all the players of those teams.

ConcatMap is very similar, but preserves the ordering of the incoming

streams, whereas flatMap eagerly subscribes to each new stream and

merges the results in the order in which they arrive.

Chapter 3 Common ConCepts

19

 Delay
This method delays data for a fixed amount of time.

 Buffer
Buffer keeps data over some time period and sticks it in a list, then

observes each list.

Chapter 3 Common ConCepts

20

Buffer is also a backpressure strategy that caches all elements from

a stream if too many elements were produced than the subscriber could

handle. In this case the buffer is kept in memory and does not affect the

data type of the stream. If buffer is used, you have the option of dropping or

ignoring any elements above the buffer’s maximum size.

 Window
Window is much like buffer but results in Observables instead of lists.

Chapter 3 Common ConCepts

21

 Take While
Take while (takeWhile) takes all elements while some condition is true,

then ends the stream when it is false. There is usually also a take(n) method

which takes a certain number of elements before ending the stream.

Chapter 3 Common ConCepts

22

 Latest
“Latest” is a backpressure strategy that takes only the last element from

a stream if too many elements were produced than the subscriber could

handle.

 Debounce
Debounce is useful for noisy streams, for example, a text input or other

user inputs, when you only want elements after the stream was quiet for

some period of time. It gives you only the last element if the stream is silent

for a given duration.

Chapter 3 Common ConCepts

23

Although Reactor does not seem to have “debounce”, it can be

approximated using sampleTimeout. For example, the following would be

equivalent to debounce of one second:

flux.sampleTimeout(x ->

 Mono.just(0).delayElement(

 Duration.of(1, ChronoUnit.SECONDS)))

Throttle First
Throttle first (throttleFirst in RxJava) drops any elements from the stream

(after the first element emitted) for some given duration. Throttle last is

very similar only emitting the last element emitted during the time period

instead of the first. Reactor has similar methods, sample and sampleFirst.

Akka Streams has a similar method named throttle.

Chapter 3 Common ConCepts

24

Chapter 3 Common ConCepts

25© Adam L. Davis 2019
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9_4

CHAPTER 4

RxJava
RxJava is the open source library for reactive programming that is part

of the ReactiveX project. ReactiveX includes implementations in several

different languages including RxJS, RxRuby, RxSwift, RxPHP, RxGroovy,

and many more.

RxJava 2 was rebuilt to be compatible with the Reactive Streams

specification and is preferable to RxJava 1.x since it is scheduled for end-of-

life. There were many changes from version 1 to 2 that could be confusing.

To avoid confusion we will focus on RxJava 2.

 Getting Started
First, create a new project with sources under src/main/java/ and a “pom.

xml” if using Maven or a “build.gradle” file if using Gradle.

If you have a Maven build, add the following to your pom file:

<dependency>

 <groupId>io.reactivex.rxjava2</groupId>

 <artifactId>rxjava</artifactId>

 <version>2.2.2</version>

</dependency>

For Gradle builds, add the following to your Gradle build file’s

dependencies:

compile 'io.reactivex.rxjava2:rxjava:2.2.2'

https://gradle.org/RxJava
http://reactivex.io/
https://maven.apache.org/
https://gradle.org/

26

Next, create a new class file with the following imports:

import io.reactivex.*;

import io.reactivex.schedulers.*;

import io.reactivex.functions.*;

import org.reactivestreams.Publisher;

import org.reactivestreams.Subscriber;

import org.reactivestreams.Subscription;

import java.util.*;

import java.io.*;

 Flowable
The basic entry class in RxJava is io.reactivex.Flowable<T>

(which is roughly equivalent to io.reactivex.Observable<T>). It

implements the Reactive Streams pattern (Publisher) and offers

factory methods, intermediate operators, and the ability to consume

reactive dataflows.

The following example demonstrates using RxJava to do a simple

calculation on a range of numbers:

public static List doSquares() {

 List squares = new ArrayList();

 Flowable.range(1, 64) //1

 .observeOn(Schedulers.computation()) //2

 .map(v -> v * v) //3

 .blockingSubscribe(squares::add); //4

 return squares;

}

Chapter 4 rxJava

27

 1. Create a range from 1 to 64.

 2. Call the method observeOn to determine which

Scheduler to use. This determines on which Thread

or Threads the flow will run. The Scheduler returned

from “computation()” takes advantage of all

available processors when possible.

 3. The map method transforms each value. In this case

we calculate the square.

 4. Finally, we initiate the flow by calling a “subscribe”

method. In this case, blockingSubscribe blocks

until the entire flow has completed, and we add

each value to the “squares” List. This means that

the squares list will be populated before the return

statement. Otherwise the flow would run on a

different thread and the values in the squares list

would be unpredictable at any given time.

The resulting List will have the values of squares of the numbers

from 1 to 64: 1, 4, 9, 16, 25, 36, 49, …, 4096.

 Parallel Computing
If you tie a Flowable to one Scheduler as in the previous example, it would

run in succession, not in parallel. To run each calculation in parallel, you

could use flatMap to break out each calculation into a separate Flowable

as follows:

public static List doParallelSquares() {

 List squares = new ArrayList();

 Flowable.range(1, 64)

 .flatMap(v -> //1

Chapter 4 rxJava

28

 Flowable.just(v)

 .subscribeOn(Schedulers.computation())

 .map(w -> w * w)

)

 .doOnError(ex -> ex.printStackTrace()) //2

 .doOnComplete(() ->

 System.out.println("Completed")) //3

 .blockingSubscribe(squares::add);

 return squares;

}

 1. Call flatMap with a lambda expression that takes in

a value and returns another Flowable. The Flowable.

just(…) method takes in any number of objects and

returns a Flowable that will emit those objects and

then complete.

 2. Call doOnError to handle errors that occur.

 3. Call doOnComplete to execute something after a

Flowable has completed. This is only possible for

Flowables that have clear endings, such as ranges. The

resulting List will have the same values as the previous

example, but since we used flatMap, the resulting

values will not necessarily be in the same order.

 Schedulers
For some heavy computations, you may want to run them in the

background while rendering the result in a separate thread so as not

to block the UI or rendering thread. For this case, you can use the

subscribeOn method with one Scheduler and the observeOn method with

a different Scheduler.

Chapter 4 rxJava

29

public static void runComputation() throws Exception {

 Flowable<String> source = Flowable.fromCallable(

 () -> { //1

 Thread.sleep(1000);

 return "Done";

 });

 source.doOnComplete(

 () -> System.out.println("Completed

runComputation"));

 Flowable<String> background =

 source.subscribeOn(Schedulers.io()); //2

 Flowable<String> foreground =

 background.observeOn(Schedulers.single()); //3

 foreground.subscribe(System.out::println,

 Throwable::printStackTrace); //4

}

 1. Create a new Flowable from a Callable (functional

interface (SAM) which simply returns a value).

 2. Run the Flowable using the “IO” Scheduler. This

Scheduler uses a cached thread pool which is good

for I/O (e.g., reading and writing to disk or network

transfers).

 3. Observe the results of the Flowable using a single-

threaded Scheduler.

 4. Finally, subscribe to the resulting foreground

Flowable to initiate the flow and print the results to

standard out. The result of calling runComputation()

will be “Done” printed after one second.

Chapter 4 rxJava

30

 Publishers
For nontrivial problems, you might need to create your own Publisher.

You would only do this if you wanted fine control over the request/

response nature of Reactive Streams, and it is not necessary to use

RxJava.

For the following example, imagine you want to write to a file or read

from a file using a custom Publisher in RxJava.

First, we write a range of numbers to a file using the following

method:

public static void writeFile(File file) {

 try (PrintWriter pw = new PrintWriter(file)) {

 Flowable.range(1, 100)

 .observeOn(Schedulers.newThread())

 .blockingSubscribe(pw::println);

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 }

}

Here we use a try-with-resources block and blockingSubscribe to

write the range to the file.

Second, we want to read from a file. In this example, the contents of a

file are printed to standard out using the “IO” Scheduler:

public static void readFile(File file) {

 try (final BufferedReader br = new BufferedReader(

 new FileReader(file))) {

 Flowable<String> flow = Flowable.fromPublisher(

 new FilePublisher(br));

 flow.observeOn(Schedulers.io())

 .blockingSubscribe(System.out::println);

Chapter 4 rxJava

31

 } catch (IOException e) {

 e.printStackTrace();

 }

}

A Publisher implements the subscribe method that takes a Subscriber.

The Subscriber interface has several methods on it, the first of which to call

is onSubscribe(Subscription). To implement backpressure in Reactive

Streams, the Subscription interface was created which has only two

methods, request(n) for requesting the next n elements and cancel for

canceling the subscription.

static class FilePublisher implements Publisher<String> {

 BufferedReader reader;

 public FilePublisher(BufferedReader reader)

 { this.reader = reader; }

 @Override

 public void subscribe(Subscriber<? super String> subscriber){

 subscriber.onSubscribe(

 new FilePublisherSubscription(this, subscriber));

 }

 public String readLine() throws IOException {

 return reader.readLine();

 }

}

static class FilePublisherSubscription

 implements Subscription {

 FilePublisher publisher;

 Subscriber<? super String> subscriber;

 public FilePublisherSubscription(FilePublisher publisher,

 Subscriber<? super String> subscriber) {

Chapter 4 rxJava

32

 this.publisher = publisher;

 this.subscriber = subscriber;

 }

 @Override

 public void request(long n) {

 try {

 String line;

 for (int i = 0; i < n && publisher != null

 && (line = publisher.readLine()) != null; i++) {

 if (subscriber != null) subscriber.onNext(line);

 }

 } catch (IOException ex) {

 subscriber.onError(ex);

 }

 subscriber.onComplete();

 }

 @Override

 public void cancel() {

 publisher = null;

 }

}

This example shows how you might implement a Publisher for reading

files including backpressure support. A similar approach could be used for

any Publisher/Subscription implementation.

Now when we call readFile(File) with a File object, the contents of the

file will be read and printed out. The same effect could also be achieved

using RxJava in the following way:

Single<BufferedReader> readerSingle = Single.just(file) //1

 .observeOn(Schedulers.io()) //2

 .map(FileReader::new)

 .map(BufferedReader::new); //3

Chapter 4 rxJava

33

Flowable<String> flowable =

 readerSingle.flatMapPublisher(reader -> //4

 Flowable.fromIterable(//5

 () ->

 Stream.generate(readLineSupplier(reader)).iterator()

).takeWhile(line -> !"EOF".equals(line))); //6

flowable

 .doOnNext(it -> System.out.println("thread="

 + Thread.currentThread().getName())) //7

 .doOnError(ex -> ex.printStackTrace())

 .blockingSubscribe(System.out::println); //8

 1. Single is much like an Observable that can only emit

one element. Here we create an instance from the

file parameter.

 2. We use Schedulers.io() since we’re reading a file.

 3. Next, we use the constructor reference syntax to

instantiate a FileReader and BufferedReader from

the original file.

 4. Here we use the flatMapPublisher method which

is a variant of flatMap that only exists on a “Single”

and returns a Flowable.

 5. We create a new Flowable using “fromIterable”

that will read each line of the file using the

BufferedReader. We use “Stream.generate” since

it repeatably calls the given supplier given by the

“readLineSupplier” method.

 6. When readLine() returns null, the file is done being

read, but an Iterator cannot supply null so we use

“EOF” instead. We use that as the predicate for

“takeWhile” to terminate the stream at that point.

Chapter 4 rxJava

34

 7. Here we print out the name of the current Thread

when each element is processed.

 8. Finally, we use blockingSubscribe again just to print

the output to standard out. In a real application, we

would do something more interesting most likely.

The “readLineSupplier” method is defined as the following:

private static Supplier<String>

 readLineSupplier(BufferedReader reader) {

 return () -> { try {

 String line = reader.readLine();

 return line == null ? "EOF" : line;

 } catch (IOException ex)

 { throw new RuntimeException(ex); }};

}

The result of running this code for a given file would be each line of the

file is printed out with “thread=RxCachedThreadScheduler-1” also printed

out once for each line.

 Backpressure
Hot Observables typically are candidates for using backpressure flow

control strategies such as throttling, buffers, or windows. Beyond

these options, you can convert an Observable into a Flowable with a

backpressure strategy.

You can convert any Observable into a Flowable with backpressure

support using the toFlowable(strategy) method. This would be done to

mitigate any issues with the upstream (or publisher) emitting items faster

than the downstream (or subscriber) can handle.

Chapter 4 rxJava

35

There are five main strategies to handle backpressure:

• LATEST: Only keep the latest item emitted, meaning

you might miss some items if they are coming too fast.

• DROP: Drop newer items if they come too fast.

• BUFFER: Keep items in memory up to a certain point

(usually you provide a limit).

• ERROR: Have the stream terminate with an error

condition.

• No strategy at all: Without any strategy, the publisher

would in effect be told to slow down (request(n)

would not be called or would be called with a smaller

number). This can only work in situations where this

makes sense.

For example:

Observable.fromPublisher(pub) //1

.toFlowable(BackpressureStrategy.LATEST) //2

 1. Create an Observable from some Publisher.

 2. Convert the Observable into a Flowable with the

strategy of LATEST (other available values are DROP,

BUFFER, and ERROR).

Using toFlowable(BackpressureStrategy.ERROR) would cause an

error to occur upon a backpressure event (more items being published

than have been handled).

Chapter 4 rxJava

36

Likewise, the Flowable class has available the following methods to

handle backpressure at any point in a flow:

• onBackpressureLatest()

• onBackpressureDrop()

• onBackpressureBuffer()

It also has several overloaded methods for providing configuration

of the buffer such as capacity or an action to perform when capacity is

reached.

See the RxJava backpressure documentation for more information on

this topic.

 Handling Errors
There are several ways to handle errors in RxJava streams:

• Handle errors without modifying the stream using

“doOnError(Consumer<? super Throwable>)”.

• Recover by returning a fixed value with

onErrorReturnItem(T).

• Recover by returning a value based on the Exception

with onErrorReturn(Function).

• Recover by returning a new Publisher with

onErrorResumeNext(Publisher).

• Handle the error in the subscriber.

Chapter 4 rxJava

https://github.com/ReactiveX/RxJava/wiki/Backpressure

37

 Testing
RxJava 2 includes built-in, test-friendly solutions such as TestSubscriber

and TestObserver.

• TestSubscriber: A Subscriber that records events that

you can make assertions upon

• TestObserver: An Observer that records events that you

can make assertions upon

• TestScheduler: Can be used to have a strict control of

test execution related to RxJava

 TestSubscriber

For example, you can create a TestSubscriber by just calling “test()” on any

Flowable:

TestSubscriber<Integer> ts =

 Flowable.range(1, 5).test();

assertEquals(5, ts.valueCount());

Calling “valueCount()” returns the total number of items emitted by

the stream, five in this case.

TestSubscriber also has tons of other methods starting with “assert”

such as assertError that can be used to assert certain things happen. For

example:

Flowable<Integer> flowable = Flowable.create(source -> {

 source.onNext(1);

 source.onError(new RuntimeException());

}, BackpressureStrategy.LATEST);

TestSubscriber<Integer> ts = flowable.test();

ts.assertSubscribed();

ts.assertError(RuntimeException.class);

Chapter 4 rxJava

38

Here we call “assertError(Class)” with the type of Exception expected

to be thrown by the Flowable. If it is not thrown, an AssertionError will be

thrown, making the test fail.

 TestObserver

Likewise, you can create a TestObserver by calling “test()” on any

Observable:

TestObserver<Integer> ts =

Observable.range(1, 5).test();

assertEquals(5, ts.valueCount());

TestObserver and TestSubscriber both extend BaseTestConsumer and

so have most of the same methods.

 TestScheduler

TestScheduler can be used for testing time-related streams. For example:

TestScheduler scheduler = new TestScheduler(); //1

Observable<Long> tick = Observable

 .interval(1, TimeUnit.SECONDS, scheduler); //2

Observable<String> observable =

 Observable.just("foo", "bar", "biz", "baz") //3

 .zipWith(tick, (string, index) -> index + "-" + string);//4

TestObserver<String> testObserver = observable

 .subscribeOn(scheduler).test();//5

scheduler.advanceTimeBy(2300, TimeUnit.MILLISECONDS);//6

testObserver.assertNoErrors(); //7

testObserver.assertValues("0-foo", "1-bar");

testObserver.assertNotComplete();

Chapter 4 rxJava

39

 1. Create the TestScheduler.

 2. Create an interval Observable that will emit a

number every second.

 3. Create an Observable of just four strings.

 4. Zip those two Observables together, combining

them into one string, “index-string”.

 5. Make the Observable from step 4 subscribe on our

TestScheduler and call “test()” to get an instance of

TestObserver.

 6. Manipulate the TestScheduler by calling

“advanceTimeBy” with a value of 2.3 seconds so

that two values should be emitted by the “tick”

Observable.

 7. Assert that there were no errors and the values we

expect were emitted.

Using TestScheduler has the benefit of making RxJava streams behave

as if a certain amount of time passed although it has not. This makes it so

we can test RxJava logic that relies on any amount of time passing (hours or

days) and our tests still run quickly. For example, the preceding test runs in

less than one tenth of a second.

Chapter 4 rxJava

41© Adam L. Davis 2019
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9_5

CHAPTER 5

Reactor
Project Reactor is Spring’s implementation of Reactive Streams (in version 3

and beyond). It has two main publishers, Flux<T> and Mono<T>. It also

uses Schedulers much like RxJava.

The Spring Framework has many integrations with Reactor that make

it easier to use with other Spring projects, such as Spring Data and Spring

Security.

 Getting Started
If you have a Maven build, add the following to your pom file:

<dependency>

 <groupId>io.projectreactor</groupId>

 <artifactId>reactor-core</artifactId>

 <version>3.1.9.RELEASE</version>

</dependency>

<dependency>

 <groupId>io.projectreactor</groupId>

 <artifactId>reactor-test</artifactId>

 <version>3.1.9.RELEASE</version>

 <scope>test</scope>

</dependency>

https://projectreactor.io/

42

For Gradle builds, add the following to your Gradle build file’s

dependencies:

compile 'io.projectreactor:reactor-core:3.1.9.RELEASE'

testCompile 'io.projectreactor:reactor-test:3.1.9.RELEASE'

 Flux
Flux<T> is the main entry point for Reactor reactive streams and is similar

to RxJava’s Observable. Mono<T> is like a Flux but for zero to one element.

Both Mono and Flux implement org.reactivestreams.Publisher.

import reactor.core.publisher.Flux;

import reactor.core.publisher.Mono;

Much like in RxJava, Reactor uses Schedulers to decide on what thread

to run.

For example, you might create a range like the following and publish

on “Schedulers.parallel()” which provides a thread cache for executing in

parallel:

Flux.range(1, 100)

 .publishOn(Schedulers.parallel())

 .subscribe(v -> System.out.println(v));

The preceding code would print out the numbers 1 through 100.

Handling errors in Reactor is also very similar to RxJava. The following

methods may be used on a Flux or Mono (generic types omitted for

brevity):

• onErrorResume(Function): Takes the exception and

returns a different Publisher as a fallback or secondary

stream.

Chapter 5 reaCtor

43

• onErrorMap(Function): Takes the exception and allows

you to modify it or return a completely new Exception if

you prefer.

• onErrorReturn(T): Provides a default value to use

when an error arises.

• doOnError(Consumer<? super Throwable>): Allows

you to handle the error without effecting the underlying

stream in any way.

Errors are always ending events for a Flux or Mono and should be

handled by the Subscriber. However, many times, such as in the preceding

example, an error is not possible and therefore does not need to be handled.

 Mono
Mono is much like a Flux but for just one or zero elements. Think of it like

a translation of Java 8’s Optional class into the Reactive Streams world.

For example, the following would print out the value “hello”:

Mono.just("hello").subscribe(v -> System.out.println(v));

Mono is very similar to Flux except that it has methods like

• justOrEmpty(T): Takes a nullable value and converts

into a Mono. If null, the result is the same as Mono.

empty().

• justOrEmpty(Optional): Takes an Optional and

converts into a Mono directly.

Unlike Java’s Optional, Mono can handle errors, among other things.

For example, a method that returns Mono might do the following:

return Mono.error(new RuntimeException("your error"))

Chapter 5 reaCtor

44

The corresponding code can handle errors from a Mono in the same way

as with a Flux (using onErrorResume, onErrorMap, or onErrorReturn).

 Creating a Flux or Mono
You can create a Flux from fixed data (cold) or programmatically from

dynamic data (hot).

The following are some different ways to create a cold Flux:

Flux<String> flux1 = Flux.just("a", "b", "foobar"); //1

List<String> iterable = Arrays.asList("a", "b", "foobar");

Flux<String> flux2 = Flux.fromIterable(iterable); //2

Flux<Integer> numbers = Flux.range(1, 64); //3

 1. Create a Flux from a list of values.

 2. Create a Flux from an Iterable.

 3. Create a range from 1 to 64.

Here’s how to create a simple Mono:

Mono<String> noData = Mono.empty(); //1

Mono<String> data = Mono.just("foo"); //2

 4. Create an empty Mono.

 5. Create a Mono with one element.

You can programmatically create a hot or cold Flux using one of

the generate, create, or push methods. If the data is of a continuous

nature, such as user input, a WebSocket, or network packets, it would be

considered hot.

The generate method (in one variety) takes a Supplier and a

BiFunction. The function takes as parameters the current state and

a SynchronousSink<T> which can be used to publish the next state of

Chapter 5 reaCtor

45

the stream. For example, the following uses an AtomicLong instance to

increment the numbers 0 through 10 and supplies the square of each

number:

Flux<Long> squares = Flux.generate(

 AtomicLong::new, //1

 (state, sink) -> {

 long i = state.getAndIncrement();

 sink.next(i * i); //2

 if (i == 10) sink.complete(); //3

 return state;

});

 1. The constructor of AtomicLong is used as the

supplier.

 2. After incrementing, supply the square of the number

to the sink.

 3. When the number is 10, the complete() method is

called, which calls onComplete to any subscriber,

closing out the Flux.

The create method takes a Consumer<? super FluxSink<T>> that

exposes a FluxSink<T> instance with next, error, and complete methods.

This allows you to arbitrarily publish data onto a Flux in any way you see fit.

The preceding code would produce a Flux of the squares of the

numbers from zero to ten.

For example, the following demonstrates registering a

MessageListener which handles a list of messages:

Flux<String> bridge = Flux.create(sink -> {

 messageProcessor.register(

 new MessageListener<String>() {

 public void handle(List<String> chunks) {

Chapter 5 reaCtor

46

 for(String s : chunks) {

 sink.next(s);

 }

 }

 public void processComplete() {

 sink.complete();

 }

 public void processError(Throwable e) {

 sink.error(e);

 }

});

});

Here sink’s type is FluxSink<String>. If the messages processed in

the preceding code have a single-threaded source, the push method

can be used instead of create. The push method has the same type

signature as create, and so it is used in a similar way. FluxSink’s methods

return FluxSink, allowing for method chaining, so the following example

is possible:

Flux.push((FluxSink sink) -> {

 sink.next(1).next(2).next(3).complete();

}).subscribe(System.out::println);

This would print out just the values 1, 2, and 3.

 Schedulers
The Schedulers class under the reactor.core.scheduler package

provides many static methods for Schedulers that determine what Thread

or Threads your code will run on.

Chapter 5 reaCtor

47

The following are some of those static methods and what they mean:

• Schedulers.immediate(): The current thread.

• Schedulers.single(): A single, reusable thread. Note

that this method reuses the same thread for all callers,

until the Scheduler is disposed. If you want a per-call

dedicated thread, use Schedulers.newSingle() for

each call.

• Schedulers.newSingle(): Creates a new Thread each

time it is called to be used by the underlying Flux.

• Schedulers.elastic(): An elastic thread pool. It

creates new worker pools as needed and reuses idle

ones. Worker pools that stay idle for too long (default is

60 seconds) are disposed. This is a good choice for I/O

blocking work for instance. Schedulers.elastic() is a

handy way to give a blocking process its own thread, so

that it does not tie up other resources.

• Schedulers.parallel(): A fixed pool of workers. It

creates as many workers as you have CPU cores.

• Schedulers.fromExecutor(Executor): Creates a

Scheduler to use the given Executor, allowing you to

use your extensive knowledge of Java’s Executors.

For example, let’s take our example of generating squares and make it

run in parallel:

List<Integer> squares = new ArrayList<>();

Flux.range(1, 64).flatMap(v -> // 1

Mono.just(v)

 .subscribeOn(Schedulers.newSingle("comp"))

 .map(w -> w * w)) //2

Chapter 5 reaCtor

48

 .doOnError(ex -> ex.printStackTrace()) // 3

 .doOnComplete(() -> System.out.println("Completed")) // 4

 .subscribeOn(Schedulers.immediate())

 .subscribe(squares::add); //5

 1. First we use Flux.range to take the range from

1 to 64 and call flatMap (which takes a lambda

expression that converts each value in the range into

a new Reactor type, Mono in this case).

 2. Using Schedulers.newSingle(name), we create a

new single thread for each value, and passing to

subscribeOn will cause the mapping expression to

be executed on that single thread. Keep in mind we

are describing the execution of the Mono here, not

the initial Flux.

 3. We provide exception handling code using

doOnError just in case.

 4. Using doOnComplete we print out “Completed”

when the whole execution is finished.

 5. Finally, we subscribe to the Flux (without this step,

nothing would ever happen) and add the result to

our list of squares.

The result of running this code will be that the squares List has the

value of every square from 1 to 64.

Here we see once again how in Reactive Streams everything can

become a stream, even a single value. By creating a Mono for each value in

the range, we’re able to use Reactor to declare what kind of threading we

want for every calculation. In this case, since we are using newSingle, all of

the processing will be done in parallel with a new thread for all 64 values.

Chapter 5 reaCtor

49

However, this is probably not the most efficient implementation since

creating lots of Threads causes a lot of overhead. Instead, we should use

Schedulers.parallel() so that the exact number of Threads your CPU can

handle will be created. In this way, Reactor takes care of the details for you.

 Pull Events
If you have more of a “pull” situation (events are created by polling a

source), you can use the Flux.create(FluxSink) method. For example, the

following code creates a Flux that polls a channel (some imaginary class

representing a stream of Strings from outside of Reactor) for new events:

Flux<String> bridge = Flux.create(sink -> {

sink.onRequest(n -> channel.poll(n)) //1

 .onCancel(channel::cancel) // 2

 .onDispose(channel::close); // 3

 channel.register(sink::next); //4

});

 1. Poll for events from the channel when requests are

made with the given number. This “n” is the number

of items requested.

 2. Call the channel’s cancel method when the Flux is

cancelled.

 3. The channel.close method is given to onDispose to

be invoked for complete, error, or cancel.

 4. Finally, register the sink’s “next” method as a

listener to the channel.

Keep in mind that the Consumer passed to onRequest will not be

called multiple times for no reason. It will be called with some number

(e.g., 256) and then not called again until a significant number of items

have been published to the Flux (i.e., sink.next called many times).

Chapter 5 reaCtor

50

Reminder the code examples used in this book are available on
Github.

 Handling Backpressure
Reactor, like all implementations of Reactive Streams, has the ability to

handle backpressure. Simply use one of the following methods on a Flux (or

others not listed) to specify which backpressure strategy you want to use:

• onBackpressureBuffer(): Buffers all items until they can

be handled downstream.

• onBackpressureBuffer(maxSize): Buffers items up to the

given count.

• onBackpressureBuffer(maxSize, BufferOverflowStrategy):

Buffers items up to the given count and allows you to

specify the strategy to use when and if the buffer is full.

BufferOverflowStrategy is an enum that has three values:

DROP_OLDEST, which drops the oldest items in the

buffer, DROP_LATEST which drops the newer items, and

ERROR which would terminate the stream with an error.

• onBackpressureLatest(): Similar to keeping a buffer of

only the last item added. If the downstream does not

keep up with upstream, only the latest element will be

given downstream.

• onBackpressureError(): Ends the Flux with an error

(calling the downstream Subscriber’s onError)

with an IllegalStateException from Exceptions.

failWithOverflow() if more items were produced

upstream than requested downstream.

Chapter 5 reaCtor

https://github.com/adamldavis/reactive-streams-in-java

51

• onBackpressureDrop(): Drops any items produced

above what was requested. This would be useful, for

example, in UI code to drop user input that can’t be

handled immediately.

• onBackpressureDrop(Consumer): Drops any items

produced above what was requested and calls the given

Consumer for each dropped item.

With each of these methods, the strategy only applies when items

are produced on the stream faster than they can be handled. If that’s not

the case, for example, with a cold stream, no backpressure strategy is

necessary.

For example, we might want to take a Flux named “bridge” created

earlier that is a stream of user input and buffer up to 256 items like the

following:

bridge.onBackpressureBuffer(256)

Also keep in mind that Reactor is not magic, and some care should be

taken when considering backpressure strategies.

Reactor has excellent online documentation for consideration.

 Context
Since version 3.1.0, Reactor comes with an advanced feature that is

somewhat comparable to ThreadLocal but applied to a Flux or a Mono

instead of a Thread: the Context.

Reactor’s Context is much like an immutable Map or key/value

store. It is stored transparently from the Subscriber upward through the

Subscription. Context is Reactor specific and does not work with the other

Reactive Streams implementations.

Chapter 5 reaCtor

https://projectreactor.io/docs/core/release/api/Reactor

52

When setting up the Context, you should not define it toward the

beginning of the Flux. This is because it starts at the subscriber and is

passed upstream. For example, do not do this:

// this is WRONG!

Flux<Integer> flux =

 Flux.just(1).subscriberContext(Context.of("pid", 123));

Instead you should define it toward the end since it propagates

“backward” up the chain. For example:

Flux<Integer> flux = Flux.just(1); //1

Flux<String> stringFlux = flux.flatMap(i ->

 Mono.subscriberContext().map(ctx -> i + " pid: " +

 ctx.getOrDefault("pid", 0))); //2

// supply context here:

StepVerifier.create(//3

 stringFlux.subscriberContext(Context.of("pid", 123)))

 .expectNext("1 pid: 123") //4

 .verifyComplete();

 1. Create a Flux of just one value.

 2. Use flatMap, access the Context, and use it to create

a String value using the “pid” key. We use the static

method on Mono, subscriberContext() to access the

value from the Context by calling “getOrDefault” on it.

 3. This uses the StepVerifier (which we cover next)

to verify that we get the expected value. The

StepVerifier subscribes to the Flux after setting the

Context using the “subscriberContext” method.

 4. Call “expectNext” with a value of “1 pid: 123” which

is what we expect from setting the value 123 with the

key of “pid” on the Context.

Chapter 5 reaCtor

53

Context is useful for storing data that is peripheral to the Flux, but

still important. For example, sometimes we have some identifier that

represents the action or the user that initiated an action, and we want to

include it in log outputs (like what MDC is used for in logback).

 Testing
Automated testing is always a good idea, and it would be nice to have

tools to directly test Reactive Streams. Luckily, Reactor comes with a few

elements dedicated to testing which are gathered into their own artifact we

included earlier: reactor-test.

The two main uses of reactor-test are the following:

• Testing that a sequence follows a given scenario with

StepVerifier

• Producing data in order to test the behavior of

operators (including your own operators) downstream

with TestPublisher

 StepVerifier
Reactor’s StepVerifier can be used to verify the behavior of a Reactor

Publisher (Flux or Mono). StepVerifier is an interface used for testing that

can be created using one of several static methods on StepVerifier itself.

Here’s a simple example of a JUnit test utilizing StepVerifier:

@Test

public void testStepVerifier_Mono_error() {

 Mono<String> monoError = Mono.error(

new RuntimeException("error")); //1

 StepVerifier.create(monoError) //2

Chapter 5 reaCtor

https://logback.qos.ch/manual/mdc.html

54

 .expectErrorMessage("error") //3

 .verify(); //4

}

 1. Create a Mono wrapping a RuntimeException

imitating an actual error state.

 2. Create a StepVerifier wrapping that Mono.

 3. Declare that an onError event is expected and the

Exception’s error message is “error”.

 4. Must call verify() at the end. This will throw an

AssertionError if any expectations are not met.

We can also create a Mono of just one string and verify it, for example:

@Test public void testStepVerifier_Mono_foo() {

Mono<String> foo = Mono.just("foo"); //1

StepVerifier.create(foo) //2

 .expectNext("foo") //3

 .verifyComplete(); //4

}

 1. Create a Mono wrapping one value, “foo”.

 2. Create a StepVerifier wrapping that Mono.

 3. Expect onNext is called with “foo”.

 4. Call verifyComplete() has the same effect as verify()

but also expects onComplete was called.

Here we will test a Flux with three values and timeout if it takes too long:

@Test public void testStepVerifier_Flux() {

Flux<Integer> flux = Flux.just(1, 4, 9); //1

StepVerifier.create(flux) //2

Chapter 5 reaCtor

55

 .expectNext(1) //3

 .expectNext(4)

 .expectNext(9)

 .expectComplete() //4

 .verify(Duration.ofSeconds(10)); //5

}

 1. Create a Flux of just three numbers.

 2. Create a StepVerifier wrapping that Flux.

 3. Call expectNext for each value expected.

 4. Call expectComplete to expect onComplete to be

called.

 5. Finally, you must call verify() at the end. This

variation of verify takes a Duration timeout value.

Here it is 10 seconds. This can be useful to prevent

the Test from hanging in cases where a Publisher

might never call onComplete.

 TestPublisher
The TestPublisher<T> class offers the ability to provide finely tuned data

for test purposes. TestPublisher is a Reactive Streams Publisher<T> but can

be converted to either a Flux or Mono using flux() or mono() methods.

TestPublisher has the following methods:

• next(T) and next(T, T…): Triggers 1−n onNext signals.

• emit(T…): Does the same as next and also terminates

with an onComplete signal.

• complete(): Terminates with an onComplete signal.

• error(Throwable): Terminates with an onError signal.

Chapter 5 reaCtor

56

The following demonstrates how you might use TestPublisher:

TestPublisher<Object> publisher = TestPublisher.create(); //1

Flux<Object> stringFlux = publisher.flux(); //2

List list = new ArrayList(); //3

stringFlux.subscribe(next -> list.add(next), ex ->

 ex.printStackTrace()); //4

publisher.emit("foo", "bar"); //5

assertEquals(2, list.size()); //6

assertEquals("foo", list.get(0));

assertEquals("bar", list.get(1));

 1. Create the TestPublisher instance.

 2. Convert it to a Flux.

 3. Create a new List. For test purposes we will use this

list to collect values from the publisher.

 4. Subscribe to the publisher using two lambda

expressions for onNext and onError. This will add

each value emitted from the publisher to the list.

 5. Emit the values “foo” and “bar” from the

TestPublisher.

 6. Assert that two values were added to the list and

they are what we expect.

Note that you must subscribe to the TestPublisher before emitting any

values.

Chapter 5 reaCtor

57© Adam L. Davis 2019
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9_6

CHAPTER 6

Akka Streams
Akka Streams implements the Reactive Streams standard within the larger

Akka concurrency project.

Akka Streams is built on the philosophy of providing a minimal and

consistent Application programming interface (API) that is extremely

compositional, meaning it is broken into pieces that can be combined in

many ways.

Unlike RxJava and Reactor, the topology of streams (flows) in Akka

Streams is immutable once they have been materialized. This means that

you must be explicit to convert a flow into a Reactive Streams interface to

have a dynamic topology (as we’ll cover later on).

Although most familiar in Scala-based applications, Akka Streams has

a Java-specific API, and the documentation lets you select Java or Scala as

your target language with specific examples for each.

Akka Streams uses the concepts of Source and Sink to correspond

roughly with Publisher and Subscriber of other Reactive Streams

frameworks. It also has the concept of Flow which is roughly equivalent

to Processor and Graphs which are like blueprints of Flows, Sinks, or

Sources.

https://doc.akka.io/docs/akka/2.5.16/stream/index.html?language=java

58

 Getting Started
If you have a Maven build, add the following to your pom file:

<dependency>

 <groupId>com.typesafe.akka</groupId>

 <artifactId>akka-stream_2.12</artifactId>

 <version>2.5.16</version>

</dependency>

<dependency>

 <groupId>com.typesafe.akka</groupId>

 <artifactId>akka-stream-testkit_2.12</artifactId>

 <version>2.5.16</version>

 <scope>test</scope>

</dependency>

For Gradle builds, add the following to your Gradle build file’s

dependencies:

compile 'com.typesafe.akka:akka-stream_2.12:2.5.16'

testCompile 'com.typesafe.akka:akka-stream-testkit_2.12:2.5.16'

Use the following imports:

import akka.stream.*;

import akka.stream.javadsl.*;

In this example we will be taking a stream of messages and extracting

all messages that begin with Error:

final ActorSystem system = ActorSystem.create(

"reactive-messages"); //1

final Materializer mat = ActorMaterializer.create(system); //2

Source<String, NotUsed> messages = Source

.single("Error: test message");

Chapter 6 akka StreamS

https://maven.apache.org/
https://gradle.org/

59

final Source<String, NotUsed> errors =

 messages.filter(m -> m.startsWith("Error")) //3

 .map(m -> m.toString()); //4

errors.runWith(Sink.foreach(System.out::println), mat); //5

 1. We create the Akka ActorSystem to define the

multithreaded environment for execution. We

provide a name “reactive-messages” which

is optional and gives a logical name to the

ActorSystem.

 2. The execution environment (similar to

Schedulers in RxJava) is known as a Materializer

here. Unlike RxJava, the developer controls

concurrency by calling methods like async() and

mapAsync(int,Function) on a Source or Flow.

 3. We filter out only the error messages.

 4. Although not necessary, we call toString on each

message to illustrate using the map method.

 5. Finally, we use runWith and pass in a Sink which

prints out each error message.

Although here we are using the foreach Sink, any sink could be used,

including user-defined sinks.

To avoid conceptual conflicts with the existing flatMap in Scala,

Akka Streams uses flatMapConcat, flatMapMerge, and mapConcat. The

mapConcat method expects Iterables returned from the function, not

streams. The other two methods act as their names suggest, either merging

streams or appending them sequentially.

Chapter 6 akka StreamS

60

 ActorMaterializer
The ActorMaterializer in Akka Streams is similar to Schedulers in the

other two Reactive Streams implementations but not the same. Unlike

Schedulers, there are not several predefined singletons to choose from;

instead you should generally create one for your whole application and

specify some general settings.

An ActorMaterializer is created in the following way:

public static Materializer createMaterializer() {

 final ActorSystem system = ActorSystem.create(); // 1

 ActorMaterializerSettings settings =

 ActorMaterializerSettings.create(system) //2

 .withMaxFixedBufferSize(100) //3

 .withInputBuffer(8, 16); //4

 return ActorMaterializer.create(settings,system);//5

 1. Create the ActorSystem.

 2. Optionally create ActorMaterializerSettings. This

allows you to configure internal settings used by

Akka Streams to enhance performance for your

particular project.

 3. Set maximum fixed buffer size to 100. Stream

elements which have explicit buffers (like

mapAsync, mapAsyncUnordered, flatMapMerge,

Source.actorRef, Source.queue, etc.) that request

a lower buffer size will use this value as the initial

fixed buffer size. The default is very large to make

failures happen earlier, not when scaling up. You

might change it if you want to use a small amount of

memory, for example.

Chapter 6 akka StreamS

61

 4. Set the initial and maximum size of internal stream

buffers. Here we set the initial value to 8 and

maximum to 16, which are the defaults.

 5. Finally create the ActorMaterializer with the given

settings and ActorSystem.

 Sinks, Flows, and Graphs
One of the interesting things about Akka Streams is that every part can

be defined, is immutable, and can be reused independently. For this

purpose, Akka Streams has the concept of Flow, Graph, Source,

and Sink.

• Flow: A Flow has both an input and an output. So, you

can define a Flow with only the type of the data that will

be streamed, without the actual data. It is similar to org.

reactivestreams.Processor which is both a Publisher

and a Subscriber.

• Graph: A Graph can define any arbitrary branching and

recombining of streams. A Graph is immutable, thread-

safe, and reusable. A Graph that is self-contained (has

no input or output) is a RunnableGraph and can be

materialized.

• Source: A Source has exactly one output. It is a source of

data, similar to a Publisher, and can be created in many

different ways.

• Sink: As seen before, a Sink is the ending point of a

stream. It represents what we do with the data. It has

exactly one input.

Chapter 6 akka StreamS

62

Using Flow, you can define a Sink separately from defining any

sources. For example, this sink would save to a file:

public Sink<String, CompletionStage<IOResult>> lineSink(

 String filename) {

 return Flow.of(String.class)

 .map(s -> ByteString.fromString(s.toString() + "\n"))

 .toMat(FileIO.toPath(Paths.get(filename)),

 Keep.right());

}

First, we create a Flow of type “String”; this declares what type you

are expecting. Second, we map each string into a ByteString. At this point,

the type is now Flow<ByteString>. Lastly, we call toMat (which is short for

toMaterialized) to write the result to a file using an existing Sink (FileIO

is part of the Akka Streams Java DSL). We specify Keep.right() to keep the

auxiliary information from toPath.

The Sink, once defined, can be used multiple times. Notice that

defining the Sink does not complete any action. No save has taken place

yet until we materialize it with some Source. For example:

public void saveTextFile(List<String> text) {

 Sink<String, CompletionStage<IOResult>> sink =

 lineSink("testfile.txt");

 Source.from(text).runWith(sink, materializer);

}

This method would take a List of Strings, create a Source from them,

and then save them to a file using the Sink from the lineSink method.

Chapter 6 akka StreamS

63

Graphs can be created using the GraphDSL. For example, using the

previously defined methods, we can create a Graph of a SinkShape like so:

public Graph<SinkShape<String>, NotUsed> createFileSinkGraph()

{

 return GraphDSL.create(builder -> {

 FlowShape<String, String> flowShape = builder

 .add(Flow.of(String.class).async()); //1

 var sink = lineSink("testfile.txt"); //2

 var sinkShape = builder.add(sink); //3

 builder.from(flowShape.out()).to(sinkShape); //4

 return new SinkShape<>(flowShape.in()); //5

 });

}

 1. Call builder.add with a Flow to get a FlowShape.

Here we create an asynchronous Flow.

 2. Create a new Sink<String> by calling our lineSink

method.

 3. Create a SinkShape<String> from that sink.

 4. Link the output from the flowShape to the

sinkShape.

 5. Return a new SinkShape using the input from the

flowShape. We have now created the Graph of a

SinkShape that will save text lines to a file.

We can use this graph by calling Sink.fromGraph to create a Sink:

public void saveTextFileUsingGraph(List<String> text) {

 Sink.fromGraph(createFileSinkGraph())

 .runWith(Source.from(text), materializer);

}

Chapter 6 akka StreamS

64

The preceding code would use the Graph we created to create a new

Sink and run it with a Source created from the given List, thus saving the

text, one line per element of the list.

 Backpressure
Backpressure strategies can be defined on the stream to describe what to

do when too many elements are produced. For example, we can buffer our

messages stream:

messages

 .buffer(100, OverflowStrategy.dropHead())

This would buffer 100 elements, dropping the oldest (dropHead). You

should pick whatever strategy best fits your problem space.

Other options include

• dropTail(): Drops the newest elements from the buffer.

• dropBuffer(): An aggressive strategy that drops the

entire buffer once it is full.

• dropNew(): Drops any new elements when the buffer is

full.

• backpressure(): The strategy would cause backpressure

signal to be pushed upstream if the buffer is full. In

other words, the amount requested from upstream

would fall to zero until the buffer was no longer full.

• fail(): Fails the stream entirely when the buffer is full.

 Interoperation with Reactive Streams API
Due to Akka Streams’ immutable topology requirements, it can be

surprising to people familiar with other Reactive Streams libraries.

Chapter 6 akka StreamS

65

In order to obtain a Publisher or Subscriber from an Akka Stream

topology, a corresponding Sink.asPublisher or Source.asSubscriber

element must be used.

A Sink must be created with Sink.asPublisher(AsPublisher.WITH_

FANOUT) (for enabling fan-out support) where broadcast behavior is

needed for interoperation with other Reactive Streams implementations. If

“AsPublisher.WITHOUT_FANOUT” is used instead, the resulting Publisher

will only allow one Subscriber.

An Akka Streams Flow can also be converted to a Processor using

Flow’s toProcessor() method; however, it is also limited to only one

Subscriber.

To get around these limitations, and create dynamic stream handling

within Akka Streams, you can use MergeHub, BroadcastHub, and

PartitionHub.

 MergeHub, BroadcastHub, and PartitionHub
For dynamically defined flows of data that need to have multiple

consumers or multiple producers of data, Akka Streams has the following

classes:

• A MergeHub allows any number of flows to go into a

single Sink.

• A BroadcastHub can be used to consume elements

from a common producer by a dynamic set of

consumers.

• A PartitionHub can be used to route elements from a

common producer to a dynamic set of consumers. The

selection of consumer is done with a function and each

element can only be routed to one consumer.

Chapter 6 akka StreamS

66

For example, here is a simple use case of a MergeHub:

Sink<String, CompletionStage<Done>> consumer =

 Sink.foreach(System.out::println); //1

int bufferSize = 8;

RunnableGraph<Sink<String, NotUsed>> runnableGraph =

 MergeHub.of(String.class, bufferSize)

 .to(consumer); //2

Sink<String, NotUsed> toConsumer =

 runnableGraph.run(materializer); //3

 1. A simple consumer that will print to the console.

 2. Attach a MergeHub Source to the consumer. This

will materialize to a corresponding Sink when run.

The buffer size is used per producer.

 3. Finally we must run and materialize the

runnableGraph to get the Sink. This Sink can

be materialized any number of times, and every

element that enters it will be consumed by the

“consumer” defined in step 1.

For more information about MergeHub, BroadcastHub, and

PartitionHub, see the documentation.

 Testing
Akka Streams includes a testkit to assist in creating tests around your

application. It includes the following:

• TestKit: Has a method that is useful for shutting down

the ActorSystem between each test

• TestSink: Enables probing of an Akka Stream Source

directly using a TestSubscriber.Probe<T> instance

Chapter 6 akka StreamS

https://doc.akka.io/docs/akka/2.5.16/stream/stream-dynamic.html

67

• TestSource: Enables probing of a Sink using a

TestPublisher.Probe<String> probe instance

Add the following imports to the test class:

import static org.junit.Assert.*;

import static org.hamcrest.CoreMatchers.*;

import akka.NotUsed;

import akka.actor.ActorSystem;

import akka.japi.Pair;

import akka.stream.ActorMaterializer;

import akka.stream.javadsl.*;

import akka.stream.testkit.*;

import akka.stream.testkit.javadsl.TestSink;

import akka.testkit.javadsl.TestKit;

import org.junit.*;

Define our setup and tearDown methods:

ActorSystem system;

ActorMaterializer materializer;

@Before

public void setup() {

 system = ActorSystem.create();

 materializer = ActorMaterializer.create(system);

}

@After

public void tearDown() {

 TestKit.shutdownActorSystem(system);

}

Chapter 6 akka StreamS

68

Now we can write tests using TestSink to probe any Source. For

example:

@Test

public void test_a_source() {

 Sink<Object, TestSubscriber.Probe<Object>> sink =

 TestSink.probe(system); //1

 Source<Object, NotUsed> sourceUnderTest =

 Source.single("test"); //2

 sourceUnderTest.runWith(sink, materializer) //3

 .request(1)

 .expectNext("test")

 .expectComplete();

}

 1. Create the TestSink instance.

 2. Create the Source we want to test. In a real test, this

would come from some part of your production

code.

 3. Run the Source with the TestSink and use the

resulting TestSubscriber.Probe<T> instance to

request one value and expect it to be “test”. Calling

expectComplete() means we expect the Source

to send the “on- complete” signal, and if not it will

through an AssertionError.

Chapter 6 akka StreamS

69

We can also test Sinks using the TestSource.probe(ActorSystem)

method as follows:

Sink<String, CompletionStage<List<String>>>

 sinkUnderTest = Sink.seq(); //1

final Pair<TestPublisher.Probe<String>,

 CompletionStage<List<String>>> stagePair =

 TestSource.<String>probe(system)

 .toMat(sinkUnderTest, Keep.both()) //2

 .run(materializer);

final TestPublisher.Probe<String> probe =

 stagePair.first(); //3

final CompletionStage<List<String>> future =

 stagePair.second();

probe.expectRequest(); //4

probe.sendNext("test");

probe.sendError(new Exception("boom!"));

try {

 future.toCompletableFuture().get(2, TimeUnit.SECONDS); //5

 assert false;

} catch (ExecutionException ee) {

 final Throwable exception = ee.getCause();

 assertEquals(exception.getMessage(), "boom!"); //6

}

 1. Get an instance of the Sink we want to test.

 2. Create and materialize the TestSource with

sinkUnderTest and keep both the materialized value

and auxiliary value using Keep.both().

Chapter 6 akka StreamS

70

 3. Get references to both the TestPublisher.

Probe<String> and the CompletionStage (future) as

we will use them later.

 4. Call several methods on the probe to expect the Sink

requested data, send some data, then call sendError

on the probe with an Exception instance.

 5. Convert the CompletionStage from the previous

step to a CompletableFuture and call “get” with a

timeout of two seconds (just in case the underlying

future would never complete).

 6. Finally, assert that the Exception was thrown and it

has the message “boom!”

Chapter 6 akka StreamS

71© Adam L. Davis 2019
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9_7

CHAPTER 7

Android and RxJava
RxAndroid, RxBinding, and RxLifecycle provide RxJava bindings for

Android. This makes using RxJava in an Android application much

easier.

Since the release of Android Studio 2.4, it has supported using

Java 8’s lambda syntax which we can make heavy use of in our RxJava-

related code.

RxBinding is an open source library of Java binding APIs for Android

UI widgets from the platform and support libraries.

For this chapter we’ll build a simple example application with

RxAndroid, RxBinding, RxLifecycle, and RxJava using Android Studio.

The code is available on GitHub.

 Getting Started
If you have not already, go download the latest Android Studio for your

operating system and install and run it. Once Android Studio has started,

perform the following steps to get started:

 1. Create a new project by selecting File ➤ New

Project from the menu and give it a name (such as

RxAndroidTest).

https://github.com/ReactiveX/RxAndroid
https://github.com/JakeWharton/RxBinding
https://github.com/trello/RxLifecycle
https://android-developers.googleblog.com/2017/04/java-8-language-features-support-update.html
https://github.com/adamldavis/RxAndroidTest
https://developer.android.com/studio/install

72

 2. Select 8.0 (Oreo) as the target version.

Chapter 7 android and rxJava

73

 3. When prompted, select “Login Activity” when it says

“Add an Activity to Mobile”.

 4. Then, click the module name on the left-hand side

(such as “app”), press F4, and then make sure your

Java version is set to at least 8 (allow lambdas).

Chapter 7 android and rxJava

74

After your project is started, add the required dependencies to your

build file (app/build.gradle):

implementation

 'io.reactivex.rxjava2:rxandroid:2.1.0'

implementation

 'io.reactivex.rxjava2:rxjava:2.2.2'

implementation

 'com.jakewharton.rxbinding2:rxbinding:2.1.1'

Because RxAndroid releases are few and far between, it is

recommended you also explicitly depend on RxJava’s latest version

for bug fixes and new features (see the RxJava GitHub for the latest 2.x

version).

Also, to enable Java 8 code style, you may need to add the following

under the “android” block of build.gradle:

compileOptions {

 sourceCompatibility '1.8'

 targetCompatibility '1.8'

}

 Android SDK
Before your project can be compiled, you need to have one or more

versions of Android Software Development Kit (SDK) installed.

To do this, choose the “File” menu then “Settings...” and then type in

“SDK” in the search box and select “Android SDK”. Make sure to install at

least one Android SDK and accept the license.

Chapter 7 android and rxJava

https://github.com/ReactiveX/RxJava/releases

75

 Android Schedulers
RxAndroid provides AndroidSchedulers which enables you to run on

Android-specific threads such as the main thread. For example:

Observable.just("one", "two", "three", "four")

 .observeOn(AndroidSchedulers.mainThread())

 .subscribe(each ->

 System.out.println(each.toUpperCase()));

This would run the actions of this Observable on Android’s main thread.

This is useful since updates to the UI should occur on the main thread.

To find out what thread your code is executing on, just use Thread.

currentThread().getName(). For example, we could replace the last line in the

preceding code with the following to print out the name of the current thread:

System.out.println(

 Thread.currentThread().getName())

Chapter 7 android and rxJava

76

You can also use AndroidSchedulers to create a Scheduler around any

arbitrary Looper. For example:

Looper looper = Looper.myLooper();

RxView.clicks(button)

 .observeOn(AndroidSchedulers.from(looper))

 .subscribe();

 RxBinding
Using RxBinding, you can easily turn Android UI events into RxJava

Observables. To start, add the following imports to LoginActivity.java:

import com.jakewharton.rxbinding2.view.*;

import com.jakewharton.rxbinding2.widget.*;

import io.reactivex.Observable;

For example, let’s take a button and subscribe to click events.

Open “LoginActivity.java” and find the line that starts with “Button

mEmailSignInButton”.

Find and comment out the following code:

Button mEmailSignInButton = (Button)

 findViewById(R.id.email_sign_in_button);

mEmailSignInButton.setOnClickListener(

 new OnClickListener() {

 @Override

 public void onClick(View view) {

 attemptLogin();

 }

});

Chapter 7 android and rxJava

77

This can be replaced using RxAndroid with the following:

Button button = (Button)

findViewById(R.id.email_sign_in_button);

RxView.clicks(button).subscribe(event -> {

 attemptLogin();

});

We can also observe text changes on an EditText, for example:

RxTextView.textChangeEvents(editText)

 .subscribe(e -> log(e.text().toString()));

Using these bindings, we can combine the Observables together in

different ways to achieve our final goal. For example, add the following

code:

Observable<TextViewTextChangeEvent>

 emailChangeObservable =

 RxTextView.textChangeEvents(mEmailView);

Observable<TextViewTextChangeEvent>

 passwordChangeObservable =

 RxTextView.textChangeEvents(mPasswordView);

// force-disable the button

button.setEnabled(false);

Disposable d = Observable.combineLatest(

 emailChangeObservable, passwordChangeObservable,

 (emailObservable, passwordObservable) -> {

 boolean emailCheck =

 emailObservable.text().length() >= 3;

 boolean passwordCheck =

 passwordObservable.text().length() >= 3;

 return emailCheck && passwordCheck;

}).subscribe(

 enabled -> button.setEnabled(enabled));

Chapter 7 android and rxJava

78

In this example, the submit button will only be clickable if both forms

have more than three characters each.

The Disposable instance above (d) holds a reference to the view, so

we must unsubscribe from the stream or cause it to terminate to prevent

memory leaks. This can be achieved in a consistent way using the

RxLifecycle library.

 RxLifecycle
RxLifecycle is an open source library for binding to lifecycle events of

Android components. This can be useful for dropping subscriptions and

avoiding memory leaks on destroy/pause events for example.

To get started with RxLifecycle, add the following dependencies to your

“build.gradle” file:

implementation 'com.trello.rxlifecycle2:rxlifecycle:2.2.2'

implementation

'com.trello.rxlifecycle2:rxlifecycle-android:2.2.2'

implementation

'com.trello.rxlifecycle2:rxlifecycle-components:2.2.2'

Next, add the following imports to your Activity:

import com.trello.rxlifecycle2.components.support\

 .RxAppCompatActivity;

Then change the LoginActivity to extend the “Rx” equivalent

(RxAppCompatActivity in this case):

public class LoginActivity extends RxAppCompatActivity

implements LoaderCallbacks<Cursor> {

Chapter 7 android and rxJava

https://github.com/trello/RxLifecycleRxAndroid

79

Finally, you can now use “compose” and RxLifecycle to bind a

sequence to the lifecycle events. For example:

@Override

public void onResume() {

super.onResume();

Observable<Long> mySequence = Observable.interval

(200, TimeUnit.MILLISECONDS);

mySequence

 .doOnNext(x -> System.out.println(

 "poll the server"))

 .observeOn(AndroidSchedulers.mainThread())

 .compose(bindToLifecycle())

 .subscribe();

}

Here “mySequence” could be any RxJava type such as Observable,

Flowable, Single, or Maybe. In this case, “Observable.interval” will emit a

value every 200 milliseconds.

RxLifecycle determines the appropriate time to end the sequence, for

example: if subscribing during START, it will terminate on STOP; if you

subscribe after PAUSE, it will terminate at the next destruction event.

RxLifecycle will then terminate the sequence when appropriate

with the following consequences depending on the type of the original

sequence:

• Observable, Flowable, and Maybe: Emits

onCompleted()

• Single and Completable: Emits onError(Cancellation

Exception)

In the preceding example, by putting the code in “onResume”, this

would cause our polling to take place after resume and stop upon a pause

event.

Chapter 7 android and rxJava

80

 Putting It Together
Let’s use RxLifecycle and RxAndroid to improve our code from earlier:

Observable.combineLatest(

 emailChangeObservable,

 passwordChangeObservable,

 (emailObservable, passwordObservable) -> {

 boolean emailCheck =

 emailObservable.text().length() >= 3;

 boolean passwordCheck =

 passwordObservable.text().length() >= 3;

 return emailCheck && passwordCheck; //1

})

.compose(bindToLifecycle()) //2

.observeOn(AndroidSchedulers.mainThread()) //3

.subscribe(

 enabled -> button.setEnabled(enabled)); //4

 1. We have the same “combineLatest” as before to

ensure both inputs have at least three characters.

 2. We use our RxActivity instance to bind to the

lifecycle so that our Observable will stop when

appropriate.

 3. We observe on the Android main thread.

 4. Finally, we subscribe to do what we want with the

stream, which is enable or disable to the “login”

button in this case.

Since we called “bindToLifecycle” within the “onCreate” method,

RxLifecycle will cause the sequence to terminate on the “opposite” action,

“onDestroy” in this case. This will release our reference to the email and

password view, preventing memory leaks.

Chapter 7 android and rxJava

81

 Using RxJava
Using basic RxJava operations, we can improve “noisy” data inputs to

prevent things like accidental double-clicks causing an action to occur

twice.

Using the “debounce” operator, we can delay an event action until a

stream is silent for a specified amount of time. For example, on the button

click, we can set a debounce of 500 milliseconds (half a second). This

would run the operation after the button is clicked and then not clicked for

half a second:

RxView.clicks(button).debounce(500,

 TimeUnit.MILLISECONDS)

Unlike debounce which delays the action, the “throttleFirst” operator

is used to prevent repeating events within a certain time interval after the

first event emitted. ThrottleFirst is useful when it comes to preventing

doubling actions when a button is repeatedly clicked, but still applying the

action on the first click. For example, use throttleFirst like the following:

RxView.clicks(button).throttleFirst(1,

 TimeUnit.SECONDS)

The preceding code would allow click events through filtering out any

clicks that happen within a second of the first one.

 Testing
To fully test our application, we should run a virtual system. Press

“Shift+F10” or click the “Run ➤ Run...” menu and select a phone type. You

will need to download a system image if you have not already by clicking

the “Create New Virtual Device” button and following the wizard. Select a

system image and click “Finish”.

Chapter 7 android and rxJava

82

There is much more involved in creating Android applications that is

out of the scope of this book.

To learn more, check out a good book or read the online

documentation from Google.

Chapter 7 android and rxJava

https://developer.android.com/docs/

83© Adam L. Davis 2019
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9_8

CHAPTER 8

Spring Boot and
Reactor
Spring Boot greatly simplifies creating a Spring-based application or

microservice.

It takes an opinionated approach with sensible defaults for everything

you might need and can get you quickly up and running. It uses

annotations (no XML needed) and no code generation.

With WebFlux, we can quickly create asynchronous, nonblocking,

and event-driven applications using HTTP or WebSocket connections.

Spring uses its own Reactive Streams implementation, Reactor (with

Flux and Mono), in many of its APIs. Of course, you can use another

implementation within your application, such as RxJava if you so choose.

In this chapter, we’ll take a look at implementing a full project using

Spring Boot, WebFlux, and Reactor with a MongoDB persistence layer.

 Getting Started
There are several ways to start a Spring Boot project. Among them are the

following:

 1. Go to the Spring Initializr and create a project

template from there. There are also tools like

Spring Tool Suite that take advantage of the spring

initializer from your IDE.

https://start.spring.io/

84

 2. Create your own Maven-based project.

 3. Create your own Gradle-based project.

For the purposes of this book, we will choose option three and create a

Gradle, Java-based project.

Spring Boot is highly customizable, and you can add whichever

“starters” you want for your project (web, mail, freemarker, security, etc.).

This makes it as lightweight as possible.

We’re going to create a WebFlux-based project that uses Spring’s

Reactor project along with MongoDB in order to have a fully reactive web

application.

The code for this project is available on GitHub at adamldavis/

humblecode.

 Gradle Plugin
The most basic Gradle build for Spring Boot with WebFlux looks

something like the following:

buildscript {

 ext {

 springBootVersion = '2.0.4’

 }

 repositories {

 mavenCentral()

 }

 dependencies {

 classpath("org.springframework.boot:spring-boot-gradle-

plugin:${springBootVersion}")

 }

}

apply plugin: 'org.springframework.boot'

Chapter 8 Spring Boot and reaCtor

https://github.com/adamldavis/humblecode
https://github.com/adamldavis/humblecode

85

apply plugin: 'io.spring.dependency-management'

apply plugin: 'groovy'

apply plugin: 'idea'

dependencies { //1

 compile('org.springframework.boot:spring-boot-starter-

webflux') //2

 compile('org.codehaus.groovy:groovy')

 compileOnly('org.projectlombok:lombok') //3

 compile('org.springframework.boot:spring-boot-starter-data-

mongodb- reactive') //4

 testCompile('org.springframework.boot:spring-boot-starter-

test') //5

 testCompile('io.projectreactor:reactor-test') //6

}

 1. The first thing you might notice is the lack of

versions specified; Spring Boot provides those for

you and ensures that everything is compatible

based on the version of Spring Boot specified. You

also don’t need to specify the main class. That is

determined through annotations.

 2. We include the “webflux” starter to enable Spring’s

WebFlux and “reactor-test” to allow us to test

Reactor-based code more easily.

 3. We’re including Project Lombok here just to simplify

the model classes. Lombok gives you annotations

that automatically generate boilerplate code like

getters and setters.

 4. Here we include the Spring Data start for using

MongoDB with Reactor integration.

Chapter 8 Spring Boot and reaCtor

86

 5. We include the “spring-boot-starter-test” artifact to

help with our testing of the application.

 6. We include “reactor-test” to make testing Reactor-

related code easier.

Keep in mind that for the back end to be completely reactive, our

integration with the database needs to be asynchronous. This is not

possible with every type of database. In this case we are using MongoDB.

At the time of writing, Spring provides reactive integrations “only”

for Redis, MongoDB, and Cassandra. You can do this by simply

switching “mongodb” for the database you want in the “starter” compile

dependency. There is an asynchronous driver available for PostgreSQL,

postgres-async-driver, so it might be supported in the future.

 Tasks
The Spring Boot plugin adds several tasks to the build.

To run the project, run “gradle bootRun” (which runs on port 8080 by

default). Look at the command line output to see useful information like

which port your application is running on. For example, the last four lines

might be something like the following:

2018-09-28 15:23:41.813 INFO 19132 --- [main]

o.s.j.e.a.AnnotationMBeanExporter : Registering beans for JMX

exposure on startup

2018-09-28 15:23:41.876 INFO 19132 --- [server-epoll-13]

r.ipc.netty.tcp.BlockingNettyContext : Started HttpServer on

/0:0:0:0:0:0:0:0%0:8003

2018-09-28 15:23:41.876 INFO 19132 --- [main]

o.s.b.web.embedded.netty.NettyWebServer : Netty started on

port(s): 8003

Chapter 8 Spring Boot and reaCtor

https://github.com/alaisi/postgres-async-driver

87

2018-09-28 15:23:41.879 INFO 19132 --- [main]

c.h.humblecode.HumblecodeApplication : Started

HumblecodeApplication in 3.579 seconds (JVM running for 4.029)

When you’re ready to deploy, run “gradle bootRepackage” which builds

a fat jar with everything you need to run the full application in one jar.

 SpringBootApplication
The main class is specified by annotating it with @SpringBootApplication.

For example, create a class named HumblecodeApplication and put it in

the com.humblecode package and put the following:

package com.humblecode;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.*;

import org.springframework.context.annotation.Bean;

import reactor.core.publisher.Flux;

@SpringBootApplication

public class HumblecodeApplication {

 public static void main(String[] args) { //1

 SpringApplication.run(

 HumblecodeApplication.class, args);

 }

 @Bean

 public Flux<String> exampleBean() { //2

 return Flux.just("example");

 }

}

Chapter 8 Spring Boot and reaCtor

88

 1. The main method calls SpringApplication.run to

start the application.

 2. Beans can be created directly using the @Bean

annotation on methods. Here we create a simple

Flux<String> of just one element.

The @SpringBootApplication annotation tells Spring a number of

things:

 1. To use auto-configuration.

 2. To use component scanning. It will scan all

packages and subpackages for classes annotated

with Spring annotations.

 3. This class is a Java-based configuration class, so you

can define beans here using the @Bean annotation

on a method that returns a bean.

 Auto-Configuration
Spring Boot considers the runtime of your application and automatically

configures your application based on many factors, such as libraries on the

classpath.

It follows the motto: “If everyone has to do it, then why does everyone

have to do it?”

For example, to create a typical MVC web app, you will need to add a

configuration class and multiple dependencies and configure a Tomcat

container. With Spring Boot, all you need to add is a dependency and

a controller class, and it will automatically add an embedded Tomcat

instance.

Chapter 8 Spring Boot and reaCtor

89

Configuration files can be defined as properties files, yaml, and other

ways. To start with, create a file named “application.properties” under “src/

main/resources” and add the following:

server.port=8003

app.name=Humble Code

This sets the server to run on port 8003 and sets a user-defined

property app.name which can be any value.

Later on you can add your own configuration classes to better

configure things like security in your application. For example, here’s the

beginning of a SecurityConfig class that would enable Spring Security in

your application:

@EnableWebFluxSecurity

public class SecurityConfig

Later on we’ll explore adding security to a WebFlux project.

 Our Domain Model
For this section, we will be implementing a very simple web site with a

RESTful API for online learning. Each course will have a price (in cents), a

name, and a list of segments.

We will use the following domain model Course class definition:

import lombok.AllArgsConstructor;

import lombok.Data;

import org.springframework.data.annotation.Id;

import org.springframework.data.mongodb.core.mapping.*;

import java.util.*;

@Data //1

@AllArgsConstructor

@Document //2

Chapter 8 Spring Boot and reaCtor

http://app.name

90

public class Course {

 @Id UUID id = UUID.randomUUID(); //3

 public String name;

 public long price = 2000; // $20.00 is default price

 public final List<Segment> segments = new ArrayList<>();

 public Course(String name) {this.name = name;}

}

 1. The first two annotations are Lombok annotations.

@Data tells Lombok to add getters and setters

for every field, a toString() method, equals and

hashCode() methods, and a constructor.

 2. The @Document annotation is the Spring Data

mongo annotation to declare this class represents a

mongo document.

 3. The @Id annotation denotes the id property of this

document.

After installing MongoDB, you can start it with the following command:

mongod –dbpath data/ --fork \

 --logpath ∼/mongodb/logs/mongodb.log

 ReactiveMongoRepository
First, we need to create an interface to our back-end database, in this case

MongoDB.

Using the spring-boot-starter-data-mongodb-reactive dependency

that we included, we can simply create a new interface that extends

ReactiveMongoRepository, and Spring will generate the code backing any

Chapter 8 Spring Boot and reaCtor

91

method we define using a standard naming scheme. By returning Reactor

classes, like Flux or Mono, these methods will automatically be reactive.

For example, we can create a repository for Courses :

import com.humblecode.humblecode.model.Course;

import org.springframework.data.mongodb.\

repository.ReactiveMongoRepository;

import reactor.core.publisher.Flux;

import java.util.UUID;

public interface CourseRepository extends

ReactiveMongoRepository<Course, UUID> { //1

Flux<Course> findAllByNameLike(String searchString); //2

Flux<Course> findAllByName(String name); //3

}

 1. The first generic type is the type this repository

stores (Course), and the second is the type of

Course’s ID.

 2. This method finds all Courses with the names that

match the given search String.

 3. This method finds all Courses with the given name.

If we were sure names are unique, we could have

used Mono<Course> findByName(String name).

Simply by extending the ReactiveMongoRepository interface, our

repository will have tons of useful methods such as findById, insert, and

save all returning Reactor types (Mono or Flux).

Chapter 8 Spring Boot and reaCtor

92

 Controllers
Next, we need to make a basic controller for rendering our view templates.

Annotate a class with @Controller to create a web controller. For

example:

import org.springframework.stereotype.Controller;

import org.springframework.ui.Model;

import org.springframework.web.bind.annotation.*;

@Controller

public class WebController {

 @GetMapping("/")

 public Mono<String> hello() {

 return Mono.just("home");

 }

}

As the preceding method returns the string “home” wrapped by a

Mono, it would render the corresponding view template (located under

src/main/resources/templates), if we have one; otherwise it would just

return the string itself.

The GetMapping annotation is identical to using @RequestMapping

(path = “/”, method = RequestMethod.GET).

By default a WebFlux-based Spring Boot application uses an

embedded Netty instance, although you can configure it to use Tomcat,

Jetty, or Undertow instead.

Using the embedded container means that container is just another

“bean” which makes configuration a lot easier. It can be configured using

“application.properties” and other application configuration files.

Next we’d like to add some initial data to our repository so

there’s something to look at. We can accomplish this by adding a

method annotated with @PostConstruct that only adds data to the

courseRepository when the count is zero:

Chapter 8 Spring Boot and reaCtor

93

@PostConstruct

public void setup() {

 courseRepository.count() //1

 .blockOptional() //2

 .filter(count -> count == 0) //3

 .ifPresent(it -> //4

 Flux.just(

 new Course("Beginning Java"),

 new Course("Advanced Java"),

 new Course("Reactive Streams in Java"))

 .doOnNext(c -> System.out.println(c.toString()))

 .flatMap(courseRepository::save) //5

 .subscribeOn(Schedulers.single()) //6

 .subscribe()

); //7

}

 1. Get the count from the CourseRepository (which

has the type Mono<Long>).

 2. Call “blockOptional()” which will block until the

Mono returns a value and converts the output to an

Optional<Long>.

 3. Keep the value only if it is zero.

 4. If it was zero, we create a Flux of three Course

objects we want to save.

 5. Map those Courses to the repository’s “save”

method using flatMap.

 6. Specify the Scheduler to use as Schedulers.single().

 7. Subscribe the Flux so it executes.

Chapter 8 Spring Boot and reaCtor

94

Here the code uses a mix of Java 8’s Optional interface with Reactor.

Note that we must call subscribe on a Flux or else it won’t ever execute. We

accomplish this here by calling subscribe() with no parameters.

 View Templates
In any Spring Boot project, we could use one of many view template

renderers. In this case we include the freemarker spring starter to our build

file under dependencies:

compile('org.springframework.boot:spring-boot-starter-

freemarker')

We put our templates under src/main/resources/templates. Here’s the

important part of the template file, home.ftl (some is left out for brevity):

<article id="content" class="jumbotron center"></article>

<script type="application/javascript">

jQuery(document).ready(HC.loadCourses);

</script>

This calls the corresponding JavaScript to get the list of Courses from

our RestController which we will define later. The loadCourses function is

defined something like the following:

jQuery.ajax({method: 'get',

 url: '/api/courses'}).done(//1

 function(list) { //2

 var ul = jQuery(

 '<ul class="courses btn-group">');

 list.forEach((crs) => { //3

 ul.append(

'<li class="btn-link" onclick="HC.loadCourse(\"+

 crs.id + '\'); return false">'

Chapter 8 Spring Boot and reaCtor

95

 + crs.name + ': <i>' + crs.price + '</i>')

 });

 jQuery('#content').html(ul); //4

}).fail(errorHandler); //5

 1. First we call our RESTful API, which we will define later.

 2. Since we’re using jQuery, it automatically

determines that the response is JSON and parses the

returned data.

 3. Using forEach we build an HTML list to display each

Course with a link to load each Course.

 4. We update the DOM to include the list we built.

 5. Here we specify the error handling function in case

anything goes wrong with the HTTP request.

Although we’re using jQuery here, we could have chosen any

JavaScript framework. For Spring Boot, JavaScript files should be stored at

src/main/resources/static/js.

 RESTful API
By default, Spring encodes data from a @RestController into JSON, so the

corresponding CourseControl is defined thusly:

import org.springframework.http.MediaType;

import org.springframework.web.bind.annotation.*;

import reactor.core.publisher.*;

import java.util.*;

@RestController

public class CourseControl {

 final CourseRepository courseRepository;

Chapter 8 Spring Boot and reaCtor

96

 public CourseControl(

 CourseRepository courseRepository) {

 this.courseRepository = courseRepository;

 }

 @GetMapping("/api/courses")

 public Flux<Course> getCourses() {

 return courseRepository.findAll();

 }

 @GetMapping("/api/course/{id}")

 public Mono<Course> getCourse(

 @PathVariable("id") String id) {

 return courseRepository.findById(

 UUID.fromString(id));

 }

}

Note how we can return Reactor data types like Flux directly from a

RestController since we are using WebFlux. This means that every HTTP

request will be nonblocking and use Reactor to determine the threads on

which to run your operations.

Now we have the ability to read Courses, but we also need the ability to

save and update them.

Since we’re making a RESTful API, we use @PostMapping to handle

HTTP POST for saving new entities and @PutMapping to handle PUT for

updating.

Here’s how the save method is set to consume a JSON map of values

(using a Map just to keep the code simple):

@PostMapping(value = "/api/course",

 consumes = MediaType.APPLICATION_JSON_VALUE)

public Mono<Course> saveCourse(

 @RequestBody Map<String,Object> body) {

 Course course = new Course((String)

Chapter 8 Spring Boot and reaCtor

97

 body.get("name"));

 course.price = Long.parseLong(

 body.get("price").toString());

 return courseRepository.insert(course);

}

Note that the insert method returns a Reactor Mono instance. As you

may recall, a Mono can only return one instance or fail with an error.

The corresponding JavaScript code will be similar to the previous

example except the ajax call will be more like the following (assuming

“name” and “price” are ids of inputs):

var name = jQuery('#name').val();

var price = jQuery('#price').val();

jQuery.ajax({method: 'post', url: '/api/course/',

data: {name: name, price: price}})

Here’s the update method which will be activated by a PUT request

using the given “id” and also expecting a JSON map of values:

@PutMapping(value = "/api/course/{id}",

 consumes = MediaType.APPLICATION_JSON_VALUE)

public Mono<Course> updateCourse(

 @RequestParam("id") String id,

 @RequestBody Map<String,Object> body) {

 Mono<Course> courseMono = courseRepository

 .findById(UUID.fromString(id));

 return courseMono.flatMap(course -> {

 if (body.containsKey("price"))

 course.price =

Long.parseLong(

 body.get("price").toString());

Chapter 8 Spring Boot and reaCtor

98

 if (body.containsKey("name")) course.name=

 (String) body.get("name");

 return courseRepository.save(course);

 });

}

Note how we use flatMap here to update the course and return the

result of the save method which also returns a Mono. If we had used map,

the return type would be Mono<Mono<Course>>. By using flatMap we

“flatten” it to just Mono<Course> which is the return type we want here.

 Further Configuration
In a real application, we will most likely want to override many of the

default configurations for our application. For example, we will want to

implement custom error handling and security.

First, to customize WebFlux, we add a class that extends

WebFluxConfigurationSupport and is annotated with @EnableWebFlux

(here the class is named WebFluxConfig, but it could be named anything).

Adding that annotation not only tells Spring Boot to enable WebFlux but

also to look at this class for extra configuration. For example:

import org.springframework.http.HttpStatus;

import org.springframework.web.reactive.config.*;

import org.springframework.web.server.*;

import reactor.core.publisher.Mono;

@EnableWebFlux

public class WebFluxConfig extends WebFluxConfigurationSupport

{

 @Override

 public WebExceptionHandler

 responseStatusExceptionHandler() {

Chapter 8 Spring Boot and reaCtor

99

 return (exchange, ex) -> Mono.create(

 callback -> {

 exchange.getResponse().setStatusCode(

 HttpStatus.I_AM_A_TEAPOT);

 System.err.println(ex.getMessage());

 callback.success(null);

 });

 }

}

Here we override the responseStatusExceptionHandler to set the

status code to 418 (I’m a teapot) which is an actual HTTP status code that

exists. There are many methods that you can override to provide your own

custom logic.

Finally, no application would be complete without some form of

security. First make sure to add the Spring Security dependency to your

build file:

compile('org.springframework.boot:spring-boot-starter-

security')

Next, add a class and annotate it with EnableWebFluxSecurity from the

“org.springframework.security.config.annotation.web.reactive” package

and define beans as follows:

@EnableWebFluxSecurity //1

public class SecurityConfig {

 @Bean

 public SecurityWebFilterChain

 springSecurityFilterChain(ServerHttpSecurity http){

 http

 .authorizeExchange()

 .pathMatchers("/api/**", "/css/**",

 "/js/**", "/images/**", "/")

Chapter 8 Spring Boot and reaCtor

https://en.wikipedia.org/wiki/Hyper_Text_Coffee_Pot_Control_Protocol

100

 .permitAll() //2

 .pathMatchers("/user/**")

.hasAuthority("user") //3

 .and()

 .formLogin();

 return http.build();

 }

 @Bean

 public MapReactiveUserDetailsService

 userDetailsService(

 userRepository) {

 List<UserDetails> userDetails =

 new ArrayList<>();

 userDetails.addAll(

 userRepository.findAll().collectList()

 .block());//4

 return new

MapReactiveUserDetailsService(

 userDetails);

 }

 @Bean

 public PasswordEncoder myPasswordEncoder() { //5

 // never do this in production of course

 return new PasswordEncoder() {

 /*plaintext encoder*/};

 }

}

Chapter 8 Spring Boot and reaCtor

101

 1. This annotation tells Spring Security to secure your

WebFlux application.

 2. We define what paths are allowed to all users using

the ant-pattern where “**” means any directory or

directories. This allows everyone access to the main

page and static files.

 3. Here we make sure that a user must be logged in to

reach any path under the “/user/” path.

 4. This line converts all users from the UserRepository

into a List. This is then passed to the

MapReactiveUserDetailsService which provides

users to Spring Security.

 5. You must define a PasswordEncoder. Here we define

a plain-text encoding just for demo purposes. In a real

system, you should use a StandardPasswordEncoder

or, even better, BcryptPasswordEncoder.

The UserRepository would be defined as follows:

public interface UserRepository extends

 ReactiveMongoRepository<User, UUID> {}

Chapter 8 Spring Boot and reaCtor

102

 Testing
Spring Boot provides thorough built-in support for testing. For example,

annotating a JUnit test class with @RunWith(SpringRunner.class) and @

SpringBootTest, we can run integration tests with our entire application

running as follows:

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.context.SpringBootTest;

import org.springframework.boot.test.context.\

 SpringBootTest.WebEnvironment;

import org.springframework.boot.test.web.client.\

 TestRestTemplate;

import org.springframework.http.*;

import org.springframework.test.context.junit4.SpringRunner;

import java.util.Arrays;

import static org.assertj.core.api.Assertions.assertThat;

@RunWith(SpringRunner.class)

@SpringBootTest(webEnvironment =

 WebEnvironment.RANDOM_PORT)

public class HumblecodeApplicationTests {

 @Autowired

 private TestRestTemplate testRestTemplate;

 @Test

 public void testFreeMarkerTemplate() {

 ResponseEntity<String> entity = testRestTemplate.

getForEntity("/", String.class);

Chapter 8 Spring Boot and reaCtor

103

 assertThat(entity.getStatusCode())

 .isEqualTo(HttpStatus.OK);

 assertThat(entity.getBody())

 .contains("Welcome to");

 }

This simple test boots up our Spring Boot application and verifies that

the root page returns with HTTP OK (200) status code and the body contains

the text “Welcome to”. Using “webEnvironment = WebEnvironment.

RANDOM_PORT” specifies that the Spring Boot application should pick a

random port to run locally on every time the test is run.

We can also test the main function of our application such as the ability

to get a list of courses in JSON like the following test demonstrates:

@Test public void testGetCourses() {

 HttpHeaders headers = new HttpHeaders();

 headers.setAccept(

 Arrays.asList(MediaType.APPLICATION_JSON));

 HttpEntity<String> requestEntity =

 new HttpEntity<>(headers);

 ResponseEntity<String> response = testRestTemplate

 .exchange("/api/courses", HttpMethod.GET,

 requestEntity, String.class);

 assertThat(response.getStatusCode())

 . isEqualTo(HttpStatus.OK);

 assertThat(response.getBody())

 .contains("\"name\":\"Beginning Java\",\"price\":2000");

}

Chapter 8 Spring Boot and reaCtor

105© Adam L. Davis 2019
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9_9

CHAPTER 9

Akka HTTP and Akka
Streams
When considering which library or framework to use to create a web

application making use of Akka Streams, there are many things to choose

from, Play Framework, Apache Camel, or Akka HTTP among others. For

this chapter, we’ll focus on using Akka HTTP. The Akka HTTP server is

implemented on top of Akka Streams and makes heavy use of it.

Akka HTTP has been driven with a clear focus on providing
tools for building integration layers rather than application
cores. As such it regards itself as a suite of libraries rather than
a framework.

–Akka HTTP Docs

Akka HTTP takes an unopinionated approach and prefers to be seen as

a set of libraries rather than a framework. Although this can make it more

difficult to get started, it allows the developer more flexibility and a clear

view of everything that’s happening. There’s no “magic” behind the scenes

that makes it work.

Akka HTTP has support for the following:

• HTTP: Akka HTTP implements HTTP/1.1 including

persistent connections and client connection pooling.

• HTTPS is supported through the facilities that Java

provides.

https://doc.akka.io/docs/akka-http/current/introduction.html

106

• WebSocket: Akka HTTP implements WebSocket on

both the server side and the client side.

• HTTP/2: Akka HTTP provides server-side HTTP/2

support.

• Multipart: Akka HTTP has modeled multipart/*

payloads. It provides streaming multipart parsers and

renderers, e.g., for parsing file uploads, and provides a

typed model to access details of such a payload.

• Server-sent events (SSE): Supported through

marshalling that will provide or consume an (Akka

Stream based) stream of events.

• JSON: Marshalling to and from JSON is supported out

of the box for Jackson-based models in Java.

• Gzip and Deflate Content-Encoding.

It also has a testing library to assist with testing.

For our example project, we’ll use Akka HTTP along with Akka Streams

and WebSockets to create a real-time chatbot web server with a fake

repository.

 Getting Started
Although you can use SBT (Scala’s build tool), Maven, or many other build

tools, here we’re using Gradle.

Start by creating a build file named “build.gradle” with the following

contents:

apply plugin: 'java' //1

apply plugin: 'eclipse'

apply plugin: 'idea'

apply plugin: 'application'

Chapter 9 akka http and akka StreamS

https://github.com/adamldavis/akka-http-java

107

group = 'com.github.adamldavis'

applicationName = 'akka-http-java' //2

version = '0.0.1-SNAPSHOT'

mainClassName = 'com.github.adamldavis.akkahttp.WebApp' //3

// requires Gradle 4.7+

sourceCompatibility = 1.10 //4

targetCompatibility = 1.10

repositories {

 mavenCentral()

}

ext {

 akkaHttpVersion = '10.1.5' //5

 akkaVersion = '2.5.12'

}

dependencies {

 compile "com.typesafe.akka:akka-http_2.12:$akkaHttpVersion" //6

 compile "com.typesafe.akka:akka-http- jackson_2.12:

$akkaHttpVersion"

 compile "com.typesafe.akka:akka-stream_2.12:$akkaVersion"

 testCompile "com.typesafe.akka:akka-http- testkit_2.12:

$akkaHttpVersion"

 testCompile "com.typesafe.akka:akka-stream- testkit_2.12:

$akkaVersion"

 testCompile 'junit:junit:4.12'

 testCompile "org.assertj:assertj-core:3.11.1"

}

 1. Specify plugins.

 2. Set the application’s name.

 3. Set the main class with the static void main method

to run.

Chapter 9 akka http and akka StreamS

108

 4. Set the Java version to 10.

 5. Set variables for versions of Akka HTTP and Akka

to use.

 6. Specify all the dependencies necessary for this

project, including the akka-http-testkit, akka-

stream-testkit, junit, and assertj for tests.

Then create a class, named WebApp, and start with the following

imports:

import akka.NotUsed;

import akka.actor.ActorSystem;

import akka.http.javadsl.ConnectHttp;

import akka.http.javadsl.Http;

import akka.http.javadsl.ServerBinding;

import akka.http.javadsl.model.*;

import akka.http.javadsl.server.*;

import akka.stream.ActorMaterializer;

import akka.stream.javadsl.Flow;

import akka.stream.javadsl.Source;

import akka.util.ByteString;

Next, make the class extend AllDirectives to enable the Java DSL and

add a main method like the following:

public static void main(String[] args) {

 ActorSystem system = ActorSystem.create("routes");//1

 final Http http = Http.get(system); //2

 final ActorMaterializer materializer =

 ActorMaterializer.create(system);

 var app = new WebApp(); //3

Chapter 9 akka http and akka StreamS

109

 final Flow<HttpRequest, HttpResponse, NotUsed>

 routeFlow = app.joinedRoutes()

 .flow(system, materializer);

 final CompletionStage<ServerBinding> binding =

 http.bindAndHandle(routeFlow,

 ConnectHttp.toHost("localhost", 5010),

 materializer); //4

 System.out.println("Server online at http://localhost:5010/\

nUse Ctrl+C to stop");

 // add shutdown Hook to terminate system:

 Runtime.getRuntime().addShutdownHook(new Thread(() -> { //5

 System.out.println("Shutting down...");

 binding.thenCompose(ServerBinding::unbind)

 .thenAccept(unbound -> system.terminate());

 }));

}

 1. Create the ActorSystem for this application.

 2. Using that system, create an instance of Http, which

is the Akka HTTP server.

 3. In order to access all directives, we need an instance

where the routes are defined.

 4. Boot up server, binding it to port 5010 on localhost

and using the routeFlow defined in the preceding

code.

 5. Finally, we add a shutdown hook that unbinds the

server and shuts down the ActorSystem.

To run the application, simply use the command “gradle run” at the

command line.

Chapter 9 akka http and akka StreamS

110

 Routes
Routes can be defined using the server DSL, with simple names like

“route”, “path”, and “get”. The first path matched in your route will cause

your handler for that route to be run. If no routes are matched, then a

response with HTTP Status 404 (not found) will be returned by default.

For example, the following method defines a route that matches “/hello”:

private Route createHelloRoute() {

 return route(

 path("hello", () ->

 get(() ->

 complete(HttpEntities.create(

 ContentTypes.TEXT_HTML_UTF8,

 "<h1>Say hello to akka-http</h1>"))

)));

}

This route simply returns a simple HTML entity as seen in the

preceding code. We create the HttpEntity by calling HttpEntities.create

with a ContentType and String. The “complete” method signifies that

the response is completed by the given parameter and is overloaded to

take in many different values such as String, StatusCode, HttpEntity, or

HttpResponse. It also has a variety with an additional parameter of type

Iterable<HttpHeader> to specify the headers of the response. Here we are

using the complete(HttpEntity) variety.

The HttpEntities.create method is also overloaded to take a String,

ByteString, byte array, path, file, or an Akka Stream Source<ByteString, ?>.

We can test out the route by running our application and then using

the “curl localhost:5010/hello” command. We should get the following

output:

<h1>Say hello to akka-http</h1>

Chapter 9 akka http and akka StreamS

111

Routes can be combined into a single route using the overloaded

“route” method allowed for composition of routes. For example:

private Route joinedRoutes() {

 return route(createHelloRoute(),

 createRandomRoute(),

 createWebsocketRoute());

}

Here we provide a route combining three routes we define.

Since Akka HTTP is built on top of Akka Streams, we can provide an

infinite stream of bytes to any route. Akka HTTP will use HTTP’s built-in

rate-limiting specification to provide a stream at constant memory use.

The following method provides a stream of random numbers for requests

on path “/random”:

private Route createRandomRoute() {

 final Random rnd = new Random();

 Source<Integer, NotUsed> numbers = //1

 Source.fromIterator(() ->

 Stream.generate(rnd::nextInt).iterator());

 return route(

 path("random", () ->

 get(() ->

 complete(

 HttpEntities.create(

 ContentTypes.TEXT_PLAIN_UTF8,

 numbers.map(x ->

 ByteString.fromString(x + "\n")))) //2

)));

}

Chapter 9 akka http and akka StreamS

112

 1. Here we use Stream.generate to generate an infinite

stream of bytes and then use Source.fromIterator to

convert it into a Source.

 2. Transform each number into a chunk of bytes using

ByteString.

We can test this route using the command “curl --limit-rate 1k

127.0.0.1:5010/random” while the application is running (limits the

download rate to 1 kilobyte/second).

 WebSockets
Lastly, we can create a WebSocket handling route using

“handleWebSocketMessages” like so:

public Route createWebsocketRoute() {

 return path("greeter", () ->

 handleWebSocketMessages(

 WebSocketExample.greeter())

);

}

The “greeter” method in WebSocketExample defines a handler that

treats incoming messages as a name and responds with a greeting to

that name:

public static

Flow<Message, Message, NotUsed> greeter() {

 return Flow.<Message>create()

 .collect(new JavaPartialFunction<>() {

 @Override

 public Message apply(Message msg,

 boolean isCheck) {

Chapter 9 akka http and akka StreamS

113

 if (isCheck) {

 if (msg.isText()) return null;

 else throw noMatch();

 } else {

 return handleTextMessage(

 msg.asTextMessage());

 }

 }});

}

public static TextMessage

 handleTextMessage(TextMessage msg) {

 if (msg.isStrict()) {

 return TextMessage.create("Hello " +

 msg.getStrictText());

 } else {

 return TextMessage.create(Source.single(

 "Hello ").concat(msg.getStreamedText()));

 }

}

The important thing to know about JavaPartialFunction is that it can

be called multiple times with isCheck as true or false. If isCheck is true, it is

simply checking if your JavaPartialFunction handles the given type, that’s

why we “throw noMatch()” if the message is not of the TextMessage type

(isText returns false).

Testing WebSockets is more complicated because of the complex

WebSocket protocol. Next, we’ll build a chat application to demonstrate

WebSockets in action.

Chapter 9 akka http and akka StreamS

114

 Our Domain
For this example application, we’ll build a simple chat server. The core

domain model is the ChatMessage as follows:

import com.fasterxml.jackson.annotation.JsonCreator;

import com.fasterxml.jackson.annotation.JsonProperty;

public class ChatMessage {

 final String username;

 final String message;

 @JsonCreator

 public ChatMessage(

 @JsonProperty("username") String username,

 @JsonProperty("message") String message) {

 this.username = username;

 this.message = message;

 }

 // toString, equals, and hashCode omitted for

 // brevity

 public String getUsername() { return username; }

 public String getMessage() { return message; }

}

This ChatMessage object is immutable and simply holds the values of

the username and message.

We’re going to use Jackson for converting to and from JSON, so we’ve

got some annotations to allow this to happen.

Chapter 9 akka http and akka StreamS

115

 Our Repository
For demo purposes, our repository won’t actually save but will merely

imitate a long-running operation and print out the message that was

saved. Its code is as follows:

import java.util.concurrent.*;

public class MessageRepository {

 public CompletionStage<ChatMessage> save(

 ChatMessage message) {

 return CompletableFuture.supplyAsync(() -> {

 try { Thread.sleep(500); }

 catch (InterruptedException e)

 { e.printStackTrace(); }

 System.out.println("saving message: " + message);

 return message; });

 }

}

It uses Java’s CompletableFuture to perform an asynchronous action

and sleeps for half a second within that action. In a real application, we’d

want to save ChatMessages to some sort of database which potentially

would take some time blocking.

 ChatServer
The main entry point of the chat server will be the ChatServer class.

It starts with the following imports:

akka.NotUsed;

akka.actor.ActorSystem;

akka.http.javadsl.model.ws.Message;

Chapter 9 akka http and akka StreamS

116

akka.http.javadsl.model.ws.TextMessage;

akka.japi.JavaPartialFunction;

akka.stream.*;

akka.stream.javadsl.*;

com.fasterxml.jackson.databind.ObjectMapper;

org.reactivestreams.Publisher;

java.util.concurrent.*;

For brevity we’ll skip the fields since they can be derived from the

constructor. The ChatServer constructor makes some very important

initializations that we’ll use to propagate the ChatMessages between the

clients:

public ChatServer(ActorSystem actorSystem) {

 parallelism =

 Runtime.getRuntime().availableProcessors(); //1

 this.actorSystem = actorSystem;

 materializer = ActorMaterializer.create(

 actorSystem); //2

 var asPublisher = Sink.<ChatMessage>asPublisher(

 AsPublisher.WITH_FANOUT); //3

 var publisherSinkPair =

 asPublisher.preMaterialize(materializer);

 publisher = publisherSinkPair.first();

 sink = publisherSinkPair.second();

 mergeHub = MergeHub.of(ChatMessage.class,

 BUFFER_SIZE).to(sink); //4

 mergeSink = mergeHub.run(materializer);

}

Chapter 9 akka http and akka StreamS

117

 1. Here we initialize an int property, parallelism, using

Java’s built-in Runtime class. We set it to the number

of available processors since that will allow us to

take advantage of every processor in our parallel

processing.

 2. Create the ActorMaterializer.

 3. For brevity we are using Java 10’s “var” here as

the full type is very long. Using the static method

“asPublisher” on Sink creates a Sink that can also act

as org.reactivestreams.Publisher. By default it would

only allow one subscriber, so use WITH_FANOUT

to allow multiple. We must call preMaterialize to get

access to the actual instances of Publisher and Sink.

 4. Since we want multiple clients to push

ChatMessages into one sink, we must use

MergeHub. Much like the previous step, you must

run the MergeHub with a materializer to gain access

to the Sink instance.

 MergeHub and Publisher
Although it may seem complex, all we’ve done here using MergeHub and

asPublisher is allow for multiple Flows to use the same Sink that in turn

pushes to an instance of Publisher.

In this way we can have every new WebSocket connection post into

one Sink and subscribe to one central Publisher, as we will see next.

Chapter 9 akka http and akka StreamS

118

 The WebSocket Flow
For our chat-server application, we need to create a main flow. We define

it similar to before (with the addition of a Graph) with the following code

(some left out for brevity):

public Flow<Message, Message, NotUsed> flow() {

Flow<Message, ChatMessage, NotUsed> savingFlow =

 Flow.<Message>create() //1

 .buffer(BUFFER_SIZE, OverflowStrategy.backpressure())

 .collect(new

 JavaPartialFunction<Message,

 CompletionStage<ChatMessage>>() {

 @Override

 public CompletionStage<ChatMessage>

 apply(Message msg, boolean isCheck) {

 if (msg.isText()) {

 TextMessage textMessage = msg.asTextMessage();

 return storeMessageFromContent(

 CompletableFuture.completedFuture(

 textMessage.getStrictText()));

 } else if (isCheck)

 throw noMatch();

 return CompletableFuture.completedStage(

 new ChatMessage(null, null));

 }

 })

 .mapAsync(parallelism, stage -> stage) // 2

 .filter(m -> m.username != null);

final Graph<FlowShape<Message,Message>, NotUsed>graph = //3

Chapter 9 akka http and akka StreamS

119

 GraphDSL.create(builder -> {

 final FlowShape<ChatMessage, Message>

 toMessage = //4

 builder.add(Flow.of(ChatMessage.class)

 .map(jsonMapper::writeValueAsString)

 .async()

 .map(TextMessage::create));

 Inlet<ChatMessage> sinkInlet =

 builder.add(mergeSink).in(); //5

 Outlet<ChatMessage> publisherOutput = builder

 .add(Source.fromPublisher(publisher)).out();

 FlowShape<Message, ChatMessage> saveFlow =

 builder.add(savingFlow);

 builder.from(saveFlow.out()).toInlet(sinkInlet);//6

 builder.from(publisherOutput)

 .toInlet(toMessage.in()); // 7

 return new FlowShape<>(saveFlow.in(),

 toMessage.out()); // 8

 });

return Flow.fromGraph(graph);

}

 1. Create the Flow. The type declaration describes

that the Flow takes in a Message and outputs a

ChatMessage and does not use the supplementary

data type. We add a buffer with given size, BUFFER_

SIZE, which could be as big as our system’s memory

could handle. Within the JavaPartialFunction, call

storeMessageFromContent which we will define later.

 2. Unwrap the CompletionStage<ChatMessage> using

mapAsync. This call allows the database saves to

be run in parallel using parallelism number of

concurrent threads.

Chapter 9 akka http and akka StreamS

120

 3. Use the GraphDSL to create a FlowShape. This

Graph will use the preceding savingFlow to save all

ChatMessages and put them into the mergeSink, but

use the output from the ChatServer’s Publisher so

that every client gets every ChatMessage.

 4. Create the toMessage FlowShape which converts a

ChatMessage to JSON then wraps it in a TextMessage.

 5. Create the “sinkInlet” by adding the mergeSink to

the Graph’s builder. Also create “publisherOutput”

and “saveFlow” in a similar way.

 6. Connect the saveFlow’s output to the sinkInlet.

 7. Connect the publisherOutput to the toMessage’s

Inlet.

 8. Define FlowShape using the Inlet of saveFlow and

the Outlet of the toMessage Flow.

The helper methods (and fields) such as “storeMessageFromContent”

are defined as follows:

private Flow<String, ChatMessage, NotUsed> parseContent() { //1

 return Flow.of(String.class)

 .map(line -> jsonMapper.readValue(line,

 ChatMessage.class));

}

private Sink<ChatMessage, CompletionStage<ChatMessage>>

storeChatMessages() {

 return Flow.of(ChatMessage.class)

 .mapAsyncUnordered(parallelism,

 messageRepository::save) //2

 .toMat(Sink.last(), Keep.right()); //3

}

Chapter 9 akka http and akka StreamS

121

CompletionStage<ChatMessage> storeMessageFromContent(

 CompletionStage<String> content) {

 return Source.fromCompletionStage(content) //4

 .via(parseContent())

 .runWith(storeChatMessages(),

 materializer) //5

 .whenComplete((message, ex) -> { //6

 if (message != null) System.out

 .println("Saved message: "+message);

 else { ex.printStackTrace(); }

 });

}

final MessageRepository messageRepository =

 new MessageRepository();

final ObjectMapper jsonMapper =

 new ObjectMapper(); //7

 1. The method parseContent returns a Flow that

converts Strings to instances of ChatMessage using

Jackson’s ObjectMapper, jsonMapper, we define

later.

 2. The method storeChatMessages returns a Sink that

uses mapAsyncUnordered and the save method

on messageRepository (allowing saves to occur in

parallel and in any order).

 3. This line materializes the Flow into a Sink that keeps

only the last element input. This works since it’s only

given a single element.

 4. The method storeMessageFromContent starts

by creating a Source<String> from the given

CompletionStage<String>.

Chapter 9 akka http and akka StreamS

122

 5. Then, using via(Flow), it converts that String into a

ChatMessage.

 6. Finally, it uses whenComplete to print out each

message that was saved and handles any errors.

Although here we just print the stack trace, in a

production system, you should either use logging or

something else to recover from errors.

 7. Create a singleton MessageRepository and

ObjectMapper for converting ChatMessages to and

from JSON.

We also update the “createWebsocketRoute” method in WebApp to use

our new Flow:

return path("chatws", () ->

 handleWebSocketMessages(chatServer.flow())

);

 The Web Client
For the end user to use our WebSocket, we’ve got to have some kind of

front end. For this purpose, we create an “index.html” file under “src/

main/resources/akkahttp” with the following content:

<!DOCTYPE html>

<html>

<head>

<title>Hello Akka HTTP!</title>

<script>

var webSocket =

 new WebSocket("ws://localhost:5010/chatws"); //1

function submitChat() {

Chapter 9 akka http and akka StreamS

123

 var msg = { // 2

 username: document.getElementById("u").value,

 message: document.getElementById("m").value

 };

 webSocket.send(JSON.stringify(msg)); //3

 document.getElementById("m").value = ""; //4

}

webSocket.onmessage = function (event) { //5

 console.log(event.data);

 var content = document.getElementById("content");

 content.innerHTML = content.innerHTML

 + '
' + event.data;

}

</script>

</head>

<body>

 <form> <!--6-->

 Username:<input type="text" id="u"

 name="username">

 Message: <input type="text" id="m"

 name="message">

 <input type="button" value="Submit"

 onclick="submitChat()">

 </form>

<div id="content"></div>

</body>

</html>

 1. Create the WebSocket connection.

 2. Within our “submitChat” function, construct an

object named “msg” with a username and message.

 3. Send the msg object as a JSON-formatted string.

Chapter 9 akka http and akka StreamS

124

 4. Blank the message input element to communicate

to the user that the message was sent and allow a

new one to be entered.

 5. Define the onmessage event handler of the

WebSocket that will append chat messages to

the page.

 6. Finally, we create the form for the user’s input.

Although this is a very simple interface, it is merely to demonstrate

the powerful back end. With this simple chat server, we could handle

thousands of users at one time.

In a real application, you would improve the interface and add error

handling and other features like search, chat rooms, and security.

We also need to update the route to serve this file. Update the

createHelloRoute method with the following:

final Source<String,NotUsed> file =

 Source.single("/akkahttp/index.html");

return route(

 path("hello", () ->

 get(() ->

 complete(

 HttpEntities

 .create(ContentTypes.TEXT_HTML_UTF8,

 file.map(f ->

 WebApp.class.getResourceAsStream(f)) //1

 .map(stream -> stream.readAllBytes()) //2

 .map(bytes -> ByteString.fromArray(bytes))))//3

)));

Chapter 9 akka http and akka StreamS

125

 1. Read the file from the classpath using

getResourceAsStream.

 2. Read all of the bytes from the file using Java’s

InputStream’s readAllBytes method.

 3. Convert the byte array into a ByteString for

Akka HTTP.

You can test out the application by running WebApp and visiting

“http://localhost:5010/hello” in several browsers.

 Testing
In addition to our standard Akka HTTP and Akka Streams imports, we add

the following imports:

akka.testkit.javadsl.TestKit;

akka.util.ByteString;

com.github.adamldavis.akkahttp.*;

org.junit.*;

java.util.*;

java.util.concurrent.*;

static org.assertj.core.api.Assertions.assertThat;

The core of our ChatServerTest class is the following setup and

teardown:

ChatServer chatServer;

ActorSystem actorSystem;

ActorMaterializer materializer;

@Before

public void setup() {

 actorSystem = ActorSystem.create("test-system"); //1

Chapter 9 akka http and akka StreamS

126

 chatServer = new ChatServer(actorSystem);//2

 materializer = ActorMaterializer.create(actorSystem);//3

}

@After

public void tearDown() {

 TestKit.shutdownActorSystem(actorSystem);//4

}

 1. Before each test we do the following: Create the

ActorSystem.

 2. Create the ChatServer.

 3. Create a ActorMaterializer that we will use for tests.

 4. After each test we use the Akka TestKit to shut down

the TestKit ActorSystem.

Then we define a test like the following test that simply ensures that a

ChatMessage gets copied to the Flow’s output as a TextMessage encoded in

JSON:

@Test

public void flow_should_copy_messages()

throws ExecutionException, InterruptedException {

 final Collection<Message> list = new

 ConcurrentLinkedDeque<>(); //1

 Flow<Message, Message, NotUsed> flow = chatServer.flow(); //2

 assertThat(flow).isNotNull();

 List<Message> messages =

 Arrays.asList(TextMessage.create(jsonMsg(0))); //3

 Graph<SourceShape<Message>, ?> testSource =

 Source.from(messages);

 Graph<SinkShape<Message>, CompletionStage<Done>>

 testSink = Sink.foreach(list::add); //4

Chapter 9 akka http and akka StreamS

127

 CompletionStage<Done> results = flow.runWith(testSource,

 testSink, materializer).second(); //5

 try {

 results.toCompletableFuture().get(2, TimeUnit.SECONDS); //6

 } catch (TimeoutException te) {

 System.out.println("caught expected: " +

 te.getMessage());

 }

 Iterator<Message> iterator = list.iterator();

 assertThat(list.size()).isEqualTo(1);

 assertThat(iterator.next()

 .asTextMessage().getStrictText())

 .isEqualTo("{\"username\":\"foo\",”+

 “\"message\":\"bar0\"}"); //7

}

static final String jsonMsg(int i) {

 return "{\"username\": \"foo\", \"message\": \"bar"

 + i + "\"}";

}

 1. Create a ConcurrentLinkedDeque (named list)

to save the messages to avoid any multithreading

issues (this might be overkill).

 2. Call flow() to get the WebSocket Flow we want

to test.

 3. Create a single TextMessage with a JSON-encoded

chat message. Although we just create one here,

in other tests we could create many using

Source.range and then map like the following:

Source.range(1, 100).map(i -> TextMessage.

create(jsonMsg(i))).

Chapter 9 akka http and akka StreamS

128

 4. Create the testSink which adds each message to our

previously defined list.

 5. Call flow.runWith with a source, sink, and

materializer. This is where the Flow under test is

initiated.

 6. We must call toCompletableFuture().get on our

CompletionStage with a timeout in order to

reconnect the current Thread with the test results.

Otherwise, it would keep running forever since the

underlying Publisher (backed by MergeHub and

Sink.asPublisher) has no defined stopping point.

 7. Assert that the output TextMessage is encoded to

JSON as expected.

The full code on GitHub has many more tests, but this should give you

a good idea of how to test an Akka HTTP-based project.

Chapter 9 akka http and akka StreamS

129© Adam L. Davis 2019
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9_10

CHAPTER 10

Conclusions
There are many ways one might compare different programming libraries,

many of them subjective. Ask ten different programmers and you might get

ten different answers.

You might compare libraries’ ease of use, size of community,

popularity of jobs, flexibility, performance, or some high concept

like completeness or cohesiveness, or many other ways. If you do

look at performance, keep in mind there are infinite ways to compare

performance, and any differences may very well be due to the

programmer’s limited understanding of these libraries. For the purposes of

this book, we will take a short look at each library’s unique strengths.

 RxJava
RxJava has the benefit of being part of the larger Rx project. If developers

are familiar with RxJS, for example, it might be much easier to move to

RxJava. It also seems to be the only Reactive Streams library with popular

existing open source libraries for building Android applications.

130

 Reactor
Project Reactor is part of the larger Spring Framework suite of libraries.

For this reason, it may be more familiar to those who already use Spring,

and it has good integration with other projects like Spring Data. With

Spring WebFlux, we can very easily create a nonblocking, asynchronous

application with a backing MongoDB, Redis, or Cassandra database.

 Akka Streams
Akka Streams has the benefit of being part of the larger Akka project. It

also has great support in the Scala language. So developers familiar with

Scala or Akka in general might find it much easier to work with. It also

has the unique concept of Graphs. With Graphs and the related DSLs,

programmers can construct large, complex graphs with streams in a way

that might be hard to do in the other Reactive Streams libraries.

 Conclusion
Any one of these libraries would be a great choice for building reactive,

asynchronous, nonblocking, fault-tolerant applications, and the choice of

which to use is highly dependent on both the project and the team.

Chapter 10 ConClusions

131© Adam L. Davis 2019
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9

APPENDIX A

 Java 10 and 11
Java 10 was released on March 20, 2018. The main substantial update

of Java 10 was Local Variable Type Inference (var). It also included

enhancements for garbage collection and compilation, but that will not

affect how we write our code.

 Local Variable Types
Although “var” is not a new keyword, it is a context-sensitive type and

represents a huge leap forward for Java developers. It allows you to

substitute a type declaration with “var” whenever the type can be clearly

inferred from context by the Java compiler.

For example, given a test on our “doParallelSquares” method, we can

rewrite it for Java 10+ in the following way:

@Test

public void testDoParallelSquares() {

 var result = demo.doParallelSquares()

 .stream().sorted().collect(Collectors.toList());

 assertArrayEquals(squares.toArray(),

 result.toArray());

}

Here the type of result is inferred from the right side of the assignment

(it happens to be List<Integer>).

https://doi.org/10.1007/978-1-4842-4176-9

132

We can use “var” whenever the type is clear from the right side of the

assignment, without loss of meaning to human readers. For example, the

following is an initialization of a list:

var list = new ArrayList();

Keep in mind that the type of list will be a raw ArrayList; however, in

some cases, that might be fine for our purposes.

With Reactive Streams, it can be helpful to use “var” to simplify code in

many cases without losing anything. For example:

var monoError = Mono.error(

 new RuntimeException("error")); //1

var foo = Mono.just("foo"); //2

var flux = Flux.just(1, 4, 9); //3

var flux = Flux.just(1);

var stringFlux = flux.map(i -> "string " + i); //4

 1. Create a Mono that wraps an exception.

 2. Create a Mono wrapping a single value.

 3. Declare a Flux with initial values.

 4. Declare an intermediate step.

Especially in testing, var can useful for simplifying Java code.

var publisher = TestPublisher.create(); //1

var stringFlux = publisher.flux(); //2

 1. Create a TestPublisher from Reactor.

 2. Convert it into a Flux.

Appendix A JAvA 10 And 11

133

 Lambda Expression Local Variable Types
In Java 11 “var” can also be used in lambda expression parameters for

consistency. For example, the following code

stringFlux.subscribe(next -> list.add(next), ex ->

ex.printStackTrace());

could be changed to the following in Java 11:

stringFlux.subscribe((var next) -> list.add(next),

 (var ex) -> ex.printStackTrace());

Although a bit longer in syntax, this adds better consistency to the

Java language and allows for things like adding annotations to those

parameters without specifying a type. For example:

stringFlux.subscribe(

 (@NonNull var next) -> list.add(next),

 (@NonNull var ex) -> ex.printStackTrace());

We use Java 10+ local variable types throughout the book to simplify

some code examples.

Appendix A JAvA 10 And 11

135© Adam L. Davis 2019
A. L. Davis, Reactive Streams in Java, https://doi.org/10.1007/978-1-4842-4176-9

Index

A
ActorMaterializer, 60–61
Akka framework, 11
Akka HTTP, 105

ByteString, 112, 125
JSON, 106
multipart, 106
SSE, 106
WebSocket, 106

Akka Streams, 130
ActorMaterializer, 60–61
backpressure, 64
BroadcastHub, 65–66
flatMapConcat, 59
flatMapMerge, 59
Flow, Graph, Source, and

Sink, 61–64
Gradle builds, 58
interoperation, 64–65
Java-specific API, 57
mapConcat, 59
Maven build, 58
MergeHub, 65–66
messages, 58–59
PartitionHub, 65–66

RxJava and Reactor, 57
Source and Sink, 57
testing

TestKit, 66–67
TestSink, 66, 68
TestSource, 67, 69–70

Akka Streams, Akka HTTP
ActorSystem, 109
build.gradle, 106–108
Routes, 110–112
SBT, 106
testing, 125–128
WebApp, 108

Android and RxJava, 71
Android SDK, 74
app, module name, 73
login activity, 73
RxAndroid, 74
RxAndroidTest, 71
testing, 81
version, 72

AndroidSchedulers, 75–76
Android SDK, 74
Any/All returns, 17
Automated testing, 53

https://doi.org/10.1007/978-1-4842-4176-9

136

B
Backpressure, 16

backpressure(), 64
bridge.onBackpressure

Buffer(256), 51
dropBuffer(), 64
dropNew(), 64
dropTail(), 64
fail(), 64
hot Observables, 34
onBackpressureBuffer(), 36, 50
onBackpressureBuffer

(maxSize, BufferOverflow
Strategy), 50

onBackpressureDrop(), 36, 51
onBackpressureDrop

(Consumer), 51
onBackpressureError(), 50
onBackpressure

Latest(), 36, 50
strategies, 35
toFlowable(Backpressure

Strategy.ERROR), 35
toFlowable(strategy), 34

BroadcastHub, 65–66
Buffer, 19–20

C
ChatServer, 115–117
Cold Observable, 15–16
CompletableFuture, 9–10
CompletionStage, 8–9
ConcatMap, 18

Concurrency, 5
actors, Akka framework, 11
GPars, 12
Java future interface

asynchronous
computation, 6

asynchronous versions, 9
CompletableFuture, 9–10
CompletionStage, 8–9
drawbacks, 7

Reactive Streams, 12–13
STM, 10
synchronize, 6

Controllers, 92–94
CourseRepository, 92–94

D, E
Debounce, 22
Delay, 19
Domain model, 89–90, 114

F
Filter, 16
FlatMap, 18

G
GetMapping annotation, 92
GPars, 12
Gradle bootRepackage, 87
Gradle bootRun, 86
Gradle plugin

Index

137

MongoDB, 85–86
PostgreSQ, 86
Project Lombok, 85
reactor-test, 86
Spring Boot, 85
spring-boot-starter-test, 86
WebFlux, 84–86

Gzip and Deflate
Content- Encoding, 106

H, I
Handling errors, RxJava, 36

TestObserver, 37–38
TestScheduler, 37–39
TestSubscriber, 37–38

Hot Observable, 15–16
HTTP/2, 106

J, K
Java 2, 9
Java 10

lambda expression, 132–133
variable types, 131–133

Java Development Kit (JDK), 2
java.util.concurrent.Flow class, 2–3
Java virtual machine (JVM), 3
JSON, 106
JSON map, 96–97

L
Lambda expression, 132–133
Lombok annotations, 90

M, N, O
Map, 18
Materializer, 59
MergeHub and Publisher, 65–66, 117
MongoDB, 85–86

P, Q
Parallel computing, 27–28
PartitionHub, 65–66
PostgreSQL, 86
Processor<T,R>, 3
Publisher<T>, 2
Pull events, 49

R
ReactiveMongoRepository, 90–91
Reactive Streams, 1–3, 132
Reactor, 130

backpressure (see Backpressure)
context, 51–53
Flux<T> and Mono<T>

creation, 44
doOnError(Consumer<?

super Throwable>), 43
generate, create, or push

methods, 44–46
handling errors, 42
“hello”, 43
justOrEmpty(Optional), 43
justOrEmpty(T), 43
MessageListener, 45
onErrorMap(Function), 43

Index

138

onErrorResume(Function), 42
onErrorReturn(T), 43
org.reactivestreams.

Publisher, 42
Schedulers.parallel(), 42

Gradle builds, 41–42
pull events, 49
Schedulers, 46–49
Spring Data, 41
Spring Security, 41
testing

automated, 53
StepVerifier, 53–55
TestPublisher, 55–56
uses, 53

readLineSupplier method, 34
Repository, 115
RestController, 94–96
RESTful API, 96–98
RxAndroid, 74–75, 77, 80
RxBinding, 76–78
RxJava, 15, 81, 129

backpressure (see Backpressure)
“build.gradle” file, 25
definition, 25
flowable, 26–27
parallel computing, 27–28
Publishers, 30

blockingSubscribe, 30
“IO” Scheduler, 30
readFile(File), 32–33
readLineSupplier

method, 34

Subscriber interface, 31–32
write file, 30

schedulers, 28–29
RxLifecycle, 78–80

S
Scala’s build tool (SBT), 106
Schedulers, 28–29

generating squares, 47–48
newSingle, 48
reactor.core.scheduler

package, 46
Schedulers.elastic(), 47
Schedulers.from

Executor(Executor), 47
Schedulers.immediate(), 47
Schedulers.newSingle(), 47
Schedulers.parallel(), 47, 49
Schedulers.single(), 47

Server-sent events (SSE), 106
Software transactional memory

(STM), 10
Spring Boot

annotation, 87–88
configuration, 88–89, 98–101
flatMap, 98
Gradle-based project, 84
Maven-based project, 84
Spring Initializr, 83
testing, 102–103
WebFlux-based project, 84

SpringBootApplication, 87–88
StepVerifier, 53–55

Reactor (cont.)

Index

139

Streams, 15
Subscription, 3
synchronize keyword, 6

T, U, V
Take While, 21
Templates, 94–95
TestObserver, 37–38
TestPublisher, 55–56
TestScheduler, 37–39
TestSubscriber, 37–38
Throttle First, 23

W, X, Y, Z
Web Client

createHelloRoute method, 124
getResourceAsStream, 125
onmessage event handler, 124
readAllBytes method, 125

WebSocket, 122–123
WebSocket Flow, 118–119

ChatMessage, 119–120, 122
createWebsocketRoute

method, 122
FlowShape, 120
GraphDSL, 120
mapAsync, 119
parseContent method, 121
saveFlow, 120
sinkInlet, 120
storeChatMessages

method, 121
storeMessageFromContent

method, 120–121
WebSockets, 112

greeter method, 112–113
handleWebSocketMessages, 112
isCheck, 113
JavaPartialFunction, 113

Window, 20

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Preface
	Chapter 1: Introduction to Reactive Streams
	Java 9+
	Flow
	Code for This Book

	Chapter 2: Existing Models of Concurrency in Java
	Prominent Models for Concurrency
	Synchronize in Java
	Java Futures
	Drawbacks of the Future Interface
	CompletableFuture

	STM in Clojure
	Actors
	Groovy GPars
	Reactive Streams

	Chapter 3: Common Concepts
	Streams
	Hot and Cold
	Backpressure
	Filter
	Any/All
	Map
	FlatMap/ConcatMap
	Delay
	Buffer
	Window
	Take While
	Latest
	Debounce
	Throttle First

	Chapter 4: RxJava
	Getting Started
	Flowable
	Parallel Computing
	Schedulers
	Publishers
	Backpressure
	Handling Errors
	Testing
	TestSubscriber
	TestObserver
	TestScheduler

	Chapter 5: Reactor
	Getting Started
	Flux
	Mono
	Creating a Flux or Mono
	Schedulers
	Pull Events
	Handling Backpressure
	Context
	Testing
	StepVerifier
	TestPublisher

	Chapter 6: Akka Streams
	Getting Started
	ActorMaterializer
	Sinks, Flows, and Graphs
	Backpressure
	Interoperation with Reactive Streams API
	MergeHub, BroadcastHub, and PartitionHub
	Testing

	Chapter 7: Android and RxJava
	Getting Started
	Android SDK

	Android Schedulers
	RxBinding
	RxLifecycle
	Putting It Together
	Using RxJava
	Testing

	Chapter 8: Spring Boot and Reactor
	Getting Started
	Gradle Plugin
	Tasks
	SpringBootApplication
	Auto-Configuration
	Our Domain Model
	ReactiveMongoRepository
	Controllers
	View Templates
	Restful API
	Further Configuration
	Testing

	Chapter 9: Akka HTTP and Akka Streams
	Getting Started
	Routes
	WebSockets
	Our Domain
	Our Repository
	ChatServer
	MergeHub and Publisher
	The WebSocket Flow
	The Web Client
	Testing

	Chapter 10: Conclusions
	RxJava
	Reactor
	Akka Streams
	Conclusion

	Appendix A: Java 10 and 11
	Local Variable Types
	Lambda Expression Local Variable Types

	Index

