
M A N N I N G

Jesse Palmer
Corinna Cohn
Mike Giambalvo
Craig Nishina
Foreword by
Brad Green, Google

www.allitebooks.com

http://www.allitebooks.org

Anatomy of a Basic Component Unit Test

import { async, ComponentFixture, TestBed } from '@angular/core/testing';
import { BasicComponent } from './basic.component';

describe('BasicComponent', () => {
 let component: BasicComponent;
 let fixture: ComponentFixture<BasicComponent>;

 beforeEach(async(() => {
 TestBed.configureTestingModule({
 declarations: [BasicComponent]
 })
 .compileComponents();
 }));

 beforeEach(() => {
 fixture = TestBed.createComponent(BasicComponent);
 component = fixture.componentInstance;
 fixture.detectChanges();
 });

 it('should create an instance of BasicComponent', () => {
 expect(component).toBeTruthy();
 });

 afterEach(() => {
 fixture = null;
 component = null;
 });
});

Setup—The setup part of your
tests usually will involve three
parts: declaring variables, a
beforeEach to configure
TestBed, and a beforeEach to
initialize the variables.

Actual test

Teardown—Use afterEach to destroy
variable references.

 www.allitebooks.com

mounir
Typewriter
https://avxhm.se/blogs/hill0

http://www.allitebooks.org

MANN I NG
Shelter ISland

Testing Angular Applications

JESSE PALMER

CORINNA COHN

MICHAEL GIAMBALVO

CRAIG NISHINA

with a Foreword by Brad Green

 www.allitebooks.com

mounir
Typewriter
https://avxhm.se/blogs/hill0

http://www.allitebooks.org

ISBN 9781617293641
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – SP – 23 22 21 20 19 18

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid- free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

∞

 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editors: Cynthia Kane and Toni Arritola
 Technical development editors: Doug Warren and Nick Watts
 Copyeditor: Carl Quesnel
 Proofreader: Melody Dolab
 Technical proofreader: Luis Carlos Sanchez Gonzalez
 Typesetter: Happenstance Type-o-Rama
 Cover designer: Marija Tudor

 www.allitebooks.com

mounir
Typewriter
https://avxhm.se/blogs/hill0

http://www.allitebooks.org

iii

To my wife, whose love and support helped me get through many long nights and
weekends while working on the book. Your accomplishments inspire me to do my

best every day.
To my parents, who passed down to me their work ethic and provided me with

opportunities to succeed in life, for which I am forever grateful.
—Jesse Palmer

To my dear friends, who encouraged me to keep writing!
—Corinna Cohn

To my wife, who has been consistently and limitlessly supportive over the many
long nights these past few months.

—Michael Giambalvo

To my parents, whose hard work and sacrifice afforded me many opportunities,
and to my wife, who supports me in all that I do.

—Craig Nishina

 www.allitebooks.com

mounir
Typewriter
https://avxhm.se/blogs/hill0

http://www.allitebooks.org

v

contents
foreword ix
preface xi
acknowledgments xiii
about this book xv
about the authors xviii
about the cover illustration xx

 1 Introduction to testing Angular applications 1
 1.1 Angular testing overview 2

 1.2 Getting friendly with TypeScript 3

 1.3 A closer look at test types 5
Unit tests 5 ■ E2E tests 6 ■ Unit tests vs. E2E tests 7

part 1 Unit testing ..11

 2 Creating your first tests 13
 2.1 Writing tests using Jasmine 14

Writing basic tests 14

 2.2 Testing classes 17
Adding the rest of the tests 21

vi contentsvi

 3 Testing components 25
 3.1 Basic component tests 26

 3.2 Real-world component testing 29
Importing the dependencies 30 ■ Setting up the
tests 33 ■ Adding the tests 37

 4 Testing directives 43
 4.1 What are directives? 44

Components vs. directives 44 ■ Different directives 45

 4.2 Testing attribute directives 45
Introducing the favorite icon directive 45 ■ Creating tests for
FavoriteIconDirective 48 ■ Setting up the FavoriteIconDirective
test suite 50 ■ Creating the FavoriteIconDirective tests 51

 4.3 Testing structural directives 54
Introducing ShowContactsDirective 54 ■ Creating your tests for
ShowContactsDirective 55 ■ Setting up the ShowContactsDirective
test suite 56 ■ Creating the ShowContactsDirective tests 57

 5 Testing pipes 59
 5.1 Introducing PhoneNumberPipe 60

 5.2 Testing PhoneNumberPipe 61
Testing the default usage for a pipe 61 ■ Testing a pipe with a
single parameter 65 ■ Pipes with multiple parameters 67

 6 Testing services 71
 6.1 What are services? 72

 6.2 How do services work in Angular? 73
Dependency injection 74 ■ The @Injectable class decorator 76

 6.3 Creating services with Angular CLI 76

 6.4 Testing PreferencesService 77
Testing for failures 82

 6.5 Testing services with promises 83
How asynchronous changes testing 86 ■ Testing for failures with
asynchronous services 88

 6.6 Testing HTTP services with observables 89

 viicontents vii

 7 Testing the router 93
 7.1 What is the Angular router? 94

Configuring the router 95 ■ Route guards: the router’s lifecycle
hooks 96

 7.2 Testing routed components 97
Testing router navigation with RouterTestingModule 97 ■ Testing
router parameters 101

 7.3 Testing advanced routes 105
Route guards 105 ■ Resolving data before loading a route 107

part 2 End-to-end testing 109

 8 Getting started with Protractor 111
 8.1 How Protractor works 112

 8.2 Writing your first Protractor test 114
File structure 114

 8.3 Installing and running 117

 8.4 Interacting with elements 118
Test scenario: creating a new contact 119 ■ Test scenario:
workflows that don’t create a new contact 123

 8.5 by and element methods 125

 8.6 Interacting with a list of elements 130
Filtering web elements 130 ■ Mapping the contact list to an
array 133 ■ Reduce 135

 8.7 Page objects 137

 9 Understanding timeouts 141
 9.1 Kinds of timeouts 142

 9.2 Testing pages without Angular 142
Disabling waitForAngular 143 ■ Automatically
waiting for Angular 144 ■ When to use browser.
waitForAngularEnabled() 145

 9.3 Waiting with ExpectedConditions 145
Waiting for the contact list to load 146 ■ Testing a
dialog 147 ■ Waiting for elements to become stale 148

viii contentsviii

 9.4 Creating custom conditions 150
Using browser.wait 150 ■ Getting elements from the browser 151

 9.5 Handling long-running tasks 152
Using expected conditions 154 ■ The browser event loop 155
What happened to $timeout? 155 ■ Highway to the Angular
zone 156 ■ Fixing the test 157

 10 Advanced Protractor topics 161
 10.1 Configuration file in depth 161

Driver provider options 162 ■ Desired capabilities 163
Plugins 166 ■ Environment variables 168

 10.2 Screenshot testing 170
Taking screenshots 170 ■ Taking screenshots on test
failure 171 ■ Comparing screenshots 172

 10.3 Experimental debugging features 176
WebDriver logs 176 ■ Highlight delay 178 ■ Blocking
proxy 179

 10.4 The control flow and debugging with Chrome
DevTools 180
Asynchronous functions and promises 180 ■ The WebDriver
control flow 181 ■ The future: async/await 183 ■ Using
Chrome DevTools 184

part 3 Continuous integration 189

 11 Continuous integration 191
 11.1 Jenkins 192

Setting up Jenkins 192 ■ Unit tests 194 ■ E2E tests 197

 11.2 CircleCI 200

 appendix A Setting up the sample project 203

 appendix B Additional resources 209

 index 211

ix

foreword
I’ve known Jesse Palmer for many years as part of the Angular community, so I was
excited when he told me he’d be writing a book specifically focused on testing for
Angular projects. I’ve seen firsthand how hard it can be to do a great job at automated
testing on some of the world’s biggest applications. As a result, when I started the
Angular project, I wanted to make sure everything we did contributed to making test-
ing easier and even a joyful experience.

I was hired at Google primarily for my experience in testing, and my first roles here
were in improving test techniques, infrastructure, and adoption of testing for products
like Gmail, Google Calendar, and Google Docs.

At Angular’s core, we’ve set the application architecture itself to be testable, with
dependency injection, mocks, and API hooks for end-to-end testing. We’ve built tools
like Protractor for easy, stable, and fast end-to-end tests. We built Karma for a great
developer experience in unit testing. And there’s still more to do!

This book picks up where we on the Angular team left off. It provides guidance on
the overall strategy for how to think about testing on your projects to get the best return
on your investment. It dives into specifics for testing different aspects of your applica-
tions. And it covers what are often regarded as advanced topics, such as setting up con-
tinuous integration for your tests and doing screenshot diff testing.

So here’s my big thank you to Jesse, Corinna, Mike, and Craig for writing this book
and helping to build a stronger, smarter Angular community.

And thanks to you for being part of the Angular community and taking the time to
improve your skills.

Brad Green
Engineering Director for Angular at Google

xi

preface
Back in 2013, I was working on a content management system that used AngularJS
heavily, and the expectation was that we have 80% unit-test coverage. My team strug-
gled . . . a lot. You couldn’t find many materials on testing at the time. It was easy to find
a blog post here and there, but it was hard to find something that guided you through
everything you needed to know to be successful writing tests in a complete package.

I kept thinking to myself, someone needs to write a book on this. I knew it would be chal-
lenging to cover all of the potential use cases, but someone could at least give enough
foundational knowledge to show people where to start. Plus, with the upcoming rewrite
to Angular 2, there would be a need for quality content regarding testing. The idea for
Testing Angular Applications was born.

One day in 2015, Manning Publications contacted me to review a proposal for
another Angular book. I agreed, and they sent me a questionnaire to fill out. I was
ecstatic to see a question at the end of the questionnaire asking if I had an idea for a
book. Of course I did! This was my chance to pitch my book, and I was thrilled at the
opportunity. Shortly after I pitched it, Manning gave me a contract to sign that marked
the book’s official beginning. Along the way, I was lucky enough to add three wonderful
authors who helped bring tremendous value to the effort.

Now is a great time to get into testing Angular applications, if you haven't already.
Since the early days of testing AngularJS applications, the platform has matured dra-
matically. The Angular CLI comes with numerous testing commands that make run-
ning tests a breeze. It also handles all installation of the testing tools, which saves time
and prevents headaches as you set up your test suite. A lot of helpful tools available
within Angular, like TestBed and ComponentFixture, aid in unit testing. Additionally,
Protractor has matured and is stable, making end-to-end testing much easier.

xii prefacexii

In your hands or on your monitor, tablet, phone, or e-reader, or any other device, is
everything you need to know to get started with testing Angular applications. My fellow
coauthors and I have put a lot of time and effort into getting you up and running with
testing. In many ways, we set out to write the book that we wished we had when we first
started writing tests for Angular. We hope you enjoy reading and using the book as
much as we did writing it.

Jesse Palmer

xiii

acknowledgments
We’d like to acknowledge the work of editors Cynthia Kane and Toni Arritola. Toni
stepped into the process long after work on the book started, but she propelled us
forward and to the finish line. It isn’t an exaggeration to say that Toni is the reason
you’re able to read this book. Our technical proofreader, Luis Carlos Sanchez Gon-
zalez, was an invaluable help. Thanks also to the Manning reviewers, whose insightful
comments helped make this book the best it could be: Bradley Suira, Desmond Hors-
ley, Dinesh Arora, Jason Pike, Jim Schmehil, Nathan Roberts, Rafael Avila Martínez,
Rainer Jeschor, Sergey Evsikov, Shobha Iyer, Siva Kumar Boyapati, Steve Atchue, Tahir
Awan, and Zorodzayi Mukuya.

Jesse would like to acknowledge his former manager, Shawn Ward, who taught him
the value of testing. Ward Bell also deserves credit for helping debug tests, writing the
testing documentation on Angular.io, and insisting that he use the Angular CLI, which
greatly changed the direction of the book for the better.

Heartfelt thanks go to Brad Green for getting Jesse interested in contributing to
Angular in the first place and Peter Bacon Darwin for bringing him into the Angular
organization. Finally, Jesse would like the thank his coauthors, Corinna Cohn, Craig
Nishina, and Michael Giambalvo, for coming on board and helping to complete the
book. The book wouldn’t be what it is now without their valuable contributions.

Corinna would like to thank Samantha Quiñones, whose service to the developer
community as a teacher and speaker inspired her to learn about unit testing, and who
encouraged her to introduce testing practices to her organization. She also thanks Igor
Minar and Miško Hevery for spending their time in person teaching newbie developers
the basics of Angular and inspiring developers like Corinna to take a step into a larger
world.

xiv acknowledgmentsxiv

Craig would like to thank his previous team, Julie Ralph, Michael Giambalvo, and
Sammy Jelin, for ramping him up on Protractor and reviewing all of his pull requests.
He’d also like to thank Evan Harris, who years ago took him to his first Seattle Google
Developers Group Meetup to learn about AngularJS.

Michael would like to thank Craig Nishina for bringing him in on this book. Special
thanks to Julie Ralph, Sammy Jelin, and Craig Nishina for all the hard work they did on
Protractor. Thanks to the Angular team for being consistently focused on creating a
great community!

xv

about this book
Testing Angular Applications exists to help developers better understand one of the trick-
ier parts of using the power of Google’s Angular framework: writing testable, reliable
code. Angular departs wildly from the earlier AngularJS framework, introducing devel-
opers to a slew of new concepts not familiar from AngularJS or any other JavaScript
framework. Writing unit tests and end-to-end tests requires a deeper knowledge of
Angular than even the most heroic of tutorials can convey. Angular written for produc-
tion should be backed by a set of reliable and useful tests, and with this book, we equip
the reader with the knowledge to deliver those tests.

Who should read this book

Whether you’re an experienced developer contributing to an enterprise-scale Angu-
lar application or new to Angular and hoping to gain a deeper understanding of the
framework, this book will help you understand the fundamentals of writing testable
code. Angular is evolving at a rapid pace, faster than the official documentation can
match. Supplemental material such as this book goes beyond the online documenta-
tion by providing step-by-step examples that explain not only the how but also the whys
of unit testing in Angular. This book assumes a comfortable knowledge of JavaScript
and some knowledge of TypeScript, a superset of JavaScript that adds a variety of new
language features.

This book reflects many hours of real-world experience understanding and applying
the Angular framework for both unit and end-to-end tests. As authors, we’ve read the
online documentation, delved into the Angular source code, upgraded Angular multiple
times (along with the example application written for this book), applied multiple Angu-
lar testing APIs, and created realistic examples covering each major system of Angular.

xvi about this bookxvi

If you need to write testable Angular code and want to take advantage of our experi-
ence of having already walked the path, this book will help you on your testing journey.

How this book is organized: a roadmap

The book has three parts that cover 11 chapters. Two appendixes include supplemen-
tal content:

¡	Chapter 1 provides a gentle introduction to testing Angular applications. It offers
background information on TypeScript and touches on the differences between
unit testing and end-to-end testing. It also gives you an overview of the different
tools—Jasmine, Karma, and Protractor—you’ll use throughout the book.

Part 1 covers the most common concepts that you’ll need to understand to write unit
tests for Angular:

¡	Chapter 2 will get your testing skills warmed up by writing basic tests. It discusses
how to use key parts of the Jasmine framework, including beforeEach, afterEach,
it, describe, and matcher functions. You’ll also learn how to test classes.

¡	Chapter 3 discusses how to test the most fundamental concept in Angular: com-
ponents. It introduces common testing classes and functions, and you’ll learn
the differences between shallow and isolated tests.

¡	Chapter 4 describes testing directives. You’ll learn how to test two types: attribute
directives and structural directives.

¡	Chapter 5 covers testing pipes. You’ll learn about the transform function, which is
essential learning for writing tests for pipes. You’ll also learn about pure functions.

¡	Chapter 6 discusses how to test services. The chapter covers how to test services
that use the Angular HTTP class, how to test services using promises and RxJS
observables, and how to use stubs to create isolated unit tests. The chapter also
covers dependency injection with unit tests for services.

¡	Chapter 7 goes deep into the subject of testing routing. Topics the chapter covers
include configuring the router, testing components that use the router, and test-
ing advanced router configurations.

Part 2 covers how to write end-to-end tests with Protractor:

¡	Chapter 8 covers how to get started with Protractor. You’ll learn about how Pro-
tractor works, how to write your first Protractor tests, how to interact with ele-
ments, how to interact with a list of elements, and how to organize the tests with
page objects.

¡	Chapter 9 discusses timeouts. It goes into detail about understanding the causes
of timeout errors in Protractor and how to avoid them, waiting for specific
changes in your app, and understanding flakiness with Protractor and how to
eliminate it.

¡	Chapter 10 dives into advanced Protractor topics, like configuration files, screen-
shot testing, and debugging tests.

 xviiabout this book xvii

Part 3 is about continuous integration:

¡	Chapter 11 demonstrates how to set up a continuous integration server that will
automatically run all the tests you’ve been writing. Doing so will help you find
bugs as soon as possible.

Appendix A covers setting up the sample project, and appendix B includes additional
resources for you to consider.

In general, you can read the book from front to back, or you can pick and choose
which chapters you want to read. Most chapters use the sample app, which you can install
using appendix A, so you may want to get that set up before skipping around the book.

About the code

This book contains many examples of source code, both in numbered listings and
inline with normal text. In both cases, this code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light when it has changed from previous steps in the chapter, such as when a new fea-
ture adds to an existing line of code.

In many cases, we’ve reformatted the original source code; we’ve added line breaks
and reworked indentation to accommodate the available page space in the book. In
rare cases, even this wasn’t enough, and listings include line-continuation markers (➥).
Additionally, we’ve often removed comments in the source code from the listings when
the code is described in the text, but code annotations accompany many of the listings
to highlight important concepts.

You can find the accompanying code for the book on the book’s webpage at manning.
com (www.manning.com/books/testing-angular-applications) and also on GitHub at
http://mng.bz/z22f. To execute the code, you need to have Node.js version 6.9.0 or
higher and npm version 3 or higher. You can use a Windows, Mac, or Linux machine.
We wrote the code for this book on a Mac, so your experience may vary slightly. You can
find installation instructions in appendix A.

Book forum

Purchase of Testing Angular Applications includes free access to a private web forum run
by Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum,
go to https://forums.manning.com/forums/testing-angular-applications. You can
also learn more about Manning's forums and the rules of conduct at https://forums
.manning.com/forums/about.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the author can take place. It
is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the forum remains voluntary (and unpaid). We suggest you try
asking the authors some challenging questions lest their interest stray! The forum and
the archives of previous discussions will be accessible from the publisher’s website as
long as the book is in print.

www.manning.com/books/testing-angular-applications
http://mng.bz/z22f
https://forums.manning.com/forums/testing-angular-applications
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about

xviii

about the authors
Jesse Palmer started programming back in the day when BASIC
was still a thing. He spent much of his early childhood develop-
ing video games on his sweet Atari 400. Jesse started off his pro-
fessional career by slinging ColdFusion, PHP, ASP.NET, and Java.
Around 2013, he started his first contributions to AngularJS and
thought that maybe this whole AngularJS thing had legs.

Jesse now finds himself as a Senior Engineering Manager at
Handshake where he leads the Student Engineering organization. When Jesse isn't pro-
gramming, you can find him playing video games or cheering on his beloved Virginia
Tech Hokies. He lives with his wife, Elizabeth, and his two cats, Nicky and Gracie, in San
Francisco.

Corinna Cohn is a web developer with more than 20 years of expe-
rience building websites and writing web applications. Corinna
takes responsibility for having written ugly, unmaintainable code
but is now working to bring the principles of clean code, unit
tests, and high-quality refactoring into the realm of JavaScript web
applications.

Craig Nishina is a software engineer at Google. He is currently
working on Google Cloud Platform and contributes to Protractor,
the end-to-end test framework for Angular. In an earlier career,
Craig worked as a civil engineer designing buildings, but he much
prefers writing code to designing building structures. When he’s not
contributing to open source projects like Protractor and webdriver-
manager, he enjoys playing golf and traveling.

 xixabout the authors xix

Mike Giambalvo is a developer with a passion for creating testable,
quality code. He is currently at Google working on the UI for Goo-
gle Cloud Platform and has contributed to Angular and Protractor,
the end-to-end test framework for Angular applications. He enjoys
learning new things and helping others learn and is a cofounder of
the Angular Seattle Meetup group. In his copious free time, he enjoys
hiking and building crappy robots.

about the authors
Jesse Palmer started programming back in the day when BASIC
was still a thing. He spent much of his early childhood develop-
ing video games on his sweet Atari 400. Jesse started off his pro-
fessional career by slinging ColdFusion, PHP, ASP.NET, and Java.
Around 2013, he started his first contributions to AngularJS and
thought that maybe this whole AngularJS thing had legs.

Jesse now finds himself as a Senior Engineering Manager at
Handshake where he leads the Student Engineering organization. When Jesse isn't pro-
gramming, you can find him playing video games or cheering on his beloved Virginia
Tech Hokies. He lives with his wife, Elizabeth, and his two cats, Nicky and Gracie, in San
Francisco.

Corinna Cohn is a web developer with more than 20 years of expe-
rience building websites and writing web applications. Corinna
takes responsibility for having written ugly, unmaintainable code
but is now working to bring the principles of clean code, unit
tests, and high-quality refactoring into the realm of JavaScript web
applications.

Craig Nishina is a software engineer at Google. He is currently
working on Google Cloud Platform and contributes to Protractor,
the end-to-end test framework for Angular. In an earlier career,
Craig worked as a civil engineer designing buildings, but he much
prefers writing code to designing building structures. When he’s not
contributing to open source projects like Protractor and webdriver-
manager, he enjoys playing golf and traveling.

xx

about the cover illustration
The figure on the cover of Testing Angular Applications is captioned “Habit of a Moor
of Arabia.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of
Different Nations, Ancient and Modern (four volumes), London, published between 1757
and 1772. The title page states that these are hand-colored copperplate engravings,
heightened with gum arabic.

Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was
an English cartographer who was the leading map supplier of his day. He engraved and
printed maps for government and other official bodies and produced a wide range of
commercial maps and atlases, especially of North America. His work as a map maker
sparked an interest in local dress customs of the lands he surveyed and mapped, which
are brilliantly displayed in this collection. Fascination with faraway lands and travel for
pleasure were relatively new phenomena in the late 18th century, and collections such
as this one were popular, introducing both the tourist as well as the armchair traveler to
the inhabitants of other countries.

The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness
and individuality of the world’s nations some 200 years ago. Dress codes have changed
since then, and the diversity by region and country, so rich at the time, has faded away.
It’s now often hard to tell the inhabitants of one continent from another. Perhaps, try-
ing to view it optimistically, we’ve traded a cultural and visual diversity for a more varied
personal life—or a more varied and interesting intellectual and technical life.

At a time when it’s difficult to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers based
on the rich diversity of regional life of two centuries ago, brought back to life by Jeffreys’
pictures.

1

1Introduction to testing
Angular applications

This chapter covers
¡	Understanding Angular testing

¡	Getting a first look at TypeScript

¡	Understanding the basics of unit and
end-to-end tests

¡	Introducing Jasmine, Karma, and Protractor

Poorly written code, buggy functionality, and bad refactoring practices can lead
to unreliable applications. Writing good tests will help detect these types of prob-
lems and prevent them from negatively affecting your application. It’s vital that you
thoroughly test your application if you want to make it sustainable and supportable
for years to come. A core purpose of writing tests is to help guard against breaking
application functionality when you have to add new features or make bug fixes
later on.

If you’ve developed an Angular application, you may know that Angular is a great
framework for building testable web and mobile web applications. One of the goals
in writing Angular was to make it a testable framework, and it shows.

2 chapter 1 Introduction to testing Angular applications

Although testing Angular applications is of utmost importance, figuring out how
to do that has been challenging until now. You may have been able to find a blog post
or two, perhaps a video, but generally materials have been lacking to help guide you
through all the different aspects of testing in one place. Well, you’re in luck! In your
hands (or on your screen), you hold the key to getting started with testing Angular
applications.

This book will help you build a foundation for testing the most important parts of
Angular applications with confidence. We assume that you have some familiarity with
the Angular framework, TypeScript, and command-line tools. If you haven’t written a
test, this book will teach you enough fundamentals to get you started.

If you don’t have experience with Angular, now is a great time to learn about the
Angular applications. For newbies, we would encourage you to walk through the tutori-
als and introductory information you can find at https://angular.io.

In this first chapter, you’ll get an overview of testing Angular applications, take a
brief look at TypeScript, learn about the testing tools you’ll use, and be introduced to
unit and end-to-end (E2E) tests. Let's get started!

1.1 Angular testing overview
Most Angular testing you’ll find out there involves two types of tests: unit tests and E2E
tests. The bulk of this book will revolve around those two types.

This book is separated into two parts. The first part covers unit testing, which tests
units of code. You’ll learn how to create unit tests for components, directives, pipes,
services, and routing—using testing tools like Karma and Jasmine—and run those tests
using the Angular command-line interface (CLI). The following list breaks down each
of the testable concepts we’ll cover in part 1 of the book:

¡	Components —Chunks of code that you can use to encapsulate certain functional-
ity that you can then reuse throughout the application. Components are types of
directives (see next bullet), except they include a view or HTML template.

¡	Directives —Used to manipulate elements that exist in the DOM or can add ele-
ments to or remove them from the DOM. Examples of directives included with
Angular are ngFor, ngIf, and ngShow.

¡	Pipes —Used to transform data. For example, say you want to turn an integer into
currency. You would use a currency filter pipe to turn 15 into $15.00.

¡	Services —Although services technically don’t exist in Angular, the concept
is still important. You’ll use services to fetch data and then inject it into your
components.

¡	Routing —Allows users to navigate from one view to the next as they perform tasks
in the web application.

https://angular.io

 3Getting friendly with TypeScript

In the second part of the book, we’ll dive into E2E testing using the Protractor frame-
work. You’ll get practice writing tests that behave as if the interactions were coming
from the user in a browser.

As for which version of Angular you’ll be using, this book is written to be compati-
ble with versions of Angular 2 and later. Angular 2 was a complete rewrite from Angu-
larJS 1.x, so that’s the base for the current version.

NOTE It's just Angular now. In the past, people have referred to Angular as
AngularJS, Angular 1, Angular 2, Angular 4, and so on. From here on out,
we’ll use AngularJS when we mean Angular 1.x, and Angular when we’re
talking about versions 2 and higher. To read more about the decision, check
out this blog post: http://angularjs.blogspot.com/2016/12/ok-let-me-
explain-its- going-to-be.html.

In the next section, we’ll look at TypeScript, which is the language you’ll use to write
tests in this book.

1.2 Getting friendly with TypeScript
TypeScript is an open source language created at Microsoft in 2012 by Anders Hejls-
berg, who also created C#.1 The major problem that Hejlsberg attempted to solve with
TypeScript is that JavaScript was never meant to be used with large-scale applications.
The first version of JavaScript was created in 1995 in 10 days by Brendan Eich2 and was
meant to be used as a scripting language for adding interactivity to web pages.

Although you can build Angular applications with native JavaScript, we recommend
you use TypeScript, because most of the examples, tutorials, documentation, code
examples, and so on in the book will use TypeScript. In addition, the Angular frame-
work itself is built with TypeScript.

TypeScript adds benefits needed for enterprise applications, such as annotations,
static typing, and classical object-oriented features like interfaces and code encapsula-
tion, while still providing the key features of JavaScript.

You’ll find the syntax of TypeScript to be much like that of JavaScript, because Type-
Script is a superset of JavaScript. Figure 1.1 shows how TypeScript’s key features (outer
circle) encompass the key features of the ES6 version of JavaScript (inner circle).

1 See “TypeScript,” Wikipedia, https://en.wikipedia.org/wiki/TypeScript.
2 See “JavaScript,” Wikipedia, https://en.wikipedia.org/wiki/JavaScript#Beginnings_at_Netscape.

http://angularjs.blogspot.com/2016/12/ok-let-me-explain-its-going-to-be.html
http://angularjs.blogspot.com/2016/12/ok-let-me-explain-its-going-to-be.html
https://en.wikipedia.org/wiki/TypeScript
https://en.wikipedia.org/wiki/JavaScript#Beginnings_at_Netscape

4 chapter 1 Introduction to testing Angular applications

TypeScript

Type annotations
Default parameters

Classes

Template literals ES6

Modules

Promises

Arrow functions

Destructuring
assignment

Block scoped variables

Instance members

Access modifiers

Static members

Interfaces

Function overloads

Figure 1.1 TypeScript is a superset of JavaScript version
ES6, so they share much of the same syntax.

TypeScript includes most of the key ES6 features, so almost any valid ES6 or ES5
feature is also valid TypeScript. You could have a perfectly valid TypeScript file that uses
only standard JavaScript syntax.

TypeScript compiles to JavaScript, and the Angular CLI will compile TypeScript
automatically out of the box. If you’re familiar with JavaScript and have some knowl-
edge of object-oriented programming (OOP), you should be able to pick up TypeScript
quickly. If you’re new to OOP, that’s fine. It may just take a little more work for you to
get up to speed.

The following listing creates a simple class called Cat that demonstrates what a class
looks like in TypeScript.

Listing 1.1 Simple TypeScript class example

export class Cat {
 private _name: string = '';

 constructor(name? : string) {
 this._name = name;
 }

 get name() : string {
 return this._name;
 }

_name is set to an empty string by default. _name is a private instance variable.

The string types are added to specify
return, variable, and parameter types.

The ? makes parameters optional.

5A closer look at test types

 set name(name : string) {
 this._name = name;
 }

 toString() : string {
 return `This cat's name is ${this._name}!`;
 }
}

const cat = new Cat('Nicky');

This example demonstrates several features. The class, get, set, and constructor
keywords, along with the template string found in the toString() method, are all part
of the ES6 version of JavaScript, so those keywords aren’t exclusive to TypeScript.

The features in the example that belong to TypeScript are the actual variable types,
the private access modifier, and the ? operator, which allows for an optional parameter.

In the Cat class, notice that the keyword string is sprinkled throughout the example.
This is how you specify the expected types in TypeScript. You can specify return types,
variable types, and parameter types within your code. The ability to specify types—type
annotations—is the key advantage of using TypeScript, hence the name.

We’ll be covering TypeScript throughout the book, but if you want to get your feet
wet with TypeScript outside of that, visit http://www.typescriptlang.org. The website
offers a Playground feature where you can write and test code.

Now that you’ve learned a bit about TypeScript, let’s look at the different types of
tests that you’ll be writing in this book.

1.3 A closer look at test types
Unit tests and E2E tests are the two types of tests you’ll see in the wild for testing Angu-
lar applications. In this section, we’ll look a little more closely at those two types.

1.3.1 Unit tests

You write unit tests to test the functionality of basic parts or units of code. Each unit test
should only test one responsibility of the source code. You can test functions, methods,
objects, types, values, and more with unit tests. The advantages of using unit tests are
that they tend to be fast, reliable, and repeatable, if you write them correctly and run
them in the right environment.

Jasmine, a behavior-driven development framework for testing JavaScript code, is
the framework you’ll use in this book for writing unit tests. The following listing shows
the code for a basic unit test written using the Jasmine framework.

Listing 1.2 Example of a simple unit test

describe('super basic test', () => {
 it('true is true', () => {
 expect(true).toEqual(true);
 });
});

The string types are added to specify
return, variable, and parameter types.

Sanity check to see if true equals true

https://www.typescriptlang.org

6 chapter 1 Introduction to testing Angular applications

All you’re doing in listing 1.2 is checking to see that the Boolean value true is equal to
the Boolean value true. This test serves as a sanity check and nothing more. You can
use a sanity check to see if all the parts of your testing environment are set up correctly,
and you use it when you’re only attempting to get a basic test to pass. You wouldn’t
want to add a test this simple to a production application.

The next listing shows a slightly more sophisticated unit test that tests getters and
setters for the name instance found in the Cat class you created in listing 1.1.

Listing 1.3 Better example of a unit test

import { Cat } from './cat';

describe('Test Cat getters and setters.', () => {
 it('The cat name should be Gracie', () => {
 const cat = new Cat();
 cat.name = 'Gracie';
 expect(cat.name).toEqual('Gracie');
 });
});

Although unit tests tend to be reliable, they aren’t the best type of test for reproducing
real user interactions.

1.3.2 E2E tests

You use E2E tests to test the functionality of an application by simulating the behavior
of an end user. For example, you might have an E2E test check if a modal correctly
appears after a form is submitted or a page renders certain elements on page load,
such as buttons or text.

E2E tests do a good job with testing applications from an end user’s standpoint, but
they can run slowly, and that slowness can be the source of false positives that fail tests
because of timeout issues. E2E tests’ timing issues make it preferable to write unit tests
instead of E2E tests whenever possible.

For writing the E2E tests in this book, you’ll use the Protractor E2E test framework
developed by the Angular team.

The following listing shows a sample E2E test written using Protractor that checks
the sample project’s website and makes sure the title of the page is equal to Contacts
App Starter.

Listing 1.4 Sample E2E test using Protractor

import { browser } from 'protractor';

describe('Contacts App title test', () => {
 it('Title should be correct', () => {

Checks that the cat name
is as you expected

The describe block specifies the suite of tests that
you want to run. In this case, the test involves the
title of the test app you’ll be using.

The logic of the test

 7A closer look at test types

 const appUrl = 'https://testing-angular-applications.github.io';
 const expectedTitle = 'Contacts App Starter';
 browser.get(appUrl);
 browser.getTitle().then((actualTitle) => {
 expect(actualTitle).toEqual(expectedTitle);
 });
 });
});

We’ll explore unit tests and E2E tests in much greater detail throughout the book. If
you understand these two types of tests, you’ll understand much of Angular testing.

1.3.3 Unit tests vs. E2E tests

Unit tests and E2E tests have different advantages. We’ve discussed these advantages
a little already, but in table 1.2, we summarize the pros and cons of the different types
of tests.

Table 1.2: Advantages to using unit tests vs. E2E tests

Feature Unit tests E2E tests

Speed Tend to be faster than E2E tests. Tend to be slower than unit tests.

Reliability Tend to be more reliable than
E2E tests.

Tests can be flaky and fail
because they may time out while
executing.

Helping enforce code quality Writing tests can help identify
needlessly complex code that
may be difficult to test.

Tests from the browser won’t help
write better code because you’re
testing the app as a whole from
the outside.

Cost-effectiveness More cost-effective because of
developer time to write tests, exe-
cution of tests, and reliability.

Less cost-effective because it
takes longer to write tests, execu-
tion of tests is slow, and tests can
be flaky.

Mimicking user interactions Tests can mimic user interactions
but can be hard to use to check
complex interactions.

Mimicking user interactions is
E2E tests’ forte and what they’re
made for.

Let’s discuss each of these features one by one:

¡	Speed —Because unit tests operate on small chunks of code, they can run quickly.
E2E tests rely on testing through a browser, so they tend to be slower.

¡	Reliability —Because E2E tests tend to involve more dependencies and complex
interactions, they can be flaky, which can lead to false positives. Running unit
tests rarely results in false positives. If a well-written unit test fails, you can trust
that there’s a problem with the code.

¡	Helping enforce code quality —One of the main benefits of writing tests is that it helps
enforce code quality. Writing unit tests can help identify needlessly complex

The specific test case that
you’re trying to prove as true

8 chapter 1 Introduction to testing Angular applications

code that may be difficult to test. As a general rule, if you’re finding it hard to
write unit tests, your code may be too complex and may need to be refactored.
Writing E2E tests won’t help you write better quality code per se. Because E2E
tests test from the browser standpoint, they don’t directly test your code.

¡	Cost-effectiveness —Because E2E tests take longer to run and can fail at random
times, a cost is associated with that time. It also can take longer to write such tests,
because they may build on other complex interactions that can fail, so develop-
ment costs also can be higher when it comes to writing E2E tests.

¡	Mimicking user interactions —Mimicking user interactions with the UI is where E2E
tests shine. Using Protractor, you can write and run tests as if a real user were
interacting with the user interface. You can simulate user interactions using unit
tests, but it’ll likely be easier to write E2E tests for that purpose because that’s
what they’re made for.

Both types of tests are important to have to thoroughly test your applications. You can
test a lot of the functionality that a user would perform by writing unit tests, but you
should test key functionality with E2E tests.

Generally, you want to have more unit tests than E2E tests in your project. A software
developer named Mike Cohn created a testing pyramid to show how the different types
of tests should be broken down. In figure 1.2, you can see approximate percentages for
the different tests you should include in your project.

End-to-End
Tests

(~10%)

Integration Tests
(~20%)

Unit Tests
(~70%)

Figure 1.2 Testing pyramid of the recommended
distribution for the different types of tests in your
project

 9Summary

You may have noticed that the pyramid includes integration tests. Integration tests
are used to test that a whole system works correctly. For our purposes, we’ll roll the inte-
gration tests into E2E tests, because E2E tests test the entire UI system.

That gives you a basic background on Angular testing. In the next chapter, you’ll get
the chance to dive in to writing your first real tests.

Summary

¡	Angular provides a great framework for building testable web and mobile applica-
tions. It relies heavily on the concept of components for developing applications.

¡	You’ll run across two types of tests when developing Angular applications: unit
tests and E2E tests. You use unit tests to test the actual code, whereas you write
E2E tests in a way that enables them to simulate user interactions.

¡	TypeScript is a language created by Microsoft that’s a superset of JavaScript.
Angular is built with TypeScript, and although you can use native versions of
JavaScript (ES5 or ES6) or compile-to-JavaScript languages like CoffeeScript or
Dart, we recommend you use TypeScript to write your code. Most of the coding
examples, tutorials, and blog posts for this book will use TypeScript, so it’s in your
best interest to jump in and start using it.

¡	TypeScript comes with some nifty features not found in native JavaScript, such
as the ability to assign types, declare private variables, and use object-oriented
features, like interfaces.

¡	Protractor, Jasmine, and Karma are the primary tools that make the testing of
Angular applications easy. These tools are written in JavaScript, and you’ll con-
figure them to run automatically while you write your tests and during your build
process.

Part 1

Unit testing

In the almost 20 years since Kent Beck’s Test Driven Development, software develop-
ers have taken more and more responsibility for writing automated tests for their
applications. Whether you practice full TDD or write tests after the fact, having
a robust automated test suite for your project is incredibly freeing. As Martin
Fowler said, “Legacy code is untested code.” It’s risky to change untested code,
especially if it was developed by someone else (or even by you months ago). Peo-
ple tend to work around untested code and avoid making changes to it. Having
a robust suite of automated tests gives you the confidence to refactor your code
and improve it, even while adding new features.

Angular is built from the ground up to be testable. Angular makes it easy to
architect your application as a collection of loosely coupled components, and
the TypeScript-based dependency injection makes it easy to mock dependencies.
Unit tests in Angular can exercise your entire component, including the template
and DOM. In the coming chapters, you’ll learn how to write effective unit tests for
Angular.

In chapter 2, we’ll start by covering the basics of writing unit tests with Jasmine.
If you’ve written unit tests in JavaScript and are familiar with ES6 classes, most of
this chapter will be familiar to you.

Chapter 3 introduces the fundamental building blocks of Angular applica-
tions—components—and how to test them. If you're familiar with JavaScript test-
ing but not testing Angular applications, this is a good place to start.

12 part 1

We discuss testing directives in chapter 4. Directives in Angular are different from
AngularJS directives, and we explain those differences. Testing directives is a good
example of how to write DOM-focused unit tests in Angular.

In Angular, pipes are simple functions that transform data in templates. Chapter 5
covers how to test them and, along the way, introduces some functional programming
concepts.

Similar to AngularJS, you share data in Angular throughout your app via singleton
objects called services. Chapter 6 explores testing services, including using dependency
injection to provide mocks and handling asynchronous behavior with promises and
RxJS observables.

Finally, the Angular router allows your application to switch between different views.
Chapter 7 dives deep into using the router and testing its configuration.

13

2Creating your first tests

This chapter covers
¡	Writing basic unit tests using Jasmine

¡	Using beforeEach, afterEach, it, describe,
and matcher functions

¡	Testing classes

Now that you understand the basics of Angular testing, you’ll get started writing
tests. Before you continue, follow the project setup instructions in appendix A to
install the sample project along with the necessary tools: the Angular CLI, Jasmine,
Protractor, and Karma. You’ll use the sample project throughout the book.

After you get the sample project up and running, you’ll start writing basic tests
using Jasmine, the behavior-driven JavaScript testing framework that you’ll use
throughout the book. We won’t talk about any of the testing modules that come with
Angular in this chapter. We’ll save those for chapter 3 and the rest of the book.

We want to cover testing without the Angular test modules because at times you
won’t need help from Angular itself. For example, you might have a pipe that trans-
forms dates or a function that performs a calculation that needs to be tested, and you
could test them without any help from the Angular test modules. If you aren’t famil-
iar with pipes, don’t fret. All you need to know for this example is that it’s an Angular
utility that can be used to transform data. Chapter 5 is dedicated to pipes.

14 chapter 2 Creating your first tests

In this chapter, we’ll discuss testing classes without the help of the Angular frame-
work. If you’re comfortable with writing basic unit tests, you may want to skip this sec-
tion and start on chapter 3, “Testing components.” Otherwise, let’s get started!

2.1 Writing tests using Jasmine
As we discussed in chapter 1, Jasmine is a behavior-driven development (BDD) frame-
work that’s a popular choice when testing JavaScript applications. BDD is a great meth-
odology because you can use it to explain the why of things. The advantage of writing
tests using BDD is that the test code you’ll write will read close to plain English, as
you’ll see in the examples.

Though you can write Jasmine tests in JavaScript, you’ll write all your tests (and all
code in this book) using TypeScript to maintain consistency.

2.1.1 Writing basic tests

To write the first test, you’ll create a sanity test like the one in chapter 1.

Essential Jasmine functions
There are several important Jasmine functions—describe, it, and expect—that you
need to become familiar with. You'll use them often when writing tests in the real world
and in this book.

describe

You use the describe function to group together a series of tests. This group of tests is
known as a test suite. The describe function takes two parameters, a string and a call-
back function, in the following format:

describe(string describing the test suite, callback);

You can have as many describe functions as you want. The number of describe func-
tions depends on how you want to organize your tests into suites. To organize your tests,
you also can nest as many describe functions as you want.

it

You use the it function when you want to create a specific test, which usually goes inside
a describe function. Like the describe function, the it function takes two parame-
ters—a string and a callback function—using the following format:

it(string describing the test, callback);

You create a test inside an it function by putting an assertion inside the callback func-
tion. You create an assertion by using the expect function.

expect

The expect function comes into play in the code that confirms that the test works.
These lines of code are also known as the assertion because you’re asserting something
as being true. In Jasmine, the assertion is in two parts: the expect function and the

 15Writing tests using Jasmine

matcher. The expect function is where you pass in the value; for example, a Boolean
value true. The matcher function is where you put the expected value. Matcher function
examples include toBe(), toContain(), toThrow(), toEqual(), toBeTruthy(),
toBeNull(), and more. For more information about matchers, check out the Jasmine
documentation at https://jasmine.github.io.

Keep in mind that when you’re writing your assertions, you should try to have only one
assertion per test. When you do have multiple assertions, each assertion must be true
for the test to pass.

In the first test, you'll use the describe function to group tests together into a test
suite and use the it function to separate individual tests. All you’re doing in this test
is checking to see that the Boolean value true is equal to the Boolean value true. The
expect function is where you want to prove your assertion, and you’ll chain it together
with a matcher, which in this case is toBe(true).

This test serves primarily as a sanity check and nothing more. You may recall from
chapter 1 that a sanity check is a test to see if all the parts of your testing environment
are set up correctly.

You’ll use the following naming convention for all your unit tests: <name of file
tested>.spec.ts. Navigate to website/src/app and create a file named first-jasmine-
test.spec.ts. You’ll use this generic name here because this is a one-off test and you aren’t
testing a file. In the future, you’ll include the name of the file that you’re testing in the
file name for your unit test.

You may have noticed that the file name includes the word spec, which stands for
specifying. This means that the test is verifying that a specific part of the code base
works as described in the test file. Generally, you’ll see this format used for unit tests
with Angular.

In your first-jasmine-test.spec.ts file, add the code shown in the following listing.

Listing 2.1 First Jasmine test

describe('Chapter 2 tests', () => {
 it('Our first Jasmine test', () => {
 expect(true).toBe(true);
 });
});

Groups tests into a test suite Separates individual tests

Assertion (true) and matcher toBe()

(continued)

https://jasmine.github.io

16 chapter 2 Creating your first tests

To execute the unit tests in this book, you’ll use the Angular CLI command ng test.
If you enter ng test in the terminal, any file that ends in .spec.ts will run. Now, go
ahead and enter ng test in the terminal window that you’ve been using for navigation.

A browser should open automatically, and you should see something similar to
figure 2.1.

Figure 2.1 Your first passing test, confirming that true really is true

Now that your first test has passed, try an exercise to practice what you just learned.

exercise

Write a test that proves that 2 + 2 equals 4 inside your previous describe function, but
in a new it function.

solution

Now you should have two basic tests. Your test should look similar to the code in bold
in the following listing.

Listing 2.2 Adding a second Jasmine test

describe('Chapter 2 tests', () => {
 it('Our first Jasmine test', () => {
 expect(true).toBe(true);
 });

 it('2 + 2 equals 4', () => {
 expect(2 + 2).toBe(4);
 });
});

Run ng test. When the browser window opens, you should see something like
figure 2.2.

 Figure 2.2 Your second passing test, proving that 2 + 2 = 4

Second test

 17Testing classes

Now that you have two passing tests, let’s see what happens when you have a fail-
ing test. Change the toBe part of your assertion to something other than 4. After you
change the value, run ng test, and you should see something like the screenshot in
figure 2.3.

Figure 2.3 A failing test showing what happens when the value is not what’s expected

As you can see, when you come across a failing test, it’ll be obvious that you have
an error. You’ll see the failing test along with a stack trace below the test. You can go
through the stack trace line by line to debug the error. Each line in the stack trace will
have a line number that you can visit to find the error. The last line of the stack trace
is usually the line closest to the issue, so starting from the bottom up is a good way to
debug the test. Change the toBe back to 4. Your result should again look like figure 2.2.

You won’t be using this first test going forward, so you can delete it by running the
following command:

rm first-jasmine-test.spec.ts

Now that you understand the basics behind writing tests using Jasmine, let’s move on
to testing classes.

2.2 Testing classes
Writing tests for a class is the easiest and quickest way to level up your testing skills with-
out getting mired in some of the Angular framework’s complexity. As we mentioned in
the introduction, at times you’ll need to test a normal class. Let’s say you have a class
that validates inputs from a form, and you want to check the inputs client-side before
passing them along to the server. For that sort of check, you can write your tests as if the
class was any other TypeScript code, without using Angular at all. In this section, you’ll
learn how to do that.

18 chapter 2 Creating your first tests

The first class you’ll write tests for is named ContactClass. ContactClass will hold a
person’s contact information, which you’ll be able to use with the sample application.
You can use ContactClass to get and set a person’s ID, name, email, phone number,
country, and whether they are a favorite.

First, navigate to website/src/app/shared/models/. The code of the class that
you’ll write the test for, ContactClass, is in this directory in the contact.ts file, if you
want to have a peek. In the same directory, create a file called contact.spec.ts. It’s
generally a good idea to keep your tests in the same directory as the module you’ll be
testing.

In test files, the first thing you typically want to do is import your dependencies.
Because you’ll be testing the ContactClass class from the contact module, add the
following code at the top of the file:

import ContactClass from './contact';

Notice that although the module’s file name is contact.ts, you can leave off the ts file
extension in the code because it’s optional in import statements.

Next, you'll create a test suite using the describe method. Call this test suite Contact
class tests. Add a blank line after the import statement, and then the following lines
of code:

describe('Contact class tests', () => {
});

Inside the describe function, you need to create a variable to hold your instance of
the ContactClass and set it to null. Add this code inside the describe block:

let contact: ContactClass = null;

Now you need to initialize the contact variable. You often need to reset a variable every
time you run a test. Resetting variables that have been manipulated inside a test helps
make sure that each test runs independently and that previously manipulated variables
don’t interfere with any subsequent tests. Preventing such interference helps to avoid
unwanted side effects. An example of a side effect could be changing a variable in one
test and then accidently using the changed variable in another test.

The part of the tests where you set variables like this is known as the setup. In your
setup, you’ll use the beforeEach method to initialize your contact variable every time a
test runs. Add a new line and the following code directly beneath the contact variable
declaration that you previously added:

beforeEach(() => {
 contact = new ContactClass();
});

You’ll use the beforeEach functions to set up your tests and to execute expressions
before each one of your tests runs. In this case, you’re setting the contact variable to a
new instance of the ContactClass class each time you run your test.

 19Testing classes

Now you can write your test. If the test creates an instance of ContactClass success-
fully, it will use the class’s constructor to do so. You’ll test this by seeing if the contact
is not null. Add a new line directly below the beforeEach method that you previously
added, and then add the following test case:

it('should have a valid constructor', () => {
 expect(contact).not.toBeNull();
});

Based on the test description part of your it function, should have a valid constructor,
you can see that you’re trying to test the ContactClass constructor. You do so by evaluat-
ing the expression expect(contact).not.toBeNull(). Because the ContactClass class
does have a valid constructor, the matcher, not.toBeNull(), will evaluate to true, and the
test will pass.

TIP Should you start test cases with should? You may have noticed that all of
the test cases so far have started with should. It’s common syntax to start your
test cases with should do x. If you do this consistently, it makes your test cases
easier to read. But it’s not a requirement—you should write your test cases in a
way that makes the most sense to you and your team.

Finally, tests commonly have a teardown part in addition to the setup part. You can use
the teardown part of the test to make sure instances of variables get destroyed, which
helps you avoid memory leaks. In this case, you’ll use the afterEach function to set the
contact variable to null.

After the test you added, add a new line, and then add this code:

afterEach(() => {
 contact = null;
});

Your contact.spec.ts file should look like the code in the following listing.

Listing 2.3 contact.spec.ts—constructor test

import ContactClass from './contact';

describe('Contact class tests', () => {
 let contact: ContactClass = null;

 beforeEach(() => {
 contact = new ContactClass();
 });

 it('should have a valid constructor', () => {
 expect(contact).not.toBeNull();
 });

Imports ContactClass from the contact module Declares the contact variable
as a ContactClass type

Executes beforeEach function
before each test case

Tests the contact not to be null

20 chapter 2 Creating your first tests

 afterEach(() => {
 contact = null;
 });
});

Run the new test by running the following command in your terminal window inside
the testing-angular-applications/website directory:

ng test

In the Chrome window that’s running your test runner, you should see something like
figure 2.4.

Figure 2.4 Chrome window showing that the ContactClass constructor works

You've tested to see that creating an empty constructor works in an instance of the
ContactClass. Let’s see what happens when you try to test creating an instance of the
ContactClass by passing a name to it. To see if the name property is set correctly, you’ll
also have to test the get method for the name properties. Add the new test in bold in the
following listing to the contact.spec.ts file directly below the constructor test.

Listing 2.4 contact.spec.ts—constructor setter and getter name test

import ContactClass from './contact';

describe('ContactClass tests', () => {
 let contact: ContactClass = null;

 beforeEach(() => {
 contact = new ContactClass();
 });

 it('should have a valid constructor', () => {
 expect(contact).not.toBeNull();
 });

Executes afterEach function
after each test case

 21Testing classes

 it('should set name correctly through constructor', () => {
 contact = new ContactClass('Liz');
 expect(contact.name).toEqual('Liz');
 });

 afterEach(() => {
 contact = null;
 });
});

If you left the test server running when you used ng test, the tests should update
automatically after you add this code. If you need to restart the test server, run ng test
again. You can check to see if the tests ran successfully by either looking at the test run-
ner in the Chrome browser, as you've been doing so far, or by checking the terminal
window you’ve been using to input commands. You should see two successfully run
tests (figure 2.5).

Figure 2.5 Two successfully run tests in a terminal window

2.2.1 Adding the rest of the tests

Next, you can test out the getters and setters for the id and name properties in your
class. Add the two tests that are in bold in the following listing.

Listing 2.5 contact.spec.ts—adding getters and setters tests for id and name tests

import ContactClass from './contact';

describe('ContactClass tests', () => {
 let contact: ContactClass = null;

 beforeEach(() => {
 contact = new ContactClass();
 });

 it('should have a valid constructor', () => {
 expect(contact).not.toBeNull();
 });

 it('should set name correctly through constructor', () => {
 contact = new ContactClass('Liz');
 expect(contact.name).toEqual('Liz');
 });

Tests for setting name using a
constructor and testing the

getter for name

22 chapter 2 Creating your first tests

 it('should get and set id correctly, () => {
 contact.id = 1;
 expect(contact.id).toEqual(1);
 });

 it('should get and set name correctly, () => {
 contact.name = 'Liz';
 expect(contact.name).toEqual('Liz');
 });

 afterEach(() => {
 contact = null;
 });
});

You should now see four passing tests in your terminal or in your browser.
If you want to strive for 100% test coverage for a given module, you should have tests

to cover every line in the module. To do this for the ContactClass, you need to com-
plete an exercise.

exercise

For this exercise, write the rest of the tests for ContactClass in the contact.ts file in
the same directory as your test. These tests should be similar to the ones you’ve already
written.

solution

Your final contact.spec.ts should look something like the bold code in the following
listing.

Listing 2.6 contact.spec.ts—complete

import ContactClass from './contact';

describe('ContactClass tests', () => {
 let contact: ContactClass = null;

 beforeEach(() => {
 contact = new ContactClass();
 });

 it('should have a valid constructor', () => {
 expect(contact).not.toBeNull();
 });

 it('should set name correctly through constructor', () => {
 contact = new ContactClass('Liz');
 expect(contact.name).toEqual('Liz');
 });

Getters and setters
for the id property

Getters and setters for
the name property

 23Summary

 it('should get and set id correctly', () => {
 contact.id = 1;
 expect(contact.id).toEqual(1);
 });

 it('should get and set name correctly', () => {
 contact.name = 'Liz';
 expect(contact.name).toEqual('Liz');
 });

 it('should get and set email correctly', () => {
 contact.email = 'liz@sample.com';
 expect(contact.email).toEqual('liz@sample.com');
 });

 it('should get and set number correctly', () => {
 contact.number = '1234567890';
 expect(contact.number).toEqual('1234567890');
 });

 it('should get and set country correctly', () => {
 contact.country = 'United States';
 expect(contact.country).toEqual('United States');
 });

 it('should get and set favorite correctly', () => {
 contact.favorite = true;
 expect(contact.favorite).toEqual(true);
 });

 afterEach(() => {
 contact = null;
 });
});

Make sure that all your tests pass; you should have eight passing tests in total. At this
point you should have a pretty good understanding of how to test classes in TypeScript
using the Jasmine testing framework. We covered a lot in this chapter. You should feel
confident that the information you’ve learned here will help you immensely on your
journey to becoming an Angular testing master.

Summary

¡	Writing basic unit tests can come in handy when you don’t need to use any of the
Angular testing modules. Writing tests for simple functions, classes, and pipes
doesn’t require any testing dependencies outside of Jasmine, the behavior-driven
development (BDD) framework. You can use Jasmine to write tests that read
close to plain English.

Tests for getting
and setting email

Tests for getting
and setting number

Tests for getting
and setting country

Tests for getting
and setting favorite

24 chapter 2 Creating your first tests

¡	Most unit tests you’ll write or see in production applications will cover a similar
pattern. You usually have a section at the top for importing dependencies, a sec-
tion to create the test suite, a section for setting up the tests, a section for the tests
themselves, and a section to tear down the tests.

25

3Testing components

This chapter covers
¡	Testing components

¡	Knowing the differences between isolated and
shallow tests

¡	Testing classes and functions

Angular applications are built from components, so the most important place to
start when testing an Angular application is with component tests. For example,
imagine a component that displays a calendar. It might enable a user to select a
date, change the selected date, cycle through months and years, and so on. You
need to write a test case for each of these pieces of functionality.

In this chapter, we’ll cover key testing classes and functions, such as TestBed,
ComponentFixture, and fakeAsync, which help you test your components. You’ll
need a good grasp of these classes and functions to write component tests.

Don’t worry if you've never heard of these concepts before. You’ll practice using
them as we go. By the end of this chapter, you’ll understand what components are
and know how to write tests for them. Let’s kick off the chapter by looking at some
basic component tests.

26 chapter 3 Testing components

3.1 Basic component tests
The best way to get comfortable writing component tests is to write a few tests for a
basic component. In this section, you’ll write tests for the ContactsComponent compo-
nent. ContactsComponent has almost no functionality and will be easy to test.

To get started, follow the instructions for setting up the example project in appen-
dix A, if you haven't already. Then, navigate into the testing-angular-applications direc-
tory, create a file named contacts.component.spec.ts in the website/src/app/contacts/
directory, and open it in your text editor or IDE. (While you’re there, if you want to take a
peek at the source code for ContactsComponent that you’ll be writing tests against, open
the contacts.component.ts file.)

The first step in creating your test is to import your dependencies. This kind of test
requires two dependencies. The first is ContactsComponent in the contacts.component
module. At the top of the file, add the following line:

import { ContactsComponent } from './contacts.component';

The second dependency you need to import is the interface that defines a contact.
Immediately after the first import statement, add the following line of code:

import { Contact } from './shared/models';

Now, you’ll create the test suite that will house all your tests for ContactsComponent.
After the import statement, add a describe block to create your test suite:

describe('ContactsComponent Tests', () => {
});

Next, you need to create a variable named contactsComponent that references an
instance of ContactsComponent. You’ll set the contactsComponent variable in the
beforeEach block of your tests. Doing so will guarantee that you’re generating a new
instance of ContactsComponent when each test runs, which will prevent your test cases
from interfering with each other. On the first line inside the describe callback func-
tion, add the following code:

let contactsComponent: ContactsComponent = null;

Variable name Data type Initialize variable to nullVariable type

Add a beforeEach function that sets the contactsComponent variable to a new instance
of ContactsComponent before each test is executed:

beforeEach(() => {
 contactsComponent = new ContactsComponent();
});

 27Basic component tests

Your first test validates that you can create an instance of ContactsComponent properly.
Add the following code below the beforeEach statement:

it('should set instance correctly', () -> {
 expect(contactsComponent).not.toBeNull();
});

After adding this code snippet, your contacts.component.spec.ts file should look like
the code in the following listing.

Listing 3.1 contacts.component.spec.ts

import { ContactsComponent } from './contacts.component';
import { Contact } from './shared/models';

describe('ContactsComponent Tests', () => {
 let contactsComponent: ContactsComponent = null;

 beforeEach(() => {
 contactsComponent = new ContactsComponent();
 });

 it('should set instance correctly', () => {
 expect(contactsComponent).notBeNull();
 });
});

This is a simple test, and if the contactsComponent variable contains anything other
than null, the test will pass.

Run ng test to run your first test. You’ll see one passing test in the Chrome window
(figure 3.1). If you get an error, examine the error messages to see where the test is
failing.

Figure 3.1 First passing unit test validating creation of ContactsComponent instance

Declaration of the contactsComponent
variable initialized to null

A new instance of ContactsComponent will be set
before each test using the beforeEach method.

The assertion where you test whether
the component is set correctly

28 chapter 3 Testing components

You need to write a few more basic tests to finish the tests for ContactsComponent.
For the next test, let’s see what happens if the component contains no contacts. With-
out any contacts, the contacts array length should be zero, because the contacts array
is empty by default. Add the following test to your test file:

it('should be no contacts if there is no data', () => {
 expect(contactsComponent.contacts.length).toBe(0);
});

For the last test, you’ll make sure that you can add contacts to the list. To do this, create
a new contact using the Contact interface and add it to an array called contactsList.
Finally, set the contacts property of ContactsComponent to the contactsList array
that you created. To do this, add the following code after the previous test:

it('should be contacts if there is data', () => {
 const newContact: Contact = {
 id: 1,
 name: 'Jason Pipemaker'
 };
 const contactsList: Array<Contact> = [newContact];
 contactsComponent.contacts = contactsList;

 expect(contactsComponent.contacts.length).toBe(1);
});

Your completed contacts.component.spec.ts test should look like the following listing.

Listing 3.2 Completed contacts.component.spec.ts file

import { ContactsComponent } from './contacts.component';
import { Contact } from './shared/models';

describe('ContactsComponent Tests', () => {
 let contactsComponent: ContactsComponent = null;

 beforeEach(() => {
 contactsComponent = new ContactsComponent();
 });

 it('should set instance correctly', () => {
 expect(contactsComponent).not.toBeNull();
 });

 it('should be no contacts if there is no data', () => {
 expect(contactsComponent.contacts.length).toBe(0);
 });

 it('should be contacts if there is data', () => {
 const newContact: Contact = {
 id: 1,
 name: 'Jason Pipemaker'
 };

Assertion to test that there
should be no contacts by
default

 29Real-world component testing

 const contactsList: Array<Contact> = [newContact];
 contactsComponent.contacts = contactsList;

 expect(contactsComponent.contacts.length).toBe(1);
 });
});

If your test process is still running, you should see three passing unit tests in the
Chrome test-runner window (figure 3.2).

 Figure 3.2 Three passing unit tests for ContactsComponent

If you see any errors, check your code against the GitHub repository at http://mng
.bz/1BFL.

So far, your tests haven’t needed any Angular-specific dependencies because Con-
tactsComponent is a normal TypeScript class. When testing these types of components,
you don’t need any help from the Angular testing modules. These types of tests are
known as isolated tests because they don’t need any Angular dependencies and you can
treat them like ordinary TypeScript files.

You might need to write this kind of test when a component has limited functionality.
For example, let’s say you’ve created a component for a new page, like a sign-up page,
but you haven’t implemented the logic yet. You could write a couple of isolated tests to
make sure the component is created correctly.

You’ve warmed up your component testing skills a bit, so in the next section you can
write tests for a component with more functionality.

3.2 Real-world component testing
In the real world, you’ll need to test more complex components. For example, say you
want to test a sidebar that contains a menu. You’d like to be able to test the sidebar with-
out worrying about the menu. In such situations, you can use what are known as shallow
tests. Shallow tests let you test components one level deep, ignoring any child elements
that the element may contain; you can test the parent component in isolation.

Assertion to test that if one contact is
added, then the number of contacts in

the contact array should be 1

http://mng.bz/1BFL
http://mng.bz/1BFL

30 chapter 3 Testing components

In this section, you’ll write shallow tests for the ContactEditComponent component.
ContactEditComponent is similar to components used in real applications, so it’s a good
example to write tests against. Navigate to website/src/app/contacts/contact-edit in
the project directory and create a file named contact-edit.component.spec.ts. You’ll
start by importing the necessary dependencies.

3.2.1 Importing the dependencies

Because ContactEditComponent is a fully functioning component, it requires a lot of
dependencies. Your tests will reflect that in the number of import statements that you
need. Let’s consider the imports in the following order:

¡	Testing dependencies that come from Angular
¡	Dependencies that are included with Angular
¡	Dependencies that you created for this project

These dependencies are required for your test module to work. Let’s see how to meet
that requirement by diving into the Angular dependencies.

angular import statements

The following list provides a walkthrough of the import statements you’ll need for
your tests:

¡	import { DebugElement } from '@angular/core';—You can use DebugElement
to inspect an element during testing. You can think of it as the native HTMLEle-
ment with additional methods and properties that can be useful for debugging
elements.

¡	import { ComponentFixture, fakeAsync, TestBed, tick } from
'@angular/core/testing';

¡	ComponentFixture—You can find this class in the @angular/core module.
You can use it to create a fixture that you then can use for debugging.

¡	TestBed—You use this class to set up and configure your tests. Because you use
TestBed anytime you want to write a unit test for components, directives, and
services, it’s one of the most important utilities that Angular provides for test-
ing. In this book, you’ll be using the configureTestingModule, override-
Module, and createComponent methods, which you’ll put to use later in the
chapter. Because the API for TestBed is extensive, we only scratch the sur-
face of the API in this book. If you want to see what else belongs to the TestBed
API, we recommend visiting https://angular.io/api/core/testing/TestBed.

¡	fakeAsync—Using fakeAsync ensure that all asynchronous tasks are com-
pleted before executing the assertions. Not using fakeAsync may cause the
test to fail because the assertions may be executed without all of the asynchro-
nous tasks not being completed. When using fakeAsync, you can use tick to
simulate the passage of time. It accepts one parameter, which is the number

https://angular.io/api/core/testing/TestBed

 31Real-world component testing

of milliseconds to move time forward. If you don’t provide a parameter, tick
defaults to zero milliseconds.

¡	import { By } from '@angular/platform-browser';—By is a class included
in the @angular/platform-browser module that you can use to select DOM ele-
ments. For example, let’s say you want to select an element with the CSS class
name of highlight-row;. The element may look like the following HTML
element:

<i class="highlight-row">

You would use the css method to retrieve that element using a CSS selector.
The resulting code would look like this:

By.css('.highlight-row')

Note that you use a period to select the elements by CSS class name. In total, By
provides three methods, which you can find in table 3.1.

Table 3.1 By methods

Method Description Parameter

all Using all will return all of the
elements.

None

css Using a CSS attribute, you can
select certain elements.

CSS attribute

directive You can use the name of a direc-
tive to select elements.

Directive name

¡	import { NoopAnimationsModule } from '@angular/platform-browser/
animations';—You use the NoopAnimationsModule class to mock animations,
which allows tests to run quickly without waiting for the animations to finish.

¡	import { BrowserDynamicTestingModule } from '@angular/platform-brows-
er-dynamic/testing';—BrowserDynamicTestingModule is a module that
helps bootstrap the browser to be used for testing.

¡	import { RouterTestingModule } from '@angular/router/testing';—As
the name implies, you can use RouterTestingModule to set up routing for test-
ing. We include it with the tests for this component because some of the actions
will involve changing routes.

NOTE There are several code changes in the following pages. If you need
to cross check anything the listings at https://github.com/testing-angular
-applications/testing-angular-applications/tree/master/chapter03 are also
up-to-date. The final file is up-to-date at: https://github.com/testing-angular
-applications/testing-angular-applications/blob/master/chapter03/contact
-edit.component.spec.ts as well.

https://github.com/testing-angular-applications/testing-angular-applications/tree/master/chapter03
https://github.com/testing-angular-applications/testing-angular-applications/tree/master/chapter03
https://github.com/testing-angular-applications/testing-angular-applications/blob/master/chapter03/contact-edit.component.spec.ts
https://github.com/testing-angular-applications/testing-angular-applications/blob/master/chapter03/contact-edit.component.spec.ts
https://github.com/testing-angular-applications/testing-angular-applications/blob/master/chapter03/contact-edit.component.spec.ts

32 chapter 3 Testing components

At the top of your contact-edit.component.spec.ts file, add the import statements from
Angular shown in the following listing.

Listing 3.3 Completed contact-edit.component.spec.ts file

import { DebugElement } from '@angular/core';
import { ComponentFixture, fakeAsync, TestBed, tick } from
 '@angular/core/testing';
import { By } from '@angular/platform-browser';
import { NoopAnimationsModule } from
 '@angular/platform-browser/animations';
import { BrowserDynamicTestingModule } from
 '@angular/platform-browser-dynamic/testing';
import { RouterTestingModule } from '@angular/router/testing';

We covered quite a bit in these import statements. You’ll be using all of these state-
ments and will find all of them useful, but pay special attention to the most important
classes and functions: TestBed, ComponentFixture, and fakeAsync.

angular nontesting module statement

You only need to import one Angular nontesting module—FormsModule. You need this
module because the ContactEditComponent uses it for some Angular form controls.
Right after the import statements that you added, add the following import statement:

import { FormsModule } from '@angular/forms';

remaining dependency statements

Now that we’ve covered the major classes and methods included in the Angular frame-
work that you’ll use, you can add the rest of the dependencies you’ll need to finish the
tests. Add the following lines of code after the existing imports:

import { Contact, ContactService, FavoriteIconDirective,
InvalidEmailModalComponent, InvalidPhoneNumberModalComponent } from

 '../shared';
import { AppMaterialModule } from '../app.material.module';
import { ContactEditComponent } from './contact-edit.component';

import '../../../material-app-theme.scss';

Verify that your imports section looks like the code in the following listing before
continuing.

DebugElement will debug the
elements you select.

These dependencies are from the
Angular core testing library.

Uses By to select elements

Uses NoopAnimationsModule
to simulate animations

Uses BrowserDynamicTestingModule to
bootstrap browser for testing

Uses RouterTestingModule
to test routing

 33Real-world component testing

Listing 3.4 contact-edit.component.spec.ts imports section

import { DebugElement } from '@angular/core';
import { ComponentFixture, fakeAsync, TestBed, tick } from
 '@angular/core/testing';
import { By } from '@angular/platform-browser';
import { NoopAnimationsModule } from
 '@angular/platform-browser/animations';
import { BrowserDynamicTestingModule } from
 '@angular/platform-browser-dynamic/testing';
import { RouterTestingModule } from '@angular/router/testing';

import { FormsModule } from '@angular/forms';

import { Contact, ContactService, FavoriteIconDirective,
 InvalidEmailModalComponent, InvalidPhoneNumberModalComponent } from
 '../shared';
import { AppMaterialModule } from '../app.material.module';
import { ContactEditComponent } from './contact-edit.component';

Next, you’ll set up the tests.

3.2.2 Setting up the tests

The first step in setting up your tests is to create the describe block that will house
all your tests and declare the instance variables they need. Beneath the import state-
ments, add the following code:

describe('ContactEditComponent tests', () => {
 let fixture: ComponentFixture<ContactEditComponent>;
 let component: ContactEditComponent;
 let rootElement: DebugElement;
});

The describe method creates the test suite that contains all your tests. As for the
instance variables:

¡	fixture—Stores an instance of the ComponentFixture, which contains methods
that help you debug and test a component

¡	component—Stores an instance of the ContactEditComponent
¡	rootElement—Stores the DebugElement for your component, which is how you’ll

access its children

The top six lines contain the Angular
testing dependencies.

Angular nontesting
dependencies

These last three lines are the
dependencies created for this project.

34 chapter 3 Testing components

DEFINITION A test fake is an object you use in a test to substitute for the real
thing. A mock is a fake that simulates the real object and keeps track of when it’s
called and what arguments it receives. A stub is a simple fake with no logic, and
it always returns the same value.

faking contactservice

You’ll use a test fake for ContactService because the real ContactService makes
HTTP calls, which would make your tests harder to run and less deterministic. Also,
faking ContactService allows you to focus on testing the ContactEditComponent
without worrying about how ContactService works. Angular’s dependency injection
system makes it easy to instantiate a ContactEditComponent with a fake version of Con-
tactService. The fake ContactService has the same type as the real one, so the Type-
Script compiler will throw an error if you forget to stub out part of the interface.

Right after the last variable declaration, but still inside the describe block, add the
code in the following listing to create the fake service named contactServiceStub.

Listing 3.5 Mock ContactService

const contactServiceStub = {
 contact: {
 id: 1,
 name: 'janet'
 },

 save: async function (contact: Contact) {
 component.contact = contact;
 },

 getContact: async function () {
 component.contact = this.contact;
 return this.contact;
 },

 updateContact: async function (contact: Contact) {
 component.contact = contact;
 }
};

the first beforeeach

Now that you have a fake ContactService, add two beforeEach blocks, which will exe-
cute before each test. The first beforeEach sets up your TestBed configuration. The
second will set your instance variables. You could have just one beforeEach, but your
test will be easier to read if you keep them separate.

A lot needs to happen now, as you can see in listing 3.6, so let’s break down the
code a bit. The TestBed class has a method called configureTestingModule. You can
probably guess its purpose, which is to configure the testing module. It’s much like the
NgModule class that’s included in the app.module.ts file, which you can find at src/app.
The only difference is that you only use configureTestingModule in tests. It takes an

The default contact object

Sets the passed-in object to the
component’s contact property

Method that sets the current contact to
the component’s contact property and
returns that contact

Method that updates
the contact object

 35Real-world component testing

object that’s in the format of a TestModuleMetadata type alias. If you aren’t familiar
with a type alias, for our purposes you can think of it like an interface. In the code list-
ing, note the providers section:

 providers: [{provide: ContactService, useValue: contactServiceStub}]

This is where you provide your fake contact service contactServiceStub in place of
the real ContactService with useValue.

You use overrideModule in this case because you need the two modal dialogs to
be loaded lazily. Lazy loading means that the dialogs won’t be loaded until the user
performs an action to cause them to load. Currently, the only way to do this is to use
overrideModule and set the entryComponents value to an array that contains the two
modal components that the ContactEditComponent uses—InvalidEmailModalCompo-
nent and InvalidPhoneNumberModalComponent.

Finally, the last line of this first beforeEach statement uses TestBed.get(Contact-
Service) to get a reference to your fake contactService from Angular’s dependency
injector. This will be the same instance that ContactEditComponent uses.

After the code for contactServiceStub, add the code in the following listing as your
first beforeEach statement.

Listing 3.6 First beforeEach

beforeEach(() => {
 TestBed.configureTestingModule({
 declarations: [ContactEditComponent, FavoriteIconDirective,
 InvalidEmailModalComponent, InvalidPhoneNumberModalComponent],
 imports: [
 AppMaterialModule,
 FormsModule,
 NoopAnimationsModule,
 RouterTestingModule
],
 providers: [{provide: ContactService,
 useValue: contactServiceStub}]
 });

 TestBed.overrideModule(BrowserDynamicTestingModule, {
 set: {
 entryComponents: [InvalidEmailModalComponent,
 InvalidPhoneNumberModalComponent]
 }
 });
});

This is where you use the contactServiceStub
instead of the real service.

Configuring TestBed to
be used in your tests

You have to use overrideModule
because a couple of components
will be lazily loaded.

36 chapter 3 Testing components

You can see in the listing that TestModuleMetadata accepts four optional properties,
which are described in table 3.2.

Table 3.2 TestModuleMetadata optional fields

Field Data Type Description

declarations any[] This is where you list any compo-
nents that the component you’re
testing may need.

imports any[] You set imports to an array
of modules that the component
you’re testing requires.

providers any[] Lets you override the providers
Angular uses for dependency
injection. In this case, you inject a
fake ContactService.

schemas Array<SchemaMetadata | any[]> You can use schemas like CUS-
TOM_ELEMENTS_SCHEMA
and NO_ERRORS_SCHEMA
to allow for certain properties
of elements. For example, the
NO_ERRORS_SCHEMA will allow
for any element that’s going to be
tested to have any property.

the second beforeeach

Now you’ll add the second beforeEach statement. The fixture variable stores the
component-like object from the TestBed.createComponent method that you can
use for debugging and testing, which we mentioned earlier. The component variable
holds a component that you get from your fixture using the componentInstance
property.

But what is this fixture.detectChanges method that you haven’t seen before? The
detectChanges method triggers a change-detection cycle for the component; you
need to call it after initializing a component or changing a data-bound property value.
After calling detectChanges, the updates to your component will be rendered in the
DOM. In production, Angular uses something called zones (which you’ll learn more
about in Chapter 9) to know when to run change detection, but in unit tests, you don’t
have that mechanism. Instead, you need to call detectChanges frequently in your tests
after making changes to a component.

Directly after the first beforeEach statement, add in the following code:

beforeEach(() => {
 fixture = TestBed.createComponent(ContactEditComponent);
 component = fixture.componentInstance;
 fixture.detectChanges();
 rootElement = fixture.debugElement;
});

 37Real-world component testing

So far, so good. You’ve added the code to set up your tests. In the next section, you’ll
add the tests themselves.

3.2.3 Adding the tests

You’re ready to write your tests. You want to test the saveContact, loadContact, and
updateContact methods for ContactEditComponent because those methods hold
most of the functionality of the component. The ContactEditComponent class has sev-
eral more private helper methods, but you don’t need those because testing the com-
ponent’s public API will exercise them. In general, you shouldn’t test private methods;
if a method is important enough to be tested, you should consider making it public.

testing the savecontact method

First, you should write a test for the saveContact method. Calling saveContact
changes the component’s state, which will be reflected in changes to the DOM. You’ll
use the fakeAsync method to keep the test from finishing until the component has
finished updating.

Next, create a contact object and set the component.isLoading property to false.
You need to do this manually; otherwise, all that will render is the loading-progress bar.
Then you’ll call the saveContact method to save the contact that’s stored in the con-
tact variable. Normally, saveContact would use the real ContactService, but because
you configured the testing module to provide contactServiceStub earlier, the compo-
nent will call the stub.

After you’ve called the saveContact method, you’ll notice that you call
detectChanges. As mentioned earlier, after you make changes to components, you
need to call detectChanges so that those changes will be rendered, which allows you to
test that changes to the component are reflected in the DOM.

After calling detectChanges, query rootElement using By.css for the contact-name
class to get the input element that contains the contact name. Then call tick to simu-
late the passage of time so the component will finish updating. Notice that the tick
method doesn’t have a parameter for milliseconds, so it uses the default value of zero
milliseconds. Finally, assert that the value of nameInput is equal to lorace.

Add the code in the following listing directly after the last beforeEach statement.
Make sure you stay within the overall test suite (the top-level describe block).

Listing 3.7 saveContact method test

describe('saveContact() test', () => {
 it('should display contact name after contact set', fakeAsync(() => {
 const contact = {
 id: 1,
 name: 'lorace'
 };

 component.isLoading = false;

The contact object you’ll save

Sets isLoading to false to
hide the progress bar

38 chapter 3 Testing components

 component.saveContact(contact);
 fixture.detectChanges();
 const nameInput = rootElement.query(By.css('.contact-name'));
 tick();
 expect(nameInput.nativeElement.value).toBe('lorace');
 }));
});

testing the loadcontact method

Next, you’ll write a test for the loadContact method. This test is similar to the test
in listing 3.7. The only difference is that you’ll use the loadContact method instead
of the saveContact method of the ContactEditComponent class. The loadContact
method will load a contact for your testing purposes inside the contactServiceStub.
The contact’s name is janet, which is the value you’ll use in the assertion.

Add the code from the following listing directly after the saveContact method test
that you just created.

Listing 3.8 loadContact method test

describe('loadContact() test', () => {
 it('should load contact', fakeAsync(() => {
 component.isLoading = false;
 component.loadContact();
 fixture.detectChanges();
 const nameInput = rootElement.query(By.css('.contact-name'));
 tick();
 expect(nameInput.nativeElement.value).toBe('janet');
 }));
});

Now we’ll move on to testing the updateContact method.

testing the updatecontact method

By now, you’ve probably picked up on a pattern: this test is similar to the other two
tests. This time, you first set a contact that has a name of rhonda and test that the com-
ponent renders correctly. The major difference between this test and the other two
tests is that it uses a second assertion. You want to check to see that the name updates
when you call updateContact. To do this, call updateContact and pass it newContact.

You might notice that you call tick in the following listing with 100 as a parameter.
You need this time because the updateContact method takes a bit longer to execute

Saves the contact objectUses the detectChanges method
to trigger change detection

Gets the nameInput form field

Simulates the passage
of time using tick

Checks to see if the name property has
been set correctly

Executes the loadContact method

The default contact that’s loaded has a
value of janet for the name property.

 39Real-world component testing

than the other methods that you’ve been testing. Add the code from the following list-
ing after the previous test.

Listing 3.9 First updateContact method test

describe('updateContact() tests', () => {
 it('should update the contact', fakeAsync(() => {
 const newContact = {
 id: 1,
 name: 'delia',
 email: 'delia@example.com',
 number: '1234567890'
 };

 component.contact = {
 id: 2,
 name: 'rhonda',
 email: 'rhonda@example.com',
 number: '1234567890'
 };

 component.isLoading = false;
 fixture.detectChanges();
 const nameInput = rootElement.query(By.css('.contact-name'));
 tick();
 expect(nameInput.nativeElement.value).toBe('rhonda');

 component.updateContact(newContact);
 fixture.detectChanges();
 tick(100);
 expect(nameInput.nativeElement.value).toBe('delia');
 }));
});

Run ng t in your console (if you haven’t already). You should see six passing tests. If
you don’t see six passing tests, go back to the code samples and make sure your code
matches the code in this book.

You now have a test that will update a contact, but you need to test what happens
when you try to update the contact with invalid contact data. First, see what happens
when you try to update the contact with an invalid email address. The differences
between listing 3.9 and 3.10 are highlighted in bold. The newContact variable now has
an invalid email, and the last assertion doesn’t expect the contact to change because
the email is invalid. That’s why both assertions expect the contact’s name to remain
chauncey. Add the code in the following listing directly after your first updateContact
method test.

Updates the existing contact
to the newContact object

Triggers change detection.

Simulates the passage of time, in this
case 100 milliseconds

Checks to see that the value in
the nameInput form field has

been changed correctly

40 chapter 3 Testing components

Listing 3.10 Second updateContact method test

it('should not update the contact if email is invalid', fakeAsync(() => {
 const newContact = {
 id: 1,
 name: 'london',
 email: 'london@example',
 number: '1234567890'
 };

 component.contact = {
 id: 2,
 name: 'chauncey',
 email: 'chauncey@example.com',
 number: '1234567890'
 };

 component.isLoading = false;
 fixture.detectChanges();
 const nameInput = rootElement.query(By.css('.contact-name'));
 tick();
 expect(nameInput.nativeElement.value).toBe('chauncey');

 component.updateContact(newContact);
 fixture.detectChanges();
 tick(100);
 expect(nameInput.nativeElement.value).toBe('chauncey');
}));

Now let’s see what happens when you try to update a contact with an invalid phone
number. Again, notice the bolded code in listing 3.11. The only difference between
this test and the previous test is that the number now contains too many digits. Similar
to the test before this one, the contact name is the same in both assertions.

Add the code in the following listing to the end of the second updateContact
method test that you just wrote.

Listing 3.11 Third updateContact method test

it('should not update the contact if phone number is invalid',
 fakeAsync(() => {
 const newContact = {
 id: 1,
 name: 'london',
 email: 'london@example.com',
 number: '12345678901'
 };

 component.contact = {
 id: 2,
 name: 'chauncey',
 email: 'chauncey@example.com',
 number: '1234567890'
 };

Email is invalid

Because the email is invalid, the
contact shouldn’t be updated using

the newContact object, so the contact
name should be the same.

Number is invalid

 41Summary

 component.isLoading = false;
 fixture.detectChanges();
 const nameInput = rootElement.query(By.css('.contact-name'));
 tick();
 expect(nameInput.nativeElement.value).toBe('chauncey');

 component.updateContact(newContact);
 fixture.detectChanges();
 tick(100);
 expect(nameInput.nativeElement.value).toBe('chauncey');
}));

Run ng t in your terminal again. You should see eight passing tests. If you see any
errors, try checking your code against the version in the GitHub repository at http://
mng.bz/Ud5b.

You’ve coded complete test coverage for a real-world component! You’re likely to
come across components out there that are more advanced, but what you’ve learned
here gives you a foundation for writing tests that can handle that complexity. Compo-
nents are one of the most—if not the most—important concepts in Angular, so you
need a firm understanding of the component testing basics to be successful in writing
tests.

Summary

¡	Isolated tests don’t rely on the built-in Angular classes and methods. You can test
them as if you were using normal TypeScript classes. Sometimes for your tests
you’ll have to render components one level deep without rendering child com-
ponents. To accomplish that, you’ll use shallow tests.

¡	Using the fakeAsync function, you can ensure that all asynchronous calls are
completed within a test before the assertions are executed. Doing so prevents test
from failing unexpectedly before all of the asynchronous calls are completed.

¡	Use the ComponentFixture class to debug an element.
¡	TestBed is a class that you use to set up and configure your tests. Use it anytime

you want to write a unit test that tests components, directives, and services.
¡	You can use DebugElement to dive deeper into an element. You can think of it

as the HTMLElement, with methods and properties added that can be useful for
debugging elements.

¡	The nativeElement object is an Angular wrapper around the built-in DOM
native element.

Because the number is invalid, the contact
shouldn’t be updated using the newContact

object, so the contact name should be the same.

http://mng.bz/Ud5b
http://mng.bz/Ud5b

43

4Testing directives

This chapter covers
¡	Using the types of directives available

in Angular

¡	Testing attribute and structural directives

¡	Using TestMetaData to configure TestBed

In this chapter, you’ll learn how to test directives. Directives, like components, are a
way to encapsulate parts of your application as reusable chunks of code. With regard
to functionality, both directives and components allow you to add behavior to the
HTML in your application.

For example, let’s say your application has a table, and you want to change the
background color of a row when the pointer hovers over it. You could create a direc-
tive named HighlightRowDirective that adds that row highlighting behavior and
reuse it throughout your project.

Before you get started writing the tests for directives, you’ll want to know a little
more about them.

44 chapter 4 Testing directives

4.1 What are directives?
Angular provides three types of directives:

1 Components

2 Structural directives

3 Attribute directives

Directives and components are similar. Let’s get started by exploring the differences
and similarities between the two.

4.1.1 Components vs. directives

Components are a type of directive. The only difference between the two is that com-
ponents contain a view (defined by a template). Another way to think about the differ-
ence is that components are visible in the browser, and directives are not. For example,
a component could be a header or a footer, whereas a directive modifies the element
it’s attached to. A directive might append classes to an element or hide and show some-
thing based on a condition. Examples of directives built into Angular include ngFor
and ngIf.

To expand your understanding, let’s look at two of the decorators that are included
with the Contacts app you’ve been working on. Decorators are a way to add behavior to
a class or method, kind of like annotations in Java.

First, let’s look at the @Component decorator for the ContactDetail component,
which you can find at /website/src/app/contacts/contact-detail/contact-detail.com-
ponent.ts:

@Component({
 selector: 'app-contact-detail',
 templateUrl: './contact-detail.component.html',
 styleUrls: ['./contact-detail.component.css']
})

You can customize the view using options such as templateUrl, styleUrls, and
viewProviders.

Now, let’s look at the @Directive decorator for FavoriteIcon, which you can find in
/website/src/app/contacts/shared/favorite-icon/favorite-icon.directive.ts and will be
testing later in this chapter:

@Directive({
 selector: '[appFavoriteIcon]'
})

You may notice that the selector has a different name, [appFavoriteIcon], than the
name of the directive, which is FavoriteIcon. We prefixed the selector name with
‘app’ to namespace the directive. This is an easy way to differentiate between directives
that we created versus ones that belong to Angular.

 45Testing attribute directives

Notice that the FavoriteIcon @Directive decorator has a selector, like the @Com-
ponent decorator, but no options for templateUrl, styleUrls, or viewProviders.
Because directives have no views associated with them, they also have no templates to
use, create, or style.

Now that we’ve looked at components and the difference between components and
directives, let’s review the difference between attribute and structural directives.

4.1.2 Different directives

Use attribute directives when you’re trying to change the appearance of a DOM element.
A good example of an attribute directive is the one we mentioned earlier where you
were changing the background color of a row in a table to highlight it as a user rolled
over the row.

Use structural directives to add or remove elements from the DOM—to change the
structure of the page. Angular includes a few structural directives out of the box, like
ngIf and ngShow.

In this chapter, you’ll create tests for both an attribute directive and a structural direc-
tive. The attribute directive adds a gold star to a contact when it’s marked as a favorite.
The structural directive adds and removes contact tables depending on whether con-
tacts are available.

You’ll write tests for the attribute directive first; then you’ll move on to the structural
directive.

4.2 Testing attribute directives
To test an attribute directive, you get an instance of the directive, take some kind of
action, and then check that the expected changes show up in the DOM. Before you get
to the process of writing the tests, let’s take a closer look at the attribute directive that
you’ll be testing.

4.2.1 Introducing the favorite icon directive

You’ll be testing a directive that we created, named FavoriteIconDirective. Its
source code is in /website/src/app/contacts/shared/favorite-icon/icon.directive.ts.
You can add FavoriteIconDirective to an element to display a star when a contact is
favorited. Let’s see how to use it.

usage

Usage for FavoriteIconDirective looks like the following:

<element [appFavoriteIcon]="expression"></element>

46 chapter 4 Testing directives

The following is an example of FavoriteIconDirective being used from line 20 of
the contact-list.component.html template at /website/src/app/contacts/contacts-list/
in the Contacts app source code:

<i [appFavoriteIcon]="contact.favorite"></i>

In this example, you can see that you set [appFavoriteIcon] to the contact.favor-
ite expression, which can be either true or false. If the expression evaluates to true,
meaning that the contact is a favorite, a gold star will be displayed, as in figure 4.1.

Figure 4.1 [appFavoriteIcon] set to true, displaying a gold star

TIP What’s the deal with those square brackets? Glad you asked! In this case,
you use the brackets to bind an expression to your directive. You can use brack-
ets a couple of different ways to bind in Angular. Check out the binding syntax
in the Angular docs at http://mng.bz/w8u4 for more information.

Figure 4.2 shows what happens when [appFavoriteIcon] is false. The star becomes
white, which makes it invisible against the white background.

http://mng.bz/w8u4

 47Testing attribute directives

Figure 4.2 [appFavoriteIcon] set to false, with
a white star displayed but invisible

If you roll over a row where [appFavoriteIcon] is set to false, you’ll be able to see
the white star because the background color changes to gray, as in figure 4.3.

Figure 4.3 [appFavoriteIcon] set to false, with
white star displayed and visible while row is hovered over

48 chapter 4 Testing directives

adding color as a second parameter

FavoriteIconDirective defaults to the color gold, but you can pass in a second
parameter that changes the color of the star.

Setting the [color] parameter of [appFavoriteIcon] looks like this:

<element [appFavoriteIcon]="expression" [color]="'color name'"></element>

In figure 4.4, you display a blue star when the [appFavoriteIcon] expression evaluates
to true and you set the [color] parameter to blue using the following code:

<i [appFavoriteIcon]="contact.favorite" [color]="'blue'"></i>

Figure 4.4 [appFavoriteIcon] set to true, with solid blue
star displayed when the [color] parameter is set

The rest of the cases are the same as the default star. Now that we’ve covered the
functionality of FavoriteIconDirective, let’s go over the test cases, so you can start
writing tests!

4.2.2 Creating tests for FavoriteIconDirective

Let’s separate the test cases into three different parts:

1 When FavoriteIconDirective is set to true (table 4.1)

2 When FavoriteIconDirective is set to false (table 4.2)

3 When a [color] parameter is passed in as a second parameter and you need to
make sure it works as expected (table 4.3)

 49Testing attribute directives

The first two sets of cases will be the most common use of the directive, and you’ll have
a third set of tests for when the color of the star is changed to blue. Tables 4.1, 4.2, and
4.3 summarize cases for the three parts.

Table 4.1 Test cases for when FavoriteIconDirective is set to true

Test Case Event Displays

The element should include a gold star
after the page loads.

After page loads Gold star

The element should still display a gold
star if the user rolls over the star.

Roll over Gold star

The element should still display the
black outline of a star after the user
clicks on the star.

On click Black outline star

The element should still display a gold
star if the user rolls off the star.

Roll off Gold star

Table 4.2 Test cases for when FavoriteIconDirective is set to false

Test Case Event Displays

The element should include a white star
after the page loads.

After page loads White star

The element should display the black
outline of a star if the user rolls over
the star.

Roll over Black outline star

The element should display a gold star
after the user clicks on the star.

On click Gold star

The element should display a white star
after the user rolls off the star.

Roll off White star

Table 4.3 Test cases for when the [color] parameter is set to a color

Test Case Event Displays

The element should display a star of
the color that’s specified in the second
parameter after the page loads.

After page loads Specified color star

If a color is unrecognized, the color
of the star should be set to black by
default.

After page loads Black star

50 chapter 4 Testing directives

4.2.3 Setting up the FavoriteIconDirective test suite

Now that we’ve planned out the test cases, you can create your test suite. Create a file
named favorite-icon.directive.spec.ts in the /website/src/app/contacts/shared/favor-
ite-icon directory. First, you import the dependencies that you’ll be using to execute
your tests. Add the following statements at the top of your file to import the Angular
dependencies:

import { Component } from '@angular/core';
import { ComponentFixture, TestBed, TestModuleMetadata } from
 '@angular/core/testing';

Now that you’ve imported the Angular dependencies, you can import the dependen-
cies that we created for the Contacts app by adding the following code:

import { constants } from './favorite-icon.constants';
import { FavoriteIconDirective } from './favorite-icon.directive';
import { getStarElement, doClassesMatch } from '../../testing';

To test a directive, you need to create a host component that uses it. Your host compo-
nent has a different <i> element for each test case. Add the following code after the
import statements:

@Component({
 template: `
 <i [appFavoriteIcon]="true"></i>
 <i [appFavoriteIcon]="false"></i>
 <i [appFavoriteIcon]="true" [color]="'blue'"></i>
 <i [appFavoriteIcon]="true" [color]="'cat'"></i>
 `
})
class TestComponent { }

You may notice that tick marks wrap the HTML, appearing at the start and end of the
template section. The tick marks are used for multiline strings. Now create a describe
block that will house all your tests for FavoriteIconDirective. After the TestCompo-
nent class you just created, add the following lines of code:

describe('Directive: FavoriteIconDirective', () => {
});

Inside the describe block, you need to create some variables that you’ll use in all the
favorite icon tests by adding the following code:

let fixture: ComponentFixture<any>;
const expectedSolidStarList = constants.classes.SOLID_STAR_STYLE_LIST;
const expectedOutlineStarList = constants.classes.OUTLINE_STAR_STYLE_LIST;

You’ll set the fixture variable in the beforeEach block, which will create a fresh fix-
ture for each test. Add the beforeEach code in the following listing after the variables
you just declared.

 51Testing attribute directives

Listing 4.1 Creating a fresh fixture with beforeEach

beforeEach(() => {
 const testModuleMetadata: TestModuleMetadata = {
 declarations: [FavoriteIconDirective, TestComponent]
 };
 fixture = TestBed.configureTestingModule(testModuleMetadata)
 .createComponent(TestComponent);
 fixture.detectChanges();
});

Let’s take a minute to recap what’s included in the beforeEach statement. If you read
chapter 3, some of this may look familiar.

In the first line of the beforeEach method, you declare a variable called testMod-
uleMetadata. This variable implements the TestModuleMetadata interface, which you
use to provide test metadata to configure the TestBed. In the previous chapter, you
used test metadata itself to configure TestBed. The difference this time is that you’ve
created a separate variable to contain that data. In doing so, you’ve passed an object
that conforms to the TestModuleMetadata interface to the configureTestingModule
method that configures TestBed.

After you configure TestBed, you use the createComponent method from TestBed to
return an instance of a ComponentFixture. Finally, you call fixture.detectChanges()
to invoke change detection and render updated data whenever an event occurs, such as
click or mouseenter.

Now you should add an afterEach block after the beforeEach block to make sure
the fixture object is destroyed by setting it to null, as follows:

afterEach(() => { fixture = null; });

You’ve finished setting up the tests, and now you can move on to writing them. Almost
all your tests will follow a similar pattern. You’ll create a new instance of a component,
run some kind of event, and then check that the element changed as expected.

4.2.4 Creating the FavoriteIconDirective tests

First off, create a describe block directly after the afterEach code you just added.
This will allow you to group together all the tests that cover when [appFavoriteIcon]
is set to true. It should look like this:

describe('when favorite icon is set to true', () => {
});

Declares the testModuleMetadata to contain the
information needed to configure TestBed

Configures TestBed using the
testModuleMetadata variable

Uses TestBed.createComponent to create a
component fixture to use with your tests

Uses detectChanges to
initiate change detection

52 chapter 4 Testing directives

Create a variable named starElement to reference the star element and set it to null.
You initialize the variable to null because you’ll set it later in the beforeEach block
that will execute before each test. Add this line after the describe block:

let starElement = null;

Now you’ll create another beforeEach method that’s scoped only to this suite. Add the
following code after the variable you just declared:

beforeEach(() => {
 const defaultTrueElementIndex = 0;
 starElement = getStarElement(fixture, defaultTrueElementIndex);
});

Notice that in the line after beforeEach you declare a constant named default-
TrueElementIndex and set it to 0. You may recall that earlier, when you created Test-
Component, the template contained four different sets of HTML tags for the different
test cases. The different elements are stored in an array. You’re testing the first element
in fixture for this set of tests, so you use the 0 index to retrieve it from the array. Recall
that using TestComponent creates the class fixture.

To get starElement from fixture, you use a helper method called getStarElement.
All the getStarElement method does is extract a child element from fixture. If you’re
curious about the implementation, you can read the source code at /website/src/app/
contacts/testing/get-star-element.ts.

Finally, you can create the afterEach method that will set starElement to null:

afterEach(() => { starElement = null; });

Next you’ll check to see if the favorite icon appears after the page loads.

element includes a solid gold star after the page loads

To start, create an it block and place it after the beforeEach block you just added:

it('should display a solid gold star after the page loads', () => {
});

Your first test case will check that the element’s color is gold, as expected. Inside the it
block, add the following code:

expect(starElement.style.color).toBe('gold');

For your second test, you’ll check that the colors list matches the colors in your ele-
ments list. To do this, you can use another helper method called doClassesMatch. As
with the getStarElement method, you can find this method at /website/src/app/con-
tacts/testing/. All this method does is take an element and a list of styles and make
sure they match by looping through the styles in the lists. The result of the comparison
is true if the element has all the expected styles.

The style classes for a solid star are stored as a list called expectedSolidStarList.
If you looked at the contents of this list, you’d find three classes: ['fa', 'fa-star',
'fa-lg']. These are all the classes that you can expect for a solid star. You would expect
your starElement to include these classes to be correctly styled.

 53Testing attribute directives

To ensure that starElement has the correct styles, add the following code to your test:

expect(doClassesMatch(starElement.classList,
 expectedSolidStarList)).toBeTruthy();

Your completed test should look like this:

it('should display a solid gold star after the page loads', () => {
 expect(starElement.style.color).toBe('gold');
 expect(doClassesMatch(starElement.classList,
 expectedSolidStarList)).toBeTruthy();
});

Now, in your terminal, run the ng test command. You should see something similar
to figure 4.5.

Figure 4.5 First test of displaying a gold star after page loading successfully executed

element still displays a solid gold star if the user rolls over the star

Your second test is a bit more complicated than the first test because you need to sim-
ulate a rollover effect. You can use the Event class to create a mouseenter event to
simulate the user moving the pointer over the star. You manually dispatch the event by
using the dispatchEvent method that’s part of every DOM element. Add the follow-
ing code after your first test:

it('should display a solid gold star if the user rolls over the star',
 () => {
 const event = new Event('mouseenter');
 starElement.dispatchEvent(event);
});

Your two test cases are the same as the first test case because you still expect the gold
star to display when the user hovers over it. Add the following code after the event code
that you just added:

expect(starElement.style.color).toBe('gold');
expect(doClassesMatch(starElement.classList,
 expectedSolidStarList)).toBeTruthy();

Run ng test. You now should have two completed tests.

element still displays the outline of a black star if the user clicks on the star

This test is similar to the previous one. The only difference is that because this
is a click event, you use a different argument when you create an instance of
the Event class. You also change the expected color to be black and the class list
to expected OutlineStarList, because you expect the star to be only an outline
instead of a solid star.

54 chapter 4 Testing directives

Because you only need to make small changes, the following code presents the full
test with the changes in bold. You can add this test after the previous one:

it('should display a black outline of a star after the user clicks on the
 star', () => {
 const event = new Event('click');
 starElement.dispatchEvent(event);

 expect(starElement.style.color).toBe('black');
 expect(doClassesMatch(starElement.classList,
 expectedOutlineStarList)).toBeTruthy();
});

Execute the tests again in your terminal by running ng test, and you now should have
three successful tests. We’ve covered all the tests for your attribute directive. The com-
pleted test is at /chapter04/favorite-icon.directive.spec.ts for your reference. Next up,
we’ll look at how to test structural directives.

4.3 Testing structural directives
Testing structural directives is similar to testing attribute directives. You’re checking
that the DOM is rendered as you expect when you use the directive. Before you start
writing tests, let’s look at the directive you’ll be testing, ShowContactsDirective.

4.3.1 Introducing ShowContactsDirective

The structural directive you’ll be testing is ShowContactsDirective. You can use Show-
ContactsDirective to add elements to or remove them from the DOM. It mimics
the implementation of ngIf; we’re using it only to demonstrate how to test structural
directives.

usage

Here’s an example of using ShowContactsDirective:

<div *appShowContacts="contacts.length"></div>

In this example, you can see that you set *appShowContacts to the contacts.length
expression, which in JavaScript resolves to true if the length is greater than 1 and
false if the length is 0. We’ve taken this example directly from the application, and
you can find the code at /website/src/app/contacts/contact-list.component.html on
the first line if you would like to see it for yourself.

NOTE What’s the deal with the asterisk? The asterisk transforms the element
the directive is attached to into a template. The directive then controls how that
template is rendered to the DOM, which is how it can alter the structure of the
page. To learn more about the asterisk prefix, check out https://angular.io/
guide/structural-directives#asterisk.

To see how the directive works, start the application using ng s and then open your
browser to http://localhost:4200/. You should see something like figure 4.6.

https://angular.io/guide/structural-directives#asterisk
https://angular.io/guide/structural-directives#asterisk

 55Testing structural directives

Figure 4.6 The Contacts app with contacts

Now click the Delete All Contacts button. The result should look like figure 4.7.

Figure 4.7 The Contacts app with no contacts

Notice that the table completely disappeared, and now there’s a message stating,
“You do not have any contacts yet.” That’s because ShowContactsDirective is hiding
and showing elements based on whether there are any contacts. The Delete All Con-
tacts button text has also changed to Add Contacts. Two different buttons are shown or
hidden using ShowContactsDirective. Go ahead and click Add Contacts, and you’ll
see the same screen that you saw in figure 4.6.

If you’d like to see the ShowContactsDirective source code, navigate to /website/
src/app/contacts/shared/show-contacts/ and view the show-contacts.directive.ts file.
Now that you understand the basic functionality of ShowContactsDirective, let’s go
over all the test cases you’ll be writing tests for.

4.3.2 Creating your tests for ShowContactsDirective

When you test ShowContactsDirective, you only care about two test cases: one when
the input evaluates to true and one when the input evaluates to false (table 4.4).

56 chapter 4 Testing directives

Table 4.4 Test cases for Show Contacts directive

Test Case Input Displays

The element should be shown when the
input evaluates to true.

true Element

The element should be hidden when the
input evaluates to false.

false Nothing

Now that you’ve seen the two test cases, you can create the test suite.

4.3.3 Setting up the ShowContactsDirective test suite

To start, navigate to /website/src/app/contacts/shared/show-contacts and create a
file called show-contacts.directive.spec.ts. The first thing you include is the dependen-
cies that the tests need. Add the following statements at the top of your file to import
the Angular dependencies:

import { Component } from '@angular/core';
import { ComponentFixture, TestBed } from '@angular/core/testing';

These are the same classes that you imported for your FavoriteIconDirective tests.
Because we already covered these classes, we won’t cover them again. Now you need to
import two custom dependencies we created for the Contacts app.

import { ShowContactsDirective } from './show-contacts.directive';
import { getElement } from '../../testing';

ShowContactsDirective is the code that you’ll be testing. The getElement function
is similar to the getStarElement function that you used earlier—it’s a small helper
function that takes in a fixture and returns the element that you want to test. If you’d
like to see how it’s implemented, check out /website/src/app/contacts/testing/get-el-
ement.ts.

Now that you have your imports, you need to create a TestComponent, as you did for
your attribute test. Add the following code under the import statements:

@Component({
 template: `
 <div *appShowContacts="true">
 <p>This is shown</p>
 </div>
 <div *appShowContacts="false">
 <p>This is hidden</p>
 </div>
 `
})
class TestComponent { }

You’ll notice that the first <div> contains *appShowContacts="true". appShowCon-
tacts is the name used in the template for ShowContactsDirective. You can think of
appShowContacts as an alias for ShowContactsDirective.

 57Testing structural directives

You’ll check this element first, and it should contain the child <p> element, because
appShowContacts is set to true. The second <div> contains *appShowContacts="-
false". For this test, you want to check to see that this <div> doesn’t contain the child
<p> element, because appShowContacts is set to false.

Now create a describe function to house all of your tests. Also, go ahead and add
the fixture and beforeEach method. In the line below the import statements, add the
following code:

describe('Directive: ShowContactsDirective', () => {
 let fixture: ComponentFixture<any>;

 beforeEach(() => {
 fixture = TestBed.configureTestingModule({
 declarations: [ShowContactsDirective, TestComponent]
 }).createComponent(TestComponent);
 fixture.detectChanges();
 });

 afterEach(() => { fixture = null; });
});

You may notice that this is almost exactly the same as the attribute directive tests. The
only difference is that you replaced FavoriteIconDirective with ShowContactsDi-
rective because you’re testing a different directive.

4.3.4 Creating the ShowContactsDirective tests

The two tests will follow the same format as before. You get the element you want to
test from the fixture and then check the DOM to see if it renders as it should. For
your first test, you check if an element is rendered if the input is set to true. Add the
following code before the afterEach:

it('should be displayed when the input evaluates to true.', () => {
 const element = getElement(fixture);
 expect(element.innerText).toContain('This is shown');
});

This test case will pass because the child element with the text “This is shown” uses
appShowContacts=true in your TestComponent. For your second test, you check that
the content from the second div with the appShowContacts set to false doesn’t show
in the rendered HTML. Add the following code after the previous code:

it('should be hidden when the input evaluates to false.', () => {
 const element = getElement(fixture);
 expect(element.innerText).not.toContain('This is hidden');
});

Go ahead and fire up your terminal if you don’t have it open and run ng test. Both
tests should pass. You can check out the completed tests at /chapter04/show-contacts.
directive.spec.ts for your reference. That’s it for testing directives! In the next chapter,
we’ll look at testing another important concept in Angular, pipes.

58 chapter 4 Testing directives

Summary

¡	Angular allows three types of directives: components, attribute directives, and
structural directives. They’re all similar in that they encapsulate reusable func-
tionality. The difference between components and attribute and structural direc-
tives is that components have a view.

¡	You can use attribute directives to change the appearance of an element, whereas
you use structural directives to add elements to and remove them from the DOM.

¡	Testing attribute and structural directives is similar in that you set the initial state
of an element, perform the desired action, and then test to confirm that the
expected change occurs.

¡	The configureTestingModule method takes in an object that has to use the
TestModuleMetadata interface. You can either create a variable that sets the
type to TestModuleMetadata and then pass the variable into the configureTest-
ingModule method, or create an object with the relevant configuration data and
then pass that into the configureTestingModule method.

59

5Testing pipes

This chapter covers
¡	Testing pipes

¡	Understanding pure functions versus functions
with side effects

¡	Using the transform method

Often, you’ll want to modify data that’s displayed in a template. For example, you
may want to format a number as currency, transform a date into a format that’s eas-
ier to understand, or make some text uppercase. In situations like these, Angular
provides a way to transform data using something known as a pipe.

Pipes take input, transform it, and then return some transformed value. Because
the way pipes operate is straightforward, writing tests for them is too. Pipes depend
only on their input. A function whose output depends on only the input passed to it
is known as a pure function.

When a function can do something other than return a value, it’s said to have a
side effect. A side effect could be changing a global variable or making an HTTP call.
Pure functions like pipes don’t have side effects, which is why they’re easy to test.

In this chapter, we’ll cover everything you need to know to test pipes.

60 chapter 5 Testing pipes

5.1 Introducing PhoneNumberPipe
In this chapter, you’ll be testing a custom pipe called PhoneNumberPipe. This pipe
takes in a phone number as a number or string in valid format and puts it into a format
that the user specifies. You need to write tests for the pipe so you can confirm that it
transforms data into the right format.

Each pipe in Angular has a method named transform. This method is respon-
sible for formatting the pipe’s input. The signature for the transform function for
PhoneNumberPipe looks like this:

transform(value: string, format?: string, countryCode?: string): string

value is passed into the function from the left of the pipe and represents a phone
number. format is an optional string parameter that determines how the phone num-
ber is formatted. Different valid values for format are listed in table 5.1.

Table 5.1 Recognized format values

Number separator format Phone number format

default (XXX) XXX-XXXX

dots XXX.XXX.XXXX

hyphens XXX-XXX-XXXX

countryCode is another optional string parameter that adds a prefix to the phone
number as an international country code. For example, if you pass in a countryCode of
'us' (for the United States) and a format 'default', the resulting phone number would
be +1 (XXX) XXX-XXXX.

To keep it simple, PhoneNumberPipe only works with phone numbers that follow the
North American Numbering Plan (NANP), so the country codes you can use are lim-
ited to the countries in the NANP. If you’re curious about the acceptable country codes,
look at the country-dialing-codes.ts file. An object there contains the two-character
country abbreviation as a key and the international country code as the value.

Now that you know a bit about PhoneNumberPipe, you can test it like so:

1 Set up the test dependencies.

2 Test the default behavior.

3 Test the format parameter.

4 Finally, test the countryCode parameter.

You’ll continue with testing the Contacts app, as you’ve done in previous chapters. If
you need to set it up, follow the instructions in appendix A.

 61Testing PhoneNumberPipe

5.2 Testing PhoneNumberPipe
Open website/src/app/contacts/shared/phone-number, and you should see the files
described in table 5.2.

Table 5.2 Description of files

File Description

index.ts You use the index.ts file so that you can import
PhoneNumberPipe without using the complete
file name. That way, when you’re trying to import
PhoneNumberPipe, you can use

import { PhoneNumberPipe } from './
phone-number.pipe';

instead of the more verbose

import { PhoneNumberPipe } from './
phone-number.pipe/phone-number.
pipe';

Notice the addition to the file name in bold. Using an
index.ts file like this is a common practice to shorten
file paths.

country-dialing-codes.ts This file contains the country dialing codes that your
PhoneNumber model uses.

phone-number-error-messages.ts This file contains all the error messages that
PhoneNumberPipe and the PhoneNumber
model use.

phone-number.model.ts This is the model that you’ll use to store data. The
PhoneNumber model also contains the utility
methods to transform the data.

phone-number.pipe.ts This is the file that contains PhoneNumberPipe.

Feel free to open these files to get a feel for the source code you’ll be testing. When
you’re ready to move on, create a file named phone-number.pipe.spec.ts in the
phone-number directory to store your tests.

5.2.1 Testing the default usage for a pipe

Start by testing the default behavior of PhoneNumberPipe. Here’s an example of the
default usage of PhoneNumberPipe:

{{ 7035550123 | phoneNumber }}

You need to test two different cases of the default usage of PhoneNumberPipe, as listed
in table 5.3.

62 chapter 5 Testing pipes

Table 5.3 Default test cases

Test case Number Displays

A phone number that’s a 10-character
string or 10-digit number should transform
to the (XXX) XXX-XXXX format.

7035550123 (703) 555-0123

Nothing will be displayed when a phone
number isn’t a 10-character string or
10-digit number.

703555012

testing for a valid phone number

Start by testing the default usage to see if the phone number is valid. Copy the code
for the first default test in the following listing into the phone-number.pipe.spec.ts file
that you just created.

Listing 5.1 First default test case

import { PhoneNumberPipe } from './phone-number.pipe';

describe('PhoneNumberPipe Tests', () => {
 let phoneNumber: PhoneNumberPipe = null;

 beforeEach(() => {
 phoneNumber = new PhoneNumberPipe();
 });

 describe('default behavior', () => {
 it('should transform the string or number into the default phone
 format', () => {
 const testInputPhoneNumber = '7035550123';
 const transformedPhoneNumber =
 phoneNumber.transform(testInputPhoneNumber);
 const expectedResult = '(703) 555-0123';

 expect(transformedPhoneNumber).toBe(expectedResult);
 });
 });

 afterEach(() => {
 phoneNumber = null;
 });
});

Let’s break this down by section:

import { PhoneNumberPipe } from './phone-number.pipe';

Imports PhoneNumberPipeTest suite for all of your tests

The setup part of your tests using
beforeEach to set a new instance of
PhoneNumberPipe to the phoneNumber
variable before each test

A nested, second test suite
only for default behavior

The assertion where you expect a correct
phone number to be formatted correctly

The teardown part of your test where
you set the phoneNumber variable to
null to destroy the reference

 63Testing PhoneNumberPipe

First, you import all of the dependencies that your test needs. Because the pipe is a
pure function, you don’t need any of the Angular testing dependencies:

describe('PhoneNumberPipe Tests', () => {

});

You then add a describe function to house all your tests for PhoneNumberPipe:

let phoneNumber: PhoneNumberPipe = null;

beforeEach(() => {
 phoneNumber = new PhoneNumberPipe();
});

Inside your test suite, you need to create a global variable named phoneNumber that has
a type of PhoneNumberPipe and is set to null. You use a beforeEach function to create
a new instance of PhoneNumberPipe before each test is executed:

describe('default behavior', () => {
 it('should transform the string or number into the default phone format',
 () => {
 const testInputPhoneNumber = '7035550123';
 const transformedPhoneNumber =
 phoneNumber.transform(testInputPhoneNumber);
 const expectedResult = '(703) 555-0123';

 expect(transformedPhoneNumber).toBe(expectedResult);
 }));
});

This describe block defines the nested test suite that contains your tests for default
behavior. You declare your test input in the testInputPhoneNumber variable, save
the transformed result in transformedPhoneNumber, and set your expected result in
expectedResult. The assertion at the bottom of the test checks that the transformed
phone number matches your expected result:

afterEach(() => {
 phoneNumber = null;
});

Finally, the afterEach function makes sure the phoneNumber variable doesn’t contain
a reference to an instance of PhoneNumberPipe. Run npm test, and you should see
output like figure 5.1.

Figure 5.1 First successfully executed pipe test

Table 5.3 Default test cases

Test case Number Displays

A phone number that’s a 10-character
string or 10-digit number should transform
to the (XXX) XXX-XXXX format.

7035550123 (703) 555-0123

Nothing will be displayed when a phone
number isn’t a 10-character string or
10-digit number.

703555012

testing for a valid phone number

Start by testing the default usage to see if the phone number is valid. Copy the code
for the first default test in the following listing into the phone-number.pipe.spec.ts file
that you just created.

Listing 5.1 First default test case

import { PhoneNumberPipe } from './phone-number.pipe';

describe('PhoneNumberPipe Tests', () => {
 let phoneNumber: PhoneNumberPipe = null;

 beforeEach(() => {
 phoneNumber = new PhoneNumberPipe();
 });

 describe('default behavior', () => {
 it('should transform the string or number into the default phone
 format', () => {
 const testInputPhoneNumber = '7035550123';
 const transformedPhoneNumber =
 phoneNumber.transform(testInputPhoneNumber);
 const expectedResult = '(703) 555-0123';

 expect(transformedPhoneNumber).toBe(expectedResult);
 });
 });

 afterEach(() => {
 phoneNumber = null;
 });
});

Let’s break this down by section:

import { PhoneNumberPipe } from './phone-number.pipe';

Imports PhoneNumberPipeTest suite for all of your tests

The setup part of your tests using
beforeEach to set a new instance of
PhoneNumberPipe to the phoneNumber
variable before each test

A nested, second test suite
only for default behavior

The assertion where you expect a correct
phone number to be formatted correctly

The teardown part of your test where
you set the phoneNumber variable to
null to destroy the reference

64 chapter 5 Testing pipes

That’s it for your first test. The tests in the rest of the chapter follow the same format
as the first one:

describe(describe a suite of tests, () => {
 it(describe the specific test case, () => {
 declare your test variables
 transform the data
 expect(the transformed data).toBe(what you expect);
 });
});

Tests for pipes all follow this structure because, as mentioned before, pipes are pure
functions. There’s no need to mock or set anything up—you pass the function some
input and confirm the result is what you’d expect.

testing the pipe with an invalid phone number
For the second test, you’ll verify that if the input number doesn’t have 10 digits, noth-
ing will be shown. Copy the code in the it block that you created previously and paste
it directly after your first test.

Change the descriptive text in the it block to 'should not display anything if
the length is not 10 digits'. Then change testInputPhoneNumber to '703555012'.
Notice that the new phone number is only nine digits long. Now, set expectedResult to
''. You expect the result to be an empty string because that’s what should be returned if
the phone number is invalid.

The completed test should look like the following listing.

Listing 5.2 Test for invalid phone number

it('should not display anything if the length is not 10 digits',
 () => {
 const testInputPhoneNumber = '703555012';
 const transformedPhoneNumber =
 phoneNumber.transform(testInputPhoneNumber);
 const expectedResult = '';

 expect(transformedPhoneNumber).toBe(expectedResult);
});

If you run ng test, you’ll see something like figure 5.2.

Figure 5.2 Two passing default behavior tests with an error message

Updates the title of the test Updates test input to an invalid phone number

Updates expected result to
an empty string

 65Testing PhoneNumberPipe

Notice that the error message 'The phone number you have entered is not the
proper length. It should be 10 characters long.' is printed out to the console
along with the successful test execution messages. This is expected because PhoneNum-
berPipe throws an error message if the phone number is not 10 characters long. When
you add console logging statements to testing using the Angular CLI default setting,
they will be printed out to the terminal when tests run, as shown in figure 5.2.

Now that you’ve tested the default behavior, let’s look at testing a pipe with a single
parameter.

5.2.2 Testing a pipe with a single parameter

Sometimes, you’ll need to change the behavior of a pipe by passing it a parameter.
For example, you can change the format of the output of PhoneNumberPipe by passing
'dots', 'hyphens', or 'default' as a parameter.

Table 5.4 shows the different options for the format parameter.

Table 5.4 Test cases for the format parameter

Test case Format Number Displays

If 'default' is used or no parameter
is specified, then the number will be in
the default (XXX) XXX-XXXX format.

default 7035550123 (703) 555-0123

If 'dots' is passed in as a parameter,
then the number should be in XXX.XXX.
XXXX format.

dots 7035550123 703.555.0123

If 'hyphens' is passed in as a param-
eter, then the number should be in XXX-
XXX-XXXX format.

hyphens 7035550123 703-555-0123

If an unrecognized format is passed in
as a parameter, then the default (XXX)
XXX-XXXX format should be used.

gibberish 7035550123 (703) 555-0123

Here’s an example usage of PhoneNumberPipe with a single parameter:

{{ 7035550123 | phoneNumber:'dots' }}

In this example, you pass 'dots' as a parameter.
Let’s look at some tests for when you use a single parameter for a pipe. Add the code

in the following listing directly after the describe block that you created in listing 5.1.

66 chapter 5 Testing pipes

Listing 5.3 'dots' format test

describe('phone number format tests', () => { #A
 it('should format the phone number using the dots format', () => {
 const testInputPhoneNumber = '7035550123';
 const format = 'dots';
 const transformedPhoneNumber =
 phoneNumber.transform(testInputPhoneNumber, format);
 const expectedResult = '703.555.0123';

 expect(transformedPhoneNumber).toBe(expectedResult);
 });
});

First off, notice that you’ve put this test inside a test suite using a describe block. On
the fourth line of the code, you have a constant named format that you’ve set to 'dots'.
On the fifth line of the code, you pass that format variable in as a second parameter in
your transform method. You test for the first parameter that a pipe uses by sending the
first parameter into your transform method as the second parameter.

Run ng test, and your output should look like figure 5.3.

Figure 5.3 Three passing tests with an error message

Now that you understand how to test the first parameter, it's time for a little exercise.

exercise

After the first parameter test that you added in listing 5.3, create the three tests for the
'default', 'hyphens', and 'gibberish' formats using the information provided in
table 5.4.

solution

All your tests should be similar. The only difference should be the new format type and
the expected result based on that format type. Your three new tests should look like
the following listing.

Test suite The format type

Passing the format to
your transform function

 67Testing PhoneNumberPipe

Listing 5.4 Remaining format tests

it('should format the phone number using the default format', () => {
 const testInputPhoneNumber = '7035550123';
 const format = 'default';
 const transformedPhoneNumber =
 phoneNumber.transform(testInputPhoneNumber, format);
 const expectedResult = '(703) 555-0123';

 expect(transformedPhoneNumber).toBe(expectedResult);
});

it('should format the phone number using the hyphens format', () => {
 const testInputPhoneNumber = '7035550123';
 const format = 'hyphens';
 const transformedPhoneNumber =
 phoneNumber.transform(testInputPhoneNumber, format);
 const expectedResult = '703-555-0123';

 expect(transformedPhoneNumber).toBe(expectedResult);
});

it('should format the phone number using the default format if unrecognized
 format is entered',() => {
 const testInputPhoneNumber = '7035550123';
 const format = 'gibberish';
 const transformedPhoneNumber =
 phoneNumber.transform(testInputPhoneNumber, format);
 const expectedResult = '(703) 555-0123';

 expect(transformedPhoneNumber).toBe(expectedResult);
});

Run ng test, and now you should see six passing tests. Now that you have one- parameter
tests under control, let’s take a look at how to test multiple parameters.

5.2.3 Pipes with multiple parameters

Pipes can take multiple parameters if needed. PhoneNumberPipe can handle two param-
eters. So far, we’ve covered the first parameter and how it’s responsible for formatting
the phone number. The second parameter is the country code. Table 5.5 shows the test
cases for the country code parameter.

Format types

The expected formatted
phone number

Format types

The expected formatted
phone number

Format types

The expected formatted
phone number

68 chapter 5 Testing pipes

Table 5.5 Test cases for country code parameter

Test case Number Country code Displays

If 'dots' is passed in as a parameter
and the country code is correct, then
the number should be in XXX.XXX.XXXX
format with a plus sign and the country
code before it.

7035550123 us + 1
703.555.0123

If 'dots' is passed in as a parameter
and an unrecognized country code is
passed in, then the number should be
in XXX.XXX.XXXX format with no country
code applied.

7035550123 zz 703.555.0123

For simplicity, PhoneNumberPipe only supports countries in the NANP. You need to test
to make sure that each parameter is accepted and works as expected. Add the code in
the following listing directly after the describe block that you created earlier that con-
tains the phone number format tests.

Listing 5.5 Country code test

describe('country code parameter tests', () => {
 it('should add respective country code', () => {
 const testInputPhoneNumber = '7035550123';
 const format = 'default';
 const countryCode = 'us';
 const transformedPhoneNumber =
 phoneNumber.transform(testInputPhoneNumber, format, countryCode);
 const expectedResult = '+1 (703) 555-0123';

 expect(transformedPhoneNumber).toBe(expectedResult);
 });
});

This test is similar to the earlier tests for passing the first parameter to the pipe. The
only difference is that earlier you were testing the second parameter, whereas now
you’re passing a third parameter to your transform method. You may be picking up on
a pattern. If you want to test a fourth pipe parameter, then you’d pass a value into the
fifth parameter in your transform method. This pattern will continue for as many pipe
parameters as you want to test.

New variable that stores
the country code

The countryCode variable is passed into the
transform method as a third parameter.

Expected result with country code

 69Summary

ExErcisE

Write a test case such that when the country code is not recognized, PhoneNumberPipe
only transforms the phone number format and doesn’t add a telephone country code.
Make sure you run ng test to see if your test works as expected:

¡	First hint —You can copy the listing 5.5 test and make modifications as necessary.
¡	Second hint —The country code should be for a country code not listed in the

NANP (http://mng.bz/R55f).

solution

You need to change only two variables. Change countryCode to something that’s unrec-
ognized, and then change expectedResult to the default format with no country code
prefixed to the phone number. Your test should look something like the following list-
ing, which shows the changes in bold.

Listing 5.6 Test for invalid country code

it('should not add anything if the country code is unrecognized', () => {
 const testInputPhoneNumber = '7035550123';
 const format = 'default';
 const countryCode = 'zz';
 const transformedPhoneNumber =
 phoneNumber.transform(testInputPhoneNumber, format, countryCode);
 const expectedResult = '(703) 555-0123';

 expect(transformedPhoneNumber).toBe(expectedResult);
});

Run ng test, and you now should see eight passing tests. If you have any issues, check
out the complete test at https://github.com/testing-angular-applications/testing-
angular-applications/blob/master/chapter05/phone-number.pipe.spec.ts and look
for any discrepancies. In the next chapter, we’ll start looking at testing services.

Summary

¡	Because pipes only take in a value as input, transform that value, and then return
transformed input, testing them is straightforward. That’s because they’re pure
functions, which means they have no side effects.

¡	Side effects are changes that occur outside a function after that function is exe-
cuted. A common side effect is the changing of a global variable.

¡	When you’re testing pipes, you’re mainly testing the transform method that’s
included in every pipe. The transform method is what takes in the different
parameters you want to manipulate, performs the manipulation, and then
returns the changed values.

Unrecognized country code

The expected result
without a country code

http://mng.bz/R55f
https://github.com/testing-angular-applications/testing-angular-applications/blob/master/chapter05/phone-number.pipe.spec.ts
https://github.com/testing-angular-applications/testing-angular-applications/blob/master/chapter05/phone-number.pipe.spec.ts

71

6Testing services

This chapter covers
¡	Understanding what services do in

Angular applications

¡	Using dependency injection with service
unit tests

¡	Creating isolated unit tests by using spies as
test doubles

¡	Testing services that return results
asynchronously using promises and
RxJS observables

¡	Testing web services with Angular’s
HTTP utilities

In this chapter, you’ll create and test the services you need for setting preferences in
the Contacts app, and for loading and saving contacts from a server. Preferences-
Service will save application settings to the user’s browser using either cookies
or localStorage. The example we’ll look at will show you how to test with both
synchronous services and asynchronous services (services that return promises
or observables). You’ll learn how to isolate your code under test from its related

72 chapter 6 Testing services

dependencies by using Jasmine spies. ContactService uses Angular’s HttpClient to
fetch and store data from a REST service using observables, which are like promises
but return continuous streams of values. You’ll learn how to configure service tests,
set up mocks and dependencies, and exercise service interfaces through test-driven
development.

By the end of this chapter, you’ll know how to write and test services that use Http-
Client and how to move the code associated with manipulating data (the business
logic) into tested services to help organize your application’s architecture.

6.1 What are services?
Generally, Angular services are the parts of your application that don’t interact directly
with the UI. Picture this: you’re looking for pictures using an image service like Imgur.
You type a search term, a spinner pops up briefly, and then images matching your
search appear onscreen. What’s happening while the spinner’s running? Services in
the application are doing invisible, behind-the-scenes work. What type of work? Often,
it’s saving or getting data. Or it might be changing or creating data for the UI to use.
Services also can work as communication channels between application components.

Services allow you to write non-UI code in a way that’s modular, reusable, and test-
able. As you’ll see, code located in services is easier to understand and maintain than
the same kind of functionality inside a UI component.

Angular services usually don’t change the DOM or directly interact with the UI, but
otherwise there’s no limit to what functionality an Angular service can provide. Well-
designed applications have most of the application logic and I/O inside a service. Any
code creating UI elements or handling user input should be in a component.

Let’s start with an overview of how the Contacts app uses services. The application
loads with a list of contacts. How do they get there? As shown in figure 6.1, when Con-
tactListComponent initializes, it asks ContactService for a list of contacts. Contact-
Service looks to see if it has any contacts, and if it doesn’t, it prepares a request to the
server to retrieve them. But instead of contacting the server directly, ContactService
relies on yet another service (HttpClient) that knows the ins and outs of handling
HTTP requests, which responds with a list of contacts. HttpClient has no knowledge of
the payload, and ContactService doesn’t know how to communicate with the server,
but by working together, these services can ask for and supply contacts to the Contact-
ListComponent. Organizing the application’s architecture this way follows a software
development principle called separation of concerns, where each element of the applica-
tion only knows how to fulfill its own responsibility.

 73How do services work in Angular?

ContactCompenent

ContactCompenent

getContacts()

Contacts

ContactService

ContactService

Http Client

Http Client

get(URL, API Key)

Contacts

Figure 6.1 ContactListComponent uses ContactService, which
uses a built-in Angular service (HttpClient).

Do I need services for my app?
You could, but probably shouldn’t, write a complete Angular application without using any
services. When you’re prototyping an application or trying to get a feature to work, it can
be easier to put all of a feature’s code in the component that uses it. But over time, it gets
harder to maintain that code and even harder to share the work between components.
That's when you need a service.

Let's look at an example using the Contacts app. While a list of contacts is showing, the
user should be able to sort the list by first name, last name, or email address. To remem-
ber the sort order for the user’s next visit, you save a value to the browser’s local stor-
age. The first time you write this code, it’s easy to add to the ContactList component.
But what happens when you need to save other user preferences? And what if you need
more flexibility for saving the preferences to a web service?

As your needs get more complex, it makes sense to move this logic into a service. In fact,
you may want to create two services: one to handle organizing application preferences
and another for interacting with whatever storage medium you’re using. Moving this logic
into a service makes it easier for you to add preference functionality in other areas of the
application.

6.2 How do services work in Angular?
At the most basic level, Angular services are JavaScript classes. They’re singletons—you
create them once and can use them anywhere in the application.

Angular services often implement the @Injectable class decorator. This decorator
adds metadata that Angular uses for resolving dependencies. Angular uses the class
itself to create a provider token that other components will use for defining provider
dependencies.

74 chapter 6 Testing services

A service is instantiated only once. Components that define that service as a depen-
dency will share that instance. This technique reduces memory use and allows services
to act as brokers for sharing data between components.

By now, it should be clear that services and Angular’s dependency injection are
closely related concepts. In fact, Angular offers many built-in services, including Http-
Client and FormBuilder. Many third-party libraries designed to work with Angular are
also services. Before you start testing your services, you need to have a clearer under-
standing of what Angular’s dependency injection does, because you can’t write services
without it.

6.2.1 Dependency injection

The key to understanding testing Angular services is to understand Angular’s depen-
dency injection system. Why do you need dependency injection in the first place? Isn’t
it good enough to use import to pull other JavaScript libraries into your source code?

When you create new instances of your classes, you may not know the details about
the dependencies your classes need. For example, suppose you create a dependency on
a Storage service. If your service imports a specific storage mechanism, you’re locked
into using that one implementation and no others, even though you don’t care about
the specific implementation, only that it supports the methods you’ll invoke when per-
sisting data.

Dependency injection is a system that supplies instances of a dependency at the time
your own class is instantiated. You don’t need your service to do the work of importing
and instantiating a dependency; the dependency injection system will do it for you.
When the constructor of your service executes, it will receive an instance of a depen-
dency that the dependency injection system already created, and the service will use the
injected code instead of the imported class, as shown in the following listing.

Listing 6.1 A service using Angular dependency injection

import { Injectable } from '@angular/core';
import { BrowserStorage } from './browser-storage.service';

@Injectable()
export class PreferencesService {

 constructor(private browserStorage: BrowserStorage) { }

Imports the class so that you can use the
token to define the dependency

Angular dependency injection uses the service
constructor to look up and supply dependencies.

 75How do services work in Angular?

 public saveProperty(preference: IContactPreference) {
 this.browserStorage.setItem(preference.key, preference.value);
 }

 public getProperty(key: string) : any {
 return this.browserStorage.getItem(key);
 }
}

In listing 6.1, the constructor method of PreferencesService defines a parameter with
type BrowserStorage. Angular uses this information to supply an instance of Browser-
Storage when PreferencesService is first created via dependency injection. Depen-
dency injection makes software a little bit more abstract and complex, but it gives you
a lot more flexibility in extending its functionality. As long as an added service imple-
ments the same interface as an existing service, it’s possible to take advantage of it with-
out having to change any other code. For example, in listing 6.1, PreferencesService
only needs to use the methods setItem and getItem without having to understand
the underlying storage mechanism. This feature is useful when unit testing because it
helps you test in small, separate units while controlling the side effects of your software.

The bottom line is that dependency injection allows you to write code that’s not
tightly coupled to other code—that’s against an interface instead of an implementation.
Angular’s dependency injection helps you develop better code, and it’s one of the fea-
tures that makes Angular a great framework for organizing large applications.

Dependency-injection tokens
As you set up your unit tests for services, you'll notice that each file imports the
classes that are dependencies for the services you’re testing only to replace the
implementation of those dependencies with your own mock objects. Why are you
doing this? Because Angular’s dependency injection uses the class type as the token,
which becomes the key for its internal token-provider map.

When you define a service with dependencies, it provides a copy of the token to Angu-
lar’s injection system. Angular uses that token to look up the corresponding provider and
returns it to the service.

What about cases where you want to provide a string or object instead of a service
function? It’s possible to use a string as a token instead by using the Injection-
Token function from @angular/core. See the Angular documentation for further
details (https://angular.io/guide/dependency-injection).

PreferencesService uses injected
services, not BrowserStorage directly.

https://angular.io/guide/dependency-injection

76 chapter 6 Testing services

6.2.2 The @Injectable class decorator

As mentioned in chapter 4, a decorator is a TypeScript feature that adds some prop-
erties or behavior to a class or method. Angular includes a decorator for services,
@Injectable, that’s a convenient way to mark your service as a class that can serve as a
provider for Angular’s dependency injection system. The decorator tells Angular that
the service itself has its own dependencies that need to be resolved. Although it’s pos-
sible to manually define your service as a provider, you’d rarely want to do so (unless
you‘re using straight JavaScript ES5, in which case it’s unavoidable).

A service, like a component, is able to define its own dependencies. A common
example is any service that uses HttpClient for communicating with external services.
As applications get more complex, it’s more likely you’ll have several layers of services.
Separating code into modular units helps promote reuse and makes it easier to main-
tain the code. In Angular, services are designed to support reusability.

Is the @Injectable decorator required for Angular services? No. If your service has
no dependencies of its own, you can get by without marking the service as @Injectable.
You can unit test a service without dependencies without needing the Angular TestBed
or any Angular testing utilities. That’s right; you can use simple unit tests! Before you
head down that road, keep this in mind: if you think you might add dependencies in the
future, you may as well unit test your code with Angular so you don’t have to refactor
your unit tests so much.

Now that you have some background on Angular services and dependency injection,
it’s time to create your first service. Although it’s a straightforward matter to create ser-
vices by hand, you’ll use Angular CLI because it also sets up basic unit tests for you.

6.3 Creating services with Angular CLI
We recommend using Angular CLI whenever you extend your application with a new
component or service. The advantage of using Angular CLI to create services is that it
automatically generates a basic service and a corresponding test file that provides the
boilerplate code for the Angular TestBed.

To create a service using Angular CLI, run the following command from your project
directory in your terminal:

$ ng generate service my.service.name

This command creates these two files: my.service.name.ts and my.service.name.spec.ts.
After these services are created, Angular CLI produces this message:

Warning: Service is generated but not provided, it must be provided to be
used

Never fear, this is Angular CLI reminding you that you need to add services to the pro-
vider metadata property of a component or module to use them. Where you include a
service depends on whether it’s local to a component or used throughout the module.

The unit test file that Angular CLI generates (which ends with spec.ts and is shown in
listing 6.2) is a basic test that does nothing more than make sure your service exists. This

 77Testing PreferencesService

is all you need to get started. Even better, Angular CLI also prepares the boilerplate
code that configures TestBed, which (as previous chapters explain) sets up Angular for
use with unit testing.

Listing 6.2 Basic service test spec generated by Angular CLI

import { TestBed, inject } from '@angular/core/testing';
import { ContactService } from './contact.service';

describe('ContactService', () => {
 beforeEach(() => {
 TestBed.configureTestingModule({
 providers: [ContactService]
 });
 });

 it('should ...', inject(
 [ContactService], (service: ContactService) => {
 expect(service).toBeTruthy();
 }));
});

You can run the test in listing 6.2 with Angular CLI as follows:

$ ng test

You should see output that shows that the test passed:

Executed 1 of 1 SUCCESS (0.263 secs / 0.254 secs)

You’ve learned the basics of using Angular CLI to set up your services and tests. Before
you jump into writing service tests, let’s make sure you understand why you’re writing
this service in the first place.

6.4 Testing PreferencesService
The first service you’ll create and test is PreferencesService, which you’ll use to store
the user’s last sort order for the ContactsList table. This service will take a value and
save it to the browser’s built-in storage system. When the app starts, it will use this value
to set the sort state for the ContactsList table to be in the order that the user last
used, even if they’ve refreshed the page or restarted the browser. This improves the
user experience of your app and keeps the user from having to reset the sort order
each time they open it.

Before you start, you might ask if you even need to create a service. You could instead
write the logic for persisting user preferences in the ContactsList component. After
all, it seems easy to write settings directly to the user’s browser. That’s true, and it might
even be the right choice if your task is to create a rapid prototype rather than build a

TestBed is configured with the
ContactService before every test.

Angular CLI creates the first test, which
only asserts the existence of the service.

78 chapter 6 Testing services

production application. But you have good reasons for splitting this functionality out of
the component and into a service. Let’s look at some of them.

Whenever you start using a browser feature like localStorage, it isn’t long before
you start discovering requirements that weren’t obvious at first, such as

¡	Validating key names and values
¡	Preventing naming conflicts with other preference keys
¡	Making sure the app has a fallback mechanism, such as using browser cookies
¡	Limiting the size of the storage used by your app
¡	Checking that storage is available

These requirements may not all seem obvious when your only goal is to use a browser’s
built-in storage, but they’re important for a production application. Say you write the
logic in your component. How do you use it when you need to save more informa-
tion to the browser’s storage? If you copy and paste your code, you’ll have a hard time
remembering to change it everywhere whenever you need to fix a bug or add a feature.
The way to solve this challenge is to write your code once in a service and use that ser-
vice wherever you need it.

Now that you know why you need a service, you can start creating one.

writing preferencesservice
Start by using Angular CLI to create the preference service. Run the following com-
mand in your terminal:

$ ng generate service PreferencesService

This command creates the files preferences.service.ts and preferences.service.spec.
ts, and, as before, Angular CLI reminds you that the service must be provided to be
used. Before writing tests, add the PreferencesService provider to the application’s
AppModule, as shown in the following listing.

Listing 6.3 Adding the newly created service to app.module.ts

@NgModule({
 {…}
 providers: [
 BrowserStorage,
 ContactService,
 PreferencesService,
 PreferencesAsyncService
],
 })
export class AppModule { }

Now that you’ve created the service, you can start setting up the unit test framework.
Angular CLI has already done the basic work, so you can proceed with setting up the
parts you need to test PreferencesService. Add the code in the following listing to
preferences.service.spec.ts.

Declaration and imports are hidden.

 79Testing PreferencesService

Listing 6.4 Setting up the unit tests for PreferencesService

import { TestBed, inject } from '@angular/core/testing';
import {
 IContactPreference,
 PreferencesService } from './preferences.service';

describe('PreferencesService', () => {

 beforeEach(() => {
 TestBed.configureTestingModule({
 providers: [PreferencesService]
 });
 });

 it('should create the Preferences Service', inject(
 [PreferencesService], (service: PreferencesService) => {
 expect(service).toBeTruthy();
 }));
});

In this listing, you have the bare minimum for unit testing a service. You may remem-
ber configuring TestBed from earlier chapters—it tells Angular what modules it needs
to load and how they need to be configured for testing this file. Later in this chapter,
you’ll see how to customize TestBed for testing services that have their own dependen-
cies. Angular CLI also created the first test, which is only a check to verify that the ser-
vice exists. Although it doesn’t look like much, it’s helpful to know that the basic setup
for testing is in place.

Now that your basic unit test is working, you need to think about how your service
will persist the data. Are you going to use localStorage, cookies, or some other browser
API? You don’t know right now, so pretend you have the information by creating a fake
service called BrowserStorage to let you avoid relying on any specific kind of storage.
That way, you can keep writing PreferencesService without having to solve the stor-
age problem.

To use this technique, you’ll create a simple service that doesn’t implement any
logic—the service only exists to provide a token and a simple storage interface. Later
on, when you’re ready to use a real service implementation, you can expand Browser-
Storage to connect to the real persistence service. For now, you’ll put the code shown
in the following listing in browser-storage.service.ts. It only has two methods, getItem
and setItem, and they don’t need to do anything other than define their input and
output types.

Listing 6.5 The BrowserStorage stubbed class

@Injectable()
export class BrowserStorage {
 getItem: (property: string) => string | object;
 setItem: (property: string, value: string | object) => void;
}

The TestBed module is
configured before every test.

The first test only checks that
the service test setup is right.

Stubbed class prior to
implementing storage

80 chapter 6 Testing services

In this listing, you’ll create a stub, which is a barebones class that defines its properties
and methods but doesn’t contain any logic. Hang on, why is this a class instead of a
TypeScript interface? As mentioned earlier in this chapter, Angular uses tokens for
resolving dependencies. TypeScript interfaces don’t get translated into JavaScript, so
there’s no way for Angular to resolve the token. To tell Angular what to inject, you’ll
need to create a class that fills in like it’s an interface. For more on this issue, see the
Angular documentation (http://mng.bz/35U7).

You can use this stub to create a BrowserStorageMock for your test. A mock is an
object that substitutes for a real service. To clarify, the stub represents the storage ser-
vice that you haven’t written yet, even though you know what methods you want to call.
The mock is an object you use only within the unit test that provides canned responses
within the test. With your mock, you’ll define the getItem and setItem methods. Later,
you’ll use the mock in the unit test as a substitute for the real service.

Within individual unit tests, you’ll use spies. A spy is a function that invisibly wraps a
method and lets you control what values it returns or monitor how it was called. A test
uses a spy to measure if a method was called, how many times it was called, and with
what arguments.

By using the token from BrowserStorage and supplying the same methods, you can
use your mock for unit testing instead of relying on the real implementation. You only
need to configure TestBed to use BrowserStorageMock whenever a service calls for
BrowserStorage as a dependency.

Now let’s look at the PreferencesService class, which has only two methods: save-
Property() and getProperty(). The saveProperty() method takes a ContactPref-
erence object and saves it for later retrieval. The getProperty() method takes the
property name and returns the saved value. In this chapter, you’ll only look at the unit
test for saving the property, but you can see all of the unit tests in this book’s project
repository (https://github.com/testing-angular-applications).

As shown in listing 6.6, the saveProperty method takes one argument, an object
that represents the name and value of the preference item you’re saving. For consis-
tency, you’ll create a TypeScript interface (IContactPreferences) to describe that
object. The method uses the object and writes that value to the injected instance of
the BrowserStorage service, which is called browserStorage. (Remember that Brows-
erStorage helps you separate the read and write operations from the persistence
implementation.)

Listing 6.6 The saveProperty method

interface IContactPreference {
 key: string;
 value: string | object;
}

public saveProperty(preference: IContactPreference) {

http://mng.bz/35U7
https://github.com/testing-angular-applications

 81Testing PreferencesService

 if (!(preferences.key && preference.key.length)) {
 throw new Error('saveProperty requires a non-blank property name');
 }
 this.browserStorage.setItem(preference.key, preference.value);
}

The first test in listing 6.7 ensures that saveProperty works correctly. This function
receives a ContactPreference object and stores it. To test it, you need to make sure the
method receives a valid argument and tries to persist it with BrowserStorage. To write
this test, you’ll spy on the BrowserStorage service, invoke saveProperty with a valid
argument, and confirm that your expectations are met.

Listing 6.7 Testing the saveProperty method

import { TestBed, inject } from '@angular/core/testing';
import { PreferencesService } from './preferences.service';
import { BrowserStorage } from "./browser-storage.service";

import { logging } from "selenium-webdriver";
import Preferences = logging.Preferences;

class BrowserStorageMock {
 getItem = (property: string) => ({ key: 'testProp', value: 'testValue '});
 setItem = ({ key: key, value: value }) => {};
}

describe('PreferencesService', () => {

 beforeEach(() => {
 TestBed.configureTestingModule({
 providers: [PreferencesService, {
 provide: BrowserStorage, useClass: BrowserStorageMock
 }]
 });

 });

 describe('save preferences', () => {

 it('should save a preference',
 inject([PreferencesService, BrowserStorage], (service:
 PreferencesService, browserStorage: BrowserStorageMock) => {

 spyOn(browserStorage, 'setItem').and.callThrough();
 service.saveProperty({ key: 'myProperty', value: 'myValue' });
 expect(browserStorage.setItem)
 .toHaveBeenCalledWith('myProperty', 'myValue');
 })
);
 });
});

Creates BrowserStorageMock

Configures the TestBed dependency
injection to use BrowserStorageMock
instead of the real service

Uses inject to get the
BrowserStorageMock

Adds a spy to browserStorage.setItem

Checks the spy to make sure it was called
from saveProperty()

82 chapter 6 Testing services

Because you’re using a spy on the BrowserStorage service, from now on you can check
to see how many times the method was invoked and with what parameters. In this
test, you’re checking to make sure the setItem method was called with the expected
parameters.

Spies are not unique to Jasmine—most testing frameworks support them. You can
learn more about Jasmine spies in the Jasmine documentation at http://jasmine.
github.io.

testing the happy path
Let’s review your work so far. You’ve done the following:

1 Started by using Angular CLI to generate a service and its associated unit test file

2 Added the service to the AppModule

3 Wrote a basic unit that verifies that the service and test file are set up correctly

4 Expanded the unit test setup by creating a mock for the BrowserStorage service

5 Created a unit test that checks for the existence of saveProperty

6 Created a unit test that verifies the behavior of saveProperty when called with a
valid parameter

What’s left to do? You might have noticed you only tested the happy path, the condition
where you used the method correctly. To make sure your code can handle bad input,
you’ll need to create more tests.

6.4.1 Testing for failures

What if something goes wrong? The input to your function could be bad. Maybe some
parameters will be missing or have the wrong type—for example, you expect an array
but receive a number. Or maybe the input looks good, but the values don’t pass the
validation checks. Multiple things could go wrong, and it’s good to have a plan to deal
with the misuse of your code.

Testing for failures works much the same way as testing the happy path. You’ll set up
the tests the same way and invoke the method the same way, but you’ll provide incorrect
inputs to make sure your code responds correctly.

In the following example, you’ll call saveProperty() using the incorrect parameter
of not having a value for the key name. What you expect to happen is that the service
will throw an error. Not having a key might not break your code, but it could cause prob-
lems with the persistence solution you end up using. To catch the problem early, your
code should throw an error if the key is empty or not defined.

Normally, if a function in a test is executed and throws an error, it causes the whole
test to fail. Because this test is meant to ensure that the function throws an exception,
Jasmine needs more setup. To solve this puzzle, the test needs to define a function that
itself calls the function that will throw the error. In listing 6.8, this test function for set-
ting up the assertion is called shouldThrow. When you provide this function to Jasmine
in the expect block, and then use the toThrowError() matcher, Jasmine will execute

http://jasmine.github.io
http://jasmine.github.io

 83Testing services with promises

the function and anticipate that an error will be thrown as a result. When Jasmine exe-
cutes shouldThrow, the function will throw an error, and you can verify that the error
value has the correct type and error message. For the purposes of this test, you just need
to check that an error was thrown.

Listing 6.8 Unit test for checking that a bad input throws an error

it('saveProperty should require a non-zero length key',
 inject([PreferencesService], (service: PreferencesService) => {

 const shouldThrow = () => {
 service.saveProperty({ key: '', value: 'foo' });
 };

 expect(shouldThrow).toThrowError();
 })
);

Remember that the Jasmine methods for testing if errors are thrown require that the
expect parameter be a function. This differs from typical tests that assert the value
passed to expect, so make sure you aren’t calling your test function inside the expect
method!

What you’ve learned so far in this chapter works well for services that operate syn-
chronously. We looked at the example of synchronous persistence, and this pattern
works well whenever you want two services to work together without directly coupling
them. But you often need to handle asynchronous events such as remote service calls or
user interactions. Testing asynchronous services is a bit more complex.

6.5 Testing services with promises
As you’ve been reading this chapter, you may have wondered, “What if I want to use
some type of web service to save my preferences?” That’s a great question, because
the way you’ve designed the ContactPreferences service so far depends on having a
synchronous persistence media. In this section, you’ll create an alternate preferences
service with asynchronous methods that return promises. You’ll also see an alternative
asynchronous pattern using RxJS observables in conjunction with HttpClient later in
section 6.6.

NOTE If you haven’t worked with promises before, all you need to know for
now is that a promise provides a way to write asynchronous JavaScript without
nesting multiple levels of callbacks. Promises became a standard JavaScript fea-
ture in ES2015. You can learn more about promises at the Mozilla Developer
Network (http://mng.bz/8tEi).

Creates a wrapper for any function that’s
supposed to throw an error

Expects the function
to throw an error

http://mng.bz/8tEi

84 chapter 6 Testing services

There’s an important difference between testing synchronous and asynchronous ser-
vices when it comes to setting up tests. You need to test services that asynchronously
respond to method calls differently because Jasmine needs to know when to end an
individual test. Jasmine will automatically complete a test if you don’t explicitly tell it to
wait, and it will report inaccurate results. The second parameter to a Jasmine it block
is a function that takes an optional callback parameter, usually called done. If a test
supplies this parameter, Jasmine will wait for done to be called before ending the test.

WARNING If you write a test with an expect inside an async block without let-
ting Jasmine know that it’s an async test, Jasmine will report the test as passing!
Watch out for this behavior and remember that the practice of red-green-refac-
tor helps keep you aware of these types of oversights. If your test skipped red
and went straight to green, then you might have an error in your code!

If you’ve ever spent a lot of time in Jasmine trying to figure out why your async test was
passing when it obviously should be failing, you’re not alone. If this is your first time
using Jasmine, you’ll be glad to know about this issue right from the start. The correct
way to write an async unit test in Jasmine is to pass the done callback to the unit test and
invoke it when you want the test to end.

Listing 6.9 illustrates a common mistake in an async test—forgetting to supply and
invoke the done callback argument from the it method. Later, you’ll see that Angular
supplies some helpers so you don’t need the done method, but for basic async tests in
Jasmine, follow this example.

Listing 6.9 Incorrect and correct way to write asynchronous Jasmine tests

it('is an asynchronous test', () => {
 setTimeout(() => {
 expect(true).toBe(false);
 });
});

it('is an asynchronous test', (done) => {
 setTimeout(() => {
 expect(true).toBe(false);
 done();
 });
});

This method of writing async tests will always work with Angular unit tests. But when
you’re writing tests that need to inject dependencies into the test block, this syntax isn’t
easy to use. You need to access the dependencies by exposing them with a beforeEach
block, and that can make it less clear which tests require which injected services. Fortu-
nately, Angular gives you more options for easily writing tests with asynchronous logic.

Unit test unexpectedly passes because
done callback isn’t defined or called

Unit test fails as expected because it doesn’t
complete until the done callback is invoked

 85Testing services with promises

The evolving Angular asynchronous testing story
Angular has a system for detecting changes that happen when asynchronous JavaScript
is called. This system, called a zone, changes the way asynchronous browser APIs like
setTimeout work. When Angular was publicly released, developers needed to under-
stand how zones worked to write unit tests, so those who were new to Angular had a hard
time doing so.

The Angular team responded by adding support to Zone.js to make it easier to write
async tests. The first API they made available to developers was async. Running a test in
an async zone made it much easier to write tests for code that changed the DOM. After
changing the application state, a developer could wait for the fixture to say when it
was safe to continue a test. Tests with async use the helper method whenStable, which
returns a promise, making it fairly easy to write tests that work correctly with asynchro-
nous changes. The drawback of async is that it requires additional test boilerplate.

Later, they made another API available, fakeAsync, which makes it easier to write
tests in a more synchronous style. If you write tests inside a fakeAsync block, they
can pretend to fast-forward asynchronous events by calling tick(). (See chapter 3,
section 3.2.1.) The drawback of fakeAsync is that you can’t test some scenarios with
this helper.

When writing async tests, should you use done, async, or fakeAsync? It’s your choice,
but in this chapter, you’ll use fakeAsync because it’s newer and the Angular team
seems to prefer it.

Although you can invoke asynchronous JavaScript in several ways, including timeouts,
DOM events, generator functions, and so on, your async re-implementation of Prefer-
encesService, PreferencesAsyncService, will use promises. In the previous section,
we looked at setProperty, so in this example we’ll look at the asynchronous version of
getProperty, or getPropertyAsync.

In the async version of the preferences service, you’ll use an async data storage ser-
vice for saving and retrieving the preferences. Unlike synchronous code, which always
has to finish executing before any of your other code can run, the asynchronous use of
storage allows you to read and write data without pausing your other code.

Listing 6.10 is the async version of the preferences service. It needs to be async
now because its underlying storage system handles its read and write operations asyn-
chronously. When reading the preferences, BrowserStorageAsync returns a promise
already, so you’ll return that promise with no modification. If getPropertyAsync is
called with an invalid parameter, you’ll return a rejected promise with an appropriate
error message, as shown in the following listing. Keep in mind that the BrowserStor-
age service itself might encounter an error, in which case it would also return a rejected
promise.

86 chapter 6 Testing services

Listing 6.10 PreferencesAsyncService

import { Injectable } from '@angular/core';
import { BrowserStorageAsync } from './browser-storage.service';
import { IContactPreference } from './preferences.service';

@Injectable()
export class PreferencesAsyncService {

 constructor(private browserStorage: BrowserStorageAsync) { }

 getPropertyAsync(key: string) : Promise<IContactPreference> {
 if (!key.length) {
 return
 Promise.reject('getPropertyAsync requires a property name');
 } else {
 return this.browserStorage.getItem(key);
 }
 }
}

6.5.1 How asynchronous changes testing

Before continuing on to the test for the async preferences service, let’s consider the
differences between synchronous and asynchronous code, and how the differences
affect how you write tests.

When you write synchronous code, you’re telling the computer to do this thing and
wait until it’s finished before continuing. Almost all code is synchronous—each line is evalu-
ated, and the next line waits to run until the prior line completes. Writing (and testing)
this style of code is relatively easy, because it flows like a story. You can think about the
program running in sequence. As useful as synchronous code is, at times using it would
make the software unusable. For example, when you fetch data from a web API, it could
take several seconds before the server responds to the request. If you handled this fetch-
ing with synchronous code, the whole user interface would be unresponsive until the
request finished. Users hate that!

In contrast, with asynchronous code, you’re telling the computer to do this thing, and
later do more work when it’s finished. Writing asynchronous code is hard because it no lon-
ger reads like a story. You write the code out of sequence. It becomes even harder when
one asynchronous action causes other asynchronous actions to fire. Though it’s harder
to write and think about, asynchronous code makes it possible to create programs that
are more responsive to user input.

As for testing asynchronous code, you need to understand a couple of differences in
both setting up the test and writing the test. First, any of the mocks you create need to
reflect asynchronous inputs and outputs (usually by returning promises or observables).

Rejects with an error
message if no key is passed

Otherwise returns the promise from
BrowserStorageAsync

 87Testing services with promises

Second, each individual test needs to indicate to Jasmine that it’s testing asynchronous
code. Let’s take these one at a time.

To test the async preferences service, you’ll need to create a mock for the async ver-
sion of the browser storage service. Why do you need this? It could be that the storage is
using a browser technology like IndexedDB (http://mng.bz/w1Eu), which defines an
asynchronous interface for storing and retrieving data. Or it’s possible that the storage
could be implemented as a web service with the data being stored remotely. In either
case, the preferences service needs to be able to handle getting and saving a user’s data
without pausing the application.

When you write the tests themselves, you need to make sure each individual test indi-
cates to Jasmine that it’s testing asynchronous code. Angular includes several testing
utilities to make this task easier and to reduce the amount of boilerplate code needed
to write the test.

The following listing shows the setup changes for the async testing and a test that
incorporates the async test utilities.

Listing 6.11 Importing inject and fakeAsync from @angular/core/testing

import {
 TestBed,
 fakeAsync,
 flushMicrotasks,
 inject } from '@angular/core/testing';

import { BrowserStorageAsync } from "./browser-storage.service";
import { PreferencesAsyncService } from './preferences-async.service';

class BrowserStorageAsyncMock {
 getItem = (property: string) => {
 return Promise.resolve({ key: 'testProp', value: 'testValue '});
 };
 setItem = ({ key: key, value: value }) => Promise.resolve(true);
}
describe('PreferencesAsyncService', () => {
 beforeEach(() => {
 TestBed.configureTestingModule({
 providers: [PreferencesAsyncService, {
 provide: BrowserStorageAsync, useClass: BrowserStorageAsyncMock
 }]
 });
 });

 it('should get a value', fakeAsync(inject(
 [PreferencesAsyncService, BrowserStorageAsync],
 (service: PreferencesAsyncService, browserStorage:
 BrowserStorageAsyncMock) => {
 spyOn(browserStorage, 'getItem').and.callThrough();

 let results, error;

 service.getPropertyAsync('testProp')

Imports asynchronous
testing methods

Mocks the asynchronous service response

Invokes the promise and
assigns the results

http://mng.bz/w1Eu

88 chapter 6 Testing services

 .then(val => results = val)
 .catch(err => error = err);

 flushMicrotasks();

 expect(results.key).toEqual('testProp');
 expect(results.value).toEqual('testValue');
 expect(error).toBeUndefined();
 expect(browserStorage.getItem).toHaveBeenCalledWith('testProp');
 }))
);
});

In the imports section of listing 6.11, you include two new methods from the Angular
testing package, fakeAsync and flushMicrotasks. You’ll use these methods to test the
async preferences service.

As mentioned before, when testing async services, the mocks for these services
should also be asynchronous. BrowserStorageAsyncMock sets up the input and output
methods getItem and setItem to each return a promise. In the real implementation
of the browser storage service, these promises would be resolved after completing an
asynchronous operation. In this test, they’ll resolve immediately with predefined data.

When you write the test for getPropertyAsync, you’ll see that the whole test is
wrapped within a function called fakeAsync. The fakeAsync test helper aids you in two
ways. First, it reduces the amount of boilerplate code you need to write an async test.
Second, it makes it easy to use inject to provide instances of dependencies at the point
of writing a test.

The main part of the test, the part that exercises PreferencesAsyncService, calls
the getPropertyAsync method on your system under test and then saves the results
to locally defined variables of results and error. You’ll use those values to verify the
expected results. After the main test block, you invoke flushMicrotasks (which you
imported at the beginning of the test). You need to call flushMicrotasks to let Angular
know that it’s time to process the promises in the test.

Remember that your Angular services don’t need to call flushMicrotasks—this is
a testing-only helper that makes it easier to test asynchronous services. You use it here
to make sure the promises resolve before checking your expected values. Note that by
using fakeAsync, you don’t need to call Jasmine’s done to end your asynchronous test.

The last part of this test is to confirm that the results are as expected. The getProp-
ertyAsync method should correctly return values from the async browser storage ser-
vice, and there should be no errors. The test also verifies via the test spy that the browser
storage mock was called with the right arguments.

In the next section, we’ll cover asynchronous unit testing for expected failures.

6.5.2 Testing for failures with asynchronous services

Testing for failures in services that use promises is like what we covered in section 6.4.1
for testing synchronous errors. One major difference is that promises have a different
way of resolving errors.

Processes the promise microtasks

Ensures the error value
wasn’t assigned

 89Testing HTTP services with observables

In the following listing, you’ll see how testing for failures with promises differs from
testing for failures in synchronous code.

Listing 6.12 Testing for rejected promises

it('should throw an error if the key is missing',
 fakeAsync(inject([PreferencesAsyncService],
 (service: PreferencesAsyncService) => {
 let result, error;
 service.getPropertyAsync('')
 .then(value => result = value)
 .catch((err) => error = err);

 flushMicrotasks();
 expect(result).toBeUndefined();
 expect(error)
 .toEqual('getPropertyAsync requires a property name');

 }))
);

When you tested for failures with synchronous code, you had to have special handling
to make sure Jasmine could anticipate that an error would be thrown. But when some-
thing goes wrong when calling a promise, the reject callback of the promise will be
called with any error information, and then the catch method that resolves the prom-
ise can handle any error processing. Therefore, Jasmine doesn’t need to have any spe-
cial test setup when testing for error conditions with promises.

Remember to write tests that cover all of your expected paths into and out of your
functions. Promises make writing asynchronous code easier than ever, but you still need
to write robust code that checks for correct input values and raises errors when prob-
lems arise.

So far, you’ve used promises in the asynchronous examples, but in the next section,
you’ll write unit tests that handle RxJS-based observables. Angular relies heavily on RxJS
in its design, especially in HttpClient. This type of code requires special setup, so we’ll
cover an example in depth.

6.6 Testing HTTP services with observables
In this section, we’ll cover one of the most common uses of Angular services: con-
necting an application to a remote API using HttpClient. We’ll also cover unit testing
services that return an RxJS observable, because it’s the default response type for Http-
Client. As of Angular 4.3, testing services that interact with HttpClient is a painless

Calls getPropertyAsync
with an invalid value

Uses the BrowserStorageAsyncMock
default return value

Catches the expected
error and assigns it locally

You shouldn’t get a
preference value back.

You should get an error
with this error message.

90 chapter 6 Testing services

process. Previously it required dozens of lines of boilerplate, but, fortunately for you,
the process is now streamlined and easy.

Tests for HTTP services require special setup so they avoid accessing web services.
Making a network call from your unit tests would break their isolation. If your unit tests
aren’t isolated, it’s much harder to pinpoint a failure in the system under test.

You also shouldn’t call web services directly from your tests because

¡	The computer running the unit tests may need to make calls over a network,
making your test configuration more complex.

¡	There’s no way to guarantee the same result for each run of the test.
¡	You might not have control over the service, so you may get back different results

if the service specification changes.
¡	The service itself may be discontinued or moved to a different address.
¡	You can’t control the response times of servers, leading you to set long timeouts

as you try to guess how quickly your calls will return.

You may feel like you’re in a difficult position. You need to test that your service is
making the correct calls to HttpClient, and that your service correctly responds to
both successes and failures. How can you do so without running into the difficulties
we listed? Fortunately, Angular has anticipated this problem and gives you support for
HttpClient that makes unit testing much easier.

When you were testing PreferencesService, you created a fake storage service to
isolate your test from the browser’s real storage system. This is a common pattern in
unit testing, and it’s so predictably similar to HttpClient that Angular includes Http-
ClientTestingModule to facilitate the process. Because of HttpClientTestingModule,
there’s no need to manually create stubs or manually configure Angular for testing, as
was the case in previous versions of Angular. This test helper includes a bonus feature of
simplifying testing observables returned from HttpClient.

ContactService makes different calls to the web service for working with Contacts
data. Each of these calls is based on an HTTP verb (such as GET, POST, or DELETE).
For each of these operations, you’ll need to set up your tests to respond appropriately.
Because the setup for this test is so simple, the following listing includes both the setup
and a test that gets a list of contacts from the server.

Listing 6.13 Testing services that use HttpClient

import { TestBed } from '@angular/core/testing';
import {
 HttpClientTestingModule,
 HttpTestingController } from '@angular/common/http/testing';
import { ContactService } from './contact.service';

describe('ContactsService', () => {
 beforeEach(() => {
 TestBed.configureTestingModule({
 imports: [HttpClientTestingModule],

Configures the TestBed to use
HttpClientTestingModule

 91Testing HTTP services with observables

 providers: [ContactService]
 });
 });

 describe('getContacts', () => {

 let contactService: ContactService;
 let httpTestingController: HttpTestingController;
 let mockContact: any;

 beforeEach(() => {
 contactService = TestBed.get(ContactService);
 httpTestingController = TestBed.get(HttpTestingController);
 mockContact = {
 id: 100,
 name: 'Erin Dee',
 email: 'edee@example.com'
 };
 });

 it('should GET a list of contacts', () => {
 contactService.getContacts().subscribe((contacts) => {
 expect(contacts[0]).toEqual(mockContact);
 });

 const request = httpTestingController.expectOne('app/contacts');
 request.flush([mockContact]);
 httpTestingController.verify();
 });
 });
});

The new concept in this test is the HttpClientTestingModule and its related test
helper HttpTestingController. The HttpClientTestingModule removes the need
for manually blocking calls from HttpClient trying to reach a server. The HttpTest-
ingController lets you interact with its testing module to verify that calls are being
attempted and to supply canned responses.

Unlike the other asynchronous tests in this section, for tests involving HttpClient,
you don’t need to wrap the test function with fakeAsync or use a done callback. For
these tests, the asynchronous observable behavior is simulated without you having to
add anything to your tests.

In the test itself, you call getContacts on contactService, which defines an observ-
able of contacts as its return value. This syntax looks similar to how promises are tested,
but instead of using then, you use subscribe. One important difference between prom-
ises and observables is that observable callbacks are called whenever new values are
emitted from an observable, whereas promises are only resolved once.

Assigns a reference to the
HttpTestingController for

interacting with the
HttpClientTestingModule

Exercises the contactService method
that makes a call to the server, which

emits an observable later, so is not
evaluated on this line

Causes the httpTestingController to emit
the value being flushed

Verifies there are no
outstanding requests

92 chapter 6 Testing services

Since contactService interacts with the server, you’ll verify the service makes a call
to the api/contacts endpoint, and you’ll use the returned request object to send a
response by calling flush with a predefined object, the mockContact. Each method in
your service (for example, getContacts, setContacts) needs to set up the unit test dif-
ferently for different types of server responses. The response from a GET request will be
different from that of a POST, for example.

NOTE Although you’re creating a fake server response, this technique exposes
one of the difficulties of writing these types of tests: you still have a hidden
dependency on the server itself. You’re trusting that the server response will
match what your code does. One way to deal with this thorny situation is to write
a contract for the service using a specification language, such as OpenAPI, and
use those specifications as an input for your unit tests. That goes beyond the
scope of this chapter, but it’s worth looking into if you’re writing code to access
web services.

After each test, you’ll also check the instance of HttpTestingController to verify no con-
nections to the backend are pending or unresolved. If any are, the test will show an error.
As you can see, testing HttpClient using Angular’s test helpers saves you a lot of work.

Summary

¡	Angular services are a way to separate user interface code like buttons and forms
from code that handles business logic and data persistence. Using services pro-
motes writing testable code and reusability.

¡	Angular components and services define their dependencies, which Angular
then injects when they’re needed. Dependency injection lets you decouple the
implementation of your code from the type of work the service is supposed to
perform; for example, your component can load and save user preferences with-
out having to know the storage mechanism itself.

¡	Mocks and spies are test doubles that are nonfunctional or low-functional substi-
tutes for the real dependencies that your application will use. Mocks allow you to
provide predefined responses in your tests so your tests will always generate the
same results, whereas spies allow you to measure how your code is executing so
you can guarantee that methods are called with the correct parameters.

¡	With asynchronous code, the value produced isn’t known until sometime after
the function is called, so testing it takes special setup in Jasmine. Angular includes
test helpers for making testing asynchronous code easier.

¡	Common ways of dealing with asynchronous code include promises and observ-
ables. Exception handling with promises requires its own type of setup and
testing.

¡	Angular’s HttpClient uses RxJS observables as its output for code that makes
calls to remote servers. Angular has a special test module to make it easy to test
components and services that interact with HttpClient.

93

7Testing the router

This chapter covers
¡	An overview of the router and what it does in

single-page applications

¡	Configuring the router for an Angular
application

¡	Testing components that use the router

¡	Testing advanced router configuration options

Almost every Angular application needs a way to convert the web address in the
location bar to some destination in the web application, and that’s where the router
comes in.

In simple applications, such as the Contacts app you use throughout this book,
the router configuration may only involve associating a URL path with a component,
but you can do much more with the router. For example, your application may have
sections that a user can only access if they have permission to see the data. A router
can verify the user’s credentials before even loading that part of the application.

In this chapter, you’ll learn more about the router, including how to configure it,
and go through some examples of testing both the router code and components that

94 chapter 7 Testing the router

need to use it. Understanding how to test the router in your application builds on skills
you’ve already learned for testing components and services, so make sure you under-
stand the chapters on those topics before continuing with the material in this chapter.

7.1 What is the Angular router?
The Angular router is a part of the Angular framework that converts a web address to a
specific view of the Angular application; it’s integral to the Angular application archi-
tecture. In practice, all Angular applications need to define a router, so the router a key
part of Angular development. When a user goes to a URL for an Angular application,
the router parses the URL to determine which component and data to load. Whenever
a URL changes, whether someone enters it directly or clicks a link, the router sets
up the appropriate application state. Each segment of the path encodes information
about that state. The Angular router examines the path and breaks it into a series of
tokens that you can use for loading components and making data available to them.

Suppose the Contacts app is available at www.example.com, and a user wants to edit
the contact for the person with ID 5. The page for doing so is http://www.example
.com/app/contacts/5/edit. Figure 7.1 shows how the website URL corresponds to the
router configuration. First, notice that the base path, which you configure in the HTML
of your application using the <base href> tag, isn’t included as part of the router con-
figuration. Angular uses the base path as the starting point (or default view) of the
application. All the other URLs in the application will be under the base path. Second,
notice that the dynamic portion of the URL, the contactId, has a colon in front of it.
The router will use the name of this label to send this parameter along to any compo-
nents that need to use it.

contacts / :contactId / edit

http://www.example.com/app/contacts/5/edit

Base path

Contact
segment

Dynamic
contact ID

Edit
segment

Angular router
path config

URL

7.1 How the application URL corresponds to the router configuration

 95What is the Angular router?

The router configuration could be simple for an application that has only a handful
of routes, such as the Contacts app, or it could be long and spread among many differ-
ent files, say for a large enterprise application. As we explain the details, route configu-
ration refers to the configuration of a single URL, and the collection of all the route
configurations is called the router configuration. A router configuration will contain one
or more route configurations.

The process of starting and completing a route change is called its lifecycle. Over the
course of the route change lifecycle, multiple opportunities are available for check-
ing whether the route change can continue. Generically, these are called lifecycle hooks,
but they’re known in Angular as route guards. Whenever the router loads a new route,
components configured for that route have access to the route’s parameters. These
parameters have no prescribed use, but they’re often used for retaining information
about something the component is displaying (for example, pagination or table sorting
information).

The router configuration affects how components will function throughout an appli-
cation, so it’s useful to add tests to validate the ones that interact with it, or to test the
route guards that the router itself fires.

You can test code related to the router in two different ways. The first is by testing
how components receive values from the router or call actions on it. The second is by
testing the application code invoked by the route guards

Imagine the router from a component’s point of view. A component may need route
information passed into it, or it may need to tell the router to perform navigation
actions. When writing tests from this approach, you’ll use a fake router configuration
(the components won’t care that it’s fake) and write tests to make sure the components
work together correctly.

Now think of testing from the router’s point of view. Suppose an unauthorized user
is trying to access the app’s administration panel. You’ll want to use a router configu-
ration that checks to see if the user is logged in and has permission to view the content
before allowing them to continue. In this case, the router configuration itself should be
the subject of the test because it drives which route guards the router calls.

You test router and component interactions by following the same pattern of testing
you’d use for any other parts of Angular, so what you’ve already learned about testing
components and services applies. The only difference is that in these tests, you’ll use
the Angular RouterTestingModule, a built-in testing utility that was created for such
scenarios.

In either case, you’ll need to have a router configuration to test your code. The next
section will help you create one.

7.1.1 Configuring the router

You need to have a router configuration to use the router. During testing, you can
use your application’s router configuration, but usually you’ll create a configuration
meant for testing so you’ll have more control over your tests.

96 chapter 7 Testing the router

The most basic router configuration associates a URL path with a component.
Listing 7.1 shows the router configuration for the Contacts app, which includes the
default home page, pages for adding and modifying contact entries, and a default for
an unknown route. In some of the path entries, you’ll see part of the path with a colon
in front of it (for example, 'edit/:id'). The colon prefix tells the router that the value
in that part of the path is dynamic and the router should make that data available to all
the components. Testing a configuration this simple has little worth because there’s
no behavior to test. The only reason why it might be worth it to write a test is to provide
an extra layer of control when changing any of the path information. We recommend
writing tests only when a particular route configuration is more complex, such as when
using route guards. It’s valuable to test a route if the route behaves differently under
various conditions.

Listing 7.1 Router configuration for the Contacts application

export const routes: Routes = [
 { path: '', component: ContactsComponent },
 { path: 'add', component: NewContactComponent },
 { path: 'contacts', component: ContactsComponent },
 { path: 'contact/:id', component: ContactDetailComponent },
 { path: 'edit/:id', component: ContactEditComponent },
 { path: '**', component: PageNotFoundComponent }
];

Typically, testable code related to the router concerns some type of state change, such
as attempting to navigate to a route or loading a component after a transition (includ-
ing initial load). In a test, you only need to configure the router properties that the test
requires. Because of this, it’s unusual to use your application’s live router configura-
tion for unit testing. Your unit tests usually will contain as much route information as
needed to execute a single group of tests.

7.1.2 Route guards: the router’s lifecycle hooks

You may want to add some application before, during, or after the route change. To
help you do this, the router has a defined set of methods it looks for on a route config-
uration. When the route change happens, the router looks at the route configuration
to see if the method exists. If it does, it executes the method and uses its return value to
determine whether the route change can proceed.

Default application route, which is the
home page of the application

Routes with dynamic path sections

Default component for when the path doesn’t
match any routes in the router configuration

 97Testing routed components

Route guards make it easy to coordinate application behavior as the user moves from
place to place in the application. When a route guard is defined, the router will pass the
route guard method some parameters (which vary by route guard) and will wait for a
return value that tells the router whether it can continue to the next step in loading the
route or whether it should abort the route change attempt.

The order of execution for route guards is as follows:

¡	CanDeactivate—Runs before a user can leave the current route. This is use-
ful for prompting the user if they have any unsaved forms or other unfinished
activities.

¡	CanActivateChild—For any route that has child routes defined, this hook runs
first. This is useful if a feature has some sections that are restricted to users based
on permissions.

¡	CanActivate—This hook must return true for the route to continue loading.
Like with CanActivateChild, this hook is useful for keeping unauthorized users
from loading application features.

¡	Resolve—If a user is allowed to activate the attempted route, the resolve
method is used to load data prior to activating the route itself. The data is then
available from the ActivatedRoute service in the routed components.

In addition to these route guards, the CanLoad guard is useful for dynamically loading
only the parts of an application relevant to a user’s needs (also known as lazy loading).

This wraps up the introduction to the Angular router, router configuration, and
route guards. The next section covers testing your application code related to the
router.

7.2 Testing routed components
In this section, you’ll see two different examples of tests related to interactions between
components and the router. The first example is a component that makes dynamic
calls to the router service. The test will check the calls to the router to make sure the
component is creating the dynamic paths correctly. The second example is a compo-
nent that receives parameters passed from the ActivatedRoute service.

Because the Contacts app doesn’t use advanced routing features, the examples we
look at in this chapter will be standalone code, but you’ll still be able to run them on
your computer.

7.2.1 Testing router navigation with RouterTestingModule

Suppose you have a component that dynamically generates a navigation menu. Your
test finds the menu element and clicks it. You expect the next route to load with the
right parameters, but clicking the link changes the URL and causes the tests to fail in
the Karma test runner. How do you work around this problem?

98 chapter 7 Testing the router

When you’re testing a component that could cause a navigation event (as you are
here by clicking a link), use RouterTestingModule to keep Angular from loading the
navigation target component. This module intercepts navigation attempts and allows
you to check their parameters. Could you do so manually by providing your own mock
router service? Yes, but it’s easier to use the helper that Angular provides. In this sec-
tion, the component you’re testing generates links dynamically based on a menu con-
figuration, and the test uses RouterTestingModule to confirm that the link is working
and the target is correct.

TIP It can help to ask what’s being tested here. It’s important to separate the
ideas of testing a component and testing a router configuration. Yes, you can
test a component together with your application’s router configuration, but
you have to import into the test every component that the routes define. In
practice, this leads to fragile tests, because they will break whenever you change
or update the route configuration. Using your production route configura-
tion for testing will test your entire app! We recommend not coupling your
component tests to your application’s route configuration. Instead, write your
components so that they pass the router configuration to the component as a
dependency. (See chapter 6, section 6.2.) That way, you can provide the route
value as a mock value in testing.

generate links

The NagivationMenu component in the following example shows how to test compo-
nents that interact with the router. If you were writing this component for production,
it would have other behaviors, like animation or nested menus. Remember, in this
example, you’re testing how the component behaves with respect to the router, not the
router configuration itself.

In listing 7.2, notice when the NavigationMenu component initializes (ngOnInit),
it receives its configuration from NavConfigService containing route information,
which it uses to generate a list of links using the RouterLink directive. The test for this
component makes sure that NavConfigService generates the links correctly and they
link to the expected targets.

Listing 7.2 The NavigationMenu component

@Component({
 selector: 'navigation-menu',
 template: '<div><a *ngFor="let item of menu" [id]="item.label"

[routerLink]="item.path">{{ item.label }}</div>'
})
class NavigationMenu implements OnInit {
 menu: any;
 constructor(private navConfig: NavConfigService) { }
 ngOnInit() {
 this.menu = this.navConfig.menu;
 }
}

 99Testing routed components

configure routes and create test components

Although the NavigationMenu component is simple, tests using RouterTestingModule
require some setup. You need to configure at least two routes for the route configu-
ration: the initial route and a second route to be the target of the navigation attempt.
The initial route loads the component under test, and although the target doesn’t
affect the outcome of the test, it should be a valid target for whatever link the compo-
nent constructs.

It’s helpful to create a simple component for the test that only exists to be its target.
You could import another component in your application for this setup, but defining
a simple target component in your test, as shown in the following listing, reduces the
complexity and the number of things that could go wrong.

Listing 7.3 Creating test components for NavigationMenu test

@Component({
 selector: 'app-root',
 template: '<router-outlet></router-outlet>',
})
class AppComponent { }

@Component({
 selector: 'simple-component',
 template: 'simple'
})
class SimpleComponent { }

set up routes

The last step in the setup is to import RouterTestingModule, which will spy on naviga-
tion calls and make their results available for checking in the tests. RouterTestingMod-
ule takes an optional router configuration.

Instead of using the application’s router configuration, it’s better to create a fake
router configuration so you don’t need to import all of the components into your test
and configure them. You should make the test as simple as possible by avoiding pulling
in dependencies you don’t need. For this test, you’ll need two routes: the default route,
which loads the component under test, and the target route.

Before each test, you configure TestBed with modules and mocks needed for the
tests themselves. You run this prior to each test to make sure the values the tests create
are reset between each instance, so the tests won’t interact with one another. To avoid
repetition in each test, the router will load the initial page and then advance the Angu-
lar application to settle any asynchronous events.

When a navigation event occurs, it resolves asynchronously, and you have to account
for this in the test. The example in listing 7.4 uses the Angular fakeAsync helper to han-
dle settling asynchronous calls. When using fakeAsync, you have to resolve outstanding

AppComponent test fixture
tests the component

SimpleComponent stands in as
the target component in the
test route configuration.

100 chapter 7 Testing the router

asynchronous calls manually with the flush method, and then update the fixture with
detectChanges. When writing a full suite of unit tests, you can avoid repetition by cre-
ating a helper method to call flush and detectChanges together. This test defines a
helper function called advance that makes the test code a bit easier to read.

Listing 7.4 Setup code to run before each test

let router: Router;
let location: Location;

let fixture;
let router: Router;
let location: Location;

beforeEach(() => {
 TestBed.configureTestingModule({
 imports: [RouterTestingModule.withRoutes([
 { path: '', component: NavigationMenu },
 { path: 'target/:id', component: SimpleComponent }
])],
 providers: [{
 provide: NavConfigService,
 useValue: { menu: [{ label: 'Home', path: '/target/fakeId' }] }
 }],
 declarations: [NavigationMenu, SimpleComponent, AppComponent],
 });
});

beforeEach(fakeAsync(() => {
 router = TestBed.get(Router);
 location = TestBed.get(Location);
 fixture = TestBed.createComponent(AppComponent);
 router.navigateByUrl('/');
 advance();
}));

function advance(): void {
 flush(); //
 fixture.detectChanges();
}

This component involves a lot of setup for testing, so let’s do a quick review:

¡	The component under test generates navigation links.
¡	The setup creates two mock components to facilitate the test, one for the app

fixture and one for the target.
¡	The TestBed configuration uses RouterTestingModule with fake route infor-

mation. Before each test, the RouterTestingModule loads the default route and
updates the test fixture.

Configures RouterTestingModule
with fake testing routes

Starts each test by navigating
to the default route

A test helper for fakeAsync that resolves
and detects asynchronous side effects

 101Testing routed components

Now you can write the first test, which is pretty simple. After you’ve set up the fixture,
NavigationMenu should generate links based on its input. The test in the following
listing gets a copy to a link, clicks it, and then checks with the Location service to see if
the path updated to the expected target.

Listing 7.5 Testing generated NavigationMenu links

it('Tries to route to a page', fakeAsync(() => {
 const menu = fixture.debugElement.query(By.css('a'));
 menu.triggerEventHandler('click', { button: 0 });
 advance();
 expect(location.path()).toEqual('/target/fakeId');
}));

Why did it take so much setup for such a small test? Remember that the router is tightly
integrated into the backbone of an Angular application. Because of that, it takes extra
work to isolate it from its configuration and from any side effects caused by navigating
to different routes.

NOTE Although this test uses DOM elements and click events to activate it, you
can use this same technique to test components that call Router.navigate().
The setup is the same, but in the test, you’d trigger whatever event would cause
the navigation method to fire.

In the next section, we’ll cover another case of testing interactions between a compo-
nent and the router, but this time the component receives values from the router.

7.2.2 Testing router parameters

Deep linking is the ability to link to a view of specific content in a website or a web appli-
cation. A URL for a deep link embeds information about the content (usually through
an identifier), sorting and filtering parameters, and sometimes pagination parameters.
For example, a car sales web app makes it possible to deeply link into a specific model
and year range sorted by price. You can save and share that link, and although the con-
tent is generated dynamically, the parameters are always the same.

testing activatedroute components

In an Angular application, you implement deep linking through route parameters.
The router captures these parameters and makes them available to any component
that needs them through the ActivatedRoute service. Whenever a user navigates to
a different route, the ActivatedRoute service makes information about the route
change available to components that use the service.

Gets reference to a generated link element Sends the link a click event

Processes the navigation attempt
and updates the fixture

Tests that the router location
updated to the expected target

102 chapter 7 Testing the router

One of the most basic uses of ActivatedRoute is to pass along a unique identifier for
further content lookup. For example, in the Contacts app, the ContactEdit compo-
nent uses ActivatedRoute to get the identifier for a contact. When the user navigates
to http://localhost/edit/1, the router compares the path to the router configura-
tion and extracts the last part of the path to be used as the value of id. After that, the
router publishes this value to ActivatedRoute, which sends the update to all subscrib-
ing components.

The test in this section will use a simplified example of how to test a component that
depends on ActivatedRoute. Components can subscribe to the values that Activat-
edRoute publishes either as an observable or as a snapshot, an object holding the last
updated values for all parameters. Subscribing to an observable is a good choice for
a long-lived component that needs to update regularly based on route changes. (See
chapter 6, section 6.6.) Using the snapshot is simpler and is a good choice for when a
component only needs to use route parameters when it’s constructed. The testing setup
for either is similar, but this example will use a snapshot.

The example in listing 7.6 is simplified for illustration purposes. Normally, a compo-
nent for editing data would have a form and controls for modifying and saving the data,
but here you’re focusing on loading the Contact ID from the ActivatedRoute service
and using it in the template.

Listing 7.6 Simplified ContactEdit component using ActivatedRoute

@Component({
 selector: 'contact-edit',
 template: '<div class="contact-id">{{ contactId }}</div>',
})
class ContactEditComponent implements OnInit {
private contactId: number;
constructor(private activatedRoute: ActivatedRoute) { }
ngOnInit () {
 this.contactId = this.activatedRoute.snapshot.params['id'];
}
}

setting up the test

Compared with testing components that cause navigation events to occur, setting up
the test for ActivatedRoute is much simpler. This component only listens for data and
then renders its template.

Shortened template for
illustration purposes

Injects the ActivatedRoute service
during construction

Assigns the Contact ID on initialization

 103Testing routed components

The only mock this test requires is a mock for ActivatedRoute. TestBed will provide
the mock value to the component. Notice that in the following listing, the test, unlike
the NavigationMenu component test, doesn’t use RouterTestingModule. It isn’t neces-
sary for this test because no navigation is occurring.

Listing 7.7 Setting up the ActivatedRoute mock for component testing

let fixture;
const mockActivatedRoute = {
 snapshot: {
 params: {
 id: 'aMockId'
 }
 }
};

 beforeEach(() => {
 TestBed.configureTestingModule({
 providers: [
 { provide: ActivatedRoute, useValue: mockActivatedRoute}
],
 declarations: [ContactEditComponent],
 });
});

beforeEach(async(() => {
 fixture = TestBed.createComponent(ContactEditComponent);
 fixture.detectChanges();

}));

testing the component

When the router resolves a navigation event, ActivatedRoute produces a snapshot of
the route data associated with the component when the component is instantiated.
You can avoid incorporating the RouterTestingModule into this type of test by mock-
ing the router snapshot that ActivatedRoute normally supplies. Providing your own
test snapshot avoids the extra setup work that would be required to have the router
generate the snapshot automatically. As long as you know what the snapshot looks like,
you can use a mock instead, which simplifies the test.

As shown in listing 7.8, the test involves initializing the component and checking the
result. This is another asynchronous test. When the component’s ngOnInit method is
activated, the TestBed returns the mock snapshot for ActivatedRoute. This process

The mock is the snapshot that ActivatedRoute
would generate as part of a route event.

Injects the mock ActivatedRoute as the
value for ActivatedRoute

TestBed asynchronously initializes the TestBed
fixture with the component under test.

104 chapter 7 Testing the router

happens asynchronously, and this test is easier to read using the Angular async test
helper instead of the fakeAsync helper. The test checks the value of the Contact ID
after it’s rendered in the form to ensure that it’s the value coming from the Activat-
edRoute service.

Listing 7.8 Testing the ContactEdit component loading route parameters

it('Tries to route to a page', async(() => {
 let testEl = fixture.debugElement.query(By.css('div'));
 expect(testEl.nativeElement.textContent).toEqual('aMockId');
}));

Because this component uses the ActivatedRoute snapshot, setting up the test is easy.
If your component uses properties of ActivatedRoute that emit observables, then
your mock would be an observable emitting the mocked properties, as shown in the
following listing.

Listing 7.9 Using a mock observable for ActivatedRoute

const paramsMock = Observable.create((observer) => {
 observer.next({
 id: 'aMockId'
 });
 observer.complete();
});

beforeEach(() => {
 TestBed.configureTestingModule({
 providers: [
 { provide: ActivatedRoute, useValue: { params: paramsMock }}
],
 declarations: [ContactEditComponent],
 });
 });

The test is wrapped in the async helper because the
test is waiting for the component to initialize.

A reference to the DOM node where the
Contact ID should be rendered

Verifies the template is rendered with
the Contact ID from ActivatedRoute

Creates an observable that will be used
for testing ActivatedRoute params

Uses the observable as the params
method for the injected mock service

 105Testing advanced routes

using a mock observable

Whether you use a route snapshot or create an observable for your mock Activated-
Route, testing a component that reads values from ActivatedRoute is straightforward.

We’ve covered all you need to know about testing routes from the point of view of
a component. The rest of this chapter will look at testing special features of routes
that are especially useful in an enterprise single-page application—route guards and
resolved data services.

7.3 Testing advanced routes
The router can perform functions that enable Angular applications to implement
enterprise application-level features. With the router, it’s easy to route unauthenticated
users to a login page, pre-fetch data before loading components, and lazy-load other
modules to help reduce application start time. As discussed earlier, the router configu-
ration can define route guards that the router calls before navigation events. Another
feature of the router is pre-loading, or resolving, data before activating components.

7.3.1 Route guards

Enterprise web applications, unlike other web applications, have user authentication,
user roles, privileges, and other means of allowing users to access features, or keeping
them from doing so. The Angular router makes it easy to add application logic to make
sure users can only access the features they’re allowed to access. The mechanism for
this system is called a route guard. Route guards are specialized services that the router
runs prior to a router navigation event. Route guards are simple in design—if a route
guard method returns true, the navigation attempt can continue. Otherwise, the nav-
igation attempt fails.

Why would you want to use a route guard instead of adding these functions directly
to a component? Because route guards exist outside of your component, they let you
separate the access or permissions functions from the core functionality of the com-
ponent. Also, if you define route-guard services separately from components, you can
reuse the validation logic by configuring your route configuration rather than having to
add component logic.

You can divide route guards into two main categories: those that check before a user
tries to leave a current route, and those that check before a user can load a new route.
We’ll cover a third type of route guard, called a resolver guard, in the next section.

In listing 7.10, you’ll see a CanActivate route guard. To use this route guard, a route
configuration entry specifies a new property called canActivate, which takes an array
of route guards. The system under test in this example is AuthenticationGuard, a route
guard that depends on the UserAuthentication service to see if a theoretical user is
allowed to access the route. If not, the navigation attempt fails.

106 chapter 7 Testing the router

Listing 7.10 AuthenticationGuard service

@Injectable()
class AuthenticationGuard implements CanActivate {
 constructor(private userAuth: UserAuthentication) {}
 canActivate(): Promise<boolean> {
 return new Promise((resolve) =>
 resolve(this.userAuth.getAuthenticated());
);
 }
}

@Injectable()
class UserAuthentication {
 private isUserAuthenticated: boolean = false;
 authenticateUser() {
 this.isUserAuthenticated = true;
 }
 getAuthenticated() {
 return this.isUserAuthenticated;
 }
}

We’ve chosen to show UserAuthentication as a separate service. This makes the exam-
ple a little more complicated, but it’s good to reinforce the idea that you should sepa-
rate a service that handles user authentication—which in real life would make network
calls and have other complexities—from the route guard service itself. Smaller services
are easier to test, and with this level of separation, it’s easy to mock the dependencies
for the system under test.

Setting up the test is similar to the setup for the NavigationMenu test. This test
requires a component for initializing the application fixture and a simple component
to act as the target for the navigation attempt. (Refer to listing 7.3 for an example of
this type of test component.) What’s new in the test setup in listing 7.11? First, notice
that this test again uses RouterTestingModule with a configuration specific to testing
AuthenticationGuard. As mentioned before, it’s better to create a test router config-
uration, because it’s less complicated and more reliable than trying to use the applica-
tion’s router configuration. The test configuration specifies the canActivate property,
which activates the code that’s the focus of this test.

Listing 7.11 Setting up the AuthenticationGuard test

beforeEach(() => {
 TestBed.configureTestingModule({
 imports: [RouterTestingModule.withRoutes([
 { path: '', component: AppComponent },
 {
 path: 'protected',

The route guard implementing the CanActivate
interface, which is the focus of the test

A fake service used to demonstrate separating
the responsibility of the route guard from the

user authentication service

Uses RouterTestingModule

 107Testing advanced routes

 component: TargetComponent,
 canActivate: [AuthenticationGuard],
 }
])],
 providers: [AuthenticationGuard, UserAuthentication],
 declarations: [TargetComponent, AppComponent],
 });

 router = TestBed.get(Router);
 location = TestBed.get(Location);
 userAuthService = TestBed.get(UserAuthentication);
});

beforeEach(fakeAsync(() => {
 fixture = TestBed.createComponent(AppComponent);
 router.initialNavigation();
}));

AuthenticationGuard will check the UserAuthentication service when the route nav-
igation attempt occurs, so you capture a reference to the service to control it during the
test. The testing setup is finished, so what remains are two tests, shown in listing 7.12.
Both will try to navigate to the protected route. The first will try without authenticating,
and in the second you’ll manually authenticate the user. After the navigation attempt,
the tests check the Location service for the expected result.

Listing 7.12 AuthenticationGuard tests

it('tries to route to a page without authentication', fakeAsync(() => {
 router.navigate(['protected']);
 flush();
 expect(location.path()).toEqual('/');
}));

it('tries to route to a page after authentication', fakeAsync(() => {
 userAuthService.authenticateUser();
 router.navigate(['protected']);
 flush();
 expect(location.path()).toEqual('/protected');
}));

These tests make sure the route guards behave correctly under different application
scenarios. You could use other approaches for testing route guards. For example,
you could spy on the canActivate method to make sure it’s called as expected and is
returning the correct response. Both methods work, so use whichever you prefer.

7.3.2 Resolving data before loading a route

Sometimes you’ll want to load data before activating a component. The resolver
route guard specifies an object of key-value pairs, where the keys are the names of
data properties and the values are route guard services that fetch the data. Once all
services have resolved, the router makes the data available to components through the

Specifies the route
guard for the test

Allows the authentication
check to pass

Tries to navigate to the protected
route before authentication

Authenticates first and tries
again. This time it works.

108 chapter 7 Testing the router

ActivatedRoute service on the data property. In the following listing, you can see an
example where user preferences and contacts data is loaded prior to the route change
via UserPreferencesResolver and ContactsResolver respectively.

Listing 7.13 Configured resolver route guard

{
 path: 'contacts',
 component: TargetComponent,
 resolve: {
 userPreferences: UserPreferencesResolver,
 contacts: ContactsResolver
 }
}

Testing a resolver route guard uses the techniques we already covered in section 7.3,
so we won’t be providing a separate example. To test these resolvers, follow the same
process as the canActivate route guard. The resolvers themselves usually interact with
some other data service, for which you’ll want to provide mock services. Then in the
unit test, you’ll inject the ActivatedRoute service and check that the values available
on ActivatedRoute.snapshot.data match your expected values.

Summary

¡	The Angular router is like the backbone of your application. It takes a URL and
figures out which components to load based on the URL segments.

¡	Angular components can navigate to other parts of an application by including
the RouterLink directive. When testing navigation components, you use the
Location service to verify the navigation path is correct.

¡	Angular components also can receive route information from the Activat-
edRoute service. You saw an example of the test configuration required to test a
component that depends on ActivatedRoute values.

¡	Whenever any route change occurs, the router can check if the route change is
allowed to happen. Route guards are methods that either let the route change
continue or stop it from happening.

¡	The RouterTestingModule helps you to write tests for your components that
interact with the router by providing test router configurations and inspecting
the calls to the router itself.

part 2

End-to-end testing

Unit tests are great: they run quickly and let you exercise the functionality of
your components. But at the end of the day, you still need to be sure that your
entire application works as expected. In this part of the book, we cover writing
tests that control a browser using Protractor, Angular’s end-to-end (E2E) testing
framework. These tests can be hard to write and debug, but having a few E2E tests
is a good way to catch issues that might not show up in unit tests.

Chapter 8 is an introduction to Protractor. It covers how Protractor works, writ-
ing a basic test, and making your tests easier to maintain with page objects.

Because Protractor tests can interact with your application only through a
browser, these tests fail, usually with a timeout error, in which the test times out while
waiting for some particular HTML to show up in the page. Chapter 9 explores
in depth what these errors mean. In the process, it explains how Angular’s
change-detection system works and how Protractor interacts with it.

Finally, chapter 10 is a grab bag of advanced Protractor testing techniques
that can make your life easier. This includes customizing Protractor with plugins,
different ways to debug failing tests, and writing tests that compare pages using
screenshots.

111

8Getting started
with Protractor

This chapter covers
¡	Understanding how Protractor works

¡	Writing your first Protractor test

¡	Interacting with elements

¡	Interacting with a list of elements

¡	Organizing tests with page objects

In the first part of the book, you saw how to create unit tests that verify your applica-
tion’s features work as expected in isolation. Having a good suite of unit tests isn’t
enough to make sure your application will do what it’s supposed to. Because unit
tests validate the Contacts app in isolation, they can’t confirm that external services
or dependencies work together with the application.

You could test both the workflow and external dependencies with a set of tests
that interact with the Contacts app like a real-world user. You could manually test the
application, but it’s better to have automated tests. Tests that interact with the appli-
cation like a real-world user are end-to-end tests. These tests launch a browser, navigate

112 chapter 8 Getting started with Protractor

to the Contacts app and interact with. This kind of test would be expensive to run, so
instead of exhaustively testing every possible real-world user scenario, we’ll pick a set of
tests that cover the most important scenarios.

The testing pyramid we talked about toward the end of chapter 1 (figure 1.2) showed
that 70% of tests should be unit tests, 20% integration tests, and 10% end-to-end tests.
With such a high percentage, your unit tests shoulder a lot of the testing burden. You
should look at which scenarios your unit tests have already covered before picking
which tests you need to perform here.

Because integration tests involve validating external dependencies, we group them
together with end-to-end tests. Integration tests use mock versions of external depen-
dencies (an in-memory database, for example), and end-to-end tests use the real ver-
sion, but they’re equivalent for our purposes.

You can write end-to-end tests two ways: with the Selenium WebDriver library or
Angular’s Protractor test framework. If you’ve previously written a Selenium WebDriver
test, you might have found that your tests became a nested chain of promises to syn-
chronize browser commands. In contrast, Protractor wraps the Selenium WebDriver
APIs to make asynchronous commands appear synchronous. Because of this wrapping,
Protractor exposes the same set of APIs as Selenium WebDriver, making it interchange-
able. When writing end-to-end tests for Angular, it’s better to use Protractor than Sele-
nium WebDriver.

Before you can create a Protractor test suite, we’ll need to cover the basics. This
chapter will demonstrate how Protractor works and how to write your first Protractor
test. You’ll create a simple test that interacts with web elements on the screen. We’ll also
show you how to organize test code with page objects. When refactoring your test suite,
using page objects helps reduce code duplication and creates maintainable code.

If you’re already familiar with Protractor, feel free to skip to chapter 9, where we talk
about timeouts, and chapter 10, where we’ll cover advanced Protractor topics.

8.1 How Protractor works
Let’s look at the big picture of how Protractor helps you write your browser tests.
Protractor tests run on Node.js and send commands to a Selenium Server. The Sele-
nium Server controls the browser via WebDriver commands and JavaScript functions
(figure 8.1).

 113How Protractor works

Node.js

Jasmine

Protractor

Your tests

Selenium

Browser driver

Browser

Angular

JavaScript engine

Your application

WebDriver
commands

Browser-specific
commands

Your test code runs
in a Node.js process.

Your application is running
in a separate JavaScript VM,
in a browser.

Protractor wraps
the WebDriver
client API.

Your tests can also run
JavaScript in the browser
VM with the executeScript
WebDriver command.

Every browser has a different
driver that Selenium uses to
turn your commands into
browser actions.

Selenium receives WebDriver
commands from Protractor
and translates them for
the browser being tested.

Figure 8.1 Protractor block diagram

Protractor is a Node.js program. After Protractor launches, it hands the execution of
your tests over to Jasmine (or Mocha, or whichever test framework you prefer). Protrac-
tor wraps the Selenium WebDriver client and adds features for testing Angular applica-
tions. It then communicates to the browser via a Selenium Server. The Selenium Server
controls the browser using vendor-specific browser drivers—for Firefox, Chrome, and
so on. After the browser driver creates a session, Protractor loads the Angular applica-
tion under test.

NOTE Selenium is an open source project (https://github.com/seleniumHQ)
that automates browser testing. The Selenium Standalone Server handles
launching browsers and sending commands to the browser drivers using the
WebDriver protocol. The WebDriver protocol is a W3C specification defined
at https://www.w3.org/TR/webdriver. Browser vendors maintain the driver for
their browser.

https://github.com/seleniumHQ
https://www.w3.org/TR/webdriver

114 chapter 8 Getting started with Protractor

The important thing to take away from all of this is that browser tests run in a browser
that’s independent of your test. Your tests are running in a Node.js process, and the
Angular application is running in a browser. Because these are two separate processes,
you need to provide some sort of synchronization between the Angular application run-
ning in the browser and the Protractor test. Protractor does this by inserting a JavaS-
cript function that runs in the browser and waits for Angular to be stable. In this case,
stable means that an event or background task isn’t pending that might cause a change
to your application’s DOM.

8.2 Writing your first Protractor test
In this section, you’ll create the files you need to run a simple Protractor test in Type-
Script. For your first Protractor test, we’ll guide you through some of the features in
the Contacts app. When you run your test, a Chrome browser will launch, navigate to
the application’s default page, and verify the URL address. You can find the code for
this chapter at http://mng.bz/Fp9u.

TIP You can find Protractor documentation at http://protractortest.org.
Another good resource is the Protractor cookbook at https://github.com/
angular/protractor-cookbook.

8.2.1 File structure

Let’s take a look at the files and folder structure from the chapter 8 GitHub repository.
These are the bare minimum files you need to run a Protractor test with TypeScript:

 .
 ├── e2e/
 │ ├── first-test.e2e-spec.ts
 │ └── tsconfig.json
 ├── package.json
 └── protractor-first-test.conf.js

NOTE If you’re using the Angular CLI to create a new Angular project, it gen-
erates the scaffold files you need to create your first Protractor test. The chap-
ter 8 GitHub repository folder structure mimics these files.

package.json

The first file you need to create is package.json, shown in listing 8.1. devDependencies
specifies that your project uses type definitions that the @types node modules specify.
These are TypeScript typings for node modules written in JavaScript. In addition to
type definitions, you also depend on typescript, protractor, and ts-node.

INFO Protractor is written in TypeScript as of Protractor version 4+, and no
additional type definitions are required. Prior to Protractor version 4, you
would find the type definitions at @types/angular-protractor.

http://mng.bz/Fp9u
http://protractortest.org
https://github.com/angular/protractor-cookbook
https://github.com/angular/protractor-cookbook

 115Writing your first Protractor test

The scripts portion of package.json defines a pree2e and an e2e script, as shown in
the following listing. The pree2e script launches the webdriver-manager node mod-
ule to download binaries required to control a web browser. When running the e2e
script to launch Protractor, the pree2e script automatically runs first.

Listing 8.1 Node package configuration—package.json

{
 "name": "protractor-tests",
 "scripts": {
 "pree2e": "webdriver-manager update --gecko false
 --standalone false",
 "e2e": "protractor"
 },
 "devDependencies": {
 "@types/jasmine": "^2.53.43",
 "@types/jasminewd2": "^2.0.1",
 "@types/selenium-webdriver": "^3.0.0",
 "typescript": "^2.2.1",
 "protractor": "^5.1.1",
 "ts-node": "^2.1.0"
 }
}

typescript configuration file

The next file you need is the TypeScript configuration file, tsconfig.json, in the e2e
folder. The configuration file shown in listing 8.2 tells the TypeScript compiler (tsc
command) which TypeScript files to transpile and which type definitions to use. Also,
this file tells the transpiler to emit ES6 (ECMA2015) JavaScript, and that the JavaScript
output files should be written to dist/out-tsc-e2e.

Listing 8.2 TypeScript compiler configuration—e2e/tsconfig.json

{
 "compileOnSave": false,
 "compilerOptions": {
 "declarations": false,
 "emitDecoratorMetadata": true,
 "experimentalDecorators"
 "lib": ["es2016"],
 "module": "commonjs",
 "moduleResolution": "node",
 "outDir": "../dist/out-tsc-e2e",
 "sourceMap": true,
 "target": "es6",
 "typeRoots": [
 "../node_modules/@types"
]
 }
}

Automatically downloads support files
when running the "e2e" script

Runs the Protractor node module when
provided with a Protractor configuration file

When transpiling TypeScript to JavaScript,
write the files to a folder that git will ignore.

Includes all type
definitions from @types

116 chapter 8 Getting started with Protractor

protractor configuration file

Now that you have the package dependencies and TypeScript support files, you need
to create the Protractor configuration, protractor-first-test.conf.js, shown in listing
8.3. The Protractor configuration file tells Protractor how to launch your test. You can
break it down into several parts: how to launch the browser, the path of the test files,
the test framework, and plugins.

Listing 8.3 Protractor configuration file—protractor-first-test.conf.js

exports.config = {
 capabilities: {
 browserName: 'chrome'
 },
 directConnect: true,
 baseUrl: 'https://testing-angular-applications.github.io',
 framework: 'jasmine',
 specs: [
 './e2e/first-test.e2e-spec.ts'
],
 onPrepare: () => {
 require('ts-node').register({
 project: 'e2e'
 });
 }
}

In this listing, directConnect and capabilities define how to launch and interact
with the browser. In capabilities, you specify that you want a Chrome browser. If you
don’t include any capabilities, Protractor launches Chrome by default. You’ll launch
the Chrome browser with directConnect using the chromedriver binary that web-
driver-manager downloads.

A few lines further down in protractor-first-test.conf.js are framework and specs. You
specify that you’d like to use Jasmine as the test framework. If you didn’t specify the
framework, Protractor would run the test with Jasmine by default. Because you’ve used
the Jasmine test runner to write unit tests in previous chapters, we also recommend you
use Jasmine for Protractor tests. The test runner will run e2e/first-test.e2e-spec.ts listed
in the specs array.

NOTE Protractor allows other test frameworks, including Mocha and Cucum-
ber. It provides limited support for these frameworks, and they’re beyond the
scope of this book. If you’d like to try out other frameworks, see the framework
documentation at http://mng.bz/d64d.

The last section of protractor-first-test.conf.js is an onPrepare function. The onPrepare
function uses the ts-node node module, which lets the Protractor test run the Type-
Script files without compilation. You register the e2e directory, which has your tests,
with ts-node.

Specifies to launch the Chrome browser
directly with ChromeDriver

Specifies the TypeScript test files
Protractor will launch via ts-node

http://mng.bz/d64d

 117Installing and running

protractor test file

The last file you need is the test specification, e2e/first-test.e2e-spec.ts, shown in list-
ing 8.4. Because you use the Jasmine framework, the spec file looks similar to the unit
tests you’ve seen in previous chapters. The first line imports the browser from Pro-
tractor and uses it to navigate to the Contacts app and validate that the current URL is
the browser.baseUrl, which is https://testing-angular-applications.github.io.

Listing 8.4 Test specification—e2e/first-test.e2e-spec.ts

import { browser } from 'protractor';

describe('your first protractor test', () => {
 it('should load a page and verify the url', () => {
 browser.get('/#/');
 expect(browser.getCurrentUrl())
 .toEqual(browser.baseUrl + '/#/');
 });
});

Now that you have the bare minimum files, you can install the node module depen-
dencies and run your first Protractor test.

8.3 Installing and running
You start by installing the node modules defined in package.json with npm install.
After the node modules are downloaded, you can launch Protractor using the scripts
defined in package.json. You can launch the Protractor test with the command npm
run e2e protractor-first-test.conf.js. At the beginning of the test, the pree2e
script downloads the chromedriver binary using webdriver-manager. After the files
are downloaded, Protractor launches the test using the Protractor configuration file
protractor-first-test.conf.js.

Protractor starts the new WebDriver instance according to the configuration file. The
new WebDriver instance launches a Chrome browser window using the chromedriver
binary. The console output should look similar to the following listing.

Listing 8.5 Running Protractor with the e2e script

npm run e2e protractor-first-test.conf.js

> chapter-8-code@0.0.0 pree2e /path/to/protractor-first-test
> webdriver-manager update --gecko false --standalone false

[11:48:53] I/file_manager - creating folder /path/to/selenium
[11:48:54] I/downloader - curl -o /path/to/selenium/chromedriver_2.28.zip

https://chromedriver.storage.googleapis.com/2.28/chromedriver_mac64.zip
[11:48:54] I/update - chromedriver: unzipping chromedriver_2.28.zip /path/to/

selenium/chromedriver_2.28.zip

Before launching the e2e test,
automatically launches the pree2e task

Downloads the chromedriver binary to the node
module webdriver-manager/selenium folder

https://testing-angular-applications.github.io

118 chapter 8 Getting started with Protractor

[11:29:38] I/update - chromedriver: unzipping chromedriver_2.28.zip
[11:29:38] I/update - chromedriver: setting permissions to 0755 for /path/to/

selenium/chromedriver_2.28
[11:29:38] I/update - chromedriver: chromedriver_2.28 up to date

> chapter-8-starter@0.0.0 e2e /path/to/protractor-first-test
> protractor "protractor-first-test.conf.js"

[11:29:39] I/launcher - Running 1 instances of WebDriver
[11:29:39] I/direct - Using ChromeDriver directly...
Started
.

1 spec, 0 failures
Finished in 2.484 seconds

NOTE You can launch Protractor in a couple of ways. In the first method, if you
installed Protractor as a global install, you can run protractor-first-test
.conf.js. The second method is to launch Protractor by referencing the node_
module folder. From the root directory of chapter 8’s sample code, you could
run ./node_modules/.bin/protractor protractor-first-test.conf.js,
or, for Windows machines, node node_modules/.bin/protractor protrac-
tor-first-test.conf.js. The second method isn’t recommended and is the
equivalent to running the e2e script, which we covered in the package.json file.

During the test, you’ll see the Chrome browser launch and close quickly. In this short
time, Protractor runs the Jasmine test, launches the Chrome browser, navigates to the
Contacts app, validates the URL, and closes the browser window.

Now that you’ve run your first Protractor test, you’ll write some new tests to expand
your test suite. To add these tests, you’ll first need to learn some additional Protractor
APIs to handle HTML web element interaction.

8.4 Interacting with elements
In the last section, you learned about the bare minimum files you needed to write your
first Protractor test. In this section, we’ll introduce two new Protractor APIs: element
and by. These APIs help you interact with the Contacts app. By the end of this section,
you’ll create several test scenarios around creating a new contact.

The related files from the GitHub repository for the next section are e2e/add-contact
.e2e-spec.ts, e2e/add-second-contact.e2e-spec.ts, and protractor-add-contact.conf.js.

The e2e task that you
specified in package.json

Launches the Protractor test with
directConnect to run Chrome

The period shows that
the first test passes.

 119Interacting with elements

In protractor-add-contact.conf.js, you need to copy over most of the test configurations
from protractor-first-test.conf.js. You also need to change the Protractor configuration
specs array from including a single file to using file globbing, as shown in listing 8.6.
Globbing match selects a set of files based on a file path pattern and wildcard charac-
ters. This will allow you to test both e2e/add-contact.e2e-spec.ts and e2e/add-second
-contact.e2e-spec.ts without having to specify the exact files you’re using.

Listing 8.6 Protractor configuration file with file globbing

exports.config = {
 capabilities: {
 browserName: 'chrome'
 },
 directConnect: true,
 baseUrl: 'https://testing-angular-applications.github.io',
 framework: 'jasmine',
 specs: [
 './e2e/add-*contact.e2e-spec.ts'
],
 onPrepare: () => {
 require('ts-node').register({
 project: 'e2e'
 });
 }
}

Because you’re using the file globbing option, your Protractor test will run all files that
are in the e2e directory starting with "add-" and match the file suffix of "contact.e2e-
spec.ts".

8.4.1 Test scenario: creating a new contact

Usually it’s easy to figure out the happy path when coming up with end-to-end tests. To
expand on the definition we provided in chapter 6, you also can look at the happy path
as being the workflow a user follows to successfully complete a set of tasks. In this case,
figure 8.2 shows the happy path—the user interacts with the Contacts app to create a
new contact. The user clicks the + button, fills out the required fields, and clicks the
Create button.

Adds specs by file globbing

120 chapter 8 Getting started with Protractor

Type in name “Ada” to the
id = “add-contact”.

Click the “Create” button
by using the css class
“create-button”.

Click the button with
id = “add-contact”.

Figure 8.2 Create new contact workflow

To test this workflow, it’s helpful to look at the HTML to identify the elements you need
to interact with. The test case will first click the + symbol. In the HTML snippet below, you
see the + symbol is generated by the mat-icon class "add-fab-icon". You could try to
click the icon, or you could find the web element by either the button or the <a> tag. For
this example, you’ll use the <a> tag. Because the web page could have several <a> tags, you
also need to use the id="add-contact" to find the link, as shown in the following snippet:

<a *ngIf="!isLoading && !deletingContact" id="add-contact" routerLink="/add"
mat-fab class="add-fab">

 <button mat-fab class="add-fab">
 <mat-icon class="add-fab-icon"
 mdTooltip="Add new contact">
 add
 </mat-icon>
 </button>

TIP When writing Protractor tests, you can use Chrome’s developer console to
see the HTML for the application. You access the Chrome developer console
using the keyboard shortcut Cmd+Opt+I on a Mac and Ctrl+Shift+I in Windows
or Linux.

You can find and click on the <a> tag web element using two Protractor APIs: by
and element. The by API has methods to find web elements using an identifier. The
element API consumes the object generated by the by API and returns a Protrac-
tor ElementFinder object that represents the web element. After you call the click

 121Interacting with elements

method on the web element, the Contacts app will navigate to a new page that con-
tains the new contact.

In listing 8.7, your test will fill out the form using the id attribute of the input tag.
Similar to the previous step, you can find the HTML input tag using the id attribute
equal to contact-name. After finding the element, the test fills out the form with the
name Ada using the sendKeys method. Because this is the first time you’re finding a
web element, you should verify that its text matches the expected value. You’ll need to
get the value attribute from the input field and compare it to the text that the test just
entered. After you assert that the text is Ada, you’ll find the Create button by using the
css class create-button so you can add a new contact. After your test has clicked the
Create button, it will check that the route navigated back to the browser.baseUrl.

Listing 8.7 Test specification to create a new contact—e2e/add-contact.e2e-spec.ts

import { browser, by, element } from 'protractor';

describe(adding a new contact with only a name', () => {
 beforeAll(() => {
 browser.get('/#/');
 });

 it('should find the add contact button', () => {
 element(by.id('add-contact')).click();
 expect(browser.getCurrentUrl())
 .toEqual(browser.baseUrl + '/#/add');
 });

 it('should write a name', () => {
 let contactName = element(by.id('contact-name'));
 contactName.sendKeys('Ada');
 expect(contactName.getAttribute('value'))
 .toEqual('Ada');
 });

 it('should click the create button', () => {
 element(by.css('.create-button')).click();
 expect(browser.getCurrentUrl())
 .toEqual(browser.baseUrl + '/#/');
 });
});

When you filled out the name input field on the contact form, you might have noticed
that the form also populated an email and phone number fields. Another useful test
scenario would be to fill out the form completely. In the e2e/add-second-contact.e2e-
spec.ts file shown in the following listing, you move some of these interactions into the
beforeAll step because the previous test has already tested loading up the main page
and filling out the name field.

Finds the name input
field with the 'contact-
name' id attribute

Finds the Create button with
the 'create-button' css class

122 chapter 8 Getting started with Protractor

Listing 8.8 Test to create another contact—e2e/add-second-contact.e2e-spec.ts

import { browser, by, element } from 'protractor';

describe('adding a new contact with name, email,' +
 'and phone number', () => {
 beforeAll(() => {
 browser.get('/#/');
 element(by.id('add-contact')).click();
 element(by.id('contact-name')).sendKeys('Grace');
 });

 it('should type in an email address', () => {
 let email = element(by.id('contact-email'));
 email.sendKeys('grace@hopper.com');
 expect(email.getAttribute('value'))
 .toEqual('grace@hopper.com');
 });

 it('should type in a phone number', () => {
 let tel = element(by.css('input[type="tel"]'));
 tel.sendKeys('1234567890');
 expect(tel.getAttribute('value'))
 .toEqual('1234567890');
 });

 it('should click the create button', () => {
 element(by.css('.create-button')).click();
 expect(browser.getCurrentUrl())
 .toEqual(browser.baseUrl + '/#/');
 });
});

Why use Protractor APIs?
You might ask yourself, if Protractor wraps the Selenium WebDriver APIs, shouldn’t I just
use the underlying library? You might have noticed that the returned element object is
of type ElementFinder. The ElementFinder object is a Protractor defined object. With
the Protractor API, you’ll see the following:

import {by, element, ElementFinder} from 'protractor';
let email: ElementFinder = element(by.id('contact-email'));

Protractor exposes some of the Selenium WebDriver APIs via browser.driver. You
could access the WebElement by the following code snippet:

import {By, WebElement} from 'selenium-webdriver';
let email: WebElement;
email = browser.driver.findElement(By.id('contact-email'));

When declaring the element, WebDriver doesn’t
search the browser for the web element.

When an action is called, Protractor
locates the web element on the screen
and sends the string to the input field.

Locates the web
element by using
the css class

 123Interacting with elements

If you can find web elements with both Protractor and Selenium WebDriver, why should
you use the Protractor APIs to find them? When you use the Selenium WebDriver APIs,
Selenium will try to locate that object on the browser session when declared. Protractor,
on the other hand, will let you define your locators as reusable variables. When you finally
decide to interact with a Protractor element, Protractor will use the Selenium WebDriver
findElement method to locate the web element and then interact with it.

Finally, you can run the Protractor test using the command npm run e2e protrac-
tor-add-contact.conf.js. When running the npm command, you can see Protractor
launching browsers and creating the contacts you specified in this section.

8.4.2 Test scenario: workflows that don’t create a new contact

In the not-so-happy path, a user could enter incorrect data. For example, they might
forget to enter a required field, enter a malformed telephone number, or enter an
invalid email address.

We’ll guide you through test scenarios using the Contacts app that fail because of
invalid data. For example, if you try to create a new contact with an invalid email, the
result is a modal alert window (figure 8.3).

Click the button with
id = “add-contact”.

Click the “Create” button
by using the css class
“create-button”.

Click OK to dismiss
the message.

Type in name “Bad Email”
to the id = “contact-name”.

Type in name “bademail”
to the id = “contact-email”.

Figure 8.3 Workflow that doesn’t create a new user

(continued)

124 chapter 8 Getting started with Protractor

How do you translate this scenario into a test case? In the GitHub repository, e2e/
invalid-contact.e2e-spec.ts and protractor-invalid-contact.conf.js cover this test scenario
to create a new contact with invalid information.

In listing 8.9, the test enters a valid name and an invalid email address, baduser.com.
After the test clicks the Create button, it should check if the modal alert window is visi-
ble and dismiss the message. After dismissing the modal alert message, it’s a good idea
to verify that the modal alert did disappear. To test this, you can use another Protrac-
tor API called ExpectedConditions. The ExpectedConditions API combined with the
browser.wait method allows the test to wait for some condition to occur on the web
application within a set period of time. In this example, you’re waiting for the web ele-
ment to not be present within five seconds. Finally, because the test should fail to create
a new contact, the test also should check to see if the Contacts app route URL is still on
the /#/add route.

Listing 8.9 Test that doesn’t create a new contact—e2e/invalid-contact.e2e-spec.ts

import { browser, by, element, ExpectedConditions as EC } from 'protractor';

describe('adding a new contact with an invalid email', () => {
 beforeEach(() => {
 browser.get('/#/add');
 element(by.id('contact-name')).sendKeys('Bad Email');
 });

 it('shouldn’t create a new contact with baduser.com', () => {
 let email = element(by.id('contact-email'));
 email.sendKeys('baduser.com');
 element(by.buttonText('Create')).click();

 let invalidEmailModal = element(by.tagName(
 'app-invalid-email-modal'));
 expect(invalidEmailModal.isPresent()).toBe(true);

 let modalButton = invalidEmailModal.element(
 by.tagName('button'));
 modalButton.click();

 browser.wait(EC.not(
 EC.presenceOf(invalidEmailModal)), 5000);
 expect(invalidEmailModal.isPresent()).toBe(false);
 expect(browser.getCurrentUrl()).toEqual(
 browser.baseUrl + '/#/add');
 });
});

If you try other email inputs, you might also find that you can still create an account
if the email field is @bademail.com. This is obviously incorrect, so you might want to

Checks to see that
the modal is present

Finds the button from
the modal web element

Waits five seconds for the invalid email
modal to disappear

Checks to see that the
modal is no longer present

 125by and element methods

add a new feature to your web app to not accept an email with this specific malformed
email address.

Now that you have one not-so-happy test scenario, you could try other test scenarios.
You could implement more combinations of text inputs, but this defeats the purpose of
having a strong suite of unit tests. You should have covered this email validation feature
with a set of text input unit tests.

So far, you’ve written several Protractor tests that have found web elements by but-
tonText, id, and css. Unfortunately, you can’t find all web elements using these three
locators. In the next section, we’ll cover other ways to identify web elements.

8.5 by and element methods
In the previous section, we showed a subset of the different ways to use locators to
identify web elements. Other locators are available. Table 8.1 lists the common locator
methods and where to use them.

Table 8.1 Locating web elements with the by API

Locator Usage

by.css Finding a web element by css

HTML:

<input class="contact-email"

 id="contact-email" type="email">

Protractor:

let e1 = element(by.css('.contact-email'));

let e2 = element(by.css('#contact-email'));

let e3 = element(by.css('input[type="email"]'));

by.id Finding a web element by id

HTML:

<input class="contact-email"

 id="contact-email" type="email">

Protractor:

let email = element(by.id('contact-email'));

by.buttonText

by.partialButtonText

Finding a button with the matching text

HTML:

<button>Submit Contact</button>

Protractor:

let fullMatch = element(by.buttonText(

 'Submit Contact'));

let partialMatch = element(by.
 partialButtonText('Submit'));

126 chapter 8 Getting started with Protractor

Locator Usage

by.linkText

by.partialLinkText

Finding a link by matching text

HTML:

Add contact

Protractor:

let fullMatch = element(by.linkText(

 'Add contact'));

let partialMatch = element(by.
 partialLinkText('contact'));

by.tagName Finding a web element by tag name

HTML:

<app-contact-detail>…</app-contact-detail>

Protractor:

let tag = element(by.tagName(

 'app-contact-detail'));

by.xpath Finding a web element by xpath. Using xpath as a locator strategy can
create brittle tests requiring high maintenance. We recommend not using
xpath as a locator strategy.

HTML:

<a>Foobar

Protractor:

let xpath = element(by.xpath('//ul/li/a'));

by.binding Finding a web element by binding for objects in AngularJS. Currently, this
isn’t implemented for Angular.

HTML:

Protractor:

let binding = element(by.binding(

 'contact.name'));

by.model Finding a web element by model in AngularJS. Currently, this isn’t imple-
mented for Angular.

HTML:

<input ng-model="contact.name">

Protractor:

let model = element(by.model(

 'contact.name'));

Table 8.1 Locating web elements with the by API (continued)

 127by and element methods

Protractor’s by API isn’t the same as Selenium WebDriver’s by API
You should remember that Protractor’s by and Selenium WebDriver’s by are different.
This difference is important because Protractor exposes some of the Selenium Web-
Driver APIs, and remembering the difference hopefully will help you during debugging.
The following code snippet shows how to use the Protractor by API:

 import { browser, by, element } from 'protractor';
 element(by.buttonText('Create'));

Because you’re using the Protractor APIs here, you should use its by API. When you use
Selenium WebDriver APIs that are exposed through Protractor to find a web element, you
should consistently also use Selenium WebDriver’s by locator. The following code snip-
pet shows how to use the Selenium WebDriver by API:

 import { browser } from 'protractor';
 import { By as WebdriverBy } from 'selenium-webdriver';
 browser.driver.findElement(WebdriverBy.css('.contact-email'));

The following code snippet is slightly different from previous examples. It doesn’t work,
because you’re passing the Selenium WebDriver findElement method a Protractor by
finder:

 import { browser, by } from 'protractor';
 browser.driver.findElement(by.buttonText('Create'));

So far, we’ve covered sendKeys, click, and getAttribute, but you can interact with
web elements in other ways. Table 8.2 covers the commonly used element methods.
All of these methods return a WebDriver promise. Protractor’s test framework takes
those WebDriver promises and makes the browser interactions appear synchronous.
Synchronizing these asynchronous WebDriver calls cuts some of the complexity that
such WebDriver promises introduce.

Table 8.2 Interacting with web elements with the element API

Element method Usage

getWebElement Occasionally, you’ll need to access Selenium WebDriver WebElement’s
APIs, which aren’t available from Protractor’s element object. One exam-
ple of this would be verifying a web element’s x and y location via the
getLocation method, which exists only on the WebElement object.
After calling the getWebElement method, you’ll need to wait for the
WebDriver promise for the WebElement to resolve:

let button = element(by.css(

 '.contact-email')).getWebElement();

button.getLocation().then(point => {

 console.log('x = ' + point.x + ', y = ' +

 point.y);

});

128 chapter 8 Getting started with Protractor

Element method Usage

isPresent

isElementPresent

When testing Angular structural directives like *ngIf, you need to call
isPresent to validate if a web element exists on the screen. In the
Contacts app, after the test enters the name of the new contact, the email
field appears, and you could test it like so:

browser.get('/#/add');

expect(element(by.id('contact-email'))

 .isPresent()).toBe(false);

element(by.id('contact-name')).sendKeys('foo');

expect(element(by.id('contact-email'))

 .isPresent()).toBe(true);

getTagName When writing tests, you can use identifiers like css to find the web ele-
ment. Use the getTagName method to validate the current tag that
Protractor is returning:

browser.get('/#/add');

let body = element(by.tagName('body'));

let mdToolbar = body.element(

 by.css('[color="primary"]'));

expect(mdToolbar.getTagName()).toBe('mat-toolbar');

getCssValue Use getCssValue to get the value of a given css property:

browser.get('/#/add');

let toolbar = element(by.tagName('mat-toolbar'));

expect(toolbar.getCssValue('background-color'))

 toBe('rgba(33, 150, 243, 1)');

getAttribute When typing values into input fields, you can validate you entered them
properly using the getAttribute method. To get the contents of an
input field, you’ll need to get the 'value' attribute. A common mistake
is to try to use the getText method to get the text from an input field:

browser.get('/#/add');

let email = element(by.id('contact-email'));

email.sendKeys('foobar');

expect(email.getAttribute('value')).toBe('foobar');

Table 8.2 Interacting with web elements with the element API (continued)

 129by and element methods

Element method Usage

getText When you use the getText method, Protractor will return a promise for
the text that appears on the web element. Note that to get the text for an
input field, you’ll need to use getAttribute('value'):

browser.get('/#/');

element(by.tagName('tbody')).getText()

 .then(text => {

 console.log(text);

 expect(text.match(/craig.service@example.com/)

 .index > 0).toBe(true);

 expect(text.match(/something that doesn’t match/))

 .toBe(null);

});

sendKeys Use sendKeys to simulate typing in text—for example, to fill out an input
field:

browser.get('/#/add');

element(by.id('contact-name')).sendKeys('foobar');

expect(element(by.id('contact-name'))

 .getAttribute('value')).toBe('foobar');

clear Use clear to remove the text from an input field:

browser.get('/#/add');

let name = element(by.id('contact-name'));

name.sendKeys('foo bar');

name.clear();

expect(name.getAttribute('value')).toBe('');

isDisplayed You can check if an element is present but hidden from view with isDis-
played. If a web element is hidden but still part of the DOM, Protractor
will return that it’s present but not displayed:

browser.get('/#/add');

let contactName = element(by.id('contact-name'));

expect(contactName.isDisplayed()).toBe(true);

// Change the input to not be visible by style.

browser.executeScript("arguments[0].setAt-
tribute('style', 'display:none;')", contactName.
getWebElement());

expect(contactName.isPresent()).toBe(true);

expect(contactName.isDisplayed()).toBe(false);

Table 8.2 Interacting with web elements with the element API (continued)

130 chapter 8 Getting started with Protractor

In this section, we reviewed commonly used methods of interacting with web elements.
In the next section, we’ll examine how to work with a collection of web elements.

8.6 Interacting with a list of elements
Interacting with a list of elements is similar to interacting with a single element. Find-
ing web elements is asynchronous, whether it’s a single element or a collection, so
the result is a promise. A common gotcha is to try to iterate over the collection of
web elements with a for loop. You can’t loop through a promise, so instead you’ll use
the Protractor API methods for element.all. For the Contacts app, you can call ele-
ment(by.tagName('tbody')).all(by.tagName('tr')) to get the array of table row
web elements. In the following sections, we’ll cover several methods that will help you.

8.6.1 Filtering web elements

Let’s consider creating a new contact in the Contacts app. How do you validate that the
new contact exists in the list of contacts? You could find the tbody web element, get all
the text from the table body, and create a phone number regular expression to match
the new contact. But what if two contacts have the same phone number? How can you
get the information for a single contact? You use the filter function, which will find
a subset of contacts from the contact list. Figure 8.4 shows how to find a contact that
matches the name that’s equal to Craig Service.

Filter for only rows that have names equal to ‘Craig Service’

Figure 8.4 Filtering strategy for names equal to ‘Craig Service’

 131Interacting with a list of elements

When you call the filter function shown in figure 8.5, the returned object is an
array of web elements that satisfy the callback function. In this example, the filter call-
back function, filterFn, returns true when the name matches Craig Service. See the
lower part of the diagram for the function signature.

The locator that lets us
select multiple web
elements. See table 8.1.

element.all(locator).filter(filterFn);

The callback function that evaluates to true or false
filterFn = function(element, index)

Represents a
single element

Represents the index
number in the list

Figure 8.5 filter function

For this example, look at the contact component template shown in listing 8.10.
Notice that you can’t call element.all(by.tagName('tr')) because that would also
include the table headers. You might wonder if you could use *ngFor to identify only
the rows of the contacts. That doesn’t work, because *ngFor tells Angular how to modify
the DOM’s structure, and that attribute isn’t included in the rendered output.

Listing 8.10 HTML template of the contact list

<table class="mdl-data-table mdl-js-data-table mdl-shadow--2dp">
 <thead>
 <tr>
 <th class="mdl-data-table__cell--non-numeric"></th>
 <th class="mdl-data-table__cell--non-numeric">Name</th>
 <th class="mdl-data-table__cell--non-numeric">Email</th>
 <th class="mdl-data-table__cell--non-numeric">Number</th>
 <th class="mdl-data-table__cell--non-numeric"></th>
 <th class="mdl-data-table__cell--non-numeric"></th>
 <th class="mdl-data-table__cell--non-numeric"></th>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let contact of contacts"
 (click)="onSelect(contact)">
 <td class="mdl-data-table__cell--non-numeric"
 (click)="onClick(contact)">
 <mat-icon>mood</mat-icon>
 </td>
 <td class="mdl-data-table__cell--non-numeric"
 (click)="onClick(contact)">
 {{ contact.name }}

Finds the table rows that
represent contacts

Uses the table column
to check the name

132 chapter 8 Getting started with Protractor

 </td>
 <td class="mdl-data-table__cell--non-numeric"
 (click)="onClick(contact)">{{ contact.email }}</td>
 <td class="mdl-data-table__cell--non-numeric"
 (click)="onClick(contact)">
{{ contact.number | phoneNumber : "default" : contact.country : true }}
 </td>
 </tr>
 </tbody>
</table>

Listing 8.11 shows a Protractor test against the rendered HTML from listing 8.10 that
uses the filter method. First, you find the tbody web element using the by.tagName
locator. Within that tbody, you then get all the table rows and assign them to trs. Next,
you filter the table rows in trs to find the one you want. You pass filter() a callback
function that evaluates to true if the text in the row matches 'Craig Service'. The
resulting list only includes web elements that the callback function returned true for.

Listing 8.11 Filter for a contact—e2e/contact-list.e2e-spec.ts

import { browser, by, element } from 'protractor';

describe('the contact list', () => {
 it('with filter: should find existing ' +
 'contact "Craig Service"', () => {
 let tbody = element(by.tagName('tbody'));
 let trs = tbody.all(by.tagName('tr'));
 let craigService = trs.filter(elem => {
 return elem.all(by.tagName('td')).get(1).getText()
 .then(text => {
 return text === 'Craig Service';
 });
 });
 expect(craigService.count()).toBeGreaterThan(0);
 expect(craigService.all(by.tagName('td'))
 .get(2).getText())
 .toBe('craig.services@example.com');
 });
});

To verify that you found the correct row for 'Craig Service', you could also check
that you found only one element and that the email matches 'craig.services@
example.com'.

Finds the array of table rows that
represent contacts within the table body

Uses the second table column to
compare the contact name

getText returns a promise of the Boolean
evaluation where text === 'Craig Service'.

Checks to see if
craigService exists

As an additional check, verifies that the
third column is the correct email address

 133Interacting with a list of elements

8.6.2 Mapping the contact list to an array

Let’s consider a different scenario where you need to test all the contacts on the con-
tact list. Instead of writing a filter function for each contact, you could use the map
function. The map function converts the web elements returned from the element.all
to an array shown in figure 8.6.

Map function converts the
web elements to an array

[{
 “name”: “Adrian Directive”,
 “email”: “adrian.directive@example.com”
}, {
 “name”: “Rusty Component”,
 “email”: “rusty.component@example.com”
}, {
 “name”: “Jeff Pipe”,
 “email”: “jeff.pipe@example.com”
}, {
 “name”: “Craig Service”,
 “email”: “craig.services@example.com”
}]

Figure 8.6 Convert the web elements to an array using the map function

Before you use the map function (in figure 8.6), you should review the map function
for element.all shown in the figure 8.7 diagram.

134 chapter 8 Getting started with Protractor

The locator that lets us
select multiple web
elements. See table 8.1.

element.all(locator).map(mapFn);

The callback function that returns a custom list
mapFn = function(element, index)

Represents a
single element

Represents the index
number in the list

Figure 8.7 map function

In listing 8.12, you use map to transform the contact list into an array of objects that
implement the Contact interface. To validate that the contact list appears as expected,
you create an expected list of contacts using the same Contact interface and compare
them at the end of the test.

Listing 8.12 Checking that all the contacts appear as expected with map

import { browser, by, element } from 'protractor';
import { promise as wdpromise } from 'selenium-webdriver';

export interface Contact {
 name?: string;
 email?: string;
 tel?: string;
}

describe('the contact list', () => {
 let expectedContactList: Contact[] = [{
 name: 'Adrian Directive',
 email: 'adrian.directive@example.com',
 tel: '+1 (703) 555-0123'
 }, {
 name: 'Rusty Component',
 email: 'rusty.component@example.com',
 tel: '+1 (441) 555-0122'
 }, {
 name: 'Jeff Pipe',
 email: 'jeff.pipe@example.com',
 tel: '+1 (714) 555-0111'
 }, {
 name: 'Craig Service',
 email: 'craig.services@example.com',
 tel: '+1 (514) 555-0132'
 }];

 135Interacting with a list of elements

 beforeAll(() => {
 browser.get('/#/');
 });

 it('with map: should create a map object', () => {
 let tbody = element(by.tagName('tbody'));
 let trs = tbody.all(by.tagName('tr'));
 let contactList = trs.map(elem => {
 let contact: Contact = {};
 let promises: any[] = [];
 let tds = element.all(by.tagName('td'));
 promises.push(tds.get(0).getText().then(text => {
 contact.name = text;
 }));
 promises.push(tds.get(1).getText().then(text => {
 contact.email = text;
 }));
 promises.push(tds.get(2).getText().then(text => {
 contact.tel = text;
 }));

 return Promise.all(promises).then(() => {
 return contact;
 });
 });
 expect(contactList).toBeDefined();
 contactList.then((contacts: Contact[]) => {
 expect(contacts.length).toEqual(4);
 expect(contacts).toEqual(expectedContactList);
 });
 });
});

In listing 8.12, you use a promise array to keep track of promises to set the name, email,
and telephone number to the contact when calling getText. After you’ve created the
promises and added them to the promise array, you call Promise.all. Calling then on
the Promise.all, resolves all the promises in the array. In this case, the contact proper-
ties are set. Finally, you return the contact for that row.

The map function iterates through all the web elements and returns a promise that
resolves to the contact list. Next, the test calls then to get the contact list array. Having the
contact list array, the test can verify if the expected contact list matches the one from the
web application.

8.6.3 Reduce

Another possible test scenario might be testing that only the names match. As before,
you could use map to create an array of names. An alternative solution would be to use
the reduce function, which can turn a collection of contact web elements into a single
string of names (figure 8.8).

For each contact, runs the mapFn
callback for each tr element

Gets the table row columns

Gets the text and sets the value
to the corresponding contact
property, then pushes the
promise to the promises array

Resolves the promises to set the
properties to a single contact and
returns the contact

Checks that the contact
list isn’t undefined

Casts the resolved contact
list to a Contact array

Checks that the contact list is
equal to the expected contact list

136 chapter 8 Getting started with Protractor

Reduces the web elements
to a single string of names

“Adrian Directive, Rusty Component, Jeff Pipe, Craig Service”

Figure 8.8 Reduces the contact list to a single string of names

The reduce function applies a callback to each element of the array and accumulates
the result in a single value. The method signature is shown in figure 8.9.

The locator that lets us
select multiple web
elements. See table 8.1.

element.all(locator).reduce(reduceFn);

The callback function that returns a single object
reduceFn = function(element, index)

Represents a
single element

Represents the index
number in the list

Figure 8.9 reduce function

 137Page objects

In your Contacts app, you gather the contact names into a single string to check the
default values. The reduce function returns a comma-delimited list of names, as shown
in the following listing.

Listing 8.13 Reduce the list of elements to a single string

describe('the contact list', () => {
 beforeAll(() => {
 browser.get('/#/');
 });

 it('with reduce: get a list of contact names', () => {
 let tbody = element(by.tagName('tbody'));
 let trs = tbody.all(by.tagName('tr'));
 let contacts = trs.reduce((acc, curr) => {
 let name = curr.all(by.tagName('td')).get(0);
 return name.getText().then(text => {
 return acc + ', ' + text;
 });
 });
 expect(contactList).toEqual(
 'Adrian Directive, Rusty Component, Jeff Pipe, ' +
 'Craig Service');
 });
});

The curr parameter in the callback represents the table row web element. The call-
back gets the text from the first column. Then you take the text and concatenate it into
the accumulator. Finally, the test checks whether the accumulated string matches the
expected list of names.

8.7 Page objects
Let’s say the developer (whether you or someone else) changes the attribute ID from add
-contact to create-contact. After the changes are published, if you don't update
your tests, they’ll fail because the ID is no longer add-contact. Having hardcoded
strings like IDs or class names makes tests harder to maintain—you may have to manu-
ally update all your tests after one simple code change.

One way to make tests more maintainable is to use a common design pattern called
page objects. Page objects organize your test code around logical interactions with your
web app, instead of with raw elements. Instead of finding the Create button and then
calling the click method, a page object would wrap this functionality with a method
called createClickButton. If you needed to change the locator for the Create button,
you could fix it in one location.

Gets each table row from the table body

Calls reduce to get a
string of contacts

Gets the name column

Accumulates the names as a
comma-delimited string

138 chapter 8 Getting started with Protractor

Previously you wrote a create contact test that typed in the new contact name and
clicked the Create button. The examples so far have had IDs and class names that have
provided helpful hints as to their function. In real-world applications, these identifiers
aren’t always so helpful and can be arbitrary.

Listings 8.14 and 8.15 bring together all the interactions for creating a new contact
in a NewContactPageObject and a ContactListPageObject, respectively. The page
objects group the WebDriver commands into typical interactions. Each constructor sets
the element finders for the page view, but Protractor doesn’t find the element until a
call interacts with it, like a click() or sendKeys().

Listing 8.14 Contact list page object—e2e/po/contact-list.po.ts

import { browser, by, element, ElementFinder } from 'protractor';

export class ContactListPageObject {
 plusButton: ElementFinder;

 constructor() {
 this.plusButton = element(by.id('add-contact'));
 }

 clickPlusButton() {
 this.plusButton.click();
 return new NewContactPageObject();
 }

 navigateTo() {
 browser.get('/#/');
 }
}

Listing 8.15 New contact page object—e2e/po/new-contact.po.ts

import { browser, by, element, ElementFinder } from 'protractor';

export class NewContactPageObject {
 inputName: ElementFinder;
 inputEmail: ElementFinder;
 inputPhone: ElementFinder;

 constructor() {
 this.inputName = element(by.id('contact-name'));
 this.inputEmail = element(by.id('contact-email'));
 this.inputPhone = element(by.css('input[type="tel"]'));
 }

 setContactInfo(name: string, email: string,
 phoneNumber: string) {
 this.inputName.sendKeys(name);
 if (email) {
 this.inputEmail.sendKeys(email);
 }
 if (phoneNumber) {

Creates reusable element
finder objects

When clicking on the plus button, because the
page navigates from the contact-list, calls the
constructor to return a page object for
creating a new contact

Finds the element finder object,
then sends the keys

Sends keys for optional fields

 139Summary

 this.inputPhone.sendKeys(phoneNumber);
 }
 }

 clickCreateButton() {
 this.element(by.buttonText('Create')).click();
 return new ContactListPageObject();
 }

 getName() {
 return this.inputName.getAttribute('value');
 }
}
 getPhone() {
 return this.inputPhone.getAttribute('value');
}
 getEmail() {
 return this.inputEmail.getAttribute('value');
}

Now that you’ve seen how to make page objects, you can refactor your create contact
test as shown in listing 8.16. First, the test creates the contactList object and navigates
to the contact list page. The next it() block clicks the plus button and verifies that the
current URL is the create contact page. On the create contact page, the test fills out
the name input field and email input field. After the fields are filled, the test verifies
that the input values match. Finally, the test clicks the Create button and returns to the
contact list page.

Listing 8.16 Refactor creating a new contact—e2e/page-object.e2e-spec.ts

import { ContactListPageObject } from './po/contact-list.po.ts';
import { NewContactPageObject } from './po/new-contact.po.ts', , Contact }

describe('contact list', () => {
 let contactList: ContactListPageObject;
 let newContact: NewContactPageObject;

 beforeAll(() => {
 contactList = new ContactListPageObject();
 });

 describe('add a new contact', () => {
 beforeAll(() => {
 contactList.navigateTo();
 });

 it('should click the + button', () => {
 newContact = contactList.clickPlusButton();
 expect(browser.getCurrentUrl())
 .toBe(browser.baseUrl + '/#/add');
 });

 it('should fill out form for a new contact', () => {
 newContact.setContactInfo(
 'Mr. Newton', 'mr.newton@example.com', null);

Implicitly returns a WebDriver
promise for a string

140 chapter 8 Getting started with Protractor

 expect(newContact.getName()).toBe('Mr. Newton');
 expect(newContact.getEmail())
 .toBe('mr.newton@example.com');
 expect(newContact.getPhone()).toBe('');
 });

 it('should click the create button', () => {
 contactList = newContact.clickCreateButton();
 expect(browser.getCurrentUrl())
 .toBe(browser.baseUrl + '/#/');
 });
 });
});

Instead of importing in Protractor’s browser, by, and element, the test imports the
page objects and uses only methods from the page objects for navigation and validation.

Summary

¡	The Angular CLI provides a scaffold of Protractor files that you can use as a good
starting point. The setup allows you to use the built-in TypeScript support when
writing your Protractor tests.

¡	Protractor has many ways to locate objects on the screen. If you’re looking for
more than one web element, Protractor can find an array of elements.

¡	When you’re looking for many objects on the screen, you can use Protractor’s
built-in filter, map, and reduce functions to manipulate a list of web elements.

¡	Using page objects when writing Protractor tests allows you to initialize locators
in one location and encapsulate actions into methods.

141

9Understanding timeouts

This chapter covers
¡	Understanding and avoiding the causes of

timeout errors in Protractor

¡	Waiting for specific changes in your application,
rather than relying on browser.sleep()

¡	Understanding flakiness and eliminating it with
Protractor

Now that you know how to make basic end-to-end tests for Angular apps, let’s talk
about one of the most frequent issues you might run into. Timeout errors are the
most common problems people encounter when using Protractor for the first time.
Understanding what causes them and how to fix them requires a clear understand-
ing of how browser tests run. You’ll also need to know what Protractor is doing
behind the scenes to make tests more reliable by waiting for Angular to be stable
while running a test.

In this chapter, we’ll explore how to avoid the common timeout-related pitfalls
that new Protractor users stumble into. On the way, you’ll learn how Angular’s

142 chapter 9 Understanding timeouts

change detection works and how Protractor integrates with it. You’ll also learn some
advanced techniques for making your own waiting logic. You can find the example code
from this chapter at https://www.manning.com/books/testing-angular-applications
and http://mng.bz/6k1S.

9.1 Kinds of timeouts
Protractor tests involve many different pieces working together, so different kinds of
timeouts are possible. For example, Jasmine will mark your test as failed if it takes too
long to complete, and WebDriver will throw an error if a browser command takes too
long. For this chapter, we’re only concerned about one kind of timeout: the timeout
that occurs if Protractor waits too long for Angular to be stable.

What is flakiness?
According to Dictionary.com, flaky is slang for eccentric or crazy. When we say a test is
flaky, what we mean is that it’s nondeterministic—it might fail even though there’s noth-
ing wrong with your app. You want to avoid flakiness—if the tests can fail when nothing
has changed in the app, then they become less useful.

One potential cause of flakiness is having a test read the DOM of a page while Angular is
in the middle of updating it. You could avoid this issue by adding sleep commands after
every step in your tests that might cause Angular to update the page, but that would slow
down your test runs, and it’s not guaranteed to work. Protractor takes a more efficient
route and syncs your tests with Angular to help prevent flaky test failures.

Waiting for Angular to be stable prevents your test from interacting with the page while
Angular is in the middle of an update, which makes your tests less flaky. But it can cause
problems, particularly when you need to test a page that isn’t part of an Angular app.

9.2 Testing pages without Angular
Remember from chapter 8 that Protractor intercepts the commands your test sends to
WebDriver and automatically waits for Angular to be ready. Figure 9.1 shows this pro-
cess in detail. This mechanism is one of the biggest advantages of using Protractor, but
sometimes it gets in the way.

https://www.manning.com/books/testing-angular-applications
http://mng.bz/6k1S

 143Testing pages without Angular

Node.js

Jasmine

Protractor

Your tests

Selenium

Browser driver

Browser

Angular

JavaScript engine

Your application

WebDriver
commands

Browser-specific
commands

Your test code runs
in a Node.js process.

Your application is running
in a separate JavaScript VM,
in a browser.

Protractor wraps
the WebDriver
client API.

Your tests can also run
JavaScript in the browser
VM with the executeScript
WebDriver command.

Every browser has a different
driver that Selenium uses to
turn your commands into
browser actions.

Selenium receives WebDriver
commands from Protractor
and translates them for
the browser being tested.

Figure 9.1 How Protractor interacts with WebDriver

One of the first problems new users of Protractor face is writing a test that logs in to
their application. If the authentication page is static HTML and not part of the Angular
app, then Protractor will throw an Angular could not be found on the page error.
Protractor expects to see a page that’s part of an Angular app and can’t tell the differ-
ence between one that’s not supposed to have Angular and one that’s broken.

The example Contacts app doesn’t have authentication, but pretend for a minute
that it does and that you need to log in before you can run your tests. We’ve added a fake
login page at /assets/login.html. This simple HTML file, which doesn’t do anything, is
bundled with the Contacts app.

9.2.1 Disabling waitForAngular

Make a test that navigates to the login page using browser.get('/assets/login.
html'). Running the test produces this error:

1) the contact list should find the title
 - Failed: Angular could not be found on the page http://localhost:4200/

assets/login.html. If this is not an Angular application, you may need
to turn off waiting for Angular.

144 chapter 9 Understanding timeouts

What does the error mean? As you saw earlier, Protractor automatically intercepts the
commands your tests send to WebDriver and inserts commands that communicate with
Angular and wait for your application to be ready for testing. When you navigate to a
page that isn’t an Angular app, Protractor throws an error, because it can’t find Angu-
lar. To fix the error, you need to tell Protractor not to wait for Angular:

it('should be able to log in', () => {
 browser.waitForAngularEnabled(false);
 browser.get('/assets/login.html');
 element(by.css('input.user')).sendKeys('username');
 element(by.css('input.password')).sendKeys('password');
 element(by.id('login')).click();
);

Now, suppose you want to test whether clicking the login button redirects to the con-
tact list page. You might add the following before the last line in your test:

 const list = element(by.css('app-contact-list tr'));
 expect(list.getText()).toContain('Jeff Pipe');
});

You’re almost there, but now the test is failing for a different reason. You’ve turned off
waiting for Angular, which means Protractor now has no way to know what the applica-
tion is doing.

9.2.2 Automatically waiting for Angular

You’ll see this error if you run the test from the previous section:

1) the contact list should find the title
 - Failed: No element found using locator: By(css selector, app-contact-list

tr)

The problem is that when you’re looking for the contact list, your app is still loading.
Because you’ve told Protractor not to wait for Angular, it goes right ahead and looks
for the contact list, then fails when it doesn’t find it. The fix for this is simple—tell
Protractor to start waiting for Angular again after you click the login button. The next
listing shows the full, working test.

Listing 9.1 Testing a login page

it('should be able to login', () => {
 browser.waitForAngularEnabled(false);
 browser.get('/assets/login.html');
 element(by.css('input.user')).sendKeys('username');
 element(by.css('input.password')).sendKeys('password');
 element(by.id('login')).click();

 browser.waitForAngularEnabled(true);
 const list = element(by.css('app-contact-list tr'));
 expect(list.getText()).toContain('Jeff Pipe');
});

Disables automatically waiting for Angular

Tests the login page

Re-enables waiting so you
can test the application

 145Waiting with ExpectedConditions

Now your test won’t wait for Angular on the login page but will go back to waiting for
it when you return to the app. Why do you need to explicitly disable waiting? Why
couldn’t Protractor detect whether an Angular app was on the page and skip waiting if
it didn’t find one? Protractor has no way of telling the difference between a page that
isn’t an Angular app and an app that’s loading slowly, so you need to let it know that
you’re intentionally sending it to a non-Angular page. Being explicit about your inten-
tions prevents issues with tests that might be hard to debug, especially when you’re
relying on Protractor to automatically wait for Angular to finish updating the page. It’s
important that you know right away if that mechanism isn’t working when you expect
it to be.

9.2.3 When to use browser.waitForAngularEnabled()

Knowing how and when to enable and disable waiting for Angular, even on pages that
are part of an Angular app, is an important part of writing tests using Protractor. But
turning off waiting for Angular can have side effects. For example, your tests won’t
know when Angular is done updating the page, so you might have to use other syn-
chronization methods. One such method is ExpectedConditions.

9.3 Waiting with ExpectedConditions
When you tell Protractor not to wait for Angular, you might start seeing test failures
if Angular updates the page while your test is running. It’s tempting to make the tests
pass by sprinkling in browser.sleep() commands, but that is a bad idea for a couple
of reasons. First, the right amount of time to sleep is arbitrary and hard to know ahead
of time. It also slows down your tests, because you end up waiting a fixed amount of
time, even if the condition you’re waiting for has already occurred. Instead, you can
use browser.wait() and ExpectedConditions to wait for specific conditions in your
application to be true, like so:

let EC = browser.ExpectedConditions;
browser.wait(EC.visibilityOf($('.popup-title')), 2000,
 'Wait for popup title to be visible.');

This will pause your test and repeatedly check whether the given condition is true, up
to some specified timeout (two seconds, in this case).

NOTE You should always specify a timeout and an error message when using
browser.wait(). If you don’t specify a timeout, it will keep waiting until your
per-test timeout is hit, and having an error message makes timeouts much eas-
ier to debug.

Table 9.1 lists all the expected conditions built in to Protractor. You also can combine
any number of conditions with and(), or(), and not(), like this:

let EC = browser.ExpectedConditions;
let titleCondition =
EC.and(EC.titleContains('foo'),
 EC.not(EC.titleContains('bar'));
browser.wait(titleCondition, 5000,
 'Waiting for title to contain foo and not bar');

146 chapter 9 Understanding timeouts

Table 9.1 Types of expected conditions

Name When it’s true

alertIsPresent An alert dialog is open.

elementToBeClickable The given element is visible and enabled.

textToBePresentInElement The element contains the given string (case-sensitive).

textToBePresentInElementValue The element’s value attribute contains the given string
(case sensitive).

titleContains document.title contains the given string (case
sensitive).

titleIs document.title exactly matches the given string.

urlContains The current URL contains the given string (case sensitive).

urlIs The current URL exactly matches the given string.

presenceOf The element is present in the current page (but may or may
not be visible).

stalenessOf The element is no longer part of the page’s DOM (the oppo-
site of presenceOf).

visibilityOf The element is present in the page, is visible, and has a
height and width greater than 0.

invisibilityOf The element is either not present in the DOM or is not visible
(opposite of visibilityOf).

elementToBeSelected The element is currently selected (if the element is an
<option> or an <input> with a checkbox or radio
type).

Note that you can combine expected conditions and assign them to variables so you
can reuse them.

WARNING The ExpectedConditions object holds a reference to the browser
object. Be careful using it in tests that restart or create multiple browsers, and
use browser.ExpectedConditions instead of protractor.ExpectedCondi-
tions. Get the reference to ExpectedConditions after you restart or fork the
browser.

9.3.1 Waiting for the contact list to load

Now that you know the basics of expected conditions, you have another way to make
the test from listing 9.1 pass, as shown in the next listing.

Listing 9.2 Using ExpectedConditions instead of waitForAngular

it('should be able to login', () => {
 let EC = browser.ExpectedConditions;
 browser.waitForAngularEnabled(false);

 147Waiting with ExpectedConditions

 browser.get('/assets/login.html');
 element(by.css('input.user')).sendKeys('username');
 element(by.css('input.password')).sendKeys('password');
 element(by.id('login')).click();

 const list = element(by.css('app-contact-list'));
 const listReady = EC.not(
 EC.textToBePresentInElement(list, 'Loading contacts'));
 browser.wait(listReady, 5000, 'Wait for list to load');
 expect(list.getText()).toContain('Jeff Pipe');
});

As shown, instead of turning on waitForAngular, you can wait for the 'Loading con-
tacts' text to go away. There’s no single right answer here—use whichever method is
more readable and maintainable for your tests. But expected conditions are a helpful
tool to have, especially when dealing with animations, as you’ll see in the next section.

9.3.2 Testing a dialog

Another good time to use an expected condition is when you need to wait, like when
you’re opening a dialog. Figure 9.2 shows a dialog from the Contacts app. On the
detail page for a contact, a button (circled in red) opens a dialog that shows a feed of
that contact’s social media updates.

Contact feed button

Figure 9.2 The social media feed dialog of a contact

Builds the expected condition
Waits up to five seconds for
'Loading contacts' to go away

148 chapter 9 Understanding timeouts

When you click the feed button, the dialog animates opening. When you click Close,
it animates fading away briefly before closing. These animations can be problematic
when you try to test the dialog, as the following listing shows.

Listing 9.3 Testing the feed dialog with waitForAngular

describe('feed dialog', () => {
 beforeEach(() => {
 browser.get('/contact/4')
 });

 it('should open the dialog', () => {
 browser.waitForAngularEnabled(true);
 let feedButton = element(by.css('button.feed-button'));
 feedButton.click();

 let dialogTitle = element(
 by.css('app-contact-feed h2.mat-dialog-title'));
 expect(dialogTitle.getText())
 .toContain('Latest posts from Craig Service');

 let closeButton = element(by.css('button[mat-dialog-close]'))
 closeButton.click();

 expect(dialogTitle.isDisplayed()).toBeFalsy();
 });
});

This is a simple test—it clicks the button to open the feed dialog, verifies that the
expected title of the dialog is visible, and clicks the Close button. Unfortunately, when
you run this test, you see this error:

1) contact detail feed dialog should open the dialog
 - Expected true to be falsy.

The last expectation fails, because after you click the Close button, you can still see the
dialog title while the closing animation runs. Although Protractor is waiting for Angu-
lar to finish updating the page, it won’t wait for the closing animation to end. This is
the kind of situation where you might need to use expected conditions.

9.3.3 Waiting for elements to become stale

Let’s fix this test by using expected conditions instead of relying on waitForAngular.

Make sure that
waitForAngular is turned on

You should see the title
of the feed dialog.

Closes the dialog

The title should go away
when the dialog closes.

 149Waiting with ExpectedConditions

Listing 9.4 Testing the feed dialog with expected conditions

describe('feed dialog', () => {
 let EC;

 beforeEach(() => {
 browser.get('/contact/4');
 EC = browser.ExpectedConditions;
 });

 it('should open the dialog with expected conditions', () => {
 browser.waitForAngularEnabled(false);

 let feedButton = element(by.css('button.feed-button'));
 browser.wait(EC.elementToBeClickable(feedButton),
 3000, 'waiting for feed button to be clickable');
 feedButton.click();

 let dialogTitle = element(
 by.css('app-contact-feed h2.mat-dialog-title'))
 browser.wait(EC.visibilityOf(dialogTitle),
 1000, 'waiting for the dialog title to appear');
 expect(dialogTitle.getText())
 .toContain('Latest posts from Craig Service');

 let closeButton = element(by.css('button[mat-dialog-close]'))
 closeButton.click();
 browser.wait(EC.stalenessOf(dialogTitle),
 3000, 'wait for dialog to close');
 expect(dialogTitle.isPresent()).toBeFalsy();
 });
});

This test passes because you wait for the dialog title to become stale before the last
expectation. In WebDriver tests, a stale element is one that you may have a reference
to, but that was removed from the page. In this case, the title of the dialog box becomes
stale because the closing animation has finished and the dialog has been removed
from the page. Elements that you remove from the page with *ngFor or *ngIf also
would become stale.

This test disables waitForAngular and relies on expected conditions entirely, but
you also can combine the two techniques. For example, you could have made the test
from listing 9.3 pass by adding browser.wait(EC.stalenessOf(dialogTitle)) before
the expectation and leaving waitForAngular enabled. Either way is fine—the import-
ant thing is that your tests reliably do the same thing each time they run.

Waits for the feed
button to be clickable

Waits for the dialog title to be visible
Waits for the dialog title to be
removed from the page

150 chapter 9 Understanding timeouts

9.4 Creating custom conditions
Expected conditions are powerful, but sometimes they aren’t enough for your needs.
Instead of waiting for an element to be present or text to be visible, you might want to
wait for a more complicated condition to be true. For example, you might need to wait
until a certain number of elements match a CSS selector. Or, perhaps a single selec-
tor can’t describe the set of elements you’re waiting for. In cases that are too hard to
express with expected conditions, you can use browser.wait with a custom condition.

9.4.1 Using browser.wait

The feed dialog from figure 9.2 will update automatically with new posts from the con-
tact. For testing purposes, it shows a new update after a random delay, on average every
five seconds. Say you add a feature that the Follow button will be enabled only when
the contact has made two or more posts. In the following listing, you can see a test that
verifies that feature.

Listing 9.5 Using browser.wait with a custom condition

describe('feed dialog', () => {
 beforeEach(() => {
 browser.get('/contact/4');
 });

 it('should enable the follow button with more than two posts', () => {
 let feedButton = element(by.css('button.feed-button'));
 feedButton.click();

 let followButton = element(by.css('button.follow'))
 expect(followButton.isEnabled()).toBeFalsy();
 let moreThanOnePost = () => {
 return element.all(by.css('app-contact-feed mat-list-item')).count()
 .then((count) => {
 return count >= 2;
 })
 };
 browser.wait(moreThanOnePost, 20000, 'Waiting for two posts');

 expect(followButton.isEnabled()).toBeTruthy();
 });
});

The first argument to browser.wait is a function that will run repeatedly until either it
returns true or the timeout is elapsed. In the example, a function looks for all elements
that match the 'app-contact-feed mat-list-item' selector, which will match each

Verifies that the Follow
button is initially disabled

Counts the number of mat-list-items and
returns true if there are two or more

Waits until contact makes
two or more posts

Verifies that the Follow
button is enabled

 151Creating custom conditions

post in the feed. Because Protractor needs to send a request to the browser driver to
inspect the page, the result of element.all(…).count() is a promise that’s resolved
with the number of elements that match the selector instead of a number. You then
chain this promise with a .then() block that returns a Boolean, which is true if the
count is greater than or equal to two.

This is similar to how expected conditions work. The expected conditions built in to
Protractor (from table 9.1) are functions that inspect the page and return promises that
are true when the condition is met. Listing 9.5 is an example of how you can create your
own conditions if you need to.

9.4.2 Getting elements from the browser

WebDriver converts DOM elements returned from the browser via a browser.exe-
cuteScript call into instances of WebElement classes that you can use in your tests. So,
instead of using element finders, you can write custom JavaScript that will run in the
browser and return the elements you’re looking for. Here’s the test from listing 9.5 but
using a custom element finder.

Listing 9.6 Retrieving elements with a custom finder

it('should enable the follow button (custom finder)', () => {
 let feedButton = element(by.css('button.feed-button'));
 feedButton.click();

 let followButton = element(by.css('button.follow'))
 expect(followButton.isEnabled()).toBeFalsy();

 function findAllPosts() {
 return document.querySelectorAll('app-contact-feed mat-list-item')
 }

 browser.wait(() => {
 return browser.driver.executeScript(findAllPosts)
 .then((posts: WebElement[]) => {
 return posts.length >= 2;
 })
 }, 20000, 'Waiting for two posts');

 expect(followButton.isEnabled()).toBeTruthy();
 });

The test in listing 9.6 is the same as the one in 9.5. However, instead of using an ele-
ment finder, it uses a JavaScript function that runs in the browser and returns an array
of WebElements. Although this example may seem trivial, it shows how you can write

Function that runs in the
browser and returns elements

Using the custom element
finder in browser.wait

Waits at most 20 seconds
before timing out

152 chapter 9 Understanding timeouts

custom JavaScript that extracts an arbitrary collection of DOM elements from the page.
Remember that your tests are running in Node.js, but they can still execute JavaScript
in the browser. The findAllPosts() function runs in the browser, but you can use the
result it returns in your Node.js-based Protractor tests.

9.5 Handling long-running tasks
The feed dialog in the contact detail page (figure 9.3) continuously updates with new
posts. For demonstration purposes, the example app does this with an observable that
produces an infinite stream of random posts.

Figure 9.3 The social media feed dialog of a contact.

The following listing is the implementation of the service that the feed dialog uses.
In a real application, you would make an HTTP call to get the posts. But the real service
could easily have the same interface and return an observable stream of posts.

Listing 9.7 A service that creates a random stream of posts

import { Injectable } from '@angular/core';
import { Observable } from 'rxjs/Rx';
import { FEED_UPDATES } from './mock-updates';

@Injectable()
export class ContactFeedService {
 constructor() { }

 153Handling long-running tasks

 public getFeed() {
 const updateId = Math.floor(Math.random() * FEED_UPDATES.length));
 return Observable.interval(500)
 .map((x) => Math.random() * 2 + 2)
 .concatMap((x) => Observable.of(x).delay(x * 1000))
 .map((x) => FEED_UPDATES[updateId]);
 }
}

FEED_UPDATES is an array of strings. The feed dialog component subscribes to this
observable, as you can see in the following listing.

Listing 9.8 Testing the contact feed dialog

import {Component, OnInit, OnDestroy, Optional, Inject} from '@angular/core';
import {MdDialogRef, MD_DIALOG_DATA} from '@angular/material';
import {ContactFeedService} from '../shared/services/contact-feed.service';
import {Subscription} from 'rxjs/Subscription';

@Component({
 selector: 'app-contact-feed',
 templateUrl: './contact-feed.component.html',
 styleUrls: ['./contact-feed.component.css']
})
export class ContactFeedDialogComponent implements OnInit, OnDestroy {
 sub: Subscription;
 updates: string[] = [];
 name: string;
 closeDisabled = true;

 constructor(public dialogRef: MdDialogRef<ContactFeedDialogComponent>,
 private feed: ContactFeedService,
 @Optional() @Inject(MD_DIALOG_DATA) data: any) {
 this.name = data.name;
 }

 ngOnInit() {
 this.closeDisabled = false;

 this.sub = this.feed.getFeed().subscribe((x) => {
 this.updates.push(x);
 if (this.updates.length >= 4) {
 this.updates.shift();
 }
 });
 }

 ngOnDestroy() {
 this.sub.unsubscribe();
 }
}

Transforms the observable stream into a
stream of randomly delayed events

Randomly picks a string from FEED_
UPDATES and puts it in the stream

Subscribes to feed updates and pushes
them into the updates property

Cleans up the subscription when the
component is destroyed

154 chapter 9 Understanding timeouts

Unfortunately, the tests from listings 9.5 and 9.6 (which have waitForAngular enabled)
will time out when trying to test this dialog:

1) feed dialog should enable the follow button with more than two posts using
executeScript

 - Error: Timeout - Async callback was not invoked within timeout specified
by jasmine.DEFAULT_TIMEOUT_INTERVAL.

Protractor’s waitForAngular hooks into the same method that Angular uses to run
change detection and update template bindings. That’s how Protractor knows that
Angular is done updating the page, but it means that by default, Protractor will wait
until all asynchronous tasks that could update the page have finished. The contact
feed dialog in the example polls forever, so Angular times out, because there’s always a
pending task that can update the page.

9.5.1 Using expected conditions

You could disable waiting for Angular. But if you want to avoid flaky tests, you’ll need
to use expected conditions to wait after every action that can cause the page to update.
That’s what the test from listing 9.4 did. Here it is again as a reminder.

Listing 9.9 Testing the feed dialog with expected conditions

 it('should open the dialog with expected conditions', () => {
 browser.waitForAngularEnabled(false);
 let feedButton = element(by.css('button.feed-button'));
 browser.wait(EC.elementToBeClickable(feedButton),
 3000, 'waiting for feed button to be clickable');
 feedButton.click();

 let dialogTitle =
 element(by.css('app-contact-feed h2.mat-dialog-title'));
 browser.wait(EC.visibilityOf(dialogTitle),
 1000, 'waiting for the dialog title to appear');
 expect(dialogTitle.getText())
 .toContain('Latest posts from Craig Service');

 let closeButton = element(by.css('button[mat-dialog-close]'))
 closeButton.click();
 browser.wait(EC.stalenessOf(dialogTitle), 3000,
 'wait for dialog to close');
 expect(dialogTitle.isPresent()).toBeFalsy();
 });

Waiting after every action that could cause a page update can be a drag, and it makes
the test harder to read. It would be better if you could write a test that used Protractor’s
automatic waitForAngular behavior, but doing so will require understanding how
browsers run asynchronous code, and how Angular knows when to update the page.

Disables waitForAngular You need to wait for the initial page load.

When you click the feed button, you’ll
need to wait for the dialog to show.

Clicking the close button also requires a wait.

 155Handling long-running tasks

To get there, you’ll need to know more about zones and how JavaScript operates. The
first step to learning about zones is to understand how the browser event loop works.

9.5.2 The browser event loop

JavaScript is single-threaded, meaning it does one thing at a time. Somewhere inside
your browser is an event loop that looks something like this:

while(true) {
 event = waitForNextEvent()
 doJavaScriptThings(event);
 doBrowserThings(event);
}

In this example, doBrowserThings() refers to the work the browser does outside of
your app’s JavaScript—rendering the page, doing I/O, and so on. An event can be
something like a timer firing, a mouse click event, or an XHR request changing in
status. These events create tasks in the JavaScript VM, and three kinds of tasks are pos-
sible: microtasks, macrotasks, and eventtasks (see table 9.2).

Table 9.2 Types of tasks

Task type When it runs

microtask Run immediately, before the browser does any rendering or I/O. Promise
.resolve() will schedule a microtask.

macrotask Guaranteed to run at least once and in the same order that they’re scheduled.
Macrotasks run interleaved with browser rendering and I/O and are scheduled by
setTimeout or setInterval. After a macrotask finishes, all microtasks are run
before control passes back to the browser.

eventtask Run in response to events (for example, addEventListener('click', event-
Callback) or XHR state change). Unlike macrotasks, eventtasks might never run.

All microtasks run before control of the event loop goes back to the browser. Run-
ning a microtask might add more microtasks to the queue (for example, by making
a Promise.resolve() call). Once the microtask queue is empty, control passes back
to the browser so it can render the page, perform I/O, and wait for the next event-
task or macrotask to occur. The situation is a little more complicated than the simple
while(true) loop we covered earlier. Now that you know a bit more about how brows-
ers work, let’s consider how this relates to Angular.

9.5.3 What happened to $timeout?

If you’ve used AngularJS, you might remember the $timeout service. When doing
asynchronous work in AngularJS, instead of using window.setTimeout() or XML-
HttpRequest() directly, you needed to use the special AngularJS services $timeout
and $http. These services were wrappers around the native browser calls that would
make sure change detection ran after the asynchronous task was done, so the content
of your page would update if your model changed.

156 chapter 9 Understanding timeouts

You don’t need these special services in Angular. Instead, Angular uses a library
called Zone.js to run your application’s asynchronous tasks in a context called the
Angular zone. Zone.js does this by patching all the browser APIs that create async calls
with hooks that track which zone that task is running in. That’s how Angular knows
when an async callback started by your app occurs and is able to run change detection
after it, which removes the need for $timeout.

DEFINITION A zone is an execution context that persists across async tasks—sort
of like thread-local storage in Java, but for async tasks.

9.5.4 Highway to the Angular zone

Protractor knows about the Angular zone; it knows when tasks are pending that might
cause a change detection. When you enable waitForAngular, Protractor will cause all of
your WebDriver commands to wait until there are no more tasks pending in the Angu-
lar zone. Let’s look at a simple example of running asynchronous tasks in a browser.

Assume that the code in figure 9.4 is running in the Angular zone. In this example,
Protractor would wait forever, because the pollForever() function (in the lower-left
red box) is constantly creating a task in the Angular zone.

The browser processes
events in its event queue

one at a time.

The example code in red
calls setTimeout oncer per

second. Each call schedules
macrotask.

In between macrotasks, the
browser does browser
things - network calls,
rendering html, etc.

After a macrotask
finishes, any number of

microtasks may run
before control returns to

the browser.

Because Protractor waits for all macrotasks
to finish, it will be blocked by the pollForever()

task, and you’ll see a timeout error!

$(“#updateButton).click(() => {
 setTimeout(() => {
 $.get(“fetchUpdates/”, (data) => {
 processUpdate(data);
 });
 }, 500);
});

function pollForever() {
 setTimeout(pollForever, 1000);
}
pollForever();

setTimeout()

$.get()

.click()

Event Queue

setTimeout()

setTimeout()

Browsers run JavaScript in a single thread. Async
calls like setTimeout() put tasks in the browser’s
event queue. The code snippets in the blue and
red boxes are totally independent, but run
interleaved in the same thread of execution. In
the code in red will poll forever, and thus cause
Protractor to time out when it waits for Angular to
be ready.

Figure 9.4 Async tasks running in a browser

NOTE A color version of this image is available in the electronic versions of this
book, available free to purchasers at www.manning.com.

 157Handling long-running tasks

If you want to avoid this fate of waiting forever, you can move that code inside a call
to NgZone.runOutsideAngular(), as in figure 9.5. Then pollForever() won’t trigger a
change detection when it runs, and Protractor won’t wait for it to finish.

In this example, our test
clicks on the update button,
triggering the click handler.
The click handler and any

tasks it starts run in the
Angular Zone.

Protractor will wait until
the HTTP call has

finished, since it’ was started
in the Angular Zone.

Instead of timining out,
Protractor finishes waiting

here and the test continues.

Because the setTimeout()
calls from pollForever()
run outside the Angular
Zone, Protractor will not

wait for them.

$(“#updateButton).click(() => {
 setTimeout(() => {
 $.get(“fetchUpdates/”, (data) => {
 processUpdate(data);
 });
 }, 500);
});

function pollForever() {
 setTimeout(pollForever, 1000);
}
ngZone.runOutsideAngular(() => {
 pollForever();
});

setTimeout()

$.get()

.click()

Event Queue

setTimeout()

setTimeout()

Protractor only waits for tasks in the Angular Zone.
If we run the pollForever() task outside of that zone,
Protractor won’t wait for it.

The example below has been changed to run
pollForever() outside of the Angular Zone, so that it
not longer blocks Protractor.

Figure 9.5 Running a polling task outside the Angular zone

This long-running task now runs in a way that won’t cause Protractor to wait until the
test times out. Next you’ll apply this same technique to the Contacts app example and
use it to fix the test.

9.5.5 Fixing the test

Now you know why your test was timing out earlier. The updates from the Contact-
FeedService were scheduling async tasks in the Angular zone, and because it’s a con-
tinuous stream of tasks, Protractor will wait until the test times out. You could turn off
waitForAngular and use expected conditions, but you also could fix the test by chang-
ing the ContactFeedDialogComponent, as in the following listing.

Listing 9.10 Using runOutsideAngular in ContactFeedDialogComponent

import {Component, OnInit, OnDestroy, NgZone, Optional, Inject} from
➥'@angular/core';

import {MdDialogRef, MD_DIALOG_DATA} from '@angular/material';
import {ContactFeedService} from '../shared/services/contact-feed.service';
import {Subscription} from 'rxjs/Subscription';

158 chapter 9 Understanding timeouts

@Component({
 selector: 'app-contact-feed',
 templateUrl: './contact-feed.component.html',
 styleUrls: ['./contact-feed.component.css']
})
export class ContactFeedDialogComponent implements OnInit, OnDestroy {
 sub: Subscription;
 updates: string[] = [];
 name: string;
 closeDisabled = true;

 constructor(public dialogRef: MdDialogRef<ContactFeedDialogComponent>,
 private feed: ContactFeedService,
 private zone: NgZone,
 @Optional() @Inject(MD_DIALOG_DATA) data: any) {
 this.name = data.name;
 }

 ngOnInit() {
 this.closeDisabled = false;

 this.zone.runOutsideAngular(() => {
 this.sub = this.feed.getFeed().subscribe((x) => {
 this.zone.run(() => {
 this.updates.push(x);
 if (this.updates.length > 4) {
 this.updates.shift();
 }
 });
 });
 });
 }

 ngOnDestroy() {
 this.sub.unsubscribe();
 }
}

Now that the subscription is created outside of the Angular zone, it won’t block Pro-
tractor. But you need to apply the update within the Angular zone so that Angular
will know about the change to your model and will update the page. With only a small
change to the component, the test passes! Protractor still will wait while each update
is rendered in the dialog, but now it won’t time out waiting for the stream of updates
to finish.

Injects NgZone into the component

Runs the subscription outside the Angular
zone, so it won’t block Protractor

Adds the update in the Angular zone, so
the change propagates to the page

 159Summary

Summary

¡	Browser tests consist of three components: your tests running in Node.js, a Sele-
nium WebDriver server, and your application running in a browser. Protractor
synchronizes your tests with your application by waiting for Angular to finish
updating the page.

¡	Sometimes you need to disable waiting for Angular in your tests.
¡	Use expected conditions instead of browser.sleep. Tests are more reliable

when they wait for a specific condition to be true, rather than pausing for an
arbitrary amount of time. Protractor has many expected conditions you can use
out of the box.

¡	If the available expected conditions don’t meet your needs, you can make your
own using browser.wait.

¡	Angular uses Zone.js to watch for async tasks that might cause the page to change.
Protractor also uses Zone.js to wait until every async task that might modify the
page has finished.

¡	Sometimes you’ll need to change your application to run certain async tasks out-
side the Angular zone. If you don’t, you might end up blocking Protractor from
testing your page.

161

10Advanced Protractor topics

This chapter covers
¡	Protractor configuration files

¡	Screenshot testing

¡	Debugging tests

Protractor is a powerful tool, and, like any powerful tool, you can use it in more
creative ways than you’ll find written in the manual. As developers working on Pro-
tractor, we’ve found that people tend to ask about certain common scenarios. Some
common questions are “How do I extend Protractor’s behavior with plugins?” and
“How do I create screenshots when my tests fail?” We’ve collected our best tips for
working with Protractor in this chapter to help you get the most out of your end-to-
end tests. You can find the examples in this chapter at http://mng.bz/83kr.

10.1 Configuration file in depth
Protractor provides many knobs and levers that change how it launches based on
configuration options. In chapter 8, you used one way to run Protractor tests. You
started Protractor from the command line, using a Chrome instance running on
your own machine. This configuration is fine for testing during development, but

http://mng.bz/83kr

162 chapter 10 Advanced Protractor topics

what if you need to test on a different browser or a set of browsers? How can you set up
tests to run in a continuous integration environment without a GUI?

10.1.1 Driver provider options

In the Protractor examples in chapter 8, you used the directConnect flag to launch
Chrome with the chromedriver binary. Protractor has other ways it can launch a new
browser instance to run tests. The Protractor repository refers to these WebDriver
options as driver providers. You can set different driver providers in your Protractor con-
fig file using the settings listed in table 10.1.

Table 10.1 Driver provider config options options

Setting Comments

directConnect Launching a browser with directConnect is great when you’re devel-
oping your Protractor test suite because it allows you to work without hav-
ing to start up a Selenium Standalone Server. Using directConnect
is limited to launching tests for Chrome with the chromedriver binary
and for Firefox with the geckodriver binary.

You can limit your download to only these binaries by using the web-
driver-manager npm package. To get these binaries, run web-
driver-manager update --standalone false. Specifying
—standalone false prevents webdriver-manager from down-
loading the Selenium Standalone Server jar file.

By default, Protractor uses the binaries in the webdriver-manager
npm folder. But if you need to bypass the webdriver-manager down-
loaded binaries, you can specify the path to your driver in the configura-
tion file with the chromedriver and geckodriver options.

seleniumAddress Setting seleniumAddress will tell Protractor to start browsers using
the Selenium Standalone Server. Using the Selenium Standalone Server
allows you to run tests that control browsers running on a different
machine. This is helpful if the machine you’re using is headless or without
a desktop environment.

The typical value for the seleniumAddress is
'http://127.0.0.1:4444/wd/hub' when launching the stand-
alone server locally using the default port.

Typically, you run webdriver-manager update and then launch the
Selenium Standalone Server with webdriver-manager start. If you
need more control over Selenium, you can launch it manually like so:

java -Dwebdriver.gecko.driver=/tmp/geckodriver

-Dwebdriver.chrome.driver=/tmp/chromedriver

-jar /path/to/selenium-server-standalone.jar

-port 4444

 163Configuration file in depth

Setting Comments

browserstackUser,
browserstackKey

BrowserStack is a cloud service for Selenium testing on desktop and
mobile browsers. To use BrowserStack, set the browserstackUser
and browserstackKey options in the configuration file. BrowserStack
is a paid service and is out of the scope of this book, but you can find
more information at https://www.browserstack.com.

sauceUser, sauceKey Sauce Labs is another cloud service for Selenium testing on desktop and
mobile browsers. Configure Sauce Labs by setting the sauceUser and
sauceKey in the configuration file. Sauce Labs is another paid service
and is also out of the scope of this book, but you can find more informa-
tion at https://saucelabs.com/.

seleniumServerJar If you set seleniumServerJar or don’t set any driver providers in the
config file, Protractor will start and shut down the Selenium Server for you.

If seleniumServerJar isn’t defined in the configuration file, Protrac-
tor will use binaries downloaded to your project’s node_modules/
webdriver-manager/selenium directory. To download the binaries,
you need to run webdriver-manager update. After you have these
binaries downloaded, running Protractor will also launch the Selenium
Server locally.

When the path to seleniumServerJar is defined in the configuration
file, it will use the absolute path to launch the Selenium Server.

In addition to specifying seleniumServerJar, you can specify the
chromedriver path. Similarly, for tests using the Firefox browser, you
could specify the geckodriver path. If you don’t set the paths for either
chromedriver or geckodriver, Protractor will use the default loca-
tions specified by the locally installed webdriver-manager module.

Note that multiple driver providers set in the same configuration file have an order of
precedence. It’s the same as the order shown in table 10.1: direct connect, Selenium
Standalone Server, Browser Stack, Sauce Labs, a specified seleniumServerJar file,
and then, finally, local launch. In this section, we've hinted that you can use browsers
other than Chrome. In the next section on capabilities, we’ll show you how to run tests
against other browsers.

10.1.2 Desired capabilities

Let's say you want to test against Firefox instead of Chrome. All you need to do is
change the browserName in your Protractor config, as shown in listing 10.1. You also
could launch the browser using driver providers: seleniumAddress, seleniumServer-
Jar, or the local driver option. In addition to Firefox, you can use browsers like Safari,

Table 10.1 Driver provider config options options (continued)

https://www.browserstack.com
https://saucelabs.com/

164 chapter 10 Advanced Protractor topics

Microsoft Edge, or Internet Explorer. Only Chrome and Firefox support direct-
Connect, so for other browsers, you should set seleniumAddress.

Listing 10.1 Specifying capabilities for Firefox

exports.config = {
 directConnect: true,
 capabilities: {
 browserName: 'firefox'
 }
};

TIP The only caveat when using Safari is that you need to run it on an macOS
device, which comes bundled with the Safari driver. When running Safari, you’ll
also need to turn on Allow Remote Automation under the Develop menu. If
you want to run on Microsoft’s Edge and Internet Explorer browsers, you’ll
have to use a Windows machine. Both browsers require their own matching
browser drivers. When using Internet Explorer, you can download the driver
using the command webdriver-manager update --ie and start the Selenium
Standalone Server with the command webdriver-manager start --ie.

You can change other browser settings beyond the browser name. But if you set a
desired capability that the browser driver doesn’t implement, you won’t see an error
during the test. When using a browser driver, it’s important to check that you’re using
capabilities that it supports.

One good use case for desired capabilities is running Chrome in headless mode, which
doesn’t require a desktop UI. Headless Chrome is available in versions 59+ (60+ for Win-
dows machines). Because you're running Chrome without a user interface, being able
to log network traffic helps you validate that the test is working. With network traffic
logging enabled, you might want to extend your test to track how long each JavaScript
dependency takes to load. In the following listing, you set the headless chromeOption
as well as loggingPrefs. When you enable performance logging in loggingPrefs to
true, you’ll be able to access each browser session’s log in an afterEach method.

Listing 10.2 Configuration using headless Chrome—test_capabilities/protractor.conf.js

exports.config = {
 directConnect: true,
 capabilities: {
 browserName: 'chrome',
 chromeOptions: {
 args: ['--headless', '—disable-gpu']
 },

Disable GPU arg is temporarily
required if running on Windows.
See http://mng.bz/k5qB.

Sets headless option in
chromeOptions

http://mng.bz/k5qB

 165Configuration file in depth

 loggingPrefs: {
 performance: 'ALL',
 browser: 'ALL'
 }
 },
 baseUrl: 'https://testing-angular-applications.github.io',
 specs: ['e2e/**/*.e2e-spec.ts'],
 onPrepare: () => {
 require('ts-node').register({
 project: 'e2e'
 });
 },
};

After every test, you check that the browser is getting traffic and log that information to
the console, as shown in the following listing.

Listing 10.3 Test using headless Chrome—test_capabilities/e2e/test.e2e-spec.ts

import { browser, by, element } from 'protractor';

describe('listing example', () => {
 it('load /', () => {
 console.log('get /')
 browser.get('/');
 expect(browser.getCurrentUrl()).toEqual(browser.baseUrl + '/');
 });

 it('click "+" button -> /add', () => {
 console.log('click "+" button -> /add')
 element(by.id('add-contact')).click();
 expect(browser.getCurrentUrl()).toEqual (browser.baseUrl + 'add');
 });

 afterEach(() => {
 browser.manage().logs().get('performance').then((browserLogs) => {
 expect(browserLogs).not.toBeNull();
 browserLogs.forEach((browserLog) => {
 let message = JSON.parse(browserLog.message).message;
 if (message.method == 'Network.responseReceived') {
 if (message.params.response.timing) {
 let status = message.params.response.status;
 let url = message.params.response.url;
 console.log('status=' + status + ' ' + url);
 }
 }
 });
 });
 });
});

Sets performance logging for
each browser session

Logs the performance values from
the browser logs after each test

Checks to see if traffic is going to the browser

If the response is valid, logs the
response code and URL to console

166 chapter 10 Advanced Protractor topics

Instead of using a single set of capabilities to launch a browser, what if you want to
run the exact same test against other browsers? To launch against multiple browsers,
you’ll need to use multiCapabilities. You can specify multiCapabilities as an array
of desired capabilities, as shown in the following listing. Using multiple capabilities
requires running against a Selenium Server, so you need to set the seleniumAddress in
the configuration file.

Listing 10.4 Multicapabilities—test_multicapabilities/protractor-chrome.conf.js

exports.config = {
 multiCapabilities: [{
 browserName: 'chrome'
 }, {
 browserName: 'firefox'
 }],
 seleniumAddress: 'http://127.0.0.1:4444/wd/hub',
 baseUrl: 'https://testing-angular-applications.github.io',
 specs: ['e2e/**/*.e2e-spec.ts'],
 onPrepare: () => {
 require('ts-node').register({
 project: 'e2e'
 });
 }
};

The main reason to run tests over a set of browsers is to make sure your app is compat-
ible with those browsers. For example, imagine some of your users have noticed navi-
gation issues with a particular feature when they use Microsoft Edge. You might want
to use a subset of tests to validate this feature with both Chrome and Microsoft Edge
browsers.

It’s also important to consider how many tests to run in parallel browsers. If you run
your tests with multiple browsers, you could run into CPU- or RAM-resource limitations.

10.1.3 Plugins

Protractor allows you to use lifecycle hooks during test execution. (See chapter 7, section 7.1,
for how to use them with Angular.) Lifecycle hooks let you insert custom functionality
that executes at different points when you’re executing a test. Some lifecycle hooks can
gather test results or modify the test output. Protractor lets you use these lifecycle hooks
by adding plugins to the configuration file. One such lifecycle hook is onPrepare, which is
called after the test framework has been set up but before tests are run. In chapter 8, you
specified an onPrepare function in your config file so you could load TypeScript spec files
using the ts-node npm package. This lifecycle hook is unique in that you can specify it
both as a config option and as part of a plugin.

Running the specs in Chrome and Firefox

 167Configuration file in depth

Another good reason to use the onPrepare lifecycle hook is to create custom report
artifacts. A typical report artifact is an xUnit report, which is a test report format
defined in the JUnit test framework. To create JUnit-style test reports, you’ll need to
override Jasmine's reporter with the jasmine-reporters node module shown in the
following listing.

Listing 10.5 JUnit-style reports using onPrepare function

exports.config = {
 directConnect: true,
 capabilities: {
 browserName: 'chrome'
 },
 baseUrl: 'https://testing-angular-applications.github.io',
 specs: ['e2e/**/*.e2e-spec.ts'],
 onPrepare: () => {
 let jasmineReporters = require('jasmine-reporters');
 let junitReporter = new jasmineReporters.JUnitXmlReporter({

 savePath: 'output/',
 consolidateAll: false

 });
 jasmine.getEnv().addReporter(junitReporter);
 require('ts-node').register({
 project: 'e2e'
 });
 },
};

You also could define this lifecycle hook as part of a plugin definition. This setting
takes an array of objects with each object defining a plugin. The following listing shows
the same example as in listing 10.5 but this time using a plugin configuration.

Listing 10.6 JUnit-style reports using plugins configuration setting

exports.config = {
 directConnect: true,
 capabilities: {
 browserName: 'chrome'
 },
 baseUrl: 'https://testing-angular-applications.github.io',
 specs: ['e2e/**/*.e2e-spec.ts'],
 plugins: [{
 inline: {
 onPrepare: () => {
 let jasmineReporters = require('jasmine-reporters');

The relative path to save the
JUnit-style reports

If true, aggregates test
results; if false, creates files

Overrides the Jasmine
default reporter with
the new junitReporter

168 chapter 10 Advanced Protractor topics

 let junitReporter = new jasmineReporters.JUnitXmlReporter({
 savePath: 'output/',
 consolidateAll: false
 });
 jasmine.getEnv().addReporter(junitReporter);
 require('ts-node').register({
 project: 'e2e'
 });
 }
 }
 }],
};

Why use one or the other? Plugins can define more lifecycle hooks than just onPre-
pare (table 10.2). Defining multiple hooks in the same plugin allows you to share vari-
ables between them. You also don’t have to define plugins in your config file—you
can import them in a separate JS file and share them between multiple projects. All
of these lifecycle hooks can return a promise—if they do, Protractor will wait for that
promise to be resolved before proceeding.

Table 10.2 Plugin lifecycle hooks

Lifecycle hook When it’s called

setup After the WebDriver session has started, but before Jasmine is set up.

onPrepare After Jasmine is set up.

teardown After tests have run, but before the WebDriver session is stopped.

postTest After each it() block completes.

onPageLoad After the page loads, but before Angular bootstraps.

onPageStable After the page has loaded and Angular is ready and stable.

waitForPromise After every WebDriver command. You can use this hook to change how Pro-
tractor waits for Angular to be stable.

Until now, all your tests have run on a single machine, but you might need to change
the behavior depending on your testing environment. In some situations, for example,
you might not want to create JUnit-style reports using plugins. In the next section, we’ll
look in depth at how to set environment-specific configurations.

10.1.4 Environment variables

In previous sections, you created configuration files with different options. For exam-
ple, you might have Chrome installed on one machine and Firefox on another. Or in
some environments, you might need to produce JUnit-style reports, whereas in others
you might not want to have reports generated.

 169Configuration file in depth

How can you change Protractor’s behavior based on the environment in these use
cases? One way is by setting environment variables. In listing 10.7, you set environment
variables to determine which browser the test will use, and whether to use directCon-
nect or Selenium Standalone Server. Remember that if you set DIRECT_CONNECT to
true, as in the following listing, and SELENIUM_ADDRESS to http://127.0.0.1:4444/
wd/hub, the test will launch with directConnect based on how Protractor handles these
driver providers.

NOTE If you export the variables in the bash terminal session, the variables
will exist only for that terminal session. If you need those variables to persist
beyond the terminal session, you can set them in your ~/.bash_profile on
macOS or Linux.

Listing 10.7 Setting environment variables

export BROWSER_NAME='chrome'
export DIRECT_CONNECT=true
export SELENIUM_ADDRESS=''

Now that you’ve exported the environment variables, you can modify the Protractor
configuration file to change behavior based on them. In listing 10.8, you set direct-
Connect and seleniumAddress based on environment variables Node.js makes avail-
able in process.env. If you don’t define process.env.DIRECT_CONNECT and process.
env.SELENIUM_ADDRESS, Protractor will launch the Selenium Standalone Server using
a local driver. When you set the browserName, if you don’t set process.env.BROWSER_
NAME, Protractor will default to using Chrome.

Listing 10.8 Using environment variables—test_environment/protractor.conf.js

exports.config = {
 directConnect: process.env.DIRECT_CONNECT,
 seleniumAddress: process.env.SELENIUM_ADDRESS,
 capabilities: {
 browserName: (process.env.BROWSER_NAME || 'chrome')
 },
 baseUrl: 'https://testing-angular-applications.github.io',
 specs: ['e2e/**/*.e2e-spec.ts'],
 onPrepare: () => {
 if (process.env.BROWSER_NAME == 'chrome') {
 let jasmineReporters = require('jasmine-reporters');
 let junitReporter = new jasmineReporters.JUnitXmlReporter({
 savePath: 'output/',

Uses directConnect when set to true

Uses Selenium Standalone Server if
defined and if DIRECT_CONNECT is false

Uses directConnect if the DIRECT_CONNECT
environment variable is true

Uses seleniumAddress if the
SELENIUM_ADDRESS isn’t
equal to an empty string

Uses the browser
environment variable
set in BROWSER_NAME

If the browser is 'chrome',
creates JUnit-style reports

170 chapter 10 Advanced Protractor topics

 consolidateAll: false
 });
 jasmine.getEnv().addReporter(junitReporter);
 }
 require('ts-node').register({
 project: 'e2e'
 });
 },
};

Instead of setting environment variables, you also can create separate Protractor con-
figuration files. Although having multiple Protractor configuration files for each envi-
ronment might be an easy solution, it requires maintenance if you need to make a
change that affects all the configuration files.

Now that you know how to configure Protractor in depth, let’s use this knowledge to
create a new kind of test. In the next section, you’ll create a custom plugin and config
that will let you compare browser screenshots in your tests.

10.2 Screenshot testing
You write tests to prevent your mistakes from becoming user-facing issues. Up until
now, you’ve been testing only the logic of your application. But the appearance of your
web app is also important. One way to verify that the appearance of your app is correct
is to have a test that fails when a screenshot changes.

You might think that such a test would be fragile, and you’d be right. This test will
fail whenever the look of your app changes, intentionally or not. But it’s a useful safe-
guard to catch unintentional CSS regressions, which can be easy to introduce and hard
to check. After all, who wants to spend all day before a release clicking through each
page in your app, verifying that no awkward CSS errors have slipped through? This test
will guard against unintentional style errors, but the price is that you need to update it
whenever you intentionally change your app’s CSS.

10.2.1 Taking screenshots

Taking screenshots in Protractor is easy; you can call browser.takeScreenshot() to
take a screenshot. Unlike the other WebDriver commands you’ve seen so far, take-
Screenshot() returns a promise. As mentioned in earlier chapters, a promise rep-
resents the future value of an asynchronous operation. The important thing to know
is that to get the screenshot image, you need to call .then() on the result of take-
Screenshot() and pass it a function that does something with the data. The following
listing is an example of taking a screenshot in a test.

Listing 10.9 test_screenshot/e2e/screenshot.e2e-spec.ts

describe('the contact list', () => {
 beforeAll(() => {
 browser.get('/');
 browser.driver.manage().window().setSize(1024,900);

Sets the window size
before taking a screenshot

 171Screenshot testing

 });

 it('should be able to login', (done) => {
 const list = element(by.css('app-contact-list'));
 browser.waitForAngular();

 browser.takeScreenshot().then((data) => {
 fs.writeFileSync('screenshot.png', data, 'base64');
 done();
 })
 });
});

Also unlike other WebDriver commands, Protractor won’t automatically wait for
Angular before executing takeScreenshot()—it’ll take a screenshot immedi-
ately, which is useful when using screenshots for debugging. If you want to take the
screenshot after Angular is done updating the page, you’ll have to manually call
browser.waitForAngular().

This test is different from the previous Protractor tests in a couple of ways. As men-
tioned, the takeScreenshot() command returns a promise. In fact, all WebDriver com-
mands return promises, but Protractor has some hidden magic that lets you ignore that
and write your tests as if they were synchronous.

 The other important difference is that the test is now asynchronous; it needs to wait
until Node.js has written the screenshot to disk before finishing. You can make any
Jasmine test asynchronous by accepting a 'done' callback in the function you define
for your it() block. Jasmine will wait until you execute that callback before finishing
the test. This allows you to write tests with asynchronous behavior, like calling setTime-
out() or making network calls—or, in this case, waiting for the screenshot data.

10.2.2 Taking screenshots on test failure

Previously, you saw how you can use plugins to extend Protractor’s behavior. The plugin
API provides hooks that you can use to add custom logic to your Protractor tests. Next
you’ll use the plugin API to take a screenshot of the browser when a test fails. First, you
can add a plugin to your test’s config by adding a plugin section, like this:

plugins: [{
 path: './screenshot_on_failure_plugin.ts'
}],

This loads the plugin, which you define in a separate TypeScript file. Protractor calls the
plugin’s lifecycle hooks at different points in the test process. In your case, you need to
define a postTest() function, as shown in listing 10.10. Protractor calls the postTest()
function after each it() block finishes. The function receives two arguments—whether
the test passed and an object containing a description of the test. If the test fails, you take
a screenshot and save it to a file based on the name of the test that failed. This produces a
screenshot at the moment of failure for each failing test in your test suite.

Waits for the page to load
before taking a screenshot

Lets Jasmine know the test is done

172 chapter 10 Advanced Protractor topics

Listing 10.10 test_screenshot/screenshot_on_failure_plugin.ts

import {browser} from 'protractor';
import * as fs from 'fs';

export function postTest(passed: boolean, testInfo: any) {
 if(!passed) {
 const fileName = `${testInfo.name.replace(/ /g, '_')}_failure.png`
 return browser.takeScreenshot().then((data) => {
 fs.writeFileSync(fileName, data, 'base64')
 });
 }
}

You can find this plugin and config file in the Chapter 10 code repo on GitHub
(http://mng.bz/0OPs). Try it for yourself—make a failing test and verify that you get a
screenshot of the browser at the time of failure. If you want to learn more about writing
plugins, check out the official docs in the Protractor repo (http://mng.bz/bSLE). This
simple plugin will help debug why a test failed, but you also can use screenshots as part
of your tests, as you’ll see in the next section.

10.2.3 Comparing screenshots

It can be hard to make an automated test that verifies how an application looks. But you
can make a simple screenshot test that will fail when any major, unintended changes
show up in your application’s appearance. You can use the looks-same npm package
to compare a screenshot of the browser against a reference image.

Listing 10.11 shows a couple of helper functions that use the looks-same library to
compare a screenshot to a reference image. The writeScreenshot() function encap-
sulates some of the boilerplate around writing a screenshot to disk. The compare-
Screenshot() function takes the callback-oriented API of looks-same and wraps it in a
promise that’s resolved with the value of the screenshot comparison.

Listing 10.11 test_screenshot/e2e/screenshot_helper.ts

function writeScreenshot(data) {
 return new Promise<string>(function (resolve, reject) {
 const folder = fs.mkdtempSync(`${os.tmpdir()}${path.sep}`);
 let screenshotFile = path.join(folder, 'new.png');
 fs.writeFile(screenshotFile, data, 'base64', function (err) {
 if (err) {
 reject(err);
 }
 resolve(screenshotFile);
 });

Calls the postTest function
after each it() block.

Tests name as the file name
for the screenshot

Writes new screenshot
synchronously to disk

Helper function that writes the
screenshot to disk

http://mng.bz/0OPs
http://mng.bz/bSLE

 173Screenshot testing

 });
}

export function compareScreenshot(data, golden) {
 return new Promise((resolve, reject) => {
 return writeScreenshot(data).then((screenshotPath) => {
 if (process.env['UPDATE_SCREENSHOTS']) {
 fs.writeFileSync(golden, fs.readFileSync(screenshotPath));
 resolve(true);
 } else {
 looksSame(screenshotPath, golden, {}, (error, equal) => {
 if (!equal) {
 looksSame.createDiff({
 reference: golden,
 current: screenshotPath,
 diff: 'diff.png',
 highlightColor: '#ff00ff'
 }, function (error) {
 resolve(equal);
 });
 } else {
 resolve(equal);
 }
 })
 }
 });
 });
}

The compareScreenshot() helper has a couple of useful features. First, you can easily
update the golden image if you set the environment variable UPDATE_SCREENSHOTS. For
example, if you run your tests with UPDATE_SCREENSHOTS=1 protractor screenshot_
test.conf.js, the test will run, but instead of comparing the screenshot to the refer-
ence, it overwrites the reference image with the new screenshot. You can then commit
the updated reference images in your git repo. It’s helpful to keep these screenshots in
version control along with your source code so you can track how they change.

If the images are different, compareScreenshot() automatically calls looksSame.
createDiff(). This creates an image showing the difference between the current
screenshot and the reference image so you can easily see what went wrong.

Listing 10.12 shows a test that uses these helpers. Note that in the test you need to
explicitly call browser.waitForAngular(). Usually, when you turn on waiting for Angu-
lar with browser.waitForAngularEnabled(true), Protractor waits for Angular to be
ready before executing each WebDriver command. But screenshots are taken immedi-
ately, so you’ll need to manually wait for the contact list to load.

Listing 10.12 An example screenshot test

 it('should be able to login', (done) => {
 const GOLDEN_IMG = path.join(__dirname,'contact_list_golden.png');
 const list = element(by.css('app-contact-list'));
 browser.waitForAngular();

You can use an environment
variable to control the helper.

If the screenshot is different, create an
image highlighting those differences.

The difference image is
written to 'diff.png'.

Saves the golden image in the same directory
as the test, so you can check it in to git

174 chapter 10 Advanced Protractor topics

 browser.takeScreenshot()
 .then((data) => {
 return compareScreenshot(data, GOLDEN_IMG);
 })
 .then((result) => {
 expect(result).toBeTruthy();
 done();
 })
 });

You call then() on a promise to handle the result—the callback you pass to then()
will be invoked when the asynchronous operations the promise represents finish. If,
when handling the result of a promise, you need to make a new asynchronous call,
you can return a promise and add another then() block. This is called promise chaining
because you chain your then() blocks together, one per asynchronous operation. In
listing 10.12, you chain together two asynchronous operations—taking the screenshot
and comparing the screenshot to the reference—so you have two then() blocks.

Let’s look at an example showing screenshots. Say your contacts list looks like
figure 10.1.

Figure 10.1 The reference screenshot image

Suppose you accidentally broke your application’s CSS by adding the following to
contact-list.component.css:

.add-fab {
 float: right;
 cursor: pointer;
 position: absolute;
}

Returns the promise from
compareScreenshot to chain
it into the next then() block

Result will be true if
screenshots matched

 175Screenshot testing

Now the list looks like figure 10.2.

Figure 10.2 The contact list with broken CSS

Your tests might still pass, despite the page being obviously broken. But your screen-
shot test will fail and produce the diff image in figure 10.3.

Figure 10.3 The difference image highlighting where the current screenshot differs from the reference

Notice how the diff image highlights the part of the screenshot that changed. You
can change the highlight color if pink isn’t your thing. The important part is that when
your screenshot test fails, you can check the diff image to see what went wrong. If the
change is expected, you can rerun the test with UPDATE_SCREENSHOTS=1 to update the
reference image.

176 chapter 10 Advanced Protractor topics

10.3 Experimental debugging features
It can be hard to know what might have caused a Protractor test to fail. Fortunately,
some experimental features recently added to Protractor can make it easier to debug
failing tests. In this section, you’ll use these new features to debug a test in the chap-
ter10/test_experimental directory of the book’s repository (which, as mentioned, you
can find at http://mng.bz/z22f).

The following listing shows the test you’ll be working with in this section.

Listing 10.13 test_experimental/e2e/add-contact.e2e-spec.ts

import {browser, by, element, ExpectedConditions as EC} from 'protractor';

describe('contact list', () => {
 beforeAll(() => {
 browser.get('/');
 });

 it('should be able to add a contact', () => {
 element(by.id('add-contact')).click();

 element(by.id('contact-name')).sendKeys('Ada Contact');
 element(by.css('.create-button')).click();

 expect(element(by.css('app-contact-list')).getText())
.toContain('Ada Contact');

 });
});

This is a simple test, but because it moves between two different pages (the contact list
and the add contact view), it can be a little difficult to debug when things go wrong.
Let’s look at some tools to help with that.

10.3.1 WebDriver logs

When a Protractor test runs, it sends commands to the browser telling it what to do.
These are commands like find an element, click an element, or get the text of an ele-
ment. Even if you watch the browser as your test runs, it can be hard to know exactly
what’s going on. Instead, you can have Protractor create a log of the WebDriver com-
mands it sends using the –webDriverLogDir option.

NOTE The WebDriver protocol is a W3C specification. If you’re interested in
seeing all the details of the protocol, they’re available at https://www.w3.org
/TR/webdriver/.

Clicks the Add Contact button

Types in a name for the contact
and clicks the Create button

Verifies that the new contact
shows in the contact list

http://mng.bz/z22f
https://www.w3.org/TR/webdriver/
www.w3.org/TR/webdriver/

 177Experimental debugging features

This option specifies a directory where Protractor will create a log of the WebDriver
commands it sends during a test run. Protractor will name each log file webdriver_
log_<sessionId>.txt, with a different sessionId for each test run. Each line of the
log file shows when the command was sent, how long it took, and what the command
was. It looks like figure 10.4.

01:45:07.194 | 81ms | 26ac2a | ElementClick (0.21665478589924247-3)

Amount of time the
command took
to complete

The WebDriver command
that was sent to the browser

Timestamp when the
command was sent

Session ID (different for
each browser window)

The ID of the element being
controlled. A unique ID internal
to WebDriver and can be ignored.

Figure 10.4 The structure of a WebDriver log line

Now run your add contact test with WebDriver logging. Unlike the other examples so
far, logging WebDriver commands requires running a Selenium Server. (We’ll explain
why in a bit, don’t worry.) To run the test in chapter10/test_experimental and generate
a WebDriver log, first start a Selenium Server:

webdriver-manager start

Then, in another terminal, start the test like so:

protractor –-webDriverLogDir ./

After the test runs, Protractor will create a log of WebDriver commands in the current
directory. The entire log is a bit long, but the following listing shows a sample of the
end of the log after running the example test.

Listing 10.14 Excerpt from WebDriver log

01:45:06.984 | 520ms | 26ac2a | Waiting for Angular
01:45:06.984 | 14ms | 26ac2a | FindElements
 Using css selector '*[id="contact-name"]'
 Elements: 0.21665478589924247-2
01:45:07.009 | 9ms | 26ac2a | Waiting for Angular
01:45:07.009 | 131ms | 26ac2a | ElementSendKeys (0.21665478589924247-2)
 Send: Ada Contact

Typing Ada Contact into the
contact name field

178 chapter 10 Advanced Protractor topics

01:45:07.165 | 23ms | 26ac2a | Waiting for Angular
01:45:07.166 | 18ms | 26ac2a | FindElements
 Using css selector '.create-button'
 Elements: 0.21665478589924247-3
01:45:07.194 | 8ms | 26ac2a | Waiting for Angular
01:45:07.194 | 81ms | 26ac2a | ElementClick (0.21665478589924247-3)
01:45:08.306 | 1028ms | 26ac2a | Waiting for Angular
01:45:08.306 | 15ms | 26ac2a | FindElements
 Using css selector 'app-contact-list'
 Elements: 0.21665478589924247-4
01:45:08.331 | 9ms | 26ac2a | Waiting for Angular
01:45:08.331 | 47ms | 26ac2a | GetElementText (0.21665478589924247-4)
 Name Email Number
mood Adrian Directive adrian.directive@example.com +1 (703) 555-0123 edit
➥delete
mood Rusty Component rusty.component@example.com +1 (441) 555-0122 edit
➥delete
mood Jeff Pipe jeff.pipe@example.com +1 (714) 555-0111 edit delete
mood Craig Service craig.services@example.com +1 (514) 555-0132 edit delete
mood Ada Contact edit delete

Delete All Contacts
add
01:45:08.388 | 54ms | 26ac2a | DeleteSession

You might have noticed all the Waiting for Angular log lines. What do they mean?
Remember from chapter 9 that Protractor waits for Angular to be stable before send-
ing a WebDriver command—every time it does so, it adds Waiting for Angular to the
log. The log also shows the amount of time that each step takes to complete—you can
see that after clicking the Create button, Protractor waits for Angular for 1028 ms while
the contact list loads.

The WebDriver log is handy for knowing after the fact what happened in a test, but
sometimes it would be nice to be able to watch the browser while the test runs. Usually,
the test runs too quickly for you to see what’s happening, but you can slow it down using
highlight delay.

10.3.2 Highlight delay

When Protractor tests run, they execute WebDriver commands as fast as possible. If
you’ve ever tried to debug a Protractor test by watching the browser window, you’ve
seen what this looks like. Buttons are clicked so fast, it’s as if the browser is being con-
trolled by a hyperactive poltergeist. It’s normally impossible to follow what’s happening.

You can fix this with the –highlightDelay flag. This tells Protractor to add a delay,
specified in milliseconds, before sending WebDriver commands to the browser.

Finding and clicking the
Create contact button

After clicking the Create button,
Protractor waits about a second

for the contact list to load.

Getting the text of the contact list

 179Experimental debugging features

Protractor also will highlight the element it’s about to touch with a light blue rectangle,
so you can tell which element is about to be clicked. For example, if the test is about to
enter text in a field, first it’ll highlight the text field with a blue rectangle (figure 10.5),
then it’ll wait the specified delay time before proceeding.

The name �eld is highlighted becuase
the test is about to enter the name there.

Figure 10.5 Protractor highlights the name input field before entering a name.

Adding a highlight delay can be a quick and easy way to see what’s going on during a
Protractor test. You can slow things down as much as you like, and the highlight lets you
know which part of the page Protractor will touch next.

10.3.3 Blocking proxy

A new component in Protractor called blocking proxy makes experimental new fea-
tures like highlight delay and WebDriver logs possible. This proxy sits between your
test and the browser driver. This proxy can intercept and optionally delay any com-
mand that your test sends to the browser. As a result, it can create a log of commands
or delay them.

One benefit of having this functionality in a proxy is that you can use it with any
WebDriver test. This means you don’t have to be using Protractor to use it—even if you
have WebDriver tests written in Java or Python, you could still use blocking proxy to add
a highlight delay to your tests. It even implements the same waitForAngular logic that
Protractor uses. If you don’t feel like writing your tests in TypeScript and running them
on Node.js, you could write them in any language that WebDriver supports and use
blocking proxy to get the same waitForAngular behavior as Protractor.

Blocking proxy is still an experimental feature in Protractor. If you’d like to learn
more about it or use it in other projects, check it out at https://github.com/angular/
blocking-proxy.

https://github.com/angular/blocking-proxy
https://github.com/angular/blocking-proxy

180 chapter 10 Advanced Protractor topics

10.4 The control flow and debugging with Chrome DevTools
Debugging a failing Protractor test can be frustrating, mainly because there’s no obvi-
ous way to step through the test and see what it’s doing. Fortunately, recent changes
to WebDriver, Node.js, and Protractor can make debugging Protractor tests as easy
as debugging any traditional application. To better understand how important these
changes are, and why Protractor tests are difficult to debug, you need to understand
asynchronous programming in JavaScript, specifically how the async/await feature
added in ES2017 makes asynchronous programming easier.

If you’re already familiar with asynchronous programming in JavaScript, feel free to
skip to the last section, where you’ll see how easy it is to step through Protractor tests
using Chrome DevTools.

10.4.1 Asynchronous functions and promises

In a language with threads, like Java or C#, you can write code that will block until an
I/O operation (reading from the file system, sending data over the network, and so
on) finishes. But in JavaScript, when you have an I/O operation, you typically pass a
callback that will be invoked when the operation finishes.

Let’s imagine a simple function that makes two API calls and writes some result to
disk based on the responses. In Java, your imaginary function might look something
like the following:

responseA = callServiceA();
responseB = callServiceB(responseA);
resultFile = writeResponseData(responseB);
doSomethingWithResult(resultFile);

Each function blocks until it finishes, running line by line in an imperative (or some
might say synchronous) manner. In JavaScript, you can’t make blocking calls; instead,
you pass a callback that will be invoked when the function is done. The preceding
imaginary example might look like the following in JavaScript:

callServiceA((responseA) => {
 callServiceB(responseA, (responseB) => {
 writeResponse(responseB, (resultFile) => {
 doSomethingWithResult(resultFile);
 })
 })
})

Depending on when the JavaScript runtime invokes your callbacks, your code may not
execute the same way it reads. Asynchronous programming is kind of like being a time
traveler; things don’t necessarily happen in the order you expect. This can be confus-
ing for people learning about callbacks for the first time.

For the code in listing 10.15, the first line that prints something to the console is the
last line in the listing. The order in which the callbacks are invoked and printed to the
console depends on when the different setTimeout calls are scheduled. This code may
not necessarily run in the same order you see when reading it from top to bottom.

 181The control flow and debugging with Chrome DevTools

Listing 10.15 Asynchronous program flow example

setTimeout(() => {
 console.log('Event C');
},1000);

setTimeout(() => {
 console.log('Event B');
 setTimeout(() => {
 console.log('Event D');
 },1000);
},500);

console.log('Event A');

Having to pass a callback every time you want to do something with the result of an
asynchronous call can lead to the pyramid of doom; a long list of nested callbacks can
end up yielding deeply indented code that’s hard to read. One fix for this is to use
promises. Instead of passing a callback to be invoked when the operation is done, you
can return a promise that eventually will resolve to the result of the operation. The
result is much easier to read:

callServiceA().then((responseA) => {
 return callServiceB(responseA)
}).then((responseB) => {
 return writeResponse(responseB)
}).then((resultFile) => {
 doSomethingWithResult(resultFile);
});

The WebDriver commands in Protractor tests are asynchronous calls; your test is mak-
ing an API call to Selenium to send the command to the browser. But you normally
can write Protractor tests without worrying about callbacks and promises, thanks to a
helpful feature of WebDriver called the control flow.

10.4.2 The WebDriver control flow

Most of the tests you’ve written so far seem to be synchronous, even though they exe-
cute WebDriver commands. How is this possible? The trick is that WebDriver com-
mands return a special kind of promise (called a managed promise) that’s executed
later. Unlike a normal promise, a managed promise doesn’t run an asynchronous task.
Instead, it schedules a command to run on Webdriver’s control flow. At the end of
your test, the control flow runs, and all the scheduled browser commands execute. As
a result, you can write your tests as if you were writing asynchronous code, without wor-
rying about promises. The following listing shows how you might write a test relying on
managed promises.

After 1 second, this timer fires.

After 500 ms, this callback
runs and sets another timer.

A second after Event B
happens, this timer fires.

Executes first

182 chapter 10 Advanced Protractor topics

10.16 Test using control flow

 it('should open the dialog with waitForAngular', () => {
 let feedButton = element(by.css('button.feed-button'));
 let closeButton = element(by.css('button[mat-dialog-close]'));
 let dialogTitle =
 element(by.css('app-contact-feed h2.mat-dialog-title'));

 feedButton.click();
 expect(dialogTitle.getText())
 .toContain('Latest posts from Craig Service');
 debugger;

 closeButton.click();
 browser.wait(EC.stalenessOf(dialogTitle), 3000,
 'Waiting for dialog to close');
 expect(dialogTitle.isPresent()).toBeFalsy();
 });

Unfortunately, using the control flow prevents you from debugging Protractor tests
with standard Node.js tools. If you’ve ever used the debugger keyword in a Protractor
test, you’ve seen this. When the debugger hits the breakpoint, the browser isn’t execut-
ing commands; instead, the test synchronously defines a list of commands to run (the
control flow). As a result, in listing 10.16, when you hit the debugger breakpoint, the
Feed button hasn’t actually been clicked yet. Instead, Protractor automatically runs
those commands after each it() block, which is why you don’t see the commands run-
ning if you set a breakpoint in your test.

You don’t have to use the control flow. You also can treat managed promises as if they
were regular promises. You can schedule callbacks to run when the command is exe-
cuted using .then(), as in the following listing.

Listing 10.17 Explicitly using WebDriver promises

 it('should open the dialog with waitForAngular', (done) => {
 let feedButton = element(by.css('button.feed-button'));
 let closeButton = element(by.css('button[mat-dialog-close]'));
 let dialogTitle =
 element(by.css('app-contact-feed h2.mat-dialog-title'));

 return feedButton.click().then(() => {
 return dialogTitle.getText();
 }).then((dialogText) => {
 expect(dialogText).toContain('Latest posts from Craig Service');
 debugger;

Schedules a click command
on the control flow

None of the commands
have executed yet.

The test commands run when
the it() block is complete.

Adds a breakpoint after the Feed
button is clicked

 183The control flow and debugging with Chrome DevTools

 return closeButton.click();
 }).then(() => {
 return browser.wait(EC.stalenessOf(dialogTitle), 3000,
 'Waiting for dialog to close');
 }).then(() => {
 return dialogTitle.isPresent();
 }).then((dialogTitleIsPresent) => {
 expect(dialogTitleIsPresent).toBeFalsy();
 done();
 });

Notice that any interaction at all with the browser is an asynchronous action—this
includes clicking buttons, getting text, waiting on expected conditions, or waiting
for elements to be present. Without the control flow, you’ll need to chain all of these
promises; otherwise, the browser actions won’t run in a defined order. Also, because
the test is now asynchronous, you need to call done() to signal to Jasmine that it’s
done. Because you’re not using the control flow in listing 10.17, the debugger break-
point works as expected—when you hit it, the Feed button has been clicked.

Even though the tests in listings 10.16 and 10.17 do the same thing, the test that uses
the control flow (in listing 10.16) is much easier to read. You can see why the authors of
Selenium WebDriver added the control flow. But the new async/await feature coming
to JavaScript (and available in Node v8) makes asynchronous code that uses the fea-
ture much more readable than code that uses promises. That’s why the Selenium team
has decided to deprecate the control flow (see GitHub issue: https://github.com/
SeleniumHQ/selenium/issues/2969), and why they won’t use the control flow in Sele-
nium 4.x and greater. When using these versions of Selenium, you’ll no longer be able
to write tests as in listing 10.16. Instead, you’ll need to explicitly write asynchronous
tests. But without the control flow, your tests also will be much easier to debug.

10.4.3 The future: async/await

The async and await keywords are a new addition to JavaScript that makes asynchro-
nous code much more readable. The details of async/await are beyond the scope of
this book. All you need to know is that it’s a special syntax that makes waiting on prom-
ises easier.

You can disable the WebDriver control flow by adding SELENIUM_PROMISE_MANAGER:
false to your Protractor config. As of Selenium 4.x, running without the control flow
will be the only option, but setting this flag gives you a way to get your tests ready for con-
trol flow deprecation. Using async/await, you can rewrite the test from the example,
as shown in the following listing, to be much more readable, even though it doesn’t use
the control flow.

https://github.com/SeleniumHQ/selenium/issues/2969
https://github.com/SeleniumHQ/selenium/issues/2969

184 chapter 10 Advanced Protractor topics

Listing 10.18 Test using async/await

 it('should open the dialog with waitForAngular', async () => {
 let feedButton = element(by.css('button.feed-button'));
 let closeButton = element(by.css('button[mat-dialog-close]'));
 let dialogTitle =
 element(by.css('app-contact-feed h2.mat-dialog-title'));

 await feedButton.click();
 let dialogText = await dialogTitle.getText();
 expect(dialogText).toContain('Latest posts from Craig Service');
 debugger;

 await closeButton.click();
 await browser.wait(EC.stalenessOf(dialogTitle), 3000,
 'Waiting for dialog to close');
 let dialogTitleIsPresent = await dialogTitle.isPresent();
 expect(dialogTitleIsPresent).toBeFalsy();
 });

In listing 10.18, you declare the body of your test to be async. This lets you wait for
and get the results of each promise using await. Adding a breakpoint with debugger
works as it did in listing 10.17 with promise chaining. Also, because your test body is
async, Jasmine knows to wait for it—there’s no need to explicitly call done(). Notice
how using async/await makes your test much more readable, compared to waiting on
promises using .then(). That’s why the Selenium team feels comfortable removing
the control flow in Selenium 4.x—JavaScript has finally evolved to the point where
writing asynchronous code is easy. Disabling the control flow lets you do something
that hasn’t been possible until now—debug your tests using the Chrome Inspector!

10.4.4 Using Chrome DevTools

Node.js v6 added the ability to debug Node.js programs using Chrome DevTools. The
test in listing 10.18 has a debugger statement to set a breakpoint right before the Close
button is clicked. You can debug your test by starting Protractor with the following
command:

node --inspect --debug-brk \
 ./node_modules/protractor/bin/protractor ./debugging_test.conf.js

NOTE You need to disable WebDriver control flow by adding SELENIUM_PROMISE
_MANAGER: false to your Protractor config.

If you start Protractor with Node.js debugging enabled, you’ll see something like
figure 10.6.

Declares function as async

Uses await to get the result
of the promise

Adds a breakpoint just before
the Close button is clicked

 185The control flow and debugging with Chrome DevTools

Figure 10.6 Starting Protractor with debugging enabled

In Chrome 60 or later, you can debug Node.js programs by opening about://
inspect. Any Node.js programs ready for debugging will automatically appear in a list.
Figure 10.7 shows what this looks like.

Figure 10.7 Opening DevTools in Chrome

186 chapter 10 Advanced Protractor topics

If you select Open Dedicated DevTools for Node, you’ll get a debugger attached to
your Protractor test. You can step through to the breakpoint you set with the debugger
statement. Figure 10.8 shows what this debugger looks like.

Figure 10.8 Debugging a Protractor test with the Chrome Inspector

If you have some experience writing Protractor tests, you might have seen old debug-
ging tools like ElementExplorer or browser.pause(). These tools were necessary when
WebDriver’s control flow prevented debugging a Protractor test like a normal Node.js
program. But now that the Selenium team has deprecated the control flow, you can use
the much more powerful Chrome DevTools and throw away the old tools.

Summary

¡	You can pass command-line flags to the browser using the capabilities section of
your Protractor config. For example, you can pass '--headless' to Chrome to
start it in headless mode.

¡	Plugins let you add features to Protractor, like changing how test results are
reported or taking screenshots on test failure.

¡	Protractor can take screenshots of your application during a test, and you can use
them to create tests that verify if your application web interface looks right.

 187Summary

¡	New Protractor features like highlightDelay and webDriverLogDir make it eas-
ier to understand what your test is doing as it runs.

¡	The WebDriver control flow is deprecated and won’t be in Selenium 4.x, so you
should start using async/await in your tests.

¡	It’s easy to debug tests using Chrome DevTools.

part 3

Continuous integration

This last part of the book is small but important. The other chapters show you
how to write a variety of tests for your application. But what good is a test if you
never run it? Continuous integration (CI) systems automatically run your entire
test suite with each change, allowing you to catch issues effortlessly as soon as
they’re introduced.

Chapter 11 shows you how to set up two different kinds of CI systems. For the
DIY-minded, we cover in depth how to configure Jenkins, a popular open-source
CI tool, to run your unit and E2E tests. We also show you how to use CircleCI, a
popular commercial CI service.

191

11Continuous integration

This chapter covers
¡	Setting up Jenkins

¡	Running both unit and E2E tests on Jenkins

¡	Configuring CircleCI to run your unit and
E2E tests

Writing tests for your Angular application is only half the battle. You need to remem-
ber to run those tests to make sure you catch regressions as you continue to add
features. Running tests manually can be tedious. It’s better to set up a continuous
integration (CI) system that will integrate with your source repository and automati-
cally run all the tests for each change.

In practice, you develop your Protractor tests on a desktop, where you can watch
the browser and see if your tests are passing. One big stumbling block people run
into when setting up their tests in a CI system is that the server doesn’t normally have
a GUI. (It’s a headless environment.) In this chapter, we’ll show how to set up your tests
to run automatically in a headless environment. First, we’ll cover setting up your own
CI system using the open source Jenkins server; then we’ll show you how easy it can
be to set up testing with CircleCI, which is a hosted CI service that has a free tier.

192 chapter 11 Continuous integration

11.1 Jenkins
Jenkins is an open source CI server with a powerful web interface. It was originally
created for testing Java applications, but, thanks to a rich ecosystem of plugins, Jenkins
can now test almost any project in any language. You’re going to set up a Jenkins server
that will run your tests on Node.js.

11.1.1 Setting up Jenkins

Jenkins is a large, complicated project, and the full details of installing it are beyond
the scope of this book. The example in this chapter assumes you’re running Jenkins on
an Ubuntu server, but you also can install it on macOS and Windows. Follow the offi-
cial instructions for installing Jenkins on your server at https://jenkins.io/doc/book/
installing, and then come back here when you’ve set up the first admin user.

You need a browser to run both unit and end-to-end (E2E) tests; you’ll use Chrome
for this example. Chrome needs a GUI to run, and your server is headless, so you’ll
install Xvfb. You also need Node.js to run the tests.

NOTE In Linux, the GUI is provided by an X server. Xvfb is an X server that
uses a virtual framebuffer (vfb) for display. This means that the graphical display
is entirely in memory. Xvfb is a good tool to use if you need to use graphical
programs on a Linux server that may not have a display attached.

The following listing shows how to install the prerequisites for this setup on Ubuntu.
You can use apt to install Xvfb, but you should manually install Google Chrome and
Node Version Manager (nvm) to get their latest versions.

Listing 11.1 Install prerequisites: Chrome, Xvfb, and Node

sudo apt-get update
sudo apt-get install Xvfb -y

sudo sh -c 'echo "deb [arch=amd64] \
 http://dl-ssl.google.com/linux/chrome/deb/ stable main" >> \
 /etc/apt/sources.list.d/google-chrome.list'

wget -q -O - https://dl-ssl.google.com/linux/linux_signing_key.pub \
 | sudo apt-key add -

sudo apt-get update
sudo apt-get install google-chrome-stable –y

Installs Xvfb

Installs Google Chrome

https://jenkins.io/doc/book/installing
https://jenkins.io/doc/book/installing

 193Jenkins

11.1 Jenkins
Jenkins is an open source CI server with a powerful web interface. It was originally
created for testing Java applications, but, thanks to a rich ecosystem of plugins, Jenkins
can now test almost any project in any language. You’re going to set up a Jenkins server
that will run your tests on Node.js.

11.1.1 Setting up Jenkins

Jenkins is a large, complicated project, and the full details of installing it are beyond
the scope of this book. The example in this chapter assumes you’re running Jenkins on
an Ubuntu server, but you also can install it on macOS and Windows. Follow the offi-
cial instructions for installing Jenkins on your server at https://jenkins.io/doc/book/
installing, and then come back here when you’ve set up the first admin user.

You need a browser to run both unit and end-to-end (E2E) tests; you’ll use Chrome
for this example. Chrome needs a GUI to run, and your server is headless, so you’ll
install Xvfb. You also need Node.js to run the tests.

NOTE In Linux, the GUI is provided by an X server. Xvfb is an X server that
uses a virtual framebuffer (vfb) for display. This means that the graphical display
is entirely in memory. Xvfb is a good tool to use if you need to use graphical
programs on a Linux server that may not have a display attached.

The following listing shows how to install the prerequisites for this setup on Ubuntu.
You can use apt to install Xvfb, but you should manually install Google Chrome and
Node Version Manager (nvm) to get their latest versions.

Listing 11.1 Install prerequisites: Chrome, Xvfb, and Node

sudo apt-get update
sudo apt-get install Xvfb -y

sudo sh -c 'echo "deb [arch=amd64] \
 http://dl-ssl.google.com/linux/chrome/deb/ stable main" >> \
 /etc/apt/sources.list.d/google-chrome.list'

wget -q -O - https://dl-ssl.google.com/linux/linux_signing_key.pub \
 | sudo apt-key add -

sudo apt-get update
sudo apt-get install google-chrome-stable –y

Installs Xvfb

Installs Google Chrome

curl -o- \
 https://raw.githubusercontent.com/creationix/nvm/v0.33.2/install.sh \
 | bash
nvm install 8

Now that you have your prerequisites, you’re ready to install the plugins you need
using Jenkins’ browser-based admin interface. In the browser window, you can install
plugins by navigating to Manage Jenkins and then clicking the Manage Plugins link.
The plugins you need for your Jenkins job are the JUnit plugin, the Xvfb plugin, and
the nvm wrapper plugin, all shown in figure 11.1. The JUnit plugin will interpret and
show a trending history of your test. The nvm wrapper plugin will allow your test to
launch Protractor with Node.js, and the Xvfb plugin will allow you to run your test in a
browser.

Install nvm wrapper and Xvfb
plugin under the available tab

Installed by default

Figure 11.1 JUnit, nvm wrapper, and Xvfb plugins

You’ll also need to set some configuration options for Jenkins. In the same browser
window, you can configure Jenkins by clicking Manage Jenkins, then navigating to Global
Tool Configuration. From there, you need to set a valid path for both JAVA_HOME and
Xvfb, shown in figure 11.2. Jenkins requires Java to be set in the path to launch the Sele-
nium standalone server and Xvfb to run the virtual desktop environment.

Installs a node version manager

Uses node version manager to install
node version 8

https://jenkins.io/doc/book/installing
https://jenkins.io/doc/book/installing

194 chapter 11 Continuous integration

Set the path to Java jdk

Set the path to Xvfb

Figure 11.2 Jenkins Global Tool Configuration

Now that you have all the components required to run a Protractor test, let's review
the test in the GitHub repository (http://mng.bz/z22f). In Jenkins, create a new free-
style project, go to the Source Code Management section, and add the git repository as
https://github.com/testing-angular-applications/testing-angular-applications.git.

11.1.2 Unit tests

You use Karma to run your unit tests. Karma takes care of starting a browser, connect-
ing to it, and running your tests there. Because Karma runs your unit tests in a real
browser, your tests have access to a real DOM and your client code runs exactly as it
will in production. In fact, you can use Karma to run your unit tests on other browsers,
like Firefox and Safari, to make sure your application is compatible with them. To keep
things simple, for this example you’ll run the unit tests for your project on Chrome.

Jenkins expects test results to be in an XML file with the same format the JUnit would
use to report Java test results. This format has become a de-facto standard, and test

http://mng.bz/z22f

 195Jenkins

frameworks in a variety of languages can now report test results in this JUnit-XML style.
Karma has a plugin called karma-junit-reporter, which outputs the results of run-
ning Karma in this format so that Jenkins can understand them. To run your unit tests
on Jenkins, you’ll create a separate configuration for Karma that uses this plugin.

As noted earlier, Chrome’s headless mode starts Chrome without a display. Your unit
tests don’t need a GUI, so even though you’ve already set up Xvfb, go ahead and use
headless Chrome to run your unit tests. Don’t worry; you’ll be using Xvfb soon.

The karma-chrome-launcher plugin will start headless Chrome if you specify the
browser as ChromeHeadless. The following listing shows the Karma config for your CI
server, using headless Chrome and JUnit XML reporting.

Listing 11.2 Karma configuration for CI server—chapter11/karma-ci.conf.js

module.exports = function (config) {
 config.set({
 basePath: '',
 frameworks: ['jasmine', '@angular/cli'],
 plugins: [
 require('karma-jasmine'),
 require('karma-chrome-launcher'),
 require('karma-jasmine-html-reporter'),
 require('karma-junit-reporter'),
 require('@angular/cli/plugins/karma')
],
 reporters: ['junit'],
 junitReporter: {
 outputDir: 'karma-results',
 outputFile: 'karma-results.xml'
 },
 angularCli: {
 environment: 'dev',
 },
 port: 9876,
 logLevel: config.LOG_INFO,
 browsers: ['ChromeHeadless'],
 autoWatch: false,
 singleRun: true
 });
};

Uses the JUnit reporter to create
JUnit-style XML

Outputs the results in the
'karma-results' directory

Runs the tests in headless Chrome

In CI, only runs the tests once and
doesn’t watch for changes

196 chapter 11 Continuous integration

This is a Karma configuration separate from the one you use during development. For
the rest of this book, we’ve kept the test cases and website in separate directories, so
you can follow along as you write tests in each chapter.

NOTE In practice, it’s best to have unit tests next to the code they test. The
chapter11/run_unit_ci.sh script in the project repo (http://mng.bz/z22f)
copies the tests and Karma config to the website/ directory before running
Karma.

Create a new project in Jenkins by clicking New Item on the main page. Create a new
Freestyle project. In the configuration for the new project, select Git under Source
Code Management. The build config for your unit tests is shown in figure 11.3.

Figure 11.3 Build configuration for the unit test Jenkins job

All this config needs to do is call the run_unit_ci.sh script. In general, it’s better to
keep as much of your CI process as possible in a script in your source repo, where it’s
easy to debug and track changes. This also keeps your Jenkins config simple, because
all it needs to do is call that script. Your Jenkins job config also prints out the versions of
npm, Node, and Chrome. Jenkins saves the console output for each run, and it can be
helpful to see exactly which versions of these tools were used in an old run.

You also need to tell Jenkins where to find the JUnit XML output for your test run.
You do that configuration in the Post-Build Actions section, as shown in figure 11.4.

http://mng.bz/z22f

 197Jenkins

Publish the XML so we
get per-testcase history

Archive the test result XML

Figure 11.4 Post-build actions for the unit test Jenkins job

Note that you both archive the XML and publish a JUnit test report based on it. Pub-
lishing the JUnit test report will create a chart of test pass/failure over time, and it gives
you detailed information about which test cases failed. Archiving the XML means that
Jenkins will keep the file around, which can be helpful later for debugging purposes.

11.1.3 E2E tests

Setting up Jenkins to run E2E tests is quite similar to setting it up to run unit tests. You
could use headless Chrome again, but for instructional purposes, you’ll try something
different and use regular Chrome and Xvfb. Also, instead of using directConnect as
you’ve done in previous chapters, you’ll use a local driver provider, which will tell Pro-
tractor to launch the Selenium server on a random available port. You’ll use this option
because you might not have a Selenium standalone server running in the background.
As before, you’ll turn on JUnit-style reports so you get detailed information about test
runs in Jenkins.

Before you set up Jenkins, let’s look at the Protractor configuration file (listing 11.3).
You want to set up your tests to behave differently when running on Jenkins. In the con-
figuration file, you’ll set an IS_JENKINS environment flag. When your tests aren’t run-
ning on Jenkins and that flag isn’t set, the default behavior will be to use directConnect.
In your Jenkins environment, you’ll set the IS_JENKINS environment variable to true.
When the flag is set, the test won’t launch with directConnect, and Protractor will han-
dle starting and stopping your Selenium standalone server for you. The IS_JENKINS flag
also guards the onPrepare function to generate only JUnit reports on Jenkins.

198 chapter 11 Continuous integration

Listing 11.3 Protractor configuration file—chapter11/protractor.conf.js

exports.config = {
 directConnect: !process.env.IS_JENKINS,
 capabilities: {
 browserName: 'chrome'
 },
 baseUrl: 'https://testing-angular-applications.github.io',
 specs: ['e2e/**/*.spec.ts'],
 onPrepare: () => {
 if (process.env.IS_JENKINS) {
 let jasmineReporters = require('jasmine-reporters');
 let junitReporter = new jasmineReporters.JUnitXmlReporter({
 savePath: 'output/',
 consolidateAll: false
 });
 jasmine.getEnv().addReporter(junitReporter);
 }
 require('ts-node').register({
 project: 'e2e'
 });
 },
};

When you configure the Jenkins job for your E2E tests, you’ll need to first set up the
build environment. In the Build Environment section shown in figure 11.5, select these
two options: Start Xvfb Before the Build and Run the Build in an NVM Managed Envi-
ronment (with Node Version 8).

Run Xvfb for the job

Use node 8

Figure 11.5 Build environment for the E2E Jenkins job

Launches with a local driver provider
instead of directConnect

Guards onPrepare to generate
only JUnit-style reports

 199Jenkins

Next, set up an execute shell build step with the snippet shown in listing 11.4. In the
shell commands, you specify the environment variable that your Protractor configura-
tion file is using. You won’t be using directConnect and you’ll be generating JUnit style
reports because you’ve set IS_JENKINS to true.

Listing 11.4 Jenkins execute shell

export IS_JENKINS=true

node --version
npm --version
google-chrome --version

cd $WORKSPACE/chapter11
npm install
npm run webdriver-update

Finally, in the Post-Build Actions section, you’ll specify Archive the Artifacts for the
JUnit reports. You’ll also use Publish JUnit Test Result Report with the same file set
you’re planning to archive (figure 11.6).

Archive the JUnit XML reports

Use JUnit XML reports for plots

Figure 11.6 Post-build actions for the E2E Jenkins job

Sets an environment variable

Checks versions for node, npm,
and the Chrome browser

Changes directory to the test_jenkins folder

Installs node modules
Runs the protractor test

200 chapter 11 Continuous integration

Publishing a JUnit test result report will create a history in Jenkins of your test runs.
After more than one build occurs, the Jenkins job will display a plot of failed and pass-
ing tests along with a set of the last successful artifact outputs. Figure 11.7 shows the
summary plot and artifacts for your test job.

Plot of test results

Artifacts saved

Figure 11.7 Jenkins test results display

As previously mentioned, you could have used headless Chrome instead of Xvfb, and
you also could have used directConnect instead of launching the test with the local
driver provider option. In the next section, you take the same test and run it on CircleCI,
but with headless Chrome and directConnect instead.

11.2 CircleCI
CircleCI is another continuous integration service that integrates with GitHub and is
free for open-source projects; it also has a paid enterprise tier. The neat thing about
CircleCI version 2.0 is that it’s optimized for Docker images. Docker is a container-
based system for Linux virtualization, so when you use a Docker image, it’s a virtual
Linux distribution running preinstalled software. You can use a container to install
Node.js and Chrome in your CI environment.

CircleCI makes it easy to run your tests more often. This gives you the option of test-
ing things automatically that you might have tested manually before. For example, you
can use your new Protractor CI setup to automatically test the appearance of your app
using tests that take screenshots.

Before you set up your CircleCI configuration, add to the previous Protractor config-
uration file with a new environment variable, IS_CIRCLE, in listing 11.5. This additional
environment variable will run your CircleCI tests with headless Chrome using direct-
Connect. On Jenkins, it will run with a local launch of the Selenium standalone server
with JUnit-style reports. Finally, in your development environment, you’ll use direct-
Connect without headless mode so that you can see what’s happening in your E2E tests.

 201CircleCI

Listing 11.5 Protractor configuration for CircleCI

exports.config = {
 directConnect: (!process.env.IS_JENKINS && true),
 capabilities: {
 browserName: 'chrome',
 chromeOptions: {
 args: (process.env.IS_CIRCLE ? ['--headless'] : [])
 }
 },
 baseUrl: 'https://testing-angular-applications.github.io',
 specs: ['e2e/**/*.spec.ts'],
 onPrepare: () => {
 if (process.env.IS_JENKINS) {
 let jasmineReporters = require('jasmine-reporters');
 let junitReporter = new jasmineReporters.JUnitXmlReporter({
 savePath: 'output/',
 consolidateAll: false
 });
 jasmine.getEnv().addReporter(junitReporter);
 }
 require('ts-node').register({
 project: 'e2e'
 });

 },
};

Next, you need to set up CircleCI by creating a configuration file, ./circle/config.yml.
You can use a CircleCI-maintained docker image that includes Node and browsers. Then
you need to specify the shell commands to run your tests. The only difference between
the shell commands in the following listing and the Jenkins shell commands is that in
CircleCI, you need to change to the website directory and run the npm command.

Listing 11.6 CircleCI configuration file .circle/config.yml

version: 2
jobs:
 build:
 working_directory: ~/workspace
 docker:
 - image: circleci/node:8-browsers
 steps:
 - checkout

 - run: export IS_CIRCLE=true
 - run: node --version

Uses headless Chrome because
IS_CIRCLE is set to true

Specifies to use CircleCI version 2.0

Specifies the working directory that will be
used to check out the git repository

Downloads the CircleCI docker
image for Node 8 with browsers

Sets the environment variable IS_CIRCLE so
your tests will run with headless Chrome

202 chapter 11 Continuous integration

 - run: npm --version
 - run: google-chrome --version

 - run: cd website && npm install
 - run: cd website && npm run karma start karma-ci.conf.js
 - run: cd website && npm run e2e protractor.conf.js

Note that running unit and E2E tests in CircleCI is easy: you specify a shell command to
run. As with Jenkins, CircleCI can take test results in JUnit XML format to give detailed
test information. Unlike Jenkins, CircleCI will automatically search your project and
try to interpret any test output XML files that it finds. If you don’t care about detailed
results, you don’t have to produce a JUnit XML file. CircleCI will consider the test
failed if any of the steps return a nonzero exit code, which Karma and Protractor both
do if a test fails.

Summary

¡	If you need to set up your own CI, use Jenkins server. It requires some additional
setup steps for you to be able to run your unit and E2E tests.

¡	If your tests can produce a JUnit-style XML test result, Jenkins can use that infor-
mation to create detailed reports of your test runs.

¡	CircleCI is an easy to use hosted solution for CI with a free tier, and it’s good if
you need a quick solution for setting up a CI system.

Changes directory to the website folder,
then runs the unit tests

Runs the E2E tests

203

appendix A
Setting up the sample project

This appendix covers
¡	Installing prerequisites

¡	Installing the Angular CLI, along with Jasmine,
Protractor, and Karma

In this book, you’ll use the Angular CLI to run tasks, execute tests, and manage
dependencies. In this appendix, we’ll look at the Angular CLI, and you’ll install the
tool itself. By installing the Angular CLI, you’ll also install Jasmine, Protractor, and
Karma. When you’re finished with that, you’ll get the sample project up and run-
ning. Let’s dive in!

A.1 Introducing the Angular CLI
One of the major pain points in the past was that setting up an Angular project could
be challenging and time-consuming. In March 2017, the Angular team launched a
tool called the Angular command-line interface (CLI) to address that issue. The
Angular CLI greatly cuts the time it takes to set up an Angular project.

At the time of this writing, the Angular CLI gives you access to about a dozen com-
mands that are useful when creating and maintaining Angular applications. In this

204 appendix a Setting up the sample project

book, you’ll mainly use a few of those commands for testing purposes. Table A.1 shows
the commands you’ll use and their respective description that we’ll use throughout the
book.

Table A.1 Angular CLI commands that you’ll use

Command Description

ng test Runs your unit tests

ng e2e Runs your end-to-end tests

For a full list of commands, visit https://github.com/angular/angular-cli/wiki. If you
want to learn more about the Angular CLI in general, visit https://cli.angular.io/.

A.2 Installing prerequisites
Before you install the Angular CLI, you need to make sure you have two prerequisites
installed:

¡	Node.js version 6.9.0 or higher
¡	npm version 3 or higher

To make sure you have a version of Node.js that’s 6.9.0 or higher, run the following
command in your terminal:

node –v

You should see output similar to the following in the terminal:

v8.7.0

If you need to update your version of Node.js, visit https://nodejs.org/en/ to install
the latest version, or at least version 6.9.0. If you would like to choose which version to
install, you can go to https://nodejs.org/dist/ to select the version you’d prefer.

TIP If you need to switch versions of Node.js frequently because of compat-
ibility issues with different projects, we highly recommend that you use nvm.
nvm is the Node Version Manager that makes maintaining versions of Node.js
a snap. You can have multiple versions of Node.js installed and switch between
the versions whenever you need to. To install and use nvm, visit https://github.
com/creationix/nvm.

Now that you have Node.js installed, you need to make sure you have a version of npm
that’s higher than 3. Run the following command:

npm –v

If you’ve installed npm correctly, you should see something like this in your terminal:

5.4.2

https://github.com/angular/angular-cli/wiki
https://cli.angular.io/
https://nodejs.org/en/
https://nodejs.org/dist/
https://github.com/creationix/nvm
https://github.com/creationix/nvm

 205Installing prerequisites

If you don’t see a version higher than version 3, try reinstalling Node.js by download-
ing a fresh copy of Node.js at https://nodejs.org/en/. Because npm ships with Node.
js, it should give you the most up-to-date version of npm by installing Node.js. If that
doesn’t work, try updating npm using npm (that’s not a typo) by running the following
command:

npm install npm@latest -g

That’s it in terms of prerequisites. You can now install the Angular CLI. Follow the
steps we describe to get it up and running.

A.2.1 Installing the Angular CLI the first time

If you’ve never installed the Angular CLI, run the following command to install it
globally:

npm i -g @angular/cli@latest

That’s it! You’re good to go! After it’s installed, go to “Verifying the installation” in
section A.2.2.

A.2.2 Updating an old version of the Angular CLI

If you have an old version of the Angular CLI already installed, you may have to take
a couple of steps, depending on which version you have. The difference is that after
version 1.0.0-beta.28, the name of the project, and its scope, was changed from angu-
lar-cli to @angular/cli. To find out which version you have installed, run the follow-
ing command:

ng –v

In your terminal, you should see the current version of the Angular CLI that’s installed.

updating versions equal to 1.0.0-beta.28 or lower

If you have a version installed equal to or lower than 1.0.0-beta.28, run the following
commands:

npm uninstall -g angular-cli
npm cache clean
npm install -g @angular/cli@latest

Once you’re done, you can skip to “Verifying the installation.”

updating versions higher than 1.0.0-beta.28
If you need to update from a version higher than 1.0.0-beta.28, run the following
commands:

npm uninstall -g @angular/cli
npm cache clean
npm install -g @angular/cli@latest

https://nodejs.org/en/

206 appendix a Setting up the sample project

verifying the installation

Now that you have the Angular CLI installed, make sure it’s installed properly before
going any further. Run the following command:

ng –v

If all goes well, your output should look something like figure A.1.

Figure A.1 The Angular CLI version screen

NOTE If you don't see output like figure A.1 or any type of verification say-
ing that the Angular CLI is installed, visit the installation section of the Angu-
lar CLI README at http://mng.bz/WjIS or the updating section at http://
mng.bz/jq0v. Otherwise, check out the Testing Angular Applications forum
at http://mng.bz/9i4M. There, you can post questions, or you may find that
someone else has asked a question about the same issue and already gotten an
answer.

A.3 Installing the sample project
Now go ahead and clone the sample code for the project. First, navigate to a directory
in your terminal where you would like to store the sample code for your project—for
example, at ~/Software/GitHub. Clone the repo by running the following command:

git clone https://github.com/testing-angular-applications/testing-angular-
applications.git

After you've cloned the site, run the following command to navigate to the directory
with your app:

cd testing-angular-applications/website

A.4 Installing dependencies
You need to make sure you have all the necessary dependencies that the application
requires by running this command:

npm install

http://mng.bz/WjIS
http://mng.bz/jq0v
http://mng.bz/jq0v
http://mng.bz/9i4M

 207Running the application

TIP You’re going to do a lot of typing in this book and throughout your career.
Knowing aliases will save you valuable time and increase your efficiency. For
example, you can use npm i instead of npm install. In this book, you’ll get the
chance to practice using some aliases. If you want to learn more about possible
shortcuts and aliases, run the following command:

npm <command> --help

You also can use the --h flag (shorthand for --help). If viewing the help menu on
your console is a little challenging, check out the npm documentation online at
https://docs.npmjs.com/ under the “CLI Commands” section.

A.5 Running the application
To run the application, run the following command in your terminal:

ng serve

You also can abbreviate that to ng s. After running the command, you should see
something like the screenshot in figure A.2.

Figure A.2 Contacts app screen

The sample project is now up and running, and you’re ready to write some tests!

NOTE If you have issues compiling the project, you can try reinstalling the npm
packages. First, delete the existing node_modules folder by running [start
code]rm -rf node_modules[/end code]. Then run [start code]package
-lock.json[/end code], and finally run [start code]npm i[/end code] to
reinstall the npm packages.

Otherwise visit the Testing Angular Applications forum at http://mng.bz/9i4M for
help as mentioned earlier.

https://docs.npmjs.com/
http://mng.bz/9i4M

209

appendix B
Additional resources

If you’re looking for more testing resources for additional learning, then you’re in
luck! The following collection of books and other resources will help you to further
sharpen your testing skills.

B.1 Angular testing

Resource Description Link

Website Angular official testing documentation https://angular.io/guide/testing

Online video End-to-End Testing Angular
Applications

https://www.coursera.org/lecture/
angular/end-to-end-testing-angular
-applications-atcs6

Blog post Angular Unit Testing performance https://blog.angularindepth.com/
angular-unit-testing-performance
-34363b7345ba

B.2 General testing

¡	The Art of Unit Testing with examples in C#, Second Edition, Roy Osherove, Man-
ning Publications, 2013

¡	Effective Unit Testing: A guide for Java developers, Lasse Koskela, Manning Publi-
cations, 2013

¡	Test Driven: Practical TDD and Acceptance TDD for Java Developers, Lasse Koskela,
Manning Publications, 2007

https://angular.io/guide/testing
https://www.coursera.org/lecture/angular/end-to-end-testing-angular-applications-atcs6
https://www.coursera.org/lecture/angular/end-to-end-testing-angular-applications-atcs6
https://www.coursera.org/lecture/angular/end-to-end-testing-angular-applications-atcs6
https://blog.angularindepth.com/angular-unit-testing-performance-34363b7345ba
https://blog.angularindepth.com/angular-unit-testing-performance-34363b7345ba
https://blog.angularindepth.com/angular-unit-testing-performance-34363b7345ba

210 appendix b Additional resources

¡	Test Driven-Development: By Example, Kent Beck, Addison-Wesley Professional, 2002
¡	Growing Object-Oriented Software, Guided by Tests, Steve Freeman and Nat Pryce,

Addison-Wesley Professional, 2009
¡	Agile Testing: A Practical Guide for Testers and Agile Teams, Lisa Crispin and Janet

Gregory, Addison-Wesley Professional, 2009
¡	More Agile Testing: Learning Journeys for the Whole Team, Lisa Crispin and Janet Greg-

ory, Addison-Wesley Professional, 2014
¡	Developer Testing: Building Quality into Software, Alexander Tarlinder, Addison-Wes-

ley Professional, 2016

211

Symbols
$timeout service 155–156
@Component decorator 44
-highlightDelay flag 178
@Injectable class decorators 73, 76
*ngFor 131
@types node 114

A
ActivatedRoute components, testing 101–102
ActivatedRoute.snapshot.data 108
afterEach function 19, 63
alertIsPresent 146
Angular platform

CLI
creating services with 76–77
installing 205
overview of 203–204
updating 205–206
verifying installation of 206

import statements 30–32
nontesting module statements 32
pages without, testing 142–145
routers in 94–97

configuring 95–96
route guards 96–97

services in 73–76
dependency injections 74–75
@Injectable class decorators 76

testing 1–9, 209–210
overview of 2–3

TypeScript 3–5
types of tests 5–9

waiting for, automatically 144–145
applications, running 207
arrays, mapping contact lists to 133–135
async/await keywords 183–184
asynchronous code, changes to testing 86–88
asynchronous functions 180–181
asynchronous services, testing for failures with 88–

89
<a> tag 120
attribute directives

overview of 45
testing 45–54

adding color as second parameter 48
creating tests for 49–51
setting up test suites 50–51

AuthenticationGuard 106

B
<base href> tag 94
BDD (behavior-driven development) 14
beforeEach functions, adding 36, 34–37
blocking proxy features 179
browser event loops 155
browser.executeScript method 151
browser.pause() method 186
browser.sleep() method 145
browsers, obtaining elements from 151–152
browserstackKey 163
browserstackUser 163

index

212 index

BrowserStorage 75
BrowserStorageAsyncMock 88
BrowserStorageMock 80
browser.takeScreenshot() method 170
browser.waitForAngularEnabled() function 145
browser.waitForAngular() function 171, 173
browser.wait function 124, 145, 150–151
by methods 125–130

C
CanActivateChild 97
canActivate property 97, 105
CanDeactivate 97
catch method 89
Chrome DevTools, debugging Protractor

with 180–187
async/await keywords 183–184
asynchronous functions 180–181
promises 180–181
WebDriver control flow 181–183

chromedriver binary 116, 162
CI (continuous integration) 191–202

CircleCI 200–202
Jenkins 192–200

E2E tests 197–200
setting up 192–194
unit tests 194–197

CircleCI platform 200–202
clear method 129
click method 137
CLI (command-line interface) 2
code quality 7
color, adding as parameter 48
[color] parameter 48
command-line interface (CLI) 2
compareScreenshot() function 172
comparing screenshots 172–175
components

directives vs. 44–45
of router parameters, testing 103–104
overview of 2
testing 25–41, 29–41

adding tests 37–41
basic component tests 26–29
importing dependencies 30–33
setting up tests 33–37

conditions, custom 150–152
browser.wait 150–151
getting elements from browser 151–152

configuration files, in Protractor 161–170
desired capabilities 163–166
driver provider options 162–163
environment variables 168–170
plugins 166–168

configureTestingModule method 51
ContactClass 18
ContactDetail component 44
ContactEditComponent class 102
ContactFeedDialogComponent 157
contactId 94
Contact interface 134
ContactListComponent 72
ContactListPageObject 138
contact lists

mapping to arrays 133–135
waiting to load 146–147

ContactPreferences 83
contacts

creating 119–123
with invalid data 123–125

Contacts App Starter 6
ContactService, faking 34
contact variable 18
control flow, in Protractor 180–187

async/await keywords 183–184
asynchronous functions 180–181
promises 180–181
using Chrome DevTools 184–187
WebDriver control flow 181–183

createClickButton method 137
createComponent method 51
curr parameter 137

D
data, resolving before loading routes 107–108
debugging

Protractor, experimental features 176–179
blocking proxy 179
highlight delay 178–179
WebDriver logs 176–178

Protractor with Chrome DevTools 180–187
async/await keywords 183–184

 213index

asynchronous functions 180–181
promises 180–181
using Chrome DevTools 184–187
WebDriver control flow 181–183

defaultTrueElementIndex 52
default usage, for pipes 61–65
dependencies

importing 30–33
Angular import statements 30–32
Angular nontesting module statement 32
dependency statements 32–33

installing 206
dependency injections 74–75
describe function 14, 63
dialog, testing 147–148
directConnect flag 116, 162
directives

components vs. 44–45
overview of 2, 44–45
testing 43–58
testing attribute directives 45–54

adding color as second parameter 48
creating tests for 49–51
setting up test suites 50–51

testing structural directives 54–58
creating tests for 56–57
setting up test suites 56–57

types of 45
disabling waitForAngular 143–144
dispatchEvent method 53
doBrowserThings() method 155
doClassesMatch method 52
done method 84
driver provider options, in Protractor 162–163

E
E2E (end-to-end) tests

on Jenkins 197–200
overview of 6–7
unit tests vs. 7–9

ElementFinder 120, 122
element methods 125–130
elements

interacting with in Protractor 118–125
contacts with invalid data 123–125
creating contacts 119–123

interacting with list of 130–137
filtering web elements 130–132
mapping contact lists to arrays 133–135
reduce function 135–137

obtaining from browser 151–152
waiting to become stale 148–149

elementToBeClickable 146
elementToBeSelected 146
environment variables, in Protractor 168–170
expected conditions 154–155
ExpectedConditions object, waiting with 145–149

testing dialog 147–148
waiting for contact lists to load 146–147
waiting for elements to become stale 148–149

expectedOutlineStarList 53
expectedSolidStarList 52
expect method 14, 83

F
failing test 17
faking ContactService 34
FavoriteIcon 44
FEED_UPDATES array 153
file globbing 119
filterFn function 131
filter function 130
filtering web elements 130–132
findAllPosts() function 152
findElement method 127
fixture.detectChanges() method 51
fixture variable 50
flaky test 142
flushMicrotasks 88
format parameter 65
format variable 66
FormBuilder 74

G
generating links 98
getAttribute method 128
getCssValue method 128
getElement function 56
getItem method 75, 79
get method 20
getPropertyAsync method 88
getProperty() method 80, 85

214 index

getStarElement method 52, 56
getTagName method 128
getText method 129
getWebElement method 127
globbing 119

H
happy path 82
headless environment 191
headless mode 164
highlight delay feature 178–179
HighlightRowDirective 43
HttpClient 72
HttpClientTestingModule 90
HTTP services, with observables 89–92

I
IContactPreferences interface 80
id property 21
<i> element 50
importing dependencies 30–33

Angular import statements 30–32
Angular nontesting module statement 32
dependency statements 32–33

import statements
in Angular 30–32
overview of 57

IndexedDB 87
InjectionToken function 75
installing

Angular CLI
overview of 205
verifying installation of 206

dependencies 206
prerequisites 204–206
Protractor 117–118
sample projects 206

invisibilityOf 146
I/O operation 180
IS_CIRCLE variable 200
isDisplayed method 129
isElementPresent method 128
IS_JENKINS flag 197, 199
isPresent method 128
it method 14, 84, 182

J
jasmine-reporters node 167
Jenkins server 192–200

E2E tests on 197–200
setting up 192–194
unit tests on 194–197

K
karma-chrome-launcher plugin 195
karma-junit-reporter plugin 195

L
lazy loading 97
lifecycle hooks 95, 166
links, generating 98
loadContact method 38
loading contact lists 146–147
loggingPrefs 164
long-running tasks 152–159

$timeout service 155–156
Angular zone 156–157
browser event loops 155
fixing tests 157–159
using expected conditions 154–155

looksSame.createDiff() function 173

M
managed promise 181
map function 133–134
mapping contact lists, to arrays 133–135
matcher functions 15
mimicking user interactions 8
mock observables 105
mouseenter event 53
multiCapabilities 166

N
name property 20
NavConfigService 98
NavigationMenu component 98
NewContactPageObject 138
ngOnInit method 103
ng serve command 207
ng test command 53
NgZone.runOutsideAngular() function 157

 215index

node_module folder 118
nontesting module statements, in Angular 32
not.toBeNull() method 19
npm install command 207

O
observables

HTTP services with, testing 89–92
mock 105

onPrepare function 116, 166
OOP (object-oriented programming) 4

P
package.json 114–115
page objects, in Protractor 137–140
parameters

multiple, testing pipes with 67–69
single, testing pipes with 65–67

phone numbers
invalid, testing pipes for 64–65
valid, testing pipes for 62–64

pipes
overview of 2
testing 60–61, 60–69

testing default usage for pipes 61–65
testing pipes with multiple parameters 67–69
testing pipes with single parameter 65–67

plugins, in Protractor 166–168
pollForever() function 156
postTest() function 171
pree2e script 115
PreferencesService

testing 82, 77–83, 82–83
writing 78–82

pre-loading data 105
prerequisites, installing 204–206

installing Angular CLI 205
updating Angular CLI 205–206

presenceOf 146
private access modifier 5
process.env.BROWSER_NAME 169
process.env.DIRECT_CONNECT 169
process.env.SELENIUM_ADDRESS 169
Promise.all method 135
promise chaining 174
Promise.resolve() method 155

promises
overview of 180–181
services with, testing 83–89

Protractor 111–140, 161–187
by methods 125–130
configuration files 116, 161–170

desired capabilities 163–166
driver provider options 162–163
environment variables 168–170
plugins 166–168

control flow 180–187
async/await keywords 183–184
asynchronous functions 180–181
promises 180–181
using Chrome DevTools 184–187
WebDriver control flow 181–183

debugging with Chrome DevTools 180–187
async/await keywords 183–184
asynchronous functions 180–181
promises 180–181
using Chrome DevTools 184–187
WebDriver control flow 181–183

element methods 125–130
experimental debugging features in 176–179

blocking proxy 179
highlight delay 178–179
WebDriver logs 176–178

installing 117–118
interacting with elements 118–125

contacts with invalid data 123–125
creating contacts 119–123

interacting with list of elements 130–137
filtering web elements 130–132
mapping contact lists to arrays 133–135
reduce function 135–137

overview of 112–114
page objects 137–140
running 117–118
screenshot testing 170–175

comparing screenshots 172–175
taking screenshots 170–171
taking screenshots on test failure 171–172

test files 117
writing tests 114–117

pure function 59
pyramid of doom 181

216 index

R
reduce function 135–137
resolve method 97
resolver guard 105
resolving data 105
routed components, testing 97–105
route guards 95, 97–105, 96–107
router configuration 95
RouterLink directive 98
Router.navigate() method 101
router parameters, testing 101–105

setting up test 102–103
testing ActivatedRoute components 101–102
testing components 103–104
using mock observables 105

routers
in Angular 94–97

configuring 95–96
route guards 96–97

testing 93–108
testing navigation with

RouterTestingModule 97–101
configuring routes 99
creating test components 99
generating links 98
setting up routes 99–101

RouterTestingModule
configuring routes 99
creating test components 99
generating links 98
setting up routes 99–101

routes
advanced, testing 105–107, 105–108
configuring 99
resolving data before loading 107–108
setting up 99–101

routing 3

S
sanity check 6
sauceKey 163
sauceUser 163
saveContact method 37
saveProperty() method 80, 82
screenshots

comparing 172–175

in Protractor, testing 170–175
on test failure 171–172
taking 170–171

seleniumAddress 162
Selenium Server 112
seleniumServerJar 163
sendKeys method 121, 129, 138
separation of concerns principle 72
services 2

creating with Angular CLI 76–77
in Angular 73–76

dependency injections 74–75
@Injectable class decorators 76

overview of 72
testing 83–89, 71–92

setItem method 75, 79
setProperty 85
shouldThrow assertion 82
ShowContactsDirective 55
side effect 59
snapshot 102
spy function 80
stale, elements 148–149
stalenessOf 146
starElement variable 52
structural directives

overview of 45
testing 54–58

creating tests for 56–57
setting up test suites 56–57

styleUrls option 44

T
takeScreenshot() method 170
templateUrl option 44
TestComponent class 50
testing 209–210

ActivatedRoute components 101–102
advanced routes 105–108

resolving data before loading routes 107–108
route guards 105–107

Angular applications 1–9, 209–210
overview of 2–3
TypeScript 3–5
types of tests 5–9

attribute directives 45–54

 217index

adding color as second parameter 48
creating tests for 49–51
setting up test suites 50–51

components 25–41, 29–41
adding tests 37–41
basic component tests 26–29
importing dependencies 30–33
setting up tests 33–37

dialog 147–148
directives 43–58
for failures with asynchronous services 88–89
HTTP services with observables 89–92
loadContact method 38
pages without Angular 142–145

automatically waiting for Angular 144–145
disabling waitForAngular 143–144
when to use browser.

waitForAngularEnabled() 145
pipes 60–61

default usage for 61–65
for valid phone numbers 62–64
with invalid phone numbers 64–65
with multiple parameters 67–69
with single parameter 65–67

PreferencesService 82, 77–83
for failures 82–83
writing PreferencesService 78–82

Protractor screenshots 170–175
comparing screenshots 172–175
taking screenshots 170–171
taking screenshots on test failure 171–172

routed components 97–105
router navigation with

RouterTestingModule 97–101
configuring routes 99
creating test components 99
generating links 98
setting up routes 99–101

router parameters 101–105
components of 103–104
setting up 102–103
setting up tests 102–103
using mock observables 105

routers 93–108
saveContact method 37
services 83–89, 71–92

structural directives 54–58
creating tests for 56–57
setting up test suites 56–57

UpdateContact method 38–41
testing documentation 209
TestModuleMetadata variable 51
tests

adding 37–41
testing loadContact method 38
testing saveContact method 37
testing UpdateContact method 38–41

creating 13, 17
E2E tests 6–7

on Jenkins 197–200
unit test vs. 7–9

for attribute directives, creating 49–51
for Protractor, writing 114–117
for structural directives, creating 56–57
setting up 33–37

beforeEach functions 36, 34–37
faking ContactService 34

types of 5–9
unit tests 5–6

E2E tests vs. 7–9
on Jenkins 194–197

writing, using Jasmine 14
test suites

for attribute directives, setting up 50–51
for structural directives, setting up 56–57

textToBePresentInElement 146
textToBePresentInElementValue 146
then() block 174
tick() method 85
timeouts 141–159

creating custom conditions 150–152
browser.wait 150–151
obtaining elements from browser 151–152

handling long-running tasks 152–159
$timeout service 155–156
Angular zone 156–157
browser event loops 155
fixing tests 157–159
using expected conditions 154–155

testing pages without Angular 142–145
automatically waiting for Angular 144–145
disabling waitForAngular 143–144

218 index

when to use browser.
waitForAngularEnabled() 145

types of 142
waiting with ExpectedConditions 145–149

testing dialog 147–148
waiting for contact lists to load 146–147
waiting for elements to become stale 148–149

titleContains 146
titleIs 146
token-provider map 75
toString() method 5
toThrowError() method 82
transform method 60, 66
tsc command 115
ts-node npm package 166
TypeScript class

configuration files 115
overview of 3–5

U
unit tests 5–6

E2E tests vs. 7–9
on Jenkins 194–197

UpdateContact method, testing 38–41
urlContains 146
urlIs 146
UserAuthentication service 105
UserPreferencesResolver 108

V
vfb (virtual framebuffer) 192
viewProviders option 44
virtual framebuffer (vfb) 192
visibilityOf 146

W
waitForAngular function, disabling 143–144
WebDriver

control flow 181–183
logs 176–178

-webDriverLogDir option 176
webdriver-manager node module 115
WebElement class 151
web elements, filtering 130–132
whenStable method 85
window.setTimeout() method 155
writeScreenshot() function 172

X
XMLHttpRequest() method 155
Xvfb plugin 193

Z
zone 85, 156

timeouts (continued)

Anatomy of Basic End-to-End Tests

Sample Page Object File

import { browser, by, element } from 'protractor';

export class AppPage {
 navigateTo() {
 return browser.get('/');
 }

 getParagraphText() {
 return element(by.css('app-root h1')).getText();
 }
}

Sample Test File

import { AppPage } from './app.po';

describe('Basic App', () => {
 let page: AppPage;

 beforeEach(() => {
 page = new AppPage();
 });

 it('should display welcome message', () => {
 page.navigateTo();
 const expectedText = 'Welcome to app!';
 const resultText = page.getParagraphText();
 expect(resultText).toEqual(expectedText);
 });

 afterEach(() => {
 page = null;
 });
});

You should use the page
object file to select
elements. This makes your
tests cleaner and helps
reduce duplicate code.

Setup—Initializes the page object
variable before each test executes.

Actual test that uses the
page object for navigation
and gets text

Teardown—Use afterEach to
destroy the page object variable
reference after each test executes.

Palmer ● Cohn ● Giambalvo ● Nishina

D
on’t leave the success of your mission-critical Angular
apps to chance. Proper testing improves code quality,
reduces maintenance costs, and rewards you with happy

users. New tools and best practices can streamline and auto-
mate all aspects of testing web apps, both in development and
in production. This book gets you started.

Testing Angular Applications teaches you how to make testing an
essential part of your development and production processes.
You’ll start by setting up a simple unit testing system as you
learn the fundamental practices. Then, you’ll fi ne-tune it as
you discover the best tests for Angular components, directives,
pipes, services, and routing. Finally, you’ll explore end-to-end
testing, mastering the Protractor framework, and inserting
Angular apps into your continuous integration pipeline.

What’s Inside
● Getting to know TypeScript
● Writing and debugging unit tests
● Writing and debugging end-to-end tests with Protractor
● Building continuous integration for your entire test suite

This book is for readers with intermediate JavaScript skills.

Jesse Palmer is a senior engineering manager at Handshake.
Corinna Cohn is a single-page web application specialist.
Mike Giambalvo and Craig Nishina are engineers at Google.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/testing-angular-applications

$44.99 / Can $59.99 [INCLUDING eBOOK]

Testing Angular Applications

WEB DEVELOPMENT/TESTING

M A N N I N G

“Provides guidance on the
overall strategy for how to

think about testing on your
projects to get the best return

on your investment.”
—From the Foreword by

Brad Green, Engineering Director
for Angular at Google

“A must-have if you want to
learn how to test your Angular

applications correctly.”
—Rafael Avila Martinez

Intersys Consulting

“Essential to development
shops delivering products

built on the popular
Angular framework.”—Jason Pike

Atlas RFID Solutions

“Developers of all levels
will benefi t from the material

covered in this book.”
—Jim Schmehil

National Heritage Academies

See first page

	Testing Angular Applications
	contents
	foreword
	preface
	acknowledgments
	about this book
	about the authors
	about the cover illustration
	1 Introduction to testing Angular applications
	1.1	Angular testing overview
	1.2	Getting friendly with TypeScript
	1.3	A closer look at test types
	1.3.1	Unit tests
	1.3.2	E2E tests
	1.3.3	Unit tests vs. E2E tests

	part 1 Unit testing
	2 Creating your first tests
	2.1	Writing tests using Jasmine
	2.1.1	Writing basic tests

	2.2	Testing classes
	2.2.1	Adding the rest of the tests

	3 Testing components
	3.1	Basic component tests
	3.2	Real-world component testing
	3.2.1	Importing the dependencies
	3.2.2	Setting up the tests
	3.2.3	Adding the tests

	4 Testing directives
	4.1	What are directives?
	4.1.1	Components vs. directives
	4.1.2	Different directives

	4.2	Testing attribute directives
	4.2.1	Introducing the favorite icon directive
	4.2.2	Creating tests for FavoriteIconDirective
	4.2.3	Setting up the FavoriteIconDirective test suite
	4.2.4	Creating the FavoriteIconDirective tests

	4.3	Testing structural directives
	4.3.1	Introducing ShowContactsDirective
	4.3.2	Creating your tests for ShowContactsDirective
	4.3.3	Setting up the ShowContactsDirective test suite
	4.3.4	Creating the ShowContactsDirective tests

	5 Testing pipes
	5.1	Introducing PhoneNumberPipe
	5.2	Testing PhoneNumberPipe
	5.2.1	Testing the default usage for a pipe
	5.2.2	Testing a pipe with a single parameter
	5.2.3	Pipes with multiple parameters

	6 Testing services
	6.1	What are services?
	6.2	How do services work in Angular?
	6.2.1	Dependency injection
	6.2.2	The @Injectable class decorator

	6.3	Creating services with Angular CLI
	6.4	Testing PreferencesService
	6.4.1	Testing for failures

	6.5	Testing services with promises
	6.5.1	How asynchronous changes testing
	6.5.2	Testing for failures with asynchronous services

	6.6	Testing HTTP services with observables

	7 Testing the router
	7.1	What is the Angular router?
	7.1.1	Configuring the router
	7.1.2	Route guards: the router?s lifecycle hooks

	7.2	Testing routed components
	7.2.1	Testing router navigation with RouterTestingModule
	7.2.2	Testing router parameters

	7.3	Testing advanced routes
	7.3.1	Route guards
	7.3.2	Resolving data before loading a route

	part 2 End-to-end testing
	8 Getting started
	8.1	How Protractor works
	8.2	Writing your first Protractor test
	8.2.1	File structure

	8.3	Installing and running
	8.4	Interacting with elements
	8.4.1	Test scenario: creating a new contact
	8.4.2	Test scenario: workflows that don?t create a new contact

	8.5	by and element methods
	8.6	Interacting with a list of elements
	8.6.1	Filtering web elements
	8.6.2	Mapping the contact list to an array
	8.6.3	Reduce

	8.7	Page objects

	9 Understanding timeouts
	9.1	Kinds of timeouts
	9.2	Testing pages without Angular
	9.2.1	Disabling waitForAngular
	9.2.2	Automatically waiting for Angular
	9.2.3	When to use browser.waitForAngularEnabled()

	9.3	Waiting with ExpectedConditions
	9.3.1	Waiting for the contact list to load
	9.3.2	Testing a dialog
	9.3.3	Waiting for elements to become stale

	9.4	Creating custom conditions
	9.4.1	Using browser.wait
	9.4.2	Getting elements from the browser

	9.5	Handling long-running tasks
	9.5.1	Using expected conditions
	9.5.2	The browser event loop
	9.5.3	What happened to $timeout?
	9.5.4	Highway to the Angular zone
	9.5.5	Fixing the test

	10 Advanced Protractor topics
	10.1	Configuration file in depth
	10.1.1	Driver provider options
	10.1.2	Desired capabilities
	10.1.3	Plugins
	10.1.4	Environment variables

	10.2	Screenshot testing
	10.2.1	Taking screenshots
	10.2.2	Taking screenshots on test failure
	10.2.3	Comparing screenshots

	10.3	Experimental debugging features
	10.3.1	WebDriver logs
	10.3.2	Highlight delay
	10.3.3	Blocking proxy

	10.4	The control flow and debugging with Chrome DevTools
	10.4.1	Asynchronous functions and promises
	10.4.2	The WebDriver control flow
	10.4.3	The future: async/await
	10.4.4	Using Chrome DevTools

	part 3 Continuous integration
	11 Continuous integration
	11.1	Jenkins
	11.1.1	Setting up Jenkins
	11.1.2	Unit tests
	11.1.3	E2E tests

	11.2	CircleCI

	appendix A Setting up the sample project
	appendix B Additional resources
	index

