
Understanding
Azure Data
Factory

Operationalizing Big Data and
Advanced Analytics Solutions
—
Sudhir Rawat
Abhishek Narain

www.allitebooks.com

http://www.allitebooks.org

Understanding Azure
Data Factory

Operationalizing Big Data and
Advanced Analytics Solutions

Sudhir Rawat
Abhishek Narain

www.allitebooks.com

http://www.allitebooks.org

Understanding Azure Data Factory: Operationalizing Big Data and

Advanced Analytics Solutions

ISBN-13 (pbk): 978-1-4842-4121-9 ISBN-13 (electronic): 978-1-4842-4122-6
https://doi.org/10.1007/978-1-4842-4122-6

Library of Congress Control Number: 2018965932

Copyright © 2019 by Sudhir Rawat and Abhishek Narain

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Laura Berendson
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4121-9.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Sudhir Rawat
Bangalore, India

Abhishek Narain
Shanghai, China

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4122-6
http://www.allitebooks.org

iii

About the Authors ���vii

About the Technical Reviewer ���ix

Introduction ���xi

Table of Contents

Chapter 1: Introduction to Data Analytics ��1

What Is Big Data? ��2

Why Big Data? ���3

Big Data Analytics on Microsoft Azure ���4

What Is Azure Data Factory? ���5

High-Level ADF Concepts ��6

When to Use ADF? ���8

Why ADF? ��9

Summary���12

Chapter 2: Introduction to Azure Data Factory �����������������������������������13

Azure Data Factory v1 vs� Azure Data Factory v2 ���14

Data Integration with Azure Data Factory ���16

Architecture ���16

Concepts ��18

Hands-on: Creating a Data Factory Instance Using a User Interface �������������42

Hands-on: Creating a Data Factory Instance Using PowerShell ��������������������52

Summary���54

www.allitebooks.com

http://www.allitebooks.org

iv

Chapter 3: Data Movement ���57

Overview ���58

How Does the Copy Activity Work? ��58

Supported Connectors ��59

Configurations ���64

Supported File and Compression Formats ��64

Copy Activity Properties ���65

How to Create a Copy Activity��68

Copy Performance Considerations ��85

Data Integration Units ��86

Parallel Copy ��86

Staged Copy ��88

Considerations for the Self-Hosted Integration Runtime �������������������������������93

Considerations for Serialization and Deserialization �������������������������������������94

Considerations for Compression��95

Considerations for Column Mapping ���96

Summary���96

Chapter 4: Data Transformation: Part 1 �� 97

Data Transformation ��97

HDInsight���98

Hive Activity ���100

Pig Activity ���117

MapReduce Activity ���122

Streaming Activity ���127

Spark Activity���132

Azure Machine Learning ���141

Azure Data Lake ��167

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 5: Data Transformation: Part 2 �� 193

Data Warehouse to Modern Data Warehouse ��193

ETL vs� ELT ��194

Azure Databricks ���195

Build and Implement Use Case ���197

Stored Procedure ��219

Custom Activity ���235

Chapter 6: Managing Flow ��265

Why Managing Flow Is Important ���265

Expressions ���266

Functions ��267

Activities ���267

Let’s Build the Flow ���268

Build the Source Database ��269

Build Azure Blob Storage as the Destination ���273

Build the Azure Logic App ��277

Build the Azure Data Factory Pipeline ���284

Summary���309

Chapter 7: Security ���311

Overview ���311

Cloud Scenario ��313

Securing the Data Credentials ���313

Data Encryption in Transit ��314

Data Encryption at Rest ���315

Table of ConTenTsTable of ConTenTs

vi

Hybrid Scenario ���316

On-Premise Data Store Credentials ���317

Encryption in Transit ��318

Firewall Configurations and IP Whitelisting for Self-Hosted Integration
Runtime Functionality ��321

IP Configurations and Whitelisting in Data Stores ���������������������������������������324

Proxy Server Considerations ���324

Storing Credentials in Azure Key Vault ��327

Prerequisites ���327

Steps ���327

Reference Secret Stored in Key Vault ��331

Advanced Security with Managed Service Identity ���333

Summary���334

Chapter 8: Executing SSIS Packages ��335

Why SSIS Packages? ��335

Provision the Azure SQL Server Database ��338

Provision the Azure-SSIS IR ��340

Deploy the SSIS Package ��348

SSIS Package Execution ���356

Summary���358

 Index ���359

Table of ConTenTsTable of ConTenTs

vii

About the Authors

Sudhir Rawat is a senior software engineer

at Microsoft Corporation. He has 15 years

of experience in turning data to insights. He

is involved in various activities, including

development, consulting, troubleshooting,

and speaking. He works extensively on the

data platform. He has delivered sessions on

platforms at Microsoft TechEd India, Microsoft

Azure Conference, Great India Developer

Summit, SQL Server Annual Summit, Reboot

(MVP), and many more. His certifications

include MCITP, MCTS, MCT on SQL Server Business Intelligence, MCPS

on Implementing Microsoft Azure Infrastructure Solutions, and MS on

Designing and Implementing Big Data Analytics Solutions.

Abhishek Narain works as a technical

program manager on the Azure Data

Governance team at Microsoft. Previously

he worked as a consultant at Microsoft and

Infragistics, and he has worked on various

Azure services and Windows app development

projects. He is a public speaker and regularly

speaks at various events, including Node Day,

Droidcon, Microsoft TechEd, PyCon, the Great

India Developer Summit, and many others.

Before joining Microsoft, he was awarded the

Microsoft MVP designation.

ix

About the Technical Reviewer

Zain Asif is a freelance senior developer

specializing in Microsoft technologies

(C#, ASP.NET, ASP.NET MVC, ASP.NET

Core, Azure Data Lake, Azure Data Factory,

SQL Server and Power BI). He is passionate

about new technologies, both software and

hardware ones.

He is the founder of Falcon Consulting,

and with it, he has had the opportunity to work

with the biggest companies around the world such as Microsoft, Canon,

and Accor. His aim in the future is to make his company an IT engineering

company and work as a freelance software architect and Microsoft expert.

When not working, Zain can be seen on the ground playing cricket or

football or in front of a PC geeking and gaming.

xi

Introduction

Azure Data Factory is the de facto tool for building end-to-end advanced

analytics solutions on Azure. It can handle complex ETL data workflows

and integrates natively with all Azure services with enterprise-grade

security offerings.

For ease of authoring and to make you more productive, it offers a

drag-and-drop user interface with rich control flow for building complex

data workflows, and it provides a single-pane-of-glass monitoring solution

for your data pipelines.

Something that really stands out is the low price-to-performance ratio,

being cost effective and performant at the same time. Its data movement

capabilities with more than 75 high-performance connectors are extremely

helpful when dealing with Big Data coming from various sources. To give

you an example, 100GB data movement would cost you less than $0.40

(that is correct, 40 cents). ADF is an Azure service and bills you in a pay-as-

you-go model against your Azure subscription with no up-front costs.

ADF also supports operationalizing existing SSIS packages on the

cloud, which is helpful if you are modernizing your data warehouse

solution over time with a lot of existing SSIS packages.

1© Sudhir Rawat and Abhishek Narain 2019
S. Rawat and A. Narain, Understanding Azure Data Factory,
https://doi.org/10.1007/978-1-4842-4122-6_1

CHAPTER 1

Introduction to Data
Analytics
The demand for Big Data analytics services is greater than ever before,

and this trend will only continue—exponentially so—as data analytics

platforms evolve over time. This is a great time to be a data engineer or a

data scientist with so many options of analytics platforms to select from.

The purpose of this book is to give you the nitty-gritty details of

operationalizing Big Data and advanced analytics solutions on Microsoft Azure.

This book guides you through using Azure Data Factory to coordinate

data movement; to perform transformations using technologies such as

Hadoop (HDInsight), SQL, Azure Data Lake Analytics, Databricks, files

from different kinds of storage, and Cosmos DB; and to execute custom

activities for specific tasks (coded in C#). You will learn how to create data

pipelines that will allow you to group activities to perform a certain task.

This book is hands-on and scenario-driven. It builds on the knowledge

gained in each chapter.

The focus of the book is to also highlight the best practices with respect

to performance and security, which will be helpful while architecting and

developing extract-transform-load (ETL), extract-load-transform (ELT),

and advanced analytics projects on Azure.

This book is ideal for data engineers and data scientists who want to

gain advanced knowledge in Azure Data Factory (a serverless ETL/ELT

service on Azure).

2

 What Is Big Data?
Big Data can be defined by following characteristics:

• Volume: As the name says, Big Data consists of

extremely large datasets that exceed the processing

capacity of conventional systems such as Microsoft

SQL, Oracle, and so on. Such data is generated through

various data sources such as web applications, the

Internet of Things (IoT), social media, and line-of-

business applications.

• Variety: These sources typically send data in a variety of

formats such as text, documents (JSON, XML), images,

and video.

• Velocity: This is the speed at which data is generated

is by such sources. High velocity adds to Big Data. For

example a factory installed sensor to keep monitor it’s

temperature to avoid any damage. Such sensors sends

E/Sec (event per second) or sometime in millisecond.

Generally IoT enable places has many such sensors

which sends data so frequently.

• Veracity: This is the quality of data captured from

various sources. System also generates bias, noise and

abnormal data which adds to Big Data. High veracity

means more data. It not only adds to big data but also

add responsibility to correct it to avoid presenting

wrong information to the business user.

Let’s think about a fictious retail company called AdventureWorks,

which has a customer base across the globe. AdventureWorks has an

e-commerce web site and mobile applications for enabling users to shop

online, lodge complaints, give feedback, apply for product returns, and so

on. To provide the inventory/products to the users, it relies on a business-

Chapter 1 IntroduCtIon to data analytICs

3

to- business (B2B) model and partners with vendors (other businesses) that

want to list their products on AdventureWorks e-commerce applications.

AdventureWorks also has sensors installed on its delivery vans to collect

various telemetry data; for example, it provides customers with up-to-

date information on consignment delivery and sends alerts to drivers in

the case of any issue, for example a high temperature in the delivery van’s

engine. The company also sends photographers to various trekking sites.

All this data is sent back to the company so it can do image classification to

understand the gadgets in demand. This helps AdventureWorks stock the

relevant items. AdventureWorks also captures feeds from social media in

case any feedback/comment/complaint is raised for AdventureWorks.

To get some valuable insights from the huge volume of data, you

must choose a distributed and scalable platform that can process the Big

Data. Big Data has great potential for changing the way organizations use

information to enhance the customer experience, discover patterns in

data, and transform their businesses with the insights.

 Why Big Data?
Data is the new currency. Data volumes have been increasing drastically

over time. Data is being generated from traditional point-of-sale systems,

modern e-commerce applications, social sources like Twitter, and IoT

sensors/wearables from across the globe. The challenge for any organization

today is to analyze this diverse dataset to make more informed decisions

that are predictive and holistic rather than reactive and disconnected.

Big Data analytics is not only used by modern organizations to get

valuable insights but is also used by organizations having decades-old

data, which earlier was too expensive to process, with the availability

of pay-as-you-go cloud offerings. As an example, with Microsoft Azure

you can easily spin up a 100-node Apache Spark cluster (for Big Data

analytics) in less than ten minutes and pay only for the time your job

runs on those clusters, offering both cloud scale and cost savings in a Big

Data analytics project.

Chapter 1 IntroduCtIon to data analytICs

4

 Big Data Analytics on Microsoft Azure
Today practically every business is moving to the cloud because of

lucrative reasons such as no up-front costs, infinite scale possibilities, high

performance, and so on. The businesses that store sensitive data that can’t

be moved to the cloud can choose a hybrid approach. The Microsoft cloud

(aka Azure) provides three types of services.

• Infrastructure as a service (IaaS)

• Platform as a service (PaaS)

• Software as a service (SaaS)

It seems like every organization on this planet is moving to PaaS. This

gives companies more time to think about their business while innovating,

improving customer experience, and saving money.

Microsoft Azure offers a wide range of cloud services for data analysis.

We can broadly categorize them under storage and compute.

• Azure SQL Data Warehouse, a cloud-based massively

parallel-processing-enabled enterprise data

warehouse

• Azure Blob Storage, a massively scalable object storage

for unstructured data that can be used to search for

hidden insights through Big Data analytics

• Azure Data Lake Store, a massively scalable data store

(for unstructured, semistructured, and structured data)

built to the open HDFS standard

• Azure Data Lake Analytics, a distributed analytics

service that makes it easy for Big Data analytics to

support programs written in U-SQL, R, Python,

and .NET

Chapter 1 IntroduCtIon to data analytICs

5

• Azure Analysis Services, enterprise-grade data

modeling tool on Azure (based on SQL Server Analysis

Service)

• Azure HDInsight, a fully managed, full-spectrum open

source analytics service for enterprises (Hadoop, Spark,

Hive, LLAP, Storm, and more)

• Azure Databricks, a Spark-based high-performance

analytics platform optimized for Azure

• Azure Machine Learning, an open and elastic AI

development tool for finding patterns in existing data

and generating models for prediction

• Azure Data Factory, a hybrid and scalable data

integration (ETL) service for Big Data and advanced

analytics solutions

• Azure Cosmos DB, an elastic and independent scale

throughput and storage tool; it also offers throughput,

latency, availability, and consistency guarantees with

comprehensive service level agreements (SLAs),

something no other database service offers at the

moment

 What Is Azure Data Factory?
Big Data requires a service that can help you orchestrate and

operationalize complex processes that in turn refine the enormous

structure/semistructured data into actionable business insights.

Azure Data Factory (ADF) is a cloud-based data integration service

that acts as the glue in your Big Data or advanced analytics solution,

ensuring your complex workflows integrate with the various dependent

Chapter 1 IntroduCtIon to data analytICs

6

services required in your solution. It provides a single pane for monitoring

all your data movements and complex data processing jobs. Simply said, it

is a serverless, managed cloud service that’s built for these complex hybrid

ETL, ELT, and data integration projects (data integration as a service).

Using Azure Data Factory, you can create and schedule data-driven

workflows (called pipelines) that can ingest data from disparate data stores.

It can process and transform the data by using compute services such as

Azure HDInsight Hadoop, Spark, Azure Data Lake Analytics, and Azure

Machine Learning (Figure 1-1).

Figure 1-1. Azure Data Factory

 High-Level ADF Concepts
An Azure subscription might have one or more ADF instances. ADF is

composed of four key components, covered in the following sections.

These components work together to provide the platform on which you

can compose data-driven workflows with steps to move and transform

data or execute custom tasks using custom activity that could include

Chapter 1 IntroduCtIon to data analytICs

7

deleting files on Azure storage after transforms or simply running

additional business logic that is not offered out of the box within Azure

Data Factory.

 Activity

An activity represents an action or the processing step. For example,

you copy an activity to copy data between a source and a sink. Similarly,

you can have a Databricks notebook activity transform data using Azure

Databricks. ADF supports three types of activities: data movement, data

transformation, and control flow activities.

 Pipeline

A pipeline is a logical grouping of activities. Typically, it will contain a set

of activities trying to achieve the same end goal. For example, a pipeline

can contain a group of activities ingesting data from disparate sources,

including on-premise sources, and then running a Hive query on an on-

demand HDInsight cluster to join and partition data for further analysis.

The activities in a pipeline can be chained together to operate

sequentially, or they can operate independently in parallel.

 Datasets

Datasets represent data structures within the data stores, which simply

point to or reference the data you want to use in your activities as inputs or

outputs.

 Linked Service

A linked service consists of the connection details either to a data source

like a file from Azure Blob Storage or a table from Azure SQL or to a

compute service such as HDInsight, Azure Databricks, Azure Data Lake

Analytics, and Azure Batch.

Chapter 1 IntroduCtIon to data analytICs

8

 Integration Runtime

The integration runtime (IR) is the underlying compute infrastructure used

by ADF. This is the compute where data movement, activity dispatch, or

SSIS package execution happens. It has three different names: Azure, self-

hosted, and Azure SQL Server Integration Services (Figure 1-2).

 When to Use ADF?
The following are examples of when you should use ADF:

• Building a Big Data analytics solution on Microsoft

Azure that relies on technologies for handling large

numbers of diverse datasets. ADF offers a way to create

and run an ADF pipeline in the cloud.

• Building a modern data warehouse solution that

relies on technologies such as SQL Server, SQL Server

Integration Services (SSIS), or SQL Server Analysis

Services (SSAS); see Figure 1-3. ADF provides the

ability to run SSIS packages on Azure or build a modern

ETL/ELT pipeline letting you access both on-premise

and cloud data services.

Figure 1-2. Relationship between ADF components

Chapter 1 IntroduCtIon to data analytICs

9

• Migrating or coping data from a physical server to

the cloud or from a non-Azure cloud to Azure (blob

storage, data lake storage, SQL, Cosmos DB). ADF can

be used to migrate both structured and binary data.

You will learn more about the ADF constructs in Chapter 2.

 Why ADF?
The following are reasons why you should use ADF:

• Cost effective: ADF is serverless, and the billing is based

on factors such as the number of activities run, the data

movement duration, and the SSIS package execution

duration. You can find the latest pricing details at

https://aka.ms/adfpricing.

For example, if you run your ETL/ ELT pipeline

hourly, which also involves data movement

(assuming 100GB data movement per hourly run,

which should take around 8 minutes with 200MBps

Figure 1-3. A typical modern data warehouse solution

Chapter 1 IntroduCtIon to data analytICs

https://aka.ms/adfpricing

10

bandwidth), then ADF would bill you not more than

$12 for the monthly execution (720 pipeline runs).

Note: The charges for any other service (HDInsight,

Azure Data Lake Analytics) are not considered

in this calculation. This is solely for the ADF

orchestration and data movement cost. On the

contrary, there are non-Microsoft ETL/ELT tools

that may offer similar capabilities with a much

higher cost.

• On-demand compute: ADF provides additional cost-

saving functionality like on-demand provisioning

of Hindsight Hadoop clusters. It takes care of the

provisioning and teardown of the cluster once the

job has executed, saving you a lot of additional cost

and making the whole Big Data analytics process on-

demand.

• Cloud scale: ADF, being a platform-as-a-service

offering, can quickly scale if need be. For the Big Data

movement, with data sizes from terabytes to petabytes,

you will need the scale of multiple nodes to chunk data

in parallel.

• Enterprise-grade security: The biggest concern around

any data integration solution is the security, as the

data may well contain sensitive personally identifiable

information (PII).

Since ADF is a Microsoft-owned service (or as I

call it a first-party citizen on Azure), it follows the

same security standards as any other Microsoft

service. You can find the security and compliance

certification information online.

Chapter 1 IntroduCtIon to data analytICs

11

A common challenge when building cloud

applications is to manage the credentials that need

to be in your code/ADF pipeline for authenticating

to cloud services. Keeping these credentials secure

is an important task. Ideally, they never appear on

developer workstations or get checked into source

control. ADF supports Azure Key Vault, which

provides a way to securely store credentials and

other keys and secrets, but your code/ADF pipeline

needs to authenticate to Key Vault to retrieve them.

Managed Service Identity (MSI) makes solving this

problem simpler by giving Azure services such as ADF

an automatically managed identity in Azure Active

Directory (Azure AD). ADF supports MSI and uses this

identity to authenticate to any service that supports

Azure AD authentication, including Key Vault,

without having any credentials in your code/ADF

pipeline, which probably is the safest option for

service-to-service authentication on Azure.

• Control flow: You can chain activities in a sequence,

branch based on certain conditions, define parameters

at the pipeline level, and pass arguments while

invoking the pipeline on-demand or from a trigger.

ADF also includes custom state passing and looping

containers, that is, for-each iterators.

• High-performance hybrid connectivity: ADF supports

more than 70 connectors at the time of writing this

book. These connectors support on-premise sources as

well, which helps you build a data integration solution

with your on-premise sources.

Chapter 1 IntroduCtIon to data analytICs

12

• Easy interaction: ADF’s support for so many

connectors makes it easy to interact with all kinds of

technologies.

• Visual UI authoring and monitoring tool: It makes

you super productive as you can use drag-and-drop

development. The main goal of the visual tool is

to allow you to be productive with ADF by getting

pipelines up and running quickly without requiring you

to write a single line of code.

• SSIS package execution: You can lift and shift an

existing SSIS workload.

• Schedule pipeline execution: Every business have

different latency requirements (hourly, daily, monthly,

and so on), and jobs can be scheduled as per the

business requirements.

• Other development options: In addition to visual

authoring, ADF lets you author pipelines using

PowerShell, .NER, Python, and REST APIs. This helps

independent software vendors (ISVs) build SaaS-based

analytics solutions on top of ADF app models.

 Summary
Azure Data Factory is a serverless data integration service on the cloud

that allows you to create data-driven workflows for orchestrating and

automating data movement and data transformation for your advanced

analytics solutions. In the upcoming chapters, you will dig deeper into

each aspect of ADF with working samples.

Chapter 1 IntroduCtIon to data analytICs

13© Sudhir Rawat and Abhishek Narain 2019
S. Rawat and A. Narain, Understanding Azure Data Factory,
https://doi.org/10.1007/978-1-4842-4122-6_2

CHAPTER 2

Introduction to Azure
Data Factory
In any Big Data or advanced analytics solution, the orchestration

layer plays an important role in stitching together the heterogenous

environments and operationalizing the workflow. Your overall solution

may involve moving raw data from disparate sources to a staging/sink

store on Azure, running some rich transform jobs (ELT) on the raw data,

and finally generating valuable insights to be published using reporting

tools and stored in a data warehouse for access. Azure Data Factory is the

extract-transform-load (ETL)/extract-load-transform (ELT) service offered

by Microsoft Azure.

Azure Data Factory (ADF) is a Microsoft Azure platform-as-a-service

(PaaS) offering for data movement and transformation. It supports data

movement between many on-premise and cloud data sources. The

supported platform list is elaborate and includes both Microsoft and

other vendors. It is a powerful tool providing complete flexibility for the

movement of structured and unstructured datasets, including RDBMS,

XML, JSON, and various NoSQL data stores. Its core strength is the

flexibility of being able to use U-SQL or HiveQL.

This chapter will introduce you to Azure Data Factory basics

(Figure 2- 1). This knowledge will form the building blocks for the

advanced analytics solution that you will build later in the book.

14

 Azure Data Factory v1 vs. Azure Data
Factory v2
When you create an Azure Data Factory resource on your Azure

subscription, the wizard will ask you to choose between Azure Data

Factory v1 and Azure Data Factory v2. Azure Data Factory version 2 is

generally available and being actively developed, which means regular

feature updates. Azure Data Factory v1 is stabilized, but it’s more limited

than v2. ADF v2 adds the much needed control flow functionality, which

lets data engineers define complex workflows. Monitoring is also an added

enhancement in v2, making it much richer and natively integrating it with

Azure Monitor and Microsoft Operations Management Suite for building

single-pane-of-glass monitoring. One of the biggest features of v2 is the

integration of SQL Server Integration Services (SSIS). Many Microsoft

customers have been using SSIS for their data movement needs primarily

involving SQL Server databases for many years because SSIS has been in

existence for a long time. The integration of SSIS and Azure Data Factory

Figure 2-1. Azure Data Factory basics

Chapter 2 IntroduCtIon to azure data FaCtory

15

has been a key customer requirement for migrating to the PaaS platform

for ETL without needing to rewrite the entire data transformation logic

across the enterprise.

The recent release of Azure Data Factory v2 has taken a major step

toward meeting this requirement. SSIS packages can now be integrated

with ADF and can be scheduled/orchestrated using ADF v2. The SSIS

package execution capability makes all fine-grained transformation

capabilities and SSIS connectors available from within ADF. Customers

can utilize existing ETL assets while expanding ETL capabilities with the

ADF platform.

ADF v2 allows SSIS packages to be moved to the cloud using the

integration runtime (IR) to execute, manage, monitor, and deploy these

packages to Azure. The IR allows for three different scenarios: Azure (a

pure PaaS with endpoints), self-hosted (within a private network), and

Azure-SSIS (a combination of the two).

The capability of SSIS package integration with ADF has led to the

expansion of a core feature of the ADF platform. Specifically, there is now

a separate control flow in the ADF platform. The activities are broken into

data transformation activities and control flow activities; this is similar to

the SSIS platform.

In addition to the SSIS integration, ADF v2 has expanded its

functionality on a few other fronts. It now supports an extended library of

expressions and functions that can be used in the JSON string value. Data

pipeline monitoring is available using OMS tools in addition to the Azure

portal. This is a big step toward meeting the requirements of customers

with established OMS tools for any data movement activity.

There has also been a change in job scheduling in ADF v2. In the prior

version, jobs were scheduled based on time slices. This feature has been

expanded in ADF v2. Jobs can be scheduled based on triggering events,

such as the completion of a data refresh in the source data store.

Chapter 2 IntroduCtIon to azure data FaCtory

16

In this book, we will focus on Azure Data Factory v2, but most of the

features are applicable to v1 too.

 Data Integration with Azure Data Factory
Azure Data Factory offers a code-free, drag-and-drop, visual user

interface to maximize productivity by getting data pipelines up and

running quickly. You can also connect the visual tool directly to your

Git repository for a seamless deployment workflow. Using Azure Data

Factory, you can create and schedule data-driven workflows (called

pipelines) that can ingest data from disparate data stores. ADF can

process and transform the data by using compute services such as Azure

HDInsight Hadoop, Spark, Azure Data Lake Analytics, Azure Cosmos DB,

and Azure Machine Learning.

You can also write your own code in Python, .NET, the REST API, Azure

PowerShell, and Azure Resource Manager (ARM) to build data pipelines

using your existing skills. You can choose any compute or processing

service available on Azure and put them into managed data pipelines to

get the best of both the worlds.

 Architecture
When you create an Azure Data Factory v2 resource on your Azure

subscription, you create a data integration account. This is sort of a

serverless workplace where you can author your data pipelines. You are

not billed for this step. You pay for what you use, and that will happen only

when you execute some pipeline.

Chapter 2 IntroduCtIon to azure data FaCtory

17

Once you start authoring the pipeline, the ADF service stores the

pipeline metadata in the selected ADF region. When your pipeline is

executed, the orchestration logic runs on some compute, in other words,

the integration runtime. There are three types of IR used for different

purposes, and I will talk about the use of each one of them in the

upcoming sections.

Figure 2-2. ADF architecture showing the command/ control flow
versus data flow during orchestration

Chapter 2 IntroduCtIon to azure data FaCtory

18

 Concepts
Azure Data Factory is composed of five key components. These

components come together while you build data-driven workflows for

transforming data.

 Pipelines

A pipeline is a logical grouping of activities performing a set of processes

such as extracting data, transforming it, and loading into some database,

data warehouse, or storage. For example, a pipeline can contain a group

of activities to ingest data from Amazon S3 (an on-premise file system to a

staging store) and then run a Spark query on an Azure Databricks cluster

to partition the data.

A data factory might have one or more pipelines.

An Azure Data Factory instance uses JSON to describe each of its

entities. If you are using visual authoring, you will not need to understand

this structure. But when writing code/script, you’ll need to understand this

JSON payload (see Table 2-1).

Here is how a pipeline is defined in JSON format:

{

 "name": "PipelineName",

 "properties":

 {

 "description": "pipeline description",

 "activities":

 [

],

 "parameters": {

 }

 }

}

Chapter 2 IntroduCtIon to azure data FaCtory

19

 Activities

Activities represent a processing step in a pipeline. These are specific

tasks that compose the overall pipeline. For example, you might use a

Spark activity, which runs a Spark query against Azure Databricks or an

HDInsight cluster, to transform or analyze your data. Azure Data Factory

supports three types of activities: data movement (copy activities), data

transform (compute activities), and control activities.

Table 2-1. Pipeline Properties

Tag Description Type Required

name Specifies the name of the pipeline. use a

name that represents the action that the

pipeline performs.

Maximum number of characters: 140.

Must start with a letter, number, or

underscore (_).

the following characters are not allowed:

. + ? / < > * % & : \

String yes

 description Specifies the text describing what the

pipeline is used for.

String no

activities the pipeline can have one or more

activities defined within it.

array yes

 parameters the parameters property can have one or

more parameters defined within the pipeline,

making your pipeline flexible for reuse.

List no

Chapter 2 IntroduCtIon to azure data FaCtory

20

Execution Activities (Copy and Data Transform)

The following are the execution activities:

• Copy supports 70+ connectors for copying data from

the source to the sink, including binary copy. I will

cover this in depth in Chapter 3.

• Data transform supports the transform activities in

Table 2-2.

Table 2-2. Transform Activities

Data Transformation Activity Compute Environment

hive hdInsight (hadoop)

pig hdInsight (hadoop)

Mapreduce hdInsight (hadoop)

hadoop streaming hdInsight (hadoop)

Spark hdInsight (hadoop)

Machine learning activities: batch

execution and update resource

azure VM

Stored procedure azure SQL, azure SQL data

Warehouse, or SQL Server

u-SQL azure data Lake analytics

Cosmos dB azure Cosmos dB

Custom code azure Batch

databricks notebook azure databricks

databricks Jar azure databricks

databricks python azure databricks

Chapter 2 IntroduCtIon to azure data FaCtory

https://docs.microsoft.com/en-us/azure/data-factory/transform-data-using-hadoop-hive
https://docs.microsoft.com/en-us/azure/data-factory/transform-data-using-hadoop-pig
https://docs.microsoft.com/en-us/azure/data-factory/transform-data-using-hadoop-map-reduce
https://docs.microsoft.com/en-us/azure/data-factory/transform-data-using-hadoop-streaming
https://docs.microsoft.com/en-us/azure/data-factory/transform-data-using-spark
https://docs.microsoft.com/en-us/azure/data-factory/transform-data-using-machine-learning
https://docs.microsoft.com/en-us/azure/data-factory/transform-data-using-machine-learning
https://docs.microsoft.com/en-us/azure/data-factory/transform-data-using-stored-procedure
https://docs.microsoft.com/en-us/azure/data-factory/transform-data-using-data-lake-analytics

21

You will learn more about transform activities in Chapter 4.

Here is some sample JSON of an execution activity:

{

 "name": "Execution Activity Name",

 "description": "description",

 "type": "<ActivityType>",

 "typeProperties":

 {

 },

 "linkedServiceName": "MyLinkedService",

 "policy":

 {

 },

 "dependsOn":

 {

 }

}

Table 2-3 describes the properties in the activity JSON definition.

Table 2-3. Activity Properties

Property Description Required

name name of the activity. Specify a name

that represents the action that the

activity performs.

yes

description text describing what the activity is or

is used for.

yes

type type of the activity. different types of

activities include data movement, data

transformation, and control activities.

yes

(continued)

Chapter 2 IntroduCtIon to azure data FaCtory

22

Table 2-3. (continued)

Property Description Required

 linkedServiceName name of the linked service used by

the activity.

an activity may require that you

specify the linked service that links to

the required compute environment.

yes for hdInsight

activity, azure

Machine

Learning, Batch

Scoring activity,

and Stored

procedure

activity

no for all others

typeProperties properties in the typeProperties

section depend on each type of

activity.

no

 policy policies that affect the runtime

behavior of the activity. this property

includes timeout and retry behavior. If

it is not specified, default values are

used. For more information, see the

“activity “policy” section.

no

 dependsOn defines activity dependencies

and how subsequent activities

depend on previous activities. For

more information, see the “activity

dependency” section.

no

Chapter 2 IntroduCtIon to azure data FaCtory

23

Activity Policy

You can configure the runtime behavior of an activity by enforcing various

policies onto it. Table 2-4 shows the properties.

Here is an activity policy JSON definition:

{

 "name": "MyPipelineName",

 "properties": {

 "activities": [

 {

 "name": "MyCopyBlobtoSqlActivity"

 "type": "Copy",

 "typeProperties": {

 ...

 },

 "policy": {

 "timeout": "00:10:00",

 "retry": 1,

 "retryIntervalInSeconds": 60,

 "secureOutput": true

 }

 }

],

 "parameters": {

 ...

 }

 }

}

Chapter 2 IntroduCtIon to azure data FaCtory

24

Control

Table 2-5 describes the control activities.

Table 2-4. Activity Properties

JSON Name Description Allowed Values Required

timeout Specifies the

timeout for the

activity to run.

timespan no. default timeout

is 7 days.

retry Specifies the

maximum retry

attempts.

Integer no. default is 0.

retryInterval

InSeconds

Specifies the

delay between retry

attempts in seconds.

Integer no. default is 20

seconds.

secureOutput When set to true,

output from the

activity is considered

as secure and will

not be logged to

monitoring.

Boolean no. default is false.

Chapter 2 IntroduCtIon to azure data FaCtory

25

Table 2-5. Control Activities

Name Description

execute pipeline the execute pipeline activity allows an azure data Factory

pipeline to invoke another pipeline.

Foreach the Foreach activity defines a repeating control flow in your

pipeline. this activity is used to iterate over a collection and

executes specified activities in a loop. the loop implementation

of this activity is similar to a Foreach looping structure in

programming languages.

Web the Web activity can be used to call a custom reSt

endpoint from an azure data Factory pipeline. you can pass

datasets and linked services to be consumed and accessed

by the activity.

Lookup the Lookup activity can be used to read or look up a record/

table name/value from any external source. this output can

further be referenced by succeeding activities.

Get Metadata the Get Metadata activity can be used to retrieve the metadata

of any data in azure data Factory.

until this activity implements a do-until loop that is similar to a do-

until looping structure in programming languages. It executes a

set of activities in a loop until the condition associated with the

activity evaluates to true. you can specify a timeout value for

the until activity in azure data Factory.

(continued)

Chapter 2 IntroduCtIon to azure data FaCtory

26

Control activities have the following top-level structure (see Table 2-6):

{

 "name": "Control Activity Name",

 "description": "description",

 "type": "<ActivityType>",

 "typeProperties":

 {

 },

 "dependsOn":

 {

 }

}

Table 2-5. (continued)

Name Description

If Condition the If Condition activity can be used to branch based on a

condition that evaluates to true or false. the If Condition activity

provides the same functionality that an if statement provides

in programming languages. It evaluates a set of activities when

the condition evaluates to true and another set of activities

when the condition evaluates to false.

Wait When you use a Wait activity in a pipeline, the pipeline waits

for the specified period of time before continuing with the

execution of subsequent activities.

Chapter 2 IntroduCtIon to azure data FaCtory

27

Table 2-6. Control activity properties

Property Description Required

name this specifies the name of the activity.

Specify a name that represents the action

that the activity performs.

Maximum number of characters: 55.

Must start with a letter, a number, or an

underscore (_).

Following characters are not allowed:

. + ? / < > * % & : \

yes

description this specifies the text describing what the

activity or is used for.

yes

type this specifies the type of the activity. different

types of activities include data movement,

data transformation, and control activities.

yes

typeProperties properties in the typeProperties section

depend on each type of activity.

no

dependsOn this property is used to define the activity

dependency and how subsequent activities

depend on previous activities.

no

Activity Dependency

You can create a dependency between two activities in ADF. This is

extremely helpful while you want to run downstream activities on certain

conditions or dependencies. ADF lets you build the dependencies based

on various conditions such as Succeeded, Failed, Skipped, and Completed.

Chapter 2 IntroduCtIon to azure data FaCtory

28

For example, when Activity A is successfully executed, then run Activity

B. If Activity A fails, then run Activity C. Activity B depends on Activity A

succeeding.

{

 "name": "PipelineName",

 "properties":

 {

 "description": "pipeline description",

 "activities": [

 {

 "name": "MyFirstActivity",

 "type": "Copy",

 "typeProperties": {

 },

 "linkedServiceName": {

 }

 },

 {

 "name": "MySecondActivity",

 "type": "Copy",

 "typeProperties": {

 },

 "linkedServiceName": {

 },

 "dependsOn": [

 {

 "activity": "MyFirstActivity",

 "dependencyConditions": [

 "Succeeded"

]

 }

Chapter 2 IntroduCtIon to azure data FaCtory

29

]

 }

],

 "parameters": {

 }

 }

}

 Datasets

A dataset is the representation or reference to the actual data in the data

store. For a data movement activity like a Copy activity, you can set a

source and a sink dataset accordingly for the data movement.

For example, to copy data from Azure Blob Storage to a SQL database,

you create two linked services: Azure Blob Storage and Azure SQL

Database. Then, create two datasets: an Azure Blob dataset (which refers

to the Azure Storage linked service) and an Azure SQL table dataset

(which refers to the Azure SQL Database linked service). The Azure

Storage and Azure SQL Database linked services contain connection

strings that Azure Data Factory uses at runtime to connect to your Azure

storage and Azure SQL database, respectively. The Azure Blob dataset

specifies the blob container and blob folder that contains the input blobs

in your Blob Storage. The Azure SQL table dataset specifies the SQL table

in your SQL database to which the data is to be copied.

Here is a dataset JSON example:

{

 "name": "<name of dataset>",

 "properties": {

 "type": "<type of dataset: AzureBlob, AzureSql etc...>",

 "linkedServiceName": {

 "referenceName": "<name of linked service>",

Chapter 2 IntroduCtIon to azure data FaCtory

30

 "type": "LinkedServiceReference",

 },

 "structure": [

 {

 "name": "<Name of the column>",

 "type": "<Name of the type>"

 }

],

 "typeProperties": {

 "<type specific property>": "<value>",

 "<type specific property 2>": "<value 2>",

 }

 }

}

Table 2-7 describes the properties in the previous JSON listing.

Table 2-7. Properties

Property Description Required

name this specifies the name of the dataset. It has the

same naming rules as the azure data Factory

instance name.

yes

type this specifies the type of the dataset. Specify one

of the types supported by the azure data Factory

instance (for example, azureBlob, azureSqltable).

yes

structure this specifies the schema of the dataset. For

details, see “dataset Structure.”

no

typeProperties the type properties are different for each type

(for example, azureBlob, azureSqltable).

For details on the supported types and their

properties, see “dataset type.”

yes

Chapter 2 IntroduCtIon to azure data FaCtory

31

Dataset Structure

This is optional. It defines the schema of the dataset by containing a

collection of names and data types of columns. You use the structure

section to provide type information that is used to convert types and map

columns from the source to the destination.

Each column in the structure contains the properties in Table 2-8.

Table 2-8. Dataset Properties

Property Description Required

name name of the column. yes

type data type of the column. azure data Factory supports

the following interim data types as allowed values: Int16,

Int32, Int64, Single, double, decimal, Byte[], Boolean,

String, Guid, datetime, datetimeoffset, and timespan.

no

culture .net-based culture to be used when the type is a .net

type: datetime or datetimeoffset. the default is en-us.

no

format Format string to be used when the type is a .net type:

datetime or datetimeoffset.

no

Here’s an example of a Blob dataset.

"structure":

[

 { "name": "userid", "type": "Int64"},

 { "name": "name", "type": "String"},

 { "name": "lastlogindate", "type": "Datetime", "culture":

"fr-fr", "format": "ddd-MM-YYYY"}

]

Chapter 2 IntroduCtIon to azure data FaCtory

32

When to Specify a Dataset Structure?

When you are copying data within strong schema-based relational stores

and want to map source columns to sink columns and their names are not

the same, you can specify a dataset structure.

You may also specify a dataset structure when your source contains no

schema or a weak schema like text files in Blob Storage, which needs to be

converted to native types in sink during the Copy activity.

 Linked Services

Linked services are like connection strings that define the connectivity

information that Azure Data Factory needs to connect to the respective

external data stores or compute engines. A linked service defines the

connection information, while the dataset represents the actual structure

of the data. For example, an Azure Storage linked service specifies a

connection string/SAS URI to connect to the Azure storage account.

Additionally, an Azure blob dataset specifies the blob container and the

folder that contains the data.

Linked services are used for two purposes in Azure Data Factory.

• To represent a data store that includes but isn’t limited

to an on-premises SQL Server database, Oracle

database, file share, or Azure blob storage account.

• To represent a compute resource that can host the

execution of an activity. For example, the Databricks Jar

activity runs on an HDInsight Hadoop cluster.

Figure 2-3 shows the relationship between the linked service, dataset,

activity, pipeline, and integration runtime.

Chapter 2 IntroduCtIon to azure data FaCtory

33

Linked Service Example

The following linked service is an Azure Storage linked service. Notice that

the type is set to AzureStorage. The type properties for the Azure Storage

linked service include a connection string. The Azure Data Factory service

uses this connection string to connect to the data store at runtime.

{

 "name": "AzureStorageLinkedService",

 "properties": {

 "type": "AzureStorage",

 "typeProperties": {

 "connectionString": {

 "type": "SecureString",

 "value": "DefaultEndpointsProtocol=https;Account

Name=<accountname>;AccountKey=<accountkey>"

 }

 },

 "connectVia": {

 "referenceName": "<name of Integration Runtime>",

 "type": "IntegrationRuntimeReference"

 }

 }

}

Figure 2-3. Relationship between Azure Data Factory components

Chapter 2 IntroduCtIon to azure data FaCtory

34

Table 2-9 describes properties in the previous JSON.

 Integration Runtime

The integration runtime (IR) is the compute infrastructure used by Azure

Data Factory to provide the following data integration capabilities across

different network environments:

• Data movement: Move data between data stores in

public networks and data stores in private networks

(on-premise or virtual private networks). It provides

support for built-in connectors, format conversion,

column mapping, and performant and scalable data

transfer. It applies to the Azure IR and self-hosted IR.

Table 2-9. Caption Here

Property Description Required

name name of the linked service. See “naming rules.” yes

type type of the linked service, for example

azureStorage (data store) or azureBatch

(compute). See the description for

typeProperties.

yes

typeProperties the type properties are different for each data

store or compute.

yes

connectVia the Ir to be used to connect to the data store.

you can use the azure Ir or self-hosted Ir (if

your data store is in a private network). If not

specified, it uses the default azure Ir.

no

Chapter 2 IntroduCtIon to azure data FaCtory

35

• Data transform activity dispatch: Dispatch and

monitor transformation activities running on a

variety of compute services such as Azure HDInsight,

Azure Machine Learning, Azure SQL Database, SQL

Server, and more. It applies to the Azure IR and self-

hosted IR.

• SSIS package execution: Natively execute SQL

Server Integration Services packages in a managed

Azure compute environment. It applies to the

Azure-SSIS IR.

In Azure Data Factory, an activity defines the action to be performed.

A linked service defines a target data store or a compute service. An

integration runtime provides the bridge between the activity and the

linked services. It is referenced by the linked service and provides the

compute environment where the activity either runs or gets dispatched

from. This way, the activity can be performed in the region closest possible

to the target data store or compute service in the most performant way

while meeting security and compliance needs.

Azure Data Factory offers three types of IR, and you should choose

the type that best serves the data integration capabilities and network

environment you are looking for. These three types are covered next.

Azure IR

The Azure integration runtime can be used for data movement and

orchestration of data stores and compute services that are in the public

network. For example, if you’re copying data from public endpoints like

Amazon S3 to Azure Blob in a public environment, then the Azure IR

works well and provide you with cloud scale for big data movement as

shown in Figure 2-4.

Chapter 2 IntroduCtIon to azure data FaCtory

36

The Azure IR is a fully managed integration runtime. It is

completely serverless and supports cloud scale. You don’t have to

worry about infrastructure provision, software installation, patching, or

capacity scaling. In addition, you pay only for the duration of the actual

utilization. You can set how many data integration units to use on the

Copy activity, and the compute size of the Azure IR is elastically scaled

up accordingly without you having to explicitly adjust the size of the

Azure IR.

Figure 2-4. Azure integration runtime scalability (cloud to cloud
scenario)

Chapter 2 IntroduCtIon to azure data FaCtory

37

The only drawback of the Azure IR is it cannot be used if your data

stores are behind a firewall because then it would require inbound access

through the firewall, which may not be agreeable.

By default, each data factory has an Azure IR in the back end that

supports operations on cloud data stores and compute services in public

networks. The location of that Azure IR is auto-resolved. If the connectVia

property is not specified in the linked service definition, the default Azure

IR is used. You need to explicitly create an Azure IR only when you would

like to explicitly define the location of the IR or when you would like to

virtually group the activity executions on different IRs for management

purposes.

You can specify the location of the Azure IR, in which case the data

movement and activity dispatch will happen in that specific region. Azure

IR is available in almost all Azure regions.

Being able to specify the Azure IR location is handy in scenarios where

strict data compliance is required and you need to ensure that the data do

not leave a certain geography. For example, if you want to copy data from

Azure Blob in Southeast Asia to SQL Azure in Southeast Asia and want to

ensure data never leaves the Southeast Asia region, then create an Azure IR

in Southeast Asia and link both the linked services to this IR.

If you choose to use the auto-resolve Azure IR, which is the

default option, during the Copy activity ADF will make a best effort to

automatically detect your sink and source data store to choose the best

location either in the same region or in the closest region. During the

Lookup/GetMetadata and Transform activities, ADF will use the IR in the

data factory region.

For the Copy activity, ADF will make a best effort to automatically

detect your sink and source data store to choose the best location either in

the same region if available or in the closest one in the same geography, or

if not detectable to use the data factory region as an alternative.

For Lookup/GetMetadata activity execution and transformation

activity dispatching, ADF will use the IR in the data factory region.

Chapter 2 IntroduCtIon to azure data FaCtory

38

Self-Hosted IR

The self-hosted IR can be used while doing hybrid data integration. If you

want to perform data integration securely in a private network, which

does not have a direct line of sight from the public cloud environment, you

can install a self-hosted IR in an on-premise environment behind your

corporate firewall or inside an Azure virtual network (Figure 2-5).

Figure 2-5. Self-hosted IR inside corporate network (hybrid
scenario)

Chapter 2 IntroduCtIon to azure data FaCtory

39

The self-hosted integration runtime is not serverless and needs to be

manually installed on a Windows machine. It does support high availability

and can be installed on up to four machines. The self-hosted integration

runtime only makes outbound HTTP-based connections to the open

Internet. It can also be used to orchestrate transform activities inside an

Azure virtual network. For example, if you must execute a stored procedure

on an on-premise SQL Server or orchestrate jobs on HDInsight clusters

inside a virtual network with NSGs (Network Security Group) enabled,

you should use a self-hosted integration which has a line of sight to the

on-premise SQL Server or HDInsight clusters inside the virtual network.

From a security perspective, a self-hosted IR stores all the

credentials/secrets that are part of the linked services in Azure Data

Factory locally, and the values are encrypted using the Windows

DPAPI. This way, the on- premise credentials never leave the security

boundary of the enterprise.

To compare the self-hosted IR with the Azure IR, the self-hosted IR is

not serverless and needs to be managed by you. The cost of orchestrating

activities on the self-hosted IR is minuscule, but you still must bring

your own infrastructure. The self-hosted integration runtime supports

transparent auto-update features, and once you set up the infrastructure

on which it runs, the auto-update happens by itself typically once a month.

Auto-update is an important feature as the Azure Data Factory team keeps

improving the software on a monthly release cycle. The improvements

may include support for new connectors, bug fixes, security patches, and

performance improvements.

When you move the data between on-premises and cloud, the Copy

activity uses a self-hosted integration runtime to transfer the data from the

on-premise data source to the cloud and vice versa.

While authoring a linked service, you can choose a self-hosted

integration runtime by specifying the connectvia property. By doing so,

you are ensuring the secrets/connection strings in the linked service are

stored on the self-hosted integration runtime.

Chapter 2 IntroduCtIon to azure data FaCtory

40

While using UI, the credentials are encrypted using the JavaScript

Cryptography library and sent to the self-hosted IR where they are

decrypted and encrypted again using the Windows DPAPI. An encrypted

linked service is sent back to the ADF service for storing the linked service

reference.

You can use PowerShell locally to encrypt the credentials directly

against a self-hosted integration runtime and can send the encrypted

payload back to the ADF service for storing the linked service reference.

I would consider this as the securest option for setting linked service

credentials in the self-hosted IR.

While using REST or an SDK, the linked service payload goes securely

through the ADF service to the self-hosted IR, on which it is encrypted and

stored, and a reference is sent back to ADF.

The self-hosted IR is logically registered to the Azure Data Factory

instance, and the compute used to support its functionalities is provided

by you. Therefore, there is no explicit location property for the self-hosted

IR. If you have provisioned an Azure virtual network and would like to do

the data integration inside the virtual network, you can set up the self-

hosted IR on a Windows virtual network inside a virtual network.

When used to perform data movement, the self-hosted IR extracts data

from the source and writes into the destination.

Azure-SSIS IR

The Azure-SSIS IR can run an existing SSIS package in the cloud. It can be

provisioned in either a public network or a virtual private network. Since

the Azure-SSIS IR only runs the package, it should have a line of sight

to source and sink databases. If it needs to access a database that is on-

premises, then you can join the Azure-SSIS IR to your on-premise network

using a site-to-site VPN or ExpressRoute private peering.

Chapter 2 IntroduCtIon to azure data FaCtory

41

The Azure-SSIS IR is a fully managed cluster of Azure VMs

dedicated to run your SSIS packages. You can bring your own Azure

SQL database or managed instance server to host the catalog of SSIS

projects/packages (SSISDB) that will be attached to it. You can scale up

the power of the compute by specifying the node size and scale it out

by specifying the number of nodes in the cluster. You can manage the

cost of running your Azure-SSIS integration runtime by stopping and

starting it as you see fit.

For more information, see Chapter 7, which covers the creation and

configuration of the Azure-SSIS IR. Once it’s created, you can deploy and

manage your existing SSIS packages with little to no change using familiar

tools such as SQL Server Data Tools (SSDT) and SQL Server Management

Studio (SSMS), just like using SSIS on-premises.

Selecting the right location for your Azure-SSIS IR is essential to

achieving high performance in your ETL workflows.

The location of your Azure-SSIS IR does not need be the same as the

location of your Azure Data Factory instance, but it should be the same as

the location of your own Azure SQL database/managed instance server

where SSISDB is to be hosted. This way, your Azure-SSIS integration

runtime can easily access SSISDB without incurring excessive traffic

between different locations.

If you do not have an existing Azure SQL database/managed instance

(preview) server to host SSISDB but you have on-premises data sources/

destinations, you should create a new Azure SQL database/managed

instance (preview) server in the same location of a virtual network

connected to your on-premises network. This way, you can create your

Azure-SSIS IR using the new Azure SQL database/managed instance

(preview) server and joining that virtual network, all in the same location,

effectively minimizing data movement across different locations.

If the location of your existing Azure SQL database/managed instance

(preview) server where SSISDB is hosted is not the same as the location of

a virtual network connected to your on-premise network, first create your

Chapter 2 IntroduCtIon to azure data FaCtory

42

Azure-SSIS IR using an existing Azure SQL database/managed instance

(preview) server and joining another virtual network in the same location

and then configure a virtual network to a virtual network connection

between different locations.

 Hands-on: Creating a Data Factory Instance
Using a User Interface
We will create an Azure Data Factory (version 2) instance in the following

steps:

 Prerequisites

These are the prerequisites:

• An Azure subscription with the contributor role

assigned to at least one resource group

• A web browser (Chrome/Microsoft Edge)

 Steps

Here are the steps:

 1. Navigate to the Azure portal within your web

browser and navigate to https://portal.azure.

com (see Figure 2-6).

Chapter 2 IntroduCtIon to azure data FaCtory

https://portal.azure.com
https://portal.azure.com

43

 2. Click the “Resource groups” icon in the left menu.

 3. Click “+Add” and create a new resource group.

Let’s call it adf-rg, and select South East Asia as the

region.

 4. After a few seconds, click the Refresh button and

select the new resource group.

 5. Click +Add and search for data factory in the search

box (Figure 2-7).

Figure 2-6. Azure portal

Chapter 2 IntroduCtIon to azure data FaCtory

44

 6. Select Data Factory, and click Create (see Figure 2-8).

Figure 2-7. Data Factory in Azure Portal

Chapter 2 IntroduCtIon to azure data FaCtory

45

Note the data Factory instance name is globally unique, so you
may not be able to use the same name as shown here. please
append some string to adf-book-df to keep the name unique.

Figure 2-8. Creating a Data Factory v2 instance

Chapter 2 IntroduCtIon to azure data FaCtory

46

 7. Once it is created, click Author & Monitor to log into

the ADF UI (Figure 2-9).

 8. You can get started by clicking “Create pipeline”

(Figure 2-10).

Figure 2-9. Launching the ADF UI from the Azure portal

Chapter 2 IntroduCtIon to azure data FaCtory

47

Let’s cover some ADF UI features. Setting up a code repository is

extremely useful for the continuous integration/continuous deployment

(CI/CD) of your data pipelines (see Figure 2-11). In a team, each data

engineer can work on their branches and merge/commit their changes to

the master branch, which will be published into production. All the source

code generated by the ADF UI can be configured to be stored in Visual

Studio Teams Services and GitHub.

Figure 2-10. ADF user interface for authoring and monitoring data
pipelines

Chapter 2 IntroduCtIon to azure data FaCtory

48

Figure 2-12 shows the flow diagram of continuous integration and

deployment in the ADF UI.

Figure 2-11. Configuring a code repository for storing ADF-generated
code

Chapter 2 IntroduCtIon to azure data FaCtory

49

Here are the steps:

 1. Set up a development ADF instance with VSTS/

GitHub where all developers can author ADF

resources such as pipelines, datasets, and more.

Figure 2-12. CI/CD workflow in ADF

Chapter 2 IntroduCtIon to azure data FaCtory

50

 2. Developers can modify resources such as pipelines.

They can use the Debug button to debug changes

and perform test runs.

 3. Once satisfied with the changes, developers can

create a PR (pull request) from their branch to

master or collaboration branch to get the changes

reviewed by peers.

 4. Once changes are in the master branch, they can

publish to the development ADF using the Publish

button.

 5. When your team is ready to promote changes to

the test and prod ADF instances, you can export

the ARM template from the master branch or any

other branch in case your master is behind the live

development ADF instance.

 6. The exported ARM template can be deployed with

different environment parameter files to the test and

prod environments.

You can also set up a VSTS release definition to automate the

deployment of a Data Factory instance to multiple environments (see

Figure 2-13). Get more information and detailed steps in Chapter 9.

Chapter 2 IntroduCtIon to azure data FaCtory

https://doi.org/10.1007/978-1-4842-4122-6_9

51

Figure 2-14 shows the process of using author pipelines via drag-and-

drop development.

Figure 2-13. VSTS release definition

Figure 2-14. ADF UI for authoring

Chapter 2 IntroduCtIon to azure data FaCtory

52

Figure 2-15 shows the process of visually monitoring pipelines/

activities.

Figure 2-15. ADF UI for monitoring data pipelines

 Hands-on: Creating a Data Factory Instance
Using PowerShell
You will now create an Azure Data Factory (v2) instance using PowerShell.

This is helpful in scenarios where you want to automate the deployments.

 Prerequisites

Here are the prerequisites:

• Azure subscription with the contributor role assigned

to at least one resource group.

• Azure PowerShell. Please install the latest Azure

PowerShell modules. You can run the following

command with an elevated PowerShell session

(administrator):

#If not installed already

Install-Module -Name AzureRM

Chapter 2 IntroduCtIon to azure data FaCtory

53

#To update existing Azure PowerShell module

Update-Module -Name AzureRM

• Web browser (Chrome/Microsoft Edge).

 Log In to PowerShell

Follow these steps:

 1. Launch PowerShell on your machine. Keep

PowerShell open until the end of this example. If

you close and reopen it, you will need to run these

commands again.

 2. Run the following command, and enter the same

Azure username and password that you used to sign

in to the Azure portal:

Connect-AzureRmAccount

 3. Run the following command to view all the

subscriptions for this account:

Get-AzureRmSubscription

 4. If you see multiple subscriptions associated with

your account, run the following command to

select the subscription that you want to work with.

Replace SubscriptionId with the ID of your Azure

subscription:

Select-AzureRmSubscription -SubscriptionId

"<SubscriptionId>"

Chapter 2 IntroduCtIon to azure data FaCtory

54

 Create a Data Factory

Run this code:

Set-AzureRmDataFactoryV2 -ResourceGroupName rgname -Location

eastus -Name adflabdemo

Notes:

• If the resource group/Data Factory instance name

already exists, you may want to try a new name.

• To create Data Factory instances, the user account

you use to log in to Azure must be a member of the

contributor or owner roles or an administrator of the

Azure subscription.

• Please make sure Data Factory is available in the region

specified in the previous cmdlet.

 Summary
In this chapter, you successfully created an Azure Data Factory instance

and went through high-level constructs of the PaaS ETL/ELT service.

A fictitious company was briefly discussed in Chapter 1; we

will continue to describe this scenario and current pain points.

AdventureWorks is a retail company that requires assistance in managing

and finding insight on the data received on a regular interval. Currently,

the company has data available from various sources.

These are the challenges the company is facing:

• Data volume: Since day 1 AdventureWorks has had data

available in different sources and different formats.

Handling such a huge amount of data is becoming

challenging for the company.

Chapter 2 IntroduCtIon to azure data FaCtory

55

• No single version of the truth: There are multiple

versions of each analysis, which makes it hard to

believe in any data output. Most of the employees’ time

is spent figuring out whether the output data is the right

one or not.

• Many data input points: Over a period of time many

data input points have been introduced. The company

provides a mobile app to the consumer for shopping

and provides various channels to capture feedback,

capture data from social media, and connect various

vendors to find various data patterns.

• No automation: Currently, there are manual steps

involved in various stages that affect the latency, data

quality, and cost. The company wants to automate the

entire process, from getting the raw data, transforming

it, and making it available for business users to take

some actions on it.

• Security: This is a topmost concern of the

AdventureWorks company. The managers always

worry about data security. Many processes, tools, and

human involvement makes the company invest many

resources to make sure the data is secure.

• High latency: Now you are getting a sense of the various

processes involved that impact in latency. Every

organization wants the right information to be available

at the right time.

• Cost: The cost involves infrastructure, maintenance,

support, various process, and so on. The company

wants to know how the costs can be reduced.

Chapter 2 IntroduCtIon to azure data FaCtory

56

As you notice, the company spends most of its time solving issues that

impact the day-to-day business.

The job is to help AdventureWorks set up an end-to-end solution on

Azure that will help the company overcome these concerns. Figure 2-16

shows the architecture you’ll build on in upcoming chapters that will help

AdventureWorks focus more on business innovation.

Figure 2-16. Sample architecture

Chapter 2 IntroduCtIon to azure data FaCtory

57© Sudhir Rawat and Abhishek Narain 2019
S. Rawat and A. Narain, Understanding Azure Data Factory,
https://doi.org/10.1007/978-1-4842-4122-6_3

CHAPTER 3

Data Movement
Any extract-transform-load (ETL) or extract-load-transform (ELT) project

starts with data ingestion (Figure 3-1). You should be able to connect

to various sources, either in a public network or behind firewalls in a

private network, and then be able to pull them onto a staging location or

a destination on the cloud. In the ELT pattern for Big Data processing, you

would generally dump all your data in a staging blob or data lake on the

cloud, and based on the need, you would run analytical jobs/transform

activities to get further insights or even do some basic data cleansing.

Figure 3-1. Extraction of data from disparate sources during ETL/ELT

58

This chapter will focus on building the data extraction pipelines for

AdventureWorks.

 Overview
In ADF, the Copy activity is used to extract the data from various sources.

The Copy activity is executed at an integration runtime. You need to select

the right integration runtime for your copy jobs.

• Use the Azure integration runtime when your source and

sink are publicly accessible. You need to understand that

even though the Azure integration runtime provides

you with a serverless infrastructure for data movement,

it runs in a public Azure environment. This means the

Azure integration runtime needs a line of sight to your

data stores.

• Use the self-hosted integration runtime when either of

the sources is behind a firewall or in a private network

(Azure virtual network, Amazon VPC, or on-premises).

The self-hosted integration runtime requires you to

install software on a machine in the same private

network, which has line of sight to your stores and can

provide you with the data integration capabilities.

 How Does the Copy Activity Work?
Let’s try to break the Copy activity into smaller units (Figure 3-2) to

understand what happens in each step. The initial step involves reading

the data from the source using the integration runtime. Then, based on the

copy configuration, there are serialization/deserialization, compression/

decompression, and column mapping, format conversion, and so on,

taking place. The final step is to write this data into the sink/destination.

Chapter 3 Data MoveMent

59

 Supported Connectors
At the time of writing this book, ADF supports more than 70 connectors,

and more are being added all the time (Table 3-1).

Figure 3-2. Classification of the Copy activity timeline

Table 3-1. Connectors

Data Store Supported
Source

Supported
Sink

Supported by
the Azure IR

Supported
by the
Self- Hosted IR

azure Blob Storage ✓ ✓ ✓ ✓

azure Cosmos DB ✓ ✓ ✓ ✓

azure Data Lake

Storage Generation 1

✓ ✓ ✓ ✓

azure Data Lake

Storage Generation 2

(preview)

✓ ✓ ✓ ✓

azure Database for

MySQL

✓ ✓ ✓

azure Database for

postgreSQL

✓ ✓ ✓

azure File Storage ✓ ✓ ✓ ✓

azure SQL Database ✓ ✓ ✓ ✓

azure SQL Data

Warehouse

✓ ✓ ✓ ✓

(continued)

Chapter 3 Data MoveMent

60

Table 3-1. (continued)

Data Store Supported
Source

Supported
Sink

Supported by
the Azure IR

Supported
by the
Self- Hosted IR

azure Search Index ✓ ✓ ✓

azure table Storage ✓ ✓ ✓ ✓

amazon redshift ✓ ✓ ✓

DB2 ✓ ✓ ✓

Drill (preview) ✓ ✓ ✓

Google BigQuery ✓ ✓ ✓

Greenplum ✓ ✓ ✓

hBase ✓ ✓ ✓

hive ✓ ✓ ✓

apache Impala

(preview)

✓ ✓ ✓

Informix ✓ ✓

MariaDB ✓ ✓ ✓

Microsoft access ✓ ✓

MySQL ✓ ✓

netezza ✓ ✓ ✓

oracle ✓ ✓ ✓ ✓

phoenix ✓ ✓ ✓

postgreSQL ✓ ✓

presto (preview) ✓ ✓ ✓

(continued)

Chapter 3 Data MoveMent

61

Table 3-1. (continued)

Data Store Supported
Source

Supported
Sink

Supported by
the Azure IR

Supported
by the
Self- Hosted IR

Sap Business

Warehouse

✓ ✓

Sap hana ✓ ✓ ✓

Spark ✓ ✓ ✓

SQL Server ✓ ✓ ✓ ✓

Sybase ✓ ✓

teradata ✓ ✓

vertica ✓ ✓ ✓

Cassandra ✓ ✓ ✓

Couchbase (preview) ✓ ✓ ✓

MongoDB ✓ ✓ ✓

amazon S3 ✓ ✓ ✓

File System ✓ ✓ ✓ ✓

Ftp ✓ ✓ ✓

hDFS ✓ ✓ ✓

SFtp ✓ ✓ ✓

Generic http ✓ ✓ ✓

Generic oData ✓ ✓ ✓

Generic oDBC ✓ ✓ ✓

amazon Marketplace

Web Service (preview)

✓ ✓ ✓

(continued)

Chapter 3 Data MoveMent

62

Data Store Supported
Source

Supported
Sink

Supported by
the Azure IR

Supported
by the
Self- Hosted IR

Common Data Service

for apps

✓ ✓ ✓ ✓

Concur (preview) ✓ ✓ ✓

Dynamics 365 ✓ ✓ ✓ ✓

Dynamics CrM ✓ ✓ ✓ ✓

Ge historian ✓ ✓

hubSpot (preview) ✓ ✓ ✓

Jira (preview) ✓ ✓ ✓

Magento (preview) ✓ ✓ ✓

Marketo (preview) ✓ ✓ ✓

oracle eloqua (preview) ✓ ✓ ✓

oracle responsys

(preview)

✓ ✓ ✓

paypal (preview) ✓ ✓ ✓

QuickBooks (preview) ✓ ✓ ✓

Salesforce ✓ ✓ ✓ ✓

Salesforce Service

Cloud

✓ ✓ ✓ ✓

Salesforce Marketing

Cloud (preview)

✓ ✓ ✓

Table 3-1. (continued)

(continued)

Chapter 3 Data MoveMent

63

Data Store Supported
Source

Supported
Sink

Supported by
the Azure IR

Supported
by the
Self- Hosted IR

Sap Cloud for Customer

(C4C)

✓ ✓ ✓ ✓

Sap eCC ✓ ✓ ✓

Servicenow ✓ ✓ ✓

Shopify (preview) ✓ ✓ ✓

Square (preview) ✓ ✓ ✓

Web table (htML table) ✓ ✓

Xero (preview) ✓ ✓ ✓

Zoho (preview) ✓ ✓ ✓

Table 3-1. (continued)

The connectors that are marked as previews are still in development.

You can still use them and even provide feedback to Microsoft. If required,

feel free to contact Microsoft Support to get information regarding the

preview connectors.

We recommend you refer to the ADF documentation for the latest list

of supported connectors. You can check http://bit.ly/adfconnectors or

simply scan the QR code in Figure 3-3.

Chapter 3 Data MoveMent

http://bit.ly/adfconnectors

64

 Configurations
Let’s now discuss the Copy activity.

 Supported File and Compression Formats
Let’s get into the details of how a copy works. When you choose to copy a

file or a folder with multiple files, you need to specify whether ADF should

treat it as a binary file and copy it as is or whether you want to perform

some lightweight transforms on it, in which case it will not be treated as a

binary file.

• If you specify a binary copy while configuring the Copy

activity, then ADF copies it as is, without modifying

any of its content. You may still choose to rename it in

the destination/sink if need be. As it may seem, this

approach is efficient in copying large datasets as there

is no serialization/deserialization, and so on, involved

in this approach. If you are migrating something like

petabyte-scale data to the cloud, it is best to copy it as is

(binary copy).

• When you do not specify a binary copy in the Copy

activity configuration, then you can utilize various

lightweight transforms in ADF like format conversion

between text, JSON, Avro, ORC, and Praquet. You

Figure 3-3. QR code pointing to connector documentation in ADF

Chapter 3 Data MoveMent

65

can also read or write compressed files using the

supported compression codecs: GZip, Deflate, BZip2,

and ZipDeflate. In this approach, ADF parses the

file content and performs the format conversion/

compression as desired.

 Copy Activity Properties
Before we get into the hands-on steps, let’s take a quick look at some

sample JSON:

"activities":[

 {

 "name": "CopyActivityTemplate",

 "type": "Copy",

 "inputs": [

 {

 "referenceName": "<source dataset name>",

 "type": "DatasetReference"

 }

],

 "outputs": [

 {

 "referenceName": "<sink dataset name>",

 "type": "DatasetReference"

 }

],

 "typeProperties": {

 "source": {

 "type": "<source type>",

 <properties>

 },

Chapter 3 Data MoveMent

66

 "sink": {

 "type": "<sink type>"

 <properties>

 },

 "translator":

 {

 "type": "TabularTranslator",

 "columnMappings": "<column mapping>"

 },

 "dataIntegrationUnits": <number>,

 "parallelCopies": <number>,

 "enableStaging": true/false,

 "stagingSettings": {

 <properties>

 },

 "enableSkipIncompatibleRow": true/false,

 "redirectIncompatibleRowSettings": {

 <properties>

 }

 }

 }

]

The above JSON template of a Copy activity contains an exhaustive

list of supported properties. You can use the ones that are required. While

using the ADF UI, these properties will be autogenerated. Table 3-2 shows

the list shows the property descriptions.

 Property Details

Table 3-2 shows the property details.

Chapter 3 Data MoveMent

67

Table 3-2. Properties

Property Description Required

type the type property of a Copy activity

must be set to Copy.

Yes

 inputs Specify the dataset you created that

points to the source data. the Copy

activity supports only a single input.

Yes

 outputs Specify the dataset you created that

points to the sink data. the Copy activity

supports only a single output.

Yes

 typeProperties Specify a group of properties to

configure the Copy activity.

Yes

source Specify the copy source type and the

corresponding properties on how to

retrieve data.

please check the Microsoft

documentation for each connector to find

the latest supported source properties.

Yes

 sink Specify the copy sink type and the

corresponding properties for how to

write data.

please check the Microsoft

documentation for each connector to

find the latest supported sink properties.

Yes

 translator Specify explicit column mappings from

the source to the sink. this applies when

the default copy behavior cannot fulfill

your needs.

no

(continued)

Chapter 3 Data MoveMent

68

Property Description Required

data

IntegrationUnits

Specify the powerfulness of the azure

integration runtime to empower the data

copy. this was formerly known as cloud

data movement units (DMUs).

no

 parallelCopies Specify the parallelism that you want the

Copy activity to use when reading data

from the source and writing data to the

sink.

no

 enableStaging

staging

Settings

Choose to stage the interim data in blob

storage instead of directly copying data

from the source to the sink.

no

 enableSkip

IncompatibleRowre

directIncompatibleRow

Settings

Choose how to handle incompatible

rows when copying data from the source

to the sink.

no

Table 3-2. (continued)

 How to Create a Copy Activity
You can create a Copy activity using visual authoring (ADF UI). Once you

have created an Azure Data Factory instance, you can directly navigate to

https://adf.azure.com.

Within the ADF UI, you can either choose the Copy Data tool or author

a Copy activity by dragging it into the authoring canvas (Figure 3-4).

Chapter 3 Data MoveMent

https://adf.azure.com

69

Figure 3-4. Authoring canvas

The Copy Data tool (Table 3-3) simplifies the data ingestion process by

optimizing the experience for a first-time data-loading experience. It hides

many ADF details and properties that may not be useful while doing basic

job such as loading data into the data lake.

Table 3-3. Copy Data Tool

Copy Data Tool Per Activity (Copy Activity)
Authoring Canvas

You want to easily build a data-loading task

without learning about azure Data Factory

entities (linked services, datasets, pipelines,

etc.).

You want to implement complex and

flexible logic for loading data into a

lake.

You want to quickly load a large number of

data artifacts into a data lake.

You want to chain the Copy activity

with subsequent activities for

cleansing or processing data.

Chapter 3 Data MoveMent

70

 Schema Capture and Automatic Mapping in Copy
Data Tool

The schema of a data source may not be the same as the schema of a data

destination in many cases. In this scenario, you need to map columns from

the source schema to columns from the destination schema.

The Copy Data tool monitors and learns your behavior when you are

mapping columns between source and destination stores. After you pick

one or a few columns from the source data store and map them to the

destination schema, the Copy Data tool starts to analyze the pattern for

column pairs you picked from both sides. Then, it applies the same pattern

to the rest of the columns. Therefore, you will see that all the columns have

been mapped to the destination in the way you want after just a few clicks.

If you are not satisfied with the choice of column mapping provided by

the Copy Data tool, you can ignore it and continue manually mapping the

columns. Meanwhile, the Copy Data tool constantly learns and updates

the pattern and ultimately reaches the right pattern for the column

mapping you want to achieve.

When copying data from SQL Server or Azure SQL Database into Azure

SQL Data Warehouse, if the table does not exist in the destination store,

the Copy Data tool supports the creation of the table automatically by

using the source schema.

Technically, both of them will end up creating the following:

• Linked services for the source data store and the sink

data store.

• Datasets for the source and the sink.

• A pipeline with a Copy activity. The next section

provides an example.

Chapter 3 Data MoveMent

71

 Scenario: Creating a Copy Activity Using the Copy Data
Tool (Binary Copy)

Go to https://adf.azure.com (a prerequisite is to already have an Azure

Data Factory instance created). We will copy data from Amazon S3 to

Azure Blob Storage.

Click the Copy Data icon (see Figure 3-5).

Figure 3-5. Copy Data icon

You will see a dialog for configuring the Copy activity. The task name

will become the pipeline name. You can provide a description for your

reference.

You can specify a task schedule, which defines a cadence for this copy

workflow. This is useful in the case of incremental data-loading scenarios.

For now, click “Run once now” and then click Next (see Figure 3-6).

Chapter 3 Data MoveMent

https://adf.azure.com

72

Click “+ Create new connection” (see Figure 3-7).

Figure 3-6. Selecting “Run once now”

Figure 3-7. Creating a new connection

Chapter 3 Data MoveMent

73

The next dialog lets you select the new linked service (connection to

source). In Figure 3-8, we are connecting to Amazon S3 as the source. You

may use your desired connector.

Figure 3-8. Connecting to Amazon S3

Enter the access key ID and secret access key. You can validate the

credentials by selecting the test connection (see Figure 3-9). Click Finish.

Chapter 3 Data MoveMent

74

Figure 3-9. Entering the keys

Click Next (see Figure 3-10).

Figure 3-10. Select the source data store. Clicking Next

Chapter 3 Data MoveMent

75

In the dialog, you can configure the dataset. You can select the correct

file or folder to copy data from (see Figure 3-11). You can navigate to the

folders by clicking Browse. We will use binary copy. You can also select the

compression in this step. In this example, we are not using compression.

Enabling compression will have some performance degradation as it is a

resource-intensive operation.

Figure 3-11. Selecting the folder

Click Next.

Chapter 3 Data MoveMent

76

Create a destination linked service. Select Azure Blob Storage. Click

Continue (see Figure 3-12).

Figure 3-12. Selecting Azure Blob Storage

Chapter 3 Data MoveMent

77

Add the connection details (see Figure 3-13). Click Finish.

Figure 3-13. Adding the connection details

Chapter 3 Data MoveMent

78

Click Next (see Figure 3-14).

Figure 3-14. Select the destination/ sink where the data would
be copied. Clicking Next

Chapter 3 Data MoveMent

79

Choose the folder path in the destination (see Figure 3-15). This is

where the data will be copied into.

Figure 3-15. Setting the destination

Click Next. In addition to the compression, you can see a copy behavior

property (see Figure 3-16), which is a specific property related to the Blob

Storage dataset when it is a sink. The following are the allowed values:

 – PreserveHierarchy (default): This preserves the file

hierarchy in the target folder. The relative path of the

source file to the source folder is identical to the relative

path of the target file to the target folder.

 – FlattenHierarchy: All files from the source folder are in

the first level of the target folder. The target files have

autogenerated names.

Chapter 3 Data MoveMent

80

 – MergeFiles: This merges all files from the source folder

to one file. If the file or blob name is specified, the

merged file name is the specified name. Otherwise, it’s

an autogenerated file name.

Click Next.

Figure 3-16. Choosing the output file

Chapter 3 Data MoveMent

81

Click Next (see Figure 3-17).

Figure 3-17. Configuring settings

Chapter 3 Data MoveMent

82

Click Next (see Figure 3-18).

Figure 3-18. Shows summary of copy settings. Clicking Next

Chapter 3 Data MoveMent

83

Click Monitor to monitor the pipeline run (see Figure 3-19).

Under monitoring you will see the status of the pipelines. Under

Actions, select View Activity Runs as highlighted in red (see Figure 3-20).

Figure 3-19. You can find copy status in the monitoring section
to track the progress of the copy activity. Clicking Monitor

Figure 3-20. Status

Chapter 3 Data MoveMent

84

Click the view the details as highlighted in red (see Figure 3-21).

Figure 3-21. Details

You can find all the monitoring details, including data volume and

throughput (see Figure 3-22).

Figure 3-22. All the details

Chapter 3 Data MoveMent

85

 Copy Performance Considerations
Microsoft has published a reference for performance during the Copy

activity. This is a great indicator to help you understand if you are getting

the optimum performance.

Figure 3-23 shows the copy throughput number in MBps for the given

source and sink pairs in a single Copy activity run based on in-house

testing. For comparison, it also demonstrates how different settings of data

integration units or self-hosted integration runtime scalability (multiple

nodes) can help on copy performance.

Figure 3-23. Copy throughput numbers

Chapter 3 Data MoveMent

86

 Data Integration Units
A data integration unit (DIU), formerly known as cloud data movement

unit (DMU), is a measure that represents the power (a combination of

CPU, memory, and network resource allocation) of a single unit in Azure

Data Factory. A DIU applies only to the Azure integration runtime and not

to the self-hosted integration runtime.

The minimal DIUs to empower the Copy activity run is two. If none

is specified, the default is used. Table 3-4 lists the default DIUs used in

different copy scenarios:

Table 3-4. Default DIUs

Copy Scenario Default DIUs Determined by Service

Copy data between file-based

stores

Between 4 and 32, depending on the number and

size of the files

all other copy scenarios 4

To override the defaults, specify a value for the dataIntegrationUnits

property. The allowed values for the dataIntegrationUnits property is up

to 256. The actual number of DIUs that the copy operation uses at runtime is

equal to or less than the configured value, depending on your data pattern.

You can easily find the DIU units used through the ADF UI monitoring

during a Copy activity that uses the Azure integration runtime.

DIUs are what you get charged for; hence, this has a direct billing

implication.

 Parallel Copy
You can use the parallelCopies property to indicate the parallelism that

you want the Copy activity to use. You can think of this property as the

maximum number of threads within the Copy activity that can read from

your source or write to your sink data stores in parallel.

Chapter 3 Data MoveMent

87

For each Copy activity run, Azure Data Factory determines the number

of parallel copies to use to copy data from the source data store and to the

destination data store. The default number of parallel copies that it uses

depends on the type of source and sink you are using (Table 3-5).

Table 3-5. Copy Scenarios

Copy Scenario Default Parallel Copy Count Determined by
Service

Copy data between file- based

stores

Depends on the size of the files and the number

of DIUs used to copy data between two cloud

data stores, or the physical configuration of the

self-hosted integration runtime machine

Copy data from any source data

store to azure table Storage

4

all other copy scenarios 1

While copying data across file-based stores, the parallelCopies

property determines the parallelism at the file level. The chunking within

a single file will happen underneath automatically and transparently, and

it’s designed to use the best suitable chunk size for a given source data

store type to load data in parallel and orthogonal to parallelCopies. The

actual number of parallel copies the data movement service uses for the

copy operation at runtime is no more than the number of files you have. If

the copy behavior is mergeFile, the Copy activity cannot take advantage of

file-level parallelism.

When you specify a value for the parallelCopies property, consider

the load increase on your source and sink data stores and to the self-hosted

integration runtime if the copy activity is empowered by it, for example,

for hybrid copy. This happens especially when you have multiple activities

or concurrent runs of the same activities that run against the same data

Chapter 3 Data MoveMent

88

store. If you notice that either the data store or the self-hosted integration

runtime is overwhelmed with the load, decrease the parallelCopies value

to relieve the load.

When you copy data from stores that are not file-based to stores that

are file-based, the data movement service ignores the parallelCopies

property. Even if parallelism is specified, it’s not applied in this case.

parallelCopies is orthogonal to dataIntegrationUnits. The former

is counted across all the DIUs.

 Staged Copy
When you copy data from a source data store to a sink data store, you

might choose to use Blob Storage as an interim staging store. Staging is

especially useful in the following cases:

• You want to ingest data from various data stores

into a SQL data warehouse via PolyBase. A SQL data

warehouse uses PolyBase as a high- throughput

mechanism to load a large amount of data into a SQL

data warehouse. However, the source data must be in

Blob Storage or Azure Data Lake Store, and it must meet

additional criteria. When you load data from a data

store other than Blob Storage or Azure Data Lake Store,

you can activate data copying via interim staging Blob

Storage. In that case, Azure Data Factory performs the

required data transformations to ensure that it meets

the requirements of PolyBase. Then it uses PolyBase to

load data into the SQL data warehouse efficiently.

• Sometimes it takes a while to perform a hybrid data

movement (that is, to copy from an on-premises

data store to a cloud data store) over a slow network

connection. To improve performance, you can use a

staged copy to compress the data on-premises so that it

Chapter 3 Data MoveMent

89

takes less time to move data to the staging data store in

the cloud and then to decompress the data in the staging

store before loading into the destination data store.

• You don’t want to open ports other than port 80 and

port 443 in your firewall because of corporate IT

policies. For example, when you copy data from an

on-premises data store to an Azure SQL Database

sink or an Azure SQL Data Warehouse sink, you need

to activate outbound TCP communications on port

1433 for both the Windows firewall and your corporate

firewall. In this scenario, the staged copy can take

advantage of the self-hosted integration runtime to first

copy data to a Blob Storage staging instance over HTTP

or HTTPS on port 443 and then load the data into SQL

Database or SQL Data Warehouse from Blob Storage

staging. In this flow, you don’t need to enable port 1433.

 How Staged Copy Works

When you activate the staging feature, first the data is copied from the

source data store to the staging Blob Storage (bring your own). Next, the

data is copied from the staging data store to the sink data store. Azure Data

Factory automatically manages the two-stage flow for you. Azure Data

Factory also cleans up temporary data from the staging storage after the

data movement is complete.

When you run copy activity using a staging store, you can specify

whether you want the data to be compressed before moving data from

the source data store to an interim or staging data store and then to be

decompressed before moving data from an interim or staging data store

to the sink data store. This is helpful in scenarios where you are ingesting

data from low intenet bandwidth network, as the compressed data

would require lower bandwidth which later is decompressed on cloud

(staging storage).

Chapter 3 Data MoveMent

90

Currently, you can’t copy data between two on-premises data stores by

using a staging store.

 Configuration

Configure the enableStaging setting in the Copy activity to specify

whether you want the data to be staged in Blob Storage before you load it

into a destination data store. When you set enableStaging to TRUE, specify

the additional properties listed in Table 3-6. If you don’t specify one, you

also need to create an Azure storage or storage shared access signature-

linked service for staging.

Table 3-6. Configuration Details

Property Description Default
Value

Required

enableStaging Specify whether you

want to copy data via

an interim staging store.

False no

 linkedServiceName Specify the name of an

AzureStorage linked

service, which refers to

the instance of storage

that you use as an

interim staging store.

You cannot use

storage with a shared

access signature to

load data into SQL

Data Warehouse via

polyBase. You can use it

in all other scenarios.

n/a Yes, when

enableStagingis

is set to TRUE

(continued)

Chapter 3 Data MoveMent

91

Property Description Default
Value

Required

path Specify the Blob Storage

path that you want to

contain the staged data.

If you do not provide a

path, the service creates

a container to store

temporary data.

Specify a path only

if you use storage

with a shared access

signature or you require

temporary data to be in

a specific location.

n/a no

 enableCompression Specifies whether data

should be compressed

before it is copied to the

destination. this setting

reduces the volume of

data being transferred.

False no

Table 3-6. (continued)

Here’s a sample definition of the Copy activity with the properties that

are described in the preceding table:

"activities":[

 {

 "name": "Sample copy activity",

 "type": "Copy",

 "inputs": [...],

Chapter 3 Data MoveMent

92

 "outputs": [...],

 "typeProperties": {

 "source": {

 "type": "SqlSource",

 },

 "sink": {

 "type": "SqlSink"

 },

 "enableStaging": true,

 "stagingSettings": {

 "linkedServiceName": {

 "referenceName": "MyStagingBlob",

 "type": "LinkedServiceReference"

 },

 "path": "stagingcontainer/path",

 "enableCompression": true

 }

 }

 }

]

 Staged Copy Billing Impact

You are charged based on two steps: copy duration and copy type.

When you use staging during a cloud copy (copying data from a cloud

data store to another cloud data store, with both stages empowered by

Azure integration runtime), you are charged as follows:

[sum of copy duration for step 1 and step 2] x [cloud copy unit price]

Chapter 3 Data MoveMent

93

When you use staging during a hybrid copy (copying data from an

on- premises data store to a cloud data store, with one stage empowered by

the self-hosted integration runtime), you are charged for the following:

[hybrid copy duration] x [hybrid copy unit price] + [cloud copy

duration] x [cloud copy unit price]

 Considerations for the Self-Hosted
Integration Runtime
If your Copy activity is executed on a self-hosted integration runtime, note

the following:

Setup: Microsoft recommends that you use a

dedicated machine to host the integration runtime.

The recommended configuration for the self-hosted

integration runtime machine is at least 2GHz, four

cores, 8GB RAM, and 80GB disk.

Scale out: A single logical self-hosted integration

runtime with one or more nodes can serve multiple

Copy activity runs at the same time concurrently. If

you have a heavy need on hybrid data movement,

either with a large number of concurrent Copy

activity runs or with a large volume of data to copy,

consider scaling out the self-hosted integration

runtime so as to provision more resources to

empower the copy.

Chapter 3 Data MoveMent

94

 Considerations for Serialization
and Deserialization
Serialization and deserialization can occur when your input dataset or

output dataset is a file.

The copy behavior is to copy files between file-based data stores.

When input and output data sets both have the same or no file format

settings, the data movement service executes a binary copy without any

serialization or deserialization. You will see a higher throughput compared

to the scenario where the source and sink file format settings are different

from each other.

When input and output datasets both are in text format and only the

encoding type is different, the data movement service does only encoding

conversion. It doesn’t do any serialization and deserialization, which

causes some performance overhead compared to a binary copy.

When the input and output datasets both have different file formats

or different configurations, like delimiters, the data movement service

deserializes the source data to the stream, transforms it, and then serializes

it into the output format you indicated. This operation results in more

significant performance overhead compared to other scenarios.

When you copy files to/from a data store that is not file-based (for

example, from a file-based store to a relational store), the serialization

or deserialization step is required. This step results in significant

performance overhead.

The file format you choose might affect copy performance. For

example, Avro is a compact binary format that stores metadata with data.

It has broad support in the Hadoop ecosystem for processing and

querying. However, Avro is more expensive for serialization and

deserialization, which results in lower copy throughput compared to text

format. Make your choice of file format throughout the processing flow

holistically.

Chapter 3 Data MoveMent

95

 Considerations for Compression
When your input or output data set is a file, you can set the Copy activity

to perform compression or decompression as it writes data to the

destination. When you choose compression, you make a trade-off between

input/output (I/O) and CPU. Compressing the data costs extra in compute

resources. But in return, it reduces network I/O and storage. Depending on

your data, you may see a boost in overall copy throughput.

• Codec: Each compression codec has advantages. For

example, BZip2 has the lowest copy throughput, but

you get the best Hive query performance with BZip2

because you can split it for processing. Gzip is the most

balanced option, and it is used the most often. Choose

the codec that best suits your end-to-end scenario.

• Level: You can choose from two options for each

compression codec: fastest compressed and

optimally compressed. The fastest compressed option

compresses the data as quickly as possible, even if

the resulting file is not optimally compressed. The

optimally compressed option spends more time on

compression and yields a minimal amount of data.

You can test both options to see which provides better

overall performance in your case.

To copy a large amount of data between an on-premises store and

the cloud, consider using a staged copy with compression enabled. Using

interim storage is helpful when the bandwidth of your corporate network

and your Azure services is the limiting factor, and you want both the input

data set and output data set to be in uncompressed form.

Chapter 3 Data MoveMent

96

 Considerations for Column Mapping
You can set the columnMappings property in the Copy activity to map all

or a subset of the input columns to the output columns. After the data

movement service reads the data from the source, it needs to perform

column mapping on the data before it writes the data to the sink. This extra

processing reduces copy throughput.

If your source data store is queryable, for example, if it’s a relational

store like SQL database or SQL Server, or if it’s a NoSQL store like Azure

Table Storage or Azure Cosmos DB, consider pushing the column filtering

and reordering logic to the query property instead of using column

mapping. This way, the projection occurs while the data movement service

reads data from the source data store, where it is much more efficient.

 Summary
It is extremely important to understand the performance bottlenecks

before operationalizing your data pipelines. In this chapter, you focused on

the data movement aspect that comprises the extract phase of ETL.

Chapter 3 Data MoveMent

97© Sudhir Rawat and Abhishek Narain 2019
S. Rawat and A. Narain, Understanding Azure Data Factory,
https://doi.org/10.1007/978-1-4842-4122-6_4

CHAPTER 4

Data Transformation:
Part 1
What is the purpose of data if there are no insights derived from it? Data

transformation is an important process that helps every organization to get

insight and make better business decisions. This chapter you will focus on

why data transformation is important and how Azure Data Factory helps in

building this pipeline.

 Data Transformation
Now days many organizations have tons of data coming from disparate

data sources, and at times it’s unclear to the company what can be done

with this data. The data is generally scattered across various sources such

as SQL Server, Excel, business applications, and so on. You might even find

people who have data in a file that they frequently refer to. At the end of the

day, not only do you want to bring all the data together, but you also want

to transform it to get insight from it. The insight reflects how the company

did in the past and how they are doing in the present and future as well.

Let’s say a company has 10 to 20 years of data. These are the kinds of

questions that can be answered after data transformation: How many sales

were there in a specific period? What regions had the most sales? How

many sales are expected in the future?

98

Azure Data Factory provides various compute options to perform data

transformation. Let’s get started with each service to understand how they

work and what their benefits are. This will make them easier to understand

when you use these services through Azure Data Factory.

 HDInsight
Microsoft HDInsight (also known as Hadoop on Azure) is a Big Data

processing framework available as a service. This means companies do not

have to bother setting up a big cluster to process data. This is important;

otherwise, it takes a minimum of three months to procure hardware, install

the operating system and software, configure machines, apply security,

and design for scalability, fault tolerance, and support and maintenance.

Microsoft HDInsight provides users with the ability to spin up a cluster in

minutes. It takes care of all the features such as security, scalability, and

others behind the scenes. This will allow organizations to save money

and focus more on solving business problems and innovating in their

solutions.

HDInsight doesn’t use HDFS on the cluster for storage; instead, it

uses Azure Blob Storage or Azure Data Lake Store to store data. Figure 4-1

shows a typical HDInsight architecture.

Chapter 4 Data transformation: part 1

99

HDInsight provides an enterprise-grade platform to process Big Data.

These are some of its benefits:

• Easy to set up a cluster

• Scalability

• Enterprise-grade security

• Connection to various storage types on Azure

• Provider of various types of Hadoop clusters

• Monitor and logging

• Extensibility

Azure Data Factory makes life easier for an organization that wants

to process Big Data on HDInsight but doesn’t have enough expertise

within the organization to set up a cluster. The platform provides an

Figure 4-1. HDInsight architecture

Chapter 4 Data transformation: part 1

100

option to choose an on-demand cluster to process Big Data. However, an

organization can also use an existing HDInsight cluster and run the job.

Let’s see all the activity types that Azure Data Factory provides to transform

the data.

In the traditional Hadoop world, there are many programming

frameworks like hive and pig to write logic. It’s required because there are

developers in this world with different skillsets. For example developer

who love writing sql queries will use hive and developer who love writing

script will use pig.

Note You can use various tools such as azure storage explorer,
azCopy, aDf, or others to upload the data and scripts used in this
chapter.

 Hive Activity
Apache Hive provides an abstraction layer to the developer to write

SQL- like queries on the data.

Let’s look at an example where you can leverage ADF to execute a Hive

job. This example uses crime data (which is available by default when you

set up an HDInsight cluster). Figure 4-2 shows the sample data.

Figure 4-2. Sample crime data

Chapter 4 Data transformation: part 1

101

Figure 4-3 shows the Hive script.

Figure 4-3. Sample script

Upload the sample data and Hive script to Azure Blob Storage.

In this example, you will be using an HDInsight on-demand cluster.

Azure Data Factory needs permission to set up an HDInsight cluster on your

behalf, so you need to provide the service principal to authenticate ADF.

Note You need to be the owner or have microsoft.authorization/*/
Write access to assign an aD app.

 1) Go to https://portal.azure.com.

 2) Once logged in, click Azure Active Directory, then

“App registrations,” and then “New application

registration” (see Figure 4-4).

Chapter 4 Data transformation: part 1

https://portal.azure.com

102

 3) Enter an app name, select an application type, enter

the sign-on URL, and click Create (see Figure 4-5).

Figure 4-4. Azure AD app registration

Figure 4-5. Azure AD app creation

Chapter 4 Data transformation: part 1

103

 4) Once the Azure AD app is created, copy the

application ID and click Settings (see Figure 4-6).

Figure 4-6. Registered Azure AD app overview

Figure 4-7. Azure AD app keys

 5) Create a new key; once it’s saved, copy the value

(see Figure 4-7).

 6) Close and go back to Azure Active Directory.

Chapter 4 Data transformation: part 1

104

 7) Click Properties and copy the directory ID (see

Figure 4-8).

Figure 4-8. Azure AD app properties

At this stage, you have three values (see Table 4-1).

Table 4-1. Azure AD App Values

Name Value

service principal iD

(application iD)

b5613dbd-ecd5-4a42-8e21-afa65ddc4167

service principal key (key) onNXXXXXXXXXXX42G0MF3F2OgzXXXXX1cizX/ObU7PQ=

tenant (directory iD) XXXXXXX-7189-XXXX-af2a-XXXXXXXXX

Chapter 4 Data transformation: part 1

105

 8) Select Subscriptions and click the subscription (see

Figure 4-9).

Figure 4-9. Azure subscription information

Chapter 4 Data transformation: part 1

106

 9) Select “Access control (IAM)” and click Add (see

Figure 4-10).

Figure 4-10. Permission at subscription level

Chapter 4 Data transformation: part 1

107

Figure 4-11. Adding permission

 10) Set Role to Contributor and select the application

created earlier (see Figure 4-11).

Chapter 4 Data transformation: part 1

108

Figure 4-12. Azure Data Factory connection

 11) Go to Azure Data Factory Services and click Author

and Deploy.

 12) Click Connections and then New (see Figure 4-12).

Chapter 4 Data transformation: part 1

109

 13) Click Azure Blob Storage and then Continue (see

Figure 4-13).

Figure 4-13. Azure Data Factory linked service options

Chapter 4 Data transformation: part 1

110

Figure 4-14. Azure Blob Storage linked service

 14) Enter the name, select

AutoResolveIntegrationRuntime for “Connect via

integration runtime,” select “Use account key” for

Authentication method, and select the right Azure

subscription and the storage account name (see

Figure 4-14).

Chapter 4 Data transformation: part 1

111

Figure 4-15. ADF pipeline

Figure 4-16. Hive activity

 15) Click Finish.

 16) Click + and then Pipeline (see Figure 4-15).

 17) Expand HDInsight and drag the Hive activity to the

designer (see Figure 4-16).

Chapter 4 Data transformation: part 1

112

 18) On the General tab, provide the values in Table 4-2.

Table 4-2. Hive Activity Values

Property Name Description

name enter the activity name.

Description enter the activity description.

timeout enter how long the activity runs. the default is seven days.

retry enter how many times the activity keeps trying to run in case

of any transient failure.

retry interval enter the difference between two retries.

secure output select if any output data shouldn’t be logged.

 19) On the HDI Cluster tab, you need to configure ADF

to create an HDI cluster on the user’s behalf. Click +

New (see Figure 4-17).

Figure 4-17. HDI linked service

Chapter 4 Data transformation: part 1

113

Table 4-3 shows the properties to enter in the next window.

Table 4-3. HDI Creation Values

Property Name Description

Description provide a description of the linked service.

type select on-demand hDinsight.

Connect via

integration runtime

select autoresolveintegrationruntime.

azure storage Linked

service

storage use by the cluster to store and process data.

Cluster type select hadoop as you are using hive, which is part of the

hadoop cluster type

Cluster size 1. add more if the subscription has enough cores in the

specified region.

time to live 00:05:00 defines how long hDinsight lives after the

completion of active jobs on the cluster. the default is five

minutes.

service principal id provide the service principal iD created in the previous step.

services principal key provide the service principal key created in the

previous step.

tenant prepopulated. this should match with the azure aD iD.

Version 3.6 (the latest one).

select region make sure enough cores are available to create a cluster.

additional storage

linked service

the general recommendation is to store the metadata and

data in different storage.

Chapter 4 Data transformation: part 1

114

 20) Click Finish, and on the Script tab select the right

script linked service, which is the storage link where

scripts are stored. If you’re not sure of the file path,

then click Browse Storage to select the script (see

Figure 4-18).

Figure 4-18. Setting the Hive script path

 21) Let’s skip Advance option however if require we can

capture logs, pass argument, parameter and define

variable under Advanced option.

 22) Click Validate to make sure there are no errors (see

Figure 4-19).

Figure 4-19. Validating the ADF pipeline option

Chapter 4 Data transformation: part 1

115

 24) Click Trigger Now and then Finish (see Figure 4-21).

Figure 4-20. Publishing changes

 23) Click Publish All (see Figure 4-20).

Figure 4-21. Triggering the ADF pipeline

Chapter 4 Data transformation: part 1

116

 25) On the left, click the gauge icon (aka the Monitor) to

monitor the progress of the pipeline (see Figure 4-22).

Figure 4-22. Monitor option

 26) Once executed successfully, the progress will show

on the All or Succeeded tab (see Figure 4-23).

Figure 4-23. ADF pipeline progress

Figure 4-24. Output

 27) The output will be stored in Azure Blob Storage (see

Figure 4-24).

Chapter 4 Data transformation: part 1

117

 Pig Activity
There are developers who love to write scripts to process data, but it’s

easier to use the Pig activity. Let’s consider the same data and use the Pig

script to process data. See Figure 4-25.

Figure 4-25. Pig script

Let’s set up the Azure Data Factory pipeline.

 1) Switch to the ADF Author & Monitor UI. Remove the

Hive activity and add a Pig activity (see Figure 4-26).

Chapter 4 Data transformation: part 1

118

Figure 4-26. Pig activity

Chapter 4 Data transformation: part 1

119

 2) On the General tab, provide the values listed in

Table 4-4.

Table 4-4. Pig Activity Values

Property Name Value

name enter the activity name.

Description enter the activity description.

timeout enter how long the activity runs. the default is seven days.

retry enter how many times the activity should keep trying to run in

case of any transient failure.

retry interval enter the difference between two retries.

secure output select this if any of the output data shouldn’t be logged.

 3) On the HDI Cluster tab, set HDInsight Linked

Service to HDILinkedServices (created earlier in this

chapter), as shown in Figure 4-27.

Figure 4-27. Setting the HDI linked service

Chapter 4 Data transformation: part 1

120

 5) Click Publish All (see Figure 4-29).

Figure 4-28. Pig script path

Figure 4-29. Publishing the changes

 4) Select the script (as shown in Figure 4-28).

Chapter 4 Data transformation: part 1

121

Figure 4-30. Triggering the ADF pipeline

 6) Click Trigger Now (see Figure 4-30).

 7) Click Finish.

 8) Click Monitor to watch the progress of the pipeline.

 9) Once the job has completed successfully,

the output will be available in Azure Blob Storage

(see Figure 4-31).

Figure 4-31. Output location

Chapter 4 Data transformation: part 1

122

Figure 4-32. Output

The output will look like Figure 4-32.

 MapReduce Activity
The Apache Hadoop framework is distributed via two services. The first

one is Hadoop Distributed File System (HDFS), which stores Big Data

in distributed storage. The second is MapReduce, which is a framework

that reads data parallelly from distributed storage. MapReduce is further

divided into two parts: Map and Reduce. The job of the Map phase is to

collect data from the distributed storage node, and the job of the Reduce

phase is to aggregate the data. So, there are times when the Hadoop

developer needs to perform different data processing. Hadoop provides

a platform for developers to write their own map reduce program and

execute it.

Chapter 4 Data transformation: part 1

123

Figure 4-33. Storage to store data and JAR file

Azure Data Factory provides the MapReduce activity to run your own

map reduce program. Let’s run a Big Data “Hello World” program (also

known as WordCount).

 1) Copy hadoop-mapreduce-examples.jar and

davinci.txt into the same Azure Blob Storage

(created earlier in this chapter), as shown in

Figure 4-33.

 2) Switch to the ADF Author & Monitor UI and remove

any activity present there.

 3) Add the MapReduce activity (see Figure 4-34).

Chapter 4 Data transformation: part 1

124

Figure 4-34. MapReduce activity

 4) Provide a name and description for the activity.

 5) Keep default values for Timeout, Retry, Retry

Interval, and Secure Output.

 6) On the HDI Cluster tab, set HDInsight Linked

Service to HDILinkedServices (created earlier in this

chapter).

Chapter 4 Data transformation: part 1

125

 7) On the Jar tab, for the JAR linked service, link to

the storage where the JAR file was copied. Set the

class name to wordcount, and for the file path,

click Browse Storage and select the JAR file. For the

arguments, provide the input file and output location

(make sure the output container does not exist).

Here is how the argument looks (see Figure 4-35):

wasb://mapreduceactivityinput@adfbookblobsampledata.

blob.core.windows.net/davinci.txt wasb://

mapreduceactivityoutput@adfbookblobsampledata.blob.

core.windows.net/

Figure 4-35. Setting up a location

 8) Leave Parameter and User Properties as they are.

 9) Click Publish All.

 10) Click Trigger and then Trigger Now.

 11) Click Finish.

Chapter 4 Data transformation: part 1

126

 12) Switch to the Monitor to check the progress of

pipeline execution (see Figure 4-36).

Figure 4-36. ADF pipeline monitor

Figure 4-37. Output location

 13) Once the pipeline executes successfully, the

output will be presented in Azure Blob Storage (see

Figure 4-37).

Chapter 4 Data transformation: part 1

127

 14) Open the file named part-r-00000 (see Figure 4-38).

 Streaming Activity
Apache Hadoop was written on Java platform. All map reduce jobs should

be written in the Java programming language. However, Hadoop provides

a streaming API for MapReduce that enables developers to write map and

reduce functions in languages other than Java.

Figure 4-38. Output

Chapter 4 Data transformation: part 1

128

We’ll use the same Big Data “Hello World” program. This program will

count the total number of words in an input file.

 1) Copy the following files into a container: davinci.

txt, mapper.exe, and reduce.exe (see Figure 4-39).

Figure 4-39. Container to store data and executable

 2) Switch to the ADF Author & Monitor UI and remove

any activity present there.

Chapter 4 Data transformation: part 1

129

 3) Add the Streaming activity (see Figure 4-40).

Figure 4-40. Streaming activity

 4) On the General tab, provide the values in Table 4-5.

Table 4-5. Streaming Activity Values

Property Name Value

name enter the activity name.

Description enter the activity description.

timeout enter how long the activity runs. the default is seven days.

retry enter how many times the activity should keep trying to run in

the case of any transient failure.

retry interval enter the difference between two retries.

secure output select this if any output data shouldn’t be logged.

Chapter 4 Data transformation: part 1

130

 5) On the HDI Cluster tab, set HDInsight Linked

Service to HDILinkedServices (created earlier in this

chapter), as shown in Figure 4-41.

Figure 4-41. HDI linked service

Table 4-6. Streaming Activity Values

Property Value

mapper Use mapper.exe.

reducer Use reduce.exe.

file Linked service specify azurestorageLocation.

file path for mapper Click Browse storage and point to streaming/mapper.exe.

file path for reducer Click Browse storage and point to streaming/reducer.exe.

input enter wasbs://streaming@adfbookblobsampledata.blob.core.

windows.net/davinci.txt.

output the output is wasbs://streaming@adfbookblobsampledata.

blob.core.windows.net/output/wc.txt.

 6) On the File tab, fill in the values as shown in

Table 4-6 (see Figure 4- 42).

Chapter 4 Data transformation: part 1

131

 7) Leave Parameter and User Properties as they are.

 8) Click Publish All.

 9) Click Trigger and then Trigger Now.

 10) Click Finish.

 11) Switch to the Monitor to check the progress of the

pipeline execution (see Figure 4-43).

Figure 4-42. Setting up a streaming activity

Figure 4-43. Monitoring the ADF pipeline

Chapter 4 Data transformation: part 1

132

 12) Once the pipeline is executed successfully, the

output will be presented in Azure Blob Storage (see

Figure 4-44).

Figure 4-44. Output location

 13) Open the file named part-00000 to view the total

number of words in an input document.

 Spark Activity
Apache Spark provides primitives for in-memory cluster computing. The

main difference between Spark and Hadoop is that Spark uses memory

and can use the disk for data processing, whereas Hadoop uses the disk for

processing.

Azure Data Factory provides a Spark activity (that can run on an

HDInsight cluster) for data transformation. In this example, assume

you received data from all the stores and you want to figure out what the

average sale is for each store. In this example, let’s explore how to leverage

an existing HDInsight cluster to build this small solution.

Chapter 4 Data transformation: part 1

133

 1) Switch to Azure.

 2) Click “Create a resource.”

 3) Click Analytics (see Figure 4-45).

Figure 4-45. HDI service

 4) Click HDInsight.

 5) Provide a cluster name.

 6) Select your subscription.

 7) Select the cluster type (Spark 2.x on Linux [HDI]).

 8) Provide the cluster login information.

 9) Select or create the resource group.

Chapter 4 Data transformation: part 1

134

 10) Select the location (choose the location where you

already created ADF services), as shown in Figure 4-46.

Figure 4-46. HDI cluster creation

Note if you don’t want to go with a default size of hDinsight, then
switch to the “Custom (size, settings, apps)” option.

Chapter 4 Data transformation: part 1

135

 11) Create a new storage account.

 12) On the summary page, click Create.

 13) Once the HDInsight cluster is created, open Azure

Blob Storage, which is connected to HDInsight.

 14) Create a new container (see Figure 4-47).

Figure 4-47. Container creation

Figure 4-48. Data and code

 15) Under the newly created container, copy the

PySpark file and the sample data (see Figure 4-48).

Chapter 4 Data transformation: part 1

136

All_Sales_Records.csv contains sample data, and main.py contains

Spark code (see Figure 4-49).

Figure 4-49. Spark code

 16) Switch to the Azure Data Factory Author & Monitor UI.

 17) Drag and drop the Spark activity on the designer

(see Figure 4-50).

Figure 4-50. Spark activity

Chapter 4 Data transformation: part 1

137

 18) Click the General tab.

 19) Provide the name and add a description.

 20) Use the defaults for the rest of the properties (see

Figure 4-51).

 21) Click HDI Cluster.

 22) Click +New (see Figure 4-52).

Figure 4-51. Setting up an HDI Spark activity

Figure 4-52. Setting up an cluster for HDI Spark activity

 23) Provide a named for the cluster and add a

description.

 24) Select Bring your own HDInsight for Type.

 25) Don’t change default values for “Connect via

integration runtime.”

Chapter 4 Data transformation: part 1

138

 26) Select “From Azure subscription” for “Account

selection method.”

 27) Select the Azure subscription where you created the

HDInsight cluster.

 28) Select the HDI cluster.

 29) Provide the user name (administrator, which you set

up while creating the HDInsight cluster).

 30) Select the Password option and provide the password.

 31) For Azure Storage Linked Service, create a new

storage link that points to the storage that is

connected to the HDInsight cluster.

 32) Click “Test connection” to make sure all settings are

valid.

 33) Click Finish (see Figure 4-53).

Chapter 4 Data transformation: part 1

139

Figure 4-53. Provide HDI cluster details

You can either use a script or add a fat JAR for data processing. In this

example, we’ll focus on providing a script for data processing.

 1) Click Script/Jar.

 2) Select Script for Type.

 3) Select the storage where you stored the script for Job

Linked Service.

 4) Select the path and main.py file for File Path (see

Figure 4-54).

Chapter 4 Data transformation: part 1

140

 5) Click Publish All (see Figure 4-55).

Figure 4-54. Setting up script for HDI Spark activity

Figure 4-55. Publishing the changes

Figure 4-56. Monitoring the ADF pipeline progress

 6) Click Trigger and then Trigger Now.

 7) Click Finish.

 8) Switch to the Monitor tab on the left side to monitor

the job (see Figure 4-56).

Chapter 4 Data transformation: part 1

141

Figure 4-57. Output

 9) Once you succeed, investigate Azure Blob Storage,

and you will find the files in Figure 4-57.

 10) Click the last file (the one that starts with

part-00000.) and download it to view the results.

 Azure Machine Learning
Data capture helps business analytics provide insight on the present and

the past. With machine business analytics, you can get insight into the

future. This means the industry is moving from basic analytics to advanced

capabilities. Businesses need to be proactive to take the necessary steps

to avoid any issues, which is leading to transformational changes. Some

examples of machine business analytics are product recommendations,

predictive maintenance, demand forecasting, market basket analysis, and

so on. There are various case studies available in various domains that

show how companies can take advantage of Big Data.

Chapter 4 Data transformation: part 1

142

As shown in Figure 4-58, you can use various services such as Spark,

SQL Server (on-premises), and Azure Machine Learning to build a model.

Microsoft also provides a data science virtual machine in cases where you

are building a machine or deep learning solution. This is a preconfigured

environment to develop a data science and AI solution. The virtual

machine comes in Windows and Linux flavors. The virtual machine has

some of the tools and languages preconfigured (see Table 4-7).

Figure 4-58. AI development lifecycle

Table 4-7. Tools and Language Support in Data Science VM

Tools Language

microsoft r open apache Drill Git and Gitbash pytorch r

microsoft mL server Xgboost openJDK Keras python

anaconda python rstudio Desktop tensorflow theano Julia

Juliapro rstudio server Juno Chainer C#

Jupyter notebook Weka h2o mXnet Java

Visual studio code rattle Light GBm horovod Js

pyCharm atom Vims and emacs CntK

Chapter 4 Data transformation: part 1

143

Microsoft Azure Machine Learning makes the entire process easy.

As a newbie, instead of wasting a lot of time reading, setting up the

environment, and working in development and with deployment models,

you can quickly get started with Azure Machine Learning. Its user interface

makes it super easy to build and deploy AI solutions. You can preprocess

your data, choose from various algorithms, deploy, and make it available

as a web service. There are various built-in solutions available in the

Microsoft AI gallery (https://gallery.azure.ai). However, if you are a

professional, you can still utilize the R language, the Python language, and

the OpenV library within Azure Machine Learning Studio.

Let’s understand the use case and build a solution.

AdventureWorks wants to leverage the data to understand which

products the customers tend to purchase together. This will help them

place products together on a shelf. For example, if you purchase bread

from a store, then chances are high you’ll also buy milk/butter/jam/egg

from there. However, if these items are kept far apart or on another floor,

then chances are very low you will buy them, which can impact sales.

You’ll use Microsoft Azure Machine Learning to build this solution and

leverage Azure Data Factory to orchestrate the pipeline.

Chapter 4 Data transformation: part 1

https://gallery.azure.ai

144

The architecture of the solution will look like Figure 4-59.

Figure 4-59. Reference architecture

Let’s start with Microsoft Azure Machine Learning.

 1) Go to https://gallery.azure.ai.

 2) Search for Discover Association Rules

(see Figure 4-60).

Chapter 4 Data transformation: part 1

https://gallery.azure.ai

145

 3) Click Discover Association Rules.

 4) Click Open in Studio (see Figure 4-61).

Figure 4-60. Azure AI Gallery

Figure 4-61. Opening in Studio

Chapter 4 Data transformation: part 1

146

 5) If you are not logged in with an existing account, you

will be prompted to choose one or log in.

 6) Once you’re logged in, select the region and

then the workspace if not populated already

(see Figure 4-62).

Figure 4-62. Azure Machine Learning Studio

 7) Click OK.

 8) Machine Learning Studio will look like Figure 4-63.

It shows how to use the Discover Association Rule

with three different data sources.

Chapter 4 Data transformation: part 1

147

 9) Delete all experimental items except one: the

Discover Association Rules item (see Figure 4-64).

Figure 4-63. Azure Machine Learning Studio with Discover
Association Rule

Chapter 4 Data transformation: part 1

148

 10) Upload data to pass as an input to the Discover

Association Rules item.

 11) Click +New (see Figure 4-65).

Figure 4-64. Keeping the Discover Association Rules item

Chapter 4 Data transformation: part 1

149

 12) Click Dataset and then From Local File (see

Figure 4-66).

Figure 4-65. Clicking +New

Figure 4-66. Clicking From Local File

 13) Select a file to upload (see Figure 4-67).

Chapter 4 Data transformation: part 1

150

 14) Click OK.

 15) From Experiments, click Saved Datasets and then

My Datasets (see Figure 4-68).

Figure 4-67. Selecting a file to upload

Figure 4-68. My Datasets list

Chapter 4 Data transformation: part 1

151

 16) Drag and drop TrainingDataSet.csv and link it

with Discover Association Rules (see Figure 4-69).

Figure 4-69. Linking the two

Figure 4-70. Launching a column selector

 17) Select Discover Association Rules, and on the

right side click “Launch column selector”

(see Figure 4-70).

Chapter 4 Data transformation: part 1

152

 18) Select the column named Pname and click OK (see

Figure 4-71).

Figure 4-71. Selecting a column

 19) Scroll down and make sure there are no values

given for Left Hand Side and Right Hand Side (see

Figure 4-72).

Figure 4-72. Clearing the values

Chapter 4 Data transformation: part 1

153

 20) Click Run (see Figure 4-73).

Figure 4-73. Clicking Run

Figure 4-74. The progress so far

 21) Once completed, the experiment will look like

Figure 4-74.

 22) On the left side, drag and drop Select Columns in

Dataset (see Figure 4-75).

Chapter 4 Data transformation: part 1

154

 23) Link the Discover Association Rules and Select

Columns in Dataset items (see Figure 4-76).

Figure 4-75. Selecting Select Columns in Dataset

Figure 4-76. Linking the two

 24) Click Select Columns in Dataset.

Chapter 4 Data transformation: part 1

155

 25) Click “Launch column selector” (see Figure 4-77).

 26) Select lhs and rhs from the list (see Figure 4-78).

Figure 4-77. Launching the column selector

Figure 4-78. Selecting lhs and rhs

 27) Click OK.

 28) Let’s add the web service input and output. This

will allow the service to take input, process it, and

present the results.

Chapter 4 Data transformation: part 1

156

 29) In the left pane, look for Web Service and drop Input

and Output on the designer (see Figure 4-79).

 30) Link the Input and Output items with the existing

items as shown in Figure 4-80.

Figure 4-79. Adding Input and Output

Figure 4-80. Linking the items

Chapter 4 Data transformation: part 1

157

 31) Click Run.

 32) Click Deploy Web Service (see Figure 4-81).

Figure 4-81. Clicking Deploy Web Service

Figure 4-82. Clicking New Web Service Experience

 33) Once completed, click New Web Service Experience

to get a web service endpoint and access key (see

Figure 4-82).

Chapter 4 Data transformation: part 1

158

 34) Click “Use endpoint” (see Figure 4-83).

Figure 4-83. Endpoint management

 35) Copy the primary key and batch requests value and

store them somewhere. You’ll use this information

when creating the ADF pipeline (see Figure 4-84).

Chapter 4 Data transformation: part 1

159

Now you’ll upload retail customers’ bill information on Azure

Blob Storage.

Figure 4-84. Primary key and batch requests

Chapter 4 Data transformation: part 1

160

Let’s create a table in SQL Datawarehouse to capture the output of

Azure ML.

 1) Run the query shown in Figure 4-86.

Figure 4-85. Container to store test data

 1) Upload a file to Azure Blob Storage. It will look like

Figure 4-85.

Figure 4-86. Creating a table script

Chapter 4 Data transformation: part 1

161

Let’s create an Azure Data Factory pipeline.

 1) Switch to the Azure Data Factory Author &

Monitor UI.

 2) Under Machine Learning, drag and drop ML Batch

Execution on designer, as shown in Figure 4-87.

Figure 4-87. Azure Data Factory ML Batch Execution activity

 3) On the General tab, provide a name and add a

description. Leave the default values for the rest of

the properties (see Figure 4-88).

Chapter 4 Data transformation: part 1

162

 4) Click the Azure ML tab (see Figure 4-89).

Figure 4-88. ML Batch Execution activity

Figure 4-89. ML batch execution linked service

 5) Provide the Azure ML linked service’s name and

description.

 6) Provide the endpoint that was copied earlier.

 7) Provide the API key that was copied earlier.

 8) Click Disable Update Resource as you are not

updating the Azure Machine Learning model.

Chapter 4 Data transformation: part 1

163

 9) Click “Test connection” (see Figure 4-90).

Figure 4-90. Testing the connection

 10) Under Settings, fill in the settings under Web Service

Inputs and Web Service Outputs, as shown in

Figure 4-91.

Chapter 4 Data transformation: part 1

164

Figure 4-91. ML batch execution activity setting

 11) Drag and drop the Copy Data activity and connect it

with the ML Batch Execution activity (on success),

as shown in Figure 4-92.

Figure 4-92. Connecting activities

Chapter 4 Data transformation: part 1

165

 12) Select the Copy Data activity, click the Source gab

(this will connect to the file location, which is the

output location of the ML Batch Execution activity

(see Figure 4-93).

Figure 4-93. Setting the Copy activity

Figure 4-94. Azure SQL Data Warehouse connection

 13) Create the Azure SQL Data Warehouse connection,

as shown in Figure 4-94.

Chapter 4 Data transformation: part 1

166

Figure 4-95. Field mapping

 14) Click Mapping and then Import Schemas (see

Figure 4-95).

 15) Click Publish All.

 16) Click Trigger and then Trigger Now.

 17) Switch to the Monitor to watch the progress (see

Figure 4-96).

Figure 4-96. Monitor pipeline execution

 18) Once the pipeline executes successfully, switch

to Azure SQL Data Warehouse and query the

factMarketBasketAnalysis table (Figure 4- 97).

Chapter 4 Data transformation: part 1

167

 Azure Data Lake
Azure Data Lake is an on-demand analytics job service. This service has

two layers underneath: Azure Data Lake storage and Azure Data Lake

Analytics. As the name suggests, the first one is used to store unlimited

data, and the other is used as compute on Big Data. Both the services

provide various features such as security at a granular level, unlimited

storage and compute, pay per job, an easy framework to develop jobs, and

various language and monitoring capabilities. People often called it Big

Data as a service.

Why does this matter to any organization when there is another Big

Data framework already available? Many organizations don’t have the

resources to build Big Data solutions, they don’t do Big Data analytics too

often, or they want to focus more on solution building than understanding

technology.

It’s not necessary to use both services at the same time. If organizations

want, they can use an Azure Data Lake store as storage and deploy

HDInsight on top of it for computation. See Figure 4-98.

Figure 4-97. Querying the database

Chapter 4 Data transformation: part 1

168

Azure Data Factory provides a Data Lake Analytics activity for data

transformation. Let’s first set up Azure Data Lake storage (see Figure 4-99).

Figure 4-98. Azure Data Lake overview

Figure 4-99. Selecting the storage

 1) Switch to the Azure portal.

 2) Click “Create a resource.”

Chapter 4 Data transformation: part 1

169

 3) Click Storage.

 4) Click Data Lake Storage Gen1.

 5) Provide a name for the service.

 6) Select your subscription.

 7) Create or select a resource group.

 8) Select the location.

 9) Select the pricing package.

 10) Select the encryption settings.

 11) Click Create (see Figure 4-100).

Figure 4-100. Setting up the storage

Chapter 4 Data transformation: part 1

170

 12) Once it’s created, click and open the service in the

portal.

 13) Click “Data explorer.”

 14) Click the storage you just created (see Figure 4-101).

Figure 4-101. Data explorer

Chapter 4 Data transformation: part 1

171

 16) Upload the All_Sales_Records.csv file (see

Figure 4-103).

 15) Click Upload (see Figure 4-102).

Figure 4-102. Azure Data Lake storage options

Figure 4-103. Sample data

Now let’s set up the Azure Data Lake Analytics account.

 1) Switch to the Azure portal.

 2) Click “Create a resource.”

 3) Click Analytics.

 4) Click Data Lake Analytics (see Figure 4-104).

Chapter 4 Data transformation: part 1

172

Figure 4-104. Azure Data Lake Analytics service

 5) Provide the name of the account.

 6) Select your subscription.

 7) Create or select a resource group.

 8) Select the location (the same as you selected for

storage).

 9) Select the storage name created in the earlier step

for Data Lake Storage Gen1 (you can also skip the

earlier step and create the storage directly from

here).

 10) Select the pricing package.

Chapter 4 Data transformation: part 1

173

 11) Click Create (see Figure 4-105).

Figure 4-105. Options for Azure Data Lake Analytics

The Azure Data Lake Analytics linked service requires a service

principal authentication to connect to the Azure Data Lake Analytics

service. Let’s set up the Azure AD app registration and grant permission

to access an Azure Data Lake account. At the end of this setup, you will get

the service principal ID, key, and tenant ID.

 1) Switch to the Azure portal.

 2) Click Azure Active Directory,

 3) Click “App registrations.”

Chapter 4 Data transformation: part 1

174

 4) Click “New application registration” (see Figure 4-106).

Figure 4-106. Azure AD app registration

 5) Provide the name.

 6) Set “Application type” to “Web app / API.”

 7) Provide the sign-on URL.

Chapter 4 Data transformation: part 1

175

 8) Click Create (see Figure 4-107).

Figure 4-107. Creating the app

 9) Click the newly created app (see Figure 4-108).

Chapter 4 Data transformation: part 1

176

Figure 4-108. Opening the app settings

Figure 4-109. Setting permissions

 10) Copy the application ID.

 11) Click Settings.

 12) Click “Required permissions.”

 13) Click +Add (see Figure 4-109).

Chapter 4 Data transformation: part 1

177

 14) Click Select an API.

 15) Select the Azure Data Lake API.

 16) Click Select (see Figure 4-110).

Figure 4-110. API selection

 17) Select the correct permissions on step 2.

Chapter 4 Data transformation: part 1

178

 19) Click Done.

 20) Select Keys.

 21) Provide a description.

 22) Provide an expiration date; this is the expiry date

attributed to the key.

 23) Click Save.

 24) Once it’s saved, the service will show a key value.

Copy the value to Notepad as it will not show up

once it’s closed (see Figure 4-112).

Figure 4-111. Permission settings

 18) Click Select (see Figure 4-111).

Chapter 4 Data transformation: part 1

179

Figure 4-112. Setting up the keys

Figure 4-113. Granting permission to the user

 25) Open the Azure Data Lake Analytics service.

 26) Click “Add user wizard” (see Figure 4-113).

 27) Click “Select user.”

 28) Select the Azure AD app created earlier.

Chapter 4 Data transformation: part 1

180

 29) Select the app and click Select (see Figure 4-114).

Figure 4-114. User selection

Figure 4-115. Role options

 30) Select Data Lake Analytics Developer for “Select a

role” (see Figure 4- 115).

Chapter 4 Data transformation: part 1

181

 31) For step 3, don’t change the default value, and click

Select.

 32) For step 4, provide permission to “This folder and all

children” (see Figure 4-116).

Figure 4-116. Permission settings

 33) On step 5, click Run (see Figure 4-117).

Figure 4-117. Permission assignment

Chapter 4 Data transformation: part 1

182

 34) Click Done.

 35) Click “Access control (IAM).”

 36) Click +Add (see Figure 4-118).

Figure 4-118. Adding user access

 37) Select Data Lake Analytics Developer for the role.

 38) Select the member.

Chapter 4 Data transformation: part 1

183

 39) Click Save (see Figure 4-119).

Figure 4-119. Member selection

Chapter 4 Data transformation: part 1

184

Let’s upload a script to Azure Blob Storage.

 1) Upload salesprocess.usql (see Figure 4-120).

Figure 4-120. Code file

Chapter 4 Data transformation: part 1

185

Figure 4-121 and Figure 4-122 show the U-SQL code.

Figure 4-121. U-SQL code

Chapter 4 Data transformation: part 1

186

Figure 4-122. U-SQL code, continued

Chapter 4 Data transformation: part 1

187

 3) Click the General tab and provide a name and

description of the activity.

 4) Click the ADLA Account tab.

 5) Click New.

Let’s set up Azure Data Factory to run and schedule the pipeline.

 1) Switch to the Azure Data Factory Author & Monitor UI.

 2) Drag and drop a U-SQL activity onto the designer

(see Figure 4-123).

Figure 4-123. U-SQL activity

Chapter 4 Data transformation: part 1

188

 6) Provide the name and add a description.

 7) Select AutoResolveIntegrationRuntime for “Connect

via integration runtime.”

 8) Select Subscription for the Data Lake Analytics

selection mode.

 9) Select your Azure subscription.

 10) Select the ADLA account you created earlier for “Data

Lake Analytics account name” (see Figure 4-124).

Figure 4-124. Setting up the U-SQL activity

 11) Provide a tenant (directory ID). Ideally, it is

populated by default.

 12) Provide a service principal ID (the application

ID from the Azure AD app registered earlier) and

service principal key (the key from the Azure AD

app registered earlier).

Chapter 4 Data transformation: part 1

189

 13) Click “Test connection.”

 14) If the connection is successful, click Finish (see

Figure 4-125).

Figure 4-125. Configuring the U-SQL activity

 15) Click the Script tab.

 16) Select the Script linked service, which is the location

of storage where you uploaded the script file. If

the link is not available, create a “New storage link

service.”

 17) Click Browse Storage to choose the U-SQL script

path (see Figure 4- 126).

Chapter 4 Data transformation: part 1

190

Figure 4-126. Setting the script path

 18) Under Advanced, all the properties are optional.

Table 4-8 describes the properties.

Table 4-8. Properties

Property Description

degreeOfParallelism the maximum number of nodes simultaneously used to

run the job.

 Priority the lower the number, the higher the priority.

 Parameters parameters to pass into the U-sQL script.

 runtimeVersion runtime version of the U-sQL engine to use.

 compilationMode semantic: only perform semantic checks and

necessary sanity checks.

full: perform the full compilation, including syntax

check, optimization, code generation, etc.

singleBox: perform the full compilation, with the

targettype setting to singleBox.

if you don’t specify a value for this property, the server

determines the optimal compilation mode.

Chapter 4 Data transformation: part 1

191

 19) Click Publish All.

 20) Click Trigger and then Trigger Now.

 21) Once the ADF pipeline has run successfully, switch

to Azure Data Lake Storage to find out the result

(a CSV file), as shown in Figure 4-127.

Figure 4-127. Output

This chapter focused on how to build data transformation solutions

using various activities in Azure Data Factory. The chapter focused

on HDInsight, Azure Machine Learning, and Data Lake activities. All

services were provided by Microsoft Azure. What if you want to run data

transformation code in Python? Let’s move to the next chapter and find out.

Chapter 4 Data transformation: part 1

193© Sudhir Rawat and Abhishek Narain 2019
S. Rawat and A. Narain, Understanding Azure Data Factory,
https://doi.org/10.1007/978-1-4842-4122-6_5

CHAPTER 5

Data Transformation:
Part 2
In the previous chapter, you worked with various activities to build a

solution with various data analytics requirements. On Microsoft Azure, you

will notice that many services are available for storage and compute. There

is no right or wrong choice of service; you just need to be clear about what

the business needs now and, more important, what it needs in the future.

There will always be trade-offs when choosing one service over another.

So, as a data professional, you need to be clear on what the business

requirements are now and in the future.

Most data professionals want to know whether they can schedule their

open source code for data transformation? That is the question this chapter

will answer through building a pipeline to process data using Python.

Before diving into generating more code, let’s take a look at two

different terms that are frequently used.

 Data Warehouse to Modern Data Warehouse
In the traditional sense, a data warehouse is a central repository that

consolidates data from different sources such as a file system, a customer

relationship management (CRM) system, SQL Server, and so on. The data

is cleaned and transformed, the values are calculated, and the data is

stored for historical purposes. This has been going on for a decade.

194

Today, there are many more data points generating data, and it’s

becoming useful to utilize this data. In addition to getting data from on-

premises sources, you also can get data from social media platforms and

third-party APIs. Therefore, you need a scalable and high-compute system

that can retrieve data from these sources and store it in a data warehouse.

Figure 5-1 shows a modern data warehouse pattern.

Figure 5-1. Modern data warehouse pattern

 ETL vs. ELT
Extract-transform-load (ETL) and extract-load-transform (ELT) are not

new to data professionals. Both techniques describe transformations,

either before loading or after loading the data. In ELT, the transformation

happens on the target, whereas in ETL, it may happen on the source side

or on a compute layer in between. If you are processing Big Data, you

may want to use ETL and then use an Azure Databricks Spark cluster to

transform the data in an optimized environment with lower latency. If

Chapter 5 Data transformation: part 2

195

you have the same source and destination, you can leverage the compute

power of a system like Azure SQL Data Warehouse to transform data there.

Since ELT takes place in the first stage of loading raw data on the target,

you can leverage of the power of a system like Azure SQL Data Warehouse

to transform the data parallelly.

As there is no right or wrong way to process data, you may want to look

at various parameters such as the data source and destination, latency,

scalability, performance, cost, skill set, and so on, to decide on ETL or ELT.

This chapter will show how to apply both approaches using Azure Data

Factory.

 Azure Databricks
Apache Spark is one of the most contributed to projects in the Apache

world. Apache Spark uses an in-memory engine to process Big Data

and makes it upto 100 times faster than Hadoop. The best part of the

technology is that it has a runtime engine, and on top of the engine there

are various libraries available such as SparkSQL, GraphX, Streaming,

and the machine learning libraries. Bringing this platform on-premises,

configuring it, and building a security and collaboration layer is a

tedious task. That’s where Azure Databricks comes into the picture

and provides an optimized platform to run Spark jobs. The beauty of

Azure Databricks is that it helps set up the environment in less time,

streamlines workflows, and provides a collaboration workspace between

the data scientist, data engineer, and data analyst. Figure 5-2 shows the

architecture of Azure Databricks.

Chapter 5 Data transformation: part 2

196

Here are the benefits of using Azure Databricks:

• Optimized environment

• Ease of setup and management

• Provides enterprise security through Azure AD

integration

• Collaboration

• PowerBI integration

• Integrates with other Azure services

When should you choose HDInsight Spark versus Azure Databricks?

Both are optimized to run Spark workloads. HDInsight provides a

platform-as-a-service (PaaS) experience where organizations can run

multiple types of workloads such as Kafka, Spark, MapReduce, Storm,

HBase, and Hive LLAP. Azure Databricks supports only Spark clusters. The

platform provides a software-as-a-service (SaaS) experience. Also, it helps

different people within the organization to collaborate easily. The pricing

of the services is another consideration.

Figure 5-2. Azure Databricks architecture on Azure

Chapter 5 Data transformation: part 2

197

 Build and Implement Use Case
In this use case, you will focus on transforming data using Azure Data

Factory. This will be an example of ETL.

AdventureWorks wants to operationalize its data pipeline so that

the company can visualize data seamlessly without worrying about the

platform. Through this chapter and the previous chapter, each step is

broken down separately so that it is easy to understand the solution. If

required, you can put together all the blocks and build one ADF pipeline.

The following are the services used in this demo:

• Microsoft Azure Data Factory

• Microsoft Azure SQL Data Warehouse (DWH)

• Microsoft Azure Databricks

• Microsoft Azure Blob Storage

One of the ways to load dimension data is to use Azure Data Factory’s

Copy activity to transfer dimension data to Azure SQL Data Warehouse.

The other way is to leverage Azure Databricks to do it (as shown in

Figure 5-3). You can do various kinds of transformations such as managing

slowly changing dimensions (SCD-1, SCD-2, SCD-3) and checking for data

anomalies.

For the AdventureWorks retail company, you’ll build the solution

shown in Figure 5-3 to move all the dimension data. In this scenario, you

are ingesting data from a CSV file.

Chapter 5 Data transformation: part 2

198

Let’s upload the CSV files to Azure Blob Storage. You can use Azure

Data Factory (the Copy Data activity) as we discussed in previous Chapter

to move data to Azure Blob Storage. Figure 5-4 shows the files.

Let’s set up Azure SQL Data Warehouse.

 1) Go to https://portal.azure.com.

 2) Click “Create a resource.”

 3) Click Databases.

 4) Click SQL Data Warehouse (see Figure 5-5).

Figure 5-3. Architecture to feed dimension data

Figure 5-4. Dimension/master data files

Chapter 5 Data transformation: part 2

https://portal.azure.com

199

 5) Provide the database name.

 6) Select your subscription.

 7) Create or select a resource group.

 8) Set “Select source” to “Blank database.”

 9) Create a new server.

 10) Select your needed performance level.

 11) Leave Collation at its default value.

 12) Click Create (see Figure 5-6).

Figure 5-5. Selecting SQL Data Warehouse

Chapter 5 Data transformation: part 2

200

 13) Once created, click SQL Data Warehouse.

 14) Click “Query editor (preview),” as shown in

Figure 5-7.

Figure 5-6. Providing values to set up the SQL Data Warehouse
service

Chapter 5 Data transformation: part 2

201

 15) Click Login (see Figure 5-8).

Figure 5-7. Opening the query editor to run queries

Figure 5-8. Logging into SQL Data Warehouse

 16) Enter the following command:

CREATE master KEY encryption BY password = 'adfBook@123';

 go

Chapter 5 Data transformation: part 2

202

 17) Click Run (see Figure 5-9).

Let’s set up the Azure Databricks workspace.

 1) Click “Create a resource.”

 2) Click Analytics.

 3) Click Azure Databricks (see Figure 5-10).

Figure 5-9. Executing scripts in the query editor

Figure 5-10. Selecting the Azure Databricks service

Chapter 5 Data transformation: part 2

203

 4) Provide the workspace name.

 5) Select your subscription.

 6) Create or select a resource group.

 7) Select your location.

 8) Select the needed pricing tier. For this

demonstration, let’s select Standard.

 9) Click Create (see Figure 5-11).

Figure 5-11. Providing values to set up Azure Databricks

 10) Click Azure Databricks Service in the Azure

dashboard.

 11) Click Launch Workspace (see Figure 5-12).

Chapter 5 Data transformation: part 2

204

 12) Click New Notebook (see Figure 5-13).

Figure 5-12. Azure Databricks’ Launch Workspace option

Figure 5-13. Creating a new notebook

Chapter 5 Data transformation: part 2

205

 13) Provide the name.

 14) For Language, select Scala (see Figure 5-14).

 15) Click Create.

 16) Once the notebook is created, paste the code

shown in Figure 5-15, Figure 5-16, Figure 5-17, and

Figure 5-18 into the notebook.

Figure 5-14. Creating a notebook

Figure 5-15. Azure Databricks Scala code

Chapter 5 Data transformation: part 2

206

Figure 5-16. Azure Databricks Scala code, continued

Figure 5-17. Azure Databricks Scala code, continued

Figure 5-18. Azure Databricks Scala code, continued

Let’s set up Azure Data Factory.

 1) Switch to the Azure Data Factory Author & Monitor UI.

 2) Drag and drop a Notebook activity onto the designer

(see Figure 5-19).

Chapter 5 Data transformation: part 2

207

 3) Name the activity (see Figure 5-20).

Figure 5-19. Setting up an activity in Azure Data Factory

Figure 5-20. Setting up an activity

Chapter 5 Data transformation: part 2

208

 4) Click the Azure Databricks tab.

 5) Click +New (see Figure 5-21).

 6) Provide the name and add a description.

 7) Leave the default value for “Connect via integration

runtime.”

 8) Select From Azure Subscription for “Account

selection method.”

 9) Select your Azure subscription.

 10) Select the Databricks workspace created earlier for

“Databricks workspace.”

 11) Select “New job cluster” for “Select cluster.”

 12) Domain/Region will populate automatically. The

value was set when you created the Databricks

workspace.

 13) Select the access token.

 14) For “Access token,” click the text box; it will take you

to the Azure Databricks account to generate a token.

Copy the token and paste it here.

 15) Select the cluster node type.

Figure 5-21. Creating a Databricks linked service

Chapter 5 Data transformation: part 2

209

 16) Select 4.1 (which includes Apache Spark 2.3.0 and

Scala 2.11) for “Cluster version.”

 17) Select 1 for Workers (see Figure 5-22).

Figure 5-22. Setting up a linked service

Chapter 5 Data transformation: part 2

210

 18) Click “Test connection” (see Figure 5-23).

 19) Click Finish.

 20) Click Settings.

 21) Provide the notebook path. You can get this

path from the Azure Databricks workspace

(see Figure 5-24).

 22) Click Publish All (see Figure 5-25).

Figure 5-23. Verifying a connection

Figure 5-24. Setting the notebook path

Figure 5-25. Setting up the activity

Chapter 5 Data transformation: part 2

211

 23) Click Trigger and then Trigger Now (see Figure 5-26).

 24) Click Finish.

 25) Click the Monitor option to monitor the progress

(see Figure 5-27).

 26) Once the pipeline has executed successfully, switch

to the Azure SQL Data Warehouse query editor to

view the tables and data. Let’s first see the error

records (see Figure 5-28).

Figure 5-26. Running an Azure Data factory pipeline

Figure 5-27. Pipeline progress

Figure 5-28. Querying SQL Data Warehouse to check error data

Chapter 5 Data transformation: part 2

212

Let’s query the product dimension table (see Figure 5-29).

Let’s add sales data to Azure SQL Data Warehouse. In this chapter, we

didn’t discuss how to delete files from Azure Blob Storage once they’re

processed successfully. We’ll cover that in a later chapter. Figure 5-30

shows the architecture you’ll build.

Figure 5-29. Querying SQL Data Warehouse to verify dimension
data

Figure 5-30. Architecture to load sales data

Chapter 5 Data transformation: part 2

213

 1) Switch to the Azure SQL Data Warehouse query

editor to create a fact table using the following script

(see Figure 5-31):

CREATE TABLE [dbo].[FactStoreSales](

[SalesOrderID] [int] NULL,

[StoreId] [int] NULL,

[OrderDate] [date] NULL,

[SubTotal] [decimal](18, 2) NULL,

[Taxperc] [int] NULL,

[TaxAmt] [decimal](18, 2) NULL,

[Freightperc] [int] NULL,

[Freight] [decimal](18, 2) NULL,

[TotalDue] [decimal](18, 2) NULL,

[SalesOrderDetailID] [int] NULL,

[ProductKey] [bigint] NULL,

[OrderQty] [int] NULL,

[UnitPrice] [decimal](18, 2) NULL,

[UnitPriceDiscount] [decimal](18, 2) NULL,

[LineTotal] [decimal](18, 2) NULL

)

Figure 5-31. Building the fact table

Chapter 5 Data transformation: part 2

214

 3) Figure 5-33 shows the Databricks script that will

get executed from Azure Data Factory. Create

a notebook (Python) in your Azure Databricks

account and put the code there.

 2) Upload the sales data to Azure Blob Storage (see

Figure 5-32).

Figure 5-32. Sales data in CSV format

Figure 5-33. Azure Databricks Python code

Chapter 5 Data transformation: part 2

215

 4) Switch to the Azure Data Factory Author &

Monitor UI.

 5) Drag and drop a Notebook activity, as shown in

Figure 5-34.

 6) On the General tab, provide a name and description

for the activity.

 7) On the Azure Databricks tab, create or use the

existing Databricks linked service.

 8) If you are creating a new Databricks linked activity,

provide the name, add a description, select your

subscription, provide the Databricks workspace,

generate a token if you don’t have one, and add the

cluster details, as shown in Figure 5-35.

Figure 5-34. Building the Azure data pipeline

Chapter 5 Data transformation: part 2

216

 9) Click Finish.

 10) On the Settings tab, provide the notebook path, as

shown in Figure 5- 36.

Figure 5-35. Parameter selection for Azure Databrick linked service

Figure 5-36. Setting a notebook path

Chapter 5 Data transformation: part 2

217

 12) On the Source tab, provide the link to the location of

the raw files (see Figure 5-38).

 11) Drag and drop a Copy Data activity and connect it

with the Notebook activity, as shown in Figure 5-37.

Figure 5-37. Setting up the Azure Data Factory pipeline

Figure 5-38. Setting a connection to Azure Blob Storage

Chapter 5 Data transformation: part 2

218

 13) Similarly, provide a link service to Azure Blob

Storage where you want to store archive files.

 14) Click Publish All.

 15) Click Trigger and then Trigger Now.

 16) Click Finish.

 17) Click the Monitor icon on the left side to monitor

the pipeline execution.

 18) Once completed successfully, you can query the data

in Azure SQL Data Warehouse (see Figure 5-39).

 19) Click Azure Blob Storage to see the files copied in

Azure Blob Storage (see Figure 5-40).

Figure 5-39. Querying the fact table in SQL Data Warehouse

Chapter 5 Data transformation: part 2

219

 Stored Procedure
Running a stored procedure is another way to transform data into deeper

insights and predictions. The benefit of running a stored procedure is that

it provides compute near the data, which means the data doesn’t need to

travel for processing. You can invoke a Stored Procedure activity to Azure

SQL Database, Azure SQL Data Warehouse, and a SQL Server database on-

premises or via a virtual machine (VM). In the case of on-premises storage,

you need to install the self-hosted integration runtime. Organizations use

stored procedures to clean and move data from staging to the production

database. This is a classic example of ELT. Since the stored procedure

runs on the database server, you’ll need to validate whether executing the

heavy-lifting job causes any performance issues.

Let’s say AdventureWorks wants to evaluate how to transform data

using the ELT methodology. In this scenario, assume that it’s available in

Azure Blob Storage (in CSV format). Using Azure Data Factory, you will

move data to Azure SQL Database and then run a stored procedure to

clean the data (primarily removing duplicate records).

Figure 5-40. Verifying the file movement

Chapter 5 Data transformation: part 2

220

 5) Fill in the following details and click Create to set up

the new Azure SQL Server instance (see Figure 5-42).

In Azure SQL Database, there are three tables. All_Sales_Records_Raw

is the table you will use to load the raw data without doing any cleaning.

All_Sales_Records_Production holds all the good/cleaned data, and

All_Sales_Records_ERROR holds all the records that have errors. Let’s get

started building this for AdventureWorks.

 1) Go to https://portal.azure.com.

 2) Click “Create a resource.”

 3) Click Databases.

 4) Click SQL Database (see Figure 5-41).

Figure 5-41. Creating a SQL database

Chapter 5 Data transformation: part 2

https://portal.azure.com

221

 6) Let’s use SQL Server Management Studio (SSMS) to

connect to the Azure SQL server, or you can use the

query editor (see Figure 5-43).

Figure 5-42. Inputting values to set up Azure SQL Database

Figure 5-43. Switching to the query editor

Chapter 5 Data transformation: part 2

222

 7) If you plan to use SSMS, please set your machine

IP to Azure SQL so that you can access it from your

computer (SSMS), as shown in Figure 5-44.

Figure 5-44. Accessing Azure SQL Server from the client tool

 8) Create the SQL Server table and stored procedure

as provided. Figure 5- 45 shows the structure after

running the table and stored procedure scripts.

Chapter 5 Data transformation: part 2

223

 9) Upload the data file (provided) to Azure Blob

Storage (see Figure 5-46).

Figure 5-45. Artifact in Azure SQL Database

Figure 5-46. Data file in Azure Blob Storage

Chapter 5 Data transformation: part 2

224

Let’s start building an Azure Data Factory pipeline.

 1) Switch to the Azure Data Factory Author &

Monitor UI.

 2) Let’s create a SQL and Azure Blob Storage

connection. Click Connections (see Figure 5-47).

 3) Click +New (see Figure 5-48).

Figure 5-47. Setting up a connection

Figure 5-48. Creating new linked services

 4) Select Azure Blob Storage (see Figure 5-49).

Chapter 5 Data transformation: part 2

225

 5) Click Continue.

 6) Provide information about the storage where you

uploaded your data file (see Figure 5-50).

Figure 5-49. Azure Blob Storage option

Figure 5-50. Azure Blob Storage linked service options

Chapter 5 Data transformation: part 2

226

 7) Click Finish.

 8) Let’s create a SQL connection. Click +New.

 9) Select Azure SQL Database (see Figure 5-51).

Figure 5-51. Azure SQL Database option

 10) Click Continue.

 11) Provide information about the Azure SQL Server

instance created in earlier steps (see Figure 5-52).

Chapter 5 Data transformation: part 2

227

 12) Click Finish.

Finally, you have two connections (see Figure 5-53).

Figure 5-53. List of available linked service

Figure 5-52. Setting up the Azure SQL Database linked service

Chapter 5 Data transformation: part 2

228

 13) Let’s create datasets. Click + and then Dataset

(see Figure 5-54).

 14) Click Azure Blob Storage (see Figure 5-55).

 15) Click Finish.

 16) On the Connection tab, select the container and file

name that you uploaded earlier (see Figure 5-56).

Figure 5-54. Dataset option

Figure 5-55. Azure Blob Storage option

Chapter 5 Data transformation: part 2

229

 17) Select column names in the first row.

Let’s create another dataset on top of the SQL connection created

earlier.

 18) Click + and then Dataset.

 19) Select Azure SQL Database.

 20) Click Finish.

 21) On the Connection tab, select the Azure SQL Server

connection created in the previous step. For Table,

select All_Sales_Records_Raw (see Figure 5-57).

Figure 5-56. Connecting to Azure Blob Storage

Chapter 5 Data transformation: part 2

230

 22) Click Publish ALL.

 23) Click + and then Pipeline.

 24) Drag and drop the Copy Data activity, as shown in

Figure 5-58.

Figure 5-57. Inputting values to set up Azure SQL Database

Figure 5-58. Copy Data activity option

Chapter 5 Data transformation: part 2

231

 25) On the Source tab, select the Azure Blob Storage

dataset created earlier (see Figure 5-59).

 26) On the Sink tab, select the Azure SQL dataset

created earlier (see Figure 5-60).

 27) On the Mapping tab, click Import Schemas. Since

the column names are the same on the source and

target, the mapping is done automatically (see

Figure 5-61).

Figure 5-59. Source selection for the Copy activity

Figure 5-60. Sink selection for the Copy activity

Chapter 5 Data transformation: part 2

232

 28) Drag and drop the Stored Procedure activity (see

Figure 5-62).

Figure 5-61. Field mapping

Figure 5-62. Stored Procedure activity

Chapter 5 Data transformation: part 2

233

 29) Select the Copy Data activity, click the “Add activity

on:” option, select Success, and then drag the arrow

to the Stored Procedure activity. This means run the

next process if the current activity runs successfully

(see Figure 5-63).

Figure 5-63. Setting up a link between two activities

 30) Select Stored Procedure (see Figure 5-64).

Figure 5-64. Setting values for the stored procedure

Chapter 5 Data transformation: part 2

234

 31) On the SQL Account tab, select “Azure SQL

Database connection” for “Linked service.”

 32) On the Stored Procedure tab, select the stored

procedure (adfstoredprocactivity) created earlier

(see Figure 5-65).

 33) Click Publish All.

 34) Click Trigger and then Trigger Now.

 35) Click Finish.

 36) Select the Monitor tab on the left side (see

Figure 5-66).

Figure 5-65. Selecting the stored procedure

Figure 5-66. Monitoring the ADF pipeline

Chapter 5 Data transformation: part 2

235

 37) Once pipeline execution happens successfully,

query the database (see Figure 5-67).

 Custom Activity
So far, you have seen various activities that can be used in Azure Data

Factory for data transformation. Why would you need a custom activity?

It is not always the case that you will go with the built-in activities

to transform data. There are many scenarios where developers want to

add their own logic in a programming language for transformation. For

example, you might want to read a document, extract specific information

and store it in a database, or call an API to retrieve data and store it or any

other customization; these are not built-in tasks. In a nutshell, if Azure

Data Factory doesn’t support the transformation that you are looking for,

then you can use a Custom activity to write your own transformation.

Figure 5-67. SQL query to validate the transformation

Chapter 5 Data transformation: part 2

236

Azure Data Factory uses Azure Batch services to help developers run

their own code in any operating system (Windows/Linux). Configuring the

scaling feature of Azure Batch services guarantees to provide the scalability

that the enterprise wants (see Figure 5-68).

Let’s set up a Twitter application that retrieves credentials for making

API calls to get tweets for a specific tag.

 1) Go to https://apps.twitter.com/.

 2) Click Create New App.

 3) Fill out the information (see Figure 5-69).

Figure 5-68. Reference architecture

Chapter 5 Data transformation: part 2

https://apps.twitter.com/

237

 4) Click Create New Application.

 5) Once the application is created, go to Keys and

Access Tokens (see Figure 5-70).

Figure 5-69. Setting up a Twitter application

Chapter 5 Data transformation: part 2

238

 6) Click “Create my access token” and save it to use it

in a future step.

Let’s set up the Azure Active Directory app to get a token and access

Azure Key Vault.

 1) Switch to https://portal.azure.com.

 2) Click Azure Active Directory on the left side.

 3) Click “App registrations.”

 4) Click “New application registration” (see

Figure 5-71).

Figure 5-70. Application settings

Chapter 5 Data transformation: part 2

https://portal.azure.com

239

 5) Provide a name.

 6) Select the application type; here select “Web app /

API.”

 7) Provide the sign-on URL. This does not need to

be a site that exists (you can put http://test1.

adventureworks.com), as shown in Figure 5-72.

Figure 5-71. Azure AD app registration option

Chapter 5 Data transformation: part 2

http://test1.adventureworks.com
http://test1.adventureworks.com

240

 8) Click Create.

 9) Once the app is registered, click it.

 10) Click Settings (see Figure 5-73).

Figure 5-72. AD app registration values

Figure 5-73. Registered app options

Chapter 5 Data transformation: part 2

241

 11) Click Keys in the Password section and then provide

a description and expiration date. Click Save, and

it will show the password (see Figure 5-74). Copy it

into a notepad.

Figure 5-74. Setting app keys

Let’s set up Azure Key Vault.

 1) Click “Create a resource” and search for Azure key

vault (see Figure 5- 75).

Figure 5-75. Azure Key Vault

Chapter 5 Data transformation: part 2

242

 2) Select Key Vault and click Create.

 3) Enter a name, select your subscription, enter or

create a resource group, select the right location,

and leave the defaults for “Pricing tier,” “Access

Policies,” and “Virtual Network Access (preview),” as

shown in Figure 5- 76.

Figure 5-76. Inputting values to set up Azure Key Vault

Chapter 5 Data transformation: part 2

243

 2) Provide an ID and the API, select your subscription,

select or create a resource group, select the right

location, leave the other settings at the defaults, and

click Create (see Figure 5-78).

 4) Click Create.

Let’s set up the Azure Cosmos DB account to store tweets.

 1) Click “Create a resource,” click Databases, and then

click Azure Cosmos DB (Figure 5-77).

Figure 5-77. Setting up Azure Cosmos DB

Chapter 5 Data transformation: part 2

244

 3) At the end, you will see three services added in your

Azure subscription (see Figure 5-79).

Figure 5-78. Inputting values to set up Azure Cosmos Database

Figure 5-79. Services set up for this demo so far

Chapter 5 Data transformation: part 2

245

 4) Click Azure Cosmos DB Account (created in an

earlier step).

 5) Click Data Explorer and then New Database

(see Figure 5-80).

Figure 5-80. Creating a new Azure Cosmos DB database

Chapter 5 Data transformation: part 2

246

 6) Provide a database ID and click OK (see Figure 5-81).

 7) Click New Collection (see Figure 5-82).

Figure 5-81. Inputting values to set up the Azure Cosmos DB
database

Figure 5-82. Inputting values to set up a new collection

Chapter 5 Data transformation: part 2

247

 8) Select “Use existing” and choose the database ID

created in the previous step.

 9) Provide the collection ID.

 10) Select Fixed (10 GB) as the storage capacity.

 11) Click OK.

Let’s set up an Azure Batch service.

 1) Click “Create a resource.”

 2) Click Compute.

 3) Click Batch Service (see Figure 5-83).

Figure 5-83. Setting up the Azure Batch service

Chapter 5 Data transformation: part 2

248

 4) Provide an account name.

 5) Select your subscription.

 6) Select or create a new resource group.

 7) Select the right location.

 8) Select or create a new storage account.

 9) Select “Batch service” for “Poll allocation mode”

(see Figure 5-84).

Figure 5-84. Setting up a new Azure Blob Storage account

 10) Click Create.

 11) Once the Azure Batch services are set up, you will

see services shown in Figure 5-85 on the Azure

dashboard (if you choose to pin to dashboard).

Chapter 5 Data transformation: part 2

249

By default, there is no pool (nodes available for compute) available;

hence, let’s add a pool. In this demo, let’s use a Windows custom image

build using a Windows Server 2008 R2 SP1 virtual machine. Make sure to

install the software and packages in a virtual machine. Table 5-1 shows the

prerequisites.

Figure 5-85. Services set up for this demo

Table 5-1. Prerequisites

Package Name Description

python 2.7 install python 2.7 from https://

www.python.org/downloads/.

install python- pip install python-pip to make sure to

install the python packages.

pip install tweepy Connects to twitter.

pip install pydocumentdb accesses azure Cosmos DB.

pip install azure-keyvault accesses azure Key Vault.

Chapter 5 Data transformation: part 2

https://www.python.org/downloads/
https://www.python.org/downloads/

250

 1) Click “Azure batch service.”

 2) Click Pools.

 3) Click Add (see Figure 5-86).

Figure 5-86. Setting up pools

 4) Add the information in Table 5-2 (see Figure 5-87).

Table 5-2. Setting Values to Set Up the Pool

Property Value

pool iD name of the pool.

Display name Description (optional).

image type Custom image (Linux/Windows).

Custom Vm image select the custom image created earlier.

(continued)

Chapter 5 Data transformation: part 2

251

Table 5-2. (continued)

Property Value

operating system Windows.

os Distribution Windowsserver.

os version microsoft Windows server 2008 r2 sp1 (latest).

Caching none.

Container configuration none.

metered licenses for

rendering

Don’t change. You’re not doing any rendering for

this demo.

node pricing tier standard a1 (1 core, 1.8 GB). this demo is

not a compute-extensive job; hence, basic

compute works. however, you can go for higher

compute.

mode fixed. this service allows you choose the “auto

scale” option, which allows the service to

increase/decrease compute based on a formula.

this helps the organization not to worry about

scaling out and scaling in.

target dedicated nodes set it to 1.

Low priority nodes 0. this option reduces compute cost. Low-

priority nodes take advantages of surplus

capacity in azure. You use low-priority nodes

when the job consumes less time or for batch

processing. the trade-off of using such an

option is that the Vms may not be available for

allocation or preempted at any time, depending

on the available capacity.

(continued)

Chapter 5 Data transformation: part 2

252

Table 5-2. (continued)

Property Value

resize timeout 15 minutes. this is how long the process waits for

resizing.

start task Disabled. specify the task that needs to run first

when a Vm is added to the pool.

max tasks per node 1. You can specify the maximum number of tasks

that can be run on the Vm. Be cautious about the

Vm size you choose.

User accounts Default.

task scheduling policy pack. this defines how tasks get distributed

between Vms in the pool.

inter-node communication no.

application package 0. in case your application requires packages for

it to run successfully.

Certificates 0.

pool endpoint configuration Default.

network configuration Default. not required for this demo.

subnet Default. not required for this demo.

Chapter 5 Data transformation: part 2

253

Figure 5-87. Inputting values to set up a pool

 5) Click OK.

 6) Once the pool is created, click Pool (created in the

previous step) and then Nodes to make sure a VM is

created (see Figure 5-88).

Chapter 5 Data transformation: part 2

254

Let’s store credentials on Azure Key Vault and give access to the Azure

AD app.

 1) Switch to Azure Key Vault.

 2) Add all the secrets like the Azure Cosmos DB details

and Twitter API details on Azure Key Vault. Switch

to the respective services to capture the keys (see

Figure 5-89).

Figure 5-88. Available nodes

Chapter 5 Data transformation: part 2

255

Figure 5-89. Setting secrets

Figure 5-90. Setting access policies

 3) In Azure Key Vault, click “Access policies.”

 4) Click +Add New (see Figure 5-90).

Chapter 5 Data transformation: part 2

256

 5) Select Principal. This is the application registered in

Azure Active Directory.

 6) Select Get for “Secret permission” (see Figure 5-91).

 7) Click OK.

 8) Click Save (see Figure 5-92).

Figure 5-91. Adding an access policy

Chapter 5 Data transformation: part 2

257

Now the environment is set.

Let’s look at the Python code. Upload the code to Azure Blob Storage

(see Figure 5-93 and Figure 5-94).

Figure 5-92. Access policy defined

Chapter 5 Data transformation: part 2

258

Figure 5-93. Python code

Figure 5-94. Python code, continued

Chapter 5 Data transformation: part 2

259

Let’s set up Azure Data Factory.

 1) Switch to the Azure Data Factory Author &

Monitor UI.

 2) Drag and drop a Custom activity onto the designer

(see Figure 5-95).

Figure 5-95. Custom activity

Chapter 5 Data transformation: part 2

260

 3) Provide a name and add a description to the activity

(see Figure 5-96).

 4) On the Azure Batch tab, click +New (see Figure 5-97).

Figure 5-96. Setting up a Custom activity

Figure 5-97. Setting up an Azure Batch linked service

Chapter 5 Data transformation: part 2

261

 5) Provide the Azure Batch account details. Retrieve

all the information from the Azure Batch account

services (see Figure 5-98).

Figure 5-98. Options to set new linked service

 6) Click Finish.

 7) Click Settings.

 8) Provide the command in Command Text Area (see

Table 5-3).

Chapter 5 Data transformation: part 2

262

Figure 5-99 shows the screen after setting the values.

Table 5-3. Values for Custom Activity

Parameter Description

getTweets.py gettweets is the name of the python program to execute.

Azure this gets tweets for given hash tag.

2018/07/28 read since. from date, when you want application to capture

the tweets.

Todayrunid this is any text value to be passed when testing or debugging

purposes.

Figure 5-99. Setting values for the Custom activity

 9) Select “Resource linked service.” This is the Azure

storage location where the Python code is uploaded.

 10) Select “Folder path.” This is the folder location

where the Python code is uploaded.

 11) Click Publish All.

 12) Click Trigger and then Trigger Now.

 13) Click Finish.

Chapter 5 Data transformation: part 2

263

 14) Go to the Monitoring page and wait until the pipeline

gets executed successfully (see Figure 5-100).

Finally, after successful completion, the tweets get stored in Azure

Cosmos DB (see Figure 5-101).

If you encountered any errors, look at the Azure Batch service logs

for the specific job to get insight on the type of error encountered (see

Figure 5-102).

Figure 5-100. Monitoring pipeline progress

Figure 5-101. Azure Cosmos DB

Chapter 5 Data transformation: part 2

264

In this hands-on chapter, you explored Databricks and the Custom and

Stored Procedure activities to run various workloads. Azure Data Factory

lets you build an end-to-end data pipeline, whether on Microsoft or on an

open source platform.

Figure 5-102. Inputting values to set up Azure SQL Database

Chapter 5 Data transformation: part 2

265© Sudhir Rawat and Abhishek Narain 2019
S. Rawat and A. Narain, Understanding Azure Data Factory,
https://doi.org/10.1007/978-1-4842-4122-6_6

CHAPTER 6

Managing Flow
In previous chapters, you focused on the Azure Data Factory features and

learned how to build an end-to-end pipeline. The focus of this chapter

will be how to set up a pipeline flow and why it’s important for any

organization.

 Why Managing Flow Is Important
So far, you can build an Azure Data Factory pipeline and run it. This

chapter will discuss expressions, functions, and activities to control the

data flow in an ADF pipeline. Why do you need to manage the flow? An

SSIS developer knows the importance of control flow; however, if you

are new to this world, then let’s look at an example. As a data developer,

you build an ADF pipeline to move data from an on-premises SQL Server

instance to an Azure SQL Database instance. However, you are asked to

move five tables now and six tables later. So, you will create one pipeline

and change it later. This will continue as many times as the organization

needs data for certain tables. Another example could be you have been

asked to move delta/incremental data. This is not a straightforward flow.

You need to tweak the ADF pipeline without changing the existing pipeline

and redeploying, which may cause errors. That’s where you need some

mechanism to manage the ADF pipeline from the outside. This means you

need to control the application flow from a configuration file that resides

outside of the application.

266

Azure Data Factory provides various activities to manage the pipeline

flow. Let’s get started with some action.

 Expressions
Programming languages need to be able to get values during runtime

to decide on the code flow. In Azure Data Factory, when the pipeline

executes, you can capture parameter values or system variables to decide

on the flow of the data. There are various system variables and functions

to help achieve this. You can write an expression and evaluate conditions.

Figure 6-1 lists the system variables provided in Azure Data Factory.

Figure 6-1. System variables

Chapter 6 Managing Flow

267

 Functions
There are many functions provided in Azure Data Factory to be used

in an expression. For example, there are various types of functions that

developers can use to get a value, to check whether a dictionary contains

a key, to get a string representation of a data URI, to get an index of a value

in a string, to concatenate strings, and so on. Figure 6-2 shows the different

types of functions available in Azure Data Factory.

Figure 6-2. Functions

 Activities
In all programing languages there are ways to control the code flow such

as for loops, if and until statements, and so on. These all help to decide

which part of the code needs to be executed. In Azure Data Factory,

the control flow activities help to set the direction of the data pipeline

execution. For example, the if condition activity provides a way to decide

which activity needs to be executed based on a condition.

Chapter 6 Managing Flow

268

 Let’s Build the Flow
Let’s build a solution for AdventureWorks to understand how to use the

features discussed.

AdventureWorks wants to share increment/delta data with a vendor.

The data is stored in different tables of Azure SQL Database. Assume that

the data is getting stored on a daily basis. At first, you’ll capture all the data

and store it in Azure Blob Storage. Then each subsequent day, you need to

capture only the delta data from different tables and store it in Azure Blob

Storage. This blob is shared with the vendor. At the end, an e-mail is sent to

the administrator to inform them about the pipeline execution. Figure 6-3

shows the architecture you will build in this chapter.

Figure 6-3. Azure Data Factory pipeline design for delta data
loading

Let’s start building this architecture.

Chapter 6 Managing Flow

269

 Build the Source Database
Here are the steps:

 1) Go to https://portal.azure.com.

 2) Click “Create a resource.”

 3) Click Databases.

 4) Click SQL Database (see Figure 6-4).

Figure 6-4. Selecting SQL Database

 5) Use ADFControlFlow for “Database name.”

 6) Select the subscription where you want to deploy

Azure SQL Server.

 7) Create or select a resource group.

 8) Select “Blank database” for “Select source.”

Chapter 6 Managing Flow

https://portal.azure.com

270

 9) For Server, either create a new server or select an

existing server.

 10) Select “Not now” for “Want to use SQL elastic pool.”

 11) Select the needed pricing tier.

 12) Select the default or provide a Collation value.

 13) Click Create (see Figure 6-5).

Figure 6-5. SQL Database setup information

 14) Once Azure SQL Server is set up, click “Query editor

(preview),” as shown in Figure 6-6, or if you are

familiar with SQL Server Management Studio, then

execute all scripts there.

Chapter 6 Managing Flow

271

 15) Click Login.

 16) Select “SQL server authentication” for

“Authorization type.”

 17) Provide a login and a password.

 18) Click OK (see Figure 6-7).

Figure 6-6. SQL query editor

Figure 6-7. SQL query editor login screen

Chapter 6 Managing Flow

272

 19) Run the scripts shown in Figure 6-8, Figure 6-9,

Figure 6-10, and Figure 6-11 one by one.

Figure 6-8. SQL script for table creation and data insertion

Figure 6-9. SQL script for table creation and data insertion, continued

Chapter 6 Managing Flow

273

 Build Azure Blob Storage as the Destination
Follow these steps:

 1) Switch to https://portal.azure.com.

 2) Click “Create a resource.”

Figure 6-10. SQL script for table creation and data insertion,
continued

Figure 6-11. SQL script for stored procedure creation

Chapter 6 Managing Flow

https://portal.azure.com

274

 3) Click Storage.

 4) Click “Storage account - blob, file, table, queue”

(see Figure 6-12).

Figure 6-12. Azure Blob Storage service selection

 5) Provide all the requested information to set up Azure

Blob Storage and click Create (see Figure 6-13).

Chapter 6 Managing Flow

275

 6) Once the Azure Blob Storage setup is done, click

“Storage Explorer (preview).”

 7) Right-click Blob Containers and click Create Blob

Container (see Figure 6-14).

Figure 6-13. Azure Blob Storage selection

Chapter 6 Managing Flow

276

 8) Provide a name and public access level (see

Figure 6-15).

Figure 6-14. Access Azure Storage Explorer (preview)

Figure 6-15. Container name and access level screen

 9) Click OK.

Chapter 6 Managing Flow

277

 Build the Azure Logic App
Follow these steps:

 1) Switch to https://portal.azure.com.

 2) Click “Create a resource,” then Integration, and then

Logic App (see Figure 6-16).

Figure 6-16. Azure Logic App service selection

Chapter 6 Managing Flow

https://portal.azure.com

278

 3) Provide a name, select your subscription, create or

select a resource group, select the right location,

enable or disable Log Analytics, and click Create

(see Figure 6-17).

Figure 6-17. Azure Logic App service creation

 4) Once the Azure Logic App is created, click Edit (see

Figure 6-18).

Chapter 6 Managing Flow

279

 5) Select “When a HTTP request is received” from the

Logic Apps Designer (see Figure 6-19).

Figure 6-18. Clicking Edit

Figure 6-19. Azure Logic App trigger selection

Chapter 6 Managing Flow

280

 7) Click Office 365 Outlook. If you want to use another

e-mail provider like Gmail, you can (see Figure 6-21).

Figure 6-20. Azure Logic Apps Designer

Figure 6-21. Azure Logic App action selection

 8) Click “Send an email” (see Figure 6-22).

 6) Click “+ New step” (see Figure 6-20).

Chapter 6 Managing Flow

281

 9) Click “Sign in” (see Figure 6-23).

Figure 6-22. Azure Logic App action configuration

Figure 6-23. Azure Logic App Outlook authentication link

Chapter 6 Managing Flow

282

 11) Once the Logic App is saved, you can view the HTTP

POST URL (see Figure 6-25).

Figure 6-24. Azure Logic App Office 365 Outlook e-mail
configuration

Figure 6-25. Azure Logic App HTTP POST URL

This opens a new page to authenticate.

 10) Configure the e-mail settings and click Save (see

Figure 6-24).

 12) Add the value shown in Figure 6-26 in Request Body

JSON Schema.

Chapter 6 Managing Flow

283

 13) The screen will look like Figure 6-27 after entering

the value.

Figure 6-26. JSON schema

Figure 6-27. Azure Logic App HTTP request body configuration

Chapter 6 Managing Flow

284

 14) In the “Send an email” activity, add a custom

message adding dynamic content, as shown in

Figure 6-28.

Figure 6-28. Azure Logic App adding dynamic content

 Build the Azure Data Factory Pipeline
Follow these steps:

 1) From the Azure portal, click Azure Data Factory

services, and click Author & Monitor. If you haven’t

set up Azure Data Factory yet, then please refer to

the previous chapters to set up the ADF service.

 2) In the Author & Monitor UI, click Connection and +

New (see Figure 6- 29).

Chapter 6 Managing Flow

285

 3) Create two connections: one for Azure SQL

Database (the service created earlier) and another

for Azure Blob Storage (the service created earlier).

Please refer to Chapter 5 if you are not sure how

to create connections. Once you have created the

connections, the screen will look like Figure 6-30.

Figure 6-29. Azure Data Factory new connection

Chapter 6 Managing Flow

286

 4) Let’s create datasets. Click + and then Dataset (see

Figure 6-31).

Figure 6-30. Azure Data Factory connections

Figure 6-31. Azure Data Factory dataset option

 5) Select Azure SQL Database and click Finish (see

Figure 6-32).

Chapter 6 Managing Flow

287

 6) On the General tab, provide a name and add a

description.

 7) On the Connection tab, select the connection you

created earlier for “Linked service.” Don’t choose

any value for Table (see Figure 6-33).

Figure 6-32. Azure Data Factory Azure SQL Database selection

Figure 6-33. Azure Data Factory Azure SQL database
configuration

Chapter 6 Managing Flow

288

 8) Let’s create a dataset for Azure Blob Storage. Click +

and then Dataset (see Figure 6-34).

Figure 6-34. Azure Data Factory Dataset option

 9) Select Azure Blob Storage and click Finish (see

Figure 6-35).

Chapter 6 Managing Flow

289

 10) On the General tab, provide a name and add a

description.

 11) On the Parameters tab, click New and provide a

variable name for Name, select String for Type, and

leave Default Value blank (see Figure 6-36).

Figure 6-35. Azure Data Factory Azure Blob Storage dataset
selection

Chapter 6 Managing Flow

290

 12) On the Connection tab, select the linked service you

created earlier.

 13) Provide a container in “File path” and click the file

name area to add the parameter.

 14) Select the parameter name and click Finish (see

Figure 6-37).

Figure 6-36. Azure Data Factory dataset configuration

Chapter 6 Managing Flow

291

 15) Select “Text format” for “File format.” The screen will

look like Figure 6- 38.

Figure 6-37. Azure Data Factory parameter listing

Chapter 6 Managing Flow

292

 16) Let’s create a dataset for the config table in Azure

SQL. Click + and then Dataset (see Figure 6-39).

Figure 6-38. Azure Data Factory dataset configuration

Figure 6-39. Azure Data Factory Dataset option

Chapter 6 Managing Flow

293

 17) On the General tab, provide a name and add a

description.

 18) On the Connection tab, select the Azure SQL

connection created earlier. Provide [dbo].[config] for

Table (see Figure 6-40).

Figure 6-40. Azure Data Factory dataset configuration

 19) Once the dataset is set up, let’s create a pipeline.

Click + and then Pipeline.

 20) On the General tab, provide a name and add a

description.

 21) On the Parameters tab, click + New and create a new

parameter, as shown in Figure 6-41.

Chapter 6 Managing Flow

294

 22) Drag and drop a ForEach activity (in Iteration &

Conditionals), as shown in Figure 6-42.

Figure 6-41. Azure Data Factory parameter setting

Figure 6-42. Adding a ForEach activity

Chapter 6 Managing Flow

295

 23) On the General tab, provide a name and add a

description.

 24) In Settings, provide “@pipeline().parameters.

tablenames” for Items (see Figure 6-43).

Figure 6-43. Azure Data Factory configuring activity

Figure 6-44. Adding a Lookup activity

 25) Under Activities (0), click “Add activity.”

 26) Drag and drop the Lookup activity (see Figure 6-44).

Chapter 6 Managing Flow

296

 27) On the General tab, provide a name

(LookupNewwatermark) and add a description.

 28) In Settings, select “Azure SQL dataset” for Source

Dataset, and select Query for Use Query. Provide

the following code in the Query area to get a new

watermark:

select MAX(@{item().WaterMark_Column}) as

NewWatermarkvalue from @{item().TABLE_NAME}

 29) Select “First row only.” The screen will look like

Figure 6- 45.

Figure 6-45. Azure Data Factory activity configuration

 30) Drag and drop another Lookup activity (see

Figure 6-46).

Chapter 6 Managing Flow

297

 31) On the General tab, provide a name

(LookupOldwatermark) and add a description. Let’s

use the default values for the rest of the properties.

 32) On the Settings tab, select the “watermark” dataset

for Source Dataset.

 33) Select Query for Use Query.

 34) Provide the following query in the Query area:

select Table_Name, WatermarkValue from Config where

Table_Name = '@{item().TABLE_NAME}'

 35) Select “First row only.” The screen will look like

Figure 6- 47.

Figure 6-46. Adding another Lookup activity

Chapter 6 Managing Flow

298

 36) Drag and drop the Copy Data activity (in Move &

Transform). Connect both previous activities to the

Copy Data activity (see Figure 6-48).

Figure 6-47. Azure Data Factory activity configuration

Figure 6-48. Adding a Copy Data activity

 37) On the General tab, provide a name (getData) and

add a description. Let’s use the default values for the

rest of the properties.

 38) On the Source tab, select “Azure SQL dataset” for

Source Dataset. Select Query for Use Query.

Chapter 6 Managing Flow

299

 39) Provide the following query for Query:

select * from @{item().TABLE_NAME} where @{item().

WaterMark_Column} > '@{activity('LookupOldwatermark').

output.firstRow.WatermarkValue}' and @{item().

WaterMark_Column} <= '@{activity('LookupNewwatermark').

output.firstRow.NewWatermarkvalue}'

The screen will look like Figure 6-49.

Figure 6-49. Copy Data activity source configuration

 40) On the Sink tab, select Azure Blob Storage for Sink

Dataset.

 41) Provide the following for the folder name:

@CONCAT(item().TABLE_NAME, pipeline().RunId, '.txt')

Chapter 6 Managing Flow

300

The screen will look like Figure 6-50.

Figure 6-50. Copy Data activity sink configuration

Figure 6-51. Stored Procedure activity

 42) Drag and drop the Stored Procedure activity and

connect it from the Copy Data (getData) activity (see

Figure 6-51).

 43) On the General tab, provide a name

(UpdateConfigTable) and add a description. Let’s

use the default values for rest of the properties.

Chapter 6 Managing Flow

301

 45) Provide “[dbo].[spupdatewatermark]” for “Stored

procedure name.”

 46) Click + New for “Stored procedure parameters.”

Create the parameters listed in Table 6-1.

Figure 6-52. Stored Procedure activity configuration

Table 6-1. Azure Data Factory Parameter Configuration

Name Type Value

recordModifiedtime Datetime @{activity(‘lookupnewwatermark’).output.

firstrow.newwatermarkvalue}

tablename String @{activity(‘lookupoldwatermark’).output.

firstrow.table_name}

 47) After creating the parameters, the screen will look

like Figure 6-53.

 44) Under SQL Account, select “Azure SQL connection”

for “Linked service” (see Figure 6-52).

Chapter 6 Managing Flow

302

 48) Drag and drop the Web activity and connect it to the

Stored Procedure (UpdateConfigTable) activity (see

Figure 6-54).

Figure 6-53. Stored Procedure activity parameter configuration

Figure 6-54. Stored Procedure activity parameter

Chapter 6 Managing Flow

303

 49) On the General tab, provide a name

(UpdateConfigTable) and add a description. Let’s

use the default values for rest of the properties.

 50) On the Settings tab, provide the URL (copied from

the Azure logic apps).

 51) Select POST for Method.

 52) Add the following value in Body:

 {

 pipeline_run_time: @{pipeline().TriggerTime},

 data_factory_name:@{pipeline().DataFactory}

 }

The screen will look like Figure 6-55.

Figure 6-55. Azure Data Factory web activity configuration

Chapter 6 Managing Flow

304

 53) The final pipeline will look like Figure 6-56.

Figure 6-56. Azure Data Factory pipeline

 54) Click Publish All.

 55) Click Trigger and then “Trigger now.”

 56) Provide the following value for the tablenames

parameter:

[

 {

 "TABLE_NAME": "Employee",

 "WaterMark_Column": "RecordModifiedDate"

 },

 {

 "TABLE_NAME": "Books",

 "WaterMark_Column": "RecordModifiedDate"

 }

]

The screen will look like Figure 6-57.

Chapter 6 Managing Flow

305

 57) Click Finish.

 58) Click Monitor and click to drill down to see each

activity run. All activity except the main activity

(ForEachSourceTable) will run twice because you

passed two tables to load data (see Figure 6-58).

Figure 6-57. Azure Data Factory parameter passing

Chapter 6 Managing Flow

306

 59) In Azure Blob Storage, you will find two files, as

shown in Figure 6-59.

Figure 6-59. Azure Data Factory output

Figure 6-58. Azure Data Factory monitoring

 60) Open the files to look at the data (see Figure 6-60).

Figure 6-60. Azure Data Factory output

Chapter 6 Managing Flow

307

 61) Check the e-mail account; you should see an e-mail

like in Figure 6- 61.

Figure 6-61. Azure Data Factory pipeline execution report e-mail

 62) In Azure SQL Server, check the WatermarkValue

config table (see Figure 6-62).

Figure 6-62. Watermark value update

Chapter 6 Managing Flow

308

Let’s insert some more records in the tables.

 1) Run the code shown in Figure 6-63 to insert records

into an Azure SQL table.

Figure 6-63. SQL script for data insertion

 2) Run an Azure Data Factory pipeline.

 3) Look Azure Blob Storage and you will find two more

files (selected in Figure 6-64).

Figure 6-64. Azure Data Factory output

 4) Open the files to see the new data (see Figure 6-65).

Chapter 6 Managing Flow

309

 5) Check the watermark values in the config table (see

Figure 6-66).

Figure 6-65. Azure Data Factory output data

Figure 6-66. Watermark value update

You built a solution to understand how the flow can be handled within

Azure Data Factory. There are other functions and activities that can be

used on a case-by-case basis.

 Summary
In this chapter, you learned about managing the data pipeline flow and

learned how to use expressions, functions, and activities to control the data

flow in Azure Data Factory.

Chapter 6 Managing Flow

311© Sudhir Rawat and Abhishek Narain 2019
S. Rawat and A. Narain, Understanding Azure Data Factory,
https://doi.org/10.1007/978-1-4842-4122-6_7

CHAPTER 7

Security
Data is both an asset and a potential liability. As we move data to the

cloud, it becomes highly important to understand the various stages that

the data goes through so you can understand the security risks and plan

mitigations in case of issues. In this chapter, you will investigate the various

security mechanisms that Azure Data Factory provides to secure your data.

 Overview
Azure Data Factory management resources are built on the Azure security

infrastructure, and they use all the possible security measures offered by

Azure. Azure Data Factory does not store any data except for the metadata

information such as the pipeline, the activity, and in some cases the

linked service credentials (connections to data stores) that are using the

Azure integration runtime and are encrypted and stored on ADF managed

storage.

Azure Data Factory has been certified for the following: HIPAA/

HITECH, ISO/IEC 27001, ISO/IEC 27018, CSA STAR.

If you’re interested in Azure compliance and how Azure secures its

own infrastructure, visit the Microsoft Trust Center (http://aka.ms/

azuretrust).

This chapter will cover authentication, credential management, data

security in transit and at rest, and network security, as well as both on-

premises to cloud (hybrid) and cloud to cloud scenarios (Figure 7-1).

http://aka.ms/azuretrust
http://aka.ms/azuretrust

312

Cloud scenario: In this scenario, both your source

and your destination are publicly accessible through

the Internet. These include managed cloud storage

services such as Azure Storage, Azure SQL Data

Warehouse, Azure SQL Database, Azure Data Lake

Store, Amazon S3, Amazon Redshift, SaaS services

such as Salesforce, and web protocols such as

Figure 7-1. Data channel and command channel in ADF. The data
channel is used for the actual data movement, while the command
channel is required only for communication within the ADF service.

Chapter 7 SeCurity

313

FTP and OData. Find a complete list of supported

data sources at https://docs.microsoft.com/

en-us/azure/data-factory/copy-activity-

overview#supported-data-stores-and-formats.

Hybrid scenario: In this scenario, either your source

or your destination is behind a firewall or inside an

on-premises corporate network. Or, the data store is

in a private network or virtual network (most often

the source) and is not publicly accessible. Database

servers hosted on virtual machines also fall under

this scenario.

 Cloud Scenario
This section explains the cloud scenario.

 Securing the Data Credentials
Let’s begin with securing the data store credentials (Figure 7-2).

Figure 7-2. Data store credential storage options in ADF

Chapter 7 SeCurity

https://docs.microsoft.com/en-us/azure/data-factory/copy-activity-overview#supported-data-stores-and-formats
https://docs.microsoft.com/en-us/azure/data-factory/copy-activity-overview#supported-data-stores-and-formats
https://docs.microsoft.com/en-us/azure/data-factory/copy-activity-overview#supported-data-stores-and-formats

314

• Store the encrypted credentials in an Azure Data

Factory managed store. Azure Data Factory helps

protect your data store credentials by encrypting

them with certificates managed by Microsoft. These

certificates are rotated every two years (which includes

certificate renewal and the migration of credentials).

The encrypted credentials are securely stored in an

Azure storage account managed by Azure Data Factory

management services. For more information about

Azure Storage security, see the Azure Storage security

overview at https://docs.microsoft.com/en-us/

azure/security/security-storage-overview.

• You can also store the data store’s credentials in

Azure Key Vault. Azure Data Factory retrieves the

credentials during the execution of an activity. For

more information, see https://docs.microsoft.com/

en-us/azure/data-factory/store-credentials-in-

key-vault.

 Data Encryption in Transit
Data is always encrypted in transit. It depends on different data stores on

what protocol is used for the connectivity. If the cloud data store supports

HTTPS or TLS, all data transfers between Azure Data Factory and the cloud

data store will be via a secure channel of HTTPS or TLS. TLS 1.2 is used by

Azure Data Factory.

Chapter 7 SeCurity

https://docs.microsoft.com/en-us/azure/security/security-storage-overview
https://docs.microsoft.com/en-us/azure/security/security-storage-overview
https://docs.microsoft.com/en-us/azure/data-factory/store-credentials-in-key-vault
https://docs.microsoft.com/en-us/azure/data-factory/store-credentials-in-key-vault
https://docs.microsoft.com/en-us/azure/data-factory/store-credentials-in-key-vault

315

 Data Encryption at Rest
Azure Data Factory relies on the corresponding data stores to keep your

data encrypted. ADF recommends enabling a data encryption mechanism

for the data stores that support it.

• Azure SQL Data Warehouse: This supports Transparent

Data Encryption (TDE), which helps protect against

the threat of malicious activity by performing real-time

encryption and decryption of your data. This behavior

is transparent to the client.

• Azure SQL Database: Azure SQL Database supports

TDE, which helps protect against the threat of

malicious activity by performing real-time encryption

and decryption of the data, without requiring changes

to the application. This behavior is transparent to the

client.

• Azure Storage: Azure Blob Storage and Azure Table

Storage support Storage Service Encryption (SSE),

which automatically encrypts your data before

persisting to storage and decrypts it before retrieval.

• Azure Data Lake Store (Gen1/ Gen2): Azure Data

Lake Store provides encryption for data stored in the

account. When encryption is enabled, Azure Data Lake

Store automatically encrypts the data before persisting

and decrypts it before retrieval, making it transparent

to the client that accesses the data.

• Amazon S3: This provides the encryption of data at rest

for both the client and the server.

• Amazon Redshift: This supports cluster encryption for

data at rest.

Chapter 7 SeCurity

316

• Azure Cosmos DB: This supports the encryption of data

at rest and is automatically applied for both new and

existing customers in all Azure regions. There is no

need to configure anything.

• Salesforce: Salesforce supports Shield Platform

Encryption, which allows encryption of all files,

attachments, and custom fields.

 Hybrid Scenario
Hybrid scenarios require the self-hosted integration runtime to be

installed in an on-premises network, inside a virtual network (Azure),

or inside a virtual private cloud (Amazon). The self-hosted integration

runtime (Figure 7-3) must be able to access the local data stores. For more

information about the self-hosted integration runtime, see https://

docs.microsoft.com/azure/data-factory/create-self-hosted-

integration-runtime.

Figure 7-3. Hybrid setup using the self-hosted integration runtime to
connect on-premise data stores

Chapter 7 SeCurity

https://docs.microsoft.com/azure/data-factory/create-self-hosted-integration-runtime
https://docs.microsoft.com/azure/data-factory/create-self-hosted-integration-runtime
https://docs.microsoft.com/azure/data-factory/create-self-hosted-integration-runtime

317

The command channel allows for communication between data

movement services in Azure Data Factory and the self-hosted integration

runtime. The communication contains information related to the activity.

The data channel is used for transferring data between on-premise data

stores and cloud data stores.

 On-Premise Data Store Credentials
The credentials for your on-premise data stores are always encrypted and

stored. They can be either stored locally on the self-hosted integration

runtime machine or stored in Azure Data Factory managed storage.

You can also use Azure Key Vault and reference the keys/secrets in

Azure Data Factory. This helps in building a centralized credential store for

all apps and reduces the manageability.

• Store credentials locally. The self-hosted integration

runtime uses Windows DPAPI to encrypt the sensitive

data and credential information.

• Store credentials in Azure Data Factory

managed storage. If you directly use the Set-

AzureRmDataFactoryV2LinkedService cmdlet with

the connection strings and credentials inline in the

JSON, the linked service is encrypted and stored in

Azure Data Factory managed storage. The sensitive

information is still encrypted by certificates, and

Microsoft manages these certificates.

• Store credentials in Azure Key Vault (AKV). Credentials

stored in AKV are fetched by ADF during runtime.

Figure 7-4 shows the options.

Chapter 7 SeCurity

318

 Encryption in Transit
All data transfers are via the secure channel of HTTPS and TLS over TCP

to prevent man-in-the-middle attacks during communication with Azure

services.

You can also use an IPSec VPN or Azure ExpressRoute to further secure

the communication channel between your on-premise network and Azure.

Azure Virtual Network is a logical representation of your network in the

cloud. You can connect an on-premise network to your virtual network by

setting up an IPSec VPN (site-to-site) or ExpressRoute (private peering).

Table 7-1 summarizes the network and self-hosted integration runtime

configuration recommendations based on different combinations of

source and destination locations for hybrid data movement.

Figure 7-4. Data store credential storage options in ADF

Chapter 7 SeCurity

319

Figure 7-5 and Figure 7-6 show the use of the self-hosted integration

runtime for moving data between an on-premises database and Azure

services by using ExpressRoute and IPSec VPN (with Azure Virtual

Network).

Table 7-1. Network and Self-Hosted Integration Runtime

Configuration

Source Destination Network
Configuration

Integration Runtime Setup

On-

premises

Virtual machines

and cloud services

deployed in virtual

networks

ipSec VpN (point-to-

site or site-to-site)

the self-hosted integration

runtime can be installed

either on-premises or on an

azure virtual machine in a

virtual network.

On-

premises

Virtual machines

and cloud services

deployed in virtual

networks

expressroute

(private peering)

the self-hosted integration

runtime can be installed

either on-premises or on an

azure virtual machine in a

virtual network.

On-

premises

azure-based

services that have

a public endpoint

expressroute (public

peering)

the self-hosted integration

runtime must be installed

on-premises.

Chapter 7 SeCurity

320

Figure 7-5. Express route network setup for accessing on-premise
data stores

Figure 7-6. IPSec VPN setup for accessing the on-premise data
stores

Chapter 7 SeCurity

321

 Considerations for Selecting Express Route or VPN

Express Route is a better choice as it is safer and gives you dedicated

bandwidth, at an additional cost.

The self-hosted IR can be set up either on-premises or on an Azure VM

to access your data stores. I personally prefer setting it up on an Azure VM

for the ease of manageability and network setup.

If you set up the self-hosted IR on-premises, then you need to

grant access from your on-premises networks to your storage account/

data sources with an IP network rule. In addition, you must identify

the Internet-facing IP addresses used by your network. If your network

is connected to the Azure network using ExpressRoute, each circuit is

configured with two public IP addresses at the Microsoft edge that are

used to connect to Microsoft services like Azure Storage using Azure public

peering. To allow communication from your circuit to Azure Storage, you

must create IP network rules for the public IP addresses of your circuits. To

find your ExpressRoute circuit’s public IP addresses, open a support ticket

with ExpressRoute via the Azure portal.

 Firewall Configurations and IP Whitelisting
for Self-Hosted Integration Runtime
Functionality
In an enterprise, a corporate firewall runs on the central router of the

organization. Windows Firewall runs as a daemon on the local machine in

which the self-hosted integration runtime is installed (Figure 7-7).

Chapter 7 SeCurity

322

Table 7-2 provides outbound port and domain requirements for

corporate firewalls.

Figure 7-7. Firewall configurations and IP whitelisting
requirements

Chapter 7 SeCurity

323

Table 7-2. Outbound Port and Domain Requirements

Domain Names Outbound
Ports

Description

*.servicebus.windows.net 443 required by the self-hosted

integration runtime to connect

to data movement services in

azure Data Factory.

 *.frontend.clouddatahub.net 443 required by the self-hosted

integration runtime to connect

to the azure Data Factory

service.

 download.microsoft.com 443 required by the self-hosted

integration runtime for

downloading the updates. if you

have disabled auto-updates,

then you may skip this.

 *.core.windows.net 443 used by the self-hosted

integration runtime to connect

to the azure storage account

when you use the copy feature.

*.database.windows.net 1433 (Optional) required when you

copy from or to azure SQL

Database or azure SQL Data

Warehouse. use the staged

copy feature to copy data to

azure SQL Database or azure

SQL Data Warehouse without

opening port 1433.

(continued)

Chapter 7 SeCurity

http://windows.net
http://clouddatahub.net
http://microsoft.com
http://windows.net
http://windows.net

324

At the Windows firewall level (in other words, the machine level),

these outbound ports are normally enabled. If not, you can configure the

domains and ports accordingly on the self-hosted integration runtime

machine. Port 8060 is required for node-to-node communication in the

self-hosted IR when you have set up high availability (two or more nodes).

 IP Configurations and Whitelisting in Data Stores
Some data stores in the cloud also require that you whitelist the IP address

of the machine accessing the store. Ensure that the IP address of the self-

hosted integration runtime machine is whitelisted or configured in the

firewall appropriately.

 Proxy Server Considerations
If your corporate network environment uses a proxy server to access

the Internet, configure the self-hosted integration runtime to use the

appropriate proxy settings (see Figure 7-8). You can set the proxy during

the initial registration phase.

Table 7-2. (continued)

Domain Names Outbound
Ports

Description

*.azuredatalakestore.

netlogin.microsoftonline.

com/<tenant>/oauth2/token

443 (Optional) required when you

copy from or to azure Data

Lake Store.

 download.microsoft.com 443 used for downloading the

updates.

Chapter 7 SeCurity

http://azuredatalakestore.netlogin.microsoftonline.com/<tenant>/oauth2/token
http://azuredatalakestore.netlogin.microsoftonline.com/<tenant>/oauth2/token
http://azuredatalakestore.netlogin.microsoftonline.com/<tenant>/oauth2/token
http://microsoft.com

325

The self-hosted integration runtime uses the proxy server to connect

to the cloud service. Click the Change link during the initial setup. You will

see the proxy setting dialog (see Figure 7-9).

Figure 7-8. Self-hosted IR configuration manager

Chapter 7 SeCurity

326

There are three configuration options:

• Do not use proxy: The self-hosted integration runtime

does not explicitly use any proxy to connect to cloud

services.

• Use system proxy: The self-hosted integration runtime

uses the proxy setting that is configured in diahost.

exe.config and diawp.exe.config. If no proxy is

configured in diahost.exe.config and diawp.exe.

config, the self-hosted integration runtime connects to

the cloud service directly without going through a proxy.

• Use custom proxy: Configure the HTTP proxy setting

to use the self-hosted integration runtime, instead

of using configurations in diahost.exe.config and

diawp.exe.config. The Address and Port fields are

required. The User Name and Password fields are

optional depending on your proxy’s authentication

setting. All settings are encrypted with Windows DPAPI

on the self-hosted integration runtime and stored

locally on the machine.

Figure 7-9. Proxy settings in the self-hosted IR

Chapter 7 SeCurity

327

The integration runtime host service restarts automatically after

you save the updated proxy settings. This is an HTTP proxy; hence, only

connections involving HTTP/ HTTPS use the proxy, whereas database

connections will not use the proxy.

 Storing Credentials in Azure Key Vault
You can store credentials for data stores and computes in Azure Key Vault.

Azure Data Factory retrieves the credentials when executing an activity

that uses the data store/compute.

 Prerequisites
This feature relies on the Azure Data Factory service identity.

In Azure Key Vault, when you create a secret, use the entire value of the

secret property that the ADF linked service asks for (e.g., connection string/

password/service principal key, and so on). For example, for the Azure

Storage linked service, enter DefaultEndpointsProtocol=http;AccountNa

me=myAccount;AccountKey=myKey; as the AKV secret for myPassword.

Then reference it in the connectionString field in ADF. For the Dynamics

linked service, enter myPassword as the AKV secret and then reference it in

the Password field in ADF. All ADF connectors support AKV.

 Steps
To reference a credential stored in Azure Key Vault, you need to do the

following:

 1. Retrieve the data factory service identity by copying

the value of Service Identity Application ID that

is generated with your factory. If you use the ADF

authoring UI, the service identity ID will be shown

Chapter 7 SeCurity

328

in the Azure Key Vault linked service creation

window. You can also retrieve it from the Azure

portal; refer to https://docs.microsoft.com/en-

us/azure/data-factory/data-factory-service-

identity#retrieve-service- identity.

 2. Grant the service identity access to your Azure Key

Vault. In Key Vault, go to “Access policies,” click

“Add new,” and search for this service identity

application ID to grant Get permission to in the

“Secret permissions” drop-down. This allows this

designated factory to access the secret in Key Vault.

 3. Create a linked service pointing to your Azure Key

Vault. Refer to https://docs.microsoft.com/en-

us/azure/data-factory/store- credentials- in-

key-vault#azure-key-vault-linked-service.

 4. Create a data store linked service, inside which you

can reference the corresponding secret stored in Key

Vault.

 Using the Authoring UI

Click Connections, click Linked Services, and then click “+ New.” Search

for Azure Key Vault (Figure 7-10).

Chapter 7 SeCurity

https://docs.microsoft.com/en-us/azure/data-factory/data-factory-service-identity#retrieve-service-identity
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-service-identity#retrieve-service-identity
https://docs.microsoft.com/en-us/azure/data-factory/data-factory-service-identity#retrieve-service-identity
https://docs.microsoft.com/en-us/azure/data-factory/store-credentials-in-key-vault#azure-key-vault-linked-service
https://docs.microsoft.com/en-us/azure/data-factory/store-credentials-in-key-vault#azure-key-vault-linked-service
https://docs.microsoft.com/en-us/azure/data-factory/store-credentials-in-key-vault#azure-key-vault-linked-service

329

Select the provisioned Azure Key Vault where your credentials are

stored. You can click “Test connection” to make sure your AKV connection

is valid (Figure 7-11).

Figure 7-10. Creating an Azure Key Vault linked service for
connecting to a Key Vault account for pulling the credentials in during
execution time

Chapter 7 SeCurity

330

Figure 7-11. Key Vault linked service properties

Here’s the JSON representation of the AKV linked service:

Chapter 7 SeCurity

331

Table 7-3. Properties

Property Description Required

type the type property of the field must be set to

AzureKeyVaultSecret.

yes

secretName the name of the secret in azure Key Vault. yes

secretVersion the version of the secret in azure Key Vault.if

not specified, it always uses the latest version of

the secret.if specified, then it sticks to the given

version.

No

store refers to an azure Key Vault linked service that

you use to store the credential.

yes

 Reference Secret Stored in Key Vault
The properties shown in Table 7-3 are supported when you configure a

field in the linked service referencing a key vault secret.

 Using the Authoring UI

Select Azure Key Vault for secret fields while creating the connection to

your data store/compute. Select the provisioned Azure Key Vault linked

service and provide the secret name. You can optionally provide a secret

version (see Figure 7-12).

Chapter 7 SeCurity

332

Here’s the JSON (see the password section):

Figure 7-12. SQL DW linked service referencing the secret from Azure
Key Vault

Chapter 7 SeCurity

333

 Advanced Security with Managed Service
Identity
When creating an Azure Data Factory instance, a service identity can be

created along with factory creation. The service identity is a managed

application registered to Azure Activity Directory and represents this

specific Azure Data Factory.

The Data Factory service identity gives you the following benefits:

• You can store the credentials in Azure Key Vault, in

which case the Azure Data Factory service identity is

used for Azure Key Vault authentication.

Figure 7-13. JSON representation of a linked service that references
secrets/ passwords from Key Vault using the Azure Key Vault linked
service

Chapter 7 SeCurity

334

• It has many connectors including Azure Blob Storage,

Azure Data Lake Storage Gen1, Azure SQL Database,

and Azure SQL Data Warehouse.

A common problem is how to manage the final keys. For example, even

if you store the keys/secrets in Azure Key Vault, you need to create another

secret to access Key Vault (let’s say using a service principal in Azure Active

Directory).

Managed Service Identity (MSI) helps you build a secret-free ETL

pipeline on Azure. The less you expose the secrets/credentials to data

engineers/users, the safer they are. This really eases the tough job of

credential management for the data engineers. This is one of the coolest

features of Azure Data Factory.

 Summary
In any cloud solution, security plays an important role. Often the security

teams will have questions about the architecture before they approve the

product/service in question to be used. The objective of this chapter was to

expose you to all the security requirements when using ADF.

We know that most data breaches happen because of leaking data store

credentials. With ADF, you can build an end-to-end data pipeline that is

password free using technologies like Managed Service Identity. You can

create a trust with ADF MSI in your data stores, and ADF can authenticate

itself to access the data, completely removing the need to type passwords

into ADF!

Chapter 7 SeCurity

335© Sudhir Rawat and Abhishek Narain 2019
S. Rawat and A. Narain, Understanding Azure Data Factory,
https://doi.org/10.1007/978-1-4842-4122-6_8

CHAPTER 8

Executing SSIS
Packages
This chapter will focus on how Azure Data Factory makes it possible to

run SQL Server Integration Services (SSIS) packages. If you are new to

SSIS, then you can skip this chapter; however, if you have an existing SSIS

package to migrate or think your customer will ask you to work on SSIS,

then it’s worth reading this chapter.

 Why SSIS Packages?
Back when all data was scattered in different places such as RDBMSs,

Excel, third-party sources, and so on, SSIS was the product that was used

for data transformation. SSIS is part of the SQL Server family. Developers

use it to build data transformation packages to bring all the data into

place, massage it, and then provide one version of the truth across the

organization. In fact, this tool is very dear to BI developers. If you have ever

gotten a chance to work with SSIS, you know what I am talking about.

When the cloud technologies emerged, the number of data sources

started to increase. The situation demanded more data drivers, more

compute, and a more secure way to process such data. It’s never been

impossible for any organization to build a massive infrastructure and

solution. The question is just whether the organization wants to invest

336

the time and resources to build that or use the cloud and be ready with a

solution in no time. Microsoft Azure introduced Azure Data Factory (ADF),

which can scale to any size and allow data transformations from various

cloud sources.

But what about the SSIS packages you developed? Do you need to

delete those packages and create an ADF pipeline from scratch? Are all the

previous efforts wasted?

The answer is no. ADF provides an option to BI/data developers to

run SSIS packages on the cloud. This is called the “lift and shift” of SSIS

packages. Without much effort, you can run your existing SSIS packages in

a managed Azure compute environment.

However, if you are starting to build a data transformation solution,

then use Azure Data Factory to build the solution.

Let’s get started with a use case.

AdventureWorks wants to leverage cloud compute to run its existing

SSIS package. It’s time- and resource-consuming for AdventureWorks

to rewrite the entire package logic in ADF. So, the company decided to

leverage ADF’s SSIS lift and shift feature. You’ll use a basic SSIS package

and complete this via the following steps:

 1) Provision Azure SQL Server Database or SQL Server

Managed Instance to host SSIDB.

 2) Provision the Azure-SSIS IR via the Azure portal,

PowerShell, and the Azure Resource Manager

template.

 3) Deploy the SSIS package via SQL Server

Management Studio (SSMS), SQL Server Data Tools,

the command-line interface (CLI), custom code/

PSH using SSIS Managed Object Model (MOM)

.NET SDK/API, and T-SQL scripts executing SSISDB

processes.

Chapter 8 exeCuting SSiS paCkageS

337

 4) Execute SSIS packages through SSMS, the CLI by

running dtexec.exe, custom code/PSH using SSIS

MOM .NET SDK/API, and T-SQL scripts executing

SSISDB processes.

If you want to monitor SSIS package executions, then you can do so via

the Azure portal, PowerShell, and SSMS.

Let’s start setting up the environment to run SSIS packages on

ADF. Figure 8-1 shows the SSIS package you’ll be shifting to Azure.

Figure 8-1. Sample SSIS package

Chapter 8 exeCuting SSiS paCkageS

338

 Provision the Azure SQL Server Database
As mentioned earlier, the first step is to set up Azure SQL Server Database

to host SSISDB.

 1) Go to https://portal.azure.com.

 2) Click “Create a resource.”

 3) Click Databases.

 4) Click SQL Database (see Figure 8-2).

Figure 8-2. Azure SQL Database service selection

 5) Provide the database name.

 6) Select your subscription.

 7) Select or create a new resource group.

 8) Select “Blank database” for “Select source.”

 9) Select or create a new server.

Chapter 8 exeCuting SSiS paCkageS

https://portal.azure.com

339

 10) Select “Yes/Not now” for “Want to use SQL elastic

pool.”

 11) Select your needed pricing tier or leave it at the

default.

 12) Leave the default value for Collation.

 13) Click Create (see Figure 8-3).

Figure 8-3. Azure SQL Database setup

Chapter 8 exeCuting SSiS paCkageS

340

 14) Monitor the notifications to check the progress (see

Figure 8-4).

Figure 8-4. Azure activity notifications

 Provision the Azure-SSIS IR
The next step is to set up the Azure-SSIS IR.

 1) From the Azure portal, click Azure Data Factory

Services, and click Author & Monitor. If you haven’t

created an Azure Data Factory instance yet, then

please refer to the previous chapters to set up the

ADF service.

 2) In the Author & Monitor UI, click Connection (see

Figure 8-5).

Figure 8-5. New integration runtime

Chapter 8 exeCuting SSiS paCkageS

341

 3) Select “Lift-and-shift existing SSIS packages to

execute in Azure” and click Next (see Figure 8-6).

Figure 8-6. Choosing an SSIS-IR option

 4) Configure Integration Runtime Setup.

 4.1) Provide a name and description, and specify

Azure-SSIS for Type.

 4.2) Select the right location for the Azure-SSIS

IR to achieve high performance in ETL

workflows. It doesn’t need to be the same the

location as ADFv2. It should be the same as

the location of the Azure SQL DB/MI server

where SSISDB will be hosted or the location

of VNet connected to an on-premise network.

Avoid the Azure-SSIS IR accessing SSISDB/

Chapter 8 exeCuting SSiS paCkageS

342

data movements across different locations.

This way, your Azure-SSIS integration runtime

can easily access SSISDB without incurring

traffic between different locations.

 4.3) Select the node size, specifying the number

of cores (CPU). The size of memory (RAM) per

node is provided. You can select a large node

size (scale up) if you want to run compute/

memory- intensive packages.

 4.4) For the node number, select a large cluster

with many nodes (scale out) if you want to run

many packages in parallel. You can manage the

cost of running the Azure-SSIS IR by stopping

and starting it.

 4.5) For the edition/license, select Standard or

Enterprise. If your SSIS package requires

advance features, then select Enterprise.

 4.6) For Save Money, bring your own SQL Server

license to save money (see Figure 8-7).

Chapter 8 exeCuting SSiS paCkageS

343

Figure 8-7. Setting up the SSIS runtime

 5) Click Next.

 6) Configure Integration Runtime Setup.

 6.1) Select the subscription in which you created

the Azure SQL database server.

Chapter 8 exeCuting SSiS paCkageS

344

 6.2) Select the region where you created the Azure

SQL database server.

 6.3) For Catalog Database Server Endpoint, you

can find the server endpoint information in

the Overview blade (under the server name).

If you select your existing Azure SQL MI server

to host SSISDB inside a VNet, you must also

join your Azure-SSIS IR to the same VNet.

 6.4) For “Use AAD authentication with your

ADF MSI,” select the authentication method

for your database server to host SSISDB. If

the check box is not selected, then it’s SQL

authentication, and you must fill in the Admin

Username and Admin Password fields. If the

checkbox is selected, then the authentication

is set to Azure Active Directory with Azure

Data Factory Managed Service Identity. Add

ADF MSI into an AAD group with access

permissions to the database server.

 6.5) For Admin Username, provide an admin

name if you chose SQL authentication.

 6.6) For Admin Password , provide a password if

you chose SQL authentication.

 6.7) For Catalog Database Service Tier, select a

database tier of Azure SQL where you want to

host SSISDB (see Figure 8-8).

Chapter 8 exeCuting SSiS paCkageS

345

Figure 8-8. Server options to host SSIS DB

Chapter 8 exeCuting SSiS paCkageS

346

Note the provisioning of the azure-SSiS ir does not support using
an existing SSiS catalog.

 7) Click “Test connection,” and if it’s successful, click

Next.

 8) Configure the next screen, Integration Runtime

Setup.

 8.1) For Maximum Parallel Execution Per Node,

select the maximum number of SSIS packages

to run concurrently on each node in the

Azure-SSIS runtime cluster.

 8.2) The Custom Setup Container SAS URI option

allows you to alter the default configuration or

environment such as assemblies, drivers, and

so on. The main entry for execution is a file

named main.cmd in Azure Blob Storage (see

Figure 8-9).

Chapter 8 exeCuting SSiS paCkageS

347

 8.3) Select “Select a VNet” if you want the SSIS-IR

to join a virtual network. This is a mandatory

option if you have Azure SQL Database or SQL

MI (managed instance) in a virtual network so

you can host SSISDB or access on-premises

data sources.

Figure 8-9. Configuring the load for each node

Chapter 8 exeCuting SSiS paCkageS

348

 10) Wait until the SSIS-IR has the Running state.

 Deploy the SSIS Package
Let’s deploy the SSIS package on the Azure SQL Server instance where you

hosted SSIS-DB in the previous steps.

 1) Open SQL Server Management Studio.

 2) Provide the server name, authentication, login, and

password. Click Options (see Figure 8-11).

Figure 8-10. SSIS-IR monitor

 9) Click Finish. It will take some time to start the SSIS-

IR (see Figure 8- 10).

Chapter 8 exeCuting SSiS paCkageS

349

 3) On the Connection Properties tab, provide SSISDB

for “Connect to database” (see Figure 8-12).

Figure 8-11. SQL Server Management Studio

Figure 8-12. Database selection

Chapter 8 exeCuting SSiS paCkageS

350

 4) Click Connect.

 5) Once connected, you will notice a new database

called SSISDB under Integration Services Catalogs

(see Figure 8-13).

Figure 8-13. Integration Service Catalogs list

Figure 8-14. Create Folder option in SSISDB

 6) Right-click SSISDB and click Create Folder. I named

it ssisliftshift (see Figure 8-14).

Chapter 8 exeCuting SSiS paCkageS

351

 7) Once the folder is created, expand the newly created

folder and click Deploy Project (see Figure 8-15).

Figure 8-15. Deploy Project option

 8) On the Introduction page, click Next.

 9) On the Select Source page, choose the path where

you have the .ispac file (see Figure 8-16).

Chapter 8 exeCuting SSiS paCkageS

352

 10) Click Next. You may get a warning message that

the SSIS package is created on a different machine

because of sensitive information such as passwords

stored in the package.

 11) Provide the server name where SSISDB is hosted.

Provide the authentication, login, and password

details. Click Connect (see Figure 8-17).

Figure 8-16. SSIS deployment wizard, selecting the source option

Chapter 8 exeCuting SSiS paCkageS

353

 12) Click Next.

 13) Review your selection and then click Deploy (see

Figure 8-18).

Figure 8-17. SSIS deployment wizard, selecting a destination option

Chapter 8 exeCuting SSiS paCkageS

354

 14) Once deployment is done, click Close (see

Figure 8-19).

Figure 8-18. SSIS deployment wizard, reviewing

Chapter 8 exeCuting SSiS paCkageS

355

 15) Execute the SSIS package from SSMS, as shown in

Figure 8-20.

Figure 8-19. SSIS deployment wizard, deployment progress

Chapter 8 exeCuting SSiS paCkageS

356

 SSIS Package Execution
As you noticed in the previous step, you can execute the SSIS package from

SSMS. Now let’s set up the ADF pipeline to execute the SSIS package. You’ll

be using the Execute SSIS Package activity.

 1) In the Author & Monitor UI, drag and drop the

Execute SSIS Package activity (see Figure 8-21).

Figure 8-20. SSIS package execute option from SSMS

Chapter 8 exeCuting SSiS paCkageS

357

 2) On the General tab, provide a name and description.

Keep the default values for the other properties.

 3) On the Settings tab, select the Azure SSIS-IR

connection created earlier.

 4) Select “32-Bit runtime” if your package requires a

32-bit runtime to execute the package.

 5) Select Basic for “Logging level.”

 6) Provide a package path like FolderName/

ProjectName/PackageName.dtsx.

 7) Provide an execution environment path from

SSISDB (see Figure 8- 22).

Figure 8-21. Azure Data Factory activity selection

Chapter 8 exeCuting SSiS paCkageS

358

 8) Click Publish All to save the changes.

 9) Click Trigger and then Trigger Now.

 10) Click Monitor to check the progress of the package

execution.

 Summary
In this chapter, you focused on the SSIS lift and shift feature of

ADF. Without investing much time or effort, an organization can use the

existing SSIS package in ADF to get the power of cloud compute and

security. SSIS-IR makes it possible to run your SSIS packages in a cluster

environment.

Figure 8-22. Configuring the activity

Chapter 8 exeCuting SSiS paCkageS

359© Sudhir Rawat and Abhishek Narain 2019
S. Rawat and A. Narain, Understanding Azure Data Factory,
https://doi.org/10.1007/978-1-4842-4122-6

Index

A
Activities, 7

control, 24–27

dependency, 27, 29

execution, 20–22

policy, 23–24

Azure Active Directory (AD) app

adding permission, 107

ADF connection, 108

API selection, 177

Azure Blob Storage, 109–110

Azure portal, 173

code file, 184

creating, 175

granting permission to user, 179

HDI creation values, 113

HDI linked service, 112

Hive activity, 111, 112

Hive script path, 114

keys, 103, 178–179

member selection, 183

monitor option, 116

output, 116

permission assignment, 181

permission settings, 176, 178, 181

properties, 104

publishing changes, 115

registration, 101–103, 173–174
role options, 180
settings, 175–176
subscriptions, 105, 106
user access, 182
user selection, 180
U-SQL activity, 185–191
values, 104

Azure Batch services
create resource, 247
pools

nodes, 253–254
setup, 250
values, 250–253

prerequisites, 249
setup, 247–249
software and packages, virtual

machine, 249
storage account, 248
subscription, 248

Azure Blob Storage, 219
Azure SQL Database

input values, 229–230
linked service, 226–227
option, 226

connection, 224, 228–229
container name and access

level, 276

https://doi.org/10.1007/978-1-4842-4122-6

360

Copy Data activity
option, 230
sink selection, 231
source selection, 231

create resource, 273
datasets, 228

configuration, 289–290
option, 288
selection, 288–289

field mapping, 231–232
linked services, 224–225, 290
monitoring, ADF pipeline, 234
option, 224–225, 228
parameter listing, 290–291
service selection, 274–275
SQL connection, 229
SQL query, 235
storage explorer

(preview), 275–276
Stored Procedure activity

and Copy Data activity, 233
drag and drop, 232
selecting, 234
values, 233

text format, 291–292
Azure Databricks

AdventureWorks, 197
architecture, 195–196
benefits, 196
create resource, 202
launch workspace, 203–204
Notebook, 204–205
PaaS, 196

pricing tier, 203
providing values, 203
SaaS, 196
Scala code, 205–206
selecting, 202
subscription, 203

Azure Data Factory (ADF)
access token, 208
architecture, 56
basics, 13–14
challenges, 54–55
cloud-based data integration

service, 5
cloud scale, 10
compute services, 6
control flow, 11
cost effective, 9
Databricks linked service, 208
datasets, 7
definition, 13
development options, 12
enterprise-grade security, 10
high-performance hybrid

connectivity, 11
interaction, 12
linked service, 7, 209
modern data warehouse

solution, 8
monitoring, 6
MSI, 11
Notebook activity, 206–207
Notebook path, 210
on-demand compute, 10
pipeline progress, 211

Azure Blob Storage (cont.)

Index

361

Publish All, 210
relationship, 8
schedule pipeline execution, 12
setting up, activity, 207
SQL Data Warehouse, 211–212
SSIS package execution, 12
subscription, 208
test connection, 210
trigger, 211
visual UI, 12
v1 vs. v2, 14–15

Azure Data Lake
analytics (see Data Lake

Analytics)
Big Data as a service, 167
layers, 167
overview, 168
storage

data explorer, 170
options, 171
sample data, 171
selecting, 168
setup, 169

Azure Key Vault, 11
Azure Storage linked service, 327
JSON representation,

passwords, 332–333
linked services, 328–330
properties, 331
SQL DW linked service, 331–332
steps, 327–328

Azure Logic App
action selection, 280
clicking Edit, 278–279

create resource, 277
dynamic content, 284
e-mail configuration, 282
HTTP POST URL, 282
HTTP request body

configuration, 283
JSON schema, 282–283
+ New step, 280
Office 365 Outlook, 280
Outlook authentication

link, 281
Send an email, 280–281
service creation, 278
service selection, 277
Sign in, 281
trigger selection, 279

Azure ML, see Machine
Learning (ML)

Azure SQL Data Warehouse
architecture, 212
Azure Databricks Python

code, 214
connection to Azure Blob

Storage, 217
Copy Data activity, 217
create resource, 198
Databricks linked

activity, 215–216
execution, 202
fact table, 213
login, 201
monitor, pipeline execution, 218
Notebook activity, 215
Notebook path, 216

Index

362

performance level, 199
providing values, 200
query editor, 200–201
querying, fact table, 218
sales data, CSV format, 214
selecting, 198–199
subscription, 199
verification, file movement, 219

Azure-SSIS IR, 40–42
Admin Username and Admin

Password fields, 344
Azure portal, 340
Azure SQL database

server, 344
default configuration, 346
IR setup, 340–343
monitor, 348
server options, host

SSIS DB, 344–345
subscription, 343
test connection, 346
virtual network, 347

B
Big data analytics

AdventureWorks, 2
characteristics, 2
generation, 3
Microsoft Azure, 3–5
performance and security, 1
technologies, 1

Big Data as a service, 167

C
Cloud scenario, 312
Command channel, 312
Copy activity

Azure IR, 58
classification, 58–59
column mapping, 96
compression, 95–96
copy throughput numbers, 85
dimension data, 197
DIUs, 86
parallel copy, 87–88
properties, 65–68
self-hosted IR, 58, 93
serialization and

deserialization, 94
staging

Blob Storage, 89
cleans up temporary data, 89
configuration, 90–92
copy duration and

copy type, 92
hybrid data movement, 89
SQL data warehouse, 88–89

supported files and
compression formats, 64

Copy Data tool
authoring canvas, 68–69
Azure Blob Storage, 76
choosing output file, 79–80
Click Next, 74
compression, 75
configuring settings, 81–82

Azure SQL Data Warehouse (cont.)

Index

363

connecting to Amazon S3, 73
connection details, 77
data ingestion process, 69
details, 84
entering keys, 73–74
folder path, destination, 79
icon, 71
monitor, 83
new connection, 72
schema capture and automatic

mapping, 70
status, 83
task schedule, 71–72

Custom activity, 235, 259
Azure Batch linked

service, 260–261
Azure Batch services, 236
Azure Cosmos DB, 263
Azure SQL Database, 264
monitoring pipeline

progress, 263
setup, 260
storage location, 262
Twitter (see Twitter application)
values, 262

Customer relationship
management (CRM), 193

D
Data channel, 312
Data encryption

Amazon Redshift, 315
Amazon S3, 315

Azure Cosmos DB, 316
Azure Data Lake Store (Gen1/

Gen2), 315
Azure SQL Database, 315
Azure SQL Data Warehouse, 315
Azure Storage, 315
Salesforce, 316
transit, 314

Data integration
activity dependency, 27, 29
activity policy, 23–24
architecture, 16–17
compute services, 16
control activities, 24–27
datasets

Azure Storage and Azure
SQL Database, 29

Blob Storage, 29
properties, 30
structure, 31–32

execution activities, 20–22
IR (see Integration runtime (IR))
linked services, 32–34
pipelines, 18–19
PowerShell

Data Factory, 54
log in, 53
prerequisites, 52

UI (see User interface (UI))
Data integration units

(DIUs), 86
Data Lake Analytics

location, 172
options, 173

Index

364

service, 171–172
subscription, 172

Data movement
connectors, 59–63
Copy activity (see Copy activity)
data extraction, ETL/ELT, 57

Data store credentials, 313–314,
317–318

Data transformation activity, 20
Data warehouse, 193
Dimension data, 197–198

E, F, G
Extract-load-transform

(ELT), 194–195
Extract-transform-load

(ETL), 194–195

H
Hadoop Distributed File System

(HDFS), 122
HDInsight

architecture, 98–99
benefits, 99
definition, 98

Hive activity
Azure AD app (see Azure Active

Directory (AD) app)
sample crime data, 100
script, 101

Hybrid scenario, 313

I, J, K
Infrastructure as a service (IaaS), 4
Integration runtime (IR), 8

Azure, 35–37
Azure-SSIS, 40–42
data movement, 34
data transform activity

dispatch, 35
linked service, 35
self-hosted, 38–40
SSIS package execution, 35

L
Linked services, Azure

Storage, 32–34

M, N, O
Machine Learning (ML)

AdventureWorks, 143
AI development lifecycle, 142
architecture, 144
Azure AI Gallery, 145
Azure SQL Data Warehouse

connection, 165
batch execution, 161–162, 164
businesses, 141
clearing values, 152
Click +New, 148–149
connecting activities, 164
container to store test data, 160
Copy activity, 165
creating table script, 160

Data Lake Analytics (cont.)

Index

365

data capture, 141
Deploy Web Service, 157
Discover Association

Rule, 146–148, 151
endpoint management, 158
field mapping, 166
file upload, 149–150
input and output, 156
launch column selector, 151, 155
local file, 149
Microsoft AI gallery, 143
monitor pipeline

execution, 166
My Datasets, 150
New Web Service

Experience, 157
Opening in Studio, 145, 146
primary key and batch

requests, 158–159
progress, 153
querying database, 166–167
run, 153
selecting column, 152–154
selecting lhs and rhs, 155
testing connection, 163
tools and languages, virtual

machine, 142
TrainingDataSet.csv, 151

Managed Service Identity
(MSI), 11, 333–334

MapReduce activity
ADF pipeline monitor, 126
HDFS, 122
“Hello World” program, 123

name and description, 124
output, 126–127
setup location, 125
store data and JAR file, 123

Microsoft Trust Center, 311
Modern data warehouse

pattern, 194

P, Q, R
Parallel copy, 87–88
Pig activity, 118

HDI linked service, 119
output, 121–122
publishing changes, 120
script, 117
script path, 120
triggering, ADF pipeline, 121
values, 119

Pipelines, 7, 111
activities, 267, 296
architecture, 268
Azure Blob Storage (see Azure

Blob Storage)
Azure Logic App (see Azure

Logic App)
Azure portal, 284
Azure SQL connection, 293
Azure SQL Database

configuration, 287
selection, 286–287

configuring activity, 295
connections, 285–286
Copy Data activity

Index

366

adding, 298
sink configuration, 299–300
source configuration, 299

data insertion, SQL script, 308
dataset option, 286
delta data, 268
execution report e-mail, 307
expressions, 266
final, 304
ForEach activity, 294
functions, 267
Lookup activity, 295–297
monitoring, 305–306
new connection, 284–285
output, 306, 308–309
parameter passing, 304–305
parameter setting, 293–294
progress, 116
SQL Database, 269–273
SQL Server instance, 265
Stored Procedure activity

configuration, 301
getData activity, 300
parameters, 301–302
web activity

configuration, 303
triggering, 115
validating, 114
watermark dataset, 297–298
watermark value

update, 307, 309
Platform as a service

(PaaS), 4, 196

S
Self-hosted IR, 38–40

Azure Virtual Network, 318
data store credentials, 317–318
ExpressRoute, 319–321
firewall and IP whitelisting

configurations, 321–322
outbound port and domain

requirements, 322–324
hybrid setup, 316
IP configurations and

whitelisting, 324
IPSec VPN, 319–320
and network

configuration, 318–319
proxy settings, 324–326

Software as a service (SaaS), 4, 196
Spark activity

code, 136
container creation, 135
data and code, 135
description, 132
designer, 136
HDI cluster creation, 134
HDI service, 133
JAR, data processing, 139
monitoring, ADF pipeline, 140
output, 141
publishing changes, 140
setup, 137, 139–140
storage account, 135

SQL Database
authentication, 271

Pipelines (cont.)

Index

367

create resource, 269
pricing tier, 270
query editor, 270–271
query editor login screen, 271
script for stored procedure

creation, 273
selecting, 269
setup information, 270
subscription, 269
table creation and data

insertion, 272–273
SQL Server Data Tools (SSDT), 41
SQL Server Integration Services

(SSIS) packages
ADF pipeline, 336
AdventureWorks, 336
Azure portal, PowerShell, and

SSMS, 337
Azure SQL Server Database

notifications, 340
service selection, 338
setup, 338–339

cloud technologies, 335
data transformation, 335
deployment wizard

Create Folder option,
SSISDB, 350

database selection, 349
deployment progress,

354–355
Deploy Project option, 351
destination option, 352–353
execute option from

SSMS, 355–356

Integration Services
Catalogs, 350

reviewing, 353–354
Select Source page, 351–352
SQL Server Management

Studio, 348–349
warning message, 352

execution, 356–358
“lift and shift”, 336
sample, 337

SQL Server Management Studio
(SSMS), 41

Stored procedure
Azure Blob Storage (see Azure

Blob Storage)
Azure SQL Database

access, client tool, 222
artifact, 222–223
creating, 220
data file, Azure Blob

Storage, 223
input values, 220–221
switching, query editor, 221

organizations, 219
Streaming activity

container to store data and
executable, 128

HDI linked service, 130
“Hello World” program, 128
monitoring, ADF pipeline, 131
output, 132
setup, 131
values, 129–130

System variables, 266

Index

368

T
Twitter application

access token, 237–238
Azure AD app

keys, 241
registered, 240
registration option, 238–239
registration values, 239–240
settings, 240

Azure Batch services (see Azure
Batch services)

Azure Cosmos DB
collection, 246
input values, 243–244, 246
new database, 245
services, 244
setup, 243
storage capacity, 247

Azure Key Vault, 241–242
access policies, 255–257
Python code, 257–258
secrets, 254–255

creating, 236
settings, 237–238

U, V, W, X, Y, Z
User interface (UI)

author pipelines, 51
Azure portal, 42–43

authoring and monitoring
data pipelines, 46–47

creating, Data Factory v2
instance, 44–45

Data Factory, 43–44
launching, 46

CI/CD workflow, 48–50
code repository, 47–48
monitoring data pipelines, 52
prerequisites, 42
VSTS release definition, 50–51

U-SQL activity
code, 185–186
configuring, 189
drag and drop, 187
output, 191
properties, 190
script path, 189–190
setup, 188
subscription, 188

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Chapter 1: Introduction to Data Analytics
	What Is Big Data?
	Why Big Data?
	Big Data Analytics on Microsoft Azure

	What Is Azure Data Factory?
	High-Level ADF Concepts
	Activity
	Pipeline
	Datasets
	Linked Service
	Integration Runtime

	When to Use ADF?
	Why ADF?

	Summary

	Chapter 2: Introduction to Azure Data Factory
	Azure Data Factory v1 vs. Azure Data Factory v2
	Data Integration with Azure Data Factory
	Architecture
	Concepts
	Pipelines
	Activities
	Execution Activities (Copy and Data Transform)
	Activity Policy
	Control
	Activity Dependency

	Datasets
	Dataset Structure
	When to Specify a Dataset Structure?

	Linked Services
	Linked Service Example

	Integration Runtime
	Azure IR
	Self-Hosted IR
	Azure-SSIS IR

	Hands-on: Creating a Data Factory Instance Using a User Interface
	Prerequisites
	Steps

	Hands-on: Creating a Data Factory Instance Using PowerShell
	Prerequisites
	Log In to PowerShell
	Create a Data Factory

	Summary

	Chapter 3: Data Movement
	Overview
	How Does the Copy Activity Work?

	Supported Connectors
	Configurations
	Supported File and Compression Formats
	Copy Activity Properties
	Property Details

	How to Create a Copy Activity
	Schema Capture and Automatic Mapping in Copy Data Tool
	Scenario: Creating a Copy Activity Using the Copy Data Tool (Binary Copy)

	Copy Performance Considerations
	Data Integration Units
	Parallel Copy
	Staged Copy
	How Staged Copy Works
	Configuration
	Staged Copy Billing Impact

	Considerations for the Self-Hosted Integration Runtime
	Considerations for Serialization and Deserialization
	Considerations for Compression
	Considerations for Column Mapping

	Summary

	Chapter 4: Data Transformation: Part 1
	Data Transformation
	HDInsight
	Hive Activity
	Pig Activity
	MapReduce Activity
	Streaming Activity
	Spark Activity

	Azure Machine Learning
	Azure Data Lake

	Chapter 5: Data Transformation: Part 2
	Data Warehouse to Modern Data Warehouse
	ETL vs. ELT
	Azure Databricks
	Build and Implement Use Case
	Stored Procedure
	Custom Activity

	Chapter 6: Managing Flow
	Why Managing Flow Is Important
	Expressions
	Functions
	Activities
	Let’s Build the Flow
	Build the Source Database
	Build Azure Blob Storage as the Destination
	Build the Azure Logic App
	Build the Azure Data Factory Pipeline

	Summary

	Chapter 7: Security
	Overview
	Cloud Scenario
	Securing the Data Credentials
	Data Encryption in Transit
	Data Encryption at Rest

	Hybrid Scenario
	On-Premise Data Store Credentials
	Encryption in Transit
	Considerations for Selecting Express Route or VPN

	Firewall Configurations and IP Whitelisting for Self-Hosted Integration Runtime Functionality
	IP Configurations and Whitelisting in Data Stores
	Proxy Server Considerations

	Storing Credentials in Azure Key Vault
	Prerequisites
	Steps
	Using the Authoring UI

	Reference Secret Stored in Key Vault
	Using the Authoring UI

	Advanced Security with Managed Service Identity
	Summary

	Chapter 8: Executing SSIS Packages
	Why SSIS Packages?
	Provision the Azure SQL Server Database
	Provision the Azure-SSIS IR
	Deploy the SSIS Package
	SSIS Package Execution
	Summary

	Index

