
Understanding
Game Application
Development

With Xamarin.Forms and ASP.NET
—
Vincent Maverick S. Durano

www.allitebooks.com

http://www.allitebooks.org

Understanding Game
Application

Development
With Xamarin.Forms

and ASP.NET

Vincent Maverick S. Durano

www.allitebooks.com

http://www.allitebooks.org

Understanding Game Application Development

ISBN-13 (pbk): 978-1-4842-4263-6 ISBN-13 (electronic): 978-1-4842-4264-3
https://doi.org/10.1007/978-1-4842-4264-3

Library of Congress Control Number: 2018966347

Copyright © 2019 by Vincent Maverick S. Durano

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Matthew Moodie
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-4263-6.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Vincent Maverick S. Durano
Minnetonka, MN, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4264-3
http://www.allitebooks.org

I dedicate this book to my kids: Vianne Maverich Durano
and Vynn Markus Durano.

To my wife, Michelle Anne, who’s always accepted me as I
am and supported my hustle, drive, and ambition: you are

and always will be my perfect wife and mother to our
children. I love you!

To my mom, Lilibeth: There are no words that can express
how I feel, and I’ll always thank the Lord you made me.

I love you, Mom. You are appreciated.

To my Aunt Veronica and my grandparents, Papa Daddy
and Mama Nieves: There’s NO way I can pay you back, and

I’ll never fully understand, but I want you to know YOU
raised a good man.

To my sister, Angel Cristine, and to the rest of my family
back in the Philippines: Thank you so much for being

supportive.

To all my friends, especially Daniel De Leon: Thank you for
being supportive. I truly appreciate all your kindness.

Finally, to all my article readers and followers: Thank you
so much for your support and for giving me the motivation
to contribute more in the technical community. You all are

my energy to keep me going. Thank you!

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: Introduction���1

Roadmap ���2

Chapter 1 ���2

Chapter 2 ���3

Chapter 3 ���3

Chapter 4 ���3

Chapter 5 ���4

Chapter 6 ���4

Chapter 7 ���4

Background ���4

What You Will Learn ��6

Prerequisites ���7

Development Tools Download Resources ���8

Windows ��8

Mac ��9

Installation Guide ��9

Visual Studio 2017 ���9

SQL Server 2017 ��13

About the Author ���xi

About the Technical Reviewers ���xiii

Introduction ��xv

www.allitebooks.com

http://www.allitebooks.org

vi

Five Players, One Goal ���20

Xamarin�Forms ��20

ASP�NET Web API��21

EF���22

ASP�NET MVC ���23

ASP�NET SignalR ��23

Wrap-Up ��24

Chapter 2: Getting Started ��27

Application Flow��27

Mobile Application Process Flow ���28

Web API Server Process Flow ��29

Web Application Process Flow ���30

Game Overview ���30

Mechanics ���30

Objective ��31

Mobile Application Views ��32

Welcome Screen ��32

Registration Screen ���33

Main Screen ��34

Result Screen ��35

Web Application View ��38

Creating the Core Projects for Mobile App ��39

Overview and Anatomy ���43

MemoryGame�App ���43

MemoryGame�App�Android ��44

MemoryGame�App�iOS ���45

Table of ConTenTsTable of ConTenTs

vii

Architecture Fundamentals ���46

First Run ��47

Xamarin�Android ��49

Xamarin�iOS ���51

The Required NuGet Packages ��60

Chapter 3: Configuring Data Access and API Endpoints ���������������������63

Creating a New Empty Database ��63

Creating the ASP�NET Web API Project ��67

Integrating EF ��71

What Is an ORM? ���71

What is EF? ��72

Setting Up a Data Access Layer ��73

Implementing CRUD Operations ��79

A Friendly Reminder ��96

The Web API Endpoints ���96

Enabling CORS ��104

Sample cURLs ���106

Testing with Postman ��108

Chapter 4: Building Mobile Application with Xamarin�Forms ���������111

Implementing the Service Interfaces ��112

The IHaptic Interface ���112

The ILocalDataStore Interface ���113

The ISound Interface ���114

The Helper Class ���115

The Settings Class ��116

Table of ConTenTsTable of ConTenTs

viii

The DTO Class ���119

The GameAPI Class ���120

Async and Await Overview ��124

Method Definitions ��125

The PlayerManager Class ���131

Adding the Needed Graphics and Sound File ��141

Android ��141

iOS ���142

The Required XAML Pages ��143

The Register Page ���144

The Home Page ���160

The Result Page ���181

Setting the Page Navigation ��189

Summary of Files Added ���191

Implementing the Haptic and Sound Services ��192

Xamarin�Android Haptic Service ��192

Xamarin�Android Sound Service ��193

Xamarin�iOS Haptic Service ���194

Xamarin�iOS Sound Service ���195

Setting Permissions ��197

Xamarin�Android ��197

Xamarin�iOS ���198

Chapter 5: Building a Simple Real-Time Leaderboard Web App
with ASP�NET SignalR and MVC ��201

What ASP�NET MVC Is ��201

The Model ��203

The Controller ��203

The View ��203

Table of ConTenTsTable of ConTenTs

ix

What ASP�NET SignalR Is ���204

Transport Protocols Selection ��205

Transport Protocol Overview ���206

Create a New Web Application ��208

Integrating ASP�NET SignalR ���209

Adding a Middleware for SignalR ��211

Adding a Hub ���211

Adding an API Endpoint ���214

Configure Web API Routing ��217

Enabling API Endpoint-to-Endpoint Communication ���218

Adding an MVC Controller ���220

Adding a View ���221

Output ���225

Chapter 6: Deployment and Testing ���227

Using the Conveyor Plug-in for Visual Studio 2017 ���228

What Is Conveyor? ���228

Install Conveyor ���229

Using SharpProxy ��235

Simulating the Application’s Process ��238

Android ��240

iOS���241

Next Steps ���241

Output ���242

Table of ConTenTsTable of ConTenTs

x

Chapter 7: Pushing Your Code to GitHub���243

Using Visual Studio to Push Source Code in GitHub ��244

Download GitHub Extension for Visual Studio ���245

GitHub Repository and Source Code ���258

References ��259

Index ���263

Table of ConTenTsTable of ConTenTs

xi

About the Author

Vincent Maverick S. Durano is a proud

Cebuano. He’s originally from the Philippines

and now works as a Solutions Architect /

Senior Software Engineer in a research and

development company based in USA, focusing

mainly on web and mobile technologies. He

is a nine-time Microsoft MVP, three-time C#

Corner MVP, CodeProject MVP, Microsoft

Influencer, DZone MVB, and a regular

contributor at CodeProject, CsharpCorner, Microsoft TechNet Wiki,

AspSnippets, and Xamarin. He also contributes at the official Microsoft

ASP.NET community site, where he became one of the all- time top

answerers with All-Star recognition level (the highest attainable level).

He has authored e-books for C# Corner, including GridView Control

Pocket Guide, Dockerizing ASP.NET Core and Blazor Applications on Mac

and ASP.NET MVC 5: A Beginner’s Guide, and is now working on a new

book entitled ASP.NET Core 2: A Beginner’s Guide.

He runs a blog at http://vmsdurano.com and has created a few

open source projects that are hosted on Codeplex and GitHub. He

also developed the VMD.RESTApiResponseWrapper.Core and VMD.

RESTApiResponseWrapper.Net NuGet packages.

http://vmsdurano.com/

xiii

About the Technical
Reviewers

Afzaal Ahmad Zeeshan is a computer

programmer from Rabwah, Pakistan; he likes

.NET Core for regular day development and

has experience with Cloud, Mobile, and API

development. Afzaal Ahmad has experience

with the Azure platform and likes to build

cross-platform libraries/software with .NET

Core. He has been recognized as a Microsoft

MVP for his work in the field of software

development and as a CodeProject MVP and C# Corner MVP for technical

writing and mentoring.

Syed Shanu is a three-time Microsoft MVP,

a four-time C# Corner MVP, and a four-time

Code project MVP. Shanu is also an author,

blogger, and speaker. He’s from Madurai,

Tamil Nadu, India, and works as Technical

Lead in South Korea. With more than 11 years

of experience with Microsoft technologies,

Shanu is an active person in the community

and is always happy to share his knowledge on topics related to ASP.NET,

MVC, ASP.NET Core, Web API, SQL Server, Angular, and ASP.NET Core

Blazor, among others. He has written more than 100 articles on various

technologies. He’s also a several-time TechNet Guru Gold Winner. Follow

him on Twitter @syedshanu3.

https://urldefense.proofpoint.com/v2/url?u=http-3A__ASP.NET&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=lBkG1fCqh-rSfVrwyUQI2c7EG9e7FVofLjpcGfE3unU&m=iFzJcgqEqcPWc0W_-HGyD43emTQYbWL80CRBeUtXMB0&s=dOEJfRFDMFC0YR-eumbcQDXpUaLhaqyFem90JdmDnIM&e=
https://urldefense.proofpoint.com/v2/url?u=http-3A__ASP.NET&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=lBkG1fCqh-rSfVrwyUQI2c7EG9e7FVofLjpcGfE3unU&m=iFzJcgqEqcPWc0W_-HGyD43emTQYbWL80CRBeUtXMB0&s=dOEJfRFDMFC0YR-eumbcQDXpUaLhaqyFem90JdmDnIM&e=
https://urldefense.proofpoint.com/v2/url?u=http-3A__ASP.NET&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=lBkG1fCqh-rSfVrwyUQI2c7EG9e7FVofLjpcGfE3unU&m=iFzJcgqEqcPWc0W_-HGyD43emTQYbWL80CRBeUtXMB0&s=dOEJfRFDMFC0YR-eumbcQDXpUaLhaqyFem90JdmDnIM&e=

xv

Introduction

Technologies are constantly evolving, and as .NET developers we need

to cope with the latest or at least with what’s popular nowadays. At the

beginning, you might find yourself having a hard time catching up with the

latest technologies due to confusion about what sets of technologies to use

and where to start. There are tons of resources out there that you can use

as a reference to learn, but you still find it hard to connect the dots in the

picture. Sometimes you might even think of losing the interest to learn and

giving up. If you are confused and have no idea how to start building an

iOS or Android mobile application from scratch and how to connect your

app with your database and API, then this book is for you.

Keep in mind that this book highlights only the basic implementation

of a mind/memory game type of mobile application. If you are looking for

an action, adventure, card, RPG, or sports type of game app development,

then this book is not for you.

Understanding Game Development with Xamarin.Forms and ASP.

NET will walk you through how to build a simple data-driven mobile game

application using the power of Xamarin.Forms and Web API. We will also

build a real-time leaderboard page using ASP.NET MVC and SignalR.

This book covers topics from creating a SQL database from scratch,

to building the Web API endpoints, to making a mobile application that

targets both iOS and Android, to building a real-time leaderboard page for

player rankings, deployment, and testing, and finally down to publishing

your code to GitHub.

The goal of this book is to guide .NET developers who might become

interested in mobile application development if they discover the need

for a simple working game application that requires some kind of feature

xvi

that connects data from a mobile app to other services such as a REST

application or a web application.

This book is targeted for beginners to intermediate .NET developers

who want to jump into mobile application development with Xamarin and

get their hands dirty with practical examples.

I’ve written this book so that it’s easy to follow and understand by

providing step-by-step processes with as many detailed code explanations

as possible. As you go along to the end of the book, you will learn the basic

concepts and fundamentals of each of the technologies used for building

the whole application and how they connect to each other.

InTroduCTIonInTroduCTIon

1© Vincent Maverick S. Durano 2019
V. M. S. Durano, Understanding Game Application Development,
https://doi.org/10.1007/978-1-4842-4264-3_1

CHAPTER 1

Introduction
Technologies are constantly evolving, and as .NET developers we need to

cope with the latest or at least what’s popular nowadays. At the beginning,

you might find yourself having a hard time catching up with the newest

technologies due to confusion about what sets of technologies to use and

where to start. There are tons of resources out there that you can use as

a reference to learn, but you still find it hard to connect the dots in the

picture. Sometimes you might even think of losing the interest to learn and

giving up. If you are confused and have no idea how to start building an

iOS or Android mobile application from scratch and how to connect your

app with your database and API, then this book is for you.

Keep in mind that this book highlights only the basic implementation

of a mind/memory game type of mobile application. If you are looking for

an action, adventure, card, RPG, or sports type of game app development,

then this book is not for you.

This book, Understanding Game Application Development with

Xamarin.Forms and ASP.NET, will walk you through how to build a simple

data-driven mobile game application using the power of Xamarin and

Web API. We will also build a real-time leaderboard page using ASP.NET

model- view- controller (MVC) and SignalR.

This book covers topics from creating a SQL database from scratch,

to building the Web API endpoints, to making a mobile application that

targets both iOS and Android, to building a real-time leaderboard page for

player rankings, and finally down to deployment.

2

The goal of this book is to guide .NET developers who might become

interested in mobile application development if they discover the need

for a simple working game application that requires some kind of feature

that connects data from a mobile app to other services such as a REST

application or a web application.

This book is targeted for beginners to intermediate .NET developers

who want to jump on mobile application development with Xamarin and

get their hands dirty with practical examples.

I’ve written this book so that it’s easy to follow and understand by

providing step-by-step processes with as many detailed code explanations

as possible. As you go along to the end of the book, you will learn the basic

concepts and fundamentals of each of the technologies used for building

the whole application and how each of them connects to each other.

 Roadmap
 Chapter 1
Chapter 1 presents an overview of who this book is for and a short

backgrounder about which sets of technologies will be used to build the

web and mobile applications as well as why we choose to use them. It also

gives a brief overview of “Working Memory,” which is the type of game

application that this book is going to cover. This chapter highlights the

topics of what the reader will learn from the book. It also highlights a brief

overview of Xamarin.Forms, ASP.NET Web API, MVC, SignalR, and Entity

Framework (EF) and discusses how to connect them all together to achieve

a goal. It also talks about the required tools and framework needed to build

the application as well as provides instructions on how to configure and

install them on your development machine.

Chapter 1 IntroduCtIon

3

 Chapter 2
Chapter 2 provides a game overview and discusses application flow,

creating and running the core mobile application projects using Xamarin.

Forms, and installing the required NuGet packages for the applications.

The application flow section discusses the process by which the system

handles the requests from one application layer to another starting from

account creation/login down to playing the game, syncing data in real

time, and ultimately persisting the changes in the database. The game

overview section deals with the mechanics and objective of the game.

 Chapter 3
Chapter 3 contains information about data access configuration using EF

as well as building REST API endpoints using ASP.NET Web API. The first

section of this chapter discusses database creation. The second section

describes the steps to integrate EF into the Web API project and then set

up a data access layer for implementing create, read, update, and delete

(CRUD) operations. The third section of this chapter considers the creation

of REST API endpoints, how to enable cross-origin resource sharing

(CORS), and finally how to test the endpoints.

 Chapter 4
Chapter 4 contains the actual implementation of the mobile application

using Xamarin.Forms. This chapter is the core of the book, as it discusses

the detailed steps and procedures for building the Working Memory game

application targeting both Android and iOS platforms. The step-by-step

procedure and breaking the code into sections with explanations should

give readers a better understanding of how the application works.

Chapter 1 IntroduCtIon

4

 Chapter 5
Chapter 5 discusses building a real-time leaderboard page using ASP.

NET MVC and SignalR, with a detailed explanation of how real-time

communication works for the project.

 Chapter 6
Chapter 6 discusses the steps and procedures for how to deploy and test

the mobile apps in platform-specific device emulators using the Conveyor

plug-in and the SharpProxy tool.

 Chapter 7
Chapter 7 walks you through how to push your application code to GitHub

using Visual Studio 2017, and it also contains the source code link and

resource references used in this book.

 Background
Years ago, I was tasked to create a proof-of-concept application about

“Working Memory” in a form of a mobile app game and at the same time

provide a web app that displays leaderboard. I was a bit nervous and at

the same time curious about it, since building a mobile application isn’t

really my area of expertise. Having the opportunity to work with mobile

applications, particularly game development, is very exciting, as this is

getting more popular nowadays. Building mobile apps or even wearable

apps is not as complex as you may think. Using the right tools and

technologies makes life easier for us to build mobile apps and prototypes.

Ermm..., the right tools and technologies?

Yes! Specifically, I am referring to the awesome Xamarin.

Chapter 1 IntroduCtIon

5

Xamarin allows you to build cross-platform apps for Android, iOS, and

UWP, and it uses C# as the back-end language. Xamarin also introduced

Xamarin.Forms, which allows you to easily create native user interface (UI)

layouts that can be shared across Android, iOS, and Windows phones. As

long as you know C#, creating the logic for your app is easy because you

will already be familiar with the syntax and most of all the .NET libraries.

The only learning curve when transitioning from web to mobile is that

you will need to know and understand how Android, iOS, and Windows

platforms work and how each framework interprets stuff. I have decided to

use Xamarin, ASP.NET, and Visual Studio for the following reasons:

• Xamarin is now fully integrated with the latest Visual

Studio release (VS 2017 as of this time of writing).

• Xamarin allows you to build cross-platform apps (iOS,

Android, and UWP) using C#.

• I am an experienced C# developer.

• I am an experienced ASP.NET developer.

• I am more familiar with Visual Studio development tools.

• I don’t need to learn how to use other frameworks,

editors, tools, or programming languages to build

native apps.

• I can take advantage of the cool features provided by

Xamarin, such as cloud testing and app monitoring.

• Xamarin and Visual Studio are quite popular and stable

platforms for building real-world apps.

• Xamarin has its own dedicated support site, so when

you encounter any problem during your development,

you can easily post your query to their dedicated

forums.

Chapter 1 IntroduCtIon

6

I’m writing this book so anyone interested in mobile application

development can refer to it if they need a simple working game application

that requires features that connect data from a mobile app to other

services such as a REST application or web application. This book will

walk you through on building a simple Working Memory game application

using the power of Xamarin and ASP.NET.

Before we dig down further, let’s talk a bit about Working Memory.

WHAT IS WORKING MEMORY?

according to the documentation, Working Memory is a cognitive system with

a limited capacity that is responsible for temporarily holding information

available for processing. Working Memory is important for reasoning and the

guidance of decision-making and behavior. We can say that Working Memory

is a crucial brain function that we use to focus our attention and control our

thinking. For more information, please see the references section at the end of

this book.

 What You Will Learn
This book is targeted for beginners to intermediate .NET developers who

want to build a data-driven mobile application that connects to other

services from scratch and get their hands dirty with practical examples.

I’ve written this book to be easy to follow and understand. As you go along

to the end, you will learn the following:

• The basic concepts and fundamentals of the relevant

technologies used for building entire applications.

• How to download and install the required tools and

development framework.

Chapter 1 IntroduCtIon

https://en.wikipedia.org/wiki/Working_memory

7

• How to set up a SQL Server database from scratch.

• How to build a simple Working Memory game

application using Xamarin.Forms that targets both iOS

and Android platforms.

• How to create an ASP.NET Web API project.

• How to integrate EF as our data access mechanism.

• How to create an ASP.NET MVC 5 project.

• How to integrate ASP.NET SignalR within the ASP.NET

MVC application.

• How to invoke a SignalR Hub client proxy from a Web

API project.

• Deploying and testing the applications in platform-

specific device emulators.

• Pushing your code to GitHub using Visual Studio 2017.

 Prerequisites
Before you read any further, make sure that you have the necessary

requirements for your system and that your development environment

is properly configured. This demo uses the following platform and

frameworks:

• Windows 10

• Visual Studio 2017

• SQL Server Express Edition 2017

• SQL Server Management Studio (SSMS) 17.9

• Xamarin 4.11

Chapter 1 IntroduCtIon

8

• ASP.NET Web API 2

• ASP.NET MVC 5

• ASP.NET SignalR 2.2

• EF 6

Basic knowledge of the following languages and concepts is also required:

• C#

• SQL

• JavaScript/jQuery

• AJAX

• HTML

• XAML (eXtensible Application Markup Language)

• HTTP Request and Response

• OOP

 Development Tools Download Resources
You can download Visual Studio and SQL Server Express edition at the

following links:

 Windows
• www.visualstudio.com/downloads/

• www.microsoft.com/en-us/sql-server/sql-server-

editions-express

Chapter 1 IntroduCtIon

http://www.visualstudio.com/downloads/
http://www.microsoft.com/en-us/sql-server/sql-server-editions-express
http://www.microsoft.com/en-us/sql-server/sql-server-editions-express

9

 Mac
• https://code.visualstudio.com/download

• www.visualstudio.com/downloads/ (Visual Studio

for Mac)

• https://database.guide/how-to-install-sql-

server- on-a-mac/

 Installation Guide
For this demo, I’m going to develop the application on a Windows

10 machine, as I am more familiar and comfortable building .NET

applications in a Windows environment. If you are on Mac, then follow the

download link mentioned in the preceding “Development Tools Download

Resources” section.

 Visual Studio 2017
Microsoft Visual Studio is an integrated development environment

(IDE) from Microsoft. It is used to develop computer programs as well as

websites, web apps, web services, and mobile apps. The latest version of

Visual Studio is now a full-featured IDE for Android, iOS, Windows, web,

and cloud, which makes it a comfortable and powerful choice for building

applications in the context of .NET.

Let’s go ahead and download Visual Studio via this link:

https://visualstudio.microsoft.com/downloads/. Once you land on

the download link, you should be presented with the following page:

Chapter 1 IntroduCtIon

https://code.visualstudio.com/download
http://www.visualstudio.com/downloads/
https://database.guide/how-to-install-sql-server-on-a-mac/
https://database.guide/how-to-install-sql-server-on-a-mac/
https://visualstudio.microsoft.com/downloads/

10

Figure 1-1. Visual Studio official download site

Choose the version that you want to use and click the download

button; it should download one of the following Visual Studio installers

into your machine’s drive:

• vs_enterprise.exe for Visual Studio Enterprise

• vs_professional.exe for Visual Studio Professional

• vs_community.exe for Visual Studio Community

Chapter 1 IntroduCtIon

11

The installer should include everything you need to both install and

customize Visual Studio. Now go ahead and double-click the installer that

you’ve downloaded to start kicking the bootstrapper. If you are prompted

with a user account control notice, just click Yes.

It will then ask you to acknowledge the Microsoft license terms and the

Microsoft privacy statement.

Click Continue to proceed with the installation.

After the installer is installed, you should be presented with the

following view to customize your installation by selecting the feature sets

or workloads that you want.

Figure 1-2. Visual Studio license terms agreement

Chapter 1 IntroduCtIon

12

For building the application in this example, we need to select the

following workloads:

• ASP.NET and web development

• Data storage and processing

• Mobile development with .NET

After you select the required workloads, click the Install button.

A screen should appear showing the status and progress of the installation.

After the new workloads and components are installed, you may click

Launch to start using Visual Studio.

Figure 1-3. Workload selections

Chapter 1 IntroduCtIon

13

 SQL Server 2017
Microsoft SQL Server is a relational database management system

developed by Microsoft. As a database server, it is a software product with

the primary function of storing and retrieving data as requested by other

software applications (desktop, service, mobile, or web), which may run on

either the same or another computer across a network or the Internet.

For simplicity, I’m just going to use the Expression edition of SQL

Server 2017 because we will just be creating a basic database with simple

tables and storing only a minimal amount of data.

Go ahead and download the SQL Server Express edition at this link:

www.microsoft.com/en-us/sql-server/sql-server-editions-express.

You should be presented with the following page:

Figure 1-4. SQL Server official download site

Chapter 1 IntroduCtIon

http://www.microsoft.com/en-us/sql-server/sql-server-editions-express

14

Click the Download now button, and it should download the following

SQL Server 2017 Express installer into your machine drive:

• SQLServer2017-SSEI-Expr.exe

Run the SQLServer2017-SSEI-Expr.exe installer, and it should show a

screen that looks like this:

Figure 1-5. SQL Server installation selection

Chapter 1 IntroduCtIon

15

Just select the Basic installation type, and it should take you to the

following screen and ask you to accept the Microsoft SQL Server license terms:

Figure 1-6. SQL Server license terms agreement

Chapter 1 IntroduCtIon

16

Click Accept. It should now take you to the following screen:

Select the target location for installing the SQL Server. If you are

satisfied with the default install location or your current selected install

location, then go ahead and click Install.

Figure 1-7. SQL Server specify install location

Chapter 1 IntroduCtIon

17

The next screen should display the installation status and progress just

like in the following figure:

Figure 1-8. SQL Server installation progress

Chapter 1 IntroduCtIon

18

You may need to wait a few minutes to complete the installation. Once

the installation is done, you should be presented with the following screen:

The final installation screen shows the summary of the installation.

It also allows you to open the SQL Server directly and customize the

installation. The next step is to install SSMS. Click the Install SSMS button

and it should take you to a download link. The latest version as of the time

of writing is SSMS 9.7.

Figure 1-9. SQL Server installation summary

Chapter 1 IntroduCtIon

19

Run the online installer after you have downloaded the SSMS from

the Microsoft download site. You should be presented with the following

screen:

Click Install. After the setup is complete, just click Close.

We will use SSMS to query, design, and manage the database later in

the Chapter 3.

Figure 1-10. SSMS installation

Chapter 1 IntroduCtIon

20

 Five Players, One Goal
As you can see from the “Prerequisites” section, we are going to use

various technologies to build this whole game application to fulfill a goal.

At this point, you should already have the needed frameworks installed

in your machine as long as you properly installed the required workloads

mentioned in the “Installation Guide” section.

Our main goal is to build a simple data-driven Working Memory game

application using cutting-edge technologies: Xamarin.Forms, ASP.NET

Web API, EF, ASP.NET MVC, and ASP.NET SignalR.

Before we discuss the high-level process flow for how each technology

connects together, let’s take a look at a brief overview of them.

 Xamarin.Forms
Building mobile applications that target multiple platforms such as

Android, iOS, and UWP has always been a time-consuming pain, as you

have to deal with different programming languages and platform-specific

implementation. Aside from that, maintaining multiple code repositories

to do essentially the same thing is tedious at best, and at worst can become

a nightmare.

As a .NET developer who knows C#, Xamarin will provide you with the

functionality you need. It promises to deliver mobile apps with a shared

code base; however, that shared code base is on the application logic side

of things. Traditional Xamarin.iOS, Xamarin.Android, and Xamarin.UWP

development still requires that the UIs be written separately from each

other, and that is no small task.

Xamarin.Forms offers a significant time savings in this regard. Its

claim to fame is that it abstracts the UI of each platform—the individual

operating system controls and navigation metaphors—into a common

layer that can be used to build applications for iOS, Android, and UWP

with both a shared application layer and a UI layer.

Chapter 1 IntroduCtIon

21

Xamarin.Forms is a mobile application framework for generating

cross-platform UIs, and it couples that with .NET Standard to share code,

making it an even more favorable choice. Here’s the definition taken

from the official documentation: https://docs.microsoft.com/en-us/

xamarin/xamarin-forms/

Xamarin.Forms exposes a complete cross-platform UI toolkit
for .NET developers. Build fully native Android, iOS, and
Universal Windows Platform apps using C# in Visual Studio.

Xamarin.Forms offers so much more in addition to 20+ cross-platform

UI controls that work across platforms.

 Xamarin vs. Xamarin.Forms

Xamarin (sometimes called Xamarin Native), enables developers to create

fully rich iOS, Android, macOS, watchOS, tvOS, and Windows applications

in C# and Visual Studio with 100% API coverage of each platform in C#.

You develop the UI natively for each platform, but share all your business

logic, which on average is 60–80% of your application. This approach gives

you 100% API access, 100% of the UI, and of course the best performance.

Xamarin.Forms offers up a cross-platform UI that is based on XAML or

C# and sits on top of Xamarin Native itself. This works across iOS, Android,

UWP, macOS, and others supported by the community. The language is

similar, as it is XAML, but not identical, as the controls and names are a bit

different. However, picking it up is easy, and Xamarin and Microsoft have

great documentation on it.

 ASP.NET Web API
The ASP.NET Web API is an extensible framework for building

HTTP- based services that can be accessed in different applications on

different platforms. It works more or less the same way as the ASP.NET

MVC web application, except that it sends data as a response instead of

Chapter 1 IntroduCtIon

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/

22

HTML View. It is like a web service or WCF (Windows Communication

Foundation) service, but the exception is that it only supports HTTP

protocol. Here’s the definition taken from the official documentation:

https://msdn.microsoft.com/en-us/library/hh833994(v=vs.108).

aspx

ASP.NET Web API is a framework that makes it easy to build
HTTP services that reach a broad range of clients, including
browsers and mobile devices. ASP.NET Web API is an ideal
platform for building RESTful applications on the .NET
Framework.

 EF
EF is a tried and tested object-relational mapper (ORM) for .NET with

many years of feature development and stabilization.

According to the official documentation: https://docs.microsoft.

com/en-us/ef/ef6/

As an O/RM, EF reduces the impedance mismatch between
the relational and object-oriented worlds, enabling developers
to write applications that interact with data stored in rela-
tional databases using strongly-typed .NET objects that repre-
sent the application’s domain, and eliminating the need for a
large portion of the data access “plumbing” code that they
usually need to write.

If you are still confused about what an ORM does and how EF

functions in the application, don’t worry, as we will see details about it in

the Chapter 3.

Chapter 1 IntroduCtIon

https://msdn.microsoft.com/en-us/library/hh833994(v=vs.108).aspx
https://msdn.microsoft.com/en-us/library/hh833994(v=vs.108).aspx
https://docs.microsoft.com/en-us/ef/ef6/
https://docs.microsoft.com/en-us/ef/ef6/

23

 ASP.NET MVC
The ASP.NET MVC is a web application framework developed by

Microsoft, which implements the MVC pattern. Here’s the definition taken

from the official documentation: https://msdn.microsoft.com/en-us/

library/dd381412(v=vs.108).aspx

The Model-View-Controller (MVC) architectural pattern sep-
arates an application into three main components: the model,
the view, and the controller. The ASP.NET MVC framework
provides an alternative to the ASP.NET Web Forms pattern for
creating Web applications. The ASP.NET MVC framework is a
lightweight, highly testable presentation framework that (as
with Web Forms-based applications) is integrated with exist-
ing ASP.NET features, such as master pages and membership-
based authentication. The MVC framework is defined in the
System.Web.Mvc assembly.

 ASP.NET SignalR
ASP.NET SignalR is typically used to add any kind of “real-time” web

functionality to your ASP.NET application. While chat is often used as an

example, you can do a whole lot more. Any time a user refreshes a web

page to see new data, or the page implements long polling to retrieve new

data, it is a candidate for using SignalR. Examples include dashboards and

monitoring applications, collaborative applications (such as simultaneous

editing of documents), job progress updates, and real-time forms.

Chapter 1 IntroduCtIon

https://msdn.microsoft.com/en-us/library/dd381412(v=vs.108).aspx
https://msdn.microsoft.com/en-us/library/dd381412(v=vs.108).aspx

24

Here’s the definition taken from the official documentation: https://

docs.microsoft.com/en-us/aspnet/signalr/overview/getting-

started/introduction-to-signalr

ASP.NET SignalR is a library for ASP.NET developers that sim-
plifies the process of adding real-time web functionality to
applications. Real-time web functionality is the ability to have
server code push content to connected clients instantly as it
becomes available, rather than having the server wait for a
client to request new data.

 Wrap-Up
Now that you know the basic overview of each technology and framework

that we will be using to build the applications, it’s time for us to take a

moment and see how to connect the dots in the picture. The following

diagram illustrates the high-level process by which the technologies

connect to each other.

Figure 1-11. High-level diagram of how the technologies
interact

Chapter 1 IntroduCtIon

https://docs.microsoft.com/en-us/aspnet/signalr/overview/getting-started/introduction-to-signalr
https://docs.microsoft.com/en-us/aspnet/signalr/overview/getting-started/introduction-to-signalr
https://docs.microsoft.com/en-us/aspnet/signalr/overview/getting-started/introduction-to-signalr

25

Based on the preceding illustration, we are going to need to build the

following applications:

• A mobile app that targets both iOS and Android platform

• A Web API app that exposes some public-facing API

endpoints

• A web app that hosts a real-time dashboard

• A database that stores and persists data

Since this demo is primarily focusing on the game development, then

the process flow will start at the mobile app. A mobile app requests data

for storing and retrieving a user’s information via a REST API call (ASP.

NET Web API). All requests will then be handled by the Web API server.

The Web API server acts as the central gateway to access a resource from

a database; it serves the request made and returns a response when

necessary. The Web API server does not hold the actual data but contains

the actual implementation of how the data is being retrieved or stored and

handles the CRUD operations using EF. All data changes made by EF will

be executed and reflected against the SQL Server database. The SQL Server

database serves as a medium of storage to hold and persist data.

The beauty of the REST service is that it allows different client

applications (e.g., desktop, mobile, web, or services) to consume API

via endpoints for as long as it supports HTTP protocols. Based on the

preceding illustration, a web app can also request data to the Web API

server. The web app serves as the dashboard page for displaying the

information in real time using ASP.NET SignalR.

To summarize, we are going to build a mobile application using (1)

Xamarin.Forms that can target both iOS and Android platforms. The

mobile app is where the actual game is implemented, and also where users

will be allowed to register. We will build an (2) ASP.NET Web API server

application to handle CRUD operations using (3) EF. The Web API project

Chapter 1 IntroduCtIon

26

will serve as the central gateway to handle data requests that come from

the mobile app and the web app. We will also build a web application to

display the real-time dashboard for displaying player ranking using (4)

ASP.NET MVC and (5) ASP.NET SignalR. Finally, we are going to create a

database for storing players’ information and scores in SQL Server.

Chapter 1 IntroduCtIon

27© Vincent Maverick S. Durano 2019
V. M. S. Durano, Understanding Game Application Development,
https://doi.org/10.1007/978-1-4842-4264-3_2

CHAPTER 2

Getting Started
Before we get our hands dirty with actual coding, let’s try to understand the

application process flow first so that you can have a better picture about

the whole flow of the application from the user’s perspective.

 Application Flow
The application that we are going to build has three main layers:

• Mobile application

• Web API Server

• Web application

The following diagram shows the application process flow of each layer

and how the layers interact to achieve a goal:

28

 Mobile Application Process Flow
Let’s start with the first layer, the mobile app. In order for a user to

start playing the game, they need to register an account first. During

registration, a user will simply need to provide their e-mail address, first

name, last name, and that’s it. I’ve chosen not to include a password

upon registration for the sake of simplicity and to remove the complexity

of managing user accounts. With that being said, the mobile application

will simply ask for the user’s e-mail address to log in to the system. If you

look at the preceding diagram, the mobile application talks to the Web

API server to get the user information by issuing an HTTP Get request

before validating the credentials. The Web API Server handles the request

Figure 2-1. Application process flow

Chapter 2 GettinG Started

29

from the mobile app and returns a JSON response back to the mobile app.

Keep in mind that the mobile application also stores the user information

locally. This is to ensure that the system has a local copy of data when a

user plays the game offline.

Now when a user’s credentials are successfully validated, the user will

be navigated to the main screen of the application, wherein they can start

playing the game. Otherwise, a validation error that the credentials are

invalid or do not exist is prompted.

During the game, the application will randomly beep a sound, blink

an image, or vibrate the device within a given amount of time in seconds.

When the time has elapsed, the application will automatically take the

user to the next screen, where they can input their answers. After they

submit the answers, the system will validate this input and either display a

“congratulations” message and allow them to proceed to the next level or

display a “game over” message if their answers are incorrect. The system

will also automatically sync the user’s highest score and level after the

system has validated the answers.

What’s exciting about this game is that the more you move to a

next level, the faster it triggers the different event types until you can’t

remember which type of event occurs.

 Web API Server Process Flow
As a recap, the API server acts as a central gateway for handling HTTP

requests from a client application. In this particular setup, the API server

handles both mobile and web app requests and then delegates the request

into the data access sublayer using EF to process the data. An HTTP

request can be a form of Insert, Update, Read, or Delete.

The EF manipulates the data through a strongly typed .NET object and

then translates that into a SQL query command and executes it to reflect

and persist the changes in the data to the SQL Server database.

Chapter 2 GettinG Started

30

 Web Application Process Flow
The web app is nothing but a page that displays the user ranking

dashboard (a.k.a. leaderboard). This page is an ASP.NET MVC application

that asynchronously listens to a data change by subscribing to a Web

API endpoint and then displays the changes in real time using ASP.NET

SignalR. Real-time changes occur when a manual sync or automatic sync

is triggered from the mobile app.

 Game Overview
This section discusses the game mechanics and objective.

 Mechanics
During the game and as soon as you hit the Start button, the application will

randomly play different event types within a given time interval expressed

in milliseconds. The trigger cycle has a time interval also expressed in

milliseconds. For example, within 10 seconds, the app randomly plays

different event types such as blinking an image, playing a sound, or

activating vibration on the device in a 2-second cycle. At the succeeding

levels, the 2-second cycle interval will decrease, which causes the events to

trigger much faster than at the previous level.

To make it clearer, the following diagram shows how the game flows:

Chapter 2 GettinG Started

31

 Objective
The objective of this game is very simple; you just need to count and

memorize how many times the light blinks on, the speaker beeps, and the

device vibrates within a span of time. The higher your level is, the faster it

blinks, beeps, and vibrates. This will test how great your memory is.

Figure 2-2. Game flow

Chapter 2 GettinG Started

32

 Mobile Application Views
This section will give you some visual references about the outputs of the

applications that we are going to build.

 Welcome Screen
The welcome screen is the default view of the application, which displays

information to register a new account or log in as a returning user.

Figure 2-3. Mobile app welcome view

Chapter 2 GettinG Started

33

 Registration Screen
Clicking the REGISTER button will display the registration screen,

which allows users to register using first name, last name, and e-mail.

The LOG- ON button will display the login screen, which allows a returning

user to enter their registered e-mail.

Here’s a running view of the registration screen:

Figure 2-4. Mobile app register view

Chapter 2 GettinG Started

34

 Main Screen
Once the user has successfully been registered or logged on to the system,

they will be redirected to the main screen, as shown in the following figure.

Figure 2-5. Mobile app home view

The main screen displays the current and best level scores and as

well as a SYNC button to allow users to manually sync their scores in

the database. It also displays three main images: a bulb, a speaker, and a

device that indicates a vibration.

Chapter 2 GettinG Started

35

Clicking the START button will start the game within a short period

of time and turn the button text to GAME STARTED..., as shown in the

following figure.

 Result Screen
After the time has elapsed, it will bring users to the result screen, wherein

they can input their answers for how many times each event happened.

Figure 2-6. Mobile app game view

Chapter 2 GettinG Started

36

Clicking the SUBMIT button will trigger the system to validate the

answers and determines whether the user gave them correctly and thus

may proceed to the next level or whether the game should be restarted at

the current level. Note that the score will be automatically synced to the

database once the user surpasses their current best score.

Here are some screenshots of the results:

Figure 2-7. Mobile app answer view

Chapter 2 GettinG Started

37

Figure 2-8. Mobile app results view: Game Over!

Chapter 2 GettinG Started

38

 Web Application View
Here’s the sample output of the real-time leaderboard page built using

ASP.NET MVC and ASP.NET SignalR.

Figure 2-9. Mobile app results view: Congrats!

Chapter 2 GettinG Started

39

That’s it. Now that you have some visual reference for what the app will

look like, it’s time for us to build the applications and get our hands dirty

with real code examples.

 Creating the Core Projects for Mobile App
I’ll try to keep this demo as simple as possible, so beginners can easily

follow. By “simple,” I mean that I will limit the discussion of theories and

concepts, but instead jump directly into the mud and let us get our hands

dirty with code examples.

Let’s go ahead and launch Visual Studio 2017 and then create a new

blank XAML app (Xamarin.Forms) by going through File ➤ New ➤

Project. You should be presented with a New Project window dialog. In

the left pane of the dialog under the Installed item, drill down to Visual C#

➤ Cross-Platform and then select Mobile App (Xamarin.Forms) just like

in the following figure.

Figure 2-10. Web app real-time ranking view

Chapter 2 GettinG Started

40

Although you can freely name the project to your preference, for this

demo let’s just name it MemoryGame.App, as it suits well to what we are

going to build. Click OK and it should bring up the following window dialog.

Figure 2-11. Create new Xamarin.Forms project

Chapter 2 GettinG Started

41

Select the Blank template, and under Platform, tick the Android and

iOS options. Select .NET Standard as Code Sharing Strategy, and then

click OK to let Visual Studio generate the necessary files for you.

It may take a moment to generate the files and dependencies

depending on your machine and Internet speed.

After Visual Studio is done generating the default files for the project

and pulling the necessary dependencies, it should show something like the

following.

Figure 2-12. Blank template

Chapter 2 GettinG Started

42

The Xamarin.Forms project template basically generates the following

three main projects:

• MemoryGame.App

• MemoryGame.App.Android

• MemoryGame.App.iOS

Note That the solution only contains the .Android and .iOS projects. We
omitted the .UWP project, and so we will be focusing on Android and iOS
apps instead.

Figure 2-13. Default generated files

Chapter 2 GettinG Started

43

 Overview and Anatomy
Let’s take a quick overview of each project generated.

 MemoryGame.App
In 2011, Microsoft released a new type of class libraries called Portable

Class Libraries (PCLs). A PCL is a project type that creates a binary file

compatible with multiple frameworks. The previous version of Xamarin.

Forms uses PCL to enable you to choose a combination of platforms that

you want your code to run on. PCLs enable centralized code sharing,

which allows developers to write and test code in a single project that can

be consumed by other libraries or applications.

However, the available APIs are reduced each time a new target

framework is selected. For example, if a class is available in .NET

Framework 4.5.1 but not in Windows Universal 10.0, it won’t be available

in the PCL targeting both these frameworks. The combinations of the

target frameworks are called profiles.

While PCLs were a breakthrough at the time of their creation, it was

sometimes difficult to find information on which APIs were available

and where to find them. In time, it became clear to the .NET team that a

simpler approach was needed, and that’s where .NET Standard fits.

The MemoryGame.App is a .NET Standard Library project. The

prerelease version of the Xamarin.Forms 2.3.5 added compatibility with

.NET Standard.

.NET Standard is a formal specification of .NET APIs that is intended

to be available on all .NET runtimes (such as .NET Framework, Mono,

and .NET Core). In real terms, you can think of this as a simplified yet

expanded PCL. Any code added to a .NET Standard library can be used

on any runtime that supports the .NET Standard platform. In addition, we

get expanded access to APIs within the .NET base class libraries, and this

Chapter 2 GettinG Started

44

supports more platforms. For more information, see https://blogs.msdn.

microsoft.com/dotnet/2016/09/26/introducing-net-standard/.

Here’s the anatomy of the Xamarin.Forms .NET Standard project:

Folder/File Purpose

Dependencies Contains both nuGet and SdK dependencies for the project.

App.xaml responsible for instantiating the first page that will be displayed

by the application on each platform.

MainPage.xaml initializes the main page components.

 MemoryGame.App.Android
The MemoryGame.App.Android contains Android-specific

configuration and files needed to run the application. Here’s the anatomy

of the Android project:

Folder/File Purpose

Connected
Services

allows service providers to create Visual Studio extensions

that can be added to a project without leaving the ide. it also

allows you to connect your aSp.net core application or mobile

services to azure storage services. Connected Services takes

care of all the references and connection code, and modifies your

configuration files accordingly.

Properties Contains the androidManifest.xml file, which describes all the

requirements for our Xamarin.android application, including

name, version number, and permissions. it also contains the

assemblyinfo.cs file, in which you can define assembly details

such as title, description, copyright info, version, and more.

Chapter 2 GettinG Started

https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/

45

Folder/File Purpose

References Contains the assemblies required to build and run the application.

Assets Contains the files the application needs to run, including fonts,

local data files, and text files.

Resources Contains application resources such as strings, images, and

layouts. You can access these resources in code through the

generated resource class.

MainActivity.cs a C# class that contains code for initializing and loading the

application.

 MemoryGame.App.iOS
The MemoryGame.App.iOS contains iOS-specific configurations and files

needed to run the application. Here’s the anatomy of the iOS project:

Folder/File Purpose

Asset Catalogs Just like the assets folder in the .android project, this

contains the files the application needs to run, including

fonts, local data files, and text files.

Native References this is where you add assemblies specific to the iOS

platform.

Resources Contains application resources such as strings, images, and

layouts. You can access these resources in code through the

generated resource class.

AppDelegate.cs this class is responsible for launching the Ui of the

application, as well as listening (and optionally responding) to

application events from iOS.

(continued)

Chapter 2 GettinG Started

46

Folder/File Purpose

Entitlements.plist Used to specify entitlements and to sign the application

bundle. in essence, entitlements are special app capabilities

and security permissions granted to applications that are

correctly configured to use them.

Info.plist Contains metadata to the system. this file typically contains

the keys and their corresponding values for the application’s

configuration bundle.

Main.cs the main entry point of the application.

 Architecture Fundamentals
A Xamarin.Forms application is architected in the same way as a traditional

cross-platform application. Shared code is typically placed in a .NET

Standard library, and platform-specific applications consume the shared

code. The following diagram shows an overview of this relationship for the

MemoryGame.App application:

Chapter 2 GettinG Started

47

 First Run
To ensure that we have everything we need for our core mobile application

projects, let’s try to build and run the project. Let’s start by enabling the

Output window by going through the Visual Studio main menu under

View ➤ Output just like in the following figure:

Figure 2-14. Xamarin.Forms architecture fundamentals

Chapter 2 GettinG Started

48

Next, let’s try building the whole projects by right-clicking the Solution

level then selecting Build Solution, as shown in the following figure:

Figure 2-15. Enabling Output window

Figure 2-16. Building the project’s solution

Or, you could simply hit the F6 key.

The Output window should show the build results. If everything goes

well and builds successfully, then we can start running the apps. The good

thing is that the Visual Studio Emulator for Android is included when you

Chapter 2 GettinG Started

49

install Visual Studio 2017 to develop Xamarin apps. This means that you

can test and run the application right away without needing to download

and install the Android emulator separately.

If you don’t want to use the default emulator that comes with the

Visual Studio 2017, then you can also download an emulator separately.

• Windows 8.1 and Windows 10: https://visualstudio.

microsoft.com/vs/msft-android-emulator/

• Windows 7: You can use Android SDK/Google or use

a third-party emulator such as GenyMotion/Xamarin

Android Player.

For this demo, I will just use the default emulator in Visual Studio 2017.

 Xamarin.Android
Let’s try to run the Xamarin.Android project first. To do that, we need to

set the Xamarin.Android project as the startup project by right-clicking the

MemoryGame.App.Android and then select Set as StartUp Project.

The MemoryGame.App.Android project should be highlighted from

the Solution. Now click the Play button to run the project in the Android

emulator as shown in the following figure:

Figure 2-17. Running the Xamarin.Android project for the first time

Chapter 2 GettinG Started

https://visualstudio.microsoft.com/vs/msft-android-emulator/
https://visualstudio.microsoft.com/vs/msft-android-emulator/

50

Note if you are prompted with a performance warning that says the
emulator will run unaccelerated, just click the “Start anyway” button
to launch the emulator.

After the emulator starts, Visual Studio will build the application

then Xamarin.Android will deploy the app to the emulator. The emulator

runs the app with the configured virtual device image. An example of the

Android emulator is displayed in the following screenshot. In this example,

the emulator is running the application with the default page that says

“Welcome to Xamarin.Forms!”

Figure 2-18. Android emulator output

Chapter 2 GettinG Started

51

The emulator may be left running: it is not necessary to shut it down

and wait for it to restart each time the app is launched. The first time a

Xamarin.Android app is run in the emulator, the Xamarin.Android shared

runtime for the targeted API level is installed, followed by the application.

The runtime installation may take a few moments, so please be patient.

Installation of the runtime takes place only when the first Xamarin.

Android app is deployed to the emulator; subsequent deployments are

faster because only the app is copied to the emulator.

At this point, you may close the Android emulator, because we need to

test out the MemoryGame.App.iOS project.

 Xamarin.iOS
To run the Xamarin.iOS project, you need to have a Mac machine to

simulate the application. You will first need to pair your Mac so that the

MemoryGame.App.iOS project can connect to it.

Building native iOS applications requires access to Apple’s build tools,

which only run on a Mac. Because of this, Visual Studio 2017 must connect

to a network-accessible Mac to build Xamarin.iOS applications. For more

information on pairing your Mac, see the following:

https://docs.microsoft.com/en-us/xamarin/ios/get-started/

installation/windows/connecting-to-mac/

Now log on to your Mac machine and then go to System Preferences

➤ Sharing. Check the Remote Login and select Allow access for: All users

just like in the following figure:

Chapter 2 GettinG Started

https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/

52

Figure 2-19. Enabling remote login on Mac

After you’ve done that, make sure that you have installed Xcode on

your Mac:

• https://itunes.apple.com/us/app/xcode/

id497799835?mt=12

Xcode is required in order to build and run iOS apps, so ensure that

you installed that correctly and it’s functional.

Now go ahead and switch to Visual Studio and set the MemoryGame.
App.iOS project as a startup project.

Click the Play button that says Simulator as shown in the following

figure.

Figure 2-20. Running the Xamarin.iOS project for the first time

Chapter 2 GettinG Started

https://itunes.apple.com/us/app/xcode/id497799835?mt=12
https://itunes.apple.com/us/app/xcode/id497799835?mt=12

53

Then, it should show the following:

Figure 2-21. Pair to Mac instructions

If it is on the same network as the Windows machine, the Mac

should now be discoverable by Visual Studio 2017. If the Mac is still

not discoverable, try manually adding a Mac or take a look at the

troubleshooting guide at the following links:

• https://docs.microsoft.com/en-us/xamarin/ios/

get-started/installation/windows/connecting-to-

mac/#manually-add-a-mac

• https://docs.microsoft.com/en-us/xamarin/ios/

get-started/installation/windows/connecting-to-

mac/troubleshooting

Chapter 2 GettinG Started

https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/#manually-add-a-mac
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/#manually-add-a-mac
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/#manually-add-a-mac
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/troubleshooting
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/troubleshooting
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/troubleshooting

54

Click Next and it should present you with the following screen:

Click the Connect... button and it should prompt you to provide a

username and password for you to connect your Mac machine just like in

the following figure:

Figure 2-22. Select a Mac to pair

Chapter 2 GettinG Started

55

Enter your username and password and click Login.

If your login is successful and you are prompted with a Missing Mono

installation, simply click Install as shown in the following figure:

Figure 2-23. Connect to Mac

Figure 2-24. Missing Mono installation warning

You may also be prompted with the missing Xamarin.iOS installation.

Just click Install and it should download and install the missing pieces, as

shown in the following figure:

Chapter 2 GettinG Started

56

It may take a few minutes to download and configure the Mono

settings depending on your Internet speed, so just be patient.

• If for some reason the Mono installation fails, then try

installing it manually on your Mac machine. You can

download the Mono installer here: www.mono-project.

com/docs/getting-started/install/mac/

• To ensure that you have everything you need to run

Xamarin.iOS on Mac, I would recommend that you

install Visual Studio for Mac. You can download the

installer here: https://docs.microsoft.com/en-us/

visualstudio/mac/installation

Once all the necessary tools are done installing, it should ask you

to agree on the Xcode and Apple SDKs agreement, as shown in the

following figure:

Figure 2-25. Missing Xamarin.iOS installation warning

Chapter 2 GettinG Started

http://www.mono-project.com/docs/getting-started/install/mac/
http://www.mono-project.com/docs/getting-started/install/mac/
https://docs.microsoft.com/en-us/visualstudio/mac/installation
https://docs.microsoft.com/en-us/visualstudio/mac/installation

57

Click Agree.

Once you your PC is successfully paired to your Mac, then you should

be able to see various device emulators in your Visual Studio device list, as

shown in the following figure:

Figure 2-26. Xcode and Apple SDKs agreement

Chapter 2 GettinG Started

58

Figure 2-27. Selecting an iOS device emulator

Chapter 2 GettinG Started

59

For more information about pairing your PC to Mac, see the following:

https://docs.microsoft.com/en-us/xamarin/ios/get-started/

installation/windows/connecting-to-mac/

Here’s a sample screenshot of the Xamarin.iOS running on the iPhone

emulator:

Figure 2-28. iOS emulator output

Chapter 2 GettinG Started

https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/

60

 The Required NuGet Packages
The next step is adding the packages that are required for our application.

Go ahead and right-click the Solution and install the following packages in

all projects:

• Xam.Plugins.Settings 3.1.1

• Xam.Plugin.Connectivity 3.2.0

• Newtonsoft.Json 11.0.2

Note The specific versions indicated in the preceding. Those are the
latest stable versions released as of this time of writing, and we are
going to use them in this demo. Future releases of each packages might
contain some new changes and might work differently.

We’ll be using the Xam.Plugins.Settings to provide us consistent

cross-platform settings/preferences across all projects (portable library,

.NET Standard, Android, and iOS projects). The Xam.Plugin.Connectivity

will be used to get network connectivity information such as network type,

speeds, and connection availability. The Newtonsoft.Json will be used in

our code to serialize and deserialize a JSON object from an API request.

We’ll see how each of these references is used in action later.

There are two ways to add packages in Visual Studio; you could either

use the Package Manager Console, or proceed via NuGet Package Manager

(NPM). In this demo, we are going to use NPM so you can have a visual

reference.

Now, right-click the Solution level and then select Manage NuGet
Packages for Solution. Select the Browse tab, and in the search bar,

type in “Xam.Plugins.Settings”. This should result in something like the

following:

Chapter 2 GettinG Started

61

When the install is successful, a reame.txt file for using the Xam.
Plugins.Settings should automatically display. Next, install the “Xam.
Plugin.Connectivity” and “Newtonsoft.Json” NuGet packages.

Once you’ve installed them all, you should be able to see them added

in your project Dependencies just like in the following figure:

Figure 2-30. The installed NuGet packages

Figure 2-29. Installing NuGet packages

Chapter 2 GettinG Started

62

At this point, we should be confident that we have everything we

need to build and run the applications. Now it’s time to get our hands dirty

with coding.

You may also want to look at Xamarin.Essentials, as it provides

you with cross-platform APIs for your mobile applications. See the

documentation here: https://docs.microsoft.com/en-us/xamarin/

essentials/

Chapter 2 GettinG Started

https://docs.microsoft.com/en-us/xamarin/essentials/
https://docs.microsoft.com/en-us/xamarin/essentials/

63© Vincent Maverick S. Durano 2019
V. M. S. Durano, Understanding Game Application Development,
https://doi.org/10.1007/978-1-4842-4264-3_3

CHAPTER 3

Configuring Data
Access and API
Endpoints
In this chapter, we are going to see in action how to set up a database,

configure data access, and build REST API endpoints.

 Creating a New Empty Database
Let’s start by creating a database for storing and persisting user data.

Now go ahead and fire up Microsoft SSMS and just log in using Windows

authentication. When you’re inside the studio management, select File ➤

New ➤ Query with Current Connection just like in the following figure:

64

Copy the following SQL script in the query editor:

CREATE Database MemoryGame

GO

USE [MemoryGame]

GO

CREATE TABLE [dbo].[Challenger](

 [ChallengerID] [int] IDENTITY(1,1) NOT NULL,

 [FirstName] [varchar](50) NOT NULL,

 [LastName] [varchar](50) NOT NULL,

 [Email] [varchar](50) NULL,

CONSTRAINT [PK_Challenger] PRIMARY KEY CLUSTERED

(

 [ChallengerID] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,

 IGNORE_DUP_KEY = OFF,

 ALLOW_ROW_LOCKS = ON,

Figure 3-1. Create a new query editor

Chapter 3 Configuring Data aCCess anD api enDpoints

65

 ALLOW_PAGE_LOCKS = ON)

 ON [PRIMARY]

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[Rank](

 [RankID] [int] IDENTITY(1,1) NOT NULL,

 [ChallengerID] [int] NOT NULL,

 [Best] [tinyint] NOT NULL,

 [DateAchieved] [datetime] NOT NULL,

 CONSTRAINT [PK_Rank] PRIMARY KEY CLUSTERED

(

 [RankID] ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,

 IGNORE_DUP_KEY = OFF,

 ALLOW_ROW_LOCKS = ON,

 ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]

) ON [PRIMARY]

GO

Then click the Execute button or hit F5 as shown in the following figure:

Figure 3-2. Execute SQL query

Chapter 3 Configuring Data aCCess anD api enDpoints

66

The preceding SQL script should create the “MemoryGame” database

with the following table:

Figure 3-3. The database schema

The database tables that we’ve created are very plain and simple. The

dbo.Challenger table contains some basic properties for us to identify

a user who plays the game. The dbo.Rank table similarly contains basic

properties to help us identify which user has the highest rank.

Keep in mind that this book doesn’t focuses on databases, so if you
are new to sQL databases, i really recommend that you start looking
at some resources like books or online tutorials to learn the basic
foundations of databases.

Now that we’ve set up our database, it’s time for us to build a REST

service to handle database calls and CRUD operations. We are choosing

Web API because it’s a perfect fit to build RESTful services in the context

of .NET. It also allows other client apps (mobile apps, web apps, and even

Chapter 3 Configuring Data aCCess anD api enDpoints

67

desktop apps) to consume our API via endpoints. This would enable our

application to allow clients to access data in any type of application as long

as it supports HTTP services.

 Creating the ASP.NET Web API Project
Let’s proceed to our work. Switch back to Visual Studio 2017, add a new

project by right-clicking the Solution level, and then select Add ➤ New
Project ➤ Visual C# ➤ Web. Select ASP.NET Web Application (.NET
Framework) and name the project “MemoryGame.API” just like in the

following figure:

Figure 3-4. Create a new ASP.NET Web API project

Click OK and you should be presented with the next screen:

Chapter 3 Configuring Data aCCess anD api enDpoints

68

Select “Empty” from the ASP.NET web application project template

and then check the “Web API” option only. Click OK to let Visual Studio

generate the project for you. Here’s how the solution looks now:

Figure 3-5. Selecting an empty Web API template

Chapter 3 Configuring Data aCCess anD api enDpoints

69

By default, the ASP.NET Web API project configures a combination of

both conventional and attribute-based routing. You can see how the

routing is set up by navigating to the App_Start folder ➤ WebApiConfig.cs.

Here’s what the code looks like:

using System.Web.Http;

namespace MemoryGame.API

{

 public static class WebApiConfig

 {

 public static void Register(HttpConfiguration config)

 {

 // Web API configuration and services

 // Web API routes

 config.MapHttpAttributeRoutes();

Figure 3-6. The default generated files

Chapter 3 Configuring Data aCCess anD api enDpoints

70

 config.Routes.MapHttpRoute(

 name: "DefaultApi",

 routeTemplate: "api/{controller}/{id}",

 defaults: new { id = RouteParameter.Optional }

);

 }

 }

}

The config.MapHttpAttributeRoutes() line enables attribute routing,

in which you can configure custom routes at the controller or action level

of your Web API class. For more information about attribute routing, read

the following: https://docs.microsoft.com/en-us/aspnet/web-api/

overview/web-api-routing-and-actions/attribute-routing-in-web-

api- 2.

The second line of code defines a default route template to the routing

table using convention-based routing. Each entry in the routing table

contains a route template. The default route template for Web API is

“api/{controller}/{id}”. In this template, “api” is a literal path segment, and

{controller} and {id} are placeholder variables. When the Web API server

receives an HTTP request, it tries to match the URI against one of the route

templates in the routing table. For more information about conventional

routing, read the following: https://docs.microsoft.com/en-us/aspnet/

web-api/overview/web-api-routing-and-actions/routing-in-aspnet-

web-api.

ASP.NET routing is the ability to have URLs represent abstract actions

rather than concrete physical files. If you are familiar with ASP.NET MVC,

Web API routing is very similar to MVC routing. The main difference is that

Web API uses the HTTP method, not the URI path, to select the action.

For this demo, we are going to use attribute routing to add route

templates in the routing table because it gives us more flexibility in

defining routes than convention routing.

Chapter 3 Configuring Data aCCess anD api enDpoints

https://docs.microsoft.com/en-us/aspnet/web-api/overview/web-api-routing-and-actions/attribute-routing-in-web-api-2
https://docs.microsoft.com/en-us/aspnet/web-api/overview/web-api-routing-and-actions/attribute-routing-in-web-api-2
https://docs.microsoft.com/en-us/aspnet/web-api/overview/web-api-routing-and-actions/attribute-routing-in-web-api-2
https://docs.microsoft.com/en-us/aspnet/web-api/overview/web-api-routing-and-actions/routing-in-aspnet-web-api
https://docs.microsoft.com/en-us/aspnet/web-api/overview/web-api-routing-and-actions/routing-in-aspnet-web-api
https://docs.microsoft.com/en-us/aspnet/web-api/overview/web-api-routing-and-actions/routing-in-aspnet-web-api

71

 Integrating EF
Now that we have our Web API project ready, let’s continue by

implementing our data access layer to work with data from database.

In the software development world, most applications require a data

store or a database. So, we all need a code to read/write our data stored

in a database or a data store. Creating and maintaining code for database

make for tedious work and a real challenge. That’s where an ORM like EF

comes into place.

 What Is an ORM?
An ORM enables developers to create data access applications by

programming against a conceptual application model instead of

programming directly against a relational storage schema. The goal is to

decrease the amount of code and maintenance required for data-oriented

applications. ORM like EF provides the following benefits:

• Applications can work in terms of a more application-

centric conceptual model, including types with

inheritance, complex members, and relationships.

• Applications are freed from hard-coded dependencies

on a particular data engine or storage schema.

• Mappings between the conceptual model and the

storage-specific schema can change without changing

the application code.

• Developers can work with a consistent application

object model that can be mapped to various storage

schemas, possibly implemented in different database

management systems.

Chapter 3 Configuring Data aCCess anD api enDpoints

72

• Multiple conceptual models can be mapped to a single

storage schema.

• Language-integrated query (LINQ) support provides

compile-time syntax validation for queries against a

conceptual model.

 What is EF?
To recap, EF is an ORM that enables .NET developers to work with

relational data using domain-specific objects. It eliminates the need for

most of the data access code that developers usually need to write.

This could simply mean that using EF we will be working with

entities (class/object representation of your data structure) and letting

the framework handle the basic create, read, udpate, and delete (CRUD)

operations. In traditional ADO.NET, you will write the SQL queries directly

against tables/columns/procedures and you don’t have entities, so it’s

much less object oriented.

For more information, read the following: https://msdn.microsoft.

com/en-us/library/aa937723(v=vs.113).aspx.

Just like any other ORM, there are two main design workflows

supported by EF: In the Code-First approach, you create your classes

(POCO entities) and generate a new database out from them. The

Database-First approach allows you to use an existing database and

generate classes based on your database schema. For this demo, we’re

going to use a Database-First approach, as we already have an existing

database created.

Chapter 3 Configuring Data aCCess anD api enDpoints

https://msdn.microsoft.com/en-us/library/aa937723(v=vs.113).aspx
https://msdn.microsoft.com/en-us/library/aa937723(v=vs.113).aspx

73

 Setting Up a Data Access Layer
In the MemoryGame.API project, create a new folder called “DB” under

the Models folder. Within the “DB” folder, add an ADO.NET Entity Data
Model. To do this, just follow these steps:

 1. Right-click the “DB” folder and then select Add ➤

New Item.

 2. On the left pane under Visual C# item, select Data

➤ ADO.NET Entity Data Model.

 3. Name the file as “MemoryGameDB” and then

click Add.

 4. In the next wizard, select EF Designer from

Database and then click Next.

 5. Click the “New Connection…” button.

 6. Select Microsoft SQL Server under Data source

and click Continue.

 7. Supply the database server name to where you

created the database. In my case, the name of

my SQL server is “ADMIN-PC\SQLEXPRESS01”.

Remember that yours can be different, so make sure

you supply the correct instance. You can find the

server name in SSMS.

 8. Select or enter the database name. In this case, the

database name for this example is “MemoryGame”.

 9. Click the Test Connection button to see if it’s

successful just like in the following figure:

Chapter 3 Configuring Data aCCess anD api enDpoints

74

 10. Click OK to close the pop-up dialog and click OK

again to generate the connection string that will be

used for our application.

 11. In the next wizard, click Next.

Figure 3-7. Testing the database connection

Chapter 3 Configuring Data aCCess anD api enDpoints

75

 12. Select EF 6.x and then click Next.

 13. Select the “Challenger” and “Rank” tables and then

click Finish.

The .EDMX file should now be added under the “DB” folder just like in

the following figure:

Figure 3-8. The generated entity models

What happens there is that EF automatically generates the business

objects for you and lets you query against it. The EDMX or the entity data

model will serve as the main gateway by which you retrieve objects from

the database and resubmit changes.

Under the hood, the EDMX file contains the following child files:

• MemoryGameDB.Context.tt

• MemoryGameDB.Designer.cs

Chapter 3 Configuring Data aCCess anD api enDpoints

76

• MemoryGameDB.Edmx.diagram

• MemoryGameDB.tt

The MemoryGameDB.Context.tt is a Visual Studio text template

file (a.k.a. T4 template). A T4 text template is a mixture of text blocks and

control logic that can generate a text file. The control logic is written as

fragments of program code in Visual C#. Expanding the MemoryGameDB.
Context.tt file will show the MemoryGameDB.Context.cs, which contains

the following code block:

namespace MemoryGame.API.Models.DB

{

 using System;

 using System.Data.Entity;

 using System.Data.Entity.Infrastructure;

 public partial class MemoryGameEntities : DbContext

 {

 public MemoryGameEntities()

 : base("name=MemoryGameEntities")

 {

 }

 protected override void OnModelCreating(DbModelBuilder

modelBuilder)

 {

 throw new UnintentionalCodeFirstException();

 }

 public virtual DbSet<Challenger> Challengers { get; set; }

 public virtual DbSet<Rank> Ranks { get; set; }

 }

}

Chapter 3 Configuring Data aCCess anD api enDpoints

77

The MemoryGameEntities class represents a session with the

database and allows you to query and save instances of the entity classes.

This class derives from DbContext and exposes DbSet virtual properties

that represent collections of the specified entities in the context. Since we

are working with the EF Designer (EDMX), the context is automatically

generated for us. If you are working with the Code-First approach, you will

typically write the context yourself.

You may have noticed that the models generated are created as partial

classes. This means that you can extend them by creating another partial

class for each of the entity model classes when necessary.

Once you have a model, the primary class your application interacts

with is System.Data.Entity.DbContext (often referred to as the context

class). You can use a DbContext associated to a model to:

• Write and execute queries

• Materialize query results as entity objects

• Track changes that are made to those objects

• Persist object changes back on the database

• Bind objects in memory to UI controls

The MemoryGameDB.tt contains the following generated classes

based from the table we defined from the database:

• Challenger.cs

namespace MemoryGame.API.Models.DB

{

 using System;

 using System.Collections.Generic;

 public partial class Challenger

 {

 public int ChallengerID { get; set; }

Chapter 3 Configuring Data aCCess anD api enDpoints

78

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string Email { get; set; }

 }

}

• Rank.cs

namespace MemoryGame.API.Models.DB

{

 using System;

 using System.Collections.Generic;

 public partial class Rank

 {

 public int RankID { get; set; }

 public int ChallengerID { get; set; }

 public byte Best { get; set; }

 public System.DateTime DateAchieved { get; set; }

 }

}

The classes generated in the preceding will be used as a type of DbSet

objects. The DbSet class represents an entity set that can be used for CRUD

operations.

The DbSet class is derived from IQuerayable. So, we can use LINQ for

querying against DbSet, which will be converted to a SQL query. EF API

executes this SQL query to the underlying database, gets the flat result set,

converts it into appropriate entity objects, and returns it as a query result.

Chapter 3 Configuring Data aCCess anD api enDpoints

79

 Implementing CRUD Operations
The next step is to create a central class for handling CRUD operations. Now,

create a new folder called “DataManager” under the Models folder. Right-

click the DataManager folder and select Add ➤ New ➤ Class. Name the class

as “GameManager”, click the Add button, and then copy the following code:

using System;

using System.Collections.Generic;

using System.Linq;

using MemoryGame.API.Models.DB;

namespace MemoryGame.API.Models.DataManager

{

 #region DTO

 public class ChallengerViewModel

 {

 public int ChallengerID { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public byte Best { get; set; }

 public DateTime DateAchieved { get; set; }

 }

 #endregion

 #region HTTP Response Object

 public class HTTPApiResponse

 {

 public enum StatusResponse

 {

 Success = 1,

 Fail = 2

 }

Chapter 3 Configuring Data aCCess anD api enDpoints

80

 public StatusResponse Status { get; set; }

 public string StatusDescription { get; set; }

 public int StatusCode { get; set; }

 }

 #endregion

 #region Data Access

 public class GameManager

 {

 public IEnumerable<ChallengerViewModel> GetAll { get {

return GetAllChallengerRank(); } }

 public List<ChallengerViewModel> GetAllChallengerRank()

 {

 using (MemoryGameEntities db = new

MemoryGameEntities())

 {

 var result = (from c in db.Challengers

 join r in db.Ranks on

c.ChallengerID equals

 r.ChallengerID

 select new ChallengerViewModel

 {

 ChallengerID = c.ChallengerID,

 FirstName = c.FirstName,

 LastName = c.LastName,

 Best = r.Best,

 DateAchieved = r.DateAchieved

 }).OrderByDescending(o => o.Best)

 .ThenBy(o => o.DateAchieved);

 return result.ToList();

 }

Chapter 3 Configuring Data aCCess anD api enDpoints

81

 }

 public HTTPApiResponse UpdateCurrentBest(DB.Rank user)

 {

 using (MemoryGameEntities db = new MemoryGameEntities())

 {

 var data = db.Ranks.Where(o => o.ChallengerID

== user.ChallengerID);

 if (data.Any())

 {

 Rank rank = data.FirstOrDefault();

 rank.Best = user.Best;

 rank.DateAchieved = user.DateAchieved;

 db.SaveChanges();

 }

 else

 {

 db.Ranks.Add(user);

 db.SaveChanges();

 }

 }

 return new HTTPApiResponse

 {

 Status = HTTPApiResponse.StatusResponse.Success,

 StatusCode = 200,

 StatusDescription = "Operation successful."

 };

 }

 public int GetChallengerID(string email)

 {

 using (MemoryGameEntities db = new MemoryGameEntities())

 {

Chapter 3 Configuring Data aCCess anD api enDpoints

82

 var data = db.Challengers.Where(o => o.Email.

ToLower().Equals(email.ToLower()));

 if (data.Any())

 {

 return data.FirstOrDefault().ChallengerID;

 }

 return 0;

 }

 }

 public HTTPApiResponse AddChallenger(DB.Challenger c)

 {

 HTTPApiResponse response = null;

 using (MemoryGameEntities db = new MemoryGameEntities())

 {

 var data = db.Challengers.Where(o => o.Email.

ToLower().Equals(c.Email.ToLower()));

 if (data.Any())

 {

 response = new HTTPApiResponse

 {

 Status = HTTPApiResponse.

StatusResponse.Fail,

 StatusCode = 400,

 StatusDescription = "User with

associated email already exist."

 };

 }

 else

 {

 db.Challengers.Add(c);

 db.SaveChanges();

Chapter 3 Configuring Data aCCess anD api enDpoints

83

 response = new HTTPApiResponse

 {

 Status = HTTPApiResponse.StatusResponse.

Success,

 StatusCode = 200,

 StatusDescription = "Operation successful."

 };

 }

 return response;

 }

 }

 public ChallengerViewModel GetChallengerByEmail(string

email)

{

 using (MemoryGameEntities db = new MemoryGameEntities())

 {

 var result = (from c in db.Challengers

 join r in db.Ranks on c.ChallengerID

equals r.ChallengerID

 where c.Email.ToLower().Equals(email.

ToLower())

 select new ChallengerViewModel

 {

 ChallengerID = c.ChallengerID,

 FirstName = c.FirstName,

 LastName = c.LastName,

 Best = r.Best,

 DateAchieved = r.DateAchieved

 });

Chapter 3 Configuring Data aCCess anD api enDpoints

84

 if (result.Any())

 return result.SingleOrDefault();

 }

 return new ChallengerViewModel();

 }

 public HTTPApiResponse DeleteChallenger(int id)

 {

 HTTPApiResponse response = null;

 using (MemoryGameEntities db = new MemoryGameEntities())

 {

 var data = db.Challengers.Where(o => o.ChallengerID == id);

 if (data.Any())

 {

 try

 {

 var rankData = db.Ranks.Where(o =>

o.ChallengerID == id);

 if (rankData.Any())

 {

 db.Ranks.Remove(rankData.FirstOrDefault());

 db.SaveChanges();

 }

 db.Challengers.Remove(data.FirstOrDefault());

 db.SaveChanges();

 response = new HTTPApiResponse

 {

 Status = HTTPApiResponse.

StatusResponse.Success,

 StatusCode = 200,

Chapter 3 Configuring Data aCCess anD api enDpoints

85

 StatusDescription = "Operation successful."

 };

 }

 catch (System.Data.Entity.Validation.

DbUnexpected ValidationException)

 {

 //handle error and log

 response = new HTTPApiResponse

 {

 Status = HTTPApiResponse.StatusResponse.Fail,

 StatusCode = 500,

 StatusDescription = "An unexpected

error occurred."

 };

 }

 }

 else

 {

 response = new HTTPApiResponse

 {

 Status = HTTPApiResponse.StatusResponse.Fail,

 StatusCode = 400,

 StatusDescription = "Associated ID not found."

 };

 }

 return response;

 }

 }

 }

 #endregion

}

Chapter 3 Configuring Data aCCess anD api enDpoints

86

Let’s take a look of what we just did there.

The preceding code is composed of three main regions: The Data

Transfer Object (DTO), the HTTP Response Object, and the GameMananger

class. Let’s break this down into code details. We will start with the DTO:

 public class ChallengerViewModel

 {

 public int ChallengerID { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public byte Best { get; set; }

 public DateTime DateAchieved { get; set; }

 }

The ChallengerViewModel DTO is nothing but a plain class that

houses some properties that will be used in the view or any client that

consumes the API.

Next code block:

 public class HTTPApiResponse

 {

 public enum StatusResponse

 {

 Success = 1,

 Fail = 2

 }

 public StatusResponse Status { get; set; }

 public string StatusDescription { get; set; }

 public int StatusCode { get; set; }

 }

Chapter 3 Configuring Data aCCess anD api enDpoints

87

The HTTPApiResponse object is class that holds an enum and three

main basic properties: Status, StatusCode, and StatusDescription. This

object will be used in the GameManager class methods as a response or

return type object.

The GameManager class is the central class where we handle the

actual CRUD operations. This is where we use EF to communicate with

the database by working with a conceptual data entity instead of a real

SQL query. EF enables us to work with a database using .NET objects

and eliminates the need for most of the data access code that developers

usually need to write.

Let’s break this down into code details. Let’s start with this code:

public IEnumerable<ChallengerViewModel> GetAll { get { return

GetAllChallengerRank(); } }

The method GetAll is a public property that returns an IEnumerable
<ChallengerViewModel>. The sole purpose of this property is to get the

data; that is why we only set a getter accessor. Creating a property with

only a getter makes your property read-only for any code that is outside

the class.

Next code block:

public List<ChallengerViewModel> GetAllChallengerRank()

{

 using (MemoryGameEntities db = new MemoryGameEntities())

 {

 var result = (from c in db.Challengers

 join r in db.Ranks on c.ChallengerID

equals r.ChallengerID

 select new ChallengerViewModel

 {

 ChallengerID = c.ChallengerID,

 FirstName = c.FirstName,

Chapter 3 Configuring Data aCCess anD api enDpoints

88

 LastName = c.LastName,

 Best = r.Best,

 DateAchieved = r.DateAchieved

 }).OrderByDescending(o => o.Best)

 .ThenBy(o => o.DateAchieved);

 return result.ToList();

 }

}

The method GetAllChallengerRank() basically fetches the

challenger’s profile and its corresponding rank. The first line of the

code within the method creates an instance of the DbContext called

MemoryGameEntities. We wrap the code for instantiating the DbContext

within the using block to ensure that the objects will be properly disposed

of after using them.

The next line uses a LINQ query expression to query the data. The

query joins the db.Challenger and db.Rank DbSets using the join clause.

We then select the data that we need and associate them into a strongly

typed object called ChallengerViewModel, order the results by highest

rank, and return the result by calling the ToList() function. ToList() is an

extension method that sits within the System.Linq namespace, which

converts collections (IEnumerables) to list instances.

Next code block:

public HTTPApiResponse UpdateCurrentBest(DB.Rank user)

{

 using (MemoryGameEntities db = new MemoryGameEntities())

 {

 var data = db.Ranks.Where(o => o.ChallengerID ==

user.ChallengerID);

Chapter 3 Configuring Data aCCess anD api enDpoints

89

 if (data.Any())

 {

 Rank rank = data.FirstOrDefault();

 rank.Best = user.Best;

 rank.DateAchieved = user.DateAchieved;

 db.SaveChanges();

 }

 else

 {

 db.Ranks.Add(user);

 db.SaveChanges();

 }

 }

 return new HTTPApiResponse

 {

 Status = HTTPApiResponse.StatusResponse.Success,

 StatusCode = 200,

 StatusDescription = "Operation successful."

 };

}

The UpdateCurrentBest() method takes the DB.Rank class as the

parameter. The code block basically gets the Rank object based on the

ChallengerID using the LINQ Where function and assigns the result into a

variable data. We then call the LINQ Any() function to check if the object

contains any single element in a sequence.

If there’s any data returned from the query, then we create an instance

of the Rank class and set the result from the data variable using the

FirstOrDefault() LINQ function. The LINQ FirstOrDefault()is an eager

function that returns the first element of a sequence that satisfies a

specified condition. Once the FirstOrDefault() function is invoked,

Chapter 3 Configuring Data aCCess anD api enDpoints

90

EF will automatically issue a parameterize SQL query to the database, in

which the SQL Server can understand and then bring back the result to

the entity model. We then assign the new values to each field and call the

SaveChanges() method to update the database with the changes.

Otherwise, if there’s no data or if the LINQ Any() function returns false,

then we simply create a new record in the database.

Finally, we return an HTTPApiResponse object indicating that the

operation is successful.

Next code block:

public int GetChallengerID(string email)

{

 using (MemoryGameEntities db = new MemoryGameEntities())

 {

 var data = db.Challengers.Where(o => o.Email.ToLower().

Equals(email.ToLower()));

 if (data.Any())

 {

 return data.FirstOrDefault().ChallengerID;

 }

 return 0;

 }

}

As the method name suggests, the GetChallengerID() method gets the

ChallengerID of the challenger by passing an e-mail as the parameter. The

preceding code may be familiar to you by now, as it uses common LINQ

functions that we previously talked about such as the Where(), Any(), and

FirstOrDefault().

Chapter 3 Configuring Data aCCess anD api enDpoints

91

Next code block:

public HTTPApiResponse AddChallenger(DB.Challenger c)

{

 HTTPApiResponse response = null;

 using (MemoryGameEntities db = new MemoryGameEntities())

 {

 var data = db.Challengers.Where(o => o.Email.ToLower().

Equals(c.Email.ToLower()));

 if (data.Any())

 {

 response = new HTTPApiResponse

 {

 Status = HTTPApiResponse.StatusResponse.Fail,

 StatusCode = 400,

 StatusDescription = "User with associated email

already exist."

 };

 }

 else

 {

 db.Challengers.Add(c);

 db.SaveChanges();

 response = new HTTPApiResponse

 {

 Status = HTTPApiResponse.StatusResponse.Success,

 StatusCode = 200,

 StatusDescription = "Operation successful."

 };

 }

Chapter 3 Configuring Data aCCess anD api enDpoints

92

 return response;

 }

}

The AddChallengerID() method takes a DB.Challenger class. The

preceding code checks if the data associated with the e-mail already exists

in the database. If it does, then it returns an error; otherwise it adds a new

entry to the database and returns a successful response.

Next code block:

public ChallengerViewModel GetChallengerByEmail(string email)

{

 using (MemoryGameEntities db = new MemoryGameEntities())

 {

 var result = (from c in db.Challengers

 join r in db.Ranks on c.ChallengerID

equals r.ChallengerID

 where c.Email.ToLower().Equals(email.

ToLower())

 select new ChallengerViewModel

 {

 ChallengerID = c.ChallengerID,

 FirstName = c.FirstName,

 LastName = c.LastName,

 Best = r.Best,

 DateAchieved = r.DateAchieved

 });

 if (result.Any())

 return result.SingleOrDefault();

 }

 return new ChallengerViewModel();

}

Chapter 3 Configuring Data aCCess anD api enDpoints

93

The code implementation of GetChallengerByEmail() function

is somewhat similar to the GetAllChallengerRank() function. The

only difference is that we filter the data by e-mail using the LINQ

Where() function, and this returns only a single result using the LINQ

SingleOrDefault() function. The SingleOrDefault() function is similar to

FirstOrDefault() in the sense of returning just a single row. However, they

differ in terms of how they are used. Whenever you use SingleOrDefault(),

you clearly state that the query should result in at most a single result. On

the other hand, when FirstOrDefault() is used, the query can return any

number of results, but you state that you only want the first one. Since we

let e-mail be unique, we are sure that e-mails can’t be duplicated, and thus

we opt for SingleOrDefault().

Next code block:

public HTTPApiResponse DeleteChallenger(int id)

{

 HTTPApiResponse response = null;

 using (MemoryGameEntities db = new MemoryGameEntities())

 {

 var data = db.Challengers.Where(o => o.ChallengerID == id);

 if (data.Any())

 {

 try

 {

 var rankData = db.Ranks.Where(o =>

o.ChallengerID == id);

 if (rankData.Any())

 {

 db.Ranks.Remove(rankData.FirstOrDefault());

 db.SaveChanges();

 }

Chapter 3 Configuring Data aCCess anD api enDpoints

94

 db.Challengers.Remove(data.FirstOrDefault());

 db.SaveChanges();

 response = new HTTPApiResponse

 {

 Status = HTTPApiResponse.StatusResponse.

 Success,

 StatusCode = 200,

 StatusDescription = "Operation successful."

 };

 }

 catch (System.Data.Entity.Validation.DbUnexpected

ValidationException)

 {

 //handle error and log

 response = new HTTPApiResponse

 {

 Status = HTTPApiResponse.StatusResponse.Fail,

 StatusCode = 500,

 StatusDescription = "An unexpected error occurred."

 };

 }

 }

 else

 {

 response = new HTTPApiResponse

 {

 Status = HTTPApiResponse.StatusResponse.Fail,

 StatusCode = 400,

 StatusDescription = "Associated ID not found."

 };

 }

Chapter 3 Configuring Data aCCess anD api enDpoints

95

 return response;

 }

}

The DeleteChallenger() method takes an id as the parameter. This

means it deletes all information for a certain challenger and its associated

rank. The code basically checks for the existence of the challenger by

querying the database using the LINQ Where() function. If the record

exists, then it will delete the record that is associated with the id in both

the Rank and Challenger database tables. Otherwise, it returns a response

saying the associated ID was not found.

To summarize, the GameManager class is composed of the following

methods:

• GetAll() – A short method that calls the

GetAllChallengerRank() method and returns an IEnu
merable<ChallengerViewModel>.

• GetAllChallengerRank() - Gets all the challenger

names and their corresponding ranks. It uses LINQ to

query the model and sort the data. This method returns

a List<ChallengerViewModel> object.

• GetChallengerByEmail(string email) – Gets the

challenger information and its corresponding rank by

e-mail. This method returns a ChallengerViewModel
object.

• GetChallengerID(string email) – Gets the challenger

ID by passing an e-mail address as parameter. This

method returns an int type.

• AddChallenger(DB.Challenger c) – Adds a new

challenger to the database. This method returns an

HTTPApiResponse object.

Chapter 3 Configuring Data aCCess anD api enDpoints

96

• UpdateCurrentBest(DB.Rank user) – Updates the

rank of a challenger to the newly achieved high score.

This method returns an HTTPApiResponse object.

• DeleteChallenger(int id) – Deletes a challenger

from the database. This method returns an

HTTPApiResponse object.

 A Friendly Reminder
It was my intent not to decouple the actual implementation of the data

access layer, as I’m trying to make this demo as simple as possible. In a

real-world scenario where you want to deal with a complex database and

value the testability of your data access, then I’d recommend you implement

a data repository pattern. The main reason for adding your own repository

implementation is so that you can use DependencyInjection (DI) and make

your code more testable. EF is not that testable out of the box, but it’s quite

easy to make a mockable version of the EF data context with an Interface

that can be injected. In other words, if you implement an interface for your

data access, other services such as Web API can just use that interface

instead of directly accessing your DBContext from your Web API controller.

 The Web API Endpoints
Now that we have our data access ready, we can start creating the API

endpoints to serve data using ASP.NET Web API. As a recap, Web API

is a framework used to build HTTP services and is an ideal platform for

building RESTful applications on the .NET Framework.

Create a new folder called “API” within the root of the MemoryGame.
API application. Right-click the API folder and select Add ➤ Controller.

Select Web API 2 Controller – Empty just like in the following figure:

Chapter 3 Configuring Data aCCess anD api enDpoints

97

Click Add and then, on the next screen, name the controller

“GameController” like in the following figure:

Figure 3-9. Adding a new empty Web API 2 controller

Figure 3-10. Assigning the controller name

Chapter 3 Configuring Data aCCess anD api enDpoints

98

Click Add and then copy the following code:

using MemoryGame.API.Models.DataManager;

using MemoryGame.API.Models.DB;

using System.Collections.Generic;

using System.Web.Http;

namespace MemoryGame.API.API

{

 [RoutePrefix("api/game/players")]

 public class GameController : ApiController

 {

 GameManager _gm;

 public GameController()

 {

 _gm = new GameManager();

 }

 [HttpGet, Route("")]

 public IEnumerable<ChallengerViewModel> Get()

 {

 return _gm.GetAll;

 }

 [HttpGet, Route("{email}")]

 public int GetPlayerID(string email)

 {

 return _gm.GetChallengerID(email);

 }

 [HttpGet, Route("~/api/game/profile/{email}")]

 public ChallengerViewModel GetPlayerProfile(string email)

Chapter 3 Configuring Data aCCess anD api enDpoints

99

 {

 return _gm.GetChallengerByEmail(email);

 }

 [HttpPost, Route("")]

 public HTTPApiResponse AddPlayer(Challenger user)

 {

 return _gm.AddChallenger(user);

 }

 [Route("score")]

 [HttpPost]

 public void UpdateScore(Rank user)

 {

 _gm.UpdateCurrentBest(user);

 }

 [HttpDelete, Route("{id}")]

 public HTTPApiResponse DeletePlayer(int id)

 {

 return _gm.DeleteChallenger(id);

 }

 }

}

The preceding code comprises the Web API endpoint definitions.

It uses an Attribute Routing for defining routes that maps to the actual

code implementation of the endpoint. Let’s break down the code details.

We will start at the class level with the following code:

[RoutePrefix("api/game/players")]

public class GameController : ApiController

{

 //trimmed down code for clarity

}

Chapter 3 Configuring Data aCCess anD api enDpoints

100

The GameController class is the main entry point for the API

endpoints. This class derives the ApiController class and uses the

RoutePrefix attribute for defining a common prefix for all routes within

the class. In this demo, the common route prefix is “api/game/players”.

ApiControllers contain methods and properties that are specialized in

returning data. For example, they take care of transparently serializing the

data into the format requested by the client. Also, they follow a different

routing scheme by default (as in: mapping URLs to actions), providing a

RESTful API by convention.

If you have worked with ASP.NET MVC, then you are already
familiar with controllers. They work similarly in Web API, but
controllers in Web API derive from the ApiController class
instead of the controller class. The first major difference you
will notice is that actions on Web API controllers do not return
views, they return data.

Next code block:

GameManager _gm;

public GameController()

{

 _gm = new GameManager();

}

This code is the class constructor of the GameController class. This is

where we initialize the creation of the GameManager class instance. The

GameManager is the data access gateway, which contains the methods

for handling CRUD operations. Just to remind you again, you may want to

implement an Interface to decouple the GameManager object from your

Web API controller to make your class more testable.

Chapter 3 Configuring Data aCCess anD api enDpoints

101

Next code block:

[HttpGet, Route("")]

public IEnumerable<ChallengerViewModel> Get()

{

 return _gm.GetAll;

}

The Get() method fetches all challenger data from the database and

returns an IEnumerable<ChallengerViewModel>. Notice that the method

is decorated with the [HttpGet] and [Route] attributes. This means that

this method can be invoked only on a GET Http request and routes to

“api/game/players”. Setting the route attribute to empty ([Route(“”)])

automatically maps to the base route defined at the class level.

Next code block:

[HttpGet, Route("{email}")]

public int GetPlayerID(string email)

{

 return _gm.GetChallengerID(email);

}

The GetPlayerID() method takes an e-mail as the parameter. This

method invokes the GetChallengerID() from the GameChallenger class,

which returns the ID of a challenger that is associated in the e-mail. This

method can be invoked only on a GET Http request, as we are decorating

the method with the [HttpGet] attribute. The {email} value in the route

is the parameter template holder that maps to the string email parameter

of the GetPlayerID() method. This method routes to the following

endpoint: “api/game/players/testemail.com/”, where “testemail.com” is

the value of e-mail passed to the route template.

Chapter 3 Configuring Data aCCess anD api enDpoints

102

Next code block:

[HttpGet, Route("profile/{email}")]

public ChallengerViewModel GetPlayerProfile(string email)

{

 return _gm.GetChallengerByEmail(email);

}

The GetPlayerProfile() method also takes an e-mail as the

parameter and invokes the GetChallengerByEmail() method from the

GameManager class. This method can be invoked only on a GET Http

request, as we are decorating the method with the [HttpGet] attribute.

This method routes to “api/game/players/profile/testemail.com/”, where

“testemail.com” is the value of e-mail passed to the route template.

Next code block:

[HttpPost, Route("")]

public HTTPApiResponse SavePlayer(Challenger user)

{

 return _gm.SaveChallenger(user);

}

The SavePlayer() method takes a Challenger model as the parameter

and creates a new entry into the database. This method invokes the

SaveChallenger() method from the GameManager class and returns an

HTTPApiResponse object. Notice that the method is now decorated with

the [HttpPost]. This means that this method can be invoked only on a

POST Http request and routes to base endpoint “api/game/players”.

Next code block:

[HttpPost, Route("score")]

public void AddScore(Rank user)

{

 _gm.UpdateCurrentBest(user);

}

Chapter 3 Configuring Data aCCess anD api enDpoints

103

The AddScore() method takes a Rank model as the parameter and

creates or updates the current best score of the challenger record in the

database. This method invokes the UpdateCurrentBest() method from

the GameManager class and returns void. This method can be invoked

only on a POST Http request, and it routes to “api/game/players/score”.

Next code block:

[HttpDelete, Route("{id}")]

public HTTPApiResponse DeletePlayer(int id)

{

 return _gm.DeleteChallenger(id);

}

The DeletePlayer() method takes an integer value as the parameter

and deletes the challenger profile and associated rank record in the

database. This method invokes the DeleteChallenger() method of the

GameManager class and returns an HTTPApiResponse object. It uses the

[HttpDelete] attribute to denote that this method can be invoked only on

a DELETE Http request, and it routes to “api/game/players/1”, where “1” is

the value of ID passed into the route table.

The following is a summary of the GameController API endpoints:

HTTP Method C# Method Endpoint (Route) Description

get get() api/game/players gets all the challenger

and rank data

post addplayer(Challenger

user)

api/game/players adds a new

challenger

post updatescore(rank

user)

api/game/players/

score

adds or updates a

challenger score

DeLete Deleteplayer(int id) api/game/players/{id} removes a player

Chapter 3 Configuring Data aCCess anD api enDpoints

104

HTTP Method C# Method Endpoint (Route) Description

get getplayeriD(string

email)

api/game/players/

{email}

gets the challenger

iD based on e-mail

get getplayerprofile(string

email)

api/game/players/

profile/{email}

gets the challenger

information based

on e-mail

All Web API endpoints in the example are contained within a single

class, as I’m trying to make this demo as simple as possible. In a real-world

scenario when you are dealing with large data models, I would strongly

recommend you separate each controller implementation and follow the

REST standards whenever you can. It’s also recommended to always wrap

your API response with meaningful results and handle possible errors.

You may check out my article about writing a custom wrapper for

managing API exceptions and consistent responses here for an example:

http://vmsdurano.com/asp-net-core-and-web-api-a-custom-wrapper-

for-managing- exceptions-and-consistent-responses/.

 Enabling CORS
Now that we have our API endpoints ready, the final step that we are going

to do on this project is to enable CORS. We need this because this API will

be consumed in other applications that probably have difference domains.

Here’s the CORS definition as per the documentation here:

https://msdn.microsoft.com/en-us/magazine/dn532203.aspx

Cross-origin resource sharing (CORS) is a World Wide Web Consortium

(W3C) specification (commonly considered part of HTML5) that lets

JavaScript overcome the same-origin policy security restriction imposed

by browsers. The same-origin policy) means that your JavaScript can

only make AJAX calls back to the same origin of the containing Web page

Chapter 3 Configuring Data aCCess anD api enDpoints

http://vmsdurano.com/asp-net-core-and-web-api-a-custom-wrapper-for-managing-exceptions-and-consistent-responses/
http://vmsdurano.com/asp-net-core-and-web-api-a-custom-wrapper-for-managing-exceptions-and-consistent-responses/
https://msdn.microsoft.com/en-us/magazine/dn532203.aspx

105

(where “origin” is defined as the combination of host name, protocol and

port number). For example, JavaScript on a Web page from http://foo.

com can’t make AJAX calls to http://bar.com (or to http://www.foo.com,

https://foo.com or http://foo.com:999, for that matter).

CORS relaxes this restriction by letting servers indicate which origins

are allowed to call them. CORS is enforced by browsers but must be

implemented on the server, and the most recent release of ASP.NET Web API

2 has full CORS support. With Web API 2, you can configure policy to allow

JavaScript clients from a different origin to access your APIs.

To enable CORS in ASP.NET Web API, do the following:

 1. Install Microsoft.AspNet.WebApi.Cors via nugget.

The latest stable version as of this time of writing is

5.2.6.

 2. Navigate to the App_Start folder and then open

WebApiConfig.cs. Add the following code to the

WebApiConfig.Register method:

config.EnableCors();

 3. Open the GameController class and then declare

the following namespace:

using System.Web.Http.Cors;

 4. Finally, add the [EnableCors] attribute just like in

the following:

[EnableCors(origins: "http://localhost:60273",

headers: "*", methods: "*")]

public class GameController : ApiController

Chapter 3 Configuring Data aCCess anD api enDpoints

http://foo.com
http://foo.com
http://bar.com
http://www.foo.com
https://foo.com
http://foo.com:999

106

Note that you’ll have to replace the value of origins based on the
URI of the consuming client. Otherwise, you can use the “*” wildcard to
allow any domain to access your API.

At this point, we are done creating the required API endpoints. Before

moving into the Chapter 4, I would suggest you do a Clean and then

Rebuild to ensure that the application has no compilation errors.

 Sample cURLs
One of the advantages of REST APIs is that you can use almost any

programming language to call the endpoint. The endpoint is simply a

resource located on a web server at a specific path.

Each programming language has a different way of making web calls.

Rather than exhausting your energy by trying to show how to make web

calls in .NET, Java, Python, C++, JavaScript, Ruby, and so on, you can just

show the call using cURL.

cURL provides a generic, language-agnostic way to demonstrate HTTP

requests and responses. Users can see the format of the request, including

any headers and other parameters. Your users can translate this into the

specific format for the language they’re using.

You can test out the API endpoints that we’ve created earlier yourself

by using the following cURLs:

• Get All Players

curl -X GET \

 http://localhost:56393/api/game/players \

 -H 'Cache-Control: no-cache' \

• Get the Player ChallengerID

curl -X GET \

 http://localhost:56393/api/game/players/testemail.com/ \

 -H 'Cache-Control: no-cache' \

Chapter 3 Configuring Data aCCess anD api enDpoints

107

• Get the Player Profile

curl -X GET \

 http://localhost:56393/api/game/players/profile/

testemail.com/ \

 -H 'Cache-Control: no-cache' \

• Add a New Player

curl -X POST \

 http://localhost:56393/api/game/players \

 -H 'Cache-Control: no-cache' \

 -H 'Content-Type: application/json' \

 -d '{

 "Email":"vynnmarkus@email.com",

 "FirstName":"Vynn Markus",

 "LastName":"Durano"

}'

• Update a Player Score

curl -X POST \

 http://localhost:56393/api/game/players/score \

 -H 'Cache-Control: no-cache' \

 -H 'Content-Type: application/json' \

 -d '{

 "ChallengerID":1,

 "Best":3,

 "DateAchieved":"9/23/2018 4:16"

}'

Chapter 3 Configuring Data aCCess anD api enDpoints

108

• Delete a Player

curl -X DELETE \

 http://localhost:56393/api/game/players/1 \

 -H 'Cache-Control: no-cache' \

The following table shows the cURL commands used and their

descriptions from the preceding examples:

Command Description

-X the -X signifies the method used for the request. Common options are

get, post, DeLete, put.

-h submits the request header to the resource. this is very common with

rest api requests because the authorization is usually included in the

header.

-d includes data to post to the urL. the data needs to be urL encoded.

Data can also be passed in the request body.

For the available list of the cURL commands that you can use, see the

cURL documentation here: https://curl.haxx.se/docs/manpage.html

 Testing with Postman
You can also download Postman to test out the API endpoints that we have

created earlier. Postman is really a handy tool to test APIs without needing

to create a UI, and it’s absolutely free. Get it here: www.getpostman.com/

Chapter 3 Configuring Data aCCess anD api enDpoints

https://curl.haxx.se/docs/manpage.html
https://www.getpostman.com/

109

Here’s a sample screenshot of the API tested in Postman:

Figure 3-11. Testing an API with Postman

Chapter 3 Configuring Data aCCess anD api enDpoints

111© Vincent Maverick S. Durano 2019
V. M. S. Durano, Understanding Game Application Development,
https://doi.org/10.1007/978-1-4842-4264-3_4

CHAPTER 4

Building Mobile
Application with
Xamarin.Forms
Now that we have the API ready, we can start implementing the Memory

Game mobile application and start consuming the Web API that we’ve

just created in the Chapter 3. Go head and navigate to MemoryGame.App

project and then create the following folders:

• REST – this folder is where we put the class for

managing REST API calls.

• Services – this folder is where we put the interfaces that

the application is going to need.

• Classes – this folder is where application-specific

classes such as Helpers, Settings, and Data Manager are

stored.

• Pages – this folder is where the XAML files needed for

the application are stored.

We are doing it this way in order for us to easily manage the files by just

looking at the folder for ease of navigation and maintainability.

112

 Implementing the Service Interfaces
We are going to use an interface to define a common method in which

other applications can implement it. This is because Android and iOS

platforms have different code implementations to deal with device

vibration, playing a sound, and storage.

An interface is just a skeleton of a method without the actual

implementation. This means that the application which implements

the interface will create a class to perform a concrete platform-specific

implementation.

 The IHaptic Interface
Let’s create a few services that our app will need. Let’s start by adding the

IHaptic interface. To do this, right-click the Services folder and then select

Add ➤ New Item. On the left pane under Visual C# Items ➤ Code, select

Interface and name it “IHaptic.cs” just like in the following figure:

Figure 4-1. Adding a new interface file

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

113

Click Add and then replace the default generated code with the

following code:

namespace MemoryGame.App.Services

{

 public interface IHaptic

 {

 void ActivateHaptic();

 }

}

The preceding code is nothing but a simple interface definition that

contains a void method called ActivateHaptic().

 The ILocalDataStore Interface
Create another interface file under the Services folder. Name the file as

“ILocalDataSource.cs” and replace the default generated code with the

following:

namespace MemoryGame.App.Services

{

 public interface ILocalDataStore

 {

 void SaveSettings(string fileName, string text);

 string LoadSettings(string fileName);

 }

}

The ILocalDataStore interface contains two main methods:

SaveSettings() takes a file name and a text as the parameter. The

LoadSettings() method takes a file name as a parameter and returns a

string type.

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

114

 The ISound Interface
Lastly, create another interface and name it “ISound.cs”. Replace the

default generated code with the following:

namespace MemoryGame.App.Services

{

 public interface ISound

 {

 bool PlayMp3File(string fileName);

 bool PlayWavFile(string fileName);

 }

}

The ISound interface contains two main boolean methods:

PlayMp3File() and PlayWavFile(), which takes a file name as the

parameter.

The reason we are creating the preceding services/interfaces is

because iOS and Android have different code implementations for setting

device vibration and sound. That’s why we are defining interfaces so both

platforms can just inherit from it and implement code-specific logic.

Let’s move on by creating the following files within the Classes folder:

• Helper.cs

• Settings.cs

• PlayerManager.cs

• MemoryGame.cs

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

115

 The Helper Class
Create a new class called “Helper.cs” under the Classes folder and then

replace the default generated code with the following code:

using Plugin.Connectivity;

namespace MemoryGame.App.Helper

{

 public static class StringExtensions

 {

 public static int ToInteger(this string numberString)

 {

 int result = 0;

 if (int.TryParse(numberString, out result))

 return result;

 return 0;

 }

 }

 public static class Utils

 {

 public static bool IsConnectedToInternet()

 {

 return CrossConnectivity.Current.IsConnected;

 }

 }

}

The Helper.cs file is composed of two classes: StringExtension and

Utils. The StringExtension class contains a ToIntenger() extension

method that accepts a string containing a valid numerical value and

converts it into an integer type. The Utils class, on the other hand,

contains an IsConnectedToInternet() method to verify Internet

connectivity. We will be using these methods later in our application.

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

116

 The Settings Class
Create another class within the Classes folder and name it “Settings.cs”.

Replace the default generated code with the following:

using Plugin.Settings;

using Plugin.Settings.Abstractions;

using System;

namespace MemoryGame.App.Classes

{

 public static class Settings

 {

 private static ISettings AppSettings => CrossSettings.

Current;

 public static string PlayerFirstName

 {

 get => AppSettings.GetValueOrDefault(nameof(Player

FirstName), string.Empty);

 set => AppSettings.AddOrUpdateValue(nameof(Player

FirstName), value);

 }

 public static string PlayerLastName

 {

 get => AppSettings.GetValueOrDefault(nameof(Player

LastName), string.Empty);

 set => AppSettings.AddOrUpdateValue(nameof(Player

LastName), value);

 }

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

117

 public static string PlayerEmail

 {

 get => AppSettings.GetValueOrDefault(nameof(Player

Email), string.Empty);

 set => AppSettings.AddOrUpdateValue(nameof(Player

Email), value);

 }

 public static int TopScore

 {

 get => AppSettings.GetValueOrDefault(nameof

(TopScore), 1);

 set => AppSettings.AddOrUpdateValue(nameof

(TopScore), value);

 }

 public static DateTime DateAchieved

 {

 get => AppSettings.GetValueOrDefault(nameof(Date

Achieved), DateTime.UtcNow);

 set => AppSettings.AddOrUpdateValue(nameof(Date

Achieved), value);

 }

 public static bool IsProfileSync

 {

 get => AppSettings.GetValueOrDefault(nameof

(IsProfileSync), false);

 set => AppSettings.AddOrUpdateValue(nameof

(IsProfileSync), value);

 }

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

118

 public static int PlayerID

 {

 get => AppSettings.GetValueOrDefault(nameof(Player

ID), 0);

 set => AppSettings.AddOrUpdateValue(nameof(Player

ID), value);

 }

 }

}

The Settings.cs file contains a few static properties that we are going

to use in the application. They are defined static so that we don’t need to

create an instance of the class when calling them; that’s what the Helper

or Utility class is meant for. We are defining them in the Settings.cs file

to separate them from the Helper class for one sole purpose: having a

central location for shared properties that can be accessed across all our

applications. You can think of it as a local data store for the user’s data and

application configuration.

Let’s look at a quick example:

public static string PlayerFirstName

{

 get => AppSettings.GetValueOrDefault(nameof(PlayerFirst

Name), string.Empty);

 set => AppSettings.AddOrUpdateValue(nameof(PlayerFirst

Name), value);

}

The PlayerFirstName is a static property that contains Expression-
Bodied Members for getting and setting values. Expression-bodied

functions are another syntax simplification in C# 6.0. These are functions

with no statement body. Instead, you implement them with an expression

following the function declaration.

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

119

This code is an example of expression body definition:

get => AppSettings.GetValueOrDefault(nameof(PlayerFirstName),

string.Empty);

The preceding code gets the value of PlayerFirstName and sets a

default value to string.Empty.

C# 7.0 introduces this syntax for setters:

set => AppSettings.AddOrUpdateValue(nameof(PlayerFirstName), value);

The preceding code sets the PlayerFirstName with the new value

assigned and stores it locally in the device.

For more information on Expression-Bodied Members, read the
following: https://docs.microsoft.com/en-us/dotnet/csharp/
programming-guide/statements-expressions-operators/expression-

bodied-members

The Settings plug-in saves specific properties directly to each

platform’s native setting APIs (NSUserDefaults in iOS, SharedPreferences

in Android, etc.). This ensures the fastest, securest, and most reliable

creation and editing settings per application.

For more information about the Settings plug-in, see the following:
https://jamesmontemagno.github.io/SettingsPlugin/

 The DTO Class
Create another class within the Classes folder and name it “DTO.cs”.

Replace the default generated code with the following:

using System;

namespace MemoryGame.App.Classes

{

 public class PlayerProfile

 {

 public string FirstName { get; set; }

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/expression-bodied-members
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/expression-bodied-members
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/expression-bodied-members
https://jamesmontemagno.github.io/SettingsPlugin/

120

 public string LastName { get; set; }

 public string Email { get; set; }

 }

 public class PlayerScore

 {

 public int ChallengerID { get; set; }

 public byte Best { get; set; }

 public DateTime DateAchieved { get; set; }

 }

 public class PlayerData

 {

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public byte Best { get; set; }

 public DateTime DateAchieved { get; set; }

 }

}

The DTO file contains three main classes: The PlayerProfile,

PlayerScore, and PlayerData. We will use these classes as DTOs for

passing information from one place to another.

 The GameAPI Class
Since we finished creating the Web API earlier, it’s time for us to create

a class that consumes the API endpoints. Create a new class called

“GameAPI.cs” under the REST folder and then replace the default

generated code with the following code:

using System;

using System.Text;

using System.Threading.Tasks;

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

121

using Newtonsoft.Json;

using MemoryGame.App.Classes;

using System.Net.Http;

using System.Net.Http.Headers;

namespace MemoryGame.App.REST

{

 public class GameAPI

 {

 //replace the value of APIUri with the published URI to

where your API is hosted.

 //E.g http://yourdomain.com/yourappname/api/game

 private const string APIUri = "http://localhost:56393/

api/game/players";

 HttpClient client;

 public GameAPI()

 {

 client = new HttpClient();

 client.MaxResponseContentBufferSize = 256000;

 client.DefaultRequestHeaders.Clear();

 //Define request data format

 client.DefaultRequestHeaders.Accept.Add(new Media

TypeWithQualityHeaderValue("application/json"));

 }

 public async Task<bool> SavePlayerProfile(PlayerProfile

data, bool isNew = false)

 {

 var uri = new Uri(APIUri);

 var json = JsonConvert.SerializeObject(data);

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

122

 var content = new StringContent(json, Encoding.

UTF8,"application/json");

 HttpResponseMessage response = null;

 if (isNew)

 response = await ProcessPostAsync(uri, content);

 if (response.IsSuccessStatusCode)

 {

 Settings.IsProfileSync = true;

 return true;

 }

 return false;

 }

 public async Task<bool> SavePlayerScore(PlayerScore data)

 {

 var uri = new Uri($"{APIUri}/score");

 var json = JsonConvert.SerializeObject(data);

 var content = new StringContent(json, Encoding.

UTF8,"application/json");

 var response = await ProcessPostAsync(uri, content);

 if (response.IsSuccessStatusCode)

 return true;

 return false;

 }

 public async Task<int> GetPlayerID(string email)

 {

 var uri = new Uri($"{APIUri}/{email}/");

 int id = 0;

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

123

 var response = await ProcessGetAsync(uri);

 if (response.IsSuccessStatusCode)

 {

 var content = await response.Content.

ReadAsStringAsync();

 id = JsonConvert.DeserializeObject<int>(content);

 }

 return id;

 }

 public async Task<PlayerData> GetPlayerData(string

email)

 {

 var uri = new Uri($"{APIUri}/profile/{email}/");

 PlayerData player = null;

 var response = await ProcessGetAsync(uri);

 if (response.IsSuccessStatusCode)

 {

 player = new PlayerData();

 var content = await response.Content.

ReadAsStringAsync();

 player = JsonConvert.DeserializeObject

<PlayerData>(content);

 }

 return player;

 }

 private async Task<HttpResponseMessage>

ProcessPostAsync(Uri uri, StringContent content)

 {

 return await client.PostAsync(uri, content);

 }

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

124

 private async Task<HttpResponseMessage>

ProcessGetAsync(Uri uri)

 {

 return await client.GetAsync(uri);

 }

 }

}

The preceding code is pretty much self-explanatory, as you could

probably guess by its method name. The class just contains a method that

calls the API endpoints that we created in the previous section. If the code

does not make sense to you now, don’t worry as we will talk about it later

in this section.

 Async and Await Overview
Before we dig into the code implementation details of the GameAPI class,

let’s have a quick overview of the Async and Await concepts in C#.

Asynchronous programming is all about writing code that allows

several things to happen at the same time without “blocking,” or

waiting for other things to complete. This is different from synchronous

programming, in which everything happens in the order it is written. In

order to perform an asynchronous operation, a method should be marked

as async: this tells the compiler that the method can run asynchronously.

The await keyword is used in conjunction with the async keyword to tell

the compiler to wait for the Task without blocking code execution.

The async keyword only enables the await keyword. The await keyword

is where things can get asynchronous. Await is like a unary operator: it

takes a single argument, an awaitable Task or Task<T> (an “awaitable” is

an asynchronous operation). Await examines that awaitable to see if it has

already completed; if the awaitable has already completed, then the method

just continues running (synchronously, just like a regular method).

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

125

The Task and Task<T> represent an asynchronous operation that can

be waited. A Task does not return a value, while Task<T> does.

Note if an async method doesn’t use an await operator to mark
a suspension point, the method executes as a synchronous method
does, despite the async modifier. the compiler issues a warning for
such methods.

Here’s a brief definition of the async and await keywords taken from

the official documentation here: https://docs.microsoft.com/en-us/

dotnet/csharp/programming-guide/concepts/async/

The async and await keywords in C# are the heart of async

programming. By using those two keywords, you can use resources in

the .NET Framework, .NET Core, or the Windows Runtime to create an

asynchronous method almost as easily as you create a synchronous method.

Asynchronous methods that you define by using the async keyword are

referred to as async methods.

 Method Definitions
Now that you have a basic idea regarding how asynchronous programming

works, let’s see what the code does by breaking them. Let’s start with the

GameAPI constructor code block:

private const string APIUri = "http://localhost:56393/api/game/

players";

HttpClient client;

public GameAPI()

{

 client = new HttpClient();

 client.MaxResponseContentBufferSize = 256000;

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/

126

 client.DefaultRequestHeaders.Clear();

 //Define request data format

 client.DefaultRequestHeaders.Accept.Add(new MediaTypeWith

QualityHeaderValue("application/json"));

}

The APIUri is a private variable that holds the base API endpoint

value. In this example, it uses the value http://localhost:56393/api/

game/players, which points to my local development IIS Express host. The

value “http://localhost:56393” is automatically created for you once

you run the application in Visual Studio. You need to change this value

with the published URI to where your API is hosted. We’ll talk more about

that later in the Chapter 6.

It was my intent to put the value of APIUri within the GameAPI class
for the sake of simplicity. In real-world applications, it is recommended
to store the value of APIUri in a configuration file, where you can easily
modify the value.

The HttpClient object is declared on the second line. HttpClient is a

modern HTTP client for .NET. It provides a flexible and extensible API for

accessing all things exposed through HTTP.

On the next line is the GameAPI class constructor. This is where the

HttpClient is initialized and configured with a few properties for setting the

MaxResponseContentBufferSize and DefaultRequestHeader media type.

Next code block:

public async Task<bool> SavePlayerProfile(PlayerProfile data,

bool isNew = false)

{

 var uri = new Uri(APIUri);

 var json = JsonConvert.SerializeObject(data);

 var content = new StringContent(json, Encoding.UTF8,"

application/json");

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

127

 HttpResponseMessage response = null;

 if (isNew)

 response = await ProcessPostAsync(uri, content);

 if (response.IsSuccessStatusCode)

 {

 Settings.IsProfileSync = true;

 return true;

 }

 return false;

}

The SavePlayerProfile() takes a PlayerProfile object and an optional

bool isNew flag parameter. This method is defined as asynchronous by

marking it as async and returns a Task of type bool.
Inside the method, we define a new Uri object that takes the

APIUri as the parameter. We then serialize the data using Newtonsoft’s

JsonCovert.SerializeObject() method and pass the result into a json

variable. After the data has been serialized, we create a StringContent

object with the format “application/json” and the encoding set to UTF8.

The StringContent class creates a formatted text appropriate for the http

server/client communication. After a client request, a server will respond

with an HttpResponseMessage and that response will need a content; that

can be created with the StringContent class.

In the next line, we create an instance of the HttpResponseMessage

object and we check for the isNew flag to do some validation. If the flag

value is true, we call an awaitable Task called ProcessPostAsync() and

pass along the uri and content values. The awaitable Task return is then

assigned to an HttpResponseMessage object called response. If the

response is successful, then we set the value of Settings.IsProfileSync to

true and return true to the method. Otherwise, if the flag value is false or

the response isn’t successful, we simply return false to the method.

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

128

Next code block:

public async Task<bool> SavePlayerScore(PlayerScore data)

{

 var uri = new Uri($"{APIUri}/score");

 var json = JsonConvert.SerializeObject(data);

 var content = new StringContent(json, Encoding.UTF8,

"application/json");

 var response = await ProcessPostAsync(uri, content);

 if (response.IsSuccessStatusCode)

 return true;

 return false;

}

The SavePlayerScore() method is also an asynchronous method

that takes a PlayerScore object as a parameter. The first line in the

method defines a new Uri object that takes the $“{APIUri}/score” as the

parameter. The $ character denotes an interpolated string. You can think

of it as a shorthand syntax for the string.Format method, but it’s more

readable and convenient. In this case, the value of $“{APIUri}/score” will

be translated to “http://localhost:56393/api/game/players/score”.

Next, we serialize the data using Newtonsoft’s JsonCovert.
SerializeObject() method and pass the result into a json variable. After

the data has been serialized, we then create a StringContent object with

specific formatting. It then returns true for a successful response and

otherwise returns false.

Next code block:

public async Task<int> GetPlayerID(string email)

{

 var uri = new Uri($"{APIUri}/{email}/");

 int id = 0;

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

129

 var response = await ProcessGetAsync(uri);

 if (response.IsSuccessStatusCode)

 {

 var content = await response.Content.

ReadAsStringAsync();

 id = JsonConvert.DeserializeObject<int>(content);

 }

 return id;

}

The GetPlayerID() method is an asynchronous method that takes a string

as a parameter and returns a Task of type int. Just like the previous async

methods, the first line defines a new Uri object that takes an interpolated

string value. The $“{APIUri}/{email}/” will be translated to something like

“http://localhost:56393/api/game/players/testemail.com/”.

The next line initializes a variable called id of type int with a default

value of 0. It then calls an awaitable Task called ProcessGetAsync()and

passes the uri variable to it. If the response is successful, it calls another

awaitable Task called ReadAsStringAsync() and assigns the result to

a variable called content. It then deserializes the content value using

Newtonsoft’s JsonConvert.DeserializeObject() and assigns the result to

the variable called id. Finally, the value of id is returned to the method.

Next code block:

public async Task<PlayerData> GetPlayerData(string email)

{

 var uri = new Uri($"{APIUri}/profile/{email}/");

 PlayerData player = null;

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

130

 var response = await ProcessGetAsync(uri);

 if (response.IsSuccessStatusCode)

 {

 player = new PlayerData();

 var content = await response.Content.

ReadAsStringAsync();

 player = JsonConvert.DeserializeObject<PlayerData>

(content);

 }

 return player;

}

The preceding method is pretty much similar to the GetPlayerID()

method except that it returns an object rather than an int. The

GetPlayerData() method is also an asynchronous method that takes

a string as a parameter and returns a Task of type PlayerData. The

PlayerData is a class we defined in the DTO file that houses a few

properties. The first line within the method defines a new Uri object that

takes an interpolated string value. The $“{APIUri}/profile/{email}/” value

will be translated to something like “http://localhost:56393/api/game/

players/profile/testemail.com/”.

The next line initializes a variable called player of type PlayerData.

It then calls an awaitable Task called ProcessGetAsync() and passes the

uri variable to it. If the response is successful, it calls another awaitable

Task called ReadAsStringAsync() and assigns the result to a variable

called content. It then deserializes the content value using Newtonsoft’s

JsonConvert.DeserializeObject() and assigns the result to the variable

called player. If the response is not successful, then it returns the player

variable with a null value to the method; otherwise, it returns the player

variable with the associated data assigned from the API response.

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

131

Next code block:

private async Task<HttpResponseMessage> ProcessPostAsync(Uri

uri, StringContent content)

{

 return await client.PostAsync(uri, content); ;

}

private async Task<HttpResponseMessage> ProcessGetAsync(Uri uri)

{

 return await client.GetAsync(uri);

}

The last two private methods in the preceding are used to handle

common operations. The ProcessPostAsync() is an async method that

takes a Uri and StringContent as parameters and returns a Task of type

HttpResponseMessage. This method basically calls the PostAsync()

method of the HttpClient object.

On the other hand, the ProcessGetAsync() takes only a Uri as a

parameter and returns a Task of type HttpResponseMessage. This method

calls the GetAsync() method of the HttpClient object.

For more information on consuming Web API from a .NET client, see
the following: https://docs.microsoft.com/en-us/aspnet/web-api/
overview/advanced/calling-a-web-api-from-a-net-client

 The PlayerManager Class
Now let’s create the class for managing the player data and score. Create a

new class under the Classes folder and name it “PlayerManager.cs” and

then copy the following code:

using MemoryGame.App.Helper;

using System;

using System.Threading.Tasks;

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

https://docs.microsoft.com/en-us/aspnet/web-api/overview/advanced/calling-a-web-api-from-a-net-client
https://docs.microsoft.com/en-us/aspnet/web-api/overview/advanced/calling-a-web-api-from-a-net-client

132

namespace MemoryGame.App.Classes

{

 public static class PlayerManager

 {

 public static void Save(PlayerProfile player)

 {

 Settings.PlayerFirstName = player.FirstName;

 Settings.PlayerLastName = player.LastName;

 Settings.PlayerEmail = player.Email;

 }

 public static PlayerProfile GetPlayerProfileFromLocal()

 {

 return new PlayerProfile

 {

 FirstName = Settings.PlayerFirstName,

 LastName = Settings.PlayerLastName,

 Email = Settings.PlayerEmail

 };

 }

 public static PlayerScore GetPlayerScoreFromLocal()

 {

 return new PlayerScore

 {

 ChallengerID = Settings.PlayerID,

 Best = Convert.ToByte(Settings.TopScore),

 DateAchieved = Settings.DateAchieved

 };

 }

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

133

 public static void UpdateBest(int score)

 {

 if (Settings.TopScore < score)

 {

 Settings.TopScore = score;

 Settings.DateAchieved = DateTime.UtcNow;

 }

 }

 public static int GetBestScore(int currentLevel)

 {

 if (Settings.TopScore > currentLevel)

 return Settings.TopScore;

 else

 return currentLevel;

 }

 public async static Task<bool> Sync()

 {

 REST.GameAPI api = new REST.GameAPI();

 bool result = false;

 try

 {

 if (!Settings.IsProfileSync)

 result = await api.SavePlayerProfile(Player

Manager.GetPlayerProfileFromLocal(), true);

 if (Settings.PlayerID == 0)

 Settings.PlayerID = await api.GetPlayerID

(Settings.PlayerEmail);

 result = await api.SavePlayerScore(PlayerManager.

GetPlayerScoreFromLocal());

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

134

 }

 catch

 {

 return result;

 }

 return result;

 }

 public async static Task<bool> CheckScoreAndSync(int score)

 {

 if (Settings.TopScore < score)

 {

 UpdateBest(score);

 if (Utils.IsConnectedToInternet())

 {

 var response = await Sync();

 return response == true ? true : false;

 }

 else

 return false;

 }

 else

 return false;

 }

 public async static Task<PlayerData> CheckExistingPlayer

(string email)

 {

 REST.GameAPI api = new REST.GameAPI();

 PlayerData player = new PlayerData();

 if (Utils.IsConnectedToInternet())

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

135

 {

 player = await api.GetPlayerData(email);

 }

 return player;

 }

 }

}

The PlayerManager class is composed of a few methods for handling

data retrieval and syncing. The class and methods are marked with the

keyword static, so we can directly reference them without instantiating

the object. Since this class is not tied up to any object that can change the

behavior of the class itself and its member, it makes more sense to use

static. Notice that each method calls the method defined in the GameAPI

class. We did it like this so we can separate the actual code logic for ease of

maintenance and separation of concerns.

Let’s take a look at what we did there by breaking the code into

sections. Let’s start with the Save() method:

public static void Save(PlayerProfile player)

{

 Settings.PlayerFirstName = player.FirstName;

 Settings.PlayerLastName = player.LastName;

 Settings.PlayerEmail = player.Email;

}

The Save() method takes a PlayerProfile object as a parameter. The

PlayerProfile is an object that we define in the DTO file, which houses a

few properties. The code basically stores the value from the PlayerProfile

object properties to the Settings properties. In other words, this method

saves the player profile such as FirstName, LastName, and Email in the

device’s local storage for future use.

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

136

Next code block:

public static PlayerProfile GetPlayerProfileFromLocal()

{

 return new PlayerProfile

 {

 FirstName = Settings.PlayerFirstName,

 LastName = Settings.PlayerLastName,

 Email = Settings.PlayerEmail

 };

}

The GetPlayerProfileFromLocal() method is the opposite of the

Save() method. The code fetches the player information from the local

device data storage and assigns them to the PlayerProfile object.

Next code block:

public static void UpdateBest(int score)

{

 if (Settings.TopScore < score)

 {

 Settings.TopScore = score;

 Settings.DateAchieved = DateTime.UtcNow;

 }

}

As the method name suggests, the UpdateBest() method updates the

challenger score. The code checks for the existing top score from the local

data store and updates the TopScore property with the current score if the

challenger score is greater than the existing top score.

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

137

Next code block:

public static int GetBestScore(int currentLevel)

{

 if (Settings.TopScore > currentLevel)

 return Settings.TopScore;

 else

 return currentLevel;

}

The GetBestScore() method takes an int as a parameter. The code

basically compares the current score/level with the score from the local

data storage and returns the highest value.

Next code block:

public async static Task<bool> Sync()

{

 REST.GameAPI api = new REST.GameAPI();

 bool result = false;

 try

 {

 if (!Settings.IsProfileSync)

 result = await api.SavePlayerProfile(PlayerManager.

GetPlayerProfileFromLocal(), true);

 if (Settings.PlayerID == 0)

 Settings.PlayerID = await api.GetPlayerID(Settings.

PlayerEmail);

 result = await api.SavePlayerScore(PlayerManager.

GetPlayerScoreFromLocal());

 }

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

138

 catch

 {

 return result;

 }

 return result;

}

The Sync() method is an asynchronous method that returns a Task of

type bool. The first line creates an instance of the GameApi object. If you

remember, the GameApi class contains the code for communicating with

the Web API endpoints. The next line of code initializes a bool flag in a

variable called result.

Within try-block, the code checks if the challenger profile is already

synced. If not, then it calls an awaitable Task from the GameApi class

called SavePlayerProfile(), which takes a PlayerProfile object as the

parameter and a bool parameter that indicates if the profile is new. The

next if-condition checks for the existence of the challenger profile by

validating the PlayerID property, which is stored in the local data storage.

If the value is 0, then it calls an awaitable Task called GetPlayerID(), with

an e-mail as the parameter, and assigns the result back to the Settings.
PlayerID property. Otherwise, if the challenger already did a sync, it just

updates the challenger score by calling the SavePlayerScore() Task.

If the code within the try-block fails, then it should go to the catch-
block and return a false value to the method, indicating that the sync

wasn’t successful.

Note in real-world applications, it is recommended to handle
specific exceptions and log them for debugging and easy
troubleshooting.

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

139

Next code block:

public async static Task<bool> CheckScoreAndSync(int score)

{

 if (Settings.TopScore < score)

 {

 UpdateBest(score);

 if (Utils.IsConnectedToInternet())

 {

 var response = await Sync();

 return response == true ? true : false;

 }

 else

 return false;

 }

 else

 return false;

}

The CheckScoreAndSync() is also an asynchronous method that

takes an int as a parameter and returns a Task of type bool. The code

basically validates the score; if the current score is greater than the existing

top score, then it updates the existing top score from the local data storage

with the current score and ultimately calls the Sync() method.

Next code block:

public async static Task<PlayerData> CheckExistingPlayer(string

email)

{

 REST.GameAPI api = new REST.GameAPI();

 PlayerData player = new PlayerData();

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

140

 if (Utils.IsConnectedToInternet())

 {

 player = await api.GetPlayerData(email);

 }

 return player;

}

The CheckExistingPlayer() is an asynchronous method that takes a

string as a parameter and returns a Task of type PlayerData. This method

simply calls the awaitable Task called GetPlayerData() from the GameApi

class and takes an e-mail as the parameter.

Here’s a quick definition of each of these methods:

• The Save() method saves the player information in the

local device storage using the Settings plug-in.

• The GetPlayerProfileFromLocal() method fetches the

player information from the local device storage.

• The GetPlayerScoreFromLocal() method fetches the

player score details from the local device storage.

• The UpdateBest() method updates the player score in

the local device storage.

• The GetBestScore() method fetches the player top

score from the local device storage.

• The asynchronous Sync() method syncs the player

profile and score details with data from the database

into the local data storage.

• The asynchronous CheckScoreAndSync() method

updates the top score to the database.

• The asynchronous CheckExistingPlayer() method

verifies the existence of a challenger from the database.

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

141

 Adding the Needed Graphics and Sound File
Go ahead and download the images and file sound at the following links:

• Graphics: https://github.com/proudmonkey/

Xamarin.MemoryGameApp/tree/master/MemoryGame.

App/MemoryGame.App.Droid/Resources/drawable

• Sound: https://github.com/proudmonkey/Xamarin.

MemoryGameApp/tree/master/MemoryGame.App/

MemoryGame.App.Droid/Resources/raw

 Android
For Xamarin.Android, add the required images under the “Resources/
drawable” folder. Right-click the drawable folder and then select

Add ➤ Existing Item. Locate the images that you have just downloaded

from the previous step and then click Add. The drawable folder should

look like something in the following figure:

Figure 4-2. Adding the graphics file

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

https://github.com/proudmonkey/Xamarin.MemoryGameApp/tree/master/MemoryGame.App/MemoryGame.App.Droid/Resources/drawable
https://github.com/proudmonkey/Xamarin.MemoryGameApp/tree/master/MemoryGame.App/MemoryGame.App.Droid/Resources/drawable
https://github.com/proudmonkey/Xamarin.MemoryGameApp/tree/master/MemoryGame.App/MemoryGame.App.Droid/Resources/drawable
https://github.com/proudmonkey/Xamarin.MemoryGameApp/tree/master/MemoryGame.App/MemoryGame.App.Droid/Resources/raw
https://github.com/proudmonkey/Xamarin.MemoryGameApp/tree/master/MemoryGame.App/MemoryGame.App.Droid/Resources/raw
https://github.com/proudmonkey/Xamarin.MemoryGameApp/tree/master/MemoryGame.App/MemoryGame.App.Droid/Resources/raw

142

To add the sound file, we need to create the “raw” folder first. Now go

ahead and add a new folder under the Resources folder and name it “raw”.

Add the beep.mp3 file within the folder just like in the following figure:

Figure 4-3. Adding the sound file

 iOS
For Xamarin.iOS, add the required images and sound file under the

“Resource” folder as shown in the following figure.

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

143

 The Required XAML Pages
Before starting to create the required pages for the application, let’s

talk a bit about the anatomy of the XAML file. When we created the

MemogyGame.App project, a pair of files are automatically with the

following names:

• App.xaml, the XAML file; and

• App.xaml.cs, a C# code-behind file associated with the

XAML file.

If you are working with ASP.NET WebForms, you will notice that the

concept of the XAML file is pretty much the same as that of the WebForm’s

ASPX files. You’ll need to click the arrow next to App.xaml to see the code-

behind file. Both App.xaml and App.xaml.cs contribute to a class named

Figure 4-4. Adding the graphics and sound files

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

144

App that derives from Application. Most other classes with XAML files

contribute to a class that derives from ContentPage; those files use XAML

to define the visual contents of an entire page.

In this section, we are going the create the following XAML files that

derive from the ContentPage.

• Register

• Home

• Result

 The Register Page
Let’s start building the Register page. Right-click the Pages folder and

then select Add ➤ New Item. On the left pane under Visual C# Items ➤

Xamarin.Forms, select Content Page just like in the following figure:

Figure 4-5. Creating a new ContentPage file

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

145

Name the page “Register” and click Add.

Replace the default generated markup with the following:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/

xaml"

 x:Class="MemoryGame.App.Pages.Register">

 <StackLayout VerticalOptions="CenterAndExpand">

 <Label Text="Working Memory Game"

 FontSize="Large"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 <Label x:Name="lblWelcome"

 Text="Register to start the fun, or Log-on to

continue the challenge!"

 FontSize="Small"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 <StackLayout x:Name="layoutChoose"

 Orientation="Horizontal"

 Spacing="5"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="Center">

 <Button x:Name="btnNew"

 Text="Register"

 FontSize="Medium"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 Clicked="OnbtnNewClicked"/>

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

146

 <Button x:Name="btnReturn"

 Text="Log-on"

 FontSize="Medium"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 Clicked="OnbtnReturnClicked"/>

 </StackLayout>

 <StackLayout x:Name="layoutRegister"

 VerticalOptions="CenterAndExpand"

 IsVisible="False">

 <Label Text="First Name" />

 <Entry x:Name="entryFirstName" />

 <Label Text="Last Name" />

 <Entry x:Name="entryLastName" />

 <Label Text="Email" />

 <Entry x:Name="entryEmail" />

 <StackLayout Orientation="Horizontal"

 Spacing="3"

 HorizontalOptions="Center">

 <Button x:Name="btnRegister"

 Text="Let's Do This!"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 Clicked="OnbtnRegisterClicked"/>

 <Button x:Name="btnCancelRegister"

 Text="Cancel"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 Clicked="OnbtnCancelRegister

Clicked"/>

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

147

 </StackLayout>

 </StackLayout>

 <StackLayout x:Name="layoutLogin"

 VerticalOptions="CenterAndExpand"

 IsVisible="False">

 <Label Text="Email" />

 <Entry x:Name="entryExistingEmail" />

 <StackLayout Orientation="Horizontal" Spacing="3"

HorizontalOptions="Center">

 <Button x:Name="btnLogin"

 Text="Let me in!"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 Clicked="OnbtnLoginClicked"/>

 <Button x:Name="btnCancelLogin"

 Text="Cancel"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 Clicked="OnbtnCancelLoginClicked"/>

 </StackLayout>

 </StackLayout>

 </StackLayout>

</ContentPage>

The preceding markup uses XAML to build the application UI. XAML

allows you to define UIs in Xamarin.Forms applications using markup

rather than code. You may have noticed that it contains some StackLayout

elements to group controls in certain areas in the form. The controls are

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

148

used to present the form to UI and are referred to as Button, Entry, Label,
and more. Each button from the preceding markup has a Clicked event

attached to it to perform a certain action in the server (a.k.a. code-behind).

For comprehensive documentation about XAML in Xamarin.
Forms, see the following: https://docs.microsoft.com/en-us/xamarin/
xamarin-forms/xaml/xaml-basics/

Now open the Register.xaml.cs file and replace the default generated

code with the following code:

using MemoryGame.App.Classes;

using MemoryGame.App.Helper;

using System;

using System.Threading.Tasks;

using Xamarin.Forms;

using Xamarin.Forms.Xaml;

namespace MemoryGame.App.Pages

{

 [XamlCompilation(XamlCompilationOptions.Compile)]

 public partial class Register : ContentPage

 {

 public Register ()

 {

 InitializeComponent ();

 }

 enum EntryOption

 {

 Register = 0,

 Returning = 1,

 Cancel = 2

 }

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/xaml/xaml-basics/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/xaml/xaml-basics/

149

 protected override void OnAppearing()

 {

 base.OnAppearing();

 NavigationPage.SetHasBackButton(this, false);

 if (!string.IsNullOrEmpty(Settings.PlayerFirstName))

 App._navPage.PushAsync(App._homePage);

 }

 async Task CheckExistingProfileAndSave(string email)

 {

 try

 {

 PlayerData player = await PlayerManager.

 CheckExistingPlayer(email);

 if (string.IsNullOrEmpty(player.FirstName) &&

string.IsNullOrEmpty(player.LastName))

 {

 await App.Current.MainPage.DisplayAlert

("Error", "Email does not exist.", "OK");

 }

 else

 {

 Settings.PlayerFirstName = player.

FirstName.Trim();

 Settings.PlayerLastName = player.

LastName.Trim();

 Settings.PlayerEmail = email.Trim();

 Settings.TopScore = player.Best;

 Settings.DateAchieved = player.DateAchieved;

 await App._navPage.PushAsync(App._homePage);

 }

 }

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

150

 catch

 {

 await App.Current.MainPage.DisplayAlert("Oops",

"An error occurred while connecting to the

server. Please check your connection.", "OK");

 }

 }

 async Task Save()

 {

 Settings.PlayerFirstName = entryFirstName.Text.Trim();

 Settings.PlayerLastName = entryLastName.Text.Trim();

 Settings.PlayerEmail = entryEmail.Text.Trim();

 await App._navPage.PushAsync(App._homePage);

 }

 void ToggleEntryView(EntryOption option)

 {

 switch (option)

 {

 case EntryOption.Register:

 {

 lblWelcome.IsVisible = false;

 layoutChoose.IsVisible = false;

 layoutLogin.IsVisible = false;

 layoutRegister.IsVisible = true;

 break;

 }

 case EntryOption.Returning:

 {

 lblWelcome.IsVisible = false;

 layoutChoose.IsVisible = false;

 layoutRegister.IsVisible = false;

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

151

 layoutLogin.IsVisible = true;

 break;

 }

 case EntryOption.Cancel:

 {

 lblWelcome.IsVisible = true;

 layoutChoose.IsVisible = true;

 layoutRegister.IsVisible = false;

 layoutLogin.IsVisible = false;

 break;

 }

 }

 }

 void OnbtnNewClicked(object sender, EventArgs args)

 {

 ToggleEntryView(EntryOption.Register);

 }

 void OnbtnReturnClicked(object sender, EventArgs args)

 {

 ToggleEntryView(EntryOption.Returning);

 }

 void OnbtnCancelLoginClicked(object sender, EventArgs args)

 {

 ToggleEntryView(EntryOption.Cancel);

 }

 void OnbtnCancelRegisterClicked(object sender, EventArgs

args)

 {

 ToggleEntryView(EntryOption.Cancel);

 }

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

152

 async void OnbtnRegisterClicked(object sender, EventArgs args)

 {

 btnRegister.IsEnabled = false;

 if (string.IsNullOrEmpty(entryFirstName.Text)

 || string.IsNullOrEmpty(entryLastName.Text)

 || string.IsNullOrEmpty(entryEmail.Text))

 await App.Current.MainPage.

DisplayAlert("Error", "Please supply the

required fields.", "Got it");

 else

 await Save();

 btnRegister.IsEnabled = true;

 }

 async void OnbtnLoginClicked(object sender, EventArgs args)

 {

 if (string.IsNullOrEmpty(entryExistingEmail.Text))

 await App.Current.MainPage.DisplayAlert("Error",

"Please supply your email.", "Got it");

 else

 {

 if (Utils.IsConnectedToInternet())

 {

 btnLogin.IsEnabled = false;

 await CheckExistingProfileAndSave

(entryExistingEmail.Text);

 }

 else

 {

 await App.Current.MainPage.

DisplayAlert(“Error”, “No internet

connection.”, “OK”);

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

153

 }

 }

 btnLogin.IsEnabled = true;

 }

 }

}

Let’s take a look at the code implementation details by breaking them

into sections. Let’s start with this:

using MemoryGame.App.Classes;

using MemoryGame.App.Helper;

using System;

using System.Threading.Tasks;

using Xamarin.Forms;

using Xamarin.Forms.Xaml;

At the very top, you’ll find a series of using keywords. This type of

keyword is typically used as a directive, when it is used to create an alias

for a namespace or to import types defined in other namespaces. In other

words, when you want to access a certain class in your code, you need to

define the namespace first.

Next code block:

[XamlCompilation(XamlCompilationOptions.Compile)]

public partial class Register : ContentPage

{

 public Register()

 {

 InitializeComponent();

 }

}

The Register class is a partial class that derives from a ContentPage

class. In XAML, a ContentPage is a page that displays a single View, often

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

154

a container like a StackLayout or ScrollView. Within the class constructor,

it calls the method InitializeComponent(), which initializes a new

ContentPage instance.

Next code block:

enumEntryOption

{

 Register = 0,

 Returning = 1,

 Cancel = 2

}

The preceding code is an enumeration used for toggling the buttons on

the page.

Next code block:

protected override void OnAppearing()

{

 base.OnAppearing();

 NavigationPage.SetHasBackButton(this, false);

 if (!string.IsNullOrEmpty(Settings.PlayerFirstName))

 App._navPage.PushAsync(App._homePage);

}

The OnAppearing() is a built-in event of a page. This event is marked as

virtual, meaning that we can override this event to customize the behavior

immediately prior to the page becoming visible. In this case, we call the

SetHasBackButton() method to hide the back button navigation when

the Register page is loaded. The if-condition line checks the existence of

the challenger’s name. If the property PlayerFirstName has a value, then it

redirects the view to the Home page; otherwise, it stays in the Register page.

For more information about Xamarin.Forms navigation, see the
following: https://docs.microsoft.com/en-us/xamarin/xamarin-
forms/app-fundamentals/navigation/

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/navigation/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/navigation/

155

Next code block:

async Task CheckExistingProfileAndSave(string email)

{

 try

 {

 PlayerData player = await PlayerManager.Check

 ExistingPlayer(email);

 if (string.IsNullOrEmpty(player.FirstName) && string.

IsNullOrEmpty(player.LastName))

 {

 await App.Current.MainPage.DisplayAlert("Error",

"Email does not exist.", "OK");

 }

 else

 {

 Settings.PlayerFirstName = player.FirstName.Trim();

 Settings.PlayerLastName = player.LastName.Trim();

 Settings.PlayerEmail = email.Trim();

 Settings.TopScore = player.Best;

 Settings.DateAchieved = player.DateAchieved;

 await App._navPage.PushAsync(App._homePage);

 }

 }

 catch

 {

 await App.Current.MainPage.DisplayAlert("Oops", "An

error occurred while connecting to the server. Please

check your connection.", "OK");

 }

}

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

156

The CheckExistingProfileAndSave() is an asynchronous method that

takes a string as the parameter and returns a Task. The first line within

the try-block calls the awaitable Task called CheckExistingPlayer() and

assigns the result to a type of PlayerData. If the FirstName and LastName

of the PlayerData object are null or empty, then it displays an error stating

that the e-mail provided does not exist. Otherwise, it stores the challenger

information in the local data storage via Settings properties.

Next code block:

async Task Save()

{

 Settings.PlayerFirstName = entryFirstName.Text.Trim();

 Settings.PlayerLastName = entryLastName.Text.Trim();

 Settings.PlayerEmail = entryEmail.Text.Trim();

 await App._navPage.PushAsync(App._homePage);

}

The Save() method stores the basic challenger information such as

FirstName, LastName, and Email and then automatically redirects to the

Home page.

Next code block:

void ToggleEntryView(EntryOption option)

{

 switch (option)

 {

 case EntryOption.Register:

 {

 lblWelcome.IsVisible = false;

 layoutChoose.IsVisible = false;

 layoutLogin.IsVisible = false;

 layoutRegister.IsVisible = true;

 break;

 }

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

157

 case EntryOption.Returning:

 {

 lblWelcome.IsVisible = false;

 layoutChoose.IsVisible = false;

 layoutRegister.IsVisible = false;

 layoutLogin.IsVisible = true;

 break;

 }

 case EntryOption.Cancel:

 {

 lblWelcome.IsVisible = true;

 layoutChoose.IsVisible = true;

 layoutRegister.IsVisible = false;

 layoutLogin.IsVisible = false;

 break;

 }

 }

}

The ToggleEntryView() method takes an EntryOption enumeration

as a parameter. This method basically handles the switching of register and

login container layout in the Register page.

Next code block:

void OnbtnNewClicked(object sender, EventArgs args)

{

 ToggleEntryView(EntryOption.Register);

}

void OnbtnReturnClicked(object sender, EventArgs args)

{

 ToggleEntryView(EntryOption.Returning);

}

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

158

void OnbtnCancelLoginClicked(object sender, EventArgs args)

{

 ToggleEntryView(EntryOption.Cancel);

}

void OnbtnCancelRegisterClicked(object sender, EventArgs args)

{

 ToggleEntryView(EntryOption.Cancel);

}

The preceding code comprises event handlers for buttons that invoke

the ToggleEntryView() method. The OnbtnNewClicked event shows the

Register view with a cancel button. The OnbtnReturnClicked event, on

the other hand, shows the Login view with a cancel button. The remaining

events are used to revert the view to original state.

Next code block:

async void OnbtnRegisterClicked(object sender, EventArgs args)

{

 btnRegister.IsEnabled = false;

 if (string.IsNullOrEmpty(entryFirstName.Text)

 || string.IsNullOrEmpty(entryLastName.Text)

 || string.IsNullOrEmpty(entryEmail.Text))

 await App.Current.MainPage.DisplayAlert("Error",

"Please supply the required fields.", "Got it");

 else

 await Save();

 btnRegister.IsEnabled = true;

}

The OnbtnRegisterClicked is an asynchronous event that returns

void. As you may know, async methods can return Task<T>, Task, or

void. In almost all cases, you want to return Task<T> or Task, and return

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

159

void only when you have to. Returning void for async event handlers is

great, as we can perform asynchronous operations without blocking the UI

thread.

The first line of the code within the event disables the button

btnRegister and then performs some asynchronous operations. If the

FirstName, LastName, and Email fields are left empty, then it shows an

error. Otherwise, it calls the Save() method.

Next code block:

async void OnbtnLoginClicked(object sender, EventArgs args)

{

 if (string.IsNullOrEmpty(entryExistingEmail.Text))

 await App.Current.MainPage.DisplayAlert("Error",

"Please supply your email.", "Got it");

 else

 {

 if (Utils.IsConnectedToInternet())

 {

 btnLogin.IsEnabled = false;

 await CheckExistingProfileAndSave(entryExisting

Email.Text);

 }

 else

 {

 await App.Current.MainPage.DisplayAlert("Error",

"No internet connection.", "OK");

 }

 }

 btnLogin.IsEnabled = true;

}

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

160

The OnbtnLoginClicked event is also an asynchronous event that

returns void. This event is where the user credential is validated: in this

case, the e-mail address value. The first line of code within the event

handler checks for the e-mail address value. If it’s empty, then it displays

an error; otherwise, it saves the challenger information to the local data

storage by calling the CheckExistingProfileAndSave() method.

 The Home Page
Add a new Content Page under the Pages folder and name it “Home”.

Replace the default generated code with the following code:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/

xaml"

 x:Class="MemoryGame.App.Pages.Home">

 <StackLayout Padding="2">

 <StackLayout>

 <StackLayout Orientation="Horizontal">

 <Label x:Name="lblBest"

 FontSize="Medium"

 HorizontalOptions="StartAndExpand" />

 <Button x:Name="btnSync"

 Text="Sync"

 Clicked="OnbtnSyncClicked"

 HorizontalOptions="EndAndExpand"

 VerticalOptions="CenterAndExpand" />

 <Button x:Name="btnLogOut"

 Text="Logout"

 Clicked="OnbtnLogoutClicked"

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

161

 HorizontalOptions="EndAndExpand"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

 <Label x:Name="lblTime"

 FontSize="Large"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

 <Label x:Name="lblLevel"

 FontSize="Small"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 <StackLayout Orientation="Horizontal"

 Spacing="2"

 HorizontalOptions="Center"

 BackgroundColor="White">

 <Image x:Name="imgLightOff"

 Source="lightoff.png"

 WidthRequest="60"

 HeightRequest="20" />

 <Image x:Name="imgLightOff2"

 Source="lightoff.png"

 IsVisible="False"

 WidthRequest="60"

 HeightRequest="20" />

 <Image x:Name="imgLightOn"

 Source="lighton.png"

 IsVisible="False"

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

162

 WidthRequest="60"

 HeightRequest="20" />

 <Image x:Name="imgSpeaker"

 Source="speakeron.png"

 WidthRequest="60"

 HeightRequest="40" />

 <Image x:Name="imgHaptic"

 Source="vibration.png"

 WidthRequest="60"

 HeightRequest="20" />

 </StackLayout>

 <Label Text="The light will blink on, the speaker will

beep and the device will vibrate at different times.

Try to count how many times each one happens."

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 <Button x:Name="btnStart"

 Text="Start"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 Clicked="OnButtonClicked"/>

 </StackLayout>

</ContentPage>

The preceding XAML markup contains three Label, three Button, and

five Image. The Label elements are used for displaying the existing saved

top score, the current top score, and the instructions to play the game. The

Button elements are used for syncing data to the database, logging out,

and starting the game. The Image elements are used for displaying a bulb

(on and off), speaker, and haptic indication.

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

163

Open the Home.xaml.cs file and replace the default generated code

with the following code:

using MemoryGame.App.Classes;

using MemoryGame.App.Helper;

using MemoryGame.App.Services;

using System;

using System.Threading.Tasks;

using Xamarin.Forms;

using Xamarin.Forms.Xaml;

namespace MemoryGame.App.Pages

{

 [XamlCompilation(XamlCompilationOptions.Compile)]

 public partial class Home : ContentPage

 {

 public Home()

 {

 InitializeComponent();

 }

 enum PlayType

 {

 Blink = 0,

 Sound = 1,

 Haptic = 2

 }

 private int _cycleStartInMS = 0;

 private int _cycleMaxInMS = 10000;

 private const int _cycleIntervalInMS = 2000;

 private const int _eventTypeCount = 3;

 public statici nt CurrentGameBlinkCount { get; private

set; } = 0;

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

164

 public static int CurrentGameSoundCount { get; private

set; } = 0;

 public static int CurrentGameHapticCount { get; private

set; } = 0;

 public static int CurrentGameLevel { get; private set;

} = 1;

 protected override void OnAppearing()

 {

 base.OnAppearing();

 NavigationPage.SetHasBackButton(this, false);

 PlayerManager.UpdateBest(CurrentGameLevel);

 if (Result._answered)

 LevelUp();

 else

 ResetLevel();

 lblBest.Text = $"Best: Level {PlayerManager.GetBest

Score(CurrentGameLevel)}";

 lblLevel.Text = $"Level {CurrentGameLevel}";

 }

 static void IncrementPlayCount(PlayType play)

 {

 switch (play)

 {

 case PlayType.Blink:

 {

 CurrentGameBlinkCount++;

 break;

 }

 case PlayType.Sound:

 {

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

165

 CurrentGameSoundCount++;

 break;

 }

 case PlayType.Haptic:

 {

 CurrentGameHapticCount++;

 break;

 }

 }

 }

 public static void IncrementGameLevel()

 {

 CurrentGameLevel++;

 }

 void ResetLevel()

 {

 CurrentGameLevel = 1;

 _cycleStartInMS = _cycleIntervalInMS;

 lblTime.Text = string.Empty;

 btnStart.Text = "Start";

 btnStart.IsEnabled = true;

 }

 async void StartRandomPlay()

 {

 await Task.Run(() =>

 {

 Random rnd = new Random(Guid.NewGuid().GetHashCode());

 int choice = rnd.Next(0, _eventTypeCount);

 switch (choice)

 {

 case (int)PlayType.Blink:

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

166

 {

 Device.BeginInvokeOnMainThread(async () =>

 {

 await imgLightOff.FadeTo(0, 200);

 imgLightOff2.IsVisible = false;

 imgLightOff.IsVisible = true;

 imgLightOff.Source = ImageSource.

FromFile("lighton.png");

 await imgLightOff.FadeTo(1, 200);

 });

 IncrementPlayCount(PlayType.Blink);

 break;

 }

 case (int)PlayType.Sound:

 {

 DependencyService.Get<ISound>().

PlayMp3File("beep.mp3");

 IncrementPlayCount(PlayType.Sound);

 break;

 }

 case (int)PlayType.Haptic:

 {

 DependencyService.Get<IHaptic>().

ActivateHaptic();

 IncrementPlayCount(PlayType.Haptic);

 break;

 }

 }

 });

 }

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

167

 void ResetGameCount()

 {

 CurrentGameBlinkCount = 0;

 CurrentGameSoundCount = 0;

 CurrentGameHapticCount = 0;

 }

 void LevelUp()

 {

 _cycleStartInMS = _cycleStartInMS - 200;

 //minus 200 ms

 }

 void Play()

 {

 int timeLapsed = 0;

 int duration = 0;

 Device.StartTimer(TimeSpan.FromSeconds(1), () =>

 {

 duration++;

 lblTime.Text = $"Timer: { TimeSpan.

FromSeconds(duration).ToString("ss")}";

 if (duration < 10)

 return true;

 else

 return false;

 });

 Device.StartTimer(TimeSpan.FromMilliseconds(_

cycleStartInMS), () => {

 timeLapsed = timeLapsed + _cycleStartInMS;

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

168

 Device.BeginInvokeOnMainThread(async () =>

 {

 imgLightOff2.IsVisible = true;

 imgLightOff.IsVisible = false;

 await Task.Delay(200);

 });

 if (timeLapsed <= _cycleMaxInMS)

 {

 StartRandomPlay();

 return true; //continue

 }

 App._navPage.PushAsync(App._resultPage);

 return false; //don’t continue

 });

 }

 void OnButtonClicked(object sender, EventArgs args)

 {

 btnStart.Text = "Game Started...";

 btnStart.IsEnabled = false;

 ResetGameCount();

 Play();

 }

 async void OnbtnSyncClicked(object sender, EventArgs args)

 {

 if (Utils.IsConnectedToInternet())

 {

 btnSync.Text = "Syncing...";

 btnSync.IsEnabled = false;

 btnStart.IsEnabled = false;

 var response = await PlayerManager.Sync();

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

169

 if (!response)

 await App.Current.MainPage.

DisplayAlert("Oops", "An error occurred

while connecting to the server. Please

check your connection.", "OK");

 else

 await App.Current.MainPage.

DisplayAlert("Sync", "Data synced!","OK");

 btnSync.Text = "Sync";

 btnSync.IsEnabled = true;

 btnStart.IsEnabled = true;

 }

 else

 {

 await App.Current.MainPage.DisplayAlert

("Error", "No internet connection.", "OK");

 }

 }

 async void OnbtnLogoutClicked(object sender, EventArgs

args)

 {

 if (Utils.IsConnectedToInternet())

 {

 btnLogOut.IsEnabled = false;

 var response = await PlayerManager.Sync();

 if (response)

 {

 Settings.ClearEverything();

 await App._navPage.PopToRootAsync();

 }

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

170

 else

 await App.Current.MainPage.

DisplayAlert("Oops","An error occurred

while connecting to the server. Please

check your connection.", "OK");

 }

 else

 await App.Current.MainPage.DisplayAlert

("Oops", "No internet connection. Please

check your network.", "OK");

 btnLogOut.IsEnabled = true;

 }

 }

}

The code-behind for the Home page is expected to be long, because

this is where the game logic is handled. I keep it this way in order for you

to easily reference the relevant code logic in one place and for simplicity’s

sake. In a real-world scenario, you may want to break the code into classes

and identify components that can be reusable.

Let’s see what the code does by breaking it into sections. Let’s start

with the class-level definition:

[XamlCompilation(XamlCompilationOptions.Compile)]

public partial class Home : ContentPage

{

 public Home()

 {

 InitializeComponent();

 }

}

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

171

Just like any other XAML page, the Home class inherits the

ContentPage class. Within the class constructor, it calls the method

InitializeComponent() to initialize a new ContentPage instance.

Next code block:

enum PlayType

{

 Blink = 0,

 Sound = 1,

 Haptic = 2

}

The PlayType is an enum that consists of three main entries: Blink,

Sound, and Haptic. This enum will be used later in the code to identify the

type of event played.

Next code block:

private int _cycleStartInMS = 0;

private int _cycleMaxInMS = 10000;

private const int _cycleIntervalInMS = 2000;

private const int _eventTypeCount = 3;

The preceding code comprises the private global variables of type

int that will be used within the class. The _cycleStartInMS variable value

is expressed in milliseconds and defaults to 0. This variable indicates

the time when the app should trigger a new cycle to start the play. The

cycleMaxInMS variable indicates the maximum time to when the app

stops the play. The default value is 10,000 milliseconds, or 10 seconds.

The last two variables are marked as const, meaning the value assigned to

them won’t change. The _cycleIntervalInMS variable indicates the time

interval between playing different event types such as blinking an image,

playing a sound, or activating vibration on the device. The interval value is

2000 milliseconds, equivalent to 2 seconds. The eventTypeCount variable

indicates the number of event types, for which the value in this case is 3.

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

172

Next code block:

public static int CurrentGameBlinkCount { get; privateset; } = 0;

public static int CurrentGameSoundCount { get; privateset; } = 0;

public static int CurrentGameHapticCount { get; privateset; } = 0;

public static int CurrentGameLevel { get; privateset; } = 1;

The preceding code comprises the public properties for the class.

They are marked public and static, so other class can access them without

having to create an instance of the Home class. The preceding syntax uses

property initializers, which was introduced in C# 6.0.

The CurrentGameBlinkCount property holds the number of blink

counts with the default value of 0. The CurrentGameSoundCount property

holds the number of sound counts with the default value of 0. The

CurrentGameHapticCount property holds the number of haptic counts

with the default value of 0. Last but not least, the CurrentGameLevel holds

the level/score value.

Next code block:

protected override void OnAppearing()

{

 base.OnAppearing();

 NavigationPage.SetHasBackButton(this, false);

 PlayerManager.UpdateBest(CurrentGameLevel);

 if (Result._answered)

 LevelUp();

 else

 ResetLevel();

 lblBest.Text = $"Best: Level {PlayerManager.GetBestScore

(CurrentGameLevel)}";

 lblLevel.Text = $"Level {CurrentGameLevel}";

}

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

173

The OnAppearing() method fires before the page gets visible. The

preceding code disables the back navigation of the app and then updates

the challenger top score. The if-condition checks the value of _answered

from the Result page. If true, then it calls the LevelUp() method, otherwise

it calls the ResetLevel().

The last two lines of code within the method sets the label’s Text

property to display the top score and current score.

Next code block:

static void IncrementPlayCount(PlayType play)

{

 switch (play)

 {

 case PlayType.Blink:

 {

 CurrentGameBlinkCount++;

 break;

 }

 case PlayType.Sound:

 {

 CurrentGameSoundCount++;

 break;

 }

 case PlayType.Haptic:

 {

 CurrentGameHapticCount++;

 break;

 }

 }

}

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

174

The IncrementPlayCount() method takes a PlayType object as a

parameter. This method basically increases the number of each event type

based on the enum value.

Next code block:

public static void IncrementGameLevel()

{

 CurrentGameLevel++;

}

The IncrementGameLevel() increases the level/score value. This

method is marked as public so other class can invoke it.

Next code block:

void ResetLevel()

{

 CurrentGameLevel = 1;

 _cycleStartInMS = _cycleIntervalInMS;

 lblTime.Text = string.Empty;

}

The ResetLevel() method resets the level/score and play cycle time and

clears the time displayed in the view.

Next code block:

async void StartRandomPlay()

{

 await Task.Run(() =>

 {

 Random rnd = new Random(Guid.NewGuid().GetHashCode());

 int choice = rnd.Next(0, _eventTypeCount);

 switch (choice)

 {

 case (int)PlayType.Blink:

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

175

 {

 Device.BeginInvokeOnMainThread(async () =>

 {

 await imgLightOff.FadeTo(0, 200);

 imgLightOff2.IsVisible = false;

 imgLightOff.IsVisible = true;

 imgLightOff.Source = ImageSource.

FromFile("lighton.png");

 await imgLightOff.FadeTo(1, 200);

 });

 IncrementPlayCount(PlayType.Blink);

 break;

 }

 case (int)PlayType.Sound:

 {

 DependencyService.Get<ISound>().

PlayMp3File("beep.mp3");

 IncrementPlayCount(PlayType.Sound);

 break;

 }

 case (int)PlayType.Haptic:

 {

 DependencyService.Get<IHaptic>().

ActivateHaptic();

 IncrementPlayCount(PlayType.Haptic);

 break;

 }

 }

 });

}

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

176

The StartRandomPlay() is an asynchronous method that returns

a void. The preceding code is the core method of the Home class. The

method is responsible for activating different criteria on a random

basis, whether invoking a sound, making a vibration, or just blinking an

image. Notice that we’ve used the DependencyService class to inject the

interface that we’ve defined in previous section of this Chapter. This allows

us to perform platform specific implementations for playing a sound or

activating a device vibration.

Next code block:

void ResetGameCount()

{

 CurrentGameBlinkCount = 0;

 CurrentGameSoundCount = 0;

 CurrentGameHapticCount = 0;

}

The preceding code simply resets the properties value to 0.

Next code block:

void LevelUp()

{

 _cycleStartInMS = _cycleStartInMS - 200; //minus 200 ms

}

The preceding code decreases the cycle interval for triggering a new

random event. In other words, the 2-second cycle will be decreased by 200

ms per level. This is where the game gets exciting, because the higher your

level/score goes, the faster the different event types are triggered until you

can’t remember which type of event has occurred.

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

177

Next code block:

void Play()

{

 int timeLapsed = 0;

 int duration = 0;

 Device.StartTimer(TimeSpan.FromSeconds(1), () =>

 {

 duration++;

 lblTime.Text = $"Timer: { TimeSpan.

FromSeconds(duration).ToString("ss")}";

 if (duration < 10)

 return true;

 else

 return false;

 });

 Device.StartTimer(TimeSpan.FromMilliseconds

(_cycleStartInMS), () => {

 timeLapsed = timeLapsed + _cycleStartInMS;

 Device.BeginInvokeOnMainThread(async () =>

 {

 imgLightOff2.IsVisible = true;

 imgLightOff.IsVisible = false;

 await Task.Delay(200);

 });

 if (timeLapsed <= _cycleMaxInMS)

 {

 StartRandomPlay();

 return true; //continue

 }

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

178

 App._navPage.PushAsync(App._resultPage);

 return false; //don’t continue

 });

}

The preceding code invokes two methods for starting a timer on the

view. The Device.StartTimer() starts a recurring timer on the UI thread

using the device clock capabilities. The first one creates a countdown timer

in the view starting from 10 seconds to 0 and displays the result to a Label
element in real time. The second invokation of the Device.StartTimer()

method is responsible for triggering a new random event based in the

current value of the _cycleMaxInMS value.

Next code block:

void OnButtonClicked(object sender, EventArgs args)

{

 btnStart.Text = "Game Started...";

 btnStart.IsEnabled = false;

 ResetGameCount();

 Play();

}

The OnButtonClicked event activates and starts the game by calling

the Play() method.

Next code block:

async void OnbtnSyncClicked(object sender, EventArgs args)

{

 if (Utils.IsConnectedToInternet())

 {

 btnSync.Text = "Syncing...";

 btnSync.IsEnabled = false;

 btnStart.IsEnabled = false;

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

179

 var response = await PlayerManager.Sync();

 if (!response)

 await App.Current.MainPage

 DisplayAlert("Oops"

 "An error occurred while connecting to the

server. Please check your connection.", "OK");

 else

 await App.Current.MainPage.DisplayAlert("Sync",

"Data synced!","OK");

 btnSync.Text = "Sync";

 btnSync.IsEnabled = true;

 btnStart.IsEnabled = true;

 }

 else

 {

 await App.Current.MainPage

 DisplayAlert("Error"

 "No internet connection."

 "OK");

 }

}

The OnbtnSyncClicked() is an asynchronous event handler that syncs

data to the database. The first line of the code within the method checks

for the connection using the Utils.IsConnectedToInternet() method. If

the device is connected to an Internet or wifi, then it enables data sync by

calling the awaitable Sync() method from the PlayerManager class.

Next code block:

async void OnbtnLogoutClicked(object sender, EventArgs args)

{

 if (Utils.IsConnectedToInternet())

 {

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

180

 btnLogOut.IsEnabled = false;

 var response = await PlayerManager.Sync();

 if (response)

 {

 Settings.ClearEverything();

 await App._navPage.PopToRootAsync();

 }

 else

 await App.Current.MainPage

 DisplayAlert("Oops"

 "An error occurred while connecting to the

server. Please check your connection."

 "OK");

 }

 else

 await App.Current.MainPage

 DisplayAlert("Oops"

 "No internet connection. Please check your

network."

 "OK");

 btnLogOut.IsEnabled = true;

}

The OnbtnLogoutClicked event handles the logout functionality

of the application. Just like the sync feature, it first checks for Internet

connectivity. If the device is connected, it will then invoke the Sync()

method to persist the data in the database. If it syncs successfully,

then it clears the data from the local device storage using the Settings.

ClearEverything() method and redirects the user back to the default page.

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

181

 The Result Page
Add a new Content Page under the Pages folder and name it “Result”.

Replace the default generated code with the following code:

<?xml version="1.0" encoding="utf-8" ?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/

xaml"

 x:Class="MemoryGame.App.Pages.Result">

 <StackLayout>

 <Label Text="How many times did the light blink, the

speaker beep and the device vibrate?"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 <StackLayout Orientation="Horizontal"

 Spacing="2"

 HorizontalOptions="Center"

 BackgroundColor="White">

 <Image x:Name="imgLight"

 Source="lightoff.png"

 WidthRequest="60"

 HeightRequest="20" />

 <Image x:Name="imgSpeaker"

 Source="speakeron.png"

 WidthRequest="60"

 HeightRequest="20" />

 <Image x:Name="imgHaptic"

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

182

 Source="vibration.png"

 WidthRequest="60"

 HeightRequest="20" />

 </StackLayout>

 <StackLayout Orientation="Horizontal"

 HorizontalOptions="Center"

 Spacing="5">

 <Picker x:Name="pickerLight"

 HorizontalOptions="FillAndExpand"

 WidthRequest="100">

 <Picker.Items>

 <x:String>0</x:String>

 <x:String>1</x:String>

 <x:String>2</x:String>

 <x:String>3</x:String>

 <x:String>4</x:String>

 <x:String>5</x:String>

 <x:String>6</x:String>

 <x:String>7</x:String>

 <x:String>8</x:String>

 <x:String>9</x:String>

 <x:String>10</x:String>

 </Picker.Items>

 </Picker>

 <Picker x:Name="pickerSpeaker"

 HorizontalOptions="FillAndExpand"

 WidthRequest="100">

 <Picker.Items>

 <x:String>0</x:String>

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

183

 <x:String>1</x:String>

 <x:String>2</x:String>

 <x:String>3</x:String>

 <x:String>4</x:String>

 <x:String>5</x:String>

 <x:String>6</x:String>

<x:String>7</x:String>

<x:String>8</x:String>

<x:String>9</x:String>

<x:String>10</x:String>

 </Picker.Items>

 </Picker>

 <Picker x:Name="pickerHaptic"

 HorizontalOptions="FillAndExpand"

 WidthRequest="100">

 <Picker.Items>

<x:String>0</x:String>

<x:String>1</x:String>

<x:String>2</x:String>

<x:String>3</x:String>

<x:String>4</x:String>

<x:String>5</x:String>

<x:String>6</x:String>

<x:String>7</x:String>

<x:String>8</x:String>

<x:String>9</x:String>

<x:String>10</x:String>

</Picker.Items>

</Picker>

 </StackLayout>

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

184

 <Label x:Name="lblText"

 FontSize="20"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 <StackLayout Orientation="Horizontal"

 HorizontalOptions="Center"

 Spacing="40">

 <Label x:Name="lblBlinkCount"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 <Label x:Name="lblBeepCount"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 <Label x:Name="lblHapticCount"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

 <Button x:Name="btnSubmit"

 Text="Submit"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

 Clicked="OnButtonClicked"/>

 <Button x:Name="btnRetry"

 Text="Retry"

 IsVisible="False"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand"

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

185

 Clicked="OnRetryButtonClicked"/>

 </StackLayout>

</ContentPage>

The preceding XAML markup contains a few Label, Button, Picker

and Image elements. The Picker elements are used for storing a list of

items for a challenger to pick. The Label elements are used for displaying

the answer count for each event type that has occurred. The Button

elements are used for submitting the answers or navigating back to

the Home page to restart the game. The Image elements are used for

displaying a bulb, a speaker, and a haptic indication.

Open the Result.xaml.cs file and replace the default generated code

with the following code:

using MemoryGame.App.Classes;

using System;

using Xamarin.Forms;

using Xamarin.Forms.Xaml;

namespace MemoryGame.App.Pages

{

 [XamlCompilation(XamlCompilationOptions.Compile)]

 public partial class Result : ContentPage

 {

 public static bool _answered = false;

 public Result()

 {

 InitializeComponent();

 ClearResult();

 }

 protected override void OnAppearing()

 {

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

186

 base.OnAppearing();

 ClearResult();

 NavigationPage.SetHasBackButton(this, false);

 }

 void ClearResult()

 {

 lblText.Text = string.Empty;

 lblBlinkCount.Text = string.Empty;

 lblBeepCount.Text = string.Empty;

 lblHapticCount.Text = string.Empty;

 pickerLight.SelectedIndex = 0;

 pickerSpeaker.SelectedIndex = 0;

 pickerHaptic.SelectedIndex = 0;

 btnSubmit.IsVisible = true;

 btnRetry.IsVisible = false;

 _answered = false;

 }

 bool CheckAnswer(int actualAnswer, int selectedAnswer)

 {

 if (selectedAnswer == actualAnswer)

 return true;

 else

 return false;

 }

 void Retry()

 {

 btnSubmit.IsVisible = false;

 btnRetry.IsVisible = true;

 }

 async void OnButtonClicked(object sender, EventArgs args)

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

187

 {

 if (pickerLight.SelectedIndex >= 0 &&

pickerSpeaker.SelectedIndex >= 0 && pickerHaptic.

SelectedIndex >= 0)

 {

 lblText.Text = "The actual answers are:";

 lblBlinkCount.Text = Home.

CurrentGameBlinkCount.ToString();

 lblBeepCount.Text = Home.

CurrentGameSoundCount.ToString();

 lblHapticCount.Text = Home.

CurrentGameHapticCount.ToString();

 int blinkCountAnswer = Convert.ToInt32

(pickerLight.Items[pickerLight.SelectedIndex]);

 int soundCountAnswer = Convert.ToInt32

(pickerSpeaker.Items[pickerSpeaker.SelectedIndex]);

 int hapticCountAnswer = Convert.ToInt32

(pickerHaptic.Items[pickerHaptic.SelectedIndex]);

 if (CheckAnswer(Home.CurrentGameBlinkCount,

blinkCountAnswer))

 if (CheckAnswer(Home.CurrentGameSoundCount,

soundCountAnswer))

 if (CheckAnswer(Home.CurrentGame

HapticCount,hapticCountAnswer))

 {

 _answered = true;

 Home.IncrementGameLevel();

 var isSynced = PlayerManager.Check

ScoreAndSync(Home.CurrentGameLevel);

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

188

 var answer = await App.Current.

MainPage.DisplayAlert("Congrats!",

$"You’ve got it all right and made

it to level {Home.CurrentGameLevel}.

Continue?", "Yes", "No");

 if (answer)

 await App._navPage.PopAsync();

 else

 Retry();

 }

 if (!_answered)

 {

 var isSynced = PlayerManager.

CheckScoreAndSync(Home.CurrentGameLevel);

 var answer = await App.Current.MainPage.

DisplayAlert("Game Over!", $"Your current

best is at level{Home.CurrentGameLevel}.

Retry?", "Yes", "No");

 if (answer)

 await App._navPage.PopAsync();

 else

 Retry();

 }

 }

 }

 void OnRetryButtonClicked(object sender, EventArgs args)

 {

 App._navPage.PopAsync();

 }

 }

}

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

189

The preceding code handles the logic for validating the answers

against the actual count of each event type occurred. If all answers are

correct, then it will prompt you with a message asking if you want to

proceed to the next level or not.

 Setting the Page Navigation
Now that we have the required pages set up, let’s declare them on the App

class to create a simple navigation with a default page.

Go ahead and open the App.xaml.cs file and replace the existing code

with the following code:

using MemoryGame.App.Pages;

using Xamarin.Forms;

using Xamarin.Forms.Xaml;

[assembly: XamlCompilation(XamlCompilationOptions.Compile)]

namespace MemoryGame.App

{

 public partial class App : Application

 {

 public static NavigationPage _navPage;

 public static Home _homePage;

 public static Result _resultPage;

 public static Register _registerPage;

 public App()

 {

 InitializeComponent();

 _homePage = new Home();

 _resultPage = new Result();

 _registerPage = new Register();

 _navPage = new NavigationPage(_registerPage);

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

190

 MainPage = _navPage;

 }

 protected override void OnStart()

 {

 // Handle when your app starts

 }

 protected override void OnSleep()

 {

 // Handle when your app sleeps

 }

 protected override void OnResume()

 {

 // Handle when your app resumes

 }

 }

}

The App class inherits the Application base class, which offers the

following features:

• A MainPage property, which is where to set the initial

page for the app.

• A persistent Properties dictionary to store simple

values across lifecycle state changes.

• A static Current property that contains a reference to

the current application object.

The code within the app class defines a public static NavigationPage

object and the three Pages that we’ve created in the previous section:

Register, Home, and Result. These objects are then initialized in the class

contractor with the default page set to the Register page. The MainPage

property on the application class sets the root page of the application.

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

191

For more information about the Xamarin.Forms app class, see
the following: https://docs.microsoft.com/en-us/xamarin/xamarin-
forms/app-fundamentals/application-class

 Summary of Files Added
Here’s what the MemoryGame.App project looks like after all the files are

added.

Figure 4-6. Summary of newly added files

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/application-class
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/application-class

192

 Implementing the Haptic and Sound
Services
Now it’s time for us to provide an actual implementation of each interface

created in previous sections of this chapter. Let’s start with the Xamain.

Android. Add a new folder called “Services” in the MemoryGame.App.
Android project and then create the following classes:

• HapticServer.cs

• SoundService.cs

 Xamarin.Android Haptic Service
Open HapticService.cs file and replace the default generated code with

the following code:

using Android.Content;

using Android.OS;

using Xamarin.Forms;

using MemoryGame.App.Droid.Services;

using MemoryGame.App.Services;

[assembly: Dependency(typeof(HapticService))]

namespace MemoryGame.App.Droid.Services

{

 public class HapticService : IHaptic

 {

 public HapticService() { }

 public void ActivateHaptic()

 {

 VibrationEffect effect = VibrationEffect.CreateOne

Shot(100, VibrationEffect.DefaultAmplitude);

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

193

 Vibrator vibrator = (Vibrator)global::Android.App.

Application.Context.GetSystemService

(Context.VibratorService);

 vibrator.Vibrate(effect);

 }

 }

}

The HapticService class implements the ActivateHaptic() method

of the IHaptic interface. The preceding code contains Android-specific

implementation for activating the device vibration.

 Xamarin.Android Sound Service
Open SoundService.cs file and replace the default generated code with

the following code:

using Xamarin.Forms;

using Android.Media;

using MemoryGame.App.Droid.Services;

using MemoryGame.App.Services;

[assembly: Dependency(typeof(SoundService))]

namespace MemoryGame.App.Droid.Services

{

 public class SoundService : ISound

 {

 public SoundService() { }

 private MediaPlayer _mediaPlayer;

 public bool PlayMp3File(string fileName)

 {

 _mediaPlayer = MediaPlayer.Create(Android.App.

 Application.Context, Resource.Raw.beep);

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

194

 _mediaPlayer.Start();

 return true;

 }

 public bool PlayWavFile(string fileName)

 {

 //TO DO: Own implementation here

 return true;

 }

 }

}

The SoundService class implements the PlayMp3File() method

of the ISound interface. The preceding code contains Android-specific

implementation for playing a media.

Now switch to the MemoryGame.App.iOS project. Add a new folder

called “Services” and then create the following classes:

• HapticServer.cs

• SoundService.cs

 Xamarin.iOS Haptic Service
Open the HapticService.cs file and replace the default generated code

with the following code:

using Xamarin.Forms;

using AudioToolbox;

using MemoryGame.App.iOS.Services;

using MemoryGame.App.Services;

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

195

[assembly: Dependency(typeof(HapticService))]

namespace MemoryGame.App.iOS.Services

{

 public class HapticService : IHaptic

 {

 public HapticService() { }

 public void ActivateHaptic()

 {

 SystemSound.Vibrate.PlaySystemSound();

 }

 }

}

The preceding code contains iOS-specific implementation

for activating device vibration. It uses the SystemSound.Vibrate.
PlaySystemSound() to vibrate the device in iOS.

 Xamarin.iOS Sound Service
Open the SoundService.cs file and replace the default generated code

with the following code:

using Xamarin.Forms;

using MemoryGame.App.iOS.Services;

using System.IO;

using Foundation;

using AVFoundation;

using MemoryGame.App.Services;

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

196

[assembly: Dependency(typeof(SoundService))]

namespace MemoryGame.App.iOS.Services

{

 public class SoundService : NSObject, ISound,

IAVAudioPlayerDelegate

 {

 public SoundService(){}

 public bool PlayWavFile(string fileName)

 {

 return true;

 }

 public bool PlayMp3File(string fileName)

 {

 var played = false;

 NSError error = null;

 AVAudioSession.SharedInstance().SetCategory

(AVAudioSession.CategoryPlayback, out error);

 string sFilePath = NSBundle.MainBundle.

PathForResource

(Path.GetFileNameWithoutExtension(fileName),

"mp3");

 var url = NSUrl.FromString(sFilePath);

 var _player = AVAudioPlayer.FromUrl(url);

 _player.Delegate = this;

 _player.Volume = 100f;

 played = _player.PrepareToPlay();

 _player.FinishedPlaying += (object sender,

AVStatusEventArgs e) => {

 _player = null;

 };

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

197

 played = _player.Play();

 return played;

 }

 }

}

The SoundService class implements the PlayMp3File() method

of the ISound interface. The preceding code contains iOS-specific

implementation for playing a media.

Note For ios, add the required images and sound file under the
resource folder.

 Setting Permissions
 Xamarin.Android
For Android, open the AndroidManifest.xml file as shown in the following

figure:

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

198

Then, add the following configuration:

<uses-permission android:name="android.permission.VIBRATE" />

<uses-permission android:name=" android.permission.ACCESS_

NETWORK_STATE" />

<uses-permission android:name=" android.permission.ACCESS_WIFI_

STATE" />

<uses-permission android:name="android.permission.INTERNET" />

 Xamarin.iOS
An iOS device doesn’t require any permissions. In Android, the system

seeks the user’s permission while the app is being installed. But iOS allows

you to go ahead with an installation, seeking permission when the user is

using a feature that requires specific permission.

Figure 4-7. The AndroidManifest.xml file

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

199

Note apple has made several enhancements to both security and
privacy in ios 10 (and greater) that will help the developer improve
the security of their apps and ensure the end user’s privacy. For
the new ios 10 privacy permission settings, see: https://blog.
xamarin.com/new-ios-10-privacy-permission-settings/

Chapter 4 Building MoBile appliCation with XaMarin.ForMs

https://blog.xamarin.com/new-ios-10-privacy-permission-settings/
https://blog.xamarin.com/new-ios-10-privacy-permission-settings/

201© Vincent Maverick S. Durano 2019
V. M. S. Durano, Understanding Game Application Development,
https://doi.org/10.1007/978-1-4842-4264-3_5

CHAPTER 5

Building a Simple
Real-Time
Leaderboard Web
App with ASP.NET
SignalR and MVC
Before we start implementing real-time functionality, let’s get to know

what ASP.NET SignalR and MVC are all about. Although we are not going

to fully utilize the features that the MVC framework offers, it is still nice to

have a basic understanding of how the MVC framework works.

 What ASP.NET MVC Is
ASP.NET MVC is part of the ASP.NET framework. The following figure will

give you a high-level look at where ASP.NET MVC resides within the ASP.NET

framework.

202

In the preceding figure, you see that ASP.NET MVC sits on top of

ASP.NET. ASP.NET MVC is a UI framework that enables a clean separation

of concerns and gives you full control over your markup.

To make it clearer, here’s how I view the high-level process of MVC:

Figure 5-1. The ASP.NET technologies

Figure 5-2. Request and response flow

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

203

Unlike in ASP.NET WebForms, in which requests go directly to a page

file (.ASPX), in MVC, when a user requests a page, it will first talk to the

Controller, process data when necessary, and return a Model to the View

for the user to see.

 The Model
Model is just a class that implements the logic for the application domain

data. Often, model objects retrieve and store model states in the database.

 The Controller
Just like models, Controller is also a class that handles the user

interaction. It will work with the model and ultimately select a view to

render in the browser.

 The View
As the name suggests, a View is the component that displays the

application’s UI; typically, this UI is created from the model data.

To put them up together, the M is for Model, which is typically where

the business objects, business layer, and data access layer will live. Note

that in typical layered architecture, your business layer and data access

layer should be in separate projects. The V is for View, which is what the

user sees. This could simply mean that any UI- and client-side-related

developments will live in the View, including HTML, CSS, and JavaScript.

The C is for the Controller, which orchestrates the flow of logic. For

example, if a user clicks a button that points to a specific URL, that request

is mapped to the controller action method that is responsible for handling

any logic required to service the request and return a response. This will

typically be a new view, or an update to the existing view.

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

204

To get started with ASP.NET MVC 5, I’d recommend you read
my series of article here: http://vmsdurano.com/building-web-
application-using-entity-framework-and-mvc-5-part-1/

 What ASP.NET SignalR Is
ASP.NET SignalR is a new library for ASP.NET developers that makes

developing real-time web functionality easy. SignalR allows bidirectional

communication between server and client. Servers can now push content

to connected clients instantly as it becomes available. SignalR supports

WebSockets and falls back to other compatible techniques for older

browsers.

SignalR can be used wherever a user is required to refresh a page in

order to see up-to-date data. It allows the server to logically “push” data

to the client. This is typically required for web-based dashboards and

monitoring tools, where information needs to be kept up to date at all

times without the user having to refresh the page. SignalR is a powerful,

high-level library that abstracts a lot of the complicated underlying

technologies in order to provide an easy way to transmit data between the

client and the server. SignalR manages the connections automatically and

allows data to be sent using either broadcasts or unicasts.

In SignalR, there are two distinct models for implementing client-

server communications:

• Persistent Connections are the base class with an

API for exposing a SignalR service over HTTP. They

are useful for when developers need direct access to

the low-level communication technology. Persistent

connections use a model similar to that of WCF.

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

http://vmsdurano.com/building-web-application-using-entity-framework-and-mvc-5-part-1/
http://vmsdurano.com/building-web-application-using-entity-framework-and-mvc-5-part-1/

205

• Hubs are built on top of persistent connections

and abstract most of the underlying complexity in

order to allow developers to call methods on both

the client and the server without worrying about the

implementation details. One great benefit of using

Hubs is that you get model binding and serialization

straight out of the box.

 Transport Protocols Selection
One of the great features about SignalR is that when a client doesn’t

support WebSockets, it automatically falls back to using older methods of

communication, as shown in the following figure:

Figure 5-3. SignalR communication flow

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

206

SignalR is quite flexible in terms of supporting a variety of transport

protocols. It uses the WebSocket transport when available, but falls back

to older transports when necessary. WebSocket requires at least Windows

Server 2012 or Windows 8, and .NET Framework 4.5 for server and at least

IE 10 for the client. If these requirements are not met, SignalR will attempt

to use other transports to make its connections.

The following are the available transport protocols:

• WebSockets

• Long Polling

• Server Sent Events

• Forever Frame

The default transport selection process goes like this:

 1. If the client/server doesn’t support WebSockets,

then it falls back to use Server Sent Events.

 2. If Server Sent Events isn’t available, then it falls

back to Forever Frame; if Forever Frame if isn’t

available, it falls back to Long Polling.

 Transport Protocol Overview
WebSocket is a full duplex protocol that uses http handshaking internally

and allows the stream of messages to flow on top of TCP. It supports

Google Chrome (> 16), Firefox (> 11), IE (> 10), and Win IIS (>8.0). In other

words, if both client and server support WebSockets, then this creates a

persistent connection between them, which can be used by either client

or server to send the data anytime. As such, this way is the most efficient,

takes the least memory, and shows the lowest latency. This is the most

preferred protocol for a SignalR application.

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

207

• Simplex Communication: It just spreads in one way

when one point just broadcasts while another point

just can listen without sending a message, such as

television and radio.

• Half Duplex: One point sends a message and at

that moment another point cannot send a message

and must wait until the first point finishes its

transmission; then it can send its message. It is just one

communication at a time, such as old wireless devices

like walkie-talkies and HTTP protocol.

• Full Duplex: Both points can send and receive

messages simultaneously; there is no need to wait until

the other point finishes its transmission. This is similar

to telephones and WebSocket protocol.

Server Sent Events (also known as Event Source): This is another

technique introduced with HTML5 that allows the server to push the updates

to the client whenever new data is available. This technology is used when

WebSocket is not supported. It is supported by most browsers except IE.

Forever Frame: This is part of the Comet model and uses a hidden

iframe in the browser to receive the data in an incremental manner from

the server. The server starts sending the data in a series of chunks even

without even knowing the complete length of the content. It is executed on

the client when the data is received.

AJAX Long Polling: This is the least preferred way in SignalR to set up

a communication between client and server. Also, it is the most expensive!

It is a part of the Comet model and as the name suggests, it keeps polling

the server to check for updates. The request that is sent to the server is

AJAX based, to minimize the resource usage and provide a better user

experience. But it’s still expensive because it keeps polling the server

whether there are any updates or not.

For more information, see www.asp.net/signalr

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

http://www.asp.net/signalr

208

 Create a New Web Application
Now that you have an idea of how SignalR transmits and persists data

across client and the server, it’s time for us to see that in action.

Let’s add a new ASP.NET web application project. Right-click the

Solution and then select Add ➤ New Project. On the left pane under

Visual C# ➤ Web, select ASP.NET Web Application (.NET Framework)

and name it “MemoryGame.Web” just like in the following figure:

Figure 5-4. Create a new ASP.NET web application project

Click OK and then select Empty. Tick the MVC option under the “Add

folders and core references for:” just like in the following figure:

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

209

Click OK to let Visual Studio generate the project for you.

 Integrating ASP.NET SignalR
Install Microsoft.Asp.Net.SignalR in your project via NuGet as shown the

following figure:

Figure 5-5. Create an empty ASP.NET MVC project

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

210

The latest stable version as of the time of writing is v2.3.0. Once

installed, you should be able to see them added under the references folder:

Figure 5-6. Install Microsoft.AspNet.SignalR NuGet package

Figure 5-7. ASP.NET SignalR references

The Microsoft.AspNet.SignalR.Core is responsible for pulling in the

server components and JavaScript client required to use SignalR in our

application. Microsoft.AspNet.SignalR.SystemWeb contains components

for using SignalR in applications hosted on System.Web.

Install Microsoft.AspNet.Web.Optimization and then add the

following code under View ➤ web.config:

<addnamespace="System.Web.Optimization"/>

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

211

 Adding a Middleware for SignalR
We need to create a middleware for SignalR so we can configure it for use

by creating an IApplicationBuilder extension method. Create a new class

at the root of the MemoryGame.Web project, name it “Startup.cs”, and

then replace the generated code with the following:

using Microsoft.Owin;

using Owin;

[assembly: OwinStartup(typeof(MemoryGame.Web.Startup))]

namespace MemoryGame.Web

{

 public class Startup

 {

 public void Configuration(IAppBuilder app)

 {

 app.MapSignalR();

 }

 }

}

The preceding configuration will add the SignalR services to the

pipeline and enable us to use ASP.NET SignalR real-time capabilities in our

application.

 Adding a Hub
Next is to add an ASP.NET SignalR Hub. Add a new class at the root of the

project and name it “LeaderboardHub.cs”. Replace the default generated

code with the following code:

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

212

using Microsoft.AspNet.SignalR;

namespace MemoryGame.Web

{

 public class LeaderboardHub : Hub

 {

 public static void Broadcast()

 {

 IHubContext context = GlobalHost

 .ConnectionManager

 . GetHubContext<LeaderboardHub>();

 context.Clients.All.displayLeaderBoard();

 }

 }

}

The LeaderboardHub inherits the Hub class and contains a static

class called Broadcast.

The Hub is the centerpiece of the SignalR. Similar to the concept of

Controller in ASP.NET MVC, a Hub is responsible for receiving input and

generating the output to the client.

To make it clearer, the following class:

public class LeaderboardHub : Hub

will generate the following JavaScript client proxy:

var hubProxy = $.connection.leaderboardHub;

By default, JavaScript clients refer to Hubs by using a camel-cased

version of the class name. SignalR automatically makes this change so that

JavaScript code can conform to JavaScript conventions. The preceding

example code would be referred to as leaderBoardHub in JavaScript code.

We’ll take a look at how we are going to invoke the Hub from our JavaScript

code later in this chapter.

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

213

The Broadcast() method creates an instance of the IHubContext

interface. IHubContext provides access to information about an IHub and

basically exposes two main properties, which are the Clients and Groups.

In this example, a connected client can call the Broadcast server method

and displayLeaderBoard client proxy method, and when it does, the data

received is broadcast to all connected clients, as shown in the following

figure:

Figure 5-8. SignalR client-to-server invocation and vice versa

SignalR handles connection management automatically and lets you

broadcast messages to all connected clients simultaneously, like a chat

room. You can also send messages to specific clients. The connection

between the client and server is persistent, unlike a classic HTTP

connection, which is re-established for each communication.

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

214

SignalR provides a simple API for creating server-to-client remote

procedure calls (RPC) that call JavaScript functions in client browsers (and

other client platforms) from server-side .NET code. SignalR also includes

API for connection management (for instance, connect and disconnect

events) and grouping connections.

 Adding an API Endpoint
At this point, the MemoryGame.API Web API server doesn’t have

access to the Hub. Since the MemoryGame.API application was created

separately and will be hosted in a different server with different URL/ports,

then we need to create an API for exposing a public endpoint to that server

to communicate with SignalR.

Let’s go ahead and add a new Web API controller class. Right-click the

Controllers folder and then select Add ➤ Web API Controller class (v2.1)

as shown in the following figure:

Figure 5-9. Adding a new Web API controller class

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

215

On the next screen, name the class “LeaderBoardAppController”, just

like in the following figure:

Figure 5-10. Setting a controller name

Click OK and then replace the default generated code with the

following code:

using System.Web.Http;

namespace MemoryGame.Web.Controllers

{

 [RoutePrefix("api/ranking")]

 public class LeaderBoardAppController : ApiController

 {

 [HttpPost,Route("")]

 public void Broadcast()

 {

 LeaderboardHub.Broadcast();

 }

 }

}

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

216

The LeaderBoardAppController class derives the ApiController

class, which enables it to become a Web API controller rather an MVC

controller. This class uses the RoutePrefix attribute to define a common

route prefix that is set to “api/ranking”.

The Broadcast() method class calls the static Broadcast method of

the LeaderboardHub class that we created earlier. Notice that the method

is decorated with the [HttpPost] and [Route] attributes. This signifies that

this method can be invoked only on a POST Http request and routes to “api/

ranking”. If you remember, setting the Route attribute to empty ([Route(“”)])

automatically maps to the base route defined at the class level.

Note You can also define a client proxy method outside the Hub via
IHubContext. For example, in your Web API controller action, you can
do something like in the following code:

[HttpPost, Route("")]

public void Broadcast()

{

 IHubContext context = GlobalHost

 .ConnectionManager

 .GetHubContext<LeaderboardHub>();

 context.Clients.All.displayLeaderBoard();

}

Note If you want to use Hubs API for SignalR version 2 in .NET
clients, such as Windows Store (WinRT), WPF, Silverlight, and console
applications, then see https://docs.microsoft.com/en-us/
aspnet/signalr/overview/guide-to-the-api/hubs-api-
guide-net-client

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

https://docs.microsoft.com/en-us/aspnet/signalr/overview/guide-to-the-api/hubs-api-guide-net-client
https://docs.microsoft.com/en-us/aspnet/signalr/overview/guide-to-the-api/hubs-api-guide-net-client
https://docs.microsoft.com/en-us/aspnet/signalr/overview/guide-to-the-api/hubs-api-guide-net-client

217

 Configure Web API Routing
The next thing that we are going to do is to configure Web API routing

within an ASP.NET MVC application.

Add a new class under the App_Start folder of the MemoryGame.Web

project. Name the class “WebApiConfig.cs” and copy the following code:

using System.Web.Http;

public static class WebApiConfig

{

 public static void Register(HttpConfiguration config)

 {

 // Web API routes

 config.MapHttpAttributeRoutes();

 }

}

The preceding code enables attribute-based routing for Web API.

The final step is to register the WebApiConfig class in Global.asax. In

the Application_Start method of the file Global.asax.cs file, add a call to

GlobalConfiguration.Configure() method; be careful to place it before

the call to RouteConfig.RegisterRoutes(RouteTable.Routes):

using System.Web.Http;

using System.Web.Mvc;

using System.Web.Routing;

namespace MemoryGame.Web

{

 public class MvcApplication : System.Web.HttpApplication

 {

 protected void Application_Start()

 {

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

218

 AreaRegistration.RegisterAllAreas();

 GlobalConfiguration.Configure(WebApiConfig.

Register);

 RouteConfig.RegisterRoutes(RouteTable.Routes);

 }

 }

}

Again, take note of the registration sequence in your code or
the routing won’t work properly and you will end up getting an
unexpected behavior.

 Enabling API Endpoint-to-Endpoint
Communication
Now that we’re done creating an API endpoint for invoking SignalR

communication, we need to modify the UpdateScore() method of the

GameController class in the MemoryGame.API application. Head over to

MemoryGame.API project and drill down to API ➤ GameController.cs

file, as shown in the following figure:

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

219

Double-click the GameController.cs file to open it and then replace

the UpdateScore() method with this code:

[HttpPost, Route("score")]

public void UpdateScore(Rank user)

{

 _gm.UpdateCurrentBest(user);

 HttpClient client = new HttpClient();

 var uri = new Uri($"http://localhost:57865/api/ranking");

 client.PostAsync(uri, null).Wait();

}

What we did there is to add the lines of code for invoking the API endpoint

that we’ve created in the previous section using the HttpClient object.

Figure 5-11. Navigating to the GameContoller class

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

220

The preceding code is responsible for updating data in the database

and automatically broadcasts a trigger to SignalR to display real-time live

updates in the page.

Note You may need to change the value of Uri with the actual
URL at which your application is running. For this example,
localhost:57865 is the generated port number generated by Visual
Studio 2017 when running the application in debug mode.

 Adding an MVC Controller
Let’s add a new MVC 5 controller file. To do that, right-click the

Controllers folder and then select Add ➤ Controllers.

Select MVC 5 Controller – Empty and then click Add.

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

221

On the next screen, set the name as “HomeController”. Click Add and

it should generate the following code:

using System.Web.Mvc;

namespace MemoryGame.Web.Controllers

{

 public class HomeController : Controller

 {

 public ActionResult Index()

 {

 return View();

 }

 }

}

The preceding code is just an action method that throws an Index

View. For this particular example, we don’t really need to build the UI in

MVC with Razor, as we will be using only JavaScript and plain HTML to

generate the UI. The MVC here is used only to launch a View, and that’s it.

 Adding a View
Add a new View in the “Views/Home” folder and name it “Index”. Replace

the generated code with the following code:

<div id="body">

 <section class="featured">

 <div class="content-wrapper">

 <hgroup class="title">

 <h1>Leader Board</h1>

 </hgroup>

 </div>

 </section>

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

222

 <section class="content-wrapper main-content clear-fix">

 <h1>

 Top Challengers

 <imgsrc="~/Images/goals_256.png"style="width:40px;

height:60px;"/>

 </h1>

 <table id="tblRank" class="table table-striped table-

condensed table-hover"></table>

 </section>

</div>

@section scripts{

 @Scripts.Render("~/Scripts/jquery.signalR-2.3.0.min.js")

 @Scripts.Render("~/signalr/hubs")

 <script type="text/javascript">

 $(function () {

 var hubProxy = $.connection.leaderboardHub;

 hubProxy.client.displayLeaderBoard = function () {

 LoadResult();

 };

 $.connection.hub.start();

 LoadResult();

 });

 function LoadResult() {

 var $tbl = $("#tblRank");

 $.ajax({

 url: 'http://192.168.0.14:45455/api/game/players',

 type: 'GET',

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

223

 datatype: 'json',

 success: function (data) {

 if (data.length > 0) {

 $tbl.empty();

 $tbl.append('<thead><tr><th>Rank</th>'

 + '<th></th>'

 + '<th></th>'

 + '<th>Best</th>'

 + '<th>Achieved</th>'

 + '</tr></thead > ');

 var rows = [];

 for (var i = 0; i < data.length; i++) {

 rows.push('<tbody><tr><td>'

 + (i + 1).toString() + '</td><td>'

 + data[i].FirstName + '</td><td>'

 + data[i].LastName + '</td><td>'

 + data[i].Best + '</td><td>'

 + data[i].DateAchieved

 + '</td></tr></tbody>');

 }

 $tbl.append(rows.join(“));

 }

 }

 });

 }

 </script>

}

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

224

Take note of the sequence for adding the client script references:

• jQuery

• jQuery.signalR

• /signalr/hub

jQuery should be added first, then the SignalR Core JavaScript and

finally the SignalR Hub script.

The reference to the SignalR-generated proxy is dynamically generated

JavaScript code, not a physical file. SignalR creates the JavaScript code for

the proxy on the fly and serves it to the client in response to the “/signalr/

hubs” URL.

Again, take note of the preceding script’s order sequence reference;
otherwise, SignalR client will not work.

For more information, see https://docs.microsoft.com/en-us/

aspnet/signalr/overview/guide-to-the-api/hubs-api-guide-

javascript-client

Let’s take a look at what we did there by breaking the code into

sections.

The LoadResult() function uses a jQuery AJAX to invoke a Web

API call through AJAX GET request. If there’s any data from the

response, it will generate an HTML by looping through the rows. The

LoadResult() function will be invoked when the page is loaded or when

the displayLeaderboard() client proxy method from the Hub is invoked.

By subscribing to the Hub, ASP.NET SignalR will do the entire complex

plumbing for us to do real-time updates without any extra work needed in

our side. Thanks, SignalR!

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

https://docs.microsoft.com/en-us/aspnet/signalr/overview/guide-to-the-api/hubs-api-guide-javascript-client
https://docs.microsoft.com/en-us/aspnet/signalr/overview/guide-to-the-api/hubs-api-guide-javascript-client
https://docs.microsoft.com/en-us/aspnet/signalr/overview/guide-to-the-api/hubs-api-guide-javascript-client

225

 Output
Here’s the final output when you deploy and run the project:

The preceding page uses SignalR Hub client-server communication

to automatically update the data without refreshing the page once a user

from the mobile app syncs their information and scores.

Figure 5-12. Real-time leaderboard page

CHAPTER 5 BUILDING A SIMPLE REAL-TIME LEADERBOARD WEB APP WITH ASP.NET
SIGNALR AND MVC

227© Vincent Maverick S. Durano 2019
V. M. S. Durano, Understanding Game Application Development,
https://doi.org/10.1007/978-1-4842-4264-3_6

CHAPTER 6

Deployment and
Testing
This chapter discusses how to test and deploy our Xamarin.Android and

Xamarin.iOS apps in platform-specific device emulators to simulate

the process. During the development stage, it is required to test the

functionality of your applications. Visual Studio 2017 is equipped with

built-in device emulators to test your application without having the need

to use real devices, although it requires a few extra steps to simulate your

app in Mac. As long as your machine is properly configured, it should be

easy enough to test out your applications in Visual Studio.

Since the mobile application relies on API endpoints to communicate

with the data from the database, then the API endpoints should be publicly

accessible. Unfortunately, emulators do not have direct access to localhost.

This means that your Web API application project should be hosted in a

public-facing server or in the cloud, such as with the Azure web app, so

virtual device emulators can consume the API endpoints. However, going

to that approach to hosting the API publicly can be a big time-waster if we

are still at the early stages of the development. This is because any type of

change can happen during this stage and we don’t want to always push

changes to the public-facing serve, plus there’s no way for you to debug

your code and hit a breakpoint once your application is hosted publicly

on a different server or cloud. You may end up relying on your application

logs to troubleshoot any issues, which can be a time-consuming pain.

228

To overcome this hurdle, we will use a freely available plug-in or tool

to test the application without needing to deploy it publicly on a different

staging server or cloud.

 Using the Conveyor Plug-in for Visual
Studio 2017
Luckily, as mentioned, there’s an available plug-in that we can use to

access a local hosted web application from various devices emulators. The

plug-in is called Conveyor by Keyoti.

 What Is Conveyor?
According to the documentation, Conveyor is used to

• Open up IIS Express to allow access over your local

network (e.g., access from phones, tablets, and other

devices).

• Tunnel a domain name to your machine, so anyone

on the web can access your web development project

through their browser.

• Fix most 400 Bad Request errors coming from IIS

Express.

For more information about this cool plug-in, see https://keyoti.

com/blog/open-up-visual-studio-web-projects-for-access-over-

the-internet-using-conveyor/

Chapter 6 Deployment anD testing

https://keyoti.com/blog/open-up-visual-studio-web-projects-for-access-over-the-internet-using-conveyor/
https://keyoti.com/blog/open-up-visual-studio-web-projects-for-access-over-the-internet-using-conveyor/
https://keyoti.com/blog/open-up-visual-studio-web-projects-for-access-over-the-internet-using-conveyor/

229

 Install Conveyor
Let’s go ahead and install the Conveyor plug-in by navigating to the

Tools menu ➤ Extensions and Updates. On the search bar, type the word

“conveyor”; the result will be something like this:

Click Download. You may need close Visual Studio to continue the

installation, so make sure to save your work before attempting to install

this plug-in.

Figure 6-1. Install Conveyor by Keyoti plug-in

Chapter 6 Deployment anD testing

230

Once the plug-in is ready to install, it should present you with the

following dialog:

Figure 6-2. VSIX Installer license terms agreement

Chapter 6 Deployment anD testing

231

Click Modify to start the installation. If you are prompted as shown in

the following figure, then just click the End Tasks button to close the listed

processes.

Figure 6-3. End existing running tasks

Chapter 6 Deployment anD testing

232

After that, it should then continue the installation as shown in the

following figure:

Figure 6-4. Modifying Visual Studio 2017 configuration

Chapter 6 Deployment anD testing

233

When the installation is done, the following information should be

displayed:

Figure 6-5. Modifications complete

Click Close and then follow the next steps to add an inbound firewall

rule, allowing access to the TCP port given in the remote URL:

• Navigate to the Windows Search bar and type WF.msc.

• Click “Inbound Rules” on the left pane.

• Click “New Rules” on the right pane.

• Choose “Port” in the new dialog, then click “Next”.

• Select TCP, enter port 45455 from the Remote URL

next to “Specific local ports”, and then click “Next”.

• Next, and Next (you may want to disable ‘Public’),

give it a name like ‘Conveyor: WebDev Server Access

Enabled’.

• Click Finish.

Chapter 6 Deployment anD testing

234

Now, open Visual Studio 2017 and set MemoryGame.API as the

Startup Project. Do a clean and the rebuild, then run the application. It

should show the Conveyor window with some information including the

remote URL, just like in the following figure:

Figure 6-6. Conveyor UI

Using the generated remote URL, we can now easily test the mobile

application’s whole process from different device emulators. All we need

to do now is replace the APIUri value from the GameAPI class with the

remote URL value.

Chapter 6 Deployment anD testing

235

Copy the Remote URL value and stop Visual Studio debugging.

Navigate to MemoryGame.App project and open the GameAPI class

under the REST folder. Replace the value of the APIUri variable with the

value of the remote URL you copied earlier. In this example, the value of

APIUri would now become this:

privateconststring APIUri = "http://192.168.0.14:45455/api/

game/players";

 Using SharpProxy
Another option that you can use to test and debug your mobile

applications inside a simulator is a tool called SharpProxy. Here’s the

definition taken from the documentation (https://github.com/jocull/

SharpProxy):

SharpProxy is a simple proxy server developed with the intent of
being able to open up local ASP.NET development servers. This allows
you to test, hit breakpoints, and generally do development by using
other machines and mobile devices. Simply enter the local port number
of your .NET development server and map it with an external port to
host on.

Based on the preceding description, it seems like using SharpProxy is

the easiest way to test and debug the mobile application without doing a

lot of configuration. Let’s see how it does in action by following a few steps:

• Download SharpProxy from https://github.com/

jocull/SharpProxy

• Unzipp the file, and then run the SharpProxy project;

it should display the following screen:

Chapter 6 Deployment anD testing

https://github.com/jocull/SharpProxy
https://github.com/jocull/SharpProxy
https://github.com/jocull/SharpProxy
https://github.com/jocull/SharpProxy

236

• Navigate to Visual Studio, right-click MemoryGame.
API on the project, and then select Properties. Click

the web item from the left pane and you should see

something like this:

Figure 6-7. SharpProxy UI

Chapter 6 Deployment anD testing

237

• The Project Url field from the preceding figure

indicates the local URL where the API should run in

debug mode. Take the 56393 value from the URL.

• Enter the 56393 port number in the Internal Port field

of the SharpProxy UI.

• Copy the IP Address generated from the SharpProxy

and the External Port number. For this example, the

values should be 192.168.0.14 for the IP address and

5000 for the external port.

Figure 6-8. MemoryGame.API property configuration window

Chapter 6 Deployment anD testing

238

• Now, when your Android or iOS app is running in the

emulator, you can simply reference the following URL

to access your API: http://192.168.0.14:5000

• Navigate to the MemoryGame.App project and open

the GameAPI class under the REST folder. Replace the

value of the APIUri variable with the following:

privateconststring APIUri = "http://192.168.0.14:5000/

api/game/players"

Your Xamarin.Android and Xamarin.iOS applications should now be

able to access the Web API endpoints.

 Simulating the Application’s Process
At this point, we are not ready to test our applications locally. Since

the application is composed of many projects and the ASP.NET.MVC

application also relies on our Web API application, we need to make the

Web API application accessible when testing the real-time leaderboard

page too. Now, you might be asking yourself how to run them altogether

at once. Typically, we would host or deploy both projects in the local IIS

web server to be able to connect between projects. Luckily, one of the cool

features of Visual Studio 2017 is to enable multiple startup projects. This

means we could run both our Web API and MVC applications as well as

the mobile application together within Visual Studio and be able to test

them right away. All you need to do is

• Right-click the Solution

• Select Set Startup Projects

• Select the Multiple Startup Projects radio button

Chapter 6 Deployment anD testing

239

• Select “Start” as the action for MemoryGame.API,

MemoryGame.Web, MemoryGame.App.Android,

and MemoryGame.App.iOS projects as shown in the

following figure:

Figure 6-9. Set multiple startup projects

• Click Apply and then OK

Now Build and press Ctrl + 5 to run all applications simultaneously.

Chapter 6 Deployment anD testing

240

 Android
Here are screenshots of the different views of the Xamarin.Android

application that are running within an Android device emulator:

Figure 6-10. Android device emulator outputs

Chapter 6 Deployment anD testing

241

 Next Steps
Simulators are a good place to start deploying, testing, and debugging

an application at the early stage of development. However, users will not

consume the final application in a simulator, so applications should be

Figure 6-11. iPhone device simulator outputs

 iOS
Here are screenshots of the different view scenarios of the Xamarin.iOS

application that are running within an iPhone device emulator:

Chapter 6 Deployment anD testing

242

tested on real devices early and often. For more information about Android

and iOS device provisioning, see the following:

• https://docs.microsoft.com/en-us/xamarin/ios/

get-started/installation/device-provisioning/

• https://docs.microsoft.com/en-us/xamarin/

android/get-started/installation/set-up-device-

for-development

 Output
Just to give you proof that this application really runs on a real device,

here’s an actual shot of the output when deploying and running the app:

Figure 6-12. Live output

Chapter 6 Deployment anD testing

https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/device-provisioning/
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/device-provisioning/
https://docs.microsoft.com/en-us/xamarin/android/get-started/installation/set-up-device-for-development
https://docs.microsoft.com/en-us/xamarin/android/get-started/installation/set-up-device-for-development
https://docs.microsoft.com/en-us/xamarin/android/get-started/installation/set-up-device-for-development

243© Vincent Maverick S. Durano 2019
V. M. S. Durano, Understanding Game Application Development,
https://doi.org/10.1007/978-1-4842-4264-3_7

CHAPTER 7

Pushing Your Code
to GitHub
In software development, securing your code is always a top priority.

Unexpected circumstances can occur with your development machine,

and of course, you don’t want to lose all the hard work and effort that

you put in building the software application. Even if you’re just building

a simple prototype and working alone for a project, you never know

when more people might be brought onto the project. Typically, when

developing an app, here’s a common approach:

• You’re working with some new code to get it to work

• You don’t want to break your existing code, so you copy

your current code to another folder (Folder A) and

continue working in Folder B

• If you make a mistake, you just delete Folder B and

resume with Folder A

This approach is the idea behind version control. Version control is a

process that lets you keep checkpoints of your code so that you can refer

back to them if needed.

244

Git is a widely used version control system used to manage code. Code

managed with Git is called a Git repository. Also, repos allow you to roll

back when you accidentally add something that doesn’t work.

This chapter talks about how to push software source code to GitHub.

GitHub is a popular hosting service for source code repositories (Git

Repo). Here’s a brief definition of GitHub from the documentation.

GitHub Inc. is a web-based hosting service for version control using

Git. It is mostly used for computer code. It offers all of the distributed

version control and source code management (SCM) functionality of

Git as well as adding its own features. It provides access control and

several collaboration features such as bug tracking, feature requests, task

management, and wikis for every project.

Microsoft announced that it reached an agreement to acquire GitHub

in June 2018 and closed the purchase at the end of the same year.

 Using Visual Studio to Push Source Code
in GitHub
The first thing you need to be able to push your code in GitHub is a GitHub

account. If don’t have one, then you can register here: https://github.

com/join?source=header

Chapter 7 pushing Your Code to github

https://github.com/join?source=header
https://github.com/join?source=header

245

 Download GitHub Extension for Visual Studio
In Visual Studio, select Tools ➤ Extensions and Updates. Click the Online

tab in the left pane, and it should present you something like this:

Figure 7-1. Adding GitHub extension for Visual Studio

Chapter 7 pushing Your Code to github

246

Click Download. You may need to reboot Visual Studio to proceed

with the installation of the GitHub extension. After a reboot, you will be

prompted with the following screen:

Figure 7-2. VSIX Installer license terms agreement

Chapter 7 pushing Your Code to github

247

Click Modify. You may also be required to end some processes before

starting the modification.

 Publishing Your Code

After the installation, navigate to the Team Explorer panel as shown in the

following figure:

Figure 7-3. Connecting to GitHub

Chapter 7 pushing Your Code to github

248

Click Connect, and you should be presented with the GitHub login

screen:

Figure 7-4. GitHub login screen

Chapter 7 pushing Your Code to github

249

Enter your GitHub account credentials to continue.

On the Solution Explorer, right-click the project Solution and select

Add Solution to Source Control just like in the following figure:

Figure 7-5. Adding solution to source control

Chapter 7 pushing Your Code to github

250

This action creates a local git repository with .gitattributes and

.gitignore files, as shown in the following figure:

.gitignore ignores untracked files—those that haven’t been added

with git add; .gitattributes are for tracked files. That is, one file could be

processed with .gitattributes and two others could be ignored (just an

example).

For more information about customizing how changed files appear
on github, see https://help.github.com/articles/
customizing-how-changed-files-appear-on-github/

Switch back to the Team Explorer pane, and you will see a local Git

Repository added as shown in the following figure:

Figure 7-6. Local Git repositories

Chapter 7 pushing Your Code to github

https://help.github.com/articles/customizing-how-changed-files-appear-on-github/
https://help.github.com/articles/customizing-how-changed-files-appear-on-github/

251

Double-click the MemoryGame.App repo, and it should present you

with the following screen:

Figure 7-7. Sync code

Chapter 7 pushing Your Code to github

252

Click Sync and it should present you with the following screen:

Figure 7-8. Publish to GitHub

Chapter 7 pushing Your Code to github

253

Click Publish to GitHub. On the next screen, enter a Name and

Description for your repository just like in the following figure:

Figure 7-9. Commit publish

Chapter 7 pushing Your Code to github

254

Click Publish.

When successful, it should create an empty GitHub repo to your

GitHub account portal as shown in the following figure:

Figure 7-10. Repository created successfully

Chapter 7 pushing Your Code to github

255

Click the Changes item and you should be presented with this:

Figure 7-11. Enter a commit message

Chapter 7 pushing Your Code to github

256

Enter a message for your first commit and then select Commit All and
Push as shown in the following figure.

Figure 7-12. Commit all and push command

This command stores all your changes locally and pushes them to

your GitHub remote repository URL. The following figure shows when a

successful commit and push is done.

Chapter 7 pushing Your Code to github

257

To verify that your changes were really pushed to your GitHub

repository account, you can navigate to the GitHub repository URL

generated from the previous step. For this example, it generates this

remote URL:

https://github.com/proudmonkey/Apress-Game-Development-Xamarin.

Forms-ASPNET

Figure 7-13. Source code successful pushed to GitHub

Chapter 7 pushing Your Code to github

258

Here’s a screenshot of the source code repository published on GitHub:

For more information about using github, see https://guides.
github.com/activities/hello-world/

 GitHub Repository and Source Code
You can view and fork the source code here: https://github.com/

proudmonkey/Apress-Game-Development-Xamarin.Forms-ASPNET

Figure 7-14. GitHub public source code repository

Chapter 7 pushing Your Code to github

https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/
https://github.com/proudmonkey/Apress-Game-Development-Xamarin.Forms-ASPNET
https://github.com/proudmonkey/Apress-Game-Development-Xamarin.Forms-ASPNET

259

 References
Feel free to read more about the topics covered in this book by going

through the following references:

• https://en.wikipedia.org/wiki/Working_memory

• https://docs.microsoft.com/en-us/aspnet/web-

api/overview/security/enabling-cross-origin-

requests-in-web-api

• https://docs.microsoft.com/en-us/aspnet/

signalr/overview/guide-to-the-api/hubs-api-

guide-server

• https://msdn.microsoft.com/en-us/library/

aa937723(v=vs.113).aspx

• www.asp.net/signalr

• https://docs.microsoft.com/en-us/aspnet/

signalr/overview/guide-to-the-api/hubs-api-

guide-javascript-client

• https://docs.microsoft.com/en-us/visualstudio/

install/install-visual-studio?view=vs-2017

• https://en.wikipedia.org/wiki/Microsoft_SQL_

Server

• https://developer.telerik.com/topics/mobile-

development/what-is-xamarin-forms/

• https://docs.microsoft.com/en-us/ef/ef6/

• https://msdn.microsoft.com/en-us/library/

hh833994(v=vs.108).aspx

Chapter 7 pushing Your Code to github

https://en.wikipedia.org/wiki/Working_memory
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/enabling-cross-origin-requests-in-web-api
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/enabling-cross-origin-requests-in-web-api
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/enabling-cross-origin-requests-in-web-api
https://docs.microsoft.com/en-us/aspnet/signalr/overview/guide-to-the-api/hubs-api-guide-server
https://docs.microsoft.com/en-us/aspnet/signalr/overview/guide-to-the-api/hubs-api-guide-server
https://docs.microsoft.com/en-us/aspnet/signalr/overview/guide-to-the-api/hubs-api-guide-server
https://msdn.microsoft.com/en-us/library/aa937723(v=vs.113).aspx
https://msdn.microsoft.com/en-us/library/aa937723(v=vs.113).aspx
http://www.asp.net/signalr
https://docs.microsoft.com/en-us/aspnet/signalr/overview/guide-to-the-api/hubs-api-guide-javascript-client
https://docs.microsoft.com/en-us/aspnet/signalr/overview/guide-to-the-api/hubs-api-guide-javascript-client
https://docs.microsoft.com/en-us/aspnet/signalr/overview/guide-to-the-api/hubs-api-guide-javascript-client
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio?view=vs-2017
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio?view=vs-2017
https://en.wikipedia.org/wiki/Microsoft_SQL_Server
https://en.wikipedia.org/wiki/Microsoft_SQL_Server
https://developer.telerik.com/topics/mobile-development/what-is-xamarin-forms/
https://developer.telerik.com/topics/mobile-development/what-is-xamarin-forms/
https://docs.microsoft.com/en-us/ef/ef6/
https://msdn.microsoft.com/en-us/library/hh833994(v=vs.108).aspx
https://msdn.microsoft.com/en-us/library/hh833994(v=vs.108).aspx

260

• https://msdn.microsoft.com/en-us/library/

dd381412(v=vs.108).aspx

• https://blogs.msdn.microsoft.com/

dotnet/2016/09/26/introducing-net-standard/

• https://docs.microsoft.com/en-us/xamarin/cross-

platform/app-fundamentals/pcl?tabs=windows

• https://docs.microsoft.com/en-us/sql/ssms/

download-sql-server-management-studio-

ssms?view=sql-server-2017

• https://montemagno.com/setting-up-vs-2017-for-

xamarin-dev/

• https://docs.microsoft.com/en-us/xamarin/ios/

get-started/installation/windows/connecting-to-

mac/troubleshooting

• https://docs.microsoft.com/en-us/xamarin/ios/

get-started/installation/windows/connecting-to-

mac/

• https://docs.microsoft.com/en-us/visualstudio/

modeling/code-generation-and-t4-text-

templates?view=vs-2017

• https://docs.microsoft.com/en-us/ef/ef6/

fundamentals/working-with-dbcontext

• https://docs.microsoft.com/en-us/dotnet/csharp/

linq/

• https://docs.microsoft.com/en-us/dotnet/csharp/

programming-guide/concepts/linq/basic-linq-

query-operations

Chapter 7 pushing Your Code to github

https://msdn.microsoft.com/en-us/library/dd381412(v=vs.108).aspx
https://msdn.microsoft.com/en-us/library/dd381412(v=vs.108).aspx
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://blogs.msdn.microsoft.com/dotnet/2016/09/26/introducing-net-standard/
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/pcl?tabs=windows
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/pcl?tabs=windows
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://montemagno.com/setting-up-vs-2017-for-xamarin-dev/
https://montemagno.com/setting-up-vs-2017-for-xamarin-dev/
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/troubleshooting
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/troubleshooting
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/troubleshooting
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/
https://docs.microsoft.com/en-us/visualstudio/modeling/code-generation-and-t4-text-templates?view=vs-2017
https://docs.microsoft.com/en-us/visualstudio/modeling/code-generation-and-t4-text-templates?view=vs-2017
https://docs.microsoft.com/en-us/visualstudio/modeling/code-generation-and-t4-text-templates?view=vs-2017
https://docs.microsoft.com/en-us/ef/ef6/fundamentals/working-with-dbcontext
https://docs.microsoft.com/en-us/ef/ef6/fundamentals/working-with-dbcontext
https://docs.microsoft.com/en-us/dotnet/csharp/linq/
https://docs.microsoft.com/en-us/dotnet/csharp/linq/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/basic-linq-query-operations

261

• https://docs.microsoft.com/en-us/xamarin/

xamarin-forms/xaml/xaml-basics/

• https://docs.microsoft.com/en-us/xamarin/

xamarin-forms/app-fundamentals/navigation/

• https://docs.microsoft.com/en-us/aspnet/

signalr/overview/getting-started/introduction-

to-signalr

• https://docs.microsoft.com/en-us/aspnet/web-

api/overview/web-api-routing-and-actions/

attribute-routing-in-web-api-2

• http://vmsdurano.com/asp-net-core-and-web-api-

a-custom-wrapper-for-managing-exceptions-and-

consistent-responses/

• https://docs.microsoft.com/en-us/aspnet/web-

api/overview/security/enabling-cross-origin-

requests-in-web-api

• https://docs.microsoft.com/en-us/dotnet/csharp/

programming-guide/statements-expressions-

operators/expression-bodied-members

• https://docs.microsoft.com/en-us/aspnet/web-

api/overview/advanced/calling-a-web-api-from-a-

net-client

• https://docs.microsoft.com/en-us/dotnet/csharp/

programming-guide/concepts/async/

• www.infragistics.com/community/blogs/b/

brijmishra/posts/building-real-time-

application-with-signalr-part-1

Chapter 7 pushing Your Code to github

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/xaml/xaml-basics/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/xaml/xaml-basics/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/navigation/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/navigation/
https://docs.microsoft.com/en-us/aspnet/signalr/overview/getting-started/introduction-to-signalr
https://docs.microsoft.com/en-us/aspnet/signalr/overview/getting-started/introduction-to-signalr
https://docs.microsoft.com/en-us/aspnet/signalr/overview/getting-started/introduction-to-signalr
https://docs.microsoft.com/en-us/aspnet/web-api/overview/web-api-routing-and-actions/attribute-routing-in-web-api-2
https://docs.microsoft.com/en-us/aspnet/web-api/overview/web-api-routing-and-actions/attribute-routing-in-web-api-2
https://docs.microsoft.com/en-us/aspnet/web-api/overview/web-api-routing-and-actions/attribute-routing-in-web-api-2
http://vmsdurano.com/asp-net-core-and-web-api-a-custom-wrapper-for-managing-exceptions-and-consistent-responses/
http://vmsdurano.com/asp-net-core-and-web-api-a-custom-wrapper-for-managing-exceptions-and-consistent-responses/
http://vmsdurano.com/asp-net-core-and-web-api-a-custom-wrapper-for-managing-exceptions-and-consistent-responses/
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/enabling-cross-origin-requests-in-web-api
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/enabling-cross-origin-requests-in-web-api
https://docs.microsoft.com/en-us/aspnet/web-api/overview/security/enabling-cross-origin-requests-in-web-api
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/expression-bodied-members
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/expression-bodied-members
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/expression-bodied-members
https://docs.microsoft.com/en-us/aspnet/web-api/overview/advanced/calling-a-web-api-from-a-net-client
https://docs.microsoft.com/en-us/aspnet/web-api/overview/advanced/calling-a-web-api-from-a-net-client
https://docs.microsoft.com/en-us/aspnet/web-api/overview/advanced/calling-a-web-api-from-a-net-client
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
http://www.infragistics.com/community/blogs/b/brijmishra/posts/building-real-time-application-with-signalr-part-1
http://www.infragistics.com/community/blogs/b/brijmishra/posts/building-real-time-application-with-signalr-part-1
http://www.infragistics.com/community/blogs/b/brijmishra/posts/building-real-time-application-with-signalr-part-1

262

• www.red-gate.com/simple-talk/dotnet/asp-net/an-

introduction-to-real-time-communication-with-

signalr/

• https://help.github.com/articles/customizing-

how-changed-files-appear-on-github/

Chapter 7 pushing Your Code to github

https://www.red-gate.com/simple-talk/dotnet/asp-net/an-introduction-to-real-time-communication-with-signalr/
https://www.red-gate.com/simple-talk/dotnet/asp-net/an-introduction-to-real-time-communication-with-signalr/
https://www.red-gate.com/simple-talk/dotnet/asp-net/an-introduction-to-real-time-communication-with-signalr/
https://help.github.com/articles/customizing-how-changed-files-appear-on-github/
https://help.github.com/articles/customizing-how-changed-files-appear-on-github/

263© Vincent Maverick S. Durano 2019
V. M. S. Durano, Understanding Game Application Development,
https://doi.org/10.1007/978-1-4842-4264-3

Index

A
ActivateHaptic(), 113
AddScore() method, 103
Android device emulator, 240
AndroidManifest.xml file, 198
API endpoint

Broadcast() method, 216
client script references, 224
controller class, 214–215
GameController class, 218–219
GlobalConfiguration.

Configure() method, 217
LoadResult() function, 224
MVC controller, 220–221
routing, 217
view, 221–222

AppDelegate.cs, 45
Application process flow

API server, 29
mobile app, 28–29
web app, 30

App.xaml, 44
App.xaml.cs file, 189
ASP.NET MVC, 23, 26

controller, 203
model, 203
request and response flow, 202

technologies, 202
view, 203

ASP.NET SignalR, 24, 26
Hub, 205, 211, 213
middleware, 211
NuGet package, 210
persistent connections, 204
references, 210
transport protocols

AJAX long polling, 207
communication flow, 205
forever frame, 207
selection process, 206
server sent events, 207
WebSocket, 206

web-based dashboards, 204
ASP.NET Web API, 21, 25

creation, 67
default generated files, 69
routing, 69–70
template selection, 68

ASP.NET web application, 208–209
ASP.NET WebForms, 143
Asset Catalogs, 45
Assets, 45
Async and Await keywords, 124–125
Attribute-based routing, 217

https://doi.org/10.1007/978-1-4842-4264-3

264

B
Broadcast() method, 213

C
Code-First approach, 72
config.MapHttpAttributeRoutes()

line, 70
Connected Services, 44
Controller action method, 203
Convention-based routing, 70
Conveyor

IIS Express, 228
installation, 229

end task, 231
Keyoti plug-in, 229
TCP port, 233
UI, 234
Visual Studio 2017

configuration, 232
VSIX license, 230

Create, read, update, and delete
(CRUD) operations, 3

GameManager class
AddChallengerID()

method, 92
DeleteChallenger()

method, 95
DTO, 86
GetAllChallengerRank()

method, 88
GetChallengerByEmail()

function, 93

GetChallengerID()
method, 90

HTTPApiResponse object, 87
Cross-origin resource

sharing (CORS), 3
ASP.NET Web API, 105
definition, 104

cURLs
commands, 108
definition, 106
player ChallengerID, 106
player, deletion, 108
player profile, 107
player score, updation, 107
testing, 106

D
Data access layer

ADO.NET entity data model, 73
EDMX/entity data model

MemoryGameDB.
Context.tt, 76

MemoryGameDB.
Designer.cs, 75

MemoryGameDB.Edmx.
diagram, 76

MemoryGameDB.tt, 77
test connection, 74

Database
query editor, 64
sql query execution, 65

Database-First approach, 72

Index

265

Data-driven mobile application, 6
Data Transfer Object (DTO)

class, 86, 119–120
DbContext, 77
dbo.Challenger table, 66
dbo.Rank table, 66
DbSet class, 78
DeleteChallenger() method, 103
DeletePlayer() method, 103
Dependencies, 44
DependencyInjection (DI), 96

E
Entitlements.plist, 46
Entity Framework (EF), 2, 22, 25
Expression-bodied functions, 118
eXtensible Application Markup

Language (XAML)
home page, 160–162

class-level definition, 170
_cycleStartInMS variable, 171
DependencyService class, 176
Device.StartTimer()

method, 178
eventTypeCount variable, 171
Home.xaml.cs file, 163, 170
IncrementGameLevel()

method, 174
IncrementPlayCount()

method, 174
InitializeComponent(), 171
LevelUp() method, 173

OnAppearing() method, 173
OnbtnSyncClicked()

method, 179
Play() method, 178
ResetLevel() method, 174
StartRandomPlay()

method, 176
Sync() method, 179–180

register page
CheckExistingProfile

AndSave() method, 156, 160
content page file, 144–147
InitializeComponent()

method, 154
Register.xaml.cs file, 148, 153
Save() method, 156, 159
SetHasBackButton()

method, 154
ToggleEntryView()

method, 157–158
result page, 181–185, 189

F
FirstOrDefault() function, 89

G
GameAPI class, 120, 124
Game flow, 30–31
Game mechanics, 30–31
Game objective, 31
Get() method, 101

Index

266

GetPlayerID() method, 101, 129
GetPlayerProfile() method, 102
Git, 244
GitHub

Visual Studio
(see Visual Studio 2017)

web-based hosting service, 244
Graphics and sound file

android, 141–142
iOS, 142

H
Helper class, 115
High-level process, 24

I
IHaptic interface, 112
ILocalDataStore interface, 113
Info.plist, 46
Integrated development

environment (IDE), 9
iPhone device emulator, 241
IsConnectedToInternet()

method, 115
ISound interface, 114

J, K
JsonConvert.Deserialize

Object(), 129–130
JsonCovert.SerializeObject()

method, 127–128

L
Language-integrated

query (LINQ), 72
LoadResult() function, 224
LoadSettings() method, 113

M
Mac, 9
MainActivity.cs, 45
Main.cs, 46
MainPage.xaml, 44
MemoryGame.App, 111, 143, 191

Android emulator, 50–51
Android project, 44–45
architecture

fundamentals, 46–47
Build Solution, 48
enabling output window, 47–48
enabling remote login, 52
iOS device emulator, 57–59
iOS project, 45–46
Mac instructions, 53–55
Mono installation, 55
.NET Standard project, 43–44
PCL, 43
Visual Studio 2017, 49
Xamarin.Android, 49–50
Xamarin.iOS, 51–52, 56
Xcode, 52
Xcode and Apple SDKs

agreement, 56–57
MemoryGame.App project, 191

Index

267

Method definitions
GameAPI constructor, 125–126
GetAsync(), 131
GetPlayerID(), 130
ProcessGetAsync(), 129
ProcessPostAsync(), 127
ReadAsStringAsync(), 130
SavePlayerProfile(), 127
SavePlayerScore(), 128

Mobile application, 3, 28–29
answer view, 35–36
game view, 35
main screen, 34–35
real-time ranking view, 38–39
registration screen, 33
result view, 36–38
welcome screen, 32

Model-view-controller (MVC), 1, 23
Multiple startup projects, 239

N
Native References, 45
Newtonsoft.Json, 60–61
NuGet packages, 3, 60–62

O
Object-relational mapper

(ORM), 22, 71–72

P, Q
Page navigation, 189–190
Platform and frameworks, 7–8

PlayerManager class, 131
CheckExistingPlayer()

method, 140
CheckScoreAndSync()

method, 139–140
GetBestScore() method, 137, 140
GetPlayerID() method, 138
GetPlayerProfileFromLocal()

method, 136, 140
GetPlayerScoreFromLocal()

method, 140
Save() method, 135
SavePlayerProfile() method, 138
Sync() method, 138–140
UpdateBest() method, 136, 140
static, 135

PlayMp3File() method, 114, 194, 197
PlayWavFile() method, 114
Portable Class Libraries (PCLs), 43
PostAsync() method, 131
Postman testing, 108–109

R
Real-time leaderboard, 4, 225
Remote procedure calls (RPC), 214
REST API, 3
REST service, 25
Result.xaml.cs file, 185

S
SaveChanges() method, 90
SavePlayer() method, 102

Index

268

SaveSettings() method, 113
Service interfaces

IHaptic, 112–113
ILocalDataStore, 113
ISound, 114

SetHasBackButton() method, 154
Settings class, 116, 118–119
Settings.PlayerID property, 138
SharpProxy

definition, 235
MemoryGame.API property

configuration, 237
testing and debugging, 235–238
tool, 4
UI, 236

SignalR, 1–2, 23
Simulators, 241
Source code management

(SCM), 244
SQL Server 2017

installation selection, 14
license terms agreement, 15
machine drive, 14
official download site, 13
progress, 17
specify install location, 16
SSMS installation, 19

Static property, 118
Synchronous method, 125

T
ToList() function, 88

U
UpdateCurrentBest() method, 89, 103
User interface (UI), 5

V
Version control, 243
Visual Studio 2017, 5

Blank template, 41–42
commit message, 255
commit publish, 253
GitHub

connection, 247
extension, 245
login, 248

installation
license terms agreement, 11
official download site, 10
version, 10
workload selections, 12

local git repositories, 250
repository, 254
source code, 257–258
Sync code, 251
VSIX Installer, 246
Xamarin.Forms project,

creation, 39–40

W
Web API application

process, 238–239
Web API endpoints

Index

269

ApiControllers, 100
attribute routing, 99
controller, addition, 97
GameController, 97, 103–104

Web API server, 29
Web application process flow, 30
Windows, 8
Working Memory, 4, 6

X, Y, Z
Xamarin, 5

vs. Xamarin.Forms, 21
Xamarin.Android, 198, 240

haptic service, 192–193
sound service, 193–194

Xamarin.Forms, 3, 20, 25, 39–40
Xamarin.iOS, 198, 241

haptic service, 194–195
sound service, 195, 197

XAML, see eXtensible
Application Markup
Language (XAML)

Xam.Plugin.Connectivity, 60–61
Xam.Plugins.Settings, 60–61
Xcode and Apple SDKs

agreement, 56–57

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Introduction
	Chapter 1: Introduction
	Roadmap
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7

	Background
	What You Will Learn
	Prerequisites
	Development Tools Download Resources
	Windows
	Mac

	Installation Guide
	Visual Studio 2017
	SQL Server 2017

	Five Players, One Goal
	Xamarin.Forms
	Xamarin vs. Xamarin.Forms

	ASP.NET Web API
	EF
	ASP.NET MVC
	ASP.NET SignalR
	Wrap-Up

	Chapter 2: Getting Started
	Application Flow
	Mobile Application Process Flow
	Web API Server Process Flow
	Web Application Process Flow

	Game Overview
	Mechanics
	Objective

	Mobile Application Views
	Welcome Screen
	Registration Screen
	Main Screen
	Result Screen
	Web Application View

	Creating the Core Projects for Mobile App
	Overview and Anatomy
	MemoryGame.App
	MemoryGame.App.Android
	MemoryGame.App.iOS

	Architecture Fundamentals
	First Run
	Xamarin.Android
	Xamarin.iOS

	The Required NuGet Packages

	Chapter 3: Configuring Data Access and API Endpoints
	Creating a New Empty Database
	Creating the ASP.NET Web API Project
	Integrating EF
	What Is an ORM?
	What is EF?

	Setting Up a Data Access Layer
	Implementing CRUD Operations
	A Friendly Reminder
	The Web API Endpoints
	Enabling CORS
	Sample cURLs
	Testing with Postman

	Chapter 4: Building Mobile Application with Xamarin.Forms
	Implementing the Service Interfaces
	The IHaptic Interface
	The ILocalDataStore Interface
	The ISound Interface

	The Helper Class
	The Settings Class
	The DTO Class
	The GameAPI Class
	Async and Await Overview
	Method Definitions

	The PlayerManager Class
	Adding the Needed Graphics and Sound File
	Android
	iOS

	The Required XAML Pages
	The Register Page
	The Home Page
	The Result Page

	Setting the Page Navigation
	Summary of Files Added
	Implementing the Haptic and Sound Services
	Xamarin.Android Haptic Service
	Xamarin.Android Sound Service
	Xamarin.iOS Haptic Service
	Xamarin.iOS Sound Service

	Setting Permissions
	Xamarin.Android
	Xamarin.iOS

	Chapter 5: Building a Simple Real-Time Leaderboard Web App with ASP.NET SignalR and MVC
	What ASP.NET MVC Is
	The Model
	The Controller
	The View

	What ASP.NET SignalR Is
	Transport Protocols Selection
	Transport Protocol Overview

	Create a New Web Application
	Integrating ASP.NET SignalR
	Adding a Middleware for SignalR
	Adding a Hub
	Adding an API Endpoint
	Configure Web API Routing

	Enabling API Endpoint-to-Endpoint Communication
	Adding an MVC Controller
	Adding a View
	Output

	Chapter 6: Deployment and Testing
	Using the Conveyor Plug-in for Visual Studio 2017
	What Is Conveyor?
	Install Conveyor

	Using SharpProxy
	Simulating the Application’s Process
	Android
	iOS
	Next Steps
	Output

	Chapter 7: Pushing Your Code to GitHub
	Using Visual Studio to Push Source Code in GitHub
	Download GitHub Extension for Visual Studio
	Publishing Your Code

	GitHub Repository and Source Code
	References

	Index

